
PL/I Prograrnrning

Joan K. Uugh@~

•

Pl/I Progratntning

John Wil@y & ~Oh!
N@w York london ~ydn@y Toronto

Copyright © 1973, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine language'
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Hughes, Joan Kirkby
PL/I programming.

Bibliography: p. 677
1. PL/I (Computer program language). I. Title.

QA76.73.P25H83 001.6'424 72-7399
ISBN 0-471-42032-8

Printed in the United States of America

10 9 8

This book is dedicated to

D. Michael Tucker
I BM Systems Engineering Manager, Riverside, California

David P. Goldsmith
Director of Development, National Bank Americard,
San Francisco, California

Lily Claus
IBM Executive Secretary, Los Angeles, California

Bonnie Gee
Consultant, Los Angeles, California

To the Reader

When something becomes part of a culture's humor, it seems that it is
deeply entrenched in that culture. The subject of computers has found
its way into our humor as shown in the following cartoon which pokes
some gentle fun at programming:

THE WIZARD OF ID BY PARKER AND HART

Programming-whether it becomes a career for you or not-can
be fun. It's like playing a game (but is considerably more challenging
than Tic Tac Toe)-a game for which you can get paid. Personally, I
find an excitement about working in the field of computers because

1. it teaches you to think logically, and
2. it allows you to creatively solve problems that have never been

solved by man before.

PL/I is a powerful language that can be used to solve both business
and scientific problems. In this text, I have tried to present the PL/I
language in as simple and logical a manner as possible. But, in addition,
I have also tried to avoid weaknesses I have found in some college
books I had to read. For example, the answers to the checkpoint
questions are indeed in that chapter. A comprehensive index is pro-

Cartoon used by permission of John Hart and Field Enterprises, Inc.

vii

VII I Preface

vided so that you should be able to quickly reference a technical point
or locate the answer to a question. If you are new to the field of com
puters, you will frnd the glossary in Appendix G most helpful in looking
up the definitions of new terms. The suggested lab problems at the
end of each chapter reinforce the technical material presented in that
chapter. Many of the lab problems have been "field tested" in the
programming classes I have taught at the I BM Los Angeles Education
Center. My appreciation goes to not only my students in IBM classes
but also to my students in Pierce College (Woodland Hills, California)
evening classes for their assistance and feedback.

To the Instructor

PL/I is so comprehensive that a 1000 page book could be written and
still, some things would be left unsaid. I have spent months wrestling
with which topics to include and how to organize those topics.

I decided to present List-Directed I /0 in Chapter 1 so that your
students could-after reading only the first chapter of this book
actually code a complete (although simple) PL/I program that would
compile and execute. And, of course, getting the students involved in
doing at an early stage of a class gets their attention, their interest, and
their commitment to the subject. (Either that, or they drop the course.)
The material is organized on a "need to know" basis. Stream 1/0
is presented before record 1/0 because it appears to me that is the way
it is taught in so many colleges today. Arrays are presented when the
iterative DO is presented; structures are discussed in the chapter dealing
with record 1/0 because we do not need to use structures until we
program using the RECORD form of 1/0. There are well-defined lab
problems at the end of each chapter. For some of the problems, flow
charts are provided if the student wishes to use them. Lab problems
include suggested test data (thereby saving you time in making up
representative sample test data) and sample output for the students to
check their solutions against. Lab problems are carefully designed to
reinforce the material presented in each chapter. The chapters are
modular and self-contained to a large degree. The result is that you
could teach according to your own sequence of topics and assign
reading that is not in the sequence of this book. For example, there
would be little loss of continuity, if any, if you wanted to teach record
1/0 before stream 1/0 :

Record 1/0 first:
Stream 1/0 first:

Chapters 1, 2, 3, 4, 8
Chapters 1, 2, 3, 4, 5

Preface IX

Chapter 6 (Built-in Functions) and Chapter 7 (How to Write Sub
routines and Functions) can be assigned any time after Chapters 1,
2, and 3 have been read. Chapter 11 deals with a most interesting
aspect of PL/I-dynamic storage allocation. This chapter assumes
only that the reader knows about subroutines (Chapter 7 material).

If you are teaching trimester or quarterly courses, chances are
that you would not have time for the material presented in Chapter 10
(Indexed and Regional File Programming Concepts). I always felt
remiss about leaving out this important topic in some of the college
classes I have taught, because I know from my industry experience
with IBM just how important direct access device programming really
is-particularly now with the trend into data base and data com
munications.

Appenpix A will undoubtedly be a valuable reference for you as
an instructor. It contains a list of PL/I keywords and examples of their
use.

I wish to extend my appreciation to Professor Richard Conway
for permission to use his material on Cornell University's own PL/I
compiler-called PL/C. (See Appendix C and Appendix A, in that
order.) Also, I wish to express appreciation to two members of his
staff in the Department of Computer Science at Cornell-Steven
Worona and Mark Bodenstein-who reviewed, for technical accuracy,
the PL/C entries in the comparison charts in Appendix A. My thanks
also go to the Wiley staff: Gene Davenport, Editor; Bernard Scheier,
Manager, Palo Alto Production; Elodie Sabankaya, Designer; Phyllis
Niklas, Copy Editor; Linda Riffle, Editorial Supervisor; and Tom Wolf,
Production Assistant.

There is a Teacher's Manual accompanying this text. I have
included sample solutions to the lab problems, as well as some teaching
notes and visual aids that might be useful to you in teaching PL/I.
Having taught hundreds of students the PL/I language, I have so
many thoughts on the problems (and joys) of teaching PL/I that
space here does not permit a full treatment. Feel free to contact me
personally (Joan K. Hughes c/o John Wiley & Sons, Inc., 605 Third
Ave., New York, N.Y. 10016) if you have any questions on PL/I or
the teaching of PL/I.

Joan K. Hughes

chapter 1 Getting Started 1

chapter 2 Writing Programs 41

chapter 3 File Declarations, Conditions,
and Pictures 111

chapter 4 DO's and Dimensions 171

chapter 5 Stream 1/0 239

chapter 6 Built-in Functions 309

chapter 7 How to Write Subroutines and
Functions 351

chapter 8 Introduction to Record 1/0 and
Structures 389

chapter 9 Programming Consecutive Files 455

chapter 10 Indexed and Regional File
Programming Concepts 501

chapter 11 Storage Classes and Scope of
Identifiers 567

appendix A Keywords Available in Various
PL/I Compilers 617

appendix B Bibliography 677

appendix C Data Conversion Rules 678

xi

XII Contents

appendix D Data Formats and Number
Systems 681

appendix E PL/C: The Cornell University
Compiler for PL/I 702

appendix F File Declaration Charts 705

appendix G Glossary of PL/I Terms 709

Index 733

t!hapfot I

C@ffing

A new programming language, in fact, N PL-for New Programming
Language-was one of its early names, has been added to the array
of computer programming languages in use today. PL/I (note that
Roman numeral I is always used) is a programming language that
meets the needs of both scientific and commercial programmers,
affords a flexibility heretofore available only to assembler language
programmers, and takes advantage of new computer architecture
developments.

Because PL/I incorporates many facilities, its richness has
permitted use in a wide variety of applications. "At Yale University,
where more than ten high-level languages are available, it is used in
place of assembly language to write the utility programs that support
the operating system. It is also used by musicologists and linguists for
complex character manipulations that can only be accomplished with
difficulty in other languages. Bell Telephone Laboratories used PL/I
to process tapes recorded with a variety of non-standard word lengths.
At MIT's Project MAC, the GE 645 operating system is written in a
subset of PL/I. Corporations such as Union Carbide, Eastman Kodak,
and General Motors do a significant amount of their programming in
PL/I. This ranges from engineering graphics to accounts receivable
applications." t

PL/I was developed (the first preliminary report is dated 1964)
jointly by I BM and representatives of two customer groups-SHARE,
a scientific users' organization, and GUIDE, its commercial counterpart.
The objective of the working committee was to synthesize into one
language the best features of the many existing languages, to incor
porate the latest theoretical advances in language design, and to build
into the new language features allowing control of the contemporary
hardware configurations (for example, multiprocessors, real-time
access devices, and direct access storage units).

tL. Frampton, "How Does PL/I Compare with Its Forebears?" Computer Decisions,
May 1970.

2

Getting Started 3

The most important forerunners of PL/I are

1. FORTRAN-arrays and scientific features
2. ALGOL-particularly the block structure
3. COBOL-structures and direct access storage maintenance

Major computer manufacturers such as CDC (Control Data
Corporation) and Burroughs have announced their PL/I compilers.
However, at the time of publication of this text, the majority of PL/I
compilers have been produced by IBM. Some of these compilers are
listed in Figure 1.1. Each of the listed language compilers is designed
to run under a specific operating system. Although these implementa
tions of PL/I have a great deal of similarity with respect to the language
capabilities, there are a number of small details or restrictions that set
them apart from each other. Wherever possible, these differences will
be noted in the summaries following each chapter. PL/I D will be
referenced in the text as being the subset language, while the other
I BM compilers above are referred to as having full language capabilities.

There are also a number of PL/I compilers provided by IBM for
use with a computer terminal. A terminal (which in many cases re
sembles an electric typewriter) is attached via telephone lines to a
computer so that information entered through the keyboard may be
processed by the computer. Some of the I BM PL/I terminal languages
are listed below.

Computer terminal languages
DOS ITF PL/I
OS ITF PL/I
TSO ITF PL/I
TSS PL/I F
CALL 360

The meanings of the above abbreviations include the following:

DOS Disk Operating System
OS Operating System
ITF Interactive Terminal Facility
TSO Time-Sharing Option
TSS Time-Sharing System

Appendix B contains a bibliography of IBM reference manuals related
to PL/I programming including the above terminal languages.

I
Language IBM reference
compiler IBM computer Operating system manual number

PL/I D S/360, Model 25 Disk Operating System (DOS) or GC28-8202
and higher, or Tape Operating System (TOS)
S/370

PL/I F S/360, typically Operating System (OS) GC28-8201
Model 40 and
higher, or S/370

DOS PL/I S/360 or S/370 Disk Operating System (DOS) SC33-0005
Optimizing
Compiler

OS PL/I S/360 or S/370 Operating System (OS) SC33-0009
Checkout
and
Optimizing
·compilers

FIGURE 1.1 IBM PL/I compilers.

Getting Started 5

Programming begins when you decide on a method for solving a
particular problem. This is the creative part of programming. The
subsequent steps are more mechanical. After arriving at a method of
solution (during which time you may have drawn a flowchart to depict
your logic), you write the PL/I statements on coding sheets-any
general-purpose 80-column coding sheets will do. If you are a student
learning PL/I, you will probably have to punch your own program or
perhaps key it into the computer through a typewriter terminal. Assum
ing the program is punched into cards, the source program deck is
then taken to the computer for compilation. Compilation is a translation
process. A PL/I compiler is a program that will take your source state
ments and translate them into the language the computer "under
stands." This language is in binary and often is referred to as machine
language. The machine language equivalent of your PL/I program is
called the object program. The object program is always placed (by the
PL/I compiler) on some external storage medium, such as cards,
magnetic tape, or disk-most often on disk.

Figure 1 .2 depicts the steps involved in compiling and executing
a PL/I program. It shows the source program as being punched into
cards. These cards are read and translated by the PL/I compiler into a
machine language program, which we previously termed an object
program. The linkage editor has the job of preparing an executable
program in the format required by main storage. The linkage editor
takes the object program from an external storage medium and com
bines it with other programs or subprograms which the object program
requires to execute properly. These other programs or subprograms are
typically catalogued in libraries stored on tape or disk. Core image
program or load module is typical of the name given to program output
from the linkage editor. Although load modules are customarily retained
on a disk or magnetic tape for future or repeated use, the programs
must be brought into main storage before they can be executed.

All of the various system programs, such as the PL/I compiler or
the linkage editor, are executed only when instructions are given to
execute them. These instructions are referred to as JCL, for Job Control
Language. Some of the statements that make up the JCL must "sur
round" your PL/I source program to cause it to be compiled and
executed. The format that job control statements take depends on the
operating system you are using (e.g., DOS or OS). Because JCL

SOURCE

Source
program

PL/I
compiler _________ ..____~~-----'-------

EXECUTABLE

FIGURE 1.2

Linkage
editor

Execute

Disk

PL/I
libraries

Program stages in System/360 or System/370.

Getting Started 7

can be a study in itself and because it is independent of programming
languages, job control statements are not covered in this text.

As an introduction to PL/I programming, let us examine a small program
that will find the grade-point average of five examination marks. Assume
the numeric grades are 100, 90, 80, 70, and 90. These grades can be
punched into 80-column cards-say, one numeric grade per card.
The program we are about to look at will read (input) these five values,
find the sum of the numeric grades, and divide the sum by five to give
the grade-point average (mean). The mean will then be printed.

It is good programming practice to begin your PL/I programs with
a comment. For example :

/* PROGRAM TO CALCULATE GRADE POINT AVERAGE */

As you can see, a PL/I comment begins with /* and ends with */.
Comments, which have no effect on the execution of a program,
generally may appear anywhere in a PL/I program. In fact, comments
may be embedded within a PL/I statement wherever blanks are allowed.
Comments are not considered to be PL/I statements; thus, the first
PL/I statement in the program is the PROCEDURE statement:

AVER: PROCEDURE OPTIONS (MAIN);
'-.._,--/ '----v-----'

I

~------ Must specify for
main programs

~-------------+) May be abbreviated
as PROC

,____ _________________ Programmer selects

this name (label)

The PROCEDURE statement must always be labeled. In the example,
AVER Is termed a label. A label is separated from the rest of the PL/I
statement with a colon (:). The label may be a combination of alpha
betic and numeric characters, but the first character of the name or
label must be alphabetic. The PROCEDURE statement is not executable.
It is simply a way of telling the compiler that this statement marks the
beginning of the block of PL/I statements. A distinction is made here

8 PL/I Programming

between main procedures and subprogram procedures, which, while
different, also begin with a PROCEDURE statement but without the
OPTIONS(MAIN). For example:

SUBRT: PROCEDURE;

(Subprogram procedures are covered in detail in Chapter 7.) Following
the PROCEDURE OPTIONS(MAIN) statement, the statement to input
the data (examination marks) should be specified. This could be
accomplished with the statement

GET LIST(A,B,C,D,E);

Notice how all PL/I statements are ended with a semicolon (;). When
the GET statement above is executed, the five values (100,90,80, 70,90)
punched in cards will be read into the computer and assigned corre
spondingly to the variables named A, B, C, D, and E. Thus, A will con
tain the value 100, B the value 90, C the value 80, and so on. Variables
are names which represent data or are names to which data may be
assigned.

The next programming step would be to calculate the grade-point
average. This could be accomplished by the following assignment
statement:

MEAN = (A+ B + C + D + E) I 5 ;

Expression

Arithmetic assignment statement

The sum of A, B, C, D, and E is computed first because all arithmetic
operations specified within parentheses are performed before arith
metic operations that appear outside the parentheses in an expression.
The slash (/) indicates a divide operation. Thus, the sum is divided by
5. The quotient is placed in the variable named MEAN. The equal
sign (=) is referred to as the assignment symbol because it denotes the
assignment statement. The assignment statement does not necessarily
represent equality. The assignment statement can be verbally stated
as, "Assign the value of the expression on the right of the assignment
symbol (=) to the variable on the left of the assignment symbol."

The final step in this sample program is that of printing the results.
This could be accomplished with the following statement:

PUT LIST('AVERAGE IS', MEAN);

Getting Started 9

This statement generates output to a system printer, generally a line
printer. The printout would look like this:

2 ~-- Print positions
1 5

Why print position 1 and then 25? Data printed with a PUT LIST
statement are automatically aligned on predetermined tab positions.
These positions are 1, 25, 49, 73, 97, and 121. (It is possible that
in some installations, these predetermined tab positions have been
altered and thus may not match the positions stated above.) In the
PUT LIST statement, two data items were output:

1. The literal 'AVERAGE IS'
2. The contents of the variable called MEAN

Notice how the literal was surrounded with single quotation marks
in the PUT LIST statement; however, on output, the single quote
marks are removed before the literal is printed. This literal is a character
string constant. A constant is an arithmetic data item or string data
item that does not have a name and whose value cannot change.
Other types of PL/I constants will be discussed later. The constant 5
in the assignment statement previously introduced is an example of an
arithmetic data item. String constants are surrounded by single quote
marks; arithmetic constants are not surrounded by any punctuation
marks.

Logically, our grade-point average program is finished. A RETURN
statement could be specified to indicate the logical point at which
the program should terminate execution. It would be coded :

RETURN; /* LOGICAL END */

Following the RETURN statement, an END statement must be specified
which indicates the physical end of our program. For example:

END; /* PHYSICAL END */

If a RETURN statement is to be immediately followed by an END
statement in your program, then the RETURN statement may be
omitted, for the END statement may be used to mark both the logical

10 PL/I Programming

and physical end of a procedure block. (Procedure block and program
are being used here as synonyms; however, a program actually con
sists of one or more procedure blocks.) The END statement may,
optionally, contain the label of the procedure it is ending. For example:

END AVER;

~ The label affixed to the PROCEDURE
OPTIONS (MAIN) statement

Here, then, is the complete program :

/* PROGRAM TO CALCULATE GRADE POINT AVERAGE */
AVER: PROCEDURE OPTIONS(MAIN);

GET LIST(A,B,C,D,E);
MEAN= (A+ s+c+ D+ E)/5;
PUT LIST('AVERAGE IS', MEAN);
END;

Default Attributes

Data names (variables) beginning with the letters I through N
usually represent whole numbers only-that is, integers. Thus, MEAN
may contain only the integer portion of an arithmetic result. For the
input data suggested, the result after summation and division is 86.0.
However, if the input values had been, for example, 100, 90, 80, 70,
94, then a mixed number (a number composed of an integer and a
fraction) of 86.8 would be the result of the arithmetic operations. If
the value 86.8 is assigned to MEAN, only the integer portion of the
number is retained. In this case, the .8 would be dropped.

Of course, having variable names which represent only whole
numbers can work to our advantage. Suppose it is desired to give the
grade-point average as a whole number, but rounded off. That is, if
the average's fraction is .5 or more, round up to the next whole number
so that a calculated average of 86.8 would be 87 on the printout.
This could be accomplished by the statement:

MEAN= (A+ B+C+D+E)/5+.5;

The expression (A+ B + C + D + E) /5 + .5 will be computed in such a
manner that intermediate results allow for mixed numbers to be re
tained. When the result is assigned to MEAN, the fractional part is
then truncated (dropped). Variables that begin with the letters A
through H, 0 through Z, or the symbols @, #, $ are assumed to have

Getting Started 11.

the attributes FLOAT DECIMAL. An attribute is a descriptive property
associated with a name. FLOAT DECIMAL data are represented inside
the computer in a floating-point format. It is not important that you
know how this data looks inside the computer, but you should know
how to interpret floating-point notation in the printed form which is
explained as follows (where X represents any decimal digit) :

X.XXXXXE ±XX
'---y---1 '-v--' I__ __ -+ Exponent of the value

'-----------+i Fractional portion of
the value

'------------+Decimal point

'------------+ First significant digit
of the value

Assume the following assignment statement had been coded:

AVERAGE= (A+ B+C+ D+E)/5;

If the result is 86, the grade-point average is printed in the following
form:

8.60000E + 01
'-v--'

I ____) Think of E + 01 as the multiplier 101

(since 101 is equal to 10, multiply
8.6 by 10 to give result of 86.)

In the above example, the E+01 floats the decimal point to the right
01 places so that AVERAGE will equal 86.

If the average were 86.8, then this would be printed:

8.68000E + 01

Thus, through the FLOAT DECIMAL variables it is possible to retain
and print out mixed numbers. However, for business programming, this
scientific notation is not desirable, because the floating-point format
though understood by the mathematician-is not acceptable to the
accountant. The solution to the problem lies in giving the PL/I pro
grammer the facility to specify other attributes for his data.

When variables begin with the letters I through N (or A through
H, etc.), we have seen that certain attributes are assumed. These

12 PL/I Programming

assumptions by the PL/I compiler are said to be default attributes.
A default is an alternative attribute or option assumed when none has
been specified.

The DECLARE Statement

If a programmer does not want the default attributes to apply
to his variables, then the desired attributes may be specified through
the DECLARE statement. For example, assume we would like to print
the grade-point average to the nearest tenth of a point:

AVERAGE IS 86.8

When it is desired to work with mixed numbers but not in the floating
point format, declare your data to have the FIXED DECIMAL attributes:

DECLARE MEAN FIXED DECIMAL(4, 1);

11 : Number of fractional
digits

Total number of digits
(including the fractional
portion)

...___ ____ ----+ Attributes: may also be
expressed as DECIMAL
FIXED because the order
of these keywords is not
significant

'--------------+ Variable

~------------~ May be abbreviated DCL

In the above example, the total number of digits specified is four, to
allow for the maximum grade-point average (i.e., 100.0). It is also
possible to declare FIXED DECIMAL variables as representing whole
numbers. For example:

DECLARE AVERAGE FIXED DECIMAL(3);
/* OR */

DECLARE AVERAGE FIXED DECIMAL(3,0);

In a DECLARE statement, if you specify only the attribute FIXED, the
attribute DECIMAL will be assumed by default. However, if you
specify only the attribute DECIMAL, the attribute FLOAT will be

Getting Started 13

assumed by default. If you are programming business applications,
then you should either use variables that begin with the letters I
through N to represent data that are within the range of ± 32,767
or declare variables to have the FIXED attribute.

Let us assume, then, that for this grade-point average program,
we are including the following DECLARE statement:

DECLARE MEAN FIXED (4, 1);

The variables A, B, C, D, and E could also be declared to have the
FIXED DECIMAL attributes. For example:

DCL (A,B,C,D,E) FIXED(3);

'~--~1 Specifies a maximum of three
digits for each variable named

'-------~Attribute: DECIMAL will be
assumed by default

..___ ________ _____... Variables within parentheses:
when grouped together like
this, it means that each variable
is to represent data of the
attributes specified

~------------~ Abbreviation for DECLARE

DECLARE statements may appear anywhere in a PL/I procedure.
Typically, they are placed at the beginning of a procedure-perhaps
immediately following the PROCEDURE statement. Here, then, is the
program including the DECLARE statements:

/* PROGRAM TO CALCULATE GRADE POINT AVERAGE */
AVER: PROCEDURE OPTIONS(MAIN);

DCL MEAN FIXED(4,1);
DCL (A,B,C,D,E) FIXED (3);
GET LIST(A,B,C,D,E);
MEAN= (A+B+C+ D+E)/5;
PUT LIST('AVERAGE IS', MEAN);
END;

Identifiers

The general term identifiers is given to names of data (MEAN,
A, B, C, D, and E in the grade-point average program), names of

14 PL/I Programming

procedures (AVER in the same program), names of files (there were
no defined or specified files in this program), labels of PL/I statements
(only the PROCEDURE statement was labeled), and keywords (such
as GET or PUT).

Keywords constitute the vocabulary that makes up the PL/I
language. When keywords are used in proper context, they have a
specific meaning. Appendix A provides a list of keywords available for
various PL/I compilers.

An identifier for data names and statement labels may be from
1 to 31 alphabetic characters (A-Z, @,#,$), numeric digits (0-9),
and break (_) characters, t providing that the first character is alphabetic.
Some examples are

RATE_OF_PAY
CONTINUE
PERCENT

$TWO
LOOP_3
Pl E_A_ LA_ MODE

Note that in PL/I, the characters @, #, and $ are considered to be
alphabetic.

Names of procedures and files may be a maximum of six or seven
characters long, depending on which PL/I compiler you are using.
Some examples of procedure and file names are

PAYROL
CARDIN
P1

CALC
PRINTR
FILEA

Note that, generally, special characters such as the break character(_),
or the # or @ may not be used in file names or procedure names
even though they are allowed for other identifiers such as names of
data.

f
Number of characters allowed for procedure

names or file names

Subset language 1 to 6
-

Full language 1 to 7
./

tThe break character is the same as the typewriter underline character. It can be used
within a data name, such as GROSS_ PAY, to improve readability. A hyphen cannot be
used because it would be treated as a minus sign.

Getting Started 15

Statement Format

PL/I is said to be free-form; that is, a statement may contain
blanks as needed to improve readability of the source program. A
PL/I statement may be continued across several cards. For example:

Second (A,B,C,D,E);
card

One PL/I {
statement First GET LIST

card

Or, one card may contain several PL/I statements. For example:

GET LIST(A, B, C, D, E); MEAN=(A+B+C+D+E)/5;

The reason that more than one statement may appear on a card is that
a semicolon (;) terminates a PL/I statement. If a programmer inadver
tently omits a semicolon at the end of a PL/I statement, thereby causing
two statements to "run" together, the compiler may flag the combined
statements as being in error. Sometimes the compiler can detect
where the semicolon was to appear and insert one for you. Flagging
of errors of this and other types is referred to as compiler diagnostics.

Because PL/I is free-form, no special coding sheets are required.
Following is the generally accepted standard :

COLUMN 1
COLUMNS 2-72

COLUMNS 73-80

List-Directed Input

Reserved for use by the operating system
May contain one or more PL/I statements

or part of a statement
May contain program identification name

and/or a card sequence number; the
compiler, however, does not check for
consecutive order of sequence numbers

List-directed data transmission is the first form of input/output
discussed because it is easy to learn (thereby allowing you to start

16 PL/I Programming

writing PL/I programs quickly), and, although it would not be used in
production-type jobs, it can be a useful debugging or program checkout
tool.

In the grade-point average program, the input statement

GET LIST(A,B,C,D,E);

caused data to be read from the system input device which is typically
a card reader. For this type of input, each data value must be separated
by a delimiter such as a blank. For example, the five values could have
been punched into one card :

I")() 90 80 70 90 1
Because the data can be separated by one or more blanks, each value
could have been punched on a separate card:

90

70

80

90

100

The input data could also have been separated by a comma and blanks.
For example:

1100, 90,80, 70, 90

or by only a comma and no blanks. For example:

1100,90,80, 70,90

Notice that there is no comma following the last data item in the input
stream. The term stream is used because in list-directed input or output
data transmission, data are treated as one continuous stream of
characters. In understanding this concept, it might be helpful to think
of the data characters in an input stream as being on a conveyor belt.

Getting Started 17

A number of characters-perhaps decimal digits-will be "taken" off
the conveyor belt and assigned to the appropriate variable by the GET
LIST statement. Just how many digits are combined and assigned to
one variable is determined by the blank or comma that separates each
data item in the stream. Thus, characters are read (i.e., the conveyor
belt is moved) until a blank or comma is encountered. That group of
characters, then, would make up one data item. Assuming the data
are punched in cards, when there are no more data on one card, then
the next card would be input, and the "conveyor belt analogy" would
continue. Another way of looking at the stream concept is to imagine
taping all the cards in an input deck end-to-end:

As a further illustration of the stream concept, assume we have
the following data card with the values from the grade-point average
program punched in the following manner:

1100 90 80 70 90

and we have written the statement

GET LIST(A,B,C);

Here, of course, A will take on the value of 100, B, the value of 90,
and C, the value of 80. Now, assume the next statement in the PL/I
program is

GET LIST(D,E);

The variable D will take on the value 70, and E, the value 90. A new
card record is not read, because there are still some values contained
on the first card. In other words, the card (or print line) is an artificial
boundary, as seen by PL/I. Another way the five values from a single
card cou Id have been read is

GET LIST(A);
GET LIST(B);
GET LIST(C);
GET LIST(D);
GET LIST(E);

18 PL/I Programming

Although the above method is obviously inefficient, it does illustrate
the use and flexibility of stream data transmission.

PL/I Constants Used in List-Directed 1/0

Any type of PL/I constant may appear in the input stream for
list-directed input. For example:

12.98, 10118, 'JOHN GEE', '111'8

I

I I • Bit-string constant

,______-------~) Character-string constant

,___-----------...4) Binary constant

,___ ______________ --4 Decimal constant

These and other types of PL/I constants may appear in the input stream.
Let us consider some of them now.

Decimal fixed-point constants consist of one or more decimal
digits and optionally, a decimal point. If no decimal point appears,
then the data item is assumed to be an integer. Some examples are

3.1415 +52.98 -100 .0003

Decimal fixed-point constants are contrasted with decimal floating
point constants, which have the E-notation defined previously in this
chapter. Some examples of decimal floating-point constants, along
with their decimal fixed-point equivalents, are given below:

Decimal floating
point constant
12.E+05 or 12E5
3141593E-6
.1 E-07
-45E+ 11
84E

Decimal fixed
point equivalent
1200000.
3.141593
.00000001
- 4500000000000.
84

On S/360 or S/370, the range qf decimal floating-point exponents is
approximately 10-78 to 10+75 power.

A string is a sequence of charaoters or bits that is treated as a

Getting Started 19

single data item. A character-string may include any character recog
nized by the computer system. Any blank included in a character
string is considered part of the data and is to be included in the count
of the length of the string. When written in a program, character
string constants must be enclosed in single quote marks. Some
examples are

'THE ROAD NOT TAKEN'
'DR. STRETCH, CHIROPRACTOR'
'18215 BURBANK BLVD.'

If it is desired to represent an apostrophe within the character-string
constant, it must be written as two single quotation marks with no
intervening blanks. Consider the following constant:

'SHAKESPEARE"S HAMLET

which will be stored inside the computer as

ISIHIAIKI EISIPIEIAIRIEI, ISi IHIAIMILIEITI

It is also possible to specify a repetition factor for string constants.
This feature is useful when a pattern in the string data exists. For
example, the character-string constant for the city of Walla Walla
could be written

(2)'WALLA

~I ---) The blank is included as one of
the characters to be repeated

,____ ______ ~ Repetition factor which must be
surrounded by parentheses

and gives the following character-string with a length of 12:

IW I A I L I L I A I I w I A I L I L I A I
If a character-string constant appears in the input stream and is to be
read using a GET LIST statement, then the variable in the GET state
ment should have the attribute CHARACTER. The DECLARE statement
must be used to specify a variable to have the CHARACTER attribute.

20 PL/I Programming

For example, to read 'WALLA WALLA', the following would be coded:

-------+) May be abbreviated CHAR

-----) Character-string length

DECLARE CITY CHARACTER(12);
GET LIST(CITY);

~---------- Because CITY has been
declared to represent
character-string data, a
character-string constant
from the input stream may
be assigned to CITY

Here is another example of the DECLARE statement and an assignment
statement that assigns a character constant to the variable declared:

DCL NAME CHAR(20);
NAME='TOM ANDERSON';

The name TOM ANDERSON is less than 20 characters, which is the
length declared for NAME. In this case, unused positions of the
variable will be padded on the right with blanks.

So far, we have been considering decimal data constants and
character-string constants. Another type of data that we may work
with in PL/I is binary data. (If you are not familiar with the binary
number system, you may wish to consult Appendix D for an explana
tion.) First, the question must be raised, "Why use binary numbers
in a PL/I program when it is difficult to 'think' in binary?" What is
more, because we live in a decimal world, binary numbers will ulti
mately have to be translated to decimal to be meaningful. Another
disadvantage of writing binary numbers is that it is difficult to represent
binary fractions easily. (For example, try writing the binary equivalent
for the decimal number 5.1.) The advantages of using binary data,
however, are significant enough to override the disadvantages stated
above. The advantages are these:

1. Conserves space: Generally, the binary method of representing
data inside a computer requires the least amount of storage of
any data format available.

Getting Started 21

2. Saves execution time: Less computer time is required to operate
on binary data than is needed for decimal data. Thus, a program
operating on binary data will, in most cases, execute faster than
the equivalent program operating on decimal data.

Most PL/I programs will be written so that they operate on both
binary and decimal data. Let us examine, then, the types of binary
constants that we may either input using GET LIST or express in a
PL/I source program.

A binary fixed-point constant expresses a number using binary
notation. It is written as one or more binary digits followed by the
letter B. Here are some examples of binary fixed-point constants:

f

Subset
language

Full
language

Constant
1011 OB
11111B
-101B
1 OOOOB

Decimal equivalent
22
31
-5
16

Binary fixed-point constants

Whole binary numbers only, e.g., 111 B

Mixed binary numbers are allowed, e.g., 111.01 B

Decimal floating-point constants were introduced previously in
this chapter. Usually, this type of data is used only by the scientific
programmer. In PL/I, it is also possible to express floating-point
constants in binary. Although this feature is not used too often, it
does provide a flexibility not generally available in high-level languages.

A binary floating-point constant consists of a field of binary
digits followed by the letter E, followed by a decimal integer exponent
followed by the letter B. The field of binary digits may contain a binary
point, and of course, a plus or minus sign. The exponent may be signed.
As with decimal data, the exponent indicates the displacement of the
binary point. For example:

Constant
11011E3B
10110.1 EOB
1011.E-3B

Equivalent
(11011000)2= (216)10
(10110.1) 2 = (22.5) 10
(1.011)2 = (1.75)10

22 PL/I Programming

On S/360 or S/370, the range of binary floating-point exponents is
approximately 2- 260 to 2+ 252 power.

If you have some previous knowledge about S/360 or S/370,
then you know that there is only one form in which floating-point data
are represented inside the computer, namely, floating hexadecimal. As
we have seen, PL/I allows two forms of floating-point. The compiler
will automatically convert these forms to the internal format (floating
hexadecimal) for representation in main storage. Thus, in a PL/I
program there are two forms of floating-point that may be coded,
but both forms will appear in the same format inside the computer.
The circumstances under which a scientific programmer might code
binary floating-point constants rather than decimal floating-point
constants are these :

1. The nature of the problem being solved dictates that binary is a
more convenient form than decimal.

2. The programmer needs to express constants to the nearest bit
rather than the nearest decimal digit.

A bit-string (bit is the abbreviation for binary digit) constant is
written in a program as a series of binary digits enclosed in single quote
marks and followed by the letter B. Bit-strings are valuable for general
use as logical switches; they can be set to 1 or 0 as indicators that may
be necessary later in the program for decision-making. Bit-strings are
being increasingly used in information retrieval. Many "yes" or "no"
answers can be recorded as a bit-string in a relatively small area. Here
are some examples of bit-string constants:

'1'B
I 11111 01 011 0001 , B
(64)'0'B

The parenthesized number preceding the last example is a repet1t1on
factor which specifies that the following bit or bits are to be repeated
the specified number of times. The example shown would result in a
string of 64 binary zeros.

Do not confuse a bit-string with a binary fixed-point data item.
Bit-strings are usually not used in calculations as binary fixed-point
data may be. Instead, bit-strings may be used in a program to indicate
whether or not certain conditions exist (yes or no, 1 or 0, true or false).
Bit-strings can also be used as a compact method of describing char
acteristics. For example, assume a television and movie casting agency
is using a computer to keep track of the thousands of Hollywood "bit-

Getting Started 23

part" actors (no pun intended) available for movie and television work.
When the studio has determined its requirements for "extras," that
request is sent to the casting agency. On what basis does the agency
select the actors to fill this request? Or, when a request for a particular
type of actor comes to the agency, how does the agency select from
the thousands of possible actors the right person for the part? One
method would be to describe the various talents (comedy, heavy
dramatic) and characteristics (age, hair color, height) of the actors in
terms of bit-strings, for example:

1 0 0
'-v----1

1 0 1 1

'-v----1 I

L) 1 = Male, 0 = Female

{

00 = Blue eyes
01 = Brown eyes
11 = Green eyes

{
1 = Plays heavy dramatic
0 = No heavy roles

{
1 = Plays comedy
0 = Does not play comedy

\

{
1 = Plays character roles
0 = Does not play character roles

...__ _______ ~etc.

These bit-strings could be stored on tape or disk files. When a request
for a certain type of actor is made, a bit-string of the desired character
istics is defined. Using this bit pattern as a guide, the files of bit-strings
can be easily searched by a PL/I program for the person who most
closely resembles the desired characteristics. You can see from the
above example, how a lot of information about a person can be com
pacted into a small "space." Large companies, having computerized
their personnel records, use the method of coding bit-strings to describe
employees' capabilities and talents.

Here, then, is a summary of the PL/I constants we have just
examined:

1. Decimalfixed-point:3.14159, -5280, 45.3
2. Decimal floating-point: 12E5, + 12.E+05, 84E, - 76E+ 7,

3E-17
3. Character-string: 'DR. SPITZ, DOG TRAINER', (2) TOM '

24 PL/I Programming

4. Binary fixed-point: 1011 OB, 111 B, -101 B
5. Binary floating-point: 11011 E3B, 10110.1 E, - .11101E+02B
6. Bit-string : '1 'B, '01011 'B, (32) 'O' B

These, and other types of constants may appear not only in the input
stream for GET LIST but also in PL/I program statements. For example:

J=K+1B;

~I _____ , Add a vinary one to K
and assign the result to J

List-Directed Output

Because PL/I constants may be data items in the PUT LIST
statement, the statements,

PUT LIST(50, 'ABC', 123, 127);
PUT LIST(23,86,87) ;

would give us this output:

1 25 49 73 97 121 ~ Tab positions

First line 50

Second line 86 87

In PUT LIST, the stream concept still applies. The data items specified
for output will be printed beginning at predetermined tab positions.
Notice how the first data item in the second PUT LIST statement was
printed on the first line with data items from the first PUT LIST state
ment. From this you can see that a PUT statement does not necessarily
cause data to be printed beginning on a new line. Output begins
wherever that last ·output was ended. Notice that nothing was printed
in tab position 121. This is because the line size for a PUT LIST is
120 positions. It has been shown that the tab positions are 1, 25, 49,
73, 97, and 121. How, then, does one output to a print position beyond
120 if the line size for PUT LIST is 120 maximum positions? The
answer is that certain attributes or characteristics are assumed for the
output file (e.g., the line printer) associated with the PUT LIST state
ment. One of these characteristics is that the line size is 120 positions.
As will be seen later, it is possible to define a file whose line size is
greater than 120 print positions, in which case tab position 121 would

Getting Started 25

be used in the list-directed printed output (assuming the line printer
has more than 120 print positions).

Constants, variables, or expressions may be specified as data
items in a PUT LIST statement. For example:

.---------7 These are the data items

~

PUT LIST(A,5,C*D);
'-v""'

..__ _____ Expression: C will be multiplied by
D; then the product will be printed

.___ ______ --*Constant

.___ _______ Variable

Assume it is desired to print one value on one line and a second
value on the next line. This can be accomplished through the PAGE
and/or SKIP options. The PAGE option causes the paper in the line
printer to advance to the top of a new page. The SKIP option causes
the paper in the line printer to be advanced the number of lines specified.
If the number of lines is not explicitly stated, a SKIP(1) is assumed.

Whenever a PUT LIST is first executed in your program, there is
an automatic skip to a new page on the line printer. Thereafter you must
specify the printer control options as your program logic dictates. For
example:

PUT PAGE LIST('ABC');
PUT SKIP LIST(123);
PUT SKIP(2) LIST(127);

/*START A NEW PAGE*/
/* SKIP ONE LINE BEFORE PRINT*/
/* SKIP TWO LINES BEFORE PRINT*/

.....__ ____ Number of lines to skip

A SKI P(O) causes a suppression of the line feed. For example, suppose
it is desired to print a heading on a new page and underline that heading
(e.g., STANLEY P. SMERSCH & ASSOCIATES). These statements

would accomplish it:

PUT PAGE LIST('STANLEY P. SMERSCH & ASSOCIATES');
PUT SKIP(O)LIST((31)'~); /* A REPETITION FACTOR OF 31

UNDERSCORE CHARACTERS IS SPECIFIED */

Since SKIP(O) prevents advancing of the paper in the printer, we
simply go back to the beginning of the line on which the previous

26 PL/I Programming

information was printed. Using the break character in the second
PUT statement above causes the heading to be underlined.

/'
Maximum number of lines that may be skipped

at any one time

Subset
language 3

Full
language No maximum; however, you cannot skip beyond

the end of a page

The LINE option may be used to indicate the line of the page on
which you would like information to be printed. For example:

PUT PAGE LINE(10) LIST(A,B,C);

This indicates that a new page should be started and that the values of
A, B, and C should be printed starting on line 10 of that new page.
It is also possible to write

PUT LINE(10) PAGE LIST(A,B,C);

The effect is the same as in the previous example. This is because
when PAGE and LINE are specified in the same PUT statement, there
is a hierarchy governing which option is exercised first. The order of
priority is PAGE first, then LINE.

The PAGE, SKIP, and LINE options may also appear by them
selves. For example:

PUT PAGE;
PUT SKIP(2);
PUT LINE(15);

/* START A NEW PAGE */
/* SKIP TWO LINES */
/* SET CURRENT LINE COUNTER TO 15 */

In this example, there is a comment about the current line counter.
This is an internal counter provided by PL/I for keeping track of
vertical spacing on the line printer. Every time a line is printed during
the execution of your PL/I object program, the line counter is auto
matically incremented by one. When the value in the line counter
reaches a predetermined maximum, it is reset and the process begun
again for a new page. The maximum value for the line count is a system
standard which is defined at each computer installation or which may

Getting Started 27

be specified through a special option called PAGESIZE-this witl be
explained later.

In PL/I there is a special operation that facilitates manipulation of
string data. The operation is called concatenate. It means "to join
together" string (character or bit) data. As an illustration, assume that a
heading is to be printed on a report that contains lines 80 characters
long. The heading is

PAYROLL REGISTER

and it is desired to center the heading above the printout. This would be
accomplished by having 32 leading blanks, followed by the literal data,
followed by 32 trailing blanks. It would be coded:

PUT LIST((32)' 'I l'PAYROLL REGISTER'll(32)' ');
'--y--/ ._,..., ._,..., '--y--/

I c:-132 trailing blanks

L Concatenation symbol
(two stroke marks)t

,_____ ____ ~Heading

'-----------------4 Concatenation symbol

,_____ ____________ A repetition factor of

32 leading blanks has
been specified

Suppose it is desired to write the bit-string constant

11111111111111110000000000000000

where there are 16 ones and 16 zeros in one string. Using the repetition
factor and the concatenation operator allows us to write the PL/I
constant as follows:

(16)'1'811(16)'0'8
'--y--/ '--,.-' '--y--/

'-------+ 8 for bit

'-------~) 16 zero bits

.____ _____ ~ Concatenation operator

'-----------+ 8 for bit

'-------------+) 16 one bits

tThe stroke character is above the Y on a keypunch.

28 PL/I Programming

Statement Format

PL/I statements take the general form

LABEL: KEYWORD STATEMENT OPTIONS;

Consist of Keywords and programmer-defined
'---v----/ Identifiers and/or Constants

Lselected by
the
programmer

Selected from the PL/I
language

'----------~Selected from the PL/I
language and identifies the
type of PL/I statement

'-----------------~ Selected by the
programmer; not all
statements need be labeled

For example:

READ_STMT: GET LIST(A,B,C);
~ ~

....__ ____ Statement option : LIST is a

keyword; A, B, C are
programmer-defined
identifiers

'--------~ Keyword : identifies this
statement as a GET
statement

'----------------+ Statement label: defined by
the programmer

Getting Started 29

Character Sets

There are 60 characters in the PL/I language. They include:

Extended alphabet of 29 characters
$@#ABCDEFGHIJKL
MNOPQRSTUVWXYZ

Ten decimal digits
0 1 2 3 4 5 6 7 8 9

21 special characters
Blank
Equal or assignment symbol
Plus sign +
Minus sign
Asterisk or multiply symbol *
Slash or divide symbol I
Left parenthesis (
Right parenthesis)
Comma
Point or period
Single quotation mark or apostrophe
Percent symbol %
Semicolon
Colon
"Not" symbol ---,
"And" symbol &
"Or" symbol t I
"Greater than" symbol >
"Less than" symbol <
Break character
Question mark ?

The question mark, at present, has no specific use in the language,
even though it is included in the 60-character set.

Special characters may be combined to create other symbols;
for example, < = means "less than or equal to," ---, = means "not
equal to." The combination ** denotes exponentiation (X**2 means
X2 , X**3 means X3). Blanks are not permitted in such character

tThe I symbol is called a stroke character.

30 PL/I Programming

combinations. For example,

> =

~------ Blank here is invalid

>=

~------Valid method of expressing
"greater than or equal to"

A special 48-character set is also available as an alternative to the
60-character set. This 48-character set is provided as a convenience
to the programmer and would be used instead of the 60-character
set if some of the special characters (> % ; : etc.) were not graphically
available on the printer on which the source program is to be listed.
Normally, a special print cartridge must be mounted on the printer
in order for such characters as ; or : or # to be printed. The problem
is that, even though the various print cartridges are interchangeable,
some computer installations do not have a cartridge with all the re
quired characters for PL/I. If the programmer writes programs using
the punctuation from the 60-character set, but the line printer on
which the source program is being listed does not have the proper
characters, certain characters will not be printed. For example,

Card input Printer output

I SUM=A+B; J
Note that it is not an "error" when the semicolon is not printed. It
presents a problem to the programmer while debugging his PL/I
program, for he will often have to resort to reading his source cards to
verify that certain characters have indeed been punched.

Because certain symbols (e.g., > <) from the 60-character set
are not available in the 48-character set, we must have a means to
express such functions as "greater than" or "less than." Figure 1 .3
illustrates how various punctuation marks and operations are expressed
in each of the character sets. The small "b" in the 48-character set
comparison operators indicates that a blank must appear at that place.
Note that@,#, ?, and the break character (_) are not available in the
48-character set. When using the 48-character set, the special operators
CAT, NE, NL, NG, GT, GE, LT, LE, NOT, OR, and AND are reserved

Explanation

Alphabetic letters

Numeric digits

Punctuation
Period '
Comma
Single quote
Parentheses
Colon
Semicolon

Arithmetic

Special
Blank
Break
Percent
Question mark
Concatenation
Equal
Greater than
Greater than or equal
Less than
Less than or equal
Not less than
Not greater than
Not equal
Not
Or
And

60-character set

A through Z
$
@

0123456789

()

+ - *I**

%
?
11

>
>=
<
<=
---, <
---, >
---, =
---,

I
&

48-character set

A through Z
$

Not available
Not available

0123456789

()

+ - *I**

Not available
I I
Not available
bCATb

bGTb
bGEb
bLTb
bLEb
bNLb
bNGb
bNEb
bNOTb
bORb
bANDb

FIGURE 1.3 Expressing punctuation and operations in 60- and 48-
character sets.

32 PL/I Programming

keywords that must be surrounded by one or more blanks and cannot
be used by the programmer for any other purpose. For example:

IF A LT B THEN Y=1;

l'-v-'I._~
,___ ________ Must have a blank

> "Less than"

'---------------+>Must have a blank

The following statement is invalid:

SUM=GE+VALUE; /* INVALID IN 48 CHARACTER SET*/ '-v-'
.__ _____ This is a reserved keyword when using the

48-character set; it can only be used to
denote a logical operation

All elements that make up a PL/I program are constructed from
the character sets. On S/360 and S/370, a set of 256 character is
allowed. Included in this full set of characters but not in the 48- or
60-character set are such items as lowercase letters and additional
mathematical symbols. In PL/I, character-strings and comments may
contain any character from the full 256-character set. Appendix D
contains a chart defining the full character set.

In some compilers, to indicate which character set you wish to
use in your PL/I program, a special statement, called the PROCESS
statement, may be used. In this, a number of options may be specified,
one of which is the character set you wish to use. If you specify that
the 48-character set is to be u.sed, you may still use any character from
the 60-character set (except # @ _). The reverse, however, is not
true; when specifying the 60-character set to mean >, <, =, etc.,
none of the 48 special symbols may be used. Thus, such keywords as
LT, GT, or CAT may not be used to mean, respectively, less than,
greater than, or concatenate; nor could the 48-character set symbol
for a semicolon (,.) be specified.

You should consult the appropriate Programmer's Guide for the
PL/I implementation you are working with for a detailed description of
the keywords that may appear in the PROCESS statement. A sample
of the PROCESS statement specifying the 48-character option is
shown in Figure 1.4.

Getting Started JJ

PL/I D * PROCESS 48C

PL/I F * PROCESS ('CHAR48');

DOS PL/I Optimizing * PROCESS CHARSET(48)

OS PL/I Optimizing * PROCESS CHARSET(48)

FIGURE 1.4 PROCESS statement examples.
(In OS, the PARM parameter in the EXEC job control statement is
used to specify CHAR48 or CHAR60 for the first procedure com
piled. If more than one procedure is compiled at the same point in
time, then the PROCESS statement is used for the subsequent
procedures.)

\

PL/I Program Stages: In this chapter, you were introduced to the stages
of a PL/I program. The first stage is to decide on a method for solving a particular
problem and, perhaps, draw a flowchart to depict your logic. Next, you write
the PL/I statements on coding sheets. The statements are punched into cards,
which are referred to as a source program deck. Compilation is the translation
process in which the PL/I compiler reads your source statements and translates
them into machine language. The machine language equivalent of your PL/I
program is called the object program; this is placed on an external storage
medium, such as cards, magnetic tape, or disk. The linkage editor is a program
that prepares an executable program in the format required by main storage.
Job Control Language statements must surround your PL/I source program
to cause it to be compiled and executed.

PL/I Comments: A comment begins with /* and ends with */. Because
the compiler takes the first card of your PL/I program and prints that information
at the top of every page of output of the source listing, it is a good idea to have
a comment heading your source program statements.

The PROCEDURE Statement: The PROCEDURE statement tells the
compiler that this statement marks the beginning of the block of PL/I state
ments. There are two types of procedures: main procedures and subprogram
procedures.

34 PL/I Programming

Identifiers: Names of data, procedures, files, labels of PL/I statements, and
keywords are all given the general term identifiers. An identifier for data names
and statement labels may be from one to 31 alphabetic characters (A-Z, @,
#, $), numeric digits (0-9), and break (_) characters, providing that the first
character is alphabetic. Names of procedures and files may be a maximum of
six characters for the subset language and seven characters for the full language.

Statement Format: PL/I is said to be free-form; that is, a statement may
contain blanks to improve readability of the source program. The general
practice is to punch PL/I statements in columns 2 through 72 only.

Default Attributes: These are attributes assigned to identifiers when none
has been explicitly declared. Variables that begin with A through H, 0 through
Z,@, #,or$ default to the attributes DECIMAL FLOAT(6). (The 6 is the number
of digits of precision.) Identifiers that begin with the letters I through N default
to FIXED BINARY(15), where the 15 is the number of bits of precision. The
attributes FIXED BINARY were not discussed in this chapter because, so far,
we have only been concerned with declaring decimal data and character-strings.
The I through N variables may be assigned decimal numbers even though their
default attributes include BINARY. The decimal integer value that can be
represented in 15 bits of precision must be within the range of -32,768 to
+32,767.

The DECLARE Statement: This statement is used to define attributes for
variables that represent data. Following are examples of the attributes introduced
in this chapter:

DCL A FIXED DECIMAL(5);
DCL B FIXED(5,2);
DCL C CHARACTER(10);
DCL (D,E,F) CHAR(4);

List-Directed 1/0: Input data may be separated by a comma or one or more
blanks. The input data must be in the form of valid PL/I constants (e.g., 'ABC',
12.5, 1101 B, 57E). Output is to tab positions 1, 25, 49, 73, 97, and 121. Ex
amples are

GET LIST(A,B,C);
GET SKIP LIST(A,B,C);
PUT LIST(A*B);
PUT SKIP LIST(X,Y,Z);
PUT PAGE LIST('HEADING');

PAGE, SKIP, and LINE Options: The PAGE option causes the paper in
the line printer to advance to the top of a new page. The SKIP option causes the
paper in the line printer to be advanced the number of lines specified (e.g.,

Getting Started 35

PUT SKIP(2) ;). A SKIP(O) causes a suppression of the line feed. The LINE
option may be used to indicate the line of the page on which you would like
information to be printed (e.g., PUT PAGE LINE(10) ;). PAGE, SKIP, and
LINE may not be specified in the same PUT statement for the subset language,
but all three are allowed in the full language. The order of priority is PAGE
first, then S Kl P, then LINE.

Character Sets: There are 60 characters in the PL/I language. They include
an extended alphabet of 29 characters, 10 decimal digits, and 21 special char
acters. Special characters may be combined to create other symbols. A special
48-character set is also available as an alternative to the 60-character set.
This 48-character set would be used instead of the 60-character set if some of
the special characters (> % ; : etc.) were not graphically available on the
printer on which the source program is to be listed.

The END Statement: This statement is used to mark the physical end of a
procedure and may also be used to logically end a procedure.

The Assignment Statement: This statement is denoted by the presence of
the assignment symbol (=). The value of the expression on the right of the = is
assigned (moved) to the variable on the left of the = symbol.

1. Distinguish between source and object programs.

2. Explain compilation and execution.
3. In what card columns may PL/I statements generally be punched?

4. What is the linkage editor?
5. What is a keyword?
6. What are the colon (:) and semicolon (;) punctuation marks used for in

PL/I statement syntax?

7. (True or False) Only one PL/I statement may be punched in a card.

8. Why would a programmer want to write a program using the 48-character
set instead of the 60-character set?

9. What characters other than A through Z are considered to be alphabetic
in the 60-character set? the 48-character set?

10. What are reserved words? Give examples.

36 PL/I Programming

11. How do you specify which character set you would like to use in your
PL/I program?

12. Write the following fixed-point decimal constants as floating-point
decimal constants, where the floating constants are expressed as fractions:
-15 7 .6 0.00000098

13. Write the following literals as character-strings:

WEEKLY ACTIVITY REPORT (center heading on a 132 print position line)
OUM DE OUM OUM
PROGRAM'S RESULTS

14. Write DECLARE statements for the following:
(a) A five-digit fixed decimal number with two fractions
(b) A ten-position character-string
(c) A seven-digit fixed decimal number (no fractions)

15. In list-directed input, how may data values in the input stream be
separated?

16. When using list-directed output, how many tab positions are assigned
by default on the printer?

17. How are comments indicated in a PL/I program?

18. Where may comments appear in a PL/I program?

19. Indicate the tab positions at which each of the data items would be printed
when the following two statements are executed in sequential order in a
program:

PUT LIST(5, 10, 15);
PUT LIST('THIS IS SOME FUN AND MARKS THE END OF JOB',

'07 /07 /77') ;

20. Can we tell, from the following statements, just how many cards con
taining punched data will be read?

21. What is string data?

GET LIST(A,B,C,);
GET LIST(D,E);

22. Give the fixed-point decimal equivalent of the following floating-point
numbers: .39E-07 .2678E+02 4.59E+OO 7.23E+09

23. Given: A= 10.75; B = 2.9; C= 123.4. What will I, J. and K contain after the
following statements are executed (assuming I, J, and K are integers)?

l=A; J=B; K=C;

24. If the programmer does not declare attributes for his variable names, what
does the PL/I compiler do about it?

25. What are character-strings used for in programming?

26. What is an advantage of using bit-strings to describe an item or a person
or event?

Getting Started 37

"What is not fully understood
is not possessed."

GOETHE

In describing the elements of PL/I, a number of terms that were perhaps un
familiar to you were used. You may wish to review the following words before
proceeding to the next chapter. Appendix G also provides a glossary of PL/I
terms.

assignment symbol

attribute

binary

break character

compilation

compiler

compiler diagnostic

concatenate

constant

core image program

data item

data name

default

DOS
exponentiation

external storage

floating-point

flowchart

48-character set

full language

identifier

JCL

keyword

linkage editor

load module

logical end

machine language

object program

operating system

OS
physical end

printer control options

procedure block

program

repetition factor

reserved keyword

60-character set

source program

stream

string

stroke character

subset language

tab position

truncate

variable

38 PL/I Programming

Following are a few beginning programs you may wish to code and run on a
computer. The emphasis in the first two problems is on using list-directed 1/0
and the DECLARE statement to define FIXED DECIMAL and CHARACTER
data. The third problem uses floating-point data as well as fixed-point format.
After coding the problems, punch them into cards. Be sure that the last statement
in each program is an END statement. To compile and execute your programs,
you will need job control statements. Consult your instructor or someone
closely associated with the computer you will be using to assist you in the
preparation of job control statements.

1. Write a program to read these data items from the input stream:

ITEM_ DESCRIPTION
ITEM_NUMBER
PRICE
QUANTITY

20 characters maximum
6 characters (alphabetic and numeric)
5-digit field with two decimals (XXX.XX)
3-digit field (XXX)

Compute the extension (EXT} by multiplying PRICE by QUANTITY. Print
results as shown in Figure 1.5. Suggested sample input might be

'WIDGIT','1234AB',4.95, 13

DESCRI PT IUN PART NUMBER UNIT PRICE QUANT ITV EXTENSION

WlDGIT 1234AB 4.95 13 64.35

END OF JOB -- YOUR NAME GOES HERE

FIGURE 1.5 Sample output format for Problem 1.

2. Punch your name and address into a card. Write a program to read this
data and print an address label. For example, if the input is

'JOHN WILLIAM HUGHES','123 ELM ST.','ANYTOWN,SOMESTATE',91405

then output should be

JOHN WILLIAM HUGHES
123 ELM ST.
ANYTOWN, SOMESTATE
91405

Getting Started 39

3. Area of a Triangle

Problem Statement: Write a PL/I program to find the area of a triangle, given
the base and height, where

1 .
Area =·T Base x Height

-i

~------~T ~--Base--~

Also, find the area of a second triangle where only the lengths of the sides are
known. The formula is

Area= jS(S-A)(S- B)(S - C)

where A, B, and C are the triangle's sides and

S=A+B+C
2

B

A

To find the square root of a value is to raise it to a half power. For example:

AREA= RESULT**.5;

Double asterisks denote exponentiation

Purpose of the Problem: To code arithmetic calculations in floating-point but
print fixed-point answers.

Input: Suggested input data might be:

Base
10.0

Height
14.5

A
10.0

B
15.5

c
20.0

40 PL/I Programming

Output: Assuming the above input values are used, output would be tne
results shown in Figure 1.6.

AREA OF TRIANGLE 1 IS 72.5

AREA Of TRIANGLE 2 IS 76.0

FIGURE 1.6 Sample output from Problem 3.

l!hapfl!r 2

Writing

This chapter presents some PL/I statements you will need to use in
writing meaningful and complete programs. These statements include:

Assignment statement
GO TO statement
IF statement
DECLARE statement

Before examining the above statements in detail, let us consider a
problem that illustrates a need for these statements.

Assume it is desired to read 100 values and find the sum and the
average of these values. Previously, when it was desired to read five
values, it was accomplished with one input statement:

GET LIST(A,B,C,D,E);

However, the above approach would be a cumbersome method to use
in the reading of 100 data items. Thus, another solution must be
implemented. A method commonly used is to input one value at a time
and accumulate that amount into a variable. When 100 values have
been read and accumulated, then the average will be calculated.
A flowchart that describes a method for solving the summation problem
is given here.

Let us look at the PL/I statements needed to solve this problem.
The first step, which may take several PL/I statements, is called an
initialization step. Typically, in this step, variables are assigned pre
determined values. For example:

SUM=O;
COUNTER= 100;

It is necessary to assign SUM to a zero value before accumulating the
data items into SUM. This initialization step is analogous to clearing
an adding machine before attempting to find the sum of a new column
of numbers. Assigning COUNTER to 100 establishes an identifier that
indicates the number of times an instruction (or group of instructions)
is to be repeated. Each time a data item is read, the value 1 will be

42

No

SUM= 0
COUNTER = 100

Add VALUE
to SUM

Subtract
"1" from
COUNTER

Compute
AVERAGE

44 PL/I Programming

subtracted from COUNTER. When COUNTER is equal to zero, we
know that the required number of data items has been processed.

The next step in this program is to read a data item,

READ: GET LIST(VALUE);

and add that value to SUM:

SUM=SUM+VALUE;

Next, 1 is to be subtracted from COUNTER,

COUNTER=COUNTER-1;

and COUNTER is to be tested for a nonzero condition to determine if
more values are to be read from the input stream. This testing may be
accomplished by the IF statement. For example:

IF COUNTER, =0 THEN GO TO READ;
'---v------1

...____ ___ A PL/I statement

If the result of this
expression is true (i.e.,
COUNTER is not equal to
zero), then execute the
statement following the
keyword TH EN

If the expression tested in the IF statement is not true, then go to the
instruction immediately following the IF statement. The following
instruction would be the statement that computes the average:

AVERAGE=SUM/100;

The result could then be printed or perhaps used in another computa
tion in the program.

The repetitive processing of data is called a loop. There are three
steps that must be performed in the programming of a loop:

1. Initialize a counter: This is a programming step that sets up an
identifier to indicate the number of times a segment of instruc
tion is performed. For example:

COUNTER=20;

Writing Programs 45

2. Modify counter: After a specified sequence of instructions
have been performed, it is necessary to modify the counter by
"1," indicating that there has been one pass through the set of
instructions. For example, if COUNTER has been set to 20,
indicating the number of repetitions a program is to cycle
through, then the following statement might be coded:

COUNTER=COUNTER-1;

Notice that here a "countdown" technique is being used. If
"1" is subtracted from COUNTER each time the program steps
are performed, when the COUNTER reaches zero, we know
that the required number of steps have been performed. Another
way in which a loop could be programmed is to start the counter
at a value of "1" and increment it each time through the sequence
of statements. When the counter reaches the limit (e.g., 20),
the loop is terminated.

3. Test counter: To determine if the maximum number of
repetitions has been performed, the program must test the
counter. If we are using the countdown technique, then the
following statement might be used to test the counter:

IF COUNTER=O THEN GO TO PROGRAM_ END;

Or, if we are counting up from "1," this statement might be
coded

IF COUNTER>20 THEN GO TO PROGRAM_ END;

Figure 2.1 shows a flowchart that specifies the programming
steps required to find the sum, average, high, and low values-given
20 input data items. The shaded flowchart symbols indicate the steps
that accomplish or control the program loop. Figure 2.2 shows the
PL/I programming solution to this flowchart. The statements in this
program should look familiar to you. The GET LIST and PUT LIST
statements were explained in Chapter 1. The assignment, GO TO,
and IF statements are explained in detail in the following paragraphs.
Notice the END statement in the program. It has a label following the
word END. It is optional to place a label here; but, if you do, it must
be the label identifier that appears on the PROCEDURE statement.
Programmers often include the PROCEDURE label in the END state
ment for purposes of documentation. For example:

START

Move data
value to SUM,

HIGH, LOW

Add to
SUM

HIGH=
data

Find
average

END

LOW=
data value

FIGURE 2.1 Flowchart to find sum, average, high, and low values.

Writing Programs 47

PROB2: ~ROCEDURE OPTIONS(MAIN);

iF A= B THEN GO TO FINI;

FINI: END PROB2;

~---- Optional

'-----------------+The END statement
may also be labeled

Because the identifiers all begin with the letters I through N, 1t 1s
assumed that the data the program is manipulating is in the form of
integers only.

One thing to be sure to observe about this program is that the
counter (ICTR) is initialized to 19 rather than 20, as you might have
thought it should be. Actually, there are only 19 repetitions in the
program because the first data value is read and assigned to SUM,
I HIGH, and I LOW. That leaves 19 values to be read and accumulated
into SUM, as well as compared with the contents of IHIGH and ILOW.
Thus, ICTR is initialized to 19-the number of repetitions after the
first data value is read and processed.

PROB2: PROCEDURE OPTIONS(MAINt;
IOIVSR = 20;
ICTR = 19;
GET LIST (IVALUE);
ISUM = IVALUE;
IHIGH = !VALUE;
ILOW = IVALUE;

LOOP: GET LIST(IVALUE);
ISUM = ISUM + IVALUE;
If IVALUE > IHIGH THEN IHIGH = IVALUE;
IF IVALUE < ILOW THEN ILOW = IVALUE;
ICTR -= ICTR - l;
If ICTR ~= 0 THEN GO TO LOOP;
IAVER = ISUM/IOIVSR;
PUT PAGE LISTl'SUM','AVERAGE 1 ,•HIGH 1 , 1 LOW 1);

PUT SKIP(2)LIST(ISUM,IAVER,IHIGH,ILOWJ;
ENO PROB2;

FIGURE 2.2 PL/I program to find sum, average, high,
and low of 20 values.

48 PL/I Programming

You will be using this type of statement often because it specifies which
arithmetic and logical operations should take place and/or causes
data to be moved from one storage area to another.

Here is an example of an arithmetic assignment statement:

EXTENSION= PRICE*OTY;

In this type of PL/I statement, the system will compute the expression
on the right side of the assignment symbol (=) and assign the result
to the variable, EXTENSION on the left. The equal (=) sign in the
arithmetic assignment statement means replace the va1Ue of the variable
on the left of the assignment symbol with the value of the expression
on the right of the assignment symbol. The arithmetic assignment
statement is not an algebraic equation, although, in the above example,
it looks like one. This is because the assignment symbol is identical
to the equal sign. However,

N=N-1;

is a valid arithmetic assignment statement. Clearly, in this example,
the statement is not an equation.

Expressions specify a computation and appear to the right of the
assignment symbol in an assignment statement. A variable is a term
used to indicate a quantity that is referred to by name and a constant
is an actual number. A name is classified as a variable because it can take
on different values during the execution of a program, whereas a
constant is restricted to one value. In PL/I when we want to compute
new values, we combine variables and constants together into expres
sions. The actual arithmetic operations to be performed upon the data
variables are indicated by operators and PL/I built-in functions.

Arithmetic Operations

The PL/I symbols for the five basic arithmetic operations are:

Symbol

**
*
I
+

Operation
Exponentiation
Multiplication
Division
Addition
Subtraction

Writing Programs 49

Multiplication must always be indicated with the asterisk (*) operator.
Multiplication in PL/I cannot be implied as it can be in algebraic
notation. For example, the expression

(a+b)(c+d)

would be written in PL/I as

(A+ B)*(C+ D) or MULTIPLY(A+ B,C+ D)

The second form shows the use of a built-in function, which we will
come to later. Note, also, the use of capital letters in the expression.
Only capital letters are used in PL/I statements.

Let us summarize some rules regarding arithmetic expressions:

Rule 1. The order in which arithmetic operations are performed is

1. Exponentiation (raising a number to a power, moving from
right to left in an expression)

2. Multiplication or division (whichever appears first, moving from
left to right in an expression)

3. Addition or subtraction (whichever appears first, moving from
left to right in the expression)

Rule 2. Parentheses are also used in expressions to affect the order
of arithmetic operations. They serve the same function as do parentheses
and brackets in algebraic equations. When parentheses are specified,
the expression within the parentheses will be evaluated first, starting
with the innermost pair of parentheses and solving according to the
hierarchy established previously in Rule 1.

It is important to understand how the use of parentheses can
affect the order in which arithmetic operations are performed. For
example, in the expression

A+B/C

the order of execution is :

1. Divide B by C
2. Add A to the quotient

However, if the expression

(A+ B)/C

50 PL/I Programming

were given, the order of operations is :

1. Add A to B
2. Divide sum by C

In some cases, the use of parentheses does not change the order of
arithmetic operations in an expression. For example:

A*B+C

is the same as

(A*B)+C

A good rule to follow is, when in doubt about the order of arithmetic
operations, use parentheses. Specifying extra parentheses to clarify
the order of operations-perhaps just for documentation purposes
is valid and does not affect the efficiency of the arithmetic expression.

Rule 3. A prefix operator is an operator that precedes, and is associ
ated with, a single operand. The prefix operators in PL/I are

I

+
Not
Positive sign
Negative sign

Prefix operators are contrasted with infix operators, which specify a
specific operation such as addition, subtraction, multiplication, etc.
For example:

Y=X**-A;

I L__ Prefix operator (negative sign)

L_ +Infix operator (exponentiation)

In the above statement, X is raised to the -A .Power. When prefix
operations are indicated in an expression, they are performed bet ore
infix operations. The prefix operators do not have to be separated
from the infix operators with parentheses as is the restriction in other
high-level languages. For example, the PL/I statement

Y=X**-A;

would have to be written in other languages that contain a similar
type of arithmetic statement as

Y=X**(-A)

Rule 4. Any expression or element may be raised to a power and
the power may have either a positive or negative value. For example :

X**2
(X+5)**.3
X**-A

Writing Programs 51

The exponent itself may be an expression:

X**(l+2)

Rule 5. If two or more operators of the highest priority appear in the
same expression, the order of priority of those operators is from right
to left. For example, prefix operations are performed on the same level
as exponentiation (see Figure 2.3, below). In the expression

-A**2
the order of operations is :

1. Exponentiation
2. Prefix operation, negation

As a further example, in the expression

-A**-Y
the order of operations is :

1. Negation (- Y)
2. Exponentiation
3. Negation

The expression

is evaluated in PL/I as

Comparison Operations

The following operations are used to test (compare) two data
items to determine the relationship that exists between them :

Symbols
GE or>=
GT or>
NE or ---, =

LT or<
LE or<=
NL or 1 <
NG or 1 >

Operation
Greater than or equal to
Greater than
Not equal
Equal
Less than
Less than or equal to
Not less than
Not greater than

52 PL/I Programming

Typically, the comparison operators listed above are used in an IF
statement. For example:

IF A>= B THEN GO TO CONTINUE;

These operators may also be used in an assignment statement. Note
the results assigned to the variable on the left of the assignment symbol
in the following examples:

A=B=C;
'-v--'

'-------+ If B = C, then A will be assigned a value of 1
If B is not equal to C, then A will be assigned a value of 0

A=B>C;

~----~A= 1 if B > C
A = 0 if B is not greater than C

Bit-String Operations

These operations involve either the establishing of true or false
conditions regarding the relationship of expressions or the manipulation
of bit-string data. The three bit-string operations in PL/I are:

Symbol
(-,)
(&)
(I)

Operation
NOT
AND
OR

As an illustration of the establishing of true or false conditions of
expressions, consider the following example:

A=B>C AND D<E;

~-----+ If D < E, then the result is a 1 for "true"

'----------+) Logical operation

~----------+) If B is not greater than C, then the result
is a 0 for "false"

The identifier A will be set equal to a 1 if both expressions have a 1
generated as a result of a comparison operation. In all other cases,
A in the above example will be set to zero.

There are four possible combinations of true/false conditions:

First expression
True
True
False
False

Writing Programs 53

Second expression
True
False
True
False

Substituting a 1 for true and a 0 for false, the following tables define
the result (either a 0 or a 1) for the AND and OR operations:

AND
1 &1-+1
1 & 0-+0
0&1-+0
0&0-+0

OR
111-+1
110-+1
011-+1
010-+0

L Result L Result

The NOT operation simply yields a result of the opposite condition:
if a bit is a 1, result is 0; if a bit is a 0, result is a 1. For example:

/* ASSUME B='1'B */
A=--,B;

'--------+ An operand

.___ ____)NOT symbol

..___ ____ ~A= 'O' B

Notice that there is only one operand with the NOT operation.
The AN Ding or ORing of bit-string data is often referred to as a

Boolean operation.t In either logical operation, two bit-strings are
compared, one bit with one bit at a time. The result is a bit-string accord
ing to the rules illustrated above.

Using the AND operation on bit-strings is a way of "turning off"
bits. In the following example, the resulting bit-string will contain a 1
bit whenever there is a corresponding 1 bit in both operands. (Some
times the second operand is referred to as a mask.)

1111010011111000--+ First operand

AND 0000100000001010--+ Second operand (mask)

0000000000001000--+ Result

t It is said that the founding of Boolean algebra was marked when George Boole (1815-
1864) wrote a treatise on 'The Mathematical Analysis of Logic." Boole applied his algebra
to sets and to sentences; its use in the foundation of mathematics and in switching
circuits which led to the development of computers came later.

54 PL/I Programming

Using the OR operation is a way of "turning on" bits. Notice from
the following example that the resulting bit-string will contain a 1 bit
whenever there is either a 1 bit in the first or second operand or both.

1111000011110000 ---+ First operand

OR 0001001100110001 ---+Second operand (mask)

1111001111110001 ---+ Result

Note also that if you are AN Ding or 0 Ring bit-strings of unequal
length, the shorter string is automatically expanded with zeros to
match the length of the longer string.

String Operation

There is only one string operation: concatenation (11). This
operation may be specified for bit-strings or character-strings. It
simply means that two strings are to be joined together to form one
longer string. For example:

A='JOHN ';
B='SMITH';
C=AllB; /*
C=Bll', 'llA;
D='1100'B;
E='0001 'B;
F=DllE; /*

C=JOHN SMITH */
/* C=SMITH, JOHN */

F = 11 000001 *I

The various PL/I operations have been introduced. Because any
number of operations may be specified in an expression, it is necessary
to establish a priority in which these operations take place so that we.
may predict the results of expressions. The hierarchy of these operations
is summarized in Figure 2.3.

Special Form of the Assignment Statement

A form of the assignment statement available only in the full
language PL/I compilers is the statement where more than one identifier
(variable name) may appear to the left of the assignment symbol. For
example:

A,B,C=O;

This statement causes A, B, and C each to be assigned a value of zero.

Levels

1
2
3
4
5
6
7

60-character set

pref.ix+, prefix-,,**,-,
*,I
infix +, infix -

11

> =, >,-, =, =, <, < =,-, <,--, >
&
I

48-character set

prefix +, prefix - , **, NOT
*, I
infix +, infix -
CAT
GE, GT, NE, =, LT, LE, NL, NG
AND
OR

FIGURE 2.3 Complete hierarchy of PL/I operations.

56 PL/I Programming

Any value or expression may appear to the right of the assignment
symbol in this type of statement. For example:

W,X,Y,Z= l*J;

This statement causes a branch or transfer to a labeled PL/I statement.
The statement is written :

GO TO LOOP;

.__ __ ____,. Label identifier in the PL/I program

~------i PL/I keyword

It is only permissible to transfer to executable statements. For example,
the DECLARE statement and the PROCEDURE statement are not
executable statements; therefore you would not specify a branch to
these statements.

The IF statement is used in a PL/I program when a test or decision is
to be made between alternatives. Comparison operators are used to
specify the test to be made.

IF (with Transfer of Control}

In this statement type, if the result of evaluating the expression
is true, a transfer or branch is made to another point in the program.
For example :

IF A<O THEN GO TO NEGATIVE;

......_ _____ Transfer to a PL/I statement

labeled NEGATIVE

Writing Programs 57

IF (without Transfer of Control)

In this statement type, a single statement will appear as the action
to be taken if the expression (condition) tested is true. For example:

IF A=B THEN X=X+1;
'-v---' '-v--'

~----~A single statement which will be
executed if A= B

'------------~) Any condition may be tested here

IF A> B THEN PUT SKIP LIST(VALUE);

..___-4) Almost any PL/I statement may
follow the THEN keyword

If the condition tested is true, the statement following the TH EN
keyword is executed before the program proceeds to the next sequential
statement. If the condition tested is false, the statement following the
THEN keyword is ignored and the program continues immediately
with the next sequential statement. The following diagram represents
this type of IF (where exp stands for expression) :

IF (exp) f 7
False

The Compound IF

This IF statement is called compound because it contains two
PL/I statements. Its form includes the use of the keyword ELSE. Here
is a logical diagram of the compound IF:

THEN
statement

IF
(exp)

-ement>
:;.

ELSE

58 PL/I Programming

If the condition tested is true, we execute the statement following the
TH EN ; if the condition tested is false, we perform the statement
following the ELSE. For example:

IF A=B THEN X=1; ELSE X=2; PUT LIST(X);
'--y--/ '--y--/

I

.__ ____ Second statement in the

Compound IF

...__ _________) First statement in the

compound IF

In this example, X will be set equal to 2 when A is not equal to B. It is
important to understand that, if A is equal to B (in which case X will be
set to 1), then the ELSE clause is ignored. The next sequential instruc
tion here would be PUT LIST.

Nested IF Statements

There may be IF statements contained in either the TH EN or
ELSE clause of another IF statement. For example:

IF A= B THEN IF A= C THEN X=1; ELSE X=2; ELSE X=3;

To help clarify the pairing of the THEN and ELSE clauses, it would be
more understandable to show the above statement in the following
manner:

IF A=B
THEN IF A=C

THEN X=1;
ELSE X=2;

ELSE X=3; /*

/* A= B AND A=C */
/* A=B BUT A, =C */
A-, =B */

A logical diagram of this nested IF statement would look like this:

,<,..'-vq, THEN X=1;
_(_ex_p_) ----<~ <.l THEN - IF Q>1i

IF (exp)-<.:..<- ~ELSE X=2;
Q>4
~ELSE X=3; --------~

In a series of nested IF statements, each ELSE clause is paired with the
closest IF that is not already paired, starting at the innermost level.
The conditions in the IF are tested in the order in which they are written.
As soon as a condition tested is false, the testing of subsequent con-

Writing Programs 59

ditions is stopped and the matching ELSE clause is executed. Control
is then transferred out of the entire series of nested IF statements.

In the nest of IF statements, an associated ELSE clause may or
may not appear for the outermost IF. But every nested IF must have an
associated ELSE clause whenever any IF statement at the next outer
most level requires an associated ELSE. For example:

IF

THEN

[

IF ...
THEN ... ;
ELSE ... ;

IF
[THEN ... ;

ELSE ... ;

ELSE ... ;

The use of nested IF statements, at this point, may seem a bit compli
cated. However, let us look at an example where the use of nested IF
statements actually simplifies our programming task. Assume a com
pany is looking for prospective employees who, ideally, are 30 years
of age or younger and who weigh less than or equal to 250 pounds.
There are four possibilities or categories of people who could apply
for the job. These options are summarized below:

~ 30 yrs
~250 lbs
Age OK

Weight OK
"HIRE"

~ 30 yrs
>250 lbs
Age OK

Weight not OK

"DO NOT HIRE"

>30 yrs
~250 lbs

Age not OK
Weight OK

"CONSIDER"

> 30 yrs
>250 lbs

Age not OK
Weight not OK

"OVERAGE AND
OVERWEIGHT"

Here are the nested IF statements to test for the four possible conditions:

IF AGE< =30
THEN IF WEIGHT< =250

THEN PUT LIST('HIRE'l INAME);
ELSE PUT LIST('DO NOT HIRE'l INAME);

ELSE IF WEIGHT< =250
THEN PUT LIST('CONSIDER'l INAME);
ELSE PUT LIST(NAM El !'OVERAGE AND OVERWEIGHT);

60 PL/I Programming

A Null ELSE in Nested IF Statements

Earlier, a nested IF statement was shown which set X equal to 1,
2, or 3, depending on the condition tested. The statement was

In other words :

IF A=B
THEN IF A=C

THEN X=1;
ELSE X=2;

ELSE X=3;

Set X = 1 when A = B and A = C.
Set X = 2 when A = B but A -, = C.
Set X = 3 when A -, = B.

Now, let us assume that we would like to do the following:

Set X = 1 when A= Band A= C.
Set X = 3 when A -, = B.

However, for the condition of A = B but A -, = C, we do not want to
alter X. This situation builds the case for the use of the null ELSE.
The null ELSE is an ELSE with a null statement as its clause. The null
statement is simply a semicolon. For example:

Or, it may be a semicolon with a label attached to it:

POINT:

The null ELSE is, as its name implies, a nonoperative statement. It gives
no direction to the computer. Rather, its effect is to supply the necessary
ELSE clause to be associated with the innermost IF. Our example would
be written as follows:

IF A=B
THEN IF A=C

THEN X=1;
ELSE; /* THIS IS A NULL ELSE */

ELSE X=3;

Consider what would have happened had you omitted the null ELSE.

Writing Programs 61

The statement would have been written

IF A=B
THEN IF A=C

THEN X=1;
ELSE X=3;

/* A= B AND A=C */
/* A=B BUT A-, =C */

Notice that for the condition under which we did not want to change
X, X was erroneously set equal to 3.

These examples have illustrated the nesting of IF statements only
to the second level. Deeper nesting is allowed and follows the same
reasoning and rules.

The DO-Group in an IF Statement

The IF statement is designed to execute one statement following
the TH EN or ELSE clause. Sometimes, however, it is necessary to
execute more than one statement following the TH EN or ELSE. This
can be accomplished through the use of a DO-group. The DO-group
is simply a series of PL/I statements headed by the word DO and
terminated by the keyword END. For example:

DO;
X=1;
Y=2;
Z=3;
END;

Placing the above DO-group in an IF statement gives us the necessary
flexibility of being able to execute more than a single statement
following a TH EN or ELSE. The following example utilizes multiple
DO-groups:

IF A=B
THEN DO;

X=1; Y=2; Z=3;
END;

ELSE DO;
X=4; Y=5; Z=6;
END;

We have now encountered two uses of the END statement. You are
already aware that END must be the very last statement in your PL/I
source program. Yet, as you can see from the above example, the END

62 PL/I Programming

may appear to be embedded in your PL/I program. However, the PL/I
compiler can always tell by the context which END represents the
true end of your program because each DO in the program has its
own END.

Bit-String Operators in the IF Statement

The operators AND (&) and OR (I) can be useful in the IF state
ment to eliminate nested IF statements. For example, the nested IF
statement,

IF A=B THEN IF C-, =D THEN GO TO POINT_5;

could also be written using the AND operation. For example:

IF A= B & C-, =D THEN GO TO POINT _5;

When the AND symbol (&) is specified, both the expression to the left
and the expression to the right of the & symbol must be true for the
statement following the TH EN to be executed. If either expression is
not true, the statement following the TH EN is bypassed.

For a comparison expression containing the OR (I) operator,
consider the following example:

IF A=B I C=D THEN GO TO LOC_1;

In th is case, if either the expression to the left or the expression to the
right of the OR symbol (I) is true, the statement following the TH EN is
executed. If both expressions are true, the system would still branch to
the place called LOC_ 1 in the above example. The only condition that
would keep the program from transferring to LOC_ 1 is if A is not
equal to B and C is not equal to D.

If you are thoroughly familiar with the types of data (e.g., packed
decimal, fixed-point binary, floating-point, EBCDIC) provided on a
S/360 or S/370, continue with your reading of this section on the
DECLARE statement. If not, turn to Appendix D for a discussion of the
various data formats available on S/360 or S/370.

Writing Programs 63

The DECLARE statement is needed in two instances:

1. When the programmer does not wish to use the data formats
which are assigned by the compiler by default (i.e., 1-N for
fixed binary data or A-H and 0-Z for floating-point data) or
assigned by the programmer through the use of the DEFAULT
statement. t

2. When information is to be supplied to the compiler that a
variable represents a data aggregate.

DECLARE statements may appear anywhere following the PRO
CEDURE statement. It is common to find a number of DECLARE
statements placed at the beginning of a PL/I program because it is
logical to declare the attributes of the data before writing the instruc
tions which process that data and it is easier to find the DECLARE
statements if you want to alter them later.

Base and Scale Attributes

Consider this example of a DECLARE statement:

DECLARE PRICE DECIMAL FIXED(5,2);
'-v---1

I ~ Precision attribute

~ Scale attribute

......___ ______ ~Base attribute

...__ ___________ Programmer-selected

identifier called variable

...___ ____________ ~ A PL/I keyword

A DECLARE statement always begins with the keyword DECLARE
as its statement identifier. Its statement body contains one or more
variables and a description of the characteristics of the value of each
variable. The words used to describe the characteristics of data are
called attributes. In the above DECLARE statement, the variable is
PRICE. It is declared to have the base attribute DECIMAL, the scale

tThe DEFAULT statement, which is available in the optimizing compilers, will be described
later.

64 PL/I Programming

attribute FIXED, and the precision attribute (5,2). Another way in
which the above statement could be written is

DCL PRICE FIXED DEC(5,2);

because most attributes may appear in any sequence, and abbreviations
of some words are allowed. (The precision attribute must follow either
the base or the scale attribute in the DECLARE statement.) Attributes
are separated by one or more blanks.

When a variable has its attributes described in a DECLARE
statement, it is said to be declared explicitly. When variable names begin
with the letters I through N and are simply used in a program without
appearing in a DECLARE statement, the FIXED scale attribute, the
BINARY base attribute, and a precision attribute of (15, 0) are assumed,
and that variable is said to be declared implicitly. Variables beginning
with any alphabetic letter other than I through N and not described
in a DECLARE statement or the DEFAULT statement are implicitly
declared to have the attributes DECIMAL FLOAT(6).

One of the biggest problems for the beginning PL/I programmer
is failing to realize that, if he does not declare the base, scale, and
precision of data items, the compiler will assume certain attributes
by default. Often, these default assumptions are not those which the
programmer desired.

More than one variable name may be specified in a DECLARE
statement. For example :

DECLARE INTEREST FIXED DECIMAL(3,3), PRINCIPAL FIXED
DECIMAL(9,2);

I L Blank is optional

[Must have a comma
to separate each
data item.

Thus, in the above example INTEREST and PRINCIPAL were both
described in one DECLARE statement.

The Precision Attribute

The precision attribute specifies the number of significant digits
of data and/or the decimal point alignment. The precision of a variable
is either attributed by default or it is declared along with the base
and/or scale, and it is never specified alone. It most follow either

Writing Programs 65

(or both) the base or scale in the declaration. For example:

DECLARE VALUE FIXED DECIMAL(7,2)

L) Number of fractional
digits

Number of significant
digits including the
fractional digits

In the above example, VALUE may contain up to a seven-digit number
of which two are fractional. Thus, its form may be stated as

xxxxx.xx
where X represents any decimal digit. If there are no fractional digits,
then you may omit the comma and second digit of the precision
attribute. For example:

DECLARE QUANTITY FIXED DECIMAL(5);

The above statement is equivalent to

DECLARE QUANTITY FIXED DECIMAL(5,0);

It was stated previously that the precision is never specified alone.
Thus, using the above DECLARE as an example, had the FIXED scale
and DECIMAL base attributes been omitted, the statement

DECLARE QUANTITY(5,0);

becomes an invalid precision declaration.
For floating-point data, declare only the number of significant

digits. For example:

DCL Pl FLOAT DECIMAL(6);
Pl =3.14159;

Do not specify fractions in the precision attribute for floating-point
data. For example:

DCL Pl FLOAT DECIMAL(6,5);

is invalid.

The Length Attribute

The word precision refers only to arithmetic data. In referring to
string data, the term length is used. The length is the number of char-

66 PL/I Programming

acters or bits a data item is to contain. For example:

DECLARE NAME CHARACTER (20);

L Length attribute of 20
alphameric characters

Blank here is optional

,___ _____ ~ PL/I keyword for declaring
character-string data

.___ _________ Variable name

The Mode Attribute

Mode specifies whether a variable has the REAL or COMPLEX
attribute. If the mode is not declared, REAL is assumed. In the full
language implementations of PL/I, either mode may be declared for
variables. The following information is of value only to those who
have the need to use complex quantities in their programming solutions
of various problems. Thus, if the expression

8 + 2i
where i is

has no meaning to you, you will not miss anything by skipping to the
next section of this chapter. In the complex mode, an arithmetic data
item has two parts: (a) a real part, and (b) a signed imaginary part.

There are no complex constants in PL/I. A complex value is
obtained by a real constant and an imaginary constant. An imaginary
constant is written as a real constant of any type followed by the letter
I. Here are some examples:

151
7.14E101
1101.001 Bl

Each of these is considered to have a real part of zero.
A complex value with a nonzero real part is represented in the

following form:

[+I -] Real constant {+I - } Imaginary constant

Thus, a complex value could be written as

46+21

Writing Programs 67

The keyword attribute for declaring a complex variable is COMPLEX.
For example:

DCL A FLOAT DECIMAL(6) COMPLEX;

A complex variable may have any of the attributes valid for the different
types of real arithmetic data. Each of the base, scale, and precision
attributes applies to both fields.

The standard arithmetic operations are provided for complex data.
For example:

DCL (X,Y,SU M,DI FF,PRODUCT,QUOTI ENT, POWER)
COMPLEX DECIMAL FLOAT{6);

GET LIST{X,Y);
SUM=X+Y;
DIFF=X-Y;
PRODUCT=X*Y;
QUOTIENT =X/Y;
POWER=X**3;

/
COMPLEX variables allowed

Subset language No

Full language Yes

Factored Attributes

When the same base, scale, and precision could apply to more
than one variable, then the attributes may be factored. Here is an
example:

DECLARE (A, B, C) FIXED DECIMAL{7,3);
'--v---'

~Notice that base and scale
attributes may appear in either
sequence: FIXED DECIMAL or
DECIMAL FIXED

.....__ _______ Indicates that all of the variables
in the list, separated by commas
and enclosed in parentheses, have
the FIXED DECIMAL(7,3)
attribute

68 PL/I Programming

The above example is equivalent to

DECLARE A FIXED DECIMAL(7,3), B FIXED DECIMAL(7,3),
C FIXED DECIMAL(7,3);

Here is an example of nesting of factored attributes:

DCL (A FIXED(5,2), B FLOAT(6), (C, D) FIXED(9,3)) DECIMAL;

In this statement, A is declared as FIXED DECIMAL(5, 2); B is FLOAT
DECIMAL(6); and C and Dare FIXED DECIMAL(9,3).

The INITIAL Attribute

In addition to declaring the base, scale, and prec1s1on of an
arithmetic variable or the length of a string, it is also possible to set that
variable to an initial value by adding the INITIAL attribute in the
DECLARE statement.

DECLARE AMT FIXED. DECIMAL(7,2) INITIAL(24.50);

It is important to understand that the DECLARE statement is not
executable. Therefore, when the value of a variable is initialized through
the use of the INITIAL attribute (the assigning of 24.50 in the above
example), this is done once only and before any of the PL/I executable
statements in a blockt are performed by the computer. Another method
for assigning values to a variable is to use tlie assignment statement.
For example:

AMT=24.50;

Under certain circumstances, using the INITIAL attribute to initialize
a variable to a predetermined value can result in greater program
efficiency than if the assignment statement were used to initialize a
variable. To accomplish this efficiency, another attribute must be added
to the DECLARE statement. For example:

DCL AMT FIXED DECIMAL(7,2) INITIAL(24.50) STATIC;
I

L A storage class to be explained in
Chapter 11

Here are some examples of the use of the INITIAL attribute.
Note that the constant specified after the keyword INITIAL must be
enclosed in parentheses.

tThere are two types of blocks in PL/I: procedure blocks and begin blocks. So far, you
have only been introduced to procedure blocks; begin blocks will be covered later.

Writing Programs 69

DECLARE CTR FIXED BINARY(15) INITIAL(O);

'---------------~ CTR will be set equal
to 0 at the start of
your PL/I program
execution

DECLARE HONG CHARACTER(22)
INITIAL('WEEKLY ACTIVITY REPORT);

~-----A character-string constant must be
enclosed in single quote marks
within parentheses following the
INITIAL

DECLARE (A, B, C) FIXED DECIMAL(7,3) INITIAL(O);

L You may s~ecify only one
constant for the variables
A, B, and C because the
INITIAL attribute has
been factored ; th is
staterr•·nt causes A, B,
and C to be initialized to
the value of zero

DECLARE (X,Y,Z) FLOAT DECIMAL(16) INITIAL(1,2,3);
'-v-'

G ILLEGAL: even though three variables
are specified (X, Y, and Z), because
they are factored, only one constant
may be given following the keyword
INITIAL

To accomplish the above type of initialization and still factor the
common attributes, you must code:

DCL (X INIT(1), Y INIT(2), Z INIT(3)) FLOAT DECIMAL(16);

Note that expressions following the parentheses in the INITIAL attribute
are invalid in all compilers except the optimizing compilers:

DECLARE VALUE FIXED DECIMAL INITIAL(7+5);
DECLARE AMT FIXED DECIMAL(5,2) INITIAL(l*2);
DEC LARE MSSG CHAR (20) IN ITIAL('ERROR' I I (15) '*');

70 PL/I Programming

As mentioned earlier, certain keywords may be abbreviated for the
convenience of the programmer. For example:

DCL VALUE FIXED DEC(9) INIT(12345.);

I

I
For INITIAL

~~~~~~~~-)For DECIMAL 

~.~~~~~~~~~~~~~~~---)For DECLARE 

Partially Declared Identifiers 

We have seen that characteristics of arithmetic data are normally 
described with three basic attributes: base, scale, and precision. It is 
possible to make a partial declaration of variables. To declare partially 
a variable name is to specify one of the following: 

1. The base: DCL A DECIMAL, B BINARY; 
2. The scale: DCL C FIXED, D FLOAT; 
3. The base and precision: DCL AA DECIMAL(16), 

BB BINARY(53); 
4. The scale and precision: DCL CC FIXED(9,2), DD FLOAT(16); 

The chart in Figure 2.4 summarizes the defaults that will be taken 
for partially declared variables. To summarize some of the points 
implicit in the chart, note that when you specify only the base (BINARY 

Declared attributes 

DECIMAL FIXED 
DECIMAL FLOAT 
BINARY FIXED 
BINARY FLOAT 
DECIMAL 
BINARY 
FIXED 
FLOAT 
None-initial character 1-N 
None-all others 

Default attributes 

(5,0) 
(6) 
(15,0) 
(21) 
FLOAT(6) 
FLOAT(21) 
DECIMAL(5,0) 
DECIMAL(6) 
BINARY FIXED (15) 
DECIMAL FLOAT(6) 

FIGURE 2.4 Default attributes for partially declared identifiers. 



Writing Programs 71 

or DECIMAL), the scale will default to FLOAT and the precision to 
21 for BINARY or 6 for DECIMAL. In other words, when you write 

DECLARE K9 DECIMAL; 

it is equivalent to 

DECLARE K9 DECIMAL FLOAT(6); 

When you specify only the scale (FIXED or FLOAT), the base will 
default to DECIMAL. Thus, when you write_ 

DECLARE A2 FIXED; 

it is equivalent to 

DECLARE A2 FIXED DECIMAL(5); /* OR */ 
DECLARE A2 FIXED DECIMAL(5,0); 

Precision may not be specified alone. 

Because you may wish to reference the following section at a later 
time, for each data type, pertinent facts are concisely presented and 
examples of DECLARE statements are given. Also, you may wish to 
review the material in Appendix D before continuing in this chapter. 

S/360, S/370 Data Format Name: packed 
Type of Data: coded arithmetic 
Default Precision: 5 decimal digits (99999.) 
Maximum Precision: 15 decimal digits (999,999,999,999,999.) 
Examples: 

DCL A FIXED DECIMAL, B DECIMAL FIXED, C FIXED, D FIXED(5), 
E FIXED(5,0), F FIXED DEC, G DEC FIXED; 
/* A,B,C,D,E,F, and G ARE EQUIVALENT */ 

DCL AMT FIXED(7) INITIAL(12345); /* AMT =0012345. */ 
DCL PRINCIPAL FIXED(9,2) INIT(·24.00); 
DCL RATE FIXED(3,3) INIT(.045); 



72 PL/I Programming 

Note carefully in the following examples how a number will be 
altered to fit the declared precision (whether intended or not) : 

DCL HOURS FIXED(3,1) INIT{42.6); /* HOURS=42.6 */ 
DCL HOURS FIXED(5,2) INIT{42.6); /* HOURS=042.60 */ 
DCL HOURS FIXED(1,1) INIT(42.6); /* HOURS=.6 */ 
DCL HOURS FIXED(3,2) INIT{42.6); /* HOURS=2.60 */ 
DCL HOURS FIXED(7,4) INIT{42.6); /* HOURS=042.6000 */ 
DCL HOURS FIXED(5,0) INIT(42.6); /* HOURS=00042. */ 

A negative scale factor may also be specified for FIXED DECIMAL 
data. For example: 

DCL A FIXED(3,-2); 

~--- The negative scale factor means, in this 
case, the assumed decimal point is two 
places to the rightmost digit (e.g., XXXOO., 
where X is any decimal digit) 

Comments: This is the type of data that commercial programmers 
most often use. The FIXED DECIMAL format provides the capability 
needed for monetary calculations. It is more efficient to declare the 
precision of fixed decimal data as an odd number (5, 7, 9, etc.) of 
digits. There are several terms in PL/I which refer to this data type: 

FIXED, FIXED DECIMAL, or DECIMAL FIXED 

This format can be used to represent mixed numbers (e.g., 12.98), 
fractions (.035), or whole numbers (144). 

S/360, S/370 Data Format Name: fixed-point 
Type of Data: coded arithmetic 
Default Precision: 15 bits (equivalent to 32,767 in decimal) 
Maximum Precision: 31 bits (equivalent to 2, 147,483,647 in 
decimal) 
Examples: 

DCL A FIXED BINARY, AA BINARY FIXED, AAA FIXED BIN (15); 
/* THE ABOVE THREE ITEMS ARE EQUIVALENT */ 

DCL ICTR INITIAL(500); /* ICTR=500 AND DEFAULTS TO 
FIXED BINARY */ 



Writing Programs 73 

DCL VALUE FIXED BIN(8) INITIAL(11110011 B); 
DCL T FIXED BIN(31, 6); /*FULL LANGUAGE FEATURE*/ 
DCL EVENT FIXED BIN(31) INIT(-2147483647); 

Comments: Notice from the- examples above that either binary or 
decimal constants may be used to initialize FIXED BINARY variables. 
Generally, instructions that perform arithmetic operations on FIXED 
BI NARY data have a faster execution time than instructions that operate 
on other data types. Thus, fixed-point binary data should be used 
whenever execution time of a program is a primary consideration. 
This does not apply, however, if you are going to be converting, 
repeatedly, binary data to characters for output. 

Variables that begin with the letters I through N default to FIXED 
BINARY(15). 

f 
FIXED BINARY 

Number of bytes used Type of data allowed 

Subset 
language 4 Integers only 

Full 2 if precision < = 15 Integers, fractions, or 
language 4 if precision > 15 mixed numbers 

S/360, S/370 Data Format Name: floating-point 
Type of Data: coded arithmetic 
Default Precision: 6 decimal digits 
Maximum Precision: 16 decimal digits (33 in the OS PL/I 
Optimizing Compiler) 
Range of Exponent: 10- 7s to 10+7 5 

Ex-mples: 

\ 

DCLA FLOAT, B FLOAT DECIMAL, C DECIMAL FLOAT, D DECIMAL, 
E DEC, F DEC(6); G FLOAT DEC(6); 
/* A,B,C,D,E,F, AND G ARE EQUIVALENT */ 



74 PL/I Programming 

DCL Pl FLOAT(6) INITIAL(3.14159); /* Pl=3.14159 */ 
DCL MILE FLOAT INIT(.528E+04); /* MILE=5280. */ 
DCL LIGHT_ YEAR FLOAT INIT(6E + 12); 

I* LIGHT_ YEAR= 6,000,000,000,000 */ 
Comments: Because of the range of the exponent of floating-point 
data, scientific programmers find this ·data format useful for working 
with very large or very small numbers that do not require more than 16 
digits of accuracy. Identifiers whose letters begin with anything other 
than I through N will default to FLOAT DECIMAL(6). Notice in the 
first DECLARE statement above, that a number of keywords may be 
used to specify this type of data. Notice, also, that fixed-point decimal 
constants (e.g., 3.14159) or floating-point decimal constants (e.g., 
6E + 12) are used to initialize floating-point variables. Floating-point 
data is not suitable for commercial programs where dollars and cents 
accuracy is required. 

S/360, S/370 Data Format Name: floating-point 
Type of Data: coded arithmetic 
Default Precision: 21 bits (1,048,576 in decimal) 
Maximum Precision: 53 bits (109 in OS PL/I Optimizing Com
piler) 
Range of Exponent: 2- 260 to 2+252 
Examples: 

DCL A FLOAT BINARY, B BINARY FLOAT, C BINARY, D BIN (21 ), 
E FLOAT BIN, F FLOAT BIN (21); 
/* A,B,C,D,E, AND FARE EQUIVALENT */ 

DCL ALPHA BINARY INIT{101101 E5B); 
/* ALPHA= 10110100000 */ 

DCL BETA FLOAT BIN(53) INIT(1011E +72B); 
DCL GAMMA BINARY FLOAT INIT(1111 E-06B); 

Comments: In main storage, there is no difference between the 
format of FLOAT' DECIMAL data and FLOAT BINARY data. The 
difference exists externally for the convenience of the programmer. 
Usually, FLOAT BINARY data format is used in highly specialized 
areas such as where the programmer desires to control the number of 
bits of precision generated when decimal fractions are converted to 
binary fractions. To draw an analogy, we know that the decimal fraction 
1 /3 is a continuing fraction (.33333333333 on to infinity). Perhaps, for 



Writing Programs 75 

computation purposes, you only want to use the value .33. You are 
controlling the number of digits of precision by using two decimal 
digits to represent or approximate 1 /3. The same situation can occur in 
working with binary data. For example, in its binary equivalent, the 
decimal number 1/10 will be a continuing fraction. If the programmer 
so desires, he may indicate the precision that 1/10 is to have for 
purposes of a specific computation. Just as we said that two decimal 
digits would be used to approximate 1 /3, we could also say that, 
through the use of FLOAT BINARY(12), only 12 bits will be used to 
approximate the decimal fraction 1/10. 

S/360, S/370 Data Format Name: character 
Type of Data: alphameric 
Default Length: none 
Maximum Length: varies with the compiler; see Summary at the 
end of this chapter 
Examples: 

DCL NAME CHARACTER(9) INITIAL('JOHN JINX'); 

NAME=I J I 0 I H I N I I J I I IN Ix I 
DCL NAME CHAR(10) INIT('JOHN JINX'); 

NAME=I J I 0 I H I N I I J I I IN Ix I 

DCL NAME CHAR(8) INIT('JOHN JINX'); 

NAME=I J I 0 I H I N I I J I I IN I 

Comments: Notice from the above examples how character-string 
data is padded with blanks on the right if the assigned character 
constant is shorter than the declared length of the character-string. 
If the character constant is longer than the declared length of the 
character-string, then truncation to the right of the data occurs. In 
the following example, notice the use of the repetition factor and 
concatenation to center the heading WEEKLY ACTIVITY REPORT 
in the middle of a 120 print position line. Only the leading 49 blanks 
had to be specified. To the right of the literal heading, blanks are 
automatically padded or filled in. 

DCL PRINT_ LINE CHAR(120); 
PRINT LINE=(49)' 'IJ'WEEKLY ACTIVITY REPORT; 



76 PL/I Programming 

In some levels of PL/I, although it is not recommended, you may do 
arithmetic on data having the CHARACTER attribute. In this case, the 
numeric characters are automatically converted to the coded arith
metic form FIXED DECIMAL. 

I 
Arithmetic operations allowed on CHARACTER 

attribute data providing data contains valid 
arithmetic constants in character form 

Subset language No 

Full language Yes 

It has been illustrated that when a smaller character-string is 
assigned to a larger character-string field, there is padding on the 
right with blanks. There may be some instances, however, when it is 
not desired to have this padding with blanks. A string value is not 
extended with blanks when it is assigned to a character-string variable 
that has the VARYING attribute. To illustrate: 

DCL NAME CHAR(20) VARYING; 

'-----+ This attribute causes the 
length specification of 
NAME to be effectively 
adjusted to describe the 
length of each data item 
assigned to it 

<-------~ Maximum length of the 
string 

In the above example, NAME so far has a length of zero (called a null 
string) because no character-string has been assigned to it. When the 
statement 

NAME='MIKE TUCKER'; 

is executed, NAME will have a length of 11 because there are 11 
characters in the character-string constant. If the statement 

NAME='MIKE'; 

is specified, NAME now has a length of 4. If the statement 

NAME="; 



Writing Programs 77 

which contains no characters, is assigned to NAME, the length be
comes zero again. Incidentally, the character-string constant ' ', or 
one with a repetition factor of zero, is referred to as a null string because 
it contains no character. The VARYING attribute may be specified for 
identifiers that have the CHARACTER or BIT attribute. Truncation will 
occur if the length of an assigned string exceeds the maximum length 
declared for the varying-length string variable. For example: 

DCL X BIT(4) VARYING; 
X='11001'B; /* X='1100'B */ 

The rightmost bit in the string constant was truncated when assigned 
to X. 

f 
VARYING attribute 

Subset language No 

\._ 
Full language Yes 

S/360, S/370 Data Format Name: none, as bits are packed to the 
nearest byte 
Type of Data: logical 
Default Length: none 
Maximum Length: varies with the compiler; see Summary at the 
end of this chapter 

Examples: 

DCL ITEM BIT(9) IN ITIAL('111100001 'B); 
DCL PATTERN BIT(16) INIT((8)'10'B); 

/* PATTERN= '101010101010101 O' B */ 
DCL ITSY BIT(8) INIT('1111'B); /* ITSY='11110000'B */ 
DCL SYMP""!"OMS BIT(4) INIT('00111 OO'B); 

/* SYMPTOMS='0011'B */ 

Comments: Notice from the examples above that bit-string con
stants are enclosed in single quote marks followed by a B. Also, note 
that bit-string data are assigned from left to right in the field as are 
character-string data. Thus, if a smaller bit-string is assigned to a 



78 PL/I Programming 

larger field, there is padding on the right with zeros. If a bit-string is 
larger than the field to which it is being assigned, then the leftmost bits 
only (as many as will fit) are assigned. In other words, those on the 
right in bit-string data are truncated. Do not confuse a bit-string with a 
binary arithmetic data item. Bit-strings are usually not used in calcula
tions. Instead, they may be used in a program to indicate whether or 
not certain conditions exist (yes or no, 1 or 0, true or false). Note this 
use of data with the BIT attribute. In the following example, the identifier 
SWITCH is being tested for a true or false condition: 

DCL SWITCH BIT(1) ; 
SWITCH= '1 'B; 
IF SWITCH THEN GO TO TRUE_COND; 

SWITCH is an expression, of the type ultimately required in this position 
-BIT(1 ). The above IF statement accomplishes the same operation 
as if this statement had been coded: 

IF SWITCH ='1'B THEN GO TO TRUE_COND; 

Besides arithmetic data and string data, a PL/I programmer can define 
and use statement-label data. We label PL/I statements which our 
program will reference. For example: 

LOOP1 : GET LIST(A, B, C); 
IF A=O THEN GO TO EOJ; 
PUT LIST(A+ B +C); 
GO TO LOOP1; 

It is obvious from the context that LOOP1 is the label of a PL/I state
ment. Moreover, LOOP1 is a statement-label constant; i.e., its value 
will never change-LOOP1 will always be the label of the GET state
ment. PL/I also allows statement-label variables. A statement-label 
variable is a programmer-defined identifier which has been given the 
LABEL attribute in a DECLARE statement. For example: 

DECLARE LBL LABEL INITIAL (LOOP1); 
/* LOOP1 MUST BE A LABEL ATIACHED TO 
A PL/I STATEMENT IN THIS PROGRAM; I.E., IT 
MUST BE A STATEMENT LABEL CONSTANT.*/ 



Writing Programs 79 

LOOP1 : GET LIST(A, B, C); 

GO TO LBL; 
/* PROGRAM CONTROL IS TRANSFERRED TO 
THE VALUE OF LBL, CURRENTLY LOOP1 */ 

The above example illustrates a form of indirect addressing. Instead of 
directly addressing a location (that is, branching to a label in our 
program), we specify another location (in this case, it is named LBL); 
in that location is the name of the place to which our program should 
transfer. To use an analogy, assume that good al' Joe invited some of 
the boys over for poker one Friday night. When Joe informed his wife 
of the poker party, she informed him she was having her bridge group 
over that same evening. The conflict was easily solved when good 
neighbor Sam said the poker party could be held at his house. Instead 
of calling his friends, Joe simply had them come to his house as 
originally planned. When they arrived, Joe gave them the directions to 
Sam's house. The idea here, of course, is that in this "human situation" 
the poker players went to one location (Joe's house) to pick up the 
address of where they ultimately were to go (Sam's house). Interestingly, 
the terms address and location are also programming terms because of 
their similarity in function. 

A statement-label variable may assume many values during the 
execution of a program. For example: 

DCL LBL LABEL; 
IN PUT: GET LIST(A,B,C); 

TYPE1 : 
TYPE2: 
TYPE3: 

IF A=1 THEN LBL=TYPE1; 
ELSE IF A=2 THEN LBL=TYPE2; 

ELSE LBL= TYPE3; 
GO TO LBL; 



80 PL/I Programming 

Arithmetic Operations on Mixed Data Types 

This section has dealt with the various data formats on S/360 
and S/370 and the PL/I keywords that describe these formats. Before 
leaving the topic of data formats, one question must be raised and 
answered: "What happens when, for example, a FIXED DECIMAL 
value is to be added to a FIXED Bl NARY value?" A computer cannot 
do arithmetic operations on two values having unlike data formats. 
Likewise, logical operations cannot be performed on unlike string 
data. Therefore, when mixed data types appear in an arithmetic expres
sion, the PL/I compiler automatically inserts the appropriate instructions 
to cause one of the data items to be converted to the data format of the 
other. The rules for conversion are these: 

1. If the base of the data items differs, DECIMAL is converted to 
BINARY. 

2. If the scale of the data items differs, FIXED is converted to 
FLOAT. 

3. If CHARACTER and BIT are specified, then BIT is converted to 
CHARACTER. 

Figure 2.5 illustrates these conversions. 

The DEFAULT statement, which is available in the two IBM PL/I 
optimizing compilers, is provided to enable the programmer to define 
default attributes for identifiers other than those to which PL/I would 
normally default. To put it another way, this statement is used to over
ride the PL/I language default attributes; it consists of the keyword 
DEFAULT followed by one or more keyword options. 

The RANGE Option 

This option specifies the identifiers to which the associated default 
rules are to be applied. Following are some examples of this option in 
the DEFAULT statement: 

DEFAULT RANGE (A: D) FIXED; 

I ) Identifiers that begin with A through D 
will default to FIXED(5), 5 being the 
standard PL/I default precision for 
FIXED data 



Values to be operated on Conversion that takes place Comments 

DCL A FIXED DEC, A is converted to FLOAT DEC Scale is different; thus, 
B FLOAT DEC; FIXED --+ FLOAT 

Y=A+B; 

DCL C FIXED DEC, C is converted to FIXED BIN Base is different; thus, 
D FIXED BIN; DECIMAL--+ BINARY 

l=C*D; 

DCL E FIXED DEC, Eis converted to FLOAT BIN Both base and scale are different; thus, 
F FLOAT BIN; FIXED--+ FLOAT 

Z= E/F; DECIMAL-+ BINARY 

DCL G FIXED DEC, None Base and scale are already the same 
H FIXED DEC; 

R=G-H; 

DCL K CHAR (13), J is converted to String data formats are different; thus, 
I CHAR (5), CHARACTER (8) BIT--+ CHARACTER 

J BIT(8) before concatenation is performed 

\,_ 
K=ll IJ; 

FIGURE 2.5 Examples of data conversions that take place in mixed expressions. 



82 PL/I Programming 

DEFAULT RANGE(*) FIXED; 

I i Asterisk specifies that all identifiers 
(names beginning with A through Z, @, 
$, #) will default to a FIXED DECI
MAL data item with a precision of (5) 
digits 

DEFAULT RANGE (PRO) FLOAT; 

I i All identifiers whose first three letters are 
PRO will default to FLOAT(6) 

DEFAULT RANGE (A,C,R,T) FIXED BINARY; 

L__. Identifiers that begin wit'h either A, C, 
R, or T will default to FIXED BINARY 
with a precision of 15 bits 

Note that in the above examples, which specify coded arithmetic 
attributes (e.g. FIXED, FLOAT, FIXED BINARY), precision may 
not be specified. The assumed precision in each case will be the 
standard PL/I default precision unless declared explicitly or contextu
ally elsewhere. 

The VALUE Option 

This option is used where it is desirable to specify the default 
precision of coded arithmetic data or the length of string data. For 
example: 

DEFAULT RANGE (A :D) ,FIXED DEClr 

VALUE ~FIXED DEC,IMAL (7,2)) ;·~-l __ i Base and scale 

attributes 

i Precision attribute 

In this example, identifiers that begin with A through D will now default 
to FIXED DECIMAL with a precision of (7,2). 

This option is also used to specify the length of character- and/or 
bit-strings. For example: 



Writing Programs 83 

DEFAULT RANGE(C: E) CHARACTER VALUE (CHAR(20)); 

.___~ Identifiers that begin with C through E 
default to CHAR (20) 

DEFAULT RANGE (TT) BIT VALUE (BIT(8)); 

.___~ Identifiers that begin with the letters 
"TT' default to bit attribute with a 
length of eight 

If only the precision attribute is to be specified, thereby leaving the base 
and scale attributes to be assumed by default, then the following form 
of the DEFAULT statement may be used: 

DEFAULT RANGE (A:D) VALUE (DECIMAL FLOAT(15)); 

If this DEFAULT statement appears in a program in which identifiers 
whose names begin with A through D would normally be declared by 
default, those identifiers will specifically default to DECIMAL 
FLOAT(15) rather than to the standard default of DECIMAL FLOAT(6). 

In the statement 

DEFAULT RANGE (*) VALUE (FIXED BINARY(31), 
FIXED DECIMAL(15), FLOAT BINARY(53), 
FLOAT DECIMAL(15)); 

the asterisk ( *) refers to all identifiers; the attributes in parentheses 
following the keyword VALUE are the precisions that will apply if 
variables are partially declared (i.e., only as to base and scale attributes). 
Thus, if the statement 

DECLARE A FIXED; 

is encountered in the program, the identifier A will default to FIXED 
DECIMAL with a precision of 15 because FIXED DECIMAL(15) was 
specified in the VALUE option list. Or, as an.other example, if the 
statement 

DCL B BINARY; 

is encountered, the identifier B will default to BINARY FLOAT(53) 
because when BINARY is specified alone, the assumed scale is FLOAT, 
and the precision specified in the VALUE option list forFLOAT BINARY 
is 53. Notice what happens, however, when either a base or scale 



84 PL/I Programming 

attribute is specified in the DEFAULT statement and an identifier is 
only partially declared: 

DEFAULT RANGE (A: H) FIXED VALUE (FIXED BINARY(31 ), 
FIXED DECIMAL(15)); 

Assuming this DEFAULT statement, if we write 

DECLARE A BINARY; 

then the identifier A will default to FIXED BINARY(31 ). This is because 
only two data attributes were specified in the VALUE option list: 
FIXED BINARY and FIXED DECIMAL. By declaring A to be BINARY, 
the only attribute that could apply for purposes of adding the missing 
scale is the FIXED attribute. Thus, if we write 

DECLARE B DECIMAL; 

the identifier B will default to FIXED DECI MAL(15). 
A program may not contain both a DEFAULT statement to estab

lish default rules and another DEFAULT statement to modify these rules 
or .restore the standard default rules for the same range. 

f 
The DEFAULT statement 

~ 

Subset language Not available 

Full language Provided in the PL/I optimizing compilers 
but not in PL/I F 

To obtain a higher rate of return on capital invested, businesses are 
interested in maximizing sales while minimizing inventory. The ratio 
of sales to inventory can be determined by a simple formula, the results 
of which provide useful guidelines for inventory management. For 
example, if the ABC Company has determined that its stock turnover is 
once a year, but its closest competitor turns its stock over three times a 



Writing Programs 85 

year, then ABC is possibly carrying too large an inventory. Faster 
turnover of stock-on-hand might improve ABC's profits. 

To find its stock turnover rate, the ABC Company determined the 
retail value of its inventory by month for the past 12 months to be the 
following: 

Month 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Value of inventory 
$90,000 
92,000 
94,000 
83,000 
87,000 
91,000 
89,000 
90,000 
92,000 
94,000 
88,000 
8!),000 

' 
The company's gross retail sales (S) for this period were $523,000. 

There are 12 inputs representing the retail inventory values for 
each month. The company's gross retail sales figure becomes additional 
input. The program shown in Figure 2.6 reads the retail sales figure 

I* CALCULATION OF STOCK TURNOVER RATE */ 
l STOCK: PROCEDURE OPTIONS(MAIN); 
Z DECLARES FIXED OECIMAL(9,2); /*---S IS TOTAL 

RETAIL SALES-~----*/ 
3 OECLARE A FIXED DECIMAL(9,2); /*---A IS AVERAGE RETAIL 

INVENTORY VALUE----*/ 
4 DECLARER FIXED OECIMAL(2,l); l•---R IS RATE OF STCCK 

5 
6 
7 LOOP: 

B 
9 

10 
11 
12 
13 
14 
15 

16 
17 

ICTR = 1; 
GET LISTIS); 
GET LI STC VALUE); 

SUM = SUM + VALUE; 
ICTR = ICTR + l; 
IF ICTR <= 12 THEN GO TO LOOP; 

TURNOVER-~--~----*/ 

/*---VALUE IS MONTH'S 
INVENTORY AMOUNT-----*/ 

A = SUM/12; /•---AVERAGE KETAIL VALUE-*/ 
R = S/A; /*---STOCK TURNOVER RATE--*/ 
PUT SKIP LISTC 1 TOTAL RETAIL SALES 1 ,SJ; 
PUT SKIP{2)LISTC 1 AVERAGE RETAIL INVENTORY VALUE 1 ,AI; 
PUT SKIP(21LISTC 1 RATE OF STOCK TURNOVER FOR 12 MONTH 'If 

• PER I OD I t R) ; 
PUT PAGE LISTC 1 ENO OF JOB 1 t; 
ENO STOCK; 

FIGURE 2.6 Calculation of stock turnover rate. 



86 PL/I Programming 

first and then the inventory values by month (thereby creating the 
need for a loop operation). The average monthly inventory value is 
found simply by adding the 12 months' values and then dividing by 
12. Next, the rate of stock turnover is determined by the formula 

R=~ 
A 

where R is the rate of stock turnover, S is gross retail sales, and A 
is the average stock value. Desired output is 

TOTAL GROSS RETAIL SALES 

AVERAGE RETAIL INVENTORY VALUE 

RATE OF STOCK TURNOVER FOR 12 MONTH PERIOD 

Observations Regarding Figure 2.6 

XXXXXX.00 

XXXXXX.00 

X.X 

1. The PL/I comments are written in such a manner that they 
stand out on the page. 

2. A comment precedes the PROCEDURE OPTIONS(MAIN) 
statement. This card will be printed as a heading on every 
page of the source program listing provided by the PL/I compiler. 

3. The first output statement was PUT LIST. Because this is the 
first PUT LIST statement in the program, there will be an 
automatic advance to a new page when the statement is ex
ecuted. Hence, it is not necessary to say PUT PAGE LIST. 
Had we done so, an extra sheet of printer paper would have 
been ejected and wasted. (Exception: this does not apply in 
optimizers.) 

4. The last PUT LIST statement of this case study printed an end
of-job message so there will be no question as to whether or 
not the job ran to successful completion. Notice that this message 
will print on a new page. 

5. Because LIST 1/0 is being used, all of the data this program is 
to process could be punched on one input card. For example: 



Writing Programs 87 

1 2 2 3 4 5 5 6 7 
~~~~~4~~0~~6~~-2~~~~4~~-o~--'-6~~~~-8~~4~80 

523000 90000 92000 94000 83000 87000 91000 89000 90000 92000 94000 88000 85000

Figure 2.6 shows the printout from the PL/I compiler. Notice
how the compiler inserted statement numbers to the left of each PL/I
source statement. These numbers are used by the programmer as
references when debugging a PL/I program. Although there are no
diagnostics shown, the compiler does assist the programmer im
measurably by providing as many diagnostic messages as possible.
In interpreting them, be aware that an error in one statement may
cause several subsequent statements to be flagged as being in error.
Yet, there may be nothing wrong with them. When the first error is
corrected, the subsequent errors will automatically clear up. This is
particularly true if you have an error in a DECLARE statement.

Actually, diagnostics may be generated at two different times:

1. When errors are detected during\ compile time
2. When errors are detected during execution time (also called

object time)

Following your source program listing, compile-time diagnostics
(describing errors found by the compiler) will be printed. Execution
time diagnostics (describing errors encountered while your program is
in execution) may also be printed. For an explanation of how to inter
pret execution-time diagnostics, consult the appropriate programmer's
guide for the PL/I implementation you are using. Typically, this topic
will appear in the guide's index under the heading "object-time
diagnostics." Figure 2.7 shows the computer output from the execution
of this program. Results are for the values shown in observation
number 5 above.

TOTAL GROSS RETAIL SALES 523000.00

AVERAGE RETAIL INVENTORY VALUE 89583.31

RATE OF STOCK TURNOVER FOR 12 MONTH PERIOD 5.8

FIGURE 2.7 Computer output from stock turnover rate program.

88 PL/I Programming

A Program Loop: The repetitive processing of data is called a loop operation.
Program loops have three steps:

1. Initialize a counter
2. Modify counter
3. Test counter

The Assignment Statement: You will be using this type of statement often
becauses it specifies which arithmetic and logical operations should take place
and/or causes data to be moved from one storage area to another. The assign
ment symbol (=) in the arithmetic assignment statement means "replace the
value of the variable on the left of the equal sign with the value of the expression
on the right of the assignment symbol." Expressions specify a computation and
appear to the right of the assignment symbol in an assignment statement. A
variable is a term used to indicate a quantity that is referred to by name, and a
constant is an actual number. There are a number of operations that may be
performed in expressions. They include:

1. Arithmetic operations: The order in which arithmetic operations are
performed is (a) exponentiation (raising a number to a power, moving
from right to left in an expression); (b) multiplication or division (which
ever appears first, moving from left to right in an expression); (c) addition
or subtraction (whichever appears first, moving from left to right in the
expression). When parentheses are specified, the expression within the
parentheses will be evaluated first, starting with the innermost pair of
parentheses. A prefix operator is an operator that precedes, and is
associated with, a single operand. The prefix operators in PL/I are

+,and I. Consider the following valid PL/I statement:

Y=X* -W;

In the above example, the prefix (-) does not signify a subtraction
operation; it simply means to find the negative (i.e., reverse the sign)
of W. When prefix + (positive) and prefix - (negative) symbols are
indicated in an arithmetic expression, they are performed before infix
+ (addition) and infix - (subtraction) are performed. Note that the
prefix operators do not have to be separated from the infix operators
with parentheses as is the restriction in other high-level languages.
The expression A**B**C is evaluated by PL/I as A**(B**C), because
each exponentiation operation is performed moving from right to left
in the expression. A form of the assignment statement not available in
the subset languages but available in full language compilers is the
statement where more than one identifier (variable name) may appear to

Writing Programs 89

the left of the equals sign (e.g., A,B,C=O;). This statement causes
A, B, and C each to be assigned a value of zero.

2. Comparison operations: These operations include:

3.

Symbol Operation
GE or>= Greater than or equal to
GT or> Greater than
NE or I= Not equal

Equal
LT or< Less than
LE or < = Less than or equal to
NL or I < Not less than
NG orl > Not greater than

Bit-string operations:

AND OR NOT

1 & 1 - 1 1 11 - 1 I 0-1
1&0-0 1 Io - 1 11 -o
0&1-0 011 - 1
o&o-o 010-0

The anding or oring of bit-string data is often referred to as a Boolean
operation.

4. String operation: The concatenation operation may be specified for bit
or character-strings. It simply means to join two strings together to form
one longer string, for example:

'j' II'.' - J.
'11 O' B 11 '11' B - 11011

Refer to Figure 2.3 for the complete hierarchy of PL/I operations.

The GO TO Statement: This statement causes a branch or transfer to a
labeled PL/I statement (e.g., GO TO READ;).

The Null Statement: The null statement is simply a semicolon, or a semi
colon with a label attached to it. It is an executable statement, but nothing
happens.

The IF Statement: The IF statement is used in a PL/I program when a test
or decision is to be made between alternatives.

1. IF (with transfer of control): In this statement, if the condition is true,
a transfer or branch is made to another point in the program (e.g., IF
CTR=O THEN GO TO EOJ;).

2. IF (without transfer of control): In this statement, a single statement
will appear as the action to be taken if the condition is true (e.g., IF
X<O THEN X=1 ;).

90 PL/I Programming

3. The compound IF: This IF statement is called compound because it
contains two PL/I statements. Its form includes the use of the keyword
ELSE. If the condition tested is true, the statement following the THEN
is performed; if the condition tested is not true, the statement following
the ELSE is performed (e.g., IF A=B THEN X=1; ELSE X=2;).

4. Nested IF statements: There may be IF statements contained in either
the THEN or ELSE clause of another IF statement; for example:

IF A=B
THEN IF A=C

THEN X=1; /* A=B=C */
ELSE X = 2 ; I* A= B but A I = C *I

ELSE X = 3 ; I* A -, = B *I

5. A null ELSE in nested IF statements: The null ELSE is an ELSE with
a null statement (recall the semicolon) as its clause. It is, as its name
implies, a nonoperative statement. It gives no direction to the computer.
Rather, its effect is to supply the necessary ELSE clause to be associated
with the innermost IF; for example:

IF A=B
THEN IF A=C

THEN X=1;
ELSE; /* THIS IS A NULL ELSE */

ELSE X=3;

6. The DO-group in an IF statement: The IF statement is designed to
execute one statement following the THEN or ELSE clause. If it is desired
to execute more than one statement following the TH EN or the ELSE,
a DO-group may be specified; for example:

IF A=B
THEN DO;

X=1; Y=2; Z=3;
END;

ELSE DO;
X=4; Y=5; Z=6;
END;

7. Bit-string operators in the IF statement: The operators AND (&) and
OR (I) can be used in the IF statement to eliminate nested IF statements;
for example, the nested IF statement

IF A= B THEN IF C-, = D THEN GO TO POINL5;

could also be written using the comparison operator AND; for example:

IF A= B & c-, = D THEN GO TO POINT_5;

Writing Programs 91

The DECLARE Statement: The DECLARE statement is needed when the
programmer does not wish to use the data formats which are assigned by the
compiler by default, or when information is to be supplied to the compiler to
reserve storage for a number of data items. The words used to describe the
characteristics of data are called attributes. Most attributes may appear in
any sequence, and abbreviations of some words are allowed. Attributes are
separated by one or more blanks in the DECLARE statement. Attributes covered
include:

1. Base (DECIMAL or BINARY)
2. Scale (FIXED or FLOAT)
3. Precision (number of significant digits and/or decimal point alignment)
4. Length (number of characters or bits for string data)
5. Mode (REAL or COMPLEX)

When a variable has its attributes described in a DECLARE statement, it is said
to be declared explicitly; when variable names are simply used in a program
without appearing in a DECLARE statement, they are said to be declared
implicitly. (One of the biggest problems for the beginning PL/I programmer is
failing to realize that if he does not DECLARE the base, scale, and precision of
data items, the compiler will assume certain attributes by default. Often these
default assumptions are not those which the programmer desires.) The precision
of a variable is either attributed by default or it is declared along with the base
and/or scale, and it is never specified alone. Figure 2.8 summarizes the allowable
lengths, precisions, and ranges for each type of data we may work with in
PL/I.

Factored Attributes: When the same base, scale, and precision could apply
to more than one variable, then the attributes may be factored; for example:

DECLARE (A,B,C) FIXED;
DCL (W FIXED, X FLOAT(6)) DECIMAL;

The INITIAL Attribute: In addition to declaring the base, scale, and precision
of an arithmetic variable or the length of a string, it is also possible to set that
variable to an initial value by adding the INITIAL attribute in the DECLARE
statement; for example :

DCL CTR FIXED(3) INITIAL(100);
DECLARE NAME CHARACTER(15) INIT('PATTI WILLIAMS');

Partially Declared Identifiers: We have seen that characteristics of
arithmetic data are normally described with three basic attributes: base, scale,
and precision. It is possible to make a partial declaration of variables by specifying
either:

1. Base
2. Scale
3. Base and precision
4. Scale and precision

r FIXED DECIMAL FIXED BINARY FLOAT DECIMAL

Subset 1 to 1 5 decimal 1 to 31 bits 10-18 to 10+75

language digits (whole 1 to 16 decimal
numbers digits
only)

Full 1 to 15 decimal 1 to 31 bits 10-18 to 10+75

language digits (mixed 1 to 16 decimal
numbers digits8

allowed)

aFor OS PL/I optimizing compiler, 33 decimal digits maximum.
bFor OS PL/I optimizing compiler, 109 bits maximum.

FLOAT BINARY

2-260 to 2+252

1 to 53 bits

2-260 to 2+252

1 to 53 bitsb

FIGURE 2.8 Summary of allowable precisions.

CHARACTER BIT

1 to 255 for 1 to 64 bits
variables

1 to 255 for
constants

1 to 32767 1 to 32767 bits
for variables for variables

1 to 1000 for 1 to 8000 bits
constants for constants

Writing Programs 93

When you specify only the base (BINARY or DECIMAL), the scale will default
to FLOAT and the precision to 21 for BINARY or 6 for DECIMAL. When you
specify only the scale (FIXED or FLOAT), the base will default to DECIMAL.
The chart in Figure 2.4 summarizes the defaults taken for partially declared
identifiers.

PL/I Data Attributes: Following are the data types provided in PL/I:

1. FIXED DECIMAL: This is the type of data that commercial program
mers most often use. It is more efficient to declare the precision of fixed
decimal data as an odd number (5, 7, 9, etc.) of digits. This format can
be used to represent mixed numbers (e.g., 12.98), fractions (.035), or
whole numbers (144).

2. FIXED BINARY: Identifiers beginning with I through N default to
FIXED BINARY(15).

3. FLOAT DECIMAL: Because of the range of the exponent of floating
point data, scientific programmers find this data format useful for working
with very large or very small numbers. Identifiers whose letters begin
with anything other than I through N will default to FLOAT DECIMAL(6).
Floating-point data is not suitable for commercial programs where
dollars and cents accuracy is required.

4. FLOAT BINARY: There is no difference between the internal format
of FLOAT DECIMAL data and FLOAT BINARY data. The difference
exists externally for the convenience of the programmer in being able
to declare precision in terms of bits.

5. CHARACTER: Character-string data is padded with blanks on the
right if the assigned character constant is shorter than the declared length
of the character-string. If the character constant is longer than the
declared length of the character-string, then truncation to the right of
the data occurs. A string value is not extended with blanks when it is
assigned to a character-string variable that has the VARYING attribute.
In the full language level of PL/I, you may do arithmetic on data having
the character attribute (although it is not recommended). In this case,
the numeric characters are automatically converted to the coded arith
metic form FIXED DECIMAL.

6. BIT: Bit-string data is assigned from left to right in the field as is
character-string data. Thus, if a smaller bit-string is assigned to a larger
field, there is padding on the right with zeros. If a bit-string is larger than
the field to which it is being assigned, then the leftmost bits only (as
many as will fit) are assigned. Bit-strings are usually not used in calcula
tions. Instead, they may be used in a program to indicate whether or not
certain conditions exist (yes or no, 1 or 0, true or false).

7. LABEL: A statement-label variable is a programmer-defined identifier
which has been given the LAB EL attribute in a declare statement. A
statement-label variable may assume many values (i.e., "labels" of
PL/I statements) during the execution of a program.

94 PL/I Programming

Data Conversions: The rules for conversion are these :

1. If the base of the data items differs, DECIMAL is converted to BINARY.
2. If the scale of the data items differs, FIXED is converted to FLOAT.
3. If CHARACTER and BIT are specified, then BIT is converted to CHAR

ACTER.

Following is a summary of the data conversions allowed:

(
Arith- CHAR-

\

metica ACT ER Arith- BIT CHAR- BIT
to to metic to ACT ER to

CHAR- Arith- to Arith- to CHAR-
ACT ER metic BIT metic BIT ACTER

Subset
language No No Yesb Yesb No Yes

Full
language Yes Yes Yes Yes Yes Yes

"-
a Arithmetic refers to any coded arithmetic data item (FIXED, FLOAT, FIXED BINARY, etc.)

bThe maximum number of bits allowed is 31.

1. What does the = symbol mean in an arithmetic assignment statement?

2. In the PL/I statement below,

identify the following :
(a) Operation symbol(s)
(b) Expression(s)

Y=A+B/C;

(c) Arithmetic assignment statement(s)

3. What function (s) do parentheses serve in arithmetic expressions?

4. Indicate the order in which arithmetic operations will be performed in the
following expressions:
(a) A*X+ B*X (c) X**2/Y**2
(b) ((A*X)+B)*X (d) -Y*B

Writing Programs 95

5. (True or False) The null statement is executable.

6. Write the IF statement to set X = 1 if A= B and X = 2 if A---,= B.

7. Write the nested IF statements to set X to the following :

x = 1 X=2
A=B A=B
C=D C-----i = D

X=3
A---,= B
C1 = D

X=4
A---, =B
C=D

These are the conditions which
determine how X is to be set

8. What are the purposes of the END statement?

(To answer questions 9 through 12, you may need to reference Appendix D.)

9. Show how these values would be represented in bytes in the packed
decimal format (use decimal notation):

+ 123 + 45,045 - 9999 123.45

10. What is a PL/I term for packed data?

11 . What is the largest decimal number that may be specified using the packed
decimal data format on S/360 or S/370?

12. How many bytes does it take to represent 2,147,483,647 in fixed-point
binary? In packed decimal?

13. Which type of programmer, commercial or scientific, would be most

likely to use data in the floating-point format?

14. Select the values that could be assigned to the short-form floating-point
data format without losing precision of the value .

. 0000039 12,345,678. 1,000,000,000. 43.79

15. Where may DECLARE statements appear in your PL/I program?

16. What purpose(s) does the DECLARE statement serve?

17. Given that X and Y are DECIMAL FLOAT(6), must they be explicitly
declared in a PL/I program?

18. Which data type provides for fastest execution time on arithmetic opera
tions?
(a) FIXED DECIMAL (b) FIXED BINARY

19. Which takes more storage?
(a) DCL ALPHA FIXED(7) (b) DCL ALPHA FIXED(6)

20. Is one of these statements more efficient than the other?
(a) K=K+1; (b) K=K+1B;

21. Using the chart in Figure 2.4, what are the default attributes for the
following partially declared identifiers?
(a) DCL ALPHA; (f) DCL INPUT;
(b) DCL HENRY FIXED; (g) DCL COST FIXED(5,2);
(c) DCL LEAF FLOAT; (h) DCL PLUS FLOAT DECIMAL;
(d) DCL HELP _IN BINARY; (i) DCL MASON BINARY FIXED;
(e) DCL COUNT DECIMAL; U) DCL DIXON FLOAT(6);

22. Using the chart in Figure 2.8, indicate which of the following examples are

96 PL/I Programming

valid and which are invalid in the subset language. Also, which are invalid
in the full language?
(a) DCL GOOD FIXED(5);
(b) DCL SHIP FIXED(16);
(c) DCL LOLLIPOP FIXED BIN (31,2);
(d) DCL SHIRLEY FIXED BIN(32);
(e) DCL TEMPLE FLOAT(7,2);
(f) DCL BLACK CHARACTER(275);

23. What is the value that will be placed in each of the following identifiers?
(a) DCL A FIXED DECIMAL(5,2); A= 12345;
(b) DCL B FIXED BINARY; B =32769;
(c) DCL C FIXED DECIMAL; C=43.76;
(d) DCL D FIXED BINARY; D=3.6;
(e) DECLARE ANAME BIT(8) INIT ('11 'B);
(f) DECLARE BNAME BIT(3) INIT('11011 'B);
(g) DECLARE CNAME BIT(10) INIT('111 'B);

24. Given the following statements, to what point will the program transfer?

DECLARE T _POINT LABEL INIT(CONT);
GO TO LPOINT;

25. What happens when there is a transfer to the last physical END statement
in a main pr<?cedure?

26. What is the difference, internally, between FLOAT DECIMAL and FLOAT
BINARY?

27. What will SONG contain given the following DECLARE?

DECLARE SONG CHAR(12) INIT('MISSISSIPPI MUD');

28. How many bytes will the following bit-strings require?
(a) '11'B (c) '110000111'B
(b) '11111001'B (d) 'O'B

29. In the following mixed data type expressions, indicate the data conversion
that takes place:
(a) DCL A FIXED BINARY, B FIXED DECIMAL; A=A+ B;
(b) DCL A CHARACTER(3), B BIT(3); A= B;

30. Consider the following sequence of arithmetic assignment statements to
be executed in the order they are written. After each statement has been
executed, show the current values of the variables A, B, and C, assuming
each was originally zero.

A=5;
B=-A;
C=A/B -1;
C=C+1;
B=B*B+C;

A B c

Writing Programs 97

A=A**2-B;
B=B-C+A;
C= B*C;
B= B/2;
A=C/B+12;

A B

31. Match the following constants with their PL/I attributes:
(a) '011 OOO'B (1) FIXED DECIMAL(5,2)
(b) 01011101 B (2) FIXED BINARY(8)
(c) 01011101 (3) DECIMAL FLOAT(3)
(d) '5' (4) CHARACTER(5)
(e) 34.5E2 (5) BINARY FLOAT(5)
(f) 101.11 E3B (6) DECIMAL FIXED (8)
(g) 101.11 (7) CHARACTER(1)
(h) 101.118 (8) BINARY FIXED(5,2)
(i) 'ABCDE' (9) BIT(6)
U) 101.11E3 (10) DECIMAL FLOAT(5)

(11) BIT(8)

assignment symbol

base

bit-string operators

Boolean

byte

comparison operators

compile-time versus object-time

concatenation

counter

data aggregate

DO-group

exponent

expression

factored attributes

implicit versus explicit declaration

infix

(12) NO-MATCH

initialize

length attribute

loop

mixed expression

mode attribute

null ELSE

null string

packed data

partially declared attributes

precision

prefix

range versus precision

scale

statement-label variable

truncate

c

98 PL/I Programming

1. Drill on the DECLARE Statement

Problem Statement: Write a series of declarations for the constants listed in
the table given here. Print the values defined.

Purpose of the Problem: To gain practice in declaring various data types
available in PL/I as well as use of the INITIAL attribute and various PL/I
abbreviations (BIN,CHAR,DCL,DEF,INIT,PIC,PROC).

Input: There is no input from any device. Instead, declare identifiers to have
the necessary attributes for the constants listed in the table.

Process: Assign the constants given in the table (using the INITIAL attribute)
to the appropriate variable names you have selected (or you may use the names
#1, #2, #3, etc.).

/
Name Attribute Constant Comments

\

#1 CHARACTER Love's a Four Letter Word
#2 FIXED DECIMAL 1929
#3 BIT 0101010101010101 Specify a repetition

factor in writing
this constant

#4 FIXED DECIMAL - 19,402.13
#5 FIXED DECIMAL 000000212
#6 CHARACTER The Road Not Taken
#7 FLOAT BINARY 1011E+12B
#8 FIXED BINARY - 35000
#9 CHARACTER 436559005

#10
\..

FIXED BINARY 1111 B

NOTE: It is only possible to print (using PUT LIST) the decimal equivalent for the binary
constants in items #7 and #10 above. Can you determine the decimal equivalents of
these values?

Output: Print results using PUT LIST. A sample of the output is shown in
Figure 2.9.

2. Inventory Audit Report
Problem Statement: Write a program to read five data cards where each card
contains:

Part number (ITEM#)
Unit price (PRICE)
Quantity on hand (IOTY)

Writing Programs 99

LOVE'S A FOUR LETTER WORO
1929

•0101010101010101 1 a
-19402.13

212
THE ROAD NOT TAKEN

4 • .505600E+04
-35000

430559005
15

FIGURE 2.9 Sample
output from Problem 1.

Compute the extension (EXT) by multiplying PRICE*IOTY. For each data card
read, print a line using PUT LIST. Be sure to include the appropriate DECLARE
statements for the ITEM# (as a character-string), PRICE, IQTY, and EXT of
each variable.

Purpose of the Problem: To program a loop operation and perform arithmetic
calculations.

Card Input: Use the data below. Each punched value should be separated
by a blank in the input stream.

ITEM#
'1001'
'2104'
'4030'
'303"5'
'2200'

PRICE
20.00
07.30
01.05
17.50
01.45

IOTY
030
030
150
002
010

Printer Output: Start output on a new page in the format shown in Figure 2.10.

Flowchart: See Figure 2.11.

3. Salesmen's Total Sales and Commission Report

Problem Statement: Write a program to total the sales for each of four sales
men for each day of a one-week period. Accumulate total sales for each sales-

INV E N T 0 R Y A U D I T R E P 0 R T

PART NUMBER PRICE QUANTITY EXTENSION

1001 20.00 30 600.00
2104 7.30 30 219.00
4030 1. 05 150 157.50
3035 17.50 2 35.00
2200 1.45 .10 14.50

FIGURE 2.10 Sample output from Problem 2.

START

Declare
attributes

for
variables

ICTR=1

Compute
extension

Add "1"
to ICTR

END

FIGURE 2.11 Flowchart for Problem 2.

Writing Programs 101

man and compute a 10% commission. Print total sales and commission for
each salesman.

Purpose of the Problem: To practice programming a loop within a loop
(nested loops).

Card Input: See Figure 2.12.

100.25
200.15
15?.. 20
251.15

75.40
157.34
510.00
150.00

137.?0
2 57. 3 0
l 36. 25
263.52

263.20
236.05
435.06
2 55. 04

11q.45
45.80
50.45
87.60

FIGURE 2.12 Sample card data for
Problem 3.

Printer Output: If the suggested input values are used, output should be as
shown in Figure 2.13.

SALESMAN

l
2
3
ft

TOTAL SALES

755.80
896.64

1283. 96
1007.31

COMMISSION

75.58
89.66

128.39
mo. n

FIGURE 2.13 Sample output from Problem 3.

Flowchart: A program flowchart is provided in Figure 2.14.

4. Sort Three Values

Problem Statement: Write a PL/I program to read three values using GET
LIST. Sort (arrange) these values into ascending sequence and print them on
the line printer using the PUT LINE () LIST form of list-directed output.

Purpose of the Problem: To give you practice in using the IF statement and
the DO-group; also to cause you to think about how the contents of variables
may be exchanged (switched) in a program.

Card Input: It is suggested that you punch the values 4376, 752, 2040; one
data item per card. You can then rearrange your input cards and execute your
program two or three times in order to check out the logic in your program.

Printer Output: If the suggested input values are used, output should be as
shown in Figure 2.15.

Hint on Getting Started: Notice in Figure 2.15 that the three input values are
to be listed in a column starting with the second tab position (print position
25). This is easy to accomplish if, in your PUT LIST statement, you output a

START

SM= 1

D=O

T=O

T = T + S

D = D + 1

SM= SM+ 1

END

FIGURE 2.14 Flowchart for Problem 3: SM, salesman number;
D, day; S, day's sales; T, total sales; C, commission.

Writing Programs 1 OJ

ORDER OF INPUT VALUES 437&

752

2040

SORTEO VALUES ARE: 752

2040

4376

FIGURE 2.15 Sample output from
Problem 4.

character constant of a "blank" to the first tab position, for example:

PUT LIST('ORDER OF INPUT VALUES',K1);
PUT SKI P(2) LIST(' ',K2);
PUT SKI P(2) LIST(' ',K3);

'--------------+ Causes a blank to be output at
first tab position on printer

Flowchart: A program flowchart is given in Figure 2.16.

5. Using the Iterative Solution
An iterative solution, which might also be referred to as a "trial and error
approach, may be used in solving for an unknown quantity when there is no
simple algebraic method for solution. For example, the equation

X6 - X4 = 650

is to be solved for X. In solving for X that will be accurate to four decimal places,
the process will be time-consuming and subject to error. Thus, this is a perfect
exercise for the computer. In a computer solution, we begin by converting the
above equation to

xs - X4 - 650 = 0

and then start with a trial value of X and evaluate the function (X6 - X4 - 650).
If the value is negative, try a larger X. When this process produces a positive
value for the function, do the following:

1. Decrease the trial X to its previous (negative producing) valu~,
2. Reduce the increment to 1/10 its former size.
3. Start the evaluation-increment process again.

When a satisfactory number of decimal places have been computed, stop the
calculation and print the value of X. To produce four accurate decimal places,
five should be computed. Thus, stop the iterative process when a positive
result has been reached with the increment .00001. In calculating for various

START

Yes

Yes

Yes

END

Switch
Kl and

K2

Switch
Kl and

K3

Switch
K2 and

K3

FIGURE 2.16 Program flowchart for
Problem 4.

Writing Programs 105

trial values, the table given here shows the progression of data in the solution
of this problem. Most efficient use of the computer can be obtained by beginning
with a reasonable initial value of X. Each problem must be examined separately.

x x6 x4 x6- x4-650

1.000 OOE+ 00 1. OOOOOE+OO l.OOOOOE+OO -6.500COE+02
2 .000 COE+OO 6.40000E+Cl l.60000E+Ol -6.02000£+02
3 .000 COE+ 00 7 .29000E+02 8.lOOOOE+Ol -2 .OOOOOE+OO
4.00000E+OO 4. OCJ6CCE+C3 2.56000E+02 3.1 qoooH03
3 .100 OCE+ 00 8 .87502E+02 9.23520E+Ol l .45 l 50E+02
3.0lOOOE+OO 7. 43699E+C2 8.20852E+Ol 1. 16135[+0 l
3.00lOOE+OO 7.30455E+C2 8.ll076E+Ol -6.53076E-Ol
3.00200E+OO 7.Jl916E+02 8.l2l59E+Ol 6. 99463E-O 1
3.00llOE+OO 1. 30598E+ 02 8 • l l l 84 E + 0 l -5.20020E-Ol
3.00119E+OO 7. 30 744E+ 02 8 .11291 E+Ol -3. 85498E-01
3.00l 29E+OO 1. 30888E+02 8.lU98E+Ol -2.51953f:-01

In this case, a first approximation of X can be obtained as follows:

xs - X4 = X4 (X2 - 1) = 650
X4 (X + 1) (X - 1) = 650
X6 ~ 650
X ~ (650) 116 = 2.94 :. Start with X = 3

Input: The program generates data, so there is no input of data in this exercise.

Output: Sample output might read as follows:

THE VALUE OF 'X' IN THE EQUATION(X**6-X**4=650) IS NN.NNNN

where N is any decimal digit. (The answer is 3.00148.)

6. Table of Time and Distance Traveled

Problem Statement: An object dropped from a height travels the distance (d)
in feet (neglecting air resistance),

where

1
d = -at2

2

a = 32.174 (ft/sec 2 ; the gravitational constant)
t =time (sec)

Write a program that will generate a table of distances for times of 1 sec, 2 sec,
3 sec, etc., up to and including 100 sec.

Purpose of tne Problem: To program a loop operation as well as perform
arithmetic operations including exponentiation.

Input: There is no input data to this program.

106 PL/I Programming

Tl ME IN SECONDS
l
2
3
4
5
6
1
8
9

10
11
12
13
14

97
98
99

100

DISTANCE TRAVELED
l~

64
144
257
402
579
788

1029
1303
1608
1946
2316
2718
3153

151362
154499
157668
160869

FIGURE 2.17 Sample output for Problem 6.

Output: Suggested output format is shown in Figure 2.17.

7. Find the Roots of a Quadratic Equation

Problem Statement: Write a PL/I program to find the roots of the quadratic
equation of the general form

using the solution formula

ax2 +bx+ c = 0

-b ± Jb 2 - 4ac

2a

When the discriminant is negative, the roots are imaginary. In this case, the
program should branch around the computation of the roots and print only
a, b, and c and the message NO SOLUTION.

Purpose of the Problem: To note the necessity of providing for branching out
(in this case, unconditionally) from each segment of a program entered as an
alternative.

Input: Test this program using at least four sets of data. Suggested input:

A B c
- 23.12 00.0 274.2

3 2 4
1 6
2 2

Writing Programs 107

A VALUE B VALUE C VALUE ROOT I

-2.31200E+Ol 0. OOOOOE+ 00 2.74200E+02 -3.44381E+OO
3. 000 OOE+ 00 2.00000E+OO 4.00000E+OO NO SOLUTION
l. OOOOOE+OO -1.00000E+OO -6.00000E+OO 3.00000E+OO

-1.00000E+OO 2.00000E+OO -2.00000E+OO NO SOLUTION

FIGURE 2.18 Sample output for Problem 7.

Output: Sample output is illustrated in Figure 2.18.

8. Fihd the Greatest Common Divisor

ROOT2

3.44381E+OO

-2.00000E+OO

Problem Statement: Find the greatest common divisor of pairs of integers
(A and B) that are read from punched cards. The greatest common divisor (gcd)
is the largest integer that divides evenly into A and B. For example, 24 and 16
have common divisors of 2, 4, and 8; thus, the gcd is 8. (If the gcd is 1, the
numbers are said to be "relatively prime" or "prime to each other." For example,
15 and 22 have only the value 1 as a common divisor.)

Purpose of the Problem: To use the IF statement to test the relationship
-between values and to code a program iteration.

Input: Read any number of pairs of values and find the gcd. When a pair of
numbers are equal (e.g., 99, 99), terminate the program. Suggested input is

88 36 27 14 24 16 6 12 99 99

Processing: To find the gcd use the Euclidean algorithm given here: Let a
and b represent the pair of values in question. Divide a by b, obtaining a quotient
of q and a remainder of r1, which is less than band greater than or equal to
zero. Thus,

a= bq 1 + r1

When the remainder (r) is equal to zero, b is the gcd. If the remainder is not
equal to zero, consider

where

0<r2 <r1

Should r2 equal zero, r1 is the gcd. Continuing in this manner, we obtain:

r1=r2q3+r3
r2 = r3q4 + r4

rn-2 = rn-1 qn + rn

where 0 < r n < r n-1 and r n = 0. Thus, r n-1 is the gcd of a and b.
Example 1: Find the gcd of 88 and 36:

88 = 36(2) + 16

108 PL/I Programming

Because 16 < 36 and 16 +. 0, we shift left and proceed:

36 = 16(2) + 4

Because 4 +. 0, we again shift left and proceed:

16=4(4)+0 r2 =4(gcd)

Because 0 has been reached, 4 is the gcd of 88 and 36.
Example 2: Find the gcd of 27 and 14:

27 = 14(1) + 13
14 = 1 3(1) + 1
13=1(13)+0

13 + 0
1+0
r2 = 1 (gcd)

Thus~ 1 is the gcd; 27 and 14 are relatively prime.

Output: Sample output is illustrated in Figure 2.19.

Flowchart: See Figure 2.20.

GREATEST COMMON OIVISOR OF THE FOLLOWING VALUES IS
36 a 4

GREATEST COMMON DIVISOR OF THE FOLLOWING VALUES IS
27 14

GREATEST COMMON DIVISOR Of THE FOLLOWING VALUES IS
24 16 8

GREATEST COMMON DIVISOR OF THE FOLLOWING VALUES lS
12 6 b

FIGURE 2.19 Sample output for Problem 8.

START

Find
quotient (0)

and
remainder (R)

END

Switch
A and B

A=B
B = R

FIGURE 2.20 Suggested flowchart for Problem 8.

l!hapf@t ~

Fil@ O@l!larafion~,

and Pil!futM

At the beginning of this book, you were introduced to PL/I program
ming through the problem of finding the grade-point average for five
examination marks. Here is that first program:

AVER: PROCEDURE OPTIONS(MAIN);
GET LIST(A,B,C,D,E);
MEAN= (A+ B+C+ D+ E)/5;
PUT LIST('AVERAGE IS', MEAN);
END;

Seldom would a program be written just to process one set of data as
the above program does. Rather, a number of sets of values would be
read and processed. Thus, a program loop would be constructed so as
to process multiple sets of input data. Now, the question is-just how
many sets of data are there? Typically, it is not known how many
records (punched cards, in this case) there are to be processed each
time a program is executed. For example, is the grade-point average
program to calculate the mean score for 20 students? 30 students?
50 students? Because it is desirable to code a generalized program
that could handle any number of students, there must be a way of
determining when there are no more input data records. In IBM
operating systems, the end of a card data deck is indicated by the
following job control statement:

1 2 3 4 5 80~ .-----------.\
I ' . I

When the /* card is read by the system input routines, an end-of-file
condition is raised signifying that no more GET statements to that file
may be executed. One of two possible courses of action may now
be taken:

112

File Declarations, Conditions, and Pictures 11 J

1 . System action: The system immediately terminates the job
with an abnormal ending error message unless this is over
ridden by programmer-defined action.

2. Programmer-defined action: The PL/I programmer may specify
the action to be taken when the end-of-file condition is de
tected. This is done with the statement

ON ENDFILE(CARDIN) GO TO PRINT_ TOTALS;
'-------v-----'

l A label of a statement in
the program at the begin
ning of an end-of-job
routine

"-----------+ File name specified in a
DECLARE statement and
used in one or more
statements

,____ _________ --7 PL/I keywords specifying

the ON statement and the
ENDFILE condition

The ON statement need be executed only once in your program
(unless program logic dictates otherwise), for once you have specified
what action is to be taken when the end-of-file is detected, that
information is "remembered." Special symbols other than /* are used
to mark the end of a tape or disk file; thus, all files have a method for
marking the physical end-of-file. The end-of-file condition is detected
when you attempt to read the end-of-file marker. As illustrated above,
the ON ENDFILE statement must contain the name of the file for which
an end-of-file condition is to be tested and action taken.

A PL/I file is represented in the program by a file name which is
declared to have the FILE attribute. For example:

DECLARE CARDIN FILE ...

It is through the use of this name that we will access or create the data
records which are stored on an external device such as cards, disk,
or magnetic tape. The collection of records which we will think of as
a file is called a data set. We must describe for PL/I the exact nature
of the data set that we are to access through our file name. For example,
we must specify the direction of data transmission (e.g., INPUT or
OUTPUT); and we must specify the form of the records contained in

114 PL/I Programming

the data set (are they all the same size? do their lengths vary?), the
length of the records in the data set (How many bytes long are they?),
and the location of the data set (is it on tape or disk? or, is it a card
or printer data set?). Let us look at an example of a file declaration:

DCL CARDIN FILE INPUT STREAM ENVIRONMENT{F(80));

This declaration describes a file, to be called CARDIN in this program,
whose data transmission direction is IN PUT, and whose records shall
be accessed only by the stream input keyword GET. In this case, the
file specifications are being made in the DECLARE statement. In some
operating systems (such as OS), however, many of the file attributes
may be specified in job control statements and need not be specified
in your program. Another place where file attributes may be specified
is in the OPEN statement. For example:

OPEN FILE(CARDIN)INPUT;

Before out PL/I program can communicate with a data set, that file
must be opened. {With stream 1/0, and record 1/0 in the full language,
the opening of files is automatic; therefore, it would not be necessary
for you to include the OPEN statement in your program.) The open
ing of files is necessary because it is at that time that device readiness
is checked {e.g., is the power on and is the device in a ready state?)
and all attributes for the file are merged. In other words, some at
tributes may be specified in job control statements, others {but not
the same ones) may be in the DECLARE statement, and still other
attributes may be in the OPEN statement. It is at open time that at
tributes from these three sources are combined to form the description
of the data set out program is going to communicate with.

The method in which you specify file attributes depends upon
which implementation of PL/I you are using. In PL/I F and OS PL/I
optimizing compile.rs, most of the information can be specified in
job control statements. However, in PL/I D, and DOS PL/I optimiz
ing compilers, the information is required in the DECLARE state
ment. The OS compilers recognize the various specifications unique
to DOS PL/I compilers and issue a warning message that certain
specifications are being ignored. This ensures a high degree of upward
compatibility between compilers. In previous chapters, differences
have been cited between the subset and full language implementations:

Subset Full
PL/I D DOS PL/I Optimizing Compiler

PL/I F
OS PL/I Optimizing Compiler

File Declarations, Conditions, and Pictures 115

However, the specifications that would appear in the ENVIRONMENT
attribute are related to the operating system, not the language imple
mentation. The operating systems and some of the compilers that are
provided are

DOS
PL/I D PL/I F

OS

DOS PL/I Optimizing
Compiler

OS PL/I Optimizing Compiler
OS Checkout Compiler

Let us look below at an example of a declaration of a file which will
be used to access card records from the IBM 2540 Card Reader.
Notice that the ENVIRONMENT attribute's options are placed in
parentheses following the keyword ENV (ENV is the abbreviation for
ENVIRONMENT). Also, the options are to be separated from each
other by a blank or other delimiter. The parentheses are delimiters,
so the following example does not need a blank between the F(80)
OJJtion and the MED I UM option.

Here is an example of a declaration for a data set associated with
a line printer:

DCL PRINTR FILE STREAM OUTPUT ENV(F(132)MEDIUM
(SYSLST, 1401));

Most of the keywords in a file declaration may appear in any sequence.
Comparing the PRINTR file declaration with CARDIN, you will see
that the sequence of keywords has been altered (INPUT STREAM
versus STREAM OUTPUT). Following are some points to keep in mind
when declaring files under a specific operating system, using a particu
lar PL/I implementation.

1. The MEDIUM option: For PL/I D and DOS optimizing com
pilers, this option must be specified. The MEDIUM option is
used to specify a symbolic device name and the type of device
on which the data set is stored or through which we will access
the data. Within parentheses following the keyword MEDIUM,
specify SYSI PT for card input and SYSLST for line printer
output as the symbolic device name. The physical device
numbers you specify are dependent upon the type of devices
attached to the computer on which your PL/I program is to be
run. Some of the more commonly used I BM devices are

Card read/punch : 2540, 1442
Card readers : 2520, 2501
Line printers: 1403, 1443

116 PL/I Programming

DCL CARDIN FILE INPUT STREAM ENV(F(80)MEDIUM(SYSIPT,2540));

L Specifies the
physical device on
which the data
resides; in this
case, the IBM
2540 Card Read/
Punch

Stands for System Input;
this is a symbolic unit
name which is needed by
some operating systems

This keyword indicates that follow
ing in parentheses will be infor
mation describing the physical
device with which the data set is
to be associated

The record type and length option of the
ENV attribute in this case specifies that
records are fixed length (F) and all of them
are 80 bytest

The abbreviation of the ENVIRONMENT keyword
-the options follow this keyword and are en
closed in parentheses; notice that the options
within the ENV attribute are separated by at least
one blank unless another delimiter is present; for
example, there need not be a blank between the
F(80) and the word MEDIUM because the right
parenthesis serves as a delimiter

The STREAM attribute specifies that this is a file whose
records will be accessed with stream 1/0 statements
(GET and PUT}

The INPUT attribute indicates that only GET statements may be
issued to this file; a PUT would be illegal

The FILE attribute specifies that CARDIN is a file name

A programmer-defined file name; it may be from 1 to 6 characters long for the
subset language and 1 to 7 characters for the full language PL/I implementation

tThe optimizing compilers use the option F BLKSIZE(80) instead of F(80). At the time of
publication of this book, either F(80) or F BLKSIZE(80) could be specified for the full
language implementations.

File Declarations, Conditions, and Pictures 117

2. The record form and record size option: The Fin the ENVIRON
M ENT section of the file declaration specifies the record type as
being fixed length. For card input, the record type is always
fixed and must always be 80 bytes long [e.g., F(80) or F
BLKSIZE(80)]. For line printer output, the record type can be
variable (V instead of F). However, for purposes of simplicity,
we will limit our discussion in this chapter to fixed-length
record types. The record length of a printer data set-that is,
the number of printed positions on a line-may be any value
as long as that value does not exceed the maximum number of
print positions for the line printer that you are using. Typically,
a line printer is either 120, 132, 144, or 150 print positions wide.
Thus, F(132) might be the specification you would write in the
ENVIRONMENT section of the file declaration statement.

The list-directed input statement where a file name is explicitly
specified takes this general form:

GET FILE(file name)LIST(data names);

Using the previous DECLARE statement forthe CARDIN file, we could
specify the following :

Data names

• File name, which must be in
parentheses

) Keyword added to the GET
statement when a file name
is to be specified

Here is an example of a list-directed file declaration and output
statement for a line printer that has 120 print positions:

DCL PRINTR FILE OUTPUT STREAM PRINT ENV(F(121)
MEDIUM (SYSLST,1403));

PUT PAGE FILE(PRINTR}LIST(A,B,C,D);

The PRINT attribute is added to the file declaration statement for
stream files associated with a line printer so that the carriage control
options such as PAGE and LINE may be specified in the PUT statement.
(The PRINT attribute applies only to files with the STREAM and OUT
PUT attributes.) It indicates that the file is eventually to be printed-

118 PL/I Programming

that is, the data associated with the file is to appear on printed pages,
although it may first be written on some other medium. The PRINT
attribute causes the initial byte of each record of the associated data
set to be reserved for a printer control character. The printer control
character is initialized through the use of such keywords as PAGE,
SKIP, or LINE in your PUT statement. It was indicated that the line
printer referenced in the above example has 120 print positions.
Notice that the record size was specified as F(121)-one greater than
the number of actual printing positions on a line. The extra position
had to be added to. the record size to provide the initial position
necessary to contain the printer control character.

The following is an example of the DECLARE and PUT statements
for operating on a STREAM 1/0 file having the PRINT attribute:

DCL PRINTR FILE OUTPUT STREAM PRINT ENV(F(133)
MEDIUM(SYSLST,1403));

DCL AR EA CHAR (133) ;
PUT FILE(PRINTR) PAGE LIST(AREA);

Without the PRINT attribute, we have the following DECLARE and
PUT:

DCL PRINTR FILE OUTPUT STREAM ENV(F(132)
MEDIUM(SYSLST,1403));

DCL AREA CHAR(130);
PUT FILE(PRINTR) LIST(AREA);

Notice that the record size-F(132)-is one less than that in the first
example, because the first position of the output area will not be used
for a carriage control character. Quote marks are supplied around
character-strings outputto non-print files. AREA (130 characters long)
and two single quote marks add up to a record length of 132. This
means there will be a space of one line before print.

Stream files without the PRINT attribute may output to a printer
immediately. Immediately, in this context, means from main storage
to the printer. However, on medium- to large-scale systems, it is both
possible and frequently desirable to output print data to an external
storage device such as tape or disk. The data would be kept there
for subsequent printing. When this is the case, it is necessary to precede
each print record with the appropriate carriage control character
(hence, PRINT must be specified) so that the program dumpingt
these records to the printer at a later. time will know how to control

, tUsually means the writing of data from one storage medium to another.

File Declarations, Conditions, and Pictures 119

the carriage. The dump program need not be written in PL/I. In fact,
there are standard utility programst (typically supplied by the computer
manufacturer) to print these records. These utility programs usually
require that the first position of each print record contain a carriage
control character.

Returning to the grade-point average program, let us look at the
PL/I statements (including a file declaration) that accomplish the
input and processing of an undetermined number of students' grades.
The output will consist of printing each student's name and his grade
point average.

AVER: PROCEDURE OPTIONS(MAIN);
DCL NAME CHAR(20);
DCL CARD FILE INPUT STREAM ENV(F(80)MEDIUM

(SYSIPT,2501)) ;
ON ENDFILE(CARD) GO TO EOJ;

LOOP: GET FILE(CARD)LIST(NAME,A,B,C,D,E);
MEAN= (A+ B+C+D+E}/5;
PUT SKIP(2)LIST(NAME,MEAN);
GO TO LOOP;

EOJ: END;

When file names are omitted from a GET or PUT, two file names
are assumed : SYS IN for the standard input file and SYS PR I NT for the
output file. Thus, the statements

are equivalent to

GET LIST{A,B,C);
PUT LIST{A,B,C);

GET FILE(SYSIN)LIST{A,B,C);
PUT FILE(SYSPRINT)LIST(A,B,C);

These files need not be declared, as a standard set of attributes is
applied automatically. (Note: the EXTERNAL attribute is explained
later.) In addition to these attributes, the following options are default
for the SYS PRINT file:

LINESIZE = 120 print positions
PAGESIZE = 60 lines per page

Fhe name given to programs that facilitate (among other things) data transfer between 1/0
devices; for example, card-to-tape, card-to-printer, tape-to-tape, tape-to-disk, tape-to
printer, disk-to-printer.

120 PL/I Programming

/ \
SYSIN SYS PRINT

Subset STREAM, IN PUT, STREAM, OUTPUT,
language EXTERNAL, F(80) PRINT, EXTERNAL, F(121)

Full STREAM, INPUT STREAM, OUTPUT,

'-
language EXTERNAL, F(80) PRINT, EXTERNAL, V(129)a

av stands for variable-length record as contrasted with F for fixed-length record. With
V-type records, each record size may vary in length; however, no record may be larger
than 120 print positions.

In the subset language implementatic;>ns, you may not use the file
names SYSIN and SYSPRINT unless they are explicitly declared as
files. For example:

DCL SYSIN FILE INPUT STREAM ENV(F(80)MEDIUM
(SYSI PT,2540));

Actually, SYSPRINT could not be used for a file name, because it is
longer than six characters-the maximum allowed in the subset
language.

f
Methods for referencing the standard
default files SYSIN and SYSPRINT

Subset language GET LIST(...) ; PUT LIST(...) ;

Full language GET FILE(SYSIN) LIST(...) ;
PUT FILE(SYSPRINT) LIST{ ...) ;

'-
In the full language, these two standard file names and their

attributes do not have to be explicitly declared. Although there is really
no advantage to coding

GET FILE(SYSIN)LIST(A,B,C);

instead of

GET LIST(A,B,C);

File Declarations, Conditions, and Pictures 121

there is an advantage in being able to reference the SYSIN file in the
END FILE statement. For example:

ON ENDFILE(SYSIN) GO TO WRAP _UP;

Thus, we may take program-specified action to the end-of-file condition
without having to explicitly declare the SYSIN file. This flexibility is
not provided in the subset language.

During the execution of a PL/I program, there are a number of conditions
that could arise. A condition is an occurrence, within a PL/I program,
that could cause a program interrupt. It may be the detection of an
unexpected error or of an occurrence that is expected, but at an un
predictable time. There are a number of conditions that may occur
during input or output operations. Some of these include:

EN DFI LE A condition indicating that the end of a given file has
been reached

ENDPAGE A condition indicating that the end of a page of
printed output has been completed

TRANSMIT A condition indicating that an input or output device
did not transmit data correctly

RECORD A condition indicating that the size of a record in a
given file does not match the record size declared in
the PL/I program

In addition to conditions related to 1/0 operations, there are conditions
that may occur during arithmetic operations-for example, overflow,
which indicates that a value has exceeded the maximum precision
allowed by the computer hardware.

The ON Statement

The ON statement is used to specify action to be taken when any
subsequent occurrence of a specified condition causes a program
interrupt. ON statements may specify particular action for any of a

122 PL/I Programming

number of different conditions. The ON statement takes the form

ON condition on-unit;

....._ ___ A single statement or block
of statements that specifies
action to be taken when that
condition arises

.....__ _______ ---+Also referred to as an "on-
condition"

For example:

ON ENDFILE(DETAIL) GO TO NEXT_ MASTER;

This statement specifies that when an interrupt occurs as the result of
trying to read beyond the end of the file named DETAIL, control is to
be transferred to the statement labeled NEXT _MASTER.

When execution of an on-unit is successfully completed, control
will normally return to the point of the interrupt or to a point immediately
following it, depending upon the condition that caused the interrupt.

For all of the conditions, a standard system action exists as a part
of PL/I, and if no ON statement is in force at the time an interrupt
occurs, the standard system action will take place. For most conditions,
the standard system action is to print a message and terminate execution.

There are a number of conditions that may be raised during 1/0
operations. These include:

ENDFILE(file name)
ENDPAGE(file name)
RECORD(file name)
TRAN SM IT(file name)
CONVERSION
SIZE

In addition to conditions related to 1/0 operations, there are some
conditions that may be raised during arithmetic operations. These
include:

CONVERSION
FIXEDOVERFLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE
SIZE

If you compare the names in the above list with the conditions that

File Declarations, Conditions, and Pictures 123

may occur during 1/0 operations, you will see that CONVERSION
and SIZE are common to both lists. Following are descriptions of the
arithmetic conditions and one of the 1/0 conditions. Discussion of
the other 1/0 conditions will be deferred until later.

1/0 Conditions

The ENDFILE Condition. The ENDFILE condition can be raised
during a GET or READ operation; it is caused by an attempt to read the
end-of-file delimiter of the file named in the GET or READ statement.
After END Fl LE has been raised, no further G ETs or R EADs should be
executed for the file. One form of the ON statement for this condition is

ON ENDFILE(CARDIN)GO TO END_RT;

Another form of this statement is

ON ENDFILE(CARDIN) BEGIN;

lND;}
Any block of coding
may appear here

The begin block is described in detail later. It is being introduced here
because it may be used in the full language. The begin block as shown
above starts with the word BEGIN and ends with the word END (as
does a DO-group). This block of coding is similar to a subroutine.
One of the characteristics of a subroutine is that it has a universal entry
and exit facility; that is, the subroutine may be entered from any point
in another program (or the same program) and exited by returning
control to the instruction following the one which called the sub
routine.

In the above example, the begin block will be entered when the
ENDFILE condition is detected for the CARDIN file. When the END
statement is encountered, there is an automatic return to the statement
following the READ or GET that caused the ENDFILE condition to be
raised. Following is an example of a complete begin block:

ON END FILE (SYSIN) BEGIN;
TOTAL=TOTAL+ DETAIL;
PUT SKIP(3)LIST(TOTAL);
PUT PAGE LIST('NUMBER OF

CUSTOMERS PROCESSED',COUNT);
GO TO WRAP_UP;
END;

124 PL/I Programming

f \
Begin blocks

allowed following Allowable PL/I statements
an on-unit following an on-unit

Subset No GO TO statement
language Null statement

Full Yes GO TO, Null, GET/PUT,
READ/WRITE, or a

language begin block

Arithmetic Conditions

The CONVERSION Condition. The CONVERSION condition
occurs whenever a conversion is attempted on character-string data
containing characters which are invalid for the conversion being
performed. This attempted conversion may be made internally or
during a stream input operation.

Here is an example of when tha CONVERSION condition would
be raised during an internal operation:

DCL X BIT(4);
DCL Y CHAR(4) INIT('1 OAB');
X= Y; /* CONVERSION CONDITION RAISED */

In the above example, the CONVERSION condition is raised because
the character-string in Y contains a character other than a 0 or 1.

All conversions of character-string data are carried out character
by-character in a left-to-right sequence, and the condition occurs
for the first illegal character. When such a character is encountered,
an interrupt occurs (provided, of course, that CONVERSION has not
been disabled), and the current action specification for the condition
is executed. When CONVERSION occurs, the contents of the entire
result field are undefined.

The FIXEDOVERFLOW Condition. The FIXEDOVERFLOW con
dition occurs when the precision of the result of a fixed-point arith
metic operation exceeds N digits. For S/360 and S/370 implementa
tions, N is 15 for decimal fixed-point values and 31 for binary fixed
point values.

File Declarations, Conditions, and Pictures 125

DCL (A,B,C) FIXED DECIMAL(15);
A= 40000000;
B = 80000000 ;
C=A*B; /* FIXEDOVERFLOW CONDITION BECAUSE RESULT

WILL BE LARGER THAN 15 DIGITS */

The OVERFLOW Condition. The OVERFLOW condition occurs
when the magnitude of a floating-point number exceeds the permitted
maximum. (For S/360 and S/370 implementations, the magnitude of a
floating-point number or intermediate result must not be greater than
approximately 1075 or 2252 . Compare this with UNDERFLOW.)

A=55E71;
B=23E11;
C=A*B; /* OVERFLOW CONDITION BECAUSE RESULTING

EXPONENT IS GREATER THAN 107 5 */

The UNDERFLOW Condition. The UNDERFLOW condition occurs
when the magnitude of a floating-point number is smaller than the
permitted minimum. (For S/360 and S/370 implementations, the
magnitude of a floating-point value may not be less than approximately
10-18 or 2-260.)

A=23E-71;
B=3E-9;
C=A*B; /* UNDERFLOW CONDITION BECAUSE RESULTING

EXPONENT IS LESS THAN 10-7 8 */

The ZERODIVIDE Condition. The ZERODIVIDE condition occurs
when an attempt is made to divide by zero. This condition is raised for
both fixed-point and floating-point division.

A=15;
B=O;
C=A/B; /* ZERODIVIDE CONDITION */

The SIZE Condition. The SIZE condition occurs when high-order
(i.e., leftmost) nonzero binary or decimal digits (also known as signifi
cant digits) are lost in an assignment operation (i.e., assignment to a
variable or to an intermediate result) or in an input/output operation.
This loss may result from a conversion involving different data types,
bases, scales, or precisions. The SIZE condition differs from the
FIXEDOVERFLOW condition in an important sense. We noted that
FIXEDOVERFLOW occurs when the length of a calculated fixed-point

126 PL/I Programming

value exceeds the maximum prec1s1on allowed. The SIZE condition,
however, occurs when the value being assigned to a data item exceeds
the declared (or default) size of the data item. The SIZE condition can
occur on the assignment of a value regardless of whether or not the
FIXEDOVERFLOW condition arose in the calculation of that value.
The SIZE condition may also occur during stream input for the same
reason.

The declared size is not necessarily the actual precision with
which the item is held in storage; however, the limit for SIZE is the
declared or default size, not the actual size in storage. For example, a
fixed binary item of precision (20) will occupy a full word in storage,
but SIZE is raised if a value whose size exceeds FIXED BINARY(20)·
is assigned to it.

Standard System Action

In the absence of your program specifying an action to be taken
when conditions are detected, a standard system action will take place.
For most conditions, the standard system action is to print a message
and then raise the ERROR condition. The ERROR condition is raised
as a result of the standard system action for any other on-unit. Unless
otherwise specified, when the ERROR condition is raised, the system
action is to terminate the PL/I program and return control to the operat
ing system.

Condition Prefixes

Some conditions are always enabled unless explicity disabled.
When a condition is enabled, it means that, if the condition occurs,
either programmer-defined action or system action will take place.
Thus, when conditions are disabled, errors may go undetected. The
1/0 conditions are always enabled and may not be disabled. The
following computational conditions are enabled unless the programmer
specifies that they should be disabled:

CONVERSION
FIXEDOVER FLOW
OVERFLOW
UNDERFLOW
ZERODIVIDE

The SIZE condition, conversely, is disabled unless enabled by the
programmer.

File Declarations, Conditions, and Pictures 127

Conditions are enabled or disabled through a condition prefix
which is the name of one or more conditions separated by commas,
enclosed in parentheses, and prefixed to a statement by a colon.
The word NO preceding the condition name indicates that the con
dition is to be disabled. For example:

(NOFIXEDOVERFLOW): CALC: SUM=A+B+C;

I

Label attached to this assign-
ment statement

'------------~i FIXEDOVERFLOW condition
is disabled during the execu
tion of this statement

Notice how the condition name precedes the statement's label. Of
course, the label is optional. If it is desired to disable or enable a con
dition for the entire execution of a procedure, specify the condition
prefix on a PROCEDURE statement. For example:

(SIZE,NOFIXEDOVERFLOW): PROG1 : PROC OPTIONS(MAIN};

In the above example, the SIZE condition is enabled and the FIXED
OVERFLOW condition is disabled during the execution of the procedure
labeled PROG1. Continuing with this example, assume it is later
desired to disable the SIZE condition during the execution of a single
statement. The following could be coded:

(NOSIZE): Y=A*B/C;

Even though some conditions may never be disabled, it does not
mean that some action must take place for those conditions. It is
possible to specify a null action for conditions that cannot be disabled.
For example, the ENDPAGE condition is raised when the maximum
number of specified lines has been printed on a page. Recall that the
ENDPAGE condition may not be disabled. However, in some cases,
it may be desired to continue printing beyond the end of a page because
the printer paper is a continuous form. The following null form of this
statement could be specified in your program:

ON END PAGE (SYSPRINT};

The null form of the ON statement simply indicates "no action should
be taken for this on-unit." A null action may be specified for any of the
exceptional conditions except CONVERSION, ENDFILE, and KEY.
(The KEY condition will be covered in Chapter 10.)

128 PL/I Programming

The SIGNAL Statement

The programmer can simulate the occurrence of a condition
through the use of the SIGNAL statement. Execution of the SIGNAL
statement has the same effect as if the condition had actually occurred.
If the signaled condition is not enabled, the SIGNAL statement is
treated as a null statement. One of the uses of this statement is in
program checkout to test the action of an on-unit and to determine that
the correct program action is associated with the condition. The general
form is

SIGNAL condition;

..____ ___ Any condition name may appear here

In programming, we are often concerned not only with the value that
data variables may have but also with the way data looks. As an ex
ample, let us consider a payroll program that computes earnings and
prints a payroll check for each employee of a firm. In such a program,
we would probably have a variable named NET_ PAY into which we
would place the amount each employee earned after all taxes and
deductions were subtracted. NET_ PAY would contain the amount for
which the payroll check should be written. In a PL/I program, we might
declare the variable to have the attributes FIXED DECIMAL(7,2).
From a discussion of S/360 and S/370 data formats in Appendix D,
we know that this is stored internally as packed decimal data, two
digits per byte. A NET_ PAY value of $1032.75 would appear in storage
as

10110312715+1

This form is readily acceptable to the computer for computation. How
ever, it is not acceptable to the printer, because the printer prints one
character per byte, whereas we have two digits per byte in our field
named NET _PAY. Another objection that might be raised is that no
real decimal point appears in the data, and we know that the stock
holders of the firm would object if we printed the payroll checks with no
decimal point in the amount field. (Employees would probably not
complain.) The bank on which we write the payroll check probably

File Declarations, Conditions, and Pictures 129

would like the dollar amount of each check to be written in a specific
form and would not be willing to cash a check that looked like this:

Pay to the order of

1st Big Bank
Anytown, USA

XYZ COMPANY

JOHN JONES 0103275+

The bank would prefer to have the amount of the check printed with a
decimal point in the proper location, separating the dollars from the
cents, suppressing the printing of the leading zero, as well as supplying
a dollar sign and commas.

So, we have a number of problems to solve in transferring the
NET _PAY that we have computed into a form which is acceptable to
the printer, the stockholders, the employees, and the bank. To solve
our problems, we use the PICTURE attribute. The PICTURE attribute
provides, as its name implies, a picture of the form we want the data
in the variable with the PICTURE attribute to assume. At the same time,
we do not want to invalidate the value of the data to be stored there.
To illustrate what is meant by invalidation, recall from the example
above that when each digit of our packed decimal field was converted
into a character for printing, we produced a check written for the
amount 0103275 +. By doing this, we changed the value of the number
from 1032.75 to 1 03275. We still want to be able to treat such a variable
as an arithmetic quantity preserving the correct value. In the payroll
NET_ PAY problem, we would declare a new variable with the PICTURE
attribute. For example:

DCL NET _PAY _PRINT PICTURE '$ZZ,ZZZV.ZZ';

The picture of NET_PAY _PRINT is provided in the PICTURE
attribute. The picture is made up of characters which have special
meaning when they appear between the apostrophes following the
keyword PICTURE. In the example above, the Z's indicate that we
want a decimal digit (0-9) to appear in each position that a Z appears.
If, however, that digit is a leading or nonsignificant zero, we want a
blank to appear in the value of the variable. This action is called zero
suppression; hence, the character Z is a means of specifying that
action. The dollar sign, comma, and decrmal point in our example are

130 PL/I Programming

called insertion characters. With them we specify that we want to
insert those characters into the value of our variable. The V character
in our picture is used to specify the position of the implied decimal point.
Our picture shows a total of seven Z's (each representing a digit), five of
them to the left of the implied decimal point (V) and two of them to the
right. (Do you recognize a precision of (7 ,2) ?)

We would use the variable NET_PAY_PRINT in the printing of
the value of each payroll check. But, before we can do this, we must
place the value of NET _PAY into the pictured variable NET _PAY_
PRINT. To accomplish this, we would use the assignment statement

NET _PAY _PRINT= NET _PAY;

This statement tells the compiler to generate object program instruc
tions and to place the value of NET _PAY (a packed decimal field)
into the variable NET _PAY _PRINT, and when doing so to make the
value look like the picture which is described in the PICTURE attribute
of NET_PAY_PRINT. After such an assignment, the value of NET_
PAY _PRINT in main storage would be the following:

7 5

This corresponds to our picture:

$ z z z z z v z z

Notice that the V, which specifies where decimal alignment is to be
performed, does not occupy a byte location, but merely serves to
logically point out the separation of the fractional part of the value
from the integer part. The decimal point does not cause alignment in a
picture.

With the PICTURE attribute, we have solved the problems that
were facing us. We have maintained the value of NET _PAY, but have
represented that value in a form which is readily acceptable to the
printer and to those people concerned with the check being printed.

This example illustrates a few of the many characters which can
be used to specify the picture form we want our data to assume. In the
following pages, many more picture specification characters, as the Z,
comma, dollar sign, etc. are called, will be described and their uses
explained. The example shows one use of the PICTURE attribute:
to edit output data into a form acceptable for printing. There are a
number of reasons for using PICTURE data:

File Declarations, Conditions, and Pictures 1J1

1. To edit data.
2. To validate data.
3. To treat arithmetic quantities as character-strings.
4. To treat character-strings as arithmetic quantities.

The general form of the PICTURE attribute specification follows:

PICTURE 'picture specification characters'

......_ ____ A string of the special characters

(enclosed in apostrophes) which
describes the way we want the
data to appear

.__-----------The keyword PICTURE, which
can be abbreviated PIC

There are two types of PICTURE attributes covered in this text: decimal
picturest and character-string pictures.

The decimal picture specifies the form that an arithmetic value is to
assume. It allows character insertion (e.g., the decimal point and comma
in the example above), zero suppression (Z picture character), decimal
point alignment (indicated by a V which stands for virtual point
picture character), and signs (+, - , and the commercial debit and
credit symbols-DB and CR). The decimal picture causes the data to
be stored internally in character form-each digit, insertion character,
and sign occupies one byte. Even though it has the appearance of a
character-string, the data item declared with the PICTURE attribute
retains the attributes necessary to qualify it as an arithmetic quantity;
i.e., base, scale, and precision. The base and scale are implicitly
DECIMAL and FIXED, respectively. (We never declare a variable to
have both the PICTURE attribute and either DECIMAL and/or FIXED.)
The precision is determined by the number of 9's and Z's in the picture
and the location of the V picture character.

t In some PL/I manuals, you will see decimal picture referred to as numeric character
picture. The trend is toward the use of the preferred term, decimal picture.

132 PL/I Programming

Here are some examples of simple picture declarations:

DCL (A, B) PICTURE '99999V99';

Indicates position of d. ecimal
point alignment

9's indicate that any decimal
digit may appear here; the
precision of this variable is
(7, 2)

In the above example, both A and B will occupy seven bytes of storage.
The V or decimal alignment character does not require a byte of storage.
Another way in which the above statement could have been written is

DCL (A, B) PICTURE '(5)9V99' INIT (0);

I

Both A and B will be set
to 0

~------~) Repetition factor (must
be in parentheses inside
the apostrophes)
specifies that 5 picture
character 9's are to
replace the string (5)9 in
the picture

Decimal Picture Specification Characters

A number of characters may be used to describe numeric data in a
picture. The basic picture specification characters include:

9 Indicates any decimal digit
V Indicates the assumed location of a decimal point; it does not

specify an actual decimal point character in the character repre
sentation of the data item, thus, no additional main storage is
needed if a V appears in the picture; if no V is specified, then it is
assumed that the decimal point is to the right of the number; a
V may not appear more than once in a picture

S Indicates that the sign of the value (+ if > 0 and - if < 0) is to
appear in the character representation of the variable; the S
picture specification may appear to the left or right of all digit
positions in the picture

File Declarations, Conditions, and Pictures 133

+ Indicates that a plus sign (+) is to appear in the character
representation of the variable if the value is greater than or equal
to zero and that a blank is to appear if the value is less than zero

Indicates that a minus sign (-) is to appear in the character
representation of the variable if the value is less than 0 and
that a blank is to appear if the value is greater than or equal to
zero

The chart in Figure 3.1 shows some picture examples using the above
characters. Notice the numbers referring to comments. These comments
explain the corresponding example.

Comment 1. The decimal point alignment of the picture and its data
caused the two most significant digits of the constant to be truncated
as follows:

1999v199
I I

12345 00
I lj~----- Zeros are filled in

Comment 2. The picture specified here indicated a fractional number
only. Thus, when a whole number is assigned to a fractional number,
the whole number is lost, but the corresponding picture will be set to
zero.

Comment 3. In this example, realize that there is automatic decimal
point alignment of the V in the picture with the decimal point in the
constant:

19v91

1213. j5
I I

Comment 4. A negative constant was specified, but the picture did
not include provision for a sign. The minus sign was dropped, making
the value positive in main storage. Erroneously, only 9's were specified
in the picture-no "S" for sign or " - " for possible negative values.

Comment 5. These two examples correct the previous example's
problem-that of losing the negative sign.

Comment 6. When an S appears in the picture, a sign must precede
or follow the numeric value; it cannot be embedded in the numeric
value.

f
Coded arithmetic
form (conversion Input value

Number of occurs prior to placed in the
PICTURE bytes of main arithmetic corresponding Internal decimal Comment

specification storage used operation) picture picture result number

99999 5 FIXED(5) 12345 12345/\
99999V 5 FIXED(5) 12345 12345/\
999V99 5 FIXED(5,2) 123.45 123/\45
999V99 5 FIXED(5,2) 12345 345po 1
V99999 5 FIXED(5,5) 12345 /\00000 2
99999 5 FIXED(5) 123 00123/\
999V99 5 FIXED(5,2) 123 123po
9V9 2 FIXED(2,1) 123.45 3/\4 3
999V99 5 FIXED(5,2) -123.45 123f5 4
S999V99 6 FIXED(5,2) -123.45 -123f5 5
-999V99 6 FIXED(5,2) -123.45 -123f5 5
S999V99 6 FIXED(5,2) + 123.45 +123f5 6
999V99S 6 FIXED(5,2) -123.45 123f5- 6
+999V99 6 FIXED(5,2) + 123.45 + 12345 7

\.. /\

FIGURE 3.1 Examples of decimal pictures. (Note: In the fifth column, the A indicates that the assumed
decimal point is here. In the sixth column,_ the numbers given refer to numbered comments in the text.)

File Declarations, Conditions, and Pictures 135

Comment 7. Here, the value being placed in the picture may have a
+ sign or no sign.

Arithmetic Operations on Decimal Picture Data

When an arithmetic operation is specified for decimal picture data,
the data will automatically be converted to the coded arithmetic form
FIXED DECIMAL. For example, assume the program statements

DCL SUM PIC'9999', (A,B) PIC'999';
SUM=A+B;

are coded. To add A to B and assign the results to SUM, the following
steps are performed automatically:

1. Convert A from decimal picture to FIXED DECIMAL data format.
2. Convert B from decimal picture to FIXED DECIMAL data format.
3. Add A and B together.
4. Convert the results to numeric character form (PICTURE).
5. Place the results in the variable called SUM.

Editing Data for Printed Output

As we saw in the introduction to this chapter, we frequently have
the need to edit data in order to improve its readability. For example,
instead of printing the value

45326985.76

we might edit the data by inserting a dollar sign and commas so that the
output would look like this:

$45,326,985.76

There are a number of characters that may appear in pictures for the
purpose of editing data. The data declared with pictures that contain
these "editing" characters can be used in calculations, but it is very
inefficient to do so and it should be avoided. Editing characters are
actually stored internally in the specified positions of the data item.
The editing characters are considered to be part of the character-string
value but not part of the variable's arithmetic value.

Data items with the PICTURE attribute to be used as output
(i.e., to a printer or a punched card) usually receive their values via an
assignment statement. Values are normally developed during a pro
gram's execution using a coded arithmetic data type. When final results

136 PL/I Programming

are obtained, the values are assigned to pictured data variables for
pr,inting and/or punching. A wide variety of output editing is required
in many applications. To meet these requirements, a large number of
picture specification characters can be used to create the properly
edited fields for output. Let us discuss the functions of the more
commonly used editing characters.

The Z may be used to cause the suppression of leading zeros in the data
field, replacing the nonsignificant zeros with blanks. Figure 3.2 shows
some examples of how PICTURE with the Z character will cause zeros
to be suppressed (that is, replaced with blanks) in the character
representation of the data variable.

(PICTURE
specification

ZZZZ9
ZZZZ9
zzzzz
ZZZV99
zzzvzz
zzzvzz
ZZZV99
Z9999
ZZZVZ9

ZZ9ZZ

Value to be assigned Internal character
to variable representation

100 bb100
0 bbbbO
0 bbbbb

123 12300
1234 23400

.01 bbbb1
0 bbbOO
0 bOOOO

ILLEGAL PICTURE-if a Z appears to the right
of the V character, then all digits to the right
must be specified as Z

INVALID PICTURE-all Z characters must ap
pear to the left of all 9's

FIGURE 3.2 Pictures illustrating zero suppression.

If a value is to have leading blanks as well as a sign, then the "S"
PICTURE character may be used. For example:

DCL A PIC'SZZZ9';
'-v-'

I Any numeric digit

i Blanks or a numeric digit

Sign (+ or -)

File Declarations, Conditions, and Pictures 137

In the above example, a sign will always appear in the leftmost position
of the character-string representation.

The decimal point is an insertion character, meaning that the decimal
point will be inserted in the output field in the position where it appears
in the picture specification. For example:

DCL PRICE PIC'999V.99' INIT(12.34) ;
PUT LIST(PRICE) ; /* 012.34 IS OUTPUT*/

Note that if the PICTURE is specified without the decimal point, the
output will appear as follows:

DCL UNIT _COST PIC'999V99' INIT(12.34) ;
PUT LIST(UNIT_COST); /* 01234 IS OUTPUT*/

Do not think of the decimal point as causing alignment; only the V
accomplishes this function. Consider the following :

DCL VALUE PIC'999.99' INIT(12.34) ;
PUT LIST(VALUE); /* 000.12 IS OUTPUT*/

Because the V accomplishes the function of alignment and the decimal
point the function of inserting a physical indication of this alignment,
we normally specify the V and the decimal point in adjacent positions
in our picture specification.

In the above example, no V is specified, thus the implied decimal
point is to the right of the number. When the constant 12.34 is aligned
with the implied V, we have this undesirable result:

PICTURE 999.99V

..._____ ____ The V is implied

Value----~

assigned
12.34

Resu It ------+ 000.12

.....___ ____ Decimal point in the value is

aligned with the V

PICTURE indicates a decimal
point to be inserted here

Leading zeros are
automatically added

138 PL/I Programming

The usual case is to place the V to the left of the decimal point in a
picture specification, although it may appear to the right of the decimal
point:

DCL PR I CE Pl C'999. V99' IN IT(12.34) ;
PUT LIST (PRICE); /* 012.34 IS OUTPUT*/

In this example, the output is the same as if the V had appeared to the
left of the decimal point. However, in other cases, the position of the
V in relationship to the decimal point is most significant. To illustrate,
let us look at what happens when zero suppression is specified in a
PICTURE containing a V and a decimal point (small ''b" represents a
blank) :

DCL A P_IC'ZZZV.99' INIT(.05) ;
PUT LIST(A) ; /* bbb.05 IS OUTPUT *I
DCL B PIC'ZZZ.V99' INIT(.05);
PUT LIST(B) ; /* bbbb05 IS OUTPUT *I -

The rule to be derived from the above example is this: When the V is
to the left of the decimal point, the V may be thought of as "guarding"
the decimal point; hence, if leading zeros are to be suppressed, the
decimal point will not be replaced with a blank. However, if the V is
to the right of the decimal point in the picture and leading zeros are
to be suppressed, the decimal point will be replaced by a blank when
ever the integer portion of the number is zero. We may conclude that
the V ought normally to be located to the left of the decimal point in
the picture.

The comma is another insertion character. It will be inserted in the
output field in the position corresponding to its location in the PICTURE.
For example:

DCL BIG_ VALUE PIC'999,999V.99' INIT(104056.98);
PUT LIST(BIG_VALUE); /* 104,056.98 IS OUTPUT*/

If zero suppression is specified, the comma is inserted only when a
significant digit appears to the left of the comma; otherwise, the
comma is replaced with a blank, as the following example illustrates:

File Declarations, Conditions, and Pictures 139

DCL AMT PIC'ZZZ,ZZZV.99';
AMT =450.75;
PUT LIST(AMT); /* bbbb450.75 IS OUTPUT */
AMT= 1450.75;
PUT LIST(AMT) ; /* bb1 I 450.75 IS OUTPUT */
AMT=O;
PUT LIST(AMT); /* bbbbbbb.00 IS OUTPUT */

The blank is another insertion character. It is used to insert blanks to
the right of a value on output. (Of course, to obtain blanks on the left
of the value, the Z picture character may be used.) Here are some
examples:

DCL A PIC'999V.99BBB';
DCL B PIC'Z,ZZZV.99(7)B';

In the subset language, the B picture character may only appear to the
right of a decimal picture. The following example is valid only in the
full language implementations:

DCL D PIC'99B99B99';

I \
B insertion character

Subset
language May appear only to the right of a decimal picture

Full
language May be embedded in the decimal picture

\.. ./

The $ character is a drifting character. It specifies a currency symbol in
the character representation of numeric data. This character may be
used in either a static or drifting manner. The static use of the$ specifies
that a currency symbol will always appear in the position fixed by its

140 PL/I Programming

location in the picture. In the drifting form, there are multiple adjacent
occurrences of the character. A drifting dollar sign specifies that
leading zeros are to be suppressed and that the rightmost suppressed
zero will be replaced with the $ symbol. Here are some examples:

DCL A PIC'$999V.99' INIT(12.34);
PUT LIST (A); /* $012.34 IS OUTPUT */
DCL B PIC'$$$$V.99' INIT(12.34);
PUT LIST (B); /* b$12.34 IS OUTPUT */
DCL C PIC'$$,$$$V.99(5)B' INIT(1024.76);
PUT LIST (C); /* $1,024.76bbbbb IS OUTPUT*/
DCL D PIC'$Z,ZZZV.99' INIT(12.34);
PUT LIST (D); /* $bbb12.34 IS OUTPUT*/

These editing characters may also be either drifting or static. The follow
ing examples should be self-explanatory:

DCL A PIC'S999' INIT(12);
PUT LIST (A); /* +012 IS OUTPUT *I
DCL B PIC'SSS9' INIT(12);
PUT LIST (8); /* b+12 IS OUTPUT*/
DCL C PIC '9999S' INIT(1234);
PUT LIST(C); /* 1234+ IS OUTPUT*/
DCL D PIC'---9'1NIT(-12);
PUT LIST (D); /* b-12 IS OUTPUT */
D=+12;
PUT LIST (D); /* bb12 IS OUTPUT*/
DCL E PIC'+99' INIT(144); /* ERROR */

I

PUT LIST (E); /* +44 IS PRINTED */
DCL F PIC'999V.99S' INIT(-123.45);
PUT LIST(F); /* 123.45- IS OUTPUT *I

File Declarations, Conditions, and Pictures 141

The asterisk is a fill character and is used in much the same way
as the Z. The "asterisk fill" capability is useful in applications that
require check protection. For example. in using a computer to print
checks or statements indicating amounts paid, it is desirable to precede
the dollar and cents amounts with leading asterisks so as to preclude
any tampering with or modification of those amounts. The asterisk
cannot appear with the picture character Z, nor can it appear to the
right of a 9 or any drifting character. Here are some examples:

DCL PAY PIC'*****9V.99' INIT(104.75);
PUT LIST (PAY); /* ***104.75 IS OUTPUT*/
DCL AMT _PAID PIC'*****V.**' INIT (843.50);
PUT LIST (AMT_PAID); /* **843.50 IS OUTPUT*/
AMT_ PAI D=.75; /* SEE PICTURE DECLARED ABOVE */
PUT LIST (AMT_PAID); /* *****.75 IS OUTPUT*/
DCL PAYS PIC'$***V.99' INIT(4.75);
PUT LIST (PAYS); /* $ ***4.75 IS OUTPUT */
DCL QTY PIC'***' INIT(123);
PUT LIST(QTY); /*123 IS OUTPUT*/

The paired characters CR and/or DB specify the sign of numeric fields.
They are used most often on business report forms (e.g., billing,
invoicing).

CR Indicates that the associated positions will contain the letters
CR if the value of the data is negative, otherwise, the positions
will contain two blanks; the characters CR can only appear to
the right of all digit positions in a PICTURE

142 PL/I Programming

I
DB Is used in the same fashion as the CR, except that the letters

DB appear in the associated print positions if the value is
negative

DCL D PIC '99V.99CR' INIT(-12.34);
PUT LIST(D); /* 12.34CR IS OUTPUT
DCL E PIC '99V.99DBBBBB' INIT(-12.34);
PUT LIST(E) ; /* 12.34DBbbbb IS OUTPUT *I
DCL F PIC 'S999V.99CR'; /* INVALID PICTURE BECAUSE

BOTH 'S' and 'CR' ARE SPECIFIED */
DCL G PIC '99V.99CR' INIT (+ 12.34);
PUT LIST(G); /* 12.34bb IS OUTPUT*/

Both DB and CR will appear in the edited field of negative values.
However, there are some business applications where either a "debit"
or "credit" applies to a positive value. For example, if you have a
savings account, your account is debited each time a withdrawal is
made and credited each time a deposit is made; for example:

500.00 CR
120.00 DB

35.00 DB
100.00 DB

75.00 CR

Assume it is desired to print the above list with the CR and DB designa
tions. Assume, also, that the source data we are about to edit will be
preceded with a minus sign if the value is a debit amount; otherwise,
the value is assumed to be positive and, therefore, a credit amount.
Thus, the input stream would appear as

-120.00 -35.00 -100.00 75.00

The foHowing programming example illustrates a technique that
might be used to list the above values with the CR and DB designa
tions, even though some of the input values are positive. Notice that
AMT is converted to a negative value by prefixing a minus sign. Then,
when AMT is edited into the AMT _CR field, the picture characters
CR will be included in the edited result.

File Declarations, Conditions, and Pictures

DCL AMT FIXED(7, 2);
DCL AMT _CR PIC'ZZ,ZZZV.99CR';
DCL AMT_ DB PIC'ZZ,ZZZV.99DB';

GET: GET LIST (AMT);
IF AMT>O THEN DO;

AMT=-AMT;
AMT_CR=AMT;
PUT SKIP LIST (AMT _CR);
END;

ELSE DO;
AMT_DB=AMT;
PUT SKIP LIST (AMLDB);
END;

GOTO GET;

143

In business data processing, sometimes numeric values punched
·in a card have an overpunch for sign representation. An overpunch is
simply a 12-punch for a + sign or an 11-punch for a - sign over one
of the digits in a predetermined column of a multidigit field. The use of
overpunches has the advantage of minimizing the number of card
columns required to represent signed numeric data. Thus, for example,
the value of -154 could be represented in only three card columns
because the sign (-) can be punched over the units position (i.e.,
the 4). Figure 3.3 shows this as its first example.

54 23
1+-12

1+- 11 :~~H . ·'"
o o o o o o o o o o o tf o .ofh,o o o o o o o o o o o o o o o q .. o.o
1 2 l 4 5 I 7 I 110 .. U ll,~}4,ft\8t1.J),11202122 2l2425 262128 2S 3031~12.~3' 38.~~1142434445 4& 474149 505152 53 54 55565758S9501112 63 IU51i1Sl 61697011121~ 14151& 111119 •

I 1 l I 11 l I I .. .· · . 1;•11 11 l I I 11 I I I I f \1.1,~~:L .1 .. ~ I 111 I l l I I I 11 l 1 1 1 l I 1111 11 1 1 1 1 11 l l l l I l l l

2 2 2 2 2 2 2 2; . 2 !2 2 2 2 .2 2 2 2 2 2 2 2 ~L2 2 ~;~·~ ~.~~; ~.:1,2

3 3 3 3 3 3 3 3} .3. 3 3 3 ~·? 3 3 a 3 3 3 3 a 3 3. 3 H 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 .. 3 3 3 3 3,3 a 3) 3 3 3 3. 3 3 3 a a a 3 3 3 3 3 3 3 3 3 3 3 3

4414 444 4 4.H4.JfH 4 44444444 4 H4i4 44 444. 44444 4 4444 444 4 4 4 4 4 44 4'(44 4444 44'4 4 4 4 44(4 4 4 4 4 4 4

515 5 5 5 5 5 {'stJ; 5 SJ,5 5 5 5.5.5 5 5 5 5 ~-~ 5 ~ 5 5 ~ 5/,;;· liJ~f 5 5 5 5 5 5 5 5 5 s 5 5 5 5 5 5 5 s 5 5 5 5 5 s 5 s s s 5 5 s 5 5 5 5 5 5 5

& s & s s s s & s\~s·s.~;~~;6 s s s s s s s & & s ·.~~ ~ .• s $
1
>Y"sJ~ s s s & s & & & s & & s & s s & s & s & s s & & s & & & & & & & & s & & & &

1111 1 111111 Vl}\?;;$1111 I{J, 1 1,.;,t:~J r~ 7 111111111111111111 1 1 11 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1

a a a a a a a a a a a a a a i's a a a a ala\ o~'a aaa a a a a aa a a a a a a a au a a a a a aa au a a a a a a a a a a a a a a a a a a
s s s s s s s s s s s s s s s s s s s a in s s e 'a a s .9"9 s s s s s s 9 s 9 s s s 9 s s s s 9 s s s s s 9 9 s s 9 9 9 s 9 s s s 9 9 9 9 9 9 s 9 9 s 9 9
1234,17t1~11~~·iunnanN~nn~~auan•~U»MZ•»•~c~uu*u•nod»~~53~~~uMHUflGDMG•~11u1011ununnnnnu

ISMPIWIH

FIGURE 3.3 Overpunches in numeric fields.

144 PL/I Programming

The following special characters are used in a PICTURE to indicate
an overpunch in the units position of a numeric field :

T Indicates that the associated position will contain a digit over
punched with the sign of the data

Indicates that the associated position will contain a digit over
punched with a 12-punch (representing +) if the value is
zero or positive; otherwise, it will contain only the digit with no
overpunching, indicating the value is negative

R Indicates that the associated position will contain a digit over
punched with an 11 -punch (representing -) if the value is
negative; otherwise, it will contain the digit with no over
punching, indicating the value is positive or zero

The picture characters T, I, and R cannot be used with any other sign
characters (i.e., S, - , and +) in the same PICTURE. Only one over
punch may appear in a fixed-point number. Figure 3.4 shows some
examples of pictures with these overpunch characters and the results
when data is assigned to these pictures.

/"
Overpunch

Subset May appear only in the units position
language of the numeric field

Full May appear in any digit position of
language the numeric field

Another type of PICTURE attribute is the character-string picture
specification. Its form is like decimal pictures, except that the characters
which make up the picture specification are A, X, and 9. Furthermore,
the data item declared with the character-string picture does not
have the arithmetic attributes of base, scale, and precision, but does
have the character-string length attribute.

f
Coded arithmetic
form (conversion Value assigned Coded arithmetic

Number of occurs prior to to the value when
PICTURE bytes of arithmetic corresponding Internal decimal used in a

specification core used operation) picture picture result calculation

999V9T 5 FIXED (5,2) · + 123.45 123fE + 123/\45
999V9T 5 FIXED(5,2) -123.45 123fN -123f5
9991 4 FIXED(4) +1234 1230 +1234
9991 4 FIXED(4) 1234 1234 -1234
99R 3 FIXED(3) 123 123 +123
99R 3 FIXED(3) -123 12L -123

FIGURE 3.4 Pictures illustrating overpunched digits.

146 PL/I Programming

The actions performed by the picture specification characters for
character-string pictures are as follows:

A Specifies that the associated position of the picture may contain
the alphabetic characters A through Z or a blank; this picture
specification character is not available in the subset language

X Specifies that the associated position of the picture may contain
any character

9 Specifies that the associated position of the picture may contain
only the digits 0 through 9 or blank

Some examples of character-string pictures are shown in Figure 3.5,
where "b" represents a blank.

The comma and decimal point insertion characters may not be
specified in a character-string picture; the B insertion character may
not be specified. For example:

DCL OUTPUT _FIELD PIC'BBBXXXXX'; /*INVALID*/

is illegal. The minus sign may only appear in a decimal picture. It may
not be used in character-string pictures.

/
Allows X and

Allows the 9 in the
A PICTURE same PICTURE?
character? (e.g., PIC'XX999')

Subset
language No No

Full
language Yes Yes

"
The character-string PICTURE attribute is used primarily in data

validation rather than in output editing. If you are programming using
full language PL/I, then the following example is applicable: Assume
an inventory item is identified by a part number which consists of

File Declarations, Conditions, and Pictures 14 7

I
Source Source data in PICTURE Character-

attributes constant form specification string value

CHAR(4) 'ABCD' AAAA ABCD
CHAR(4) 'ABCD' xx xx ABCD
CHAR(5) 'ABCDb' AAAAAA ABCDbb
CHAR(5) '12021' 99A99 12021
CHAR(5) '#8123' XA999 #8123
CHAR(5) '12bbb' 99XXX 12bbb
CHAR(5) '12AB9' 99AAA INVALID
CHAR(5) 'AB123' AAA99 INVALID
CHAR(5) 'L26.7' A99X9 L26.7

\..

FIGURE 3.5 Examples of character-string pictures.

alphabetic and numeric characters such as

'1237 AB'
'--v---' '-v-'

Assume last two characters should always
be alphabetic

First four characters are always numeric

On input, this part number could be validated by reading it into a picture
that contains A and 9 picture specifications. For example:

DCL PART _NUM PIC '9999AA';
DCL ITEM CHAR (6) ;
GET LIST (ITEM, ETC);
PARLNUM=ITEM;

When ITEM is assigned to PART_ NUM, data validation occurs. If the
part number consists of four leading digits followed by two alphabetic
characters, we know that the part number is in the correct form. Of
course, we do not know if it is an actual part number in our inventory
without doing further checking.

If the number is incorrectly punched as

'123ABC'

and read into ITEM, the CONVERSION condition is raised when ITEM
is assigned to PART _NUM. The raising of this condition means that

148 PL/I Programming

an error has occurred. In this example, it would be a data validation
error. Here is a programming example illustrating its use:

/* THIS EXAMPLE APPLIES TO FULL LANGUAGE
IMPLEMENTATIONS */

TEST: PROC OPTIONS (MAIN);
DCL PART _NUM PIC '9999AA';
DCL ITEM CHAR(6);
ON ENDFILE(SYSIN) GO TO EOJ;
ON CONVERSION GO TO ERROR;

GET: GET LIST (ITEM);
PART _NUM =ITEM;
PUT LIST (ITEM);
GO TO GET;

ERROR: PUT LIST ('INVALID PART NUMBER:', ITEM);
GO TO GET;

EOJ: END;

The DEFINED attribute is a very useful feature of PL/I. How it works
will be introduced here, but the many uses of this attribute will be
illustrated throughout the remainder of this book. The DEFINED
attribute allows you to equate two or more different names to the same
storage area. In addition, one of the names being declared may represent
either all or part of the same storage as that assigned to the other. For
example, the statements

DECLARE NAME CHAR(20) INITIAL('JAMES WILEY RHOADES');
DECLARE FIRST CHAR(5) DEFINED NAME;

would produce the following storage layout:

JIAIMIEISI IWlllLIEIYI IRIHIOIAIDIEISI

FIRST

NAME

In this example, NAME and Fl RST occupy the same storage area. How
ever, Fl RST will be equated only to the five leftmost characters (i.e., it
will be left justified in the NAME field) of the string inasmuch as FIRST
has a length attribute of five. NAME is considered to be the base

File Declarations, Conditions, and Pictures 149

identifier; this is the variable name to which other variable names are
equated or "defined." The PL/I term for this function is overlay defining.
You may only specify the INITIAL attribute for the base identifier.
Also, the base identifier must be equal to or greater than any of the
other variables that are overlay defined on it. Finally, more than one
item may be overlay defined on a base identifier. For example:

DCL A CHAR(8),
B PIC'ZZ9V.99CR' DEFINED A,
C PIC'9,999V.99' DEFINED A;

Here is an ILLEGAL example of overlay defining :

DCL A CHAR (8) ;
DCL B PIC'ZZ9V.99CR' DEF A;
DCL C PIC'9,999V.99' DEF B; /* ILLEGAL */

In this case, B can overlay define A, but C cannot overlay define B.
The base identifier cannot have the DEFINED attribute. To accomplish
what was intended in the illegal statement, we can code

DCL C PIC '9,999V.99' DEF A;

Following is a list of possible base identifiers and the type of items that
may be overlay defined on them.

Base identifier
A coded arithmetic variable

A label variable
String variable
PICTURE attribute or

CHARACTER attribute
variable

Defined item
A coded arithmetic variable of the

same base, scale, and precision
A label variable
String variable
PICTURE or CHARACTER attribute

variable

The POSITION attribute may be specified in overlay defining of bit
and character-strings. For example:

DECLARE LIST CHARACTER (40),
A_ LIST CHARACTER (10) DEFINED LIST,
B_LIST CHARACTER (20) DEFINED LIST POSITION (21),
C_LIST CHARACTER (10) DEFINED LIST POSITION (11);

150 PL/I Programming

In this example of overlay defining, A_ LIST refers to the first ten
characters of LIST, B _LI ST refers to the twenty-first through fortieth
characters of LIST, and C_ LIST refers to the eleventh through twentieth
characters of LIST.

(
POSITION attribute

Subset language No

Full language Yes
_

This case study illustrates a number of PL/I features described in
Chapter 2 and in this chapter. These features include

Declaring coded arithmetic data
Factoring of attributes
The INITIAL attribute
The DEFINED attribute
Editing of output data using PICTURE

Problem Description

Following each day of business, a savings and loan company
summarizes the transactions which occurred during the day. The
purposes of the summary are the following:

1. To determine if the transactions balance; i.e., have any clerical
mistakes been made during the day?

2. To provide a breakdown of the total amount on hand at the end
of the day into cash on hand and checks on hand.

3. To calculate the source of cash to be available for the next day's
business.

4. To calculate the amount to be deposited in the company's bank
account.

This savings and loan company, by policy, always begins each day
with $60,000.00 in cash. This figure becomes the data item named

File Declarations, Conditions, and Pictures 151

CASH_ FUND in our program. It is given the initial value of $60,000.00
and is never changed. Other input data to the program include:

MORTGAGE_RECEIPTS The amount received during the day in
payment of mortgage loans

SAVINGS_ RECEIPTS The amount received during the day from
customers' deposits into their accounts

CASH_PAID The amount paid to customers who
withdraw from their savings accounts

CASH_ON_ HAND The total amount of cash on hand at the
end of the day, including the initial
$60,000.00

CHECKS_ON_ HAND The total amount of checks on hand at
the end of the day

To provide the necessary information for the summary, certain values
must be computed. These are

TOTAL RECEIPTS MORTGAGE_RECEIPTS +SAVINGS_
RECEIPTS ""

TOTAL_ON_HAND CASH_ON_HAND + CHECKS_ON_HAND
RECONCILIATION To determine if an error has been made in the

handling of cash during the day, we must take
into account the amount we started with at the
beginning of the day (CASH_FUND), the
amount of cash the company paid out during
the day (CASH_PAID), the total receipts for
the day from mortgage payments and savings
(TOTAL_RECEIPTS), and the total dollar
amount in cash and checks on hand at the end
of the day (TOTAL_ON_HAND). If we start
with the TOTAL_ON_HAND at the end of the
day and subtract from it the amount we started
the day with (CASH_FUND), we should derive
the net effect of the day's business on the
company. (It may be either negative or posi
tive.) Next, if we subtract the CASH_PAID
during the day from the TOTAL_RECEI PTS,
we should also find the net effect of the day's
business on the company. By comparing these
two numbers, we can determine whether an
error has been made and, if so, if it was in a

152 PL/I Programming

customer's favor or in the company's favor.
An easy way to do this is to subtract one
number from the other, storing the result in
the data item named RECONCILIATION. For
example:

RECONCILIATION= (TOTAL_ON_HAND
CASH_FUND)- (TOTAL_RECEIPTS-

CASH_ PAID);
If RECONCILIATION is negative, then there is
cash shortage (an error in a customer's
favor) ; if it is positive, then there is a cash
overage (an error in the company's favor); and
if it is equal to zero, then daily cash balances.
The desired output for this information is a
print line in one of these formats:

SHORTAGE $50.00
(if RECONCILIATION< 0)

or
OVERAGE $33.50

(if RECONCILIATION> 0)
or

DAILY CASH RECONCILES
(if RECONCILIATION= 0)

Notice that a numeric value is to be printed
only if a shortage or overage occurs, not if
daily cash reconciles.

REIMBURSEMENT If the CASH ON_HAND is less than
$60,000.00, then the cash fund must be re
imbursed to meet the company policy figure
of $60,000.00 in cash. This data item is the
amount of the reimbursement.

DEPOSIT All of the checks received during the day must be
deposited, as well as any cash in excess of the CASH_
FUND minimum of $60,000.00. Therefore, this figure
will be either CHECKS_ON_HAND or, if CASH_ON_
HAND> CASH_FUND, then CHECKS_ON_HAND +
(CASH_ON_HAND - CASH_ FUND).

Figure 3.6 shows a summary of the desired output; a general flowchart
depicting program logic is shown in Figure 3.7.

File Declarations, Conditions, and Pictures 153

l 111111111222222222233333333334
1234567890123456789012345678901234567890

~ ~ ~ ~) ~ ~ 1 i ~ ~~ I Lr 1

it.\Q l•fl 1

""' ~..Jiii i.l.11 llJdMj

I- illPIJ~ MllllV· ilt~
1 •1

,.

FIGURE 3.6 Output format for daily cash
report case study.

Programming Techniques Used in Case Study

Figure 3.8 shows a compiled program listing. Following is an
explanation of the statements in the program.

Source Statement 2. Notice the factoring of attributes where all
the declared variables have the s~me attribute.

Source Statement 3. Notice the use of the INITIAL attribute to
assign $60,000 to the identifier called CASH_ FUND.

Source Statement 4. When the first output statement for a STREAM
file to the printer is issued, there is an automatic skip to a new page.
This PUT LIST statement causes the first line of the report to be
printed.

Source Statement 6. Input data is read. Sample data could be
punched into one card as follows:

15000.00 8050.00 5000.00 55000.00 23000.00

Source Statements 7-9. TOTAL_RECEIPTS, TOTAL_ON_HAND,
and RECONCILIATION are calculated.

Source Statements 10--17. The test, using IF's with DO-groups,
is made to determine if CASH_ON_HAND is greater than or less than
$60,000. The DEPOSIT and REIMBURSEMENT are determined by
the CASH_ON_HAND figure.

Reimbursement
= 60,000 -

cash on hand

Deposit=
checks on

hand

No

START

Determine
cash overage
or shortage

END

Yes

Reimbursement
= 0

Deposit =
checks on

hand + (cash
on hand - 60,000)

FIGURE 3.7 General flowchart for daily cash report.

File Declarations, Conditions, and Pictures 155

I* DAILY CASH REPORT -- CASE STUDY *I
l CASH: PROC OPTIONS(MAIN);
2 DCL (MORTGAGE_RECEIPTS,SAVINGS_RECEIPTS,CASH_PAID,

CASH_ON_HAND,CHECKS_ON_HANO,TOTAL_RECEIPTS,
TOTAL_ON_HAND,RECONCILIATION,DEPOSIT,REIMBURSEMENT)

FIXED(9, 2);

3 DCL CASH_FUND FIXED (9,2) INIT 160000);
4 PUT L I ST (' 0 A I L Y C A S H R E P 0 R T ') ;
5 PUT SKIP LIST ('ROCK OF GIBRAlTER SAVINGS AND LOAN' l;
6 GET LIST (MORTGAGE_RECEIPTS,SAVINGS_RECEIPTS,

CASH_PAID,CASH_ON_HAND,CHECKS_ON_HAND);
7 TOTAL_RECEIPTS = MORTGAGE_RECEIPTS + SAVINGS_RECEIPTS;
8 TOTAL_ON_HAND = CASH_ON_HANO + CHECKS_ON_HAND;
9 RECONCILIATION =lTOTAL_ON_HAND - CASH_FUND)

-(TOTAL_RECEIPTS - CASH_PAIO);
10 IF CASH_ON_HANO < CASH_FUND THEN DO;
11 REIMBURSEMENT = CASH_FUND - CASH_ON_HAND;
12 DEPOSIT = CHECKS_ON_HANO;
13 END;
14 ELSE DO;
15 REIMBURSEMENT = O;
16 DEPOSIT= CHECKS_ON_HANO + (CASH_ON_HAND-CASH_FUND);
17 END;

I* EDIT DATA FOR OUTPUT *I
18 DCL OUTPUT PIC'$$$$,$$9V.99', HEADING CHAR (211;
19 DCL OUT CHAR (lll DEFINED OUTPUT;
20 OUTPUT = RECONCILIATION;
21 IF RECONCILIATION< 0 THEN HEADING= 'SHORTAGE';
22 ElSE IF RECONCILIATION > 0 THEN HEADING = •OVERAGE';
23 ELSE DO; HEADING= 'DAILY CASH RECONCILES'; OUT=' '; END;
27 PUT SKIP(31 LIST {HEADING,OUTPUTI;
28 OUTPUT = CASH_ON_HANO;
29 PUT SKIP(2l LIST ('CASH ON HAND 1 ,0UTPUTI;
30 OUTPUT = CHECKS_ON_HAND;
31 PUT SKIP(2) LIST ('CHECKS ON HAND 1 ,0UTPUT>;
32 OUTPUT = REIMBURSEMENT;
33 PUT SK1Pl2) LIST (1 CASH FUND REIMBURSED BY•,OUTPUT);
34 OUTPUT = DEPOSIT;
35 PUT SKIP{2) LIST (1 AMOUNT OF DEPOSIT 1 ,0UTPUTI;
36 END;

FIGURE 3.8 Daily cash report program listing.

Source Statement 18. The identifier OUTPUT is declared with
editing characters which include the floating dollar sign and automatic
zero suppressing, comma insert, and decimal point insert. Each value
that is to be printed will be "edited" when the value is assigned to
OUTPUT. The HEADING is declared for the purpose of assigning to
it the first detail line of literal output (e.g., either OVERAGE, SHORTAGE,
or DAILY CASH RECONCILES).

Source Statement 19. A character-string of 11 positions is overlay
defined on the picture called OUTPUT. The length of 11 characters

156 PL/I Programming

was selected because OUTPUT is 11 bytes long; i.e.,

: I! I! I~ I~ I~ I: I! Iv 19 1 ~
0 I ~1

~----- V does not require a
byte in the PICTURE

Zero suppression
ends at this point

The reason for using define overlay in this program is explained in the
paragraph describing source statements 23-27.

Source Statements 20-22. RECONCILIATION is edited by
assigning it to OUTPUT. If RECONCILIATION is negative, then first
detail line of print is to be the literal SHORTAGE followed by amount
of shortage. If RECONCILIATION is positive, then first detail line is to
be the literal OVERAGE followed by the amount of overage.

Source Statements 23-27. If RECONCILIATION is zero, then
first detail line is to be the literal DAILY CASH RECONCILES followed
by blanks in the amount field of the report. Statement 27 consists of
printing HEADING followed by OUTPUT. There is one case, however,
when OUTPUT should contain blanks-when daily cash reconciles.
OUTPUT is a picture depicting a numeric field. Hence, only digits 0
through 9 may be assigned to this picture. It is not possible to assign
blanks directly to the identifier called OUTPUT, because a blank is not
a numeric character. The solution to the problem is to use define overlay
on OUTPUT to give that area of main storage the CHARACTER
attribute as well as the PICTURE attribute. Statement 25 is

OUT= 11

;

The above statement is valid because OUT has the CHARACTER
attribute. The statement causes, in effect, OUTPUT to be cleared to
blanks. Thus, when the statement

PUT SKIP(3) LIST(HEADING,OUTPUT);

is encountered in the program, blanks will be printed following
HEADING.

Source Statements 28-36. These statements accomplish the
assigning of the calculated results to OUTPUT for purposes of editing

File Declarations, Conditions, and Pictures 157

the data. Each remaining detail line is printed by a separate PUT
SKIP LIST statement. The program is logically ended when the END
statement is encountered.

File Declarations: A PL/I file is represented in the program by the file name
which is declared to have the Fl LE attribute. It is through the use of this name
that we will access or create the data records which are stored on an external
device such as a disk or tape or cards. The collection of records is called a data
set. The ENVIRONMENT attribute of the DECLARE statement describes the
physical environment of the data set. The MEDIUM option is used in the
DOS/TOS operating system to specify a symbolic device name and the type
of device on which the data set is stored or through which we will access the
data. Within parentheses following the keyword MEDIUM, specify SYSIPT
for card input and SYS LST for line printer output as the symbolic device name.
The physical device numbers you specify are dependent upon the type of
devices attached to the computer on which your PL/I program is to be run.
The F in the ENVIRONMENT section of the file declaration specifies the record
type as being fixed length.

Standard PL/I File Names: The identifiers SYSIN and SYSPRINT are the
file names for the standard input and output files, respectively. The statements

GET LIST(A B, C);
PUT LIST(A B, C);

are equivalent to

GET FILE(SYSIN) LIST(A B, C);
PUT FILE (SYSPRINT) LIST(A, B, C);

These files need not be declared, because a standard set of attributes is applied
automatically. In subset languages, you may not use these file names unless
they are explicitly declared as files. However, when you write

GET LIST(A, B, C);
PUT LIST(A B, C);

the attributes of the SYSIN and SYSPRINT files are assumed for the GET and
PUT operations, respectively.

Conditions: The ON statement is used to specify the action to be taken-when
an exceptional condition arises. An exceptional condition is the occurrence of an

158 PL/I Programming

unexpected event or an expected event at an unpredictable time. In the absence
of your program specifying an action to be taken, when these exceptional
conditions are detected, a standard system c.:iction will take place. For most
conditions, the standard system action is to p-rint a message and then raise the
ERROR condition which usually results in termination of your PL/I program.
Some conditions are always enabled unless explicitly disabled. When a condition
is enabled, it means that, if the condition occurs, either programmer-defined
action or system action will take place. Thus, when conditions are disabled,
errors may go undetected. The 1/0 conditions are always enabled and may not
be disabled. Conditions are enabled through a condition prefix which is the
name of one or more conditions separated by commas, enclosed in parentheses,
and prefixed to a statement by a colon. The word NO preceding the condition
name indicates that the condition is to be disabled. Through the use of the
SIGNAL statement, the programmer may simulate the occurrence of any of
the exceptional conditions. Execution of the SIGNAL statement has the same
effect as if the condition had actually occurred. (See Figure 3.9.)

The PICTURE Attribute: This attribute provides a picture of the form we
want the data in the variable with the PICTURE attribute to assume. There are a
number of reasons for using PICTURE:

1. To edit data.
2. To validate data.
3. To treat arithmetic quantities as character-strings.
4. To treat character-strings as arithmetic quantities.

Decimal Picture: This type of picture specifies the form that an arithmetic
value is to assume. The base and scale are implicitly DECIMAL and FIXED,
respectively. The precision is determined by the number of 9's and Z's in the
picture and the location of the V picture character.

Decimal Picture Specification Characters: The basic picture specifica
tion characters include 9, V, S, +, - .

Arithmetic Operations on Decimal Picture Data: In order for an arith
metic operation on decimal picture data to take place, the data must be con
verted to the coded arithmetic form FIXED DECIMAL.

Editing Data for Printed Output: Data items with the PICTURE attribute
to be used as output usually receive their values via an assignment statement.
Values are normally developed during a program's execution using coded
arithmetic data type. When final results are obtained, the values are assigned to
data variables for printing and/or punching.

Specifying Overpunched Signs with the PICTURE Attribute: In
business data processing, sometimes numeric values punched in a card have an
overpunch for sign representation. An overpunch is a 12-punch for a + sign
or an 11 -punch for a - sign over one of the digits in a predetermined column

File Declarations, Conditions, and Pictures 159

of a multidigit' field. The use of overpunches has the advantage of minimizing
the number of card columns required to represent signed numeric data.

Character-String Picture: The characters which make up this type of
picture are A, X, and 9. The data item declared with the character-string picture
does not have the arithmetic attributes of base, scale, and precision, but does
have the character-string length attribute. Figure 3.10 shows the picture specifi
cation characters covered in this chapter.

Character-String
X Position may contain any character
A Position may contain any alphabetic character 1

9 Position may contain any decimal digit or blank1

Digit and point specifiers
9 Any decimal digit
V Assumed decimal point and subfield delimiter

Zero suppression characters
Z Digit or blank
* Digit or

Static or drifting characters 2

$ Digit, $, or blank
S Digit, ± sign, or blank
+ Digit, +, or blank

Digit, - , or blank

Insertion characters __
If zero suppression and no digit, a blank will appear
Decimal point

B Blank

Credit, debit, and overpunched signs
CR CR if field< 0
DB DB if field< 0
T Digit will be overpunched by sign
I Digit will be overpunched by + if field>= 0 1

R Digit will be overpunched by - if field < 0

FIGURE 3.10 Picture specification characters. (1: Not available in
subset language. 2: These are also zero suppression characters.)

f Normally Normal return to
Type of enabled/ What the programmer (if null on-unit Standard system

condition ON-condition disabled Cause should do or result is used) action

Input/output END FILE Enabled An attempt to read past Not attempt to READ Null on-unit cannot ERROR condition
(file name) (cannot be the file delimiter of the or GET again from be specified

disabled) file named in the GET file; CLOSE the
or READ statement file

END PAGE Enabled PUT statement resulting Write a required (1) Resulting from New page started
(file name) (cannot be in an attempt to start a footing (or total data transmission:

disabled) new line beyond the lines) and skip to current line
limit specified for the another page (2) Resulting from
current page LINE or SKIP

option : action
specified by option
is ignored

Standard ERROR Enabled (1) Another ON-condition Dependent upon Control returned to Message printed
system (cannot be for which it is the requirements of the operating and control
action disabled) standard system action installation system control returned to

(2) An error for which program operating
there is no ON- system control
condition program

(execution
terminated)

Computational CONVERSION Enabled Illegal conversion attempt Undefined Null on-unit cannot ERROR condition
conditions (cannot be on character-string data be specified

disabled) internally or on input/
output operation

FIXEDOVER FLOW Enabled Result of arithmetic fixed- Undefined The point logically ERROR condition
(can be point operation that following the point
disabled) exceeds maximum of the interrupt

precision allowed (15
for decimal, 31 for
binary)

OVERFLOW Enabled Magnitude of a floating- Undefined The point logically ERROR condition
(can be point number greater following the point
disabled) than permitted of the interrupt

maximum

SIZE Disabled Nonzero high-order binary Undefined The point logically ERROR condition
(can be or decimal digits are lost following the point
enabled) in an assignment of the interrupt

operation (i.e., assign-
ment to a variable or an
intermediate result) or in
an input/output
operation

UNDERFLOW Enabled Magnitude of a floating- Invalid floating-point The point logically Message printed
(can be point number smaller value set to 0 following the point and execution
disabled) than allowable minimum of the interrupt continues

ZERODIVIDE Enabled Attempt to divide by zero Undefined The point logically ERROR condition
(can be following the point
disabled) of the interrupt

FIGURE 3.9

162 PL/I Programming

The DEFINED Attribute: This attribute allows you to equate two or more
different names to the same storage area. In addition, one of the name.s being
declared may represent either all or part of the same storage as that assigned
to the other. The base identifier is the variable name to which other variable
names are equated or "defined." The PL/I term for this function is overlay
defining. Only the base identifier may be initialized if the INITIAL attribute
is specified. The base identifier must be equal to or greater than (in length) any
of the other variables that are overlay defined on it.

The POSITION Attribute: This attribute may be specified in overlay
defining of bit- and character-strings. It allows you to specify a position within a
string on which another variable may be overlay defined. Not available in the
subset language.

1. When an end-of-file mark is encountered, what are the two possible
courses of action that may be taken?

2. In which PL/I compilers referenced in this text must the MEDIUM option
be included?

3. (True or False) File names may be the same length as any other PL/I
identifier-1 to 31 characters long.

4. For the optimizing compilers, how would the record form

F(80)

be specified?

5. What does the PRINT attribute accomplish in a file declaration statement?

6. In which language implementation (subset or full) is the following
statement valid?

ON ENDPAGE(SYSPRINT) GO TO HDNG_RT;

7. What are the default attributes for the SYSIN file?
8. What is the ON statement used for?

9. , Under what conditions is the ERROR condition raised?

10. What does the condition prefix accomplish?

11. What does the null form of the ON statement indicate?

12. How can the programmer simulate the occurrence on an ON condition?

13. Distinguish between FIXEDOVERFLOW and SIZE.

File Declarations, Conditions, and Pictures 163

14. How many bytes of storage will each of the following identifiers require?
(a) DECLARE PRICE PICTURE '999V99';
(b) DECLARE QUANTITY PICTURE '9999';
(c) DECLARE BACK_ ORDERED PICTURE '5999999';
(d) DECLARE AMT PIC 'SSSSV99';
(e) DECLARE FLD PICTURE '(5)X(7)9';

15. Each time that a decimal picture is to be used in a calculation, what
conversion takes place?

16. Give the numeric results after the following identifiers are initialized:
(a) DCL GROSS_ PAY PIC '9999V99' IN IT (550);
(b) DCL REORDER_ QTY PIC '999' INIT (1000);
(c) DCL HOURS_ WORKED PIC '99' INIT (40.75);
(d) DCL INTEREST_ DUE PIC '999V99' INIT (3.4567);

17. What are the uses of the PICTURE attribute?

18. Given the following DECLARE, what would the output values look like?
DECLARE AVALUE PICTURE 'ZZZ99';
(a) AVALUE=12345;
(b) AVALUE=123;
(c) AVALUE=O;

19. What is overlay defining? Why use it?

20. Are the following assignment statements valid in the subset language,
given the following DECLARE statement?

DCL A PIC'99999', B CHAR(5);

(a) A= B;
(b) B =A;

21. Write the PICTURE that will cause the value 123.45 to be output with
three leading blanks and four trailing blanks (i.e., bbb123.45bbbb
where b stands for blank).

22. What is an overpunch? Why is it used?

base identifier
byte
coded arithmetic data
condition prefix
data set

decimal picture
decimal point alignment
disabled
drifting character
dump program

164 PL/I Programming

editing
enabled
file
insertion character
null on-unit
on-unit
overlay defining

overpunch
static character
system action
utility program
zero suppression
11-punch
12-punch

1. Drill Using the PICTURE Attribute

Problem Statement: Write a series of declarations for the constants listed
below. Print the values defined.

Purpose of the Problem: To gain practice in declaring various data types
using the PICTURE attribute.

Input: Read the following data items into variables that contain the PICTURE
attribute describing the data items.

Input PL/I constant
5123.45
'THE QUICK BROWN FOX'
'123AB'
-23.75
000212
2048.95
00123.45
0678.90
-1950430.75

00.33

Output: See Figure 3.11.

2. Price List

Comments
Insert comma (i.e., 5, 123.45) on output

Suppress leading zeros
Include a drifting dollar sign on output
Include asterisk insertion (i.e., **123.45)
Insert a drifting + sign (i.e., + 678.90)
Insert commas and drifting dollar sign and

CR symbol separated from the value by
a blank (i.e., $1,950,430.75 CR)

Print this value two ways using zero
suppression (i.e., .33 and 33)

Problem Statement: Compute a table of prices for handy reference. Calculate
price of one item, two items, three items, all the way up to 100 items for a unit
price called PR ICE.

File Declarations, Conditions, and Pictures 165

s.,123.45
THE QUICK BROWN FOX
l23AB
-2 3. 75

212
$2048.95
**123.45

+67B.90
$1,950,430.75 CR

.33
33

FIGURE 3.11 Problem 1 sample output using suggested test data.

Purpose of the Problem: To gain experience in programming a "loop" opera
tion as well as to do some editing of output data (e.g., zero suppression and
comma insert).

Card Input: Suggested test data are

1234 15.25

Printer Output: See Figure 3.12.

3. Extending Prices

Problem Statement· Write a program to read data cards for a part number
(ITEM), unit price (PRICE), and quantity (IQTY). Compute the extension by
multiplying PRICE*IQTY. For each data card read, print a detail line which

PR ICE TABLE FOR ITEM # 1234

QUANTITY PRICE

1 15.25
2 30.50
3 45.75
4 61. 00
5 76.25
6 91.50
7 lOb.75

96 1,464.00
97 1,479.25
98 11494.50
99 1,509.75

100 1,s2s.oo

FIGURE 3.12 Problem 2 sample output using
suggested test data.

166 PL/I Programming

-------- Column 1 r--- Column 8

i tColumn 14

'1011' 20.00 30
'2104' 7.30 30.
'4030' 1.05 150.
'3035' 17.50 2
'2200' 1.45 10

FIGURE 3.13 Problem3
suggested test data.

consists of ITEM, PRICE, IOTY, and EXTENSION. Also, keep a "running total"
of the extensions. When the end-of-file condition is detected, compute TAX
by multiplying TOTAL by 5%, add TAX to TOTAL to give amount due (AMT),
and print TOTAL, TAX, and AMT.

Purpose of the Problem: To declare PL/I coded arithmetic data as well as
pictures for editing purposes and to use the ON statement.

Card Input: Suggested test data are shown in Figure 3.13.

Printer Output: If you use the suggested input data, your output to the line
printer should be like that shown in Figure 3.14.

Flowchart: See Figure 3.15.

Programming Hint: Notice from Figure 3.14. that when the total lines are to be
printed, each of the three lines starts with the literal constant (e.g., "TOTAL")

PART NUMBER PRICE QUANTI TV EXTENSION

1001 20.00 30 600.00
2104 7.30 30 219. 00
4030 1.05 150 157.50
3035 17.50 2 35.00
2200 1.45 10 14. 50

TOTAL 1026.00
TAX 51.30

AMOUNT DUE $1, 077. 30

FIGURE 3.14 Problem 3 sample output using suggested test data.

Start

DECLARE
variables

Set
TOTAL= 0

Compute
EXTENSION

TOTAL=
TOTAL+

EXTENSION

Yes

Compute
TAX=

TOTAL* ;05
+ .005

Compute
AMT DUE=

TAX+ TOTAL

END

FIGURE 3.15 Flowchart for Problem 3.

168 PL/I Programming

beginning at the third tab position (print position 49). This can be accomplished
by the following:

PUT SKIP LIST(' ', ' ', 'TOTAL',TOTAL)

I

~------ Variable name containing
accumulated results

'----------~) Literal constant to start at
third tab position

"----'-----------------+Literal constant of a
"blank" causes us to skip
over these tab positions

4. Powers of Two Table

Problem Statement: Write a program to generate a powers of two table where
the output values range from 2° to 230.

Purpose of the Problem: To use exponentiation, to program a loop, and to
edit data using the PICTURE attribute.

Input: There is no input for this problem, as the program generates the results.

Output: See Figure 3.16. for suggested printer layout.

5. Fibonacci Numbers

Problem Statement: Leonardo of Pisa, who is also called Leonardo Fibonacci,
originated the following sequence of numbers in the year 1202:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

In this sequence, each number is the sum of the preceding two and is denoted
by Fn (F for Fibonacci and n for number). Formally, this sequence is defined as

F0 = 0
F1 = 1

Fn+2 = Fn+1 + Fn
where

N~O

Write a program to print out the first 55 terms of a Fibonacci sequence.

Purpose of the Problem: This is a good computer exercise in addition, as the
hand method of calculation makes the solution impractical. Fibonacci wrote,
"It is possible to do [the addition] in this order for an infinite number of months."

Input: There is no input data, as the program will generate the sequence.

Output: Sample output is shown in Figure 3.17.

0
5

55
610

6765
75025

832040
9227465

102334155
1134903170

12586269025

Z TO THE N-TH POWER N

1 0
2 l
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9

1,024 10
2,048 11
4,096 12
8,192 13

16,384 14
32,768 15
65,536 16

131,072 17
262,144 18
524,280 19

l t 048, 576 20
2, 097, 152 21
4,194,304 22
8,388,608 23

16,777,216 24
3.3,554,432 25
67, 108, 864 26

134, 211, 728 27
268, 4.35,456 28
536, tnc, 912 29

1,073,741,824 30

FIGURE 3.16 Sample output for
Problem 4.

FIBONACCI SEQUENCE OF NUMBERS

8
89

987
10946

121393
1346269

14930352
165580141

1836311903
20365011074

13
144

1597
17711

196418
2178309

24157817
267914296

2971215073
32951280099

2
21

233
2584

28657
317811

3524578
39088169

433494437
4807526976

53316291173

FIGURE 3.17 Sample output for Problem 5.

3
34

377
4181

46368
514229

5702887
63245986

701408733
7778742049

86267571272

i,j

l!hapfot 4

DO'! and

PL/I has the facilities for arranging data in collections that can be
referred to by a single name. There are two types of data aggregates in
PL/I : arrays and structures. Structures will be covered in a later
chapter. In this chapter, we will look at arrays in detail and examine
some PL/I statements that are used to manipulate arrays.

An array is a table of data items in which each item has the same attribute
as every other item in the array. An array has storage reserved for it by
means of a DECLARE statement. For example:

DECLARE TEMPERATURES(365) FIXED(4, 1);

In the above DECLARE statement, TEMPERATURES is the name of the
array. It is declared with four attributes:

1. (365) is the number of elements in the array
2. DECIMAL is the base attribute of all its elements
3. FIXED is the scale attribute of all its elements
4. (4, 1) is the precision attribute of all its elements

As you can see, the attribute defining the number of elements in an
array is placed immediately after the name of the array in the DECLARE
statement. A precision attribute, if written, must always follow a base
or scale attribute; thus, you can tell, by its position in the DECLARE
statement, whether an attribute is a precision attribute or whether it
defines the number of elements in an array.

Bounds

In declaring the size of an array, a bound is specified. In the
example,

DCL TEMPERATURES(365)FIXED(4,1);

172

DO's and Dimensions 173

the number 365 specifies the upper bound of the array. The lower
bound in this example is assumed to be 1.

In the full language, it is possible to specify both a lower and
an upper bound. For example:

DCL TABLE (0: 11) FIXED;

~--------+Upper bound

'-----------+) Colon separates upper and lower
bound

'---------~Lower bound

The extent is 12 because there are 12 elements between 0 and 11.
It is also possible in the full language to specify a negative value

for bounds. For example:

DCL GRAPH (-5:+5);

.___ ____ Upper bound

~------+) Lowerbound

Thus, the array GRAPH might be thought of as follows:

Graph

-5-4-3-2-1 0 +1 +2+3+4+5

L Last (eleventh)
element in the
array

'------------------) First element in
the array

Here is another example of specifying upper and lower bounds
with the array pictured in a vertical manner (note the use of the INITIAL
attribute) :

174 PL/I Programming

DCL LIST(-2:6) INIT(91,20,82,11,73,48,19,16,70);

List (-2) 91

(-1) 20

(0) 82

(1) 11

(2) 73

(3) 48

(4) 19

(5) 16

(6) 70

f \
Specifying the bound of an array

Subset May not specify lower bound-it is always
language assumed to be 1 ; bounds must be expressed

as decimal integer constants

Full If upper bound only is specified, then lower bound
language is assumed to be 1, or both an upper and lower

bound may be declared; bounds can be con-

_
stants, variables, expressions, or asterisks

Dimensions

The number of sets of upper and lower bounds specifies the
number of dimensions in an array. For example, 12 data items could be

:,1

I
.:1

DO's and Dimensions 175

arranged in two groups of six items each. The array could be declared,

DCL TABLE(6,2) FIXED;

I
,_____ _______ Second dimension

....__------~~ First dimension

and could be thought of as a two-dimensional table. For example:

Column 1 Column 2

Row 1 i
I
I

I

Row 2 I

T

Row 3

Row 4

Row 5

Row 6

In referring to two-dimensional arrays, sometimes the terms rows
and columns are used. These terms, however, are not used to describe
parts of arrays that have more than two dimensions.

Here is an example of declaring a two-dimensional array in which
the upper and lower bounds are explicitly declared:

DCL AXIS(-3 :3,-4 :4)1NIT((63)0);

Axis -4 -3 -2 -1 0

-3

-2

-1

0

2

3

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2 3 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

176 PL/I Programming

There are 63 elements in the AXIS array. Notice how the INITIAL
attribute specified an iteration factor of 63 in a pair of parentheses
preceding the 0 constant. This causes all elements of the AXIS array
to be initialized to zero. Had the statement

DCL AXIS(-3 :3,-4 :4)1NIT(O);

been declared, only the first position (upper leftmost corner of the
array) would be initialized to zero.

A three-dimensional array could also be declared. For example,
assume it is desired to store statistical data on the urban and rural
population of each state in the United States for ten decades. The
statement declaring such an array could be written

DCL POPULATION(2,50,10);

I I~» Decades

~ States

Urban, rural reference

In some PL/I implementations, more than three dimensions may be
specified.

f
Generally, the number of dimensions allowed

Subset language 3

Full language 15
\...

Subscripting

We reference an element of an array by means of a subscript.
For example:

T = TEMPERATURES(2);

I

I Subscript

~------~> Array name

.___ -------------> Second item in the array named
TEMPERATURES is assigned to T

DO's and Dimensions 177

Assume that a two-dimensional table of salesmen's commission
rates is to be defined for three products a company sells. A salesman's
commission rate depends on the quantity he sells. For example:

I
Commission rate for item

Quantity sold #1 #2 #3

1-50 0.01 0.01 0.02
51-100 0.02 0.015 0.025
101-500 0.025 0.022 0.03
501-999 0.03 0.031 0.035
1000 or more 0.032 0.035 0.04

To declare this table we would write

DCL COMMISSION(5, 3) FIXED(3, 3);

where the table could be pictured as follows:

1 - 2 3

0.01 0.01 0.02

2 0.02 --- COMMISSION(2,3)

3 0.025

4 0.03

5 0.032

COMMISSION (3,2)

In the above example, row 1 contains the commission rates for 1-50
units sold; row 2 contains rates for 51-100 units sold; row 3 for 101-
500 units sold, etc. Column 1 corresponds to item #1, column 2 to
item #2, and column 3 to item #3. To retrieve the salesman's commis
sion rate if he sold 450 units of item #1, we could code

RATE= PRICE*QTY*COMMISSION(3,1);

178 PL/I Programming

Variable Subscripts. Subscripts need not be constants, as illus
trated above, but also may be variables. For example:

K=3;
T = TEMPERATURE(K);

---- Because K was assigned a value of 3, it
will be the third element of
TEMPERATURES that is assigned to T

Here are some other examples of retrieving values from the COM
MISSION array (note the use of variable subscripts):

J=3;
RATE= PRICE*OTY*COMMISSION(J,1);

/* COMMISSION(3,1) IS BEING REFERENCED */

K=2;
RATE= PRICE*OTY*COMMISSION (J,K);

/* COMMISSION(3,2) IS BEING REFERENCED */

The following example is invalid because the value assigned to K is
outside the declared range of the COMMISSION array:

K=7;
RATE= PRICE*QTY*COMMISSION(1,K);

SUBSCRIPTRANGE Condition. In the full language compilers,
referencing a location outside the bounds of the array will cause the
SUBSCRIPTRANGE condition to be raised if the condition is enabled.
Because this condition is always disabled unless the programmer
enables the on-unit, it will be necessary to enable the condition. This
is done in the same way that other on-units previously discussed are
enabled. For example:

(SUBSCRIPTRANGE): RATE= PRICE*OTY*COMMISSION(1,K);

Or, to enable the condition for the entire procedure, prefix the keyword
SUBSCRIPTRANGE to the PROCEDURE statement. For example:

(SUBSCRIPTRANGE): PROG: PROCEDURE OPTIONS(MAIN);

The abbreviation for SUBSCRIPTRANGE is SUBRG. To specify the

DO's and Dimensions 179

action to be taken should the SUBSCRIPTRANGE condition be raised,
you might code

ON SUBSCRIPTRANGE GO TO ERROR; /* OR */
ON SUBSCRIPTRANGE BEGIN;

END;

If your progra.m does not specify action to be taken for the SUBSCRIPT
RANG E condition, then system action is taken (providing the condition
occurs and is enabled). The system action is to print an error message
and then raise the ERROR condition. The ERROR condition terminates
your job unless you have specified otherwise (e.g., ON ERROR GO
TO CONTINUE;). The SUBSCRIPTRANGE condition is a useful
debugging tool, for it is during the program checkout phase that you
are most likely to inadvertently specify a subscript that references a
nonexistent position of an array.

/' ' SUBSCRIPTRANGE condition available

Subset language No

Full language Yes

In those compilers for which SUBSCRIPTR1~.NGE is not available,
extra care must be taken by the programmer to guard against referencing
a position outside of the declared array. This is particularly true if the
programmer is specifying the array as a receiving field. For example:

DCL TABLE(5);
K=50;
TABLE(K) =0;

In this case, zero will be assigned TABLE(50), which is not part of
the declared array. Typically, any position outside of an array could still
be part of your program; hence, the value assigned destroys perhaps
part of an instruction or another data item. Often, this kind of destruc
tion causes a program to "hang-up." The computer may simply "stop"
and the programmer has no clues as to "what went wrong."

180 PL/I Programming

Subscript Expressions. In addition to constants and variables, any
valid PL/I arithmetic expression may be specified as a subscript. For
example:

T=TEMPERATURES(J-1 +K);
'-v-'

.____ ___ ~ Subscript expression

Subscripted Subscripts. Subscript expressions may include sub
scripted items resulting in nested subscripts. For example:

DCL X(5) IN IT(10,20,30,40,50);
DCL Y(3) INIT(3,2,1);
1=3;
Z=X(Y(I));

'-v--1

.__ ___ ~ Y(I) is the subscript expression for X;
Y(I) is actually Y(3) because I = 3;
the value of Y (3) is 1

------ Because the subscript expression of
X results in a value of 1, it is X(1) that
is assigned to Z

......_ ______ Because X(1) contains the value of
10, z = 10

A case where nested subscripts are extremely useful is illustrated in
Problem 3 at the end of this chapter.

Cross Sections of Arrays

So far we have seen that a subscript is an element expression
specifying a location within a dimension of an array. A subscript may
also be an asterisk, in which case it specifies the entire extent of the
dimension. This extent is referred to as a cross section of an array.

A subscripted name containing asterisk subscripts represents not
a single data element, but rather a larger part of the array. For example,
assume PERCENT has been declared as follows:

DCL PERCENT(3,4);

PERCENT(*, 1) refers to all of the elements in the first column of the
array. It specifies the cross section consisting of PERCENT (1, 1),
PERCENT(2,1), and PERCENT(3,1). PERCENT(2,*) refers to all of

DO's and Dimensions 181

the data items in the second row of the array [i.e., PERCENT(2,1),
PERCENT(2,2), PERCENT(2,3), and PERCENT(2,4)].

As an illustration of how cross sections of arrays may be useful
in manipulating data, the following arrays are declared:

DCL PERCENT(3,4), PRICE(3), TOTALS(3);

Assume the arrays pictured below have been assigned the values
shown in the various elements.

Percent
t
I (1)

e (2)
m

1
(3)

(1) (2) (3)

0.04 0.02 0.04

0.06 0.03 0.05

0.05 0.03 0.06

~--- Salesman

(4) Price Totals

0.03 (1) 4.00

0.04 (2) 2.50

0.05 (3) 3.60

The PERCENT array represents commission rates various salesmen
receive for three different items they sell. To find the commission paid to
salesman 4 for selling a single unit of each of the three items, the follow
ing could be coded:

TOTALS= PERCENT(*,4)*PRICE;

Each element in the fourth column of the PERCENT array is multiplied
by the corresponding element of the PRICE array, and the product is
assigned to the corresponding element of the TOTAL array. Note
that a cross section of an array is considered to be an array expression;
thus, any other array appearing in an arithmetic operation with the
cross section must have the same bounds and dimension as the cross
section.

f
Cross sections of arrays

\

Subset language No

Full language Yes

182 PL/I Programming

1/0 Operations and Arrays

In the absence of explicit element specifications, data items are
read into arrays starting with the lowest numbered subscripted element
and finishing with the highest subscripted element. For example:

DCL TEMP(20) PIC'999V9';
GET LIST(TEMP);

Columns 1-4 will be read into TEMP(1), columns 5-8 into TEMP(2),
and so on, to columns 77-80, which are placed in TEM P(20).

If a multi-dimensional array is specified, then the right-hand
subscript varies most rapidly. For example, if the array

DCL AMT(20,4) CHAR(1);
GET LIST(AMT);

is defined, data is read into the AMT array elements in this order:

AMT(1,1)
AMT(1,2)
AMT(1,3)
AMT(1,4)
AMT(2,1)
AMT(2,2)
AMT(2,3)
AMT(2,4)
AMT(3,1)

AMT(20,3)
AMT(20,4)

Data items are assigned to an array in row major order; that is, with the
rightmost subscript varying most rapidly. Here is an example for a
three-dimensional array:

DCL TABLE(2,3,4);
GET LIST(TABLE);

.___ ____ As many data items are read as

necessary to fill the entire array

DO's and Dimensions 183

To determine the number of elements in the above array, simply
multiply each bound by the next: 2*3*4=24 elements. Elements of
this array will be filled in the following order:

TABLE(1,1,1)+- First position filled
TABLE(1,1,2)
TABLE(1,1,3)
TABLE(1,1,4)
TABLE(1,2,1)
TABLE(1,2,2)
TABLE(1,2,3)
TABLE(1,2,4)
TABLE(1,3,1)
TABLE(1,3,2)
TABLE(1,3,3)
TABLE(1,3,4)
TABLE(2,1,1)
TABLE(2,1,2)
TABLE(2,1,3)
TABLE(2,1,4)
TABLE(2,2,1)
TABLE(2,2,2)
TABLE(2,2,3)
TABLE(2,2,4)
TABLE(2,3,1)
TABLE(2,3,2)
TABLE(2,3,3)
TABLE(2,3,4)

The INITIAL Attribute for Arrays

Here are some examples of the INITIAL attribute applied to the
declaration of arrays:

DCL A(50) FIXED INITIAL(O);

.__I -~i Value to be placed into
first element of the array

Only the first element, A(1), will be initialized to a value of zero. If

184 PL/I Programming

it is desired to initialize the entire array to zeros, then an iteration
factor must be specified.

DCL A(50) FIXED INITIAL((50)0);

I L_) Element value

~ Iteration factor

DCL 8(9,9) INIT((81)-1);

~------- Initialize entire array
to minus one

Here are some general rules for using the INITIAL attribute to
initialize arrays:

1. Only one constant value may be specified for an element
variable. More than one value may be given for an array.

2. Constant values specified for an array are assigned to successive
elements of the array in the order where the right-hand subscript
varies most rapidly. The example

DECLARE A(2,2) IN ITIAL(1,2,3,4);

results in the following:

A(1,1)~1

A(1,2) ~ 2
A(2,1)~3

A(2,2) ~ 4
or

A (1) (2)

(1)

(2)

rn
~

If too many constant values are specified for an array, excess
ones are ignored; if not enough are specified, the remainder
of the array is not initialized.

3. Each item in the list may be a constant or an iteration specifica
tion. The iteration specification has one of the following general
forms:

(iteration factor)
(iteration factor)

constant
(item [,item] ...)

The iteration factor must be a decimal integer constant equal to
or greater than one.

4. If only one parenthesized decimal integer constant precedes a
string initial value, it is interpreted as a repetition factor for the

DO's and Dimensions 185

string. If two appear, the first is taken to be an initialization
iteration factor, and the second, a string repetition factor. For
example:

DCL TABLE(10) CHAR(2) INIT((2)'A');

causes the first element of the array TAB LE to be initialized to
the character-string value AA because (2) 'A' is equivalent to
'AA'. Should it be desired to initialize the first two elements of
TABLE, then the following statement would be specified:

DCL TABLE(10) CHAR(2)
INIT((2

1

) (~;

~----+ Repetition factor gives a character
string value of 'AA'

i Iteration factor specifying number
of array elements to be initialized

5. If it is desired to skip certain elements of an array during initial
ization, an asterisk may be specified to indicate the skip. For
example:

DCL A(3) INIT(10,*,30);

Here, A(1) will be initialized to 10, A(3) will be initialized to 30,
and A(2) will not be initialized.

Array Assignment

There are two types of move operations that may be specified for
arrays: scalar-to-array and array-to-array.

Scalar-to-Array. In this type of array assignment, an entire array
is assigned a single (scalar) value. For example:

DCL MONTHS(12) FIXED(4,1);
MONTHS=O;

Each element in the MONTHS array will be set to zero. To assign a
value to a single element of the array, a subscript must be specified.
For example:

MONTHS(5) = 72.6;

Array-to-Array. In this case, one array may be moved (assigned) to

186 PL/I Programming

another array, providing the arrays have identical bounds. For example:

DCL A(5,5), 8(5,5);
A=O; /* SCALAR-TO-ARRAY ASSIGNMENT */
B=A; /*ARRAY-TO-ARRAY ASSIGNMENT*/

Array Expressions

An array expression is an expression whose evaluation yields an
array result. All operations performed on arrays are performed on an
element-by-element basis. All arrays referred to in an array expression
must have identical bounds.

Prefix Operators and Arrays. When a prefix operator is specified
for an array, the result is an array of identical bounds in which each
element is the result of the operation having been performed. For
example:

If A is the array 1 3 -5

4 -2 -7

6 12 13

then -A is the array -1 -3 5

-4 2 7

-6 -12 -13

Infix Operators and Arrays. When an infix operator is specified
for an array and a scalar variable, the result is an array of identical
bounds in which each element is the result of the infix operation having
been performed. For example:

If A is the array 5 10 15

20 25 30

then A*5 is the array

Here is another example:

If A is the array

then A+ 2 is the array

DO's and Dimensions 187

25 50 75

100 125 150

~
~

~
~

All operations on the array are performed on an element-by-element
basis in an order in which the rightmost subscript varies most rapidly.
To illustrate the effect of this order of operations, assume

A is

If the statement

~
~

A=A*A(1,2);

is specified, the result is the following array:

A is 2 4 12

16 20 24

Note that the original value for A(1,2), which is 2, is used in evaluation
for only the first two elements of A. Since the result of the expression
is assigned to A, changing the value of A, the new value of A(1,2) is
used for all subsequent operations. The first two elements are multiplied
by 2, the original value of A; all other elements are multiplied by 4,
the new value of A(1,2).

188 PL/I Programming

When an infix operator is specified for two arrays, both arrays
must have the same number of dimensions and identical bounds.
The result is an array with dimensions and bounds identical to those of
the original arrays; the operation is performed upon the corresponding
elements of the two original arrays.

If A is the array 2 4 3

6 1 7

4 8 2

and if B is the array 1 5 7

8 3 4

6 3 1

then A+ B is the array 3 9 10

14 4 11

10 11 3

and A* B is the array 2 20 21

48 3 28

24 24 2

Data Conversion in Array Expressions. The examples in this
discussion of array expressions have shown only single arithmetic

1il

:t
' 1l

!t

DO's and Dimensions 189

operations. The rules for combining operations and for data conversion
of operands are the same as those for element operations.

Arrays and the LABEL Attribute

Usually, arrays are used to manipulate arithmetic data or perhaps
character- or bit-strings. However, it is also possible to declare an
array to have the LABEL attribute, in which case each element of the
array may contain a label. For example:

DCL X(4) LABEL INITIAL(READ,WRITE,CALC,ERROR);
READ: GET LIST(A,B);

IF A=O THEN GO TO X(1);
ELSE IF A> B THEN GO TO X(2);
ELSE IF A< B THEN GO TO X(3);
ELSE GO TO X(4);

WRITE: PUT SKIP LIST(A, B);
GO TO READ;

CALC: Y =A*B/100;
PUT SKIP LIST(A,B,Y);
GO TO READ;

ERROR: PUT SKIP LIST('ERROR', A,B);
GO TO READ;

Here is another capability of the LAB EL attribute and arrays
available only in the full language.

DCL L(4) LABEL;

1=3;
GO TO L(I);

Notice that the L array was not initialized. Instead, the subscripted

190 PL/I Programming

array names may be the actual labels of PL/I statements. For example:

I

L(1): M=N+1;

L(2) : M = N -2;

L(4): M=N/2;

.____-------The system builds into the L array the
addresses of these subscripted labels

Allows subscripted labels to be affixed to a
statement [e.g., L(1) : M=N+1 ;]

Subset language No

Full language Yes

Array Manipulation Built-in Functions

Built-in functions are subroutines that extend the basic facilities
of the PL/I language. These small programs are called built-in because
they are standard with the PL/I language and have the attribute
BUILTIN. The built-in functions we are going to examine here are
those functions that facilitate the manipulation of array data.

Two of the array built-in functions (ANY and ALL) require bit-

DO's and Dimensions 191

string arguments. All other array functions require floating-point data
format arguments. For example:

TOTAL= SUM (ARRAY);

I._ _____ , Generally, the array argument
will be converted to floating-point
if it is not in that form*

--------- Built-in function to find the sum
of all elements in an array

.__ ___________ The result is assigned to this
variable

All of the functions require array name arguments and return, as a
result, a single value. Because only a single value is returned from these
functions, a function reference to any array function is an element
expression as contrasted with an array expression, which has been
previously discussed.

The SUM Built-in Function. This function finds the sum of all
the elements in an array. For example:

DCL GRADE(5) FIXED(2) INIT(90,85,76,93,81);
AVERAGE=SUM(GRADE)/5;

L The array argument

Built-in function name

~--------~ Result is assigned to AVERAGE

A word of caution is given to the commercial programmer. In
compilers the arguments to these built-in functions will be converted
to floating-point (if they are not in that form) before the function is
invoked. The results of calculations performed on floating-point data

*In the optimizers and checkout compilers, the function is done in the scale of the argument.

192 PL/I Programming

may not be accurate to the degree that you would like. For example,
assume the following values are to be summed :

43.10
57.38

9.10
109.58

However, if the following had been coded:

DCL TABLE(3) FIXED(5,2);
DCL TOTAL FIXED(7,2);
GET LIST (TABLE);
/* ASSUME TABLE (1) =43.10

TABLE (2) =57.38
TABLE (3)=9.10 */

TOTAL= SUM (TABLE);

with the above set of values which will be converted to floating-point
for the SUM function, TOTAL would contain the value 109.57. This
result is not correct-it is a penny off. The problem, of course, is in
decimal-binary conversion and back, and has nothing to do with the
adequacy of the programming of the conversion routines. To obtain
the correct answer, it would be necessary to code the following:

TOTAL=SUM(TABLE) + .005;

The .005 rounds off the intermediate floating-point result to give the
correct answer-in this case, 109.58. The best solution in this type of
problem is to stay in decimal; and if this is done, then the SUM
function cannot be used.

The PROD Built-in Function. This function finds the product of
all the elements of an array. For example:

DCL ALIST(5) INIT(1,2,3,4,5);
PRODUCT= PROD(ALIST);

I I , The array argument

~ Built-in function name

.._ _______ ----+ Result is assigned to PRODUCT

DO's and Dimensions 193

The statement invoking the PROD function is equivalent to the
following arithmetic operation:

PRODUCT =ALIST(1)*ALIST(2)*ALIST(3)*ALIST(4)*ALIST(5);

The computation is always carried out in floating-point arithmetic in
the subset language and PL/1-F. In the other compilers, arithmetic is
done in the scale of the argument.

The POLY Built-in Function. This function is used to form a
polynomial expansion in floating-point from two arguments. For
example, assume the GRADE array has been declared and initialized
to the following values:

Grade (1) 90
(2) 85

(3) 76

(4) 93
(5) 81

Then, if the statements

X=10.5;
ANSWER= POLY(GRADE,X);

I I_} An element variable

L__ Must be a one-dimensional
array

.....___ _____ --+ Built-in function name

.___ _________ """" Result is assigned to ANSWER

are coded, the following arithmetic operations are performed:

90 + 85X + 76X2 + 93X3 + 81 X4

The values, 90, 85, etc., are the values contained in the GRADE array,
and X is a constant value defined in the second argument of the

194 PL/I Programming

POLY function. The result, then, may be expressed as

where

n-m

I a(m + j) * x ** j
i=O

a is the first argument (a one-dimensional array)
x is the second argument
m is the lower bound of the a array
n is the upper bound of the a array

It is also permissible to specify the second argument, x, as a one
dimensional array. In that case, the value returned by the POLY
function is defined as,

a(m) +I [a cm+ j) • :ft x{p + i~

where a, x, m, and n are the same as defined above and p represents
the lower bound of the second argument.

The ALL Built-in Function. This function is used to test all bits
of a given bit-string array. If all bits in the same position within each
element are '1 'B's, then the result is a '1 'B; otherwise, the result is
a 'O'B. You may recognize this operation as being the same in logic as
the rules of the Boolean AND operation. Here is an example:

DCL BIT _ARRAY(4) BIT(6);
DCL RESULT BIT(6);
RESULT=ALL(BIT _ARRAY);

'-----~) Argument must be an array; if
the elements are not bit-strings,
they are converted to bit-strings

Built-in function name

Resulting bit-string is assigned
to RESULT

Assume that the BIT _ARRAY elements have b~en initialized to the

DO's and Dimensions 195

following bit-string configurations:

BIT _ARRAY (1) 0 1
(2) 0 0
(3) 0 0
(4) 0 0

RESULT 0 0

~--------->When all bits are '1'B's,
the resulting bit is a '1 'B

The ANY Built-in Function. This function is used to test the bits
of a given bit-string array. If any bits in the same position of the elements
of an array is a '1 'B, then the result is a '1 'B; otherwise, the result is
'O'B. You may recognize this operation as being the same in logic as the
Boolean OR operation. Here is an example:

DCL BIT _ARRAY(4) BIT(6);
DCL RESULT BIT(6);
RESULT=ANY(BIT _ARRAY);

l.__ ____ i Argument must be an array; if
the elements are not bit-strings,
they are converted to bit-strings

'---------~ Built-in function name

.__ _________ ---+ Resulting bit-string is placed
here

Assume that the BIT _ARRAY elements have been initialized to the
following bit-string configurations:

BILARRAY (1)

(2)

(3)

(4)

196 PL/I Programming

RESULT

l._ _____ l_ l_ I ____ , When any of the bits is a

'1 'B, the resulting bit is
a TB

Assume that the temperature for each day of a given year has been
punched into a card. It is desired to input these values and find the
mean (average) temperature for the year. The statements to accomplish
this are simple. First, we begin by declaring an array to contain the
year's daily temperatures as well as a single variable to contain the
mean:

DCL TEMPERATURES(365) FIXED(4, 1);
DCL AVERAGE_ TEMPERATURE FIXED(4, 1);

Next, it would be necessary to read the values into the array. This
can be accomplished with the following GET LIST statement:

GET LIST(TEMPERATURES);

Notice that only the array name is specified in parentheses following
the keywords GET LIST. In this case, data items will be read from the
input stream until the entire array has been filled with data or an
end-of-file condition is detected. Here, it would not be desirable to
have an end-of-file condition detected before the entire array was set
equal to the daily temperatures for the year. The next step is to find
the average yearly temperature. This is easily accomplished through
the use of the SUM built-in function :

AVERAGE_ TEMPERATURE=SUM(TEMPERATURES)/365;

The above problem becomes a bit more complex if it is desired
to write a generalized program that takes into account the number of
days in leap year (366) as well as the number of days in a non-leap
year (365). To do this, our program must first determine the number
of days in the year for which the average temperature is to be found.
Assume that YR is an identifier containing the year for which the mean
is to be found. Leap years are those years whose dates are evenly

1:
~ ·~:

:~ :'I

.if

DO's and Dimensions 197

divisible by four [i.e., 1972, 1976, 1980, etc.-except for century
years (i.e., 2000 is not a leap year)]. Thus, if any given year is divided
by 4 and there is no remainder from the division, we know that the
year is a leap year. There is a built-in function that facilitates the
testing of a remainder after a divide operation. The function is called
MOD (for modulo). For example:

Y = MOD(YR,4);

I ~Divisor
~Dividend

Built-in function name

.___ __________ Remainder of YR/4 is placed into Y,

providing that YR is positive

The purpose of the MOD function is not to obtain a remainder, but to
return the smallest positive number that must be subtracted from the
first argument in order to make it exactly divisible by the second argu
ment. This means that if the first argument is positive, the returned
value is the remainder resulting from a division of the first argument by
the second. If the first argument is negative, the returned value is the
modular equivalent of the remainder. For example, MOD(-29,6)
returns the value 1 :

then,

6 - 5 = +1

-4
6 l-29

-24
-5 Remainder

.___ ____ Result returned by MOD

.__ _______ -5 was the remainder after division

'----------Divisor

198 PL/I Programming

To determine the number of days in the year, then, we could code
the following statements:

IF MOD(YR,4)=0 THEN LIMIT=1;
ELSE LIMIT =0;

NO_ DAYS=365+ LIMIT;

However, as the solution to this problem is developed, you will see
that we need to have the variable LIM IT contain the number of days
in February. Thus, the following coding will be used :

IF MOD(YR,4) =0 THEN LIMIT=29;
ELSE LIMIT=28;

NO_DAYS=337+ LIMIT;

(The constant 337 was selected because that is the number of days
in the months of the year excluding February.) It will be necessary to
declare the TEMPERATURES array with enough elements to include
the extra day in leap year. For example:

DCL TEMPERATURES(366) FIXED(4, 1);

If we wish to read temperatures into this array using the statement

GET LIST(TEMPERATURES);

366 values will be taken from the input stream and assigned to the
corresponding elements of the array. A total of 366 values will be read,
because that is the declared length of the TEMPERATURES array.
However, for a non-leap year, we would only want to read 365 values.
The problem, then, is how do we write a program that will input 365
values on one occasion and 366 values on another occasion? The
iterative DO statement provides a simple solution. There are three
general forms of the DO statement:

DO's and Dimensions 199

/
Example Comment

Type 1 DO; This DO-group is
noniterative;
generally, it is
executed only

END; once

Type 2 DO WHILE(expression); Used to specify
repetitive execu -
tion of the state-
ments within the

END; group

Type 3 DO i = n TO j BY k WHILE (expression); Used to specify
repetitive execu -
tion of the state-
ments within the

END; group
\..

The DO-Group-Noniterative

Type 1 has already been explained in Chapter 2. Recall that this
DO-group is to be treated logically as a single statement. It is used
in an IF statement to specify a group of statements to be executed in
the TH EN clause or the ELSE clause.

The DO WHILE

Type 2 is the DO WHILE statement. It specifies that the instruc
tions contained between the DO and its corresponding END are to be
executed repetitively as long as the expression following the WHILE
is true. For example, in controlling the number of temperatures to be
summed, we could code the following (recall that NO_ DAYS has

200 PL/I Programming

previously been set to either 365 or 366, depending on whether or
not we are reading data for a leap year) :

1=1;
TOTAL=O;
DO WHILE (I<= NO_ DAYS);
TOTAL= TOTAL+ TEMPERATURES(!);
1=1+1;
END;
AVERAGE_ TEMPERATURE= TOTAL/NO_ DAYS;

The statements contained in the DO-group will be executed a repetitive
number of times; they will be executed as long as "I" is less than or
equal to the limit found in NO_ DAYS. The expression following the
WHILE is tested before any statements in the DO-group are executed.
Thus, it is possible that the statements following a DO WHILE and
terminated with an END may never be executed. This would occur
when the expression tested is false. When using the DO WHILE, a
program must always provide, in some way, for the modification of
the expression following the WHILE, so that eventually the expression
is no longer true. Do you see what would happen had the statement

1=1+1;

not been included in the above example? It is obvious that the pro
gram would be caught in an interminable loop. One solution to the
problem could be to use this form of the DO WHILE:

DO 1=1 BY 1 WHILE(I< =NO_ DAYS);

Here is another example of the DO WHILE:

DCL SWITCH BIT(1) INIT('1 'B);
DO WHILE(SWITCH);

END;

~I ---~i As long as SWITCH is true (i.e.,
='1'B), the DO-group will be
repetitively executed

The DO-Group-Iterative

The format of the type 3 DO solves our problem of reading data
using GET LIST where the number of input values may be either 365

DO's and Dimensions 201

or 366. Here is one solution :

DO 1=1 TO NO_DAYS;
GET LIST(TEMPERATURES(I));
END;

Before continuing with the calculation of the average temperature
problem, let us pause to consider the DO statement in more detail.
Note the terminology used to describe various parts of the iterative DO:

DO 1=1TO10 BY 1;

I 1-i- Modification value

~Keyword
Limit value

..___ _______ Keyword

'-----------~Initial value

..___ _________ Control variable

'--------------+ Keyword

The iterative DO statement performs the following steps in the sequence
listed:

1. Initialize the control variable: This variable (I, in the above
example) will be set equal to the initial value (1, as specified
above). Greater program efficiency results if you select a
FIXED BINARY identifier for your variable. You may not modify
this variable inside the DO-loop, although it is permitted to
reference it on the right side of the assignment symbol.

2. Test control variable: If the control variable is less than or
equal to the limit value, execute the sequence of statements that
follow the DO; otherwise, transfer to the statement following the
END statement that terminates the DO.

3. Execute statements following the DO: The statements headed
by the DO and terminated by the END are executed.

4. Modify control variable: The rnodificationovalue is added to the
control variable. Using the example above, the constant 1 is
added to the contents of I. After the modification of the control
variable, return to step 2.

202 PL/I Programming

Consider the value of the control variable each time through the
loop. For example, in the statement

DO K=1 TO 100 BY 5;

the first time through the loop, K will be equal to 1. The second time
through the loop, K will be equal to 6. Recall that the modification
value, in this case 5, is to be added to the control variable (5 + 1 = 6).
The third time through the loop, K will be equal to 11. The last time
through the loop, K will be equal to 96. When the modification value
of 5 is added to K, K becomes 1 01 . Then, when the test on the control
variable is performed, the DO-loop is terminated, because K is greater
than the limit value.

The preceding explanation of the steps performed in a DO-loop
apply when the modification value is positive. It is also possible to
specify a negative modification value, in which case a "count down"
operation is in effect. For example, in the loop

DO K=60 TO 1 BY -1;

END;

the steps performed would be the following:

1. Initialize K to 60.
2. Test K: If the control variable is greater than or equal to the

limit value, execute statements that follow the DO; otherwise,
transfer to the statement following the END. (In the above
example, when the loop is terminated, K will be equal to 0.)

3. Execute statements following the DO.
4. When END is encountered, modify K by -1. Then, return to

step 2.

So far, you have been introduced to this form of the DO:

DO I= 1 TO 100 BY 1;

Notice in the following variation of the above DO statement that the
BY 1 and the TO 100 have been reversed:

D 0 I = 1 BY 1 TO 1 00 ;

DO's and Dimensions 203

Also, if the modification value is a 1, it is not necessary to specify it.
For example, the statement

DO 1=1 TO 100;

END;

accomplishes the same number of iterations as if

DO I= 1 TO 100 BY 1 ;

END;

had been coded. Or, the limit value may be omitted from the DO. For
example:

DO 1=1 BY 1;

END;

In the above, the termination of the DO-group must be accomplished
by other coding within the DO, as there is no comparison made with a
limit value. However, if there is no other coding to terminate the DO,
the control variable will eventually be increased to the point where an
overflow (FIXEDOVERFLOW or OVERFLOW) condition is raised.

In a DO, the initial value, the limit value, and the modification
value may be specified in the form of constants, variables, or expressions.
In addition, these values may be whole numbers, fractions, or mixed
numbers, and they may be positive or negative. Here are some examples:

DO l=K*2 TO K*5 BY J-4;
DO A= .1 TO 1 BY .1;
DO B=1.5 TO 10 BY .025;
DO J=5 TO -5 BY -1;

204 PL/I Programming

Here is another variation of the DO-it makes use of the multiple
specification:

DO ICNT=1 TO 10, 21 TO 30, 41 TO 50;

,__ ___ Implied DO ICNT = 21 to 30;

END;

In this example, the loop would be executed 30 times. ICNT goes from
1 to 10; then ICNT is initialized to 21 and goes to 30; finally, ICNT is
set to 41 and goes to 50 in the loop. Upon exit from the loop, ICNT
would contain the value of 51. Note that it is not necessary to specify
any numeric sequence or pattern in this form of the DO. For example:

DO K=1 TO 5, 8 TO 18 BY 2, 50 TO 55, 40 TO 44;

END;

Another form of the DO is shown below:

DO J = 1,8,9, 11,6, 13;

END;

The statements in th~ above DO-loop will be executed a total of six
times. The first time through the loop, J will be a 1 ; the second time,
J will be an 8; the third time J will be a 9; etc. Upon exit from the loop
J will be a 13.

It is also possible to include the WHILE option with the iterative
DO we have been examining. For example:

DO K= 1 TO 10 WHILE(X> 100);

END;

As in the case of the iterative DO, the expression following the WHILE
is tested before statements following the DO are performed. If the
expression is true, the DO-loop will be executed. If X remains greater

DO's and Dimensions 205

than 100, the loop will be performed a maximum of ten times. However,
if the expression is false, in this example, when X< = 100, then there
is a transfer to the statement following the END statement.

In the following example, the DO specifies that the group is to be
executed at least ten times, and then (providing that A is equal to B)
once more:

DO 1=1TO10, 11 WHILE(A=B);

END;

If "BY O" were inserted after the 11,

DO 1=1 TO 10, 11 BY 0 WHILE(A=B);

END;

then execution would continue with I set to 11 as long as A remained
equal to B. Note that a comma separates the two specifications. A
succeeding specification is considered only after the preceding specifi
cation has been satisfied.

Nested DO-Groups

DO-groups may be nested within other DO-groups. For example:

DO 1=1 TO 99;
DO J=l+1 TO 100;

END;

END;

All statements in the range of the inner DO must be within the range of
the outer DO. This arrangement of DO-groups is referred to as nested

206 PL/I Programming

DO-groups and takes the following form (brackets are used to indicate
the range of the DO-groups) :

~gg
~DO

The following configuration is not valid:

ir==DO

L==DO

It is possible to transfer out of a DO-group before the maximum number
of iterations have been performed. However, the rules of the PL/I
language are that it is not permitted to transfer to a statement in an
iterative DO-group.

For an example of nested DO-groups, let us return to the problem
of calculating the average temperature for the year. Recall that all
temperatures for the year are in the TEMPERATURES array. TEMPERA
TURES(1) through TEMPERATURES(31) contain the daily tempera
tures for the month of January; TEMPERATURES(32) through either
TEMPERATURES(59) for non-leap year or TEMPERATURES(60) for
a leap year contain the daily values for the month of February; and
so on. Assume it is desired not only to find the average yearly tempera
ture but also to calculate the average monthly temperature. The average
temperature for each month is to be placed into a 12-element array
called MONTHS. Recall, also, that it was the MOD function that
established the number of days in February. For example:

IF MOD(YR,4)=0 THEN LIMIT=29; ELSE LIMIT=28;

The identifier LIM IT contains the number of days in February. Now
let us look at the nested DO-groups needed to calculate average
monthly temperatures:

J=1;
M=1;

OUTER: DO K=31,LIMIT,31,30,31,30,31,31 ,30,31,30,31;
TOTAL=O;

DO's and Dimensions 207

INNER: DO L=M TO K+M-1;
TOTAL=TEMPERATURES(L) +TOTAL;
END INNER;

MONTHS(J) = TOTAL/K;
J=J+1;
M=L;
END OUTER;

The variable J is used to identify the month for which the average
temperature is being calculated. Thus, J will start at 1 and go to 12.
The variable M is used to identify the julian dayt. It will start at 1 and
go up to 365 or 366.

The outer DO statement consists of 12 specifications; each
specification represents the number of days in each month beginning
with January. The DO-group will be executed 12 times, because 12
specifications are listed. The variable TOTAL is used to accumulate
each month's temperatures.

The inner DO-group sums the temperatures for a given month.
(Note the expression specified for the limit value in the inner DO.)
When all the values for a given month have been accumulated, there
is a transfer out of the inner DO. The transfer is to the statement in the
outer DO that calculates the average monthly temperature and assigns
that value to the corresponding position of the MONTHS array [e.g.,
MONTHS(1) contains the January average temperature, MONTHS(2)
contains the February average temperature, etc.]. The variable J is
then incremented to point to the next month for which the mean is to
be found. The variable M is set equal to L, where L is pointing to the
next sequential numbered day in the year. When the

END OUTER;

statement is encountered, K is set equal to the next specification in
the DO, and there is a transfer to the statement

TOTAL=O;

The nested DO-groups are concluded when the mean has been found
for each of the 12 months in the year.

Figure 4.1 summarizes the allowable forms of the DO statement.

t Julian day numbers are the days of the year numbered consecutively; e.g., julian day
"32" would be February 1 .

~
from TO BY WHILE Example Explanation

0 0 0 0 DO; Merely delimits a group

0 0 0 w DO WHILE (X>O); Do-group performed only
if WHILE is true

0 All other combinations with the from omitted are invalid

w w w w DO 1=1 TON BY 2 WHILE If the WHILE is true, re-
(X>O); peat DO-group a maxi-

mum of N /2 times

w w w 0 DO I= 1 TO N BY 2; Without the WHILE speci-
assumed to fied, it is implied to be

be true true; hence, repeat DO-
group a maximum of
N/2 times

w w 0 0 DO 1=1 TON; Repeat DO-group a maxi-
assumed to assumed to mum of N times; ex-

be 1 be true ample implies:
DO I= 1 TO N BY 1 ;

w 0 0 0 DO 1=2; Execute DO-group once;
assumed to assumed to assumed to the example implies the

be the be 1 be true following DO:
same as DO I= 2 TO 2 BY 1
from WHILE(O=O);
value

w 0 w w DO I =2 BY 2 WHILE Repeat DO-group as long
(X>O); as WHILE is true; DO

is stopped by " not-
true" WHILE

w 0 w 0 D01=2BY2; The DO is stopped only
assumed to by other coding

be true

w 0 0 w DO I =2 WHILE (X>O); DO once if WHILE is
assumed assumed to true; example implies

from be 1 D01=2T02BY1
value WHILE (X>O);

w w 0 w DO 1=1 TON WHILE If the WHILE is true, re-
assumed to (X> 0); peat DO-group a maxi-

be 1 mum of N times

FIGURE 4.1 Allowable forms of the DO statement. (Key: W =written; 0 =not written.)

210 PL/I Programming

The term FROM used in the chart refers to the initial value assigned to
the control variable; i.e.,

DO 1=1 TO 50 BY 2 WHILE(A=1);

..__ ____________ The word from in

Figure 4.1 refers
. to the starting
value

The Repetitive Specification of a Data Item

In stream 1/0, data list elements may contain a repetitive specifica
tion which is similar to the iterative DO. For example:

GET LIST((TEMPERATURES(I) DO 1=1 TO NO_ DAYS)); r Each repetitive specification must tl
be enclosed in parentheses

Even if the repetitive specification is
the only element in the data list, this
outer set of parentheses is required

In the case of the repetitive specification of a data item, an END state
ment is not used to terminate the DO in the data list.

Repetitive specifications may be nested; that is, an element of a
repetitive specification can itself be a repetitive specification. Each
DO portion must be delimited on the right with a right parenthesis,
with its matching parenthesis added to the beginning of the entire
repetitive specification. For example:

GET LIST(((A(l,J) DO 1=1 TO 5) DO J=3 TO 7));

When DO portions are nested, the rightmost DO is at the outer level.
Thus, the above GET statement is equivalent to

DO J=3 TO 7;
DO 1=1 TO 5;
GET LIST(A(l,J));
END;

END;

Here is an example of several data list items containing repetitive
specifications:

GET LIST((A(l)DO 1=1 TO 50),(B(J),C(J)DO J=1 TO 12));

i

... i .. I .. :
Ji

,.1,

JI

DO's and Dimensions 211

Returning to the calculation of temperatures problem, Figure 4.2
shows a flowchart for a program that will read daily temperatures for a
given year and calculate the average yearly temperature. You have
already seen segments of the program given in Figure 4.3; the entire
program is shown to tie together those segments that were explained
in this chapter. The topics illustrated in the program include:

1. Array manipulation
2. Nested DO-groups
3. DO in STREAM 1/0
4. Initialization of arrays in a DECLARE
5. MOD and SUM built-in functions

Comments About the Program

Before studying the following comments, examine the program
shown in Figure 4.3. Some of the statements should be familiar to you,
so they will not be explained.

Statement 5. The SUM built-in function is used to total all values
in the TEMPERATURES array. It is necessary to initialize the 366th
element of this array to a zero value because on non-leap year, only
the first 365 elements will contain meaningful data. If we do not
initialize the 366th element, the value in TEMPERATURES(366) is
unpredictable.

Statement 10. The variable K is used as an index variable in state
ment 19. Normally, we would implicitly or explicitly declare index
variables to have the FIXED BINARY(15) attributes, for that is the most
efficient method. However, because K will subsequently be used in an
arithmetic operation (see statement 24), K was declared to have the
FIXED DECIMAL attributes. This avoids, in statement 24, having a
mixed data type of arithmetic operation. (See Chapter 2 for a review of
mixed data type operations.)

Statements 11-14. The year for which the subsequent temperature
data applies is read. Then the MOD function is invoked to determine
if YEAR is a leap year. Finally, NO_ DAYS is set equal to the number of
days in YEAR.

Statements 15-16. The GET LIST statement reads values into the
TEMPERATURES array, and the AVERAGE_ TEMPERATURE is com
puted.

Start

NO_DA YS=365

Calculate
average
yearly

temperatures

Calculate
average
monthly

temperature

END

Yes
NO_DA YS=366

If ENDFILE
detected before

all data read

END

FIGURE 4.2 Temperatures flowchart.

DO's and Dimensions 21 J

1 TEMPS: PROC OPTIONS(MAIN);
2 OCL CARDIN FILE INPUT STREAM ENV (f(80)MEOIUM(SYSIPT,2540)):
3 ON ENOFILE(CAROINl GO TO ABF.NO;
4 OCL TEMPERATURESf166) FIXED(4,l};
5 TEMPERATURESl366) = O;
6 OCL MONTHS(l2l FIXE0(4,U:
7 DCL AVERAGE_TEMPERATURE FIXE0(4,l);
8 DCL TOTAL FIXED(6,l);
9 DCL YEAR FIXE0(4};

10 OCL K FIXE0l3);
11 GET FILElCARDINllIST<YEAR):
12 IF ~OO(YEAR,4) = 0 THEN LIMIT=2q; ELSE LIMIT =28;
14 NO_DAYS = 337 + LIMIT;
15 GET FILEICARDIN)LIST((TEMPERATURES(I) DO I=l TO NO_DAYSll;
16 AVERAGE_TFMPERATURE = SUM(TEMPERATURES) I NO_OAYS +.05:
17 J = l;
18 M = 1;
19 OUTER: DO K=31,LIMIT,31,30,31,30,31,31,30,31,30,31;
20 TOTAL = 0;
21 INNER: DO L = M TO K+M-1;
22 TOTAL = TEMPERATUREStLt + TOTAL:
23 END INNER;
24 MONTHS(J} =TOTAL I K;
25 J = J + 1:
26 M = L;
27 ENO OUTER:
28 PUT LISTl'JANUARY 1 , 1 FERRUARY', 1 "4ARCH 1 ,'APRTL');
29 PUT SKIP LIST((MONTH5'.lll 00 I=l TO 4ll;
30 PUT SKIP(2lLIST('MAY 1 ;'JUNE 1 ,'JULY','AUGUST'l;
31 PUT SKIP LIST((MONTHS(I) DO 1=5 TO 8));
32 PUT SK IP(2)LT ST(' SEPTEMBER',' OC TOBFR', 'NOV EMBER',' OfCEMBfQ' l:
33 PUT SKIP LIST((MONTHS{ll DO 1=9 TO 12));
34 PUT LINE(l3tllST<'AVERAGE YEARLY TEMPERATURE IS'J:
35 PUT SKIP(2)LIST (AVERAGE_TEMPERATURE);
36 RETURN;
37 ABEND: PUT LISH'LESS TH.\N 365 TEMPERATURES WERE INPUT'):
38 FINI: ENO;

FIGURE 4.3 Sample program to calculate average temperatures.

Statements 17-27. This sequence of statements was explained
in this chapter under the heading "Nested DO-Groups." All the
temperatures for a given month are accumulated into the variable
TOTAL. Upon exit from the inner DO, TOTAL is divided by K, where
K is the number of days in a given month. In statement 10, K was
declared to have the FIXED attribute. Had K been allowed to default
to FIXED BINARY(15), and then been divided into TOTAL, which
has the attributes FIXED DECIMAL (6, 1), the accuracy of the average
monthly temperature would have been affected. For example, the
average monthly temperature (calculated on a desk calculator) would
be a value of 64.4; in PL/I where K is FIXED BINARY(15), TOTAL
is FIXED DECIMAL(6, 1), and TOTAL is divided by K, the quotient
would be 64.3. This error in accuracy is due to the mixed data types
in arithmetic operations. Recall that when FIXED BINARY data is
combined in arithmetic expressions with FIXED DECIMAL, the
DECIMAL base will be converted to BINARY. Thus, TOTAL will be

214 PL/I Programming

converted to FIXED BINARY. In the conversion, the fractional portion
of TOTAL may only be an approximation of the decimal fraction (e.g.,
.1 in decimal can only be approximated in binary; the binary equivalent
in this case will never be exactly equal to the decimal fraction). This
approximation of the fractions affects the accuracy of the result.
The solution to this problem is to avoid mixed data types in the same
arithmetic expression. Hence, K and TOTAL were declared as FIXED
DECIMAL, and we will obtain the accurate answer when the statement

MONTHS(J) = TOTAL/K;

is executed.

Statement 36. The RETURN statement causes the program to be
terminated. The statement

GO TO FINI;

could appear in place of the RETURN. Either statement accomplishes
the same function. RETURN indicates to "return to the calling program.,,
{The calling program in this case is the operating system.) The END,
when it is encountered as the logical end of the program, also accom
plishes a "return to the calling program" operation.

Statement 37. In the event that less than 365 temperatures are
specified in the input stream, the ENDFILE statement specifies a
transfer to this "abnormal ending" routine. Thus, an error message
will be printed and the program terminated.

Figure 4.4 shows the sample output from the temperatures calcu
lation program. Upon closer inspection of this output, you may be
wondering why the numeric values are not "lined-up" or left-justified
under the month's name. That is, the output is this:

not this:

JANUARY
65.4

JANUARY
65.4

The reason for the indentation of the temperatures under their respective
headings has to do with the rules for data conversion. The output

DO's and Dimensions

JANUARY FE6RUARY MARCH APRIL
60. 9 57.4 55.~ 63. 3

MAY JUNE JULY AUGUST
72.9 79.3 9~.5 91. 2

SEPTEMBER OCTOBER NOVEMBER DECEMBER
85.6 75.3 65. 8 66.0

AVERAGE YEARLY TEMPERATURE IS

72. IA

FIGURE 4.4 Output from sample program to find average
temperatures.

215

temperatures have the attributes FIXED DECIMAL (4, 1). The rule for
converting FIXED DECIMAL data to a character-string is this:

Character-string length = Precision of decimal value + 3

The constant of 3 was selected to allow room for the following :

1. A leading blank
2. A minus sign, if value is negative; otherwise, a blank for a

positive value
3. A decimal point, if the value is a mixed number

Thus, in Figure 4.4, we see the numeric data printed as character-strings
of length 7. To illustrate:

1 2 3 4 5 6 7 +-- Print positions

JANUARY
6 0 . 9
~ Decimal point insert

...__ ____) Leading zero on the data value (i.e.,

060.9) is automatically replaced by
a blank

Blank for positive values

Leading blank

216 PL/I Programming

"Now," said Rabbit, "this is a Search and I've organized it-"
"Done what to it?" said Pooh.
"Organized it. Which means-well, it's what you do to a
Search when you don't all look in the same place at once."

from The House at Pooh Corner
by A. A. Milne

The binary search technique is a method that may be used for locating
data in a table. As an illustration, assume that two tables are stored on
a direct access device. These tables consist of codes and corresponding
premiums. For example:

Codes (1) 107

(2) 137

(3) 243

(4) 375

(5) 491

(6) 503

(7) 620

(8) 745

(9) 847

Codes (10) 960

Premiums (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Premiums (10)

25.90

35.16

14.75

47.35

5.23

15.34

4.10

5.95

13.46

10.57

In an insurance application, each code in the table identifies a
specific type of coverage offered by the insurer. The corresponding
premium is the cost that the insured must pay for that coverage. Typi
cally, the tables in which the codes and premiums are stored are fairly
large, although only ten items are shown here for purposes of simplicity.

Assume that both tables (Codes and Premiums) are read into
main storage from the direct access device in the initialization phase of
the program. The codes in the table called "Codes" are referred to as
the table arguments. These codes are in ascending sequence.

Assume that it has been determined that several coverages are

DO's and Dimensions 217

to be included in a given insurance policy for a customer. Codes
indicating the types of coverage desired, along with the customer name,
are punched into a card; e.g.,

20 80

K. R. LUND 375: 24314911107
I I I
I I I
I I I
I I I
I I I
I I I

These card codes (a maximum of 20 per customer) are referred to as
the search arguments. The program reads each search argument from
the card and "searches" the codes table for an equal code. When
equality is found, the corresponding premium should be added to a
total. When all premiums have been summed up for a given customer,
the customer's name and total premiums due are printed. If a card
contains an invalid code (one not in the table), an error message is
printed and the card record is bypassed. The term table function is often
associated with table look-up techniques. The table function in this
case is the retrieval of the corresponding premium and the accumulation
of premiums to give a total for each customer. Because the purpose
of this case study is to illustrate the binary search technique, the
program keeps to a minimum the processing and formatting of output.

One method for locating a code in the codes table is to take the
search argument and compare it with each table argument, beginning
at the top of the table and sequentially continuing down the table
until either an equal compare occurs or the end of the table is reached.
Because the search arguments (card codes) are in random order, each
new search through the codes table must begin at the top of the
table. If the codes table contains 500 table arguments, the sequential
method of comparing is time-consuming. If the table arguments are
sequentially organized, as they are in the codes table, another way to
locate the desired code is to use the binary search method. In a binary
search, the technique is to take the search argument and compare it
with the middle table argument. For example, if there are 500 table
arguments, the search argument is to be compared with the 250th
table argument. If the search argument is greater than the table argu
ment, we know that the corresponding code for the search argument
must lie within the second half of the table. This method allows us to
eliminate searching half of the table with just one compare. Of course,

218 PL/I Programming

Table arguments

/ 107

Search argument .~ 137

- 243

375

491

(R. LUND 375

503

620

745

847

960

for this method to work, the table arguments must be sorted into
ascending sequence. The binary search method is so named because
the technique is to divide each remaining portion of the table in half
and compare the search argument with the table argument until an
equal compare occurs or the last compare has been made. What is
so striking about this method is that after two compares, three-fourths
of the table has been eliminated from the search.

Figure 4.5 illustrates a generalized algorithm for a binary search.
To see the logic of the algorithm, it is suggested that you select a
search argument and work through the flowchart using the ten
element codes table illustrated in the introduction of this case study.
Figure 4.6 illustrates a solution to the insurance premium calculation
program.

Comments About the Case Study·

Statements 4-9. The single variables and arrays are declared. The
array CODES will contain the table arguments and the array PREM
will contain the corresponding insurance premiums. The array CCODE
has been dimensioned for 20 elements, thereby allowing for up to
20 codes to be specified per customer.

Statements 10-12. The table arguments and premiums are initia
lized with data from input cards.

Set
LOW= MID+ 1

Search argument >
Table argument

Set LOW= 1

Set HIGH =
number of
elements

Set MID=

(LOW~ HIGH)

,.Compare,

Yes

Error
routine:

"code not
in table"

search argument Search argument =
with

table argument Table argument
/
Search argument <
Table argument

Set
HIGH= MID - 1

FIGURE 4.5 Algorithm for binary search.

Retrieve and
process
table

function

220 PL/I Programming

1 CASE: PROC OPTIONS(MAIN);
2 OCL CARD FILE INPUT STREAM ENVCFC801MEDIUM(SYSIPT,2540>l;
3 ON ENDFILEICARD)GO TO EOJ;
4 DCL NAME CHAR(20);
5 DCL CCODEC20) FIXE0(3);
6 DCL CMID,HIGH,LOWJ FIXE0(3);
7 DCL TOTAL FIXEDt5,2J;
8 DCL COOESllOI FIXEDC3J;
9 DCL PREM(lO) FIXED(5,2);

10 DO J = 1 TO 10;
11 GET FILECCARD)LIST(COOESCJl,PREM(J));
12 ENO;
13 Pl: GET FILE(CARD)LISTCNAME,CCODEJ;
14 TOTAL = O;
15 DO J = 1 TO 20;
16 IF CCOOE(J)=O & TOTAL -=O THEN GO TO PRINT;
17 IF CCODE(J)=O & TOTAL=O THEN GO TO Pl;
18 LOW= I;
19 HIGH = 10;
20 P2: IF HIGH < LOW THEN DO;
21 PUT SKIP LIST('UNABLE TO FINO CODE IN TABLE FOR•):
22 PUT SKIP LTST(CUSTOMER_RECORD);
23 GO TO Pl;
24 END;
25 MID= (LOW+ HIGH)/2;
26 IF CCODEC J) > CODESfMJD) THEN no;
27 LOW = MIO +l;
28 GO TO P2;
29 END;
30 IF CCOOE(J) < CODESCMIOl THEN DO;
31 HIGH = HID - l;
32 GO TO P2;
33 END;

I* RET~IEVE DATA & PROCESS *I
34 TOTAL = TOTAL + PREM(MIDJ;
35 ENO;
36 PRINT: PUT SKIP LISTCNAME,TOTAL);
37 GO TO Pl;
38 EOJ: ENO;

FIGURE 4.6 Solution for table look-up using binary
search technique.

Statement 13. A customer card is read. It contains the customer's
name and up to 20 codes indicating type of insurance coverage.

Statement 14. TOTAL is set to zero. The premiums due for each
type of coverage are accumulated into TOTAL.

Statement 15. A DO-loop is established to process a maximum of
20 codes.

Statement 16. When a code in the card is zero, it means that there
are no more search arguments in the input record. If TOTAL is nonzero,
then it is time to print the customer's name and total amount due in
premiums.

Statement 17. Should a search argument be zero and the TOTAL

DO's and Dimensions 221

is zero, then this card record is probably in error. It is simply by-passed.
In standard applications, however, it would be advisable to print an
exception message whenever a record is by-passed, because its format
does not match the expected format.

Statements 18-19. LOW and HIGH are initialized.

Statements 20-24. The relationship of HIGH to LOW is tested.
Should HIGH be less than LOW, then there was no corresponding
table argument for the specified search argument. In this case, an
error message is printed and there is a branch to the place in the
program (P1) where another card record is to be read.

Statement 25. The midpoint of the argument table is calculated.

Statements 26-33. The search argument is compared with the
table argument. The HIGH or the LOW point indicator is adjusted,
depending on the relationship between the search argument and the
table argument.

Statement 34. Should the search argument match the table argu
ment, then the data is to be retrieved from the PREM array and pro
cessed. The "processing" consists of simply accumulating the premium
into TOTAL.

Statement 35. This END statement terminates the DO in state
ment 15.

Statements 36-37. The customer's name and total amount due
is printed, and then control is returned to statement 13.

Statement 38. The program is terminated when the end-of-file
condition is encountered.

Arrays: An array is a table of data items in which each item has the same
attribute as every other item in the array. An array has storage reserved for it by
means of a DECLARE statement.

Bounds: In declaring the size of an array, a bound is specified. All arrays
have upper and lower bounds. When a single bound is specified, it is the upper
bound. The lower bound would then be assumed to be 1.

222 PL/I Programming

Dimensions: The number of sets of upper and lower bounds specifies the
number of dimensions in an array. In referring to two-dimensional arrays,
sometimes the terms rows and columns are used. Maximum number of
dimensions allowed in subset language is 3; in full language, 15.

Subscripting: We reference an element of an array by means. of a subscript
which appears in parentheses following an array name in an expression; e.g.,
TABLE(7) refers to the seventh element in the array called TABLE. Subscripts
may be constants, variables, expressions, or subscripted subscripts; e.g.,
TABLE(J(K)).

SUBSCRIPTRANGE Condition: In the full language PL/I compilers, refer
encing a location outside the bounds of the array will cause the SUBSCRIPT
RANGE condition to be raised if the condition is enabled. Because this con
dition is initially disabled, it will be necessary to enable the condition in your
program. The SUBSCRIPTRANGE condition is a useful debugging tool, for
it is during the program checkout phase that you are most likely to inadvertently
specify a subscript that references a nonexistent position of an array.

Cross Sections of Arrays: In the full language, a subscript may also be
an asterisk, in which case, it specifies the entire extent of the dimension. This
extent is referred to as a cross section of an array. A subscripted name containing
asterisk subscripts represents not a single data element, but, rather, a larger part
of the array; e.g., PERCENT(*, 1) refers to all of the elements in the first column
of the array called PERCENT.

1/0 Operations and Arrays: In the absence of explicit element addressing,
data items are read into arrays starting with the lowest numbered subscripted
element and finishing with the highest subscripted element. If a multidimensional
array is specified in an 1/0 statement, the right-hand subscript varies most
rapidly.

Array Assignments: There are two types of move operations that may be
specified for arrays-scalar-to-array and array-to-array:

1. Scalar-to-array: In this type of array assignment, an entire array is
assigned a single value.

2. Array-to-array: In this case, one array may be assigned to another
array, providing the arrays have identical bounds.

Array Expressions: An array expression is a single array variable or an
expression that includes at least one array operand. Array expressions may
also include operators (both prefix and infix), element variables, and constants.
Evaluation of an array expression yields an array result. All operations performed
on arrays are performed on an element-by-element basis. All arrays referred to
in an array expression must have identical bounds.

Arrays and the LABEL Attribute: Usually, arrays are used to manipulate
arithmetic data or perhaps character- or bit-strings. However, it is also possible

DO's and Dimensions 223

to declare an array to have the LAB EL attribute, in which case, each element of
the array may contain a label.

Array Manipulation Built-in Functions: All of these functions require
array name arguments, and they return, as a result, a single value. Because only
a single value is returned from these functions, a function reference to any
array function is considered an element expression, as contrasted with an array
expression. The array manipulation built-in functions include:

1. The SUM built-in function: This function finds the sum of all elements
in an array.

2. The PROD built-in function: This function finds the product of all the
elements of an array. Not available in the subset language.

3. The POLY built-in function: This function is used to form a polynomial
expansion from two arguments.

4. The ALL built-in function: This function is used to test all bits of a given
bit-string array. If all bits in the same position within each element are
'1 'B's, then the result is a '1 'B; otherwise, the result is a 'O'B.

5. The ANY built-in function: This function is used to test the bits of a
given bit-string array. If any in the same position of the elements of an
array is a '1 'B, then the result is a '1 'B; otherwise, the result is 'O'B.

The DO Statement: There are three general forms of the DO statement:

1. The DO-group-noniterative: Specifies that the DO-group is to be
treated logically as a single statement. It is most often used in an IF
statement to specify a group of statements to be executed in the TH EN
or ELSE clause.

2. The DO WHILE: Specifies that the instructions contained between the
DO and its corresponding END are to be executed repetitively as long as
the expression following the WHILE is true.

3. The DO-group-iterative: Specifies that instructions contained be
tween the DO and its corresponding END are to be executed repetitively
until the index variable is greater than the limit value; e.g., DO K = 1
to 100; when K = 101, loop is terminated. Review Figure 4.1 for a sum
mary of the various formats of the DO statement.

The Repetitive Specification of a Data Item: In stream 1/0, data list
elements may contain a repetitive specification which is similar to the iterative
DO: e.g.,

GET LIST((TABLE(K) DO K=5 TO 10));

Nested DO-Groups: DO-groups may be nested within other DO-groups.
All statements in the range of the inner DO must be within the range ef the
outer DO. It is possible to transfer out of a DO-group before the maximum
number of iterations have been performed. However, the rules of the PL/I
language are that it is not permitted to transfer to a statement in an iterative
DO-group.

224 PL/I Programming

1. In a DECLARE statement, how can you tell whether an attribute is a
precision attribute or whether it defines the number of elements in an
array?

2. In reference to an array, what are bounds?

3. When a lower bound is not specified in an array declaration, what is it
assumed to be?

4. (True or False) A one-dimensional array would appear differently in
main storage from the way a two-dimensional array of the same number
of elements would appear.

5. How do you reference individual elements of an array?

6. Under what circumstances will the SUBSCRIPTRANGE condition be
raised?

7. What will C contain when the following assignment statements are
executed?

DCL A(3) FIXED BINARY INIT(55,56,57);
DCL B(5) FIXED BINARY INIT(3,3,2,2,1);
K=2;
C=A(B(K));

8. Given the statement

DECLARE X(10);

which of the following statements are equivalent?
(a) GET LIST(X);
(b) GET LIST((X(K) DO K=1TO10));
(c) DO K=1 TO 10;

GET LIST(K);
END;

9. Given the declaration and input statement,

DECLARE TIC(3,3);
GET LIST(TIC);

what will TIC(2,3) contain if the input stream consists of these values
(in the order shown, reading from left to right) :

1, 2, 3, 4, 5, 6, 7,8, 9

10. (True or False) The following statement causes all elements of the
array to be initialized to zero:

DCL A(100) INIT(O);

DO's and Dimensions 225

11. Write the DECLARE statement to initialize all 20 elements of an array
called CODE. Each element is to be five characters long and contain the
alphameric characters

99999
Use the INITIAL attribute.

12. Write the DECLARE statement to initialize to zero only the first and last
elements of a five-element one-dimensional array. Use the INITIAL
attribute.

13. Is the following assignment statement valid? Why or why not?

DCL A(6), 8(2,3);
GET LIST(A);
B=A;

14. Array built-in functions perform arithmetic operations on what type of
arguments (e.g., fixed-point, floating-point, character-string, bit-string,
etc.)?

15. Identify the array built-in functions that operate on bit-strings.

16. What are the four steps performed automatically in an iterative DO?

17. Given the following iterative DO, what will K be equal to upon exit from
the loop?

DO K=1 TO 50 BY 2;

END;

18. In which of the following PL/I statement types may a repetitive specifica
tion appear?
(a) Assignment statement
(b) DECLARE statement
(c) Stream 1/0 statements (GET and PUT)
(d) Iterative DO statement

19. What value would K contain after each of the following program segments
had been executed ?
(a) J=3; (b) J=3;

K=4; L=10;
D 0 M = 1 to J ; K = 2 ;
K = K + M; DO M = J to L;
END; K=K+M;

IF K<250 THEN GO TO OUT;
END;
OUT: PUT LIST(K);

226 PL/I Programming

array
array expression
bound
control variable
cross section
data aggregate
dimension
element
iteration factor

1. Removing Blanks from Character Data

iterative DO
multiple specification
nested DO
repetition factor
repetitive specification
row major order
subscript
subscripted subscript

Problem Statement: Read data cards; remove any blanks from these character
strings that may be imbedded within the data by "squeezing up" the data. For
example, if input data is

'NOW IS THE TIME'

then, compacted data would be

NOWISTHETIME

Print compacted message.

Purpose of the Problem: To gain experience using arrays and the iterative DO
and/or DO WHILE statements.

Input: Make up your own data for this problem.

Output: Should be the compacted message with no imbedded blanks.

Programming Hint: Because you are to read character-strings from the input
stream, it will be necessary to use the DEFINED attribute so that you may
operate on individual characters within the string. That is, it will be necessary
for you to define overlay an array-whose attributes are CHARACTER(l)-on

DO's and Dimensions 227

the input character-string. Assume character-strings will have a maximum
length of 7 5.

-31 63 2 -41 31 99 -99 0 5

FIGURE 4.7 Suggested input data for Problem 2.

2. Sorting an Array of Numbers

Problem Statement: Read ten numbers into an array. Sort the numbers into
ascending sequence, i.e., so that the smallest number is in the first element
of the array and the highest number is in the last element of the array. Print
the numbers after you have sorted them.

Purpose of the Problem: To gain experience in the manipulation of arrays and
subscripts within DO-loops.

Input Data: Ten numbers in a card in random sequence. Suggested input is
shown in Figure 4.7.

Output Layout Description: See Figure 4.8.

Flowchart: See Figure 4.9. The sorting technique used here is called a
"bubble sort." The numbers in the array are "flip-flopped" whenever any two
adjacent numbers are not in the proper sequence. The solution calls for searching
through the array until a complete pass can be made without making a single
exchange. When this occurs, the numbers will be in sequence.

SORTED NUMBERS
-q9
-41
-31

0
2
5

31
63
72
99

FIGURE 4.8 Problem 2 sample output
using suggested test data.

Start

Set
switch
= ',0'8

DO I=
1 to 9

END

Exchange
N(I) with
N(I +1)

FIGURE 4.9 Flowchart for Problem 2.

Set
switch
= '1'8

DO's and Dimensions 229

3. Tag Sorting of Character-Strings

Problem Statement: Read ten character-strings into an array. Using the "tag
sorting" method (described below),-sort the character-strings into ascending
alphameric sequence. Print the character-strings in alphabetic sequence.

Purpose of the Problem: To gain experience in the use of arrays, subscripts,
and DO-loops. This problem demonstrates the use of a subscripted subscript.
It also shows the value of the tag sort method of sequencing.

Input Data: Ten character-strings, each 50 characters maximum in length.
Each string occupies one card image in the input stream and is in the form
acceptable to list-directed 1/0, i.e., is enclosed in quotes. The strings are in
random alphameric sequence in the input stream. Make up your own data for
this problem.

Output Layout Description: Use list-directed output, printing names in a
column.

Flowchart: Use the flowchart for Problem 2.

Tag Sorting Description: Refer to Problem 2 concerning the exchange method
of sorting. The technique employed in that exercise "flip-flopped" the numbers
within the array whenever any two adjacent numbers were not in the proper
sequence. It continued to do this until a complete pass could be made through
the array without making a single exchange. At that point, the numbers were in
sequence. The exchange sorting technique involves a great deal of data
movement, because we physically change the location of the data in the array
we are sorting. In Problem 2, the cost of moving the numbers around was not
too great because each number occupied a small amount of main storage.
However, in this problem we are sorting long strings of data. The cost of data
movement here would be much greater. And, of course, the longer the strings
to be sorted, the greater that cost. Another method of sorting, called tag sorting,
will help us eliminate much of the data movement.

In this approach, we will declare two arrays. The first array will contain
the data (character-strings) to be sorted. For example:

DCL STRINGS(10) CHARACTER (50);

The second array will contain the subscripts of the first array:

DCL SU BSC(10) FIXED BINARY(15);

230 PL/I ProgYamming

The second array should be initialized at the beginning of the program to contain
the numbers 1-10 in the first through tenth elements. A picture of the arrays
before sorting might help.

STRINGS(1)

STRINGS(2)

STRINGS(3)

STRINGS(4)

STRINGS(5)

STRINGS(6)

STRINGS(7)

STRINGS(8)

STRINGS(9)

STRINGS(10)

STRINGS
Array containing data to

be sorted

WINEGARDEN, R

QUIGLEY, W

CLAUS, L

KRISE, V

DEMPSEY, D

BENCKE, P

GEE, J

EINSTEIN, A

CHAMBERS, M

RUNDLE, A

SUBSC
Array containing subscripts

STRINGS

1

2

3

4

5

6

7

8

9

10

SUBSC(1)

SUBSC(2)

SUBSC(3)

SUBSC(4)

SUBSC(5)

SU BSC(6)

SUBSC(7)

SUBSC(8)

SUBSC(9)

SUBSC(10)

Now we are ready to begin sorting. Notice that the subscript array acts
as a list of pointers into the data array. In tag sorting, we must always use the
subscript array in accessing the data in the data array. We do this by nesting
subscripts. Nested subscripts are also referred to as subscripted subscripts. An
example of this is

STRINGS (SUBSC (I))

The element of STRINGS to which this refers is that element whose subscript
is found in the Ith element of SUBSC!

Tag sorting now merely becomes an exchange sort where we compare
the elements in the data array, but when an exchange is required, we exchange

DO's and Dimensions 231

not the data but the subscripts. The coding could be:

IF STRINGS(SUBSCR(l))>STRINGS(SUBSC(l+1)) THEN DO;
TEMP=SUBSC(I);
SUBSC(I) =SUBSC(I +1);
SUBSC(I + 1) =TEMP;
SW=TB;
END;

Notice that the data in the array named STRINGS is never moved, only the
subscripts are moved.

After one comparing pass through the data array, the two arrays would
look like this:

STRINGS SUB SC

(1) WINEGARDEN, R 2 (1)

(2) QUIGLEY, W 3 (2)

(3) CLAUS, L 4 (3)

(4) KRISE, V 5 (4)

(5) DEMPSEY, D 6 (5)

(6) BENCKE, P 7 (6)

(7) GEE, J 8 (7)

(8) EINSTEIN, A 9 (8)

(9) CHAMBERS, M 10 (9)

(10) RUNDLE, A (10)

Just as in exchange sorting, you must keep making passes through the data
array (always referenced through the subscript array) until no exchanges are
required. At that point, the data is still not in sequence (because we did not
move the data). However, the subscript array contains the subscripts of the
data in the right sequence.

232 PL/I Programming

The two arrays, after sorting, look like this:

STRINGS SUBSC

(1) WINEGARDEN, R 6 (1)

(2) QUIGLEY, W 9 (2)

(3) CLAUS, L 3 (3)

(4) KRISE, V 5 (4)

(5) DEMPSEY, D 8 (5)

(6) BENCKE, P 7 (6)

(7) GEE, J 4 (7)

(8) EINSTEIN, A 2 (8)

(9) CHAMBERS, M 10 (9)

(10) RUNDLE, A 1 (10)

The data can now be printed in sequence using nested subscripts.

4. Dollar Bill Change

Problem Statement: Write a program to calculate the number of different
ways a dollar bill can be broken into change (e.g., 1 x 50¢, 1 x 25¢, · 25 x 1 ¢
is one way; 2 x 25¢, 2 x 10¢, 6 x 5¢ is another). Print the answer.

Purpose of the Problem: To write a program using five nested DO-loops,
one of which will be a DO WHILE statement.

Input: There is no input to this problem, as the program will generate the
data.

Output: Print the answer (which is 292) using PUT LIST.

5. Theory of Organizational Relationships

Problem Statement: The complexities of managing people may be described
in terms of mathematical formulas.t As the number of people a manager must
manage increases, so does the possible number of basic relationships increase.

t Reference: A FORTRAN Primer with Business Administration Exercises, C20-1605,
IBM, 1964.

DO's and Dimensions 233

As will be seen, from the computer output of this problem, added numbers of
subordinates illustrates the geometric increase in the complexities of managing
people. Three types of subordinate-manager relationships may be identified as:

1. Direct single: The manager relates directly and individually with his
immediate subordinates. The number of relationships is equal to the
number of subordinates, n. Thus,

SUBORDINATES= n

2. Direct group: The manager interacts with each possible combination
of subordinates. For example, if A as the manager has three subordinates,
B, C, and D, the direct group relationships are

B with C
C with B
D with B

B with D
C with D
D with C

B with C and D
C with Band D
D with Band C

The number of direct group relationships with n subordinates is defined
with the following formula:

GROUP= n(2n/2 - 1)

3. Cross: Subordinates relate with each other. For example, subordinates
B, C, and D can relate to each other in these ways :

B to C
C to B
D to B

B to D
C to D
D to C

The number of cross relationships may be stated as follows:

CROSS = n(n - 1)

From the above analysis, the formula to yield the total number of possible
relationships with n subordinates is:

TOTAL= n(2n/2 + n - 1)

Write a PL/I program that will first input the number of different sub
ordinate values. Then read as many n's as indicated. For each value of n,
compute the number of relationships in each category described above (i.e.,
SUBORDINATES, GROUP, CROSS) plus TOTAL. Print a table showing the
number of subordinates and the number of relationships for each type.

Purpose of the Problem: To use arrays, referencing the elements by subscripts,
to use the iterative DO statement, and to use the repetitive specification in
GET and PUT statements.

234 PL/I Programming

Input: Suggested input might be

8 2 3 4 5 10 15 20

Number of subordinates

The number of input quantities
that follow (referred to as IN in
the flowchart for this problem)

Output: Sample output is shown in Figure 4.10.

Flowchart: See Figure 4.11 .

6. Compute Standard Deviation

Problem Statement: Write a program to compute the arithmetic mean (X)
and standard deviation (SJ of a maximum of 100 data items stored in an
array. Use the formulas

- LX
X=

n

S =JLX2 _5(2
x n

where n is the number of data items. (Note, in the second formula, that the
numerator under the radical is the sum of squares, not the square of a sum.)

Purpose of the Problem: To manipulate array data in a mathematical type of
program.

Input: Make up your own data for this problem.

Output: Print the standard deviation using list-directed output. Sample output
might be in this form:

STANDARD DEVIATION IS 3.90459E+02

RELATIONSHIPS WITH VARIABLE NUMBER OF SUBORDINATES

NUMBER OF SUBORDINATES CROSS RELATIONSHIPS GROUP RELATIONSHIPS TOTAL

l 0 0 l
2 2 2 6
3 6 9 18
4 12 28 44
5 20 15 100

10 90 5110 5210
15 210 245745 245970
20 380 10485740 10486140

FIGURE 4.10 Sample output for Problem 5.

FIGURE 4.11
Flowchart for Prob
lem 5. (For steps
marked with an as
terisk, use repetitive
specification in the
GET or PUT state
ments.)

No

Start

DECLARE
arrays

Set up DO--loop
to compute

relationship types

N=SUB(I)

Compute
GROUP (I)
CROSS (I)
TOTAL (I)

END

236 PL/I Programming

7. Prime Number Generation

Problem Statement: A prime number is a number that is not divisible by any
number other than itself and the number 1. All prime numbers other than the
number 2 are odd; but all odd numbers are not prime numbers. Write a program
to determine the numbers that are prime between 1 and 100 and print them out.

Purpose of the Problem: To program nested DO-loops in a mathematical
type of problem that also makes use of integer divide as a means of determining
whether a divisor goes into a dividend without a remainder; i.e.,

Quotient and Remainder= 0
Divisor)Dividend

Input: There is no input as the program will generate the data.

Processing: The fact that prime numbers are odd suggests that only odd
numbers should be tested for possible prime values; this cuts the computation
time. Further time-saving results by restricting the divisors to previously proved
prime numbers, because even numbers will not divide into odd numbers and
odd numbers that are not prime are divisible by one or more prime numbers.
This, then, becomes the logic of the program. The only other problem is to
devise a method for determining whether a divisor goes into a dividend without

PRIME NUMBERS BETWEEN 1 ANO 100

l
2
3
5
7

11
13
17
19
23
29
31
H
41
43
47
53
59
61
67
71
73
79
83
89
97

FIGURE 4.12 Sample output for
Problem 7.

Start

DECLARE
K to be a

100-element
array

M = 1
K(l) = 2

No

DO I = 3 to
100 by 2

DO J = 1 to M

M = M + 1
K(M) =I

END

No

FIGURE 4.13 Flowchart for Problem 7.

238 PL/I Programming

a remainder. One method is to divide whole numbers by whole numbers and
then multiply the quotient by the divisor. If a value divides without a remainder,
the dividend is recovered after multiplication. For example:

N=l*K;
IF N*K =I THEN GO TO NO_REMAINDER;

If the number divides with a remainder, a number smaller than the dividend
results-indicating that the number is a possible prime number.

Output: See Figure 4.12 for sample output format.

Flowchart: See Figure 4.1 3 for suggested program logic.

l!hapf@r S

~ft@atn 1/0

In stream 1/0, all input and output data are considered to be in the
form of a continuous stream of characters. In stream input, characters
from the input stream are converted to the internal attributes of the
identifiers specified in the GET statement. On output, coded arithmetic
data is automatically converted back to character form before the output
takes place.

You have already been introduced to one of the forms of stream
1/0 : list-directed. This chapter will discuss the remaining forms:
edit-directed and data-directed. The DISPLAY/REPLY statement will
also be covered.

Introduction

Each form of stream 1/0 offers the PL/I programmer certain
advantages and disadvantages. Advantages of list-directed 1/0 are
that it is easy to code and it is a useful debugging tool. A disadvantage
of GET LIST is that the data items must be PL/I constants separated
by blanks or commas and, hence, more space is usually required to
represent the data on the input medium than in other types of stream
input.

A disadvantage of PUT LIST for printed output is that data may
be printed beginning only at predetermined "tab positions" on the
printer. There is, therefore, little flexibility in the formatting of data to
provide a meaningful and esthetically pleasing report.

Edit-directed 1/0 eliminates some disadvantages of list-directed
1/0. Edit-directed 1/0 is not as easy to code, but you will find that it
provides for considerable efficiency in the representation of input
data and offers a great deal of flexibility in the formatting of output
data.

240

Stream 1/0 241

Assume that the input data below is to be read using list-directed
input. The card data would have to be punched as follows :t

EMPLOYEE NAME
RATE HRS DEDUC-
OF WKD TIONS

NUMBER PAY

1 233 333 444 4
1 890 9 0 1 567 01 2 7

'435928' 'DAVID P. GOLDSMITH' 1 0.55 41. 3 103. 21

In this example, a minimum of 47 card columns would be needed to
represent the data that would be read using the following GET LIST
statement:

GET LIST(EMP#,NAME,RATE,HOURS,DEDUCTIONS);

Using edit-directed input, the number of card columns needed to
represent the above data can be reduced significantly because no
blanks are needed to separate the data items in the input stream and
no punctuation marks are needed to indicate the type of input data
(e.g., single quotation marks surrounding character data or a decimal
point indicating the true decimal value). The data to be input using
GET EDIT could be punched as follows:

1 6 7 2 2 2 2 3 3 3
4 5 8 9 1 2 6

435928 DAVID P. GOLDSMITH 1055 413 10321

t 1 1 I mp lied decimal point

As can be seen, only 36 columns are needed to represent the payroll
information for edit-directed input, as compared to 47 columns for
list-directed input. However, with no punctuation marks or delimiters
in the input stream to indicate the characteristics of the various data

t Recall that data items for list-directed input must be PL/I constants. Hence, the character
strings must be surrounded by single quotation marks.

242 PL/I ·Programming

fields, it will be necessary for the GET EDIT statement to provide this
information through a format list. Here is one form of this statement:

GET EDIT (data list) (format list);

l~--~i Must be enclosed in parentheses;
the list describes characteristics of
the external data; that is, it indi
cates how the data items on an
external medium are to be inter
preted

Must be enclosed in parentheses; data items on the
external medium are converted to the attributes of
the data list identifiers and placed at the locations of
those identifiers

Indicates edit-directed data transmission

To input the card data illustrated, the following statement could
be coded:

GET EDIT (EMP#,NAME,RATE,HOURS,DEDUCTIONS)

j / / / /
~~~~~ 

(COLUMN (1),A(6),A(20),F(4,2),F(3,1 ),F(5,2)); 

The data list consists of EMP#, NAME, RATE, HOURS, DEDUCTIONS. 
The format list consists of the items COLUMN(1), A(6), A(20), etc. 
The arrows in the above example point to the format item corre
sponding to each data item. These format items describe the appearance 
of data on an external medium. The COLUMN(1) format item indicates 
that input begins at column one or position one of the external storage 
medium. The A format item describes alphameric data, and the F 
format item describes fixed-point numeric data. The numbers in 
parentheses following the A and F specifications describe the width 
of the input field. Thus, six characters will be taken from the input 
stream and assigned to EM P # ;t 20 characters will be assigned to 
NAME; four digits, of which two are fractions, will be assigned to 
RATE; and so on. Notice that we have not yet declared the attributes 

t EM P#, in this case, is being treated as an alphameric field rather than a fixed-point 
numeric field, because fixed numeric fields are generally used to identify data that will be 
used in calculations. However, it would also be correct to specify an F format item for the 
employee number (EMP#). · 



Stream 1/0 243 

of EMP#, NAME, RATE, etc. It is important to understand that ex
ternal data formats do not have to match the data declarations which 
describe the way data will appear in main storage. Let us look at a 
sample DECLARE statement for these data items: 

DCL EMP# CHAR(6), 
NAME CHAR(25), 
RATE FIXED(4,2), 
HOURS FIXED(3,1), 
DEDUCTIONS FIXED(5,2); 

Notice that NAME is declared to be a character-string of length 25 in 
main storage, whereas only 20 characters were taken from the input 
stream and assigned to NAME. Because NAME has a length attribute 
of 25, there will be padding on the right of the field with blanks. 
Other fields in the above DECLARE, such as RATE or HOURS, have 
precision attributes that match the width specifications of their corre
sponding format items. But, remember, it is not necessary that they 
match. 

Format items may be divided into three categories: 

1. Data format items: These are items describing the format of 
the external data. These items describe whether data in the 
stream are characters or arithmetic values in character form and 
how long they are. In the above format list, the A specifies 
alphameric data (hence, CHARACTER data), and the F indicates 
arithmetic values in the fixed-point notation (as contrasted 
with floating-point notation which is an E format item). 

2. Control format items: These are items describing page control, 
line control, and spacing operations. In the above format list, 
COLUMN(1) is a control format item. 

3. Remote format item: This item indicates that one or more 
data format items and/or control format items are located 
remotely from the GET or PUT EDIT statement in a FORMAT 
statement. Here is an illustration of this type, which will be 
discussed in greater detail later: 

GET EDIT(EMP#,NAME,RATE,HOURS,DEDUCTIONS) (R(RFMT)); 

RFMT: FORMAT(COLUMN (1),A(5),A(20),F(4,2),F(3,1 ),F(5,2)); 



244 PL/I Programming 

The remote format item, R (label), is useful when the same 
format list or parts of a list apply to more than one GET or 
PUT EDIT statement. Using the R format item would eliminate 
redundant coding in the specification of identical format items. 

Syntax Rules 

The paragraphs below explain the way in which GET EDIT and 
PUT EDIT work. 

All Data List Items Have Correspor1ding Format Items. In the 
statement 

G ET ED IT (A, B) ( F ( 5), F ( 6, 2) ) ; 

the format item F(5) specifies that five columns in the input stream 
are to be interpreted as a fixed decimal constant, its value to be assigned 
to the variable A. The value of the fixed decimal constant in the next 
six columns in the input stream is to be assigned to B. The item F(6,2) 
further specifies that, of the six positions, two represent the fractional 
part of the value. If the characters in the input stream were 123456, 
then the value 1234.56 would be assigned to B. With this specifica
tion, it is also permissible to have the decimal point appear with the 
data in the input stream. For example, the specification for 123.4 
would be F(5, 1 ), where the width (5) includes the decimal point. 
If the data value in the input stream has a decimal point specified that 
does not match the format description, the decimal point in the stream 
overrides the GET EDIT format item. For example, if 

DCL A FIXED(8,3); 
GET EDIT(A) (F(8)); 

is coded and the input value is 12.34, then A will be given the value 
of 12.34. 

If There Are More Format Items than Data Items, the Extra 
Format Items Are Ignored. For example: 

GET EDIT(A, B) (F(4), F(5), F(6)); 

I L_)> Ignored 

~ Format item d:scribing B 

~------ Format item describing A 



Stream 1/0 245 

If There Are Less Format Items than Data Items, There Is a 
Return to the Beginning of the Format List. For example: 

GET LIST(A, B, C) (F(4), F(5)); 
'---y---/ '---v-----1 

L Two format items 

.___ _______ ) Three data items 

Here, the first format item will be used again to describe a remaining 
data list item. Thus, in the above example, 

F(4) describes A's external data 
F(5) describes B's external data 
F(4) describes C's external data 

The Data List Item Need Not Have the Same Width Specifica
tion as the Corresponding Format Item. In the example 

DCL NAME CHAR(25); 
GET EDIT( NAME) (A(20)); 

20 characters are taken from the input stream and assigned to NAME. 
Because NAME has a length attribute of 25, there will be padding 
on the right with blanks before assigning the value to NAME. Here 
is an example for an arithmetic data item: 

DCL RATE FIXED(5, 2); 
GET EDIT( RATE) (F(4, 2)); 

Four characters are taken from the input stream, converted to the 
internal attributes of FIXED DECIMAL(5,2), and assigned to RATE. 

1/0 Continues Until the Data List Is Exhausted. Because stream 
1/0 continues until all data items have been read or written, it is possible 
to handle more than one record with just one GET or PUT statement. 
For example : 

DCL A CHAR(70), B CHAR(40); 
GET EDIT(A, B) (A(70),A(40)); 



246 PL/I Programming 

The following picture illustrates how the data from two cards will be 
assigned to A and B : 

A 
I 8 

I 
I I 
I I 
I l( I 

70 l11 I 
80 301 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

Suppose it is desired to take the first 70 columns of the first card 
and assign them to A, as above, but to take columns 1-40 of the 
second card and assign them to B. To accomplish this, the COLUMN 
control format item could be specified. For example: 

DCL A CHAR(70), B CHAR(40); 
GET EDIT(A, B) (COLUMN(1 ),A(70),COLUMN(1 ),A(40)); 

A B 

70 
I 

401 
I 
I 
I 
I 
I 
I 
I 

In some implementations of PL/l,t the COLUMN control format 
item is not available. To accomplish the above spacing between cards, 
however, the X control format item, which is available in all implementa-

tM-20 PL/I. 

'.

l'll:.'1i' I' 

j·:. ,. 
I' 



Stream 1/0 247 

tions of PL/I, could be specified. Here is an example: 

DCL A CHAR(70), B CHAR(40); 
GET EDIT(A, B) (A)70), X(10), A(40)); 

A 

1 

A(70) 

11 : On input, 10 columns are to be 
spaced over and ignored 

Control format item to signify 
horizontal spacing 

B 

I l 
I v I 

I I 
70171 80 401 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

J_ I 

X(lO) A(40) 

Format items 

Assume it is desired to read the first 40 columns of ten cards and 
list the cards on the printer. How would this be accomplished using 
GET and PUT EDIT? The following coding is proposed as a solution: 

DCL CARD_ DATA CHAR(40); 
D01=1T010; 
GET EDIT(CARD_DATA) (COLUMN(1),A(40)); 
PUT EDIT( CARD_ DATA) (COLUMN(1 ), A(40)); 
END; 

Notice that COLUMN may be used for both an input and output 
control format item. On output to a printer, COLUMN refers to print 
position. 

Data List Items May Be Names of Data Aggregates. The edit
directed examples you have seen so far have shown only single data 



248 PL/I Programming 

elements in the data list. It is possible, however, to specify the name 
of an array as a list item. For example: 

DCL TABLE(100); 
GET EDIT(TABLE) (COLUMN (1 }, F(6, 2)); 

L External format of the 
data 

'---------4 Data begins in column 
one; each card wi II have 
one value punched into 
it 

'----------------4 The appearance of the 
array name here indi
cates that the entire ar
ray is to be filled with 
data 

TABLE is an array representing 100 data items. The format list 
has one control item and one data specification: COLUMN (1) and 
F(6,2), respectively. The first data item read-TABLE(1 }-exhausts 
the format list. For the second input value, there is a return to the 
beginning of the format list. Thus, for each new value read, input 
begins with column one. If we wished to read only part of the above 
array, a DO-group would be included in the following manner: 

GET EDIT((TABLE(K) DO K=1TO50)) (COLUMN(1), F(6, 2)); 

Note the required parentheses in the above statement. Each repetitive 
specification must be enclosed in parentheses. If a repetitive specifica
tion is the only element in a data list, two sets of outer parentheses are 
required because the data list must have one set of parentheses and 
the repetitive specification must have another. 

If a multidimensional array is specified without a DO-group to 
qualify the order and/or number of items to be processed, then the 
rightmost subscript varies most rapidly. For example, the PUT state
ment for the TT array 

DCL TT(81,9); 
PUT EDIT(TT) (F (10)); 



Stream 1/0 249 

causes data to be output in the following order:-

TT(1,1 ), TT(1,2), TT(1,3), TT(1,4), ... , TT(81,8), TT(81,9) 

Several nested DO's may be specified in a GET or PUT statement. 
When DO portions are nested, the rightmost DO is at the outer level 
of nesting. For example: 

DCL TT(81, 9) ; 
GET EDIT(( (TT(I, J) DO I= 1 TO 81) DO J = 1 TO 9)) (F(10)); 

Note the three sets of parentheses, in addition to the set used to delimit 
the subscript. The outermost set is the set required by the data list; 
the next is that required by the outer repetitive specification. The third 
set of parentheses is that required by the inner repetitive specification. 
This statement is equivalent to the following nested DO-groups: 

DOJ=1 T09; 
D01=1T081; 

END; 

GET EDIT(TT(I, J)) (F(10)); 
END; 

Values are given to the elements of the array TT in the following 
order: 

TT(1, 1 ), TT(2, 1 ), TT(3, 1 ), TT(4, 1 ), ... , TT(80, 9), TT(81, 9) 

If, within the data list of a GET statement, a variable is assigned 
a value, this new value is used if the variable appears in a later r~ference 
in the data list. For example: 

GET EDIT(N, (X(I) DO I= 1 TO N)) (COLUMN(1 ), F(4, 2)); 

When this statement is executed, a new value is assigned to N. Next, 
elements in the X array are assigned values in the order of X(1 ), 
X(2), ... , X(N). 

All elements of an array have the same attributes. However, it may 
be possible that data read into an array may have varying external data 
formats. For example, assume that half of an array shall be filled with 
data in the external form of F(3) and the other half in the form of F(4). 



250 PL/I Programming 

Here are the statements to accomplish this: 

DCL TABLE(50); 
GET EDIT(TABLE) (25 F(3),25 F(4)); 

I L External format item 

L Blank must appear here 

~---Repetition factor 

------ External format item 

-------+ Blank must appear here 

.___ _____ ----+Repetition factor 

Input Data Items May Be Pseudo-Variables. The SU BSTR 
built-in function is used to manipulate smaller parts of string data 
(i.e., SUB STRings). For example, to extract the last five characters 
of a 20-position character-string called TITLE, the following would be 
coded: 

S=SUBSTR(TITLE,15,5); 

Number of characters to be 
extracted 

Starting position in the string 

Character-string name 

Built-in function 

Receiving field 

SUBSTR may also be a pseudo-variable. Pseudo-variables are built-in 

:i 

-~ 
1.i_ , .. ), 



Stream 1/0 251 

functions that may be designated as a receiving field. For example: 

SUBSTR(N1 ,1,3) =SUBSTR(N2,5,3); 

t Number of characters to 
be moved 

Starting with position 5 

Character-string name 

Size of the receiving field 

Starting position to which 
characters are moved 

Character-string name; 
that is, the "receiving 
field" 

Pseudo-variables (e.g., SUBSTR) may appear on the left side of an 
assignment symbol or in a GET statement. For example: 

DCL NAME_ FIELD CHAR(35); 
GET EDIT(SUBSTR(NAME_FIELD,5,20)) (A(20)); 

Twenty characters from the input stream will be assigned to NAME_ 
FIELD, beginning with position five of the character-string. 

Here is another example: 

GET EDIT(K,SUBSTR(NAME_FIELD,K,4))(F(2),A(4)); 

When this statement is executed, a new value is assigned to K. That 
value is then used as an argument in the SUBSTR pseudo-variable. 
For example, if the input stream consisted of the digits 28, then that 
value is assigned to K. The SU BSTR pseudo-variable in effect, therefore, 
has the parameters 

SUBSTR(NAME_ FIELD,28,4) 

!....._ __ ~> Value assigned to K in the GET 
statement 



252 PL/I Programming 

Suppose an error had been made in the punching of the data; 
assume the digits 28 had been transposed so that the input stream 
begins with the digits 82. Consider the effect when the GET statement 
is now executed : 

GET EDIT(K,SUBSTR (NAME_ FIELD, K,4) )(F(2),A(4)); 

Because K now has a value of 82, the parameters in the SU BSTR 
pseudo-variable become 

SUBSTR (NAME_ Fl ELD,82,4) 

L Starting position of NAME_ FIELD 
to which data is to be assigned 

However, NAME_ FIELD was declared to have a maximum length of 
35 characters. Clearly, there is no position 82 in the character-string, 
and thus, the above situation is in error. In the full language, the con
dition called STRINGRANGE is raised. This condition is raised when 
there is a reference to a position outside the length of the character- (or 
bit-) string. This condition, by default, is disabled. Thus, if you anticipate 
the STRINGRANGE condition to be raised, you must enable the 
condition; e.g., 

(STRINGRANGE)PROG1: PROC OPTIONS(MAIN); 

'------------+ Enabled for entire procedure's execution 

In your program, you might code 

ON STRINGRANGE BEGIN; 

END; 
/* OR */ON STRINGRANGE GO TO ERROR; 

In the subset language, where STRINGRANGE is not available, extra 
care must be taken by the programmer to guard against referencing 
a position outside the string length. Typically, any position outside 
the string data area could still be part of your program; hence, the 
value assigned to that outside position destroys, perhaps, part of an 
instruction or another data item. Often, this kind of destruction causes 
a program to "hang up" and the programmer has no clues as to "what 
went wrong." 



Stream 1/0 253 

/' 
STRINGRANGE condition 

""'\ 

Subset language No 

Full language Yes 
\... 

Output Data Items May Be Built-in Functions. When included 
as a data item in a PUT statement, the specified built-in function is 
invoked and the value it returns is output. For example: 

PUT EDIT(DATE) (P'99/99/99'); 

I._ ---+i P format item edits the date returned 
by the DATE built-in function; P 
format is available in full language 
implementations but not in subset 
languages 

~----~ Built-in function 

PUT EDIT(SUBSTR(NAME_FIELD,5,8)) (SKIP,A(8)); 

l The value in NAME_ Fl ELD starting 
at position 5 for a length of 8 is to 
be printed 

'-------+ Built~in function 

Output Data Items May Be PL/I Constants. This capability is 
particularly useful for the printing of literal data; i.e., character-string 
constants. 

PUT EDIT('WEEKLY ACTIVITY REPORT) (PAGE, COLUMN(40),A); 

Data Items May Consist of Element Expressions. Operational 
expressions may be specified in the data list of a PUT statement. For 
example: 

PUT EDIT(A*3, B + C/D) (F(10), F(8, 2)); 

Such expressions may not involve arrays or structures in the subset 
languages. 



254 PL/I Programming 

More than One Data List and Corresponding Format List 
May Be Specified. Here is another variation of the edit-directed 
I I 0 statements : 

GET EDIT(data list) (format list) (data list) (format list) ... 

You may specify as many pairs of data lists and format lists as 
you wish. This format is useful when there are a lot of data items to 
be specified and it is desired to keep the format item closer to the 
specified data item so as to improve readability of the program by 
clarifying which format items belong to which data items. For example: 

PUT EDIT (A,B,C) (PAGE,F(12),F(15,3),A) 
(D,E,F) (B(10),F(5,2),COLUMN (60),A) 
(GI H ) ( LI N E ( 5) I F ( 8) I A ( 22) ) ; 

Subset Language Restrictions 

Arithmetic data items may have only the format items· F (fixed
point) or E (floating-point) specified. For example, the statements 

DCL HOURS FIXED(3); 
GET EDIT(HOURS) (A(3)); /* INVALID IN SUBSET LANGUAGE 

IMPLEMENTATIONS*/ 

are invalid, because the A format item may be specified for data that 
has the CHARACTER attribute only. The following data types may 
be input or output using the F or E format item specifications: 

FIXED BINARY 
FIXED DECIMAL 
FLOAT BINARY 
FLOAT DECIMAL 

Remember, E and F describe external data formats. It is possible, for 
example, to read a value according to an E format item and have that 
value converted to the internal form of FIXED BINARY or FIXED 
DECIMAL. The reverse is true for the F format item; dat~ may· be input 
according to the F format item and converted to FLOAT BINARY or 
Fi:-OAT DECIMAL, as well as, of course, FIXED BINARY and FIXED 
DECIMAL. 



Stream 1/0 255 

Another format item is the B (for bit-string data). Here is an 
example: 

DCL STRING1 BIT(16); 
GET EDIT(STRING1) (B(10)); 

The format item B(10) specifies that ten characters are to be taken 
from the input stream, converted to a bit-string, and then assigned 
to STRING1. Because STRING1 is longer than the input length, the 
six rightmost bits of STRING1 will be filled with zeros. The characters 
in the stream must be composed of 1 's and O's or a CONVERSION 
error will occur. In 

DCL STRING BIT(1 O); 
GET EDIT(STRING) (B(16)); 

sixteen characters will be taken from the input stream, but only the 
ten leftmost characters from the input stream will be converted and 
assigned to STRING. 

In 

DCL VALUE FIXED BINARY(31); 
GET EDIT (VALUE) (B(31)); /* INVALID IN SUBSET LANGUAGE 

IMPLEMENTATIONS */ 

the GET ED IT is invalid, because VALUE is an arithmetic data item, 
and thus, it may only be described with the F or E format item. 

Writing Headings 

To see the flexibility that edit-directed output provides us in the 
writing of headings on printed output, assume the following literal 
data is to be printed : 

11111111112222222222333333333344444444445555555555&66666666677777777771 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

llllnl ~ 1111 

Assume that the date in the above heading has been read into the 
following character-strings: 

DCL(MM,DD,YY) CHAR(2); 

Our program may manipulate the month, day, and year through the 



256 PL/I Programming 

names MM, DD, and YY, respectively. To output the Payroll Register 
heading, we may begin by coding the following statement: 

PUT EDIT(' PAYROLL REGISTER - - WEEK ENDING') (PAGE, A(31)); 

lL Fieldwidthof31 

For alphameric 
(CHARACTER) data 

Control item to start output 
on a new page 

On output, however, it is not necessary to specify the field width fol
lowing the A format item if the field width is to be the same length as 
the data item. Thus, the above statement could be shortened by coding 

PUT EDIT('PAYROLL REGISTER - - WEEK ENDING') (PAGE,A); 

Next, the date is to be output: 

PUT EDIT (MM,'/',DD,'/',YY) (A,A,A,A,A); 
'---r-----1 

L Width is automatically 
calculated as being 
equal to the length of 
the data item-in this 
case, 31 

L Because width is auto
matically calculated, 
only the "A" need be 
specified 

Notice that there are five fields of the A format item. When the same 
format item is to be repeated a number of times, a repetition factor may 
be specified. Thus, the above statement could be coded 

PUT EDIT(MM,'/',DD,'/',YY) (5 A); 

IL Must have a blank here 

~ Repetition factor 



Stream 1/0 257 

In full language implementations, the repetition factor may be 
specified in parentheses; e.g., 

PUT EDIT ( ... ) (COLUMN (5), (1 O)A(12)); 

---~Repetition factor in 
parentheses 

and it may be an expression as well; e.g., 

K = 10; 
PUT EDIT ( ... )(SKIP, (K)A(10)); 

L Repetition factor may be any expression 

Returning to the Payroll Register headings, we see that the next line 
of output cou Id be coded 

PUT EDIT('EMPLOYEE NO. NAME','RATE HOURS DEDUCTIONS 
NET PAY') (SKIP(2), A, COLUMN(40),A); 

A SKIP(2) causes one blank line of output. The first literal will be 
output, automatically beginning in print position one, because of the 
SKIP to a new line. The second literal ('RATE HOURS DEDUCTIONS 
NET PAY') will be output beginning in print position 40, which was 
indicated by the COLUMN (40) format item. 

The above explanation separated parts of the output into several 
PUT EDIT statements so that various points could be illustrated more 
simply. However, to code the output of these two heading lines in a 
PL/I program, only one statement need be written: 

PUT EDIT('PAYROLL REGISTER-WEEK ENDING', 
MM,'/',DD,'/',YY,'EMPLOYEE NO. NAME', 
'RATE HOURS DEDUCTIONS NET PAY') 
(PAGE, 6 A, SKIP(2),A,COLUMN(40),A); 

Or, here is another way in which the above statement may be coded: 

PUT EDIT('PAYROLL REGISTER-WEEK ENDING', 
MM,'/',DD,'/',YY,'EMPLOYEE NO. NAME', 
'RATE HOURS DEDUCTIONS NET PAY') 
(PAGE, 6 A, SKIP(2),A,X(21 ),A); 

'-y--/ 

L In effect, the spacing of 21 
positions causes the next 
data item to be output 
beginning at print position 
40 [i.e., COLUMN (40)] 



258 Pl/I Programming 

Note that commas are always used to separate the data list items and 
the format items·. Thus, blanks separating these items would be used 
only if it is desired to improve readability of the GET or PUT. Of course, 
remember that a blank is required between the repetition factor and 
the format item to which it applies. A blank is not required following 
the repetition factor in the format list if there is another punctuation 
mark separating the repetition factor from the format items to which 
it applies. For example, assume data is to be output where the format 
consists of F(5), F(3, 1 ), F(5), F(3, 1 ), F(5), F(3, 1 ). As you can see, 
there are three pairs of (F(5), F(3, 1)) format items. The following 
statement would accomplish the output of data items according to 
this pattern of format items: 

PUT EDIT(A,B,C,D,E,F)(PAGE, 3(F(5), F(3, 1))); 

File Declarations 

._I ----+) The left parenthesis serves 
as the delimiter between the 
repetition factor and the 
format items to which it 
applies; hence no blank is 
needed 

>-----+ Repetition factor 

The declaration of files was introduced in Chapter 3. Here is a 
list of some of the attributes and options that may appear in your 
DECLARE statement for stream files: 

Attributes/ options 

FILE 
STREAM 
INPUT/OUTPUT 

PRINT 
ENVIRONMENT 
MEDIUM 
SYS I PT 
SYSLST 
SYSPCH 
F(blocksize) 
F BLKSIZE(n) 

Comment 

Optional 
Default if not specified 
OUTPUT is default if file has PRINT 

attribute 
See explanation in following paragraphs 
ENV is the abbreviation 
Use only in DOS/TOS 
System input devicet 
System output devicet 
System punch devicet 
Fixed-length record 
Fixed-length record for the optimizing 

compilers 

tThese keywords follow the MEDIUM option and apply only to PL/I D and DOS PL/I 
optimizing compilers. 



Stream 1/0 259 
Some examples of stream file declarations include 

DCL CARDIN FILE STREAM INPUT ENV(F(80)MEDIUM 
(SYSIPT,2501)); /*A PL/I D EXAMPLE*/ 

DCL PUNCH FILE STREAM OUTPUT ENV(F BLKSIZE(80) 
MEDIUM(SYSPCH, 2~40); /* A DOS PL/I OPTIMIZING 

COMPILER EXAMPLE */ 
DCL PRINTR FILE STREAM PRINT OUTPUT ENV(F(133)); 

/*A PL/I F EXAMPLE */ 
DCL TAPE FILE OUTPUT STREAM ENV(F BLKSIZE(800)); 

/* AN OS PL/I OPTIMIZING COMPILER EXAMPLE */ 
Note that keywords may appear in any sequence in the DECLARE 
statement. 

The place where attributes are specified may depend on the 
operating system you are using. For PL/I D, and DOS PL/I optimizing 
compilers, all attributes should be specified in the DECLARE state
ment. However, in PL/I F and OS PL/I optimizing compilers, the file 
attributes may be specified in job control statements, the OPEN 
statement, or the DECLARE statement. 

The PRINT Attribute. When a file has this attribute, the first 
position of the output area is reserved for a carriage control character. 
For example, if you wish to output a 60-position print line, the following 
file declaration might be coded: 

DCL PRINTR FILE OUTPUT STREAM PRINT 
ENV(F(61) MEDIUM (SYSLST, 1403)); 

I ~----- Not required for OS 

..__ ________ ___.) Record size is equal to 
desired print line size plus 1 
position for carriage control 
character 

The carriage control character is placed into the first position of the 
output area through the use of control format items or control options; 
e.g., 

PUT FILE (PRINTR)EDIT(A,B,C)(PAGE, 3 F(10)); 

L This format item causes the 
first position of the output 
area to be initialized to the 
code that causes an advance 
to a new page 



260 PL/I Programming 

PUT FILE(PRINTR)PAGE EDIT(A,B,C)(3 F(10)); 

~------ This control option accom
plishes the same function as 
the format item does 

PAGE and LINE may be specified only for stream files that have the 
PRINT attribute. COLUMN and SKIP, which can be used to accomplish 
carriage control operations, may be specified for either PR I NT or 
non-PRINT files. 

The OPEN/CLOSE Statements 

Stream files are automatically opened when the first GET or 
PUT to that file is issued. In the case of a file with the PRINT attribute, 
there is an automatic advance to a new page for the first PUT to that 
file. The reason for using the OPEN statement is so that additional 
file attributes and/or options may be specified. The options are 
PAGESIZE and LINESIZE. They may only appear in an OPEN state
ment-never in a file DECLARE statement. To illustrate: 

OPEN FILE(PRINTR)PAGESIZE(50); 

L Specifies number of lines to be 
output per page of print; if 
PAGESIZE is not specified, the 
default is 60 

The following option is available in the full language implementa
tions, but not the subset PL/I : 

OPEN FILE(PRINTR) LINESIZE(120); 

L Specifies number of print positions 
per printed line; if this option is 
used, it is not necessary to specify 
a record size [e.g., F(133)] in the 
file declaration 



Stream 1/0 261 

/"' 
Some attributes and options that may be 

specified in the OPEN statement 

Subset language PAGESIZE 

Full language STREAM or RECORD LINESIZE 
INPUT or OUTPUT PAGESIZE 

PRINT 
\.. 

Here are some examples: 

OPEN FILE(PRINTR) PRINT OUTPUT STREAM PAGESIZE(45) 
LINESIZE(133); /* FULL LANGUAGE */ 

OPEN FILE(CARDIN) STREAM OUTPUT; /* FULL LANGUAGE */ 
OPEN FILE(PRINTR) PAGESIZE(55); /* OK FOR SUBSET 

LANGUAGE */ 

Options and/or attributes in the OPEN statement may be specified 
in any sequence. 

Only the file name is specified in the CLOSE statement (no 
options or attributes). For example: 

CLOSE FILE(TAPE); 

If a stream file is not explicitly closed by the CLOSE statement, it will 
automatically be ciosed when the PL/I program is logically terminated. 
However, should your program abnormally terminate (e.g., through 
an error condition such as the CONVERSION on-unit), files will also 
be closed. 

Data Format Items 

A{w). On input, a string of length w characters is read into a variable. 
If the variable's declared length attribute is greater than w characters, 
blanks are padded on the right; if the length is less than w characters, 
input data will be truncated on the right. On output, the data item is 
left-justified in the field and, if necessary, padded on the right with 
blanks. 



262 PL/I Programming 

A. Allowed for output only; the length of the character-string variable 
is the value of the declared character-string length. Character-strings 
enclosed in apostrophes may also be included as data list items. They 
are handled in the same manner as are character-string variables. 

f 
Internal data Format specification Output result ' 

ABC12 A ABC12 
ABC12 A(3) ABC 
ABC12 A(7) ABC12bb 

\... 

/ 
A format item 

Subset language The data item corresponding to the A format 
item must have the CHARACTER attribute 

Full language The above restriction does not apply to the 
full language implementations 

B(w). On input, a string of length w characters is read into a variable 
having the BIT attribute. If the variable's declared length attribute is 
greater than w characters, O's are padded on the right; if the length is 
less than w characters, input data will be truncated on the right. On 
output, a bit-string is converted to a character-string of O's and 1 's 
and left-justified in the output field. The bit-string data is padded with 
blanks on the right if the bit-string is shorter than w. 

B. Allowed for output only; the length of the bit-string variable is the 
value of the declared bit-string length. 

( 
Internal value Format specification Output result 

1101 B 1101 
1101 B(4) 1101 
1101 B(3) 110 

\ 
1101 B(6) 1101 bb 

i~ 
il 
,if 



Stream 1/0 263 

r B format item 

Subset language The data item corresponding to the B format 
must have the BIT attribute 

Full language The above restriction does not apply to the 
full language implementations 

C. Complex variables are specified in one of two forms: 

C(real format) 

~-------~ An E or F format may be specified here; 
this format is used for both the real and 
imaginary parts of the complex number 

C (real format 1 , real format2 ) 

I 
An E or F format may be specified for the 
imaginary part of the complex value 

~-------~) An E or F format may be specified for the 
real part of the complex value 

E(w, d). The input stream contains data in floating-point notation 
(e.g., .57E+ 13). On input, if no decimal point is punched, the format 
specification d represents the number of fractional decimal places. The 
letter w represents the total number of characters including the decimal 
point (if punched), signs, and the designation E. If a blank field is input 
under the E specification, the CONVERSION condition is raised. 

On output, the exponent always requires four characters, E± xx, 
and the number is printed with d fractional decimal places. The sign, 
blank or minus, of the number precedes the decimal point. The number 
is right-justified in the field of w characters. It is not necessary to include 
a space, for the sign if the number is positive. 

The number of significant digits output will be equal to 1 plus d. 
For example, if 175.36E + 05 is the internal value and the output format 
specification is E(10,2), then the output result will be bbl.75E+07. This 
is because out of a field width (w) of ten, two positions (d) will be 
fractional digits. The number of significant digits will be three ( d + 1). 
Thus, only the leftmost three digits of the value (175.36E + 05) will 



264 PL/I Programming 

appear in the output stream. To illustrate: 

w 

~ 
bbl.75E+07 

If the value 175.36E+05 is output according to the specification 
E(15, 5), the result is 

bbbb0.17536E+08 

If it is desired to print five digits of significance where more than one 
integer digit is to appear in the output value, the E(w, d, s). format may 
be specified. 

E(w, d, s). On input, the s is ignored. The decimal point is assumed 
to bed digits from the right of the fraction; if a decimal point is punched, 
the actual decimal point overrides the d specification. 

On output, s indicates the number of significant digits to be output 
to the left of the decimal point. If s is not specified [i.e., E (w,d)], the 
number of significant digits to the left of the decimal point will default 
to 1. 

f 
Internal value Format specification Output result 

\ 

175.36E+05 E(12, 2, 5) bb175.36E+ 05 
175.36E+05 E(12, 0. 5) bb17536E+03 
175.36E+05 E(12, 5, 5) bb.17536E+ 08 

f 
I E format item 

Subset language The data item corresponding to the E format 
item must be in arithmetic coded form 
(FIXED BINARY, FIXED DECIMAL, 
FLOAT BINARY, FLOAT DECIMAL) 

Full language The above restriction does not apply to full 

\. 
language implementations 



Stream 1/0 265 

F(w). The input or output field consists of w characters containing a 
fixed-point decimal value. On input, if no decimal point is punched, the 
number is assumed to be an integer. A minus sign precedes a negative 
number. For positive values, a + sign is optional. 

On output, the data is punched or printed as an integer and no 
decimal point will appear. For negative values, a minus sign will appear 
to the left of the value; for positive values, a blank will appear. There is 
automatic zero suppression to the left of the number. 

/ 
Internal value Format specification 0 utput resu It 

123 F(3) 123 
-123 F(3) SIZE error 
-123 F(4) -123 

123 F(5) bb123 

If w is not large enough to contain the output value, the SIZE 
error condition is raised, and the results of the output field are undefined. 

F(w, d). On input, if no decimal point is specified, it is assumed that 
there are d decimal places to the right of the field. For example, if the 
input stream contains the digit characters 1234 and the format item 
F(4,2) is specified, input value becomes 12.34. If a decimal is actually 
punched, its position overrides the d specification. 

On output, a decimal point is punched or printed if the d specifi
cation is greater than zero. If w is not large enough to contain the output 
value, then asterisks will appear in the output field, and the SIZE 
condition is raised. Notice in the fourth example in the table that if 
fewer fractional digits are output than the data item contains, the 
fraction is rounded off. 

I 
Internal value Format specification Output 

123.45 F( 4,0) b123 
123.45 F(6,2) 123.45 
123.45 F(7,3) 123.450 
123.45 F(6, 1) b123.5 
123.45 F(5,2) SIZE error 



266 PL/I Programming 

F(w,d,p). The designation p is a scaling factor; it must always be 
written with a sign. It effectively multiplies the value of the data item 
in the stream by 10 raised to the power of the value of p. Thus, if p 
is positive, the number is treated as though the decimal point appeared 
p positions to the right of its given position. If p is negative, the number 
is treated as though the decimal point appeared p positions to the 
left of its given position. The given position of the decimal point is 
that indicated either by an actual point, if it appears, or d, in the absence 
of an actual point. 

/Value in the Format specification Resulting ' input stream internal value 

12345.67 F(10, 2, -2) 123.4567 
12345.67 F(10, 2, +2) 1234567 
1234567 F(10,2,+1) 12345670 

\. 

/ 
Internal value Format specification Resulting output 

12345 F(6, 2, -2) 123.45 
.12345 F(6, 2, +3) 123.45 

f F format item 
\ 

Subset language The data item corresponding to the F format 
item must be in arithmetic coded form 
(FIXED BINARY, FIXED DECIMAL, 
FLOAT BINARY, FLOAT DECIMAL) 

Full language The above restriction does not apply to full 
language implementations 



Stream 1/0 267 

P('picture specification'). This format item is available only in 
full language compilers. The 'picture specification' consists of any 
character allowed in the PICTURE declaration (see Chapter 3). 

On input, the picture specification describes the form of the data 
item expected in the data stream and, in the case of a numeric picture 
item, how its arithmetic value is to be interpreted. Note that the picture 
specification should accurately describe the data in the input stream, 
including characters represented by editing characters. If the indicated 
character does not appear in the stream, the CONVERSION condition 
is raised. 

On output, the value of the associated element in the data list is 
edited to the form specified by the picture specification before it is 
written into the data stream. 

f 
Input value Format specification Resulting internal value 

\ 

bb15 P'ZZZ9' 0015 
1234 P'99V99' 12/\34 
AB123 P'AA999' AB123 
AB123 

\,_ 
P'99999' CONVERSION error 

I 
Internal value Format specification Resulting output 

12.34 P'$$$$V.99' $12.34 
-12.34 P'S999V.99' -012.34 

2112.34 P'$$,$$$V.99CR' $2, 112.34 
-2l12.34 P'$$,$$$V.99CR' $2, 11 2.34C R 

15 P'ZZZ9' bb15 
0 P'ZZZ9' bbbO 

12.34 P'****V.99' **12.34 

' 



268 PL/I Programming 

Simulating P Format in the Subset Language. The need for 
P format most often arises when it is desired to edit data (i.e., insert 
dollar sign, comma, CR symbol, etc.). In previous chapters, you have 
seen how to accomplish editing-typically, by assigning data to 
identifiers that contain PICTURE editing characters. For example: 

DCL PRICE PIC'$$$,$$$V.99'; 
PRICE=1050.78; /* PRICE=$1,050.78 */ 

In the subset language implementations of PL/I, we have a 
problem because it is not permitted to output (using edit-directed 1/0) 
directly from a Pl CTU RE that contains insertion characters (i.e., 
$, *, CR, DB, etc.). Thus, the following PUT EDIT (assuming the 
above DECLARE and assignment statements apply) would ·be invalid: 

PUT EDIT(PRICE) (A(10)); 

........_ ___ > A format items apply only to data 

that has the CHARACTER attri
bute; in this example, even though 
PRICE appears in main storage in 
character format, the attribute of 
PRICE is PICTURE (do you see the 
subtle distinction?) 

The following examples, however, do not violate the rule in the subset 
language that you may not output directly from a picture that contains 
insertion characters: 

DCL A PIC'999V99' INIT(12.34); 
DCL B PIC'XXXX' INIT('ABCD'); 
PUT EDIT(A, B) (F(6,2),A(5)); 
/* ON OUTPUT, A=b12.34 AND B=ABCDb */ 

There are two methods that may be used for printing from a 
PICTURE identifier with editing characters. The first method is perhaps 
the easiest to understand. A built-in function called CHAR is provided 
in PL/I. This function converts its argument to a character-string. For 
example: 



DCL PRICE PIC'$$$,$$$V.99'; 
PRICE= 1050.78; 

Stream 1/0 269 

PUT EDIT(CHAR(PRICE)) (COLUMN(40),A(10)); 

L Format item for 
character-string 
data 

'"----------~ Argument to CHAR 
built-in function 

'----------------~ This built-in 
function returns a 
value that has the 
CHARACTER 
attribute with a 
length equal to the 
precision (in this 
example) of 
PRICE 

The other method for simulating P format is to use overlay defining. 
This method is more efficient than the method of invoking the CHAR 
built-in function each time a PICTURE value is to be treated as a 
character-string. For example: 

DCL PRICE PIC'$$$,$$$V.99'; 
DCL PR CHAR(10)DEFINED PRICE; 
PRICE=1050.78; /* EDIT DATA*/ 
PUT EDIT (PR) (COLUMN(40), A(10)); 

---) Format item matches 
attribute of PR, which is 
a character-string 

~---------~ Because PR is overlay 
defined on PRICE, the 
edited value $1,050.78 
will be printed 



270 PL/I Programming 

Control Items 

When control items appear inside the format list, they are called 
control format items; if they appear outside the format list, they are 
called control options. For example: 

PUT SKIP EDIT(A,B) (SKIP(3),F(7,2)); 

'----------+> Control format item 

'-------------~>Control option 

Control items are performed in the order in which they appear in a 
GET or PUT statement. For example: 

PUT PAGE EDIT(A, B) (F(5), PAGE, F(7,2)); 

A will be printed on a new page and B will be printed on the following 
new page because of the position in the format list of the PAGE 
control format item. In this example, 

PUT PAGE EDIT (A,B) (F(5), F(7,2)); 

is equivalent to 

PUT EDIT(A,B) (PAGE, F(5), F(7,2)); 

A control item has no effect unless it is encountered before the data 
list is exhausted. For example: 

PUT EDIT(A) (F(8),SKIP); 

~--) This control item will be 
ignored, because the data list 
was satisfied by the format 
item F(8) 

COLU MN(n). On input, this format item positions the input 
stream to the nth byte or card column of the record. On output, it 
positions the output stream to the nth byte in the record or the nth 



Stream 1/0 271 

print position on the line printer. In the full language implementations, 
the abbreviation COL may be used in place of COLUMN. 

LINE(n). Used for output only, this format item specifies that the 
next data item is to be printed on the nth line on a page of a PRINT 
file. LINE may be specified only for stream files that have the PRINT 
attribute. If the specified line has already been passed on the current 
page, or if the specified line is beyond the limits set by the PAGESIZE 
option of the OPEN statement (or by default), the ENDPAGE condi
tion is raised. ENDPAGE is raised only once per page; consequently, 
printing can be continued beyond the specified PAGESIZE after the 
ENDPAGE condition has been raised the first time. If the response to 
the on-unit does not start a new page, the current line number may 
increase indefinitely. 

It would not be logical to specify a line number that is negative 
or zero [i.e., LINE(-3) or LINE(O)]; however, if a negative or zero 
value is specified, PL/I will substitute LINE(1) for the illogical 
specification. 

PAGE. According to the rules of the PL/I language, PAGE may 
only be specified for stream files that have the PRINT attribute. PAGE 
causes a skip to the first print line of the next page. 

SKIP. On input, S Kl P means to start or continue reading at the 
beginning of the next logical record. On output, its meaning is 
summarized below : 

Format item 

SKIP(O) 
SKIP or SKIP(1) 
SKIP (expression) 

Action taken 

Suppresses line feed 
Starts printing on the next line 
Causes "expression minus 1" lines to be 

left blank before printing on the next line; 
in subset language, a maximum of 
SKIP(3) may be specified 

X(w). On input, w characters are ignored. On output, w blanks are 
inserted into the stream. 



272 PL/I Programming 

Remote Format Item 

The R format item allows a FORMAT statement to replace this 
specification. For example: 

e.g., 

PUT EDIT(A,8,C) (R(OUT1)); 

L A label constant or an element 
label variable that has as its value 
the statement label of a FORMAT 
statement; the FORMAT state
ment includes a format list that is 
taken to replace the format item ; 
the statement label may not be 
subscripted 

OUT1 : FORMAT(PAGE,F(5,2),SKIP,2 F(8)); 

.__ _____ A FORMAT statement may not 
contain an R format item 

If the GET or PUT statement is the single statement of an on-unit, 

ON ENDPAGE(PRINTR) 
PUT FILE(PRINTR) EDIT('HEADING') (PAGE,A); 

then the input or output statement may not contain a remote format 
item. 

A remote format item may be combined with other format items. 
For example: 

GET EDIT(A,B,C,D,E,F) (F(1 ),R(INP),A(7),R(INP)); 
INP: FORMAT(F(5),E(15,2)); 

In the above example, the data items and their corresponding format 
specifications are 

A F(1) 
8 F(5) 
C E(15,2) 
D A(7) 
E F(5) 
F E(15,2) 

'.l 
'1 

1 
::,1 
lj 



Stream 1/0 273 

The STRING Option 

The STRING option may appear in a GET or PUT statement in 
place of the Fl LE option. For example, instead of 

GET FILE (INPUT) EDIT (A,B,C) (F(5),F(6),F(7)); 

I '"---~ File name 

~--------) Option keyword 

the statement 

GET STRING(DATA)EDIT (A,B,C) (F(5),F(6),F(7)); 

I 

'--------~ Name of an element data area, 
representing character-string data 

'----------) Option keyword 

may be specified. The STRING option causes internal data movement; 
it does not cause an 1/0 operation. It offers another method for effecting 
data movement, the assignment statement being the most common. 

In addition, it offers a method for causing the conversion of 
character-type data to a coded arithmetic form; this feature is par
ticularly useful in the subset language, as it provides a fairly straight
forward method for converting character data to arithmetic form. 

The following example illustrates a character-string-to-character
string data movement. Assume that NAME is a string of 36 characters 
and that FIRST, MIDDLE, and LAST are string variables: 

GET STRING (NAME) EDIT 
(FIRST, MIDDLE, LAST) 
(A(15),A(1 ),A(20)); 

This statement specifies that the first 15 characters of NAME are to 
be assigned to FIRST, the next character to MIDDLE, and the remaining 
20 characters to LAST. 

The PUT statement with the STRING option in the following 
example specifies the reverse operation: 

PUT STRING (NAME) EDIT 
(FIRST, MIDDLE, LAST) 
(A(15), A(1 ), A(20); 



274 PL/I Programming 

This statement specifies that the values of FIRST, MIDDLE, and 
LAST are to be concatenated (in that order) and assigned to the string 
variable NAME. 

In addition, the STRING option may be used to effect character
string-to-arithmetic or arithmetic-to-character-string conversion. For 
example: 

DCL NAME CHAR(20), EMP# CHAR(7); 
DCL HOURS FIXED(3, 1 ), RATE(4,2); 
DCL RECORD CHAR(80); 
PUT STRING(RECORD) EDIT 

(NAME, EMP#, HOURS*RATE) 
(A(20), A(7), F(8)); 

This statement specifies that the character-string value of NAME is 
to be assigned to the first (leftmost) 20 character positions of the 
string named RECORD, and that the character-string value of EMP# 
is to be assigned to the next seven character positions of RECORD. 
The value of HOURS is then multiplied by the value of RATE, and the 
product is to be handled like F format output and assigned to the next 
eight character positions of RECORD. 

Sometimes records of different formats appear in the same file. 
Each record, then, would carry with it an indication of its format in 
the form of a code. For example : 

2 DETAIL Purchases for th is month 

2 DETAIL 
Purchases for this month 

MASTER 

Customer name and address 



Stream 1/0 275 

The STRING option facilitates manipulation of these differing card 
formats in the same file. For example: 

DCL CARD CHAR(80); 
GET EDIT(CARD) (A(80)); 
IF SUBSTR(CARD,1,1)='1' THEN 

GET STRING(CARD)EDIT 
(CUSTN,NAME,ADDR) 
(X(1 ),A(6),X(3),2 A(20)); 

IF SUBSTR(CARD, 1, 1) ='2' THEN 
GET STRING(CARD) EDIT 
(ITEM, QTY, PRICE) 
(X(1),A(8),F(3),F(7,2)); 

Note that print option format items (e.g., COLUMN, SKIP, etc.) may 
not be specified in the STRING option of a GET or PUT. 

Conditions 

There are a number of exceptional conditions that may occur 
during stream 1/0; ENDFILE, ENDPAGE, CONVERSION, SIZE, 
TRANSMIT, and ERROR. Some of the conditions were introduced in 
Chapter 3. Here is additional information on three of these conditions. 

The CONVERSION Condition. This on-unit is raised if any alpha
meric characters appear within a field of data that is to be a numeric 
field. For example, a blank is an alphameric character that will cause 
the CONVERSION condition to be raised if it is embedded within a 
numeric field. Thus, the data 

157 981 

input by the statement 

GET EDIT(VALUE) (COLUMN(1 ),F(5)); 



276 PL/I Programming 

will cause the CONVERSION condition to be raised. However, a 
blank (but not any other alphameric character) may appear before a 
numeric value, in which case the leading blank is interpreted to be a 
leading zero on input. For example, given the data field 

1 5: 

and the edit-directed statement 

GET EDIT(VALUE) (COLUMN (1 ), F(5)); 

will cause the identifier VALUE to be set to 05798. If a blank follows 
a numeric field, e.g., 

15798 j 

it is ignored. Thus, if the above data field were input with the statement 

GET EDIT(VALUE) (COLUMN(1),F(5)); 

then VALUE would contain 5798. If the entire field is blank, it is 
interpreted as zero. 

The SIZE Condition. This on-unit may be raised during output if 
the width specification for a FIXED BINARY or a FIXED DECIMAL 
number is not large enough to contain the total value. For example, if 

VALUE = -1 23; 

and it is output using the specification 

PUT EDIT(VALUE) (F(3)); 

the SIZE condition will be raised, providing it has been enabled. To 
print the above negative value, a minimum field width of four must 
be specified. According to the rules of the PL/I language, the results 
of the output field are undefined. In some compilers, the output field 
is filled with asterisks; in other compilers, high-order truncation occurs, 
and that value will be output; in still other compilers, blanks may 
appear. It varies with the compiler you are using. 



Stream 1/0 277 

The ENDPAGE Condition. The ENDPAGE condition is raised 
when a PUT statement results in an attempt to start a new line beyond 
the limit specified for PAG ESIZE. This limit can be specified by the 
PAGESIZE option in an OPEN statement. If PAGESIZE has not been 
specified, an installation-defined system limit applies. The attempt to 
exceed the limit may be made during data transmission (including any 
format items specified in the PUT statement) by the LINE option, or 
by the SKIP option. ENDPAGE is raised only once per page. When 
the ENDPAGE condition is raised, the standard system action is to 
skip to a new page and continue executing. 

PL/I maintains a current line counter which is incremented by 1 
each time a new line is printed. When this line counter exceeds the 
maximum number specified by the PAGESIZE option (or the default) 
the EN DPAG E condition is raised. Thus, at this point, the current line 
counter is one greater than the maximum page size value. 

After ENDPAGE has been raised, a new page may be started in 
either of the following ways: 

1. Execution of a PAGE option or a PAGE format item. 
2. Execution of a LINE option or a LINE format item specifying a 

line number less than or equal to the current line number. 

When either of these occurs, a new page is started in the same way 
that it is when a PAGE option is executed; i.e., END PAGE is not raised 
and the current line is set to 1. If a new page is not started, the current 
line number may increase indefinitely.When ENDPAGE is raised, it is 
possible to continue writing on the same page. 

In the full language, a begin block may follow the ENDPAGE 
keyword. For example: 

ON END PAGE (PRINTR) BEGIN; 

END; 

This begin block is treated like a subroutine in that the block is entered 
when the ENDPAGE condition is raised and returns to the place in 
the program immediately following the point of interruption. In the 
subset language, only a GO TO or a null statement may follow the on
unit. Thus, if a group of statements is to be logically performed, it 
will be necessary for the program to handle the branching "into" and 



278 PL/I Programming 

"out of' the group of statements. In Figure 5.1, an 80/80 list program is 
coded two ways: one for full language implementations and the other 
for subset implementations. Studying the subset program solution first 
will give you an appreciation of some of the features of the full language 
PL/I capabilities (e.g., default files, begin blocks, LINESIZE). The 
80/80 list program copies a card file onto a line printer, printing 45 lines 
per page. Notice how the statement, 

SIGNAL ENDPAGE(PRINTR); 

was used to cause a heading to be printed on the first page of output. 
The loop operation consists of reading cards and printing on the 
printer. In this program, the ENDPAGE condition will be detected 
before the PUT FILE statement is executed for the forty-sixth time. In 
the H DNG routine in the subset example, it is necessary-after printing 
the heading and incrementing the page counter-to return control to 

l 
2 

F 3 
u 4 
L 5 
L 

L 6 

A 7 
N 8 
G 9 
u 10 
A 11 
G 12 
E 13 

14 
15 

l 
2 

s 3 
u 4 

B 
s 5 
E 6 
T 7 

8 
L 9 
A 10 N 
G 11 
u 12 
A 13 
G 
E 14 

15 
16 
17 

I* 80/80 LIST FOR FULL LANGUAGE IMPLEMENTATIONS *I 
LIST: PROC OPTIONS(MAIN); 

DCL DATA CHAR(801; 
OCL PAGE_NO FIXED(2)1N1Tll); 
ON ENDPAGEISYSPRINTI BEGIN; 

PUT EDITl 1 80/80 LISTING -- PAGE 0 ,PAGE_NO) 
IPAGE,COL(25),A,F13JI; 

PUT SKIPC21; 
PAGE_NO = PAGE_NO + l; 
END; 

OPEN FILECSYSPRINT) PAGESIZEl45) LINESIZE(80); 
ON ENDFILE(SYSINl GO TO EOJ; 
SIGNAL ENOPAGElSYSPRINTl; 

LOOP: GET EDITCDATAl(A(80l); 
PUT EOIT(DATA)CA); 
GO TO LOOP; 

EOJ: END; 

I* 80/80 LIST FOR SUBSET IMPLEMENTATIONS *I 
LIST: PROC OPJIONSCMAIN); 

DCL PAGENO FIXEDC21 INIT(l); 
DCL CARDIN FILE INPUT STREAM ENV{f(80)MEOIUM(SYSIPT,2540l); 
DCL PRINTR FILE OUTPUT STREAM PRINT 

ENVCf(8l)MEOIUMCSYSLST,1403)l; 
DCL DATA CHARC80); 
ON ENOFILE(CAROIN) GO TO EOJ; 
ON ENOPAGE(PRINTRl GO TO HONG; 
OPEN FILE(PRINTRl PAGESIZEl45); 
SIGNAL ENOPAGE(PRINTRJ; 

LOOP: GET FILEICARDIN)EDIT(DATAllCOLUMN(l)1Al80I); 
PUT: PUT FILE(PRINTR)EOITCOATAl(SKIP1A); 

GO TO LOOP; 
HONG: PUT FILE(PRINTR)EOITC 180/80 LISTING -- PAGE 0 ,PAGENO) 

(PAGE,COLUMNC25),A,f(3)); 
PUT FILE(PRINTRISKIP(2l; 
PAGENO = PAGENO + l; 
GO TO PUT; 

EOJ: END; 

FIGURE 5.1 An 80/80 list program coded two ways. 

..l

: .. ~j 
! 

! 



Stream 1/0 279 

the PUT statement so that the forty-sixth detail line is printed. Then, of 
course, the program continues until ENDFILE condition occurs. 

A Built-in Function for PRINT files 

There is a built-in function that is available in the full language 
called LIN ENO, which finds the current line number for a file having 
the PR I NT attribute and returns that number to the point of invocation. 
For example: 

/ 

I= LINENO(PRINTR); 

._I ___ ~, Must be the name of a file having the 
PRINT attribute 

~------~ Built-in function (not available in the 
subset language) 

,_____ ________ ______. The value returned by this function is 

Subset language 

Full language 

a binary fixed-point integer of default 
precision spee,ifying the current line 
number 

LIN ENO built-in function 

No 

Yes 

This form of stream 1/0 is available in the full language implementations 
only. Data-directed 1/0 gives the programmer the flexibility of trans
mitting self-identifying data. This means that each data item in the 
input stream is in the form of an assignment statement that specifies 
both the value and the variable to which it is to be assigned. For 



280 PL/I Programming 

example, the input stream could contain the following assignment 
statements : 

A=12.3, 8=57, C='ABCDEF', D='1110'B; 

Notice that the values are in the form of valid constants. Statements 
are separated by a comma and/or one or more blanks; a semicolon 
ends each group of items to be accessed by a single GET statement. 
Here is an example of a data-directed statement for the input of the 
above items : 

GET DATA (A, B, C, D); 

All names in the stream should appear in the data list; however, 
the order of the names need not be the same. Thus, the GET statement 
could have been written 

GET DATA (C, B, A, D); 

Also, the data list may include names that do not appear in the stream; 
e.g., 

GET DATA (A, B, C, D, E); 

In this case, E is not altered by the input operation. However, it is an 
error if there is an identifier in the input stream but not in the data list. 
For example, C and D are in the input stream but not in the data list: 

GET DATA (A, B); /* ERROR */ 

This error raises the NAME condition, which may be handled in your 
program in the same manner as with other on-units; for example: 

ON NAME (SYSIN) BEGIN; 

END; 

It is possible (and not contradictory) to omit entirely data list names 
in the GET statement; for example: 

GET DATA; 

In this case, the names in the stream may be any names known at the 
point of the GET statement. A data list in the GET statement is optional, 
because the semicolon determines the number of items to be obtained 
from the stream. If the data list includes the name of an array, sub-



Stream 1/0 281 

scripted references to that array may appear in the stream although 
subscripted names cannot appear in the data list. The entire array need 
not appear in the stream; only those elements that actually appear in 
the stream will be assigned. For example, the following could be coded: 

DCL TABLE(50) FIXED(5, 2); 
GET DATA(TABLE); 

where the input stream consists of the following assignment state
ments: 

TABLE(3) = 7.95, TABLE(4) =8.43, TABLE(7) =50; 

Although the data list has only the name of the array, the associated 
input stream may contain values for individual elements of the array. 
In this case, three elements are assigned; the remainder of the array 
is unchanged. The maximum number of elements permitted in a list 
for data-directed input is 320. 

On output, each data item is placed in the stream in the form of 
assignment statements separated by blanks. The last item output by 
each PUT statement is followed by a semicolon. Leading zeros of 
arithmetic data are suppressed. The character representation of each 
value reflects the attributes of the variable, except for fixed-point 
binary and floating-point binary data which appear as values expressed 
in fixed-point decimal notation. 

For PRINT files, data items are automatically aligned on preset 
tab positions described for list-directed 1/0. For example, given the 
statements, 

DCL (A, B) FIXED INIT(O); 
DCL C FIXED BIN INIT(175)'; 
PUT DATA (A, B, C); 

output would be to the default file SYSPRINT in the format 

A=O B=O C=175; 

~' ----i Tab position 49 

'----------+) Tab position 25 

~-------------Tab position 1 

The data list may be an element, array, or structure variable, or a 
repetitive specification involving any of these elements or further 



282 PL/I Programming 

repetitive specifications. Subscripted names can appear. In addition, 
any of the printer spacing options described for list-directed 1/0 may 
be specified for data-directed 1/0; e.g., 

PUT PAGE DATA (A, B, C); 
PUT SKIP(3) DATA (A, B, C); 
PUT LINE(5) DATA (A, B, C); 

It is also possible to specify 

PUT DATA; 

in which case, all variables known to the program at the point of the 
PUT statement will be output. This feature is a powerful debugging 
tool. 

There is a built-in function that may be particularly useful to 
you when using the form of GET DATA where no data list is specified. 
The function is called COUNT; it determines the number of data items 
that were transmitted during the last GET or PUT operation on a given 
file and returns the result to the point of invocation. For example: 

DCL INPUT FILE INPUT STREAM; 
GET FILE (INPUT) DATA; 
l=COUNT (INPUT); 

I.____ __ -+) The argument represents the file to be 
investigated; this file must have the 
STREAM attribute 

~-------Built-in function that counts the 
number of element data items transferred 
during a GET or PUT; the value re
turned by this function is a binary 
fixed-point integer of default precision 
specifying the number of element data 
items transferred during the last GET 
or PUT operation on "file name" 

If a begin block or another procedure is entered during a GET or 
PUT operation, and within that begin block or procedure a GET or PUT 
is executed for the same file, the value of COUNT is reset for the new 
operation and is not restored when the original GET or PUT is continued. 



Stream 1/0 283 

The DISPLAY statement is available. in all compilers; it facilitates 
machine operation communication with the PL/I program in execution. 
The basic format is 

DISPLAY('SAMPLE MESSAGE GOES HERE'); 

'----) Should be a CHARACTER 
variable or constant or 
expression 

The REPLY option allows the operator to reply. For example: 

DCL RESPONSE CHAR(3); 
DISPLAY('IS EXCEPTION TAPE MOUNTED? TYPE YES OR NO') 

REPLY(RESPONSE); 

In the above example, when the operator enters either the words YES 
or NO, his reply will be placed into the program variable, RESPONSE. 
Execution of the program is suspended until the operator has entered 
his reply. For this reason, it is not good practice to overuse this type 
of man/machine communication in a program. Typically, if the DISPLAY 
statement is used, it is used without the REPLY option. 

Maximum number of characters allowed 
\ 

DISPLAY REPLY 

Subset language 80 255 

Full language 72 72 

In the full language, there is an option that may be specified in the 
DISPLAY /REPLY statement that will, to a degree, override the sus
pension of program execution until the operator has entered his 



284 PL/I Programming 

reply. For example: 

DCL RESPONSE (CHAR(3); 
DISPLAY('IS EXCEPTION TAPE MOUNTED? TYPE YES OR NO') 

REPLY (RESPONSE) EVENT (E1); 

WAIT{E1); 

J~ --~) Program execution will not continue unless the 
"event" is complete; the "event" in this case would 
be complete when the operator signals "end-of
message input" 

The variable E1 is contextually declared (by its appearance in an 
EVENT option) to have the EVENT attribute. Conversion between event 
variables and other data types is not possible. 

f 
EVENT attribute 

Subset Language No 

Full Language Yes 

It is possible to enter messages through the console typewriter 
in either capital or lowercase letters. It would provide an added 
flexibility to our program if we allowed either capital or lowercase 
messages to be entered. It is easy to incorporate this flexibility into 
our program once it is understood how capital and lowercase letters 
are represented in bytes of main storage. Appendix D shows a complete 
list of the binary representations of alphameric data; a few samples 
are shown below: 

A= 11000001 
a= 10000001 

B = 11000010 
b = 10000010 

J = 11010001 
j = 10010001 

z = 11101001 
z = 10101001 

From an observation of these bit patterns, you can see that the only 
difference between capital letter and its lowercase counterpart is that 
the second bit from the left is a "1" for capital letters and a "O" for 
lowercase letters. Thus, if the operator enters a lowercase message 



Stream 1/0 285 

into our program via the console typewriter, all our program has to 
do to convert lowercase to capital letters is to insert a 1 bit into the 
second position of each byte. 

The OR ( I ) operation in PL/I is generally used to test logical 
relationships of data. For example : 

IF A=B I C=D THEN GO TO CALC; 

.__ ______ -+ If either A = B or C = D, the state-
ment following the TH EN is executed 

However, when the OR operation is applied to bit-strings, it has a 
different function, for it may be used to modify bit-string data according 
to the following rules: 

1 11 ~ 1 
1 Io~ 1 
011~1 

o 1 o~o 

Thus, if we had the first operand shown below 0 Red to the second 
operand, which is sometimes referred to as a mask, note the results: 

10000001 
OR 01000000 

11000001 

~ Bit code for "a" 
~Mask 

~ Result from an OR operation 

The result, of course, is the bit code for capital letter "A." Suppose 
the same mask is to be ORed to the bit code for a capital "A": 

11000001 
OR 01000000 

11000001 

~ Bit code for "A" 
~Mask 

~ Result from an OR operation 

Here, the result is still a capital "A." Thus, ORing the mask shown above 
to either capital or lowercase letters will always yield capital letters. 

For our program to change lowercase to capital letters, It will be 
necessary to manipulate the alphameric character as a bit-string for 
purposes of merging in the 1 bit in the second position of the byte. 
To do this, we need to invoke the UNSPEC built-in function. This 



286 PL/I Programming 

function allows you to unspecify any data item so that it will be treated 
as a bit-string. Its general format is 

UNSPEC (K); 

~I ____ , The argument that is to be treated as a bit-
string without conversion taking place 

Assume it is desired to have the operator enter a maximum eight
character reply. For example: 

DCL RESPONSE CHAR(8); 
DISPLAY ('ENTER CANCEL OR CONTINUE') REPLY (RESPONSE); 

The following statement would be written to change lowercase into 
capital letters. Of course, if capital letters already appear in RESPONSE, 
the ORing of a bit in the second position of each byte will not alter that 
bit pattern. 

UNSPEC(RESPONSE) = UNSPEC(RESPONSE) I (8) '01000000'B; 

L Indicates bit-string. 
constant 

Repetition factor for 
the bit-string con
stant; result is a bit
string of length 64 

....__ ______ Symbol for the OR 

operation 

--------------+ Built-in function 

.___ ___________________ -+ Pseudo-variable 

Pseudo-variables are built-in functions that may be specified as 
receiving fields. It was necessary to use UNSPEC on the right side of 
the assignment symbol to treat RESPONSE as a bit-string for purposes 
of ORing a 1 bit into the second position from the left in each of the 
characters in the message. UNSPEC on the left of the assignment 
symbol causes the receiving field, which is RESPONSE, to be treated 
as a bit-string with no conversion. This is necessary in order to assign 
the bit-string on the right of the assignment symbol to the variable on 
the left. Had the variable on the left been a character-string, e.g., 

RESPONSE= UNSPEC(RESPONSE) I (8) '01 OOOOOO'B; 

,___ _______ Bit-string expression 

'--------------------+Character-string 



Stream 1/0 287 

then the rules for PL/I assignments of different data types specify 
that the bit-string is to be converted to characters. Recall that 
RESPONSE has previously been declared as CHAR(8). Because of 
the use of the UNSPEC function, RESPONSE now becomes a bit
string; on the right side of the assignment symbol in the above example, 
it has a bit length of 64 (8 characters= 64 bits). For example: 

11000011 ................ 11000101 (64 bits) 

In converting bits to characters, only the leftmost eight bits of this 
string would be converted to characters when placed into a variable 
with the CHARACTER attribute. Thus, if the above bit-string were 
assigned to RESPONSE (without the use of the UNSPEC pseudo
variable), which has the CHARACTER attribute, RESPONSE would 
contain the characters 11000011 rather than the word 'CONTINUE'. 

This case study illustrates a number of facilities of edit-directed 1/0-
repetitive specifications, SKIP, COLUMN, remote format items (R), 
nested format lists, and the STRING option of the GET statement. 
The program is designed to produce a series of bar charts graphically 
depicting the net sales of each item produced by the Acme Company 
in the last three years. The net sales figure for each item is to be dis
played by month as a horizontal bar across the page, with each print 
position representing 1000 units sold. Figure 5.2 illustrates this bar 
chart. 

Data for this graph is punched into cards. There are two types 
of cards: 

1. Order records: These contain the gross orders for a particular 
item for each month of a given year. The letter 0 punched in 

column 79 identifies this card type. 
2. Cancellation records: These contain cancellations for the 

corresponding item. The letter C punched in column 79 identifies 
this card type. 

(It is more common to use digits 1 and 2 to represent card types and 
it is more common to punch these values in column 80-rather than 
79-however, the formats described above were selected to illustrate 
some edit-directed 1/0 coding techniques.) 



0 
0 
o-
0 

"' 
* * * * 

0 * * * * 0 * * * o- * * * 0 * * * co * * * * * * * * * * * * * * * * * * * * * * * * 0 * * ** 0 * * * * o- * * *** 0 * * * * * ,.... * * *** * * #** * * * * * > * * * *** ** ** *** "-** * * *** 0 0 ** * * * * * * +' 0 * * ** * * * * Ill o- ** * * * * * ... 
0 ** * * * * * ... .c: 
'° ** * * * * * * * * *** * * * * ***** Ill * * * **** * * * * * Q) *** ***** * * * * * .... * * * ***** ***** ca ct: 0 ***** ***** ***** <( WO ****** ****** * * * * * Ill 

::t. ct: 0 ******* ****** ****** Q) 
I,) wO- ******* ****** ****** 00 ******* ****** ****** E > ct: II' ******* ****** ****** ct: 0 ******* ****** ****** 0 
0 ******* ****** ****** <t .... V) ******* ****** ****** 
~ 

.... ******* ****** ****** "-.... ******* ****** ****** 0 J: zo ******* ****** ****** ::>o ******* ****** ****** ..... 
Vl o- ******* ****** ******* +' w 1-0 ******* ****** ******* "-_, w 4- ******* ****** ******* ca <l z ******* ****** ******* Vl ******* ****** ******* .c: 

******* ****** ******* 0 
******* ****** ******* "-******* ****** ******* 0 ******* ****** ******* ca 

0 ******* ****** ******* a:I o- ******* ****** ******* 0 ******* ****** ******** l"'I ******* ****** ******** ******* ******* ******** "'! ******* ******* ******** ******* ******* '* * * * * * * * U') 
******* ******* ********* ******* ******* ********* w 0 ******* ******* ********* 0 ******* ******* ********* a: o- ******** ******* ********* ::> 0 ******** ******* ********* N ********* ******** ********* C) ********* ******** ********* ********* ******** ****•**** u:: ********* ******** ********* ********* ******** ********* ********* ******** ********* 0 ********* ******** ********** 0 ********* ******** *********** o- ********* ******** *********** 0 ********* ********* ************ ********* ********** ************ *********** *********** ************ *********** ************ ************ *********** ************ ************ *********** ************ ************ 

l"'I *********** ************ ************ ************ ************ ************ N ************ ************ ************ .... ************ ************ ************ 0 
ZC!lct:ct:>Z...1<.!>0..l->U ZC!lct:CX>Z..JC)Q.1->U ZcOCXct:>Z...lc.!>0..1->U 

0 0 <W<to..'<l::>::>::>wuow ci:wctci.<:::i:::i::>wuow crw<o..<::>::i::>wuow 
:I: -,u.:ccr:c-,-,ci:.,,ozo -,u.::cci:::c.-,-,cr.,,ozo -,u.::cc:tr-,-,<tVlOZO 

z -::c w ct: N rt'\ 

!:: > 



Stream 1/0 289 

Figure 5.3 shows the record layout for each type of input card. 
Notice that an item number is punched in positions one through four 
of each card; however, four columns are then used to represent 
quantity ordered for each of twelve months, whereas, only three 
columns are used for quantity cancelled for each of twelve months. 
Typically, identical field widths (four columns, in this case) for quantity 
ordered and quantity cancelled would be selected in the design of these 
record layouts. However, having two different card formats in the 
input·stream will illustrate the need for using the GET STRING option 
of edit-directed 1/0. The net sales figures per month are determined by 
subtracting quantity cancelled from quantity ordered. 

Because it is desired to compare sales history for the past three 
years, there will be up to six records per item-one order record and 
one cancellation record for each of three years. Assume the cards are 
arranged in ascending sequence by item number; thus, all six records 
for a given item will be together in the file. However, the six records 
may be in any order. The cards could also have been sorted into 
sequence by year within item number. This has been intentionally 
avoided for this case study to illustrate how the same thing may be 
accomplished by program logic. For this reason, columns 77 and 78 
of the input cards have been used to designate the year to which the 
order or cancellation record applies (e.g., year "1" or year "2" or year 
"3"). A flowchart is given in Figure 5.4, and the source program is 
shown in Figure 5.5. The following is an explanation of the PL/I 
statements in the program. 

Statement 2. The variables declared in this statement include 
ITEM and NEXT_ ITEM. These two variables are used for comparing 
the item numbers read from cards. The current item number is assigned 
to NEXT_ ITEM on input. This is then compared with the old item 
number found in ITEM. As long as ITEM and NEXT_ ITEM are equal, 
we know that we are still reading orders and cancellations for the 
same item. When NEXT_ ITEM is not equal to (i.e., greater than) ITEM, 
we may then assume that all records have been read for a particular 
item and that it is time to print the bar chart for that item. Later in the 
program NEXT_ ITEM will be assigned to ITEM, now becoming the 
old item number against which the next item number will be compared. 

Statement 4. A remote format statement is specified because there 
are two GET statements (7 and 12) that each require the same format 
list. 



ORDER RECORD 

1 
5 0 

~TEM 

!NO. 

1 

5 
2 
0 

2 
5 

3 
0 

3 
5 

4 
0 

4 
5 

QUANTITIES ORDERED 

JAN I FEB IMAR lAPR l MAY I JUN I JUL lAUG }SEP 

CANCELLATION RECORD 

1 
5 9 3 7 

~TEM 

2 2 
5 

2 

9 
3 
3 

3 
7 

4 4 
5 

QUANTITIES CANCELLED 

5 
0 

5 
5 

6 
0 

I oc T I NOV I DEC 

4 
9 

5 
3 

6 
5 

!NO. UNUSED 
JAN lFEBlMARlAPRlMAYlJUN JJUL jAUGlSEP JocT }NOV jDEC 

FIGURE 5.3 Layout of order and cancellation records. 

UNUSED 

77778 
67890 

!YR 
# 

TYPE= 'O'Ji 
UNUSED_J 

77778 
67890 

!YR 
# 

TYPE= 'C'_n 

UNUSED _=_J 



Start 

END_OF_INPUT 
= 0 

ITEM= 
NEXT_ITEM 

ENDFILE 

END_OF _INPUT 
=1 

GET STRING 
for 

orders 

NET= 
ORDERS
CANCELS 

No 

GET STRING 
for 

cancels 

DO I = 1 to 3 

DO J = 1 to 12 

ITEM= 
NEXLITEM 

FIGURE 5.4 Flowchart for sales history chart. 



292 PL/I Programming 

l SAL ES: PROC OPTIONS! "1A !llJ); 
2 OCL llHM,NEXT_ITEMI CHARl41, TYPF CHARlll, 

YR FIXED BINARYl151, FIELOS CHARl60), 
END_OF_INPUT ATT Ill INIT ( 1 0 1 A), 
!ORDERS,'.:ANCELS,NFTl(l2,3l DECIMAL FlXEDl51 INIT(!36llJI, 
MO!l2l C~AR(3) INIT( 1 JAN 1 , 1 FEB 1 , 1 MAR 1 , 1 APR 1 , 1 MAY 1 , 1 JllN 1 , 

'JUL I, 1 AllG 1 , 'SEP'· 'OCT'' 'NOV'' I DEC I I; 
3 DCL LIMIT FIXED; 
4 REM: f:"ORMATl.ft(4),Al60l,Xll21,F(?),Allll; 
5 OCL CARON FILE INPUT STRFAM F.NVIFl80)MfOtlJMISYSIPT,25401l; 
6 ON FNDFILEICARDNI GO TO ENO; 
7 GET F ILF I CA Rf) Nl ED I Tl Nl=X T _IT EM, FI ELOS, YR, TY PE I IR (REM l l; 
8 ITEM = NEXT_ITEM; 
q GO TO SKIP; 

10 FNO: FNO_OF_INPUT = 1 1 1 B; 
11 GO TO SKIP; 
12 AGAIN: GET FILFICARONIEDITINEXT_ITEM,FIFLDS,YR,TYPEllSKIP,R!REMll; 
13 IF ITEM = NFXT_TTEM THEN on; 
14 SKIP: IF TYPF = '0' 

THF.N GET STRTNGlFIELDSI EDIT 
!(ORDERS!l,YRI 00 I= l TO 12lllFl5ll; 

15 F.LSE GET STRTNG(FJFLDSI FfHT 
llCANCELS(I,YRI 00 T = l TO 121l!F14ll; 

16 IF ..,FNO_OF_INPUT THEN GO TO AGAIN; 
17 ENO; 
18 NFT = P.ROFRS - CANCELS; 
lQ PUT EOlTl'SALES HISTORY CHART 1 l(PAGF,CCLUMN(471,A) 

I 'ITEM NO. 1 ,ITFM, 'NET UNITS ORDERED' I 
ISKIP(2), 2 A,COLUMN(481,Al 
(( r, 1 0000• DO I =I TO 1011 
ISKlP,COLUMNl181, 10 (F(2),A,Xl4lll 
I • YR If. MO •• ' {I I ' DO I = l T 0 10) I 
ISKlP,COUJMN!2),A,COLUMNl211, 10 AllOll; 

20 DO l = 1 TO 3; 
21 PUT f'OlTIIllSKIPl2l,Fl3ll; 
22 DO J = l TO 12; 
23 PUT EDIT IMOIJlllCOUJMN(71 1 Al4ll; 
24 LIMIT= NET(J,1)/1000 + .5; 
25 DO K = 1 TO LI MYT; 
26 PUT EDITl'*'llAl; 
27 FNO; 
28 ENI'); 
zq FNO; 
31) ITE~ = NFXT_ITl=M; 
31 IF ,ENn_nF_INPUT THEN GO TO ~KTP; 

32 FTNJ: ENO SALFS; 

FIGURE 5.5 Case study program: sales history bar charts. 

Statement 5. The card input file is defined. Because STREAM is 
the default attribute for files, it need not be specified in this file declara
tion. 

Statement 6. This statement specifies the action to be taken when 
the END Fl LE condition is raised. 

Statement 7. This statement reads the first card. There are no control 
format items [e.g., SKIP, COLUMN(1 ), etc.] in this statement because 
reading will automatically begin with column one of the first input 
card. 



Stream 1/0 293 

Statement 12. This statement reads all subsequent cards. Notice 
that a control format item now had to be specified because of the 
nature of stream input. The SKIP causes reading to begin with the 
first column of the next record. Had SKIP been omitted from this GET 
statement, a logical error would result. This is because the card type 
is punched in column 79. Thus, column 79 is the last column "taken" 
from the input stream. Without the SKIP, input for the second GET 
statement would begin in column 80. Clearly, this is an error, because 
data for each new record read with a GET begin in column one. 

Statements 14 and 15. These statements test for card type and, 
based on whether each is an ORDERS or CANCELS card, the appro
priate GET STRING statement is executed. This option is useful in 
this case study because there are two different card formats in the 
input stream. All cards are read with the GET ED IT statement and then 
reread (i.e., reformatted) with the GET STRING option once the card 
type has been determined. 

Statement 16. This statement tests the end-of-input-file indicator 
set by the program when the EN DFI LE condition is raised. Because 
END_QF_INPUT has the BIT attribute, it may be tested with the 
NOT (--,) bit-string operator. Recall that a '1 'B is a "true" condition. 
By testing for the "not true" condition, this IF statement is specifying 
that, "should END_QF_INPUT contain a 'O'B, then go to AGAIN; 
else go to the next statement. 

Statement 18. Array arithmetic is used to determine net sales. 

Statement 19. Several heading lines are output with this one PUT 
EDIT statement. Notice this variation of the PUT statement; a data list 
is followed by a format list, and then another data list is followed by 
another format list, and so on. 

Statement 20. This DO statement establishes the loop operation 
to output three years of sales history. 

Statement 21. This PUT statement causes the year designation 
(e.g., 1, 2, or 3) to be printed. 

Statement 22. This DO statement establishes the loop operation 
for the printing of the horizontal bar representing sales figures for each 
month of each year. 

Statement 23. The alphameric designation for a given month is 
output. 



294 PL/I Programming 

Statement 24. The net sales figures are scaled down because each 
asterisk on printer output represents 1000 units sold. Thus, if 60,000 
units were sold, then 60 asterisks will appear on one line. The number 
of asterisks for output is assigned to the variable called LIM IT. The 
+ .5 is used to round off the sales figure to the nearest dollar. 

Statements 25-27. These statements cause one line of asterisks 
to be printed. The number of asterisks printed is determined by the 
value in LIM IT. 

Statements 28-29. These end the other DO's specified. 

Statement 30. The current item number (NEXT _ITEM) is saved in 
the variable (ITEM) that held the old item number. 

Statement 31. This statement tests the END_QF_INPUT indicator. 
By testing for the "not true" condition, this IF statement is specifying 
that, "should END_QF_INPUT contain a '0'8, then go to SKIP; else 
go to FINI." 

Edit-Directed 1/0 Eliminates Some Disadvantages of List-Directed 1/0: 
It provides for considerable efficiency in the representation of input data and 
offers a great deal of flexibility in the formatting of output data. The general 
form of edit-directed 1/0 statements is 

GET EDIT(data items) (format items); 

The following points should be remembered when using the GET EDIT and 
PUT EDIT statements: 

1. All data list items have corresponding format items. There are three 
types: 
(a) Data format items: These are items describing the format of 

the external data. 
(b) Control format items: These are items describing page control, 

line control, and spacing operations. 
(c) Remote format item: This item indicates that one or more data 

format items and/or control format items are located remotely 
from the GET or PUT EDIT statement in a FORMAT statement. 



Stream 1/0 295 

2. If there are more format items than data items, the extra format items 
are ignored. 

3. The data list item need not have the same width specification as the 
corresponding format item. 

4. Input continues until all data items have been read. 
5. Data list items may be names of data aggregates. It is possible to 

specify the name of an array as a list item. If an array is specified without 
a DO-group to qualify the order and/or number of items to be processed, 
the rightmost subscript varies most rapidly from the lowest to the 
highest value. If a repetitive specification (DO) appears in a data list. 
the repetitive specification must have a separate set of parentheses. 
In addition, the data list must have one set of parentheses. 

6. Input data items may be pseudo-variables. Pseudo-variables are built
in functions that may be designated as receiving fields; hence, 
pseudo-variables may appear on the left side of an equal sign or in a 
GET statement. Typically, the SUBSTR pseudo-variable might be 
used. 

7. Output data items may be built-in functions. 
8. Output data items may be PL/I constants. This capability is particularly 

useful for the printing of literal data (i.e., character-string constants 
that constitute headings). 

9. Data items may consist of element expressions. Operational expressions 
may be specified in the data list of a PUT statement. Such expressions 
may not involve arrays in the subset languages. 

10. There are subset language restrictions. The data list item must match 
the format item with respect to data type. Arithmetic data items may 
have only the format items F (fixed-point) or E (floating-point) speci
fied. CHARACTER data may only be described by the A format item 
and BIT data by the B format item. 

Format Items: Figure 5.6 lists the various format items and the language 
levels in which they are available. In full language implementations, it is 
permissible to specify expressions for w, d, and s. In the subset languages, 
only constants may be specified. If a SIZE error occurs during output controlled 
by an For E format item, the results of the output field are undefined. 

Simulating P Format: The need for using P format most often arises when 
it is desired to edit data. In the subset language, it is not permitted to output 
from a PICTURE that contains insertion characters. There are two methods 
that may be used for printing from a PICTURE identifier with editing characters: 

1. Invoke the CHAR built-in function in the data list. 
2. Use overlay defining of a character-string on a PICTURE. 



296 PL/I Programming 

I Subset Full 

-

Data formats 

A(w) x x 
B(w) x x 
C(real format item[, real format item]) N/A x 
E{w, d[, s]) x x 
F ( w L d [, p J ] ) x x 
P'picture specification' N/A x 

Control formats 

COLUMN(n) x x 
LINE(n) x x 
PAGE x x 
SKIP[(n)] x x 
X(w) x x 

Remote format 

R(label) x x 

FIGURE 5.6 Format items available in subset and full language 
implementations. [Key: N/ A, not available; [ ], optional; w, width; 
d, decimals {fractional digits); s, significant digits; p, decimal point 
scale factor; n, number.] 

The STRING Option: This option may appear in a GET or PUT statement 
in place of the Fl LE option. For example: 

GET STRING(DATA)EDIT(X,Y,Z) (8(5),2 F(9,2)); 

The STRING option causes internal data movement. In the subset language 
implementations, it may be used to convert character data to coded arithmetic 
data, which is just about the only way this data conversion may be effected. 
(Of course, in full language implementations, the conversion of character 
data to coded arithmetic data may be accomplished through the assignment 
statement.) The STRING option also facilitates manipulation of differing record 
formats in the same file. 

Data-Directed 1/0: This form of stream 1/0 is available in full language 
implementations. Data-directed 1/0 provides the facility for transmitting self
identifying data. Each data item in the input stream is in the form of an assign
ment statement that specifies both the value and the variable to which it is to 
be assigned. The input values are in the form of valid PL/I constants. Input 
items are separated by a comma and/or one or more blanks; a semicolon ends 



Stream 1/0 297 

each group of items to be accessed by a single GET statement. The NAME 
condition will be raised if the input stream contains an identifier not in the 
data list unless the data list is omitted entirely. 

The DISPLAY/REPLY Statement: The DISPLAY statement facilitates 
machine operator communication while the PL/I program is in execution. The 
REPLY option allows the operator to respond to a displayed message. 

Summary of 1/0 Statements: The types of stream 1/0 available in the 
subset and full languages are shown in the table. 

f 
Data- List- Edit-

directed directed directed 

Subset language No Yes Yes 

Full language Yes Yes Yes 

' 

1. Under what circumstances would the remote format item be useful? 

2. Given the following statement, what is the format item that applies to C? 

GET EDIT(A, B,C) ( F(4), F(5)); 

3. Is this valid? 
GET EDIT(A, B) (SKIP, F(2), F(3), F(4)); 

4. How many lines will be skipped, given the following statement: 

PUT EDIT(A, B,C) (SKIP(1 ),3 F(5,2),SKIP(2)); 

5. (True or False) An external data item need not agree in precision with 
the corresponding internal data item. 

6. What are the control format items that may be specified to effect printed 
output so as to begin on a new line? 

7. Which of the following may be specified for files that do not have the 
PRINT attribute? 

(a) PAGE 
(b) SKIP 
(c) COLUMN 
(d) LINE 



298 PL/I Programming 

8. (True or False) Stream files must be explicitly opened. 

9. What does the PAGESIZE option in the OPEN statement accomplish? 

10. Given the input value 12.34 and the statements, 

DCL VALUE FIXED(4); 
GET EDIT(VALUE) (F(5,2)); 

what will VALUE contain? 

11. Given the following statements, what value will be output? 

DCL VALUE FIXED(5,3); 
VALUE= 12.347; 
PUT EDIT(VALUE) (F(5,2)); 

12. Given the following statements, 

DCL AMT FIXED(7,2); 
AMT= 1024.57; 

write the PUT EDIT statement to accomplish output in this form: 

$1,024.57 

(Note: If you are using the subset language, the programming solution 
must also include another DECLARE and assignment statement.) 

13. Write the PUT EDff statement to print the following heading; be sure 
to include the underline. 

WEEKLY ACTIVITY REPORT 

14. Distinguish between control format item and control option. 

PUT PAGE EDIT{A,B,C) (SKIP(3),F(5)); 

15. (True or False) A FORMAT statement may contain an R format item. 

16. Given the following statement, what will A, B, and C contain after input 
where the input stream is this? (Note: b = blank.) 

b123bbbbbb12b34 
GET EDIT(A,B,C) (F(5)); 

17. Is this statement valid? Why or why not? 

DISPLAY('DATA ERROR ON TIME CARD FOR EMP. NO.',EMP#); 

18. What character will be contained in X after the following statements are 
executed? (Consider yourself "superbright" if you get the correct answer.) 

DCL X CHAR(1) INIT('A'); 
UNSPEC(X) = UNSPEC(X) I '0011 'B; 

19. Given the following internal data and corresponding format specifications, 
how will the output appear? Show any blanks which may be output with 
the data. Indicate any errors that may occur (e.g., SIZE condition or 
asterisk * in output). 



Stream 1/0 299 

Internal data 
(a) 123 

Format specification 
·F(3) 

(b) 123 F(3,0) 
(c) 123.45 F(6,2) 
(d) 123.45 F(6, 1) 
(e) 123.45 F(5,2) 
(f) ABC12 A(8) 
(g) ABC12 A 
(h) ABC12 A(3) 
(i) 110010 B(8) 
(j) 110010 B(2) 
(k) 123 F(2) 
(I) 12.345 F(5,2) 

20. Write the format item(s) which would be used in a GET EDIT statement 
to input the following values to the corresponding variable; 'b' is a blank 
column; '/\' is an assumed decimal point. What value will each variable 
have after the GET statement is executed? NOTE: This exercise applies to 
full language only. 

Variable name 
(a) FIELD_ 1 DECIMAL FIXED (7,2) 
(b) FIELD_2 DECIMAL FIXED (6,0) 
(c) FIELD_3 BINARY FIXED (31) 
(d) FIELD_4 BINARY FIXED (15) 
(e) FIELD_5 DECIMAL FLOAT (6) 
(f) FIELD_6 CHAR (5) 
(g) FIELD_ 7 DECIMAL FLOAT (6) 
(h) FIELD_8 DECIMAL FLOAT (6) 
(i) FIELD_9 DECIMAL FIXED (7,4) 
(j) FIELD_ 10 BINARY FLOAT (21) 
(k) FIELD_ 11 DECIMAL FIXED (7,2) 
(I) FIELD_ 12 BIT (5) 
(m) FIELD_ 13 BIT (7) 
(n) FIELD_ 14 CHAR (11) 
(o) FIELD_ 15 CHAR (3) 
(p) FIELD_ 16 DECIMAL FIXED (3) 
(q) FIELD_ 17 BINARY FIXED (31) 
(r) FIELD_ 18 BINARY FLOAT (21) 
(s) FIELD_ 19 DECIMAL FIXED (7,7) 
(t) Fl ELD _20 BIT (16) 

Data value in input stream 
00123/\675 
0017.38 
bbbbbbb 
bbbbb23.7 
123.4E1 
ABC DEF 
00123/\88 
008.310bb 
bb.16753 
27/\58A 
031\461 E2 
1011101 
0064 
03/\461 E2 
bbbbb 
10175/\00 
A2345/\67 
276.4201 
384.747 
32767 

21. Given the following fields and their associated values, describe the output 
values if they were placed on file SYSPRINT with a PUT EDIT command 
using the associated format items. Show any blanks which may be output 
with the data. (This question is only applicable to full language implemen
tations.) 



JOO PL/I Programming 

Field 
(a) Fl ELD_ 1 FIXED BI NARY (31) 

Value 
1239 

(b) FIELD_2 FIXED DECIMAL (7,3) 123.456 

(c) FIELD_3 DECIMAL FLOAT (6) -463.72E+5 

(d) FIELD_4 CHAR(4) 

control format item 
data-directed 1/0 
data list 
edit-directed 1/0 
external data 

1. Sequencing a PL/I Source Deck 

'ABC5' 

format list 
remote format item 
STRING RANGE 

UNSPEC 

Format item 
F(7,2) 
E(14,5, 7) 
A(14) 
P'9999V99' 
P'999V.99T 
F(7,2) 
F(10,3) 
E(13,5,6) 
E(13,5,7) 
P'ZZZV99.999' 
F(15,2) 
E(14,7,8) 
F(7,2) 
P'(1 O)ZV.(4)9T 
A(20) 
A(5) 
A(2) 
P'XXXX' 
P'AAA9' 

Problem Definition: Write a program that will place a five-character alphabetic 
program name in columns 73-77 and a sequence number in columns 78-80 
of a PL/I source program deck. 

'1~ 
:r 



Stream 1/0 301 

Purpose of the Problem: To gain experience in declaring stream files for the 
card reader and card punch; to use the DISPLAY /REPLY statement. 

Input: If a console typewriter is available, use the DISPLAY/REPLY state
ment for the purpose of entering the parameters (program name and beginning 
sequence number). Otherwise, punch these parameters into a card and make 
this card the first data your program reads. For the source program input, use 
any debugged PL/I program you have on hand. 

Processing: The beginning sequence number must be incremented. If you 
wish, one additional input parameter may be an incremental value. If this is 
specified, then the sequence number is to be incremented by the value of that 
parameter. 

Output: Punch a copy of each source card read (including, of course, the 
added program name and sequence number), and list each card on the line 
printer. 

Note: For subset language programmers using the DISPLAY /REPLY state
ment, it will be necessary to use the DEFINED attribute for the sequence number. 
For example: 

DISPLAY('ENTER 3-DIGIT SEQUENCE NUMBER') 
REPLY (SEQ); 

l~-----.i Must have the CHARACTER attribute 

DCL SEQ CHAR(6) DEF SQ; 
DCL SQ Pl C'999999'; 

....__ _____ -+The decimal picture field is required so that 
arithmetic may be performed on the sequence 
number; e.g., SQ=SQ+1; 

The above restriction applies to the subset languages where it is not permitted 
to do arithmetic on data having the CHARACTER attribute. In the full language 
implementations, conversion of CHAR TO FIXED DEC is allowed. 

2. Printing Address Labels-"One-Up" 

Problem Definition: Assume an organization has punched its members' names 
and addresses into cards. Write a program to prepare labels for attachment to 
envelopes. 

Purpose of the Problem: To gain practice using the GET STRING and edit
directed 1/0 statements. 

Input: There are two card formats in the input stream, as shown. Make up 
your own data for this problem, but be sure to specify at least 12 names and 
addresses. 

Processing: Check that the member's number in columns 2-7 is the same 
for card 1 and card 2. Also, check column 1 to ensure that the cards are in the 



302 PL/I Programming 

//NO. STREET 

c 
0 
D 
E 

1 2 7 8 

/ NO. NAME 

c 
0 
D 
E 

1 2 78 32 

CITY/STATE ZIP 

37 38 57 

Address card 
(Column1=2) 

t---

Nam e card 
mn 1=1) (Colu 

sequence 1, 2, 1, 2, 1, 2, etc. If the cards are out of sequence or the member's 
number in card 1 does not match that in card 2, print an error message and 
terminate the job. 

Output: Print each member's name and address in the format shown. 

NAME 
STREET ADDRESS 
CITY, STATE 

Skip three lines between labels. 

3. Printing Address Labels-"Three-Up" 

ZIP 

This is a variation of the previous problem. Instead of printing one label at a 
time, print three labels at a time, side-by-side. See Figure 5.7 for the desired 
layout. Inasmuch as less than three labels may be printed for the last group, 
you will probably find it advisable to maintain a program counter that tests 
for the number of labels available to be printed in each subsequent group of 
output. 

4. Computation of an Interest Table 

Problem Statement: Compute the value of loans in amounts of $1,000, $2,000, 
$3,000, and so on up to $10,000, at interest rates varying from 1 % to 10% 
incrementing by 1 %, for periods ranging from 1 year to 10 years in yearly 
increments. Interest is to be compounded annually. Keep all values in a three
dimensional array. Print results when all calculations are complete. 



11111111111111 
11111111112222222222333333333344444444445555555555666666666677777777779888888888999999999900000000001111 

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123 

F 
, .. 1. 

I I 

... 
i 

1 i 

FIGURE 5.7 Desired printer layout for address labels-"three-up." 



304 PL/I Programming 

Purpose of the Problem: To gain experience in the use of arrays and their 
manipulation with DO-loops and indexes. 

No Input Is Required 

Desired Printer Layout: See Figure 5.8. Start a new page with each table; 
thus, there will be ten pages of output. 

Sample Output: See Figure 5.9. 

Suggestion: Use the following formula for computing the value of the loan. 

V = P * (1 + I) ** N 

where V is the value of the loan, P is the principal amount, I is the interest 
rate (1 % = 0.01), N is the number of years the loan is outstanding. 

After your program has set each element of the three-dimensional array 
to the values of the loan using the above formula, it will be necessary to half 
adjust the results in order to obtain the correct answers. This half adjust is 
necessary because the formula specifies exponentiation. When exponentiation 
is specified, the calculation will be handled in floating-point. Normally, floating
point operations should be avoided for currency calculations, because the 
result is an approximation rather than exact to the penny. However, in this 
problem, declare your array in the following manner: 

DCL VALUE(10, 10, 10) FIXED(9,2); 

Compute the interest table, and then, after all calculations are completed, 
include the following array arithmetic statement: 

VALUE=VALUE+.5; 

Now, results will be accurate. 

5. Table of Square Roots 

Problem Statement: Print a table of square roots from N1 to N2 , where these 
parameters are input from the console typewriter. 

Purpose of the Problem: To use the DISPLAY /REPLY facility of PL/I. 

Input: Data is to be read from the keyboard of the console typewriter. 

Output: Print the square roots on the typewriter. Include an appropriate 
heading. 

6. Analytic Geometry 

Problem Statement: Write a program to describe the loci of the homogeneous 
equations of the form AX2 + BXY + CY2 + DX+ EY + F = 0, where the co
efficients A, B, C, D, E, and F are rational numbers. (The degenerate cases and 
those in which the locus is a point or imaginary are not considered in this 
program.) 

Purpose of the Problem: To code a mathematics-oriented program where 
use of the remote format list saves redundant coding. 



~I~ ---1-----1-------------------------oc1111 ~ ~P ~~~ --- ---- - - --- - -- -- - -i-1- --1-1-1-- -1--- -

FIGURE 5.8 Desired printer layout for Problem 4. 



LOAN VALUE TABLE 

LOAN AMOUNT: l,ooo 

# OF ----------------·-----------------INTEREST RATES---------------------------------
YEARS 1 2 3 4 5 6 7 8 9 10 

1 1,010 1,020 1,030 1,040 1,050 1,060 1,070 1,080 1,090 i,100 
2 1,020 1,040 1,061 1,082 1,102 1, 124 1,145 1, 166 1,188 1,210 
3 1,030 1,061 1,093 ltl25 1,158 ltl91 1,225 1,260 1,295 1,331 
4 l, 041 1,082 1,126 1,170 1,216 1,262 1,311 1,360 1,412 1,464 
5 1,051 1,104 ltl59 1, 217 1,276 1,338 1,403 1,469 1,539 lt 611 
6 1,062 1,126 1,194 1,265 1,340 lt419 1,501 1,587 1,677 1,772 
7 1, 072 1, 149 1,230 l, 316 1,407 1,504 1,606 1, 714 1,828 1,949 
8 1,083 1, 172 1,267 1,369 1,477 1,594 1, 718 1,851 1,993 2,144 
q 1,094 1,195 1,305 lt423 1,551 1,689 1,838 1,999 2, 172 2,358 

10 l,105 1, 219 1,344 1,480 1,629 1,791 l t967 2,159 2,367 2,594 

LOAN VALUE TABLE 

LOAN AMOUNT: 10,000 

# OF ---------------------------------INTEREST RATES---------------------------------
YEARS 1 2 3 4 5 6 1 8 9 10 

1 10,100 lo, 200 10,300 10,400 10,500 10,600 10,100 10,800 10,900 11,000 
2 10, 201 10, 404 10,609 10,816 11,025 11, 23 6 11,449 ll,664 11, 881 12, 100 
3 10,303 10,612 10,927 11, 249 11,576 11,910 12,250 12,597 12 '950 13,310 
4 10,406 10,824 11,255 11,699 12,155 12,625 13,108 13,605 14,116 14, 641 
5 10,510 11,041 11t593 12,167 12,763 13,382 14,026 14,693 15,386 16,105 
6 10,615 11, 262 11,941 12,653 13,401 14,185 15,007 15 ,869 16, 771 17,716 
7 10,721 11, 48 7 12,299 13,159 14,071 15, 036 16 ,058 17, 138 18,280 19,487 
8 10, 829 11,717 12,668 13, 686 14,775 15' 938 17,182 18,509 19,926 21,436 
9 10,937 11,951 13,048 14,233 15, 513 16,895 18,385 19,990 21,719 2 3, 579 

10 11, 046 12' 190 13,439 14,802 16,289 l 7, 908 19,672 21,589 23,674 25, 93 7 

FIGURE 5.9 Sample output for Problem 4. {Note: only first and last tables are shown.) 



• OOOOX**2= .OOOOXY= .OOOOY**2+ l.OOOOX= 2.oooov+ 3.0000=0 NOT QUAD 

2. 0000 x **2= 5.0000XY= 3.0000Y**2+ l.OOOOX= 2.0000Y+ 3 .0000=0 HYPERBOLA 

2.0000X**2= 4.0000XY= 2.0000Y**Z+ l.OOOOX= 2.0000Y+ 3.0000=0 PARABOLA 

3. OOOOX**Z= .OOOOXY= 3. OOOOY**2+ l.OOOOX= z.oooov+ 3.0000=0 CIRCLE 

2.0000X**2= .OOCOXY= 3. OOOOY**2 + l.OOOOX= 2 .oooov + 3 .0000=0 ELLIPSE 

2. OOOOX**2= .OOOOXY= 4.0000Y**2+ l.OOOOX= 2.0000Y+ 3.0000=0 ELLIPSE 

FIGURE 5.10 Sample output for Problem 6. 



308 PL/I Programming 

Input: Each input record contains the values A, B, C, D, E, and F in that 
order. Suggested test data might be: 

A B c D E 
0 0 2 3 
5 3 2 3 
4 2 2 3 
0 3 2 3 
0 3 2 3 
0 4 2 3 

Output: Print the equation of the curve and its name: "Parabola," "Hyperbola," 
"Ellipse," "Circle," or "Not Quad." Sample output is shown in Figure 5.10. 

Flowchart: See Figure 5.11 . 

Start 

END 

Write 
'NOT 

QUAD' 

Write 
'HYPERBOLA' 

FIGURE 5.11 Flowchart for Problem 6. 



l!hapl@r 6 

Built-in 



A function produces a new value for each value or set of values it 
receives. Graphically, the function of producing square roots can be 
pictured as follows: 

Input Square root Output 

x function 

Some functions require more than one input value in order to produce 
an output value. The motion of an airplane can be described by a 
complicated function requiring basically four input values: 

Force due to lift ------
Airplane Direction 

Force due to gravity ----
motion ---- of airplane 

Force due to propeller ----+ 

function motion 
Force due to drag 

Functions, regardless of the number of input values, which are called 
arguments, always produce a single value. A built-in function is a 
function that is supplied as a part of the PL/I language. Functions 
for which there are general uses are provided as a feature of the PL/I 
language. Built-in functions are given the attribute BUILTIN. 

We invoke a PL/I function by using its name. For example, SQRT 
is the name of the PL/I built-in function that performs the action of 
computing square roots. Arguments (the values to be input to a 
function) are specified by a value or a list of the argument values 
separated by commas and enclosed in parentheses following the 
function name. 

Y=SORT(X); 

I L__) Single argument 

~ Square root built-in function 

.__ _______ Square root of X is placed in Y 

310 



Built-in Functions 311 

A reference to a PL/I built-in function will cause that function 
to be performed on the argument values, resulting in the function 
value. The value returned by the function logically replaces the function 
reference in any expression. Most functions require arguments. How
ever, some functions return a value which is independent of everything 
else in the program and, hence, do not require an argument. An example 
is the DATE function. When we use a function requiring no arguments, 
it is a good idea (indeed, it is required with some compilers) to ex
plicitly declare that name as having the attribute BU IL TIN. For example: 

DECLARE DATE BUILTIN; 

The reason for this is that, because a reference to such a function 
looks so much like a variable, it is preferred to state explicitly that we 
always want DATE to stand for the value returned by the BUil TIN 
function. 

Function references (i.e., the values returned by functions) can 
be used as arguments to other functions. For example: 

Y=SUBSTR(DATE,1,2); 

~I -~) The third argument of the function 
SU BSTR indicates the length of the 
returned value desired 

.____ ___ ) The second argument to the function 
SU BSTR indicates the starting position 
within the string of the returned value 

,____ ____ The first argument to the SU BSTR 

function is the character-string from 
which to extract a substring; in this 
case, we are using the DATE built-in 
function which can be thought of in 
terms of the value it returns; a 
character-string of the form YYMMDD, 
representing the year, month, and day 
of the current date 

~------~The keyword SUBSTR indicating the 
function to be invoked 

.__ ___________ SU BSTR returns a character-string of 

length 2 (as specified in the third 
argument) ; that character-string is 
assigned to the variable Y 



312 PL/I Programming 

Note that for almost all functions the position of the arguments is 
critical. For example, the first argument to the function SU BSTR 
must be the name of the string from which we want to extract a substring. 
SUBSTR(DATE,1,2) is not equivalent to SUBSTR(1,2,DATE). 

Pseudo-variables 

A pseudo-variable is a built-in function name appearing to the 
left of the assignment symbol as if it were a variable. Several built-in 
function names may be used as pseudo-variables. For example, 
SUBSTR, when used as a built-in function, returns a string which is 
a substring of the first argument to the function. When used as a 
function, SUBSTR represents the value of the substring. SUBSTR 
may also be used as a pseudo-variable if, for example, we want to 
store a value in the substring of another string. In other words, we want 
to designate a part of a string as the receiving field in an assignment 
statement. For example : 

DECLARED CHAR(14)1NIT('DATE: 03/14/77'); 
/*CHANGE MONTH 03 TO MONTH 12 */ 

SUBSTR (D,7,2) ='12'; 

By using SU BSTR in this manner, we designated a substring of the 
variable D to be the receiving field of an assignment statement. 
SUBSTR is not a function when we use it in this way; it is called a 
pseudo-variable. 

The PL/I built-in functions that can be used as pseudo-variables 
are SUBSTR, UNSPEC, STRING, ONCHAR, and ONSOURCE. 
Pseudo-variables allow us to use the definition of the function to 
designate target variables specified by the function rules. 

Built-in functions fall into the following categories: 

Arithmetic 
Mathematical 
String handling 
Array manipulation (covered in Chapter 4) 
Miscellaneous 

These functions facilitate the manipulation of arithmetic data. They are 
useful in testing a value, determining a given relationship of several 
values, or modifying a given value. 



Built-in Functions 313 

The arguments of arithmetic built-in functions may be expressions 
or array names. If an argument is an array name, the value returned by 
the built-in function is an array of the same dimension and bounds 
as the argument, the function having been performed once for each 
element of the array. 

All values returned by the arithmetic built-in functions are in 
coded arithmetic form (e.g., FIXED DECIMAL, FIXED BINARY, 
FLOAT DECIMAL, FLOAT BINARY). The arguments of these functions 
should also be in that form; otherwise, before the function is invoked, 
they will be converted to coded arithmetic form according to the rules 
of data conversion.t 

ABS 

This function finds the absolute value of a given quantity. The 
argument may be a single value; an expression, or an array. 

Examples 

CEIL 

OCL (X,YJ DECIMAL FIXE0(5 9 3); 
x = 3. 714; 
Y = ABS(Xt; I* Y NOW JS +3.714 *I 
x = -7.479; 
Y = ABSlX); I* Y NOW IS +7.479 *I 
OCL A(3) flXEO lNIT(-3,5,-7); 
A= ABS(AJ; I* A(l) NOW IS +3 

A(2) STILL IS +5 
A(3) NOW IS +7 *I 

This function finds the smallest integer that is greater than or 
equal to a given value. For example, if the argument is 7.4, the ceiling 
of that value would be 8. 

Examples 

OCL (X ,Y) FIXED DECIMAL( 3,2); 
x 3. 32; 
y CE IU X J; '* Y NOW IS 4.00 *I 
x 6.00; 
y CE IL ( X); I* Y NOW IS 6.00 *I 
x -3.32; 
y CE IL( X}; I* Y NOW IS -3.00 *' 

tSee Appendix C for data conversion rules. 



314 PL/I Programming 

FLOOR 

This function is the opposite of the CEIL function. FLOOR finds 
the largest integer that does not exceed a given value. For example, 
if the argument is 7.4, the floor of that value would be 7. 

Examples 

DCL (X,Yt FIXE0(3,2a; 
x 3.32; 
y FLOOR( X); I* Y NOW IS 3.00 *' x -3.32; 
y FLOOR ( X l; I* Y NOW IS -4.00 *I 
x 5.00; 
y FLOOR ( X); I* Y NOW IS 5.00 *I 

MIN 

This function finds the smallest value from a given set of two 
or more arguments. The arguments may be single values or expressions, 
but they may not be arrays. 

Examples 

DCL (W,X,Y,Z) FIXED DECIMAL(7,2); 
x 127.4; 
y = 32.84; 
z = -6.24; 
w = MIN(X 1 Y,Z>; I* w NOW IS -6.24 *I 
UCL (A,8,C) FIXED; 
A 2; 
B 5; 
c MIN(A,B); I* c NOW IS 2 *I 
c MIN(A•-2,Bt;/* c NOW IS -4 *I 

If the arguments are of mixed characteristics, they will be converted 
to the highest characteristic according to the rules for data conversion. 
Any sequence of arguments is allowed. The returned value from MIN 
is in the form of the highest characteristic of all the arguments that 



Built-in Functions 315 

were specified. For example: 

DCL A FIXED DECIMAL INIT(5); 
DCL B FLOAT DECIMAL INIT(4); 
DCL C FIXED Bl NARY; 
C=MIN(A,B); 

._I ____ ~i This argument is converted to FLOAT 
DECIMAL (the highest characteristic) and 
then compared with B 

'---------~ Result returned will be 4 in the form 
FLOAT DECIMAL (again, the highest 
characteristic) 

.___ _______ Results will be converted to FIXED BINARY, 
the attributes declared for C 

MAX 

The opposite of MIN, this function finds the largest value from 
a set of two or more arguments. The arguments may be single values 
or expressions, but may not be array names. At least two arguments 
must be specified. If the arguments are of mixed characteristics, they 
will be converted to the highest characteristic according to the rules 
for data conversion. Arguments may be listed in any sequence. 

Examples 

ROUND 

DCL (W,X,Y,Z) DECIMAL FIXE0(7,2); 
x = 424.23; 
y = -3117.74; 
z = 1007 .98; 
W = MAX(X,Y,Zt; I* W NOW IS 1007.98 *I 
OCL (A,B,C,0} FIXED; 
A = 2; 
B = 5; 
c = -4 7; 
0 = MAX{l2*A 7 B,CJ; I* D NOW IS 24 *I 

This function rounds a given value at a specified digit and pads 
spare digit positions with zeros. For example, if the argument is 8.77 



J 16 PL/I Programming 

and it is desired to round to the first fractional digit, the result would 
be 8.80. There are two arguments to this function: 

ROUND(m,n) 

I ..___ ______ Second argument 

..._ ______ ~, First argument 

First Argument. This is the value to be rounded. It must be a coded 
arithmetic or decimal picture data item. It may be an element expression 
or array name representing the value (or values, in the case of an array). 
If the value to be rounded is negative, its absolute value is rounded, 
but its sign remains unchanged. 

Second Argument 

1. Subset language: This must be an unsigned decimal integer 
constant specifying the fractional digit position to the right 
of the decimal point at which the first argument is to be 
rounded. For example: 

OCL PRIN FIXED DECIHAL(6,4); 
PRIN = 24.8693; 
PRIN = ROUNDCPRIN,2); I* PRIN NOW IS 24.8700 *I 

2. Fu/I language: The constant speeifying the digit at which the 
argument is to be rounded may be unsigned or signed. The 
second argument, which is called "n," specifies the digit at 
which the value is to be rounded. If n is positive, rounding 
occurs at the nth digit to the right of the decimal (or binary) 
point in the first argument; if n is zero, rounding occurs at the 
first digit to the left of the decimal (or binary) point in the first 
argument; if n is negative, rounding occurs at the (nth + 1) 
digit to the left of the decimal (or binary) point in the first 
argument. For example: 



Built-in Functions 317 

OCL {X,Y) DECIMAL FIXED (7 ,4); 
x 123.7261; 
y ROUND ( X, 3 l; '* Y NOW IS 123.7260 *' y ROUNO(X,2}: I* y NOW IS 123. 7300 *' y ROUND ( X, l); '* y NOW IS 123.7000 *' y ROUND(X,0); I* y NOW IS 124.0000 *' x -123.7261; 
y ROU NO ( X , 2 l ; I* Y NOW IS -123. 7300 *' y ROUND ( X, 0); I* Y NOW 15 -124.0000 *I 
y ROUND( X ,-1) ; I* Y NOW IS -120.0000 *I 
x 9. 9999; 
y ROUND( X, Ol; I* Y NOW IS 10.0000 *I 

Generally, only fixed-point values would be rounded using the 
ROUND function. Floating-point values, for practical purposes, would 
not be rounded using this function. (The usual practice is to round 
floating-point values just before output. Recall that this rounding is 
automatically done in stream output.) Should the first argument to 
the ROUND function be in floating-point format, the second argument 
of ROUND is ignored, and the rightmost bit in the internal floating
point representation of the expression's value is set to 1 if it is 0. If 
the rightmost bit is 1, it is left unchanged. If the first argument is a 
character- or bit-string, the returned value is the same string unmodified. 

TRUNC 

This function changes the fractional part of an argument to zero. 

Examples 

OCL (X,Y) DECIMAL FIXE0(3,2); 
x 3.32; 
y = TRUNC ( X); I* y NOW IS 3.00 *' x -3.32; 
y = TRUNC(X); '* y 

NOW IS -3.00 *' 
MOD 

This function extracts the remainder resulting from the division 
of the first argument by the second argument. The value returned is 
the smallest number that must be subtracted from the first argument 
in order to make it exactly divisible by the second argument. This 



318 PL/I Programming 

means that if the first argument is positive, the returned value is the 
remainder resulting from a division of the first argument by the second. 
For example, MOD(29,6) returns the value 5: 

4 
6)29 

25 
+ 5 Remainder 

If the first argument is negative, the returned value is the modular 
equivalent of this remainder. Thus, MOD( -29,6) will return the 
value 1 : 

- 4 
6) -29 

-24 

- 5 Remainder 

Then, 6 - 5 = + 1 
'-v-' 

'---------+) Result returned by MOD 

'---------+) -5 was the remainder after division 
( - 29 -:- 6) 

'---------~Divisor 

When the MOD function is used with fixed arguments of different 
scale factors, the results may be truncated, in which case the SIZE 
condition will be raised (if enabled). If SIZE is disabled, no error 
message will be printed, and the result is undefined. If the value of the 
second argument is zero, the ZERODIVIDE condition is raised. 

Examples 

DCL (X,Y,Z> DEC I MAL F lXEO( 5,0); 
x = 34; 
y a; 
z MOO( X, Y); I* Z NOW IS 2 *I 
x -34; 
z MOOCX,Y); I* z NOW IS 6 *I 
l M00(29,6t; I* z = 5 *I 
z M00(-29,6t; I* z = 1 *I 
y O; 
z MOO{ X, Y); I* RAISES ZERODIVIDE 

CONDITION *I 



Built-in Functions 319 

SIGN 

This function determines whether a value is pos1t1ve, negative, 
or zero. It returns a fixed-point binary value of default precision (15) 
according to the following rules: 

1. If X is greater than 0, the returned value is 1. 
2. If X is equal to zero, the returned value is 0. 
3. If X is less than zero, the returned value is -1. 

Examples 

OCL x DECIMAL FIXE0(4); 
DCL I BINARY FIXE0(15l; 
x 123; 
I SIGN( X); I* I NOW IS 1 *I 
x -175; 
I S IGNtx); I* I NOW IS -1 *I 
x O; 
I SIGN(X); I* 1 NOW IS 0 *I 

The primary reason for the following arithmetic functions being provided 
in the PL/I language is to override the rules of the language concerning 
the conversion of data items with different bases, scales, and precisions. 
Consult Appendix C for details of the language specifications on data 
conversions. 

ADD 

This function finds the sum of two values. It is provided so that 
the programmer may control the precision of the result of an add 



320 PL/I Programming 

operation. The function reference is described as follows: 

ADD (x, y, p,q) 
~~ 

I.__ __ ~) Decimal integer constants specifying the 
precision of the result; if the scale of the 
result is fixed-point, all four arguments 
must be specified; if the scale of the 
result is floating-point, the fourth (last) 
argument should not be specified; if x 
and y have binary bases, p and q refer to 
the number of bits of precision; if x and y 
have decimal bases, p and q refer to the 
number of decimal digits in the precision 

~---- Values to be added 

'---------~ Built-in function name 

Example 

OCL A FIXED BINARY(31) INIH67108862); 

DCL B FIXED DECIMAL(8,6) INIT(l3.031875t; 

DCL C FIXEO BINARY(3l) 
C = A + B; 
C = AOO{A,B,31,0); 

INIT (0); 
I* FIXEOOVERFLOW 
I* C ·= 67108875 *' *I 

In the above example, it is desired to add A and B together and assign 
the result to C, where 

A= 67108862 
B = 00000013.031875 

c = 671 08875. 

Note that it is intended for the fractional part of the sum to be truncated 
when it is assigned to C. The declared precision of C is large enough to 
contain the sum. However, when A and B are added together, FIXED
OVERFLOW occurs. If you turn to Appendix C, Figure C.1, you will 
see a chart describing the results of addition and subtraction operations 
where the operands have differing bases and scales. The first operand 
in the above example has the attributes FIXED BINARY(31). The 
second operand has the attributes FIXED DECIMAL(8,6). In Figure C.1, 
the information in the first row, third column, pertains to the add 
operation with which we are concerned. That information is as follows: 

i 
·I 
1,I 

!.~ 

i~ 



where 

Built-in Functions 321 

BINARY FIXED(p,q) 

p = 1 + MAX ( p 1 - q 1 , r - s) + MAX ( q 1 , s) 
q = MAX(q 1 , s) 

r = 1 + p2 * 3.32 
s = q2 * 3.32 

The above equations describe the rules by which prec1s1on will be 
computed when unlike data types are to be operated on. So that you 
may see why FIXEDOVERFLOW occurred in the above example, the 
equations are worked out where the precisions of the variables A and 
B are substituted for the symbols P1 , q 1 , p2, q2 : 

~P1 

11-q, 
A is FIXED BINARY(31,0) 
B is FIXED DECIMAL(8,6) cq2 

P2 

The resulting prec1s1on is called p and the resulting number of 
fractional digits is called q. Recall that when operating arithmetically 
on two operands, where one of the operands has the decimal base 
and the other the binary base, the decimal base data item is to be 
converted to the binary base before the arithmetic operation can be 
performed. First, we will compute r and s: 

r = 1 + P 2 * 3.32 
: . r = 1 + 8 * 3.32 
:. r = 29.88 

s = q2 * 3.32 
... s = 6 * 3.32 
... s = 19.92 

The constant 3.32 is used because it takes approximately 3.32 bits to 
represent a decimal digit in binary. Continuing with how the precision 
of differing data types is arrived at, we see that p (the precision) is 
calculated as follows: 

p = 1 + MAX(p 1 - q 1 ,r - s) + MAX(q 1 ,s) 
:. p = 1 + MAX(31 - 0,29.88 - 19.92) + MAX(O, 19.92) 
... p= 1+31+19.92 
... p = 51.92 



322 PL/I Programming 

The precision needed in this case is computed as being 51.92 bits, 
which will be rounded to 52 bits. However, the precision of the 
result can never exceed implementation-defined maximums (e.g., 31 
for FIXED BINARY, 15 for FIXED DECIMAL, 53 for FLOAT BINARY, 
16 for FLOAT DECIMAL in S/360 and S/370). Because the precision 
in the above example (52 bits) clearly exceeds the maximum allowed 
for FIXED BINARY data, the FIXEDOVERFLOW condition will occur. 
The solution, then, is to use the ADD built-in function which allows 
the programmer to define the precision to be used throughout the 
addition operation (31,0). 

To control the precision of two operands in a subtraction opera
tion, simply reverse the sign of one of the arguments and invoke the 
ADD function. For example, if it is desired to subtract B from A, where 
both operands are positive, then the following statement could be 
coded to accomplish subtraction : 

C = ADD (A, - B,31,0); 

DIVIDE 

This function divides the first argument by the second argument 
and returns the quotient. It is provided so the programmer may control 
the precision of the result of a divide operation. The arguments are 
described as follows: 

DIVIDE(x,y,p,q) 
'-v-' 

.__ __ i Decimal integer constants specifying the 
precision of the result; if the result is a 
fixed-point value, all four arguments must 
be specified; if the result is a floating
point value, .the fourth argument must be 
omitted; for binary data, p and q represent 
the number of bits, whereas for decimal 
data, p and q refer to the number of 
decimal digits in the precision of the 
result 

.__ __ ~ Divisor 

.___ ____ Dividend 



Built-in Functions 323 

Example 

DCL (X,Y) DECIMAL FIXE0(7,0>; 
OCL Z DECIMAL FIXED(lS,15); 
x l; 
y 3; 
Z X/Y; I* Z IS .333333330000000 

BECAUSE OF PRECISION 

z 
OF INTERMEDIATE RESULT */ 

OIVIDE(X,Y,15,15); /* l IS .333333333333333 *I 

MULTIPLY 

This function finds the product of two arguments. The precision 
of the results is determined by the third and fourth arguments. The 
arguments are described as follows: 

MULTIPLY(x,y,p,q) 

Example 

L Decimal integer constants specifying 
the precision of the result; if the 
result is a fixed-point value, all four 
arguments must be specified; if the 
result is a floating-point value, the 
fourth (last) argument must be 
omitted; for binary data, p and q 
refer to the number of bits, whereas 
for decimal data, p and q refer to the 
number of decimal digits in the 
precision of the results 

'-------~ Values to be multiplied 

OCL (X,Y,Z) DECIMAL FIXED(l0,9); 
X l .O; 
Y 1. O; 
Z X * Y; I* FIXEOOVERFLOW CONDITION 

.RAISED BECAUSE Of PRECISION 
OF INTERMEDIATE RESULT *I 

Z = MULTIPLY(X,Y,10,9); I* Z NOW IS 1.000000000 *I 



324 PL/I Programming 

BINARY 

This function converts a decimal value to the binary base: 

BINARY(x,p,q) 

Example 

._,,,...., 

~--+ Decimal integer constants specifying the 
precision of the binary result; the argu
ments p and q refer to the number of 
binary digits desired in the precision; the 
precision of a fixed-point result is (p,q); 
the precision of a .floating-point result is 
(p); if both p and q are omitted, the 
precision of the result is determined 
according to the rules given for base con
version; for floating-point arguments, q 
must be omitted 

'------~ Represents the decimal value to be con
verted to binary base 

OCL X FIXED OECIMAL(l,l); 
OCL I FIXED BINARY(8,8); 
x .1; 
I X; I* I HAS A VALUE OF .0625 BECAUSE 

OF BASE CONVERSION RULES */ 
BINARY{X,8,8); I* I NOW IS .09765625 *I 

I* NOTE: I CAN· NEVER BE EXACTLY .1 *I 

DECIMAL 

This function converts a binary value to the decimal base: 

DECIMAL (i,p,q) 
._,,,...., 

~ Decimal integer constants specifying the 
precision of the decimal result; the preci
sion of a fixed-point result is (p,q) ; the 
precision of a floating-point result is (p); 
if both p and q are omitted, the precision 
of the result is determined according to 
the rules given for base conversion; for 
floating-point arguments, q must be 
omitted 

.____ __ ~ Represents the binary value to be con
verted to a decimal base 



Built-in Functions 325 

Example 

OCL I FIXED BINARY{l5); 
DCL X FIXED DECIMAL(3,ll; 
I l; 
X I * .l; I* X IS NOW 0.00 BECAUSE OF 

PRECISION OF INTERMEDIATE RESULT */ 
X DECIMALlI,3,1) * .l; I* XIS NOW 00.l *I 

FIXED 

This function converts a floating-point value to the fixed-point 
scale: 

FIXED(x,p,q) 

Example 

"-y-1 

...____ __ ~> Decimal integer constants specifying the 
precision of the results; if p and q are 
omitted, p is assumed to be 15 for binary 
x and 5 for decimal x; q is assumed to 
be 0 

..___ ____ --+ Floating-point value to be converted to a 
fixed-point scale 

OCL X FLOAT DECIMAL(6); 
OCL SUBRT ENTRY; 
/*'SUBRT'EXPECTS A FIXE0(7,2) ARGUMENT *I 
I* HENCE 1 FIXE0 1 MUST BE INVOKED TO CAUSE 

THE NECESSARY DATA CONVERSION *I 
CALL SUBRT(FJXEDCX,7,2)J; 

FLOAT 

This function converts a fixed-point value to a floating-point 
scale: 

FLOAT (i,p) 

I.__ ___ > Decimal integer constant specifying the 
precision of the result; if this argument is 
omitted, it is assumed to be 21 for binary i 
and 6 for decimal i 

....__ __ ~ Value to be converted to floating-point scale 



326 PL/I Programming 

Example 

DCL I FIXED BINARY{l5J; 
OCL SUBRT ENTRY; 
I* •SUBRT' EXPECTS A FLOATING-POINT ARGUMENT */ 
I* HENCE 'FLOAT' MUST BE INVOKED TO CAUSE 

THE NECESSARY DATA CONVERSION *I 
CALL SUBRT(FLOATCI,21J); 

PRECISION 

This function converts a given value to the specified precision. 
It is used for right truncation and may not be used for left truncation: 

PRECISION (x,p,q) 

Example 

L Decimal integer constants specifying 
the precision of the result; if x is a 
fixed-point value, p and q must be 
specified; if x is a floating-point value, 
q must be omitted 

'----~ Value to be converted to the specified 
precision 

tCL X DECIMAL FIXEO(lQ,5); 
X = 1374 + 1/3; I* FIXEDOVERFLOW CONDITION RAISED 

BECAUSF OF PRECISION OF 
INTERMEDIATE RESULT *I 

X = 1374 + PRECISION( 1/3,10,5); 
I* X IS NOW 1374.33333 *I 

Mathematical functions are provided for the scientific programmer. They 
are listed in Figure 6.1. The functions operate on arguments in the 
floating-point scale. If an argument is not in floating-point, it will 
automatically be converted to floating-point before the function is 
invoked. 



~ Function reference Value returned Error conditions 

ATAN(x) arctan(x) in radians 
-(pi/2) < ATAN(x) < (pi/2) 

ATAN(x,y) arctan (x/y) in radians Error if x = 0 
and y = 0 

ATAND(x) arctan (x) in degrees 
-90 < ATAND(x) < 90 

ATAND(x,y) arctan (x/y) in degrees Error if x = 0 
and y::::; 0 

ATANH(x) tanh- 1 (x) Error if 
ABS(x) ;;::: 1 

COS(x) cos(x) 
x in radians 

COSD(x) cos(x) 
x in degrees 

COSH(x) cosh(x) 

ERF(x) 2r IFo e-t2 dt 

ERFC(x) 1 - ERF(x) 

EXP(x) e 

LOG(x) log(x) Error if x::::;; 0 

LOG1 O(x) log
1
(x) Error if x::::;; 0 

LOG2(x) log 2 (x) Error if x::::;; 0 

SIN(x) sine(x) 
x in radians 

SIND(x) sine(x) 
x in degrees 

SINH(x) sinh(x) 

SORT(x) jX Error if x < 0 

TAN(x) tan(x) 
x in radians 

TAND(x) tan(x) 
x in degrees 

\.. TANH(x) tanh(x) 

FIGURE 6.1 Mathematical built-in functions. 



328- PL/I Programming 

An argument to a mathematical built-in function may be a single 
value, an expression, or an array name. If an argument is an array name, 
the value returned by the built-in function is an array of the same 
dimensions and bounds as the argument, the function having been 
performed once for each element of the array. Thus, for example, an 
array argument passed to the cosine function, COS, results in an array, 
each element of which is the cosine of the corresponding element in 
the array argument. The _mathematical functions shown in Figure 6.1 
include an explanation of what they accomplish. For some functions, 
error conditions result if invalid arguments are specified (e.g., a 
negative argument to the square root function). In general, an error 
message with an identification code as to the nature of the error will be 
printed and the program terminated. 

These functions are used for manipulating bit- or character-string data. 
In general, data with the BIT, CHARACTER, or PICTURE attributes are 
specified as arguments to the string handling built-in functions. 

BIT 

This function converts a coded arithmetic data item or character
string to a bit-string. The argument may be a single value, an expression, 
or an array name. The length of the resulting bit-string is determined 
according to the type of conversion rules (Appendix C), when only one 
argument is supplied. For example: 

I= BIT(X); 

It is also possible to supply two arguments to the BIT function, in 
which case the second argument is a decimal integer constant specifying 
the length of the resulting bit-string. For example: 

l=BIT(X,15); 



Examples 

BOOL 

OCL I FIXED BINARYC4J; 
OCL C CHARACTER(5); 

Built-in Functions 329 

I = 15; /* I NOW CONTAINS 11118* 
I* NOW IT IS DESIRED TO MOVE I TO C 

SO THAT C Will CONTAIN 'llll ' 
C BIT(I); /* C NOW CONTAINS 1 1111 1 */ 
C = BIT(I,5); I* C NOW CONTAINS '11110' */ 

This function is used to manipulate bit-strings. It provides a 
unique flexibility to the PL/I programmer in that it allows the pro
grammer to define the answer he would like to have as the result of a 
logical operation on two bit-strings. The logical operation is referred to 
as a Boolean operation, hence the name of this built-in function, BOOL. 
The AND and OR Boolean operations have been introduced previously. 
There are other Boolean functions for which there are no specific PL/I 
keywords. One of these is the exclusive OR operation. Following are 
the four bit combinations and their respective results for this operation: 

0 EOR 0-+ 0 
0 EOR 1 -+ 1 
1 EOR 0-+ 1 
1 EOR 1 -+ 0 

In the exclusive OR operation, we obtain a 1 bit when either but not 
both of the bits is a 1. If a 1 bit is exclusive ORed with a 1 bit, or a 0 bit 
with a o· bit, then the result is a 0 bit. One method for accomplishing 
the exclusive OR function in PL/I is to code an expression that uses 
the AND, OR, and NOT operations in such a way as to accomplish 
exclusive OR. For example: 

DCL (B1 ,B2,B3) BIT(5); 
B 1='10011 'B; 
B2='11010'B; 
B3=(B1 I B2)&(-,(B1 & B2)); 

Here, B 1 is exclusive ORed with B2, and B3 is now equal to '01001 'B. 
As you can see, this method is somewhat complex. Another method 
that you might use to accomplish the exclusive OR function is to 



330 PL/I Programming 

invoke the BOOL built-in function. For example: 

B3= BOOL (B1 ,B2,'011 O'B); 
'-v-' '-y---/ 

Argument defines the Boolean opera
tion (see explanation below) 

The two operands on which the Bool
ean operation is to be performed 

..__ _______ ~ Built-in function to produce a bit-string 
that is the result of a given Boolean 
operation on two bit-strings 

..__ _________ ~The result is a bit-string whose length 
is the longer of the first two arguments 

..__ __________ ~ Result is assigned to B3 

First and Second Arguments. Arguments B1 and B2 represent 
the two bit-_strings upon which the Boolean operation specified by the 
third argument is to be performed; these arguments can be bit-string, 
character-string, or arithmetic element expressions or array names. If B 1 
and B2 are not bit-strings, they are converted to bit-strings. If B 1 and 
B2 differ in length, the shorter string is extended with zeros on the right 
to match the length of the longer string. 

Third Argument. This argument defines the Boolean operation. It is 
a bit-string that is selected (determined) by the programmer. The left
most bit in the string argument defines the result you would like when 
a 0 is logically operated on with a 0; the second leftmost bit defines 
the result of a 0 operand and a 1 operand; the third bit (third from the 
left) defines the result of a 1 operand and a 0 operand; and finally, the 
fourth bit defines the result of a 1 operand and a 1 operand. 

The third argument in the BOOL function can be a bit-string, 
character-string, arithmetic coded item, expression, or array name. It is 
converted to a bit-string of length 4. There are 16 possible bit combina
tions and thus 16 possible Boolean operations. In summary, then, it 
needs to be emphasized that the third argument of the BOOL function 
defines what happens on a bit-for-bit basis in each corresponding pair 
of bits of the first two arguments. 

To illustrate the way in which any logical operation may be 
specified with the BOOL function, assume two 15-bit strings have 



Built-:in Functions 331 

been declared and initialized: 

OCL (A,B) BIT(15); 
A= '1110010000101001 'B; 
B = '1001011001111 OOO'B; 

Now, it is desired to perform a logical NANO operation on the above 
two operands (A and B). (A NANO operation is a -.AND operation 
in which the resulting bits after an AND operation are simply reversed; 
thus, 1 's become O's and vice versa.) The truth table for the NAND 
operation would be the following: 

0 NAND 0---+ 1 
0 NANO 1 ---+ 1 
1 NANO 0---+ 1 
1 NANO 1 ---+ 0 

The BOOL function to accomplish the NANO operation would be 
coded as follows : 

C= BOOL(A,B,'111 O'B); 

!.__ __ -+) Defines the Boolean result 

~----~) Both arguments are 15 bits long; they will 
be operated on, bit-by-bit, moving from 
left to right 

~----------Assume this receiving field is bit-string; it 
will contain the result of A "NAN Ded" 
with B. 

Example 

DCL (Bl,B2 9 63J BIT(5); 
Bl = '10011 1 8; 
B2 = '11010 1 B; 
B3 = (Bl 1 B2J & (1(81 & 82)); 

I* Bl IS EXCLUSIVE OR'O WITH 82 
ANO 83 IS NOW '01001~8 *I 

83 = BOOL(Bl,82,'0110'8); 
I* 83 IS NOW '01001'8 *I 

B3 = ~ca1 & 02>; '* 03 = •01101•0 *' 
83 = BOOL(Bl,82,'1110'8); /* 83 = 1 01101 1 8 *I 



332 PL/I Programming 

CHAR 

This function converts a given value to a character-string. 

Subset Language. The argument may be a CHARACTER, PICTURE, 
or BIT attribute single value, expression, or array argument. The CHAR 
function is most useful in the subset language for simulating "P format" 
(see Chapter 5, page 269). For example: 

OCL X PIC 1 $$$,$$$V.99'; 
x = 1002.31t; 
PUT EDIT (CHARCX)J(AJ; 

Full Language. The argument may be CHARACTER, PICTURE, BIT, 
or any coded arithmetic (e.g., FIXED DECIMAL) data item. Expressions 
or arrays are allowed. 

In both the subset and full language implementations, there is 
another form of the CHAR function in which two arguments may be 
specified. The function reference is described as follows: 

CHAR (x,n) 

I ' : A decimal integer constant indicating the 
length of the result 

Represents the quantity to be converted to a 
character-string 

LENGTH 

This function finds the length of a given bit- or character-string. 
It is useful in full language implementations of PL/I to determine the 
length of string data items that have the VARYING attribute. The 
argument, however, need not represent a character- or bit-string. If it 
does not, it is converted before the function is invoked to a character
string, if the argument has the decimal base, or a bit-string, if the 
argument has a binary base. The LENGTH function returns the result 
of the attributes FIXED BINARY(15). [Note: This function is not 
provided in the subset language.] 

Examples 
OCL NAME CHAR(30J VARYING; 
NAME = 'D.M. TUCKER'; 
r = LENGTHINAMEJ; I* r 

SUBSTR 

11 *I 

This function extracts a substring of user-defined length from a 
given bit- or character-string and returns the substring to the point of 



Built-in Functions 333 

invocation. The arguments are described as follows: 

SU BSTR (x,i,j) 

L Specifies the length of the substring to be 
extracted (subset language, may only be a 
decimal constant; full language, may be a 
constant, a variable, or an expression, or may 
be omitted entirely) 

Specifies the starting point of the substring 

Represents the string from which a substring 
will be extracted; this argument can be a 
binary coded arithmetic, bit-string, character
string, or decimal character data item, ex
pression, or array name; if this argument has 
a binary base, it is converted to a bit-string 
before the function is invoked 

For a programming example of this built-in function, see Chapter 5, 
page 275. SU BSTR may also be a pseudo-variable. This means that the 
function name may be designated as a receiving field. This facility is 
also illustrated in Chapter 5, page 251. 

Example 

OCl fM,N)CHAR(lQl; 
M = 'MONOLITHIC'; 
N = SUBSTR(M,I,4J; 
N = SUBSTR(Mlf'S',8,4); 
SUBSTR(M,4,6)=SUBSTR(M,7 9 2); 

GET EDIT(SUBSTR(M,6,5))(A(5H; 

UNSPEC 

I * N = ' MO NO * I 
I* N ='HICS *I 
I* ASSUMING M=MONOlltHIC, 
M NOW EQUALS 'MONTH ' *I 
I* ASSUMING M=MONTH ANO INPUT 
IS"--JAN" THEN M=MONTH--JAN •I 

This function returns a bit-string that is the internal representation 
of a given value. In other words, through this function it is possible to 
examine the bit configuration of a data item. 

The argument may be an arithmetic, character-string, or pointer 
value; it cannot be a bit-string. An array name may be specified as an 
argument. 

The length of the resulting bit-string depends upon the attributes 
of the argument. For example, a FIXED BINARY(31) data item would 
return a length of 32, because there are four bytes (32 bits) in this type 
of data item. The length of a FIXED DECIMAL data item of precision 
(p,q) is defined as 8* FLOOR ( (p+ 2)/2). For short-form floating-point 



334 PL/I Programming 

data items, the length returned is 32 bits; for long-form floating-point, 
the length returned is 64 bits. For an application of when this function 
would be useful, see Chapter 5, page 285. 

INDEX 

This function searches a string for a specified bit or character con
figuration. If the configuration is found, the starting location of the 
leftmost configuration within the string is returned. If the configuration 
does not exist, the value returned will be zero. The result returned has 
the attributes BINARY FIXED(15). The arguments to INDEX are 
described as follows : 

INDEX(C,'TAC'); 

L i A bit- or character-strin.g for which the 
first argument is searched 

The string to be searched 

These arguments may be bit-string, character-string, binary coded 
arithmetic, decimal picture, or array names. If neither argument is a bit
string, or if only one argument is a bit-string, both arguments are con
verted to character-strings. If both arguments are bit-strings, no 
conversion is performed. Binary coded arithmetic arguments are con
verted to bit-string; decimal picture arguments are converted to 
character-string before the above conversions are performed. 

Examples 

OCL C CHARACTER(40); 
C ='THE DOG CHASED THE TAC 1 ; I* 'CAT' JS MISSPfllED *I 
J = INOEX(C,'TAC'>; 
SUBSTR(C,J,3) = 'CAT'~ I* C NO~ CONTAINS THE 

CORRFCT SPELLING OF CAT*/ 
C ='CONSTELLATION'; 
J = I NOE X ( C , ' f ' ) ; 
J = I NOE X ( C, 'L' ) ; 
J = JNOEX(C, 1 P'); 

STRING 

I* J = 6 */ 
I* J 7 *I 
I* J = 0 *I 

This function concatenates all the elements in an array or a 
structuret into a single character- or bit-string element. Thus, if it is 
desired to concatenate a number of elementary items found in a 

tStructures are explained in Chapter 8. 



Built-in Functions 335 

structure or array, it would be easier to code the STRING function than 
to code the concatenation operation a number of times. STRING may 
also be used as a pseudo-variable. 

Examples 

REPEAT 

OCL 1 STRUCTURE, 
2 A CHAP(5t INIH'ABCOE'), 
2 e CHAR(3t INIT( '123'), 
2 C CHARC7) INI1('X'ZXYZX'l; 

CCL S C HAR ( 1 5- t ; 
S = S TR UC TUR E ; 

I* ILLEGAL MOVE *I 
S = S TR ING ( S TR UC TUR E ) ; 

I* S = 1 ABCOE123XVZXYZX 1 *I 
STRUCTURE = S; 

I* STRUCTURE .A = 'ABC OE' *I 
I* STRUCTLRE .B = 'ARC' *I 
I* STRUCTURE.C = 1 ABCOE12' *I 

S TR IN G ( S TR UC TUR E ) = S ; 
I* STR UC TUR E .A 'ABC DE' *I 
I* STRUCTURE.B 1 123' *I 
I* STRUCTURE .C = 'XYZ"J.YZ X' *I 

This function takes a given string value and forms a new string 
consisting of the string value concatenated with itself a specified 
number of times. The arguments are described as follows: 

REPEAT(m,n); 

~ Generally a decimal integer constant 
greater than zero representing the number 
of times that the first argument is to be 
concatenated with itself. 

~--- Represents a character- or bit-string from 
which the new string will be formed; this 
argument can be a binary coded arithmetic, 
bit-string, character-string, or numeric 
character element expression or array name; 
if an argument other than a bit- or character
string is specified, it is converted before the 
function is invoked, to a bit- or character-
string 

......__ ____ ____.Concatenates the first argument with itself 
n times, where n is the second argument 



336 PL/I Programming 

Examples 

CCL CITY CHA~ACTER(l2); 
CITY= (21'WALLA •; I* CITY 'WALLA WALLA' *I 
C IT Y = R E PF A T{ ' WA l. l A ' , 2) ; I * C I TY ' WA l LA WA l l A 1 * I 
DCL A B I T I 1 l , A B I T ( l 5) ; 
B 1 101 1 8; 
A= REPEAT(B,51; I* A= '10110110110110l'B *I 

TRANSLATE 

This function substitutes one character with another character or 
one bit with another bit. There are three arguments to this function: 

TRANSLATE (S,R,P); 

Position string 

Replacement string 

Source string 

To illustrate the translation that takes place, the following example is 
given: 

DCL (S,T) CHAR (5); 
DCL (R, P) CHAR(1); 
S='+1234'; 
R='+'; 
P=' I 

------If a · + · sign appears in the source 
string, replace it with a blank 

When the TRANSLATE function is invoked, e.g., 

T=TRANSLATE (S,P,R); 

if S= '+ 1234', then T = '1234'. 
The replacement and position strings may contain as many 

characters as it is desired to have substituted. For example: 

R='-+ '; 
P='# O': 

Replace blanks with zeros 

Replace plus signs with blanks 

Replace minus signs with pound signs 

[Note: This function is not available in the subset language.] 



Example 

OCL (S,Tl CHAR(lQ); 
OCL (P,R) CHAR(ll; 
p = • • ; 
R = 1 0 1 ; 

s 12 34 1 ; 

Built-in Functions 337 

T = TRANSLATElS,R,PI; I* T '0012003400' *I 

VERIFY 

This function examines two strings to verify that each character 
or bit in the first string is represented in the second string, returning a 
fixed binary value of 0 if this is the case; otherwise, the value returned 
is the position of the first character in the first string that is not repre
sented in the second string. 

Examples 

DCL STR CHAR(5); 
DCL DIGITS CHAR(l0)1NIT( 1 0l23456789 1 ); 

STR = 1 01234 1 ; 

I = VERIFYCSTR,OIGITS); '* I 0 *' STR = '123.4'; 
I = VERIFY(STR,OIGITSI; I* 

4 *' STR = 1 973 ' . . 
I = VERIFY(STR,DIGITS); I* I 1 *I 

DATE and TIME 

These functions find the current date and time. When these 
functions are used, they should be explicitly declared to have the 
BUILTIN attribute. For example: 

DECLARE (DATE, TIME) BUILTIN; 

Here are explanations of each function : 

D=DATE; 

L Returns the current date in the form YYMMDD, 
where VY is year, MM.is month, DD is day 

The value returned is a character-string of 
length six 

'------~Should be an element character-string; incor
rect results will be given if D is a structuret 

tStructures are explained in Chapter 8. 



338 PL/I Programming 

T=TIME; 

'~--+)Returns current time in form of HHMMSSTTT, 
where H H is hours, MM is minutes, SS is sec
onds, TIT is thousandths of seconds (milli
seconds in machine-dependent increments) 

..__ ___ -+The value returned is a character-string of 
length nine 

,____ ____ Should be an element character-string; incor
rect results will be given if T is a structure 

"By proper use of the aids provided in PL/I and by the full level im
plementations, almost all debugging can be done at the source level, 
without resorting to listings of the generated object code or hexa
decimal storage dumps. Moreover, after encountering an error which 
might normally require abnormal termination, the programmer can 
choose to continue execution of the program at a programmer-specified 
point in the program, or, in some cases following the point of interrup
tion. By doing so, several different errors might be detected in a single 
test run, thus improving the profitability of each run and helping to 
shorten program development time, especially in installations where 
program test turn-arounds are eight hours or more." t 

Following is a description of built-in functions that facilitate 
program debugging in the full language implementations of PL/I. 

ONCHAR and ONSOURCE 

ONCHAR and ONSOURCE are pseudo-variables as well as 
built-in functions. As built-in functions, ONCHAR and ONSOURCE 
return the character and source fields, respectively, containing the 
character that caused the CONVERSION condition to be raised. As 
pseudo-variables, ONCHAR and ONSOURCE may be used to modify 
the data in the source field that caused the CONVERSION condition. 

tExcerpted from a paper entitled "Debugging in PL/I" by D. M. Tucker, IBM Corporation. 



Built-in Functions 339 

CHAR = ONCHAR; 

I.___ __ , Extracts the character that caused the 
CONVERSION condition to be raised; it can 
be used in an on-unit for the CONVERSION 
condition or in an ERROR on-unit as a result 
of a conversion error ; if it is used out of 
context, it returns a blank; the value returned 
by this function is a character-string of length 
1, containing the character that caused the 
CONVERSION condition to be raised 

SOURCE=ONSOURCE; 

'~----+i Extracts the contents of the field that 
was being processed when a CON-
VERSION condition was raised; this 
function can be used in the on-unit for 
a CONVERSION condition or in an 
on-unit for an ERROR condition; when 
used out of context, a null string is 
returned; the value returned by this 
function is a varying-length character
string giving the contents of the field 
being processed when CONVERSION 
was raised 

Example: The following example illustrates the use of ONSOURCE 
and ONCHAR, both as built-in functions and as pseudo-variables: 

DCL FIF.LO CHAR(5), 
C t-A R C HAR ( 1 ) , 
SOURCE CHARf 20l VAR VI NG, 
N UM FI X ED ( 5 l ; 

F IELO = ' 12~X4'; 
I* ON UN IT FNTFR ED UPON CCNVERSI ON ERROR *I 
ON CONVERSION BEGIN; 

CHAR = ONCHAR; I* CHAR IS 'X' *I 
SOURCE= ONSOURCF; I* SOURCE IS '123X4' *I 
ONCHAR = O; I* FHLO IS '12304' or 
ON SO lR CE '000 00'; F lF LO I S '00000' *I 
FNO; 

NUM = Fl EL O; I* C ONVE RSI ON FRROR */ 

ON CODE 

The ONCODE built-in function may be used in any on-unit to 
determine the type of interrupt that caused the on-unit to become 



340 PL/I Programming 

active. ONCODE returns a binary integer of default prec1s1on. This 
"code" defines the type of interrupt that caused the entry into the 
current active on-unit. The codes are given in the appropriate pro
grammer's guide for the PL/I compiler you are using. If ONCODE 
is used out of context, a value of 0 is returned. 

ONLOC 

Whenever an on-condition is raised, the ONLOC built-in function 
may be used in the on-unit for that condition to determine the entry 
point to the procedure in which that condition was raised. ONLOC 
may be used in any on-unit. 

A Generalized Error Handling Program 

Following is a suggested program (for full language implementa
tions) to handle possible errors that cause an on-unit to be raised. 

(SIZE, STRING RANGE, SUBSCRIPTRANGE): 
PROG: PROC OPTIONS(MAIN); 
ON CONVERSION BEGIN; 

PUT SKIP LIST (ONCODE, ONCHAR, ONSOURCE, 
ON FILE); 
ONCHAR='O'; 
END; 

ON SIZE PUT SKIP LIST (ONCODE, ONLOC); 
ON OVERFLOW PUT SKIP LIST(ONCODE, ONLOC); 
ON UNDERFLOW PUT SKIP LIST (ONCODE, ONLOC); 
ON ZERODIVIDE PUT SKIP LIST (ONCODE, ONLOC); 
ON STRINGRANGE PUT SKIP LIST (ONCODE, ONLOC); 
ON SUBSCRIPTRANGE PUT SKIP LIST (ONCODE, ONLOC); 
ON FIXEDOVERFLOW PUT SKIP LIST (ONCODE, ONLOC); 
ON ERROR BEGIN; 

PUT SKIP LIST (ONCODE, ONLOC, ONFILE, ON KEY); 
GO TO RESTARLLABEL; 
END; 

If the preceding PL/I statements were included in the PL/I program 
immediately following the PROCEDURE statement defining the ex-



Built-in Functions 341 

ternal OPTIONS(MAIN) block, all computational errors would be 
intercepted and noted on SYSPRINT. Execution would continue at 
the point of interruption. (Note that the conditions SIZE, SUB
SCRIPTRANGE and STRINGRANGE must be enabled by a condition 
prefix preceding the PROCEDURE statement.) All other errors would 
be intercepted by the ERROR on-unit. Of course, any ON statement 
for any of the above conditions which are subsequently executed 
would override the preceding on-unit. 

Built-in functions are supplied as part of the PL/I language. Functions are 
invoked by reference, and their arguments are supplied in a list separated by 
commas, enclosed in parentheses following the name. For example: 

INITIAL= SUBSTR(NAME,2,1); 
'--v---1 

~----)Arguments 

~-------~ Built-in function 

For those functions requiring no arguments, the function name should be 
declared to have the BU IL TIN attribute. For example: 

DCL DATE BUILTIN; 
TODAY=DATE; 

Functions may be used as arguments to other functions. The position of 
arguments is critical; arguments must be provided in the order stated for each 
function. A pseudo-variable is a built-in function name appearing to the left 
of the assignment symbol as if it were a variable. The built-in functions that 
can be used as pseudo-variables are SUBSTR, UNSPEC, STRING, ONCHAR, 
ONSOURCE. 

The array manipulation built-in functions were covered in Chapter 4. 
Following is a brief description of each function covered in this chapter. In 
addition, you may wish to consult Appendix A for examples of a few additional 
built-in functions not presented in this chapter. 



342 PL/I Programming 

Arithmetic Built-in Functions 

ABS: 
CEIL: 

FLOOR: 
MIN: 

MAX: 

ROUND: 

TRUNC: 
MOD 

SIGN: 

Finds the absolute value of a given quantity 
Finds the smallest integer that is greater than or equal to a given 
value 
Finds the largest integer that does not exceed a given value 
Finds the smallest value from a given set of two or more arguments; 
arguments may not be arrays 
Finds the largest value from a set of two or more arguments; 
arguments may not be arrays 
Rounds a value at a specified digit and pads spare digit positions 
with zeros 
Changes the fractional part of an argument to zero 
Returns the smallest number that must be subtracted from the first 
argument in order to make it exactly divisible by the second argument 
Determines whether a value is positive, negative, or zero 

Arithmetic Functions to Override Conversion Rules 

ADD: Finds the sum of two values where the programmer controls the 
precision of the results 

DIVIDE: Finds the quotient where the programmer controls the precision 
of the results 

MULTIPLY: 

BINARY: 
DECIMAL: 
FIXED: 
FLOAT: 
PRECISION: 

Finds the product where the programmer controls the precision 
of the results 
Converts a decimal value to the binary base 
Converts a binary value to the decimal base 
Converts a floating-point value to the fixed-point scale 
Converts a fixed-point value to a floating-point scale 
Converts a given value to the specified precision; it is used for 
right truncation 

Mathematical Built-in Functions: See Figure 6.1 for a summary of these 
functions. 

String Handling Built-in Functions 

BIT: Converts a coded arithmetic data item or character-string to a 

BOOL: 

CHAR: 
LENGTH: 
SUBSTR: 

UNSPEC: 

INDEX: 

bit-string 
Allows the programmer to define any one of 15 Boolean or 
logical operations to be carried out on two bit-strings 
Converts a given value to a character-string 
Finds the length of a given bit- or character-string 
Extracts a substring of user-defined length from a given bit
or character-string 
Returns a bit-string that is the internal representation of a 
given value 
Searches for a string for a specified bit or character configuration 



Built-in Functions 343 

STRING: Concatenates all the elements in an array or structure into a 
single character- or bit-string element 

REPEAT: Takes a given string value and forms a new string consisting of 
the string value concatenated with itself a specified number of 
times 

TRANSLATE: Substitutes one character with another character or one bit 
with another bit 

VERIFY: 

DATE: 

TIME: 

Examines two strings to verify that each character or bit in the 
first string is represented in the second string 
Finds the current date, assuming the date was entered into the 
system correctly for that day 
Finds the current time, assuming the correct time had been 
entered into the system 

Built-in Functions to Facilitate Debugging 

ONCHAR : Returns the character that caused the conversion condition to 
be raised 

ONSOURCE: Returns the source field that caused the conversion condition 
to be raised 

ONCODE: Returns a value that defines the type of interrupt that caused 
the entry into the current active on-unit 

ON LOC: Returns the name of the procedure in which a given condition 
was raised 

1. What will X contain after the following statements are executed? 

Y=18; 
X=ABS(5-Y/2); 

2. What precision will SUM have given the following? 

SUM =ADD(A, B, 7,3); 

3. What is accomplished by the following statements? 

(a) A=BINARY(B,7,2); (c) A=DECIMAL(B,5,2); 
(b) A= FLOAT(FX,6); (d) A= FIXED(FL,2); 

4. What will A contain after each of the following functions are invoked? 

8=5.7; 
A=CEIL(B); 
A= FLOOR(B); 



344 PL/I Programming 

5. What will I contain when the following statements are executed? 

ALPHA='ABCDEFGHI'; 
I= IN DEX(ALPHA, 'DEF); 

6. What will I contain when the following statements are executed? 

DCL NAME CHAR(20) VARYING; 
NAME='FREDDIE'; 
I= LENGTH (NAME) ; 

7. Given the following statements, what will A contain after each function 
is executed? 

X=5; Y=17; Z=-3; 
A=MIN{X,Y,Z); 
A= MAX{X,Y,Z,50); 

8. What will A contain? 

A= MOD(27,5); 

9. What will B contain after the following statements are executed? 

DCL B CHAR(6); 
B = 'ABCDEF'; 
SUBSTR(B, 1,3) =SUBSTR{B,4,3); 

10. Given the following statements, what will K contain? 

argument 
built-in 

DECLARE K BIT(5); 
IVALUE=19; 
K=UNSPEC(IVALUE); 

ceiling (as an arithmetic term) 
floor (as an arithmetic term) 

function 
pseudo-variable 
truncate 

1. States Grouped by Letter 

Problem Statement: Write a program to list the 50 states grouped by letter. 

Purpo~e of the Problem: To manipulate alphameric data using the SUBSTR 
built-in function. 



Built-in Functions 345 

Input: Input consists of the 50 states in alphabetical order. Use edit-directed 
input to read the data. 

Output: See Figure 6.2 for desired output. 

ALABAMA 
ALASKA 
ARIZONA 
ARKANSAS 

CAL I FORN IA 
COLORADO 
CONN EC TI CUT 

OE LAWARE: 

FLORIDA 

FIGURE 6.2 Sample 
output for Problem 1 

2. Determining Frequency of Occurrence 

Problem Statement: Write a program that will determine the frequency of 
occurrence of the word "NO" in a group of sentences punched in cards. 

Purpose of the Problem: To use some of the character-string manipulation 
built-in functions (e.g., INDEX, SUBSTR). 

Input: To test your program, punch the following four sentences: 
THERE IS NOTHING SO STIMULATING AS NEW KNOWLEDGE. 
NO MAN'S KNOWLEDGE CAN GO BEYOND HIS EXPERIENCE. 
YES! NO! 

Output: Print the number of times that NO (as a separate word) appears. 
For example: 

"NO" APPEARS 2 TIMES. 

~----- Your program calculates this value 

3. The Indian Problem 
Problem Definition: In 1627, Peter Minuit bought Manhattan Island from 
the Indians for approximately $24.00. Had the Indians deposited this amount 
in a bank savings account to be compounded annually at 3!-% interest, how 
much would they be worth today? 

Purpose of the Problem: To use the P format item in PUT EDIT if you are 
using the full language or either optimizer; or to simulate the P format item if 
you are using the subset language; also, to use the ROUND, MOD, and TIME 
built-in functions, the remote format specification, and ENDPAGE condition. 



346 PL/I Programming 

Input: There is no input to this problem, as the initial principal of $24.00 and 
interest of 3~% may be specified as program constants. 

Processing: Compound interest for each full year beginning with 1627 and 
ending with the last full year. For example, if the current year is 1977, then 
compound interest up to and including 1976. In addition, check the accumulated 
principal for such time as it exceeds one million dollars. On output, print asterisks 
by the year in which the principal became equal to or greater than the one 
million dollar figure. (As a matter of "interest," you may wish to try running 
this program without using the ROUND built-in function and compare the 
final results with the program's output when ROUND was used.) It is suggested 
that you draw a program flowchart before beginning to code this problem. 
Use the TIME built-in function to calculate running time of the program. Print 
the elapsed time on a time page following the report of interest earned. 

Output: See Figure 6.3. Specify page size as 55 lines, and print headings 
on every page of output. 

I l 11111111, 1l122~!2l22l2l222333333333344\44\444444555\5\5555556\ 
12345610901234~67~901~tl4~sfe901234567e9oU2~4ss1e901~~4567e9fil 

1 ~~u iAM ; 1 1 11 r< 
!'l I i11T1 T I I1 

I ~ I :~:1T' : ~ : T 1.0 ... ·T: ... 111'- I • I 

!J_ i,T1 I j_' li I ! i I J 

l .. Tl •:I I T _J_ 'l I 1• • i' I • i l j_ • i I ~ 
i l ' J': l . : l : . l . T I I ' j_ T ' 

• " I I ., I 1 ; 1 l 1 • 1 . : I ' :. I . il 1 l : 
lihlk'lr !jji«I rvi 1•1:.1"~ .[Xi~ , 1 : , ~. 1°"'" ru" .:i~ J_: l 'l I . 1 

: • i l" 1. 1 I I --, I IT· I ' ' I I j_ ; l l I : J_ • 

• •1 1 ' i Tl ' l i ll: 1-r l IT l 

FIGURE 6.3 Suggested printer layout for Problem 3. 

4. Square Root Algorithm 

Problem Statement: Write a program to compute the square root using the 
Newton-Raphson method. Also, invoke the SQRT built-in function, providing 
as an argument the input value for which you just computed your own square 
root. Print this result so that you may compare the accuracy of your solution 
with that of the built-in function. 

Purpose of the Problem: To use several of the mathematical built-in functions 
(SQRT and ABS) as well as inspect the approximation method of finding 
square root. 



Built-in Functions 347 

Input: Make provisions in your program to read any number of input values 
for which the square root is to be computed. 

Output: For each input value, two results will be printed: 

1. The result you programmed. 
2. The result from the SQRT built-in function. 

Flowchart: See Figure 6.4. 

5. Generating a Mathematical Table 

Problem Statement: Write a program to print a table of X, sine X, cosine X, 
and tangent X for values of X in degrees that range from 1.0 to 2.0 in increments 
of 0.1. Compare the printed results with a published mathematical table. 

Purpose of the Problem: To use some of the mathematical built-in functions 
and observe the accuracy of their results. 

Input: There is no input, as the program will generate the data. 

Output: 

DEGREE/MINUTE 
x.x 
x.x 
x.x 

6. Potpourri 

SINE 
.xxxxx 
.xxxxx 
.xxxxx 

COSINE 
.xxxxx 
.xxxxx 
.XXXXX 

TANGENT 
.XXXXX 
.XXXXX 
.XXXXX 

COTANGENT 
xx.xxx 
xx.xxx 
xx.xxx 

Problem Statement: As a means of using a number of built-in functions, code 
the following exercises: 
(a) Given the statements, 

DCL X1 (8) FIXED (3, 1); 
DCL X(8) FIXED(3, 1) IN IT( -55.5, -41.6, -19.0, -4.3,0,6.9, 16,33.2); 

write the statements necessary to find the ceiling and floor of each value in 
X array; store results in X1. Print results. 
(b) Truncate the values in array X and place in X1. Print the truncated array. 
(c) An array is declared as follows: 

DCL X_SIGN FIXED(1) 
DCL X_SIGN(8) FIXED(1); 

Set each element of the array to a -1 for the corresponding negative values 
in the X array in part a above; set corresponding elements of X_SIGN to zero, 
for zero values of X; and set elements of X_SIG N to + 1 for positive values of 
X. Print results. 
(d) Given the statements, 

A=1; B=7; C=13; D=-21; 

invoke the built-in functions necessary to find the largest and the smallest 
value in the list of scalars. Print results. 



g = 1 

h = y/g 

m = 1/2(g + h) 

g = m 

END 

Print m 
and 

SORT(y) 

FIGURE 6.4 Flowchart of Newton-Raphson 
square root method. [Key: y =argument, g (for 
guess), m = midpoint, h = any positive number.] 



Built-in Functions 349 

( e) Given the statements, 

print A and I as bit-strings. 

A=32.5; 
1=15; 

(f) Use the BOOL built-in function to perform a NOR (-,OR) operation on 
the following bit-strings: 

1 1 0 0 1 1 0 
100101 0 

0 0 0 0 0 0 ----+This should be the result printed 

Input: There is no input data to this problem, as all data is generated by the 
program. 

Output: Sample output is shown in Figure 6.5. 

X ARRAY 
-55.5 -41.6 

CE I LING OF X 

-19.0 

-55.0 -41.0 -19.0 

FLOOR OF X 
-56.0 -42.0 -19.0 

X TRUNCATED 
-55.0 -41.0 -19.0 

X_SIGN ARRAY 
-l.O -1.0 -1.0 

MIN IS -21 

MAX IS 13 

-4.3 

-4.0 

-5.0 

-4.0 

-1.0 

NUMERIC VALUE 
-32.0 

15 

B IT-STRING 
000000000100000 
000000000001111 

11001110 
NOR .liHU.Q.ll.Q 

00100001 

• c 

.o 

.o 

.o 

.o 

16.0 

7.0 16.0 

6.0 16.0 

6.0 16.0 

1.0 1. 0 

FIGURE 6.5 Sample output from Problem 6. 

32.2 

33.0 

32.0 

32.0 

1.0 



) 

1'! 

i~ 
111 



l!hapfl!t 1 

Uow to Writ@ 

and Funl!fion§ 



Frequently a programmer finds that he must perform the same series of 
instructions at several points in a program. A good example of this is 
found in most report writing programs. The heading of a report may 
have to be printed whenever one of several conditions occurs. For 
example, the heading lines must be printed when the end of a page is 
encountered or whenever the end of a major reporting group is reached 
(i.e., at the end of a department or division) or, of course, at the 
beginning of the program's execution to cause the heading to appear 

352 

,--
1 

--1 

I 
I I Calculations 

I I L __ __ _. 

Program 
modification 

,--
1 I Calculations 

I L_ __ 

Program 
modification 

FIGURE 7.1 

'j 

I~ 



How to Write Subroutines and Functions 353 

on the first page. In most programs, this requirement of executing the 
same sequence of statements at several points does arise. 

As another. example, assume that a series of calculations are 
needed at several points within a program. This program's execution 
sequence is illustrated in Figure 7.1. However, a more efficient program 

·sequence is shown in Figure 7.2. In this example, each time the calcula
tions are to be performed, there is a transfer from the main sequence 
of statements to the block of instructions that carries out the calcula
tions. After the calculations are performed, there is a return to the 
main sequence of statements. The main program modifies data and 
then transfers again to the block of statements that performs the 
calculations. 

PL/I provides several methods of optimizing the use of main 
storage by allowing the programmer to have one copy of the common 
statements which can be executed out-of-line. In other words, the 
programmer, when it is desired to execute a common sequence of 
instructions, can cause execution to transfer to a single copy of the 
instructions and upon completing them return to the instruction 
following the transfer. 

The block of statements which is used from several points in 
the program is commonly referred to as a subprogram. A reference or 

Program 
modification 

Program 
modification 

FIGURE 7.2 

Calculations 



354 PL/I Programming 

call to a subprogram, which causes the transfer to the common state
ments, has the same effect as if the statements were written at the 
point in the program where the reference or call were made. When 
writing a program, the programmer should try to design the program 
in such a way that all of the functions to be performed are organized 
into logical units or building blocks. By using the facilities of PL/I, the 
programmer need write only statements which CALL these logical 
units of code. This method of coding is called modular programming. 
A program then takes on the following form: 

As each logical unit of code is required by the main-line routine, 
a CALL is made to that subprogram to perform the necessary function. 
After completing the process, the subprogram will return to the state
ment following the CALL to continue execution of the main-line 
program. 

The data that a subprogram manipulates is usually determined at 
the time each reference is made to a subprogram. A subprogram is 
written in a generalized manner to handle any particular set of values 
which is passed to it by the statement which invokes the subprogram. 



How to Write Subroutines and Functions 355 

The values which are passed are called arguments. The subprogram 
execution is then determined by the values of these arguments. In 
the subprogram, the values become parameters to the subprogram. 
The subprogram performs its calculations upon the parameters which 
are now associated with the particular arguments passed to it. 
Graphically, this can be shown as: 

MAIN-LINE PROGRAM 

CALL SUBPGM (ARG1,ARG2); 

CALL SUBPGM (ARG3,ARG4) 

SUBPGM (PARM1 ,PARM2) 

Data referred to as PARM1 
and PARM2 in the sub
program 

PARM1 and PARM2 are names which are associated with the 
particular arguments of each CALL. In the first CALL, the arguments 
ARG1 and ARG2 are associated with PARM1 and PARM2. Any 
operations performed on PARM1 and PARM2 in the subprogram are 
as if they were performed on ARG1 and ARG2. In the second CALL, 
ARG3 and ARG4 are passed. During the second execution of the 
SUBPRG subprogram, any references to PARM1 and PARM2 actually 
are references to ARG3 and ARG4. Thus, SUBPGM is a generalized 
routine which performs a logically related set of operations on different 
values which are determined by the working main-line program. 

In summary, a subprogram is a block of statements written only 
once, but it may be referred to often. Each reference or call to a sub
program has the same effect as if the statements were written at the 
point in the program where the reference or call were made. The 
program that calls or references a subprogram is called the invoking 
procedure. The invoking procedure could be a main procedure or it 
could be another subprogram procedure. The subprogram procedure 
is termed the invoked procedure when it is called or referenced by 
another procedure. 

Sometimes subprograms are referred to in the general sense as 
subroutines. However, in PL/I, the term subprogram is preferable 



356 PL/I Programming 

to subroutine, because there are two types of subprograms-one of 
which is called a subroutine procedure. The other type is called a 
function procedure. The subroutine and function procedures explained 
in this chapter are, typically, compiled separately from the main pro
cedure. It is possible, however, to have subprograms embedded within 
a main procedure or other subprogram procedure. For example: 

A: PROC OPTIONS(MAIN); 

B: PROC; 

C: PROC; 

END C; 

END B; 

END A; 

Notice that no OPTIONS(MAIN) 
appears on subprogram pro
cedures; procedure C is em
bedded (or "nested") in pro
cedure B; procedure B is nested 
in procedure A, the main pro
cedure 

An explanation of why a programmer might choose to embed a 
PROCEDURE within another PROCEDURE is given in Chapter 11. 

In this chapter, we shall be concerned with subprograms that 
are compiled separately from the main procedure or other subprogram 
procedures. 



How to Write Subroutines and Functions 357 

There are several advantages to using modular programming 
techniques: 

1. Saves main storage: The sequence of coding that is to be 
used several times throughout a given program need appear 
only once in main storage with the calling program. 

2. Saves coding effort: Where subprograms are separately com
piled, these programs, once written, may be saved either in 
card form, on a direct access device, or on tape. Subprograms 
on a direct access device or tape are cataloged by the sub
program's name. They may be easily retrieved from these 
storage media and added to your main program by the linkage 
editor. (See Chapter 1 for a review of the linkage editor's 
function.) 

3. Reduces possibilities of programming and keypunching errors: 
A subprogram, once checked out, can be used with a reasonable 
degree of certainty that the correct answer will be given. This 
allows the programmer to concentrate on checking out the 
main sequence of his program statements. 

4. Reduces programming time: Programming tasks can be 
divided among several programmers, thus shortening the total 
programming elapsed time. 

Subprogram Names 

Subroutine or function procedures that are separately compiled 
from the invoking procedure are external procedures. Thus, the length 
of these names is limited by the rules that apply to other external names: 
for subset language implementations, subprogram names may be a 
maximum of six characters; for full language implementations, sub
program names may be a maximum of seven characters. 

Functions versus Subroutines 

A function is a procedure that returns a single value to the in
voking procedure. A function is invoked in the same manner that 
PL/I built-in functions are referenced. For example, you would invoke 
a function procedure whose label is CALC and has two arguments 



358 PL/I Programming 

in the following manner: 

Z= CALC(X, Y) ; 

I..__ ____ ) Argument list; arguments must be en-

closed in parentheses and are separated 
by commas 

..___ _____ -----+ Function procedure name 

~-------~ Results are assigned to Z 

Or you might wish to reference CALC in an IF statement: 

IF CALC(X,Y) <0 THEN GO TO ERROR; 

By contrast, a subroutine cannot return a value to the point of 
invocation. The value of arguments, in certain cases, may be modified 
by the subroutine (or function) and in this way results are effectively 
returned to the invoking program. A subroutine is invoked by a CALL 
statement: 

CALL SUI BRT(~~,Z_)_;_--+ 
- Argument list 

) Subroutine procedure name 

~-------~ PL/I keyword 

Functions should not be invoked by a CALL, nor should subroutines 
be invoked by a function reference. 

It is important to understand that a function is written to compute 
a single value which is returned to the point of invocation. The value 
returned may not be an array or a structure. A subroutine, on the other 
hand, may return none, one, or many results to the invokino procedure 
through the modification of arguments in the subroutine CALL. A 
subroutine can alter an argument and thereby "return" an array or 
structure value. Thus, you would code a function when your program 
needs a single value to replace the function reference. Use a subroutine 
when no results are to be returned to the invoking procedure; e.g., 
code a subroutine to prepare headings for printed output. Or, code a 
subroutine when results are to be placed in arrays or structures, or 
more than one value is to be returned to the invoking procedure. 



How to Write Subroutines and Functions 359 

Arguments and Parameters 

Arguments passed to an invoked procedure must be accepted 
by that procedure. This is done by the explicit declaration of one or 
more parameters in a parenthesized list in the PROCEDURE statement 
of the invoked procedure. For example: 

PROG: 

Invoking 
procedure 

SUBRT: 
Invoked 
procedure 

PROC OPTIONS(MAIN); 

r 
r-"---. 

CALL SUBRT(X,Y,Z); 

END PROG; 

PROCEDURE(A,B,C); 
'--..,,.--..I 

l 

END SUBRT; 

Arguments: an argument is a 
value passed to the invoked pro
cedure; each argument corre
sponds to a parameter in the 
parameter list; this correspondence 
is from left to right; the first 
argument corresponds to the first 
parameter, the second, to the 
second parameter, etc. ; the 
number of arguments and param
eters must be the same; although 
an argument and the corre
sponding parameter refer to the 
same storage area, they may 
have different names 

Parameters: a parameter is a 
name used within the invoked 
procedure to represent another 
name or expression that is passed 
to the procedure as an argu
ment; in general, any reference 
to a parameter within the in
voked procedure is treated as a 
reference to the corresponding 
argument; a parameter can be 
thought of as indirectly repre
senting the value that is directly 
represented by an argument 



360 PL/I Programming 

The attributes of a parameter and its corresponding argument 
must be the same. If the attributes of an argument are not consistent 
with those of its corresponding parameter, an error will probably result, 
as no conversion is automatically performed. Here is an example of the 
coding steps necessary to provide consistent attributes for arguments 
and their corresponding parameters: 

PROG: PROC OPTIONS(MAIN); 
Invoking procedure DCL (X, Y) FIXED (7,2),Z FIXED (8,2); 

GET LIST(X,Y); 
CALL SUBRT(X,Y,Z); 
PUT LIST('RESULT IS', Z); 
END PROG; 

SUB RT: PROC(A,B,C); 
Invoked procedure DCL (A,B) FIXED(7,2), C FIXED(8,2); 

C=A+B; 
END SUB RT; 

In the invoking procedure, the arguments X and Y are declared 
to have the FIXED(7,2) attribute. In the invoked procedure, the cor
responding parameters A and Bare also declared to have the FIXED (7,2) 
attributes. The argument Zand the parameter Care given the FIXED (8, 2) 
attributes. The above example illustrates a very simple, but complete, 
subroutine procedure. The subroutine adds two values together and 
returns the sum through one of the subroutine's parameters, C. Any 
change of value specified for a parameter in the invoked procedure 
actually is a change in the value of the argument in the invoking 
procedure. Such changes remain in effect when control is returned to 
the invoking procedure. Thus, in the above example, when the invoking 
procedure prints the value of Z, it is the sum of X and Y that is output. 

Figure 7 .3 summarizes the types of arguments and parameters 
allowed in the subset and full language implementations. 

Dummy Arguments 

In this discussion of arguments and parameters, it is important 
to understand that the name of an argument, not its value, is passed 



How to Write Subroutines and Functions 361 

f 
Arguments 

"'\ 

May be May not be 

Subset language Variable Based variable (ex-
Constant plained in Chapter 11) 
Expression Built-in function 
Array Array expression 
Major structure Structure expression 
Minor structure (see Chapter 8) 
Entry name 
File name 
Label 

Full language In general, an argument and its corre-
sponding parameter may be any data type 

FIGURE 7.3 Argument and parameter types. 

to a subroutine or function. However, there are times when an argu
ment has no name. A constant, for example, has no name; nor does 
an operational expression. As an illustration, the following arguments 
might be specified when invoking SU BRT: 

CALL SUBRT{7.5,X-Y,Z); 

I L SUBRT places result here 

~ Operational expression 

.....__ ____ ~ Fixed decimal constant of attributes: 
FIXED(2, 1) 

Because the first two arguments to SUBRT do not have names, 
it will be necessary for the compiler to select a name for the constant 
7 .5 and a name for the results of the arithmetic operation X - Y. For 



362 PL/I Programming 

example: 

TEMP.101 

.___ __ ~ Fixed decimal data format 

'-----------------+> Example of an internal symbolic 
name selected by the compiler 

TEMP.102 

I ,__ ___ ~ Results of X - Y are placed here 

'------------> Example of an internal symbolic 
name selected by the compiler 

I X-Y 

Internal names are called dummy arguments. They are not 
accessible to the PL/I programmer, but the programmer should be 
aware of their existence. If we substitute the internal names for the 
constant and the expression in the above CALL, we have the following 
statement: 

CALL SUBRT (TEMP.101, TEMP.102, Z); 

L L Programmer-selected 

Com pi ler-sele:t:::ames, called 
dummy arguments 

Of course, you could not code the above statement, because internal 
names are not available to the PL/I programmer. 

Recall the statement: 

CALL SUBRT(7.5,X-Y,Z); 

Recall, also, that in SUB RT, the first and second parameters had the 
attributes FIXED (7,2). We know that an argument must agree precisely 
with its corresponding parameter in terms of attributes. Above, we 
saw that a dummy argument was created for the constant 7.5. When 
a dummy argument is created for an argument that is a constant, the 



How to Write Subroutines and Functions 363 

attributes of the dummy argument will be those indicated by the 
constant. Thus, 7 .5 will have the attributes FIXED (2, 1). These attributes 
do not correspond to the attributes of the first parameter of SUBRT. 
This is an error, and incorrect results will be produced by SUBRT. 
One way to avoid the error is to declare an identifier to have the 
proper attributes and assign the constant to that identifier. For example: 

DCL ARG1 FIXED(7,2); 
ARG1= 7.5; 
CALL SUBRT(ARG1 I X-Y,Z); 

Note, also, that argument expressions could cause the same kind of 
inconsistent attributes problem raised by specifying argument constants. 
This is because of the PL/I language rules governing arithmetic opera
tions and conversion of data types. (See Appendix C for these rules.) 
When in doubt about the attributes of results from an expression, it 
would be wise to assign the results to an identifier having the desired 
attributes. For example: 

DCL (ARG1 ,ARG2) FIXED (7,2); 
ARG1 =7.5; 
ARG2=X-Y; 
CALL SUBRT(ARG1 ,ARG2,Z); 

Another method for ensuring consistent attributes and parameters is 
to use the ENTRY attribute. 

The ENTRY Attribute 

The general form of the ENTRY attribute is 

DCL identifier ENTRY(parameter attribute, parameter attribute ... _); 

The keyword ENTRY may also be specified without attribute lists. For 
example: 

DCL SUB RT ENTRY; 

Generally, in subset language implementations, an in the optimizing 
compiler implementations, the above statement must be included for 
all external subprograms referenced in the invoking procedure. It is 
necessary to declare a subprogram to have the ENTRY attribute in 
PL/I F implementation if the identifier is not otherwise recognizable 



364 PL/I Programming 

as an entry name; that is, if it is not explicitly or contextually 
declared to be an entry name in one of the following ways: 

1. By its appearance as a label of a PROCEDURE or ENTRY 
statement (explicit declaration) embedded within the invoking 
procedure. 

2. By its appearance immediately following the keyword CALL 
contextual declaration). 

3. By its appearance as the function name in a function reference 
that contains an argument list (contextual declaration). 

In the full language implementations, an additional facility is given 
to the ENTRY attribute that allows you to direct the compiler to generate 
coding to convert one or more arguments to conform to the attributes 
of the corresponding parameters, should arguments and their corre
sponding parameters have different attributes. 

As an example of how the ENTRY attribute would be used to 
cause the conversion of arguments to match the attributes of their 
corresponding parameters, assume we are still working with the sub
routine called SUBRT, where its first two parameters must be FIXED(7,2) 
and the third parameter must be FIXED (8,2); i.e., 

In the program that invokes SUBRT, assume that the first two 
arguments appear in floating-point format; the third argument has the 
same attribute as the third parameter. Here is a segment of coding from 
the invoking procedure: 

\ 

DCL (X,Y)FLOAT, Z FIXED(8,2); 
GET LIST(X,Y); 
CALL SU BRT(X,Y,Z); 

The above example will cause an error, because X and Y do not 
have the same attributes as their corresponding parameters. However, 

,·· 

ii 



How to Write Subroutines and Functions 365 

explicit declaration of SUB RT as an ENTRY solves this problem: 

DCL SUBRT ENTRY 
(FIXED(7,2),FIXED (7,2),FIXED(8,2)); 

I 
Attributes of the third 
parameter 

.._ _________ ) Attributes of the second 

parameter 

'---------------+ Attributes of the first 
parameter 

The above declaration tells the compiler that SUBRT is an entry 
name that has three parameters, as indicated by the attribute list in 
parentheses. If there is no need to specify the attributes for a particular 
parameter, attributes do not have to be specified, but the parameter's 
place must be kept by a comma. For example, the third argument in the 
calling sequence matches the attributes of the third parameter. Thus, 
the following DECLARE statement would suffice: 

DCL SUB RT ENTRY 
{FIXED{7 ,2),FIXED{7,2) ,) ; 

L Because the attributes of the third 
parameter are not stated, no 
assumptions are made and no 
conversions are performed 

Here is an example of the invoking procedure using the ENTRY 
attribute to direct the compiler to convert arguments to match the 
attributes of their corresponding parameters: 

Continuing with this example, assume that in the invoking procedure 
we have been using, X, Y, and Z have the FLOAT attribute. The same 



366 PL/I Programming 

subroutine procedure, SUBRT, is to be invoked. Thus, in the invoking 
procedure, the following statements could be written: 

DCL (X, Y, Z) FLOAT(6); 
DCL SUBRT ENTRY(FIXED(7,2),FIXED(7,2),FIXED(8,2)); 
GET LIST(X, Y, Z); 
CALL SUBRT(X, Y, Z); 

11 : Before calling SUBRT, Z will be con-
verted from FLOAT(6) to FIXED (8,2) 

Y will be converted from FLOAT(6) to 
FIXED(7,2) 

....___ ___ X will be converted from FLOAT(6) to 
FIXED(7,2) 

Assume that the statement 

GET LIST(X,Y,Z); 

causes the values 1.2, 3.45, and 67.89 to be assigned to the identifiers 
X, Y, and Z, respectively. The program's storage locations would con
tain the following: 

X .12E+01 

Y .345E+01 

Z .6789E+02 

~-----) Floating-point data 

-----------4) Identifiers selected by the programmer 

When the subroutine SU BRT is invoked, compiler-generated coding 
causes X and Y to be converted to FIXED(7,2) and Z to be converted 
to FIXED(8,2). The converted values (i.e., the FIXED DECIMAL 
equivalents of the DECIMAL FLOAT data) are not placed into the 
identifiers X, Y, or Z, but rather into new locations selected by the 
compiler. Internal symbolic names will be assigned to represent the 
new locations. For example: 



How to Write Subroutines and Functions 367 

TEMP.103 

TEMP.104 

TEMP.105 

Io 010 ol\210 + 

10010013/\415 + 

------7 Packed decimal data 
representation 

~------------+> Internal symbolic names 
generated by the compiler 

As previously stated, internal names are dummy arguments. To 
illustrate: 

Original arguments (converted to---+) Dummy arguments 

x I .12E+01 TEMP. 103 I 001001 \210+ 
)\ 

y I .345E+01 TE Mp. 1 04 I 00 I OOl 3fl l 5 + 
74: 

z I .6789E+02 j 

Recall that SUB RT specifies the statement 

C=A+B; 

In the original example of arguments being associated with parameters, 
we saw that A indirectly represented X, B indirectly represented Y, and 
C indirectly represented Z. However, in the case of dummy arguments, 
A (in the above example) indirectly represents dummy argument 
TEMP. 103, 8 indirectly represents dummy argument TEMP. 104, and 
C indirectly represents dummy argument TEMP. 105. In the subroutine, 
A is added to B. Using the data illustrated above, the sum would be 
4.65. The sum is assigned to C, which is associated with the dummy 
argument TEMP. 105. Thus, it is the dummy argument that is modified 
to contain the result rather than the original argument's location. 
When the invoking procedure executes the statement 

PUT LIST ('RESULT IS',Z); 



368 PL/I Programming 

the original floating-point value of Z (that is, 67.89) will be output, 
not the result contained in the dummy argument. To avoid this error, if 
a subroutine is to modify a parameter, make sure an actual argument 
(not a dummy argument) of the identical attributes is passed to the 
subprogram. 

A dummy argument is always created in the following cases: 

1. If an argument is constant. 
2. If an argument is an expression involving operators. 
3. If an argument is an expression in parentheses. 
4. If an argument is a variable whose data attributes are different 

from the data attributes declared for the parameter in an entry 
name attribute specification appearing in the invoking block. 

5. If an argument is itself a function reference containing arguments. 

In all other cases, the argument name is passed directly. The parameter 
becomes identical with the passed argument; thus, changes to the 
value of a parameter will be reflected in the value of the original argu
ment only if a dummy argument is not passed. 

The ENTRY Statement 

The keyword ENTRY is a PL/I statement as well as an attribute. 
When it appears in a DECLARE statement, it describes the attributes 
of parameters and/or defines an identifier to be a subprogram name. 
When used as a statement, the keyword defines an alternate entry 
point in a procedure. For example: 

Primary entry point---~ 

Secondary entry points ~ 

\ 



How to Write Subroutines and Functions 369 

Following is an example of how calls to the above multiple entry 
points might be coded : 

IF HRS_ WORKED< =40 
THEN CALL REG PAY; 

IF HRS_ WORKED> =40 
THEN CALL OTPAY; 

In addition, the ENTRY statement may be used to provide an alternate 
parameter list to which arguments may be passed, corresponding to 
that entry point. For example : 

Multiple entry points-that is, alternate entry points-may be specified 
for both subroutines and functions. 

Subroutines 

When a subroutine is called, the arguments of the invoking state
ment are associated with the parameters of the entry point and control 
is then passed to that entry point. The subroutine is thus activated 
and execution begins. 

A subroutine may be terminated in several ways: One method of 
subroutine return is when control reaches the final END statement 



370 PL/I Programming 

of the subroutine. For example: 

SUB RT: PROC (A,B,C); 

END; 

'--------4 Execution of this statement causes 
control to be returned to the first 
executable statement logically 
following the CALL statement to 
this subroutine 

Another way in which a subroutine may be terminated is through 
the use of the RETURN statement. For example : 

SUB RT: PROC (A,B,C); 

IF C<O THEN RETURN; 

END; 

.___~) Accomplishes the same 
return as the END state
ment 

~--------~ This is the other possible 
exit point from the sub
routine 

A subroutine may also be terminated with a GO TO statement. 



How to Write Subroutines and Functions 371 

For example: 

In this example, it was possible for the subroutine to return to one of 
two possible points in the invoking procedure, depending on whether 
or not an error condition existed. Note that the parameter ERROR 
must be given the LABEL attribute in the subroutine. This, of course, 
is because the subroutine is compiled separately from the invoking 
procedure and there would be no way for the compiler to determine 
that ERROR represented a label in another program unless it is explicitly 
declared in the subroutine. 

A STOP or EXIT statement encountered in a subroutine abnor
mally terminates execution of that subroutine and of the entire program 
associated with the procedure that invoked it. 

Functions 

When a function is invoked, the arguments of the invoking state
ment are associated with the parameters of the entry point, and control 
is then passed to that entry point. The function is thus activated and 
execution begins. 

The RETURN statement is used to terminate a function. Its use 
in a function differs somewhat from its use in a subroutine; in a 



372 PL/I Programming 

function, not only does it return control, but it also returns the value 
to the point of invocation. For example: 

RETURN (element-expression); 

l.__ ___ ~i The value returned to the 
invoking procedure; it must 
be a single value 

The RETURN statement, then, can accomplish the return of a single 
value to the calling program. It would also be possible to return 
additional values from a function subprogram by assigning them as 
output arguments in the same manner explained for subroutine 
subprograms. 

We have seen how the programmer must be concerned with the 
attributes of arguments and those of the matching parameters. When 
writing a function, an additional consideration is that of the attributes 
of the value returned by the function. If the attributes of the value 
returned by the function are different from those expected by the 
invoking procedure, errors will result. As an example, consider the 
following function procedure: 

When the above function is invoked, e.g., 

W=CALC(X,Y,Z); 

the sum of the three arguments is calculated by CALC, and the result 
is returned to the point of invocation. The compiler must know the 
attributes of the result returned by a function so that the proper con
version instructions may be generated for the purpose of converting 
the result to the data format of the variable on the left of the equals 
sign. The attributes of returned values may be declared in two ways: 

1. Th~y may be declared by default according to the first letter 
of the function name. For example, if the function name begins 
with the letters A through H or 0 through Z, then the result 
will be DECIMAL FLOAT(6), because that is the default 
attribute of identifiers beginning with those letters. Function 
names beginning with the letters I through N return a result 

i.i 



How to Write Subroutines and Functions 373 

with the attributes FIXED BINARY(15). Thus, in invoking a 
function such as CALC, the following rules apply: 

W=CALC (X,Y,Z); 

~-----Answer returned by CALC is DECIMAL 
FLOAT(6), because the function 
name defaults to that attribute 

,__ ______ ----+ No conversion is performed on any 
value returned to the invoking 
procedure 

.___ ________ Results are assigned to W; attributes 
of the returned value must agree with 
attributes of the receiving field 

2. Because the default attributes for function names do not allow 
us to return a result that is FIXED DECIMAL or FLOAT 
DECIMAL(16), for example, we must have another method of 
specifying the attributes of a returned value. This is accomplished 
through the RETURNS keyword. The general form is 

RETURNS(attribute list) 

This keyword will appear in both the invoking procedure and 
the invoked procedure. To illustrate, assume that CALC is to 
return a FIXED DECIMAL(7) result. The function procedure 
would be written as follows: 

The RETURNS keyword, when specified in a PROCEDURE or 
ENTRY statement, is referred to as The RETURNS option. In the 
above example, the value returned by CALC will have the 
attributes FIXED and DECIMAL. The invoking procedure must 
also specify that CALC is returning a FIXED DECIMAL value 
of the same precision because these attributes differ from the 
attributes determined from the first letter of the function name. 
The RETURNS attribute, specified in a DECLARE statement for 
an entry name, indicates the attributes of the value returned by 



374 PL/I Programming 

that function. For example, the following procedure invokes 
the CALC function: 

The RETURNS attribute also specifies, by implication, the 
ENTRY attribute for the name. 

The EXTERNAL Attribute 

So far, we have been looking at subroutines and functions where 
there are argument lists associated with parameter lists. There is another 
method for making data names known in more than one separately 
compiled procedure. It is the EXTERNAL attribute that specifies a 
name to be known in other procedures containing an EXTERNAL 
declaration of the same name. For example, assume a subroutine 
procedure is coded to find the sum of a 200-element array whose 
attributes are FIXED DECIMAL. Here is that subroutine: 

Notice that there is no parameter list in the PROCEDURE statement. 
Also, ARRAY and SUM are given the EXTERNAL attribute, which 



Hpw to Write Subroutines and Functions 375 

indicates that these exact names and attributes should be declared in 
another procedure (the invoking procedure). For example: 

The important thing to understand here is that when identifiers are 
given the EXTERNAL attribute, it means that the identifiers may be 
known by name in other separately compiled procedures. It is imperative 
that the exact attributes be declared for these EXTERNAL names in all 
procedures; otherwise, errors will result. Note that some data a sub
program manipulates may be EXTERNAL and other data may be 
passed as arguments. 

Identifiers that have the EXTERNAL attribute must be limited to 
six characters for the subset language and seven characters for the 
full language implementations. Consider the following examples: 

DCL PAY FIXED(7,2) EXTERNAL; 
DCL ZIP_CODE CHAR(5) EXTERNAL; /*INVALID: 

IDENTIFIER IS TOO LONG */ 

In the full language, EXTERNAL may be abbreviated as EXT. 

A Subroutine Procedure 

Figure 7.4 illustrates a subroutine procedure that will calculate 
the julian date, if given an argument in the form YYMMDD.t To CALL 

t Here, VY stands for year; MM for month; DD for day. 



376 PL/I Programming 

1 JULIAN: PROC(DATE,DAY); 
2 DCL DATE PIC 1 (6)9 1 ,DAY PIC 1 ZZ9 1 ; 

3 DCL IYY,MM) PIC 1 99•; 
4 DCL DAYS_TABLEl12) FIXEDl3l1NITl31,28,31r30,31,30r 

5 
6 
7 
8 
9 

10 
11 
12 

YY = SUBSTRIDATE,1,2); 
MM= SUBSTRIDATE,3;21; 
DAY= SUBSTRIDATE,5,2); 

31,31,30,31,30,31); 

IF MODIYY,4)=0 & YY~=2000 THEN DAYS_TABLEl2l=29; 
DO K = 1 TO MM - 1; 
DAY= DAY+ DAYS_TABLEIKl; 
END; 
END JULIAN; 

FIGURE 7.4 A subroutine procedure. 

this subroutine, the following statements would be coded : 

DCL DATE BUILTIN, JULIAN ENTRY; 
DCL DAY PIC'ZZ9', D CHAR(6); 
D= DATE; /* INVOKE DATE FUNCTION */ 
CALL JULIAN (D, DAY); 

~I ---> The julian date is placed into this 
argument by the subroutine called 
JU LIAN ; the attribute of DAY is 
to be PIC'ZZ9' 

.____ _____ The first argument is to be a six
position character-string that gives 
the date in the form of YYMMDD 

Below is a description of the statements in the subroutine in 
Figure 7.4. 

Statement 1. Following the keyword PROC, the parameters are 
specified within parentheses. These parameters will be associated with 
the arguments passed from the calling program. Notice that the 
parameter DATE refers to a six-position character-string, not the built
in function. This is because the DATE function will actually be invoked 
before JULIAN is called. What is stored in the first parameter of 
JU LIAN is the result returned from the DATE built-in functron. 

Statement 2. The parameter attributes are defined. 

Statements 3-4. Year, month, and day are declared, and the 
number of days in each month are assigned to an array. 



How to Write Subroutines and Functions 377 

Statements 5-7. The substring built-in function is used to retrieve 
the year, month, and day from the longer string called DATE. 

Statement 8. The second month of the year is set equal to 29 days 
if YY is a leap year. · 

Statements 9-11. DAY is modified to contain the results of the 
calculation that gives the julian date. 

Statement 12. When this statement is encountered during execution 
of the JULIAN procedure, it causes a return to the calling program. 

A Function Procedure 

Figure 7.5 illustrates a function procedure that will convert 24-
hour clock time (e.g., 1740 hours) to AM or PM time (e.g., 5 :40 PM). 
There are no arguments passed to this function procedure. The result 
from this function, which is called TIMEX, will be in the form of a 
character-string of length eight, 

HH :MM AM 
HH :MM N 

or 
or 

HH :MM PM 
HH :MM M 

or 

where HH stands for hours, MM stands for minutes, N stands for noon, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

TIMEX: PROCEDURE RETURNS(CHAR(8)); 
OCL T PIC 1 (9)9 1 ,(HH,MM)PIC 1 Z9 1 ; 

DCL TIME BUILTIN, R CHAR(8>1NITI' :•); 
T = TIME; I* INVOKE TIME BUILTIN FUNCTION *I 
HH=SUBSTRIT,l,2l; 
MM= SUBSTRIT,3,2); 
IF HH > 0 & HH < 12 THEN DO; 

SUBSTR(R,7,2) = 'AM 1 ; 

GO TO EXIT; 
ENO; 

IF HH > 12 & HH < 24 THEN DO; 
SUBSTR(R,7,2) = 1 PM 1 ; 

HH =_HH - 12; 
GO TO EXIT; 
ENO; 

IF HH = 0 I HH = 24 THEN DO; 
IF MM = 0 THEN SUBSTR(R,7,2l= 1 M1 ; 

ELSE SUBSTR(R,7,2) = 1 AM'; 
HH = 12; 
GO TO EX IT; 
END; 

IF HH = 12 THEN IF MM= 0 THEN SUBSTR(R,7 9 2)='N'; 
ELSE SUBSTRIR,7,2) = 1 PM 1 ; 

EXIT: SUBSTRIR,1,2) = HH; 
SUBSTRIR,4,2) = MM; 
RETURNIRI; 
END; 

FIGURE 7.5 A function procedure. 



378 PL/I Programming 

and M stands for midnight. To invoke this function, the following 
statements would be coded: 

DCL TIM EX RETURNS(CHAR(8)); 
DCL T CHAR (8) ; 
T=TIMEX; 

I '----------~Function illustrated in Figure 7.5 

'-------------+> Results returned from TIMEX will 
be assigned to T 

Below is a description of the statements in the function procedure. 

Statement 1. The PROCEDURE statement specifies the attributes 
of the result returned by this function through the RETURNS option. 

Statement 2. Receiving field for time is declared. 

Statements 3-4. Tl ME is declared as a built-in function and in
voked. Result is hours and minutes. The seconds and thousandths of 
seconds also returned by Tl ME are ignored by this subprogram. 

Statements 5-6. Hours and minutes are extracted from T. 

Statements 7-23. These statements test the hours value so that 
the 24 hour time format returned by the TIME built-in function may be 
converted to the morning and afternoon time designation. 

Statements 24-25. Hours and minutes are moved to the output 
area containing the results. 

Statement 26. This statement causes a return to the invoking pro
cedure, with the results specified in parentheses following the keyword 
RETURN. 

Functions versus Subroutines: A function is a procedure that returns a 
single value to the invoking procedure. By contrast, a subroutine cannot return 
a value to the point of invocation. The value of arguments, in certain cases, 
may be modified by the subroutine, and in this way results are effectively 



How to Write Subroutines and Functions 379 

returned to the invoking program. A function is written to compute a single 
value which is returned to the point of invocation. The value returned may not 
be an array or a structure. A subroutine may return none, one, or many results 
to the invoking procedure through the modification of arguments in the sub
routine call. 

Arguments and Parameters: Arguments passed to an invoked procedure 
must be accepted by that procedure. This is done by the explicit declaration of 
one or more parameters in a parenthesized list in the PROCEDURE statement of 
the invoked procedure. The attributes of a parameter and its corresponding 
argument must be the same. If the attributes of an argument are not consistent 
with those of its corresponding parameter, an error will probably result. 

/ Maximum number of arguments allowed \ 
in one subroutine CALL or function reference 

Subset language 12 

Full language 64 

It is important to understand that the name of an argument, not its value, 
is passed to a subroutine or function. There are times when an argument has 
no name. A constant, for example, has no name; nor does an operational 
expression. Internal names are given to constants or expressions and are called 
dummy arguments. 

The ENTRY Attribute: It is necessary to declare a subprogram to have the 
ENTRY attribute, if the identifier is not otherwise recognizable as an entry 
name; e.g., 

DCL SUB2 ENTRY; 
CALL SUB1 (SUB2,A,B); 

Following is a summary of the allowable forms of the ENTRY attribute. Generally, 
in the subset language implementations, you will get a diagnostic message if 
you call a procedure but fail to declare its name as having the ENTRY attribute. 

f Allowable forms of the ENTRY attribute 
\ 

Subset 
language DCL name ENTRY; /* MUST BE SPECIFIED*/ 

Full DCL name ENTRY; /* OPTIONAL */ 
language DCL name ENTRY (parameter attribute,parameter 

\.. 
attribute ... ) ; 



380 PL/I Programming 

In full language compilers, the ENTRY attribute allows you to direct the 
compiler to generate coding to convert one or more arguments to conform to 
the attributes of the. corresponding parameters, should arguments and their 
corresponding parameters have different attributes. 

The ENTRY Statement: This statement defines an alternate entry point in 
a procedure; e.g., 

A: PROC; 

A1: ENTRY; 

END; 

Subroutines: A subroutine may be terminated in several ways: 

1. When control reaches the final END statement of the subroutine. 
2. Through the use of the RETURN statement. 
3. By terminating with a GO TO statement. 
4. By a STOP statement-this abnormally terminates execution of that 

subroutine and of the entire program associated with the procedure that 
invoked it. 

Functions: The RETURN statement is used to terminate a function. Its use in 
a function differs somewhat from its use in a subroutine; in a function, not only 
does it return control, but it also returns the value to the point of invocation; e.g., 

RETURN(element-expression); 

~----~The value returned to the invoking 
procedure; it must be a single value 

The RETURNS Attribute: The attributes of returned values may be de
clared in two ways : 

1. They may be declared by default according to the first letter of the function 
name. If the function name begins with the letters A through H or 0 
through Z, then the result will be DECIMAL FLOAT(6). Function names 
beginning with the letters I through N return a result with the attributes 
FIXED BINARY(15). 

2. Because the default attributes for function names do not allow us to return 
a result that is FIXED DECIMAL or FLOAT DECIMAL(16), for example, 
the RETURNS keyword may define the attributes of a returned value. 

The RETURNS attribute also specifies, by implication, the ENTRY attribute for 
the name. The RETURNS attribute is specified in the invoking procedure. 

The RETURNS Option: This keyword is specified in a PROCEDURE state-



How to Write Subroutines and Functions 381 

ment of function procedures when it is desired to override the default attributes 
of the entry name. The RETURNS option is specified in the invoked procedure. 

The EXTERNAL Attribute: This attribute specifies that a name is known 
in other procedures containing an EXTERNAL declaration of the same name. 
When identifiers are given the EXTERNAL attribute, it means that the identifiers 
may be known in other separately compiled procedures. It is imperative that 
the exact attributes (and names) be declared for these EXTERNAL names in all 
proc~dures; otherwise, errors will result. 

1 . What is the difference between an argument and a parameter? 

2. How many values may be returned by 
(a) a function? 
(b) a subroutine? 

3. Is this valid? Why or why not? 

CALL SUBRT(l,J,K); 
SUBRT: PROCEDURE(A,B,C); 

4. Given the following statement and explanation, what DECLARE statement 
must be added in order to compile without diagnostics in the subset 
language? 

CALL ASUB(X,Y,SUBRT); 
'-v-' 

--- Name of a subroutine being passed 
as an argument 

------+) Two floating-point arguments 

5. What attribute causes the conversion of arguments to match the attributes 
of their corresponding parameters? 

6. What value will appear in B after the S procedure is invoked? (Be careful, 
this tests your understanding of dummy arguments.) 

DCL ENTRY(FIXED,FIXED(7) ); 
A=5; 
8=10; 
CALL S(A,B); 

S: PROCEDURE(X,Y); 
DCL X FIXED,Y FIXED (7); 
Y=X*Y; 
END; 



382 PL/I Programming 

7. What does the ENTRY statement accomplish? 

8. What happens if a STOP or EXIT statement is encountered in a subroutine? 

9. What is the difference between the RETURNS attribute and the RETURNS 
option? 

10. Is this valid? Why or why not? 

DCL (A,B) EXTERNAL; 
A=10; 

SUB: PROCEDURE(Z); 
DCL (A,B) EXT; 
Z=A/B; B=5; 

CALL SUB(C); END; 

argument 
call 
dummy argument 
external procedure 
internal name 
invoked procedure 

( 

invoking procedure 
modular programming 
multiple entries 
parameter 
reference 
subprogram 

1. Convert Time 
Write a subroutine procedure to edit the time of day. To invoke this procedure, 
the following CALL would be coded: 

CALL CTIME ((TIME), RES); 

L 
' Results are to be placed here in form 

of HH:MM:SS-a character-string of 
length 8 

Built-in function to be invoked before 
CTIME is called; TIME returns a character-
string in form of HHMMSSTTT 

,___ ____ ..... Subroutine to be coded 



How to Write Subroutines and Functions 383 

2. Convert Julian Date 
Given the julian date as an argument, write a function procedure to return the 
corresponding month and day. The function reference to invoke this procedure 
would be coded: 

DCL DTE RETURNS(CHAR(4)); 
DCL X CHAR (4); 
X=DTE (YEAR, JULIAN_DAY); 

'--------+ Numeric day designated (e.g., between 
1 and 366) assumes this argument has 
attribute FIXED(3) 

'--------4 The year to which julian date applies; the 
function subprogram needs this argument to 
test for leap year 

'----------+Result is in the form of MMDD, a four-position 
character-string 

3. Count Characters 
Given an argument of 30 characters maximum, write a function procedure to 
determine the number of characters in a surname. The surname will be left
justified in the argument field padded on the right with blanks. To invoke this 
procedure, the following would be coded: 

DCL CNT RETURNS (FIXED(2)); 
DCL X FIXED (2); 
X=CNT(SURNAME); 

I '----------4 A character-string of length 30 

~-----------4) Function to be coded 

...__ __________ Number of characters in argument is to be 

assigned to X 

4. Count Bits 
Given a bit-string of length 64, write a function procedure to count the number 
of "one" bits in the string and return this count to the point of invocation. The 



384 PL/I Programming 

calling sequence is: 

DCL ARG BIT(64); 
DCL COUNT FIXED(2); 
DCL CTBITS RETURNS (FIXED(2)); 
COUNT=CTBITS (ARG); 

5. Edit Data 

Given a FIXED DECIMAL Social Security number, write a function procedure 
to edit this number by inserting hyphens. Result is to be a character-string in 
the form XXX-XX-XXXX. The calling sequence would be coded: 

DCL EDITSS RETURNS (CHAR(11)); 
DCL SS_# CHAR(11); 
DCL NO FIXED (9); 
SS_#= EDITSS (NO); 

.____ ______ Social Security number argument in the 
FIXED DECIMAL form XXXXXXXXX 

...__ _______ --+ Result is to be CHAR (11) with hyphens inserted; 
e.g., XXX-XX-XXXX 

This function would be most useful in the subset language implementations of 
PL/I, because the insertion of hyphens requires manipulation of subfields in 
the character-string. In the full language implementations, the following 
picture is valid to accomplish the hyphen insertion: 

DCL SOC_ SEC PIC'999-99-9999'; 

6. Search Tax Table 

Write a function procedure to determine the tax amount due for a given taxable 
income. The calling sequence for this function follows: 



How to Write Subroutines and Functions 385 

DCL TAXAMT RETURNS (FIXED(7,2)); 
DCL ADJ_ GROSS FIXED(9,2); /* TAXABLE INCOME */ 
DCL TAX FIXED(7,2); 
TAX=TAXAMT (ADJ_GROSS,N); 

L > N = 1 for separate return 
N = 2 for joint return 
N = 3 for head of household return 

Taxable income 

~------- Function to be coded 

'---------------+ Result, whose attribute is FIXED(7,2), is placed 
here 

In determining the tax amount due, use the following table in your function 
procedure: 

If the taxable 
income is 

0 
$500 

$1000 
$1500 
$2000 
$3000 
$4000 
$6000 
$8000 

$10000 

Head of 
Separate Joint household 

70 
$145 
$225 
$310 
$500 
$690 

$1130 
$1630 
$2190 

14% 14% 14% 
15% $70 14% $70 14% 
16% $140 15% $140 16% 
17% $215 15% $220 16% 
19% $290 16% $300 18% 
19% $450 17% $480 18% 
22% $620 19% $660 20% 

, 25% $1000 19% $1060 22% 
28% $1380 22% $1500 25% 
32% $1820 22% $2000 27% 

L Percent by which to multiply the 
amount over the taxab!,e income 
figure in the leftmost column; for 
example, if taxable income is 
$1700, then TAX= 225. + .17 * 
(1700 - 1500) 

~The amount of tax due if the taxable in
come is the figure in the leftmost column; 
for example, if the taxable income is $2000, 
then tax is $310; however, if taxable 
income is between $2001 and $2999, then 
tax is $310 plus 19% of anything over 
$2000 



386 PL/I Programming 

7. Compute Sine 
The sine of an angle may be obtained from the series 

x3 x5 x7 x9 
sin x = x - -+-- -+-- · · · 

3! 5! 7! 9! 

where x is measured in radians. Write a function subprogram called SINE to 
compute the sine of a radian argument using the first five terms of this series. 
You may wish to use the subprogram in Problem 13 in this subprogram. Both 
the argument and the result have the attributes DECIMAL FLOAT(6). 

8. Find MAX and MIN 
Write a subroutine procedure to find the smallest and largest values in an array 
whose size is indicated by an argument. The calling sequence is: 

CALL MAXMIN (ARRAY, NSIZE, MAX, MIN); 

I L l FIXED(5) 

~FIXED(5) 
FIXED BINARY(15) 
Indicates number of elements in 
first argument 

~------ One-dimensional array in FIXED(5) 
attribute 

9. Reverse Array Elements 
Write a subroutine procedure to reverse the elements of a 100-element array. 
For example, an array consists of the numbers 501-600 in elements 1-100, 
respectively; then the returned array should have the numbers 600 back to 501 
in elements 1-100, respectively. 

10. Calculate Volume of a Vessel 
Write a function procedure to calculate the volume of water that may be con
tained in a child's wading pool where the diameter and height are floating-point 
arguments to the function. To invoke this procedure, the following function 
reference may be coded : 

POOL= VOLUME (DIAMETER, HEIGHT); 

I I I ' Functi~~~~:::;:::~~t arguments, 
~-----------+ Floating-point result 



How to Write Subroutines and Functions 387 

The formula for finding the volume (in gallons) of a circular vessel is 

nr2h 
Volume=--

231 

where 1T is 3.14159, r is radius, his height measured in inches 

11. Find n ! by Actual Multiplication 
Write a function subprogram that will compute n!, where n is a DECIMAL 
FLOAT(6) argument to the subprogram: 

n! = 1 x 2 x 3 x 4 x · · · x n 

The subprogram should return a DECIMAL FLOAT(16) result. If the computed 
factorial causes the OVERFLOW condition to be raised, return a value of zero 
to the calling program. 

12. Find n ! by Forsyth's Approximation 
Write a function subprogram that will compute n!, where n is a DECIMAL 
FLOAT(6) argument to the subprogram. Forsyth's approximation for n! is 

;;;-::{Jn2 + n + 1/6}n+
1

1
2 

n! = y £.JL 

e 

The subprogram should return a DECIMAL FLOAT(16) result. If the computed 
factorial causes the OVERFLOW condition, return a zero result to the calling 
program. (Note: You may wish to code both methods for computing n! and 
then write a "driver program" that will call each of these subroutines and 
then print the results, organizing output so that the results from each subroutine 
may be compared. 

13. Find Length of Triangle Side 
The law of cosines says that 

a2 = b2 + c2 - 2bc(cos A) 

where a, b, c are the lengths of the sides of a triangle and A is the angle opposite 
side a. Write a function subprogram to find the length a for a triangle, given 
the argument b and c in feet and A in radians. The arguments, parameters, and 

a 



388 PL/I Programming 

the result returned by the function should have the attributes DECIMAL 
FLOAT(6) or DECIMAL FLOAT(16). 

14. Matrix Multiply 
Write a subroutine subprogram called MATMPY which will multiply two 
matrices, each of which is a two-dimensional array of the same bounds. The 
calling sequence is: 

DCL BOUND FIXED BINARY(15); 
CALL MATMPY(A,B,C,BOUND); 

'---------+ Results are placed in this array 

~------~)Two arrays to be used in the 
matrix multiply 

The first three arguments have the attributes DECIMAL FLOAT(6). As an 
illustration of how a matrix multiply works, assume two matrices, A and B, 
are 10 x 10 arrays. The product of two matrices is formed by multiplying each 
number in a row by a number in a column and adding the products, repeating 
for all combinations of rows and columns. In formula form it is 

10 
cij= L (aik)(bkj) for all combinations of i and j 

k=1 

or, for example : 

c,,, =a,,, b,,, + a,,2b2,1 + a,,3b3,1 + a,,4b4,1 + · · · + a,,1ob10,1 
c,,2 =a,,, b,,2 + a,,2b2,2 + a,,3b3,2 + a,,4b4,2 + · · · + a,,1ob10,2 

c1,10 =a,,, b,,10 + a,,2b2,10 + a,,3b3,10 + a,Ab4,10 + · · · + a,,1ob10,10 
c2,1 = a2,1b1,1 + a2,2b2,1 + a2,3b3,1 + a2,4b4,1 + · · · + a2,1ob10,1 · · · 

In other words, any ijth element of the c matrix is composed of ten products 
added together, the products being corresponding elements of the ith row of 
the a matrix and the jth column of the b matrix multiplied together. Notice 
that the examples above show that the first subscript of the a matrix always 
agrees with first subscript of the desired c element, while the second subscript 
of the b matrix always agrees with the second subscript of the c element. The 
column subscript of a and the row subscript of b are always the same, also. 
Thus, this problem can be handled with three nested DO-loops, the innermost 
of which controls the summation. 



l!hapf@r 8 

lnfroduBion 

and ~ftuNutM 



There are two types of data transmission in PL/I : stream and record. 
Stream data transmission has already been covered, and we saw that 
the keywords GET and PUT were always specified for this type of 1/0. 
For the record 1/0, the keywords READ and WRITE are used. When a 
READ or WRITE statement is given in PL/I, an entire record is read or 
written. An example would be reading an entire 80-column card; 
no more than one card can be read with one READ statement (recall 
that this is not the case with the GET statement). Or, when a WRITE 
statement is executed, if the output is to a line printer, then one line is 
printed; no more than one line of output (i.e., a record) may be written 
with one WRITE statement. Or, suppose a magnetic tape file contains 
employee payroll records that are 280 characters long; then a READ or 
WRITE statement would accomplish input or output for 280 characters 
at a time-that is, one employee's payroll record of 280 bytes in length. 
By contrast, with stream data transmission, less than, more than, or one 
record may be processed with one GET or PUT statement. 

In stream data transmission, input consists of a stream of characters 
representing numeric constants or string constants. In stream input 
mode, PL/I scans the input stream and converts the data in the stream 
into the data type of the matching element in the data list of the GET 
statement. For example: 

390 

DECLARE A DECIMAL FLOAT(6), 

B CHARACTER(lO), 

C FIXED DECIMAL(7,2), 

D BINARY FIXED(31); 

GET LIST (A, B, C, D); 

Input stream~ 12.34 'EXAMPLE' 999 -666 



Introduction to Record 1/0 and Structures 391 

Notice the attributes of the constants in the input stream. The 
constant 12.34 is a FIXED DECIMAL(4,2) constant. 'EXAMPLE' is a 
character-string constant of length seven; i.e., CHAR(7). The remain
ing two constants are both FIXED DECIMAL(3). None of the items in 
the stream have exactly the same attributes as the matching items in 
the data list of the GET statement. It is one of the functions of the 
GET statement to convert these dissimilar forms in the stream to the 
proper base, scale, and precision (or proper length in the case of 
strings) and assign the resulting value to the corresponding item in 
the data list. On output, using a PUT statement, the reverse occurs. A 
major function of the PUT statement is to convert data list items which 
are stored in the internal coded form to a character representation which 
will be suitable for printing. 

Record I /0 does not perform this conversion. A READ statement 
merely transfers a complete record of data into a main storage location; 
it does not scan the data; it does not verify its validity, nor does it 
perform any conversions. 

Because record 1/0 does not perform all the same functions that 
stream 1/0 does, we must be particularly careful to observe an im
portant convention. Primarily, we must describe the data that we wish 
to input from the external storage device in exactly the same form that 
it appears on the external device. For example, on magnetic tape we 
have a record consisting of two fields. Assume that each field represents 
a dollars and cents quantity, in tens of thousands of dollars. The 
record might look like this: 

First number Second number 

A A 
Notice that the fields are stored in the internal coded form that 

is called packed decimal in S/360 or S/370 terms. The numbers each 
occupy four bytes of external storage. When reading this record into 
main storage using record 1/0, we merely state to PL/I where we want 
the record placed. We must ensure that there is enough main storage 
starting at that location to contain the record and, most importantly, 
that the attributes of the data items located where the record is to be 
placed match exactly the attributes of the data in the record. In the 
example above, both numbers are in the internal coded form of FIXED 
DECIMAL(7,2). We must declare two variables, A and B, in our 
program with exactly those attributes. However, if we declared A and 
B to be FIXED DECIMAL(9,2), an extra byte of storage would be 



392 PL/I Programming 

reserved for each variable. When the record was read from the file 
into the space provided by A and B, the signs of the data would not 
be in the low order digit positions of A and B, nor would the first digit 
of the second number be located in the first position of the field named 
B. Let us look at a picture of this situation. 

Assume that A and B are declared (erroneously) FIXED 
DECIMAL(9,2). The lowercased represents a digit position and the S 
the sign of the value. If we now read the record shown above into the 
space in main memory using record input, it would appear in main 
storage as 

A B 

Id did did did d Id sld did d Id did did s 
A A 

A B 

The capital G in the picture represents garbage-unusable data. But 
that is not the only problem we face due to our mistake. Notice the 
value in the sign position of the variable A. It is a digit two, the second 
digit of the second number we had stored on our file. The digit two is 
an invalid sign. Should we ever attempt to use this data in our program, 
we will encounter an error condition. Record 1/0 did not check the 
values it was placing in the variables A and B for validity, nor did it 
convert any data from one type to another. It simply placed the record 
in main storage as is. You might ask, "Why would anyone choose to 
use record 1/0 rather than stream 1/0 ?" The answer is that, because 
it has relatively little processing to perform, record 1/0 is usually faster 
than stream 1/0. If many different types of data conversions take 
place during stream 1/0, then stream may not only be slower than 
record, but it may also require more main storage than record 1/0.t In 
some cases, however, record 1/0 is the only form that may be used to 

t In future implementations of PL/I, the differences in speed and main storage requirements 
between record and stream 1/0 may be negligible. 



Introduction to Record 1/0 and Structures 393 

communicate with a data set. For example, direct access devices may 
contain files that are organized according to the indexed sequential 
method or the direct or random method. These types of data set 
organizations, which will be explained in Chapter 10, may only be 
accessed by record 1/0 statements. 

Figure 8.1 illustrates the difference between record and stream 1/0 
with respect to when data conversions take place. The broken-line 
box enclosed the first two steps of stream input to illustrate that both 
steps are accomplished by the stream input operation. The same is 
true for stream output. 

This chapter will explain the record 1/0 statements in PL/I. The 
programming techniques illustrated facilitate report writing. Because 
you have learned to use edit-directed statements for card and printer 

I 
I 
I 

Stream 1/0 

----------1 

GET 
characters 

Convert to 
coded 

arithmetic 
form 

L _________ _J 

Process 
coded 

arithmetic 
data 

,----- ----1 
I 

I 

Convert 
coded data 

back to 
characters 

I PUT 
I characters 

I 
I L _________ _ 

Record 1/0 

READ 
characters 

Process 
"characters" 

WRITE 
characters 

When an arithmetic operation 
is specified on Pl CTU RE data, 
the numeric characters in the 
PICTURE will be converted 
to a coded arithmetic form 

FIGURE 8.1 Comparison of conversions to coded arithmetic form. 



394 PL/I Programming 

programs, you may feel that programming these devices is more 
cumbersome using record 1/0. If you have a COBOL background, 
however, record 1/0 will be more familiar to you. 

The following are examples of record 1/0 statements: 

READ FILE (CARDIN) INTO (CARD_AREA); 

L A variable defined by the 
programmer into which 
the data record is to be 
placed 

~----~ A PL/I keyword 

.__ ________ A programmer-defined 

file name 

~----------- A PL/I keyword 

~-------------The READ keyword in
dicating that this is a 
record input statement 

WRITE FILE (PRINTR) FROM (PRINT _AREA); 

L A variable defined by the 
programmer from which 
data is to be written 

.__ _____ A PL/I keyword 

.__ __ ....____ ________ The FILE option and file 

name are the same as 
described above 

'----------------The WRITE keyword in
dicates that this is a 
record output statement 



Introduction to Record 1/0 and Structures 395 

The file names CARDIN and PRINTR are programmer-defined identi
fiers. An introduction to the declaration of stream files has been given 
earlier in this text. The only difference between the previous file 
declarations and the file declarations for record-type files is that the 
keyword RECORD will replace the keyword STREAM. Here are some 
examples for the various compilers: 

( 
PL/I D DCL CARDIN FILE INPUT RECORD 

\ 

ENV(F(80) MEDIUM(SYSIPT,2540)); 

DOS PL/I DCL CARDIN FILE INPUT RECORD 
optimizing ENV(F BLKSIZE (80) MEDIUM(SYSIPT, 

2540)); 

PL/I F DCL CARDIN, FILE INPUT RECORD 
ENV(F(80)); 

OS PL/I DCL CARDIN FILE INPUT RECORD 
optimizing ENV(F BLKSIZE(80)); 

Assume it is desired to read a card which contains character information, 
and to print that card image on the printer. This operation is often 
referred to as an 80/80 list. Returning to the READ statement, let us 
look again at the 1/0 area specification: 

READ FILE (CARDIN) INTO (CARD_AREA); 

L Name of an area that has 
the CHARACTER or 
PICTURE attribute if 
card data are being input 

In record I I 0 there is no conversion of external characters to an 
internal data format. Thus, the area into which card data is read must 
have CHARACTER or PICTURE attributes. For example: 

DCL CARD_AREA CHAR(80); 



396 PL/I Programming 

The length of input areas must be exactly the same as the length 
specified in the ENVIRONMENT section of the file declaration state
ment; this rule also applies to an output area and its corresponding 
output file, because we are using only fixed-length records. 

In our program so far, to read one card and print it on a line 
printer, we would have the following statements: 

DCL CARDIN FILE INPUT RECORD ENV(F(80)MEDIUM(SYSIPT, 
2540)); 

DCL PRINTR FILE OUTPUT RECORD ENV(F(80)MEDIUM(SYSLST, 
1403)); 

DCL CARD_AREA CHARACTER(80); 
READ FILE (CARDIN) INTO (CARD_AREA); 
WRITE FILE (PRINTR) FROM (CARD_AREA); 

In the READ statement, blanks between FILE and (CARDIN) 
and INTO and (CARD_AREA) are optional, because the parentheses 
serve as delimiters. The same is true of the options specified in the 
ENVIRONMENT section of the file declarations and the WRITE 
statement. 

There is one other step that must be added to our program for 
listing cards-that of opening the files. The statements would. be 
written 

OPEN FILE(CARDIN); 
OPEN FILE(PRINTR); 

Several files may be opened with one OPEN statement. For example: 

~------- Comma is required 

OPEN FILE(CARDIN), FILE(PRINTR); 

l~ _____ __.__I ---+1 File names 

All files must be opened before a READ or WRITE to these files 
is executed.* There are several things that happen when files are 
opened; these are described here. 

Attributes Are Merged. As you will see later, there are some file 
attributes that may be specified in one of several places. For example, 
the INPUT attribute may be written in the file DECLARE statement or 
it may appear in the OPEN statement. Or, in an OS environment, many 
attributes may be specified in a job control card and never appear in 

*In the full language, the first READ or WRITE executed will open the file with the 
respective attributes INPUT or OUTPUT. 



Introduction to Record 1/0 and Structures 397 

the PL/I program. Thus, when the file is opened, the attributes from 
these various sources are located and combined to form the description 
that applies to the file we are opening. 

Labels Are Checked. If you are communicating with disk or tape 
data sets, data set labels are also checked at OPEN time. When a 
tape or DAS D data set is created, a label is defined through job control 
statements. This label contains the name by which the data set is 
identified to the operating system and is not to be confused with the 
file name you select in your file declaration statement. 

Device Readiness Is Checked. An 1/0 device may not be in a 
ready state for several reasons: Perhaps the operator failed to press 
the START button that readies a device or perhaps there is no power 
supplied to the device. Typically, an error message is displayed on the 
operator's console when device failure is noted at OPEN time. 

I 
Opening of files ' 

Subset RECORD files must be explicitly opened; STREAM 
language files are automatically opened the first time a 

GET or PUT to that file is issued 

Full Both RECORD and STREAM files are automatically 
language opened the first time a READ, WRITE, GET, or 

PUT to that file is issued 

When files are closed, through the CLOSE statement, the file 
name is dissociated from the data set. The CLOSE is optional, because, 
when a PL/I program ends, all files are automatically closed. In the 
case of an output file on magnetic tape, an end-of-file tape mark is 
written. In the case of creating a file on a direct access device, an 
end-of-file mark is recorded. 

Returning to the 80/80 list program, we see that Figure 8.2 shows 
a flowchart and the corresponding PL/I statements to list cards on a 
line printer. This flowchart could serve as a generalized approach to 
the programming steps that you would be coding when using record 
1/0. 

If the program were now to be executed, the output would begin 
wherever the line printer stopped after the last job was run. There is a 
possibility that our output would appear on the same page as the output 



Start 

Describe 
file (s) 

Reserve 
storage 
for 1/0 
areas 

Open both 
files 

Specify action 
to be taken 

at end-of-file 

Read a 
card 

Print a 
line 

Close 
all files 

END 

LIST: PROC OPTIONS (MAIN); 

DCL CARDIN FILE INPUT RECORD ENV 
(F(80) MEDIUM (SYSIPT, 2540)); 

DCL PRINTR FILE OUTPUT RECORD ENV 
(F(80) MEDIUM (SYSLST, 1403)); 

DCL CARD_AREA CHARACTER (80); 

OPEN Fl LE (CARDIN), Fl LE (PRINTR); 

ON ENDFI LE (CARDIN) GO TO EOJ; 

LOOP: 
READ FILE (CARDIN) INTO (CARD_AREA); 

Yes/* AUTOMATICALLY CHECKED FOR BY 
THE SYSTEM */ 

WRITE FILE (PRINTR) FROM (CARD_AREA); 

GO TO LOOP; 

EOJ: CLOSE FILE (CARDIN). FILE (PRINTR); 
/* OPTIONAL */ 

END LIST; 

FIGURE 8.2 Sample program flowchart for record 1/0. 



Introduction to Record 1/0 and Structures 399 

from the job run just prior to the list program. Also, if there were more 
than 60 cards to be listed (assuming single spacing), the card image 
data would be printed on the perforation of the paper. These two 
problems occur because the list program did not make provisions for 
printing a certain number of lines per page, nor did it give the equivalent 
record 1/0 command for the PUT PAGE statement that accomplishes 
skipping to a new page on stream files. (Note: PUT PAGE causes an 
advance to a new page for stream files associated with a line printer. 
Thus, PUT PAGE should not be used to accomplish carriage control 
options for record files associated with a line printer.) 

Carriage Control in Record 1/0 

One method for handling page overflow in record 1/0 is for the 
programmer to keep track in his program of the number of lines that 
are being printed on a page. Each time a WRITE is issued for a printer 
file, a program counter would be incremented by one. When the pro
gram counter reaches the maximum number established for the desired 
output page size, then the program gives the "command" to the 
printer to skip to a new page. 

To accomplish carriage control for record 1/0, we will append an 
extra character to the beginning of each record. In that character, we 
will place a code specifying the action we want performed; e.g., skip 
to a new page, skip two lines, etc. A keyword must be added to the 
ENVIRONMENT section of the file declaration to notify PL/I that 
these carriage control characters are being used in the program and 
that the 1/0 routines are to interpret the first character of each record 
accordingly. Two different sets of carriage control characters may be 
used in PL/I. The choice is made by specifying in the ENV attribute 
either the keyword CTLASAt or the keyword CTL360. If either of 
these keywords is used, it means that the first character of the output 
area will be the carriage control character. It is the programmer's 
responsibility to place a meaningful character in this position. Figure 8.3 
gives the character codes that can be used with the CTLASA option. 
The character codes for CTL360 are given in Figure 8.4. The difference 
between CTLASA and CTL360 is that when CTLASA is specified, the 
carriage control operation will take place before the print operation, 
whereas, if CTL360 is specified, the carriage control operation will 
take place after the print operation. 

tCTL stands for control and ASA refers to the American Standards Association, which 
has now changed its name to ANSI-American National Standards Institute. 



400 PL/I Programming 

Which option, CTLASA or CTL360, should you select? Generally, 
CTL360 carrfage control is faster than CTLASA. However, the beginning 
programmer may find it easier to program carriage control options that 
take place before the print operation (CTLASA). The codes for CTL360 
are usually specified using the BIT attribute. 

r Character code 

(blank) 
0 

+ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
v 
w 

Resulting carriage control operation 

Space one line before printing 
Space two lines before printing 
Space three lines before printing 
Suppress space before printing 
Skip to channel 1 before printing 
Skip to channel 2 before printing 
Skip to channel 3 before printing 
Skip to channel 4 before printing 
Skip to channel 5 before printing 
Skip to channel 6 before printing 
Skip to channel 7 before printing 
Skip to channel 8 before printing 
Skip to channel 9 before printing 
Skip to channel 10 before printing 
Skip to channel 11 before printing 
Skip to channel 12 before printing 
Select stacker 1 
Select stacker 2 

FIGURE 8.3 Carriage control characters that can be used 
with CTLASA option. 

Figure 8.5 shows a modified version of the list program to provide 
for printing 55 lines per page. Some comments follow. 

Statement 2. Notice that the CARDIN and PRINTR files are 
declared in one DECLARE statement. Also notice that the keyword 
CTLASA has been added to the ENVIRONMENT section of the file 
declaration. The record size has been changed from F(80) to F(81 ). 
Because we are using CTLASA, an extra position must be added to the 
record size to allow for the placement of the carriage control character. 

Statements 3-4. These two statements were punched into the 



I Eight-bit code Function ' 
00000001 Write (no automatic space) 
00001001 Write and space 1 line after printing 
00010001 Write and space 2 lines after printing 
00011001 Write and space 3 lines after printing 
10001001 Write and skip to channel 1 after printing 
10010001 Write and skip to channel 2 after printing 
10011001 Write and skip to channel 3 after printing 
10100001 Write and skip to channel 4 after printing 
10101001 Write and skip to channel 5 after printing 
10110001 Write and skip to channel 6 after printing 
10111001 Write and skip to channel 7 after printing 
11000001 Write and skip to channel 8 after printing 
11001001 Write and skip to channel 9 after printing 
11010001 Write and skip to channel 10 after printing 
11011001 Write and skip to channel 11 after printing 
11100001 Write and skip to channel 12 after printing 
00001011 Space 1 line immediately 
00010011 Space 2 lines immediately 
00011011 Space 3 lines immediately 
10001011 Skip to channel 1 immediately 
10010011 Skip to channel 2 immediately 
10011011 Skip to channel 3 immediately 
10100011 Skip to channel 4 immediately 
10101011 Skip to channel 5 immediately 
10110011 Skip to channel 6 immediately 
10111011 Skip to channel 7 immediately 
11000011 Skip to channel 8 immediately 
11001011 Skip to channel 9 immediately 
11010011 Skip to channel 1 0 immediately 
11011011 Skip to channel 11 immediately 
11100011 Skip to channel 12 immediately 

Stacker selection on 1442 
10000001 Select into stacker 1 
11000001 Select into stacker 2 

Pocket selection on 2540 
00000001 Select into pocket 1 
01000001 Select into pocket 2 
10000001 Select into pocket 3 

Stacker selection on 2520 
00000001 Select into stacker 1 

\. 
01000001 Select into stacker 2 

FIGURE 8.4 Bit combinations that can be used with CTL360 for 
printer control and stacker selection. 



402 PL/I Programming 

1 LIST: PROC OPTIONS(MAIN); 
2 OCL CARDIN FILE INPUT RECORD ENVCFC80)ME01UMCSYSIPT,2540J), 

PRINTR FILE OUTPUT RECORD ENVtFC133)CTLASA MEDIUMCSYSLST,1403)J; 
3 DCL CARD_AREA CHARl80); OCL PRINT_AREA CHAR(l33J; 
5 OPEN FILECCARDINJ, FILEIPRINTRJ; ON ENOFILE(CARDINI GO TO EOJ; 
7 LINE_CT=55; 
8 LOOP:READ FILE (CARDIN) INTO (CARD_AREAJ; 
9 LINE_CT=LINE_CT+l; 

10 IF LINE_CT > 55 THEN DO; 
11 LINE CT=O: 
12 PRINT_AREA='l'llCARD_AREA; 
13 END; 
14 ELSE PRINT_AREA=' 'llCARD_AREA; 
15 WRITE FILE(PRINTR) FROM (PRINT_AREA); 
16 GO TO LOOP; 
17 EOJ: ENO; 

FIGURE 8.5 Program to list cards using record 1/0 and carriage 
control option-CTLASA. 

same source card. The declaration of a PRINT _AREA is a new state
ment. It had to be added because the output area is now a different 
length than the input area. 

Statement 7. This is a new statement. It initially sets LINE_ CT 
equal to 55-the maximum number of lines we wanted to print on a 
page. Initializing LINE_ CT to this value causes the program, later on, 
to skip to a new page before the first card is to be printed. If we did not 
skip to a new page at the beginning of our program output, the printed 
output would have started wherever the line printer paper was last 
positioned. Usually, ther& is printing on that page, so the new data 
in our program would,,.appear with previous printout from some other 
program. 

Statement 9. The line counter is incremented here. 

Statements 10-14. The IF statement tests the line counter. If the 
line counter is greater than 55, it is the time to reset it to zero and put 
a character of '1' in the first position of the print area. The '1' specifies 
that we want to skip to channel 1 before printing the line. Channel 1 
corresponds with the punch in the carriage tape that is lined up with 
the first print line on a page. Notice how the carriage control character 
was concatenated to CARD_AREA so that the two fields could be 
moved as a single string into the PRINT _AREA. If the line count has 
not reached the maximum, then control is transferred to the ELSE 
statement in the IF statement. A blank (' '),which is also concatenated 



Introduction to Record 1/0 and Structures 403 

to CARD_AREA, is a carriage control character to space one line before 
printing. 

Introduction to Structures 

In the discussion of the80/80 list program, it was stated that the 
1/0 area must have the CHARACTER or PICTURE attribute because 
input was from cards. Thus, declaring a character-string having a length 
of 80 met our needs for simply reading cards and listing them. More 
frequently, we are interested in manipulating fields within a record. 
To illustrate, assume that a college bookstore has ordered a number 
of books to add to its inventory for the coming semester. In a few 
cases, the books ordered are not on-hand in the publisher's warehouse, 
although in most cases the orders can readily be filled. The bookstore 
keeps a record of which orders are outstanding by punching a card 
for each title ordered. The card layout is described in Figure 8.6. 
Our task is to write a program to generate a report showing, among 
other things, the number of books that are back ordered and the 
amount due for books delivered. 

/ 
Columns 

1-5 
6-9 

10-13 
14-17 
18-23 
24-27 

28-47 
48-58 
59-68 
69-80 

Description 

Catalog number: a five-digit field 
Author number: a four-digit field 
Quantity ordered: a four-digit field 
Quantity delivered: a four-digit field 
Unused at this time 
Unit price: a four-digit field with an assumed 

decimal point between the second and third digits 
Title: an alphameric description 
Author: an alphameric description 
Publisher: an alphameric description 
Unused at this time 

FIGURE 8.6 



404 PL/I Programming 

There are eight items of data on each card, as well as the two 
unused fields (columns 18-23 and 69-80). We could declare those 
data items with the following DECLARE statement: 

DCL CATALOG_NO PIC'(5)9', 
AUTHOR_ NO CHAR(4), 
QTY _ORDERED PIC'9999', 
QTY_ DELIVERED PIC'9999', 
PRICE PIC'99V99', 
TITLE CHAR(20), 
AUTHOR_ NAME CHAR(11 ), 
PUBLISHER CHAR(10); 

If we add up the total number of bytes declared in the above statement, 
we will find that there are only 62 characters accounted for in the card. 
The missing 18 characters are in the two areas of the card which are 
unused. However, we must have an 80-byte area into which we can 
read the card file, because the physical record is 80 columns long. 
Therefore, we must insert into our declaration, between QTY_ D ELIV
ER ED and PRICE, a variable-call it UNUSED-which has the 
attribute CHAR(6), and we must append a declaration for a variable
call it RESLOF_RECORD-with the attribute CHAR(12). Now we 
have a total of 80 characters declared-just the right size for a card 
image. 

Unfortunately, we are still not out of the woods with our data 
declaration. A problem which is not so obvious is still facing us. When 
we declare independent variables, as in our DECLARE statement 
above, no guarantee is made by PL/I concerning the physical location 
of the variables in main storage, except that space somewhere will be 
assigned by the compiler for those variables. In other words, there is 
no guarantee that the variable named AUTHOR_ NO will immediately 
follow the variable CATALOG_ NO, or that REST _OF _RECORD will 
be the last 12 bytes of an SQ-byte area. Yet, we know from our previous 
discussions on record 1/0 that we must provide a contiguous area 
equal in length to the record size, because a READ statement simply 
places the 80 bytes of the card into main storage starting at the location 
specified in the INTO option. But, with the above declaration, we 
cannot be sure that these data variables are in storage relative to one 
another. That last phrase is most important. We do not care where 
the variables are in main storage as long as they are contiguous and 
in the proper sequence relative to one another. To accomplish this, 
we must use a new type of data called a structure. 



Introduction to Record 1/0 and Structures 405 

A structure is a collection of data items whose locations relative to 
one another are critical. Usually, the data items which appear in a struc
ture have a logical relationship to each other. To describe the card 
layout in Figure 8.6, the following structure could be coded: 

DCL 1 CARD_ REC, 
2 CATALOG_ NO PIC'(5)9', 
2 AUTHOR_NO CHAR(4), 
2 QTY _ORDERED PIC'9999', 
2 QTY _DELIVERED PIC'9999', 
2 UNUSED CHAR(6), 
2 PRICE PIC'99V99', 
2 TITLE CHAR (20), 
2 AUTHOR_ NAME CHAR(11 ), 
2 PUBLISHER CHAR(10), 
2 REST_ OF_ RECORD CHAR(12); 

In this example of a structure, the individual items were declared with 
PICTURE and CHARACTER attributes and were preceded with the 
digit 2. This digit is referred to as a level number. All of the items are 
grouped together under the structure name of CARD_REC, which 
has a level number of 1. Major structure names always have a level 
number of 1. Any number greater than 1 may be used for subdivisions 
of the structure. Thus, in the above example, although we specified 
a level number of 2 for all the fields within CARD_REC, we could have 
selected the value 3 or 5 or 66-just as long as it is greater than 1. 
All of the data items are at the same logical level and are each a part 
of CARD_ REC. The 80 bytes declared in this structure are made up 
of contiguous fields in the sequence in which they are declared. That 
is, the first five bytes of the structure make up the CATALOG_ NO, 
the next four bytes make up the AUTHOR_ NO, the next four bytes 
make up the QTY _ORDERED, and so on. 

To read data into the CARD_ REC structure, the following record 
input statement could be coded: 

READ FILE(CARDIN)INTO(CARD_REC); 

In a READ or WRITE statement, only the major structure name may 
be specified (except with the optimizers which allow substructives). 

Not only are structures used for describing input data, but they 
are also used for formatting and editing output data. Continuing with 
our bookstore example, we stated that after a card had been read, the 



406 PL/I Programming 

quantity back ordered and the amount due for books delivered were 
to be computed and printed. The computations are 

BACK=OTY _ORDERED-OTY_DELIVERED; 
AMT= PRICE*QTY _DELIVERED; 

The layout of the report showing the calculated results, as well as the 
title and catalog number, is shown in Figure 8.7. At the top of this 
figure are two heading lines. To declare the character-string literals 
that establish these headings, we could code 

DCL HEADING CHAR(60); 
HEADING='1 CATALOG N0.'11(11 )''I l'TITLE'l 1(9)' 'I I' BACK ORD.' 

I l'AMT. DUE FOR'; 

In the above assignment statement, the "1" in the front of the literal 
CATALOG is the carriage control character. The '1' causes a skip to 
a new page before the heading is printed, yet the '1' will not be printed. 
The printer layout in Figure 8.7 shows that 59 print positions will be 
used for this report. However, it was necessary to declare a character
string of length 60 to allow for the insertion of the carriage control 
character. Notice also in the above assignment statement how blanks 
were concatenated between each word in the heading. To print the 
second line of the heading, we can designate that literal constant 
in the following way: 

HEADING= (48)' 'I l'BOOKS DELV"D'; 

There are 47 leading blanks on the printer layout in Figure 8.7. 
Because a blank is the carriage control character to skip one line, 48 

11111111112222222222333333333344444444445555555555 
1234567890 I 234567890123456789012345678901234567890123456789 

~ trfilfu lE rA~~ Id'~ . ~im l.DM.c l~dlt, 
l1J ~IJ~ ill11t1.,·'llJ 

l.llJ ~l~J •• fJ 
1Vl~~JflV I \..atJI 

I- -

FIGURE 8.7 Printer layout form for book status report. 



Introduction to Record 1/0 and Structures 407 

leading blanks were specified in the character-string literal. Notice 
that an apostrophe is to be inserted in the output heading. To do this, 
a double apostrophe must be specified in the character-string constant, 
but only one apostrophe will actually print. The other apostrophes are 
those used to surround or delineate the literal. 

A structure is also needed to describe the detail line format. 

DCL 1 OUTPULAREA, 
2 CARRIAGE_CONTROL CHAR(3), 
2 CATALOG_# PIC '(5)9(7)B', 
2 BOOK_ TITLE CHAR(24), 
2 BACK_ORDERED PIC '(3)Z9(6)B', 
2 AMT_ DUE PIC '$$$,$$$V.99B'; 

/* 3 CHAR'S */ 
/* 12 CHAR'S */ 
/* 24 CHAR'S */ 
/* 10 CHAR'S */ 
/* 11 CHAR'S */ 

An explanation of each elementary item in the above structure follows. 

CARRIAGE_CONTROL CHAR{3). Only one character needs to 
be reserved for the carriage control feature. Two more characters were 
added to this field to provide two blanks preceding the catalog number 
(see the printer layout in Figure 8.7). Later on, we will discuss the 
entire program that prints this report. In this program the following 
statement will initialize the carriage control character. If a shorter 
character-string is assigned to a longer character-string, there is 
padding on the right with blanks; for example: 

CARRIAGE_CONTROL='-'; /* RESULT is -bb */ 

L b stands for 
blank 

.______ _______ Control character to skip 
three lines before printing 

CATALOG_# PIC '(5)9(7)B'. In ~his picture a repetition factor of 
five 9's is specified, followed by seven blanks. Again, from Figure 8.7, 
notice how there are seven blanks following the catalog number. 
Using the B (for blank) in the picture is one method of specifying 
trailing blanks. 

BOOK_ TITLE CHAR(24). This field will have assigned to it the 
20-character title that was read from cards. Because the title is to be 
followed by four blanks, the character-string length was specified as 24. 

BACK_ORDERED PIC '(3)Z9(6)B'. This field is ten positions in 
length: 3 Z's, a 9, and 6 B's. As you can see, this field has zero sup-



408 PL/I Programming 

pression and trailing blanks specified. Thus, if a value of 23 is assigned 
to this PICTURE, this is the resulting character-string: bb23bbbbbb. 

AMT_DUE PIC '$$$,$$$V.99B'. Floating dollar sign and comma 
and decimal point insertion are specified in this PICTURE. This 
PICTURE had to be followed by a blank (B) to bring the total number 
of characters in the entire structure up to 60, because the first heading 
line was 60 characters long and we are using only fixed-length records. 
Inasmuch as all print areas for a file with fixed-length records must 
be the same length, we must make all records equal in length to the 
longest. 

For our sample program, we will use the following statement: 

DCL PRINTR FILE OUTPUT RECORD ENV(CTLASA F(60) 
MEDIUM(SYSLST, 1403)); 

Because there are two heading lines to be printed, the following output 
statement will appear twice in the program: 

WRITE FILE(PRINTR)FROM(HEADING); 

Built-in Functions 

The functions we are going to examine here are those needed to 
generate the sample report in the bookstore application. 

The DATE Built-in Function. In the last line of the report shown 
in Figure 8.7, the literal END OF JOB is to be printed followed by the 
date. The current date is recorded in the computer each day that it is 
started up, usually by the operator. Then, any program wishing to 
retrieve this value may do so. In PL/I, the method used is to invoke 
the DATE built-in function. The DATE function returns to the calling 
program (that is, your program) a string of six characters in the form 
of YYMMDD. 

The SUBSTR Built-in Function. This function manipulates sub
strings of data; thus, the abbreviation SU BSTR. The string data may 



Introduction to Record 1/0 and Structures 409 

have the CHARACTER, BIT, or PICTURE attribute. The format of this 
function is 

...----------~) Name of the built-in function 

r------->i Identifiers within the parentheses 
are termed arguments 

~ 

SUBSTR(NAME,l,J) 

t i Number of characters to be 
extracted from the variable 
called NAM Et 

Starting position within the 
character-string from which data 
is to be extracted 

'---------> Identifier that has the CHAR, 
BIT, or PIC attributet 

Recall that the DATE built-in function returns the date in the form 
of YYMMDD. However, we would like to have the date printed in the 
form of MM/DD/YY. Thus, it is necessary to extract substrings "YY," 
"MM," and "DD," not only for purposes of concatenating the slashes, 
but also to rearrange the subfields within the date character-string. 
For example: 

DCL EDIT_ DATE CHAR(8), TODAY CHAR(6), DATE BUILTIN; 
TODAY=DATE; /* INVOKE THE DATE FUNCTION */ 
EDIT_ DATE=SUBSTR (TODAY,3,2) 11'/'11 SUBSTR (TODAY,5,2) 

11'/'11 SUBSTR(TODAY,1,2); 
/* THUS, ED IL DATE= MM/DD/YY */ 

Notice that DATE was declared to have the BUil TiN attribute. Usually, 
it is not necessary to declare built-in functions as having the BU IL TIN 
attribute, because most functions are assumed to have this attribute. 
However, for built-in functions that do not have an argument, the 
BUILTIN attribute should be declared. 

tin the subset language, the third argument may only be a decimal constant. In the full 
language, it may be a constant, a variable, or an expression. 

tin the full language, SUBSTR can be directly used with other data types (which will be 
automatically converted to character-strings). 



410 PL/I Programming 

Pseudo-Variables 

A pseudo-variable is a built-in function name (and arguments) 
that may appear on the left side of an assignment symbol. SU BSTR 
may also be used as a pseudo-variable. 

Using SU BSTR as a pseudo-variable will provide an efficient 
means of preparing the final total line on the output report shown in 
Figure 8.7. After all detail lines are printed, this final total line should 
show the amount due for books delivered. Editing of the detail lines 
can be done by assigning the calculated variables (e.g., AMT and 
BACK) to identifiers in the structure, OUTPUT _AREA. Editing of the 
final total line can be handled in the following manner: 

DCL TOTAL_LINE CHAR(60) DEFINED OUTPUT_AREA; 

In the above statement, a character-string of length 60 has been overlay 
defined on the structure from which data is to be written on the line 
printer. Now, we have two ways of "looking at" one area-as a struc
ture, and as a single character-string. The next statement would be 

TOTAL_ LINE='-'; 

The above statement causes a ( -) to be assigned to the first position 
(i.e., the carriage control position) of the character-string called 
TOTAL_ LINE. Blanks are padded to the right of the ( -) character. The 
( - ) is the carriage control character to cause spacing of three lines 
before printing. Now, to move the literal FINAL TOTAL into print 
positions 22-32 of the OUTPUT _AREA, we could write the following: 

SU BSTR (TOTAL_ LIN E,23, 11) ='Fl NAL TOTAL'; 

L > The literal FINAL TOTAL is 11 
characters long 

Because of the "hidden" carriage 
control character, the character-
string position 23 is actually 
print position 22 

The next step is to edit the total amount. Recall the layout of the 
OUTPUT _AREA structure: 

DCL 1 OUTPULAREA, 
2 CARRIAGE_CONTROL CHAR(3), 
2 CATALOG_# PIC '(5)9(7)8', 
2 BOOK_ TITLE CHAR(24), 
2 BACK_ ORDERED PIC '(3)Z9(6) B', 
2 AMT _DUE PIC '$$$,$$$V.99B'; 



Introduction to Record 1/0 and Structures 411 

The first four elementary items in the above structure have been cleared 
to blanks and the literal FINAL TOTAL has been placed in the twenty
third position of the structure and will appear in the twenty-second 
print position on printer page. Assume the total amount is called 
TOTAL_AMT. To edit this field, the following assignment statement 
may be written : 

AMT _DUE= TOTAL_AMT; 

Recall that TOTAL_LINE was a character-string that was overlay 
defined on OUTPUT _AREA. We have been moving data for output 
to TOTAL_ LINE. However, for purposes of editing, TOTAL_AMT was 
assigned to a subfield in OUTPUT _AREA. Keep in mind that OUT
PUT _AREA and TOTAL_LINE represent the same area of storage. To 
print the TOTAL_ LINE we will code the following: 

WRITE FILE(PRINTR)FROM(OUTPUT _AREA); 

Because TOTAL_ LINE and OUTPULAREA actually occupy the same 
storage area, the data assigned to TOTAL_ LINE is in OUTPUT _AREA. 
In record 1/0, you may not specify 1/0 areas that have the DEFINED 
attribute. Hence, it would have been invalid to have written 

WRITE FILE(PRINTR)FROM(TOTAL_LINE); /* INVALID */ 

because TOTAL_ LINE has the attribute DEFINED. 
Figure 8.8 shows the book status report program in its entirety. 

Explanation of the Program in Figure 8.8 

Statement 2. Both files are declared in this one statement. Notice 
that a blank followed the CTLASA option. Options in the ENVIRON
MENT section must be separated by a blank if there are no delimiters 
(e.g., parentheses) separating the options. Thus, no blank was needed 
between the F(60) option and the MEDIUM option because the right 
parenthesis following the value 60 served as a delimiter. Note that 
commas may not be used to separate options in the ENVIRONMENT 
section. 

Statement 3. This structure describes the card data the program 
will be reading. Recall from the card layout in Figure 8.6 that this 
program did not use the author or publisher fields; thus, the length of 
these fields plus the remaining unused card columns have been grouped 
into one field called REST _OF_ RECORD in the structure. 

Statement 4. A character-string of length 60 is declared. Later, 
character constants in the heading will be assigned to this variable. 



412 PL/I Programming 

l BOOK: PROC OPTIONSIMAIN); 
2 Del CARDIN FILE INPUT RECORD ENV{f(80JMEOIUMCSYSIPT,2540)), 

PRINTR FILE OUTPUT RECORD ENV(CTLASA Ft60IMEOIUM(SYSLST,1403)); 
3 DCL l CARO_AREA, 

2 CATALOG_NO PIC'l519 1 , 

2 AUTHOR_NO CHAR(4), 
2 QTY_ORDERED PIC'9999 1

1 

2 QTY_OELIVERED PIC'9999', 
2 USUSED CHAR(61, 
2 PRICE PIC 1 99V99 1 , 

2 TITLE CHAR(20), 
2 REST_OF_RECORD CHAR(33); 

4 DCL HEADING CHARl60); 
5 DCL 1 OUTPUT_AREA, 

2 CARRIAGE_CONTROL CHAR(3) INIH' '), 
2 CATALOG_# PIC'(5)9(7JB 1 , 

2 BOOK_TITLE CHAR(24), 
2 BACK_ORDEREO PIC '(3)Z9(6)B 1 , 

2 AMT_DUE PIC'$$$,$$$V.998'; 
6 OCL BACK FIXED(5), AMT FIXEDC7,2),TOTAL_AMT FIXEOC7,2) INIT(OJ; 
1 ON ENDFILE(CAROIN) GO TO EOJ; 
8 OPEN FILECCARDIN), FILEIPRINTRI; 
9 LINE_CT = 46; 

10 LOOP: READ FIL E(CARDINHNTOCCARD_AREAJ; 
11 BACK= QTY_ORDEREO - QTY_DELIVEREO; AMT =PRICE * QTY_DELIVERED; 
13 TOTAL_AMT = TOTAL_AMT + AMT; 
14 IF LINE_CT > 45 THEN DO; LINE_CT = O; 
16 HEADING='lCATALOG N0. 1 llU1)' 1 ll 1 TITLE'llC9J 

' 'll'BACK ORU. AMT.DUE FOR'; 
17 WRITE FILE( PRINTRJFROMIHEADINGJ; 
18 HEADING =(48) 1 'll'BOOKS OELV''D'; 
19 WRITE FILE(PRINTR) FROMCHEAOINGJ; 
20 END; 
21 CATALOG_# = CATALOG_NO; BOOK_TITLE = TITLE; 
23 BACK_ORDEREO = BACK; AMT_DUE = AMT; 
25 WRITE FllECPRtNTRJ FROM lOUTPUT_AREA>; 
26 LINE_CT = LINE_CT + l; 
21 GO TO LOOP; 
28 OCL TOTAL_LINE CHAR(60) DEFINED OUTPUT_AREA; 
29 EOJ: TOTAL_LINE = •-•; 
30 SUBSTR(TOTAL_LINE,23,11) = 'FINAL TOTAL'; 
31 AMT_DUE = TOTAL_AMT; 
32 WRITE FILE(PRINTRt FROM(OUTPUT_AREAJ; 
33 OCL TODAY CHAR(6), TOOAY_EDITED CHAR( 8); 
34 OCL DATE BUILTIN; TODAY = DATE; 
36 rooAY_EDITED=SUBSTRlTODAY,3,2> I 1•1• 11sussrRnooAv,5,2H1• 1• 11 

SUBSTR(TODAY,1,2); 
37 TOTAL_LINE= 1 -ENO OF JOB -- 'I ITODAY_EDITEO; 
38 WRITE FILE(PRINTRJFROM(OUTPUT_AREAI; 
39 END; 

FIGURE 8.8 Book status report program. 

Statement 5. The output area is described. How data is edited into 
these fields was discussed previously in this chapter. Notice how 
IN IT was used to initialize the carriage control character. A blank 
simply means to space up one line before print. Two things to remember 
about pictures: to specify leading blanks on a numeric field (e.g., 
BACK_ORDERED), use the PICTURE character Z; to specify trailing 
blanks in a numeric field, use the PICTURE character B. Also, note that 
a PICTURE was specified for AMT _DUE that was large enough to 



Introduction to Record 1/0 and Structures 413 

contain the AMT figure for the detail line as well as Fl NAL_ TOTAL in 
the total line. 

Statement 6. The program's calculated variables are declared. It is 
more efficient to declare these values in the FIXED DECIMAL form 
than to specify Pl CTU RE for them. While the input data fields do have 
the PICTURE attribute, when they are used in a calculation, they will 
be automatically converted to a FIXED DECIMAL data format; hence, 
assigning the results of these calculations to FIXED DECIMAL fields 
is the most efficient method for calculating and accumulating results. 

Statement 7. This statement tells the system where to go when 
the end-of-file condition is raised. Notice that this statement is outside 
of the repetitive operation (i.e., loop) of reading cards and printing on 
the printer. 

Statement 8. For the subset language, record 1/0 files must be 
explicitly opened. This statement would be optional for the full language. 

Statement 9. It has been established that 45 lines, excluding head
ings, are to be printed per page of output. Setting the line counter to a 
value one greater than 45 at the beginning of the program will force 
headings to be printed before the first detail line is printed. Statement 
14 tests the line counter for being greater than 45. If it is greater than 
45, then it is time to skip to a new page and print headings. Note that 
another method in Statement 14 could have been to test line counter 
for being equal to 46. Either approach accomplishes the same thing. 

Statement 10. The label LOOP marks the beginning of the repetitive 
operation of reading cards, calculating results, and printing detail lines. 

Statements 11-12. The back ordered quantity and the amount 
due for books delivered are calculated. 

Statement 13. The detail line AMT is accumulated into the variable 
TOTAL_AMT. Notice, from statement 6, that TOTAL_AMT had to be 
initialized with the value of zero. If this initialization had not been 
specified, this program would probably blow up at this point, because 
TOTAL_AMT would already contain whatever was left in main storage 
from the program executed just prior to the execution of this program. 

Statements 14-20. A test is made to determine if it is time to skip 
to a new page and print headings. 

Statements 21-22. The catalog number and book title in the CARD_ 



414 PL/I Programming 

AREA are moved (through the use of the assignment statement) to the 
OUTPUT _AREA. 

Statements 23-24. The calculated variables AMT and BACK are 
edited through their assignment to PICTURES in the OUTPUT _AREA. 

Statement 25. A detail line is printed. Notice that this statement is 
identical with the statements 32 and 38. 

Statements 26-27. The line counter is incremented by one, indicat
ing that a line of output has just been printed; then there is a branch 
back to LOOP to read the next input card. 

Statement 28. A character-string is overlay defined on the OUTPUT_ 
AR EA structure. This is because we want to look at the output area as 
a single character-string for purposes of clearing the structure to 
blanks and assigning the literal Fl NAL TOTAL to that area. Note that 
DECLARE statements may appear anywhere in your PL/I program. 

Statement 29. This is the label and location to which the system 
will branch when the ENDFILE condition is raised. TOTAL_LINE is 
set to a minus sign in the first position and blanks in all remaining 
positions of the character-string. 

Statement 30. Through the use of SU BSTR as a pseudo-variable, 
the literal Fl NAL TOTAL is moved into the output area. 

Statement 31. The accumulated figure for total amount (TOTAL_ 
AMT) due for books delivered is edited into the output area. 

Statement 32. The final total line is printed. Notice also, from the 
sample output shown in Figure 8.9, that there are two spaces between 
the last detail line in the report and the final total line. It was previously 
stated that a carriage control character of minus specifies to space 
three lines before printing. Thus, there will be two blank lines on the 
report, and the output will be printed on the third line. 

Statement 33. Character-strings for the date are declared. 

Statements 34-35. The DATE built-in function is declared with 
the BUILTIN attribute, and the function is invoked. 

Statement 36. The "YY," "MM," and "DD" characters are re
arranged and concatenated with slashes to form the string value of 
MM/DD/YY. 



CATALOG NO. TITLE BACK ORO. AMT.DUE FOR 
BOOKS DELV'D 

05001 THE AMBASSADORS 2 $lo. 00 
05002 THE AM ER I CAN 0 $12.50 
05003 THE BEAR 20 $.00 
05004 BRIGHTON ROCK l $7.80 
05005 THE BROTHERS KARAM 5 $7.50 
05006 CANDY 'H $3.00 
05007 THE CAPTIVE WITCH 2 $.00 
05008 THE CORRUPTERS 16 $1.50 
05009 CRIME AND PUNISH. 9 $.95 
05011 DAISY MILLER 2 $.00 
05013 DEVOTIONS l $.00 
05014 DI AMONO HEAC 28 $1.50 
05015 OR. ZHIVAGO 38 $1.90 
05016 FAIROAKS 18 u. 50 
05017 THE FIXER 48 $10.00 
05020 GOLOFINGER 182 $13.50 
05027 LADY CHATTERLEYS 28 $3.00 
05028 LOLITA 37 $2.85 
06040 THE SEA AROUND US 9 $.75 
06042 SONS AND LOVERS 12 $.00 
06043 STORI~S OF ARTISTS l $.00 
06044 THE STRANGER 10 $.00 
06045 THE SUBTERRANEANS l $.00 
06046 THE SUN ALSO RISES 37 $7.50 
07047 SWAN'S WAY 4 $.00 
07048 THOSE WHO LOVE 11 $4.00 
07049 TOM JONES 12 $.00 
08050 TURN OF THE SCREW 10 s.oo 
08051 VICTORY 14 $.00 
08052 WAR AND PEACE 5 $.00 
20001 ADVANCE CALCULUS l $.00 
20002 COLL EGE ALGEBRA 5 $.00 
20003 DIFFENTIAL EQUATIONS 9 $4.00 
20004 ELEMENTS OF ALGEBRA 10 $.00 
20006 LIMITS 19 $.25 
20007 MEN OF MATHEMATICS 2 $.00 
20008 WHAT IS MATHEMATICS 10 $.00 
25002 HUMAN PHYSIOLOGY 2 $.00 
25003 PRIN. OF GENETICS <1 $5.00 
30001 ELEM. Of QUANT.ANALY 11 $8.00 
30002 ORGANIC CHEMISTRY 6 $.00 
30003 PRJN. OF PHYS.CHEM 12 $.00 
30004 QUANTITATIVE ANALYS 12 $.00 

FINAL TOTAL $107.00 

END CF JOB -- 01101117 

FIGURE 8.9 Sample output from book status report program. 



416 PL/I Programming 

Statement 37. Next, the literal '-END OF JOB--' is concatenated 
with the edited date and assigned to the output area. Note the minus 
carriage control character in front of the word END. 

Statements 38-39. The last line of the report is printed, and the 
program is logically terminated. 

Record 1/0 and Arrays 

In a READ or WRITE statement, the data area may be a single 
variable (e.g., a character-string), a structure, or an array. Here is an 
example of reading data into an array using the READ statement: 

DCL AREA(20) PIC'9999'; 
READ FILE(CARD)INTO(AREA); 

,__ ___ May be an array but must be 
unsubscripted when specified 
here 

In the above example, columns 1-4 will be placed into AREA(1 ), 
columns 5-8 into AREA(2), and so on until columns 77-80 are placed 
into AREA(20). 

A structure is a collection of data items requiring storage for each item 
to be in a particular order and having a logical relationship to one 
another. For example, in a payroll application, there are a number of 
data items about one employee that could be logically grouped together. 
These items might be the following: 

Names used in the program 
LAST 
FIRST 
MIDDLE 
MAN_NO 
REGULAR 
OVERTIME 
REG_ PAY 
OT_PAY 

Data 
DOE 
JOHN 
J 
72535 
40 
4 
4.00 
6.00 



Introduction to Record 1/0 and Structures 417 

Declaring these items as a structure allows us to give a name to the 
whole collection. SALARY_ RECORD, for example, could be the name 
g;iven to the above list of variables. 

It is often more convenient, however, to subdivide the entire 
structure into smaller logical groups so as to be able to refer collectively 
to more than one, but not all of the variables in the structure. The above 
example might be subdivided as follows: 

Names used in the program 

SALARY _RECORD 

{

LAST 
NAME FIRST 

MAN_NO 

HOURS 

WAGES 

MIDDLE 

{
REGULAR 
OVERTIME 

{ 
REG_PAY 
OT_PAY 

Data 
DOE 
JOHN 
J 
72535 
40 
6 
8.00 
12.00 

It would now be possible to refer to NAME in your PL/I program; the 
implication is that you are actually referring to the items LAST, FIRST, 
and MIDDLE. Thus, if the statement 

PUT LIST(NAME); 

were specified, the items LAST, FIRST, and MIDDLE would be printed. 
Structuring allows you the additional flexibility of being able to 
reference the individual item as well as the substructure NAME. For 
example, in the statement, 

PUT LIST(LAST); 

only the last name will be printed. 
The hierarchy of items shown above can be considered to have 

different levels. At the highest level is the major structure name, 
SALARY _RECORD; at an intermediate level are substructure names 
called minor structures (NAME, HOURS, WAGES); and at the lowest 
level are elementary items (LAST, MAN_NO, REGULAR, etc.). 
MAN_ NO is considered to be an elementary item because there is no 
further division of the item. 

When a structure is declared, the level of each name is indicated 
by a level number. The major structure name (at the highest level) must 
be numbered 1. Each name at a deeper level is given a greater number 
to indicate the level depth. Note that the level number must be followed 



418 PL/I Programming 

by a blank. The maximum level number that may be specified is 255. 
This is the sequence to follow in declaring structures: 

1. The major structure name is declared first. 
2. The elementary items in each minor structure are completely 

declared before the next minor structure is declared. 
3. The elementary items contained in a minor structure must be 

declared with a greater level number than that of the minor 
structure. 

DECLARE 1 SALARY_ RECORD, 
2 NAME, 

3 LAST, 
3 FIRST, 
3 MIDDLE, 

2 MAN_NO, 
2 HOURS, 

3 REGULAR, 
3 OVERTIME, 

2 WAGES, 
3 REG_PAY, 
3 OLPAY; 

/* MAJOR STRUCTURE */ 
/* MINOR STRUCTURE */ 
/* ELEMENTARY ITEM */ 
/* ELEMENTARY ITEM */ 
/* ELEMENTARY ITEM */ 
/* ELEMENTARY ITEM */ 
/* MINOR STRUCTURE */ 
/* ELEMENTARY ITEM */ 
/* ELEMENTARY ITEM */ 
/* MINOR STRUCTURE */ 
/* ELEMENTARY ITEM */ 
/* ELEMENTARY ITEM */ 

The topical outline pattern of indentation is used only to improve 
readability of the PL/I structure. The statement could be written in a 
continuous string, such as: 

DECLARE 1 SALARY _RECORD, 2 NAME, 3 LAST, 3 FIRST, 
3 MIDDLE, 2 MAN_NO, 2 HOURS, 3 REGULAR, 
3 OVERTIME, 2 WAGES, 3 REG_PAY, 3 OLPAY; 

In references to the structure or its elements, no level numbers are used. 
A single declared variable is not preceded by a level number when 

coded, because it is assumed to be a "level 1" identifier. For example, 
in the statement 

DCL 1 SINGLE_ VALUE FIXED; 

the "1" specification is redundant and is an invalid use of the level 
number in the subset language. 



Introduction to Record 1/0 and Structures 419 

If attributes are to be explicitly declared in a structure, they may 
only be specified for elementary items. For example: 

DECLARE 1 SALARY _RECORD, 
3 NAME, 

5 LAST CHAR(12), 
5 FIRST CHAR(8), 
5 MIDDLE CHAR(1 ), 

3 MAN_ NO CHAR(5), 
3 HOURS, 

5 REGULAR PICTURE '99', 
5 OVERTIME PICTURE '99', 

3 WAGES, 
5 REG_PAY PIC '99V99', 
5 OT_ PAY PIC '99V99'; 

Notice from the example above that the level numbers do not have to be 
successive; however, each item must have a higher number than that 
of the level it is subdividing. 

Factored Attributes in Structures 

Factoring in PL/I is the grouping together of identifiers for the 
purpose of giving them a common attribute. The elementary names under 
HOURS and WAGES in the above example could have been factored 
as follows: 

2 HOURS, 
3 (REGULAR,OVERTIME) PIC'99', 

2 WAGES, 
3 (REG_ PAY, OLPAY) PIC'99V99'; 

Here is another example of factoring within a structure showing how 
the level numbers may be factored out of the list of identifiers: 

DECLARE 1 SYMPTOM, 
2 (COLD, 

HEADACHE, 
FEVER, 
DIZZINESS, 
RINGING, 
BACKACHE) BIT(1); 



420 PL/I Programming 

The INITIAL Attribute in Structures 

Elementary items in structures may be initialized using the INITIAL 
attribute, providing the structure is not overlay defined on another 
structure, character-string, or other data item. As long as the structure 
is the base identifier (the structure onto which other identifiers are 
being overlayed), it may contain the INITIAL attribute. For example, 

DECLARE 1 A, /* BASE IDENTIFIER */ 
2 B, 

3 C CHAR(9) INIT('TOM JONES'), 
3 D PIC'999V99' INIT(123.45), 

2 E CHAR(25); 
DECLARE AA CHAR(39) DEFINED A; /*OVERLAY DEFINING*/ 

Qua I ified Names 

All names within a single procedure must be unique. But within 
structures, it is often desirable to be able to use the same identifier for 
related names and yet retain the uniqueness. In the SALARY_ RECORD 
structure, for example, the last portion of the structure might have 
been declared: 

., 2 HOURS, 
3 REGULAR, 
3 OVERTIME, 

2 WAGES, 
3 REGULAR, 
3 OVERTIME; 

Notice that we now have two REGULARs and two OVERTIMEs. 
The use of a qualified name in referring to the individual data item 
avoids ambiguity. A qualified name is a substructure or element name 
that is made unique by qualifying it with one or more names of a higher 
level. The individual names within a qualified name are connected by a 
period. If, for example, you wanted to process the data items that were 
read into the structure declared above, the following arithmetic opera
tions might be specified: 

REGULAR_ PAY= H 0 URS.REGULAR *WAG ES.REGULAR ; 
OVERTIME_ PAY= HOURS.OVERTIME*WAGES.OVERTIME; 

The qualified name HOURS.REGULAR refers to REGULAR in the sub
structure HOURS; the qualified name WAGES.REGULAR refers to 



Introduction to Record 1/0 and Structures 421 

REGULAR in the substructure WAGES, etc. Qualified names are 
merely used for reference to avoid ambiguity; they are not declared in a 
structure. A qualified name may not contain comments. In some 
compilers, blanks may appear on either side of the period (e.g., A. B). 
Qualification need go only as far as necessary to make the name unique. 
Intermediate qualifying of names can be omitted. Consider the following 
structure: 

DECLARE 1 A, 
2 B, 

3 C, 
3 D, 

2 BB, 
3 C, 
3 E; 

In this example, to refer to the first C in the structure, you could write 

A.B.C 

or simply, 

B.C 

Do you see the ambiguity that would arise if you wrote 

A.C 

Suppose E is a name used in another structure in the same procedure; 
then to qualify E in this structure, you may write 

A.E 
or 

BB.E 
or 

A.BB.E 

The maximum length allowed for qualified names varies slightly in the 
different PL/I compilers. Generally, if you keep the maximum length 
under 140 characters, including the decimal points, you will be within 
the limit of the various compilers' restrictions. 

Arrays in Structures 

Like a structure, an array is a collection of data. Unlike a structure, 
all elements in an array have identical attributes. It is possible to include 



422 PL/I Programming 

an array within a structure: 

DECLARE 1 INVENTORY _ITEM, 
2 PART _NO CHAR(8), 
2 QTY _ON_HAND PIC'9999', 
2 MINIMUM_NO PIC'9999', 
2 SALES_ HI STORY (12) PIC'99999'; 

In the above example of an inventory record, each record would contain 
the part number, the present quantity on hand, a minimum quantity to 
be ket>t on hand at all times, and finally a sales history. SALES_ 
HISTORY is an array of 12 elements. Each element represents a month 
in the year. For example, SALES_ HISTORY(1) contains the number 
of items sold in January; SALES_HISTORY(2) contains the number 
of items sold in February; SALES_HISTORY(3) in March; and so on. 
If the product is a seasonal one, this kind of historical information might 
be valuable in a program for determining varying reorder quantities at 
different times of the year. 

Arrays of Structures 

An array of structures is an array whose elements are structures 
having identical names, levels, and elements. For example, if a structure, 
WEA TH ER, were used to process meteorological information for each 
month of a year, it might be declared as follows: 

DECLARE 1 WEATHER(12), 
2 TEMPERATURE, 

3 HIGH DECIMAL FIXED(4, 1 ), 
3 LOW DECIMAL FIXED(3, 1 ), 

2 WIND_ VELOCITY, 
3 HIGH DECIMAL FIXED(3), 
3 LOW DECIMAL FIXED(2), 

2 PRECIPITATION, 
3 TOTAL DECIMAL FIXED(3, 1 ), 
3 AVERAGE DECIMAL FIXED(3, 1); 

Thus, a programmer could refer to the weather data for the month of 
July by specifying WEA TH ER (7). Portions of the July weather could 
be referred to by TEMPERATURE(7), WIND_VELOCITY(7), and/or 
PRECIPITATION (7). TOTAL(7) would refer to the total precipitation 
during the month of July. TEMPERATURE.HIGH(3), which would 

'i 
:~ 
l 

if 



Introduction to Record 1/0 and Structures 423 

refer to the high temperature in March, is called a subscripted qualified 
name. 

/ 
Arrays of structures \ 

Subset language No 

Full language Yes 
\_ 

The LIKE Attribute 

The LI KE attribute is used to indicate that the name being declared 
is to be given the same structuring as the major structure or minor 
structure name following the attribute LI KE. For example: 

DECLARE 1 BUDGET, 
2 RENT FIXED(5,2), 
2 FOOD, 

3 MEAT FIXED(4,2), 
3 DAIRY FIXED(4,2), 
3 PRODUCE FIXED(4,2), 

2 TRANSPORTATION, 
3 WORK FIXED(5,2), 
3 OTHER FIXED(4,2), 

2 ENTERTAINMENT FIXED(5,2); 
DECLARE 1 COSLOF_LIVING LIKE BUDGET; 

This declaration for COST_ OF_ LIVI NG is the same as if it had been 
declared: 

DECLARE 1 COSLOF _LIVING, 
2 RENT FIXED(5,2), 
2 FOOD, 

3 MEAT FIXED(4,2), 
3 DAIRY FIXED(4,2), 
3 PRODUCE FIXED(4,2), 

2 TRANSPORTATION, 
3 WORK FIXED(5,2), 
3 OTHER FIXED(4,2), 

2 ENTERTAINMENT FIXED(5,2); 

The LI KE attribute copies structuring, names, and attributes of 



424 PL/I Programming 

the structure below the level of the specified name only. No dimension
ality of the specified name is copied. For example, if BUDGET were 
declared as 1 BUDGET(12), the declaration of COSLOF_LIVING 
LIKE BUDGET would not give the dimension attribute to COST _OF_ 
LIVING. To achieve dimensionality of COSLOF _LIVING, the declara
tion would have to be DECLARE 1 COST_OF_LIVING(12) LIKE 
BUDGET. 

A minor structure name can be declared LI KE a major structure 
or LI KE another minor structure. A major structure name can be 
declared LI KE a minor structure or LI KE another major structure. 

/ 
LI KE attribute \ 

Subset language No 

Full language Yes 

Structure Assignment: Structure-to-Structure 

Structures may be moved (that is, assigned) to other structures 
or parts of structures. The structure name to the right of the assign
ment symbol must have the same relative structuring as the structure 
name to the left. Relative structuring means that the structures must 
have the same minor structuring, the same number of elementary items 
within each minor and/or major structure, and, if arrays are contained 
in structures, the same number of bounds. You may assign major 
structures to major structures, minor structures to major structures, 
and vice versa, as long as the relative structuring is the same. For 
example: 

DECLARE 1 CARD_REC, 
2 KEY_FIELD CHAR(16), 
2 OTHER CHAR(64); 

DECLARE 1 DISK_ REC, 
2 FLAG CHAR(1 ), 
2 RECORD, 

3 KEY CHAR(16), 
3 OTHER CHAR(64); 

RECORD=CARD_REC; /* STRUCTURE ASSIGNMENT */ 



Introduction to Record 1/0 and Structures 425 

In the above example, the major structure CARD_ REC is assigned to 
the minor structure RECORD. After the assignment, KEY will contain 
the value in KEY _FIELD, and RECORD.OTHER will contain the value 
in CARD_REC.OTHER. As you can see from this example, the level 
numbers need not be identical when a structure or part of a structure 
is being assigned to another structure. The important thing is to have 
the same number of elementary items contained within each structure 
or minor structure name as well as the same relative structuring. 

The attributes of the corresponding elementary items in the 
structure assignments do not have to be the same. If the elementary 
items have different attributes, the variables will be converted according 
to the arithmetic rules explained in previous chapters. Let us look at an 
example in which conversions would take place when structure AA 
is assigned to structure A. 

DECLARE 1 A, 

DECLARE 1 AA, 

A=AA; 

2 B FIXED(5), 
2 C FIXED BINARY(31 ), 
2 D CHAR(20), 
2 E PIC'S99V99', 
2 F FLOAT(16); 

2 BB PIC'99999', 
2 CC FIXED DECIMAL, 
2 DD CHAR(10), 
2 EE FIXED(4,2), 
2 FF FIXED(6); 

There are a number of things to observe in the above example: 

1. In a structure move, elementary items are moved to the corre
sponding elementary items. In other words, the first item in AA 
is assigned to the first item in A; the second item in AA is 
assigned to the second item in A, etc. 

2. When the elementary items of one structure are moved to their 
corresponding variables in another structure through a structure 
assignment statement, arithmetic conversion occurs, if necessary. 
In the above example, FF is a FIXED DECIMAL value that will 
be converted to FLOAT DECIMAL when it is assigned to F. 



426 PL/I Programming 

3. The receiving field does not have to be the same length as the 
sending field: D in structure A is 20 characters long; DD is 
only 10 characters long. When DD is assigned to D, it will be 
placed in the 10 leftmost positions of D, and then D will be 
padded on the right with blanks. Of course, care must be taken 
not to assign a longer arithmetic field to a shorter field, for you 
will lose significance in your resulting value. And, you may not 
specify illegal combinations. For example, in the subset language, 
a variable whose attribute is CHARACTER may not be assigned 
to a coded arithmetic field or a PICTURE data item. 

4. When the structure assignment statement 

A=AA; 

is given, in essence, five assignment statements are generated: 

B=BB; C=CC; D=DD; E=EE; F=FF; 

Structure Assignment BY NAME 

One exception to the rule that structures assigned to other 
structures must have the same relative structuring is the case in which 
the structure expression appears in an assignment statement with the 
BY NAME option. For example, consider the following IN PUT and 
OUTPUT structures: 

DCL 1 INPUT, 
2 EMP _NAME CHAR(20), 
2 MAN_ NO CHAR (6), 
2 HOURS, 

3 REG PIC'99', 
3 OT PIC'99', 

2 GROSS_PAY PIC'999V99', 
OUTPUT, 

2 CC CHAR(1 ), 
2 MAN_NO CHAR(12), 
2 EMP _NAME CHAR(25), 
2 GROSS_ PAY PIC'$$$$V.99BBBB'; 

To move those elements of IN PUT whose names are identical 
to elements of OUTPUT, simply write 

OUTPUT=INPUT, BY NAME; 

The BY NAME option may only appear in an assignment statement, and 



Introduction to Record 1/0 and Structures 427 

it must always be preceded by a comma. 

f 
BY NAME option 

Subset language No 

Full language Yes 

Structure Assignment: Scalar-to-Structure 

A scalar is simply a single data element, and it is sometimes called 
an elementary item. You may assign a scalar to a structure. For example: 

DECLARE 1 CUSTOMER, 
2 NAME CHAR(20), 
2 ADDRESS, 

3 STREET CHAR(25), 
3 CITY CHAR(20), 
3 STATE CHAR(2), 
3 ZIP _CODE CHAR(5), 

2 ACCOUNT-# CHAR(7); 
CUSTOMER='';/* CLEAR CUSTOMER STRUCTURE TO BLANKS*/ 

The blank character constant is a scalar. Because we are assigning 
character-to-character, the assignment is valid. Six assignment state
ments are effectively generated from the statement 

CUSTOMER=' 

The six statements are 

NAME=' '; STREET=' I; CITY=' '; STATE=' 
ZIP _CODE=' '; ACCOUNL#=' 

Recall that when a smaller field, in this case a single blank, is assigned 
to a larger character field, there is padding on the right of the larger 
field with blanks. 

Overlay Defining: Scalar Variable on a Structure 

There is actually a more efficient way to clear the CUSTOM ER 
structure and that is through the use of the DEFINED attribute. The 



428 PL/I Programming 

DEFINED attribute allows us to refer to the same area of storage by 
different names, and perhaps different attributes. Assume the following 
statement is added to the structure example above: 

DECLARE CUST CHAR(79) DEFINED CUSTOMER; 

If you will count the character lengths of each elementary item in the 
CUSTOM ER structure, you will find there are a total of 79 characters. 
Therefore, a character-string called CUST with a length attribute of 79 
was overlay defined on the CUSTOMER structure, setting aside one 
area of storage, but providing two ways of looking at it: first, as a 
structure, and second, as a single character-string. When the statement 

CUST=' 

is given, only one assignment statement is generated: that of moving 
a blank to the first position of CUST, and then padding on the right 
with 78 more blanks. Thus, through the technique of overlay defining 
a scalar variable on the structure, we were able to save five assignment 
statements from being generated for clearing our structure to blanks. 

Aside from facilitating more efficient coding, there is another case 
in which overlay defining is needed: when you want to clear a structure 
containing decimal PICTURE attributes to blanks. For example, consider 
the following structure: 

DCL 1 INVENTORY _ITEM, 
2 PARLNUMBER CHAR(8), 
2 QUANTITY _ON_ HAND PICTURE'ZZZZ9', 
2 PRICE PICTURE'$ZZV.99'; 

Suppose it is desired to clear the above structure to blanks before 
assigning any values to the elementary items. It would be invalid to 
code 

INVENTORY _ITEM= I '; 

because the structure contains one or more elementary items having a 
PICTURE of 9's. A field described with 9's may have assigned to it 
only digits from 0 to 9. A CONVERSION error would result if a blank 
character were moved into this field, because a blank is not a numeric 
digit. The following coding, however, can be written to clear the 
INVENTORY_ ITEM structure to blanks: 

DCL INVENTORY CHAR(19) DEFINED INVENTORY _ITEM; 
INVENTORY=' 

!! 



Introduction to Record 1/0 and Structures 429 

In the above example, not only did we get around the problem of 
assigning blanks directly to a PICTURE with 9's, but also we used a 
more efficient method for clearing a structure to blanks. Normally, 
you would not have the need to clear structures to blanks, because 
any data assigned to a structure destroys its previous contents. Cer
tainly, it would be superfluous to clear a structure to blanks and then 
immediately assign meaningful data to that structure. However, here 
is an example illustrating when the need for clearing structures to 
blanks might arise. 

Assume we have the following structure from which data is 
output to a printer: 

DCL 1 PRINT _OUT, 
2 DESCRIPTION CHAR(25), 
2 QUANTITY PIC'9999BBB', 
2 PRICE PIC'$ZZZV.99BB', 
2 EXTENSION PIC'$ZZ,ZZZV.99'; 

Quantity is multiplied by price to give the EXTENSION. Then a line is 
printed for the item. Assume that a total of the EXTENSION for each 
item is to be accumulated. This could be accomplished with the 
following statements: 

DCL TOTAL FIXED(6,2) INIT(O); 
TOTAL= TOTAL+ EXTENSION; 

After the last detail line is printed, it is then necessary to print the total 
of all EXTENSIONs. It is possible to use the structure PRINT _OUT 
for the printing of the final total. The advantage is that main storage is 
saved, because it is not necessary to reserve a separate area for the 
final total line. EXTENSION is a picture large enough to contain the 
final total. All that is necessary is to move TOTAL to EXTENSION: 

EXTENSION= TOTAL; 

However, if the PRINT_ OUT structure were output without the other 
fields being cleared, the DESCRIPTION, QUANTITY, and PRICE from 
the last detail line of print will appear on the output line along with the 
final total assigned to the EXTENSION field. The solution to the prob
lem is to use the DEFINED attribute for the purpose of clearing the 
DESCRIPTION, QUANTITY, and PRICE field to blanks. These three 
fields add up to 41 characters. Thus, we may code 

DCL P _O CHAR(41) DEFINED PRINT _OUT; 



430 PL/I Programming 

Note that P _O did not have to be as long as the structure. When the 
program is ready to print the final total line, it will not only edit TOTAL 
into the EXTENSION field, but it will also clear the other fields to blanks 
by the statement 

P_O=' 

Now, when the WRITE statement from the PRINT _OUT structure is 
executed, only the EXTENSION, which represents the final total, will 
be printed. 

Overlay Defining: A Structure on a Structure 

It is also possible to overlay define a major structure on a major 
structure. The need for overlay defining one structure on another 
arises when you are working with two or more different input data 
formats for records being read from the same device. For example, 
assume a program is to process data cards containing either informa
tion on items received into a company's inventory or items issued from 
inventory. The card records are formatted as follows: 

ISSUES 
card 
format 

1 1 1 1 1 1 1 1 1 1 2 
12345678901234567890 

I' I QTY I JOB NO I PART NO I DEPT I 

1 1 1 1 1 1 1 1 1 1 2 
12345678901234567890 

~~;EIPTS 121 QTY I ~ART NO I ~UPPLIER I 
format 

8 Card 0 \]oolumn• 

8 
0 

The cards will have been sorted into sequence by part number. How
ever, the program can only differentiate between issues and receipts 
by the "transaction code" punched in column one of each card: a 
"1" punch will represent an issue and a "2" punch, a receipt. The 
structures, which are overlay defined, and the READ statement follow: 

lj 



Introduction to Record 1/0 and Structures 431 

DECLARE l ISSUES, 
2 CODE CHAR ( l), 
2 QTY PIC 1 9999', 
2 JOB_NO CHAR(4) 1 

2 PART_NO CHARl7), 
2 DEPT CH,~R( 31, 
2 REST_OF_RECORO CHARC61); 

DECLARE 1 RECEIPTS DEFINED ISSUES, 
2 CODE CHAR( l), 

2 QTY PIC 1 9999 1
1 

2 PART_NO CHAR(7), 
2 SUPPLIER CHAR(6); 

READ FILEIINPUT)INTO CISSUES); 
IF ISSUES.CODE= 1 1 1 THEN GO TO PROCESS_ISSUES; 
IF ISSUES.CODE = 1 2' THEN CO TO PROCESS_RECEIPTS; 

ELSE GO TO ER~OR; 

Notice how the IF statement tests column one of the input card for 
the transaction code. If the code is a '1 ', then a branch is made to the 
routine in our program that processes the issues card. If the code in 
column one is not a '1 ',we might logically assume that it must be a '2' 
and that the program will branch to PROCESS_ RECEIPTS. It is good 
programming practice, however, to test for the other code, because 
there might be a keypunch error. 

Record 1/0 operations may take place only from the base identifier. 
Thus, in the above example, the data area named in the READ state
ment is ISSUES, because ISSUES does not have the DEFINED 
attribute. 

/ 
Overlay defining 

Subset language You may code an overlay define at the 
major structure level only (level 1 name 
overlay defined on a level 1 name) 

Full language You may code an overlay define at the 
major structure, minor structure, elemen-
tary item in a structure as well as a major 
structure 



432 PL/I Programming 

When May Structures Contain Only CHARACTER and 
PICTURE Data? 

Recall that in record 1/0, there is no conversion of the external 
characters to an internal format, or vice versa. Thus, when you issue a 
READ statement for the card reader or a WRITE statement for the 
card punch, or line printer, the structures on which you are doing input 
or output would normally have either CHARACTER or PICTURE 
attributes. The exception is if you wish to punch binary data into cards 
or read this binary data from cards. 

This would not be true, however, for tape or disk files. The 
data would probably still be read from punched cards into structures 
that contained only CHARACTER and Pl CTU RE attributes. But then 
the data in these structures could be moved (assigned) to other 
structures that contained such attributes as FIXED DECIMAL or 
FIXED BINARY. These structures would now be written onto a tape 
or direct access device. Representing data in coded arithmetic form 
rather than CHARACTER or PICTURE has the advantage of mini
mizing the amount of storage required for data. For example: 

DCL A PIC'999V99'; /* 5 BYTES OF STORAGE USED */ 
DCL B FIXED(5,2); /* 3 BYTES OF STORAGE USED */ 

Structures in Stream 1/0 

Names of structures may also be specified in edit-directed and 
list-directed 1/0 statements. The names may be major level or inter
mediate level structure names. Of course, elementary names in a 
structure may also be specified. Here is an example of specifying a 
major structure name in a GET EDIT: 

DCL 1 INVENTORY, 
2 PART _NUM CHAR(6), 
2 OTY _ON_HAND FIXED(5), 
2 PRICE FIXED(5,2); 

GET EDIT(INVENTORY) (A(6),F(5),F(5,2)); 

Notice that three format items were specified. You must specify as 
many format items as data items. Of course, if there are not as many 
format items as elementary items in the structure specified in the data 
list, then there is a return to the beginning of the format list and the 
format items are used again in describing the remaining elements of the 
structure. 



Introduction to Record 1/0 and Structures 433 

Here is an example of specifying an intermediate structure name 
in a PUT ED IT statement : 

DCL 1 INVEN, 
2 PART#, 

3 TYPE CHAR(2), 
3 CODE CHAR(3), 

2 REORDER_QTY PIC'(4)9'; 
PUT EDIT(PART#, REORDER_QTY) (A(2),A(3), F(9)); 

~--·-----' '--v--' 

L REORDER_ 
QTY will be 
printed in 
form of 
bbbbbxxxx, 
where xis 
any decimal 
digit 

Two format items are 
required for PART# 

,____ _______ ~ Represents two elementary 
items: TYPE and CODE 

The above PUT statement is equivalent to 

PUT EDIT(TYPE, CODE, REORDER_ QTY) (A(2),A(3), F(9)); 

Notice how the format specification for REORDER_QTY has a width 
larger than the internal specification. The precision of REORDER_QTY 
is 4. The F(9) specification will cause the four decimal digits to be 
printed right-justified in the output field; to the left of the value will 
be five blanks. Thus, spacing between the PART# and REORDER_ QTY 
is achieved. 

If a data list element is a structure variable, the elements of the 
structure are transmitted in the order specified in the structure declara
tion. For example, if a declaration is 

DECLARE 1 A,2 8(10), 2 C(10); 



434 PL/I Programming 

then the statement 

PUT EDIT. (A) (F(12)); 

would result in the output being ordered as follows: 

A. B (1) A.B (2) A.B (3) ... A.B (10) A.C (1) A.C (2) A.C (3) ... A.C(1 O) 

In the case of data-directed 1/0 in the full language implementa
tions, if the data list includes the names of structure elements, then 
fully qualified names must appear in the stream, although full qualifica
tion is not ·required in the data list. Consider the following structures: 

DCL 1 INPUT, 
2 PARTNO CHAR(6), 
2 DESC CHAR(20), 
2 PRICE 

3 RETAIL FIXED(7,2), 
3 WHSL FIXED(7,2); 

DCL 1 OUTPUT, 
2 PARTNO CHAR(10), 
2 DESC CHAR(25), 
2 PRIC~, 

3 RETAIL PIC'(8)$V.99', 
3 WHSL PIC' (8)$V.99'; 

If it is desired to read a value for INPUT. PRICE. RETAIL, the data 
specification could be 

GET DATA(INPUT.RETAIL); 

but the input data stream must have the following form: 

INPUT.PRICE.RETA! L=4.75; 

The maximum number of elements permitted in a list for data-directed 
input is 320. Each element of a structure counts as a separate list 
element. 

In commercial applications, input or output data records are usually 
arranged into some numeric or alphabetic sequence. In the case of 
input, if it is desired that records be in ascending sequence, the program 



Introduction to Record 1/0 and Structures 435 

reading these records verifies this sequence. In the case we are going 
to examine, it is imperative that the input records be in ascending 
sequence in order to obtain the correct results. Our study will be of a 
department store. Sales are to be totaled, by department, at the end of 
each day's business. For each sales receipt issued to the customer, a 
card will be punched containing the department number and sales 
amount. The cards are in department number sequence and the depart
ment numbers are in ascending sequence. We are to accumulate the 
total amount of sales for each department and print that total along with 
its associated department number. If the department numbers are out of 
sequence, we want to print an error message and terminate the job. 
Figure 8.10 shows the printer layout for the desired output and Figure 
8.11 shows a flowchart. An explanation of the program in Figure 8.12 
follows. 

Statement 2. Both card and printer files are declared in this state
ment. This program was compiled and executed under the DOS/TOS 
operating system. It is not necessary to modify the program in any 
way in order to compile and execute it under the OS operating system. 
However, in OS versions of PL/I, the MEDIUM option is ignored in 
the file declaration statement. Thus, for OS, the following file declara
tions would suffice: 

/* OS PL/I OPTIMIZING COMPILER */ 
DCL CARDIN FILE RECORD INPUT ENV(F BLKSIZE(80)); 
DCL PRINTR FILE RECORD OUTPUT ENV(F BLKSIZE(33) 

CTLASA); 
/* PL/I F COMPILER */ 
DCL CARDIN FILE RECORD INPUT ENV (F(80)); 
DCL PRINTR FILE RECORD OUTPUT ENV(F(33)CTLASA); 

Statement 3. The variable LBL is given the LABEL attribute and 
initialized to a place in the program called LOOP1. As you will see 

1' 

123456789b: ~~~~~~~~6f~§~I~ 
llll~JC'I( hi IJ~ lil1'Ji .IJIJ 

FIGURE 8.10 Desired 
printer layout for case study. 



Start 

LBL=l 

READ 
first 

record 

number in 
SAVE; Set 
TOTAL=O 

Add SALES 
to TOTAL 

END 

Move SAVE 
to print 

area 

Edit TOTAL 
into print 

area 

END 

LBL=2 

FIGURE 8.11 Case study flowchart for sequence checking. 



1 
2 

3 
4 

5 
6 

7 
8 
9 

10 

CASE: 

11 LOOP 1: 
12 
13 LOOP2: 
14 
15 
16 
17 
18 
19 
20 

21 PRINT: 
22 
23 
24 
25 
26 EOJ: 
27 
28 FINI: 

Introduction to Record 1/0 and Structures 437 

PROC OPTIONSCMAINJ; 
DCL CARDIN FILE RECORD INPUT ENV(fl801MEDIUMISYSIPT,2540)), 
PRINTR FILE RECORD OUTPUT ENVIFl33JCTLASA ~EOIUM(SYSLST,1403)); 
DCL LBL LABEL INIT(LOOPlt; 
DCL l CARO_AREA, 

2 DEPT CHAR(4), 
2 SALES PIC'(419V99 1 , 

2 REST_OF_RECORD CHARl70); 
DCL PRT CHARi331 DEFINED PRINT_AREA; 
DCL 1 PRINT_AREA, 

2 CC CHAR(l) INITl'l'J, 
?. DEPT CHAR (9), 
2 SALES_AMT PIC'$$$,$$$V.99', 
2 REST CHARll3) INIT(' '); 

DCL SAVE_DEPT CHARl4J, TOTAL FIXED(B,2)1 
ON ENDFilf(CARDINI GO TO EOJ; 
OPEN FILE(CARDJN), FILE(PRINTRJ; 
READ FILEICARDIN) INTOlCARO_AREAJ; 
SAVE_DEPT = CARD_AREA.DEPT; 
TOTAL = O; 
TOTAL = TOTAL+ SALES; 
READ FILECCARDINI INTO(CARO_AREAl; 
If CARO_AREA.OEPT = SAVE_DEPT THEN GO TO LOOPZ; 
IF CARO_AREA.OEPT < SAVE_OEPT THEN DO; 

PRT ='-DEPARTMENT CARDS OUT OF SEQUENCE•; 
WRITE FILE(PRINTRJFROMlPRINT_AREA); 
GO TO FINI; 
END; 

I* CARD_AREA.OEPT > SAVE_DEPT */ 
PRINT_AREA.DEPT = SAVE_DEPT; 
SALES_AMT = TOTAL; /* EDIT DEPARTMENT TOTAL *I 
WRITE FILE(PRINTR) FROM(PRINT_AREA); 
cc = •• ; 
GO TO LBL; 
LBL =FINI; 
GO TO PRINT; 
END; 

FIGURE 8.12 Case study program illustrating sequence checking. 

later in the program, we use the variable LBL to affect the order in which 
statements are executed. 

Statement 4. The card input structure is declared. In record input 
of cards, you may not read less than 80 columns; thus, the elementary 
item RESLOF_RECORD was necessary to make the structure size 
the same as the declared length-F(80)-in the ENVIRONMENT 
section of the DECLARE statement for CARDIN. 

Statement 5. A character-string called PRT is declared as having 
a length of 33. In selecting the length of the output area, you must 
consider the length of the longest record that will be output to a given 
data set. That length becomes the record length in the file declaration 
[e.g., F (33)]. Also, that length must be the size of all output areas 
from which data will be written. The longest message (i.e., record) in 
this program is the error message (see statement 17). It is 33 characters 
long. Thus, all output areas in this program that are referenced with 
respect to the PRT file must be this length. PRT is also overlay defined 



438 PL/I Programming 

on PRINT _AREA. This technique will facilitate more efficient utiliza
tion, because PRINT _AREA (which holds detail line output) and 
PRT (which holds the error message if a sequence error is found) now 
occupy the same area of core storage. Overlay defining is possible here 
because, logically, the declared area is used for either the detail line 
of output or the error message, but not both at the same time. 

Statement 6. The print area is declared. In this structure, CC is for 
the carriage control character. The elementary item arbitrarily called 
REST was necessary to make the structure size 33 characters in 
length, as PRT (the overlay defined item) is 33 characters long. 

Statement 7. Because we are going to check the department 
numbers of the input cards for ascending sequence, it is necessary to 
declare a variable (i.e., SAVE_ DEPT) for the purpose of saving the 
first department number read. When the next department number is 
read, we can compare this with the previous department number. 

Statement 11. The department number from the first card is 
assigned to the variable SAVE_ DEPT. Note that the use of a qualified 
name was necessary here because the PRINT _AREA and CARD_AREA 
structures both contain elementary items called DEPT. This is also the 
statement to which we will return each time we are to begin accumulat
ing totals for a new department. 

Statement 13. The sales amount is accumulated into TOTAL. This 
is the statement to which we will return each time a new card is read 
for the same department. 

Statements 15-16. These statements test for ascending sequence 
of the department numbers. If there is a sequence error, PRT is assigned 
the error message. 

Statement 17. The minus sign ( - ) preceding the character constant 
is the carriage control character. It will not show up on the printout; 
it simply indicates to space up three lines before printing the data. In 
the case study, PRT is overlay defined on the structure PRINT _AREA. 
PRT is used for the purpose of assigning to it the error message 
character-string. You may have wondered why we could not have 
written 

PRINT_AREA='-DEPARTMENT CARDS OUT OF SEQUENCE'; 

Some strange output would result if we coded this statement, because 
of the elementary item-for-elementary item nature of structure moves. 



Introduction to Record 1/0 and Structures 439 

Earlier in this chapter, it was shown how there are as many assignment 
statements generated as elementary items in the structure when that 
structure is involved in a move operation. Thus, the following coding 
would have been generated for the above assignment statement: 

CC='-DEPARTMENT CARDS OUT OF SEQUENCE'; 
DEPT='-DEPARTMENT CARDS OUT OF SEQUENCE'; 
SALES_AMT='-DEPARTMENT CARDS OUT OF SEQUENCE', 

/* INVALID */ 
REST='-DEPARTMENT CARDS OUT OF SEQUENCE'; 

In all of the above cases, the receiving fields are shorter than the sending 
fields. In character-strings, we assign data from left to right and truncate 
on the right, if necessary. Thus, we would end up with the following 
values in PRINT _AREA's elementary items: 

CC='-'; 
DEPT='-DEPARTM'; 
REST='-DEPARTMENT C'; 

It is not possible to assign alphabetic characters to SALES_AMT, 
because this field contains numeric data and editing characters. The 
compiler will flag this error. 

Statement 18. The error message is printed. Notice that we must 
WRITE from the PRINT _AREA structure, not from PRT. PRT and 
PRINT _AREA represent the same area of storage known by two names. 
Thus, when we write from PRINT _AREA, we are printing the data 
assigned to PRT (see statement 17). The reason we output from 
PRINT _AREA is that we may not WRITE from a variable that has the 
DEFINED attribute, which is the case with PRT. 

Statements 21-23. At this point in the program, it is time to print 
the department total. The "old" department number is assigned to the 
print area. TOTAL is moved and edited into the SALES_AMT field 
in the PRINLAREA. The department total is printed. 

Statement 24. The carriage control character is reset to a blank, 
which is the code to space one line before printing. Notice from 
the declared PRINT _AREA structure that CC was initialized to a '1', 
which causes a skip to a new page for the first WRITE statement. 
Thereafter, we simply space one line. Approximately 60 lines may 
be printed on standard printer paper. Assume for this problem that 



440 PL/I Programming 

there are less than 60 departments for which sales are to be totaled. 
Because the entire report will fit on one page, it is not necessary to 
program for page overflow. 

Statement 25. In statement 3, LBL was initialized to LOOP1. 
Thus, when the statement 

GO TO LBL; 

is executed, we transfer to the location LBL, in which the address 
LOOP1 is found. Thus, in effect, a branch to LOOP1 is accomplished. 
This will be true in all cases except that in which the last card has been 
read and the ENDFILE condition has been raised. In that case, when 

GO TO LBL; 

is executed, transfer will act~ally be to the statement labeled EOJ. 

Statements 26-27. When there are no sequence errors and the 
END Fl LE condition has been raised, program control transfers to 
statement 26. It is still necessary to print the accumulated sales total 
for the last department. The brute force method of programming would 
be to repeat at this point the output statements necessary to print the 
last line of the report, which would mean a total of three statements 
identical to those in statements 21 - 23. Instead of inserting duplicate 
coding in the program, a program switch was used. This programming 
technique is similar in concept to that of a station master who must 
throw a switch to determine on which set of tracks a particular train 
is to travel. In this case study, the program switch is LBL. In statement 
26, LBL which had been assigned to the label LOOP1 is now assigned 
the label Fl NI. Statement 27 specifies 

GO TO PRINT; 

We return to statement 21 and edit and print the last department's total 
sales figure. When statement 25, 

GO TO LBL; 

is executed, we now transfer to Fl NI. 

\J[C.' 
111,r 



Introduction to Record 1/0 and Structures 441 

Record 1/0 Programming Steps: Declare files: A PL/I file is represented 
in the program by the file name which is declared to have the Fl LE attribute. 
It is through the use of this name that we will access or create the data records 
which are stored on an external device such as a disk or tape or cards. The 
collection of records is called a data set. The ENVIRONMENT attribute of the 
DECLARE statement describes the physical environment of the data set. To 
accomplish carriage control for record 1/0, the keyword CTLASA or CTL360 
must be added to the ENVIRONMENT section of the file declaration to notify 
PL/I that these carriage control characters are being used in the program and 
that the 1/0 routines are to interpret the first character of each record to indicate 
the action we want performed. It is the programmer's responsibility to place a 
meaningful control character in the first position of the output area if either 
CTL option is specified. 

Reserve 1/0 areas: For card and printer record 1/0 operations, declare 
either character-strings, structures, or arrays. In record 1/0, there is no conversion 
of the external characters to an internal format, or vice versa. Thus, when you 
issue a READ statement for the card reader or a WRITE statement for the card 
punch or line printer, the structures on which you are doing input or output 
would normally have either CHARACTER or PICTURE attributes. The 1/0 
area must be equal to the length of the record declared in the ENVIRONMENT 
options list; e.g., 

ENV(F(80)); 

~----~ 1/0 area must also be length 80 

Open files: Files must be opened before a READ or WRITE to these 
files is executed. A file is automatically opened the first time a READ or WRITE 
to that file is issued. However, in the subset language, record files must be ex
plicitly opened. The opening of files causes attributes to be merged, labels to 
be checked, and device readiness to be established. 

Specify action for ENDFILE condition: When an end-of-file condition 
is raised, signifying that there is no more data in the accessed data set, one of 
two courses of action may be taken : 

1. System action: The system immediately terminates the job with an 
abnormal ending error message, unless this is overridden by programmer
defined action. 

2. Programmer-defined action: This is done with the ON EN DFI LE state
ment. This statement need be executed only once in your program, 
because once you have specified what action is to be taken when the 



442 PL/I Programming 

end-of-file is detected, that information is "remembered." The ENDFILE 
statement may be executed either before or after the OPEN statement is 
specified. 

Read data: This is accomplished by 

READ Fl LE(file name) I NTO{variable); 

.__ ___ i Must be a level 1 structure name 

or an unsubscripted variable not 
contained in a structure; it can
not be a label variable or a 
parameter, and it cannot have 
the DEFINED attribute 

Following each READ, the system checks for an end-of-file condition and 
takes the action specified in the ON ENDFILE statement if the last record has 
been read. 

Write a record: When a WRITE statement is executed, a carriage control 
operation will take place first, if the CTLASA option is specified; then the data 
will be printed. The rules and syntax for the WRITE statement are the same as 
for the READ statement. After a record is written, loop back to read the next 
record. 

Wrap-up program: When the EN DFI LE condition is raised, program 
wrap~up might include closing files, printing total accumulations, and/or an 
end-of-job message. 

Structures: A structure is a collection of data items whose locations relative 
to one another are critical. Usually, the data items which appear in a structure 
have a logical relationship to each other. Structure names always have a level 
number of 1. Any number greater than 1 may be used for subdivisions of the 
structure. At the highest level is the major structure name, at an intermediate 
level are substructure names called minor structures, and at the lowest level 
are elementary items. The major structure name must be numbered 1. Each 
name at a deeper level is given a greater number to indicate the level depth. 
Level numbers must be followed by a blank. 

The INITIAL Attribute in Structures: Elementary items in structures may 
be initialized using the INITIAL attribute, providing the structure is not overlay 
defined on another data item. 

Qualified Names: A qualified name is a substructure or element name that is 
made unique by qualifying it with one or more names of a higher level. The 
individual names within a qualified name are connected by a period; e.g., the 
qualified name HOURS.REGULAR refers to REGULAR in the substructure 
HOURS. A qualified name also may not contain blanks or comments. Qualifica
tion need go only as far as necessary to make the name unique. Intermediate 
qualifying of names can be omitted. 



Introduction to Record 1/0 and Structures 443 

Arrays in Structures: An array may be thought of as a table of data elements. 
Structures may contain arrays; e.g., 

DCL 1 A, 
2 B(5), 
2 C(10); 

Here, the "A" structure contains two arrays: the "B" array of five elements and 
the "C" array of ten elements. 

Arrays of Structures: An array of structures is an array whose elements are 
structures having identical names, levels, and elements; e.g., 

DCL 1 A(10), 
2 B, 
2 C, 
2 D; 

Here, there are ten "A" structures consisting of three elementary items: B, C, 
and D. 

The LIKE Attribute: The LI KE attribute is used to indicate that the name 
being declared is to be given the same structuring as the major structure or 
minor structure name following the attribute LI KE. 

Structure Assignment: There are several types of structure assignments: 

1. Structure-to-structure: Structures may be moved (i.e., assigned) to 
other structures or parts of structures. The structure name to the right of 
the assignment symbol must have the same relative structuring as the 
structure name to the left. You may assign major structures to major 
structures, minor structures to major structures, and vice versa, as long 
as the relative structuring is the same. 

2. BY NAME: One exception to the rule that structures assigned to other 
structures must have the same relative structuring is the case in which 
the structure expression appears in an assignment statement with the 
BY NAME option; e.g., 

OUTPUT=INPUT, BY NAME; 

3. Scalar-to-structure: A scalar is simply a single data element: When a 
scalar is assigned to a structure, it results in being assigned to each 
elementary item of the structure. 

Overlay Defining: The DEFINED attribute is often useful in manipulating 
data in a structure. Two types of define overlays are possible: 

1. Scalar variable on a structure: The DEFINED attribute allows us to refer 
to the same area of storage by different names; e.g., 

DECLARE S CHAR(79) DEFINED STRUCTURE; 



444 PL/I Programming 

2. Structure on a structure : Example: 

DCL 1 A, 
2 B CHAR(20), 
2 C CHAR(40), 
2 D CHAR(20); 

DCL 1 AA DEF A, 
2 B CHAR(40), 
2 C CHAR(40); 

1. What are the merits of selecting record 1/0 over stream 1/0? 

2. If you use record 1/0 to punch cards, read cards or print, then what 
attribute(s) must the data area named in the READ or WRITE statements 
have? 

3. What form (coded arithmetic or decimal) would data stored on a tape 
or direct access device most likely take? 

4. What is the programming error in the following coding segment? 

DCL PRT FILE OUTPUT RECORD ENV(F(121 )CTLASA 
MEDIUM(SYSLST,1403)); 

DCL PRINT _AREA CHAR(8) INIT('1 HEADING'); 
WRITE FILE(PRT) FROM(PRINT _AREA); 

5. Which segment of coding is preferred assuming the coding is part of a 
larger program that accomplishes an 80/80 list? 

(a) LOOP: READ FILE(CARD)INTO(AREA); 
ON ENDFILE(CARD)GO TO EOJ; 
WRITE FILE(PRINT)FROM(AREA); 
GO TO LOOP; 

(b) ON ENDFILE(CARD)GO TO EOJ; 
LOOP: READ FILE(CARD)INTO(AREA); 

WRITE FILE(PRINT)FROM(AREA); 
GO TO LOOP; 

6. What actions take place when files are opened? 

7. What is the difference between CTLASA and CTL360? 

8. Under what circumstances may structures contain only CHARACTER or 
Pl CTU RE attributes? 



( 
Maximum 
number of 

BY NAME POSITION Arrays of nested levels 
option LI KE attribute attribute structures allowed 

Subset 
No No No No 8 language 

Full 
Yes Yes Yes Yes 15 

\,._ language 

FIGURE 8.13 Language implementations for structures. 



446 PL/I Programming 

9. What will YY, MM, and DD contain after the DATE function is invoked 
assuming the date is July 7, 1977? (Be careful, this is a "trick" question.) 

DCL DATE BUILTIN; 
DCL 1 TODAY, 

2 YY CHAR(2), 
2 MM CHAR(2); 
2 DD CHAR(2); 

TODAY= DATE; 

10. In programming, what is sequence checking? 

11. Write the structure given in question 9 above, but factor the attributes. 

12. When may elementary items in a structure not be initialized using the 
INITIAL attribute? 

13. Which of the following is a valid qualified name? 
(a) HOURS_REGULAR 
(b) HOURS-REGULAR 
(c) HOURS.REGULAR 
(d) HOURS REGULAR 

14. What is the purpose of the LI KE attribute? 

15. Is this a valid example of a structure move? 

DCL 1 CAT, 
2 A, 

3 B, 
3 c, 

2 D; 
DCL 1 DOG, 

2 A, 
2 B, 
2 C, 
2 D; 

DOG=CAT; 

16. Under what circumstances may a structure be assigned to another struc
ture that does not have the same relative structuring? 

17. Given the following structure, write the most efficient coding to clear the 
structure to blanks. 

DCL 1 A, 
2 B CHAR(20), 
2 C CHAR(10), 
2 D, 

3 E CHAR(5), 
3 F CHAR(7); 

18. Why would one structure be overlay defined on another structure? 



Introduction to Record 1/0 and Structures 44 7 

base identifier 
carriage control character 
data set labels 
elementary item 
factoring (as used in PL/I) 
level number 

1. Accounts Receivable Report 

major structure 
minor structure 
qualified name 
scalar variable 
structure 
80/80 list 

Problem Statement: List an accounts receivable file of cards. Print headings 
and 45 detail lines per page. Accumulate a final total of the invoice amounts. 

Purpose of the Problem: To gain experience in declaring structures, using 
record 1/0, using the SU BSTR built-in function and pseudo-variable. 

Card Input 
Columns 1-5 Customer number 

Customer name 
Invoice number 

Columns 6-25 
Columns 26-30 
Columns 31-36 
Columns 37-42 

Invoice date (e.g., 09/17 /82 will be punched 091782) 
Invoice amount (e.g., $1,705.98 will be punched as 

170598) 
Suggested Test Data: See Figure 8.14. 

Printer Layout: See Figure 8.1 5. 

Sample Output Using Suggested Test Data: 

12810AMERICAN CAN 
12810AMERICAN CAN 
21654APPLEBEE MFG. 
22873BAKER TOOL 
24251C.F.B. FREIGHT 

See Figure 8.16. 

11223112381157468 
12336123081040902 
09852010582033000 
12453112681057690 
13342010682130076 

FIGURE 8.14 Suggested test data for Problem 1. 



448 PL/I Programming 

l 1l11111112222222222333333333344444444445555555555~ 
1234567890123456789012345678901234567890123456789012345678~ 

~~ ~ ) 

- -
FIGURE 8.15 Printer layout for Problem 1. 

2. Preparation of Partial Invoice 

Problem Statement: Each time a customer places an order with the Humphrey 
Hardware Co., an invoice is prepared manually and sent along with the ship
ment of goods to the customer. In addition, a sales card is punched for each 
item listed on the invoice. For example: 

15423 LADDERS 18.00 

15423 SCREWDRIVERS 16.20 

11223 RAKES 02.75 

11223 BOLTS 08.50 

11223 PAINT BRUSHES 10.25 

Obviously, there may be several sales cards per invoice. When these sales 
cards are processed by a computer program, they should be in ascending 
sequence by invoice number. Write a program to read these cards and list 
each invoice on a separate page. Check for ascending sequence of the invoice 
numbers. If a sequence error is detected, print a message to that effect and 
terminate the job. Otherwise, accumulate the total sales amount for each 
invoice and print this total at the end of the invoice. Also, accumulate a final 
total of all invoices, and print this total on a separate page at the end of the 
job. Note that this is only a partial invoicing application, because that part of 
the program that would print customer billing and shipping addresses is 
eliminated. You may wish to draw a flowchart before coding this problem. 

Purpose of the Problem: To write a record 1/0 program which incorporates 
several basic, but important, programming techniques: use of program switches 
to facilitate logic and minimize coding; manipulation of data to provide two 
levels of totals (invoice total and final total); use of structure moves for data; 
the DATE built-in function; and the SUBSTR pseudo-variable. 

1· 
1, 

.\'. 



Introduction to Record 1/0 and Structures 449 

ACCOUNTS RECEIVABLE 
CUSTOMER CUSTOMER INVOICE INVOICE 
NUMBER NAME NUMBER DATE 

12810 
12810 
21654 
22873 
24251 

AMERICAN CAN 
AMERICAN CAN 
APPLEBEE MFG. 
BAKER TOOL 
C.F.B. FREIGHT 

11223 
12336 
09852 
12453 
13342 

11/23/81 
12/30/81 
01/05/82 
11/26/81 
01/06/82 

TOTAL 

INVOICE 
AMOUNT 

1574.68 
409.02 
330.00 
576.90 

1300.76 

4191.36 

FIGURE 8.16 Sample output for Problem 1 using suggested 
test data. 

Invoice number 
Item description 

Card Input 
Columns 1-5 
Columns 6-25 
Columns 26-31 Sales amount (e.g., $1050.40 will be punched as 105040) 

Suggested Test Data: See Figure 8.17. 

Printer Layout: See Figure 8.18. 

Sample Output Using Suggested Test Data: See Figure 8.19. Notice that the 
invoice number is to be printed on the first line of output for each invoice. 
However, output of the invoice number is to be suppressed for the subsequent 
detail lines of print. No headings are required, and the number of detail lines of 
output will not exceed one page in length. 

After you have checked out your program, rearrange the data card input 
so as to force a sequence error when the program is run again. This will verify 
the sequence checking logic of your program. 

3. Weekly Payroll Proof Totals 

Problem Statement: A "proof total" is to be printed after a file of payroll 
earnings cards has been processed. There are four kinds of earnings cards in the 

+Column 1 

11223NUT S 
11223BOL TS 
11223HAMMERS 
11224SHOVEL S 
11224RAKES 
11225SCREWDRIVERS 
11225CHISELS 
11225HI NGES 
ll225PAINT BRUSHES 

+Column 26 

002500 
003250 
001475 
CC3700 
004050 
001620 
002450 
000850 
001025 

FIGURE 8.17 Suggested test data for Problem 2. 



450 PL/I Programming 

Invoice Sales 
Number Description amount 

L 1 / 

,y l 1 1 1 1 l 1 l 1 11~W 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3~ 4 4 4 4 4 4 4 4 4 5 
123~567890123456789~1234567890123456781~01234567890 

~lC•JI •• !jJJt,"' ·~rJ ~ First' page 
r 1• lv"'IJ111~1 .~Ii 

,... 

FIGURE 8.18 Printer layout for Problem 2. 

file: regular, overtime, bonus, and other. Count each type of record and compute 
the total earnings for each type. 

Purpose of the Problem: To use record 1/0 and the DEFINED attribute. 

Card Input 
Column 1 

Columns 2-6 
Columns 7-11 

CARD TYPE: 
=1 REGULAR 
=2 OVERTIME 
=3 BONUS 
=4 OTHER 

EMPLOYEE NUMBER 
EARNINGS (150.75 will be punched as 15075) 

Suggested Test Data: See Figure 8.20. 

Desired Printer Layout: See Figure 8.21. 

Sample Output Using Suggested Test Data: See Figure 8.22. 

4. Calculating Reorder Quantities in an Inventory Application 

Problem Statement: A file of inventory records on punched cards contains 
the usage for each item for this month, last month, and two months ago. If 
the expected usage for next month causes an out-of-stock condition (that 
is, the expected usage exceeds the on-hand quantity), an order card is to be 



Introduction to Record 1/0 and Structures 451 

11223 NUTS 25.00 
BOLTS 32.50 
HAMMERS 14.75 

72.25 

11224 SHOVELS 37.00 
RAKES 40.50 

71.50 

11225 SCREWDRIVERS 16.20 
CHISELS 24.50 
HINGES 8.50 
PAINT BRUSHES 10.25 

59.45 

TOTAL FOR All INVOICES 
FOR 01101111 209.20 

FIGURE 8.19 Sample output using suggested test data for 
Problem 2. 

punched; also, the order information is to be printed, with headings, on a 
report. Expected usage for next month is equal to the average usage for the 
preceding three-month period. Each record contains the item number and 
description, as well as the number on hand, the usage for each of the last three 
months, and the quantity to be ordered if an order is necessary. 

Purpose of the Problem: To gain experience using arrays within structures 
and the SUM built-in function. 

INPUT: The following structure describes the card input record: 

DCL l INVENTORY_RECORO, 
2 ITEM_# CHAR(5), 
2 DESC CHARl20), 
2 QTY_ON_HAND PIC'9999', 
2 USAGE(3) PIC 1 9999', 
2 REOROER_QTY PIC'9999', 
2 REST_OF_RECORD CHARt35); 



11111108542 
21111101465 
21111101465 
11111206765 
11111206765 
31111200535 
311112J0535 
11111305530 
11111305530 
21111300510 
21111300510 
31111300600 

. 31111300600 
41111301000 
41111301000 

FIGURE 8.20 Suggested test data for Problem 3. 

1111111111222222222233333333334444444444~ 
1234567890123456789012345678901234567890123456789 

!~~I= ~LISI llttlP i.. l.t 

l~><ltl 

IW~I 
1• 

I' 

.i 

FIGURE 8.21 Printer layout for Problem 3. 

PROOF TOTALS FOR WEEKLY PAYROLL 

REGULAR 5 $331.32 

OVERTIME 4 $331.32 

BONUS 4 $22. 70 

OTHER 2 $20.00 

FIGURE 8.22 Sample output using 
suggested test data for Problem 3. 



Introduction to Record 1/0 and Structures 453 

tColumn 1 

14325oOLT 
15367HAMMER 
16001 \tUT 
l9732PLIERS 
24376LADDER 

+Column 26 

01000100010201990400 
00140050007500000160 
14631000C50015002500 
00500080004800510075 
00000010001500250020 

FIGURE 8.23 Suggested input data for Problem 4. 

Suggested Input Data: See Figure 8.23. 

Desired Printer Layout: See Figure 8.24. 

Sample Output: See Figure 8.25. 

11l11111112222222222333333333344444444445 
123456789012345678901234567890123456789012345678~~ 

~~IMS ]11eJ IBa1 

l 
l 

FIGURE 8.24 Desired printer layout for Problem 4. 

5. Search Array 
A structure contains 35 students' names and their corresponding grade-point 
averages received for History 101 ; e.g., 

DCL 1 HISTORY_ 101 EXTERNAL 
2 NAME(35) CHAR(20), 
2 GPA(35) FIXED (4, 1); 

It is desired to identify all students who have a grade-point average of 92.5 
or better. Write a subroutine procedure to search the structure (which has the 
EXTERNAL attribute) for names of students who received a grade of 92.5 or 
better, and place those names into an array argument. The calling sequence is: 

DCL HONOR_STUDENTS(35)CHAR(20)1NIT(' 
CALL FINDH(HONOR_STUDENTS); 

') ; 

I 

~----~ Students' names are to be placed in 
this array 

~---------+) Subroutine to be coded 



454 PL/I Programming 

ITEM # 

14325 
15367 
19732 
24376 

ITEMS TO BE REORCEREO 

DES CR IP Tl ON 

BOLT 
HAMMER 
PLIERS 
LADDER 

QUANTITY 

400 
160 

75 
20 

FIGURE 8.25 Problem 4 sample output 
using suggested test data. 



l!hapl@r 9 

Prograrnrning 

fifM 



A file is a PL/I symbolic representation, within the program, of a 
data set, which is an organized collection of data external to a program. 
A file declaration can be associated with more than one data set at 
different times during execution of the program, or one data set can be 
represented by different file declarations. In a less strict sense, however, 
file and data set are terms used interchangeably to mean "a collection 
of data records." 

In this chapter, we are going to examine the programming aspects 
and applications of data sets organized in a consecutive manner. In a 
consecutive data set, records are organized on the basis of their suc
cessive physical positions as, for example, on magnetic tape or in 
punched cards. Records having this type of organization can be pro
cessed or retrieved in sequential order only. Input/output devices 
permitted for use with consecutive data sets include magnetic tape 
drives, card readers and punches, line printers, printer-keyboards, and 
direct access storage devices. 

Data in a tape or direct access file are arranged into physical 
groupings called blocks. A block is also called a physical record, 
because it is the unit of data that is physically transferred to and from 
the external storage medium. For processing purposes, each block or 
physical record consists of one or more logical parts called logical 
records, each of which can in turn contain one or more data items. 

To illustrate the need for both physical and logical records, let us take 
the example of the recording of data on magnetic tape. The recording 
density of I BM magnetic tapes is typically either 800 bytes per inch 
(bpi) or 1600 bpi. If all 80 columns of a card record are to be stored as a 
tape record, simple arithmetic indicates that we may store either ten 
or twenty cards worth of data in an inch of magnetic tape, depending 
on the density. However, this is not quite the case, because, between 
any two physical records stored on magnetic tape, there is a gap. 

456 



Programming Consecutive Files 457 

The reading of tape data is from gap to gap. Because the tape physically 
stops between records, the gap is necessary for the slow-down and 
start-up of the tape. This gap to which we have been referring is 6/10 
inch in length and is known as the interblock gap (I BG). In an 800 
boi tape, 80 characters would occupy only 1/10 inch. Thus, we could 
have the following tape layout: 

---------- -- -------- --------

8 8 8 8 
0 IBG 0 IBG 0 IBG 0 

B B B B 
y y y y 
T T T T 
E E E E 
s s s s 

----------- ---------- -- -·-------

1/10 6/10 1/10 6/10 1/10 6/10 1/10 
inch inch inch inch inch inch inch 

In this example, there is considerably more space taken up by the gaps 
between records than is used for the recording of actual data. The 
solution to this problem is to group a number of records together into a 
block. The grouping of records is commonly referred to as "the blocking 
of records." For example, suppose ten card records are blocked together 
on an 800 bpi tape; now the block becomes the physical record and 
each 80-character record in the block becomes the logical record. We 
would also say that the blocksize is 800 characters and the recordsize 
is 80 characters. 

By blocking records, greater efficiency is realized, because more 
data can be stored in the same amount of space. For example, in the 
above tape layout, only 320 bytes of data could be stored in 2.2 inches. 
If ten 80-byte records are grouped to form a blocksize of 800 bytes, 
note from the following diagram how 1280 bytes of data may be stored 
in 2.2 inches: 



458 PL/I Programming 

It is also desirable to have records blocked in any DASO data 
set. Throughput time is also improved because larger quantities of 
data may be read or written at one time. For example, it is far more 
efficient to issue one WRITE command for the output of an entire 
500-byte record than to issue five WRITE commands for the output 
of five 100-byte records. If you do not block with DASO, it can be 
slower than tape. 

Thus, we have seen an advantage to the blocking of records
that of conserving space on the external storage medium. From what 
has been presented so far it might seem desirable to make blocks as 
large as possible, like 100,000 bytes. This, however, would not be the 
case. When data records are input or output, the records pass through a 
buffer which is actually a reserved area of main storage. For example: 

Main storage 
----------------------~ 

A block of data records 
I 

Buffer Work area 1 

I 
~.-------.I : 

1--~~~~~~--1 I 

I 
I 
I 
I 
I 
I 

----------------------~ 

Notice from the above diagram that the size of the buffer is the 
length of the physical record. (On the other hand, the work area is 
the size of the logical record. Records are moved one at a time to the 
work area; this is called the unblocking or deblocking of records.) 
Larger physical records require larger buffers. Thus, it is not desirable 
to make blocks as large as possible, because a corresponding amount 
of main storage must be reserved for the buffer. 

Logical Record Formats 

Logical records can exist in one of three general formats: fixed 
length (format F), variable length (format V), and undefined length 
(format U). In declaring a file and its attributes, one of these formats 
must be specified. These different formats provide flexibility in the 



Programming Consecutive Files 459 

design of files and allow the programmer to take advantage of the 
characteristics of specific input or output devices. 

Fixed-Length Records 

Fixed-length records may be either blocked or unblocked, and 
may reside on either direct access or magnetic tape devices. Figure 9.1 
illustrates how unblocked and blocked records would appear on tape. 
As has been noted, the concept of blocking also applies to any DASO 
data set. 

Variable-Length Records 

Magnetic tapes and disks, drums, etc., because of their physical 
features, have the flexibility for swring data sets having· variable
length records. Figure 9.2 shows the format of variable-length records 
as recorded on magnetic tape. This concept also applies to DASO 
variable-length records. 

In a data set having variable-length records, it is implied that 
each record may be of a different length. For example, one record may 
be 84 bytes long; another, 104 bytes long; another, 124 bytes, etc. 

Record I Record I Record I Record I Record I Record I Record I Record 
B B B B B B B 

A G. G C G D G E G F G G G H 

Unblocked record format 

r-one physical record1 

Record Record 

A 

Blocked record format 

Record ::I:::::: 

B 
C G D 

I 
B 
G G H 

I 
B 
G K 

FIGURE 9.1 Example of fixed-length records on magnetic tape. 



460 PL/I Programming 

BL RL 

xxoo 

Record 1 
Data 

RL 

xxoo 

Record 2 
Data 

3 4 83 0 3 4 
~-- RL = 80----..i 

,__ ___ BL = 84 -------.i 

Variable-length unblocked record format 

BL 

3 4 

RL 

xxoo 

Record 1 
Data 

83 84 

,,__ __ RL = 100 ------'=--

~--- BL= 104 ___ _::.,j 

RL Record 2 RL 
Data 

xxoo xxoo 
87 183 184 187 

BL RL 

XXOO XXOO 

3 4 

Record 3 
Data 

,__ __ RL = 80--~~-- RL = 100 RL = 50 

BL = 234 

Variable-length blocked record format 

FIGURE 9.2 Example of variable-length records on magnetic tape. 
(KEY: BL, blocklength; RL, record length.) 

The format of variable-length, unblocked records is: 

Block 
length 
(BL) 

Record 
length Data 
(RL) 

~------) A four-byte field that contains the 
length (in bytes) of the data +4 

'--------~A four-byte field that contains a value (in 
bytes) equal to the number in the record 
length ( R L) field + 4 

To apply these formulas, let us assume that we have a data record 
for output to a 132 position line printer. To represent this data record 
in the variable format, we would establish the following values for 
block length and record length : 

I BL = 141 I R L = 137 I DATA= 133t 

In variable-length blocked records, record length is still computed as 
being equal to the size of the data area plus 4 bytes. The block length, 

tlncludes one byte for carriage control character. 



Programming Consecutive Files 461 

however, is computed as being equal to the sum of the values in each 
record length field in the block plus 4 bytes. For example, for blocked 
records, we might have the following figures: 

I BL RL RECORD 1 RL RECORD 2 RL RECORD 3 I 
B DATA DATA DATA B 
G 0234 0080 76 bytes 0100 96 bytes 0050 46 bytes G 

The insertion of the block length (BL) and record length (RL) 
values is done automatically by the system when the file is created. 
Variable-length records are automatically blocked if their lengths are 
such that two or more records can be placed into a block.* In writing a 
PL/I file declaration for this type of data set, the programmer simply 
specifies the maximum number of bytes for a block. In selecting a 
maximum blocksize, one must take into account the bytes required for 
block and record lengths. For example, assume that the largest record 
in a variable-length record file will not exceed 250 bytes and that we 
wish to assign up to three records to a block. The maximum blocksize 
we would specify is 766 bytes [V(766) ], which is computed as 
follows: 

750 (3 x 250-byte records) 
12 (3 x 4-byte record length fields) 

4 (1 x 4-byte block length field) 

766 bytes 

When variable-length records are processed, neither the block 
length nor the record length values are transferred to any declared 
structures, arrays, or scalar variables. 

Undefined-Length Records 

In this format, each block consists of only one record, though the 
blocks (i.e., records) may be of varying lengths. Only the maximum 
length of the largest record in the file is specified in the file declaration. 
If you desire a length specification in the record, you must, through 
programming, insert and retrieve it yourself; whereas, in the variable
length record format, the record length information is automatically 
manipulated by the system. 

*Assuming variable blocked (VB) records. 



462 PL/I Programming 

Allowable Block Lengths 

Block length is the size of the physical record. For most types of 
records, the minimum block length must be at least one byte. For I BM 
magnetic tape data sets, block length must be at least 18 bytes. For 
card input, using record 1/0, record length must be 80 bytes. Some 
device types and corresponding maximum block lengths are shown 
in Figure 9.3. 

The programming act1v1t1es involving data sets may be divided into 
three functions: file creation, retrieval, and update. 

When a consecutive data set is created, records are written in 
contiguous locations. Case Study One in this chapter will illustrate 
the programming steps required to create such a data set. 

Retrieval of records in a consecutive data set consists of reading 
every record up to and including the last desired record. While it is 
possible that some of the records in a consecutive data set are not to be 
processed, those records must still be input. For example, to read and 
process the fifth record in a tape file, it is necessary to read (but not 
process) the records that precede it. 

Updating of records consists of either modifying existing records, 
deleting records, or adding new records to a file. If new records are to 
be added to a consecutive data set, then the entire file with changes is, 
typically, copied onto another storage medium. For example, the diagram 
below shows how a magnetic tape file might be updated. 

Program 
to update a 
consecutive 

data set 

...._ _ ____,,~ Card file contains transactions affecting the 
old master tape file 



Programming Consecutive Files 463 

IBM device 

2540 
2540 (CTLASA, CTL360) 
1442 
1442 ( CTLASA, CTL360) 
2520 
2520 ( CTLASA, CTL360) 
2501 
1403 (PRINT attribute or CTLASA or CTL360) 
1403 (no PRINT attribute) 
1404 (PRINT attribute or CTLASA or CTL360) 
1404 (no PR INT attribute) 
1443 (PRINT attribute or CTLASA or CTL360) 
1443 (no PRINT attribute) 
1445 (PRINT attribute or CTLASA or CTL360) 
1445 (no PRINT attribute) 
2311 (no key) 
2311 (including key) 
2314 (no key) 
2314 (including key) 
2321 (no key) 
2321 (including key) 
3330 (no key) 
2305 Model 1 (no key) 
2305 Model 2 (no key) 
2301 (no key) 
3211 (no PRINT attribute) 
3211 (PRINT attribute or CTLASA or CTL360) 
2303 (no key) 

Maximum blocksize 
for F or V but not 

VS or VBS 

80 
81 
80 
81 
80 
81 
80 

133 
132 
133 
132 
145 
144 
114 
113 

3625 
3605 
7294 
7249 
2000 
1984 

13030 
14136 
14660 
20483 

132 or 150 
133 or 151 

4892 

FIGURE 9.3 Allowable maximum block lengths for IBM 1/0 devices. 

Obviously, now, the old master no longer contains current in
formation. The next time the tape file is to be updated, the new master 
along with the changes file constitute input to the update program. 
At this point, then, the new master becomes the old master (#2) and 



464 PL/I Programming 

yet another new master tape is produced. Typically, old master tapes 
are kept for a certain period of time before the data on these tapes is 
destroyed. The above diagram could illustrate the function of changing, 
deleting, or adding records to a tape file. The adding of records is often 
referred to as merging, which is the combining of records from two 
or more similarly sequenced files into one sequenced file. This is further 
illustrated in Case Study Two of this chapter. 

In the case of DASD files, records may be modified without 
creating a new data set, as is necessary for tape files. However, if 
records are to be added, then the data set with additions is copied 
onto another area of the same direct access device or another external 
storage medium. In deleting records from a DASD data set, the record 
could be flagged as being inactive or not rewritten if the data set is 
being copied onto another storage medium. 

There are a number of attributes and options that you may specify in 
the declaration of consecutive files. These are explained in the following 
paragraphs. 

FILE Attribute 

The Fl LE attribute, when used, denotes the identifier preceding 
FILE as a file name. For example, MASTER is declared to be a file 
name in the following statement: 

DECLARE MASTER FILE ... 

For documentation purposes, the Fl LE attribute should be declared. 
However, the word Fl LE does not have to be specified if the compiler 
can determine from the other attributes (IN PUT, OUTPUT, etc.) that 
the name declared could only be referring to a file. 

The break character should not be used in file names. This is 
because the character set of job control language does not contain the 
break character, and it is through job control that a file name is related 
to a specific data set. In the subset language, file names may be from 
one to six alphameric characters; in the full language, file names may 
be from one to seven alphameric characters. 



Programmin~ Consecutive Files 465 

EXTERNAL/INTERNAL Attributes 

EXTERNAL is always the default attribute for file names. It means 
that a declared file may be known in other PL/I procedures, providing 
those blocks also contain an external declaration of the same file name. 
The INTERNAL attribute specifies that the file name be known only 
in the procedure block in which it was declared. INTERNAL may not 
be specified in the subset language implementations. 

STREAM and RECORD Attributes 

These attributes describe the characteristics of the data to be 
used in input and output file operations. The STREAM attribute causes 
the file associated with the file name to be treated as a continuous 
stream of data in character format. The STREAM attribute can be speci
fied only for files of consecutive organization. 

The RECORD attribute causes the file associated with the file 
name to be treated as a sequence of logical records, each record 
consisting of one or more data items recorded in any internal data 
format. If neither is specified, the default attribute is STREAM. 

INPUT, OUTPUT, and UPDATE Attributes 

These attributes determine the direction of data transfer. The 
INPUT attribute applies to files that are to be read only. The OUTPUT 
attribute applies to files that are to be created or extended, and hence 
are to be written only. The UPDATE attribute describes a file that can 
be used for both input and output; it allows records in an existing file 
to be altered, and it applies only to files located on a direct access 
device. 

SEQUENTIAL, DIRECT, and TRANSIENT Attributes 

These are access attributes and apply only to a file with the 
RECORD attribute. The access attributes describe how the records in a 
file are to be created or retrieved. 

The SEQUENTIAL attribute specifies that records in a data set 
are to be accessed in physical sequence-that is, from the first record 
of the data set to the last. 

The DIRECT attribute specifies that records in a data set are 
accessed in random order. The location of the record in the data set is 



466 PL/I Programming 

determined by a key. A key is a unique character-string identifying each 
record in a data set. For example, it could be a part number in an inven
tory file or an employee man number in a payroll file. Keys and the 
DIRECT attribute will be more fully discussed in the next chapter, 
which deals with INDEXED and REGIONAL files. 

The TRANSi ENT attribute applies to files used for teleprocess
ing applications and is implemented only for OS level compilers. 

BUFFERED and UNBUFFERED Attributes 

The buffering attributes apply to a file that has the SEQUENTIAL 
and RECORD attributes. The BUFFERED attribute indicates that 
logical records transferred to and from a file must pass through an 
intermediate storage area. The size of the buffer corresponds to the 
size of the physical records in the data set associated with the file. The 
use of buffers may help speed up processing by allowing overlap of 
1/0 and computing time. 

The UNBUFFERED attribute indicates that a logical record in a 
data set need not pass through a buffer, but can be transferred di
rectly to and from the internal storage associated with a variable 
name. Records may not be blocked in a data set having the UNBUF
FERED attribute. Generally, there are no performance advantages to 
specifying the UNBUFFERED attribute. 

A buffer is an area of main storage that is automatically reserved 
by PL/I for files having the BUFFERED attribute.t In this case, when 
data is to be input, the input characters are first read into the buffer 
and then transferred to your named structure or other data area. 

In put characters----+ L-I _____ ___,,----.___ _____ __, 

Buffer CARD_AREA 

While a program is processing data in the CARD_AREA, it is possible 
for the system input routines to be reading the next record into the 
buffer. The reading of another record while concurrently processing 
the previous record is referred to as overlapping. In the case of blocked 
records, it would be necessary to have at least two buffers reserved to 
overlap input and processing from the same file, or processing and 
output to the same file. To indicate the number of buffers reserved, 

tThe size of the buffer is the size of the physical record; e.g., if F(800,80) is declared, 
buffer size will be 800 bytes. 



Programming Consecutive Files 467 

the BUFFERS option is specified in the ENVIRONMENT section of a 
file declaration. Generally, the use of buffers improves the throughput 
of data to or from a program. The BUFFERED attribute applies to both 
input and output files. 

BACKWARDS Attribute 

This attribute applies to files stored on magnetic tape when reverse 
processing (i.e., from last record to first) is desired. 

KEYED Attribute 

This attribute indicates that records in the file can be accessed 
by means of a key. The stream attribute cannot be applied to a file 
that has the KEYED attribute. The nature and use of keys is discussed 
in Chapter 10. 

ENVIRONMENT Attribute 

The ENVIRONMENT attribute specifies the physical character
istics of the file and the type of device on which the file is now stored 
or will be stored. These characteristics are indicated in a parenthesized 
option list following the ENVIRONMENT attribute specification. They 
are not a part of the PL/I language; they are keywords having to do 
with the capabilities or limitations of specific PL/I implementatiQns. 
Following is a list of some of the PL/I keywords that may appear in 
the ENVIRONMENT option list. These keywords will be defined either 
on the following pages of this chapter or in the next chapter dealing 
with indexed sequential and direct files: 

FI FB 
V I VB I VS I VBS 
u 
BUFFERS(n) 

, CTLASA I CTL360 
LEAVE I REWIND 
NOTAPEMK 
NO LABEL 
CONSECUTIVE I INDEXED I REGIONAL(1) I REGIONAL(2) I 

REGIONAL(3) 
VERIFY 
MEDIUM 



468 PL/I Programming 

F (blocksize). The F designates that records in this data set are 
fixed length. The blocksize refers to the size of the physical record. 
For example, F (80) means that each record in a data set is 80 char
acters (or bytes) long. 

F (blocksize, recsize). Records in this data set are fixed length and 
blocked on tape or DASO files. All blocks contain the same number of 
records except, perhaps, the last block in the file. The blocksize is the 
total number of bytes in the physical record, whereas the recsize is the 
number of bytes in one logical record contained within the block. For 
example: 

F (500, 100) 

I .___ ___ Logical record length is 100 bytes 

--------) Physical record (block) length is 500 
bytes; five logical records will thus 
be grouped together in the block 

V (maxblocksize). Figure 9.2 illustrates the format of this type of 
record. As shown in that figure, the first four bytes of each block are 
the block length. In DOS, as many records as will evenly fit are placed 
in the block. Each record in the block is also preceded by a four-byte 
record control field. In this ENVIRONMENT option, the maximum 
blocksize must include the number of bytes required for the data as 
well as the control fields. For example: 

v (250) 

( 

-------+ Using Figure 9.2 as an example, the blocked 
record format requiring a total of 234 bytes 
would "fit'' into this maximum blocksize 

Allows V format records for a printer 

Subset language No 

Full language Yes 

V (maxblocksize, maxrecsize). In this format type, the program
mer may specify the maximum blocksize and the maximum record size. 
Again, four bytes must be provided for the block as well as four bytes 
for each record. The record size must never exceed the blocksize. 



Programming Consecutive Files 469 

[For example, if the maximum data length anticipated is 120 bytes, a 
blocksize of not less than 128 bytes must be specified, whether the 
records are blocked or not, inasmuch as unblocked records are con
sidered to be in blocks of one record each; if the records are blocked, 
the record size must not be more than 124 bytes (assuming 128-byte 
block).] This format applies to OS. 

U (maxblocksize). Each block on tape or DASO consists of one 
record. The blocks (records) are of varying lengths. No system control 
bytes appear in the block. For example: 

u (500) 

'-----+ Maximum record length is 500 bytes, 
though some may be smaller 

Record Format Options for the Optimizing Compilers. Record 
formats in the DOS or OS PL/I Optimizing Compilers may be specified 
in one of the following formats: 

F Fixed-length, unblocked 
FB Fixed-length, blocked 
V Variable-length, unblocked 
VB Variable-length, blocked 
U Undefined-length, cannot be blocked 

Following one of the .above record format designations (i.e., F, FB, 
etc.) the keyword BLKSIZE(n) and/or RECSIZE(n) is to be specified, 
where n may be a decimal integer constant or a variable with the 
attributes FIXED BINARY(31) STATIC. Here are some examples: 

F BLKSIZE(80) or F RECSIZE(80) 
FB BLKSIZE(800) RECSIZE(80) 
V BLKSIZE(400) or V RECSIZE(400) 
VB BLKSIZE(256) RECSIZE(126) 
U BLKSIZE(500) 

Here is an example in which the record length specified is a variable: 

DCL SIZE FIXED BINARY(31) STATIC; 
DCL ALPHA FILE RECORD OUTPUT ENV(F BLKSIZE(SIZE)); 

Spanned Records. This record type is available through OS. There 
are several record formats that may be specified: 

VS Variable-length, spanned 
VBS Variable-length, blocked, spanned 



470 PL/I Programming 

These record formats are known as spanned records, because they can 
start in one block and be continued in the next. But the programmer is 
concerned only with complete records; segmentation and reassembly 
are handled automatically. The use of spanned records allows the 
programmer to select a blocksize, independently of record size, that 
will combine optimum usage of external storage space with maximum 
efficiency of transmission. The general forms of these record types 
are listed here. 

PL/I F 
VS(maxblocksize) 
VS ( maxblocksize,maxrecsize) 
VBS(maxblocksize) 
VBS(maxblocksize,maxrecsize) 

OS PL/I Optimizing Compiler 
VS BLKSIZE(m) 
VS BLKSIZ~(m) RECSIZE(n) 
VBS BLKSIZE(m) 
VBS BLKSIZE(m) RECSIZE(n) 

The record size specified for VS format records can exceed the 
blocksize; if necessary, the records are segmented, and the segments 
are placed in consecutive blocks. Each block can contain only one 
record or segment of a record, and each contains two four-byte fields, 
one to specify the block length and the other the record or segment 
length. For example, if the record format is specified as VS(80, 200), 
a record that includes 180 bytes of data will appear in the data set as 
two blocks of 80 bytes (8 control bytes and 72 data bytes) and one 
block of 44 bytes (8 control bytes and 36 data bytes). 

VBS format differs from VS format only in that each block con
tains as many records or segments as it can accommodate; each block 
is, therefore, substantially the same size (although there can be a 
variation of up to four bytes, inasmuch as each segment must contain 
at least one byte of data). For example, a block might contain the last 
segment of one record, or more complete records and the first segment 
of another record. 

BUFFERS(n) Option. The BUFFERS(n) option is used to specify 
the number of buffers to be used in files having the BUFFERED attribute. 
In the subset language, BUFFERS(2) is the maximum that may be 
specified. 

CTLASA I CTL360 Options. The CTLASA and the CTL360 options 
are two mutually exclusive options of the ENVIRONMENT attribute 
which are used for record printer and punch files; they specify whether ' 
the first character of the record is to be interpreted as an ASA or 
System/360 control character. It is the programmer's responsibility to 



Programming Consecutive Files 471 

provide a correct control character as the first character of the record 
variable. 

The character codes that can be used with CTLASA are listed with 
their interpretations in Figure 8.3. The 8-bit codes that can be used 
with CTL360 are given in Figure 8.4. Unpredictable results will occur 
if the control character is not one of those listed. 

LEAVE Option. The LEAVE option is used to specify that no rewind 
operation is to be performed at file open or close time. It should be 
used for files having the BACKWARDS attribute to ensure proper 
positioning of the file. 

REWIND Option. This option specifies the action to be taken when 
the end of a magnetic tape volume is reached, or when a data set on a 
magnetic tape volume is closed. The disposition of the data set deter
mines the action taken. For example, if the file is to be kept (DISP= 
KEEP or DISP=CATLG in OS job control statement), then the tape is 
rewound to the beginning of the volume and unloaded. On the other 
hand, if the file is to be deleted in this job step (DISP= DELETE), then 
the tape is rewound to the beginning of the volume but not unloaded. 
Finally, if the file is to be passed on to another job step (DISP=PASS), 
the tape is wound on to the end of the data set or repositioned at the 
beginning for a data set that does not have the BACKWARDS attribute. 
REWIND is not available in DOS/TOS. 

NOTAPEMK Option. Available only in DOS/TOS, the NOTAPEMK 
option for tape files enables the programmer to prevent the writing of a 
leading tapemark ahead of the data records on unlabeled tape files. 
NOTAPEMK may be used for tape OUTPUT files with NOLABEL 
specified. This option is not allowed for UNBUFFERED files. 

NOLABEL Option. Available in DOS/TOS only, the NOLABEL 
option is used to specify that no file labels are to be processed for a 
magnetic tape file. This option would be used for scratch tapes; that is, 
tapes onto which data is to be temporarily written during the execution 
of the program. Permanent tapes should always have labels as a pro
tection against inadvertent destruction of the tape's data through 
programming errors. 

CONSECUTIVE Option. This is the type of data set organization in 
which records are organized on the basis of their successive physical 
positions in the data set. Records in this type of file organization can 
only be processed in sequential order. Input/output devices permitted 



472 PL/I Programming 

for consecutive files include magnetic tape drives, card readers and 
punches, line printers, disks, and drums. 

VERIFY Option. Available in DOS/TOS only, the VERIFY option is 
used to specify that a read and check data is to be performed after every 
write operation. This option is permitted only with a direct access device. 

MEDIUM Option. Available only in DOS/TOS, this option is used 
to connect or relate a logical unit name and the physical device with 
which you wish to communicate in your PL/I program. Logical unit 
names always begin with the letters SYS, followed by either three 
letters that have a special meaning or by three numeric digits of your 
choice. The logical unit name has the form SYSxxx; the following 
list defines the possible designations that xxx may take: 

IPT 
LST 
PCH 
000-244 

System input device (e.g., card rc.1der) 
System output device (e.g., printer) 
System output device (e.g., card punch) 
Logical units SYSOOO through SYS244 

The physical device is simply referred to by its number. For example, 
the IBM 1442 Card Read/Punch would be designated 

... MEDIUM (SYSIPT, 1442) ... 

I ..___ ___ ~ Physical device number 

'--------~) Logical unit name 

.___ __________ __,.)ENVIRONMENT attribute 

keyword 

The physical device numbers specified would depend on the 1/0 devices 
available with the computer on which your PL/I program is to be run. 

The OPEN statement for a stream or record file associates a file name 
with a data set. It can also be used to specify additional attributes for a 
file if a complete set of attributes has not been previously declared. 
The general format is 

OPEN FILE (filename) additional attributes; 



Programming Consecutive Files 473 

/' 
Attributes that may be specified in 

\ 

OPEN statement 

DOS PAGESIZE 
INPUT and OUTPUT if file has UNBUFFERED 

attribute 

OS BUFFERED or UNBUFFERED 
STREAM or RECORD 
INPUT, OUTPUT, or UPDATE 
PRINT, LINESIZE, PAGESIZE 
DIRECT or SEQUENTIAL 
BACKWARDS 
KEYED, EXCLUSIVE 
TITLE 

If attributes are specified in the OPEN statement, then those 
attributes must not be specified in the file declaration statement. If 
several files are to be opened at one time, it is more efficient in some 
operating systems to open them with one OPEN statement, e.g., 

OPEN FILE(CARDIN),FILE(PRINTR),FILE(TAPE); 

than to code three separate OPEN statements: 

OPEN FILE(CARDIN); 
OPEN FILE(PRINTR); 
OPEN FILE(TAPE); 

The options LINESIZE and PAGESIZE were described in Chapter 
5, which covered stream 1/0, as these options may only be specified 
for stream files. The TITLE option, which is available in OS, allows a 
programmer to choose dynamically-at open time-one among 
several data sets to be associated with a particular file name. Consult 
the appropriate PL/I reference manual (i.e., PL/I For OS PL/I optimizing 
compiler) for a detailed description of this option and its related job 
control statements. 



474 PL/I Programming 

The REWRITE statement is a record output statement that transfers 
a record from a variable in internal storage to an UPDATE file. The 
general format is 

REWRITE FILE(filename)FROM(variable); 

The syntax rules for this statement are the same as for the READ and 
WRITE statements. The REWRITE statement would be used in con
secutive file programming when it is desired to modify an existing record 
in that file, whereas a WRITE statement is issued when it is desired 
to create a consecutive file. 

Two case studies are presented in this chapter. The first case 
study will create a master payroll tape and the second case study will 
process that tape. 

A master payroll tape file is to be created. The tape records are in 
sequence by Social Security number and contain the following fields: 

1 . Employee name 
2. Social Security number 
3. Year-to-date gross earnings 
4. Year-to-date tax withheld 
5. Year-to-date FICA (Social Security Insurance) withheld 

Figure 9.4 is a program flowchart for creating this master payroll tape. 
The program is to read cards punched with the employee payroll 
information and write these records on magnetic tape. A count of the 
number of records written on tape is to be accumulated and printed at 
the end of the job. In addition, the records are to be listed on the line 
printer as they are being written on tape. Because the tape records 
must be in Social Security number order, the program should also 
sequence check the input cards. Should a card be out of sequence, an 
error message is to be printed, the remaining input cards are to be read 
but not processed, and the job is to be terminated. 



Start 

SAVE=O 

COUNT=O 

COUNT=COUNT+1 

SAVE=SS # 

Move card 
data to 

tape area 

WRITE 
COUNT 

on printer 

WRITE out 
of sequence 

error 
message 

END 

END 

FIGURE 9.4 Flowchart for Case Study One. 



476 PL/I Programming 

Description of the Data 

Following is the structure that describes the card input data : 

OCL l CARO_AREA, 
2 NAME CHAR(20), 
2 SOCIAL_SECURITY_# PIC'(9)9 1 , 

2 GROSS PJC 1 99999V99', 
2 TAX PIC '9999V99't 
2 FICA PIC'999V99 1 , 

2 REST_OF_RECORO CHARf33J; 

All of the items in the above structure, with the exception of REST_ 
OF_ RECORD, require a total of 47 characters. However, the corre
sponding tape record will require fewer bytes because some of the 
data fields may be stored in a more compact fashion on tape (i.e., 
packed decimal). Here is the structure that describes the tape record: 

DCL l TAPE_AREA, 
2 NAME CHAR(20), ,. 20 BYTES ., 
2 SOC IAL_SECUR ITV_# PIC'(9t9', I* 9 BYTES *I 
2 GROSS FIXE0(7,2), ,. 4 BYTES •I 
2 TAX FIXE0{6 9 2), I* 4 BYTES •I 
2 FICA FIXEDC5,2)~ ,. 3 BYTES •I 

Because GROSS, TAX, and FICA may be represented in FIXED 
DECIMAL, the number of bytes required for those fields on tape is less 
than the number of columns (characters) required for those fields in a 
punched card. The card record data requires 47 characters of storage, 
whereas the tape record data will require only 40 characters. 

In Case Study Two, the data from this master tape will be read. 
It is imperative that identical attributes be declared for the structure 
into which the tape records are to be input. Of course, the elementary 
item names do not have to be the same. 

Creation of a Consecutive File 

Figure 9.5 shows the program that creates the master payroll 
tape. Several statements to study in this program are discussed below. 

Statement 3. The master tape file is declared in this statement. 
Notice that the records are blocked, ten records to the block. This 
affords us greater efficiency in the use of space on the tape. For OS 
PL/I compilers, the MEDIUM option would not appear in the declara
tion. The symbolic unit name, SYS005, is arbitrarily selected: Through 



Programming Consecutive Files 477 

I* CREATE MASTER TAPE FILE *I 
l CASEl: PROC OPTIONS(MAINJ; 
2 OCL CARDIN FILE INPUT RECORD ENVfFl80lMEDlUMlSYSIPT 1 2540lJ; 
3 DCL TAPE FILE OUTPUT RECORD ENVlFl400,40JMEOlUM(SYS005,2400)J; 
4 OCL COUNT FIXED BINARY INITtOJ, SAVE PIC 1 19)91 INITlOJ; 
5 ON ENDFILE(CAROIN) GO TO EOJ; 
6 OPEN FILElTAPEl,FILEICARDINJ; 
7 OCL l CARO_AREAt 

2 NAME CHARl20l, 
2 SOCIAL_SECURITY_# PIC 1 19)9 1 , 

2 GROSS PIC 1 99999V99 1t 
2 TAX PIC '9999V99 1 , 

2 FICA PIC'999V99 1 , 

2 REST_OF_RECORD CHARl33); 
8 OCL l TAPE_AREA, 

2 NAME CHAR(20lt I* 20 BYTES */ 
2 SOCIAL_SECURITY_# PIC'l9J9 1 , I* 9 BYTES *I 
2 GROSS FIXE0(7,2), I* 4 BYTES *I 
2 TAX FIXEDl6,2J1 I* 4 BYTES *I 
2 FICA FIXEDl5,2l; I* 3 BYTES *I 

9 LOOP: READ FILElCAROINJINTOICARD_AREAl; 
10 IF SAVE >= CARO_AREA.SOCIAL_SECURITY_# THEN DO; 
11 ON ENDFILEICARDINl GO TO FINI; 
12 PUT PAGE LISTl 1 PAVROLL RECORDS OUT OF SEQUENCE 1 J; 
13 CANCEL: READ FILElCARDINJINTOICARO_AREAI; 
14 GO TO CANCEL; 
15 ENO; 
16 COUNT = COUNT + l; 
17 SAVE= CARO_AREA.SOCIAL_SECURITY_t; 
18 TAPE_AREA.NAME = CARD_AREA.NAME; 
19 TAPE_AREA.SOCIAL_SECURITY_# = CARD_AREA.SOCIAL_SECURlTY_#; 
20 TAPE_AREA.GROSS = CARO_AREA.GROSS; 
21 TAPE_AREA.TAX = CARO_AREA.TAX; 
22 TAPE_AREA.FICA = CARD_AREA.FICA; 
23 WRITE FILElTAPEJ FROMtTAPE_AREAI; 

I* THE FOLLOWING STATEMENT PROVIDES A LISTING Of TAPE RECORDS*/ 
24 PUT SKIP LISTtTAPE_AREAJ; 
25 GO TO LOOP; 
26 EOJ: PUT SK1Pl3JLISTl 1 NO. OF RECORDS ON TAPE 15 1 ,COUNTJ; 
27 FINI: END; 

FIGURE 9.5 Program to create master tape file. 

job control statements, the SYS005 is related to the physical drive on 
which the tape is mounted. Consult the appropriate PL/I programmer's 
guide for job control statements needed.t 

Statements 18-22. These statements move the CARD _AR EA 
elements to the TAPE_AREA structure. In full language implementa
tions, these five statements could be replaced with the following 
statement: 

TAPE_AREA=CARD_AREA,BY NAME; 

This is possible because the elementary item names in both structures 
are identical for those fields that appear in both structures. 

tAppendix B provides a bibliography of these programmer's guides. 



478 PL/I Programming 

Statement 24. This PUT LIST statement prints the data previously 
written on tape. Notice how only the structure name, TAPE_AR EA, is 
specified. However, each field within this structure is output separately, 
one field per tab position. Figure 9.6 shows a small sampling of the 
output listing. 

It should be noted that in this case study there would be no 
difference in the programming approach had we wished to create a 
consecutive file on a disk or other DASO. The only program modification 
would be to change the MEDIUM option in a DOS/TOS program from 

... MED I UM (SYS005,2400) ... 

.....__ ____ ~ IBM tape drive 

to 

... MEDI UM (SYS005,2314) ... 

.....__ _____ IBM disk drive 

ACKLER,R.N. 
BERN, G.D. 
ROSS,M.L. 
JONES 
LONG,E.F. 

139281782 
241639842 
336459110 
610283467 
7C7112693 

NO. OF RECORDS ON TAPE IS 

4982.26 
9581.31 

11218.45 
8460.25 

12 000. 00 

5 

896.45 
1916.26 
2243.69 
1392.85 
2400.00 

FIGURE 9.6 Sample output of data written from tape. 

249. ll 
374.40 
374.40 
317.83 
374.40 

The Purpose of this case study is to illustrate the usefulness of con
secutive files and to provide examples of their file declarations. 

This problem illustrates the merging of two files. One of these is 
the tape master file created in Case Study One; the other is a card file 
containing new records to be added to the tape master file. The records 
in each file are in Social Security number sequence. As the new master 
tape is being created, all records are to be listed on the line printer and 
the input cards are to be checked for ascending sequence of Social 
Security number. In addition, an exception report is to be printed if the 
tape file already contains a payroll master record equivalent to the one 
being added in the card file. The diagram illustrates the flow of data in 
this case study. As you can see, two reports are to be output: the 
listing of all regular records in the new master payroll tape and the 



Programming Consecutive Files 479 

"Process" 

exception listing for duplicate records found. Assuming there is only 
one line printer available for this program, the problem becomes one of 
how to print two reports when the information for those reports is 
determined only at the time the tape and card records are read. The 
records in the regular report are to be listed as all records are written on 
the new master tape. However, because the line printer is being used 
for the regular report, it will be necessary to store the data for the 
exception report elsewhere. A consecutive disk file will meet our 
needs. Thus, as the output for the exception report is determined, that 
information will be written on a disk file. At the conclusion of the 
program, the contents of the file will be printed.t 

File and Data Area Declarations 

As mentioned before, the tape input will be the newly created 
master file from Case Study One, which, when processed as input 
to the Case Study Two program, becomes the old master called OLDTP. 
The following are the file and tape input area declarations: 

OCL OLOTP FILE INPUT RECORD ENV(f(400,40tMEOIUM(SYS006,2400) ); 
OCL l TAPE, 

2 NAME CHARl20J, 
2 SS_# PIC'(9)9', 
2 YTD_GROSS FIXE0(7,2), 
2 YTO_TAX FIXE0(6,2), 
2 YTO_FICA fIXE0(5,2); 

tin the OS operating system for S/360 or S/370, the programming step of writing the 
exception report to the disk would not be necessary because of the Output Writer feature 
of OS. 



480 PL/I Programming 

Note that the blocking factor in the OLDTP declaration must be 
identical to that in the program which created this tape. Also, the 
elements of the data area structure must have attributes identical to 
those of the structure from which the data was written initially. 

The new master tape will also have the same specifications as the 
old master. The following are the file and tape output area declarations: 

OCL NEWTP FILE OUTPUT RECORD ENV(f(400,40)MEOIUM(SYS005,2400)); 
DCL 1 TAPE_our, 

2 NAME CHAR(2Q), 
2 SS_# PIC 1 (9)9 1 , 

2 YTO_GROSS FIXE0(7,2), 
2 YTO_TAX FIXE0(6,2), 
2 YTO_FICA FIXEDC5,2); 

In the full language implementations, it would be possible to use the 
LI KE attribute in the structure declaration for TAPE_ OUT, because the 
elementary items are identical to those declared in the TAPE structure. 
Thus, this statement could have been coded: 

DCL 1 TAPE_ OUT LIKE TAPE; 

The card input file contains the records to be merged with the old 
master tape records. Here are the file declaration and corresponding 
card input area declaration : 

DCL CARDIN FILE INPUT RECORD ENV(f(80)MEOIUM(SYSIPT,2540)); 
OCL l CARO, 

2 CARO_RECORO, 
3 NAME CHAR(20), 
3 SS_# PIC 1 (9)9 1 , 

3 GROSS PIC'(5)9V99 1 t 

3 TAX PIC'(4)9V99', 
3 FICA PIC'(3J9V99 1 , 

2 REST CHAR(33); 

Figure 9.7 shows the desired output for the regular report. Notice that 
print positions are required. In addition to detail lines, headings are to 

1111111111222222222233333333334444444444555555555566666666667777777777 
1234567890 I 23456789012345678901234567890123456789012345678901234567890123456789 

.lj Ji j Ji °I" tr W: a I~ Ir JI 1J: b JI lL l1 i le 1rf i lL i 

~-· 

FIGURE 9.7 Regular report printer layout. 



Programming Consecutive Files 481 

be printed. For purposes of simplicity, this case study will not consider 
page overflow programming; the method has been covered in previous 
chapters. Here are the printer file and print output area declarations: 

OCL PRINTR FILE OUTPUT RECORD 
ENVIF(75JCTLASA MEDIUMlSYSLST,1403)); 

OCL HONG CHARC75) DEF PRINT_OUT; 
OCL 1 PRINT_OUT, 

2 CC CHAR( U, 
2 AREA, 

3 NAME CHAR(25>, 
3 SS_# CHAR(l5), 
3 GROSS PIC'ZZ,ZZZV.99(5)8', 
3 TAX PIC'ZZ,ZZZV.99(5)8', 
3 FICA PIC'ZZZV.99'; 

While 74 positions are needed for printing, we can see that 75 
positions are actually specified because of the CTLASA option in the 
file declaration. This option, you will recall, requires that the first char
acter of the output area be set aside for carriage control. Although page 
overflow will not be used, for the purpose of printing headings the 
initial skipping to a new page will be incorporated in the program. 
Notice that H DNG is declared as a character-string and that it is 
overlay defined on PRINT _OUT. HDNG will be the receiving field for the 
character-string constants that make up the page headings. The overlay 
defining technique was selected because it saves storage. 

Figure 9.8 shows the desired output for the exception report. 
Notice that the layout of the detail lines in this report is identical to 
that of the regular report. Thus, the PR I NT_ OUT area declared above 
will also suffice for the handling of the exception data. If a duplicate 
record is found during the creation of the new master tape, the excep
tion record will be moved to the PRINT _OUT structure and that 
structure's contents will be written into a sequential disk file. This 
physical file is both output and input. It is an output file while records 
are being written onto it. At the termination of the case study program, 
it is time to print the contents of this file. It then becomes an input file 
inasmuch as the records previously written must be read into main 

111 111 111 1 2 2 2 2 2 2 2 2 2 2 3 3 3 333 3 3 3 3 4 4 444 444 4 4 5 555 5555 5 5 666 6 6 6 6666 7 7 7 7 7 7 7 7 7 7 8 
1 2 3 456 7 8. 0 1 2 3 456 7 8 901 2 3 4 5 6 7 8 9 0 12 3 4 5 678 901 234 567 890 1 2 3 4 !5 6 7 8 9 0 I 2 3 4 5 6789 0 1 2 345 6 7 8 90 

l'Tl"ARJ: ~I 

"" 
la1ll l~ii .~ lij~ ·I* ~ .ij 
l~ll lllill ·lll.11 liil1 ~111.r llb 

)C l~il 1M!.11 •li\jj l1h "J ·lit• !JI !JI ·11~ 
1T 

FIGURE 9.8 Exception report printer layout. 



482 PL/I Programming 

storage before printing can take place. Because the attributes IN PUT 
and OUTPUT would constitute conflicting attributes if they both 
appeared in one file, it will be necessary to declare the following two 
files: 

OCL OKCUT FILE OUTPUT RECORD ENV(F(750,75)MEOIUMCSYS007,23ll)J; 
OCL OKIN FILE lNPUT RECORD ENV(f(750,75)MEDIUM{SYS007,23lllt; 

Two names, OKIN and DKOUT, are given to the same physical file. 
Through job control statements in the various operating systems, the 
file names OKIN and DKOUT are designated as referring to the same 
physical file. 

Notice that the record length in both file declarations is 75 and the 
block length is 750. When records are blocked and the record length 
is not divisible by eight, in some compilers you will get a warning 
diagnostic during compilation. Such would be the situation with this 
program. Thus, we would receive the following message: 

DECLARE STATEMENT DIAGNOSTICS. 

W RECOROSIZE OF RECORD NOT DIVISIBLE BY 8 IN FILE OKOUT 
W RECORDSIZE OF RECORD NOT DIVISIBLE BY 8 IN FILE OKIN 

'--------> W for "warning" 

Because this is only a warning, it does not interfere with the correct 
execution of this program. However, should a structure contain data 
items that require boundary alignment (e.g., FIXED BINARY must be 
on a fullword boundary), then you must take corrective action regarding 
the above diagnostic. The action would consist of declaring in the 
structure a variable with a character length attribute long enough to 
bring the record size up to a value that is divisible by eight. Inasmuch 
as our PRINT _OUT structure contains the data to be written into the 
DKOUT file, and because there are no boundary alignment require
ments for the PICTURE and CHARACTER data contained in that 
structure, the warning message may be ignored. 

Other Declarations in the Case Study 

Sequence Checking. For the purpose of verifying that the card 
input records are in ascending sequence according to Social Security 



Programming Consecutive Files 483 

number, a variable must be declared and initialized to zero. For example: 

DCL PR EV _SS_# PIC'(9)9'1NIT(O); 

Then, when each card is read, the Social Security number must be 
ascertained to be greater than the previous Social Security number. 
If the new number is greater than the value in PREV _SS_#, then the 
new number is moved into PREV _SS_#. 

This sequence checking is done in the source statements 25-29 
(see Figure 9.10). Notice from these statements that if the new Social 
Security number is not greater than the value in PR EV _SS_#, then a 
sequence error exists. In this case, the program prints an error message 
and terminates the program with a RETURN statement. 

Program Switches. A switch is a condition-remembering "device," 
and the device, in turn, is actually an identifier or variable. When set 
to a value of "zero," for example, it may indicate that a certain condition 
does not exist; when set to a value of "one," it may indicate that the 
condition does exist. In this case study program, three program switches 
are needed: 

DCL (TP _ENDED,CD_ENDED,EXCPTN)BIT(1) INIT('O'B); 

The first two switches, TP_ENDED and CD_ENDED, will be set to a 
value of '1 'B whenever an end-of-file condition arises on either the 
OLDTP or the CARDIN file, respectively. Initially, both switches are 
set to 'O'B. Likewise, the switch named EXCPTN will be set to '1 'B 
whenever an exception record is written onto the disk file. If, at the end 
of the program, EXCPTN = 'O'B, as it was initially, we know that no 
duplicate records were encountered and that exception report needs 
to be written. If EXCPTN is '1 'B, there is at least one record on the disk 
file that must be printed. 

Altering Program Flow. This can be accomplished through the 
use of another form of switch declared to have the LABEL attribute. 
For example: 

DCL NEXLOPER LABEL; 

The identifier NEXT _QPER will be set to one of two labels in the pro
gram. After a record has been written onto the new master tape, 
NEXT _OPER will contain the label of the point to which the program 
is to transfer. 



484 PL/I Programming 

Handling Two End-of-File Conditions 

Because there are two input files to this program, CARDIN and 
OLDTP, two end-of-file conditions will be raised: one for the card 
reader and one for the old master tape. Here are the ON statements for 
this program: 

ON ENDFILE(OLDTP) GO TO END_ TP; 
ON ENDFILE(CARDIN) GO TO END_CD; 

When the statement labeled END_ TP is reached, and before it is 
executed, a check must be made to see if CARDIN has actually en
countered end-of-file. If so, the program is concluded by printing the 
exception report. If CARDIN has not reached end-of-file, we must 
remember the fact that OLDTP has ended by setting the TP _ENDED 
switch to '1 'B. Moreover, in case the card file contains a record with a 
Social Security number greater than the last record on OLDTP, we 
must ensure that all the remaining cards are merged into the NEWTP 
file. We can do this by placing a very high SS_# in the tape input 
area (e.g., all 9's). It will be this high SS_# which will be compared , 
against the remainder of the card file. The same kind of action must be 
taken whenever the CARDIN file is exhausted. 

Opening of Files 

All files, except OKIN, may be opened at the beginning of the 
program. For example: 

OPEN FllE(CARDIN), FILECOLOTP),FILE(NEWTP), 
FILEIPRINTRJ, FILECOKOUT); 

Recall that OKIN and DKOUT are physically the same file. Thus, when 
DKOUT is open and we are communicating with that file, it is as though 
OKIN does not exist. However, when DKOUT is closed, we may then 
open OKIN and read records from the beginning of that file. 

Writing Headings 

The following are the statements that output the two heading 
lines for the regular report: 

HDNG='lY EA R - T 0 - DATE PAY R 0 L l 
ll'T 0 TA ls•; 
WRITE FILE(PRINTR) FROM(PRINT_OUT); 
HDNG='-NAME' 11 { 21). • 11 •SOC.SEC.#' I I ( 8). 'I I 'GROSS' I I (9)' I JI 
'TAX'I 1(9)' 'll'FICA•; 
WRITE FILE(PRINTR) FROM(PRINT_OUTt; 

:: 



Programming Consecutive Files 485 

The flowchart in Figure 9.9 diagrams the logic for the merging 
of the card and tape files. Figure 9.10 shows the entire program that 
accomplishes the problem defined in this case study. The coding utilized 
should be familiar to you at this point in the book; hence, it will not 
be discussed in any more detail. You should study the coding, however, 
in preparation for tackling Practice Problem 2 at the end of this chapter. 

Figure 9.11 shows the sample output from Case Study Two. A 
comparison of this output with the output from Case Study One 
(Figure 9.6) shows that three new records were added to the master 
file and that the records were added in the proper sequence. 

Consecutive Files: In a consecutive file, records are organized on the 
basis of their successive physical positions as on magnetic tape or in punched 
cards. Records having this type of file organization can be processed or retrieved 
in sequential order only. 

Physical and Logical Records: A physical record is the unit of data that 
is physically transferred to and from an external storage medium. Each physical 
record consists of one or more logical records. The grouping of logical records 
is commonly referred to as "the blocking of records." 

Logical Record Formats 

1. Fixed-length records: Fixed-length records may be either blocked or 
unblocked and may reside on any device. 

2. Variable-length records: Magnetic tapes, disks, drums, etc., because 
of their physical features, have the flexibility for storing data sets having 
variable-length records. In a data set having variable-length records, each 
record may be of a different length, and records may be blocked or 
unblocked. In writing a PL/I file declaration for this type of file, the 
programmer simply specifies the maximum number of bytes for a block. 
For example, the variable length specification for a line printer with 132 
positions would be V(141) [carriage control character included]. 

3. Undefined-length records. In this format, each block consists of only 
one record, though the blocks may be of varying lengths. Only the maxi
mum length of the largest record in the file is specified. 

Characteristics of Consecutive Files: When a consecutive file is created, 
records are written in contiguous locations. Retrieval of records in a consecutive 



Start 

SAVE 
SS....ft in 

PREV_SS_# 

Set 
EXCPTN 
= '1'8 

Write 
EXCEPTION 

record 

Write 
error 

tnessage 

Return 

Move tape 
record to 

TAPE_OUT 

Move card 
record to 

TAPE_OUT 

= READ_CD 

Set 
NEXT_OPER 
to READ_TP 

Set 
NEXT_OPER 
to READ_CD 

FIGURE 9.9 Flowchart for Case Study Two. 

Read 
OLDTP 

file 

Move data 
to print 

area 

Write 
PRINTR 

file 



Programming Consecutive Files 487 

OLDTP EOF 

Set 
TP_ENDED 

='1'8 

Set 
TAPE.SS_# 

= 9's 

Yes 

Return 

Close OKIN; 
Open DKOUT 

Return 

FIGURE 9.9 Continued 

Yes 

CARDIN EOF 

Set 
CD_ENDED 

= '1'8 

Set 
CARD. SS_# 

= 9's 

file consists of reading every record up to and including the last desired record. 
Updating of records in a file consists of either modifying existing records, 
deleting records, or adding new records to a file. If new records are to be 
added to a consecutive file, then the entire file with changes is copied onto 
another storage medium. The adding of records to a file is often referred to as 
merging, where a merging is the combining of records from two or more 
similarly sequenced files into one sequenced file. 

Attributes for File Declarations 

1. FILE attribute: Denotes that the identifier preceding Fl LE is a file 
name. 

2. EXTERNAL/ INTERNAL attributes: External means that a declared 
file may be known in other PL/I procedures. The INTERNAL attribute 
specifies that the file name be known only in the PROCEDURE block 
in which it was declared. 

3. STREAM and RECORD attributes: The STREAM attribute causes the 
file associated with the file name to be treated as a continuous stream of 



488 PL/I Programming 

1 CASE2: 
2 

PROC OPTIONS(MAIN); 
DCL OLDTP FILE INPUT RECORD ENV(F(400 140)MEDIUMCSYS00612400)1; 
DCL l TAPE, 3 

4 
5 

6 
7 

9 
10 

11 
12 
13 
14 
15 
16 
17 
18 

19 

20 
21 

22 

2 NAME CHAR(20), 
2 SS_# PIC'(9)9' 1 

2 YTD_GROSS FIXED(7,2J 1 
2 YTD_TAX FIXE0(6 1 2), 
2 YTD_FICA FIXE0(5,2); 

OCL NEWTP FILE OUTPUT RECORD ENV(Fl400,40)MEDIUM(SYS005,2400J); 
DCL l TAPE_OUT, 

2 NAME CHAR(20J, 
2 SS_# PIC'(9)9 1

1 

2 YTD_GROSS FIXED(7,2), 
2 YTO_TAX FIXE0(6,2J, 
2 YTD_FICA FIXE0(5,2); 

OCL CARDIN FILE INPUT RECORD ENVIF(80)MEDIUMISYSIPT 1 25401); 
OCL l CARO, 

2 CARD_RECORO, 
3 NAME CHARC20J, 
3 SS_# PIC 1 (9)9', 
3 GROSS PIC'f5)9V99' 1 

3 TAX PIC'(4)9V99', 
3 FICA PIC'(3)9V99', 

2 REST CHAR(33); 
OCl PRINTR FILE OUTPUT RECORD 

ENV(f(75JCTLASA MEOIUMCSYSLST,1403)); 
DCL HONG CHARl75) DEF PRINT_OUT; 
DCL 1 PRINT_OUT, 

2 CC CHAR(l), 
2 AREA, 

3 NAME CHARC25J, 
3 SS_# CHAR(l5) 1 

3 GROSS PIC'ZZ,ZZZV.99(5)B', 
3 TAX PIC 1 ZZ,ZZZV.99(5)B•, 
3 FICA PIC'ZZZV.99'; 

OCL DKOUT FILE OUTPUT RECORD ENV(F(750,75)MEDIUM(SYS00712311)); 
DCL OKIN FILE INPUT RECORD ENV(F(750,75)MEOIUMISYS007123llll; 
OCL PREV_SS_# PIC 1 (919' INIT (OJ; 
DCL NEXT_OPER LABEL; 
OCL (TP_ENDEO,CO_ENOEO,EXCPTN) BIT (lJ !NIT ( 1 0 1 Bl; 
ON ENOFILE (OLOTP) GO TO END_TP; 
ON ENOFILE (CARDIN) GO TO END_CO; 
OPEN FILEICAROINJ, FILEIOLOTPl,FILECNEWTP), 

FILEIPRINTRJ, FILE(OKOUT); 
HONG= 1 1Y EAR - T 0 - DATE PAY RC LL 
ll'T 0 TA l S'; 
WRITE FILEIPRINTRJ FROM(PRINT_OUT); 
HONG='-NAME'llt21)' •11•soc.SEC.#'ll!8)' 'll'GROSS'll (9)' •11 
'TAX'I 119)' 'll'FICA•; 
WRITE FILEIPRINTR) FROM(PRINT_OUT); 

FIGURE 9.10 Case Study Two program. 

data items recorded in character format. The STREAM attribute can be 
specified only for files of consecutive organization. The RECORD 
attribute causes the file associated with the file name to be treated as a 
sequence of logical records, each record consisting of one or more data 
items recorded in any format. 

4. INPUT, OUTPUT, and UPDATE attributes: These attributes deter
mine the direction of data transfer. The IN PUT attribute applies to files 
that are to be read only. The OUTPUT attribute applies to files that are 



Programming Consecutive Files 489 

23 READ FILE {OLOTP) INTO {TAPE); /*FIRST TIME ONLY*/ 
24 READ_CD:REAO FILE (CARDIN) INTO (CARD>; 
25 SEQ_CK: IF CARO.SS_# <= PREV_SS_# THEN DO; /*SEQ ERROR*/ 
26 HONG = 'llNPUT CARDS OUT OF SEQUENCE'; 
27 WRITE FILE IPRINTR) FROM (PRINT_OUTt; 
28 RETURN; 
29 END; 
30 PREV_SS_# = CARD.SS_#; 
31 GO TO COMPARE; 
32 READ_TP:READ FILE (OLDTP) INTO lTAPEI; 
33 COMPARE:lf CARD.SS_#> TAPE.SS_# THEN DO; 
~4 TAPE_OUT = TAPE; 
35 NEXT_OPER = REAO_TP; 
36 ENO; 
37 ELSE IF CARO.SS_# < TAPE.SS_# THEN oo; 
38 TAPE_OUT = CARO_RECORO; 
39 NEXT_OPER = REAO_CO; 
40 END; 
41 ELSE '*CARD.SS_#= TAPE.SS_# *' oo; 
42 AREA = CARD_RECORO; 
43 WRITE FILE (OKOUT) FROM (PRINT_OUT); 
44 GO TO REAO_CD; 
45 END; 
46 WRIT_TP:WRITE FILE {NEWTPt FROM CTAPE_OUTJ; 
47 AREA = TAPE_OUT; 
48 WRITE FILE IPRINTR) FROM IPRINT_OUT); 
49 GO TO NEXT_OPER; 
50 END_CO: IF TP_ENDED THEN GO TO PRINT_EXCPTN; 
51 CD_ENOED = 1 1 1 8; 
52 CARD.SS_# = 999999999; 
53 GO TO COMPARE; 
54 END_TP: IF CO_ENOEO THEN GO TO PRINT_EXCPTN; 
55 TP_ENOEO = 1 l 1 B; 
56 TAPE.SS_# = 999999999; 
57 GO TO COMPARE; 
58 PRINT_EXCPTN: 

IF ~EXCPTN THEN GO TO FINI; 
59 CLOSE FilE(DKOUTI; OPEN FILE(DKIN); 
61 HONG ='lTAPE RECORDS EXIST FOR FOLLOWING INPUT CARDS'; 
62 WRITE FILE(PRINTR)FROM(PRINT OUT); 
6l ON ENDFILECDKINl GO TO FINI;- . 
64 LOOP2: READ FILE(DKIN)INTO(PRINT OUTl; 
65 CC='-' ; ·-
66 WRITE FILE(PRINTRJFROM(PRINT_OUT); 
67 GO TO LOOP2; 
68 FINI: ENO; 

FIGURE 9.10 Continued 

to be created or extended. The UPDATE attribute describes a file that 
can be used for both input and output; it allows records in an existing 
file to be altered or added, and it applies only to files located on a direct 
access device. 

5. SEQUENTIAL, DIRECT, and TRANSIENT attributes: These attributes 
may be used only for record files. They describe how records in a file 
are to be created or retrieved. In SEQUENTIAL files, records are 
accessed in physical sequence. In DIRECT files, records may be 



490 PL/I Programming 

Y E A R - T 0 - D A T E P A Y R 0 L L T 0 T A L S 

NAME SOC.SEC.# GROSS TAX FICA 

BROWN,D.A. 132242596 6,473.18 1,294.63 323.65 

ACKLER,R.N. 139281782 4,982.26 896.45 249.11 

BERN, G.D. 241639842 9,581.31 1,916 .26 374.40 

ROSS,M.L. 336459110 11,218.45 2,243.69 374.40 

HllLLS,G.L. 384910401 7,421.18 1,484.24 371.06 

KING,M.K. 510174239 7,459.30 1,491.86 327.96 

JONES 610283467 8, 460.2 5 1,392.85 317.83 

LONG,E.F. 707112693 12,000.00 2,400.00 374.40 

FIGURE 9.11 Sample output from Case Study Two. 

accessed in random order according to a key which is a unique character
string identifying each record. TRANSi ENT applies to teleprocessing 
files. 

6. BUFFERED and UNBUFFERED attributes: The BUFFERED attribute 
indicates that logical records transferred to and from a file must pass 
through an intermediate storage area. The UNBUFFERED attribute 
indicates that a logical record in a data set neet not pass through a 
buffer, but can be transferred directly to and from the internal storage 
associated with a variable name. The following items are DOS/TOS 
restrictions : 
(a) UNBUFFERED is not permitted with card, printer, and IBM 2321 

data cell files. 
(b) Tape files with the UNBUFFERED attribute must also have the 

NOLABEL option specified in the ENVIRONMENT attribute. 
(c) Disk files with UNBUFFERED attribute are considered work files. 

Thus, the file will be deleted from the disk when the file is closed. 
7. PRINT attribute: This attribute causes the first byte of each record to 

be reserved for a printer control character. PRINT applies only to 
STREAM, OUTPUT files. 

8. BACKWARDS attribute: This attribute applies to magnetic tape files 
when reverse processing is desired. 

9. KEYED attribute: This attribute applies to records that may be 
accessed by means of a key. 



Programming Consecutive Files 491 

10. ENVIRONMENT attribute: This attribute specifies the physical 
characteristics of the file and the type of device on which the file is 
now stored or will be stored. The characteristics are not so much a 
part of the PL/I language as they are keywords having to do with the 
capabilities or limitations of specific PL/I implementations under a 
given operating system. 
(a) Record types: Following is a summary of some of the record 

types available : 

Subset Full 
F( blocksize) y y 
F ( blocksize, recsize) y y 
V(maxblocksize) y y 
V ( maxblocksize, maxrecsize) n y 
U (maxblocksize) y y 
VS(maxblocksize) n y 
VS ( maxblocksize, recsize) n y 
VBS(maxblocksize) n y 
VB S ( maxblocksize, recsize) n y 

(b) BUFFERS (n) option: The BUFFERS(n) option is used to 
specify the number of buffers to be used in files having the 
BUFFER ED attribute. 

( 
Maximum number of 

Default number of buffers that may be 
buffers used specified for one file 

DOS/TOS 1 2 

OS 
\,_ 

2 (if any) 255 

A buffer is an area of main storage that is automatically reserved 
by PL/I for files having the BUFFERED attribute. Input data is 
first read into the buffer and then transferred to your named 
structure or other data area. The size of the buffer is the size of 
the declared physical record. 

(c) CTLASA I CTL360 options: Used for record printer and punch 
files, these options specify whether the first character of the record 
is to be interpreted as an ASA or S/360 control character. It is 
the programmer's responsibility to provide a correct control 
character as the first character of the record variable. 



492 PL/I Programming 

(d) LEAVE option: The LEAVE option is used to specify that no 
rewind operation is to be performed at file open or close time. 

(e) NOTAPEMK option: Available only in DOS/TOS, the NOTA
PEM K option for tape files enables the programmer to prevent 
the writing of a leading tapemark ahead of the data records on 
unlabeled tape files. 

(f) NOLABEL option: Specifies that no file labels are to be pro
cessed for a magnetic tape file. This option would be used for 
scratch tapes. 

(g) CONSECUTIVE option: The type of data set organization in 
which records are organized on the basis of their successive 
physical positions in the data set. 

(h) VERIFY option: Checks data after every DASO write operation. 
(i) MEDIUM option: This option is used to connect or relate a 

logical unit name and the physical device with which you wish 
to communicate in your PL/I program. The logical unit name has 
the form SYSxxx and is only used in DOS. 

OPEN Statement: The OPEN statement for a stream or record file associates 
a file name with a data set. It can also be used to specify additional attributes 
for a file if a complete set of attributes has not been previously declared. 

REWRITE Statement: This is a record output statement that transfers a 
record from a variable in internal storage to an UPDATE file. This statement 
would be used in consecutive file programming when it is desired to modify 
a record or add a record to an existing file. 

1. What types of 1/0 devices are permitted for use with consecutive files? 

2. Why are records blocked? 

3. The programming activities involving files may be divided into three basic 
functions. What are they? 

4. If records in a DASO file are to be modified, is it necessary to create a new 
file as it is with tape files? 

5. What is the essential difference between variable-length and undefined
length records? 



buffer (noun) 
DASD 
data set 
file 
file label 
interblock gap 
logical record 
merge 
new master 

Programming Consecutive Files 493 

old master 
overlap 
physical record 
retrieve 
spanned records 
tape mark 
transactions 
update 

1. Year-to-Date Payroll Proof Totals 

Problem Statement: A payroll proof listing is to be run using both year-to-date 
and current earnings cards which are in one file in ascending numeric sequence 
by man number. Sequence checking and headings are not required for this 
problem. Print one line of information for each employee. Normally, both a 
year-to-date card (code Y) and a current earnings card (code C) will be present 
for each employee, but it is possible that because of sickness or vacation there 
may be no current earnings card; also, because of new hires, there may be no 
year-to-date card. Punch a year-to-date card for each new hire. For an employee 
who has both kinds of cards, the current earnings will follow the year-to-date. 

Purpose of the Problem: To DECLARE files for several devices (i.e., card 
reader, card punch, line printer). 

Card Input 

Column 1 

Columns 2-5 
Columns 6-12 

CODE: 
Y =Year-to-date card 
C = Current earnings card 

EMPLOYEE NUMBER 
EARNINGS (XXXXX.XX) 

Suggested Test Data: See Figure 9.12. 

Desired Printer Layout: See Figure 9.13. 



494 PL/I Programming 

tColumn 1 

Yl0110300000 
c 10110015000 
Cl3020020000 
Yl4030450000 
Yl4040500000 
Cl6050030000 
Yl6160350000 
Cl6160017500 

FIGURE 9.12 Suggested test data. 

Program Flowchart: You may wish to draw a flowchart before coding this 
problem. 

Sample Output Using Suggested Test Data: See Figure 9.14. 

2. Update Master Payroll File 

Introduction: This is a tape update problem. It assumes that a master tape has 
been created containing records to be modified. If you wish to code and execute 
this practice problem, it will be necessary for you (or your instructor) to create 
this master tape. This may be accomplished by simply punching into cards the 
information as illustrated in Figure 9.6. Compile and execute this program 
using the suggested data shown in Figure 9.15. 

Problem Statement: A master payroll tape file is to be updated using informa
tion from a card file (time cards). Both the tape file and the card file are in 
Social Security number sequence. The processing is to include a sequence 
check of the card input records and calculations of year-to-date gross, year
to-date withholding tax, and year-to-date FICA. As old master records are 
modified with the current information, they are to be written on a new master 
tape along with any unaffected master records. In addition, the modified records 
only are to be listed on the line printer. Excess FICA, that amount which is 

1 I I 1 l 1 1 1 ,Tl 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5) 
12345678901234567~9012345678901234567890123456789~ 

1'>15~l n&-ll:M"rrli 

1.)11-"litlX' 1Xllt IJI ~.~ ,v!Jt• ·IXlll 
:i. 1A ~ :1,bt •Jlj 

:w 
llllltiit~ I~ \ ... JM 

111\ltiij •IX 

'* .JJI' (tl!.#1, ·llll~ 

I 

1 ..... - ........ 

FIGURE 9.13 Desired printer layout. 



Punched output 

Yl3020020000 
Yl6050030000 

Printed output 

EMPLOYEE 
NUMBER 

1011 

1302 

1403 

1404 

1605 

1616 

YEAR-TO-DATE CURRENT 
EARNINGS EARNINGS 

$ 3,ooo.oo $150.00 

$200.00 

$ 4,500.00 

$ s,000.00 

$300.00 

$ 3,500.00 s 1 75.00 

FIGURE 9.14 Sample output using suggested test data. 

r Column 1 

BROWN, D. A. 
ACKLER,R.N. 
BERN, G.D. 
ROSS,M.l. 
MILLS,G.L. 
KING, H.K. 
JONES 
LONG, E .F. 

t Column 21 

132242596064731812946332365 
139281782049822608964524911 
2416398420~5813119162637440 

336459110112184522436937440 
3849l0401074211814842437106 
510174239074593014918632796 
610283467084602513928531783 
707112693120000024000037440 

FIGURE 9.15 Suggested data for creating master tape. 



496 PL/I Programming 

over the limit set by law ($468.00 in 1972), is to be printed on an exception 
list, showing the employee name, his Social Security number, and the amount 
of excess FICA. 

Assume that this exception list will be used later for purposes of making a 
refund to the employee. (Another method for refunding excess FICA to an 
employee is to simply add the amount of excess FICA to net pay for that period. 
However, the purpose of this problem is to have you program as many con
secutive files as possible.) If an excess FICA amount occurs, the amount to be 
recorded in the new master tape record for that employee is the legal limit. 
Inasmuch as a regular report is being produced on the line printer simultaneously 
with update, it will be necessary to write any entries to this exception report 
temporarily onto a consecutive disk file. At the end of the program, we must 
test a program switch to determine if there are any such records to be printed. 
If there are, the disk output file should be closed, the disk input file opened, 
and its records listed on the line printer. 

Purpose of the Problem: To write a program to manipulate numerous consecu
tive files; to provide experience in working with sequential disk 1/0, sequential 
tape 1/0, and card and printer 1/0. 

Card Input: The following structure describes the card data: 

DCL 1 CARD, 
2 NAME CHAR(20), 
2 SS_# PIC'(9)9', 
2 GROSS PIC'99999V99', 
2 TAX PIC'9999V99', 
2 FICA PIC'999V99', 
2 REST CHAR(33); 

Tape Input: The following structure describes the old master tape data: 

DCL 1 TAPE, 

t Column 1 

BROWN,D.A. 
ACKLER,R.W. 
ROSS,M.L. 
MILLS ,G. L. 
KlNG,M.K. 
LDNG,E.F. 

FIGURE 9.16 

2 NAME CHAR(20), 
2 SS_# PIC'(9)9', 
2 YTD, 

3 YTD_GROSS FIXED(7,2), 
3 YTD_ TAX FIXED(6,2), 
3 YTD_FICA FIXED(5,2); 

rColumn 21 

132242596002697200539401351 
139281782002075900415201039 
33645~110004674400934802337 

384910401003092100618401546 
5101142390031osooo6216015s4 
707112693004674400934800000 

Suggested test data for Problem 2. 



Programming Consecutive Files 497 

l 1 1 1 1 , 1 , l 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 , 1 7 7 , 7 , 7n 
1234567890123456789012345678901234567890123456789012345678901234567890123456789 

Iii 1'1~ ~ ~llJi~-lm- IA t11 1'71"1111-rblJ lr!I 

llll.11 'l~i' .w ! 

FIGURE 9.17 Desired printer layout for Problem 2. 

Suggested Test Data for Input Cards: See Figure 9.16. 

Desired Printer Layouts: The following structure describes the printer layout 
shown in Figure 9.17: 

DCL HONG CHAR(77) DEF REGULAR; 
DCL 1 REGULAR, 

2 CC CHAR(1) INIT(T), 
2 SS_# CHAR(15), 
2 NAME CHAR(25), 
2 PRINLAREA, 

3 YTD_GROSS PIC'ZZ,ZZ9V.99(5)B', 
3 YTD_ TAX PIC'ZZ,ZZ9V.99(5)B', 
3 YTD_FICA PIC'ZZ9V.99BB'; 

The HONG character-string is overlay defined on REGULAR as a storage saving 

EMPLOYEE YEAR-TO-DATE CURRENT 
NUMBER EARNINGS EARNINGS 

1011 s 3,000.00 $150.00 

1302 $200.00 

1403 $ 4,500.00 

1404 $ 5,ooo.oo 

1605 $300.00 

1616 $ 3,500.00 $1 75.00 

FIGURE 9.18 Sample output from Problem 2. 



498 PL/I Programming 

111111ll112222222222333333333344444444445555555555666666666677777777778 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

1i~lrll:1:i.W ill ~ 

FIGURE 9.19 Exception report. 

technique. HONG will be assigned the literal data that constitutes the headings 
or subheadings. Figure 9.18 shows sample output using the suggested test 
data. 

The following structure describes the output format of the exception 
report illustrated in Figure 9.19: 

DCL 1 EXCEPTION, 
2 CC CHAR(1) INIT('-'), 
2 SS_# CHAR(15), 
2 NAME CHAR(25), 
2 EXCESS_ FICA PIC'99V.99', 
2 REST CHAR(31) INIT(' '); 

The exception report is to be output to a sequential disk file similar to the 
handling of exception reporting in Case Study Two. 

File Declarations: In this program, six files will need to be declared: 

OLDTP 
NEWTP 
DKOUT 
OKIN 
CARDIN 
PRINTR 

Old master tape 
New master tape 
Disk file for exception reportt 
Same file, only inputt 
Card reader 
Printer 

Program Flowchart: It is recommended that you draw a program flowchart 
before coding this oroblem. 

Sample Output Using Suggested Test Data: See Figures 9.20 and 9.21. 

tin OS, just define one disk file but do not include the INPUT or OUTPUT attributes. 
Use the OPEN statement to supply these attributes. After the file has been opened as an 
Output file and the file is created, it should be closed and reopened with the IN PUT attribute. 



PAYROLL VEAR-TO-DATE TOTALS UP TO 07101177 

. SOC.SEC.# 

132-24-2596 
139-28-1782 
336-45-9110 
384-91-0401 
510-17-4239 
707-11-2693 

NAME 

BROWN,D.A. 
ACKLER,R.N. 
ROSS,M.L. 
MILLS,G.L. 
KING,M.K. 
LONG,E.F. 

YTO GROSS 

6,742.90 
5,189.85 

11,685.89 
7,730.39 
1,110.10 

12,467.44 

YTD TAX YTD FICA 

1,348.57 337.16 
937.97 259.50 

2,337.17 374.40 
1,546.08 374.40 
1,554.02 343.50 
2,493.48 374.40 

FIGURE 9.20 Sample output using suggested test data for Problem 2. 

E X C E P T I 0 N R E P 0 R T 

SOC. SEC.# NAME EXCESS FICA 

336-45-9110 ROSS,M.L. 23.37 

384-91-040 l ~ILLS,G.L. 12.12 

FIGURE 9.21 Sample output (exception report) using suggested 
test data for Probiem 2. 





l!hapfl!r IO 

lnd@X@d and 

Progratntnin g 



In Chapter 9, we learned how to communicate with records in a 
consecutive file. In this type of file organization, records are organized 
on the basis of their successive physical positions, as for example, on 
magnetic tape or in punched cards or on a disk. Records in consecutive 
files can be processed or retrieved in sequential order only. There are 
times, however, when sequential processing is impractical. For example, 
assume a consecutive disk file has been created that contains payroll 
information on 2500 employees. If it is desired to locate information 
on a given employee, a program would have to be written that began 
reading the records from the beginning of the file and check the em
ployee number within each record until the desired record is found. 
It is quite possible that a large number of records would have to be 
read and employee numbers tested before the desired record is located. 
This, of course, takes time, and could be impractical if it is desired to 
repeat the search operation several times in looking for a given number 
of random records. A method other than a sequential search must be 
employed. This method would be the direct method. We can see that, 
because of the physical characteristics of punched cards or magnetic 
tape as storage mediums, it is impossible to think of directly accessing 
a record-say, in the middle of a card or tape file, because the records 
preceding the desired record must first be processed. With a file 
stored on a disk or other direct access device, however, we have the 
capability of being able to access information in the middle of a file 
without reading or processing the records that precede the desired 
record. (As an analogy, consider the "direct access capability" of a 
long-playing record versus stereo tape when it is desired to hear the 
fourth selection on either of these recording mediums.) To directly 
access a record is to call for that record by means of a key. A key is 
any numeric or alphameric combination of characters that makes a 
record unique from all other records in a given file. Thus, the employee 
number in a payroll file could be a key, because each number will be 
different from all other numbers in the file. In a consecutive file, records 

502 



Indexed and Regional File Programming Concepts 503 

may have a key associated with them; however, you may not reference 
or retrieve records by that key. Two other file organizations are provided 
where records may be accessed by means of keys: INDEXED and 
REGIONAL. With these two types of file organizations, there are a 
great many differences between the various PL/I compilers due to the 
operating systems under which these compilers run. The objective of 
this chapter is to introduce you to the concepts of INDEXED and 
REGIONAL file organizations so that you may be prepared to read the 
appropriate PL/I reference manual for the programming details. 

This chapter assumes that you have an understanding of the 
physical characteristics (e.g., cylinder, track, disk pack) of a disk. 
You may wish to consult an IBM manual, Introduction to IBM System/ 
360 Direct Access Storage Devices and Organization Methods, C20-
1649, for a discussion of the functional characteristics of direct access 
devices. 

Figure 10.1 illustrates one type of disk-the IBM 2311-so that 
you may review some of the hardware terms. There are a number of 
direct access devices besides the I BM 2311. These devices vary in 

1. physical appearance 
2. capacity 
3. speed 
4. price 

However, IBM S/360 and S/370 DASD's are alike in 

1. data recording 
2. checking 
3. formatting 
4. program control 

Thus, the PL/I programming considerations are the same regardless 
of the DASO model. For purposes of illustration in this chapter, the 
I BM 2311 -with ten tracks per cylinder-will be used. However, all 
concepts and principles of programming apply to any other DASO. 

A Word About Terminology 

There are a number of terms unique to DASO file programming: 
for example, file and data set. A file in PL/I is a logical description of 
a group of data records, and is associated with an actual or physical 
group of data records (a data set) when the file is opened. After the 
closing of the file it may be reopened with different attributes and 
associated with yet another data set. 



Disks 

FIGURE 10.1 Disk hardware concepts. Records may be organized 
on a disk in different ways. For example, the disk pack shown at the 
top of the figure has 10 recording surfaces of 200 tracks each. Each 
track of a recording surface is read by a separate position of the 
access mechanism. It is clear, _however, that each position of the 
access mechanism can actually access ten tracks, one on each 
physical recording surface. From an access point of view, therefore, 
the disk pack can be considered to consist of 200 vertical cylinders 
of 10 tracks each, as shown in the lower part of the figure. The 
representation of the disk pack as concentric cylinders is important 
to the programmer in the creation and use of INDEXED data sets. 
(Chart courtesy of IBM.) 



Indexed and Regional File Programming Concepts 505 

The term data management is used when talking about the three 
basic types of file organizations which in general usage are called 

1. sequential 
2. indexed sequential 
3. direct 

These three general terms for file organizations may be confused 
with the two general terms for file access methods: 

1. sequential 
2. random (referred to as direct in the introduction) 

In PL/I, however, an attempt has been made to use terminology that 
distinguishes between file organizations and access methods without 
using duplicate terms. Figure 10.2 shows a comparison of these terms. 

Indexed File Organization Concepts 

This type of file organization gets its name because records are 
organized in much the same way as we might file letters, documents, 
memos, etc., as illustrated in Figure 10.3. In an indexed file, each 
record has a unique key. In addition, records are organized according 
to a scheme: 

/ 

1. Numeric keys are in ascending sequence (1234, 1237, 1254, 
1281, etc.). 

General PL/I 

File organizations Sequential CONSECUTIVE 
Indexed sequential INDEXED 
Direct REGIONAL 

Access methods Sequential SEQUENTIAL 
Random DIRECT 

FIGURE 10.2 Terminology compared. 



506 PL/I Programming 

FIGURE 10.3 An indexed filing system. 

2. Alphabetic keys are in alphabetic order (ABCD, ABDE, ACDB, 
etc.). 

3. Alphameric keys are in collating sequencet (ABCD, AB15, 
AC12, BZ10, 1823, 2CD4, 9FGH, ... ). 

Note, then, numbers collate higher than alphabetic characters. Records 
in an indexed file are in sequential order. 

When an indexed file is created, a series of indexes is automatic
ally established by the system from the keys presented. These indexes 
provide the capability to read and write records from anywhere in the 
file. There are always at least two indexes: a cylinder index for the 
whole file and a track index for each cylinder. Optionally, there may 
be one or more master indexes. Figure 10.4 illustrates these terms by 
an analogy to a dictionary. 

tSee the EBCDIC Code Chart in Appendix D. 



Indexed and Regional File Programming Concepts 507 

DICTIONARY 

N-Z 

Vol. 2 

MASTER INDEX 
Cylinder index 

FIGURE 10.4 Indexed organization concept. 

Prime Data Area 

An indexed data set could occupy any number of cylinders and 
tracks. The track index is always placed in track 0 of every cylinder. 
The remaining tracks in the cylinder may contain data records. The 
track index and the associated data records in a cylinder make up the 
prime data area. 

Track 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Prime data area 



508 PL/I Programming 

The track index contains the highest keys from each track in the 
cylinder, as illustrated in Figure 10.5. In the pictured disk, there are 
ten tracks per cylinder. Other disks may have more tracks per cylinder. 
An extent is a consecutive area of a DASO. In DOS indexed files, 
there are always at least two extents: (a) the prime data area and (b) a 
cylinder index. In OS, the cylinder index can be stored in the same 
extent as the prime data area. 

Sequential processing of an indexed file may be slower than that 
of a corresponding consecutive file, because the records it contains 
are not necessarily arranged in physical sequence, but are logically 
chained in order of ascending key values. In comparing indexed to 
consecutive files, we see that it would take more time to create an 
indexed data set than it would to create a consecutive data set, because 
of the indexes that must be constructed by system routines at file 
create time. A disadvantage of indexed files might be the extra time 
it takes to search indexes to locate a given record. However, if you 
are· trying to locate a specific record-as in the employee payroll 
records example in this chapter's introduction-searching indexes 
would, in all probability, reduce the overall amount of time required 
to select a given record. Thus, an advantage of indexed over con
secutive files stored on a DASO is that records in an indexed data set 
may be retrieved either by the sequential or the direct access method
thereby taking full advantage of the physical properties of a DASO. 

Track 0 

30 

4 
2 

12 
3 

18 
4 

25 
5 

32 
6 

45 
7 

8 
49 

54 
9 

61 

34 47 

7 

13 

19 

27 

33 

46 

50 

55 

62 65 

Track index: contains 
-----'!I- highest key of each 

track in this cylinder 

Each record contains keys 
(e.g., 1,4,7,8, 11,etc., in 
ascending sJquence 

FIGURE 10.5 Prime data area of an indexed data set. 



Indexed and Regional File Programming Concepts 509 

Cylinder/Master Indexes 

The cylinder index contains the highest key of each track index. 
For example, assume a data set will require three cylinders: 

Cylinder 
index 

• 
• 
• 

• 
• 
• 

The system locates a given record by its key after a search of, first, the 
cylinder index, and then, the track index within that cylinder. Thus, in 
locating a record by the direct access method, it will be necessary for 
the system to first scan the cylinder index. As will be seen later, it is 
possible to specify that the highest level index reside in main storage 
during the execution of a program. If this option is exercised, the time 
required to search the index is.greatly reduced at the cost of needing 
more main storage for the problem program. 

If the cylinder index-which may or may not be stored on the 
same direct access storage device as the prime data area-exceeds 
four tracks in size, then it is desirable to use a third index to reduce 
the amount of time required to search indexes in locating specific 
records. This third index is called a master index, and each entry in 
this index points to a track in the cylinder index. A master index is 
optional, but, if specified, it will be contiguous to the cylinder index. 
For example: 

----"- Master index 



510 PL/I Programming 

Thus, to directly access a record in an indexed data set that has three 
levels of indexes, the following operations are performed by the 
system: 

1. Scan master index to locate appropriate cylinder index. 
2. Scan cylinder index to locate appropriate cylinder. 
3. Scan track index to locate appropriate track. 
4. Scan the track until comparison key and recorded key match. 

If there is room in main storage for the cylinder index (or a part 
of the cylinder index), then it would not be necessary to have a master 
index. In summary, when you create an indexed file, all you have to do 
is present the records with keys in ascending sequence. All indexes are 
automatically constructed for you. Two indexes are required: the 
cylinder index and the track index. The master index is optional. 
If a master index is specified, it will be contiguous to the cylinder index 
on the specified direct access storage device. 

Because indexed data sets are stored only on direct access storage 
devices, they are capable of being processed sequentially or directly. 
When records are read in sequence, they are presented in the order of 
ascending key sequence. Or, a record in an indexed data set may be 
directly accessed; that is, a given record may be selected without 
having to process all records that precede the desired record. 

Overflow Areas 

The keys in an indexed file are in ascending sequence. In some 
cases, there are keys missing (e.g., 2, 3, 5, 6, etc.) from the data set; 
however, it is not necessary to leave room in the prime data area should 
these records be added later. Instead, future additions will be placed 
into a DASO area called an overflow area. One or more tracks may be 
reserved in the prime data area ascylinderoverflowtracks. For example: 

Track index 

Data Records 

Overflow track 

Overflow track 

Prime data 
area 

Required 

} Optional 



Indexed and Regional File Programming Concepts 511 

Or, another type of overflow area may also be used-an independent 
overflow area. For example: 

Cylinder 
index 

Data Records 

Overflow track 

Overflow track 

Prime data 
area 

Independent 
overflow area 

Optional 

The independent overflow area may be used in conjunction with 
cylinder overflow areas, or instead of cylinder overflow areas. Gen
erally, it would be used in conjunction with cylinder overflow areas. 

Records placed in the overflow areas (after the indexed data set 
has been created) are not in strict physical sequence. For example, in 
Figure 10.6, two records whose keys are 15 and 10 have been added 
to the overflow area. It is still possible, however, to retrieve the re
cords in ascending key sequence, because pointers automatically 

0 

2 

3 

4 

5 

6 

7 

8 

9 

FIGURE 10.6 
overflow area. 

} Track index 

Records initially loaded when 
the data set was created 

} Cylinder overflow area 

Prime data area with two additions in 



512 PL/I Programming 

developed by the system indicate where the next key in sequence is 
located. Thus, in a sequential read of the indexed file, the keys are 
always presented in order, regardless of their physical appearance 
in the data set. 

Location of Keys in Indexed Records 

When you write a program to create an indexed file, all you have 
to do is present a record to the system routine records on a DASO. 
This is accomplished by means of a WRITE statement. For example: 

WRITE FILE(PAYRL)FROM(EMP _REC) 
KEYFROM(EMP _#); 

'---------+ Called the source key 

The output routine, as commanded by the above statement, will write 
into a file called PAYRL the information contained in the structure 
called EM P _REC. In addition, the source key found in the identifier 
called EMP -# will be recorded on the DASO immediately preceding 
each record or block of records. For example: 

100 1 physical record 103 1 physical record 107 1 physical record 

'------------'-~--~----'-~~ Recorded keys 
are in ascending 
sequence and 
may be from 1 to 
255 characters 
long 

A source key is the character-string that appears in the KEY or KEYFROM 
option of an 1/0 statement. For example: 

READ FILE(PAYRL)INTO(EMP _REC)KEY(EMP _#); 
WRITE FI LE (PAY R L) FR 0 M (EM P _ REC) KEV FR 0 M (EM P -#) ; 

If the length of a source key differs from the specified length of the 
recorded keys, the source key is truncated on the right or padded with 
blanks on the right to the specified length. 

If records are unblocked in an indexed data set, the key need only 
precede the physical record in the file. The key in this case does 



Indexed and Regional File Programming Concepts 51 J 

UNBLOCKED RECORDS 

Recorded 
key of 
logical 
record 

...::.. 

BLOCKED RECORDS 

Recorded 
key of 

last 
logical 
record 
in the 
block 

One logical record 

I I 
I Key I 

Optional 

Recorded on the DASD by the system indexed routine; the 
recorded key immediately precedes the user's data record 

One logical record One logical record One logical record 

l.__ _______ ___._ _________ I.-..~~ Required 

------------In this example, "key 3" would be recorded here by 
a system routine for indexed sequential file programming 

FIGURE 10.7 Unblocked and blocked records in an indexed data set. 

not have to be part of the structure conta1rn ng related information 
for a given record. On the other hand, if records are blocked, then 
the key must be stored within each record; that is, the key must be 
part of the structure that defines the record's information. The key 
of the last logical record in the block is stored automatically preceding 
the physical block. Figure 10.7 illustrates the difference between 
blocked and unblocked records in an indexed data set. In some operating 
systems, only fixed-length records are allowed in indexed files. In 
other systems, fixed-length or variable-length (but not undefined
length) records may be specified. 

1/0 Statements 

To read records sequentially from an indexed data set, the 
standard READ statement is used: 

READ FILE(PAYRL) INTO(EMP _REC); 



514 PL/I Programming 

· Here is another form of a sequential READ statement: 

READ FILE(PAYRL)INTO(EMP_REC)KEYTO(EMP _#); 

~ This option causes the 
recorded key to be 
retrieved and placed 
into the identifier 
specified within 
parentheses following 
the KEYTO option 

The KEYTO option is useful when you are sequentially reading un
blocked records without an embedded key. (Refer to Figure 10.7.) 
If the key is not embedded within the record, it will not appear in the 
data area called EMP _REC in the example above. Typically, a program 
would need the recorded key, say, for the printing of pay checks or 
various weekly or quarterly reports. The KEYTO option will supply the 
recorded key to the program, thereby eliminating the need for the key 
to be embedded within the unblocked record should the program need 
the actual key. 

To read records directly from an indexed file, this form of the READ 
statement would be used: 

READ FILE(PAYRL)INTO(EMP_REC)KEY(EMP_#); 

L Characters are 
used for keys ; 
thus, EMP _# 
might typically 
have the PIC 
or CHAR 
attribute 

You must specify this 
keyword for records 
that are being directly 
(as opposed to 
sequentially) 
accessed 

To write records sequentially into an indexed file, this form of 
the WR I TE statement is used: 

WRITE FILE(PAYRL)FROM(EMP _REC)KEY FROM(KEY); 



Indexed and Regional File Programming Concepts 515 

The statement would be used when you wish to create an indexed 
data set (which may only be done sequentially). 

If it is desired to add a new record to an existing indexed data set, 
the WRITE statement could take this form : 

WRITE FILE(PAYRL)FROM(EMP _REC)KEYFROM(EMP _#); 

I > Indicates direct 
access of records 

If it is desired to update records in an indexed file, that is, modify 
existing records, then the REWRITE statement would be used: 

REWRITE FILE(PAYRL) FROM(EMP _REC) KEY(EMP -#); 

I > Indicates direct 
access 

Usually the occasion does not arise where it is necessary to update 
all records in an existing indexed file. However, it is possible to do so 
by this statement: 

REWRITE FILE(PAYRL) FROM (EMP _REC); 

In the full language implementations of PL/I, if it is desired to delete a 
record from an indexed file, the DELETE statement may be used. For 
example: 

DELETE FILE(PAYRL) KEY(EMP -#); 

The DELETE statement causes the first byte of a record to be loaded 
with the value (8)'1 'B. The code (8)'1 'B indicates that the record is a 
dummy record-that is, a null or a voided record. Typically, then, the 
first byte of a record in an indexed data set is set aside as a "flag" byte; 
the remaining bytes would contain the key and other data. For example: 

DECLARE 1 EMP _REC, 
2 FLAG CHAR(1) INIT(' '), 
2 EMP -# CHAR(8), /* KEY */ 
2 HOURLY _RATE PIC'99V99', 
2 NO_QF _DEDUCTIONS PIC'99', 
2 REST_OF_RECORD CHAR(50); 

In the subset language, where the DELETE statement is not provided, 
it is a simple matter for your program to set a reserved "flag" byte to 
(8)'1 'B. Through a program test later, your program will be able to 
determine the dummy or deleted records and ignore or bypass these 
no longer needed records. 



516 PL/I Programming 

Declaring Indexed File Attributes 

The following attributes may be declared for indexed files: 

INPUT, OUTPUT, or UPDATE 
DIRECT or SEQUENTIAL 
KEYED 
RECORD 
ENVIRONMENT (INDEXED ... ) 

There are a number of options that may appear in the ENVIRONMENT 
attribute, depending on the PL/I compiler you are using. These options 
are defined in the following paragraphs. Figure 10.8 identifies the 
compilers for which these options are available, and reference is made 
to the subparameters of OS job control language statements that 
accomplish the equivalent ENV options. 

INDEXED. This option describes an indexed sequential data set that 
consists of keyed records, any one of which can be located by several 
levels of indexes. 

KEYLENGTH (n). This option is used to specify the length of the key. 

EXTENTNUMBER(n). This option is used in DOS only. It specifies 
the number of extents used for indexed files. (An extent is a con
secutive area of a DASO.) For indexed files in DOS, EXTENT
NUMBE R(n) must be specified. The value for n must include all data 
area extents, the master index and cylinder index extents (which 
must be adjacent to one another), and all independent overflow ex
tents. Master and cylinder index extents count as one extent. Thus, 
the minimum number that can be specified is two: one extent for 
one prime data area and one for the cylinder index or the master/ 
cylinder indexes. The maximum number of extents is 255. 

INDEXMULTIPLE. This option is used to specify that a master index 
will be or has been built for this file. 

HIGHINDEX(device number). This option is used for indexed files 
to specify the type of device (e.g., 2311, 2314) on which the high-level 
index or indexes reside(s) in case the device type differs from the one 
specified in the MEDIUM option. For example, in the declaration, 

DCL ISFILE FILE OUTPUT RECORD SEQUENTIAL KEYED ENV 
(INDEXED F(100)MEDIUM(SYS001,2311) HIGHINDEX(2314) 
KEYLENGTH(16) EXTENTNUMBER(2)); 



DOS PL/I D DOS PL/I Optimizing OS PL/I F OS PL/I Optimizing 

ENV options ENV options ENV options JCL options ENV options JCL options 

Record description F(blksize [.recsize] F(blksize [.recsize] F(blksize [.recsize] RECFM=FIFB F(blksize [,recsize] RECFM=FIFB 

~rlFB 
V(blksize [.recsize] vlvs V(blksize [.recsiie] VIVB 

BLKSIZE=n or BLKSIZE=n 
BLKSIZE(n) LRECL=n FIFBlvlvs LRECL=n 
RECSIZE(n) BLKSIZE(n) 

RECSIZE(n) 

Index control INDEXMULTIPLE INDEXMUL TIPLE OPTCD=M OPTCD=M 

HIGHINDEX(2311 l2314) HIGHINDEX UNIT=device type UNIT=device type 
(23111231412321) 

Space control EXTENTNUMBER(n) EXTENTNUMBER(n) DD card DD card 

OFL TRACKS(n) OFL TRACKS(n) CYLOFL=n CYLOFL=n 

OPTCD=Y OPTCD=Y 

Key control KEYLOC(n) KEYLOC(n) RKP=n KEYLOC(n) RKP=n 

KEYLENGTH(n) KEYLENGTH(n) KEYLEN=n KEYLENGTH(n) KEYLEN=n 

GEN KEY GEN KEY 

Write validation VERIFY VERIFY OPTCD=W OPTCD=W 

Optimization BUFFERS(n) BUFFERS(n) BUFFERS(n) BUFNO=n BUFFERS(n) BUFNO=n 

ADDBUFF(n) ADDBUFF(n) ADDBUFF(n) 

INDEXAREA(n) INDEXAREA(n) INDEXAREA(n) INDEXAREA(n) 

\. NOWRITE NOWRITE NOWRITE ./ 

FIGURE 10.8 Options for indexed sequential file organization. 



518 PL/I Programming 

the prime data area will be on the I BM 2311 disk and the cylinder index 
will be stored on the IBM 2314 disk. 

OFLTRACKS{n). This option is used for indexed OUTPUT and 
UPDATE files to specify the number of tracks to be reserved on each 
cylinder for adding records. The number specified must be within the 
following limits: 

O::;n::; 8 
O::;n::;18 

for 
for 

2311 files 
all other files 

For INPUT files, this option is meaningless and is therefore ignored. 

KEYLOC{n). This option is used to specify the high-order position 
(leftmost position) of the key field within the data record. For unblocked 
records, this keyword is optional; for blocked records, KEYLOC must 
be specified. For DOS implementations, the leftmost position in the 
record is numbered 1 ; in OS, this position is numbered 0. Thus, N is 
relative to 0 or 1, depending on the operating system you are using. 
The default for N (blocked records only) is 1. 

INDEXAREA{n). This option is used to specify that the cylinder 
index in main storage option is used for INDEXED DIRECT files. The 
value for n must be within the following limits: 

3 x (keylength + 6) :::;; n < 32K 

The number (N) of cylinder index entries that can be in main storage at 
one time may be calculated as follows: 

N = n/ (keylength + 6) - 2 

ADDBUFF{n). This option is used when it is desired to add new 
records to an indexed data set. For example, assume that it is desired 
to add a record whose key is "5" to the BEFORE data set in Figure 10.9. 
In this case, the record will be placed into the first track in sequence 
and the last record in that track will be moved down to the overflow 
area. Note also that key "7" has to be moved over. 

The shifting of records on a disk requires more time than if the 
records on a given track could be rearranged in main storage. The 
ADDBUFF option specifies the amount of main storage to be reserved 
for the movement of records within a track when new records are being 
added to a DIRECT UPDATE data set. The value of n is generally the 
number of bytes on a track of a given DASO. 



0 0 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

Ove<flow { 8 
tracks 

9 

Overtlow { 
8 

tracks 9 

Before After 

FIGURE 10.9 Shifting of records in an indexed data set. 



520 PL/I Programming 

Creating an Indexed Data Set 

Before data is loaded into this type of data set, it must be pre
sorted by key into ascending sequence. This is a job step separate 
from PL/I programming. If there is an error in the key sequence, the 
KEY condition will be raised. (The KEY condition and several other 
on-units will be discussed in the next section of this chapter.) When 
an indexed data set is being created, the associated file is to be opened 
for SEQUENTIAL OUTPUT. A DIRECT file cannot be used for the 
creation of an indexed data set. 

Retrieving Records from an Indexed Data Set 

Either the SEQUENTIAL or DIRECT access method may be used. 
Sequential access is in order of ascending recorded-key values; 
records are retrieved in this order, and not necessarily in the order in 
which they were added to the data set. In sequential access, the 1/0 
statements need not include source keys nor does the file need the 
KEYED attribute. 

During SEQUENTIAL access of an indexed data set, it is possible 
to reposition the data set to a particular record by supplying a source 
key in the KEY option of a READ statement, and to continue sequential 
reading from that record. (The associated file must have the KEYED 
attribute.) Repositioning can occur in either a forward or a backward 
direction. Thus, a READ statement that includes the KEY option will 
cause the record whose key is supplied to be read; a subsequent READ 
statement without the KEY option will cause the record with the next 
higher recorded key to be read. This facility is sketched out in Figure 
10.10, which shows a general flowchart and corresponding PL/I file 
declaration and 1/0 statements. 

Modifying or Adding Records to an Indexed Data Set 

Indexed data sets that have the UPDATE attribute may have 
records added to them or existing records modified. These two file 
activities may be done either by the SEQUENTIAL access method or 
the DIRECT method. 

Deleting Records from an Indexed Data Set 

In the full language, records can be effectively deleted from the 
data set; a DELETE statemeot marks a record as a dummy by putting 
(8) '1 'B in the first byte of the record. The DELETE statement should not 



Start 

Declare 
ISFILE 

Declare 
other files 

and data areas 

Open files 
and give 
on units 

"Process" 

END 

DECLARE ISFILE RECORD INPUT 
SEQUENTIAL KEYED ENVIRONMENT 
(INDEXED F(400,80) • • • 

OPEN Fl LE(ISFI LE); 
ON KEY(ISFILE) GO TO ERROR; 
ON ENDFI LE(ISFI LE)GO TO END; 

READ FILE(ISFILE) INTO (AREA) 
KEY ('0011230056'); 

"'- Repositions the data set 
~ in a forward or backward 

direction 

READ Fl LE (ISFI LE) INTO (AREA); 

IF KEY_FLD < '0011230900' THEN GO TO 
PROCESS; ELSE GO TO END; 

FIGURE 10.10 Processing part of an indexed data set. 



File 
attribute 

Access 
method Purpose 

OUTPUT SEQUENTIAL To create a 
new 
indexed
sequential 
data set 

1/0 statement for an indexed 
data set 

WRITE FILE(IS) FROM(AREA) 
KEYFROM(KEY _FLD); 

SEQUENTIAL To process READ FILE(IS) INTO(AREA); 

INPUT 
DIRECT 

all records /* OR */ 

To process 
selected 
records 

READ Fl LE(IS) INTO(AREA) 
KEYTO(EMP _NO);/* OR */ 

READ Fl LE(IS) INTO(AREA) 
KEY(EMP _NO); 

READ FILE(IS) INTO(AREA) 
KEY(PART_NO); 

Sample file declaration (note, shaded attributes would 
be specified in PL/I D and DOS PL/I Optimizing compilers) 

DCL IS FILE OUTPUT RECORD SEQUENTIAL KEYED 
ENV (INDEXED F(800,80) 

OCUS FILE INPUT RECORD SEQUENTIAL KEYED ENV 
(INDEXED F(800,40) 

DCL IS FILE INPUT RECORD DIRECT KEYED ENV 
(INDEXED F(500,100) 



UPDATE 

SEQUENTIAL To modify all 
records 

DIRECT To modify 
selected 
records 

REWRITE FILE(IS); 

/* OR */ 
REWRITE FILE(IS) FROM(AREA); 

REWRITE FILE(IS) FROM(AREA) 
KEY(PART_NO); 

DIRECT To add new WRITE FILE(IS) FROM (AREA) 
records to KEY(PART _NO); 
or delete 
records 
from an 
existing 
data set 

DELETE FILE{IS) 
KEY(PART _NO); 

DCL IS FILE UPDATE RECORD SEQUENTIAL ENV 
,(INDEXED F(600,40) 

DCL IS FILE UPDATE RECORD DIRECT KEYED ENV 
(INDEXED F(200,100) 

DCL IS FILE UPDATE RECORD DIRECT KEYED ENV 
(INDEXED F(560,80) 

FIGURE 10.11 Sample file declarations and 1/0 statements for indexed data sets. 



524 PL/I Programming 

be used to process a data set with blocked records whose keys begin 
at the first byte of the record. 

Figure 10.11 summarizes the various 1/0 statements and corre
sponding sample file declarations for the various activities related to 
indexed data sets. 

There are three basic types of data set organizations: sequential, 
indexed sequential, and direct. This section presents some general 
information on the direct organization. The term direct will be used in 
the following paragraphs because of the general nature of the material. 
The PL/I term for direct files is regional. Thus, in subsequent sections 
of this chapter, the PL/I term will be used. You should be aware that 
with regard to data set organization, regional and direct are synonyms. 

Track Format. Information is recorded on all direct-access volumes 
in a standard format. In addition to device-dependent data (home 
address), each track contains a track descriptor record (also called a 
"capacity record") and one or more data records. The user's data is 
placed in the data records. The system maintains the track descriptor 
record on each track. 

There are only two data record formats-Count-Data and Count
Key-Data, one of which can be used for a particular data set. The 
following illustrates the two possible data record formats: 

Count- Data Format 

icountlB icountlB 
Track Descriptor 

Record (RO) 
Data Record 

(R1) 

Count-Key-Data Format 

icountlB 
Data Record 

(Rn) 

I Count I EJ I Count I BEJ I Count I B EJ 
Track Descriptor 

Record (RO) 
Data Record (R1) Data Record (R2) 



Indexed and Regional File Programming Concepts 525 

The Count Area of each record contains ten bytes that identify 
the location of the record in terms of the cylinder, head, and record 
numbers; its key length (0 if no keys are used) ; and its data length. 

If records are written with keys, the Key Area (1-255 bytes) 
contains a record key that identifies the following Data Area. This 
identifying information might be a part number, account number, or 
sequence number. The hardware is capable of searching the Key Area 
of each record on each track for a particular key. The keys do not have 
to be in any particular sequence. 

The Data Area contains the user's data records. Its length can be 
up to 32,760 bytes, but realistically it is determined by the particular 
device's track capacity. Each Data Area contains a block. Each block 
can consist of one or more logical records. However, you must perform 
any blocking or deblocking if in fact there is more than one logical 
record per block. Thus, the terms block and record are used inter
changeably. They both refer to the contents of the Data Area on a 
direct-access track. 

Formatting the Data Set. Before records can be placed: in a direct 
data set, the DASO space allocated must be formatted. Formatting 
the data set is the process of initializing each track, one after another in 
a sequential fashion. For fi?<ed-length records, formatting is essentially 
the process of creating buckets, which act as place holders for actual 
records to be added at a later time. For variable-length and undefined
length records, formatting is the process of initializing the Track 
Descriptor Record (there is one on the front of every track). Each will 
reflect the fact that there are no records written on the track and that 
the entire track space is available. 

Keys. Each record in a data set is comprised of one or more related 
data fields. One or more of these data fields may serve as an identifier or 
key field which uniquely distinguishes that record from others in the 
same data set. Typical keys are: names, part numbers, or chronologically 
assigned serial numbers such as employee number, invoice number, 
etc. The key is the means of selecting and retrieving a desired record 
from the data set. 

Every record in a directly organized data set also has a unique 
address. This address identifies the location within the data set where 
the record should be found. The format of the record address will be 
discussed in the next section dealing with regional data sets. . 

In a direct data set, there is a definite relationship between the 
record key and the record address or location. It is this relationship 



526 PL/I Programming 

which allows you to directly retrieve any record in the data set without 
a sequential or index search. This relationship is completely determined 
by each user; it might be a direct or an indirect relationship. 

Direct Addressing. It is entirely possible to have keys which identify 
the location of the record in the data set. This is a direct addressing 
scheme, thus obviating the need for a transformation or mathematical 
manipulation of the key. One of the characteristics of a direct addressing 
scheme is that there is a unique DASO address for each record key. 

The ideal situation would be to use the record's key as its DASO 
address, because there is a strict relationship between the record's 
key and its address in the data set. An example of this type of direct 
addressing would be a data set of personnel records where the four
digit employee number is the key and also serves as the location of the 
record, i.e., the record for employee number 6545 would be the 6545th 
record within the data· set. This technique assumes that there is an 
addressable location or "bucket" available for each employee number, 
regardless of whether or not there is an employee with that number. 
For example, if we have employee numbers which range from 0001 to 
9999, then we must have 9999 buckets, even though we may have only 
a few hundred employees. 

The use of direct address using a strict relationship is usually 
limited to data sets with small numerical keys. Additionally, in all 
direct addressing schemes the data records must be fixed-length. 

Cross-Reference Table (Index Searching). There is no unique and 
simple way of transforming a long key to a shorter unique address. One 
technique of handling records with a cumbersome key is to build a 
cross-reference table (index). When a record is written in the data set, 
you note the physical location and store this, along with its key, in the 
table. Finding the address of a particular key is achieved by program
ming a table lookup of the cross-reference table. For example, assume 
a key of SM ITH serves as the argument in a programmed table lookup: 

Cross-reference 
table 

SMITH 623 

When the argument is found in the table, the corresponding value (623 



Indexed and Regional File Programming Concepts 527 

in this example) will be the address of SM ITH's record in the direct 
data set. 

This technique of direct addressing allows DASO space to be 
allocated on the basis of the number of records in the data set rather 
than on the range of keys. New records can be added sequentially to the 
end of the data set space and their location noted and placed in the 
cross-reference table. 

The obvious disadvantages are that cross-referencing requires 
the user to maintain the table, and main storage and processing time 
are required to search and update the table. 

Indirect Addressing. A more common technique for organizing the 
data set involves the use of indirect addressing. In indirect addressing, 
the address of each record in the data set is determined by a mathe
matical manipulation of the key. This manipulation of the key is referred 
to as randomizing. There are many different techniques of transforming 
a record key (external identification) into the corresponding record 
address (internal location). One technique is the division/remainder 
method. This technique may be used for numeric or alphabetic or 
alphameric keys. The bytes in the key are treated as a binary value. The 
key is divided by a prime numbert that is closest to the number of records 
in the data set. The remainder is the address. For example, assume a 
1000 record file: 

1 Remainder = 901 
997) 1898 

I L» Key value , 

L_ Prime number closest to the 
number of records in the file 

Thus, the number 901 would be the record's address or location. 
An inevitable result of this calculation technique is the occurrence 

of synonyms-two or more stored records whose keys result in the 
same storage address. For example, if the calculation is performed for 
key value 5886 and 1898, the relative addresses derived are the same: 

5 Remainder= 901 
997) 5886 

The record that is written where it belongs is called the home record. 
The second and subsequent records with keys which convert to the 

tA prime number is a number evenly divisible only by itself and by one. 



528 PL/I Programming 

same address are called overflow records. A procedure must be provided 
for storing elsewhere those overflow records whose keys convert to an 
address that is already occupied. There are many different techniques 
used to handle overflow records. One method is called progressive 
overflow. Progressive overflow assumes that the entire data set space 
is not 100% used; that is, there are buckets that are not yet filled and 
the overflow record may be stored in one of them. The search for an 
empty bucket starts at the address produced by the randomizing scheme 
and continues through consecutive addresses. 

Before LJLJLJLJLJLJLJ adding F 

2 3 4 5 6 7 

Add F LJ LJ LJ l€LJ LJ LJ 
2 3 4 5 6 7 

After LJLJLJLJLJLJLJ adding F 

2 3 4 5 6 7 

~~~ 
Add K LJLJLJLJLJLJLJ

2 3 4 5 6 7

After LJLJLJLJLJLJLJ adding K

2 3 4 5 6 7

In the above example, a data set contains seven buckets presently
having three records. Let's suppose we add a record with a key of F
and that our randomizing scheme assigns F to bucket 4. Since bucket 4
is already occupied, a search is made for an empty bucket. Bucket 5
is empty, and Fis placed in it. Next we add a record with a key of K, and
once again let's suppose our randomizing scheme assigns K to bucket
4. When we attempt to put K in bucket 4, we find it is occupied, so we
attempt to put it in bucket 5. But bucket 5 is also occupied, so we

Indexed and Regional File Programming Concepts 529

attempt to put it in bucket 6. This process continues until an empty
bucket is found, which in this example is bucket 7.

In searching for an empty bucket in which to store an overflow
record, the system must have some way of knowing when it encounters
an empty or available record. This is done by initially loading the data
set with system dummy records. The format of these records will be
described later. In order for the system to handle the placement of
overflow records, the data set must be recorded in the Count-Key-Data
format. How far will the system search for an empty bucket? This is a
function of the operating system you are using. In DOS, the search
is to the end of the cylinder. In OS, the LIMCT parameter in the DD
statement specifies the number of additional tracks to be searched.

Synonyms should be kept to a minimum because of the additional
time required to locate overflow records. A way to minimize synonyms
is to allot more space for the file than is actually required to hold all the
records. The term "packing factor" means the percentage of allotted
locations that are actually used. For an indirectly addressed file, an
initial packing factor of 80-85% is suggested. For example, a 10,000
record file packed 83% would be allotted space for 12,000 records.

The basic objectives of the calculation technique described here
are:

1. To derive a valid address for every key in the data set.
2. To distribute the addresses or region numbers as evenly as

possible across the key range to minimize the number of
synonyms.

A sought-after goal is to have no more than 20% synonyms. The
division/remainder method automatically achieves the first objective
mentioned-that is, to have all keys convert to addresses within the
allotted range. Whether it achieves the second objective for a particular
file-that is, to have a few synonyms-can be determined only by
trying it.

Introduction

REGIONAL organization of a data set permits the programmer to
control the physical placement of records in the data set and enables
him to optimize the access time for a particular application. Such
optimization is not available with consecutive or indexed organizations.

530 PL/I Programming

REGIONAL organization is applicable only to direct access storage
devices.

The term region was selected to describe a type of data set that
is divided into regions (rather than records). As will be seen, one or
more records may be stored in each region. There are three types of
REGIONAL data sets: REGIONAL(1), REGIONAL(2), REGIONAL(3).

Relative Record versus Relative Track

A REGIONAL data set is divided into relative regions, each of which
is identified by a region number and each of which may contain one
or more records. The regions are numbered in succession, beginning
with zero, and a record is accessed by specifying its region number in
a record-oriented 1/0 statement.

Two kinds of regional specifications are used: relative record and
relative track. A relative record is a region in a data set; it is referenced
by a number relative to the first record in the data set, which is number
zero. The disk on the left in Figure 10.12 illustrates the organization on
a disk of a REG 10 NAL file where each region contains one record. The
concentric circles in this figure represent the tracks into which a disk
is divided-one circle represents one track. As can be seen, a number
of regions may appear in one track. REG IONAL(1) and REG IONAL(2)
have this type of data set organization.

REGIONAL(1) organization on a disk
(no recorded key)

REGIONAL(2) organization on a disk
(recorded key)

REGIONAL(3) organization on a disk
(recorded key)

FIGURE 10.12 Relative record versus relative track.

Indexed and Regional File Programming Concepts 531

A relative track specification refers to a region of the data set by
specifying the number of a particular track relative to' the first track
of the data set, which is track zero. The disk on the right in Figure 10.12
illustrates this type of disk arrangement which is used in REGIONAL(3)
data sets. As can be seen, each region is a track. REGIONAL(3)
organization allows more than one record to be stored in each region.
By contrast, REGIONAL(1) and REGIONAL(2) allow only one record
per region. A relative track, or relative record specification always refers
uniquely to one region in a data set.

Size of REGIONAL Data Sets

The size of a data set or the number of records that may be stored
in a data set depends upon how much space on a disk (or other
DASO) you reserve for a data set. The allocating of external storage
for a data set is handled through the job control language statements,
not PL/I.

Source and Recorded Keys

A source key is the character-string value specified in the record
oriented 1/0 statements following the KEY or KEYFROM options. In
REGIONAL(1), the source key is a region number that serves as the
sole identification of a particular record. For example:

READ FILE(REG1) INTO(AREA) KEY(REGION#);

L The region number con
sisting of an eight
position character
string containing the
digits 0-9; if more
than eight characters
appear in the key, only
the rightmost eight are
used as the region
number

The largest region number that may be specified is 16777215
(224 - 1).

532 PL/I Pro.gramming

f
REGIONAL source key specification

\

Subset language Leading blanks not allowed

\..
Full language Leading blanks will be treated as zeros

The character-string value of the source key for REGIONAL(2)
and REGIONAL(3) files can be thought of as having two logical parts:
the region number and the comparison key. For example:

WRITE FILE(REG2) FROM (AREA) KEYFROM
(PART#llREGION#);

I ._I -----> Region number

.___ ---------) Comparison key

The source key need not be specified as an expression with con
catenation as shown above, but may be written as one character-string.
For example:

Source key
WRITE FILE(REG2) FROM r

(AR EA) KEYFROM ('AB 123400000057') ;
'--v--'~

~ The eight rightmost
characters make up the
region number-
00000057, in this case

....__ _____ The leftmost characters
make up the comparison
key

A recorded key is a character-string that immediately precedes each
record in the data set to identify/that record. Here is a REGIONAL(2)
example:

Region 0 Region 1 Region 2

I I I

Recorded 1 Logical Recorded I Logical Recorded I Logical ...
key i record key : record key : record

_l _l l

Nl

Indexed and Regional File Programming Concepts 533

In REGIONAL(3), because more than one record could appear in a
region, we might have the following arrangement:

Region 0 Region 1

T I I . I . I .
Recorded I Logical Recorded : Logical Recorded !Logical Recorded I Logical Recorded I Logical

key 1 record key 1 record key ; record key : record key i record
l J J_ J_ .J.

The recorded key may be from 1 to 255 characters long. This length is
specified either through job control statements or through the KEY
LENGTH option of the ENVIRONMENT attribute in a file declaration
statement. The KEYLENGTH option is provided in all compilers except
PL/I F. Thus, with PL/I F, use the DD job control statement, sub
parameter KEYLEN = n, to indicate the number of characters in the
key.

The KEYLENGTH option (or KEYLEN in the DD statement) speci
fies the number of characters in the comparison key. On output, the
comparison key is written as the recorded key. For example, assume
the ENVIRONMENT attribute specifies KEYLENGTH(6). Then, in the
statement,

WRITE Fl LE(REG2) FROM (AREA) KEYFROM ('AB123400000057') ;

the recorded key would be the character-string value:

'AB1234'

If KEYLENGTH (14) were specified, then the recorded key would be
the character-string value:

'AB123400000057'

As can be seen, then, the comparison key can actually include the
region number, in which case, the source key and the comparison key
are identical; alternatively, part of the source key may be unused. For
example, if KEYLENGTH(4) is specified, the comparison key consists
of the leftmost four characters:

'AB12'

The characters between the comparison key and the region number
('34' in this case) are ignored.

On input, the comparison key is compared with the recorded key.
For example, assume KEYLENGTH (8) is specified, and the following
WRITE statement creates a record :

WRITE FILE(REG2) FROM (AREA)KEYFROM('AB123400000057');

...

534 PL/I Programming

The recorded key in this case is

'AB123400'

because the keylength is eight characters. Thus, when it is desired to
read the above record, the following READ statement might be coded:

rRegion number

,-----"-----..

READ FILE(REG2)1NTO(AREA) KEY('AB123400000057');
'----v---1

f

\..

Subset language

Full language

L Comparison key to
be compared with
the recorded key

Recorded key for REG 10 NAL(2) and
\

REGIONAL(3)

The recorded key must consist of the com-
parison key and the region number; this
means that the KEYLENGTH specification
must always be 9 or greater: 8 for the
region specification plus at least 1 for the
comparison key

It is optional to include the region number in
the recorded key

Why Three Types of REGIONAL Data Sets?

So far, we have talked about relative records and relative tracks
in REGIONAL data sets, and comparison keys (found in the READ
or WRITE statement) and recorded keys [precede records in REGIONAL
(2) and REG IONAL(3) files]. At this point, we need to put the three
types of REGIONAL data sets into perspective and consider under
what conditions each type could be useful. To do this, you must have
an understanding of the three common methods previously discussed
for accessing stored records in REGIONAL data sets: direct addressing,
index searching, and indirect addressing.

Indexed and Regional File Programming Concepts 535

Direct Addressing. In this type of addressing, every possible key
in the data set corresponds to a unique storage address on the disk.
In this case, the key could only be numeric. A location must be reserved
in the data set for every key in the range. For example, if the complete
text of, perhaps, a reference book were to be stored, each page of the
text could be kept in a region. Thus, region 5 could correspond to
page 5, region 6 to page 6, and so on. (In this case, region 0 probably
would not be used.) When it is desired to update or correct a given
page in the reference manual, it is a simple matter to retrieve the
corresponding data set record. For example:

DCL PAGE PIC'(8)9';
GET LIST(PAGE);
READ FILE(BOOK)INTO(AREA)KEY(PAGE);

As another example, if a company that markets a product has
divided its sales area into territories, each territory could be given a
number (i.e., 0, 1, 2, 3, etc.). Then, information regarding sales in each
of the territories could be stored, where each logical record corre
sponds to a sales territory. Thus, region 0 would contain sales informa
tion on territory 0, region 1 on territory 1, etc. In the area of scientific
computation, tables of data to be reduced could be stored-one table
per region. Or, historical information on power plant equipment could
be stored where, perhaps, region 1 contains the performance record
of generator number 1, region 2 of generator number 2, etc.

Using the key of a record as its address is called direct addressing
(as opposed to indirect addressing). In the examples cited above,
direct addressing was suggested as the means for identifying records.
The method of direct addressing not only allows minimum disk time
when processing at random, but is also ideal for sequential processing,
because the records are written in key sequence. A possible dis
advantage of this type of approach is that there may be a large amount of
unused storage. For example, in an inventory file, assume the part
numbers are used as the keys and that the numbers range from 10000
to 99999. Out of this range, however, there are only 3000 inventory
items. Thus, if the part number is the key, there will be a large amount of

536 PL/I Programming

unused direct access storage, because a location must be reserved for
every key in the file's range even though many of them are not used.

Index Searching. This method alleviates some of the shortcomings
of direct addressing. In this method, an index is maintained consisting
of keys and assigned hardware (e.g., region number) addresses. For
example, when a REGIONAL data set is created, the programmer also
constructs an index table which is typically another data set:

f
Key Region

"'\

number

012 001

035 002

020 003

435 004

250 005

176 006

551 007

043 008

Notice that the keys are not in sequence. They are simply assigned a
region number within the data set. The index table would be saved on a
DASO along with the REGIONAL data set. When a stored record is to
be retrieved from the REGIONAL data set, the index table would be
first read by your program into main storage and then searched to
locate the required key value. When the corresponding region number
is obtained, that number is used to access the given stored record.
The index search method allows data sets to be allocated space based
only on the actual space requirements of the stored records and not
on all possible key values within a range. Thus, in the previous inventory

Indexed and Regional File Programming Concepts 537

example in which the key values ranged from 10000 to 99999 but there
were only 3000 actual inventory items, a considerable saving of
DASO space can be effected by using the index search technique.
Also, keys do not have to be numeric values, as in direct addressing.
Unique addresses are assured and any record can be accessed with
only one seek to the DASO once the address is obtained from the
index. However, time is required to look up the address in the index
which may be a serious disadvantage when it contains many entries.
The index also requires additional storage in excess of that required
by the stored records in the REGIONAL file. For sequential retrieval,
the index can be sorted into key sequence.

Indirect Addressing. This method may be used for nonnumeric keys,
or when the range of keys for a file contains so many unused values
that direct addressing is impractical, or when the number of records is
so large that using an index table is cumbersome. The purpose of
indirect addressing is to manipulate keys in a data set by some algorithm
to compress the range of key values to a smaller range of stored
addresses (region numbers). There are a number of techniques used to
calculate region numbers from a given set of key values. For example,
assume we have a file of 1000 records and that there is enough room
on each track of the direct access storage device to store 15 records.
Thus, if we divide the number of records by the number of records per
track, we see that this file will require 67 tracks:

66.6 --- Number of tracks needed for file
15)1000

f._ ____ Records per track

(To determine the number of records per track, you will have to reference
the hardware specifications for the particular DASO you are using.
The number of bytes per track vary between DASD's.)

To determine a region number for a given key in this 1000-record
data set, divide any key in the file by the prime number closest to
1000-in this case 997. For example, assume they key is 1898:

1

997)1898

Remainder = 901

The remainder, 901 ;· could be the relative region number in RE
GIONAL(1) or REGIONAL(2) data sets. Recall that in REGIONAL(2),
the key-1898 in the above example-would be recorded with the

538 PL/I Programming

record. The key would not, however, be recorded in the REG IONAL(1)
data set record. (It could be embedded in your record, however.)

In REGIONAL (3), the region number is a relative track number.
To determine a relative track address, divide the key by the prime
number closest to the number of tracks (67 in this example) required
for the file :

31
61) 1898

Remainder = 7

Relative track 7 is a valid reference that could be used in REGIONAL
(3).

Opening REGIONAL Files

The OPEN statement opens a file by associating a file expression
with a data set. It can also complete the specification of attributes for
the file if a complete set of attributes has not been declared for the file
being opened. Some of the attributes related to REGIONAL files that
may appear in an OPEN statement are summarized below.

I
REGIONAL file attributes that

\

may appear in the OPEN statement

Subset language None allowed

Full language DIRECT or SEQUENTIAL
INPUT or OUTPUT or UPDATE
RECORD
KEYED

Typically, however, you will probably find that specifying all file
attributes in the DECLARE statement will meet your programming
requirements. Recall that in the subset languages, a record 1/0 file
must be explicitly opened, whereas in the full languages, if a file is
not explicitly opened, it will be opened automatically when the first
READ, WRITE, or REWRITE statement is issued to that file.

Preformatting REGIONAL Files

Preformatting consists of writing dummy records into a data set.
A dummy record does not contain meaningful data, but rather some

:.i:
.'j
I .!,~

f

Indexed and Regional File Programming Concepts 539

constant that is unlikely to appear in meaningful data records. This
constant, then, identifies the record as being a dummy record-one
that is available in which to store new and meaningful information.

f Preformatting REGIONAL files
\

Subset language Must be explicitly specified through job con-
trol language statements and a DOS utility
program called CLR OSK (see "Preformatting
REGIONAL Files" in the index of the DOS
PL/I Programmer's Guide)

Full language If a REGIONAL file has the OUTPUT attribute,
the data set will automatically be written
with dummy records when the file is
opened; the nature of dummy records de-
pends on the type of REGIONAL organiza-
ti on

'-

Declaring REGIONAL File Attributes

There are a number of attributes that may be specified in the
DECLARE statement for a file. Most of the attributes have been ex
plained in the previous two chapters; thus, these will be mentioned
only briefly here.

INPUT, OUTPUT, or UPDATE. The attributes INPUT and OUTPUT
specify the direction of data transmission. The UPDATE attribute
specifies that a record is to be either retrieved, added, replaced, or
deleted from a file.

DIRECT or SEQUENTIAL. These attributes specify the manner in
which the records in a data set are to be accessed. DIRECT specifies
that records are to be accessed by use of a key; thus, each record has a
key associated with it. SEQUENTIAL implies that the records are to be
accessed according to their sequence in the data set. These two attrib
utes specify only the current usage (method of access) of the file;
they do not indicate any physical properties of the data set associated
with the file.

540 PL/I Programming

f
Method of access for REGIONAL data sets

Subset language DIRECT

Full language DIRECT or SEQUENTIAL
_

KEYED. This attribute specifies that each record has a key associated
with it. In the case of REG IONAL(1), there is a key associated with the
record, although it is not recorded with the record. In REGIONAL(2)
and REGIONAL(3), the keys associated with records in these data
sets are actually recorded immediately preceding the logical records.
KEYED must be specified if the method of access is DIRECT; KEYED
is optional if the method of access is SEQUENTIAL and the 1/0 state
ments do not contain the options KEY, KEYTO, or KEYFROM.

RECORD. Regional data sets are intended to be accessed by
record-oriented data transmission statements (READ, WRITE, etc.) ;
thus, this attribute should be declared.

ENVIRONMENT. The options specified in the ENVIRONMENT
attribute vary with the operating system and the PL/I compiler you are
using. The options for REGIONAL files include:

1. REGIONAL (1), REGIONAL (2), REGIONAL (3): One of these
options must be specified for REGIONAL data sets.

2. Format type: Only unblocked records are allowed in
REGIONAL data sets.

/"
Format type of records allowed in

REGIONAL data sets

Subset language F format [REG 10 NAL(1), (2), and (3)]

Full language F format [REGIONAL(1), (2), and (3)]
V format [REG IONAL(3) only]
U format [REGIONAL(3) only]

'\

3. KEYLENGTH: The option specifies the length of the recorded
key for KEYED files. (Note: The KEYLENGTH option is provided
in all compilers except PL/I F. Thus, with PL/I F, use the DD

Indexed and Regional File Programming Concepts 541

job control statement, subparameter KEYLEN = n, to indicate the
number of characters in the key.)

4. MEDIUM (symbolic unit, symbolic device): This option is
used in those compilers that run under DOS. If specified for
programs running under OS, the MEDIUM option is ignored.
An example is

MEDIUM(SYS006,2311)

I '-> IBM disk drive

L____. Symbolic unit name selected
by the programmer

REGIONAL(1) Data Sets

What Each Region Contains. Each region contains one un
blocked F format record that does not have a recorded key. For example :

Region 0 Region 1 Region 2

Log ica I record 1 Log ica I record 2 Logical record 3 ...

Region Number. Each region number represents the pos1t1on of
one logical record within the data set. The relative position of the first
record is zero.

Source Key. The region number serves as the sole identification of
a particular logical record. The source key must be expressed as an
eight-position character-string consisting of the digits 0-9. One good
way of doing this is to declare all source keys as decimal character
variables by using the PICTURE '(8)9' attribute. For example, to read
the first 25 records in a REGIONAL(1) data set, we could code the
following:

DCL LRN PIC'(8)9';
LOOP: DO LRN=1 TO 25;

READ FILE (REG1)INTO(AREA)KEY(LRN);

END LOOP;

542 PL/I Programming

The value of the source key must represent an unsigned decimal integer
that does not exceed 16777215 (224 - 1).

Dummy Records. In the full language, a dummy record in a
REG IONAL(1) data set is identified by the constant (8) '1 'B in its first
byte. Although such dummy records are automatically inserted in the
data set, either when it is created or when a record is deleted, they
are not ignored when the data set is read; the PL/I program must be
prepared to recognize them. Dummy records can be replaced by valid
data.

Creating a REGIONAL(1) Data Set. A REGIONAL(1) data set
can be created by the DIRECT method. Following is an example of a
file declaration and 1/0 statement:

f

_

/* CREATE REGIONAL(1) DATA SET */
DCL REG1 FILE RECORD OUTPUT DIRECT KEYED

ENV(REGIONAL(1)F(500) MEDIUM(SYS006,2311)) ;
DCL KEY _FIELD PIC'(8)9', DATA(125);
OPEN FILE (REG1);
DO K=1 TO 35;
GET LIST (KEY _FIELD, DATA);
WRITE FILE(REG1)FROM(DATA)KEYFROM(KEY _FIELD);
END;

Creating a REGIONAL(1) data set

Subset DASO area must be preformatted before PL/I
language program attempts to create the data set

Full The space allocated to the data set is filled with
language dummy records when the file is opened

'

In the full language, a REGIONAL(1) data set may also be
created sequentially. For example:

DCL REG1 FILE RECORD OUTPUT SEQUENTIAL KEYED
ENV(REGIONAL(1) F(248));

DCL K PIC'(8)9', DATA(62)FIXED(7,2);
DO K=1 TO 35;
GET EDIT(DATA) (COL(1), F(7,2));
WRITE Fl LE(REG1) FROM(DATA);
END;

Indexed and Regional File Programming Concepts 543

When a SEQUENTIAL OUTPUT file is used to create the data set,
records must be presented in ascending order of region numbers; any
region that is omitted from the sequence is filled with a dummy record.
If there is an error in the sequence, or if a duplicate key is presented,
the KEY condition will be raised. When the file is closed, any space
remaining at the end of the data set is filled with dummy records.

(
Creating a REGIONAL data set

\

Subset language Via the DIRECT attribute only

'-
Full language Via the DIRECT or SEQUENTIAL attribute

Retrieving Records from a REGIONAL(1) Data Set. To retrieve
records from a REG IONAL(1) data set, the file may have the attributes
INPUT and DIRECT. For example:

DCL REG1 FILE RECORD INPUT DIRECT KEYED
ENV(REGIONAL(1)F(100) MEDIUM(SYS003,2314));

DCL LRN PIC'(8)9', DATA(25)CHAR(4);
OPEN Fl LE(REG1);
GET LIST(LRN);
READ FILE(REG1)1NTO(DATA)KEY(LRN);

In the full language, SEQUENTIAL (rather than DIRECT) may be
specified. For example:

DCL REG1 FILE ENV(REGIONAL(1)) ;
DCL LRN PIC'(8)9', DATA(25)CHAR(4);
OPEN FILE(REG1) INPUT SEQUENTIAL;

LOOP: DO LRN =0 to 99;
READ FILE(REG1) INTO(DATA);

END LOOP;

Even though a key is associated with a REGIONAL(1) data set,
the KEYED attribute is not needed, because the sequential access
method is being used and the READ statement does not contain the

544 PL/I Programming

KEY option. However, if the KEYTO option appears, in the READ
statement, e.g.,

READ FILE(REG1)INTO(DATA)KEYTO(LRN);

._I ---+) The region number
of the record just
read will be placed
into this variable

then the file declaration must contain the KEYED attribute.
Records may also be retrieved from a file that has the DIRECT

UPDATE attributes. The UPDATE attribute is used when it is desired
to retrieve, add, modify, or replace records in a data set. If you wish to
retrieve only, then the IN PUT attribute would logically be specified;
if you wish to retrieve a record for the purpose of modifying it, then the
UPDATE attribute would be specified. Here is an example in which
part of a given record is to be changed:

DCL REG1 FILE UPDATE DIRECT KEYED ENV(REGIONAL(1)F(350)
MED I UM (SYS004,2314)) ;

DCL LRN PIC'(8)9', DATA(10) CHAR(35);
OPEN FILE (REG1);
/* GET THE SOURCE KEY */
GET LIST (LRN);
/* READ SPECIFIED RECORD */
READ FILE(REG1)INTO(DATA)KEY(LRN);
/* GET NEW DATA AND MODIFY THE RECORD */
GET LIST(K,DATA(K));
/* OUTPUT MODIFIED RECORD */
REWRITE FILE(REG1)FROM(DATA)KEY(LRN);

In the full language, if all records in a REGIONAL(1) data set are to be
retrieved and modified, then the file attributes could be SEQUENTIAL
UPDATE.

In a REGIONAL(1) data set, both dummyt and actual records may
be retrieved. For example, if a READ statement specifies the key

t Dummy records are not provided in the subset languages. The programmer may flag
records within a data set to signify that a given region does not contain meaningful data;
however, to the system, the flagged record is just like a valid record.

if

Indexed and Regional File Programming Concepts 545

(region number) of a dummy record, that data will be placed into
the variable. indicated. In the full language implementations, dummy
records are indicated by a '(8) 1 'Bin the first byte of the REG IONAL(1)
record. The program must be prepared to recognize dummy records.
For example:

/* FULL LANGUAGE EXAMPLE */
DCL REG1 FILE SEQUENTIAL UPDATE

ENV(REGIONAL(1) F(100));
DCL DATA CHAR(100);
ON ENDFILE(REG1) GO TO END;

LOOP: READ FILE(REG1) INTO(DATA);
/* TEST FIRST BYTE OF THE INPUT RECORD */
IF SUBSTR(DATA, 1, 1) = (8)'1'8 THEN GO TO LOOP;

GO TO LOOP;
END: /* CONTINUE */

Deleting Records from a REGIONAL(1} Data Set. In the full
language, if it is desired to delete a record from a REGIONAL file, then a
dummy record is written over the existing record as indicated by the
DELETE statement. For example:

DELETE FILE(REG1) KEY(PART#);

In the subset language, the deletion of records must be simulated,
because the DELETE statement is not available. Thus, a "dummy"
record of a format selected by the programmer would have to be
written over an existing record using the REWRITE statement. For
example:

DCL AREA CHAR(124),FIRST BIT(8) DEF AREA;
BIT ='(8)1 'B;
REWRITE FILE(REG1)FROM(AREA)KEY(PART#);

REGIONAL(2} Data Sets

This type of data set is available in those PL/I compilers that will
run under OS (e.g., PL/I F and OS PL/I optimizing compilers).

What Each Region Contains. Each region contains one unblocked
F format record that is identified by a recorded key preceding each

546 PL/I Programming

record. For example:

Region 0 Region 1 Region 2

T T T
Recorded I Logical Recorded I Logical Recorded I Logical ...

key : record key : record
I

key
1

record
I I I

Significance of the Region Numbers. The actual position of a
record in the data set relative to other records is determined not by its
recorded key, but by the region number that is supplied in the source
key of the WRITE statement that adds a record to the data set. For
example, assume we have a data set containing four records and that
two of those four records have meaningful data, while the other two
contain dummy records. To illustrate:

Region 0 Region 1 Region 2 Region 3

T T I T
100 I Data Dummy 1 107 1 Data Dummy 1

1 1 l 1

...._ ______________ _______ ~ Recorded keys

Recall the layout of regions in the physical tracks of a direct access
storage device as shown in Figure 10.12. When a record is added to a
REGIONAL(2) data set, it is written with its recorded key in the first
available space after the beginning of the track that contains the region
specified. Given the file declaration,

DCL REG2 FILE RECORD UPDATE DIRECT KEYED
ENV(REG IONAL(2) F(100) KEYLENGTH (3));

and the WRITE statement,

WRITE FILE(REG2) FROM (AREA) KEYFROM('10900000000');

LRegionOis
intentionally
specified

Recorded
key is '109'

the added record will be placed into region 1, which is the first available
space after the beginning of the track that contains the region specified.

Indexed and Regional File Programming Concepts 547

Now, with the added record, we have the following configuration :

Region 0 Region 1 Region 2 Region 3

T T I I
100 I Data 109 I Data 107 I Data Dummy 1

l l l l

Thus, in the above example, region 0 was specified in the WRITE
statement, but the record and its recorded key were actually written
in region 1.

When a record is read, the search for a record with the appropriate
recorded key begins at the start of the track that contains the region
specified. Unless it is limited by the LIMCT subparameter of the DD
statement that defines the data set in OS, the search for a record or
for space to add a record continues right through to the end of the data
set and then from the beginning until the whole of the data set has
been covered. The closer a record is to the specified region, the more
quickly it can be accessed.

Dummy Records. A REGIONAL(2) data set can contain dummy
records which are recognizable by their keys: the key of a dummy
record has the constant (8) '1 'B in its first byte. The first data byte of a
dummy record contains the sequence number of the record on the
track. Dummy records can be replaced by valid data. They are inserted
automatically either when the data set is created or when a record is
deleted, and they are ignored when the data set is read.

REGIONAL(3) Data Sets

What Each Region Contains. Each region may contain one or
more unblocked records. For example:

Region 0

1 I I
Recorded 1 Logical Recorded 1 Logical Recorded 1 Logical

key I record key I record key I record
l l l

Region 1

I I
Recorded 1 Logical Recorded 1 Logical ...

key I record key I record
l l

548 Pl/I Programming

f
Record formats allowed in REG IONAL(3)

Subset language F format

F format
Full language V format

U format
'-
Significance of the Region Number. Each region number
identifies a track (see Figure 10.12) on the direct access storage device
that contains the data set; the region number may not exceed 32767
(2 16 - 1). The addition of records to a REGIONAL(3) data set is the
same as described for REGIONAL(2) data sets.

/"
Searching REGIONAL(3) data sets

\

Subset language Search for a record begins at the track
specified and, if the record is not found
in that cylinder, the search stops and the
KEY condition is raised

Full language Search for a record begins at the track
specified and, if the record is not found,
continues on to the next track; if speci-
tied, there is a search to the end of the
data set; if record is not found, the KEY
condition is raised

Dummy Records

Dummy records are not automatically provided in the subset
language. In the full language, dummy records for REG IONAL(3)
data sets with F format records are identical with those for REG I 0 NAL(2)
data sets. Dummy records cannot be inserted when a data set is created
with V format or U format records, because their lengths cannot be
known before they are written; however, the operating system main
tains a capacity record at the beginning of each track, in which it
records the amount of space available on that track.

Indexed and Regional File Programming Concepts 549

V Format and U format dummy records are identified by the fact
that they have dummy recorded keys [(8) '1 'B in the first byte]. The
four control bytes in each V format dummy record are retained, but
otherwise the contents of V format and U format dummy records are
undefined. V Format and U format dummy records are inserted in a
data set only when a record is deleted; the space they occupy cannot
be used again.

On-Units

On-units that applied to computational and stream 1/0 conditions
were initially covered in Chapter 3. The remaining on-units are described
here because of their applicability to record 1/0 data transmission for
DASO data sets.

KEY Condition. The KEY condition can be raised during operations
on keyed records. It is raised in any of the following cases:

1. The keyed record cannot be found for a READ or REWRITE
statement. In this case, the contents of the variable into which
data is to be read is unpredictable.

2. An attempt is made to add a duplicate key by a WRITE statement
for a REGIONAL(1) or INDEXED data set.

3. The key has not been correctly specified.
4. No space is available to add the keyed record.

In the absence of an on-unit, the system prints a message and raises
the ERROR condition. KEY is always enabled; it cannot be disabled
and a null on-unit cannot be specified. Here is a sample statement:

ON KEY(FILE1) GO TO ERROR_RT;

UNDEFINEDFILE Condition. The UNDEFINEDFILE condition is
raised whenever an attempt to open a file is unsuccessful. Some causes
for the condition occurring are as follows:

1. A conflict in attributes exists (e.g., opening a CONSECUTIVE
data set with DIRECT or KEYED attributes).

2. Attributes are incomplete (e.g., no blocksize specified, no key
length specified for creation of indexed data sets).

550 PL/I Programming

In the absence of an on-unit, the system prints a message and raises
the ERROR condition. The UNDEFINEDFILE condition is always
enabled and cannot be disabled. Upon normal completion of the on
unit, control is given to the statement immediately following the state
ment that causes the condition to be raised.

RECORD Condition. The RECORD condition can be raised during
a READ, WRITE or REWRITE operation. It is raised by either of the
following:

1. The size of the record is greater than the size of the variable
(for F, V, U formats).

2. The size of the record is less than the size of the variable (for
F format).

If the size of the record is greater than the size of the variable, the excess
data in the record is lost on input and is unpredictable on output.
If the size of the record is less than the size of the variable, the excess
data in the variable is not transmitted on output and is unaltered on
input. (In the case of fixed blocked records, the record condition is
raised as many times as there are records in the block.) In the absence
of an on-unit, the system prints a message and raises the ERROR
condition. RECORD is always enabled; it cannot be disabled. Upon
execution of a null on-unit, execution continues with the statement
immediately following the one for which RECORD occurred:

ON RECORD(FILE2)CALL PRTMSG;

TRANSMIT Condition. The TRANSMIT condition can be raised
during any 1/0 operation. It is raised because of a hardware failure.
Any data transmitted is potentially incorrect. In the absence of an on
unit, the system prints a message and raises the ERROR condition.
TRAN SM IT is always enabled; it cannot be disabled. Upon the normal
completion of the on-unit, processing continues as though no error
had occurred. If the TRANSMIT error is a recurring condition, the
customer engineer or maintenance engineer should be called to fix the
hardware failure.

Built-in Functions

Following are descriptions of two built-in functions available only
in the full language implementations. These functions would be useful
in responding to errors detected by the system during the execution of
PL/I statements that communicate with data sets.

Indexed and Regional File Programming Concepts 551

ONKEY Condition Built-in Function. ONKEY extracts the value
of the key for the record that caused an 1/0 condition to be raised. This
function can be used in the on-unit for an 1/0 condition or a CON
VERSION condition; it can also be used in an on-unit for an ERROR
condition. The value returned by this function is a varying-length
character-string giving the value of the key for the record that caused
an 1/0 condition to be raised. For example:

DCL ON KEY BUILTIN;
DCL KEY _IN_ ERROR CHAR(20)VARYING;
/* ON-UNIT FOR THE KEY CONDITION */
ON KEY(ISFILE) BEGIN;

/* INVOKE BUILTIN FUNCTION */
KEY_ IN_ ERROR=ONKEY;

END;

If the interrupt is not associated with a keyed record, the returned value
is the null string.

ONFILE Condition Built-in Function. ONFILE determines the
name of the file for which an 1/0 or conversion condition was raised
and returns that name to the point of invocation. This function can be
used in the on-unit for any 1/0 or conversion condition; it also can be
used in an on-unit for an ERROR condition. The value returned by this
function is a varying-length character-string, of 31-character maximum
length, consisting of the name of the file for which an 1/0 or conversion
condition was raised. For example, this built-in function is needed
in the KEY on-unit if there is more than one keyed data set for which
the KEY condition could be raised:

DCL ON FILE BUILTIN;
DCL NAME CHAR(31) VARYING;
ON KEY BEGIN;

/* INVOKE BUILTIN FUNCTION */
NAME=ONFILE;

END;

552 PL/I Programming

In the case of a conversion condition, if that condition is not associated
with a file, the returned value is the null string.

Two programs are illustrated in this case study:

1. File create program
2. File update program

The File Create Program

This program is illustrated in Figure 10.13. It creates a REG IONAL(1)
data set from a sequential data set called IN PUT. (The name of the
REGIONAL(1) data set is REG1 .) Records that contain an 'L' in the
first position of records stored in the INPUT data set are to be loaded
into the REG1 data set. At the same time records are being loaded into
the REG1 file, an indexed data set called ISAM is also to be created.
Records in the ISAM file will contain the key and the region number of
each record loaded into REG1. The ISAM file is being created so that
the index search method can be used to locate records in the REGIONAL
file. (This technique was described in this chapter under the heading
"Why Three Types of REGIONAL Data Sets?") Here are the record
layouts:

1. INPULRECORD
Position 1

2-5
6-10

11-20
21-30
31-40
41-50
51-60
61-70
71-80

2. ISAM_RECORD
Position 1

2-6
7-14

CODE
Not used
RECORD_ ID (Keyfield in character form)
F1
F2
F3
F4 Seven fields of 10 characters each
F5
F6
F7

Delete byte
RECORD_ID
Relative pointer (REL_ PTR) in picture 9's

form

!.l
J'1r

CREATE: PROC OPTIONS(MAIN>;
'*******************************!
I* FILE DECLARATIONS *I
!*******************************!

OCL INPUT FILE RECORD INPUT ENV(CONSECUTIVE);
OCL ISAM FILE RECORD KEYED ENV(INOEXEO);
OCL REG! FILE RECORD KEYED ENV(REGIONAL(l));

'*******************************'
I* RECORD DEFINITIONS *I
'*******************************!

DCL 1 INPUT_REC,
2 CODE CHAR (1),
2 FILL l CHAR(4),
2 IN_KEY PIC 1(5)9',
2 FIELDS,

3 (fl,F2,F3,F4,F5,F6,F7)CHAR(l0l;
DCL 1 IS AM_REC,

2 DELETE CHAR(l),
2 ISAM_KEY PIC 1 (5)9 1 ,

2 REL_PTR PIC 1 (8)9' INIT(l);
DCL 1 RE Gl_R EC,

2 REGl_KEY PIC 1 (5)9 1 ,

2 Flll2 CHAR(5) INIT(' I),

2 FIELDS,
3 (F4,Fl,F5,f2,F6,F7,F3)CHAR(l0);

!*******************************!
I* ON-UNITS SPECIFIED *I
!*******************************!

ON ENDFILE(INPUT) BEGIN;
REGl_KEY = REL_PTR;
WRITE FILE(REGl)FROMtREGl_REClKEYFROM('0');
GO TO PRINT_RT;
END;

ON KEY(ISAM)BEGIN;
PUT SKIP LISTlONFILE,ONKEY,ONCODE);
GO TO REAO_INPUT;
END;

!*******************************!
I* OPEN FILES *I
'*******************************!

OPEN FILE(ISAMl SEQL OUTPUT,
FILE<REGl) DIRECT OUTPUT;

READ_ INPUT:
READ FILE(INPUT)INTO(INPUT_REC);
IF CODE ,: 'l' THEN GO TO REAO_INPUT;
ISAM_KEY,REGl_KEY=IN_KEY;
REGl_REC = INPUT_REC, BY NAME;
WRITE FILE(ISAM)FROM(ISAM_REC)KEYFROM(ISAM_KEY);
WRITE FILE{REGl)FROM(REGl_RECtKEYFROM{REL_PTR);
REL_PTR = REL_PTR + l;
GO TO REAO_lNPUT;

PRINT_RT:
CLOSE FILE(lSAMJ,FlLE(REGl);
OPEN FILEUSAM> INPUT SEQL,

FILE(REGU INPUT DIRECT;
ON ENOFILE(ISAM) GO TO EOJ;

READ_ISAM:
READ FILE(ISAM)INTOllSAM_REC>;
READ FILElREGltINTOIREGl_REC)KEYIREl_PTR);
PUT ED IT(REG l_R EC • FI El D SH SK IP, COL(10) , (7) A (10)) ;
GO TO READ_ISAM;

EOJ: END CREATE;

FIGURE 10.13 File create program (full language version).

554 PL/I Programming

3. REG1 _RECORD
Position 1-5 RECORD_ ID

6-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80

Not used
F4
F1
F5
F2
F6
F7
F3

Note: These fields are in a different
sequence from the fields in the
INPUT_ RECORD

As a further illustration, then, records in the REG1 data set would look
like this:

00005 ~
J.

Region 0

RECORD ID c -

T ' 15103: Data 15101l Data 15102 I Data 15104 I Data Dummy Dummy.
J. J. J.

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

L The region 0 record contains the region number of the next
available region into which a new record could be added;
thus, the last processing step that your file create program
will perform is to load this value into region 0

Records in the ISAM data set would look like this:

I I
b I 15101 I 1

l 1

I I T r
b I 15102 I 2 b I 15103 I 3

I L l

Delete byte

RECORD_ ID

Relative pointer (e.g.,
region number)

l

I I
b 115104 I 4 ...
l l l

J

There are some things to observe in the program in Figure 10.13:

1. Notice how the first byte of ISAM_ REC is reserved as the
"delete" byte. As will be seen in the file update program, there is
provision for the possible deletion of records from the REG1 file.
The deletion is done in the ISAM file by simply setting the
first byte of the appropriate ISAM record to (8)'1 'B.

2. The ENDFILE on-unit consists of a begin block (available in
full .language only) that causes a pointer to be written in region

Indexed and Regional File Programming Concepts 555

0. This pointer points to the next available record in the REG1
file. Then, there is an exit to a print routine in which the contents
of the REG 1 data set will be listed on the printer.

3. The KEY on-unit is a begin block in which three full language
built-in functions are invoked: ON FILE, ON KEY, and ONCODE.
The 0 N Fl LE function causes the file name in which the KEY
condition was raised to be printed. The ON KEY function returns
the key value that caused the KEY condition to be raised. The
key value is printed because of the appearance of ONKEY in
the PUT LIST statement. Finally, ONCODE returns a value
indicating additional information about the nature of the error.
The meaning of this code should be looked up in the appropriate
PL/I reference manual.

4. The opening of files in this program is unique to full language
PL/I implementations. Notice that ISAM is assigned the attributes
SEQUENTIAL and OUTPUT at OPEN time. In the print routine
portion of this program, ISAM will be closed-thereby dissoci
ating all attributes with the file. Then ISAM will be immediately
opened again-this time with the added attributes SEOU ENTIAL
INPUT. Assigning the attributes INPUT or OUTPUT at open time
gives us the flexibility of being able to read and write the same
file in a single program. (This is not possible in the subset
language. There, two files must be declared, one for INPUT
and one for OUTPUT.)

The File Update Program

This program is illustrated in Figure 10.14. It updates the REG1
file created in the previous program. The update records are in a
sequential file called INPUT. The records have an 'A' in position one
for addition, a 'U' for update, and a 'D' for delete. Any other code in
this position is to be ignored by the program. The data set record layouts
are the same as those described in the first program.

In this summary, a number of charts are presented that compare the various
data set organizations. The charts are full language implementation-oriented.
The subset restrictions are listed in the captions of these charts. Figure 10.1 5

556 PL/I Programming

UPDATE: PROC OPTIONS(MAIN);
'*******************************!
I* FILE DECLARATIONS *I
'*******************************/

OCL INPUT FILE RECORD INPUT ENVCCONSECUTIVE);
OCL ISAM FILE RECORD KEYED ENV(INDEXEO);
DCL REGl FILE RECORD KEYED ENV(REGIONAL(l)J;

'*******************************/
I* RECORD DEFINITIONS *I
'*******************************!

DCL 1 INPUT_REC,
2 CODE CHAR (1),

2 fllll CHAR(4J,
2 I N_ KE y p I c I (5) 9 ' ,
2 FIELDS,

3 {fl,F2,F3,F4,F5,F6,F7)CHAR(l0);
DCL 1 I SAM_REC,

2 DELETE CHAR(l),
2 ISAM_KEY PIC '(5)9 1 ,

2 REL_PTR PIC'(8)9';
CCL 1 REGl_REC,

2 REGl_KEY PIC '(5)9 1 ,

2 flll2 CHAR(5) INIT(' •),
2 FIELDS,

3 (F4,Fl,f5,F2,F6,F7,F3)CHAR{l0);
'*******************************'
I* 8N-UNITS SPECIFIED *I
'*******************************!

ON KEY{ISAM)BEGIN;
PUT SKIP LISTtONFILE,ONKEY,ONCODE);
GO TO READ_INPUT;
ENO;

ON ENDFILECINPUT) BEGIN;
REGl_KEY = NEXT_AVAILABLE;
WRITE FILE(REGl)FROM(REGl_REC)KEYFROM('O');
GO TO PR I NT _RT;
END;

'*******************************!
I* OPEN FILES *I
'*******************************!

CPEN FILE(ISAM) UPDATE DIRECT,
FILECREGl> UPDATE DI~ECT;

FIGURE 10.14 File update program (full language version).

compares record-oriented data set organizations; Figure 10.16 shows the
various file activities for each organization; and Figure 10.17 identifies the
three additional on-units covered in this chapter.

A SEQUENTIAL file specifies that the accessing, creation, or modification
of the data set records is performed from the first record of the data set to the
last record of the data set.

A DIRECT file specifies that the accessing, creation, or modification of

Indexed and Regional File Programming Concepts 557

DCL NEXT_AVAILABLE PIC'(5}9';
READ FllE(REGl)INTO{REGl_REClKEY('O');
NEXT_AVAILABLE= REGl_KEY;

R EAD_ll\IPUT:

CHECK:
READ FllE(INPUTlINTO(INPUT_REC);

IF CODE ='A' THEN GO TO ADD_ROUTINE;
IF CODE ='U' THEN GO TO UPOATE_ROUTINE;
IF CODE =1 0 1 THEN GO TO DELETE_ROUTINE;
GO TO READ_INPUT;

AOO_ROUTINE:
ISAM_KEY,REGl_KEY = IN_KEY;
REL_PTR = NEXT_AVAILABLE;
WRITE FILE(ISAM)FROM(ISAM_REC}KEYFROM(ISAM_KEY);
REGl_REC = INPUT_REC, BY NAME;
WRITE FILE(REGl)FROMtREGl_REC)KEYFROMlREL_PTR);
NEXT_AVAILABLE = NEXT_AVAILABLE +l;
GO TO REAO_INPUT;

UPDATE_ROUTINE:
READ FILE(ISAM) lNTOtISAM_REC)KEY(IN_KEY);
READ FILE(REGl)INTO(REGl_REC)KEY(REL_PTR);
REGl REC = INPUT REC, BY NAME;
REWRITE FILE(REGl)FROM(REGl_REC}KEY(REL_PTR};
GO TO REAO_INPUT;

DELETE_ROUTINE:
READ FILE (ISAM) INTO{ISAM_RECtKEY(IN_KEYl;
DELETE FILE(ISAM)KEY(IN_KEY);
DELETE FILE(REGl)KEY(REL_PTR);
GO TO REAO_INPUT;

PRINT_RT:
CLOSE FILEtISAM),FILEtREGl);
OPEN FILEOSAM) INPUT SEQL,

FILE<REGU INPUT DIRECT;
ON ENOFILE(ISAM} GO TO EOJ;

READ_ISAM:
READ FILE(lSAM)INTO(lSAM_REC>;
READ FILE(REGl)lNTO(REGl_REC)KEY(REL_PTR);
PUT EDIT(REGl_REC.FIELOS){SKIP,COL(l0),(7)A(l0));
GO TO RE~O_ISAM;

EOJ: ENO UPDATE;

FIGURE 10.14 Continued

the data set records may be performed in random order. The particular record
of the data set to be operated upon is identified by a specified key.

A data set that is accessed, created, or modified in the SEQUENTIAL
access method may or may not have recorded keys. If it does, the keys may be
ignored while accessing sequentially, or they may be extracted from the data
set or placed into the data set by the KEYTO and KEYFROM options.

Existing records of a data set in a SEQUENTIAL UPDATE file can be
rewritten, modified, or ignored, but the number of records cannot be increased

r

\..

Record Recorded ' Organization Devices formats keys Key specification Dummies

CONSECUTIVE Any F, U, V, No Not applicable Not applicable
blocked or
unblocked

INDEXED DASO V,F blocked or Yes 1-255 byte character-string First character of record con-
unblocked tains (8)'1 '8

REGIONAL(1) DASO F unblocked No 8 characters representing re- First character of record con-
gion (relative record) are tains (8)'1 '8
character representation of
unsigned decimal integer
16777216

REGIONAL(2) DASO F unblocked Yes Low-order 8 bytes as in First character of key contains
REGIONAL(1); high-order (8)'1 '8; first character of
bytes (1-255) are recorded record contains record
key number

REGIONAL(3) DASO F, U, V Yes As in REGIONAL(2) except F: same as in REGIONAL(2);
unblocked maximum region is 32767 U or V: first byte of key

and region is a relative contains (8) '1 '8; record
track control bytes are valid

FIGURE 10.15 Record-oriented data set organizations. [Subset restrictions: No REGIONAL(2) organization;
no U or V record formats in REGIONAL(3); no dummy records; no V records in DOS INDEXED data sets.]

f Creation Retrieval Addition Update

Organization SEQUENTIAL DIRECT SEQUENTIAL DIRECT SEQUENTIAL DIRECT SEQUENTIAL DIRECT

CONSECUTIVE No keys Not applicable Can read tape Not applicable Can extend if Not applicable REWRITE after Not applicable
backwards DISP=MOD READ on DASO
with fixed-length in OS/360
records JCL

INDEXED Values of keys in Not applicable Can start at other Indices direct OS: Can Usually causes a REWRITE after REWRITE after
ascending order than first record search to prime add to end record to go into READ if blocked READ if blocked

track or overflow overflow

REGIONAL(1) Keys in sequential Tracks initialized Real and dummy Record retrieved Not applicable Overwrite existing READ then RE- DELETE writes a
order; get dum- with dummies; records retrieved whether real or record whether WRITE; delete dummy record;
mies for missing then records in sequence dummy real or dummy overwrites with updates whether
keys and re- added dummy; updates real or dummy
maining tracks whether real or

dummy

REGIONAL(2) Keys in sequential Tracks initialized Retrieved in order Searches for Not applicable Record put in READ then RE- DELETE writes a
order; get dum- with dummies; written; dum- matching key next available WRITE; delete dummy record;
mies for missing then records mies not avail- starting at track location starting overwrites with record with speci-
keys and re- added able containing speci- at track contain- dummy

---~

fied key must
maining tracks fied region and ing specified re- exist

going LIMCT gion and going
records LIMCT records

REGIONAL(3) Records in region F: tracks initial- Retrieved in order Searches for Not applicable Record put in READ then RE- DELETE-F: writes
number order; ized with dum- written; dum- matching key next available WRITE; DELETE a dummy record;
system writes mies and records mies not avail- starting at speci- location starting -F: writes a U or V space is
dummies (F) or added ; V or U : able fied track and at specified track dummy record; not reused
initializes capa- capacity records going LIMCT and going LIMCT U or V space is
city records (V initialized; then tracks tracks not reused
or U) for por- add records
tions of tracks

\.
skipped

FIGURE 10.16 Comparison of data set activities. [Subset restrictions: No SEQUENTIAL attribute
allowed for REGIONAL data sets; only search to end of the track for a record in REGIONAL(3); no
DELETE; no dummy records.]

/' On- Normally Condition Built- \
condition and Enabled/ What the programmer Standard in functions useful
abbreviation disabled Cause should do Normal return to: system action in on-unit

KEY Enabled 1. Keyed record cannot be Dependent upon require- The statement immediately ERROR condition ONCODE
(file name) (cannot be found ments of installation following the statement ONCOUNT

disabled) 2. Attempt to add a duplicate that caused the condition ON FILE
key to be raised ON KEY

3. No space available to add ONLOC
keyed record

4. Key is out of sequence

5. Error occurred in the con-
version of the key

6. Key has not been specified
correctly

RECORD Enabled READ, WRITE, or REWRITE What is necessary to assure The statement immediately ERROR condition ONCODE
(file name) (cannot be statement because: that the size of the vari- following the statement ONCOUNT

disabled) 1. Size of record greater than able and the record it is that caused the condition ON FILE
size of variable being read into or out of to be raised ON KEY

2. Size of record less than are the same and the ONLOC
size of variable length is not zero

3. Record of zero length has

been read
or

4. Attempt made to write a
record of zero length

TRANSMIT Enabled Permanent transmission error Dependent upon require- Continuation of execution ERROR condition ONCODE
(file name) (cannot be ments of installation as though no transmission ONCOUNT

disabled) error had occurred ON FILE
ON KEY
ONLOC

-·-·--.-

FIGURE 10.17 Input/output conditions.

Indexed and Regional File Programming Concepts 561

or decreased. An existing record in an UPDATE file can be replaced through
use of a REWRITE statement.

A WRITE statement adds a record to a data set, while a REWRITE state
ment replaces a record. Thus, a WRITE statement may be used with OUTPUT
files and DIRECT UPDATE files, but a REWRITE statement may be used with
UPDATE files only. Moreover, for DIRECT files, a REWRITE statement uses the
KEY option to identify the existing record to be replaced; a WRITE statement
uses the KEYFROM option, which not only specifies where the record is to be
written in the data set, but also specifies, except for REGIONAL(1), an identifying
key to be recorded in the data set.

1. DCL FILE FILE RECORD OUTPUT DIRECT ENV (INDEXED F(400,80)
MEDIUM (SYS011,2311) EXTENTNUMBER(2)
KEYLENGTH(16)0FL TRACKS(2));

In the above DECLARE statement, which omitted attribute is mandatory?

(a) ADDBUFF
(b) KEYLOC
(c) KEYED
(d) SEQUENTIAL

2. DCL KEYED FILE RECORD INPUT KEYED DIRECT ENV
(MEDIUM (SYS011,2311) F(1024)EXTENTNUMBER(2)
REGIONAL(1));

In the above DECLARE statement, which of the following attributes must
also be specified?

(a) KEYLOC
(b) KEYLENGTH
(c) Both A and B
(d) Neither A nor B

3. DCL INDEX FILE RECORD INPUT DIRECT KEYED ENV
(MEDIUM (SYS011,2311) F(400)REGIONAL(3));

In the above DECLARE statement, which omitted option is mandatory?

(a) BUFFERS(2)
(b) KEYLENGTH
(c) INDEXED
(d) KEYLOC

562 PL/I Programming

4. Write the PL/I OUTPUT statement to transmit a record from the variable
AREA_ 1 to XFI LE, a REGIONAL(1) output file. The record is to be trans
mitted to region 293. (Record size is 100.)

5. Which types of organization use recorded keys on the external media?

(a) CONSECUTIVE
(b) INDEXED
(c) REGIONAL(1)
(d) REGIONAL(2)
(e) REGIONAL(3)

6. Write the PL/I output statement to replace the record specified by the com
parison key EMP# and relative region number called TRACK# in
DF I LE, a REG IONAL(3) update file, with the record in the variable named
CARD_REC.

7. Write the file declarations for the following files:

INDISK, a REGIONAL(1) input file; disk unit blocksize is 600
DISKOT, a REGIONAL(3) output file; blocksize is 800; keylength is 25
U PR EC, a REG IONAL(3) update file; the character-string key identification
is 1 0 characters long; blocksize is 480

8. What would happen if you issued a READ to an indexed data set, supplying
a key, processing DIRECT, and there was no record with the specification
key in the data set?

comparison key
cylinder index
data set
direct addressing (with respect to data sets)
direct search
dummy record
extent
indexed sequential
indirect addressing
master index
overflow area
packing factor
preformatting (DASD area)

prime data area
prime number
recorded key
region
region number
relative record
relative track
sequential search
source key
synonym
track index
update

Indexed and Regional File Programming Concepts 563

1. Create a REGIONAL(3) Data Set

Problem Statement: Write a PL/I program to create a REGIONAL(3) data
set from the following card data:

Columns 1-5 Catalog number; an alphameric field (columns 1-2

Columns 6-9
Columns 10-13
Columns 14-17
Columns 18-21
Columns 22-23
Columns 24-27

category number within catalog number, columns 3-5
order number within catalog number)
Author number; an alphameric field
Quantity ordered; four digits
Quantity delivered; four digits
Quantity-on-hand; four digits
Minimum number to be kept on hand; two digits
Unit price; a four-digit number with an assumed decimal
point between the second and third digits

Columns 28-46 Title; an alphameric description
Columns 47-57 Author; an alphameric description
Columns 58-67 Publisher; an alphameric description
Columns 68-80 Blank-unused at this time

Input: See Figure 10.18 for suggested input data.

Processing: Count the number of records loaded into the disk file. In developing
the key for this data set, let the first two digits of the catalog number (columns 1
and 2) be the relative track number; the last three digits of the catalog number
(columns 3-5) can make up the comparison key.

Output: List each record loaded into the file. Each field should be separated
by three or more spaces on the printed output. Also, print the record count at
the end of the record listing.

2. Retrieving Records from a REGIONAL(3) Data Set

Problem Statement: Using the REGIONAL(3) data set created in Problem 1,
write a program to read data cards for specific keys. Use these keys to locate
the corresponding disk records. Print a report which shows the catalog number,
title, number of books back-ordered (if any), and the amount due for books
delivered.

Input: Read card records in the following format:

1 2 3 4 5

I
x x x __ x_x __ ~

Catalog number

564 PL/I Programming

050020110000500050005050250THE AMERICAN
050030500002000000025150075THE BEAR
050040080000500040004010195BRIGHTON ROCK
050050040001500100012050075THE BROTHERS KARAM
050060122010000030122100100CANOY
050070045000200000000010100THE CAPTIVE WITCH
050080185001700015020050150THE CORRUPTERS
050090040001000010010050095CRIME AND PUNISH.
050110110000200000000010100DAISY MILLER
050130035000100001001010300DEVOTIONS
050140070003000028040050075DIAMONO HEAD
0501501500040000200200500950R. ZHIVAGO
050160195002000020020050075FAIROAKS
050170130005000020030050500THE FIXER
050200060020000183212250075GOLOFINGER
050270125003000027027200150LADY CHATTERLEYS
050280140004000030039100095LOLITA
060400020001000010012100075THE SEA AROUND US
060420125001200008008100125SONS AND LOVERS
060430110000100001001010150STORIES OF ARTISTS
060440015001000007008050125THE STRANGER
060450120000100000000010150THE SUBTERRANEANS
060460090004000037051100250THE SUN ALSO RISES
070470163C00400002002010300SWAN'S WAY
070480l80001200012012C504CCTHOSE WHO LOVE
070490055001200006006100150TOM JONES
080500110001000002002050100TURN OF THE SCREW
080510025001400003005C5010CVICTORY
080520l90000500000001051500WAR ANO PEACE
200010061000100001001010500AOVANCE CALCULUS
200020133000500004007010300COLLEGE ALGEBRA
20003010300100001001301040CDIFFENTIAL EQUATION
200040127C01000009011010250ELEMENTS OF ALGEBRA
200060187002000012050010025LIMITS
20007000900020000200201060CMEN OF MATHEMATICS
200080032001000003003010450WHAT lS MAt.HEMATICS
250020100000200002002011800HUMAN PHYSIOLOGY
250030034001000010010010500PRIN. Of GENETICS
300010062C0120001201201080CELEM. OF QUANT.ANA~Y
3000200110006000000000llOOOORGANlC CHEMISTRY
300030012001200009009010650PRIN. OF PHYS.CHEM
300040057001200008007010700QUANTITATIVE ANALYS

FIGURE 10.18 Sample input data for Problems 1 and 3.

where the first two digits of the catalog number may be the relative track
number, and the last three digits are the keyt The REG IONAL(3) file that has
been created contains 80-byte records in the format described for card input in
Problem 1.

Processing: After a data card is read, read the corresponding disk record.
Compute the number back-ordered (BACK= Quantity ordered - Quantity
delivered). Compute the amount to be paid (AMT= Quantity delivered * unit

tOr use the division/remainder randomizing technique to derive a relative track number
from the catalog number.

Indexed and Regional File Programming Concepts 565

price). After all the data cards have been read, print final totals for number of
books back-ordered (BACKF) and for amount to pay (AMTF).

Output: Print results in format shown in Figure 10.19.

3. Create an Indexed Data Set

Problem Statement: Write a program to create an indexed data set from the
data described in Problem 1.

Input: Suggested input is shown in Figure 10.18.

Processing: Same as for Problem 1, except that the key should be the entire
catalog number (columns 1-5).

Output: Same as for Problem 1.

4. Sequential Access of an Indexed Data Set

Problem Statement: Using the indexed data set created in Problem 3, write
a program to retrieve all records by the SEOU ENTIAL method and print a report
as defined in Problem 2.

Input: There is no card input-only disk record input.

Processing: See Problem 2.

Output: See Figure 10.19.

5. Direct Access of an Indexed Data Set

Problem Statement: Using the data set created in Problem 3, write a program
to read data cards for specific keys. Use these keys to locate the corresponding
disk records. Print a report as defined in Problem 2.

Input: Selected catalog numbers should be punched in columns 1-5.

Processing: See Problem 2.

Output: Print results in format shown in Figure 10.19.

11111111112222222222333333333344444444445555555555
12345678901234567890123456789012345678901234567890123456789

Wt.:J mshfw 11 r,t& ldJ~ • rAt.n • tn..t1 l_d_.

i
jT

FIGURE 10.19 Sample output for Problems 2 and 4.

t!hapfl!t rr

~fotat@ rf a!!H

ld@nfifi@t!

This chapter discusses how statements can be organized into blocks
to form a PL/I program, how control flows within a program from one
block of statements to another, and how storage may be allocated for
data within a block of statements. In addition, PL/I storage classes are
defined.

A block is a sequence of statements that constitute a section of a
program. There are two types of blocks: procedure blocks and begin
blocks. A PL/I program consists of one or more procedures, each of
which may contain other procedure or begin blocks. If a procedure is
nested within another procedure, it is called an internal procedure.
If a procedure is compiled separately, it is called an external procedure.
In the coding shown here, then,

P1 :

[
[

568

PROC OPTIONS(MAIN); /* EXTERNAL PROCEDURE*/

IF ISW=2 THEN CALL P2;
IF ISW=3 THEN CALL P3;
PROC; /* INTERNAL PROCEDURE */

END P2;
PROC; /* INTERNAL PROCEDURE */

END P3;
END P1;

Storage Classes and Scope of Identifiers 569

P1 is an external procedure; P2 and P3 are internal procedures because
they are nested within P1. We can tell they are nested because of the
position of the END statements. Notice that P2 and P3 contain only
the keyword PROC; the keywords OPTIONS(MAI N) do not appear
PROC OPTIONS(MAIN) statement and nested procedure blocks
without the OPTIONS(MAIN). Thus, the internal procedures are like
subroutines or functions that you learned to code in Chapter 7. In a
PL/I program, the MAIN procedure will be the first executed block.
The nested or internal procedures will be executed by a CALL or
function reference. Notice, then, from the above coding that the way
in which P2 and P3 are executed is by a CALL. Had the IF statement

IF ISW=2 THEN CALL P2;

been eliminated from the P1 program, then the P2 procedure would
never be executed-even though the coding is nested within the
main program.

Data names (i.e. variables) actually represent locations in main storage
where the data items are recorded. When a location in main storage
has been associated with a data name, the storage is said to be allocated.
In PL/I, we have the facility to allocate main storage at different times.
The time at which storage is to be allocated depends on the storage
class of the data. There are four storage classes: AUTOMATIC,
STATIC, BASED, and CONTROLLED. The first two classes will be
discussed now fol lowed by a discussion of scope of identifiers and
begin blocks. BASED and CONTROLLED will be covered at the end
of this chapter.

AUTOMATIC Storage

Unless declared to have another storage class, most variables will
have the AUTOMATIC attribute. As an illustration of what this at
tribute means in a PL/I program, three procedures are shown in Fig
ure 11.1. SUBRT and FUNCT are internal procedures; that is, they
are nested within the MAIN procedure. This is the same configuration
as the P1, P2, and P3 example, except that the procedure names have
been changed.

Data names, such as STRUCTURE, TABLE, and LIST in the ex
ample, actually represent locations in main storage where the data

570 PL/I Programming

MAIN: PROC OPTIONS(MAIN).;
DCL 1 STRUCTURE,

2 (A, B, C)
2 D FIXED;

CALL SUBRT;
Y= FUNCT(A);

SUB RT: PROC;
DCL TABLE (100) CHAR (1);

END SUBRT;

FUNCT: PROC(A);
DCL LIST(50) FIXED;

END FUNCT;

END MAIN;

FIGURE 11.1 A program consisting of three procedures.

items are recorded. When a location in main storage has been associated
with a data name, the storage is said to be allocated. The fact that
certain variables, such as TABLE, are used in one procedure of a pro
gram and not in others makes it possible to allocate the same storage
space at different times to different variables.

For example, SUBRT manipulates the data in TABLE. When
SUBRT is finished and FUNCT begins execution, it is possible (and
desirable from a main storage utilization standpoint) to allocate LIST
to the storage area previously occupied by TABLE. If the value of
TABLE is not needed when the procedure is invoked again, there is
no need to keep the space reserv.ed after execution of the procedure
is completed. The storage area can be freed and then used for other

Storage Classes and Scope of Identifiers 571

purposes. Such use of main storage is called dynamic storage a/location.
When storage is allocated dynamically, it is allocated during the

execution of a procedure. Storage remains allocated as long as the
procedure in which it was allocated remains active. To illustrate this
concept, when the MAIN procedure in Figure 11 .1 is activated, i.e.,
"called/' the storage for STRUCTURE will be allocated, giving the
following main storage configuration:

MAIN

SUB RT

FUN CT

}
Dynamic storage area
(AUTOMATIC storage class)

Even though SUBRT and FUNCT are nested within MAIN, these
blocks of coding will be extracted by the compiler and placed below the
coding for the MAIN procedure. Following the PL/I procedure blocks
will be the dynamic storage area.

To see how more dynamic storage (that is, AUTOMATIC storage)
is allocated, assume the MAIN procedure calls SUBRT. MAIN remains
an active procedure; hence, storage for STRUCTURE stays allocated.
The only way in which MAIN may be deactivated is to terminate this
procedure with a STOP, END, EXIT, or RETURN.

When SUB RT is activated (by a CALL), storage is allocated for
the data area called TAB LE. The program in main storage now has this
configuration :

MAIN

SUBRT

FUN CT

j AUTOMATIC storage

572 PL/I Programming

(In some operating systems, AUTOMATIC storage may not be con
tiguous to the program area. What is being illustrated here is a concept
of the dynamic allocation of storage. Its actual position in main storage
is not of importance to the programmer-unless he is trying to read a
core dump.)

When SUB RT is terminated, it is "deactivated;" hence, storage for
TAB LE is released to give the following configuration:

MAIN

SUB RT

FUN CT

} AUTOMATIC storage

1 Previously used to 1

Lcontain TAB LE dataj

Next, the MAIN procedure invokes FUNCT. The activation of
FU NCT causes storage to be allocated for the data area called LIST in
Figure 11 .1. Main storage would now look like this:

MAIN

SUB RT

FUN CT

} AUTOMATIC storage

}

This AUTOMATIC storage
area was previously used
to contain TABLE data

This example illustrates an important point: When a procedure
(such as SUB RT) is activated and deactivated, the contents of its data
areas may be lost. Thus, if SU BRT is called a second time from MAIN,
data recorded in TABLE the first time SUB RT was executed will not be
there the second time. As illustrated before, this is because an interven-

Storage Classes and Scope of Identifiers 573

ing procedure, FUNCT, was executed and its data area (LIST) was
allocated to the area where TABLE once resided. The dynamic allocation
of storage applies to begin blocks as well as procedure blocks.

This dynamic allocation of main storage is one of the outstanding
features of PL/I, because it provides for efficient use of main storage.
Total storage requirements of a program may be reduced because of this
automatic data overlay feature. The programmer does not have to code
extra instructions or steps to cause this allocation to take place. It is
done for him automatically. All the programmer needs to do is be aware
of how and when storage is allocated. Most variables that have not been
explicitly declared with a storage class attribute are assumed to have
the AUTOMATIC attribute.

Prologue. The al location of dynamic storage, that is, for variables
that have the AUTOMATIC attribute, is performed by a routine called
a prologue. This routine is set up by the compiler and attached to the
beginning of each block. It is always executed as the first step of a
block. One of the prologue's functions is to allocate dynamic storage
for AUTOMATIC variables declared within the block to which it is
attached. In addition, it allocates storage for dummy arguments (dis
cussed in Chapter 7) and "saves" the status of on-units.

Epilogue. The release of main storage that has been allocated to
AUTOMATIC variables is handled by a routine called an epilogue. In
addition, it reestablishes the on-units to the status that existed before
the block was activated. The epilogue routine is logically appended to
the end of each block and is executed as the final step before the
termination of the block. Prologues and epilogues are set up by the
compiler, not the programmer. They are discussed here because
knowledge of them may assist you in improving the performance of
your programs.

STATIC Storage

We saw earlier that if MAIN calls SUBRT and then FUNCT,
SUBRT's data area (TABLE) was overlayed by FUNCT's data area
(LIST). In some cases, we may not want LIST to overlay TABLE.
Whenever the value of a variable must be saved between different
invocations of the same procedures, storage for that variable has to be
allocated statically. In this case, storage is allocated before execution
of the program and remains allocated throughout the entire execution
of the program.

574 PL/I Programming

Data areas have the AUTOMATIC attribute by default. However,
had the procedures declared STRUCTURE, TABLE, and LIST to have
the STATIC attribute, e.g.,

DCL 1 STRUCTURE STATIC,
2 (A, B, C),
2 D FIXED;

DCL TABLE(100) CHAR(1) STATIC;
DCL LIST(50) STATIC FIXED;

then main storage would typically appear as follows:

f
MAIN procedure

\

SUBRT procedure

FUNCT procedure

STATIC storage

AUTOMATIC storage

Thus, STATIC storage follows the external procedure MAIN, which is
then followed by AUTOMATIC storage for that external procedure.
Had MAIN, SUBRT, FUNCT each been a separately compiled pro
cedure such as

~---MAIN: PROC OPTIONS (MAIN);

'-------END MAIN;

~--SUBRT: PROC;

'-------END SUBRT;

.----FUNCT: PROC(A);

'-------END FUNCT;

Storage Classes and Scope of Identifiers 575

then main storage would typically appear like this:

MAIN procedure

STRUCTURE } STATIC storage

SUB RT procedure

TABLE } STATIC storage

FUNCT procedure

LIST } STATIC storage

In this example, then, there is no AUTOMATIC storage. Typically,
however, a program will have both STATIC and AUTOMATIC storage
areas. Program constants and variables declared with the EXTERNAL
attribute have the STATIC storage class attribute.

Initializing STATIC versus AUTOMATIC Variables. Variables,
whether main storage space is allocated to them dynamically or
statically, may be given initial values at the time of storage allocation.
You can save program overhead by declaring variables that are to be
initialized to have the STATIC attribute. For example:

DCL A FIXED(5,2) INIT(O) STATIC;
DCL CTR FIXED(3) INIT(100) STATIC;

STATIC variables are initialized only once-before execution of a
program begins. AUTOMATIC variables are reinitialized at each
activation of the declaring block.

In PL/I, an identifier may have only one meaning at any point in time.
For example, the same name cannot be used for both a file and a
floating-point variable. It is not necessary, however, for a name to
have the same meaning throughout a program. Because it is possible
for a name to have more than one meaning, it is important to define
which part of the program a particular meaning applies to. In PL/I,

576 PL/I Programming

a name is given attributes and a meaning by a declaration (not neces
sarily explicit). The part of the program for which the meaning applies
is called the scope of the declaration of that name. Generally, the
scope of a name is determined entirely by the position at which the
name is declared within the program (or assumed to be declared if the
declaration is not explicit).

Consider the following nested blocks:

~--P1: PROC;
DCL (X,Y,Z) CHAR (20);

CALL P2;

P2: PROC; I' L. :CL(A, B, C)

L_END P2;
'--------END P 1 ;

FIXED;

Because of the way in which dynamic storage is allocated, a name
declared within a block has a meaning only within that block or to
blocks nested within it. In the above example, here is how the scope of
identifiers is affected :

Activate P1: Storage is allocated for X, Y, and Z. At this point,
the variables A, B, and C are not known to P1
because storage has not yet been allocated.

Activate P2: Storage is allocated for A, B, and C. P2 can
manipulate not only A, B, and C but also X, Y,
and Z, because the P1 procedure is still active.

Deactivate P2: When there is an exit from P2, the storage for
A, B, and C is released. Do you see how A, B,
and C can be known only within the P2 block?

Here is an example of how the scope of an identifier may be
limited to a given block. Had the nested blocks been specified, A, B,
and C in the outer block would refer to different data items than do
A, B, or C in the inner block. In some instances, the use of nested
blocks to limit or redefine the scope of a variable provides an ease of
programming not usually available in other computer languages. For

.i:;(

Storage Classes and Scope of Identifiers 577

example, assume a programmer has coded a problem in which he has
used the variable name DATE to represent a FIXED DECIMAL value.

~--P1 : PROC;
DCL(A, B, C) CHAR(20);

CALL P2;

P2: PROC; I' L. ~CL(A, B, C)

LEND P2;
~----END P1;

FIXED;

This data name has been used a number of times in his program. Later,
it is decided to have the date printed with the output from this program.
The appropriate coding that invokes the DATE built-in function and
prints the date edited with slashes can be easily inserted. However,
there is one problem : The programmer has already used the identifier
DATE to mean something else, so it cannot be used to refer to the DATE
built-in function at the same time. The solution to this problem would
be to create a nested block that can be used to limit the scope of a
variable. For example:

P1 : PROC OPTIONS(MAIN);

DCL DATE FIXED(3),TODAY CHAR(6);
DATE=302;
CALL P2;

P2: PROC;
DCL DATE BUILTIN;
TODAY= DATE; /* INVOKE DATE FUNCTION */
END;

END P1;

578 PL/I Programming

In this example, DATE is declared in the outer block to be FIXED
DECIMAL(3) and is initialized to the value 302. Also, TODAY is
declared to be a character-string of length six. When it is desired to
invoke the DATE function, a nested block is created. Within this block,
DATE is declared to have the BU IL Tl N attribute; th us, the scope of the
identifier, DATE, is being redefined-actually, its scope is being limited
to the internal block. The value returned from the DATE function is a
character-string that is assigned to TODAY. Notice that TODAY is
declared outside the nested block, but may be referenced by state
ments within the nested block. An analogy that might be drawn
regarding the scope of identifiers is to think of the declaration as a
"one-way looking glass." Inner blocks can "see out," but the outer
blocks cannot "see in." In other words, within the begin block, any
variable declared inside of it is known only to that block or any other
block nested within it. However, identifiers declared outside the block
are known to the inner block providing that a "redefinition" of the
variable name has not been specified in the nested block. This, of
course, was the case with the identifier DATE.

Scope of an Explicit Declaration

The scope of an explicit declaration of a name is that block to
which the declaration is internal. This includes all nested blocks except
those blocks (and any blocks contained within them) to which another
explicit declaration of the same identifier is internal. For example:

P1: PROC;
DCL(A B) FIXED;

P2: PROC;
DCL(B, C) CHAR(8};

P3 · PROC ·
DCL(C, D) BINARY;
X=C*D;

END P3;
~--ENDP2;

~--ENDP1;

P1 A B B' C C' D P2 P3 X

J
J
]]

Storage Classes and Scope of Identifiers 579

The lines to the right indicate the scope of the names: B and B' indicate
the two distinct uses of the name B; C and C' indicate the two uses
of the name C.

Scope of Contextual Declaration

The scope of a contextual declaration is determined as if the
declaration were made in a DECLARE statement immediately following
the PROCEDURE statement of the external procedure in which the
name appears.

It is important to understand that contextual declaration has the
same effect as if the name were declared in the external procedure.
This is the case even if the statement that causes the contextual
declaration is internal to a block (called P3, for example) that is con
tained in the external procedure. Consequently, the name is known
throughout the entire external procedure, except for any blocks in
which the name is explicitly declared. It is as if block P3 has inherited
the declaration from the containing external procedure.

We saw earlier how we could use a nested procedure block to limit
the scope of a variable in the case of the DATE built-in function and
the FIXED (3) variable also called DATE. A disadvantage to using the
nested procedure is that it must be called in order to execute that
block of coding; hence, extra statements are added to our program.
Using a begin block would be more convenient, because this type of
block is executed in the normal flow of a program. It does not have
to be called or invoked as does a procedure block. We have seen,
in the full language implementations of PL/I, how a begin block may
follow an on-unit. For example:

ON ENDPAGE(SYSPRINT)BEGIN;
PUT PAGE LIST('HEADING');
END;

However, the real reason for using begin blocks is to limit the scope of a
variable and to effect storage allocation. (In the above on-unit's begin
block, dynamic storage will be allocated in the same manner as

580 PL/I Programming

AUTOMATIC storage for procedure blocks.) Figure 11.2 shows the
segment of coding that limits the scope of the variable DATE-this
time with a begin block. Notice that there is no CALL to the begin
block, for it will automatically be executed in the normal flow of the
program.

In the subset language, begin blocks may be nested within other
procedure or begin blocks; however, begin blocks may not follow an
on-unit.

A label may be prefixed to a BEGIN statement; it serves to
identify the starting point of the block, but is not required. Begin
blocks may only be nested within other begin blocks or other pro
cedures; they may never be separately compiled as may a procedure
block. Here is an example of nested begin blocks:

PROG: PROC OPTIONS(MAIN);

[BEGIN;

END;

B2: BEGIN;

[~EGIN;

END;

END;

END PROG;

A begin block is executed to the normal flow of a program just as a DO
group is executed in the normal flow of a program. Normally, control is
passed to a begin block without reference to the name of that block.
However, control can be transferred to a labeled BEGIN statement by

Storage Classes and Scope of Identifiers 581

Pl: PROC OPTIONSCMAINl;
OCL DATE FIXED(3l, TODAY CHAR(6l;
DATE = 302;

BEGIN;
OCL DATE BUILTIN;
TODAY = DATE; I* INVOKE DATE FUNCTION */
END;

JOATE = DATE; I* JDATE = 302 *I
PUT EOIT(SUBSTR{TDOAY,3,2),'/',

SUBSTRCTOOAY,5,2),'/',
SUBSTR(TODAY,l,2))(SK1P,5A);
I* OUTPUT IS MM/DD/VY *I

I* ••• "*I
I* ••• *I
I* ••• *I
END Pl;

FIGURE 11.2 Limiting the scope of an identifier.

the execution of a GO TO. For example:

GO TO 82;

82: BEGIN;

END 82;

Of course, begin blocks that follow on-units will be executed only
when the on-unit condition is raised for they are not allowed to have
labels. Begin blocks are not essential to the construction of a PL/I
program; however, there are times when it is advantageous to use begin
blocks. These advantages include:

1. To limit the scope of an identifier
2. To effect storage allocation

582 PL/I Programming

The above two advantages also apply to procedure blocks; thus, the
only other small advantage of begin blocks would be the elimination
of the CALL or function reference that is required for procedure blocks.

Figure 11.3 illustrates a logical flow of control for a procedure and a
begin block. Flow of control refers to the sequence or path in which
blocks may be executed. In this example, the B procedure is never
executed because there is no CALL or function reference to it. Figure
11 .4 illustrates how B may be executed by a CALL that appears
within the begin block labeled C. The flow of control is depicted by
the "arrowed" lines in this figure. Note that if a block is nested, it
may be called or referenced only from the next outer block. Thus,

A: PROCEDURE;

B: PROCEDURE;

END B;

C: BEGIN;

i
END C;

END A;

FIGURE 11.3 Simple flow of control.

Storage Classes and Scope of Identifiers 583

the statement CALL C; in

A: PROC;

CALL C; /* ERROR */

B: BEGIN;

END A;

C: PROC;

END C;

END B;

is incorrectly placed, because C is not being invoked from the next
outer block. To correct the above error, the CALL statement to invoke C
should be placed within the begin block.

The storage class of a variable determines the way in which the
address of that variable is obtained. In STATIC storage, we saw that
the address of an identifier is determined when the program is loaded
into main storage for execution. For a variable of the AUTOMATIC
storage class, the address is determined upon entry to a block. With

584 PL/I Programming

A: PROCEDURE;

B: PROCEDURE;

t
END B;

C: BEGIN;

t
CALL B;

END C;

END A:

FIGURE 11.4 More complex flow of control.

BASED storage, the address is contained in a pointer variable. For
example:

DCL P POINTER;
DCL A(100) FIXED BASED(P);

'----v----1

L Indicates that the address of
the A array is determined by
the contents of P (that is,
the storage address found in
P) ; with the coding you have
seen so far, the contents of
P have not been established

The identifier P has been given the POINTER attribute, a new attribute,
and one that has not been mentioned before in this book. A pointer
variable is a special type of variable which you can use to locate data

Storage Classes and Scope of Identifiers 585

in storage; that is, to "point" to data in storage. Consequently, a
pointer variable can be thought of as an address. Before a reference
can be made to a based variable (the A array in the above example), a
value must be given to the pointer (P, in this case) associated with it.
This can be done in any of five ways:

1. By assignment of the value returned by the ADDR built-in
function.

2. By assignment of the value of another pointer.
3. With the SET option of a READ statement.
4. With the SET option of a LOCATE statement.
5. By an ALLOCATE statement (not available in subset PL/I).

These five methods will be explained as the applications and advantages
of BASED storage are illustrated.

Using BASED Variables Instead of the DEFINED Attribute

The DEFINED attribute allows you to overlay one storage area
on another. For example:

DCL A(100) FIXED BINARY(15);
DCL 8(50) FIXED BINARY(15) DEFINED A;

Both A and B reference the same storage area; thus, two different
identifiers may be used to refer to the space in main storage. A restric
tion of the DEFINED attribute is that only identifiers of the same base,
scale, and precision may be overlay defined. For example, if we would
like to have a storage area contain a FIXED BI NARY array at one time
during the execution of our program and then contain a structure of
various attributes at another time, this may not be accomplished through
overlay defining. However, BASED storage will provide this flexibility.
A based variable is a description of data-that is, a pattern for which
no storage space is reserved but that will be overlaid on data in storage
pointed to by an associated pointer variable. For example, let us
declare a 100-element array with the following attributes:

DCL A(100) FIXED BINARY;

Next, assume it is desired to "overlay define" on A an array of a dif
ferent base, scale, and precision. The array is declared :

DCL B(50) FLOAT DECIMAL BASED(P);

The address for the B array will be established by the pointer variable P.

586 PL/I Programming

Thus, it will be necessary to declare P as a pointer variable:

DCL P POINTER;

If B is to be in effect, "overlay defined" on A, we must set P equal to
the address of the A array. This is done by a built-in function called
ADDR.

P=ADDR(A);

l..__ ____ 1 The argument, A, is the variable whose
location is to be found; it can be an
element variable, an array, a structure, an
element of an array, or an element of a
structure; it can be of any data type and
storage class

.__ ______ This built-in function returns the beginning
storage address of A; if "A" is a param
eter, the returned value identifies the
corresponding argument (dummy or
otherwise); if "A" is a based variable, the
returned value is determined from the
pointer variable declared with "A"; if this
pointer variable contains no value (i.e., the
storage for the variable has not been
allocated), the value returned by ADDR is
undefined

The program in Figure 11 .5 illustrates how a based variable may be
used to simulate overlay defining. The purpose of this program is

l BASED: PROC OPTIONS(MAIN);
2 DCL (SUM1,A(l00)) FIXED BINARYC31);
3 DCL 8(50) FLOAT OECIMALC6)8ASEO(P);
4 OCL P POINTER;
5 GET LJST(A);
6 SUMl = SUH(A);
7 P = AODRCA);
8 GET LISTCB);
9 SUM2 = SUM(B);

10 PUT LIST(SUM1,SUM2);
11 END;

FIGURE 11.5 Using based variables to simulate overlay defining

Storage Classes and Scope of Identifiers 587

simply to find the sums of two arrays: one array has the attributes
FIXED BINARY(31) and the other array has the attributes FLOAT
DECIMAL(6). The larger of the two arrays is declared in statement 2.
Statement 3 declares the smaller array and bases the address of the
array on the larger array. Statement 4 declares P to have the POINTER
attribute. Next, the data for the A array is read using list-directed input
and the sum of the input data is found using the SUM built-in function.
In statement 7, the address of A is assigned to the pointer variable, P.
Now that the pointer address has been established, it is possible to
read data into the B array. The B array occupies the same area of
storage as the A array did; hence, as data is being input into B, the
previous contents of A are being destroyed. Statement 9 finds the sum
of the floating-point data in B, and statement 10 prints results.

Another method for establishing a pointer variable value is by
assignment of the value of another pointer. For example:

DCL ARRAY(25);
DCL (P,Q) POINTER; /* BOTH P AND Q ARE POINTERS */
P=ADDR(ARRAY); /* P CONTAINS THE ADDRESS OF ARRAY*/
O=P; /* Q NOW CONTAINS THE ADDRESS OF ARRAY */

It is also possible to have more than one variable based on the
contents of the same pointer. For example:

DCL PTR POINTER;
DCL 1 A,

2 B PIC'9999',
2 C FIXED(13,2),
2 D CHAR(21);

DCL 1 W BASED(PTR),
2 X FIXED BINARY,
2 Y FLOAT DECIMAL,
2 Z BIT(7);

DCL 1 I BASED(PTR),
2 J,
2 K;

PTR =ADDR(A);

Any reference to the W structure or the I structure elements points to
the storage area occupied by A.

588 PL/I Programming

Using BASED Variables to Process Data in Buffers

When data values are input, the general flow is this:

Input
device

Buffer
in main
storage

~
0

LThis area represents the
programmer's declared
structure or array or scalar
variable

'------------+ An intermediate storage
area

This flow of data is termed move mode, because data is moved into
program storage via a buffer. In the move mode, a READ statement
causes a record to be transferred from external storage to the variable
named in the INTO option (via an input buffer if a BUFFERED file is
used) ; a WRITE or REWRITE statement causes a record to be trans
ferred from the variable named in the FROM option to external storage
(perhaps via an output buffer). The variables named in the INTO and
FROM options can be of any storage class.

Figure 11 .6 illustrates data flow for blocked records. Assume the
following statements cause the reading and writing of these blocked
records:

LOOP: READ FILE(DISKIN) INTO(AREA);

WRITE FILE(DKOUT)FROM(AREA);
GO TO LOOP;

The first time the READ statement is executed, a block is transmitted
from the data set. DISKIN to an input buffer, and the first record in
the block is assigned to the variable AREA; further executions of the
READ statement assign successive records from the buffer to AR EA.
When the buffer is empty, the next READ statement causes a new
block to be transmitted from the data set. The WRITE statement is

Data
set

Data
set

Logical
record 1

Physical record 1

Logical
record 2

Logical
record 3

Logical
record 4

Physical record 2

Logical
record 5-

Logical
record 6

First READ

Logical
record 1

Input
buffer

Output
buffer

Logical
record 1

Logical
record 2

Logical
record 3

First\ ls;~~ /rn" READ R? READ

~
L::_J

First I S•~ Thi'd
WRITE w'~~;~ \'RITE

Logical
record 1

Logical
record 2

Logical
record 3

Logical
record 2

Logical
record 3

Physica I record

FIGURE 11.6 Input and output; move mode.

590 PL/I Programming

executed in a similar manner, building physical records in an output
buffer and transmitting them to the data set associated with the file
DKOUT each time the buffer is filled.

There ·is another processing mode which allows the programmer
to process his data while it remains in a buffer (that is, without moving
it into the storage area allocated to his program); this is termed the
locate mode, because the execution of a data transmission statement
merely identifies the location of the storage allocated to a record in the
buffer. The locate mode is applicable only to BUFFERED SEQUENTIAL
files. Which mode is used (locate or move) is determined by the data
transmission statements and options coded by the programmer.

The processing of data in buffers slightly reduces execution time
by avoiding an additional move of the record to another place in
main storage (referred to above as work area).

Here is an example of how to declare a based variable and set the
corresponding pointer to process data directly into the input buffer:

DCL P POINTER
DCL 1 IN_REC BASED(P),

2 A PIC'99',
2 B CHAR(8),
2 C FIXED(7,2),
2 RESLOF_RECORD CHAR(66);

READ FILE(TAPEIN) SET(P);

The READ statement causes a block of data to be read from the file
named TAPEIN to an input buffer, if necessary, and then sets the pointer
variable named in the SET option to point to the location in the buffer
of the next record; the data in the record can then be processed by
reference to the based variable (the structure called IN_ REC) associated
with the pointer variable. The record is available only until the execution
of the next READ statement that refers to the same file.

Thus, it is the SET option of the READ statement that causes
the pointer variable, P, to be set to the starting address of the next
record in the internal buffer. When data is to be processed in an input
buffer, improved throughput of data results if two input buffers are
reserved. This is done in the file declaration statement. For example:

DCL TAPEIN FILE INPUT RECORD ENVIRONMENT
(F(80)BUFFERS(2)MEDIUM(SYSIPT,2540));

The use of based variables and pointers also allows you to read
more than one type of record into the same buffer by using a different

Storage Classes and Scope of Identifiers 591

based variable to define each record format. For example:

DCL P POINTER;
DCL TAPE FILE INPUT RECORD ENVIRONMENT

F(240,24) BUFFERS(2) MEDIUM(SYS005,2400));
DCL 1 ISSUES BASED(P),

2 CODE CHAR(1),
2 QTY PIC'(4)9',
2 JOB_# PIC'(4)9',
2 PART_# PIC'(7)9',
2 DEPT PIC'99';

DCL 1 RECEIPTS BASED(P),
2 CODE CHAR(1),
2 QTY PIC'(4)9',
2 UNUSED CHAR(6),
2 PART _#'(7)9',
2 SUPPLIER PIC'(6)9';

READ FILE(TAPE) SET(P);
IF ISSUES.CODE='1' THEN GO TO PROCESS_ ISSUES;
IF ISSUES.CODE='2' THEN GO TO PROCESS_RECEIPTS;

Figure 11.7 illustrates locate mode input and move mode output
for blocked records. In studying this figure, assume the following
statements are coded :

DCL AREA CHAR(104) BASED(P);
LOOP: READ FILE(TAPE) SET(P);

WRITE FILE(OUT) FROM(AREA);
GO TO LOOP;

The first time the READ statement is executed, a block is read from the
data set associated with the file TAPE to an input buffer, and the
pointer variable P is set to point to the first record in the buffer; any
reference to the variable AR EA or to any other based variable qualified
by the pointer P will then in effect be a reference to this first record.
Further executions of the READ statement set the pointer variable P
to point to succeeding records in the buffer. When the buffer is empty,
the next READ statement causes a new block to be read from the
data set.

592

Data
set

Data
set

PL/I Programming

Logical
record 1

Logical
record 2

First READ

Logical
record 1

Input
buffer

First
READ

Output
buffer

Logical
record 2

Logical
record 3

Logical
record 1

Second
READ

First
WRITE

Logical
record 1

Logical
record 3

Logical
record 4

Logical
record 5

Logical
record 2

Third
READ

Second
WRITE

Logical
record 2

Logical
record 3

Third
WRITE

Logical
record 3

FIGURE 11.7 Locate mode input; move mode output.

Logical
record 6

Locate mode may be specified for output operations as well as
input operations. Locate mode for output requires the use of based
variables, the same as it does for input.

When writing from based variables in buffers, the WRITE state
ment is replaced with the LOCATE statement. In the following example,

Storage Classes and Scope of Identifiers 593

the pointer variable Q is set by the LOCATE statement:

LOCATE OUT FILE(TAPOUT)SET(Q);

I

L Pointer variable

'----------+>File name

.__ _____________ Based variable

~-------------- Replaces a WRITE
statement

By means of the LOCATE statement with the SET option, the
structure of the based variable is superimposed on the data in the output
buffer so that any reference to that allocation of the based variable is a
reference to that data.

In locate mode output, the following statements might be coded:

DCL AREA CHAR(106) BASED(Q);
LOOP: READ FILE(TAPE) INTO (AREA);

LOCATE AREA FILE(OUT) SET(Q);

GO TO LOOP;

In this example, each record is read into an input buffer and then
moved to AREA (automatically by the READ statement). AREA
represents the output buffer; that is, it is a based variable that is effec
tively overlaid on the data in the output buffer.

Each execution of the LOCATE statement reserves storage in an
output buffer for a new allocation of the based variable AREA and sets
the pointer variable Q to point to this storage. The first execution of the
READ statement causes a block to be transmitted from the data set
associated with the file TAPE to an input buffer, and the first record
in the block to be assigned to the first allocation of AREA; subsequent
executions of the READ statement assign successive logical records
to the current allocation of AREA. When the input buffer is empty, the
next READ statement causes a new block to be transmitted from the
data set. Each record is available for processing during the period
between the execution of the READ statement and the next execution
of the LOCATE statement. When no further space is available in the

594 PL/I Programming

output buffer, the next execution of the LOCATE statement causes a
block to be transmitted to the data set associated with the file OUT
and a new buffer to be allocated.

It is doubtful whether the use of locate mode for both input and
output would result in increased efficiency. Typically, the method would
be to use move mode for input and locate mode for output or locate
mode for input and move mode for output. Even though the LOCATE
statement replaces a WRITE statement, the LOCATE statement will
not appear in the same place as a WRITE statement might appear in a
program. Figure 11 .8 illustrates the placement of the LOCATE statement
with respect to the READ statement and processing steps.

Locate mode frequently provides faster execution than move mode,
because there is less movement of data. To illustrate the number of
moves required for each of the four combinations of 1/0 operations
illustrated in Figure 11 .8, assume it is desired to perform a copy
operation (that is, records in one file are to be copied onto another data
set). This is one of the simplest forms of programming, because there
is no processing of data.

Move mode. input
Move mode output

READ
INTO

"PROCESS"

WRITE
FROM

Locate mode input
Move mode output

READ ...
SET(P)

"PROCESS"

WRITE
FROM

Move mode input
Locate mode output

READ
INTO

LOCATE ...
SET(P)

"PROCESS"

FIGURE 11.8 Move versus locate mode.

Locate mode input
Locate mode output

READ ...
SET(P)

LOCATE ...
SET(Q)

"PROCESS"

Storage Classes and Scope of Identifiers 595

Move versus Locate Mode for Unblocked Records

In the case of unblocked records, a READ statement will cause
the input of a physical record which consists of one logical record.
Each subsequent READ statement causes the input of a new block
or physical record. With unblocked records, this is also true for the
WRITE and LOCATE statements.

A. Move Mode Input; Move Mode Output. Given the program
segment,

DCL AREA CHAR(80);
LOOP: READ FILE(CARDIN)INTO(AREA);

WRITE FILE(PRINTR)FROM(AREA);
GO TO LOOP;

the operations would be as follows:

1. Read data into input buffer.
2. Move input buffer data to AREA.
3. Move data from AREA to the output buffer.
4. Write data from output buffer.

B. Locate Mode Input; Move Mode Output. Given the
program segment,

DCL AREA CHAR(80) BASED(P);
LOOP: READ FILE(CARDIN)SET(P);

WRITE FILE(PRINTR)FROM(AREA);
GO TO LOOP;

the steps taken would be as follows:

1. Read data into input buffer.
2. Move data from the input buffer to the output buffer associated

with the PRINTR file.
3. Write data from the output buffer.

C. Move Mode Input; Locate Mode Output. Given the
program segment,

DCL A1 CHAR(80), A2 CHAR(80)BASED(P);
LOOP: READ FILE(CARDIN) INTO(A1);

LOCATE A2 FILE(PRINTR)SET(P);
A2=A1;
GO TO LOOP;

596 PL/I Programming

the steps taken include:

1. Read data into input buffer.
2. Move data from input buffer to A 1.
3. Move data from A 1 to output buffer (via the assignment

statement).
4. Write data from the output buffer.

D. Locate Mode Input; Locate Mode Output. Given the
program segment,

DCL A1 CHAR(80)BASED(P);
DCL A2 CHAR(80)BASED(Q);

LOOP: READ FILE(CARDIN)SET(P);
LOCATE A2 FILE(PRINTR)SET(Q);
A2=A1;
GO TO LOOP;

the steps taken would include:

1. Read data into the input buffer.
2. Move input buffer to the output buffer (A 1 ~ A2).
3. Write data from the output buffer.

Thus, we see that items B and D above require the least amount
of move operations. Note that in item D, however, the programmer
must include the assignment statement that specifies the move from
one buffer to another, whereas in item B, there is no move explicitly
coded by the programmer.

There is no way in PL/I to read and write from the same buffer,
because a separate buffer is automatically reserved for each default
or explicitly declared file.

Move versus Locate Mode for Blocked Records

In the case of blocked records, a READ statement will cause the
input of a physical record which will consist of two or more logical
records. Thus, the execution of subsequent READ statements will not
cause the input of a new physical record as long as there are logical
records in the block to be processed. With blocked records this is also
true for the WRITE and LOCATE statements.

Storage Classes and Scope of Identifiers 597

A. Move Mode Input; Move Mode Output. Given the program

DCL AREA CHAR(80);
LOOP: READ FILE(INPUT)INTO(AREA);

WRITE FILE(OUTPUT)FROM(AREA);
GO TO LOOP;

the execution of the READ statement would cause a logical record to
be moved from the input buffer to the work area named AREA. If this
logical record were the last one in the input buffer, a request would
be made to fill the buffer with a new block of logical records. The
execution of the WRITE statement would cause the data in the work
area named AREA to be moved into the next position of the output
buffer. If this data causes the output buffer to be filled, then a request
will be made to write the physical block and to provide a new empty
output buffer.

B. Locate Mode Input; Move Mode Output. Given the
program segment,

DCL AREA CHAR(80) BASED(P);
LOOP: READ FILE(INPUT)SET(P);

WRITE FILE(OUTPUT)FROM(AREA);
GO TO LOOP;

the execution of the READ statement will cause the address of the
next logical record in the input buffer area to be stored in the pointer
variable, P. No move of data takes place, but the data in the logical
record can be referenced by the variable AREA which is based on P.
The execution of the WRITE statement will cause the data in AREA
to be moved into the next position of the output buffer. Because AREA
is based on the pointer P and P currently contains the address of a
logical record within the input buffer for file INPUT, the effect of this
WRITE statement is to move data directly from the input buffer to the
output buffer without passing through an intermediate work area.

C. Move Mode Input; Locate Mode Output. Given the
program segment,

DCL A1 CHAR(80), A2 CHAR(80)BASED(P);
LOOP: READ FILE(INPUT)INTO(A1);

LOCATE A2 FILE(OUTPUT)SET(P);
A2=A1;
GO TO LOOP;

598 PL/I Programming

the execution of the READ statement would cause a logical record to
be moved from the input buffer to the work area named A1. The
execution of the LOCATE statement causes the pointer variable P
to be set to the next position of the output buffer associated with file
OUTPUT. Because A2 is based on the pointer P and P currently contains
the address of a logical record in the output buffer, the assignment
statement

A2=A1;

causes data to be moved from the work area (A 1) to the output buffer.
When the output buffer is full or the OUTPUT file is closed, there is a
request to write the physical block and provide a new empty output
buffer.

D. Locate Mode Input; Locate Mode Output. Given the
program segment,

DCL A1 CHAR(80)BASED(P);
DCL A2 CHAR(80)BASED(Q);

LOOP: READ FILE(INPUT)SET(P);
LOCATE A2 FILE(OUTPUT)SET(Q);
A2=A1;
GO TO LOOP;

the execution of the READ statement will cause the address of the
next logical record within the input buffer area to be stored in the
pointer variable P. No move of data takes place, but the data in the
logical record can be referenced by the variable A 1, which is based
on P. The execution of the LOCATE statement causes the pointer Q
to be set to the next position of the output buffer associated with file
OUTPUT. Because A2 is based on the pointer Q and Q currently con
tains the address of a logical record in the output buffer, the assignment
statement

A2=A1;

causes data to be moved from the input buffer to the output buffer.
When the output buffer is full or the file is closed, the physical block
is written.

Locate mode can provide faster execution than move mode,
because there is less movement of data. Less storage may be required,
because work areas are eliminated. But locate mode must be used
carefully; in particular, the programmer must be aware of how his
data will be aligned in the buffer and how structured data will be

Storage Classes and Scope of Identifiers 599

mapped. (You may wish to consult the appropriate PL/I programmer's
guide for a discussion of structure mapping.) You should be aware
that boundary alignment problems could arise (hence, your program
"blows up") with blocked records that contain FIXED BI NARY,
FLOAT BINARY, or FLOAT DECIMAL data where the record size is
not divisible by 4 (or 8 if long-form floating-point is being used).
Move mode may be simpler to use than locate mode, because there
are no buffer alignment problems in move mode. Furthermore, move
mode can result in faster execution where there are numerous references
to the contents of the same record, because of the overhead incurred
by the indirect addressing technique used in locate mode.

BASED storage is the most powerful of the PL/I storage classes,
but it must be used carefully; many of the safeguards against error
that are provided for other storage classes cannot be provided for in
BASED storage.

Figure 11.9 shows a file copy program using locate mode 1/0.
In the subset language, the LOCATE statement must always be

coded with the SET option. However, in the full language implementa
tions, it is optional to explicitly specify the SET option. For example,
the statement

LOCATE OUT FILE(TAPOUT);

when executed, causes the pointer associated with the data area called
OUT to be set. In other words, because a pointer variable appears in a

!***** A FILE COPY PROGRAM US ING LOCATE MOD.E RECORD 1/0 *****/
1 LOCATE: PROC OPTIONS (MAIN);
2 OCl INFILE FILE RECORD INPUT SEQUENTIAL BUFFERED

ENVlFlSO) CONSECUTIVE BUFFERS(21 MEDIUMISYS004,2400J),
OTFILE FILE RECORD OUTPUT SEQUENTIAL BUFFERED

ENVlf(80) CONSECUTIVE BUFFERSl2) MEDIUM(SYS005,2400J),
llN_POINTER,OUT_POINTER) POINTER,
1 IN_RECORO BASED (IN_POINTERJ,

2 FIELD_l CHAR (lOJ,
2 FIELD_2 CHAR 170),

1 OUT_RECORO BASED (OUT_POINTER),
2 FIELO_l CHAR 110),
2 FIEL0_2 CHAR (70);

~ ON ENOFILE (INFILEt GO TO END_OF_PROGRAM;
4 OPEN FILE (INFILE), FILE COTFILE);
5 RE AD_A_RECORD:

READ FILE (INFILE) SET (IN_POINTERJ;
6 LOCATE OUT_RECORD FILE IOTFILE1 SET (OUT_POINTER);
7 OUT_RECORD = IN_RECORD;
R GO TO REAO_A_RECORD;
9 END_OF _PROGRAM:

CLOSE FILE fINFILEJ, FILE (OTFILEJ;
10 END LOCATE;

FIGURE 11.9 Locate mode 1/0 program example.

600 PL/I Programming

DECLARE statement, i.e.,

DCL OUT BASED(Q);

the pointer Q will be set when the LOCATE statement without the
SET option is executed.

Also, it is a restriction in the subset language that all pointer
variables must be explicitly declared. For example:

DCL Q POINTER;

However, in the full language, it is not necessary to explicitly declare
pointer variables to have the POINTER attribute. This is because they
will be recognized contextually by the compiler. For example:

/'"

\..

DCL OUT BASED(Q);

Subset language

Full language

~ By context, Q could only be a
pointer variable

Locate mode allowed for indexed data sets

No

Yes

\

This is the fourth storage class in PL/I. It is not available in the subset
language. CONTROLLED storage is similar to BASED storage in that
the programmer has a greater degree of control in the allocation of
storage than he does for STATIC or AUTOMATIC storage classes. In
the full language implementations of PL/I, variables may be declared
to have the CONTROLLED attribute in the following manner:

DCL A(100) INIT((100)0) CONTROLLED;

The storage for A in the above example will be allocated by the
ALLOCATE statement and freed by the FR EE statement. For example:

Storage Classes and Scope of Identifiers 601

DCL A(1 OO)INIT((100)0) CONTROLLED;
DCL B(100);

ALLOCATE A;
B=A;
FREE A;

A variable that has the CONTROLLED attribute is allocated upon the
execution of an ALLOCATE statement specifying that variable. This
allocation remains in effect even after termination of the block in
which it is allocated. Storage remains allocated for a controlled variable
until the execution of a FREE statement in which the variable is
specified.

There are several built-in functions that are useful when working
with controlled storage. These functions, which are available in the
full language implementations of PL/I, are explained below, and their
applications are illustrated_

ALLOCATION Built-in Function

This function determines whether or not storage is allocated for
a given controlled variable and returns an appropriate indication to the
point of invocation. For example:

J=ALLOCATION(X);

~I ---+i This argument must be an unsub
scripted array name, a major structure
name, or an element variable name, and
it must have the CONTROLLED
attribute

..___-------'-------+ If storage has been allocated for X,
the returned value is '1 'B (provided
that the al location is known to the
task executing the function); if
storage has not been allocated for X,
the returned value is 'O'B with the
optimizers, returned value is
FIXED BIN(15).

602 PL/I Programming

The following example shows two procedures, P1 and P2, nested
within P; P1 allocates the controlled variable called D, and P2 frees D.
Assume that another external procedure, Q, is part of the main program
along with P. In P1, storage is allocated for D. Because Q may be
entered without P1 having been executed first, Q must determine if it
is necessary to allocate D before referencing the variable. The ALLO
CATION built-in function is invoked in the IF statement to determine
the status of the controlled variable, B.

~--P: PROC;
DCL A EXTERNAL;
CALL P1;
CALL P2;

P1: PROC;
DCL D EXTERNAL CONTROLLED;
ALLOCATE D;

END P1;
P2: PROC;

DCL D EXTERNAL CONTROLLED;

FREE D;
END P2;
END P;

.---Q: PROC;
DCL A EXTERNAL, D EXTERNAL CONTROLLED;
IF ALLOCATION(D) ='O'B THEN ALLOCATE D;

END Q;

LBOUND Array Manipulation Built-in Function

This function finds the current lower bound for a specified dimen
sion of a given array and returns it to the point of invocation. For

Storage Classes and Scope of Identifiers 603

example:

l=LBOUND(X,N);

L > Dimension of X for which the lower
bound is to be found

Array to be investigated; it is an error
if X has less than N dimensions, if N
is less than or equal to 0, or if X is not
currently allocated

~--------- Value returned by this function is a
binary integer of default precision giving
the current lower bound of the nth
dimension of X

This function is available only in the full language implementations
of PL/I.

HBOUND Array Manipulation Built-in Function

This function finds the current upper bound for a specified
dimension of a given array and returns it to the point of invocation.
For example:

I= HBOUND(X,N);

L > Dimension of X for which the upper
bound is to be found

Array to be investigated; it is an error if
X has less than N dimensions, if N is
less than or equal to 0, or if X is not
currently allocated

~--------~ Value returned by this function is a
binary integer of default precision giving
the current upper bound for the nth
dimension of X

604 PL/I Programming

This function is only available in the full language implementations of
PL/I.

The two external procedures shown in Figure 11.10 illustrate a
use for LBOUND and HBOUND functions. Following is an explanation
of the CONTR procedure.

Statement 2. In this statement, A, 8, and C are declared to be
CONTROLLED arrays whose bounds will be specified later in the
ALLOCATE statement. This statement illustrates one more use of the
asterisk notation. The asterisks for bounds indicate that the bounds
that are specified by the ALLOCATE statement should be used. Here,
A and B are two-dimensional arrays, and C is a one-dimensional array.

Statement 3. The variables I and J are assigned values through this
input statement.

Statement 4. The A and B arrays are allocated with the bounds just
read in.

Statement 5. The data for A and B are input. The array bounds are,
of course, known now so that the correct number of elements can be
read into each array.

1 CONTR: PROC OPTIONS(MAIN);
2 DCL (A(*,*),B(*,*),C(*l)CONTROLLEO;
l GET LIST(J,J);
4 ALLOCATE A{l,J),B(l,J);
5 GET LIST(A,B);
6 CALL AOOAR(A,B,Cl;
1 PUT L f ST(C) ;
8 ENO;

l ADOAR: PROC(R,S,Tl;
2 OCL (R<*1*),S(*,*),T(*)) CONTROLLED;
J ALLOCATE TlLBOUNO(R,lJ:HBOUNOtR,lJ);
4 Ll: 00 K = LBOUNO(R,lJ TO HBOUND{R,l);
5 TIKl=O;
6 L2: 00 J = LBOUNO{R,2) TO HBOUNO(R,2);
7 T(K) =R(K,J) + S(K,J} +T(K);
B ENO L2;
q END Ll;

10 FREE R,S;
11 END;

FIGURE 11.10 CONTROLLED storage with array
bounds determined dynamically.

Storage Classes and Scope of Identifiers 605

Statement 6. The AD DAR procedure is invoked; C will contain
the sum of elements of corresponding rows of A and B. For example:

C A B

[~ + A(1, 2) + 8(1, 1) + 8(1, 2)

Note that C can be passed as an argument, although it has not yet been
allocated.

Statement 7. Here, C is written out, element-by-element.

Following is an explanation of the AD DAR procedure also shown
in Figure 11.10.

Statement 1. In this statement, R, S, and T are the parameters of
AD DAR.

Statement 2. The asterisks for bounds indicate that the bounds
these arguments have at the time the procedure is called should be
used. For T, still not allocated, bound specification is being delayed
until allocation in this procedure.

Statement 3. Here T is finally allocated; T is a one-dimensional
array whose bounds are the same as R. The LBOUND and HBOUND
functions are invoked in the ALLOCATE statement as a means of
determining the lower and upper bounds of T.

Statement 4. The outer DO is set up; it establishes the beginning
and ending rows of the arrays to be summed.

Statement 6. The inner DO is written to find the sum of the elements
of the columns of a given row in a two-dimensional array.

Statement 7. The sum is calculated.

Statements 8-9. The DO-groups are ended.

Statement 10. Because the R and S arrays are no longer needed by
the program, their storage areas may be freed.

Statement 11. This statement causes a return to the calling program
-in this case, CONTR.

606 PL/I Programming

DIM Array Manipulation Built-in Function

This function finds the current extent for a specified dimension of
a given array and returns it to the point of invocation. For example:

I = DIM (X, N) ;

I
l
------~ Dimension of X, the extent of which is to

be found

~ Array to be investigated

-------------~~ Value returned by this function is a binary
integer of default precision, giving the cur-
rent extent of the nth dimension of X

This function is available only in the full language implementations of
PL/I.

This chapter has dealt with a number of important topics-storage
classes, flow of control, scope of identifiers, and PL/I block structure.
The programs in Figures 11.11 and 11.12 illustrate all of these topics,

l
2
'3
4
5
6
7
8
9

in
11
12
13
14
15
16
17
18
l<?
20

A:

B:

c:

0:

PROC OPTIONSCMAIN);
OCL E ENTRY;
DCL DATA CHAR(5) EXTERNAL;
DATA = 'ALPHA';
PUT EDYTf 1 A: 1 ,0ATA)(A,COLUMN(5J,A);

PROCEDURE;
OCL DATA BIT(8);
OATA = 1 11000001 1 8;
PUT EDITf 'B: 1 ,DATAllSKIP,A,COLUMN(5),8);
CALL C;

PROCEDURE;
PUT EOITl 1 C:•,DATAlfSKJP,A,COLUMNf5),8);
ENO C;

END B;
CALL 8;
BEGIN;

PUT EOIT('O:•,OATAJ(SKIP,A,COLUMNC5),A);
ENO O;

CALL E;
ENO A;

FIGURE 11.11 Case study: An external procedure with nested
blocks to illustrate scope of an identifier.

1
2
1
4

Storage Classes and Scope of Identifiers 607

PROCEDURE;
DCt DATA CHAR(5t EXT€RNAL;
PUT EDIT< 1 E: 1 ,0ATAl(SKIP 9 A,COLUMN(5),A,;
END E;

FIGURE 11.12 Case study: An external procedure to be
linked to external procedure A in Figute 11.11.

although BASED and CONTROLLED storage classes are not employed.
The programs together consist of five blocks named A, B, C, D, and E:
A and E are external procedures; B and C are internal procedure
blocks with B nested within A, and C nested within B; D is a begin
block internal to A. The problem is coded such that the blocks will be
activated in the sequence A, B, C, D, and E. Because one of the'purposes
of using nested blocks is to limit the scope of identifiers, this function
is illustrated in the following way:

1. In procedure A, an EXTERNAL variable called DATA is declared
to be a character-string initialized to the constant 'ALPHA'. The
procedure's name and the value of DATA is then printed using a
PUT EDIT statement. DATA, because it has the EXTERNAL
attribute, will be of the STATIC storage class.

2. In procedure B, a variable named DATA is declared to be a bit
string. Thus, DATA in this procedure is different from DATA in
the A procedure. The scope of the identifier, DATA, is being
limited to the B and C procedures. This identifier is of the
AUTOMATIC storage class.

3. In procedure C, there are no data declarations. However, the
variable called DATA-which was declared in procedure S
will be printed. The output value will be the bit-string declared
in B. Notice that for C to be called, only the B procedure could
contain the CALL statement. It would be invalid to call a nested
procedure from any block except the most immediate block in
which the nested procedure is contained.

4. The begin block, D, is on the same block level as the B procedure.
Thus, the reference to DATA in the begin block is a reference
to the DATA that was declared in the A procedure.

5. The E procedure is a separate compilation (see Figure 11.12).
This procedure picks up the value of DATA from the A procedure,
because DATA was declared to have the EXTERNAL attribute in
both procedures.

608 PL/I Programming

Figure 11.13 shows the output from this program.

A: ALPHA
B: llOOOOCl
c: 11000001
O: Al PHA
E: ALP HA

FIGURE 11.13
Output from
case study
program.

Procedure Blocks: A PL/I program consists of one or more procedures,
each of which may contain other procedures and/or begin blocks. If a procedure
is nested within another procedure or begin block, then it is called an internal
procedure. If a procedure is compiled separately, it is called an external pro
cedure. Procedures are not executed in the normal flow of a program as are
begin blocks, but rather, they are executed by a subroutine CALL or function
reference.

Begin Blocks: In the full language implementations of PL/I, begin blocks
may follow an on-unit. In either implementation, they may be nested within a
procedure block or other begin block. A begin block is executed in the normal
flow of a program. Normally, control is passed to a begin block without reference
to the name of that block. Begin blocks are not essential to the construction of a
PL/I program; however, they are useful in limiting the scope of an identifier
and facilitate programming responses to on-unit conditions that may be
raised. Begin blocks are always internal blocks.

Storage Classes: When a location in main storage has been associated with
a data name, the storage is said to be allocated. In PL/I, we have the facility
to allocate main storage at different times. The time at which storage is to be
allocated depends on the storage class of the data. There are four storage
classes:

1. AUTOMATIC storage: Unless declared to have another storage class, most
variables will have the AUTOMATIC attribute. The fact that certain
variables are used in one procedure of a program and not in others
makes it possible to allocate the same storage space at different times
to different variables. When storage is allocated dynamically, it is allocated
during the execution of a procedure. Storage remains allocated as long
as the block in which it was allocated remains active. When a block is

Storage Classes and Scope of Identifiers 609

activated and deactivated, the contents of its data areas may be lost.
This is because an intervening block may be executed and its data area
will be allocated to the area where the first block's data once resided.
The dynamic allocation of storage applies to begin blocks as well as
procedure blocks. This dynamic allocation of main storage is one of the
outstanding features of PL/I, because it provides for efficient use of
main storage. Total storage requirements of a program may be reduced
because of this automatic data overlay feature. The programmer does not
have to code extra instructions or steps to cause this allocation to take
place. It is done for him automatically. All the programmer needs to do is
to be aware of how and when storage is allocated.
(a) Prologue: The allocation of dynamic storage is performed by a

routine called a prologue. This routine is set up by the compiler
and attached to the beginning of each block. It is always executed
as the first step of a block.

(b) Epilogue: The release of main storage that has been allocated to
AUTOMATIC variables is handled by a routine called an epilogue.
The epilogue routine is logically appended to the end of each block
and is executed as the final step before the termination of the block.

2. STA TIC storage: Whenever the value of a variable must be saved
between different invocations of the same procedures, storage for that
variable has to be allocated statically. In this case, storage is allocated
before execution of the program and remains allocated throughout the
entire duration of the program. Typically, a program will have both
STATIC and AUTOMATIC storage areas. Program constants and variables
declared with the EXTERNAL attribute have the STATIC storage class
attribute. Variables, whether main storage space is allocated to them
dynamically or statically, may be given initial values at the time of storage
allocation. You can save program overhead by declaring variables that
are to be initialized to have the STATIC attribute. STATIC variables are
initialized only once before execution of a program begins. AUTOMATIC
variables are reinitialized at each activation of the declaring block.

3. BASED storage: The storage class of a variable determines the way in
which the address of that variable is obtained. With BASED storage, the
address is contained in a pointer variable. A pointer variable can be
thought of as an address. Before a reference can be made to a based
variable, a value must be given to the pointer associated with it. This
can be done in any of five ways:
(a) By assignment of the value returned by the ADDR built-in function.
(b) By assignment of the value of another pointer.
(c) With the SET option of a READ statement.
(d) With the SET option of a LOCATE statement.
(e) By an ALLOCATE statement (not available in subset PL/I).
A based variable is a description of data-that is, a pattern for which no

610 PL/I Programming

storage is reserved but which will be overlaid on data in storage pointed
to by an associated pointer variable. Thus, based storage may be used
to simulate overlay defining. Based variables may also be used to process
data in buffers. This processing of data while it remains in a buffer is
termed the locate mode. The processing of data in buffers slightly reduces
execution time by avoiding an additional move of the record to a work
area. It is the SET option of the READ statement that causes the pointer
variable, P, to be set to the starting address of the next record in the
internal buffer. When data is to be processed in an input buffer, im
proved throughput of data results if two input buffers are reserved.
The use of based variables and pointers allows you to read more than
one type of record into the same buffer by using a different based
variable to define each record format.

4. CONTROLLED storage: A variable that has the CONTROLLED attri
bute is allocated upon the execution of an ALLOCATE statement
specifying that variable. Storage remains allocated for that variable until
the execution of a FREE statement in which the variable is specified.
There are several built-in functions that are useful when working with
CONTROLLED storage.
(a) ALLOCATION built-in function: This function determines whether

or not storage is allocated for a given controlled variable and
returns an appropriate indication to the point of invocation.

(b) LBOUND array manipulation built-in function: This function
finds the current lower bound for a specified dimension of a given
array and returns it to the point of invocation.

(c) HBOUND array manipulation built-in function: This function
finds the current upper bound for a specified dimension of a given
array and returns it to the point of invocation.

(d) DIM array manipulation built-in function: This function finds
the current extent for a specified dimension of a given array and
returns it _to the point of invocation.

CONTROLLED storage is not available in the subset language.

Scope of Identifiers: An identifier may have only one meaning at any
point in time; e.g., the same name cannot be used for both a file and a floating
point variable. It is not necessary, however, for a name to have the same meaning
throughout a program. In some instances, the use of nested blocks to limit or
redefine the scope of a variable provides an ease of programming not usually
available in other computer languages.

1. Scope of an explicit declaration: The scope of an explicit declaration
of a name is that block to which the declaration is internal, including all
nested blocks except those blocks to which another explicit declaration
of the same identifier is internal.

Storage Classes and Scope of Identifiers 611

2. Scope of a contextual declaration: The scope of a contextual declara
tion is determined as if the declaration were made in a DECLARE
statement immediately following the PROCEDURE statement of the
external procedure in which the name appears.

Groups and Blocks Contrasted: Groups and blocks are terms used to
refer to sets of statements in a program. Sets of statements are grouped together
to provide flexibility and to facilitate control of storage allocation. Their features
are summarized in Figure 11.14.

(
Maximum number blocks

Block nesting in compilation

Subset language 3 63

Full language 50 255
\,_

1. What is a block in PL/I? What are the two types?

2. In the subset implementations, may begin blocks follow an on-unit?

3. How is a begin block executed?

4. Distinguish between external and internal procedure blocks.

5. What is flow of control?

6. Why are there different storage classes in PL/I?

7. Unless declared to have another storage class, what storage class will
variables have?

8. What is dynamic storage allocation?

9. What functions do the prologue and epilogue routines perform?

10. Storage that is allocated before execution of the program and remains
allocated throughout the entire execution of the program is called

11. Why use BASED storage i
12. How may a value be assigned to a pointer used to reference a based

variable?

,r
DO ... END BEGIN ... END PROCEDURE ... END

Activation A DO-group is activated by A begin block is activated A procedure block is
normal sequential by normal sequential activated remotely by
program flow program flow CALL statements or

function references

Scope (area in Does not limit the scope of Limits the scope of identifiers Limits the scope of identifiers
which an identifiers
identifier is
known)

Labels The label(s) on DO state- Labels NOT allowed The PROCEDURE statement
ments is optional must have label(s) for

referencing the primary
entry point

Argument The DO statement does not The begin block does not The PROCEDURE statement
handling have the mechanism for have the mechanism for has the facilities of

argument handling or argument handling or argument handling and
return return return

Physical ending Must physically end with Must physically end with Must physically end with
END END END

~Prologue No Yes Yes

FIGURE 11.14 Groups and blocks compared.

Storage Classes and Scope of Identifiers 613

13. In programming, what is a buffer?
14. What does the term work area refer to?

15. What is locate mode?

16. When is a variable that has the CONTROLLED attribute allocated?

17. What does the ALLOCATION built-in function accomplish?

18. What is the scope of an identifier that is explicitly declared?
What is the scope of an identifier that is contextually declared?

19. (True or False) Based variables direct the compiler to reserve storage
for them.

activate
allocate
block
dynamic storage allocation
epilogue
external procedure
flow of control

internal procedure
locate mode
move mode
prologue
scope of the declaration work area

1. Modify Existing Program to Implement Locate Mode

Problem Statement: Take any program you have coded using record 1/0
(e.g., any practice problem at the end of Chapter 8) and modify it so that it
will execute using locate mode input and move mode output. Compare main
storage requirements and execution time between the modified and the
unmodified record 1/0 program.

2. Modifying Existing Program to Implement STATIC Attribute

Problem Statement: Take Problem 1 of Chapter 2, and modify the declared
variables so that they will have the STATIC attribute rather than the AUTOMATIC
attribute. Run the program and compare main storage requirements between
the modified and unmodified programs.

614 PL/I Programming

3. Nested Procedures
Problem Statement: Take Case Study Two in Chapter 9, and modify it in the
following ways:
(a) Implement locate mode 1/0 for the tape files.
(b) Make the "exception routine" (labeled PRINT_ EXCPTN) a nested pro

cedure block.
(c) Declare all variables that are to have initial values (e.g., H DNG, PREV _

SS_#, TP _ENDED, CD_ ENDED, EXCPTN) to have the STATIC attribute.

App1mdi~@§

app1mdix A

Keyvvords Available in

Various PL/I Compilers

/'
0 :::::. ~
N _J Cll s.§ :;
ai 0 LL C....!:::! 0

Keyword Abbreviation
~ (/).§ a... E ~

-0 :::::. :::::. - u
0 o- (/)·;:::; Cll

_J

~
_J _J

0 g. 0 g. _J ..c
a... a... a... a... u

A(w) x x x x x x x

ABS(x) x x x x x x x

ACOS(x) x x x

%ACTIVATE %ACT x x x x

ADD (x,y,p [,q]) x x x x x x

ADDBUFF(n) x x x x

ADDR(x) x x x x x x

ALIGNED x x x x x x

ALL{x) x x x x x x

ALL x x x

ALLOCATE * x x x x

'-

618

Use of keyword Examples and other information

Format item DCL STR CHAR(20); PUT EDIT(STR) (A(22));
Places the contents of STR in a field of length 22 in
output stream

Built-in function X=ABS (5-Y/2);
Calculates the absolute value of 5 - Y /2 and places it
in X

Built-in function A=ACOS (b*F);
Returns the angle in radians whose cosine is Z ** F

Preprocessor statement %LOOK :ACTIVATE X,Y;
Makes explicitly deactivated compile-time identifiers
replaceable

Built-in function SUM =ADD (A,B,7,3);
Equivalent to A+ B in a field of seven digits, three of
which are fractional

Option of ENVIRONMENT DCL F FILE ENV(ADDBUFF(3000));
attribute Used to allocate additional workspace for DIRECT

indexed files

Built-in function P=ADDR(A);
Returns a pointer which identifies the location of the
named variable

Attribute DCL 1 BOY ALIGNED, ...
Specifies that each variable to start at implementation
boundary

Built-in function B=ALL(TABLE);
Each item in TAB LE is converted to bit-string and
logically ANDed bit-by-bit

Option of PUT statement PUT ALL;
Debugging facility; places values of all variables on
SYSPRINT file

Option of DEFAULT DEFAULT ALL SYSTEM;
statement All variables are subject to DEF AU LT specifications

Statement ALLOCATE A,B,C;
Allocates storage for controlled or based variables

Note: x = feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

/ -0 ---
5-.~ 5 N _J <ll

Keyword Abbreviation a; Cl u.. a...-~ 0

~ (/) .§ a... E ~
"O - :::::. - (.)
0 --- o- (/)·~

--- <ll _J

~
_J _J

Cl g- 0 g- _J ..c a... a... a... a...(.)

ALLOCATION(x) x x x x

ALTIAPE x

ANY(x) x x x x x x

AREA x x x x

AREA[(size)] * x x x x

ARGn x x x

ASIN(x) x x x

ATAN(x[,y]) x x x x x x x

ATAND(x[,y]) x x x x x x

ATANH(x) x x x x x x

\..

620

Use of keyword Examples and other information

Built-in function PL/I F
Returns '1 'B if CTL argument is allocated, 'O'B if not;
IF ALLOCATION(X) THEN ... Optimizers
Return the number of generations of CTL variables
allocated

Option of ENVIRONMENT DCL F FILE ENV(ALTTAPE);
attribute Indicates that an alternate tape drive can be assigned for

multivolume tape files

Built-in function D=ANY(TABLE);
Each item in TAB LE is converted to bit-string and
logically ORd bit-by-bit

Condition ON AREA BEGIN;
Specifies on-unit when the request for allocation in an
area exceeds available storage

Attribute DCL A AREA(1000);
Specifies that A is to be an area of storage 1000 bytes
in length available for allocation of based variables

Option of NOMAP, DCL COBA OPTIONS(COBOL NOMAP(ARG1)) ;
NOMAPIN, and Used in interlanguage communication to specify which
NOMAPOUT options of arguments are to be transformed
the OPTIONS attribute

Built-in function A=ASIN(Z**F);
Returns the angle in radians whose sine is Z ** F

Built-in function A=ATAN(Z**F);
Returns the angle in radians whose tangent is Z ** F

A=ATAN(Z, F);
Returns ATAN(Z/F)

Built-in function A=ATAND(Z**F);
Returns the angle in degrees whose tangent is Z ** F

A=ATAND(Z, F);
Returns ATAND(Z/F)

Built-in function A=ATANH(Z**Q);
Returns hyperbolic arctangent of Z**O; if ABS(x)>1
error will result

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

\

/' -0 ---- ._
S.~

:; NJ Q)

Keyword Abbreviation Qi 0 u. a...!:':! 0

~ (/) .s a_ E ~
-0 - u
0 :::::. s o- (/)·.;:; -..._ Q)

_J

~
_J

0 g. 0 g.J ..c a_ a_ a_ a_ u

AUTOMATIC AUTO (not x x x x x x x
allowed in
subset)

B [(x)] x x x x x x

BACKWARDS x x x x x x

BASED [(locator- * x x x x x x
expression)]

BEGIN x x x x x x

BINARY BIN (not x x x x x x
allowed in
subset)

BINARY(x[,p[,q]]) BIN x x x x x x

BIT[(length)] x x x x x x

BIT(expression [size]) x x x x x x

BLKSIZE(expression) x x x

BOOL(x, y, z) x x x x x x

\..

622

Use of keyword Examples and other information

Attribute DCL VAR AUTOMATIC;
Specifies that storage for VAR is to be allocated upon
entry to the block and released upon leaving the block

Format item PUT EDIT(A)(B(10));
Specifies that A is to be placed in the output stream in
a field 10 characters wide as at bit value

Attribute DCL F FILE BACKWARDS;
Specifies that file F is to be read backwards; only valid
for magnetic tape files with fixed length records.

Attribute DCL A BASED, B BASED(P);
Specifies that A and B are to be used in list processing
or locate mode 1/0; the pointer P will be associated
with B

Statement BEGIN; ... END;
Delimits the start at a begin block; block must be
terminated with an END statement

Attribute DCL A FIXED BINARY;
Specifies that A is to have a binary base

Built-in function A=BINARY(B,7,2);
Converts B to a binary base with precision (7,2);
assigns the result to A

Attribute DCL B BIT(10);
Specifies that B is to occupy 10 bit positions of main
storage

Built-in function A=BIT(C+D, 10);
Converts the result of C + D to a bit-string length 10;
assigns the result to A

Option of ENVIRONMENT DCL F FILE ENV(BLKSIZE(K));

attribute Specifies that size in bytes for each record in file F;
K must have a valid value when file is opened and be
FIXED BIN(31) STATIC

Built-in function A= BOOL (B, C, '011 O'B);
Performs one of 16 possible logical operations between
corresponding bits of B and C; places results in A

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

/'
::::::. ~ 0

S.~ '5 N _J Q)

Keyword Abbreviation "© 0 LL a..-~ 0

~ Cf).§ a.. E ..:<:

" - ::::::. - (.)
0_ o- (.{)·.;::;_ Q)

_J

~
_J _J

0 g- 0 g- _J ..c
a.. a.. a.. a..(.)

BUFFERED BUF (not * x x x x x
allowed in
subset)

BUFFERS(n) x x x x x x

BUILTIN x x x x x x x

BY x x x x x x x

BY NAME x x x x x

C(x[,y]) x x x x x

CALL x x x x x x x

CALL x x x x x

CEIL(x) x x x x x x x

CHAR(expression [size]) x x x x x x x

CHARACTER [(length)] CHAR x x x x x x x

CHECK[(name list)] x x x x x

\..

624

Use of keyword Examples and other information

Attribute DCL F FILE BUFFERED;
Records from F must pass through intermediate storage;
valid only for SEQUENTIAL RECORD files

Option of ENVIRONMENT DCL F FILE ENV(BUFFERS(5));
attribute Specifies that file F is to have 5 buffers allocated when

it is opened

Attribute DCL DATE BUILTIN;
Specifies that appearance of the identifier DATE is to
be a reference to the PL/I function

Option of DO statement DO 1=1 BY 2;
Specifies the increment amount in an iterative DO
statement

Option of assignment ST1 =ST2, BY NAME;
statement Assigns to elements of structure ST1 those elements

of structure ST2 whose names are identical

Format item PUT EDIT (CMPLX) (C(F(7, 2), F(7, 2)));
Specifies complex number format; x and y are any two
real, format items to which the two parts of the complex
number CMPLX are to be transmitted

Statement CALL SUBRT;
Specifies that control is to be passed to the entry point
SUB RT

Option of INITIAL attribute DCL A INIT CALL SUB;
Specifies that the subroutine SUB is to be invoked to
initialize A

Built-in function A=CEIL(B);
Returns the smallest integer not exceeded by B

Built-in function A=CHAR(B, 10);
Causes B to be converted to a character-string of
length 10 and assigned to A

Attribute DCL A CHAR(10);
Specifies that A is to occupy 10 bytes of storage and
represent a character-string variable

Condition ON CHECK(A, B) SYSTEM;
Causes new values of A or B to be output to SYSPRINT

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

f
0
N

Qi 0 Keyword Abbreviation
~ -0

0 ::::::.
_J

~
_J

a.. a..

CHKPT x

CLOSE x x x

COBOL

COBOL

COLUMN(w) COL(w) x x
(not
allowed in
subset)

COMPLETION (event)

COMPLEX CPLX x

COMPLEX(a, b) CPLX(a,b) x

CONDITION(name) x

CONDITION

CONJG(x) x

CONNECTED CONN

\...

626

::::::. .._
_J Q.)

LL 0.. N

Cl):~ ::::::. o-_J

0 §-a..

x x

x x

x

x x

x x

x x

x x

x x

x x

x x

x

S.~
a.. E
en·;:;
0 §-

x

x

x

x

x

x

x

x

x

x

x

"5
0
~

- u_ Q.)

_J~

a.. u

x

x

x

x

x

x

x

x

x

x

x

I

i 1:

\
Use of keyword Examples and other information

Option of ENVIRONMENT DCL F FILE ENV(CHKPT);
attribute Specifies that a tape input file contains checkpoint

records within data records

Statement CLOSE FILE(F);
Closes file F and releases the resources assigned to it

Option of ENVIRONMENT DCL F FILE ENV(COBOL);
attribute Specifies that records from file F are to be mapped

according to the COBOL algorithm

Option of OPTIONS DCL E ENTRY OPTIONS(COBOL);
attribute/option Specifies that E is a COBOL program

Format item PUT EDIT(A) (COL(10), F(10));
Specifies absolute horizontal spacing for PRINT file

Built-in function, pseudo- IF COMPLETION (EV) THEN ... ;
variable Returns a '1 'B if event has completed, otherwise 'O'B

Attribute DCL A COMPLEX;
Specifies that A is to be stored in the form a + bi, a
real part and an imaginary part

Built-in function, pseudo- C= CPLX(A, B);
variable Combines A and B into the complex form A + B; A

and B must be real

Condition SIGNAL CONDITION(PRIVATE);
Defined by the programmer; SIGNAL causes interrupt
and action specified by ON CONDITION (PRIVATE) ...

Attribute DCL UNDERFLOW CONDITION;
Specifies that UNDERFLOW is to be interpreted as a
condition; used when name has been used for other
purposes

Built-in function A=CONJG(B+41);
Returns the conjugate of a complex number; the con-
jugate of a + bi is a - bi

Attribute DCL A(*) CONNECTED;
Specifies that A is an array which occupies contiguous
storage locations; thus, can be used in record 1/0,
overlay defining

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank = feature not available.

I' -0 -...... - Qi 5 N _J Q)

Keyword Abbreviation Qi 0 LL Cl.. N :::J.!::! 0

s:: (/):§ a... E ..l<:
-c :::::::. :::::::. - (.)
0 o- (/)·;:; -...... Q)

_J

~
_J _J

0 g- 0 g- _J .r:
a... a... a... a...(.)

CONSECUTIVE * x x x x x x

CONTROLLED CTL * x x x x

CONVERSION CONV (not x x x x x x x
allowed in
subset)

COPY x x x x x

COS(x) x x x x x x x

COSD(x) x x x x x x

COSH(x) x x x x x x

COUNT (filename) x x x x x

CTLASA * x x x x x x

CTL360 x x x x x

DATA x x x x x

DATAFIELD x x x x

DATE x x x x x x x

628

Use of keyword Examples and other information

Option of ENVIRONMENT DCL F FILE ENV(CONSECUTIVE);
attribute Specifies that the organization of data records is

tapelike

Attribute DCL A CTL; ALLOCATE A;
Specifies that A is of the CONTROLLED storage class;
A must be allocated before use, later freed by FREE

Condition ON CONVERSION GO TO ERROR;
Raised by illegal conversion from character- or bit-
string; standard system action: comment+ ERROR

Option of GET statement GET LIST(A, B, C)COPY;
Places a copy of input file on SYSPRINT

Built-in function A=COS(B);
Returns the cosine of B; B expressed in radians

Built-in function A=COSD(B);
Returns the cosine of B; B expressed in degrees

Built-in function A=COSH(B);
Returns hyperbolic cosine of B; B expressed in radians

Built-in function l=COUNT(PAYROLL);
Returns the number of data items transmitted during
last GET or PUT on the file PAYROLL

Option of ENVIRONMENT DCL OUT FILE ENV(CTLASA);
attribute Specifies that each record transmitted will be preceded

by an ASA carriage control character

Option of ENVIRONMENT DCL OUT FILE ENV(CTL360);
attribute Specifies that each record transmitted will be preceded

by a machine carriage control character

Stream 1/0 transmission GET DATA; PUT DATA(A, B, C);
mode Specifies that data values and names are to be trans-

mitted

Built-in function C = DATAFIELD;
Extracts contents of data field that caused the NAME
condition to be raised

Built-in function TODAY=DATE;
Returns YYMMDD character-string

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

f
0 -...._

s.§ :; N _J Cl>

Keyword Abbreviation 03 0 LL Q_ .!:::! 0

~ (/),~ a.. E ~

"'C ::::: ::::: - (.)
0 o- (/)·.;:::; --.. Cl>

_J

::2:
_J _J

0 g- 0 g- _J ..r::.
Q_ Q_ Q_ Q_ (.)

%DEACTIVATE %DEA CT x x x x

DECIMAL DEC x x x x x x x

DECIMAL(a [,p[,q]]) DEC x x x x x x x

DECLARE DCL x x x x x x x

%DECLARE %DCL x x x x

DEFAULT x x x

DEFINED DEF x x x x x x

DELAY(n) x x x x

DELETE x x x x

DESCRIPTORS x x x

DIM(x,n) x x x x x

DIRECT * x x x x x x

DISPLAY x x x x x x

630

Use of keyword Examples and other information

Preprocessor statement %DEACTIVATE A, B, C;
Suspends compile-time action on variables listed

Attribute DCL A DECIMAL;
Specifies that A is to have a decimal arithmetic base

Built-in function A= DECIMAL(B, 5, 2);
B is to be converted to decimal base precision (5,2)

Statement DCL A;
Used to state attributes for programmer-defined
identifiers

Preprocessor statement % DECLARE AB;
Specifies that A and B are to be compile-time variables;
attributes are also specified with %DCL

Statement DEFAULT ALL STATIC;
Allows programmer control over default rules

Attribute DCL A(10, 10), B(100) DEFINED A;
Allows multiple names to refer to the same storage
location; e.g., B(11) is same as A(2, 1)

Statement DELAY(1000);
Delays execution of the program for 1000 milliseconds
of real time

Statement DELETE FILE(F)KEY(K);
Deletes the record whose key is K from F file; only
record files with indexed or REGIONAL options

Option of DEFAULT DEFAULT DESCRIPTORS(FIXED);
statement Describes default attributes for parameters

Built-in function I= DIM(TABLE, 2);
Returns the current extent of the second dimension of
TABLE

Attribute DCL F FILE DIRECT;
Specifies that records will be transmitted by key
directly to or from file; record files only

Statement DISPLAY (THIS IS A MESSAGE');
Displays the string on operator's console; in M-20,
displays one character in T-R register

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

/
0 ::::::. ~

s.§ ::; N _J Q)

Keyword Abbreviation Qi 0 LL a.-~ 0

~ ud~ a. E ~

-c - - (.)
0 ::::::. :::::r o- en·;::; Q)

_J

~
_J

0 g. 0 g. _J ..c
a. a. a. a. (.)

DIVIDE(x,y,p[,q]) x x x x x x

DO x x x x x x x

%DO x x x x

E{w,d[,s]) x x x x x x x
\

EDIT x x x x x x x

ELSE x x x x x x x

%ELSE x x x x

EMPTY x x x x

END x x x x x x x

%END x x x x

ENDFILE{file expression) x x x x x x x

ENDPAGE(file x x x x x x x
expression)

ENTRY x x x x x x x

\...

632

Use of keyword Examples and other information

Built-in function A= DIVIDE(B,C,8,2);
Divides B by C in a field of 8 digits with 2 fractional
places

Statement DO; ... END; DO 1=1TO10; ... END; DO WHILE
(x=O); ... END;
Forms a DO-group

Preprocessor statement %00; ... %END; %00 1=1 TO 10; ... %END;
Forms a preprocessor DO-group

Format item PUT EDIT (A)(E(10, 3, 4));
Specifies that values in the 1/0 stream are in floating-
point form; i.e., x.xxxE±nn

Stream 1/0 transmission PUT EDIT(A)(F(3));
mode Specifies that data is to be transmitted according to the

specifications in the accompanying format list

Clause of IF statement IF A= B THEN ... ; ELSE ... ;
The ELSE clause is executed if the test is false

Clause of %IF statement %IF A= B %THEN ... ; %ELSE ... ;
The %ELSE clause is executed if the test is false

Built-in function AREA= EMPTY;
Resets the contents of an AR EA variable to empty
status

Statement A :PROC; ... END; BEGIN; ... END; DO; ... END;
Terminates blocks and groups

Preprocessor statement %A: PROC; ... %END; %00; ... %END;
Terminates compile-time functions and groups

Condition ON ENDFILE(PAYROL)GO TO EOJ;
Raised by attempt to read past end-of-file during
GET or READ; standard system action: ERROR

Condition ON ENDPAGE(PRNT)GO TO HONG;
Raised by attempt to print past page size; PRINT files
only; standard system action: start new page, continue

Attribute, statement DCL E ENTRY; F: ENTRY;
Attribute specifies that identifier is an EXTERNAL
entry point; statement specifies secondary entry point

Note: x =feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

f
0 ::::::.
N _J Q) s.§ :;

Keyword Abbreviation Q3 0 LL O....!::! 0

~ U) -~ a... E ~

"O 5 - u
0 ::::::. o- U) ·.;::; Q)

_J

~
_J

0 g. 0 g. _J ..r::
0... 0... 0... 0... u

ENVIRONMENT ENV * x x x x x x

ERF(x) x x x x x x

ERFC(x) x x x x x x

ERROR x x x x x x x

EVENT x x x x

EXCLUSIVE EXCL x x x

EXIT x x x x

EXP(x) x x x x x x x

EXTENTNUMBER(n) x x x

EXTERNAL EXT x x x x x x x

F * x x x x x x

F(x[,y[,z]]) x x x x x x x

634

Use of keyword Examples and other information

Attribute DCL F FILE ENV(options);
List of options is implementation-defined, specifies
file options not included in PL/I language

Built-in function SUMX= ERF(3);
Returns the value of the error function

Built-in function SUMX= ERFC(3);
Returns 1 - ERF(x), the complement of the error
function

Condition ON ERROR PUT LIST('OUCH');
Raised by an error forcing termination; standard system
action: raise FINISH condition

Attribute, option of CALL, DCL EV EVENT; CALL X EVENT(EV); WAIT (EV);
DELETE, DISPLAY, Specifies that an asynchronous 1/0 is to be performed,
READ, REWRITE, or multitasking
WRITE statements

Attribute DCL F FILE EXCLUSIVE;
Prevents other tasks from accessing the file F simul-
taneously

Statement EXIT;
Causes termination of the task executing EXIT and all
dependent tasks

Built-in function A= EXP(B);
Returns ex

Option of ENVIRONMENT DCL F FILE ENV(EXTENTNUMBER(3));
attribute Specifies the number of disk extents for indexed and

REGIONAL files

Attribute DCL A EXTERNAL;
Specifies that the same storage location is to be used
for any variable name A with EXT attribute in other
blocks

Option of ENVIRONMENT DCL A FILE ENV(F(80));
attribute Specifies record form and length

Format item PUT EDIT(A)(F(7, 2));
Specifies that value is to be displayed in a field of 7
characters, two of which are to the right of decimal
point

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

r
0 :::::. ~

S.~
:; N _J Q)

Keyword Abbreviation Qi 0 u.. a...!::! 0

~ (/).~ a.. E .::.!.
"O - (.)
0 :::::. :::::. o- (/)·.;:::; --.... Q)

_J

~
_J _J

0 g- 0 g- _J ..r::.
a.. a.. a.. a..(.)

FB * x x x

FBS x x

FILE x x x x x x x

FINISH x x x x x

FIXED x x x x x x x

FIXED(x[,p[,q]]) x x x x x x

FIXEDOVER FLOW FOFL (not x x x x x x x
allowed in
subset)

FLOAT x x x x x x x

FLOAT{x[,p]) x x x x x x

FLOOR(x) x x x x x x x

FORMAT(list) x x x x x x x

FORTRAN x x x

\..

636

Use of keyword Examples and other information

Option of ENVIRONMENT DCL F FILE ENV(FB);
attribute Specifies fixed-length blocked records

Option of ENVIRONMENT DCL F FILE ENV(FBS);
attribute Specifies fixed-length blocked standard records

Attribute, option of OPEN, OPEN FILE{IN); READ FILE(IN)INTO(A);
READ, WRITE, DELETE, Specifies the name of a PL/I file, either stream- or
GET, PUT, CLOSE record-oriented
statements

Condition ON FINISH PUT LIST('EOJ');
Raised before termination of program by execution of
any statement causing end; i.e., STOP, RETURN

Attribute DCL A FIXED;
Specifies that variable is to have arithmetic fixed-scale
values

Built-in function FX= FIXED(FL, 5, 2);
Returns a fixed-scale value of precision (5, 2) ; base is
the same as base of first argument

Condition ON FOFL GO TO OVF _ER;
Raise when result of arithmetic operation on fixed-
scale data exceeds implementation maximum

Attribute DCL FL FLOAT;
Specifies that variable is to have floating scale

Built-in function FL= FLOAT{FX,6);
Specifies that scale of first argument to be converted
to float with precision 6

Built-in function I= FLOOR(A);
Returns largest integer not exceeding A

Statement FR: FORMAT(SKIP,A); PUT EDIT(X) (R(FR));
Specification of remote format list, referred to with R
format item; must be labeled

Option of OPTIONS DCL FRTRN ENTRY OPTIONS(FORTRAN);
attribute/option Specifies that associated entry point is a program

compiled by a FORTRAN compiler

Note: x = feature available;« = feature planned but not implemented at time of publication
of this text; blank= feature not available.

/ -0 ----
S.~ s N _J Q)

Qi Cl LL a_ N 0
Keyword Abbreviation

~ CJ):~ a_ E .::t!.
-0 - s - (..)
0 ---- o- CJ)·.;:;

---- Q) _J

2
_J

Cl g- 0 g- _J ..r::.
a_ a_ a_ a_ (..)

FREE * x x x x

FROM x x x x x x x

G (max-msg-size) x

GENERIC x

GENERIC x x x

GEN KEY x x x

GET x x x x x x x

GO TO GOTO x x x x x x x

%GOTO %GOTO x x x x

HALT x x

HBOUND(x,n) x x x x x

HIGH(i) x x x x x x x

638

Use of keyword Examples and other information

Statement FREE A;
Specifies that storage previously allocated for a
BASED or CTL variable is to be released

Option of READ and WRITE FILE(F) FROM(A);
REWRITE statements Specifies the variable from which data is to be trans-

mitted to a record 1/0 file

Option of ENVIRONMENT DCL TP FILE TRANSIENT ENV(G(200));
attribute Specifies the maximum record size for a teleprocessing

file

Attribute DCL E GENERIC (A ENTRY(FIXED), B ENTRY (FLOAT));
Specifies a family of entry points, one to be chosen on
basis of attributes of arguments

Attribute DCL E GENERIC(A WHEN(FIXED), B WHEN(FLOAT));
Specifies a family of entry points; one to be chosen on
basis of attributes of arguments

Option of ENVIRONMENT DCL F FILE ENV(GENKEY);
attribute Specifies for indexed files that records are to be read

using only high-order portion of the key

Statement GET LIST(A, B, C);
Specifies an input operation on a stream file

Statement GO TO ST#10;
Specific transfer of control to named statement

Preprocessor statement %GO TO LBL;
Transfers control of preprocessor scan to LBL

Statement HALT;
Causes conversational mode program to be interrupted
and control passed to the terminal

Built-in function I= HBOUND(TBL,2);
Returns the high bound of the nth-dimension of the
first argument

Built-in function KEY= HIGH(5);
Returns a string, i characters long, of the high collating
value; in S/360 implementations, hex FF

Note: x =feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

/' -0 -- s.§ 5 N _J Q)

Abbreviation (i) 0 LL a_ N 0
Keyword

~ Cl) j;~ a_ E .:,,:.
-c :::::. -u
0 :::::. o- cn·;:;

-- Q) _J

~
_J _J

0 g- 0 g- _J ..r::.
a_ a_ a_ a_ u

HIGH INDEX x x

IF x x x x x x x

%IF x x x x

IGNORE(n) x x x x x

IMAG(x) x x x x x

IN (area-variable) x x x x

%INCLUDE x x x x x

INDEX (string,config) x x x x x x

INDEXAREA [(size)] x x x x x

INDEXED x x x x x x

INDEXMULTIPLE x x

INITIAL INIT x x x x x x x

\..

640

Use of keyword Examples and other information

Option of ENVIRONMENT DCL F FILE ENV (HIGHINDEX(2314));
attribute Specifies device type on which high-level index of

indexed file resides

Statement IF A=B THEN ... ; ELSE ... ;
Specifies that the logical expression is to be evaluated;
if true THEN, if false ELSE

Preprocessor statement %IF A= B %THEN ... ; %ELSE ... ;
Specifies that the logical expression is to be evaluated;
if true TH EN ... ; if false ELSE ... ;

Option of READ READ FILE(F) IGNORE (10);
statement Indicates that 10 records are to be skipped

Built-in function, pseudo- R=IMAG(CPX);
variable Extracts the imaginary part of a complex number

Option of ALLOCATE and ALLOCATE X IN (AR);
FR EE statements Specifies the AREA in which a based variable is to be

ALLOCATED or FREED

Preprocessor statement %INCLUDE PAYROLL;
Requests that text from an external file is to be included
during preprocessor scan

Built-in function I= INDEX{STR, 'ABC');
Returns the position within first argument at which first
occurrence of second argument begins

Option of ENVIRONMENT DCL F FILE ENV{INDEXAREA(10000));
attribute Requests high-level index of indexed file be made

resident in main storage

Option of ENVIRONMENT DCL F FILE ENV(INDEXED);
attribute Specifies that the organization of the file is indexed

sequential

Option of ENVIRONMENT DCL F FILE ENV{INDEXMULTIPLE);
attribute Specifies that a multiple-level index is to be created for

an indexed file

Attribute DCL A INITIAL(123.4);
Specifies an initial value for a variable

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

/ -0 -----
S.~ 5 N _J QJ

Keyword Abbreviation (ii a LL a....!:;! 0

~ (/).~ a... E ~
"O :::::: :::::: - (.)
0 o- (/)·.;::;

----- QJ _J _J _J _J .s:::.
a... ~ a... a... a g- 0 g- a...(.)

INPUT x x x x x x x

INTER x x x

INTERNAL INT (not x x x x x x x
allowed in
subset)

INTO(variable) x x x x x x x

IRREDUCIBLE IRRED x x x x

KEY (file expression) * x x x x x x

KEY(x) * x x x x x x

KEYED * x x x x x x

KEYFROM(x) * x x x x x x

KEYLENGTH (n) x x x x x

KEYLOC(n) x x x x x

KEYTO(x) * x x x x x

\..

642

Use of keyword Examples and other information

Attribute DCL F FILE INPUT;
Specifies that a file is to be input with GET or READ
statements

Option of OPTIONS DCL E ENTRY OPTIONS (INTER);
attribute Specifies that PL/I is not to handle interrupts in called

entry point

Attribute DCL A INTERNAL;
Limits the scope of the name to procedure containing
declaration and internal procedures

Option of READ statement READ FILE(F) INTO(AR);
Specifies location to which record is to be transmitted

Attribute DCL E ENTRY IRREDUCIBLE;
An optimization specification; different values will be
returned by E each time it is invoked

Condition ON KEY(FILEX)BEGIN; ...
Raised by improper presence or absence of key in
KEYED record file

Option of READ, DELETE, READ FILE(X)INTO(Y)KEY(K);
and REWRITE Identifies the record to be read from named file
statements

Attribute DCL F FILE KEYED;
Specifies that each record in the file has a key; record
files only

Option of WRITE and LOCATE X KEYFROM(K);
LOCATE statements Specifies the key of the record to be written ; record

files only

Option of ENVIRONMENT DCL F FILE KEYED ENV(KEYLENGTH(10));
attribute Specifies the length of the key field of a record file

Option of ENVIRONMENT DCL F FILE KEYED ENV(KEYLOC(5));
attribute Specifies location of key field within each record,

starting with 1

Option of READ statement READ FILE(F)INTO(A)KEYTO(K);
Specifies location to which key value of record is to be
assigned

Note: x = feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

\

/
0 :::::: ~

S.~
; N _J Q)

Keyword Abbreviation a; 0 u.. CL-~ 0

~ (/)_§ CL E ~

-0 - (.)
0 :::::: s o- (/)·.;:; Q)

_J

~
_J

0 g. 0 g. _J ..c
CL CL CL CL u

LABEL x x x x x x x

LBOUND(x, n) x x x x x

LEAVE x x x x

LENGTH (string) x x x x x

LIKE * x x x x

LINE(n) x x x x x x

LIN ENO (file expression) x x x x x

LINESIZE(w) x x x x x

LIST x x x x x x

LOCATE x x x x x x

LOG(x) x x x x x x x

LOG2(x) x x x x x x

644

Use of keyword Examples and other information

Attribute DCL L LABEL; L=ST#10; GO TO L;
Specifies that L is to take on as values the address of
statement labels

Built-in function I= LBOUND(TABLE,3);
Returns the current lower bound of the third dimension
of TABLE

Option of ENVIRONMENT DCL F FILE ENV(LEAVE);
attribute Requests that tape is to remain at end of data after

reading for quick reread BACKWARDS

Built-in function I= LENGTH (STR);
Returns the current length of the string argument

Attribute DCL 1 ST2 LIKE ST1 ;
Specifies that the elements of ST2 are to be identical
to those in ST1

Format item ; option of PUT EDIT(A)(LINE(3), F(5));
PUT statement Specifies absolute vertical spacing for a PRINT file

Built-in function IF LINENO(PRT) >50 THEN ... ;
Returns the current line number of the named PRINT
file

Option of OPEN statement OPEN FILE(F) LINESIZE(120);
Specifies the number of character positions in a line of
print on file F

Stream 1/0 transmission PUT LIST(A, B, C);
mode Specifies list-directed stream 1/0

Statement LOCATE AREA FILE(F)SET(P);
Allocates a record buffer and transmits previously
located record to the file; for full language, SET option
need not be coded

Built-in function A=LOG(B);
Returns the logarithm of x to the base e; error if
x < = 0

Built-in function A= LOG2(B);
Returns the logarithm of x to the base 2 ; error if
x < = 0

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

""\

f -0 --..

5.~
:; NIQ.)

Keyword Abbreviation Q) 0 LL Cl...!::! 0

'2. (/) -~ a... E ..>t!
"C - u
0 ::::::: ::::::: o- (/)·.::; --.. Q.)

.....I
~

.....II
0 g. 0 g.IJ:: a... a... a... a... u

LOG1 O(x) x x x x x x

LOW(i) x x x x x x x

MAIN x x x x x x x

MAX(x1,y2 , ... , xn) x x x x x x x

MEDIUM (device name, x x x
device type)

MIN (x1,x2 , ... , xn) x x x x x x x

MOD(x,x2) x x x x x x

MULTI PLY (x,y,p[q]) x x x x x x

NAME (file expression) x x x x x

NCP(n) x x x

NOCHECK[(name list)] x x x x x

NOCONVERSION NOCONV x x x x x x x
(not
allowed in
subset)

646

Use of keyword Examples and other information

Built-in function A=LOG10(B);
Returns the logarithm of x to the base 1 0; error if
x<=O

Built-in function S=LOW(5);
Returns the low collating value in a string of length i;
for S/360 implementations hex 00

Option of the OPTIONS A: PROC OPTIONS(MAIN);
attribute/option Specifies this procedure to be primary entry point for

program execution

Built-in function A=MAX(B, C, D, E);
Returns value of the greatest of the arguments

Option of ENVIRONMENT DCL F FILE ENV(MEDIUM(SYS005,2314));
attribute Specifies device-dependent type, logical unit name

Built-in function A=MIN (B, C, D, E);
Returns the value of least of the arguments

Built-in function A= MOD(B, C);
Returns the positive remainder after division of B by C

Built-in function A=MULTIPLY(B, C, 10, 5);
Equivalent to B * C in a field of 10 digits, 5 of which
are fractional

Condition ON. NAME(INPT)BEGIN;
Raised when unrecognizable name encountered during
GET DATA; standard system action : comment and
continue

Option of ENVIRONMENT DCL F FILE ENV(NCP(5));
attribute Specifies the number of outstanding 1/0 requests

maximum for asynchronous 1/0

Condition prefix (NOCHECK(A, B, C)) :X:GO TOY;
Specifies that CH ECK condition to be disabled for
scope of statement

Condition prefix (NOCONVERSION) :A=B+C;
Disables conversion condition for scope of statement

Note: x =feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

/'
0 :::::.

s.§ :; N ...J Q)

Keyword Abbreviation Qi 0 u.. C....!::! 0

~ ud~ a... E .::,(.

-c :::::. :::::. - (.)
0 o- en·.;:;_ Q)

...J ...J ...J ...J.r:;
a... :;?; a... a... 0 g. 0 g. a...(.)

NOFIXEDOVERFLOW NO FOFL x x x x x x x
(not
allowed in
subset)

NO LABEL x x x

NO LOCK x x

NO MAP x x x

NOMAPIN x x x

NOMAPOUT x x x

NOOVERFLOW NOOFL (not x x x x x x x
allowed in
subset)

NO RESCAN x x x

NOSIZE x x x x x x x

NOSTRINGRANGE NOSTRG x x x x x

NOSTRINGSIZE NOSTRZ x x x

~

648

Use of keyword Examples and other information

Condition prefix (NOFOFL): A= B*C;
Disables FIXEDOVERFLOW condition for scope of
statement

Option of ENVIRONMENT DCL F FILE ENV(NOLABEL);
attribute Specifies that tape data set has no labels

Option of READ statement READ FILE(F) INTO(A) KEY(K) NO LOCK;
Specifies that exclusive use of record with key K is
not required

Option of OPTIONS DCL E ENTRY OPTIONS(COBOL NOMAP);
attribute I option Prevents the manipulation of data aggregates in the

interface between a PL/I and COBOL program

Option of OPTIONS DCL E ENTRY OPTIONS(FORTRAN NOMAPIN);
attribute/ option Prevents the manipulation of data aggregates in the

interface between a PL/I and FORTRAN program

Option of OPTIONS DCL E ENTRY OPTIONS(FORTRAN NOMAPOUT);
attribute/option Prevents the manipulation of data aggregates in the

interface between a PL/I and FORTRAN program

Condition prefix (NOOVERFLOW): A= B*C;
Disables the OVERFLOW condition for the scope of the
statement

Option of %ACTIVATE %ACTIVATE A NORESCAN;
statement Specifies that after replacement of A, text is not to be

rescanned for further replacement

Condition prefix (NOSIZE): BEGIN; ... ;
Disables the SIZE condition for the scope of the
statement

Condition prefix (NOSTRINGRANGE): A=SUBSTR(B, 10, N);
Disables the STRINGRANGE condition for the scope of
the statement

Condition prefix (NOSTRINGSIZE): ST=SUBSTR(B, 3);
Disables the STRINGSIZE condition for the scope of
the statement

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

\

/
0 ::::. "-

S.~
::; N _J Q)

Keyword Abbreviation Q3 Cl LL O...!::! 0
u (/).§ o.. E ~

-0 - s - (.) 0 :::r o- (/)·.::; Q)
_J

~ Cl g- 0 g- _J~

0.. 0.. 0.. 0.. (.)

NOSUBSCRIPTRANGE NOSUBRG x x x x x

NOTAPEMK x x x

NOUNDERFLOW NOUFL (not x x x x x x x
allowed in
subset)

NOWRITE x x x x

NOZERODIVIDE NOZDIV (not x x x x x x x
allowed in
subset)

NULL x x x x x

OFFSET(area name) x x x x

OFFSET(p, a) x x x

OFLTRACKS(n) x x x

ON x x x x x x x

ON CHAR x x x x x

\..

650

Use of keyword Examples and other information

Condition prefix (NOSUBRG) :A=B(l+10);
Disables the SUBSCRIPTRANGE condition for the
scope of the statement

Option of ENVIRONMENT DCL F FILE ENV (NOTAPEMK);
attribute Specifies that file located on magnetic tape is not

preceded by a tape mark

Condition prefix (NOUNDERFLOW) :A= B/C;
Disables the UNDERFLOW condition for the scope of
the statement

Option of ENVIRONMENT DCL F FILE ENV(NOWRITE);
attribute Requests space optimization when no records will be

added to an indexed file

Condition prefix (NOZERODIVIDE): A= B/C;
Disables the ZERODIVIDE condition for the scope of
the statement

Built-in function P=NULL;
Returns a null locator value

Attribute DCL R OFFSET(AR) ;
Specifies that R will contain the address of a location
within AR, relative to the beginning of AR

Built-in function R=OFFSET(P, AR);
Converts a pointer to an offset value from beginning
of second argument AREA variable

Option of ENVIRONMENT DCL F FILE ENV(OFLTRACKS(2));
attribute Specifies that n tracks per cylinder are to be reserved for

new records

Statement ON ENDPAGE(F) ... ;
Specifies the on-unit to be executed when condition
named is raised

Built-in function, pseudo- ER_CHAR=ONCHAR;
variable Returns character which caused conversion condition

to be raised; the ONCHAR may only appear in the
conversion on-unit

Note: x = feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

/ -0 --- s.§
.....

C\IJ Q) :J

Abbreviation Qi 0 u. a...!:::! 0
Keyword u en .s a.. E ~

"C 5 - (..)

--- 0 :::::. Q+-' en·.;:;
--- Q)J

~
....J 0 g. 0 g.J .r:. a.. a.. a.. a..(..)

ONCODE x x x x x

ONCOUNT x x x x x

ON FILE x x x x x

ON KEY x x x x

ONLOC x x x x x

ON SOURCE x x x x x

ON SYS LOG x

OPEN x x x x x x x

OPTIONS(list) x x x x x x x

OPTIONS (list) x x x

ORDER x x x x x

OUTPUT x x x x x x x

652

Use of keyword

Built-in function

Built-in function

Built- in function

Built-in function

Built-in function

Built-in function, pseudo
variable

Option of OPTIONS
option of PROCEDURE
statement

Statement

Option of PROCEDURE
statement

Option of ENTRY
statement, attribute

Option of PROCEDURE
and BEGIN statements

Attribute

Examples and other information

l=ONCODE;
Returns an implementation-defined value which
uniquely designates the error encountered; valid only
in an on-unit

l=ONCOUNT;
Returns the number of interrupts pending

C=ONFILE;
Returns the name of the file which encountered an
error; valid only in an on-unit

C=ONKEY;
Returns the value of the key, causing the KEY condition
to be raised

C=ONLOC;
Returns the name of the entry point containing the
statement whose execution caused an interrupt

C=ONSOURCE;
Returns the value of the field containing the character
causing the conversion condition to be raised

A: PROC OPTIONS(ONSYSLOG);
Specifies that error messages are to be produced on the
operator's console

OPEN FILE(F);
Prepares a file for processing

A: PROC OPTIONS(MAIN);
Specifies implementation-defined information

DCL E ENTRY OPTIONS(COBOL);
Specifies interlanguage communication between PL/I
and COBOL or FORTRAN modules

BEGIN ORDER;
Optimization specification requesting strict sequencing
of computation be maintained

DCL F FILE OUTPUT;
Specifies that data is to be transmitted to file using GET,
WRITE, or LOCATE statements

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

f
:::::::.. 0

s.§ s N _J Q)

Keyword Abbreviation Qi 0 u.. a..-~ 0

~ U) .s a.. E .::t!.
"O - (.)
0 :::::::.. 5 0 U) ·;; Q)

_J

~
_J

0 g. 0 g. _J ..c
a.. a.. a.. a..(.)

OVERFLOW OFL (not x x x x x x x
allowed in
subset)

P'picture specification' * x x x x

PAGE x x x x x x x

PAGESIZE(w) x x x x x x x

PENDING (file x x x
expression

PICTURE PIC * x x x x x x

POINTER PTR x x x x x x

POINTER(n,a) x x x

POLY(a,x) x x x x

POSITION (expression) POS x x x x

\.

654

Use of keyword Examples and other information

Condition ON OVERFLOW ... ;
Raised when exponent of floating-scale variable
exceeds limit

Format item PUT EDIT(A) (P'ZZ,ZZZ');
Allows editing of output or input variables using picture
specification characters

Format item, option of PUT PUT PAGE;
statement Specifies positioning of PRINT file at the beginning of

a new page

Option of OPEN statement OPEN FILE(F) PAGESIZE(50);
Specifies· the number of lines to be printed before
END PAGE condition raised; may only be specified for
STREAM PRINT files

Condition ON PENDING BEGIN: ... ;
Raised when a READ on a TRANSIENT file finds that
no records are currently in the file

Attribute DCL A PIC'999V99', B PIC'(5)ZV.99';
Specifies base, mode, scale, and precision of numeric
data items; also editing characters

Attribute DCL A POINTER;
Specifies that A will take on as values the location
addresses of other variables; used in list processing
and locate mode 1/0

Built-in function P=POINTER(OFST,AR);
Returns a pointer value representing the sum of the
address of the area AR and the value of the OFFSET
variable OFST

Built-in function A=POLY(B,X);
If Band X are vectors, then POLY returns the polynomial
value formed by using the Bi as coefficients and the
nx as independent variables

Attribute DCL A CHAR(10), B CHAR(5) DEF C POSITION (6) ;
Specifies that B is to occupy the same location as the
last half of A

Note: x = feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

/
0 -....

s..§
....

NI Cl.l :::I

Keyword Abbreviation Qi 0 LL a...!::! 0

~ (/) .~ a.. E ..l<:
"C ::::::::. - ()
0 ::::::::. 0 (/)·.;::; -.... Cl.l

....I
~

....II
0 g- 0 g-l..c:

a.. a.. a.. a..()

PRECISION (x,p [q]) PREC (not x x x x x x
allowed in
subset)

PRINT x x x x x x x

PRIORITY(x) x x x

PRIORITY(task name) x x x

PROCEDURE PROC x x x x x x x

%PROCEDURE %PROC x x x x

PROD(x) x x x x x x

PUT x x x x x x x

R(x) x x x x x x x

R (max-rec-size) x

RANGE x x x

READ x x x x x x x

\..

656

Use of keyword Examples and other information

Built-in function A=PRECISION(B, 7, 5);
Returns the value of B with precision (7, 5); same
base, scale, mode

Attribute DCL F FILE PRINT;
Specifies that the final destination of the file will be the
printed page

Option of CALL statement CALL T PRIORITY(-2);
Assigns a priority to a task relative to calling task

Built-in function, pseudo- A=PRIORITY(T);
variable Returns priority of task T relative to invoking task

Statement A: PROCEDURE;
Specifies beginning of a procedure block, defines
primary entry point

Preprocessor statement %A: PROC;
Specifies beginning of compile-time procedure; must
be invoked via compile-time function reference

Built-in function A=PROD(B);
B is an array; returns the product of all elements of B

Statement PUT DATA(X, Y, Z);
Stream output statement; specifies transmission of
data elements contained in data list

Format item PUT EDIT(A, B, C) (R(FMT));
Specifies that format list is remote (R); name in
parentheses must be label of FORMAT statement

Option of ENVIRONMENT DCL TP FILE TRANSIENT(R(100));
attribute Specifies for teleprocessing files that logical records of

max-rec-size maximum are to be transmitted

Option of DEFAULT DEFAULT RANGE(A: H) SYSTEM;
statement Specifies the range of identifiers to be affected by the

DEFAULT specification

Statement READ FILE(F)INTO(A)
Transfers a record from a record file into main storage

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

~
::::::::. 0

- Q) :J N _J Q)

Abbreviation Qi 0 LL c... -~ :::r .~ 0
Keyword

~ (/),; c... E -"'
"C s - (.)
0 ::::::::. o- (/)·.;:::;_ Q)

_J

~
_J

0 g. 0 g. _J ..c
c... c... c... c... (.)

REAL x x x x x

REAL(x) x x x x x

RECORD x x x x x x x

RECORD(file name) x x x x x x x

RECSIZE (expression) x x x

RECURSIVE x x x x x

REDUCIBLE RED x x x x

REENTRANT x x x

REFER x x x x

REGIONAL(1) x x x x x x

REGIONAL(2) x x x x

REGIONAL(3) x x x x x

\....

658

Use of keyword Examples and other information

Attribute DCL A REAL;
Specifies that the variable will contain only real arith-
metic values, not complex

Built-in function, pseudo- A=REAL(C); REAL(C)=B;
variable Returns or accepts the real portion of the complex

argument

Attribute DCL F FILE RECORD;
Specifies that the file will consist of discrete records to
be transmitted with READ or WRITE statements

Condition ON RECORD(F) BEGIN; ...
Raised size of record variable is not compatible with
actual record size

Option of ENVIRONMENT DCL F FILE ENV (RECSIZE(100));
attribute Specifies logical record length

Option of PROCEDURE A: PROC RECURSIVE;
statement Specifies that the procedure may invoke itself

Attribute DCL E ENTRY REDUCIBLE;
Specifies that the compiler is allowed to optimize by
reducing the number of references to the entry point

Option of OPTIONS A: PROC OPTIONS(REENTRANT);
option of PROCEDURE Specifies that the procedure may be invoked for
statement asynchronous execution with previous invocations

Option of BASED attribute DCL 1 A BASED, 2 B, 2 C (D REFER (B));
Used to declare varying-length arrays or strings in a
BASED structure

Option of ENVIRONMENT DCL F FILE ENV(REGIONAL(1)) ;
attribute Specifies data set organization; records are to be

transmitted via relative record number

Option of ENVIRONMENT DCL F FILE ENV(REGIONAL(2));
attribute Specifies data set organization; records are to be

transmitted via relative record plus a recorded key

Option of ENVIRONMENT DCL F FILE ENV(REGIONAL(3));
attribute Specifies data set organization ; records are to be

transmitted via relative track plus a recorded key

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

/"
0 ::::::.

S.~
:; NJ Q)

Keyword Abbreviation Qi Cl LL Cl...!::! 0

~ (/) .s a.. E ,::,(,

-c s - u
0 ::::::. 0 (/)·.;:::; Q)

....J
::2:J

Cl g- 0 g-J~
a.. a.. a.. a.. u

REORDER x x x x

REPEAT(string,i) x x x x x x

REPLY(c) x x x x x x

REREAD x x x

RESCAN x x x

RETURN x x x x x x x

RETURNS x x x x x x x

REVERT x x x x x x

REWRITE * x x x x x x

ROUND(x,n) x x x x x x x

SCALARVARYI NG x x x

\..

660

Use of keyword Examples and other information

Option of PROCEDURE A: PROC REORDER;
and BEG IN statements Optimization specification; allows compiler to reorder

the evaluation of expressions for optimum speed

Built-in function A= REPEAT(B, 7);
Specifies that B is to be concatenated to itself 6 times
(7 B's altogether) and returned to the point of invocation

Option of DISPLAY DISPLAY(A)REPLY(B};
statement Specifies variable to which operator response is to be

assigned

Option of ENVIRONMENT DCL F FILE ENV(REREAD);
attribute and CLOSE Specifies that tape file is to be rewound in preparation
statement for reading again

Option %ACTIVATE %ACTIVATE A RESCAN;
statement Specifies that the value of A is to be rescanned by the

preprocessor for further replacement

Statement RETURN;
Returns control to the point of invocation

Attribute, option of A: PROC RETURNS(CHAR);
PROCEDURE and Specifies the attributes of the value to be returned by
%PROCEDURE the entry point after function reference
statements DCL FUNCT RETURNS FIXED;

Specifies the attributes of the function to be invoked

Statement REVERT ZERODIVIDE;
Causes the action specified for stated condition in the
encompassing block to be activated

Statement REWRITE FILE(F) FROM(A);
Specifies that a record is to be returned to the file; valid
for RECORD UPDATE files only

Built-in function A= ROUND(B, 2);
Returns the value of B rounded at the second place to
the right (+ 2) of decimal point

Option of ENVIRONMENT DCL F FILE ENV(SCALARVARYING);
attribute Specifies the inclusion of a length field with record

indicating length of varying string

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

r -0 --.. ~
s-.§ 5 N _J a.>

Keyword Abbreviation Qi Cl u. 0....!:::! 0

~ (/) .§ a.. E ~

"O ::::::. 5- - u
0 o- (/)·.;; --.. a.>

_J

:::?!:
_J

Cl g. 0 g. _J .r.
0... 0... 0... 0... u

SEQUENTIAL SEOL (not x x x x x x x
allowed in
subset)

SET (pointer) * x x x x x x

SIGN(x) x x x x x x

SIGNAL x x x x x x

SIN(x) x x x x x x x

SIND(x) x x x x x x

SINH(x) x x x x x x

SIZE x x x x x x x

SKIP[(n)] x x x x x x x

SNAP x x x x x

SQRT(x) x x x x x x x

STATIC x x x x x x x

STATUS (event-name) x x x x

\..

662

Use of keyword Examples and other information

Attribute DCL F FILE SEQUENTIAL;
Specifies that data is to be transmitted according to
physical order of data set

Option of ALLOCATE, READ FILE(F)SET(P);
LOCATE, and READ Sets pointer value to indicate start of area allocated or
statements record in buffer

Built-in function l=SIGN(X);
Returns -1 if X < 0, 0 if X = 0, and + 1 if x > 0

Statement SIGNAL ENDPAGE (PRT);
Simulates the occurrence of the stated condition

Built-in function A=SIN(B);
Returns the sine of B radians

Built-in function X=SIND(Y);
Returns the sine of Y where Y is expressed in degrees

Built-in function X=SINH(Y);
Returns the hyperbolic sine of Y radians

Condition ON SIZE BEGIN; ... ;
Raised by assignment of data which causes truncation
of high-order significance

Format item, option of GET PUT LIST(A, B, C) SKIP(2);
and PUT statements Specifies relative vertical spacing or beginning of next

logical record; assumed 1 if (n) omitted; for M-20
and PL/I D, (n) maximum is 3

Option of ON statement ON CONVERSION SNAP;
A calling trace is printed on SYS PR I NT when con-
dition occurs
\

Built-in function X=SORT(Y);
Returns positive square root; error if argument is less
than 0

Attribute DCL A STATIC;
Specifies that storage is to be allocated before program
execution and remain until termination

Built-in function, pseudo- I =STATUS(EV);
variable Returns the status value of an EVENT variable

Note: x = feature available;* =-feature planned but not implemented at time of publication
of this text; blank= feature not available.

'

/
0_

S.~
:; N _J Q)

Qi Cl LL a_ N 0
Keyword Abbreviation (.) (/):§ a. E .:it.

"C ::::::. - (.)

:::r 0 ::::::. Q+-' (/)·;:;_ Q)

~
_J _J

Cl g. 0 g. _J .L:
a. a. a. a. (.)

STOP x x x x x x

STREAM x x x x x x x

STRING(x) x x x x x x

STRING (string name) x x x x x x x

STRINGRANGE STRG x x x x x

STRINGSIZE STRZ x x x

iSUB x x x x

SUBSCRIPTRANGE SUBRG x x x x x

SUBSTR (string,i [,j]) x x x x x x x

SUM(x) x x x x x x x

SYS I PT x x x

SYSIN x x x x x

\..

664

Use of keyword Examples and other information

Statement STOP;
Causes immediate termination of the main task and all
subtasks

Attribute DCL F FILE STREAM;
Specifies that the data on the external medium is to be
considered a continuous stream of characters

Built-in function, pseudo- X=STRING(Y);
variable Returns a string representing the concatenation of all

elements of a structure or array

Option of GET and PUT GET STRING(X) EDIT (A, B, C) (3F(3));
statements Data is to be transmitted from string X to the variables

A, B, and C

Condition (STRINGRANGE): X=SUBSTR(Y, 1, I);
Raised when arguments of SUBSTR specify substring
beyond the range of the first argument

Condition (STRINGSIZE): X=SUBSTR(Y, I, J);
Raised when longer string assigned to shorter string
requiring truncation

Dummy variable of DCL A(10, 10), B(10)DEF A(1SUB, 1SUB);
DEFINED attribute Specifies that B(i) is the same element as A(i, i)

Condition (SUBRG): A= B (l*J);
Raised when subscript exceeds upper bound or lower
bound of array dimension

Built-in function, pseudo- A=SUBSTR(B, 1, 5);
variable Returns the portion of the first string argument starting

at the ith position for j characters

Built-in function X=SUM(Y);
Returns the sum of all elements of an array argument

Standard DOS system DCL C FILE INPUT RECORD
input logical unit name ENV(F(80)MEDIUM(SYSIPT,2540));

Data will be transmitted from the device which is
assigned to SYSIPT

Standard PL/I input GET LIST(A, B, C);
file name Exactly equivalent to GET" FILE (SYSIN) LIST(A, B, C):

Note: x = feature available;* = feature planned but not implemented at time of publication
of this text; blank= feature not available.

"'\

/' -0_
S.~ 5 N ...J Q)

Q) 0 LL C....!:::! 0
Keyword Abbreviation

~ (/) -~ a... E .::t!
"O :::::. - u
0 :::::. o- (/) "+:;_ Q)

...J
~

...J ...J
0 §- 0 §- ...J..c a... a... a... a... u

SYSLST x x x

SYS PRINT x x x x x

SYSTEM x x x x x x x

SYSTEM x x x

TAN(x) x x x x x x x

TAND(x) x x x x x x

TANH(x) x x x x x x x

TASK x x x

TASK(task name) x x x

THEN x x x x x x x

%THEN x x x x

\..

666

' Use of ~eyword Examples and other information

Standard DOS system DCL F FILE OUTPUT PRINT
output logical name unit ENV(F(121)MEDIUM(SYSLST, 1403));

Data will be transmitted to the device which is assigned
to SYSLST

Standard PL/I output PUT LIST(A, B, C) ;
file name Exactly equivalent to PUT FILE(SYSPRINT) LIST

(A, B, C);

Option of ON statement ON FOFL SYSTEM;
Specifies that standard system action is to take place
when condition is raised

Option of DEFAULT DEFAULT RANGE(*) SYSTEM;
statement Specifies that standard PL/I default rules are to be in

effect

Built-in function X=TAN(Y);
Returns the tangent of the argument expressed in
radians

Built-in function X=TAN(Y);
Returns the tangent of the argument expressed in
in degrees

Built-in function X=TANH(Y);
Returns the hyperbolic tangent of argument expressed
in radians

Attribute, option of DCL T TASK;
PROCEDURE Specifies that the associated identifier is the name of a
statement task

Option of CALL statement CALL X TASK(T);
Specifies that a task named T is to be created by
invoking the entry point X

Clause of the IF statement IF A=B THEN ... ;
Specifies the action to be taken if the logical expression
is true

Clause of the %IF %IF A=B %THEN ... ;
statement Specifies the action to be taken if the logical expression

is true

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank = feature not available.

/ -0 --- ~ s.§ :; N ...J Q)

Keyword Abbreviation Qi 0 LL O.....!:::! 0

~ (/).5 o.... E ~

"C - - (.)
0 :::::.. :::::r o- en·;:;

--- Q) ...J
~

...J
0 g. 0 g. ...J..c

0.... a_ 0.... a_(.)

TIME x x x x x x

TITLE(x) x x x x

TO x x x x x x x

TP(M IR) x x

TRANSIENT x x x

TRANSLATE(s,r,p) x x x x x

TRANSMIT(file name) x x x x x x

TR KO FL x x x

TRUNC(x) x x x x x x x

u x x x x x x

UNALIGNED UNAL (not x x x x x x
allowed in
subset)

UNBUFFERED UNBUF (not x x x x x
allowed in
subset

'-..

668

Use of keyword Examples and other information

Built-in function T=TIME;
Returns the time of day in the form HHMMSSTTT,
where HH is the hour, MM is the minute, SS is the
second, and TTT are milliseconds

Option of OPEN statement OPEN FILE(F)TITLE('FILE1 ');
Specifies the DD name to be used to locate and define
the data set

Clause of DO statement DO 1=1 TO 100;
Specifies the limit value of the control variable

Option of ENVIRONMENT DCL F FILE TRANSIENT(TP(M) RECSIZE(200));
attribute Specifies that teleprocessing data is to be transmitted

in record (R) or message (M) form

Attribute DCL F FILE TRANSIENT;
Specifies a teleprocessing file

Built-in function A=TRANSLATE(B,',.', '.,');
Returns B with all periods replaced with commas and
all commas replaced by periods

Condition ON TRANSMIT(F)BEGIN; ... ;
Raised by a permanent 1/0 error on named file

Option of ENVIRONMENT DCL F FILE ENV(TRKOFL);
attribute Specifies that records may overflow the end of a track

on a direct access device

Built-in function X=TRUNC(Y);
Returns an integer; FLOOR(Y) if Y > = O; CEIL(Y) if
Y<O

Option of ENVIRONMENT DCL F FILE ENV(U);
attribute Specifies that records in file are of undetermined length

Attribute DCL X UNAL;
Specifies that data item need not be mapped on an
integral word boundary

Attribute DCL F FILE UNBUF;
Specifies that records need not pass through inter-
mediate storage

Note: x = feature available;* =feature planned but not implemented at time of publication
of this text; blank= feature not available.

\

/' -0_

S.~
; N _J Q)

Keyword Abbreviation Qi 0 LL a_ N 0

~ en:§ a... E .::,(.

"'C :::::. s - u
0 o- en·.;::;_ Q)

_J

:2:
_J

0 g. 0 g. _J ..r::.
a... a... a... a... u

UNDEFINEDFILE(file UNDF x x x x x
name)

UNDERFLOW UFL (not x x x x x x x
allowed in)
subset)

UNLOAD x

UNLOCK x x x

UNSPEC(x) x x x x x x

UPDATE * x x x x x x

v x x x x x x

VALUE x x x

VARIABLE x x x

VARYING VAR x x x x x

VB x x x x

VBS x x x

\..

670

Use of keyword Examples and other information

Condition ON UNDEFINEDFILE(F)BEGIN; ... ;
Raised if named file cannot be opened

Condition ON UNDERFLOW BEGIN; ... ;
Raised if exponent of floating scale variable becomes
too small

,Option of ENVIRONMENT DCL F FILE ENV(UNLOAD);
attribute Causes a tape file to be rewound and unloaded at EOF,

EOV, or CLOSE

Statement UNLOCK FILE(F);
Releases exclusive control of a file

Built-in function, pseudo- X=UNSPEC(Y);
variable Returns bit-string which is the internal representation

of argument

Attribute DCL F FILE UPDATE;
Specifies that the file is to be used for both INPUT and
OUTPUT

Option of ENVIRONMENT DCL F FILE ENV(V(100));
attribute Specifies that file contains variable-length records

Option of DEFAULT DEFAULT RANGE(*)VALUE(CHAR(10));
statement Establishes default rules for string length, area size, and

precision

Attribute DCL (E ENTRY, F FILE) VARIABLE;
Specifies that the associated ENTRY, FILE, or LABEL is
to be a variable rather than a constant

Attribute DCL C CHAR(100) VARYING;
Specifies that the string is to varying length; length
causes maximum required space to be allocated

Option of ENVIRONMENT DCL F FILE ENV(VB);
attribute Specifies record format to be variable-length blocked

Option of ENVIRONMENT DCL F FILE ENV(VBS);
attribute Specifies that the record format is variable blocked

spanned

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

\

r
0 :::::.
N ...J Q) S.~

:;
Abbreviation Qi 0 u._ Cl...!:::! 0

Keyword
~ (/).~ o.. E .::.!

""C - - (..)

0 ::::::._ o- (/)·.;:::;_ Q)
...J

~
.....J ...J

0 g. 0 g. ...J.c
Cl.. a... a... Cl..(..)

VERIFY x x x x

VERI FY(string1 ,string2) x x x x x

VS x x x

WAIT x x x x

WHEN x x x

WHILE x x x x x x

WRITE x x x x x x x

ZERODIVIDE ZDIV (not x x x x x x x
allowed in

\.
subset)

672

\

Use of keyword Examples and other information

Option of ENVIRONMENT DCL F FILE ENV(VERIFY);
attribute Specifies that write disk check be performed by reading

and comparing

Built-in function IF VERIFY(S, '0123456789') =0 THEN ... ;
Returns the position within the first string argument in
which a character appears which is not present in the
second argument

Option of ENVIRONMENT DCL F FILE ENV(VS);
attribute Specifies that the record format is variable spanned

Statement WAIT (EV1 ,EV2,EV3)(1);
The task will wait until one of the list of events has
completed

Used with GENERIC DCL E GENERIC(E1 WHEN(FIXED), E2 WHEN (FLOAT));
attribute Specifies the selection criteria for entry point selection

Option of DO statement DO WHILE(P 1 =NULL);
Specifies iterative processing as long as WHILE clause
is true

Statement WRITE FILE(F) FROM (A);
Specifies output data transmission for record files

Condition ON ZERODIVIDE BEGIN;
Raised when an attempt to divide by zero is made

Note: x =feature available;*= feature planned but not implemented at time of publication
of this text; blank= feature not available.

I

Following is a chart depicting a number of useful debugging features of PL/C. These features, in many cases, have a
counterpart in IBM's PL/I Checkout Compiler. The examples provided here are applicable to PL/C. Consult the program
mer's guide for the Checkout Compiler for the equivalent features which are requested via the *PROCESS statement.

f
PL/C keyword Use of keyword Examples and other information

ALL Diagnostic option of PUT ALL;
PUT statement Debugging facility; places value of all scalar variables on SYS-

PRINT file (note distinction from PUT ALL of the optimizer and
checkout compilers)

ARRAY Diagnostic option of PUT ARRAY;
PUT statement Debugging facility; places value of all scalar and array variables

on SYSPRINT file

CH ECK[(a [,b])] Statement CHECK(10,20);
Enables printing for the next 10 changes of value for CH ECKed
variables in the current block, and the first 20 in any block entered
from this one

DEPTH(exp) Diagnostic option of PUT SNAP DEPTH(3);
PUT statement Debugging facility; limits traceback to 3 levels

FLOW Condition ON FLOW BEGIN;
Specifies on-unit whenever sequential execution is interrupted
by a GO TO, CALL, IF ... THEN ... ELSE, DO, END, RETURN,
or other such statement

FLOW Diagnostic option of PUT FLOW;
PUT statement Debugging facility; places on SYSPRINT the current history of

nonsequential execution (i.e., execution which raised the FLOW
condition)

FLOW[(a[,b])] Statement FLOW(10,20);
Invokes automatic printing for the next 10 instances of non-
sequential execution in the current block, and the first 20 in any
block entered from this one

NOCHECK Statement NOCHECK;
Cancels printing of value changes of CH ECKed variables

NO FLOW Condition prefix (NOFLOW): CALL SUB1 (X);
Disables the FLOW condition for scope of statement

NO FLOW Statement NOFLOW;
Cancels automatic printing for instances of nonsequential
execution

NOSOURCE Statement NOSOURCE;
Cancels source program listing from this point

OFF Diagnostic option of PUT OFF;
PUT statement Debugging facility; cancels subsequent output on SYSPRINT

ON Diagnostic option of PUT ON;
PUT statement Debugging facility, restores printing on SYSPRINT

(Continued)

en
~
en

f

\..

PL/C keyword

ON DEST

ONORIG

SNAP

SOURCE

STMTNO (label)

Use of keyword

Built-in function

Built-in function

Diagnostic option of
PUT statement

Statement

Built-in function

Examples and other information
\

l=ONDEST;
Returns the statement number of the statement which was the
destination of the nonsequential execution causing the FLOW
condition to be raised

l=ONORIG;
Returns the statement number of the statement which was the
origin of the nonsequential execution causing the FLOW con-
dition to be raised

PUT SNAP;
Debugging facility; causes a traceback of currently active blocks
to be placed on SYSPRINT

SOURCE;
Restores source program listing from this point

I =STMTNO(L);
Returns the statement number of the statement labeled L

app@ndix B
Bibliography

PL/I Programmer's Guides (published by IBM)

Model 20 Disk Programming System PL/I User's Guide, GC33-6007
PL/I (D) Programmer's Guide, C24-9005
PL/I (F) Programmer's Guide, C28-6594
OS PL/I Optimizing Compiler Programmer's Guide, SC33-0006
OS PL/I Checkout Compiler Programmer's Guide, SC33-0007
DOS Optimizing Compiler Programmer's Guide, SC33-0008

Language Reference Manuals (published by IBM)

Disk and Tape Operating Systems PL/I Subset Reference Manual, C28-8202
PL/I (F) Language Reference Manual, GC28-8201
DOS PL/I Optimizing Compiler Language Reference Manual, SC33-0005
OS PL/I Optimizing Compiler Language Reference Manual, SC33-0009

app@hdix r
Data Conversion Rules

This appendix gives the rules for arithmetic conversion and for conversion of
problem data types. This appendix has been directly taken from the IBM PL/I F
Reference Manual (GC28-8201-3). Due to the importance of the topic, it was
felt that this material should be included in this text in the event that the reader
does not have access to an appropriate reference manual. Rules for arithmetic
conversion may change or vary from PL/I implementation to PL/I implementa
tion. A current reference manual should always be the final authority.

For an example of how to use and interpret these charts, you may wish
to refer to Chapter 6, pp. 319-322. Following is an explanation of the symbols
used in these charts :

p = Resulting precision
q = Resulting number of fractional digits

p
1

= Precision of the first operand
p 2 = Precision of the second operand
q

1
= Number of fractional digits in the first operand

q2 = Number of fractional digits in the second operand
r =The meaning of this symbol is defined where needed in the appropriate

boxes
s =The meaning of this symbol is defined where needed in the appropriate

boxes

(g-:~i:~J===================:==========~~~~~=~~~~~~~===============:===============] I jDECIMAL FIXED(p10 q1) !DECIMAL FLOAT(p1) !BINARY FIXED(p10 q1) jBINl\RY FLOl\T(p1) I
r-------+--------------------+-----------------+--------------------+-----------------~
jDECIMALjDECIMAL FIXED<p.q) !DECIMAL FLOAT(p) !BINARY FIXED(p,q) IBINl\RY FLOl\T(p) I
!FIXED lp=l+MAX<p1-q1.P2-q2llp=MAX<p1,P2> jp=l+MAX<p1-q1,r-s> jp=MAX<p1,r> I
I <p2,q2>t +MAX<q1,q2> I I +MAX!q1 ,s> jwhere: I
I Jq=MAX<q1,q2> I)q=Ml\X!q1,s> I r=p2•3.32 I
I I I I where: I I
I I I I r=1+r2*3.32 I I
I I I I s=q2•3.32 I I
~-------+--------------------+-----------------+--------------------+-----------------1
IDECIMALIDECIMAL FLOAT(p) jDECIMAL FLOAT(p) !BINARY FLOAT(p) !BINARY FLOAT(p) I
!FLOAT jp=MAXIP1rP2> ip=MAX(p1 ,p2>)p=MAX(p1,r> !p=MAX(p1,r) I
I (p,.> I I jwhere: !where: I
I I I I r=p2•3.32 l r=p2•3. 32 I
I I I I I I
~-------+--------------------+-----------------+--------------------+-----------------1
!BINARY !BINARY FIXED(p,q) jBINARY FLOAT(p) !BINARY FIXED(p,q) jBINARY FLOAT(p) I
IFIXED lp=l+MAX(r-s,p2-q2> lp=MAX(r,p2) ip=l+Ml\X(p1-q1 ,p2 -q2)1p=MAX(p1,p2) I
I (p2 ,q:z) I +MAX(s,q2) !where: I +MAX(q10 q2) I I
I jq=MAX(s,q2> I r=p1 •3. 32 jq=MAX<q1,q:z> I I
I I where: I I I I
l I r=l+p1•3.32 I I I I
I I s=q1•3.32 I I I I
~-------+--------------------+-----------------+--------------------+-----------------~
I BINARY jBINARY FLOAT(p} I BINARY FLOAT(p) I BINARY FLOAT(p) I BI·NARY FLOAT(p) I
IFLOAT jp=MAX(r,p2) jp=MAX(r,p2) jp=MAX<pup 2 >·)p=Ml\X(p1,p2) I
I (p2) jwhere: jwhere: I I I
1 I r=p1•3.32 I r=p1*3.32 I I I

'-------.l--------------------~-----------------~--------------------~----------------/

FIGURE C.1
operations.

Attributes of result in addition and subtraction

~~~::1~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~ 
IOPERANDIDECIMAL FIXED(p1 ,q1 )JDECIMAL FLOAT(p1 )JBINARY FIXEDCP1•q1> jBINARY FLOAT<p1> I 
r-------+--------------------+-----------------+--------------------+-----------------1 
JDECIMALJDECIMAL FIXED(p.q) !DECIMAL FLOAT(p) JBINARY FIXED(p,q) JBINARY FLOAT(p) I 
!FIXED lp=p1+p2+l Jp=MAX<P1rP2> lp=p1+r+l Jp=MAXCp1.r> I 
I Cp 2 .q2) lq=q1 +q2 I !q=q1 +s !where: I 
I I I !where: I r=p2•3. 32 I 
I I I I r=l+p2•3.32 I I 
I I I I s=q2•3.32 I I 
~-------+--------------------+-----------------+--------------------+-----------------~ 
JDECIMALJDECIMAL FLOAT(p) !DECIMAL FLOAT(p) )BINARY FLOAT(p) !BINARY FLOAT(p) I 
!FLOAT Jp=MAX(p1 ,p2 ) Jp=MAXCp1,p2) !p=MAXCp1,r> !p=MAXCp1,r> I 
I Cp2> I I !where: !where: I 
I I I I r=p2•3.32 I r=p2•3.32 I 
I I I I I I 
~-------+--------------------+-----------------+--------------------+-----------------~ 
!BINARY JBINARY FIXEDCp,q) !BINARY FLOAT(p) )BINARY FIXEDCp.q) !BINARY FLOAT(p) I 
!FIXED lp=r+p2+l Jp=MAXCr,p2> Jp=p1+P2+l Jp=MAXCp1.P2> I 
I <p2.q:z)Jq=s+q2 I where: Jq=q1+q2 I I 
I !where: I r=p1•3.32 I I I 
I I r=l+p1 •3. 32 I I I I 
I I s=q1•3.32 I I I I 
~-------+--------------------+-----------------+--------------------+-----------------~ 
)BINARY !BINARY FLOAT(p) !BINARY FLOAT(p) !BINARY FLOAT(p) !BINARY FLOAT(p) I 
IFLOAT Jp=MAX(r,p2> Jp=MAXCr,p2 ) Jp=MAX<P1•P2> Jp=MAXCpup2) I 
I Cp2 > !where: !where: I I I 

l.__ ______ 1 __ ::~~::::: _________ 1 __ ::~~::::: ______ 1 ____________________ 1 ________________ .) 
FIGURE C.2 Attributes of result in multiplication operations. 



:::;O_N_D_[====================:==========~~~~~=~~~~~~~===============:================~~ 
IOPERAN~DECIMAL FIXEDCp1 ,q1 )jDECIMAL FLOAT(p1 )jBINARY FIXED<p1,q1l !BINARY FLOATCp1 ) I 
~-------+--------------------+-----------------+--------------------+-----------------i 
IDECIMALIDECIMAL FIXtD(p,q) !DECIMAL FLOAT(p) !BINARY FIXED(p,q) !BINARY FLOAT(p) I 
IFIXED lp=15 lp=MAX(p1 ,p2> jp=31 lp=MAX(pur> I 
I <p2,q2> lq=15-«p ... -q ... >+q 2 > I lq=31-«p1-q1>+s) jwhere: I 
I I I jwhere: I r=p2*3. 32 I 
I 1 I I s=q2*3.32 I I 
I I I I I I 
~-------+--------------------+-----------------+--------------------+-----------------i 

IDECIMALIDECIMAL FLOAT(p) I DECIMAL FLOAT(p) )BINARY FLOAT(p) I BINARY FLOAT(p) I 
jFLOAT jp=MAX(p1 ,p2 ) jp=MAX<p1 ,p2 ) lp=MAX<p ... ,r> jp=MAX<p1,r> I 
I <p2> I I I where: I where: I 
I I I I r=p2 *3.32 I r=p 2*3.32 I 
I I I I I I 
~-------+--------------------+-----------------+--------------------+-----------------i 

jBINARY !BINARY FIXED(p) !BINARY FLOAT(p) !BINARY FIXED(p,q) I BINARY FLOAT(p) I 
IFIXED Jp=31 jp=MAX(r,p2 ) lp=31 lp=MAX(P1,P2> I 
I <puq2 ) jq=31-< (r-s) +q2> jwhere: f q=31-( <p ... -q ... > +q2> I I 
I !where: I r=p ... •3.32 I I I 
I I r=l+p1*3.32 I I I I 
I I s=q1*3.32 I I I I 
~-------+--------------------+-----------------+--------------------+-----------------~ 
fBINARY f BINARY FLOAT(p) IBINARY FLOAT(p) !BINARY FLOAT(p) !BINARY FLOAT(p) I 
I FLOAT I p=MAX (r, p 2 ) I p=MAX (r, P2> I p=MAX(p1, P2> I p=MAX <P1r P2> I 
I (p2 ) !where: I where: I I I 
' I r=p 1 * 3. 3 2 I r=p1 * 3. 32 I I I 
\~-----~--------------------~-----------------~--------------------~-----------------/ 

FIGURE C.3 Attributes of result in division operations. 

/----~r--------------------T---------------------T---------------------------7~------, 

I I . I Second Operand I \ 
I Case I First Operand I (Exponent) I Target Attributes of Result I 
... - - - - +--------------------+---------------------+------------------------------------~ 

(l)IFIXED DECIMAL(p1 ,q1 )fUnsigned integer fFIXED DECIMAL(p,q) (provided pS15) I 
1 

I !constant with value nl p=<p1 +l>*n-1 I 

1 
I I I q=q ... *n I 

r- - - - -+--------------------+---------------------+------------------------------------i 
I (2) !FIXED BINARY<puq1 ) jUnsigned integer I FIXED BINARY(p,ql [provided p$31J I 
I I I constant with value nl p=(p1 +1) *n-1 l 
1 I I I q=q1 *n I 
r - - - - f--------------------+---------------------+-----------------------------------.-i 

(3) I FIXED DECIMAL(puq1 ) I FIXED DECIMAL(p2,q2 ) I FLOAT DECIMAL(p) (unless case (1) I 
1 !or !or I or <7> is applicablel I 
I IFLOAT DECIMAL(p1 ) !FLOAT DECIMAL(p2) I p=MAX(p1 ,p2 ) I 
r- - - - - f--------------------+---------------------+------------------------------------i 
t (4) I FIXED BINARY(p1 ,q1 ) !FIXED DECIMAL(p2,q2 ) )FLOAT BINARY(p) (unless case (2) I 
I lor ror I or (7) is applicable] I 
I !FLOAT BINARY{p1 ) !FLOAT DECIMAL(p2) I p=MAX(p1 ,CEIL(3.32*p2)) I 
i - - - - -+--------------------+---------------------+------------------------------------! 
I (5)1FIXED DECIMAL(p1,q1>IFIXED BINARY(p2,q2> IFLOAT BINARY(p)(unless case (1) I 

1 lor !or I or 17> is applicablel I 
1 IFLOAT DECIMAL(p1 ) I FLOAT BINARY(p2 ) I p=MAX(CEIL(3.32*p1 >,p2) I 
i- - - ---+--------.,------------+---------------------+------------------------------------i 
I (6)1FIXED BINARY(p1 ,q1 ) !FIXED BINARY(p2,q2 ) !FLOAT BINARY(p)Cunless case (2) I 

1 jor lor I or (7L is applicable] I 
t !FLOAT BINARY(p1) !FLOAT BINARY<p2l I p=MAXCP1rP2l I 
1- - - - - ~--------------------+--------------------+------------------------------------~ 
f (7)1FLOAT DECIMAL(p1 ) !FIXED DECIMAL(p2,0) fFLOAT(p1 ) (with base of first J 
I lor !or I operand] I t fFLOAT BINARY(p1 ) !FIXED BINARY(p2 ,0) I ) 
'----l--------------------i---------------------~------------------------------------

FIGURE C.4 Attributes of result in exponentiation operations. 



app1!hdix D 

Data Formats and 
Number Systems 

As long as man has had the need to count, number systems have existed. The 
decimal (base 10) number system is the one most widely used in the western 
world, undoubtedly because man has ten fingers. Other number systems have 
been used by man. The Babylonians and Sumerians used a base 60 (time), 
the Mayans a base 20 (fingers and toes?), and some North American Indian 
tribes a base 5 (one hand?). You not only use the base 10 system today, but 
also several other number systems: base 12 for the measurement of inches and 
feet, and base 16 for the measurement of ounces and pounds. 

Most number systems have these things in common: 

1. There are as many unique symbols as the base. There are ten symbols, 
0 through 9, in the base 10 system. The binary system-base 2-
requires only two symbols, 0 and 1. 

2. The place value of the least significant digit always begins with 1. 
3. Each subsequent place value is n times greater than the previous place 

value, where n is the number of the base. Thus, in the decimal number 
system, each place value is ten times greater than the previous place 
value. In the binary number system, each place value is two times greater 
than the previous place value. 

681 



682 PL/I Programming 

Decimal Number System Reviewed 

Following is an illustration of the significance of place values in the 
decimal numbering system. Using the decimal number 2435, we have: 

1000 

2 

100 

4 

10 1 -- Decimal place values 

3 5 

I L5x 
~3x 

1 = 5 

10 = 30 

.__ ________ 4 x 100 = 400 

..__ ____________ 2 x 1000 = 2000 

2435 

Note, for example, that the digit "4" has a value of "400" because it appears 
in the "1 OO's position." 

Binary Number System Explained 

The digits used to express binary quantities are 0 and 1. A binary digit is 
called a bit, a contraction of the words binary and digit. In the base 2 or binary 
system, each place value is two times greater than the previous place value. 
For example: 

Binary place values for 16 bits ---i 
32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1J 

0 0 0 0 0 

0 Binar: dig:s +-E _0 __ 0_0 __ 0_1_1_1 _o_J_. 

In the above example, the decimal value 14 is represented in binary as 1110. 
One process of converting binary numbers to their decimal equivalents is to 
add together the place values for each binary position where a "1" appears. 



Appendix D 683 

Let us try another example : 

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 

0 0 0 0 0 0 0 0 0 0 0 1 

x 2048 ( 

I 

I 
1 x 256 ( 

1 x 128 ( 

1 x 2 

1 x 

2435 is the decimal equivalent of 100110000011 2 

Seldom does a programmer have to be concerned with converting 
decimal numbers to binary or vice versa. However, as pointed out in Chapter 1, 
the use of binary data in a PL/I program can result in faster execution time and 
more efficient use of storage in the representation of data. 

Hexadecimal Number System Explained 

There are occasions when it may be necessary to print the contents of 
main storage so that a programmer can peruse the storage "dump" in an effort 
to locate errors in his programming logic or data formats. There are utility 
programs designed to dump the contents of main storage in a data format 
called hexadecimal or base 16. Hexadecimal is a shorthand notation used to 
express binary data in a more concise form on printout. Let us see how base 
16 meets the requirements for number systems. 

1. "There are as many unique symbols as the base." The 16 symbols used 
in the hexadecimal number system are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, 
D, E, and F. As can be seen in Figure D.1, the letter A corresponds to 
the decimal value of 10, the letter B is equal to a decimal value of 11, 
C is used to represent a decimal 12, D for 13, E for 14, and F for 15. 

2. "The place value of the least significant digit is always 1." 
3. "Each place value is n times greater than the previous place· value, 

where n is the number of the base." Thus, in base 16, each place value 
is 16 times greater than the previous place value. 



684 PL/I Programming 

Here are the hexadecimal place values: 

4096 

0 

256 16 

A 0 

--- Hexadecimal place values 

4 ----+ Hexadecimal digits 

.___ ________ 4 x 1 = 4 

~----------.~A (decimal 10) x 256 = 2560 
~ 

l 2564 

See Figure D.1 

Thus, in the above example, (A04) 16 = (2564) 10 . Here is an example of how 
the hexadecimal value 3EAF is equal to a decimal value of 16,047: 

4096 

3 

256 

E 

16 
A F 

1

.--------+l See Figure D.1 

I L_, F (or decimal 15) x 

~A(ordecimal10) x 

1 = 15 

16 = 160 

----------+ E (or decimal 14) x 256 = 3584 

------------ 3 (or decimal 3) x 4096 = 12288 

16047 

There is a relationship between hexadecimal and binary number systems. 
Every four bits of a 16-bit binary number can be expressed as a hexadecimal 
digit. For example : 

1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 ~ Binary value 
'--v----' '--v----' '-y--1 '--v----' 

F 0 9 ~ Hexadecimal equivalent 

Figure D.1 shows the binary and hexadecimal equivalents for the decimal 
values 1 to 15. Here is how the conversion from binary to hexadecimal numbers 
works: To convert binary to hexadecimal, divide the 16-bit binary number into 
groups of four bits each; mentally place the decimal values 8 4 2 1 above 
each group of four bits; and convert each group of four bits to a hexadecimal 
number. 



Appendix D 685 

/" 
Decimal Binary Hexadecimal 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 

10 1010 A 
11 1011 B 
12 1100 c 
13 1101 D 
14 1110 E 

\. 
15 1111 F 

FIGURE D.1 Binary and hexadecimal equivalents for the 
decimal values 1 to 15. 

For example: 

8 4 2 8 4 2 1 8 4 2 1 8 4 2 1 +-- Binary place values for 
each group of 4 bits 

1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 +-- Binary value 
'---..,----.' '---v--1 '---v--1 '---..,----.' 

F 0 9 +-- Hexadecimal equivalent 

Compare the binary place values with the hexadecimal place values. 
Notice that every fourth binary place value (starting with the first place value) is 

Hexadecimal place values 

32768 16384 8192 2048 1024 512 8 4 2 ~ <-- Binary place values 

1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 <-- Binary digits 
'-------v-----1 '---v-----1 '-y--1 '----v--' 

0 9 <-- Hexadecimal equivalent 

equal to a place value in the hexadecimal number system. Because every fourth 
binary place value is a place value in the hexadecimal number system, there is a 
relationship between binary and hexadecimal. Let us take another example 



686 PL/I Programming 

I' Positive Binary Values Absolute Values Negative Binary Values 
N 

't5 
lit Positions j Decimal Hexadecimal lit Positions 

11 1111 1111 2222 2222 2233 Notation Notation 11 1111 1111 2222 2222 2233 
0123 4567 8901 23"5 6789 0123 4567 8901 Bene - 10 Bose - 16 0123 4567 8901 2345 6789 0123 4567 8901 

0000 0000 0000 0000 0000 0000 0000 0000 - 0 0 No negative zero 
0000 0000 0000 0000 0000 0000 0000 0001 0 1 1 1111 1111 1111 1111 1111111111111111 
0000 0000 0000 0000 0000 0000 0000 0010 1 2 2 1111 1111 1111 1111 1111 1111 1111 1110 
0000 0000 0000 0000 0000 0000 0000 0100 2 4 4 1111 1111 1111 1111 11111111 1111 1100 

0000 0000 0000 0000 0000 0000 0000 1000 3 8 8 1111 1111 1111 1111 11111111 1111 1000 
0000 0000 0000 0000 0000 0000 0001 0000 4 16 10 1111 1111 1111 1111 11111111 1111 0000 
0000 0000 0000 0000 0000 0000 0010 0000 5 32 20 11111111111111111111111111100000 
0000 0000 0000 0000 0000 0000 0100 0000 6 6" 40 11111111111111111111111111000000 

0000 0000 0000 0000 0000 0000 1000 0000 7 128 80 1111 1111 1111 1111 1111 1111 .1000 0000 
0000 0000 0000 0000 0000 0001 0000 0000 8 256 100 111111111111111111111111 00000000 
0000 0000 0000 0000 0000 0010 0000 0000 9 512 200 11111111111111111111111000000000 
0000 0000 0000 0000 0000 0100 0000 0000 10 1,024 400 1111 1111 1111 1111 1111 1100 0000 0000 

0000 0000 0000 0000 0000 1000 0000 0000 11 2,048 800 11111111111111111111100000000000 
0000 0000 0000 0000 0001 0000 0000 0000 12 4,096 1,000 1111 1111 1111 11111111 000000000000 
0000 0000 0000 0000 0010 0000 0000 0000 13 8, 192 2,000 1111 1111 1111 1111 1110 0000 0000 0000 
0000 0000 0000 0000 0100 0000 0000 0000 14 16,384 4,000 1111 11111111 11111100 0000 0000 0000 

0000 0000 0000 0000 1000 0000 0000 0000 15 32, 768 8,000 1111 1111 1111 1111 1000 0000 0000 0000 
0000 0000 0000 0001 0000 0000 0000 0000 16 65,536 10,000 1111 1111 1111 1111 0000 0000 0000 0000 
0000 0000 0000 0010 0000 0000 0000 0000 17 131,072 20,000 1111 1111 1111 1110 0000 0000 0000 0000 
0000 0000 0000 0100 0000 0000 0000 0000 18 262, 14" 40,000 1111 1111 1111 1100 0000 0000 0000 0000 

0000 0000 0000 1000 0000 0000 0000 0000 19 524, 288 80,000 1111 1111 1111 1000 0000 0000 0000 0000 
0000 0000 0001 0000 0000 0000 0000 0000 20 1,048,576 100,000 1111 1111 1111 0000 0000 0000 0000 0000 
0000 0000 0010 0000 0000 0000 0000 0000 21 2,097, 152 200,000 1111 1111 1110 0000 0000 0000 0000 0000 
0000 0000 0100 0000 0000 0000 0000 0000 22 4, 194,304 400,000 1111 1111 1100 0000 0000 0000 0000 0000 

0000 0000 1000 0000 0000 0000 0000 0000 23 8,388,608 800,000 1111 1111 1000 0000 0000 0000 0000 0000 
0000 0001 0000 0000 0000 0000 0000 0000 24 16,7n,216 1,000,000 1111 1111 0000 0000 0000 0000 0000 0000 
0000 0010 0000 0000 0000 0000 0000 0000 25 33,55","32 2,000,000 1111 1110 0000 0000 0000 0000 0000 0000 
0000 0100 0000 0000 0000 0000 0000 0000 26 67, 108,86" 4,000,000 1111 1100 0000 0000 0000 0000 0000 0000 

0000 1000 0000 0000 0000 0000 0000 0000 27 1:w,211,ne 8,000,000 1111 1000 0000 0000 0000 0000 0000 0000 
0001 0000 0000 0000 0000 0000 0000 0000 28 268,435,456 10,000,000 1111 0000 0000 0000 0000 0000 0000 0000 
0010 0000 0000 0000 0000 0000 0000 0000 29 536,870,912 20,000,000 1110 0000 0000 0000 0000 0000 0000 0000 
0100 0000 0000 0000 0000 0000 0000 0000 30 1,073,741,824 40,000,000 1100 0000 0000 0000 0000 0000 0000 0000 

0111 1111 1111 1111 1111 1111 1111 1111 - 2, 147,483,6"7 7F,FFF,FFF 1000 0000 0000 0000 0000 0000 0000 OOOi 
No positive equivalent 31 2, 147, "83, 648 80,000,000 1000 0000 0000 0000 0000 0000 0000 0000 

FIGURE D.2 Powers of two table. 

in converting binary to hexadecimal: 

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 ~ Binary number 
'-v----' '-v----' '--v----1 '-v----' 

2 3 4 ~ Hexadecimal equivalent 

Again, to arrive at the hexadecimal equivalents, you must mentally place over 
each group of four bits the decimal place values 8 4 2 1. For example: 

8 4 2 8 4 2 8 4 2 8 4 2 1 ~ Place values for each 
group of 4 bits 

0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 ~ Binary number 
'-v----' ~ '-v----' '-v----' 

2 3 4 ~ Hexadecimal equivalent 

Hexadecimal and Decimal Conversion 

To find the decimal number, locate the hexadecimal number and its 
decimal equivalent for each position. Add these to obtain the decimal number. 



Appendix D 687 

To find the hexadecimal number, locate the next lower decimal number and 
its hexadecimal equivalent. Each difference is used to obtain the next hexa
decimal number until the entire number is developed. 

Figure D.2 shows a powers of two table that should be helpful in con
verting decimal to binary or vice versa. Figure D.3 should be helpful in con
verting hexadecimal to decimal values. 

BYTE BYTE BYTE 

0123 4567 0123 4567 0123 4567 

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 0 0 0 0 
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1 
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2 
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3 
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4 
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5 
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6 
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7 
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8 
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9 
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10 
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11 
c 12,582,912 c 786,432 c 49,152 c 3,072 c 192 c 12 
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13 
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15 

6 5 4 3 2 1 

FIGURE D.3 Hexadecimal conversion chart. 

Packed Decimal 

From one to 16 bytes may be used to store a sequence of decimal digits 
representing an arithmetic value. A pattern of four bits is defined for each 
decimal digit. Since a byte consists of eight bits, up to two decimal digits may 
be packed into one byte. In addition, one half of a byte is reserved for the 
algebraic sign ( + or - ) of the number. For example, to represent + 5, one 
byte is needed: 

5 + t 

t Each rectangle represents one byte which is the basic unit of main storage in S/360 and 
S/370. A byte (for BinarY TErm) consists of eight bits. A byte or combination of con
tiguous bytes may be used tostore data. 



688 PL/I Programming 

To represent -12, two bytes are used: 

0 2 

......_ ____________ '0000' in binary 

Notice how the sign of the number always appears in the rightmost four bits 
of the right-hand byte. Also notice, in the above example, how a leading zero 
was filled in on the left when an even number (e.g., 2, 4, 6, 8, etc.) of digits 
are to be represented in the packed decimal data format. In the following 
example, notice that only two bytes are needed to represent a three-digit 
number: 

7 8 9 + 

Although S/360 or S/370 provides for a maximum of 16 bytes (or 31 decimal 
digits) for the packed decimal data format, a maximum of eight bytes, which 
can contain 15 decimal digits, are allowed in most PL/I compilers. 

Fixed-Point 

Two or four contiguous bytes may be used to represent this type of data. 
When two bytes are combined to represent fixed-point binary data, the result 
is said to be halfword binary. Four contiguous bytes constitute a word, but 
the word's address must begin on a "fullword" boundary. This simply means 
that the starting core address of the four contiguous bytes must be evenly 
divisible by four. (Halfwords of binary data must have even-numbered core 
addresses.) The PL/I programmer generally does not have to be concerned 
that this type of data will be properly placed in main storage (i.e., on a fullword 



Appendix D 689 

boundary), since the assigning of data to proper storage addresses is auto
matically done for him by the PL/I compiler. 

Here is an example of the value + 65 as it would appear in fixed-point 
binary format: 

0 31 -- Bit positions 

000000000000000000000000001000001 ~ Fullword ( 4 bytes) 

~ 

I.__---~ (1000001 ) 2 = (65)10 

,__ __________________ Sign bit (high-order bit) 

of 0 means a positive 
number 

Although it is not important that you understand how negative numbers are 
represented in fixed-point binary, an example of -5 is shown below. (Fixed
point binary numbers are represented in two's complement form.) 

0 31 - Bit positions 

11111111111111111111111111111011 ~ Fullword (4 bytes) 

.___ __________ To verify that this number 

is - 5, change all the 0 
bits to 1 bits and all the 
1 bits to 0 bits; then add 
"1" to the rightmost bit 
position; result will be 
(101 ) 2 , which is equal to 
(5),0 

'------------------~ Sign bit of 1 means a 
negative number 

Floating-Point 

A floating-point format often represents data in a more compact form 
than does a fixed-point format. This is generally the case when a large number 
of zeros is required to fix the location of the decimal or binary point in a fixed
point format. For example, the fixed-point decimal fraction .000000009 requires 
eight zeros to establish the location of the decimal point. In floating-point 
format the zeros are not needed, because the location of the decimal point is 



690 PL/I Programming 

specified by an integer exponent appearing within the floating-point data item. 
There are thr~ forms of floating-point data: short form, long form, and 

extended form : 

1 byte f- 3 bytes~ 
Short form 

4 bytes l Exponent Value 
(fullword) 

1 byte 7 bytes 
Long form 

8 bytes Exponent Value 
(double word) 

1 byte 7 bytes 
Extended form 

16 bytes High-order value 
(two 

double words) Low-order value 

The primary difference between each form lies in the longer form being 
able to contain more digits of significance. For example, the number 742682.1130 
could not be contained in the short-form floating-point number. The closest 
that we could come would be 742682, truncating the fraction because of too 
few bits in the value field. In order to provide a more precise representation of 
the above number, we must choose a form supplying longer precision (either 
long or extended). 

The values of the numbers we can represent in the various forms are, for 
all practical purposes, the same, because the exponent field determines the 
magnitude of the number stored in the value field. But the precision maintained 
in each type is different: for short form, up to six decimal digits; for long form, 
up to 16 decimal digits; and for extended form, up to 33 decimal digits. Not all 
PL/I compilers implement all forms of floating-point data. Check the specifica
tions of the compiler you are using for the maximum precision allowed. 

As an example of how a decimal number would look in floating-point 
format inside the computer, consider the decimal value 22.5, which would be 
written in binary as follows: 

16 8 4 2 1 /2 1 /4 1 /8 ~ Binary place values 

0 0 0 0 ~ Binary equivalent of 22.5 

In terms of S/360 and S/370, floating-point data values are represented 



Appendix D 691 

in hexadecimal. Thus, the binary value 10110.1 would be represented as 
follows: 

lr---------...r---.) (Added zeros) 

,-."-.. ,-."-.. 

0001 011 0 . 1 000 Binary value 

6 . 8 Hexadecimal equivalent 

Notice how it was necessary to "pad" with zeros both to the right and to the 
left of the straight binary value to yield the hexadecimal equivalent. Inside the 
computer, there is no way to physically record the position of the hexadecimal 
(or decimal or binary, for that matter) point. The position of the point is re
corded in the form of an exponent. To relate this back to decimal, we know that 

22.5 is equivalent to .225 x 10+2 

where 10+ 2 is the exponent. It follows, then, that the hexadecimal value 

16.8 is equivalent to .168 x 16+ 2 

Recall the short-form floating-point format: 

Exponent Value 

1 byte ~--- 3 bytes-----

To show how the hexadecimal value would be represented in this format, we 
begin with the following: 

1 byte 3 bytes 

16+ 2 168 

Assumed hexadecim al point is here 

Ex onent a ears in p pp the first byte of the 
floating-point word 

Actually, the first byte of the floating-point data item is called a charac
teristic. Characteristic is the preferred term, because it is made up of the 
exponent plus another factor which is a constant. The constant value is a 
hexadecimal 40. For example, if the characteristic is 40) 16 , then it is assumed 
that the fractional value (which is called the mantissa) is scaled at 16°; for a 
characteristic of 41) 16 , the mantissa is scaled at 161 ; for a characteristic of 3F, 



692 PL/I Programming 

the mantissa is scaled at 16- 1 • As a further illustration, then, we would have 
the following: 

Hexadecimal characteristic Equivalent exponent 

43 163 

42 162 

41 161 

40 150 
3F 16-1 
3E 15-2 

30 16-3 

Thus, the decimal value 22.5 is represented in its hexadecimal equivalent, 
which is 16.8. Because floating-point values are assumed to be fractions, we 
will say that the value is .168 x 162 . The exponent "2" will be added to the 
hexadecimal constant "40" to give us the characteristic. All of this may be 
depicted in the following bit structure: 

0100 0010 0001 0110 1000 0000 0000 0000 ---t Binary bits 

4 2 1 6 8 0 0 0 ---t Hexadecimal numbers 

Character 

One or more bytes of storage is used to represent a string of characters. 
One byte of storage is used to represent each alphameric character in a string. 
In PL/I, the characters may be any of those allowable on a particular computer. 
For S/360 or S/370 they may be any of the 256 EBCDICt character set. As an 
example, to represent KENT, WASH. 98031, 16 bytes are needed: 

t~xtended !!_inary ~oded Q_ecimal _Jnterchange ~ode. 



Appendix D 693 

Figure D.4 is a chart showing the character codes used in S/360 and 
S/370 computers. About half of these characters will be familiar to you (e.g., 
A,a, B,b,C, ... ) . These symbols and other graphics appear in the third column 
in Figure D.4. The familiar characters may be entered into the computer via a 
punched card or typewriter or other special input device and are entered in 
single-character form (i.e., one card column or one typewriter character). 
There are a number of control symbols (e.g., NUL, DEL, ENO) that are defined 
on p. 700. These symbols require multiple punches in a card column because 
the character is not represented on a standard keypunch. Some of these control 
characters are represented on a typewriter (e.g., EQT) but have no corresponding 
graphic output. Many of the 256 characters would not be applicable to all 
1/0 devices. 

I Graphic and Punched card S/360, S/370' 
Decimal Hexadecimal control symbols code 8-bit code 

0 00 NUL 12-0-1 -8-9 0000 0000 
1 01 SOH 12-1 -9 0000 0001 
2 02 STX 12-2-9 0000 0010 
3 03 ETX 12-3-9 0000 0011 
4 04 PF 12-4-9 0000 0100 

5 05 HT 12-5-9 0000 0101 
6 06 LC 12-6-9 0000 0110 
7 07 DEL 12-7-9 0000 0111 
8 08 12-8-9 0000 1000 
9 09 12-1-8-9 0000 1001 

10 OA SMM 12-2-8-9 0000 1010 
11 OB VT 12-3-8-9 0000 1011 
12 oc FF 12-4-8-9 0000 1100 
13 OD CR 12-5-8-9 0000 1101 
14 OE so 12-6-8-9 0000 1110 

15 OF SI 12-7-8-9 0000 1111 
16 10 OLE 12-11-1-8-9 0001 0000 
17 11 DC1 11 -1 -9 0001 0001 
18 12 DC2 11-2-9 0001 0010 
19 13 TM 11-3-9 0001 0011 

20 14 RES 11-4-9 0001 0100 
21 15 NL 11-5-9 0001 0101 
22 16 BS 11-6-9 0001 0110 
23 17 IL 11-7-9 0001 0111 
24 18 CAN 11 -8-9 0001 1000 

25 19 EM 11-1-8-9 0001 1001 

FIGURE D.4 System/360 and System/370 character code chart. 



f Graphic and Punched card S/360, SJ37CY 
Decimal Hexadecimal control symbols code 8-bit code 

26 1A cc 11-2-8-9 0001 1010 
27 1B CU1 11-3-8-9 0001 1011 
28 1C IFS 11-4-8-9 0001 1100 
29 10 IGS 11-5-8-9 0001 1101 
30 1E IRS 11-6-8-9 0001 1110 
31 1 F IUS 11-7-8-9 0001 1111 
32 20 DS 11-0-1-8-9 0010 0000 
33 21 sos 0-1-9 0010 0001 
34 22 FS 0-2-9 0010 0010 
35 23 0-3-9 0010 0011 
36 24 BYP 0-4-9 0010 0100 
37 25 LF 0-5-9 0010 0101 
38 26 ETB 0-6-9 0010 0110 
39 27 ESC 0-7-9 0010 0111 
40 28 0-8-9 0010 1000 
41 29 0-1-8-9 0010 1001 
42 2A SM 0-2-8-9 0010 1010 
43 28 CU2 0-3-8-9 0010 1011 
44 2C 0-4-8-9 0010 1100 
45 2D ENO 0-5-8-9 0010 1101 
46 2E ACK 0-6-8-9 0010 1110 
47 2F BEL 0-7-8-9 0010 1111 
48 30 12-11-0-1-8-9 0011 0000 
49 31 1-9 0011 0001 
50 32 SYN 2-9 0011 0010 
51 33 3-9 0011 0011 
52 34 PN 4-9 0011 0100 
53 35 RS 5-9 0011 0101 
54 36 UC 6-9 0011 0110 
55 37 EOT 7-9 0011 0111 
56 38 8-9 0011 1000 
57 39 1-8-9 0011 1001 
58 3A 2-8-9 0011 1010 
59 38 CU3 3-8-9 0011 1011 
60 3C DC4 4-8-9 0011 1100 
61 3D NAK 5-8-9 0011 1101 
62 3E 6-8-9 0011 1110 
63 3F SUB 7-8-9 0011 1111 

FIGURE D.4 Continued 

694 



Graphic and Punched card S/360, S/376' 
Decimal Hexadecimal control symbols code 8-bit code 

64 40 SP no punches 0100 0000 
65 41 12-0-1-9 0100 0001 
66 42 12-0-2-9 0100 0010 
67 43 12-0-3-9 0100 0011 
68 44 12-0-4-9 0100 0100 

69 45 12-0-5-9 0100 0101 
70 46 12-0-6-9 0100 0110 
71 47 12-0-7-9 0100 0111 
72 48 12-0-8-9 0110 1000 
73 49 12-1 -8 0100 1001 

74 4A ¢ 12-2-8 0100 1010 
75 4B 12-3-8 0100 1011 
76 4C < 12-4-8 0100 1100 
77 4D ( 12-5-8 0100 1101 
78 4E + 12-6-8 0100 1110 

79 4F I 12-7-8 0100 1111 
80 50 & 12 0101 0000 
81 51 12-11-1-9 0101 0001 
82 52 12-11-2-9 0101 0010 
83 53 12-11-3-9 0101 0011 

84 54 12-11-4-9 0101 0100 
85 55 12-11-5-9 0101 0101 
86 56 12-11-6-9 0101 0110 
87 57 12-11-7-9 0101 0111 
88 58 12-11-8-9 0101 1000 

89 59 11 -1 -8 0101 1001 
90 5A ! 11-2-8 0101 1010 
91 58 $ 11-3-8 0101 1011 
92 5C * 11-4-8 0101 1100 
93 5D ) 11-5-8 0101 1101 

94 5E 11 -6-8 0101 1110 
95 5F l 11-7-8 0101 1111 
96 60 11 0110 0000 
97 61 / 0-1 0110 0001 
98 62 11 -0-2-9 0110 0010 

99 63 11-0-3-9 0110 0011 
100 64 11-0-4-9 0110 0100 
101 65 11-0-5-9 0110 0101 

\... 



f 
Graphic and Punched card S/360, S/370 

Decimal Hexadecimal control symbols code 8-bit code 

102 66 11-0-6-9 0110 0110 
103 67 11-0-7-9 0110 0111 

104 68 11-0-8-9 0110 1000 
105 69 0-1-8 0110 1001 
106 6A 12-11 0110 1010 
107 6B 0-3-8 0110 1011 
108 6C % 0-4-8 0110 1100 

109 6D - 0-5-8 0110 1101 
110 6E > 0-6-8 0110 1110 
111 6F ? 0-7-8 0110 1111 
112 70 12-11-0 \ 0111 0000 
113 71 12-11-0-1-9 0111 0001 

114 72 12-11 -0-2-9 0111 0010 
115 73 12-11 -0-3-9 0111 0011 
116 74 12-11 -0-4-9 0111 0100 
117 75 12-11 -0-5-9 0111 0101 
118 76 12-11 -0-6-9 0111 0110 
119 77 12-11-0-7-9 0111 0111 
120 78 12-11 -0-8-9 0111 1000 
121 79 1-8 0111 1001 
122 7A 2-8 0111 1010 
123 7B # 3-8 0111 1011 
124 7C @ 4-8 0111 1100 
125 7D 5-8 0111 1101 
126 7E = 6-8 0111 1110 
127 7F .. 7-8 0111 1111 

128 80 12-0-1-8 1000 0000 
129 81 a 12-0-1 1000 0001 
130 82 b 12-0-2 1000 0010 
131 83 c 1 2-0-3 1000 0011 
132 84 d 12-0-4 1000 0100 

133 85 e 1 2-0-5 1000 0101 
134 86 f 12-0-6 1000 0110 
135 87 g 12-0-7 1000 0111 
136 88 h 12-0-8 1000 1000 
137 1 89 i 12-0-9 1000 1001 

138 8A 12-0-2-8 1000 1010 
139 88 12-0-3-8 1000 1011 

FIGURE D.4 Continued 

696 



f Graphic and Punched card S/360, S/37'(y 
Decimal Hexadecimal control symbols code 8-bit code 

140 8C 12-0-4-8 1000 1100 
141 80 12-0-5-8 1000 1101 
142 8E 12-0-6-8 1000 1110 

143 8F 12-0-7-8 1000 1111 
144 90 12-11-1-8 1001 0000 
145 91 j 12-11-1 1001 0001 
146 92 k 12-11-2 1001 0010 
147 93 I 12-11-3 1001 0011 

148 94 m 12-11-4 1001 0100 
149 95 n 12-11-5 1001 0101 
150 96 0 12-11-6 1001 0110 
151 97 p 12-11-7 1001 0111 
152 98 q 12-11-8 1001 1000 

153 99 r 12-11-9 1001 1001 
154 9A 12-11-2-8 1001 101'0 
155 9B 12-11-3-8 1001 1011 
156 9C 12-11-4-8 1001 1100 
157 90 12-11-5-8 1001 1101 

158 9E 12-11-6-8 1001 1110 
159 9F 12-11-7-8 1001 1111 
160 AO 11 -0-1 -8 1010 0000 
161 A1 11 -0-1 1010 0001 
162 A2 s 11-0-2 1010 0010 

163 A3 t 11 -0-3 1010 0011 
164 A4 u 11-0-4 1010 0100 
165 A5 v 11-0-5 1010 0101 
166 A6 w 11-0-6 1010 0110 
167 A7 x 11 -0-7 1010 0111 

168 A8 y 11-0-8 1010 1000 
169 A9 z 11-0-9 1010 1001 
170 AA 11-0-2-8 1010 1010 
171 AB 11-0-3-8 1010 1011 
172 AC 11-0-4-8 1010 1100 

173 AD 11 -0-5-8 1010 1101 
174 AE 11-0-6-8 1010 1110 
175 AF 11-0-7-8 1010 1111 
176 BO 12-11-0-1-8 1011 0000 
177 B1 12-11-0-1 1011 0001 

\._ 



/ 
Graphic and Punched card S/360, S/376' 

Decimal Hexadecimal control symbols code 8-bit code 

178 B2 12-11-0-2 1011 0010 
179 B3 12-11-0-3 1011 0011 
180 B4 12-11-0-4 1011 0100 
181 B5 12-11-0-5 1011 0101 
182 B6 12-11-0-6 1011 0110 

183 B7 12-11-0-7 1011 0111 
184 B8 12-11-0-8 1011 1000 
185 B9 12-11-0-9 1011 1001 
186 BA 12-11-0-2-8 1011 1010 
187 BB 12-11 -0-3-8 1011 1011 

188 BC 12-11-0-4-8 1011 1100 
189 BD 12-11 -0-5-8 1011 1101 
190 BE 12-11 -0-6-8 1011 1110 
191 BF 12-11-0-7-8 1011 1111 

192 co 12-0 1100 0000 
193 C1 A 12-1 1100 0001 
194 C2 B 12-2 1100 0010 
195 C3 c 12-3 1100 0011 
196 C4 D 12-4 1100 0100 

197 C5 E 12-5 1100 0101 
198 C6 F 12-6 1100 0110 
199 C7 G 12-7 1100 0111 
200 ca H 12-8 1100 1000 
201 C9 I 12-9 1100 1001 
202 CA 12-0-2-8-9 1100 1010 
203 CB 12-0-3-8-9 1100 1011 
204 cc 12-0-4-8-9 1100 1100 
205 CD 12-0-5-8-9 1100 1101 
206 CE 12-0-6-8-9 1100 1110 
207 CF 12-0-7-8-9 1100 1111 
208 DO 11-0 1101 0000 
209 01 J 11 -1 1101 0001 
210 D2 K 11-2 1101 0010 
211 03 L 11-3 1101 0011 
212 04 M 11-4 1101 0100 
213 05 N 11-5 1101 0101 
214 06 0 11-6 1101 0110 
215 D7 p 11-7 1101 0111 
216 08 Q 11-8 1101 1000 

FIGURE 0.4 Continued 

698 



I Graphic and Punched card S/360, S/370 
Decimal Hexadecimal control symbols code 8-bit code 

217 D9 R 11-9 1101 1001 
218 DA 12-11 -2-8-9 1101 1010 
219 DB 12-11 -3-8-9 1101 1011 
220 DC 12-11-4-8-9 1101 1100 
221 DD 12-11 -5-8-9 1101 1101 

222 DE 12-11 -6-8-9 1101 1110 
223 DF 12-11-7-8-9 11 01 1111 
224 EO 0-2-8 1110 0000 
225 E1 11-0-1-9 1110 0001 
226 E2 s 0-2 1110 0010 

227 E3 T 0-3 1110 0011 
228 E4 u 0-4 1110 0100 
229 E5 v 0-5 1110 0101 
230 E6 w 0-6 1110 0110 
231 E7 x 0-7 111 0 0111 

232 E8 y 0-8 1110 1000 
233 E9 z 0-9 1110 1001 
234 EA 11-0-2-8-9 1110 1010 
235 EB 11-0-3-8-9 1110 1011 
236 EC 11-0-4-8-9 1110 1100 

237 ED 11-0-5-8-9 1110 1101 
238 EE 11-0-6-8-9 1110 1110 
239 EF 11-0-7-8-9 1110 1111 
240 FO 0 0 1111 0000 
241 F1 1 1 1111 0001 

242 F2 2 2 1111 0010 
243 F3 3 3 1111 0011 
244 F4 4 4 1111 0100 
245 F5 5 5 1111 0101 
246 F6 6 6 1111 0110 

247 F7 7 7 1111 0111 
248 F8 8 8 1111 1000 
249 F9 9 9 1111 1001 
250 FA 12-11 -0-2-8-9 1111 1010 
251 FB 12-11 -0-3-8-9 1111 1011 

252 FC 12-11 -0-4-8-9 1111 1100 
253 FD 12-11 -0-5-8-9 1111 1101 
254 FE 12-11 -0-6-8-9 1111 1110 
255 FF 12-11-0-7-8-9 1111 1111 

'-. 



700 PL/I Programming 

The various symbols in Figure D.4 are defined as follows: 

Control character representations 

ACK Acknowledge IGS Interchange group separator 
BEL Bell IL Idle 
BS Backspace IRS Interchange record separator 
BYP Bypass IUS Interchange unit separator 
CAN Cancel LC Lower case 
cc Cursor control LF Line feed 
CR Carriage return NAK Negative acknowledge 
CU1 Customer use 1 NL New line 
CU2 Customer use 2 NUL Null 
CU3 Customer use 3 PF Punch off 
DC1 Device control 1 PN Punch on 
DC2 Device control 2 RES Restore 
DC4 Device control 4 RS Reader stop 
DEL Delete SI Shift in 
DLE Data link escape SM Set mode 
DS Digit select SMM Start of manual message 
EM End of medium so Shift out 
ENQ Enquiry SOH Start of heading 
EOT End of transmission sos Start of significance 
ESC Escape SP Space 
ETB End of transmission block STX Start of text 
ETX End of text SUB Substitute 
FF Form feed SYN Synchronous idle 
FS Field separator TM Tape mark 
HT Horizontal tab UC Uppercase 
IFS Interchange file separator VT Vertical tab 

Special graphic characters 

¢ Cent sign Minus sign, hyphen 
Period, decimal point I Slash 

< Less Than sign Comma 
Left parenthesis % Percent 

+ Plus sign Underscore 

I Logical OR > Greater Than sign 
& Ampersand ? Question mark 

Exclamation point Colon 
$ Dollar sign # Number sign 

* Asterisk @ At sign 
Right parenthesis Prime, apostrophe 
Semicolon Equal sign 

-, Logical NOT Quotation mark 



Appendix D 701 

Bit 

From one to eight bits require one byte of storage. A "bit" is not a data 
type per se. With S/360 or S/370, bit-strings are stored eight bits to a byte. 
For example, the bit-string 101110011 (nine bits) would require two bytes 
of storage: 

First byte Second byte 

10111001 10000000 

[~------------+Notice that the bit-string is left
justified and that zeros are padded 
to the right of the string to fill out 
the second byte 



app1mdix E 

PL/C: The Cornell 
University Compiler 
for PL/I 

PL/C is a compiler for PL/I that is compatible with the IBM OS F-level com
piler. Programs developed and tested under PL/C may be run without change 
under the IBM compiler. PL/C has been designed to provide very high com
pilation speeds and extraordinary diagnostic assistance. Depending somewhat 
on the type of operating system, the type of program, and the options specified, 
compilation speeds four to ten times that of the I BM compiler are provided. 
(Compilation speed ranges from 7000 to 12,000 statements per minute on 
Cornell's 360/65.) The object code generated by PL/C is not optimized and 
contains diagnostic monitoring code, so that execution time ranges from "equal 
to" to several times slower than the same program under an I BM compiler. 
However, PL/C is a compiler, and execution does not suffer the severe penalty 
usually associated with interpretive execution. Both compilation and execution 
speed are roughly comparable to that of the best fast FORTRAN compilers, 
in spite of the greater complexity of the PL/I language. Efficiency is further 
enhanced by the ability to do internal batching, so that any number of in
dependent source programs appear to be a single job to the operating system. 

PL/C provides diagnostic assistance. Where most compilers detect errors, 
PL/C also attempts to repair errors. An error message is produced and PL/C 
displays the source statement that results from the repair. A significant fraction 
of trivial errors of punctuation, spelling, and syntax are correctly repaired. The 
repairs of substantive and semantic errors rarely reconstruct what the pro
grammer intended, but they do prolong the life of a faulty program and greatly 
increase the amount of diagnostic information that can be obtained from 
each run. PL/C exercises a degree of control over execution usually found 
only in interpretive systems, but it does so without suffering the slow execution 
of interpretation. PL/C also includes several diagnostic statements that provide 
a convenient trace and dump capability, and enhance the utility of the CH ECK 

702 



Append ix E 703 

condition. Although these statements are not found in PL/I F, they can be 
enclosed in "PL/C pseudo-comments" so that complete compatibility with 
PL/I F can be preserved. 

PL/C has been in classroom and production use for more than a year and 
has been installed at more than one hundred computing centers. These are 
primarily educational institutions where PL/C characteristics are particularly 
advantageous for large numbers of relatively short programs produced by 
relatively inexperienced programmers. However, several installations are in
industrial centers where PL/C is used for inhouse training, open-shop program
ming, and production program check-out. Installation is simple and well
documented; the system is compatible with IBM PL/I, so that programmers can 
readily shift back and forth between PL/C and PL/I. 

The PL/C project is a long-term development project of the systems 
programming group of the Department of Computer Science at Cornell Univer
sity. Future releases will add additional language features, as well as improve 
performance and diagnostic assistance. 

Documentation 

The PL/C User's Guide precisely defines PL/C by direct comparison with 
the IBM F-level implementation of PL/I. The guide gives PL/C restrictions 
(relative to PL/I), error messages, and control cards and options. The guide is 
intended for use as a supplement to standard PL/I texts and references. A 
document provides installation and systems programmer instructions. 

The Technical Report series of the Department of Computer Science 
includes several reports on the internal structure of the compiler. The compiler 
itself (written in assembly language with extensive use of special macros) is 
also well-documented. 

Configuration and Operating System 

PL/C is usually run in an automatic overlay mode. In this form, very 
small programs can be run in a partition of approximately 90K, but 1 OOK is more 
typical and useful and will accommodate programs of 200-250 statements. 
PL/C uses whatever region is made available. (Many student programs of 
over 1000 statements in 130-150K are run at Cornell.) PL/C can be run without 
overlaying, but approximately 140K is required for a 200 statement program, 
and in a multiprogramming environment, the improvement in performance is 
modest. 

PL/C is being run on S/360's ranging from Model 40 to Model 91. The 
OS version is used with MVT, MFT, and PCP, and under HASP, LASP, and 
CP-67. The interface with the operating system is particularly clean and 
localized, and PL/C has already been converted to DOS, MTS, and RAX systems 
for the S/360, as well as systems for RCA and ICL computers. 



704 PL/I Programming 

Further information may be obtained by contacting Professor Richard W. 
Conway, Department of Computer Science, Cornell University, Ithaca, N.Y. 
14850. The current features implemented in PL/C at the time of publication of 
this book are included in the comparison charts in Appendix A. 



appt!hdix F 

File Declaration Charts 

In the following pages are charts taken from IBM reference manuals that may 
be of value to you in selecting attributes and options in the declarations of files. 
The information in these charts is subject to change, so the current reference 
manual should always be the final authority. 

705 



SllFAM REcJo ' CONSECUTIVE REGIONAL INDEXED 
ll'WUT OUTPUT OUTPUT Bl-"FERED lYP£ Of ALE NOT PRINT UN3l-"FERfD (1) (3) SEQUENTIAL DIRECT 

PRINT INPUT OUTPUT UP~ DASO ONLY 

~ ~ ~ s s ~ 
z V> ~ ~ 5 ~ ~ 

FILE l 0 l "" <( ~ § ~~ AmtalJTES ~ <( ... ~ s s ~ s s ~ s s ~ ~ 
ANO OPTIONS 0 0 0 0 z 5l 0 ... ~ 0 0 5l 0 w::> ~s a 5 ~ 5 ~ 5 <( s <( 

3 ... 
~ 3 ... 

~ 
... 3 ~2 ... u 

~ 3 ... 
~ ~~ ~ < ~ ~ ~ 

0 

~ 
0 

~ ~ ~ ~ ~ ~ :i ~ ~ - 0 0 ~ 0 ~ 0 ~ ~ 

fl'- [l -1S cl-aroci..1) s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 
FILE s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 
RECORD s s s s s s s s s s s s s s s s s s s s s s 
STREAM 0 0 0 0 0 0 0 0 0 

INPUT s s s s s s s E E s s s s 
OUTPUT s s s 0 0 0 s s s E E s s s 
lJ'DATE s s s s s s 
SEQLENTIAL 0 0 0 0 0 0 0 0 0 0 D 0 D 0 

DIRECT s s s s s s s s 
KEYED s s s s s s s s s s s 
BACKWARDS s 0 

PRINT s s s 
Bl-"FEREO 0 0 0 0 0 0 0 0 0 0 0 

UNBl-"FERED s s s 
·ENVIRONMENT ( s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 
MEDILM ( s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 
SY SI PT, c c c c c c 

SYSPCH, c c c c c c ' 
SYSLST, c c c c c c c c c 

SYSmn,(mn = 000-222) c c c c c c c c c c c s c c c c s s s s s s s s s s s s s s s 
2501125201254011442) s c s c 

1403: lAQ.411""311445) c s c 



2-400) s 
, 

s s s s s s 
23111231412321) s s s s s s s* s* s s s s s s s s s s s 
U (maxblodcslze) c c c c c c c c c 
F (blodcsla) s s s s s s s s s s c c c s c c c c c c s s s s s s c c c c c 
F (blocksla, recsla) c c c c c c c c c c c 
V (maxblodcsia) c c c c c 
BLf'FERS (1) D D D D D D D D D D D D D D D D D D 

Bl.HERS (2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CTLASA I CTL 360 0 

LEAVE 0 0 0 0 0 0 0 

NO LABEL 0 0 0 0 0 0 s 
NOTAPEMK 0 0 0 

VERIFY 0 0 0 0 0 0 0 0 0 0 0 0 0 

CONSECUTIVE D D D D D D D D D D D D D D D D D D D D 

REGIONAL (1) s s s 
REGIONAL (3) s s s 
INDEXED s s s s s 
KEYUNGTH (n)[n • 9 - 255 lor REGIONAL (3) s s s s s s s s 

n • 1 - 255 for INDEXED 
EXTI:NTNLMBER (n)• • 0 0 0 0 0 0 s s s s s 
INDEXMULTIPLE 0 0 0 0 0 

HIGHINDEX ({231112314}) 0 0 0 0 0 

[n=0-8 for 2311 J 0 0 Ofl'TRACKS (n) n = 0 - 18 for all other DAS Os 
KEYLOC (n) (1.S n ~ recslze-lceylength +1) B B B B B 

INO£XAREA (n)(n<32KJ 0 0 

ADDBLf'F (n)[Wblockslm+keylength:S: n<32K) 0 

) s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s 
EXTI:RNAL D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 

S = Attribute or option must be opecified No enlTy is perm I tted wliere a b Im* gppean. 
D = Default attribute ot option ii not opecified * Ur-111.EFERED Is not pennltted for files retidlng on a 2321 Doto Cell Drive. 
O= Optional attribute or option,. Specify if ~licable **For INDEXED files, EXTENTNUMBER (n) must be ipeclfled (2 S: n < 256). 
C = Choice must be mode between theoe options For REGIONAL flies. EXTI:NTNLMBER(n) is optlonol [0Sn<256). 
E = Must be ~ified fiere or in the OPEN statement (but not in both places) 
B = Optlonol for uri>lodced file>; The default value for blocked files is n = 1 

FIGURE F.1 File attributes and options for PL/I D and DOS PL/I optimizing compilers. 



Fl LE DECLARATIONS 

RECORD 

CONSEC- NON-CONSECUTIVE 
UTIVE 

ATIRIBUTES 8 -' ;::_. N-' N R-' ;;; 

~ 8 
<( ::i'.:!: ::i ::i::!: ::i ::i::!: ::i AND OPTIONS 0 i= <(I- <( <(I- <( <(I- <( ::; 

~ 
wZ zz 2 I- zz 2 I- zz Z 1-

;;ii ~ 
xw ow OU ow OU ow OU w:;) - :;) IB g - :;) 

~~ 
- :;) 

~~ 0:: 00 <:l 0 Cl 0 Cl 0 
t; z 

~ !: ~ Ww Ww Ww 
:;) 0::(/) 0:: 0 0::(/) 0:: 0 0::(/) cc 0 

filename 
FILE I 

[ STREAM D 
RECORD I I I I 

w [ INPUT D D D D D D D D D D D 
> OUTPUT 0 0 0 0 0 0 0 0 0 0 0 
j:: 

UPDATE 0 0 0 0 0 0 0 0 0 0 <( 

~ [ SEQUENTIAL D D D D D D 
DIRECT 

~ [ BUFFERED D D D D D 
<( 

UNBUFFERED 0 0 0 0 

~-J 
EXT* D D D D D D D D D D D 
INT• 0 0 0 0 0 0 0 0 0 0 0 
PRINT z 

I-
BACKWARDS A A iil 
KEYED 0 0 0 0 I a: 

~ 
EXCLUSIVE u u u u 

<( ENV(optio.-..list) • s s 

[ 
V(maxblocksize, maxrecsize) 
V( maxblocksize) c c 
F(blocksize, recsize) c 
F(blocksize) c c c c c 

"' U(maxblocksize) c c c c 2 
0 [ LEAVE T T T 

t REWIND T T T 
0 BUFFERS(n) 0 0 0 0 0 0 
I-

[ 
CONSECUTIVE D D 

~ 
::; INDEXED 
2 REGIONAL(1) 
0 REGIONAL(2) cc 
> REGIONAL(3) 

~ [ CTLASA 
CTL360 z 
COBOL 0 0 0 0 0 0 0 0 0 0 
IN DE XA REA [(index-area-size)] 0 
NOWRITE u 
This attribute may not be specified in an OPEN statement 

A = input tape files only O =optional attribute or option, Specify if applicable 

B =need not be specified for input files s = attribute or option must be specified 

c = choice must be made among these options T = tape files only 
D = default attribute or option which need not be specified u = update files only 
I =attribute must be implied or specified z =output files only 

'-.. Absence of a symbol indicates that the attribute or option is contradictory and must not be specified. 

FIGURE F.2 File attributes and options for PL/I F and OS PL/I 
optimizing compilers. 



Glossary of PL/I Terms 

Following are definitions of a number of PL/I terms as well as general terms 
used in data processing. The author wishes to thank I BM for permission to use 
the PL/I definitions as supplied by the PL/I Mission Publications group, I BM 
United Kingdom Laboratories Limited, Hursley Park, England. The terms marked 
with an asterisk are the IBM definitions. The standards bodies, ANSI and ECMA, 
are currently in the process of standardizing PL/I. Hence, some of the IBM 
definitions in this glossary are subject to change. Those terms marked with 
double asterisks are USASI proposed definitions. 

access: to reference or retrieve data 

*activate (a block): to initiate the execution of a block; a procedure block is 
activated when it is invoked at any of its entry points; a begin block is 
activated when it is encountered in normal flow of control, including a 
branch 

*activation (of a block): (1) the process of activating a block; (2) the execu
of a block 

*additive attributes: attributes for which there are no defaults and which, 
if required, must always be added to the list of specified attributes or be 
implied (i.e., they have to be added to the set of attributes, if they are 
required) 

address: an identification for a register, location in storage, or other data 
source or destination; the identification may be a name, label or number 

algorithm: a prescribed set of rules for the solution of a problem in a finite 
number of steps 

aggregate: see data aggregate 

*aggregate expression: an array expression or a structure expression 

*alignment: the storing of data items in relation to certain machine-dependent 
boundaries 

allocate: to grant a resource to, or reserve it for, a job or task; e.g., to grant 
main storage to a PL/I program when there is a request for the storage 

(usually during object program execution) 

709 



710 PL/I Programming 

*allocated variables: a variable with which internal storage has been 
associated and not freed 

*allocation: (1) the reservation of internal storage for a variable; (2) a genera
tion of an allocated variable 

*alphabetic character: any of the characters A through Z of the English 
alphabet and the alphabetic extenders #, $, and @ (which may have 
different graphic representation in different countries) 

*alphameric character: an alphabetic character or a digit 

*alternative attribute: an attribute that may be chosen from a group of two 
or more alternatives; if none is specified, a default is assumed 

*ambiguous reference: a reference that is not sufficiently qualified to 
identify one and only one name known at the point of reference 

*argument: an expression in an argument list as part of a procedure reference 

*argument list: a parenthesized list of one or more arguments, separated by 
commas, following an entry name constant, an entry name variable, a 
generic name, or a built-in function name; the list is passed to the parameters 
of the entry point 

*arithmetic constant: a fixed-point constant or a floating-point constant; 
although most arithmetic constants can be signed, the sign is not part of 
the constant 

*arithmetic conversion: the transformation of a value from one arithmetic 
representation to another 

*arithmetic data: data that has the characteristics of base, scale, mode, 
and precision; it includes coded arithmetic data, pictured numeric character 
data, and pictured numeric bit data 

*arithmetic operators: either of the prefix operators + and - , or any of 
the following infix operators: +, - , *, /, ** 

*arithmetic picture data: decimal picture data or binary picture data 

*array: a named, ordered collection of data elements, all of which have 
identical attributes; an array has dimensions specified by the dimension 
attribute, and its individual elements are referred to by subscripts; an array 
can also be an ordered collection of identical structures 

*array expression: an expression whose evaluation yields an array value 

*array of structures: an ordered collection of identical structures specified 
by giving the dimension attribute to a structure name 

*assignment: the process of giving a value to a variable 

*asynchronous operation: the overlap of an input/output operation with 
the execution of statements, or the concurrent execution of procedures 
using multiple flows of control for different tasks 

*attribute: (1) a descriptive property associated with a name to describe 
a characteristic of items that the name may represent; (2) a descriptive 



Appendix G 711 

property used to describe a characteristic of the result of evaluation of an 
expression 

*automatic storage allocation: the allocation of storage for automatic 
variables 

*automatic variable: a variable that is allocated automatically at the activa
tion of a block and released automatically at the termination of that block 

auxiliary (peripheral) equipment: equipment not actively involved during 
the processing of data, such as input/output equipment and auxiliary 
storage utilizing punched cards, magnetic tapes, disks, or drums 

base: the number system in which an arithmetic value is represented: 
decimal or binary in PL/I 

*base element: the name of a structure member that is not a minor structure 

*base item: the automatic, controlled, or static variable or the parameter 
upon which a defined variable is defined. The name may be qualified and/or 
subscripted 

*based storage allocation: the allocation of storage for based variables 

*based variable: a variable whose generations are identified by locator 
variables; a based variable can be used to refer to values of variables of 
any storage class; it can also be allocated and freed explicitly by use of the 
ALLOCATE and FREE statements 

batch processing: a system approach to processing where similar input 
items are grouped for processing during the same machine run 

*begin block: a collection of statements headed by a BEG IN statement and 
ended by an END statement that is a part of a program that delimits the 
scope of names and that is activated by normal sequential flow of control, 
including any branch resulting from a GO TO statement 

binary: (1) the number system based on the number 2; (2) pertaining to a 
choice or condition where there are two possibilities 

*bit: a binary digit (0 and 1); a contraction of the term binary digit 

*bit-string: a string composed of zero or more bits 

*bit-string operators: the logical operators -----, (not), &- (and), and I (or) 

blank: a code character to denote the presence of no information rather than 
the absence of information 

block: (1) a begin block or procedure block; (2) a physical record con
sisting of more than one logical record, i.e., a group of records handled 
as one unit 

blocking: the grouping of records to form one physical record to be stored 
on a DASO or tape device 

block length: physical record length as contrasted with logical record length 



712 PL/I Programming 

*block heading statement: the PROCEDURE or BEGIN statement that 
heads a block of statements 

Boolean algebra: an algebra named for George Boole (1815-1864) ; 
Boolean algebra is similar in form to ordinary algebra, but it deals with 
logical relationships rather than quantifiable relationships 

*bounds: the upper and lower limits of an array dimension 

branch: (1) a sequence of instructions executed as a result of a decision 
instruction; (2) to depart from the usual sequence of executing instructions 
in a computer; synonymous with jump or transfer 

*buffer: intermediate storage, used in input/output operations, into which 
a record is read during input and from which a record is written during output 

*built-in function: a function that is supplied by the language 

byte: a contiguous set of eight binary digits operated upon as a unit 

*call: (1) (verb) to invoke a subroutine by means of the CALL statement or 
CALL option; (2) (noun) such an invocation 

card code: the combinations of punched holes which represent characters 
(letters, digits, special characters) in a punched card 

card column: one of the vertical lines of punching positions on a punched 
card 

card punch: a device to record information in cards by punching holes in 
the cards to represent letters, digits, and special characters 

card reader: a device which senses and translates into internal form the 
holes in punched cards 

carriage control: the process of directing the movement of paper through a 
line printer from a program 

carriage control characters: standard characters (CTLASA or CTLASA or 
CTL360) used by a program to affect the movement of paper through a line 
printer 

carriage tape: a special, 12-channel tape, usually made of Mylar @, with 
punches which direct the movement of paper through a line printer 

central processing unit (CPU): the unit of a computing system that con
tains the circuits that calculate and perform logic decisions based on a man
made program of operating instructions 

character: an element of a character set 

characteristic: in S/360 and S/370 data, that part of a floating-point 
number that contains the exponent 

*character set:. a defined collection of characters; See data character set 
and language character set 

character-string: a string composed of zero or more characters from the 
complete set of characters whose bit configuration is recognized by the 



Appendix G 71 J 

computer system in use; for S/360 and S/370 implementations, any of the 
256 EBCDIC characters can be used 

*character-string picture data: data described by a picture specification 
which must have at least one A or X picture specification character 

checkout: the process of locating errors in a program by testing the program 
with sample data 

clear: to put a storage or memory device into a state denoting zero or blank 

closing (of a file): the dissociation of a file definition from a data set 
COBOL: COmmon Business Oriented Language; a data processing language 

that resembles business English 

coded arithmetic data: arithmetic data stored in a form that is acceptable, 
without conversion, for arithmetic calculations (i.e., FIXED BI NARY, 
FIXED DECIMAL, FLOAT BINARY, FLOAT DECIMAL) 

coding: (1) (verb) process or act of writing program statements or instruc
tions; (2) (noun) program language statements or instructions 

coding form: a preprinted page onto which program statements or instruc
tions are written 

collating sequence: the sequence in which letters, number, and special 
characters are ranked; the ranking of the alphameric data is taken into 
account when data is to be sorted 

comment: an expression which explains or identifies a step in a program, 
but has no effect on the execution of the program; a string of characters, 
used for documentation, which is preceded by /* and terminated by */ 

*commercial character: the following picture specification characters: 
( 1) CR (credit) ; (2) DB (debit) ; (3) T, I, and R, the overpunched-sign 
characters, which indicate that the associated position in the data item con
tains, or may contain, a digit with an overpunched sign, and that this over
punched sign is to be considered in the character-string value of the data 
item 

comparison: the examination of the relationship between two similar items 
of data; usually followed by a decision 

*comparison operators: infix operators used in comparison expressions; 
they are , < (not less than), < (less than), < = (less than or equal to), 
---, = (not equal to), = (equal to), > = (greater than or equal to), > (greater 
than), and , > (not greater than) 

compile: to convert a source-language program such as PL/I to a machine
language program 

compiler: a program that translates source statements to object form 

compile-time: the time during which a source program is translated into 
an object module; in PL/I, it is the time during which a source program can 
be altered (preprocessed), if desired, and then translated into an object 
program 



714 PL/I Programming 

compile-time statements: see preprocessor statement 

*complex data: arithmetic data, each item of which consists of a real part 
and an imaginary part 

*composite operators: an operator composed of two operator symbols, 
e.g., -, > 

*compound statement: a statement whose statement body contains one 
or more other statements 

*concatenation: the operation that joins two strings in the order specified, 
thus forming one string whose length is equal to the sum of the lengths 
of the two strings; it is specified by the operator J 1 

*condition: see on-condition 

*condition list: a list of one or more condition prefixes 

*condition name: a language keyword (or condition followed by a paren
thesized programmer-defined name) that denotes an on-condition that 
might arise within a task 

*condition prefix: a parenthesized list of one or more language condition 
names, prefixed to a statement; it specifies whether the named on-conditions 
are to be enabled 

console: the unit of equipment used for communication between the operator 
or service engineer and the computer 

*constant: an arithmetic or string data item that does not have a name and 
whose value cannot change; an unsubscripted label prefix or a file name or 
an entry name 

*contained text: all text in a procedure (including nested procedures) except 
its entry names and condition prefixes of the PROCEDURE statement; all 
text in a begin block except labels and condition prefixes of the BEGIN 
statement that heads the block; internal blocks are contained in the external 
procedure 

*contextual declaration: the appearance of an identifier that has not been 
explicitly declared, in a context that allows the association of specific 
attributes with the identifier 

*control format item: a specification used in edit-directed transmission to 
specify positioning of a data item within the stream or printed page 

*controlled parameter: a parameter for which the CONTROLLED attribute 
is specified in a DECLARE statement; it can be associated only with argu
ments that have the CONTROLLED attribute 

controlled storage allocation: the dynamic allocation of storage for 
variables that have the CONTROLLED attribute 

*controlled variable: a variable whose allocation and release are controlled 
by the ALLOCATE and FREE statements, with access to the current genera
tion only 



Appendix G 715 

*control variable: a variable used to control the iterative execution of a 
group; see iterative DO-group 

*conversion: the transformation of a value from one representation to another 
to conform to a given set of attributes 

core storage: a form of magnetic storage that permits high-speed access to 
information within the computer; see magnetic core 

*Cross section of an array: the elements represented by the extent of at 
least one dimension (but not all dimensions) of an array; an asterisk in the 
place of a subscript in an array reference indicates the entire extent of that 
dimension 

DASO: Direct Access Storage Device, such as a disk, drum, or data cell 

*data: representation of information or of value in a form suitable for processing 

(also see problem data) 

*data aggregate: a logical collection of two or more data items that can be 
referred to either collectively or individually; an array or structure 

*data character set: all of those characters whose representation is recog
nized by the computer in use 

data conversion: the process of changing data from one form of representa
tion to another 

*data-directed transmission: the type of stream-oriented transmission in 
which data is transmitted as a group, ended by a semicolon, where each 
item is of the form 

name = constant 

*data format item: a specification used in edit-directed transmission to 
describe the representation of a data item in the stream 

data item: a single unit of data; it is synonomous with element 
*data list: a parenthesized list of expressions or repetitive specifications, 

separated by commas, used in a stream-oriented input or output specifica
tion that represents storage locations to which data items are to be assigned 
during input or values which are to be obtained for output 

data management: a general term that collectively describes those func
tions of the control program that provide access to data sets, enforce data 
storage conventions, and regulate the use of input/output devices 

*data set: a collection of data external to the program that can be accessed 
by the program by reference to a single file name 

*data specification: the portion of a stream-oriented data transmission 
statement that specifies the mode of transmission (DATA, LIST, or EDIT) 
and includes the data list (or lists) and, for edit-directed mode, the format 
list (or lists) 



716 PL/I Programming 

*data stream: data being transferred from or to a data set by stream-oriented 
transmission, as a continuous stream of data elements in character form 

*data transmission: the transfer of data from a data set to the program, or 
vice versa 

debug : see checkout 

*decimal digit character: the picture specification character 9 

*decimal picture data: arithmetic picture data specified by picture specifica
tions containing the following types of picture specification characters: 
(1) decimal digit characters; (2) the virtual point picture character; (3) zero
suppression characters; (4) sign and currency symbol characters; (5) in
sertion characters; (6) commercial characters; (7) exponent characters 

decimal point alignment: see point alignment 

decision: the computer operation (directed by programming) of determining 
if a certain relationship exists between data 

*declaration: (1) the establishment of an identifier as a name and the con
struction of a set of attributes (partial or complete) for it; (2) a source of 
attributes of a particular name 

*default: the alternative attribute or option assumed, or specified for assump
tion by the DEFAULT statement, when none has been specified 

*defined item: a variable declared to represent part or all of the same storage 
as that assigned to another variable known as the base item 

*delimiter: all operators, comments, and the following characters; percent, 
parentheses, comma, period, semicolon, colon, assignment symbol, and 
blank; they define the limits of identifiers, constants, picture specifications, 
and keywords 

descriptor: see parameter descriptor 

device independence: the ability to request input/output operations with
out regard to the characteristics of the input/output devices 

diagnostic routine: a programming routine designed to locate and explain 
errors in a computer routine or hardware components 

digit: one of the characters 0 through 9 

digital data: information expressed in discrete symbols 

*dimensionality: the number of bounds specifications in an array declaration 

diode: an electronic device used to permit current flow in one direction and 
to inhibit current flow in the opposite direction 

direct access: see random access 

*disabled: the state in which a particular on-condition will not result in an 
interrupt 

disk storage: a storage device which uses magnetic recording on flat 
rotating disks 



Appendix G 717 

documentation: written description, program listings, flowcharts, operator's 
guide, explaining the way in which a computer application is solved 

*DO-group: a sequence of statements headed by a DO statement and ended 
by its corresponding END statement, used for control purposes 

DO-loop: see iterative DO-group 

DOS: Disk Operating System 

downtime: the elapsed time when a computer is not operating correctly 
because of machine or program malfunction 

*drifting characters: see sign and currency symbol characters 

drum storage: a method of storing information in code, magnetically, on the 
surface of a rotating cylinder 

*dummy argument: temporary storage that is created automatically to hold 
the value of an argument that is (1) a constant, (2) an operational expression, 
(3) a variable whose attributes differ from those specified for the corre
sponding parameter in a known declaration, or (4) an argument enclosed 
in parentheses 

dump: to copy the contents of all or part of a storage, usually from a central 
processing unit into an external storage device 

dynamic storage variable: see automatic variable 

dynamic storage: storage that is allocated during the execution of an 
object program 

EBCDIC: Extended Binary Coded Decimal Interchange Code, an 8-bit code 
used to represent a maximum of 256 unique letters, numbers, or special 
characters 

edit: to arrange information for machine input or output; may involve the 
deleting of unwanted data (truncation), the insertion of decimal points for 
printed output, or the suppression of leading zeros on printed or punched 
values 

*edit-directed transmission: the type of stream-oriented transmission in 
which data appears as a continuous stream of characters and for which a 
format list is required to specify the editing desired for the associated data 
list 

*element: a single item of data as opposed to a collection of data items such 
as an array; a scalar item 

*element expression: an expression whose evaluation yields an element 
value 

*element variable: a variable that represents an element; a scalar variable 

*enabled: that state in which a particular on-condition will result in a program 
interrupt 



718 PL/I Programming 

**end-of-file mark: a code which signals that the last record of a file has 
been read 

**end-of-tape marker: a marker on a magnetic tape used to indicate the end 
of the permissible recording area; for example, a photoreflective strip; a 
transparent section of tape, or a particular bit pattern 

*entry name: an identifier that is explicitly or contextually declared to have 
the ENTRY attribute or has an implied ENTRY attribute 

*entry point: a point in a procedure at which it may be invoked; see primary 
entry point and secondary entry point 

*epilogue: those processes that occur automatically at the termination of a 
block 

evaluation: reduction of an expression to a single value (which may be an 
array or structure value) 

event: an activity in a program whose status and completion can be deter
mined from an associated event variable 

event variable: a variable with the EVENT attribute, which may be associ
ated with an event; its value indicates whether the action has been com
pleted and the status of the completion 

exceptional condition: an occurrence, which can cause a program interrupt 
of an unexpected situation; such as, an overflow error, or an occurrence 
of an expected situation; such as, an end-of-file, that occurs at an un
predictable time 

execute: to carry out an instruction or a program 

*explicit declaration: the appearance of an identifier in a DECLARE state
ment, as a label prefix, or in a parameter list 

exponent: (1) a number placed at the right and just above a symbol in 
typography to indicate the number of times that symbol is a factor; i.e., 
10 to the fourth power (104 ) equals 10 x 10 x 10 x 10or10,000; (2) in a 
floating-point constant, a decimal integer constant specifying the power 
to which the base of the floating-point number is to be raised 

*expression: a notation, within a program, that represents a value; a constant 
or a reference appearing alone, or combinations of constants and/or 
variables with operators 

*extent: the range indicated by the bounds of an array dimension, the range 
indicated by the length of a string, or the range indicated by the size of 
an area 

external declaration: an explicit or implicit declaration of the EXTERNAL 
attribute for an identifier; such an identifier is known in all other procedures 
for which such a declaration exists 

external name: a name (with the EXTERNAL attribute) whose scope is 
not necessarily confined only to one block and its contained blocks 

external procedure: a procedure that is not contained in any other procedure 



Appendix G 719 

external storage: a storage device outside the computer which can store 
information in a form acceptable to the computer 

factoring (of attributes): enclosing of names (in a DECLARE statement) 
having the same attributes in parentheses; following the parenthesized list 
is the set of attributes that apply, in order to eliminate repeated specification 
of the same attributes for more than one name 

*field (in the data stream): that portion of the data stream whose width, 
in number of characters, is defined by a single data or spacing format item 

*field (of a picture specification): any character-string picture specification 
or that portion (or all) of a numeric character or numeric bit picture specifica
tion that describes a fixed-point number 

*file: a named representation, within a program, of a data set; a file is associ
ated with a single data set for each opening 

file declaration: the association of attributes with a file name in a program 

*file attribute: any of the attributes that describe the characteristics of a file 

*file constant: a name declared for a file and for which a complete set of file 
attributes exists during the time that the file is open 

file maintenance: the processing of information in a file to keep it up to date 

*file name: a name declared for a file 

fixed-point constant: see arithmetic constant 

flip-flop: a circuit or device containing active elements capable of assuming 
either one of two stable states at a given time 

floating-point constant: see arithmetic constant 

flow of control: sequence of execution of PL/I blocks 

flowchart: (1) system flowchart depicts flow of data from outside the com
puter to the computer; explains or illustrates various job steps; (2) program 
flowchart diagrams the sequence in which the computer is to carry out 
instructions 

*format item: a specification used in edit-directed transmission to describe 
the representation of a data item in the stream (data format item) or to 
specify positioning of a data item within the stream (control format item) 

*format list: a parenthesized list of format items required for an edit-directed 
data specification 

FORTRAN: stands for FORmula TRANslation; a data processing language 
that closely resembles algebraic notation 

*fully qualified name: a qualified name that includes all names in the 
hierarchical sequence above the structure member to which the name refers, 
as well as the name of the member itself 

*function: a function procedure (programmer-specified or built-in); a pro
cedure that is invoked by the appearance of one of its entry names in a 
function reference and which returns a value to the point of reference 



720 PL/I Programming 

*function reference: the appearance of an entry name or built-in function 
name (or an entry variable) in an expression 

generic key: character-string that identifies a class of keys-all keys that 
begin with the string are members of that class; for example, the recorded 
keys 'ABCD,' 'ABCE,' and 'ABDF' are all members of the classes identified 
by the generic keys 'A' and 'AB,' and the first two are also members of the 
class 'ABC'; and the three recorded keys can be considered to be unique 
members of the classes 'ABCD,' 'ABCE,' and 'ABDF,' respectively 

*group: a DO-group; it can be used wherever a single statement can appear, 
except as an on-unit 

hard copy: a printed copy of machine output, e.g., printed reports, listings, 
documents, etc. 

hardware: the physical computer equipment; such as, the card reader, 
console printer, and CPU; any data processing equipment 

heading: an alphameric message that precedes an output report 

hexadecimal: base 16 number system 

hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

high-level language: a programming language that is not restricted by the 
computer on which it will be used; a language that is not machine-dependent 
and more closely resembles our own language, allowing the programmer to 
concentrate on how to solve a problem and not how to solve a problem 
within the framework of a specific computer; e.g., PL/I 

Hollerith card code: punch card code named after its developer, Herman 
Hollerith 

housekeeping: operations in a routine which do not contribute directly to 
the solution of a problem but do contribute directly to the execution of a 
program by the computer 

*identifier: a string of alphameric and, possibly, break characters, not 
contained in a comment or constant and which is preceded and followed 
by a delimiter; the initial character must be alphabetic 

imaginary number: a number whose factors include the square root of -1 

*implicit declaration: the establishment of an identifier, which has no 
explicit or contextual declaration, as a name; a default set of attributes is 
assumed for the identifier 

*implicit opening: the opening of a file as the result of an input or output 
statement other than the OPEN statement 

inactive block: a procedure or begin block that has not been activated or 
that has been terminated 

inclusive OR: a logical operation specified by the stroke symbol <I> in PL/I 



Appendix G 721 

*infix operator: an operator that appears between two operands 

initial value: value assigned to a variable at the time storage is allocated to it 

initialize: to set program counters or program switches to a predetermined 
value, usually at the beginning of a program 

*input/output (1/0): the transfer of data between an external medium and 
internal storage 

*insertion picture character: a picture specification character that is, on 
assignment of the associated data to a character-string, inserted in the 
indicated position; When used in a P format item for input, an insertion 
character serves as a checking picture character 

instruction: a statement that calls for a specific computer operation 

*internal block: a block that is contained in another block 

*internal name: a name that is not known outside the block in which it is 
declared 

*internal procedure: a procedure that is contained within another block 

*internal text: all of the text contained in a. block except that text that is 
contained in another block; thus, the text of an internal block (except its 
entry names) is not internal to the containing block 

*interrupt: the redirection of flow of control of the program (possibly 
temporary) as the result of the raising of an enabled on-condition or attention 

*invocation: the activation of a procedure 

*invoke: to activate a procedure at one of its entry points 

*invoked procedure.: a procedure that has been activated at one of its 
entry points 

*invoking block: a block containing a statement that activates a procedure 

iterate: to repeat, automatically, under program control, the same series of 
processing steps until a predetermined stop or branch condition is reached; 
to loop 

*iteration factor: an expression that specifies: (1) in an INITIAL attribute 
specification, the number of consecutive elements of an array that are to be 
initialized with a given constant; (2) in a format list, the number of times a 
given format item or list of items is to be used in succession (also see 
repetition factor) 

*iterative DO-group: a DO-group whose DO statement specifies a control 
variable and/or a WHILE option 

job: a group of one or more tasks (subjobs) that are to be performed by the 
computer under the direction of the operating system 

K: see kilo 

*key: data that identifies a record within a direct access data set; see recorded 
key and source key 



722 PL/I Programming 

keyfield: generally, a numeric alphanumeric field within a record that makes 
that record unique from all other records in a given file; it is the identifying 
field by which a given record orrecords are located 

keypunch_: (1) (verb) to manually punch holes in cards or paper tape as 
contrasted with output from a computer program causing holes to be 
punched in cards or tape; (2) (noun) a key-driven device 

*keyword: an identifier that, when used in the proper context, has either a 
language-defined or an implementation-defined meaning in the program 

kilo ( K): a prefix meaning one thousand; e.g., 16K means 16,000, although, 
on a binary machine it also means the power of two that is closest to 16,000; 
e.g., 16,384 

*label: a name used to identify a statement other than a PROCEDURE or 
ENTRY statement; a statement label 

*label constant: an unsubscripted name that appears prefixed to any state
ment other than a PROCEDURE or ENTRY statement 

*label prefix: a label prefixed to a statement 

*label variable: a variable declared with the LABEL attribute and thus able to 
assume as its value a label constant 

*language character set: a character set which has been defined to repre
sent program elements in the source language (in this context, character
string constants and comments are not considered as program elements) 

*leading zeros: zeros that have no significance in the value of an arithmetic 
integer; all zeros to the left of the first significant integer digit of a number 

*level number: an unsigned decimal integer constant in a DECLARE or 
ALLOCATE statement that specifies the position of a name in the hierarchy 
of a structure; it precedes the name to which it refers and is separated from 
that name only by one or more blanks 

*level one variable: a major structure name; any unsubscripted variable not 
contained within a structure 

library routine: a special-purpose program which may be maintained in 
storage for use when needed 

line printer: an output unit that is capable of printing an entire line at a time, 
as contrasted with a typewriter that prints a character at a time 

list-directed transmisS,ibn: the type of stream-oriented transmission in 
which data in the stream appears as constants separated by blanks or commas 
and for which formatting is provided automatically 

list items: single variable names, array names or structure names listed in a 
GET or PUT statement (also called data list items) 

*locator variable: a variable whose value identifies the location in internal 
storage of a variable or a buffer 



Appendix G 723 

*logical level (of a structure member): the depth indicated by a level 
number when all level numbers are in direct sequence, that is, when the 
increment between successive level numbers is one 

*logical operators: the bit-string operators 1 (not), & (and), and \ (or) 

loop: the repeated execution of a series of instructions for a fixed number of 
times or a sequence of instructions that is repeated until a terminal condition 
exists 

*lower bound: the lower limit of an array dimension 

machine instruction: an instruction that the particular ·computer can 
recognize and execute 

machine language: a language that is used directly by a given computer 

machine operator: the person who manually controls a computer 

macro instruction: a single instruction that causes the computer to execute 
a predetermined sequence of machine instructions 

magnetic core (main storage): a configuration of tiny doughnut-shaped 
magnetic elements in which information can be stored for use at extremely 
high speed by the central processing unit 

magnetic tape: a plastic tape with a magnetic surface on which data can 
be stored in a code of magnetized spots 

main storage: the internal storage area of the central processing unit (CPU) 

*major structure: a structure whose name is declared with level number one 

*major task: the task that has control at the outset of execution of a program; 
it exists throughout execution of the program; e.g., an OPTIONS(MAIN) 
procedure 

mantissa: the fractional portion of a floating-point number 

microsecond (µsec): a millionth of a second 

millisecond (ms): a thousandth of a second 

*minor structure: a structure that is contained within another structure; 
the name of a minor structure is declared with a level number greater than one 

*mode (or arithmetic data): a characteristic of arithmetic data: real or 
complex 

*multiple declaration: two or more declarations of the same identifier 
internal to the same block without different qualifications, or two or more 
external declarations of the same identifier with different attributes in the 
same program 

*multiprogramming: the use of a computing system to execute more than 
one program concurrently, using a single processing unit, 

*name: an identifier appearing in a context where it is not a keyword 



724 PL/I Programming 

*nesting: the occurrence of (1) a block within another block; (2) a group 
within another group; (3) an IF statement in a THEN clause or an ELSE 
clause; (4) a function reference as an argument of a function reference; 
(5) a remote format item in the format list of a FORMAT statement; (6) a 
parameter description list in another parameter descriptor list; (7) an 
attribute specification within a parenthesized name list for which one or 
more attributes are being factored 

null statement: represented by a semicolon; indicates that .no action is to 
be taken 

*null string: a string data item of zero length 

number system: a system of counting; e.g., decimal (base 1 O) number 
system, hexadecimal (base 16) number system, or binary (base 2) number 
system 

numeric character data: see decimal picture data 

object program: the output from a compiler 

*on-condition: an occurrence, within a PL/I task, that could cause a program 
interrupt; it may be the detection of an unexpected error or of an occurrence 
that is expected, but at an unpredictable time 

*on-unit: the specified action to be executed upon detection of the on
condition named in the containing ON statement 

*opening (of a file): the association of a file with a data set and the com
pletion of a full set of attributes for the file name 

operand: an expression to whose value an operator is applied 

operating system: an organized collection of techniques and procedures 
combined into programs that direct a computer's operations 

operation expression: an expression containing one or more operators 

operator: a symbol specifying an operation to be performed; see arithmetic 
operators, bit-string operators, comparison operators, and concatenation 

optimist: a programmer who codes in ink 

option: a specification in a statement that may be used to influence the 
execution or interpretation of the statement 

OR: see inclusive OR 

output: (1) (verb) to print or punch data from a computer program or to 
write data onto tape or DASO; (2) (noun) results from a computer program 

overflow: in PL/I, occurs when the characteristic in a floating-point value 
exceeds (as a result of algebraic computation) 10+7 5 

packed decimal: the S/360 and S/370 internal representation of a fixed
point decimal data item. 

padding: one or more characters or bits concatenated to the right of a string 



Appendix G 725 

to extend the string to a required length; for character-strings, padding is 
with blanks; for bit-strings, with zeros 

*parameter: a name in a procedure that is used to refer to an argument 
passed to that procedure 

parameter descriptor: the set of attributes specified for a single parameter 
in an ENTRY attribute specification 

*parameter descriptor list: the list of all parameter descriptors in an ENTRY 
attribute specification 

*partially qualified name: a qualified name that is incomplete, i.e., that 
includes one or more, but not all, names in the hierarchical sequence above 
the structure member to which the partially qualified name refers, as well 
as the name of the member itself 

picture specification: a character-by-character description of the com
position and characteristics of binary picture data, decimal picture data, 
and character-string picture data 

*picture specification character: any of the characters that can be used 
in a picture specification; see binary picture data, character-string picture 
data, and decimal picture data 

*point alignment: alignment of arithmetic data in a variable depending upon 
the location of the decimal point as specified by the precision attributes 

point of invocation: the point in the invoking block at which the procedure 
reference to the invoked procedure appears 

*pointer variable: a locator variable with the POINTER attribute, whose 
value identifies an absolute lo~ation in internal storage 

*precision: the value range of an arithmetic variable expressed as a total 
number of digits and, for fixed-point variables, the number of those digits 
assumed to appear to the right of the decimal or binary point 

prefix: a label or a parenthesized list of one or more condition names con
nected by a colon to the beginning of a statement 

*prefix operator: an operator that precedes an operand and applies only to 
that operand; the prefix operators and + (plus), - (minus), and - (not) 

preprocessed text: the output from the first stage of compile-time activity; 
this output is a sequence of characters that is altered source program text 
and which serves as input to the processor stage in which the actual 
compilation is performed 

*preprocessor: a program that examines the source program for preprocessor 
statements which are then executed, resulting in the alteration of the 
source program 

*preprocessor statement: a special statement appearing in the source 
program that specifies how the source program text is to be altered; identi
fied by a leading percent sign and executed as it is encountered by the 



726 PL/I Programming 

preprocessor (appears without the percent sign in preprocessor procedures, 
which are invoked by a preprocessor function reference) 

*primary entry point: the entry point identified by any of the names in the 
label listof the PROCEDURE statement 

*problem data: string or arithmetic data that is processed by a PL/I program 

*procedure: a collection of statements, headed by a PROCEDURE statement 
and ended by an END statement, that is a part of a program, that delimits 
the scope of names, and that is activated by a reference to one of its entry 
names 

*procedure reference: an entry constant or variable or a built-in function 
name foHowed by none or more argument lists; it may appear in a CALL 
statement or CALL option or as a function reference 

*processor: a program that prepares source program text (possibly pre
processed text) for execution 

*program: a set of one or more external procedures 

*program controLdata: data used in a PL/I program to affect the execution 
of the program; that is, any data that is not string or arithmetic data 

programming: the art of reducing the plan for the solution of a problem to 
machine-sensible instructions 

*prologue: the processes that occur automatically on block activation 

*pseudo-variable: any of the built-in function names that can be used to 
specify a target variable 

punched card: (1) a card punched with a pattern of holes to represent data; 
(2) a card as in 1, before being punched (slang) 

*qualified name: a hierarchical sequence of names of structure members, 
connected by periods, used to identify a component of a structure; any of 
the names may be subscripted 

quote mark: see single quote mark 

random access: a technique for storing and retrieving data which does not 
require a strict sequential storage of the data nor a sequential search of the 
data nor a sequential search of an entire file to find a specific record; a 
record can be addressed and accessed directly at its location in the file 

*range (of a default specification): a set of identifiers, constants, and/or 
parameter descriptors to which the attributes in a default specification of a 
DEFAULT statement apply 

read: (1) to transcribe information from an input device to internal storage; 
(2) to acquire data from a source 

receiving field: any field to which a value may be assigned 

record: (1) a group of related facts or fields of information treated as a unit; 



Appendix G 727 

contains information to describe an item; (2) the unit of transmission in a 
record 1/0 operation in the internal form of a level-one variable 

record 1/0: the transmission of collections of data, called records, one record 
at a time; the external representation of the data is an exact copy of the 
internal representation, and vice versa; there is no arithmetic or character 
conversion in record 1/0 

*recorded key: a key recorded in a direct access volume to identify an as
sociated data record 

*recursion: the reactivation of an active procedure 

*reference: the appearance of a name, except in a context that causes 
explicit declaration 

register: a high-speed device used in a central processing unit for temporary 
storage of small amounts of data or intermittent results during processing 

*remote format item: the letter R specified in a format list together with the 
label of a separate FORMAT statement 

*repetition factor: a parenthesized unsigned decimal integer constant that 
specifies: (1) the number of occurrences of a string configuration that 
make up a string constant; (2) the number of occurrences of a picture 
specification character in a picture specification 

*repetitive specification: an element of a data list (of GET or PUT state
ments) that specifies controlled iteration to transmit one or more data 
items, generally used in conjunction with arrays 

*returned value: the value returned by a function procedure to the point of 
invocation 

round: (1) to adjust the least significant digits retained in truncation to 
partially reflect the dropped portion (see truncation) (2) a built-in function 
in PL/I 

routine: a sequence of instructions which carry out a specific processing 
function 

run: (1) (noun) a single, continuous performance of a computer or device; 
(2) (verb) to execute an object program 

*scalar item: a single item of data; an element 

*scalar variable: a variable that can represent only a single data item; an 
element variable 

*scale: a system of mathematical notation: fixed-point or floating-point 

*scale factor: a specification of the number of fractional digits in a fixed
point number 

*scope (of a condition prefix): the portion of a program throughout which 
a particular condition prefix applies 

*scope (of a declaration) : the portion of a program throughout which a 
particular declaration is a source of attributes for a particular name 



728 PL/I Programming 

*scope (of a name): the portion of a program throughout which the meaning 
of a particular name does not change 

*secondary entry point: an entry point identified by any of the names in the 
label list of an ENTRY statement 

*separator: see delimiter 

*sign and currency symbol characters: the picture specification characters 
S, +, - , and $; these can be used (1) as static characters, in which case 
they are specified only once in a picture specification and appear in the 
associated data item in the position in which they have been specified; 
(2) as drifting characters, in which case they are specified more than once 
(as a string in a picture specification) but appear in the associated data item 
at most once, immediately to the left of the significant portion of the data 
item 

single quote mark: alternative term for apostrophe; surrounds string data 

simulate: to represent the functioning of a system or process by a symbolic 
(usually mathematical) analogous representation of it 

software: a program or set of programs written for a computer 

sort: to arrange data fields or records in either ascending or descending 
sequence 

source document: contains original data; e.g., an employee's time card 

source key: a character-string referred to in a record transmission statement 
that identifies a particular record within a direct access data set; the source 
key may or may not also contain, as its first part, a substring to be compared 
with, or written as, a recorded key to positively identify the record (note: 
the source key can be identical to the recorded key) 

source language: a language nearest to the user's usual business or pro
fessional language which enables him to instruct a computer more easily; 
FORTRAN, COBOL, ALGOL, BASIC, PL/I are a few examples 

source program: the program that serves as input to the compiler; the 
source program may contain preprocessor statements 

space: (1) refers to a blank on a printed line; (2) also used to refer to "line 
spacing" on a printer, which is the advancement of the paper in a printer 
moving up one horizontal line 

stacker: on a card reader, the place into which cards that have been pro
cessed are fed 

*standard file: a file assumed by the processor in the absence of a FILE or 
STRING option in a GET or PUT statement; SYSIN is the standard input 
file and SYSPRINT is the standard output file 

*standard system action: action specified by the language to be taken in 
the absence of an on-unit for an on-condition 

*statement: a basic element of a PL/I program that is used to delimit a portion 
of the program, to describe names used in the program, or to specify action 



Appendix G 729 

to be taken; a statement can consist of a condition list, a label list, a state
ment identifier, and a statement body that is terminated by a semicolon 

*statement body: that part of a statement that follows the statement identi
fier, if any, and is terminated by the· semicolon; it includes the statement 
options 

*statement identifier: the PL/I keyword that indicates the purpose of the 
statement 

statement-label constant: see label constant 

statement-label variable: see label variable 

*static storage allocation: the allocation of storage for static variables 

*static variable: a variable that is allocated before execution of the program 
begins and that remains allocated for the duration of execution of the 
program 

storage allocation: association of a storage area with a variable 

stream: data being transferred from or to an external medium represented 
as a continuous string of data items in character form 

stream-oriented 1/0: transmission of data items as a continuous stream of 
characters that are, on input, automatically converted to conform to the 
attribute of the variables to which they are assigned and, on output, are 
automatically converted to character representation 

*string: a connected sequence of characters or bits that is treated as a single 
data item 

string operator: the string operator is 11, denoting concatenation of 
character- or bit-strings 

*string variable: a variable declared with the BIT or CHARACTER attribute, 
whose values can be either bit-strings or character-strings 

*structure: a hierarchical set of names that refers to an aggregate of data 
items that may have different attributes 

*structure expression: an expression whose evaluation yields a structure 
value 

*structure member: any of the minor structures or elementary names in a 
structure 

*structure of arrays: a structure containing arrays specified by declaring 
individual members' names with the dimension attribute 

*structuring: the makeup of a structure, in terms of the number of members, 
the order in which they appear, their attributes, and their logical level (but 
not necessarily their names or declared level numbers) 

*subfield (of a picture specification): that portion of a picture specifica
tion field that appears before or after a V picture specification character 

*subroutine: a procedure that is invoked by a CALL statement or CALL 
option; A subroutine cannot return a value to the invoking block, but it 
can alter the value of variables 



730 PL/I Programming 

*subscript: an element expression that specifies a pos1t1on within a dimen
sion of an array; a subscript can also be an asterisk, in which case it specifies 
the entire extent. of the dimension 

substructure: structure declared one or more levels below the major 
structure level 

*synchronous: using a single flow of control for serial execution of a program 

syntax: the rules governing sentence structure in a language or statement 
structure in a programming language 

table: a collection of data in a form suitable for ready reference; it is fre
quently stored in contiguous machine locations or written in the form of an 
array of n dimensions 

*target variable: a variable to which a value is assigned 

*task: the execution of one or more procedures by a single flow of control 

*termination (of a block): cessation of execution of a block, and the return 
of control to the activating block by means of a RETURN or END statement, 
or the transfer of control to the activating block or to some other active 
block by means of a GO TO statement 

*termination (of a task): cessation of the flow of control for a task 

time-share: to interleave the use of a computer to serve many problem
solvers during the same time span 

truncation: the removal of one or more digits, characters, or bits from one 
end of an item of data when a string length or precision of a target variable 
has been exceeded (e.g., the reduction of precision by dropping one or 
several of the least significant digits in contrast to round-off; e.g., the 
value 3.14159265 truncated to five digits is 3.1415, whereas one may 
round off to five digits giving the value 3.1416) 

two's complement: the way in which negative fixed-point numbers are 
represented in binary; to find the two's complement of a positive binary 
value, change all the ones to zeros and all the zeros to ones, and add one 

underflow: occurs in floating-point arithmetic operations when the algebraic 
result would cause the exponent to be less than 10-78 

unformatted: no editing of data before an 1/0 operation is to take place 

update: to modify a file record with current information according to a 
specified procedure 

*upper bound: the upper limit of an array dimension 

V: see virtual point picture character 
*variable: a named entity that is used to refer to data and to which values 

can be assigned ; its attributes remain constant, but it can refer to different 
values at different times; variables fall into three categories, applicable to 
any data type: element, array, and structure; variables may be subscripted 
and/or qualified or pointer qualified 



Appendix G 731 

*variable name: an alphameric name selected by the programmer to represent 
data ; an identifier 

*virtual point picture character: the picture specification character V, 
which is used in picture specifications to indicate the position of an assumed 
decimal or binary point 

word: a set of characters which has one addressable location and is treated 
as one unit 

*zero-suppression characters: the picture specification characters Z, Y, 
and *, which are used to suppress zeros in the corresponding digit positions 





The "G" next to some entries indicates that the word is defined in the Glossary (Appendix G). 
Not all Glossary words are entered here, so you may wish to check the Glossary in addition 
to the Index. Some key entries that you may find particularly useful are 

Attributes (keywords) 
Commercial programming techniques 
Debugging techniques 
PL/I statements 
Scientific programming techniques 

A format item, 262-263 
A picture character, 144-148 
Abbreviations of keywords (see 

Appendix A) 
ABS built-in function, 313, 618 
Access arm, 504 
ACOS built-in function, 618 
Activation of blocks, 576 
ADD built-in function, 319-322, 618 
ADDBUFF option, 517-518 
ADDR built-in function, 585-587, 618 
After print carriage control operation, 

399-400 
Aggregate (see Data aggregate) 
Alignment of data, 482 
Alignment of decimal point (see V 

picture character) 
ALL built-in function, 194-195, 618 
.ALLOCATE statement, 600-601 
Allocation, automatic, 569-573 

static, 573-575 
ALLOCATION built-in function, 601-

602, 620 
AND operation, defined, 53 

in IF statement, 52 
on bit-strings, 53-54 

ANY built-in function, 195-196, 620 
Arctangent built-in function, 326-327 
AR EA condition, 620 
Arguments, data types allowed, 361 

definition, 310 

Arguments (continued) 
dummy, 361-363, 366-368 
examples of, 191 
list, 358 
number of, 379 
passing of, 355-356, 359 

Arithmetic, conversion, G, 678-680 
data (see Data attributes) 
hierarchy of operations, 49, 55 
operations and rules, 48-51, 188-189 
operations on picture data, 135 
operators, G, 48-51, 55 

Arithmetic built-in functions, ABS, 313 
CEIL, 313 
FLOOR, 314 
MAX, 315 
MIN, 314-315 
MOD, 319 
ROUND, 315-317 
TRUNC, 317 

Arithmetic coded data, 94 
Arithmetic conditions, CONVERSION, 

124 
FIXEDOVERFLOW, 124-125 
OVERFLOW, 125 
SIZE, 125-126 
UNDERFLOW, 125 
ZERODIVIDE, 125 

Arithmetic data, base, 63-64, 70 
binary, 63-64, 70, 72-75 
complex, 66-67 

Appreciation is extended to Marcia Rhoades for her capable assistance in the preparation 
of this index. 

733 



734 Index 

Arithmetic data (continued) 
constants (see Constants) 
decimal, 18, 71-74 
fixed-point, 70-73, 688-689 
floating-point, 11, 18, 22, 70, 92, 

689-692 
mode, 66-67 
precision, 64-65, 70-71, 92 
real, 66-67 
S/360 data formats, 687-701 
scale, 63-64 

Arithmetic functions to override 
conversion rules, ADD, 319-322 

BINARY, 324 
DECIMAL, 324-325 
DIVIDE, 322-323 
FIXED, 325 
FLOAT, 325-326 
MULTIPLY, 323 
PRECISION, 326 

Array, allocation, 569-573, 604 
assignment, 185-186 
bounds, 172-176 
built-in functions, 190-196 
cross section of, 180-181 
declaration of, 172-176 
defined, 172 
expressions, 181, 186-188 
in record 1/0, 416 
in stream 1/0, 182-183 
in structures, 421-422 
of structures, 422-423 
subscripts, 176-180, 186-188 

Array manipulation built-in functions, 
ALL, 194-195 

ANY, 195-1 96 
DIM, 606 
HBOUND, 603-604 
LBOUND, 602-603 
POLY, 193-194 
PROD, 192-193 
SUM, 191-192 

Array-to-array assignment, 185-186 
ASIN built-in function, 620 
Assembler language, 2 
Assignment, array, 185-186 

defined, 8 
multiple, 54-56 
statement, 8, 48-56 

Assignment (continued) 
string, 20, 75-78 
structure, 424-427 

Assignment statement, arithmetic 
operations and rules, 48-51 

bit-string operations, 52-54 
comparison operations, 51 -52 
symbol, 8 

Asterisks, as picture characters, 141 
as subscripts, 180-181 
in printed output, 276 
sales history bar chart, 287-289 

ATAN built-in function, 327, 620 
ATAND built-in function, 327, 620 
ATANH built-in function, 327, 620 
Attribute list (in ENTRY), 363 
Attributes, base, 63-64 

defaults, 10-12 
definition, 63 
dimension, 174-176 
factoring of, 67-68 
in OPEN statement, 261 
length, 65-66 
mode, 66-67 
of arguments, 360 
of arithmetic data, 62-67, 71-74 
of bit-string data, 77-78 
of character-string data, 75-77 
of label data, 78-79 
precision, 63-65 
scale, 63-64 

Attributes (keywords), ALIGNED, 618 
AREA, 620 
AUTOMATIC, 569-573, 622 
BACKWARDS, 467, 622 
BASED,583-600,622 
BINARY, 63-64, 70, 622 
BIT, 77-78, 622 
BUFFERED,466-467,624 
BUILTIN, 311, 624 
CHARACTER, 75-77, 624 
COMPLEX, 66-67, 626 
CONDITION, 626 
CONNECTED, 626 
CONTROLLED,600-60~628 

DECIMAL, 63-64, 70, 630 
DEFINED, 148-149,427-431,630 
DIRECT,465-466, 516,520, 539, 

630 



Attributes (keywords) (continued) 
ENTRY,363-368,632 
ENVIRONMENT, 114-118, 258, 

395,467-468, 634 
EXCLUSIVE, 473, 634 
EXTERNAL, 374-375,465,634 
FILE, 258, 395, 464, 636 
FIXED, 63-64, 70, 636 
FLOAT,63-64, 70,636 
GENERIC, 638 
INITIAL, 68-70, 183-184, 173-

175, 420, 640 
INPUT, 258-259,395,465, 642 
INTERNAL, 465, 642 
IRREDUCIBLE, 642 
KEYED,467, 516,540,642 
LABEL, 78-79,644 
U KE, 423-424, 644 
OFFSET, 650 
OUTPUT,258-259,465,652 
PICTURE, 128-136, 144-148, 654 
POINTER,584-585,654 
POSITION, 149-150, 654 
PRINT, 117-118, 258-260, 656 
REAL,63,658 
RECORD, 395, 465, 516, 658 
REDUCIBLE, 658 
RETURNS, 373-374, 660 
SEOU ENTIAL, 465, 662 
STATIC, 68, 573-575, 662 
STREAM, 258, 465, 664 
TASK, 666 
TRANSIENT, 465-466, 668 
UNALIGNED, 668 
UNBUFFERED, 466-467, 668 
UPDATE,465,516,539,670 
VARIABLE, 670 
VARYING, 76-77, 670 

AUTOMATIC attribute, 569-573, 622 
Automatic storage allocation, 571 

B format item, 262 
B picture character, 1 39 
BACKWARDS attribute, 467, 622 
Base, 63-64 
Base identifier, scalar variables, 

148-149 
structures, 420 

BASED attribute, 583-600 

Index 735 

Before print carriage control operation, 
399-400 

BEGIN block, G 
as on-unit, 277-278, 579 
labeling of, 580 
statement, 579-582 

BINARY, attribute, 63-64, 70 
built-in function, 324, 622 

Binary data, as output, 98 
fixed-point, 21, 72-75 
floating-point, 21-22 
machine language, 5 

BINARY FIXED, 72-73 
BINARY FLOAT, 74-75 
Binary number system, 682-683 
Binary search technique, 216-220 
BIT, attribute, 77-78 

built-in function, 328-329, 622 
Bit data format, 701 
Bit-string, array, 194-195 

built-in functions (see String-
handling built-in functions) 

constant, 22-23 
defined, 22 
format item, 262 
operators, 52-54, 62 
quote marks in 1/0, 9 

Blank, defined, G 
edit 1/0 repetition factor, 258 
in list-directed input data, 16 
picture character, 139 

BLKSIZE (ENV option), 116, 469, 622 
Block, activation of, 353-354, 

357-358 
BEGIN, 579-582 
defined, 568 
external, 568 
internal, 568 
nested, 568 
of records, 457 
PROCEDURE, 356 

Block length, 462 
Block size, 457 
Blocked records, in a CONSECUTIVE 

file, 456-459 
in an INDEXED file, 513 
summary, 558 

Blocking, G, 457-458 
BOOL built-in function, 329-331, 622 



736 Index 

Boolean operations, ALL function, 
194-195 
AND, 53-55 
ANY function, 195-196 
BOOL function, 329-330 
exclusive OR, 329-331 
NANO, 331 
OR, 53-55 

Boundary alignment, 482 
Bounds (of an array), 172-174 
Break character, 14, 25-26 
Bubble sort, 227-228 
Buffer, defined, 458 

processing in, 588-600 
BUFFERED attribute, 466-467 
BUFFERS option, 467, 470, 517 
BU IL Tl N attribute, 311 
Built-in function names, ABS, 313, 618 

ACOS, 618 
ADD, 319-322, 618 
ADDR, 585-587, 618 
ALL, 194-1 95, 618 
ALLOCATION, 601-602, 620 
ANY, 195-196, 620 
ASIN, 620 
ATAN, 327, 620 
ATAND, 327, 620 
ATANH, 327, 620 
BI NARY, 324, 622 
BIT, 328-329, 622 
BOOL, 329-331, 622 
CEIL, 313, 624 
CHAR, 269, 332, 624 
COMPLETION, 626 
CONJG, 626 
COS, 327, 628 
COSD, 327, 628 
COSH, 327, 628 
COUNT, 282, 628 
DATAFIELD, 628 
DATE,253,337-338,408-409 
DECIMAL, 324-325, 630 
DIM, 606, 630 
DIVIDE,322-323, 632 
EMPTY, 632 
ERF,327,634 
ERFC,327,634 
EXP,327,634 
FIXED, 325, 636 

Built-in function names (continued) 
FLOAT,325-326,636 
FLOOR, 314, 636 
HBOUND, 603-604, 638 
HIGH, 638 
IMAG, 640 
INDEX, 334, 640 
LBOUND, 602-603, 644 
LENGTH, 332, 644 
LINENO, 279, 644 
LOG, 327, 644 
LOG2, 327, 644 
LOG10, 327, 646 
LOW, 646 
MAX, 315, 646 
MIN, 314-315, 646 
MOD, 196-198, 317-319, 646 
MULTIPLY, 323, 646 
NULL, 650 
ONCHAR, 338-339, 650 
ONCODE, 339-340, 652 
ONCOUNT, 560, 652 
ONFILE, 551-552, 652 
ONKEY, 551, 652 
ONLOC, 340-341, 652 
ONSOURCE, 338-339, 652 
POLY,193-194,654 
PRECISION, 326, 656 
PRIORITY, 656 
PROD, 192-193, 656 
REAL, 658 
REPEAT,335-336,660 
ROUND, 315-317, 660 
SIN, 327, 662 
SINO, 327, 662 
SINH, 327, 662 
SQRT, 327, 662 
STATUS, 662 
STRING,334-335,664 
SUBSTR, 253, 311-312, 332-333, 

408-409,664 
SUM, 191-192, 664 
TAN, 327, 666 
TAND, 327, 666 
TANH, 327, 666 
TIME, 337-338, 668 
TRANSLATE, 336-337, 668 
TRUNC, 317, 668 
UNSPEC, 285-287, 333-334, 670 



Built-in function names (continued) 
VERIFY, 337, 672 

Built-in functions, arithmetic, 312-327 
array manipulation, 190-196 
debugging aids, 338-341 
defined,310 
mathematical, 328-338 

BY and TO, 201-203 
BY NAME option, 426-427 
Byte, 687 

C format item, 263 
Call, 355 
CALL, option of INITIAL attribute, 624 

statement, 358-359 
Capacity record, 524 
Card code, G, 693-699 
Carriage control, record, 399-401 

stream (see LINE; PAGE; SKIP) 
Carriage tape, G 
CEIL built-in function, 313, 624 
Ceiling, 313 
CHAR built-in function, 269, 332, 624 
CHARACTER attribute, 75-77 
Character set, defined, G 

EBCDIC, 692-693 
PROCESS statement, 32-33 
48-character set, 30-31 
60-character set, 29, 31 

Character-string, built-in functions, 
CHAR, 269, 332 

INDEX, 334 
LENGTH, 332 
REPEAT,335-336 

data, 18-20 
format item, 262-263 
pictures, 144-148 
quotation marks in 1/0, 9 
STRING, 334-335 
SUBSTR, 250-253, 311-312, 

332-333 
VERIFY, 337 

Character-string format item (see A 
format item) 

Character-string pictures, 144-148 
Characteristic, 691 
CHECK condition, 624 
Check protection feature, 141 
Checkout (see Debug) 

Index 737 

CLOSE statement, 260-261, 396-397 
Coded arithmetic data, G, 94 
Coding form (PL/I), 15 
Collating sequence, G, 506 
Column (in an array), 175 
COLUMN format item, 246-247, 

270-271 
Comma, in edit 1/0 data list, 258 

in stream input data, 16 
in stream 1/0 data list, 16-17, 

24-27 
picture character, 138-139 

Comments, defined, 7 
use of, 33 

Commercial programming techniques, 
altering program flow, 483 

binary search, 216-220 
bubble sort, 227-228 
convert date to Julian day, 376-377 
convert Julian day to date, 383 
convert time, 382 
convert 24-hour time, 377-378 
create master tape, 477 
handling two EOF conditions, 484 
interest formula, 304 
merging of records from two files, 

478-485 
modular programming, 357 
program switches, 483 
randomizing technique for direct 

files, 527-528, 534-538 
round-off, 192, 315-317 
sales history bar charts, 287 
search tax table, 384 
sequence checking, 434-440, 

482-483 
stock turnover rate, 84-87 
tag sort, 229-232 
writing headings using edit output, 

255-258 
writing headings using record 

output, 484 
80/80 list, 278, 402 

Comparison key, 532-534 
Comparison operators, defined, G, 

51-52 
hierarchy, 55 
in assignment statement, 52 
in IF statement, 52 



738 Index 

Compilation, 5 
Compile-time, G, 87 
Compiler, G, 4-6 
Compiler diagnostics, 15 
COMPLETION built-in function, 626 
COMPLEX attribute, 66-67 
Complex data format item (see C 

format item) 
Composite operators, G 
Compound IF, 57-59 
Concatenation, defined, 26 

example, 27, 54 
REPEAT built-in function, 335-336 
STRING built-in function, 334-335 

Condition, name, 122 
prefix, 126-127 

CONDITION condition, 626 
Conditions, 121-128, 275-279 (see 

also ON conditions) 
CONJG built-in function, 626 
CONSECUTIVE (ENV option), 

471-472 
Consecutive data set, 462-472 
Constants, bit-string, 22, 24 

character-string, 19, 23 
defined,9,48 
fixed-point binary, 21, 24 
fixed-point decimal, 18-23 
floating-point binary, 21, 24 
floating-point decimal, 18, 23 
statement-label, 78-80 

Contextual declaration, G (see also 
Declaration) 

Control format item, 243, 270-271 
Control option, in edit 1/0, 260, 270 

in list 1/0, 55 
priority of, 55 

Control variable (in iterative DO), 201 
CONTROLLED attribute, 600-606 
Conversion, built-in functions, 319-326 

of data, 80-81, 94, 214-215 
of picture data, 135 
of unlike data types, 80-81, 

320-322 
rules, 678-680 
to arithmetic data in subset language, 

273 
CONVERSION condition, 124, 147-

148, 160,275-276, 628 

Core image program, 5-6 
Core storage, G 
Cornell Compiler, 702-704, 674-676 
COS built-in function, 327, 628 
COSD built-in function, 327, 628 
COSH built-in function, 327, 628 
COUNT built-in function, 282, 628 
Count-data format, 524-525 
Count-key-data format, 524-525 
Counter (in programming), 42-47 
Creating data sets, consecutive, 

474-478 
indexed, 520 
master tape, 477 
regional, 543, 552-561 
summary, 559 

Credit (CR) picture character, 141-142 
Cross-reference table, 526-527, 

536-537 
Cross section of arrays, 180-181 
CTLASA,399-400,470-471 
CTL360,401, 470-471 
Cylinder, 504 
Cylinder index, 506, 509 

DASO, 504 
Data, bit-string, 77-78 

character set, 31, 35 
character-string, 75-77 
coded arithmetic, 94 
conversions, 80-81, 94, 214-215, 

319-326 
defaults for, 70 
editing (see P format item; 

PICTURE attribute) 
format items (see Format items) 
label, 7, 14 
name, 14 
storage requirements, 687-701 
string, 19, 22 
transmission (see Data list) 

Data aggregate, array, 1 72-176 
declaration of, 63 
defined, G 
structure, 416-419 

Data attributes (see Attributes) 
Data conversion, defined, G 

in STREAM transmission, 390-391 
· internal operations, 80-81, 678-680 



Data format item, 243 
Data formats (S/360), 687-701 
Data item, data 1/0, 279-282 

edit 1/0, 244-255 
list 1/0, 25 

Data list, data-directed 1/0, 280-281 
edit-directed 1/0, 242-243 
list-directed 1/0, 16-21 

Data management, 505 
Data set, activities, 559 

defined, 113, 456, 503 
labels, 397 
organizations, 558 

Data stream, 16-18, 390-391 
Data transmission, record-oriented, 

395-403 
stream-oriented, data 1/0, 279-282 

edit 1/0, 240-279 
list 1/0, 15-27 

Data types, bit, 77-78 
character, 75-77 
fixed binary, 72-73 
fixed decimal, 71-72 
float binary, 74-75 
float decimal, 73-74 
S/360 and S/370, 687-701 

Data validation, 146-148 
Data-directed 1/0, 279-282 
DATAFIELD built-in function, 628 
DATE built-in function, 253, 337-338, 

408-409 
Deactivation of blocks, 576 
Debit (DB) picture character, 141-142 
Deblocking of records, 458 
Debug, definition, G 

technique, 87, 338-341 
Debugging techniques, 1/0 conditions, 

560 
PUT DAT A, 282 
SIZE condition, 276 
STRINGRANGE, 251-252 
SUBSCRIPTRANGE, 178-179 
suggested approach, 338-341 

DECIMAL, attribute, 63-64, 70 
built-in function, 324-325, 630 

Decimal data, fixed-point, 18, 71-72 
floating-point, 18, 73-74 

DECIMAL FIXED, 71-72 
DECIMAL FLOAT, 73-74 

Index 739 

Decimal pictures, 131-136 
Decimal point alignment (see V picture 

character) 
Decimal point picture character, 

136-138 
Decision, G (see also IF statement) 
Declaration, G 

contextual, 579 
explicit, G, 62-67, 578 
implicit, G 
of files, 464-472, 516-519, 

539-541 
scope of, 575-579 
with OPEN statement, 472-473 

DECLARE statement, 12-13, 62-71 
Default, attributes, 10-12, 64, 70 

defined, G, 12 
files, 119-121 
precision, 64 

DEFAULT statement, 80-84 
Define overlay (see Overlay defining) 
DEFINED attribute, for edit output, 

269 
for scalar variables, 148-149 
in structures, 427-431 
introduction to, 148-149 

Defined item, 149 
DELETE statement, indexed files, 

520-522 
regional files, 545 

Deleting records, consecutive, 462-463, 
478-485 

indexed, 520-522 
regional, 545, 552-561 
summary, 559 

Deletion record 
in REGIONAL files, 545, 547-548 

Delimiter, G, 258 
Device independence, G 
Diagnostics (see Compiler diagnostics) 
DIM built-in function, 606, 630 
Dimensions (of an array), 174-176 
Direct access storage device 

(see DASO) 
Direct addressing, 526, 535 
DIRECT attribute, defined, 465-466 

for INDEXED files, 516, 520 
for REGIONAL files, 539 

Direct file organization, 505 



740 Index 

Direct files, 522-549 
Direct search (see Direct addressing) 
Disable, 127, 160-161 
Disk hardware, 504 
Disk storage, G 
Disk track, 504, 524-525 
DISP option of OS JCL, 471 
DISPLAY statement. 283-285 
DIV!DE built-in function, 322-323, 632 
Division/remainder randomizing 

method, 527-528 
DO statement, comparison chart, 

208-209 
group (in IF statement). 61-62 
iterative, 198, 200-205 

DO WHILE, 199-200, 208-209 
DO-group, in IF statement. 61-62 

incrementation in, 201-202 
nesting of, 205-206 
repetitive specification, 210 
types, 199 

Documentation, G 
Dollar sign picture character, 139-140 
DOS, 3, 258, G 
Drifting characters, characters allowed, 

159 
defined, 139-140 

Drum storage, G 
Dummy argument, 361-363, 366-368 
Dummy record, 529, 542, 547-548,' 

515,520 
Dump program, 118 
Dynamic storage allocation, 569-573 
E format item, 263-264 
E-notation, 11, 18 
EBCDIC, 692-693 
Edit-directed 1/0, 240-279 
Edit-directed 1/0 specifics, A format 

item, 262-263 
array 1/0, 247-250 
B format item, 262 
C format item, 263 
COLUMN, 246-247, 270-271 
data transmission, 240-258 
E format item, 263-264 
F format item, 265-266 
LINE, 270-271 
P format item, 253, 267-269 
PAGE, 270-271 

Edit-directed 1/0 specifics (continued) 
R format item, 243, 272 
SKIP, 270-271 
structure 1/0, 432-434 
subset language restrictions, 254-255 
X format item, 247, 271 

Editing characters, 159 
Editing data, for printed output, 135 

P format item in edit 1/0, 267 
simulating P format, 268-269 
social security number, 146 

Element, of a structure, 417 
of an array, 172-173, 176 

Elementary name (item), 417 
ELSE clause, in compound IF, 57-59 

null, 60-61 
EMPTY built-in function, 632 
Enable, 127, 160-161 
END statement, 9-10, 61-62 
End-of-file, 113 
End-of-file mark, G, 113, 262 
End-of-tape marker, G, 113 
ENDFILE condition, 113, 123-124, 

160,632 
ENDPAGE condition, 121, 160, 

277-278. 632 
ENTRY, attribute, 363-368 

statement, 368-369 
ENTRY name (see Subprogram, names) 
Entry point, primary, 368-369 

secondary, 368-369 
ENVIRONMENT attribute, 114-118, 

258,395,467-468 
ENVIRONMENT options, ADDBUFF, 

517, 518, 618 
ALTTAPE, 620 
BLKSIZE, 116,469, 622 
BUFFERS,467,470,517,624 
CHKPT, 626 
COBOL, 262 
CONSECUTIVE, 471-472, 628 
CTLASA,399-400,470-471,628 
CTL360,401,470-471, 628 
EXTENTNUMBER, 516-517, 634 
F, 117,258-259, 540, 634 
FB,469,636 
FBS, 469-471, 636 
G, 638 
GENKEY, 638 



ENVIRONMENT options (continued) 
HIGH INDEX, 516-518; 640 
INDEXAREA, 517-518, 640 
INDEXED, 516, 640 
INDEXMULTIPLE, 516-517, 640 
KEYLENGTH, 516-517, 533, 

540-541,642 
KEYLOC,517-518,642 
LEAVE, 471, 644 
MEDIUM, 115-117, 258, 472 
NCP, 646 
NOLABEL, 471, 648 
NOTAPEMK, 471, 650 
NOWRITE, 517, 650 
OFLTRACKS, 517-518, 650 
R, 656 
RECSIZE, 469, 658 
REGIONAL(1 ), 541-545, 658 
REGIONAL(2), 545-547, 658 
REGIONAL(3), 547-549, 658 
REREAD, 660 
SCALARVARYING, 660 
TP(M/R), 668 
TRKOFL, 668 
U, 469, 540, 668 
UNLOAD, 670 
V, 468-469, 670 
VB, 469, 670 
VBS,469-470, 670 
VERIFY, 472, 517, 672 
VS,469-470,672 

Epilogue, 573 
ERF built-in function, 327, 634 
ERFC built-in function, 327, 634 
ERROR condition, 126, 160, 179, 634 
Error handling built-in functions, 

ONCHAR, 338-339 
ONCODE, 339-340 
ONLOC, 340-341 
ONSOURCE, 338-339 

Established action, G 
Evaluation of expressions, 55 
EVENT option, 284 
Exceptional condition, G 
EXCLUSIVE attribute, 473 
Exclusive OR, 329-331 
Executable statement, 56 
Execute, G 
EXIT statement, 371 

Index 741 

EXP built-in function, 327, 634 
Explicit declaration (see Declaration) 
Explicit file opening, G 
Exponent, 11, 18, 51, 73-74 
Exponential built-in function, 326-327 
Exponentiation, defined, 29 

examples, 51 
Expression, arithmetic, 48-54 

array, 181 
definition, 8 
evaluation of, 55 
example, 8 
in PUT statement, 253 
structure, 424-427 
sbuscript, 181, 186-188 

Extended binary coded decimal 
interchange code, 692-693 

Extended form floating-point, 690 
Extent, defined, G, 508 

of an array, 173 
EXTENTNUMBER (ENV option), 

516-517 
External, declaration, G 

name length, 14 
procedure, G, 357 
storage, G, 5 
subprogram names, 357 

EXTERNAL attribute, 374-375, 465 
External block, 568 
External data, data-directed 1/0, 

279-282 
edit-directed 1/0, 241-243, 245, 

250-252 
list-directed 1/0, 18-24 

F, format item, 265-266 
fixed-length record format, 459, 468 
fixed-length record specification in 

ENV, 117,258-259,468,540 
F BLKSIZE, 116, 469 
F (ENV option), 116, 468 
F RECSIZE, 469 
Factoring (of attributes), G 

in structures, 419-420 
single identifiers, 67-68 

FB (ENV option), 469 
FBS (ENV option), 469-471, 636 
File, declaration of stream, 112-121, 

258-259 



742 Index 

File (continued) 
definition, 456 
explicit, 114, 261-262, 396-397 
implicit, 114 
input, 258-259, 395, 465 
name, 14, 361 
opening of, 260-261 
output, 258-259, 465 
record files example, 395 
standard, 119-121 
stream files example, 116, 259 
update,462,465, 516, 520, 539 

Fl LE attribute, 258, 395, 464 
File declaration, charts, 705-708 

records,· 395 
stream, 112-121, 258-259 

File label, 397 
FILE option (in a GET or PUT), 273 
FIXED, attribute, 63-64, 70 

built-in function, 325, 636 
FIXED BINARY, 72-73 
FIXED DECIMAL, 71-72 
Fixed-length record, 258, 459 
Fixed-point (binary) data format, 

688-689 
Fixed-point data, binary, 72-73 

decimal, 71-72 
default precision, 70 
internal representation of, 

687-689 
Fixed-point format item (see F, 

format item) 
FIXEDOVERFLOW condition, defined, 

124-125, 161, 636 
in addition, 319-322 
in iterative DO, 203 

FLOAT, attribute, 63-64, 70 
built-in function, 325-326, 636 

FLOAT BINARY, 74-75 
FLOAT DECIMAL, 73-74 
Floating-point data, binary, 21 

decimal, 18 
default precision, 70 
external representation of, 11 
internal representation of, 689-692 
maximum precision of, 70, 92 
range of binary exponents, 22, 92 
range of decimal exponents, 18, 92 

Floating-point data format, 689-692 

Floating-point format item (see E 
format item) 

Floor, 314 
FLOOR built-in function, 314, 636 
Flow of control, 582-583 
Flowchart, 5 
Format, of data-directed data, 279-282 

of edit-directed data, 241-243 
of list-directed data, 18-24 

Format items, A 262-263, 618 
B, 262,622 
C, 263, 624 
COLUMN, 246-247, 270-271, 626 
E, 263-264, 632 
F, 265-266, 634 
LIN~ 270-271, 644 
P, 253, 267-269 
PAGE, 270-271 
R, 243,272, 656 
SKIP, 270-271, 662 
X, 247, 271 

Format list, 242-243 
FORMAT statement, 272 
FREE statement, 600-601 
FROM option, 208-210 
Full language, 3 
Fullword boundary, 482 
Function, attributes of returned 

values, 372-374 
built-in, 190-196, 31 Off 
defined, 310 
procedure, 356-358 
reference, 357-358 
termination of, 371 
(See also Built-in functions) 

Function subprogram arguments 
(see Arguments) 

Gap, 456-458 
GET statement, data-directed, 279-282 

edit-directed, 240-255 
list-directed, 8, 15-18 

GO TO statement, 56 

HALT statement, 638 
Hardware, G 
HBOUND built-in function, 603-604, 638 
Headings, in edit-directed, 255-258 

in list-directed, 25-27 



Headings (continued) 
in record output, 484 

Hexadecimal, conversion chart, 687 
number system, 683-687 

Hierarchy of PL/I operations, 55 
HIGH built-in function, 638 
High-level language, G 
HIGHINDEX option, 516-518 
Hollerith card code, G 
Home record, 527-528 

IBG (see lnterblock gap) 
IBM reference manuals, 4, 677 
Identifier, defined, 13-14 

external, 375 
length of, 14 
limiting scope of, 575-577 
partially declared, 70-71 

IF statement, bit-string operators, 62 
examples and explanation, 44, 56-62 
nesting of, 58-59 
null ELSE, 60-61 

IMAG built-in function, 640 
Imaginary number, G, 66-67 
Incrementation in DO loop, 201-202 
INDEX built-in function, 334, 640 
Index searching, 526-527, 536-537 
INDEXAREA, 517-518 
INDEXED (ENV option), 516 
Indexed sequential file organization, 

505-524 
INDEXMULTIPLE, 516-517 
Indirect addressing, 527-529, 537-538 
lnfix, array operator, 186-187 

scalar operator, 50 
INITIAL attribute, for scalar variables, 

68-70 
in arrays, 183-184, 173-175 
in structures, 420 

Initial procedure, G (see also Main 
procedure) 

Initial value, G, 42-44 
Initialize, defined, G 

in programming, 42-44 
STATIC versus AUTOMATIC 

variables, 575 
INPUT attribute, 258-259, 395, 465 
Input data items, data-directed, 

279-282 

Index 743 

Input data items (continued) 
edit-directed, 250-252 
list-directed, 18-24 

Input file (see File) 
Insertion characters, 129-130, 159 
I nterblock gap, 457-458 
INTERNAL attribute, 465 
Internal block, 568 
Internal name (see Dummy argument) 
Internal procedure, 356 
Internal representation, of character 

data, 692-700 
of fixed-point data, 687-689 
of floating-point data, 689-692 

Interrupt, G 
Invoke, G 
Invoked procedure, G, 359 
Invoking procedure, 359 
1/0 conditions, CONVERSION, 124, 

147-148, 160, 275-276 
EN DFILE, 113, 123-124, 160 
ENDPAGE, 121, 160, 277-278 
RECORD, 121, 550 
SIZE, 125-126, 161, 276 
TRANSMIT, 121, 550 

1/0 statements, 394, 513-515, 531-534 
Iteration factor, G, 184 
Iterative DO, 198, 200-206, 208-209 

JCL, 5-6, 114 
Job, G 
Job control language, 5-6, 114 
Julian date, 207, 376 

K (see Kilo) 
Key, 505-506, 512-513 
KEY CONDITION, 549, 642 
KEY option of a READ or REWRITE, 

514-515 
KEYED attribute, defined, 467 

in indexed files, 516 
in regional files, 540 

Keyfield, G 
KEYFROM option, 512-515 
KEYLENGTH option, for indexed files, 

516-517 
for regional files, 533, 540-541 

KEYLOC option, 517-518 
Keypunch, G 



744 Index 

KEYTO option, 514 
Keywords, available in various PL/I 

compilers, 618-676 
defined, 14 

Kilo, G 

Label, attribute for arrays, 1 89-1 90 
constant, 78 
definition and examples, 7, 14, 28 
of a data set, 397 
variable, 79 

LAB EL attribute, 78-79 
LBOUND built-in function, 602-603, 

644 
Leading zeros, G 
LEAVE option, 471 
Length attribute, data item, 65-66 

identifiers, 14 
strings, 92 

LENGTH built-in function, 332, 644 
Level number, 417-418 
Level one variable, G, 405, 417-418 
LI KE attribute, 423-424 
Limiting scope of identifiers, 576-577 
LINE, control option in PUT EDIT, 

270 
control option in PUT LIST, 26 
format item in PUT ED IT, 271 

Line counter in PL/I, 277 
Line printer, carriage control, 270-271, 

399-401, 470-471 
COLUMN, 246-247, 270-271 
control options, 25 
CTLASA,399-400,470-471 
CTL360,401,470-471 
definition, G, 9 
format items, 262-269 
LINE, 270-271 
PAGE, 270-271 
SKIP, 270-271 
variable-length records, 460 

Line-skipping (see CTLASA; CTL360; 
SKIP) 

LINENO built-in function, 279, 644 
LINESIZE option, 260-261, 473 
Linkage editor, 5-6 
List items, G 
List processing, G 

List-directed 1/0, data specification in 
1/0 stream, 16-21 

input, 8, 15-18 
output, 9, 24-27 
transmission, defined, G 

Literal, 9 
Load module, 5-6 
Locate mode, 590-600 
LOCATE statement, 593, 599 
LOG built-in function, 327, 644 
LOG2 built-in function, 327, 644 
LOG10 built-in function, 327, 646 
Logical, end, 9 

operation (see AND operation; 
BOOL built-in function; 
OR operation) 

record, 456-457, 513 
record of formats, 458-462 

Long form floating-point, 690 
Loop, defined, G 

DO, 1 98, 200-205 
in programming, 44-45 

LOW built-in function, 646 
Lower bound (of an array), 172-174 

Machine language, 5 
Magnetic tape, 456-464, 477 
MAIN attribute, 7 
Main procedure, 7 
Main storage, G, 5 
Major structure, G, 405, 417 
Mantissa, G, 691 
Mask (in boolean logic), 53, 285 
Master index, 506, 509 
Mathematical built-in functions, 

326-328 
MAX built-in function, 315, 646 
MEDIUM option, 115-117, 258, 472 
Merging of records, 463-464, 478-485 
Microsecond, G 
MIN built-in function, 314-315, 646 
Minor structure, G, 417 
MIN US sign picture character, 139-140 
Miscellaneous built-in functions, 

DATE, 337-338 
TIME, 337-338 

Mixed data types, 80-81 
Mixed expression, 80-81 



MOD built-in function, 196-198, 
317-319, 646 

Mode, attribute, 66-67 
definition, G 

Modular programming, 357 
Move mode, 588-590 
Move operations, 48, 185-186 
Multiple, assignment, 54-56 

declaration, G 
entries, 368-369 
specification in the DO, 204 

Multiplication, 49 
Multiply built-in function, 323, 646 

Name, 10, 48 
NAME condition, 280, 646 
Names, data, 14 

external, 14, 374-375, 465 
file, 14, 361 
internal (see Dummy argument) 
qualified, 420-421 
subscripted, 176-181, 1 86-188 

NAN D operation, 331 
Nested DO, 205-207 
Nesting, effect on scope, 575-579 

of blocks, 568 
of DO statements, 205-207 
of factored attributes, 68 
of IF statements, 58-59 

New master, 462-464, 478-479 
Newton-Raphson, 346-348 
NOLABEL option, 471 
NOT operation, 53 
NOTAPEMK option, 471 
NOWRITE option, 517 
Null, action, 127 

ELSE, 60-61 
on-unit, 127 
statement, G, 60 
string, 76 

NULL built-in function, 650 
Number systems, binary, 682-683 

hexadecimal, 683-687 
Numeric character picture data, 

131-136 

Object program, G, 5-6 
Object-time, 87 

Index 745 

OFLTRACKS option, 517-518 
Old master, 462-464, 478-479 
ON condition, disabling, 127 

enabling, 127 
nullification of, 127 
prefixes used with, 1 26-1 27 
(see also ON conditions) 

ON conditions, AREA, 620 
CHECK, 624 
CONDITION, 626 
CONVERSION, 124, 147-148, 160, 

275-276, 628 
ENDFILE, 113, 123-124, 160, 632 
ENDPAGE, 121, 160, 277-278, 632 
ERROR, 126, 160, 179, 634 
FIXEDOVERFLOW, defined, 

124-125, 161, 636 
in addition, 319-322 
in iterative DO, 203 

KEY, 549,642 
NAME, 646 
OVERFLOW, defined, 125, 161, 654 

in iterative DO, 203 
PENDING, 654 
RECORD, 121, 550, 658 
SIZE, 125-126, 161, 276, 662 
STRINGRANGE, 252-253, 664 
STRINGSIZE, 664 
SUBSCRIPTRANGE, 178-179, 664 
TRANSMIT, 121, 550, 668 
UNDEFINEDFILE, 549-550, 670 
UNDERFLOW, 125, 161, 670 
ZERODIVIDE, 125, 161, 672 

0 N statement, 1 21-1 23 
On-unit, G, 122 
ONCHAR, built-in function, 338-339 

pseudo-variable, 338-339, 650 
ONCODE built-in function, 339-340, 

652 
ONCOUNT built-in function, 560, 652 
One-dimensional array, 175 
ONFILE built-in function, 551-552, 

652 
ONKEY built-in function, 551, 652 
ONLOC built-in function, 340-341, 

652 
ONSOURCE built-in function, 

338-339, 652 



746 Index 

OPEN statement, 114, 260-261, 
396-397,473 

Opening of files, explicit, 114, 
261-262, 396-397 

implicit, 114 
Operating system, G, 3 
Operations, arithmetic, 48-51 

array, 185-188 
bit-string, 52-54, 62 
comparison, 51-52 
concatenation, 54 
logical, 52-54 
priority of, 55 
string, 54 
structure, 424-427 

Operator, arithmetic, 48-51 
bit-string, 52-54, 62 
comparison, 51-52 
concatenation, 54 
infix, 50 
prefix, 50 
string, 54 

Optimist, G 
Option, G 
OPTIONS attribute, 652-653 
OR operation, changing lowercase to 

capital letters, 284-287 
on bit-strings, 53-54 

OS, 3 
OS JCL options, 517 
Output, G 
OUTPUT attribute, 258-259, 465 
Output data item, data-directed, 

279-282 
edit-directed, 253 
list-directed, 18-24 

Output file (see File) 
Overflow, addition, 319-322 

fixed-point data, 124-125, 161 
floating-point data, 125, 161 
in iterative DO, 203 
page, 113, 123-124, 160 

Overflow areas, 510-512 
OVERFLOW condition, defined, 125, 

161,654 
in iterative DO, 203 

Overflow record, 528-529 
Overlap, 466 

Overlay defining, scalar on a scalar, 
148-149 

scalar on a structure, 427-428 
structure on a structure, 430-431 
using BASED instead, 585-587 

Overpunch picture characters, 143-144 

P format item, 253, 267-269 
p scaling factor, 266 
Packed decimal data, G, 71, 687-688 
Packing factor, 529 

PAGE, control option in PUT EDIT, 270 
control option in PUT LIST, 25-26 
format item, 271 

PAGESIZE option, 260, 473 
Parameter, attributes of, 360 

data types allowed, 361 
explained, 355, 359-360 
list, 359 
number of, 379 

Parentheses (in assignment statement), 
49-50 

Partially declared identifiers, 70-71 
PENDING condition, 654 
Physical, end, 9 

record, 456-458, 513 
PICTURE attribute, for numeric 

data, 131-136 
for string data, 144-148 
introduction, 128-131 
specification characters, 132 

Picture characters, asterisk, 141 
blank, 139 
comma, 1 38-139 
conversion of, 135 
credit and debit, 141 -142 
decimal point, 136-138 
defined, 128-130, 159 
dollar sign, 139-140 
overpunch signs, 143-144 
sign, 140-141 
zero suppression, 136 

Picture format item (see P format item) 
PL/C,674-676, 702-704 
PL/I compilers, 4, 618-673 
PL/I constants (see Constants) 
PL/I data attributes (see Data attributes) 



PL/I statements, ALLOCATE, 
600-601 ' 618 

assignment, 8, 48-56 
BEGIN, 579-582, 622 
CALL, 358-359,624 
CLOSE,260-261,396-397,626 
comments, 7, 33 
DECLARE, 12-13,34,62-61,630 
DEFAULT, 63, 80-84, 630 
DELAY, 630 
DELETE, 520-522, 545,630 
DISPLAY,283-285, 630 
D0,61-62,200-205,208-209,632 
END, 9-10, 61-62, 632 
ENTRY,368-369,632 
EXIT, 371 , 634 
FORMAT, 272, 636 
FREE, 600-601, 638 
GET, 8, 15-1 8, 240-255, 279-282, 

638 
GO TO, 56, 638 
HALT, 638 
IF, 56-62, 640 
LOCATE, 593, 599,644 
null, 60 
ON, 121-123, 650 
OPEN, 114, 260-261, 396-397, 

473,652 
PROCEDURE, 7-8, 33, 656 
PROCESS, 32-33 
PUT, 9, 24-27, 255-260, 279-282, 

656 
READ,394,512-515,531-534,656 
RETURN, 9, 660 
REVERT,660 
REVVRITE,474,524-525, 544, 660 
SIGNAL, 128, 278, 662 
STOP, 371, 664 
UNLOCK, 670 
VVAIT, 284, 672 
VVRITE, 394, 512-515, 531-534, 672 

Plus sign picture character, 139-140 
Point alignment, G (see also V picture 

character) 
Point of invocation, G 
POINTER attribute, 584-585 
Pointer variable, 6, 584-585 
POLY built-in function, 193-194, 654 

Index 747 

POSITION attribute, 149-150 
Powers of two table, 686 
Precision, G, attribute, 64-65 

defined, G 
partially declared identifiers, 70-71 
summary of, 92 

PRECISION built-in function, 326, 656 
Prefix, G 

array operator, 186 
condition, 127 
operator, G, 50 

Preformatting regional files, 538-539 
Preprocessed text, G 
Preprocessor, G 
Preprocessor statements, %ACTIVATE, 

618 
%DEACTIVATE, 630 
%DECLARE, 630 
%DO, 632 
%END, 632 
%GOTO, 638 
%IF, 640 
%INCLUDE, 640 
%PROCEDURE, 656 

Primary entry point, G, 368-369 
Prime data area, 507-510 
Prime number, 236-238, 529 
PRINT attribute, 117-118, 258-260 
PRINT files, data-directed, 281 

edit-directed, 259-260 
list-directed, 24-27, 117-118 

Printer control option (see Line printer) 
PRIORITY built-in function, 656 
Priority of, arithmetic operations, 55 

printer control options, 26 
Procedure, activation of, 358-359 

block, 7, 10 
external, 357 
internal, 356 
invocation of, 357-358 
MAIN, 7-8 
name (length of), 14 
reference, G 
termination of, 9-10 

PROCEDURE statement, 7-8, 10, 356 
PROD built-in function, 192-193, 656 
Program, G, 5 
Program checkout (see Debug) 



748 Index 

Program switch, 440 
Programmer-defined action, 112-113 
Progressive overflow technique, 

528-529 
Prologue, 573 
Pseudo-variables, COMPLETION, 626 

defined, 312 
IMAG, 640 
ONCHAR, 338-339, 650 
ONSOURCE, 652 
PRIORITY, 656 
REAL,658 
STATUS, 662 
STRING, 334-335, 664 
SUBSTR, 250-252, 312, 410-411, 

664 
UNSPEC,286-287,670 

PUT statement, data-directed, 
279-282 

edit-directed, 255-260 
list-directed, 9, 24-27 

Qualified name, defined, 420, G 
example of use, 430-431 
maximum length of, 421 

Quote marks, 9 

R format item, 243, 272 
Random access method, 505 
Random file organization, 505 
Randomizing technique for direct 

files, 527-528, 534-538 
Range, of a DO, G 

of floating-point data, 73-74 
RANGE option, 80-82 
READ SET statement, 585, 

590-591 
READ statement, for consecutive 

files, 394 
for indexed files, 512-515 
for regional files, 531-534 

Read-write heads, 504 
REAL attribute, 66, 658 
REAL built-in function, 658 
Real constant, 66-67 
Receiving field, G 
RECORD attribute, 395, 465, 516 
RECORD condition, 121, 550, 658 

Record 1/0, arrays, 416 
no data conversion, 391-392 
READ statement, 394 
WRITE statement, 394 

Record size, 457 
Record-skipping format item (see SKIP) 
Recorded key, for indexed files, 

512-513 
for regional files, 531-534 

Recursion, G 
Redeclaration (see DEFINED attribute) 
Reference (to a function), 357-358 
Region number, relative record, 531 

relative track, 548 
REGIONAL data sets, declaring 

files, 539-541 
introduction, 529-530 
preformating files, 538-539 
REGIONAL(1 ), 541-545 
REGIONAL(2), 545-547 
REGIONAL(3), 547-549 

Relative record, 530-531 
Relative track, 530-531 
Remainder (how to retrieve), 238 
Remote format item, 243, 272 
REPEAT built-in function, 335-336, 

660 
Repetition factor, defined, G 

for string constants, 19, 185 
in edit 1/0 format list, 258 

Repetitive specification, G, 210 
REPLY option, 283-284 
REREAD (ENU option), 660 
Reserved keywords, 30-32 
RETURN statement, 9, 370-372 
Returned value, G, 311 
RETURNS, attribute, 373-374 

option, 373-374 
REWIND option, 471 
REWRITE statement, consecutive 

files, 474 
indexed files, 524-525 
regional files, 544 

ROUND built-in function, 315-317, 
660 

Rounding data, floating-point, 317 
ROUND built-in function, 

315-317 



Rounding data (continued) 
SUM built-in function, 192 

ROW (in an array), 175 
Row major order, 182-183 
Run, G 

Scalar, 427 
Scalar-to-array assignment, 185 
Scalar-to-structure assignment, 427 
Scale, 63-64 
Scientific programming techniques, 

convert time, 382 
Fibonacci numbers, 168-169 
greatest common divisor, 107-109 
iterative solution, 103-104 
matrix multiply, 388 
modular programming, 357 
N!, 387 
prime number generation, 236-238 
quadratic equation, 106-107 

Scope, of a condition prefix, G 
of a contextual declaration, 579 
of a variable, 575-579 
of an explicit declaration, 578-579 

Scratch tapes, 4 71 
Search argument, 216-217 
Secondary entry point, G, 368-369 
Semicolon, as a PL/I null statement, 60 

in data-directed transmission, 
280-281 

in PL/I statements, 15 
Sequence checking, 434-440 
Sequential access method, 505 
SEQUENTIAL attribute, 465 
Sequential file organization, 505 
SET option, 590-591 
Short form floating-point, 690 
Sign picture characters, 140-141 
SIGNAL statement, 128, 278 
Single quote mark, G, 9 
SIZE condition, 125-126, 161, 276, 662 
SKIP, control option in PUT EDIT, 270 

control option in PUT LIST, 25-26 
format item in PUT EDIT, 271 

Simple IF, 56-57 
Simulating P format, 268-269 
SIN built-in function, 327, 662 
SINO built-in function, 327, 662 

Index 749 

SINH built-in function, 327, 662 
Software, G 
Sort, bubble, 227-228 

defined, G 
tag, 229-232 

Source, document, G 
program, 5-6 

Source key, indexed files, 512 
regional files, 531-534 

Space, G 
Spacing format item (see X format item) 
Spacing in printed output, CTLASA, 

399-400, 470-471 
CTL360, 401,470-471 
SKIP, 25-26, 270-271 

Spanned records, 469-471 
Square root, built-in function, 

326-327, 662 
Newton-Raphson method, 346-348 

Stacker, G 
Standard PL/I files, 119-121 
Standard system action, 113, 1 26, 

160-161, 179 
Statement, format of, 15 

label, 14, 28 
label variable, 78-79 
termination of, 15 

Statements (see PL/I statements) 
Static, picture characters, 159 

storage allocation, 573-575 
STATIC attribute, 68, 573-575 
STATUS built-in function, 662 
STOP statement, 371 
Storage allocation, G 
Storage class attributes, AUTOMATIC, 

569-573 
BASED, 583-600 
CONTROLLED, 600-606 
default for, 569 
STATIC, 573-575 

Storage requirements for data, 
687-701 

STREAM attribute, 258, 465 
Stream 1/0, conveyor belt analogy, 

16-18 
data-directed, 279-282 
defined, G, 390-394 
edit-directed, 240-258 



750 Index 

Stream 1/0 (continued) 
list-directed, 8-9, 15-27 

STRING, built-in function, 334-335, 
664 

pseudo-variable, 334-335 
String, AND, OR, NOT operations, 

53-54 
assignment, 20 
bit, 22 
character, 19 
concatenate, 54 
constants, 1 8-19 
defined, 18 
operation, 54 

STRING option of a GET, 273-275 
String-handling built-in functions, 

ALL, 194-195 
ANY, 195-196 
8 IT, 328-329 
BOOL, 329-331 
CHAR, 269, 332 
INDEX, 334 
LENGTH, 332 
REPEAT,335-336 
STRING, 334-335 
SUBSTR, 250-253, 311-312, 

332-333 
TRANSLATE,336-337 
UNSPEC,285-287,333-334 
VERIFY, 337 

STRINGRANGE condition, 252-253, 
654 

STRINGSIZE condition, 664 
Stroke character, 27, 29 
Structure, arrays in and of, 421-422 

assignment, 424-426 
BY NAME, 426-427 
defined, 416-419 
expression, 424-427 
in stream 1/0, 432-434 
level numbers, 405, 417-418 
overlay defining, 427-431 
qualified names, 420-421 
STRING built-in function, 334-335 
with LIKE attribute, 423-424 

Subfield, G 
Subprogram, defined, 353 

function, 371-374 
names, 357 

Subprogram (continued) 
subroutine, 356-358 

Subroutine, CALL, 358 
definition, G, 353 
procedure, 356-358 
termination, 369-371 

Subroutine arguments (see Arguments) 
Subscript, 176-178, 180 
Subscripted qualified name, 423 
Subscripted subscript, 180 
SUBSCRIPTRANGE condition, 

178-179, 664 
Subset language, 3 
SUBSTR, built-in function, 253, 

311-312, 332-333,408-409 
pseudo-variable, 250-252, 312, 

410-411 
Substructure, G, 417 
Subtraction via ADD function, 322 
SUM built-in function, 191-192, 664 
Synonym, 528-529 
Syntax, G 
SYSIN default file, 119-121 
SYSIPT option of ENV, 116, 258-259 
SYSLST option of ENV, 258-259 
SYSPCH option of ENV, 258-259 
SYSPRINT default file, 119-120 
System action (see Standard system 

action) 
System dummy records, 529 
S/360, S/370 data formats, 687-701 

Tab positions, 9, 24-25 
Table, G 
Table argument, 216-217 
Table function, 216-217 
Table look-up, 216-217 
Tag sort, 229-232 
TAN built-in function, 327, 666 
TAND built-in function, 327, 666 
Tangent built-in function, 326-327 
TANH built-in function, 327, 666 
Tape (see Magnetic tape) 
Tape mark, 113 
Terminal languages, 3 
Termination, of PL/I statement, 8 

of program, 9 
THEN clause, 56-59 
Three-dimensional array, 176 



TIME built-in function, 337-338, 668 
TITLE option, 4 73 
Track, 504 
Track descriptor record, 524 
Track format, 524-525 
Track index, 506-510 
TRANSi ENT attribute, 465-466 
TRANSLATE built-in function, 

336-337,668 
TRANSMIT condition, 121, 550, 668 
TRUNC built-in function, 317, 668 
Truncation, built-in function, 317 

definition, G 
on <.issignment, 10 

Two-dimensional array, 175 
Two's complement, G 

U BLKSIZE, 469 
U (ENV option), 469, 540 
Unblocked records, in a consecutive 

file, 457 
in a regional file, 530-531, 540 
in an indexed file, 513 
summary, 558 

Unblocking of records, 458 
UNBUFFERED attribute, 466-467 
Undefined-length records, 461 
UNDEFINEDFILE condition, 549-550, 

670 
UNDERFLOW condition, 125, 161, 670 
Underscore (see Break character) 
UNSPEC, built-in function, 285-287, 

333-334,670 
pseudo-variable, 286-287 

UP DATE attribute, 465, 516, 539 
Update file, 462, 520 
Updating files, consecutive, 462-464 

indexed, 520 
regional, 544-545, 552-561 
summary, 559 

Upper bound (of an array), 172-174 
Utility program, 119 

V (ENV option), 468-469, 540 
V picture character, 132-135 
Validation (see Data validation) 
VALUE option, 82-84 

Index 751 

Variable, automatic, 569-573 
based, 583-600 
definition, G, 10, 48 
examples, 9 
name, G, 10 
static, 573-575 
subscript, 178 
(see also Identifier) 

Variable-length record, 459-461 
VARYING attribute, 76-77 
VB (ENV option), 469 
VBS (ENV option), 469-470 
VERIFY, built-in function, 337, 672 

option of ENV, 472, 517 
Virtual decimal point (see V picture 

character) 
VS (ENV option), 469-470 

WAIT statement, 284 
WHILE clause, 199-200, 208-209 
Work area, 588, 590 
WRITE statement, consecutive 

files, 394 
indexed files, 512-515 
regional files, 531-534 

X format item, 247, 271 
X picture character, 144-148 

Zero suppression picture character, 
136 

ZERODIVIDE condition, 125, 161, 672 

+ picture character, 139-140 
$ picture character, 139-140 
* picture character, 141 
- picture character, 139-140 
/*, 112-113 

9 picture character, 132-135 
11-punch, 143-144 
12-punch, 143-144 
48-character set, 31, 35 
60-character set, 31, 35 
80/80 list program, record 1/0, 402 

stream 1/0, 278 





Joan K. Hughes has ten years of data processing experience that spans 
three generations of computing equipment. She began her career as a 
programmer for the Bunker-Ramo Corporation in Woodland Hills, 
California. Later she became an instructor for the I BM Corporation at 
its Los Angeles Education Center. There she has taught PL/I ex
tensively as well as a variety of other programming languages and 
computer concepts courses. She was selected by I BM to serve as one 
of two technical advisors for the IBM publication of a FORTRAN IV 
programmed instruction text. In addition, she has developed educa
tional materials including video tapes for television that are used by 
I BM on a nationwide basis. Mrs. Hughes, who was graduated from 
the University of California, Los Angeles, with a BA degree in English, 
is the author of Programming the IBM 1130, New York: John Wiley 
& Sons, Inc., 1969. She and her husband, Bill, have one son and live 
in Van Nuys, California. 






	Preface
	Contents
	chapter 1 Getting Started
	chapter 2 Writing Programs
	chapter 3 File Declarations, Conditions, and Pictures
	chapter 4 DO's and Dimensions
	chapter 5 Stream I/O
	chapter 6 Built-in Functions
	chapter 7 How to Write Subroutines and Functions
	chapter 8 Introduction to Record I/O and Structures
	chapter 9 Programming Consecutive Files
	chapter 10 Indexed and Regional File Programming Concepts
	chapter 11 Storage Classes and Scope of Identifiers
	appendix A Keywords Available in Various PL/I Compilers
	appendix B Bibliography
	appendix C Data Conversion Rules
	appendix D Data Formats and Number Systems
	appendix E PL/C: The Cornell University Compiler for PL/I
	appendix F File Declaration Charts
	appendix G Glossary of PL/I Terms
	Index

