PL/l
Programming
10103

Textbook 1

Independent
Study
Program

First Edition (July 1980)

Ali rights reserved. No portion of this text may be reproduced without express
permission of the author.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available outside the United States.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, Publications Services, Education
Center, South Road, Poughkeepsie, New York 12602

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

© Copyright International Business Machines Corporation 1980

Contents

Textbook 1

Textbook 2

Topic 0: IntroductiontotheCourse 1
Topic 1: Introduction to the PL/I Language 1-1¢
Topic 2: Elementsof PL/L: 2-1¢
Topic 3: The DECLARE Statement and Data Elements 3-1¢
Topic 4: The Assignment Statement 4-1¢
Topic 5: RECORD Input/Output Part 1 - MOVEMode 5-1¢
Topic 6: Data Structures and Picture Variables 6-1¢
Topic 7: Controlof Program Flow'. 7-1#
Exercises A: o e e e e e e e e e e XA.1
Topic 8: RECORD Input/Qutput Part 2 - LOCATEMode 8-1¢
Topic 9: Input and Qutput - Further Considerations 9-1%
Topic 10: CONSECUTIVE Organization 10-1+
Exercises B: XB.1
Topic 11: REGIONAL Organization 11-1
Topic 12: INDEXED Organization 12-1
Topic 13: Virtual Storage Access Method 13-1%
Topic 14: Variable LengthRecords -. 14-1
Topic 15: STREAM Input/Qutput 15-1
Topic 16: Controlling the Compiler 16-1
Topic 17: The PL/T Block Structure 17-1
Topic 18: Subroutines and Functions 18-1
Topic 19: Handling Exceptional Conditions 19-1
Topic 20: Testing and Debugging Aids 20-1
Topic 21: Overlay Defining 21-1
Topic 22: Structures and Arrays 22-1
Topic 23: Data Storage Allocation e e e 23-1
Appendix A: Solutions to Exercises A-1
Appendix B: Additional PL/I Problems and Solutions B-1

Contents i

I S P
b)
A A
E D T
Y P Y I
D U E T
M D N MZI D
0 G 0 P
BV P D E U P E P D
I R A T
Y I N T Y I N T Y I DE
0G P T 06 M E T 0G M P T D
0 E N TU 0 E ST R D N ub
G E D Y 0G E D D RO D N ST 0
M D NT DY R AM D NT D R AM D NT PO
ND EN D P R M ND ENT D P R M IND. ENT D RO
N E N u P A IN E N TU ‘P R IN E N U R In
EP NDE ST GR EP ND RA u E
ND T STU PR D ND TU PR R D ND TU Y o} ND
E T R G D EN E T R G D EN TU R R M ENC
ST PO I PED T ST PO N PED T STU A ND N
S UY ROGR NT S UDY ROGR NT S U Y ROG EN T
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE . S
PROG AM N EPE DE STU PR R N E END T ST PR G AM "N EPE T T

PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U
'R GRAM IN P NDN S D PR GRAM. 1 P NDNT S D PRORMTI E EN T STU PF
IGR NDEP NDEN S UDY P OGRAM. NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY o
\AM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM [DEPENDEN STUDY PROGR!
| INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
NDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM It
JEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM "INDt
'ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEP!
"ENT STUDY PROGRAM INDEPENDENT. STUDY PROGRAM INDEPENDENT STUDY PROGRAM I[NDEPENI

[STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE!

STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
5TUDY PROGRAM INDEPENDENT STUDY PROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT S
JDY PROGRAM INDEPENDENT STUDY PROGRAM I'NDEPENDENT STUDY PROGRAM INDEPENDENT STUI
{ PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
>ROGRAM INDEPENDENT STUDY PROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PI
JGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROI
?AM INNFPFNDFENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGR,

Topic 1

Introduction to the PL/I Language

Since you are commencing a study of PL/L, it might be useful to see what PL/I is about, how
it developed and where it fits into computing today.

PL/1 is a high level programming language aimed at both scientific and commercial program-
ming problems.

The purpose of all programming languages is to enable the programmer to communicate to the
computer what work he requires it to do. High level languages enable him to do this in a way
which is relatively easily read and understood by humans, compared with the low level
languages, which require that problems be specified in terms which are more readily
‘understood’ by the computer, but are not so readily understood by humans without a consid-
erable amount of special training. High level languages are ‘problem-oriented’, low level
languages are ‘machine-oriented’.

For instance, a pay-roll application may require that pay slips be printed showing basic pay,
gross pay, tax and net pay. Having already stored all the information required for these
calculations, the calculations could be specified in PL/I as:

—BASTc_PAY |- HoRLY RATE W BAsIic oS} -

_GRIOSS_PAY |= HOURLY_ RAT 3’1.5 % oV ERTI MELIHOWRS] 1ol BASIICPAY:

“TAX = |(GROSS_PAY - TAK_IFIREE)| | TAX_RIATE] "L” el
NET_PAY = [GROS|S_PAY - TIAX. |4 |OTH[ERLDEDMCITIONS]; i

This looks fairly close to normal arithmetic, with a few differences.

The underscore or break character (__) is used in PL/I to indicate that the two groups of
characters either side of it are both parts of one name.

Multiplication is indicated by *, instead of x.
A semi-colon is added to the end of each statement.

Given this information, an otherwise untrained person will probably be able to say how net pay
is calculated. The same calculations coded in Assembler, a fairly low level language, could be
written as follows:

Page 1 -1

- Page 1 -2

cbd AR N - b SR
T L P s wobiRey -
Lol (ML 2, BHOURSE
L)L ST L3, 8ASICPAY L L
L L[5, HouRLY
M '_;YL*_:,-F"S' N
o ;,D;_J*_%i’”TF'fa’
: M i ’J’ (4, OHOURS
] ’ “A&R' i S»3. | L1
Tl s s, aRlosselay. T T
Ly | BRI 1175 _
Lol s |7 TAXFREE .
LTI M e, TAXRATE N
' L] SR 6,6 | .
; T_L *DLLT T 6‘) =‘F':]'41 ¢¢I f
i ST LT, TAX , . .
L LrHS?R s T ; 1
ool LS.l |5, OTHERDED | 1 i
ol ST, LIS, NETPAY 11

Unless you have previously been writing in Assembler, I expect that you will find the PL/I
easier to understand. ' -

In fairness to both languages, it should be mentioned that in both it is possible to include
comments to aid comprehension. These are blocks of text which are ignored by the computer,
but which help to make a program more readable.

It was stated that PL/I is equally suitable for scientific and commercial programming. These
are terms which cannot be formally defined, but are generally taken to indicate the type of
processing performed on the data, rather than the origins of the data. Scientific programs are
generally taken to be programs which read in and print out a small amount of data relative to
the amount of calculation done in the program, whereas commercial programs read in and print
out a lot of data, and do relatively little processing on it. In the earliest days of computing
these were quite reasonable definitions and described fairly well the sort of problems which
were solved using computers by the scientific and commercial worlds. Although the terms
survived, the distinction is not so valid and more programs fall into the grey area between the
extremes.

A program which might now be written in PL/I-would, before PL/I had been developed,
probably have been written in FORTRAN or COBOL, two other high level languages.
COBOL, COmmon Business Oriented Language, was developed by a group of computer users
and computer users and computer manufacturers in the United States in 1959 for programming
business applications. As such, it is heavily biased towards handling character information and
file processing. FORTRAN, FORmula TRANslation, was first developed in the United States
by IBM in 1954 for mainly mathematical use, and as such has powerful computational
capabilities. Both languages have developed considerably since their introductions, but both
still have their biases.

Many installations have a need to write programs of scientific, commercial and in-between
natures. For instance, a distribution company may use its computer mainly for accounting

Topic 1: Introduction to the PL/1 Language

purposes, but may also need to write programs for vehicle route scheduling. An engineering
company may use its computer largely for design work, but may also wish to use it for
accounting. To meet these needs, the companies would need programmers skilled in FOR-
TRAN and programmers skilled in COBOL or alternatively, programmers skilled in both
FORTRAN and COBOL, languages with considerable differences between them.

To overcome these difficulties, SHARE, the scientific users’ organization, GUIDE, the
commercial users’ organization, and IBM set up a team in 1964 to develop a new, multipurpose
language. The result was the first PL/I compiler, developed by the IBM Laboratory, Hursley,
England in 1966. This was the F-level compiler for running on System/360 under Operating
System (OS). A sub-set compiler, the D-level compiler, was later released for running under
System/360 Disk Operating System (DOS). These compilers had further facilities added in
later releases.

By 1970 Hursley Laboratory had developed the Optimizing compilers for System/360 and
System/370 (OS and DOS). As the name suggests, these compilers produce programs which
both occupy less space in storage and execute more quickly than programs compiled by the
F-level or D-level compilers. They also provide many enhancements to the facilities of the
F-level and, particularly, the D-level compilers. This text is concerned with the Optimizing
compilers for DOS and OS in all their forms.

If a programming language contains facilities for a wide range of applications areas, no one
programmer is likely to need all of its facilities, and it is undesirable if the programmer has to
learn all about the language before he can successfully use it. With these thoughts in mind,
PL/1 was designed with a default capability and to be sub-settable. That is, where there are
options available to the programmer, if he does not specify one, a workable option will be
selected by default. As the programmer learns more he may override the defaults in the
interests of greater efficiency or flexibility in a particular situation.

A commercial programmer may not have heard of a mathematical concept such as complex
numbers and probably will not need to use them in his work. His programming efficiency will
not be hindered if he knows nothing of the facilities for processing complex numbers in PL/L
If he later has a need to process complex numbers, he need oniy learn these particular PL/1
facilities - and what complex numbers are The rest of what he knows of the structure of PL/I
programs and statements, and the input/output facilities, will not be changed and can be used
in his current work.

In this course you will be learning a fairly large sub-set of the PL/I language.

Page 1 -3

Topic

[S P
D
A A
E D T
Y P Y I
D U E T -
M D N M- D
o G 0 P
U P D E U P E P D
I R A T
Y I N T Y I N T Y I DE
oG P T 0G M E T 0G M P T D
0 E N TU 0 E ST R D N ub
)G E D Y 0G E D D RO D N ST 0
M D NT DY R AM D NT D R AM D NT PO
A4 ND EN D P R M ND ENT D P R M IND ENT D RO M
(N E N U P A IN E N TU P R IN E N U R I
EP NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TU Y 6] ND
NCE T R G D EN E T R G D EN TU ~ R R M EN
ST P O { PE D T ST PO N PED T STU A ND N
TS UY ROGR NT S UuDY ROGR NT S U Y ROG EN T
TUD PROGRAM E N UbDY PRO RA E N UD PRO RA ND PE S
U PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T
Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U
PR GRAM IN P ND N S D PR GRAM | P NDNT S D PRORMII E EN T STU P
OGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY C

RAM [INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROGF
M INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM |
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INI
PENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE}
ENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM I[NDEPE!
@ «T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDI
iIT STUDY PROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN’
STUDY PROGRAM INDEPENDENT. STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
‘UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
)Y PROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
ROGRAM [NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR

S mmsaiA AT THIANV NPONCD AM TAINCOACANNCAT C TNV NDDOAC

Topic 2
Elements of PL/I

In this topic you will learn the basic statements which constitute the PL/I language. This
knowiedge will be assumed in later topics.
Objectives
At the end of the topic you should be able to:
« describe the basic format of a PL/I program.

« code valid identifiers.

Page 2 -1

Programs and Procedures

In Topic 1, you saw some examples of PL/I statements. Statements are the basic elements of
the language which cause work to be done. They are grouped together into larger logical
blocks called procedures, which normally perform descrete logical functions. A program
consists of one or more procedures.

For example, a payroll program might have four procedures. One procedure might control the
processes of payroll calculations. Another might read clock cards and check that the informa-
tion on them was reasonable. A third might calculate the gross pay, various deductions and the
net pay. The last might print the pay slips and update the payroll file. This division of work
between procedures is a reasonably logical division. It is up to the programmer to choose
logical divisions of work to form procedures.

Main Procedures

Every program will always have one MAIN PROCEDURE. When the system passes control
to the PL/I program, that is, when the PL/I program starts to execute, it will start at the
beginning of the main procedure. If the program contains further procedures, they will only be
executed if control is specifically passed to them. Procedures other than main procedures will
not be dealt with further until a later topic.

Procedures other than main procedures are an example of the sub-settability of PL/I. It is
possible to write quite complicated programs using only a MAIN PROCEDURE. However, by
the use of other procedures, the writing and program testing can often be done more quickly
and more effectively, and the program will be easier to maintain and modify.

Basic Program Form

The great majority of computer programs have the basic form:
Read some data
Manipulate it
Write out some results

This basic form may vary considerably but there are few programs which do not conform to it.

Sample Program

Page 2 -2

As an example of a simple program, let us consider a requirement to copy a name and address,
stored on a punched card, onto the line printer. There is no means of doing this directly, so we
must instruct the computer to read the card into main storage and then to write out what it has
just read. Note that this program does not conform to the basic pattern. Although it reads in
some data, and writes out some results (i.e. the data which it has just read), it does not
manipulate it in any way.

Here is a program which will do this, assuming that the data on the punched card is 80
characters long.

Topic 2: Elements of PL/1

MylPrida]: PRIOICEDURE [OPTIjONS [((MAIN) s [[[TTTT]TTT
BEEE DE|CLARE 'NAME_AIND_ADDRE|S'S CHARAICTER (&8¢, || -
|| READ FILE [(CARDSIN) INTO (NAME_AND_ADDRESS|); |

WRIITE [FILE (PRNTOUT) FROM |(NAME_AND_ ADDRESS) ;
| ENDG | ‘ S | 2

Note: This would not be a complete program for running on a DOS/VS system. The names
CARDSIN and PRINTOUT would need DECLARE statements which are different from the
DECLARE statements which could be used in OS/VS.

This will apply to all programs in the text which use this type of input and output except in
some later topics where the differences will be explained.

The PROCEDURE Statement

The program is complete and consists of a main procedure only. The start of this is shown by
the procedure statement:

: . [JT | 1
My|PR0la|: PRloCEDURE [0PTI[ONS [(IMAIIIN)
™

-

T 1

The construction of this statement is:

MYPROG the name of the program.

: a colon to separate the name from the rest of
the statement.

PROCEDURE OPTIONS (MAIN) to identify a main procedure

; to terminate the statement

The end of the main procedure is indicated by the statement:

[ENID

[¢

|
l
b
i

where END indicates the type of statement and : indicates the end of the statement. Every
procedure must begin with a PROCEDURE statement and be terminated by an END state-
ment. MYPROG is a statement label. Any statement may have a label attached to it. It is used
so that the statement may be referred to uniquely within the program. Procedure statements
must have labels attached to them. The label chosen for the main procedure is not important,
as it is referred to only by the system, which notes what it is. Labels on other procedures are-
important as it is by reference to the label on the procedure statement that the programmer
requests the execution of the statements in that procedure.

The DECLARE Statement

The name and address on the punched card can be assumed to be 80 characters long. If it is
less than this, then the rest of the information will be blanks. Space will be needed to hold the
80 characters of information in main storage, and this is reserved and given a name by which it
can be referred to by the statement:

Page 2 -3

SR SR I U 0 WO 0 2 T M - L]
UEfC LARE NIA]M_E{..;AN!DL@ DDRE|SS| CHA RA|CTERR (SM) ;
AR IRen i BN AR AR A I R B AR A B T
The statement construction is:
DECLARE identifies the statement type. One thing that a

DECLARE statement can do is to request space
in main storage, as here.

NAME__AND__ADDRESS the name by which we choose to refer to that
main storage. There is no connection, as far as
PL,T is concerned. between the name which we
use and what will be put into it. We could equally
well have called it X or SQUAREROOT.

CHARACTER (80) specifies that the identifier NAME AND AD-
DRESS is to refer to a part of main storage which
will hold character information 80 characters
long.

; terminates the statement.

The processes of reading and writing involve transfer of information between the main storage
areas of the computer and some external storage device. Typically, a System/370 will have
many thousands, perhaps millions, of bytes of main storage and several external storage
devices of various types. The instructions which we give must do more than tell the computer:
to read or write some information. They must specify an area of main storage and an external
device to be used in this transfer.

In PL/I, we do not have to specify the particular area of main storage by a main storage
address. The DECLARE statement requested an area of main storage 80 bytes long. We may
now refer to that space, wherever it has been allocated, by the NAME__ AND__ ADDRESS.
We will use this name in our READ and WRITE statements to identify the area of main
storage to be used in the transfers. '

Similarly, rather than naming specifically the card reader, a line printer or a particular magnetic
disk in the statements, we will use a name which will be associated with a particular device
elsewhere. In DOS/VS, it will be associated partly through a DECLARE statement, covered
in Topics 5 and 11, and, in both DOS/VS and OS/VS, by Job Control Language, which is
covered on a separate segment. In both DOS/VS and OS/VS the name used is called the file
name.

The READ Statement

The statement which instructs the computer to read some information is:

_REAbTW'ME Clclalr|Dls ITN) xJipg;ho giNP{FM,AND:qDHRiESS);

[

The construction of the statement is:

READ identifies the operation to be carried out - read in
1 record (in this case, 1 card).

Page 2 -4

Topic 2: Elements of PL/1

FILE (CARDSIN) specifies that CARDSIN is the name used for the
file to be read from.

INTO(NAME__AND__ADDRESS) specifies that the name of the main storage area to
receive the data read is
NAME__AND__ADDRESS.

terminates the statement.

)

The WRITE Statement

Having read the information into NAME_ AND__ ADDRESS, we may now request that it is
written out again by the instruction:

| |

=t

[1] L !
FIIILE| [(PRNTIOUIT) F}MQI_H(NA[MTE-AlN

b ADORESS) |

The construction of the statement is similar to that of the READ statement:

WRITE identifies the operation to be carried out - write
out 1 record (in this case, 1 line of print).

FILE(PRINTOUT) specifies that PRNTOUT is the name of the file to
be written to.

FROM(NAME__ AND__ADDRESS) specifies that the information to be written is heid
in the area of main storage identified~ by
NAME__AND__ ADDRESS.

; ‘ terminates the statement.

Execution of the Sample Program

When the program is compiled, prior to execution, note will be taken of the DECLARE
statement and, it will not, as such, form a part of the executable program. Similarly, the
PROCEDURE statement is taken to indicate the point at which the program is to start
executing, but does not, as such, do anything at execution.

Both the PROCEDURE and DECLARE statements are non-executable statements.

When the program is executed, execution will start at the first executable statement following
the PROCEDURE statement, the READ statement. Having executed the first executable
statement, the next will be executed, and so on until the END statement. This flow of control
may be interrupted by statements which we have not yet studied. In this program, a card will
be read in and then the contents will be written out to the printer. The program will then
terminate.

When space was allocated for NAME__AND_ADDRESS, it was as if a request had been
made for some work space on a dirty blackboard. A piece of space was allocated, but it
contained some information already. This information is unlikely, except by coincidence, to be
of any use. When the READ statement is executed, useful information will be put into
NAME_ _AND__ ADDRESS, and will completely replace what was in there. The old informa-
tion will not be recoverable. Taking the blackboard analogy, the area of board was wiped clean
and some new information was written in its place. This information will remain there until it is
explicitly replaced by some new information. It may be copied to other areas of main storage

Page 2 -5

e = eavamavesss U

The Assignment Statement

Page 2 -6

.

or to external devices, the value held there may be used in calculations, but it will not be
changed until it is replaced by new information.

peckormance oF A AR <@ oc LT Taunak

Topic 1 contained some PL/I statements which performed calculations and which looked very
similar to algebraic statements. These were assignment statements. For example:

1 saSTEJeAY (5 Wolurt Y RATE % oA T EWolans)

Ll

Although this looks similar to an algebraic statement, the effect is considerably different. The
effect of this statement is:

Take the value currently stored in the area of main storage known as HOURLY__RATE.
Take the value currently stored in the area of main storage known as BASIC__ HOURS.
Multiply them together.

Store the result in the area of main storage known as BASIC _ PAY.

The assignment statement is not a statement of fact. It is a statement of what we want to
happen. Thus, a statement like:

L Ly [i bl
H* NUMBER|_OF_EVENTS| =| NUMBEROFLIEVENTS| [+ |1];
is valid in PL/I. The effect is:

Take the value currently stored in the area of main storage known as
NUMBER__ OF__EVENTS.

Add 1 to this value.
Store the result in the area of main storage known as NUMBER__ OF __ EVENTS.

The variable on the left-hand side of the equals sign is called the target variable. This is the
only variable which is altered by the assignment statement. So, HOURLY__RATE and
BASIC_HOURS would not have their current values changed by the statement:

L1 , | |

BlAls/iicL_|Plalyl |2 [HlolURLY|_RAT]e I» [BlAls]i[ciH|ojur i
] T I

A statement:

|1 .l } 11} { 1|1
NL&A{IB{TE { MuM}_ae.jln + Nu!MB!EN + %uuﬂld{en,-

where the current value held in NUMBER before the statement was executed was 2, would put
a value of 6(=2+2+2) into NUMBER.

The construction of the assignment statement is considerably more flexible than the construc-
tion of most other statements. It must consist of:

Topic 2: Elements of PL/1

The expression may be an arithmetic expression or a string expression. An arithmetic expres-
sion is an expression which has an arithmetic result. It may be an arithmetic constant, a
variable or an expression of constants and variables which may involve addition, subtraction,
multiplication, division and exponentiation. A string expression mainly generates a string of
characters. It may be a character string constant or variable, like NAME__ AND__ ADDRESS,
or it may be an expression which manipulates character strings. This statement will be
discussed further in a later topic.

Construction of PL/I Statements

We have now seen examples of six statements:

PROCEDURE
DECLARE
READ
WRITE
Assignment
END
and a complete program. Let us now look at the general rules for the construction of PL/I

statements. -
Character Sets

PL/1 programs are written using characters from either the 60-character set or the 48-
character set. The character set which you use will depend on the reading/printing facilities
available on the computer which you use. We will use the 60-character set in this text.

The following points about the character sets should be noted:

1) All alphabetic characters are in upper case. Lower case alphabetic characters may
not be used in the writing of a PL, I program.

2) The characters $, @ and # are counted as being alphabetic.

3) Most of the characters of the 60-character set which do not appear in the 48-
character set are replaced by combinations of characters which do appear in the
48-character set.

These combinations of characters only have special meaning if it is specified that
the 48-character set is being used.

The characters are used to form identifiers, constants, separators and comments.

Page 2 -7

Identifiers

Page 2 -8

Language Character Sets

60-CHARACTER DESCRIPTION 483-CHARACTER
A through Z Alphabetic A through Z |
$ Alphabctic $;
@ and = Alphabetic not available !
0 through 9 Numeric | 0 through 9
Blank
= Equal =
+ Plus +
. Minus - ;
* Asterisk or Multiply * }
/ Slash or Divide /
(Left Parenthesis (
) Right Parenthesis)
Commu .
) Decimal Point or Period .
! Quote '
i Percent Symbol /1
: Colon .
Semicolon .
- Not Symbol NOT ;
& And Symbol AND ‘
| Or Symbol OR l
< Less than LT ;
Break Character not available)
K Question Mark not available |
> Greater Than GT
I Concatenation CAT
(compound symbol)

Note:
1. The 48 character set // is 2 oblique lines and occupies 2 card columns.
2. The 60 character set | | is 2 vertical lines and occupies 2 card columns.

3. The presence of a blank is sometimes indicated by b.

An identifier is a string of characters from one to 31 characters in length. The first character
must be one of the 29 characters of the PL/I extended alphabet. The rest of the characters
may be alphabetic, numeric, and break characters. They may not contain any other special
characters, including blanks. Some identifiers have special meanings in PL/I, like READ,
others are used as variable names, i.e. names of areas of storage which may hold data, like
NAME__ AND_ ADDRESS.

Some identifiers have to be used outside the procedure in which they are declared. Examples
are the labels on procedure statements and file names. These identifiers are called external
names. They must not exceed SSGP characters in length, and they must not contain the break
character. If this length is exceeded, they will be shortened by taking the first four and last
three characters of the name supplied.

Identifiers like READ, DECLARE, FILE, which may have a special use in PL/I, are called
keywords. Their special meaning is restricted to their use in context; out of context they may
be used as normal identifiers. It would be quite proper to declare READ to have the attributes
CHARACTER (80) and then to write:

e : . L I —
H,,,,.R'EAP FlLLE [(MYF[I'LE)] 1NTl0o. (READ)

The first appearance of READ is recognized as a keyword by the construction of the rest of
the statement. Appearing between brackets after the keyword INTQ, the second occurrence of
READ must refer to a variable. All statements, except the assignment statement and the null
statement, which has yet to be described, start with a keyword, and are identified by both the
keyword and the construction of the statement.

There is no ambiguity in writing:
| } |

C Ly A L |
117 'Relap [=| INAME_AINDADDRES]S|;
T i | BRI i I i

|

where READ is declared with attributes CHARACTER (80), because the appearance of the
= character, immediately after it, shows that the statement is an assignment statement, and
READ cannot be used as a keyword here.

Many keywords have convenient abbreviations. For keywords which you have seen so far, the
following abbreviations exist: -

PROCEDURE PROC
DECLARE DCL

CHARACTER CHAR ‘
A full list of keywords and their abbreviations is contained in the appropriate PL/I Optimizing
Compiler: Language Reference Manuals for DOS/VS and OS/VS.

The strings of characters, which form the 48-character set equivalents of 60-character set
special characters, are reserved words if the 48-character set is being used. That is, they have a
special meaning, irrespective of the context in which they are used. They may not be used as
variable names, file names or statement labels. If they are, then they will be treated as if they
were the special characters. If the 60-character set is being used then they have no special
significance.

Page 2 -9

Valid ldentifiers

DATA

FIRST_NUMBER

INPUT__FILE

$_INCOME

FILE)

A12345

A__VERY__VERY__VERY__ VERY__LONG__NAME
X

CATS

CAT (for 60-character set only)

Invalid ldentifiers

Constants

Separators

Page 2 -10

1__FILE starts with a numeric character
__FILE starts with the break character
FILE/NAME contains a special character
CAT if using the 48-character set,

this is a reserved word.
Note: INPUT__FILE is shown as being a valid identifier. If it were used as a filename, as
looks likely, then it would be truncated to INPUILE. It would be perfectly proper, if somewhat
confusing, to use the identifier INPUT _ FILE to identify an area which would hold numeric
data.

PL/1 has several data types. NAME__ AND_ ADDRESS was declared with the CHARAC-
TER attribute, and variables such as HOURLY_RATE imply, by their use, that they should
have some numeric attributes. Constants may be coded with any data type which may be used
for variables. They are not declared. They are given their attributes by the way in which they
are coded.

An example of a character constant is:

'"PL/IIS!
It is identified as a character constant by beginning with a single quote and ending with a single
quote. The quotes do not form a part of the character constant, they indicate that PL/I IS a
character constant.

An example of a numeric constant is: -

1.5
It is a fixed point decimal constant. It is also possible to code floating point decimal constants,
and fixed and floating point binary constants. These will all be covered in Topic 3.

A PL/I statement may never contain two identifiers, constants, or an identifier and a constant
without a separator between them.

If it did, they would be treated as one identifier, subject to the length restriction of 31 charac-
ters.

Topic 2: Elements of PL/I

A separator may be any of the special characters, other than the break character, depending on
the context. In the statement:

ERiE_HD j‘ﬁlilzmvr LILED] N1f|‘o

the identifiers used are READ, FILE, MYFILE, INTO and READ, of which the first READ,
FILE and INTO are also keywords. The separators used are a blank, (,), (and).

In the statement:

SR e s

the identifiers used are GROSS__PAY, HOURLY__RATE, OVERTIME__HOURS and
BASIC__PAY. The constant 1.5-is used and also the separators =, *, * and +.

The only separators needed in PL/I statements are those required by the syntax of the
statement. Where no other separator is needed, as between READ and FILE, a blank must be
inserted.

Blanks in PL/l and the Layout -

MYPROG PRoc
ILE(CARD\SIN
RESSD'ENDT

Blanks are sometimes necessary in PL/I to act as separators, when, due to the syntax, identifi-
ers would otherwise be adjacent. They need not otherwise be used at all.

The following shows the sample program written with the minimum number of blanks.

C op IONSFMAIN)RQECLARE NAME _AND_ADDRESS CHARACTER(82D

The end of a PL/I statement is not a special case. One PL/I statement may follow another on
the same line, if desired. Similarly, the end of a line is not special. PL/I statements are
normally coded anywhere between columns 2 and 72 inclusive of a card. Column 72 of one
card and column 2 of the next are treated as being adjacent, so that identifiers may run over
from one card to the next with no errors. ‘

Whenever a separator occurs in a program, one or more blanks may also be inserted. There is
no limit to the number which may be inserted, and they incur no overhead. It is normal to use
blanks to put each statement on a new line and to identify groups of statements by indenting
them from other statements. Some installations have standards concerning the use of blanks
and the layout of PL/I programs. You should check whether your installation does.

Due to the flexibility of layout in PL/I programs, it is not necessary to have special forms to
code them on. They may be coded on any form that has 80 columns and is not pre-printed in
any column.

Page 2 -11

SR S G

EAD

)HNT_;Q(NNME‘ ‘ANDl_lADDRESS) WRbTE FILEY(PRNTOUT)FROM(NAMELiA}NTD ADD
i : [R _ P [l ;T‘,'“
BT e T s T

Comments

Comments are text inserted in a program to explain to the programmer, or any other person
reading the program, what it does and how it works. They have no effect on the working of the
program and are ignored by the computer. Intelligent use of comments will make understand-
ing a program much easier and speed debugging.

The format of a comment is any text preceded by the characters / * and followed by */. There
must be no blanks embedded in the delimiters, and the text must not contain the adjacent pair
of characters */. A comment may be inserted in a program anywhere a blank may be inserted.

The following are valid comments:

| . i

/¥ CALCULATE AND_PRINT PAY| FOR ONE| MAN| #/ |

/#| ERROR RouTiNES [/ |

-

1 |

i
+

/# ReAD FilLEe(CARDSIN) I;Nro(fNiAébflis;:;A~oi_YAobmesS) ;| e/

+ ~+ +
! | I IR

Although the contents of the last comment have the same syntax as a valid PL/I statement, it
will not be treated as such because it is contained in a comment.

Statement Format

Page 2 -12

PL/I statements have a general form:
[statement label:] [keyword] [statement body) ;
where square brackets indicate that the contents of the brackets may or may not appear.

Note that the only part of the statement which is not optional is the semi-colon (;). A state-
ment which has only a semi-colon

S O ; L b ; +

t. | NN i
- ! : T T . T T J i

: oi : ; , ;o : [: ! ;
. ,l> A GRS ANV 5 SN UENTS S S S T ke , L H ; 1
= : ‘ } R . -t‘-‘ : P [o ! !

is called a null statement and indicates no operation. As you may expect, a statement which
causes no operation has limited usefulness, but it is not without uses.

,.
e
R

A statement label is an identifier attached to the beginning of a statement and separated from
the rest of the statement by a colon (:). It is used to identify a statement so that control may
be passed to that statement. For the statements which you have seen so far, it is optional on all
but the PROCEDURE statement, on which it is obligatory.

The keyword appears in all statements except the null and assignment statements. It identifies
what type of statement it is, e.g. READ, PROCEDURE, END.

The remainder of the statement makes up the statement body. Statements such as END; and
the null statement have no statement body.

You should now do questions 1 to 5 in the exercises at the end of this topic. There are similar
exercises at the end of all other topics. Their aim is to help you to asses how well you have
understood the material so far. Try to answer them without referring to the text, only doing so
if you are stuck. Answers are provided on the pages following the exercises.

Topic 2: Elements of PL/]

More General Programs

Let’s consider the program which read in a record, possibly containing a name and address,
and wrote it out again. While it will perform the task specified, it would be more useful to be
able to process more than one record. Immediately preceding the END statement, the program
had read and written a record, and still held the contents of that record in
NAME__AND__ADDRESS. By the definition of our problem, that information is no longer
needed, and so we may place further information in NAME__AND__ADDRESS, by putting
further PL/I statements before the END. The following coding takes advantage of this
situation to add a further READ and WRITE statement to copy a second record.

T

"TWolCARRD]:] [PIR/olcE[D|UIREE] olP[T]iTolNis] [(TMiATt IND)[;T | {
_ DIECLARE N4ME_|AND_|ADDRRES'S| CHARACTER [(8/¢);
1]:' READ |[Fi LE| (CARDS!N) [1|nTO/([NAMELANDLADDRIESS) [,
N 1. WiRITE FiLE [(PRNTOUT) [FROM(NAME_|ANDI_AD[DRES]S))];
2: READ |FIILE (icARDsIIN) 1INTO(NAME_ANDLADDRESS]) ;
M2 WRII TE| F1LE (PRNTIOUT])! [FRIOM (NAME_ANID_ADDRES|S) ;
IREERRREN EN]D* HERR , L Ll
R IR ‘ R T T ! T \ . {

The READ and WRITE statements have all had statement labels attached to them so that we
may identify them. Assuming the input data is on punched cards and the output is to be
printed, the process would be:

R1: Read the first card and hold the information on it in the area of main storage known as
NAME__ AND__ ADDRESS.

Wi1: Copy the current contents of NAME__ AND__ ADDRESS to the line printer.

R2: Read the next card and store its contents in NAME__AND__ ADDRESS. Until this is
done, NAME__AND__ADDRESS will contain the value last put into it i.e. the
contents of the first card.

W2: Copy the current contents of NAME__ AND_ ADDRESS to the line printer.
Stop executing.
Two points arise:

1) The statements to process the second card are exactly the same as those to process the
first card.

2) The program would be more flexible, and hence more widely useful, if it could copy any
number of cards.

-

If we are prepared to accept a restriction on the contents of the cards, say, that none of the.
addresses will be blank, and decide that we shall indicate the end of address cards by including
a card which is completely blank, we may state the processes required to copy all the cards up
to the blank card as:

Read a card.

If it is not blank, print it out and read another card.
If it is not blank, print it out and read another card.
If it is not blank, print it out and read another card.
etc.

When a blank card is found, stop executing.

Page 2 -13

In our language, we require a form of statement or statements which will enable us to keep
repeating the block of instructions:

If it is not blank, print it out and read another card until the condition does not hold.

The DO Group

The DO group provides this facility. It begins with a DO statement and terminates with an
END statement. The DO statement specifies a condition under which the statements up to the
END statement are to be executed repeatedly.

The following shows the specified problem coded with a DO group.

b ‘ S I I I N I A Ll
NCIARD|:| | PRIO/CEDWRE [dPT(lONS [(MAINY; | | | || VR
A DiElciL ARE] NAME _AIND_ADDRES'S| CHARACTER (82), || T/ 20 e
11 || [RIEWAD| FliiLE] I(IcARDS I N), I NTO| (INAME_AND| ADDIRES'S]) ; T/ 3l e
 IDlo| wHi1|Lle] [(MAME__AND| ADDIRESS| 2= ' 1)[; | T[] /e 4

i [[MRulTle] Fillel [(PRNTIOUT)| FROM (NAME_|AND_|ADDRESS)]; /% [Sla
|| IREAD| FlILIE (CAIRDIS|IN) |INTO| (NAME_AND_ADDRESSD! ;[' @ ' |/# op
! END[; il SN IR RN T /% 70 =
| E!"P‘ H - RN EENE N ? %*8¢!*

Page 2 -14

One of the many possible formats for a DO group is
DO WHILE (condition);

Repeat the statements of the group while the condition is true. In this case the condition is
‘NAME AND ADDRESS is not blank’. - = is a comparison operator standing for 'is not equal
to'. There are comparison operators for all the other comparisons - is equal to. is greater than,
is less than, is greater than or equal to, is less than or equal to, is not greater than, and is not
less than. These will be covered further in a later topic, together with other statements which
may cause the program to execute differently for different sets of input data.

The statements of the DO group are statements 40 to 70. They are indented here to make
them stand out as a group. This is not essential, blanks may be used in the normal way, but it
improves the readability of the program. If there are no blank cards in the file, then the
program will carry on reading cards until there are no more left; this will cause an error. PL/I
provides facilities for detecting and dealing with this error; these will be covered later.

There are other formats for a DO group which will be covered later.

Topic 2: Elements of PL/I

Executing PL/| Programs

Compilation

Link Editing

Execution

PL/I programs, as written, cannot be executed, they cannot control the working of the
computer.

System/370 can only execute programs which are in machine code, so the PL/I source
statements must be turned into machine code. This is done in two stages, and the procedure is
illustrated below.

The first stage uses the PL,I Optimizing compiler, which is a program which fits into our
standard pattern. That is, it:

Reads data
Manipulates it
Produces output

The data which it reads is PL/I source statements. The manipulation which it does is to turn
these into object modules, that is, machine code.

The amount of output which it produces is variable, and is controlled by a series of options
which will be dealt with in Topic 16. Typically it will give tables which describe the program,
and an object module.

Although the object module consists of machine code, it is not vet in executable form.-The
program may consist of more than one procedure. Only one procedure may be compiled at a
time, so there must be a means of linking the procedures together. Similarly, programs which
use statements like READ implicitly request linkage to routines which are previously written
and are supplied with the compiler and operating system. This linking is done by the Linkage
Editor program.

The Linkage Editor program again conforms to the standard pattern. The data which it reads
is an object module or modules produced by a compiler, which it links with other modules
which may be user written or system supplied. The output which it produces is a number of
printed reports and, hopefully, an executable program. This executable program is called a
phase in DOS/VS terminology, or a load module in OS/VS terminology.

The load module or phase may now be executed, and normally will read input from one or
more media, process it, and produce some printed output and possibly other output on other
media, depending on what the programmer has coded.

The process is subject to errors at all stages. The programmer may write statements which are
not legal PL/1. He may refer to routines which do not exist. His program may fail to process
the data which it reads. The detection of these errors and their correction will be covered later
in the segment.

Page 2 -15

COMPILE rr

PL/1 SOURCE
STATEMENTS

[
PL/I
OPTIMIZING
COMPILER

LISTINGS

OBJECT

LINKAGE EDIT

MODULE

\

LINKAGE
EDITOR

LISTINGS

EXECUTE

\-/
LOAD

MODULE
OR

PHASE

N——

PROBLEM
PROGRAM

LISTINGS

oy

RESULTS

You should now complete the exercises at the end of this topic.

Page 2 -16

Topic 2: Elements of PL/I

Exercises
1. Which of the following are valid identifiers when using the 60-character set:
(a) IDENTIFIER
ul‘)) VALID-1
{c) @__COST
d) IN/OUT
_e) 4__SQUARE
(f), NOT
2. Of the identifiers in question 1 which are valid under the 60-character set, which could
not be used under the 48-character set? #, ~
3. Which of the following are valid identifiers to be used for a file name?
.a) EXTERNAL
(b) A37259
¢) PROC__1
d) GET@
4. Write a statement to read a record from a file named STOCK into a variable named
ITEM, using the minimum number of blanks. fcno File (sTRCYTNTO (L M)
5. Assuming that all identifiers used have been suitably declared, which of the followigg
statements are valid?
; ‘ L ‘ . I I Pt
/% A %/ | wRI|TEF 1 ILE(VIARIABLE)| FROMCFIILED;| | | v
/% 8] %/ | TEN = 1015 | BEEERRN
1/ |c| %/ ”5\‘/10{&%75?'; MINF _) L
;/*T */ A e THE BEjal NN NG ¥/ [PROC| 0P/TIoNS|(MAIIN)];

6.
7.

f T

What must be the first and last statements of a program? /%, 1. <0
- 1

What must be done to a PL/I program before it can be used to control the computer?

Page 2 -17

l'opic 2: Elements of PL/1

Answers

. a) Valid
b) Invalid. - is a special character and is not allowed in an identifier.
¢c) Valid.
d) Invalid. / is a special character and is not allowed in an identifier.
e) ‘Invalid. A numeric character may only appear in the body of an identifier.
f) Valid.

2. ¢) (@ and __ do not appear in the 48-character set and have no replacements.
f) NOT is a reserved word in the 48-character set.

3. A file name is an external name. It may not exceed 7 characters and may not contain the
break character.

a) Invalid. It is too long.
b) Valid.
¢) Invalid. It contains the break character.

d) Valid.

s

S. a) Invalid. There is no space between WRITE and FILE.
b) Valid.
c) Invalid. There is no semi-colon at the end of the statement.
d) Valid. A comment may appear anywhere a blank can be used.

NI N L r !

Ualbie|L|:| PRlolc| T0[PT1 O[NSI(MATT NI)[;
i ,
T
L

-

4+

i [
[N §

END ;! ain j

4
R

The label on the PROCEDURE statement may be any identifier up to 7 characters long,
not containing the break character.

7. Before a PL/I program can be executed, it must be turned into machine code by the
PL/I Optimizing Compiler, and all necessary system supplied or user-written routines
must be linked to it by the Linkage Editor program.

Page 2 -18

Topic

I) P
D
A A
E D T
Y P Y I
D U E T -
M D N M D
0 G 0 P
U P D E U P E P D
1 R A T
Y I N T Y I N T Y [DE
oG P T 0G M E T 0G M P T D
0 E N TU 0] E ST R D N ub
G E D Y 0G E D D RO D N ST 0
M D NT DY R AM D NT D R AM D NT PO
. ND EN D P R M ND ENT D P R M IND ENT D RO M
N E N U P A IN E N TU P R IN E N u R L
EP NDE ST GR EP ND RA U |
ND T STU PR D ND TU PR R D ND TU Y 0] ND
E T R G D EN E T R G D EN TU R R M EN
ST P O 1 PE D T ST P O N PED T STU A ND N
S UY ROGR NT S UDY ROGR NT S U Y ROG EN T
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
! PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T

PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U
'R GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMTI E EN T STU P
IGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUuDY PR GRAM IND PEN ENT TUDY 0
AM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM [DEPENDEN STUDY PROGR
! INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
NDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM |
JEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IND
'"ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEP

INT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEN
&.Y STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM. INDEPENDE
" STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
»TUDY PROGRAM [INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
JDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STU
" PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
’ROGRAM [INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY P
YGRAM TNDFPFNDFNT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRO

Topic 3

The DECLARE Statement and Data Elements

Objectives

Introduction

This topic covers the DECLARE statement and also the various forms of data elements.

On completion of this topic you should be able to:
« write valid DECLARE statements for character and numeric data variables
+ calculate the amount of space occupied by data variables
« state the full attributes of partially declared variables

« initialize data variables using the INITIAL attribute.

If data is to be manipulated within a program then storage needs to be reserved for this data
within the computer. This is the main function of the DECLARE statement, which was first
met in Topic 2. The other necessary function of the statement is to give a name to this storage
in order that it can be referred to within the program and also to describe the format of the
data so that it can be manipulated. In this topic we shall be covering the data elements, i.e. the
data variables which hold numeric and character data. We shall not be covering all possible
data types nor shall we cover all of the facilities of the DECLARE statement. However, we
shall cover enough of both to enable you to do a considerable amount of PL/1 programming. -

Page 3 -1

Topic 3: The DECLARE Statement and Data Elements

The DECLARE Statement

Page 3 -2

The DECLARE statement is the statement which is used to attach attributes to PL/I identifi-
ers.

DECLARE statements seen so far have all been for element variables, simple variables which
hold information. They are also used to give attributes to groups of variables, and to other
identifiers which cannot hold information, such as file names. These will be covered in later
topics.

A DECLARE statement may be used to give attributes to one or more identifiers. Let us look
at the statement to declare one identifier:

DECLARE IDENTIFIER [attribute(s)];

The square brackets are a part of the standard IBM method for demonstrating syntax. They
indicate that the contents, in this case the attributes, are optional and may be left out if not
needed.

DECLARE, which may be abbreviated to DCL, is the keyword which identifies the statement
type. It must be the first part of the statement and separated from the identifier by one or
more spaces.

The identifier is that which is being given attributes, and must be the second part of the
statement. It must be separated from the attributes, if any, by one or more spaces.

The attributes which follow the identifier are keywords, some of which have abbreviations.
They may be in any order, and must be separated from each other by a blank or blanks. Some
attributes, such as CHAR, may have further information following them in brackets, e. g'.'
CHAR(20). Where this is so, blanks between the open bracket, (, and the preceding attribute,
and between the close bracket,), and the following attribute are optional.

Topic 3: The DECLARE Statement and Data Elements

In the example below, declarations 1 and 2 show alternative spacings for the same declaration.
There is no ambiguity because CHAR(10) could not mean anything but character, of length
10.

D] Na HAR([1p)]. e |11 e/ [
DiciL NMA HAR [(1183]; /[2 | e/ |

"IN IN|PUT S[EQL[; 1 /%] 3 e/

L 1IN i NPT [sleL; ARENRI LU/ e viALo] BUT] MAl| INoT]

T : , B 6! VE WHAT| wAs| .| NTIENDE[D %/
L_[t|N| Fi1 L NPT [SIERQL; | | Dol e s e T !
BERE ! [I R AR NN NS BT EERAENEREEN o

el WaME T IchiARIC 1) T 6 e/l T

B AR ERRRRRR RN T

| L L SITIRTN,_[CHARI(128]) EENEREEE N . ; BN RS

il “IFiLE] (NPT SEQL) :_T‘L TK B BEEERE BN E

"o |R1CE] lolumlpiur IsiERIL; T T T T e
L NAME " [CHAR|((1pD]; SRRRERE RN N N A "N A RR RN T

cle iR I HARI(reD T T e T |
clL, STRIN CHARI(20) ;1 T ol e e e
clL, N }ELI‘LL'E INPMT}SEQL, il ERENNZ 16 e/ L
L o | : |FiI LE| OUTPUT| [SEQL]; | | | N EINC BRI x
clL (NlamE, [STR)| cHAR(1ED; B VIR RN
Ll lpuT, lojuT] loluTiPlur))| |Flrlcle] sElQlLi; /% 1137 %/
L |(NPluT), lojum)]| [Fl1 |L[e] loju[TiPulT] [SlERL; /i 14 e/
T T

Declaration 3 shows a declaration for a file name. It would not be complete for DOS. The
attribute FILE says that this is a file name. The attribute INPUT says that it may only be read
from, and not written to (its opposite is OUTPUT). The attribute SEQL. an abbreviation for
SEQUENTIAL. says that the file is to be read in sequence, one record after another. These
attributes will be dealt with further in Topic 5.

In declaration 4, the blank has been missed out between IN and FILE. The rules of the syntax
will be followed and the statement will be taken as a declaration of the identifier INFILE with
the attributes INPUT and SEQL. This will be quite legal as the attributes INPUT and SEQL
both imply FILE. That is, if either of these attributes is coded, then it is assumed that FILE is
required also, so coding the attribute FILE is optional.

Declaration 5 has no spaces between FILE and INPUT, and so FILEINPUT will be taken as
an attribute keyword. It will not be recognized as a valid one, and will cause an error.

A declaration statement may declare more than one identifier:
DCL identifier [attribute(s)],
identifier [attribute(s)].....;

The list of attributes, if any, for the first identifier is followed by a comma. then the name of
the next identifier and its attributes and so on. The last attribute of the last identifier is
followed by a semi-colon. The effect is exactly as if each identifier were declared in a separate
statement. Declaring several identifiers in the same declaration does not link them together in
any way. An example is shown as declaration 6 above. This would have exactly the same
effect as declarations 7 to 11.

Page 3 -3

Topic 3: The DECLARE Statement and Data Elements

Note the use of spaces and the comma as separators. Spaces are used to separate the attributes
of an identifier, and to separate the identifier from its attribute. The comma separates one
identifier and its attributes from another identifier and its attributes.

IN and OUT, in declaration 6, have the attributes FILE and SEQL in common, but IN has the
attribute INPUT, and OUT has the attribute OUTPUT, to say that it may only be written to.
In this situation, the common attributes may still be factored, as in declaration 13, but the
attributes which are exclusive to any identifier are written with that identifier, inside the
brackets.

The identifier IN takes the attribute INPUT within the brackets and the attributes FILE and
SEQL from outside the brackets. The identifier OUT takes the attribute OUTPUT inside the
brackets and the attributes FILE and SEQL from outside the brackets.

The general format for a declaration with factored attributes becomes:
DCL (identifier [attribute(s)],
identifier [attribute(s)],...) attribute(s);

Attributes occurring within the brackets and attributes occurring outside the brackets must be
additive attributes and not alternative attributes. That is, they must be attributes which can
occur together as attributes for one identifier. Declaration 14 is invalid because INPUT and
OUTPUT, which would both be applied to IN are alternative attributes.

It should be noted that the attributes of STR and STRIN may not be factored. Although both
have the attribute CHAR, the length must be coded immediately after the CHAR attribute and
cannot be put before it. The same applies to precision attributes, which are covered later in
this topic.

The position and order of declarations has no significance in a PL/I procedure. A DECLARE
statement may occur anywhere between the PROCEDURE and END statements of a
procedure. It does not matter if the statement which declares an identifier occurs after

statements which use that identifier. Similarly, it is not significant whether identifiers are

- declared in any particular order, or whether they are declared in separate statements or the

same statement, or whether they are declared with factored attributes or not. The relative
positioning of PL/I variables in storage does not depend on how they are declared.

We have now covered the general form of the DECLARE statement. The attributes which
may be attached to identifiers will be covered as they arise.

Please attempt questions 1 and 2 in the exercises at the end of this topic before continuing.

Character Data

Page 3 -4

In Topic 2 use was made of the variable NAME AND ADDRESS, which was declared:

!

8p
I

~

A
)

| |
DiclL NA\E«IE-AND_ADDRESS CHAR
I

The declare statement specifies
a) what sort of data is to be held in the variable
b) how much data is to be held

c¢) how the data is to be held.

Topic 3: The DECLARE Statement and Data Elements

NAME AND ADDRESS will hold 80 characters of data. Using Extended Binary Coded
Decimal Interchange Code (EBCDIC), it will hold any characters which can be stored in
System/370 and System/360. EBCDIC is a coding system which stores one character of data
per byte. As a byte has 8 data bits, there are 28=256 possible combinations. Not all combina-
tions are allocated in EBCDIC. The full list of characters represented, and their internal
representations, is shown on System/370 Reference Summary card (Form GX20-1850). It
includes all of the 60 character set characters.

The EBCDIC system considers the byte in two halves - the left hand 4 bits are called the zone
and indicate a group of characters - the numeric characters, the upper case characters A-I etc.
The right hand 4 bits are called the numeric and indicate which character of the group is to be
represented. Below are shown some examples.

Character Binary Hexadecimal

A 1100 0001 C1

B 1100 0010 C2

C 1100 0011 C3

I 1100 1011 C9

1 1111 0001 F1

2 1111 0010 F2

3 1111 0011 F3
All the normal keyboard data input devices and printing output devices transmit data in
EBCDIC.

Character String Variables ; -

Variables with the CHARACTER attribute are called character string variables. It is also
possible to use character string constants in PL/I programs. The maximum length of the
character string variables is 32767, and the minimum is 1. If a length is not given in the
declaration, a default of 1 is taken.

The following are declarations of valid character string variables:

- = Sepb b g pb s e e i
‘DejL] [TIEXT] cHaR(3lg0; | L L L e
DiCIL [SIHIARTL.{1] ICIHAIRI(1]); e il L ‘z i Cd jr
‘DCD’}%Eﬁﬂ1 cHARI(3[217617])]; SEERERRREREEERR I NEDENERNEREE e
iC|L ER1 €| |CHARI(2/56)) |; ‘ /*ET“EiWNME5W$Ei HAS NO| SI|GNIF|I CANICE| #/
el clHlAR ; DEFAULT LENGTH |= 1 [/ 1] ' [
BE chAfRJ.L CHAR, !/r*}fa GET LENETH = Sl b
The following are not valid declarations of character string variables:
CiL INIVALI p_l1| CHAR (d)“t' /% |THIEE foalnj }-rTH M'uST‘ BIE >J b */ ;T
ci. 1INVAlL |1 Dl [2] IcIHARI([3217/62])]; | | |/ BT <= [3]2716]7 */ '
clL '“!‘““-”’4 C”‘RS(1%¢JI¢'); /¥ KEYWORD| i[5 CHARACTER [oR [cHAR ¥/
| RER I P Pl

Page 3 -5

Topic 3: The DECLARE Statement and Data Elements

Character String Constants

Page 3 -6

A character string constant consists of a single quote character (‘) followed by the EBCDIC
characters which make up the constant, and terminated by a further single quote (‘). The
quotes do not form a part of the constant and do not contribute to its length. Blanks within the
quotes do count as part of the constant.

Below are some valid character string constants:

Constant Length
'TEXT! 4
' TEXT AND BLANKS ! 17
'A=B+C;' 10
'/* NOT A COMMENT */! 19
'12.67" 5

Note that, although the third constant appears to contain a PL./I statement and the fourth
appears to contain a PL/I comment, both lose their significance and are simply character string
constants.

N

The maximum length of a character string constant is not fixed. It depends on how much space

is available for the PL /I compiler, but will never be less than 512 characters.

A single quote is the character which terminates a character string constant, special arrange-
ments must be made to include one in the constant. Every single quote character which is to be
included in a constant must be represented as two adjacent single quote characters. They will
then be treated as a single quote character in the constant. Hence ‘SARAH"S’ is 7 characters -
long and represents SARAH’S.

The following are valid character string constants:

Constant Contents Length
LA A) 1 1
rTrrrr e L 2
'SHAKESPEARE''S ''''HAMLET''''' SHAKESPEARE'S ''HAMLET'' 24

A character string which consists of a string of characters repeated a number of times may be
coded using a repetition factor. The string of characters is coded as a character string constant.
The repetition factor is coded before it as a decimal integer constant, enclosed in parentheses.

Thus:

(2) '"HA" is equivalent to "THAHA'

(3) '"HA" is equivalent to "HAHAHA''

The string which is repeated may be any character string constant which is legal for that
compiler. The repetition factor may be in the range 1 to 32767. Character string constants

with repetition factors may be used anywhere where ordinary character string constants may
be used.

The following are invalid character string constants:

'MANDY'S MISTAKE' The embedded guote will be taken as
terminating the constant, and the final
quote as starting a new constant.

'SPIRAL STAIRS Missing end quote.

2'STROKE' No parentheses around the repetition factor.

Numeric Data

Topic 3: The DECLARE Statement and Data Elements
You should now attempt questions 3, 4 and 5 at the end of this topic.

It is possible, in the extreme, to process numeric data in character string variables, but PL/1
provides other data types which can do so more efficiently in terms of speed and storage
requirements. There are several data types for numeric data, each of which has advantages in
certain circumstances.

Numeric variables in PLT are declared with attributes of base, scale and precision. The base
states to what base the number will be held and is DECIMAL or BINARY. DECIMAL
variables will hold numbers as a series of decimal digits. BINARY variables will hold numbers
as a series of binary digits. The scale may be FIXED or FLOAT. A variable with the FIXED
attribute holds data in a fixed point form, that is a fixed number of digits and the binary or
decimal point at a fixed position within them. Variables with the FLOAT attribute hold data in
a floating point form. Each number is held in two parts. The exponent indicates the magnitude
of the number - the position of the point, while the mantissa shows the value in a standardized
form. As both the exponent and mantissa are variable parts of the data, the range of magni-
tudes of numbers which may be held in floating point variables is very wide.

The precision of a variable states how many digits of precision a variable may hold. If a
variable has a BINARY base, it will be in binary digits. If it has a DECIMAL base, it will be in
decimal digits. For floating point point variables, the precision indicates the number of digits in
the mantissa. The exponent has a fixed precision. For fixed point variables, the precision must
show the total number of digits to be held, and also the position of the decimal or the binary
point within them. The precision is not identified by a keyword, but must be enclosed-in
brackets.

When declaring numeric variables, the following rules apply:
The base and the scale may be in either order.

The precision must immediately follow the base or the scale. It may come between them,
or after the last, but not precede both of them.

Adjacent identifiers and keywords must be separated by at least one blank.

As the precision is enclosed in brackets, it need not be separated from adjacent keywords
by blanks, but it may be.

The keyword DECIMAL may be abbreviated to DEC.
The keyword BINARY may be abbreviated to BIN.

In the example below the variables BIN__1 to BIN__6 all have identical attributes. The
different layouts have no effect in PL/I terms, but you may find some easier to read than
others, or easier to change later.

picit| {1 iN_1] [Bl1INA[RlY] [F[i[x[€[o] [([1]5],[8D];
| DICIL; B]I INI=2 B[t N . Fli|X[ED| |(115],19);
DClL BlIN—3 |FIXED | BIINARlY([15] @)
DC|L, [BlIIN~4 [BIIINARRY| [([1)5], 18])] [Fli|x|E]D];
DiciL 1B[I|IN—=5 [BIINARY! [(l1]s], 8])|Fi1Ix|elDl;
;ocq 8/I[N-© ﬁ;xeo; (115, 12))| BlI|NJARY|;
i |

Page 3 -7

rupic 0 1ne UECLAKE Statement and Data Elements

Binary Fixed

Page 3 -8

We will now look at the characteristics of various combinations of attributes.

Binary fixed point variables and constants are the data items which can be processed most
rapidly in the computer. They are most commonly used for processing integer data. Numbers
held in fixed point binary‘ variables or constants are held in binary form, and occupy either a
half-word (2 bytes) or a full word (4 bytes), depending on the precision specified.

Below are some typical declarations of binary fixed point variables.

i i i *LL
Dicle BliN_1, [BlINARRY [Flix[E[D|([115], @) ;
| DCIL_BIIIN_2 [BlIN |FIXEDI(15]); .

diclL B[IIN_3 [BIIN [FuixED(31]D];
:DFLL“ B|IN_4 [BIN [Flt)XTE[D]; |
el Blr{n~5 Bt N_[Fi XED[(T6], (3D)];

&TTM_P 8lrIN_1 | [11¢18];

The precision described for fixed point binary variables is in binary digits, and specifies how
many binary digits are to be held, irrespective of the sign. Thus BIN__1 has, effectively, 15
bits for a value, plus one bit for a sign. The numbers it can hold range from 32767 to -32768
(215 -1 to 215), and will have no fractional part. , -

When the precision of a fixed point variable does not show a position for the point, then it is
assumed to be at the end. BIN__ 2 has identical attributes to BIN__1.

The maximum precision wh}i‘crh~ may be specified is 31. A fixed point binary variable whose
precision is (31,0) may hold integers in the range 2147483647 to -2147483648 (23i-1 to -231),
The minimum precision is (1,0). This will allow the variable to hold the integers 1,0,-1 and -2
(2!-1 to -21).

Fixed point binary variables which are declared with a precision of 1 to 15 use half-word
binary and occupy 2 bytes. Those with a precision of 16 to 31 use full word binary and occupy
4 bytes. Variables like BIN 4, which are declared with the attributes BINARY and FIXED,
but no precision, take a dgfgu}; precision of (15,0).

Fixed point binary variables may also be declared to have a fractional part. BIN__5 in the
preceeding example will hold six binary digits, of which the last three will be considered as
being fractional or after the binary point.

The effective significance of the bits is

w|—

! 1
4 2 1 2 4
JAN

The symbol A indicates the position of the implied binary point. It does not take up any space.
The first bit effectively indicates the sign. If we look only at positive numbers, we may say that
the first bit is the sign and will be set to O to indicate positive. Moving left from the binary
point, the bits indicate the values of 1, 2 and 4 respectively. The value +2 will be held as 0010
000. As the bits to the left of the binary point indicate ascending positive powers of 2(20, 2!

Decimal Fixed

Topic 3: The DECLARE Statement ana vara riemems

and 22), so the bits to the right indicate increasing negative powers of 2 (2-1 or 1/2, 2-2or 1/4,
and 23 or 1/8). Thus, +2 1/4 will be held as 0010 010.

BIN__5 can hold numbers correct to the nearest eighth. However, fractional decimal numbers
cannot in general be converted exactly to fractional binary numbers. Each fractional decimal
digit will need approximately 3.32 fractional binary digits to hold it, but even then it will not
hold it exactly. Because of this, decimal numbers with fractional parts are often held in other
types of variables.

Fixed point binary constants may also be coded in programs. A fixed point binary constant is
defined as:

an optional sign
a string of binary digits containing an optional binary point
a character B.

There may be no blanks in the constant. If no sign is included, it is assumed that the number is
positive. If no binary point is included, it is assumed that the number is a binary integer.
Moving left from the binary point, the 1’s mean 1, 2, 4, 8, 16, 32, 64 etc. Thus 101B is 4 +
0*2 + 1 = 5. Moving right from the binary point, the 1’s mean 1/2, 1/4, 1/8, 1/16, 1/32 etc.
Thus 11.101Bis2 + 1 +1/2 +0/4 + 1/8 =3 5/8.

Fixed point binary constants have precisions implied by the number of digits coded. The total
precision is the number of digits coded both before and after the binary point, but not includ-
ing the sign, the point or the B. The implied precision of the fractional part is the number of
digits coded after the binary point. Thus 101B has an implied precision.of.(3,0) and 11.101B
has an implied precision of (5,3)./In Fig. 3.3, the value assigned to BIN__1 has an implied
precision of (3,0) while BIN_ 1 %&rf’ﬁfécision of (15.0). The significance of this will be
discussed in Topic 4. If it were desired to code 101B with an implied precision of, say, (8,3),

this could be done by adding 0’s to force that precision i.e. 00101.000B.

You should now attempt questions 6 and 7 in the exercises at the end of this topic.

Variables with the attributes DECIMAL FIXED hold numeric information in S/370 packed
format. In this format, a code to indicate a sign is held in the right-most half-byte (4 bits) of
the field, and every other half-byte holds one decimal digit. Thus, 123 would be held as:

Page 3 -9

1upic 0 1ae ULULAKE dtatement and Data Elements

Below are some declarations of fixed point decimal variables.

plcic| pElcl7] | IPElcl1mAIL] | [FlI X[EDCI7D]5 1
pic|L| |olElci_l2] | [Fl1IXE|D DEEIC| MAIL(|7])]5
|_PICiL| DEICLB] | |PEIC FllIXEEIDCITD]
plcl| |plEjcl_l¢| | PElc|c|7)] | | [Fl1IxE[P]; | IRREN
Dcl| plEic-i5| | [Fl1|xiglpic|7]>] IP[E[C]S| | |
piclt| pelc|_le| | IDEIC FlixEElplc|7]) lgh];
olclc| [olglcl—7) 1 Ielele] 1111 | [l ixEple 2 izl [1111
plcl| |pelc|_|s| | |oElc HMMJ;FfXED‘zii’; L
pcle| plelc_l9] | plElc Fli|xgplcl7|5)];
picie| |pE|cl|7le [plElc | | || T FxiElp|crDB T T
D] | = | [1R2l3]3] |) '
OEICI_(7| | |=| |=®- 135165 | ||]| n

The declarations follow the same rules as for fixed point binary variables, with the following
differences:

DECIMAL, which may be abbreviated to DEC, replaces BINARY.

The precision denotes the total number of decimal digits to be held and the number of-
those digits which are after the decimal point. The sign is not included.

The maximum precision is 15.
If the precision is not specificd, a default of (5,0) is faken..

Thus, DEC__1 with a precision of (7,0), can hold integers in the range 9999999 to -9999999,
DEC_7 with a precision of (7,7), can hold numbers in the range 0.9999999 to -0.9999999, to
correct to 7 places of decimals.

For holding integers, DECIMAL FIXED and BINARY FIXED variables are largely inter-
changeable. The following differences exist:

BINARY FIXED variables are processed more quickly than DECIMAL FIXED
variables.

Punched card input and printer output is in character format. Conversion between
DECIMAL FIXED and CHARACTER is quicker than conversion between BINARY
FIXED and CHARACTER.

DECIMAL FIXED variables, with a maximum precision of (15,0), may hold much larger
numbers than BINARY FIXED variables.

Page 3 -10

Topic 3: The DECLARE Statement and Data Elements

Non-integer decimal numbers cannot always be held exactly in BINARY FIXED variables. If
they can be held exactly in 15 decimal digits, then they can be held exactly in a DECIMAL
FIXED variable. Hence, sums of money in dollars and cents, up to $99.99 could be held
exactly in a variable:

|

; [1| N N
DlclL moﬂlgy PE|C .ﬂ{kzpw

PR

DECIMAL FIXED variables are therefore recommended for usage in commercial applications

-

involving computations with money amounts.

DECIMAL FIXED constants are coded as one would normally write decimal constants outside
of a computing environment. That is, an optional sign, a series of decimal digits, followed by
an optional decimal point and further decimal digits. There are no special identifying charac-
ters and there must be no embedded blanks. Thus, the two assignment statements above assign
a value of 123 to DEC 1 and -0.356 to DEC 7. If a constant is coded as 101, it means one
hundred and one. It is not a binary representation of decimal 5 as it is not followed by B.

The implied precision of a decimal fixed point constant is the number of digits in the constant,
ignoring the sign and decimal point, if present. The number of fractional digits is the number
of digits coded after the decimal point, including all 0’s.

The precision of 123 is (3,0).
The precision of 00123.00 is (7,2).

The layout of the constant 123 was stated to be

1 213 +
J |

From this, it can be seen that each decimal digit requires a half-byte, and the sign requires a
further half-byte. Fixed point decimal variables may be of any length from 1 byte to 8 bytes,
in steps of 1 byte. The following table shows the space required for variables declared with the
stated precision, or for constants with that precision implied.

Precision Number of Bytes
(3,0) 2
(1,0) 1 .
(1,1 1
(15,0) 8
(15, 8) 8
(6,0) 4

If the total precision is even, the left-most half-byte is not used.

Fixed point decimal variables may, by suitable choice of precisions, be used to process a wide
range of values with complete accuracy. Before going on to read about the attributes and
characteristics of floating point variables, please attempt gquestions 8 to 10 at the end of this
topic.

Page 3 -11

s L cAnA JwAICIICHL AU U4l niements

Decimal Float and Binary Float

Page 3 -12

Fixed point variables are declared to have a number of decimal or binary digits with a decimal
or binary point positioned at a fixed position in those digits.

A variable declared:

Ll Plpity

_<% _M
P
m
o
-
wm
N
g

Dic|L; |ClA|SH | IDEC

could hold dollar money amounts with complete accuracy from $999.99 to $0.00 to $-999.99.
The minimum increment is one cent and amounts are always recorded correct to a cent, so a
DECIMAL FIXED variable is. quite suitable. However, consider a program which calculates
the average of a series of measurements in meters. If a DECIMAL FIXED variable were used
to hold the measurement, what would be an appropriate precision? What would the measure-
ments be? If the measurements were the lengths of modern oil tankers, they might be 400
meters. It is unlikely that they would be measured more accurately than the nearest meter, and
SO:

T

del |LleNaTH1 | [F1x gD [DEC|(3] o) ;

would give a suitable variable.

However, if the measurements were the widths of fine wires or textile filaments, they might be—
about 0.00002 meters, possibly measured tc three significant figures e.g. 0.0000254,
0.0000326 etc. A suitable DECIMAL FIXED variable to hold these would be:

S

DiclL, LIENGTH[I2

If we wish our program to be a general purpose program to deal with both oil tanker lengths
and wire diameters, we will have to declare the variable:

|

|
plcle] [LEWGITH]_|3 F/XEPLDEC(7¢,7)1

but we will still encounter trouble if we wish to average the distances between towns, or the
diameters of tissue cells.

The length of a ship, say 432 meters, could be written as 4.32 * 102 (or 4.32 * 100). The
diameter of a wire, say 0.0000254 meters, could be written as 2.54 * 10-5 (or 2.54/100000).
This is called normalized floating point notation.

PL/I can process data held in this manner by using variables with the FLOAT attribute,
instead of the FIXED attribute.

Topic 3: The DECLARE Statement and Data Elements

Decimal Float

Variables with the attributes DECIMAL FLOAT hold information in S/370 hexadecimal
floating point format. They are declared with a precision attribute containing one constant.
This does not reflect the magnitude of numbers which can be stored, only the precision with
which they will be stored. All floating point variables can hold numbers in the range 1663 to
-1663 (approximately 1075 to -1075). The smallest number which can be distinguished from 0 is
16-6¢ (approximately 10-7#).

The precision specifies the number of significant decimat digits to be hetd As the values will
be held in hexadecimal. the number actually held mav be greater. It the values 1o be held are
integers then, assuming that the precision is adequate, thev will be held exactly. However. as
the values are held i a hexadecimal tormat, values with fractional parts will not normally by
hetd exactly in tloating point variables. The precision implies that, if the value actually held
were rounded to that number of significant decimal digits, it would be correct. Expressed to a
greater number of significant decimal digits, it may not appear correct.

When DECIMAL FLOAT variables are declared:
They have the attributes DECIMAL (or DEC) and FLOAT.
They have a precision consisting of a single constant in the range 1 to 33.
Imggsio_p is not g‘iyeﬂx}‘,ua“qhemfﬁaql}‘tuof 6 applies.

Below are some examples.

plcle! IlElcLIFIL_|1] | FFiLloplT PEICIIMAILIC13D] N
plc|L] olEjc|_FILI_[2] | [FiL|olalT NEEARERE B
DICIL| DIEICIFILI-3] | IDEC| | | | | FILOATICI3]); n L N _
pic|c| DEIC_IFILI-l¢| | IFILloja|T|(|3]))|P[EIC|; ERERERAREE |
_plelL] IpEc|-FiLl 5! | PECIBDIFILOATL] | ||
DiC|L| DEIC|_|F|LI-|6| | DIE|C FILIO|AITIC|6) 5])
ol Iplelc L7l | pElC FlLlolalTc[7leh s T T
pic|L| DEC|-IFIL|_|8] | IDEIC FlLolaT|(313D 15 N i |
- 5
DEICIFILI_[7] |=| |1]-|2l3lg]1]; /% Als|s!l gvls fzys Tlo IplElc|[FIL[_]1] [*]/]
DEC|_FILI_|T| |=| |123|E|-|1]; AL /* |ASS|liens] 712]-13] TI0| IDEEC|-FILI-i7| #/
L Pl el =] |-l ialslaeB)s | | /%] Wisis|rus| -l712.13] [Tlo| [PECLIFLLle =/

. 1
?\e')\vl" TR e

Floating point decimal constants are coded as a decimal fixed point constant, followed by an E
and an optionally signed decimal integer exponent of not more than two digits (the power of
ten by which the fixed point decimal constant must be multiplied to give the true value). The
implied precision of a floating point decimal constant is the number of decimal digits before the
E. :

The first two assignments in the example above have exactly the same effect - to set up a
floating point decimal constant with a precision of 3 containing 12.3, and to assign that to
DEC__FL__ 1. The last sets up a floating point decimal constant with a precision of 6,
containing -12.3, and assigns that to DEC__FL__ 6.

Page 3 -13

10pic 3: 1he DECLARE Statement and Data Elements

Decimal floating point variables and constants use S/370 short, long or extended floating point
form, depending on the precision used. The amount of space used is:

Precisi Numt { Byt
1-6 4
7-16 8
17-33 16
Binary Float .
Variables with the attributes BINARY FLOAT hold and process data in exactly the same way
as variables with the attributes DECIMAL FLOAT. The effective differences are in the
declaration, and are:
The attribute BINARY (BIN) replaces the attribute DECIMAL.
Precisions are declared in the number of binary digits of precision required, instead of the
number of decimal digits.
Theﬁrange of precisions allowed is 1 to 109, .
If a precision is not specified, a default of 21 applies.
Some examples are shown below.
ocl BN FLl el | Elcoatr | [] [8jrnlalRlyi(riz] C [Tl
DClL, BUIN_FL_2 IFLOAT | | BIN(12Z); | 1.
DC|L BUIIN_FL-3 [BIN | & FlLojaT(lrl2h ;. | REER
bl BlIN_FLl4 |FLOAT(12)BuN;, | . | RS]
DCIL IBlIIN_FLIS BIN(112)FILOAT = | A | |
DeL BN _FL6 Bin ||| FroAT(2l); | BEEN | ,
DClL BltIN_FLIT ' [BIN | FLIOAT(5[3); [' REEN |
Dl BlIN_FL_8 [BIN | FILOIAT(1199) ; SRR ‘
e e
. %4_;7%_4 R R e t—f—+ w,-i’—}—f“,-f_rﬂf :+ R SV S — +
B FL1 =] 1daledBi| T /e PuT| 1918 (S iNTO BINLIFIL_1 ¥/
.| BUN_FL-1 = 1@-ME1B; | | /# PUT 1918 (5) INTO BIN_FlL-T */
C|BiN_FL S T glge-Tle; |/ # PUT) 101 B [(5) |IINTo| BIN-FL1) */
- BlN_FLI-T = 9.;17931915;@;3:; U ;P;UT 101].¢18] (5.]25)] [1NTo 81N_FlL_]1] [*/
R i LA AR A L S S A AR A e | N I

Page 3 -14

Floating point binary constants are coded in a program by writing:

an optional sign, which is the sign of the whole number
a string of binary digits, with or without a binary point
aletter E

an optionally signed decimal integer constant, which is the binary exponent, that is, the
power of 2 by which the binary constant preceding the E must be multiplied to give the
value intended v

a letter B.

Topic 3: The DECLARE Statement and Data Elements

They have a precision implied by the number of binary digits before the E. The constants used
in the assignments above have precisions of 3, 3, 4 and 6.

Binary floating point variables and constants use the same forms as decimal floating point
variables and constants. The amount of space used is:

Precision Number of Bvtes
1-21 4
22-53 8
54-109 16

Floating point binary variables and constants are likely to be used rather than decimal floating
point variables and constants when information about source data is available in binary form.

Between then, binary and decimal floating point variables provide an effective means of
processing widely varying values, especially if, when writing the program, full information is
not available on the magnitude of the numbers to be processed.

Before continuing with the next section, please do questions 11 to 13 at the end of this topic.

Undeclared and Partially Declared Variables
Mention has been made, in the description of the various attributes of omitting the precision or

length from declarations.

PL /1 will also take default action if other attributes are omitted, or if a variable is not declared.

The following rules describe the full situation:

If a variable is declared with base and scale, but no precision, a preciation will be given,
as follows:

Attributes attached
PRECISION

Attributes given v
BASE SCALE

BINARY FIXED

DECIMAL FIXED (5,0)
BINARY FLOAT 2D
DECIMAL FLOAT (6)

If a variable is declared with base, but no scale, the scale defaults to FLOAT. If a variable is
declared with scale, but no base, the base defaults to DECIMAL. If the precision is also
omitted, the normal default for that base and scale will be applied.

- Attribute given Attributes attached

BINARY FLOAT (21)
DECIMAL FLOAT (6)
FIXED DECIMAL (5,0)
FLOAT DECIMAL (6)

Page 3 -15

1opic 3: 1ne DECLAKE Statement and Data Elements

Initialization

If a variable is not declared, or is declared but no given attributes, then it takes attributes
depending on the first letter of its name. A variable which is undeclared is sometimes referred
to as an implicitly declared variable.

Attributes attached
FIXED BINARY (15,0)

First letter of name

I-N

Others

FLOAT DECIMAL (6)
(A“H, O—Z’ $9 @s #))

The use of these default attributes can save coding effort. However, coding full declarations
may contribute towards the documentation of a program.

Before continuing with this topic, please attempt question 14 at the end of the topic.

When a program starts executing, the value which will be in any variable is undefined and
unpredictable. It may vary from run to run, and may not even be valid for that data type. To
overcome this we may use the INITIAL attribute to specify a value. This is commonly used
when setting up headings, or setting initial values in numeric variables which are to be used as
counters or accumulators. There are many other used for this.

The initial attribute takes the general form: -

INITIAL (constant)
INITIAL may be abbreviated to INIT.

The constant should be written according to the rules described earlier in this topic for
constants of various types. That is, a character constant must have quotes surrounding it etc.
Blanks may be inserted between the constant and the brackets.

The constant does not have to have identical attributes to the variable, as long as the value
written can be held in the variable. The commonest use of this facility is that numeric variables
are normally initialized with constants written with a fixed decimal format, whether the
variable being initialized has a decimal or binary base, and a floating or fixed scale.

A character string constant used to initialize a character string-variable need not be as long as
the variable. If it is shorter, then it will be padded on the right with blanks.

The rules which govern the conversion of constants to the attributes of the variables are the
same as those which apply to assignments, and will be covered in Topic 4.

Below are some valid uses of the INITIAL attribute.

Dli NG

3

UIMU|LIATIOR

[¥)
-~

oDViCT]

I~
-

=
T

ie Jvi\-r

(v]
fal

i { el el U

B9 V>

ON

ubalRiule)
>
o ad oA~

lwiiwil-]

)
E
E]
E
E

22222

[INNN NN
[

1~~~
g

Page 3 -16

Topic 3: The DECLARE Statement and Data Elements

HEADING has a length of 30, while the constant is only 24 characters long. The constant will
have 6 blanks added to it on the right. HEADING will contain these characters when execu-
tion commences, and will retain them until they are over-ridden by an assignment to HEAD-
ING, or a read into HEADING.

The constant put into ACCUMULATOR has the same base and scale as ACCUMULATOR,
so its precision only will be changed.

The constants used for PRODUCT, PI and BILLION all have different scales from the
variables. In each case the constant has been written in the most convenient form. The
initialization of PI and BILLION allows these constants to be written out once, and then the
corresponding variable names can be used in calculations.

Below is an extension of the listing program of Topic 2, which prints a heading, lists some
names and addresses and then prints the number of names and addresses listed, with a
message. The heading is put into NAME _ AND__ ADDRESS by the initial attribute, and is
printed in statement number 40. Statement number 50 over-writes this by its READ opera-
tion.

Clolun <] | [PIRlolc] Tolpirliiolis| [(MaltNDLT T] TTTT 1T T i L1/ [1]o] lels
o] e WAME-ANDLADDREISTS }cm]g;jﬁggp;_ IR EEN /20 e/
e e N m s O INAMES] AND_ADDRESISES), EREED
B f ;__H'CJLL:&l';COl_.(JfI!IMfl__}“E_PMTBIN(;Jks_?); lm;‘l‘(ﬂ;l L ﬁ L ‘ a /¥ 310 |/
R bbb ve b od il ; : “ e ; i HEEEE L
S . WRII[TE FllLF- ([PRINTlOUT)| [FlROM [(NAME_AND_ADIDRES|S); | | || /¥ 4@ e/
o] ?Iﬂ_ﬁ#{n;« FIILE| [(|c/AIRIDIS|I|N) [LINTO, [(NAME_AND—ADDRESIS) ;. i e 5l9 |/
PR i i i R ‘ L L] I
e Do| WHI|LIE |(|NAME|_|ANID_ADDRESSS| == ' ")l; BRENERE /¥ lolgl ¥/
CTEE T T rcouir (= Tileoluinr| s T[T T T T T (1 s
T T wiRi Tl TEDTLE [CPRINFOMT) T FRloM (NAME|-ANDLADDORESISD ;| [/¥ [8lg] ¥/
. || | READ] | [FlIiLIE] |((C|ARDS|IN) I NTO (INAME| AND-ADDRESS] ; /Al |w/
ol CENDG | o na s | /¥ 108 %/
i ”Lj 11! Na a'_’;Aud_JAooR‘ess z "Nﬁum*s'efa 0F INAME|s| |AND| |ADDIREISISIES] [[/ [1]1]al ¥/
L _%_%ggg_nn_e ([PRINTIOUT]) | [FROM |(NAME_ANID—ADDRESIS]); /¥ 1209] ¥/
i INAMEL [AINDLIADIDREIS|S| =] |i|clojulnT; [/¥ 138] %/
RERI 1TI€] |F1LE] |(|PIRINTIOU[T])| IFIRIOM |(IN/AMIEI—AINIDL |AIDIDIRIEIS[S])|; /¥ [14lp] |/
!ENTU. /¥ ClOWNIT] %/ | “ /¥ 11lsig] [¥l/

In statement number 70, 1 is added to ICOUNT for each name and address read. To make this
correct for the first name and address read, ICOUNT is initialized to 0. The program will thus
work correctly even if no names and addresses are read.

The printing of the final line - the count of the number of names and addresses, raises a
problem. The printer expects that information transmitted to it shall be in EBCDIC code -
PL/I CHARACTER data. ICOUNT will hold the number in binary form, and so must be
converted. Statement number 130 will do this by its assignment. This type of conversion will
be discussed in Topic 4.

Page 3 -17

Topic 3: The DECLARE Statement and Data Elements

Page 3 -18

The layout of the output may leave a little to be desired. Each WRITE produces a line of print.
It would be more elegant to have some blank lines between the heading and the first name and
address, and to have the number of names and addresses on the same line as the message.
Techniques for doing this will be discussed in Topics 5, 6 and 15.

You have now covered most of the major data types used in a processing program. In later
topics you will meet one further major data type which is principally used for the input and
output of numeric data, and ways of grouping together sets of associated variables - perhaps
the entries in a tax table, or the items that make up a record of some transaction.

In the next topic, we look at how to use these data types in calculations and to move data
about in a program. Before looking at Topic 4, please attempt questions 15 and 16 at the end
of this topic.

Topic 3: The DECLARE Statement and Data Elements

Exercises

1. Which of the following declarations are valid?

Vol A T T T Rl VARL1] [CHAR(([2]eD)] _

/e 8 ¥/ | ucu VAR-]2 (CHAR(3);

/e e e/ 1 bcLviaR—3] CHIARCBD] |1

D bl DL (VAR 4, CHARG | T

/¢ €/ | IbcL |VAR.IS cHAR(2D], VIAR_6| CHAR(3)|; —
/% FoR/ LQVDCLT(VAk_bLVA$-8)%dHAR(4 ; -

A/%,Qi*/‘,P_iﬁ;ggﬁ_VAR_??WAR%ip cﬂqgcs>; | —

2. Rewrite the following group of declarations using the minimum number of characters -
discounting blanks. Note that, for DOS/VS, the ENVIRONMENT attribute would also
be required for the file declarations.

E—H-““ T t - 4— i 1 ’ - -
;ﬁ_,«.UDCL‘VAR- wHAaws), VAR_ 1 Cher (3),

A -,,DCL V‘AR1—2‘ CHIAR (14) ; (MvepR_3 vae _3) Charl
B DCL' INF! L. FlilLE [N PUT]; {Tlneve TapuT ,0MTFI ¢
1. vcu ouTFL, Fli LE] |OUTPUT]; _ oumpui
;Mﬂ+‘ qqq Wﬁq-@ cuﬂg(*); 1 T

Cod P | i : | b

3. Which of the following declarations are valid?

¥ A e/ [[1]] loicl lcHARL 1| CHARC(|327/67)!;
/¥ B ¥/ | | ' IpcL ICHAR_ 2 CHAR(1); L
/¥ Co%/ | . |DCL CHﬂR 3 |C[HAR (380! |
T T . R

4. Which of the following assignments are valid?

[T T T o] feHARL 4l [c[HARI (1] —

L] * L
LH A W/ _|CHAR|I-4 ' |= |2°]ABICIDIE" |;
/1 B ¥/ . |CHAR|—4 |=| ‘Rl0B|'S| |COAT;
/¥ Cl ¥/ |CHAR—4 | |= ‘1123 45678 ; v

5. Declare a variable called JOKE which is large enough to hold the characters HAHA and

assign HAHA to it. OCL Jok& char m(\-l)
ok sadue) () H
6. Which of the following declarations are valid and what are the attributes of the validly

declared variables?

\ Page 3 -19

Topic 3: The DECLARE Statement and Data Elements

B UG T O S S

TH A T :@lf(giMiﬁfﬁlxemcygb,;gf‘f;ﬁ
Ll LBuN-2 HixED(3T)L |
N | | | BIN-3 FIXED|(31)) BIN;
/M B |/ el [rBIN-4 Flixed| BiINARY:|
/M coxl/ L DCL | BIN-S Fi XED BIN(32)5 |
1 ﬁﬂﬁ/ifw,L%.DF&pQ&Lﬂi@J§‘ﬁ%EY%fwwaﬁzggg

7. a) Write a declaration for a fixed binary variable called INT, just capable of holding
integers up to 255. (256 is 28).

b) Write a declaration for a fixed binary variable called FRACT, capable of holding
numbers up to 15, correct to the nearest eighth. (16 is 2¢).

8. Which of the following declarations are valid?

VWl A AT lnch FixEelol_oelc]_]1] [oEc] [Fli[xelol([sD];| | |
/¥ B %/ ... |peL [FixeDpioec, 2| [DEC] |FIxED; ||]
/M c |/ | _|pcL [FiIxED_DEC_3 DEC |FIXED(16],3);
/;* D s/ | _|pcL |F1x€p.DEC_4 [PEC F:ix!feo(!b,%s)-;

9. a) Declare a fixed decimal variable called MONEY capable of holding dollar amounts
less than $100 to the nearest penny.

b) Declare a fixed decimal variable called WEIGHT capable of holding weights in
kilograms up to 500 Kg., correct to the nearest gram.

10. a) State one advantage of fixed decimal over fixed binary.
b) State one advantage of fixed binary over fixed decimal.

11. Which of the following declarations are valid?

B S R SRR #l‘ L4 L
JH AL/ L (Dicik [FILL 1] (DECI FILOATI(I6])] | |
/¥ B |/ ||, locL FL_.2| FLOAT DEC (6], 2);|
e /T T el FL_3] bEc| FILOATI; }
,/ghpﬁtﬁw, . IPClL |FiLi_4| FLiolaT] BlIN(144 ,;

12. a) Declare a variable called FL__5 to hold information to at least 10 significant decimal
digits.

b) Declare a variable called FL__6 to hold information to 40 significant binary digits.
13. a) Stateone advantage of floating point variables over fixed point variables.

b) When might you use a BINARY FLOAT variable rather than a DECIMAL FLOAT
variable? ’

14. What are the base, scale and precision, and the length of the following variables?

Page 3 -20

Topic 3: The DECLARE Statement and Data Elements

| 1L AR NEEN
/] 1a] |%/ Dﬁﬁ ViA zjlziF_ LA |
/| 18] |x/ plel) vaR_2] FliixER; T
Vx| le] 1/ | plell Vialk3 B Ndrisp Gl
/1 o] [#/] DiCL] VAR—4i| | | B
7 B AT plciL! WialR_|s| lclarl T | 1T
R #A LT | Plel] viar_ 6] o] FliixED; | [T
RZanzRCV RN HWP&ﬁMJVAR—JJF’X§5675P% N
, I TTT7
15. Which of the following declarations are valid?
1
RO olclc] Malrl7] Icialr| (2l | M Tl 5
PR R plelc] VIaR|-12| lclHialRI <2l vt T 7D
/1% (C 1*/ DICIL| |VIAIR_|3 Fil|X[E|D 1B/ W75 @) IWITTI @8l Bl
/1% ol e/ plclL] iAR|_|4| [F|1|x[EID| 1M1 |T|c|T|0l@l718))] B/ WCir5],) ;]
/i E| ¥/ piciL| VialRLI5| cHAR[C[7)| /M1 TICHE[AD]I W)

16. Write a declaration, writing the minimum amount, for a floating point decimal variable
called CONV, which will hold data correct to 6 significant decimal digits and which will
contain 2.20462 when the program starts executing.

Page 3 -21

1opic 3: 1he DECLARE Statement and Data Elements

Answers

1. a) Valid.
b) Invalid. VAR-2 contains a special character, and sd is not a valid identifier.
¢) Invalid. There should be a space between DCL and VAR _ 3.

d) Valid. The list of attributes is optional, so this will be taken as a declaration of the
" identifiers VAR__4 and CHAR, both with default attributes.

e) Valid.
f) Valid.
g) Valid. VAR __ 9 will take default attributes.

2. The order is not significant. Note that INPUT and OUTPUT imply the FILE attribute.
Also, in DOS/VS, the ENVIRONMENT attribute would be required in the file declara-
tions.

3. a) Valid. This is the largest character string variable that can be declared.
b) Valid.
¢) Valid.
‘4. a) Invalid. If the 2 is meant to be a repetition factor, it should be parenthesized.

1 b L | |
n L CHAR_4 = qz)‘ABcoej; 1

+
-+

!

b) Invalid. The ' between B and S will be taken as the end of the character string. It
should be doubled.

L] -
J

CHARL4 = 'ROB’' ‘S COAT';

T

N
i
|

¢) Valid. It is quite valid to have a character string constant where all the characters are

numeric.
5.
1 N |
L] VoKE| CHAR(|4)]; NENREN |
Pl AN IR .
EENEEEEE [L S 1
JIOKE| = ‘HAHA|' ; | /* EITHER [THIS| STATEMENT |/
VOKE| = (|2) "HA'; | /% OR [THIS| IRERRERR LV
i ! P i T T i 1 i ol

Page 3 -22

Topic 3: The DECLARE Statement and Data Elements

Even a simple problem may have more than one solution.

6. a) Valid. The declarations expand to:

| !

" olelt] (B INi=[1] TElrxIEDl [Bl1INI(l15D) ;
DIC/L| |BiJIN—|2| |[FII|XIED| |B|IINI(|3]1);
biclL| |B1IN_I3 [Flilx €D [BIN(3]1]),

Note that, although all three are BINARY FIXED, the precision must follow BINARY or
FIXED, and so one of these must come inside the brackets. However, BIN__ 2 and BIN_3
have identical attributes and it is possible to nest the factoring of attributes, so:

o [(BN D IXED([115)] | [(B]1iN_2], 1B 1IN3])| [FiIXEDI([3[1DD] [BlIN];

has an identical meaning,.

b) Valid. As IBIN 4 starts with a letter I and is not given any precision, it defaults to
FIXED BINARY (15).

¢) Invalid. The maximum permitted precision is 31.

d) Invalid. There is no abbreviation for FIXED. -

7.
i | |
/Al el 1 pici! [/IN'T |Fliix g[D| BIIIN(8)1;
/% B |#/| piciL| |FRACT [F1XED [BIIN(|7..3)};
L I I A 1
8. a) Vald.
b)) Valid. The precision defaults to (5).
¢) Invalid. The maximum precision is 15.
d) Valid.
9.
l
/x| Al ¥ Dicit| IMolNE]Y [F 1|x|e[p| |DEIC| (|4, [2D];
1

If the amount were held in cents, it could be held in a fixed binary field:

plclc| |cleWlT|s| F7|x[elp fém{/c/es); | J(H

which would have the advantages that you are about to list for question 10 b).

Page 3 -23

10pic 3: 1he DECLARE Statement and Data Elements

, i {
/il 8 [#l/ || vlclt| WETaHT Fl1)x|EP| Delc|(e], (3D ;

1
i i

10. a) Fixed decimal variables may hold fractional decimal numbers exactly.
They may hold larger numbers than fixed binary variables.
Their contents can be converted to character format more quickly.
b) Fixed binary variables may be processed more quickly than fixed decimal variables.
; They also hold data in a more compact form.
11. a) Valid.

b) Invalid. The precision should be one number only - the number of decimal digits to
hold.

¢) Valid. It will default to DECIMAL FLOAT (6).
d) Valid. This is the maximum precision.

12.

oo
(%)
r

mn

r.
Uy

*
-
*
\
r
1
[\
[« 2\=J
Zz
>
-]
<
)
P
[«)
>
3
~~
Yy
N

e

13. a) Floating point variables hold a constant number of significant digits, irrespective of
the magnitude of the number. They are more flexible.

b) If the initial information came in binary form, and you knew how many binary digits
were to be held, then the variable used might be declared as BINARY FLOAT. The
two data types are inter-changeable.

14.
| |
/e Al ¥/ dclL| [vAR_1] |FiL|olam [pleicicle) [;
S Bl ¥/ 1] Ikl VAR 12 IFi|x[elol [DlElc]([sD];
/i c] e/l | [dlelc] VAR 3| [FLlolalT] [8[1|N[(J15)) |
/1% D| |*l/ DiciL| VAR 4 [FiLloAIT [DIEIC(le));
/1l E| [/ DC|L| [VARLIS| CHAR|(I1]);
/\¥ [F| %/ DCIL| [VIAR_6| [FlI|XED| |DEC|(|S)};
/1% G */} %CL %VAR-7 Fli |x|EID| DIEICI(|15)];
! | i

The letter I at the beginning of IVAR 7 has no influence as there are some attributes
declared.

15. a) Invalid. A value, in brackets, must appear after INIT.

b) Valid. The blanks between the open bracket and the first quote have no significance.
The string of 2 blanks will be padded up to 20 with blanks.

Page 3 -24

Topic 3: The DECLARE Statement and Data Elements

c¢) Valid. This would put an initial value of 9 into VAR__3. It may well be easier to
write 9 as the constant, and will be easier to read.
d) Valid. The order of attributes does not matter, as long as the bracketed constant
immediately follows INIT.
e) Invalid. HEADING is not a valid constant, it should be '"HEADING'.
16.
S L ||
L L1 IpieiL] [CloNv] [IN1TI(2] 284612 |
T ! T

CONYV will take the attributes FLOAT DEC(6) by default.

Page 3 -25

Topic

I S p
D
A A
E D T
Y P Y 1
D U E T
N M D N M D
% 0 G 0 P
u P D E u P E P D
I R A T
Y I NoOT Y I NoOT Y 1 DE
0G P T 06 M E T 06 M P T D
0 E N oOTU 0 E ST R D N uD
0G E D Y 06 E D D RO D N ST (
M D NT DY R AM D NT D R AM D NT PO
M ND EN D P RM ND ENT D P R MIND ENT D RO I
IN E N u P A IN E N TU P R IN E N U R
EP NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TUY O ND
N E T R G C ENE T R G D EN TU R R M El
ST P O I PED T ST P O N PED T STU A ND N
T S UY ROGR NT S UDY ROGR NT S UY ROG EN
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE
U PROG AM N EPE DE STU PR R NE END T ST PR G AM N EPE T T

Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S

PR GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMI E EN T STU
‘OGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY
‘RAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROG
\M INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRA
INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM
{DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IN
IPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
, 'DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
§ NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM I[INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM [INDEPENDENT STUDY PR
— im . e~ AAm AL TMACACMACNT CTHINY PRNAGR AM INDEPENDENT STUDY PROG

Topic 4
The Assignment Statement

This topic examines the processes of assignment, expression evaluation and data conversion for
element variables. It covers both numeric and string data.

Objectives
On completion of this topic you should be able to:
« write valid assignment statements
« calculate the precision of arithmetic expression evaluation
« use the concatenation symbol to perform character expression evaluation.

Introduction

The assignment statement is an important statement in PL/IL It is the statement by which data
is manipulated in main storage and by which calculations are performed. During the processes
of assignment and expression evaluation, the variables involved may have different attributes
and/or precision and therefore some conversion of the attributes may be necessary.

Page 4 -1

‘Topic 4: The Assignment Statement

The Assignment Statement

General

The name of the assignment statement does not do it full justice. The statement does cause
assignment - the copying of information into a data variable. It is also the statement by which
calculations are performed in PL/I by the process of expression evaluation.

The basic form of the assignment statement is:
variable = expression;

The assignment statement is the only PL/I statement which does not have a keyword to
identify it. It is recognized by the = character and the general construction. Like all PL/I
statements, it terminates with a semi-colon. The expression on the right hand side of the =
character - the source expression, is evaluated and the variable on the left hand side of the =
character - the target variable, is given the value of the result of the expression evaluation. The
target must be a variable name. It is the only variable whose value is changed by the execution
of the statement, and it is changed as the last step of executing the statement.

The range of complexity allowed in the expression on the right hand side is considerable. At its
simplest, it may be a constant or a variable. It may also be a complicated arithmetic or
character string expression.

Arithmetic Assignments

Page 4 -2

The expression in an arithmetic assignment statement is similar to an algebraic expression,
consisting of operands and operators. The operands are variables and constants, as discussed
in Topic 3. Where they are constants, the value is used. Where they are variable names, the
contents of the variables at the point at which the statement is executed are used. The
operators and their meanings are:

OPERATOR MEANING
+ add
- subtract
* multiply
/ divide
‘** exponentiate (raise to the power of)
The following examples demonstrate the use of the arithmetic operators. .

Topic 4: The Assignment Statement

Lotk S . L L Lo
SuM ol =A+ B, ! /¥ 110 ¥/,
| DIFFERENCE] | = |4 -"B; | LT /e 2] e/
PRlODMCIT | = A B |1 /e 30| e/
QUOTIIENT | = |A / B | 1] || /¥ 48 ¥/
‘E.‘IXVP'O%N»ENT‘I AL = [Axxpl; (111]/l 5] ¥/
et A AEEENEE ,
,-C.'.:;%Ap;,, BEANREAERRRNRRRAR ;* "2 ¥/
G 1= B |+ -AL EEEEE L e 79 e/
,ct = -8+ A | L] /| 819 ¥/
. C |= 8 = A - L 75 ilL /| ‘i¢l ¥/

In statement 10, the current contents of A and B will be added, and the sum will be put into
SUM.

In statement 20, the current contents of B will be subtracted from the current contents of A
and the result will be put into DIFFERENCE.

In statement 30, the current contents of A and B will be multiplied together and the result will
be put into PRODUCT.

In statement 40, the current contents of A will be divided by the current contents of B, and the
result will be put into QUOTIENT.

In statement 50, the current contents of A will be raised to the power of the current contents
of B (AB) and the result will be put into EXPONENTIAL. Note that the exponentiation
operator must be coded as two * characters in adjacent columns.

The + and - operators as used in statements 10 and 20 are called infix operators. An infix
operator operates on two operands and is identified by having an operand on either side. Thus
the infix operator + in statement 10 has the operands A and B on either side of it and causes
them to be added together. They may also be used as prefix operators. A prefix operator is
one which operates on one operand only. It is identified by not having an operand to the left
of it. Either it is the first character of the expression, as in statements 60 and 80, or the item to
the left of it is an operator, as in statement 70. If two or more operators in an expression are
not separated by operands, then all but the left-most are prefix operators and must be + or -.
The effect of a - prefix is to multiply the operand by -1, effectively to change its sign. Thus,
statements 70 and 90 have identical effect. The + prefix operator has no effect. Later in this
topic you will see that it is important to be able to differentiate between prefix and infix
operators. ’

Below in statement 10, the variable V1 is used five times. At the beginning of this topic it was
stated that the only variable to have its contents changed is the target variable, and this is only
done as the last step in the execution of the assignment statement. Hence, statement 10 and 20
have identical meanings.

Page 4 -3

Topic 4: The Assignment Statement

|

pARARYY + W T Wl W] TH TR e el

vl = e b v L L e (2l
Wirl = Wil sy viesy [T (8] (e]
V] = Viz] x (VL] (Vi ¥ VS| L e x|
ARIEA = \PIL e IR j*el 205 ||| Ing Lk 58 x/

\PEIRICIEWT |=| IValelsialaiLle [/] BlalsiE| |%| riele| ||| 7x lelg] /|
x| = |-ly| % 205 RERERRvER YR
Al |=| 17IBl [¥%] |-|C) 1| |=1D]i L B k]
A=l oG L L L el 4y

Al 1= |c| [== [a]i] |]| RER REE m /1% 17ele] %/
Al =] [~lal; e 11 é sx |71 el %]/
AL ws L L DL L riale s
AL R) /w13l 16/
Al =] |Z1CB] [#pe) (—i((C]] (C=DDDD] L LU e %/
REISILIT] = [c]A] [+] D] |7] (el [#] oDl {11111 [17 [7lsle| [«/
TVﬁéEFM,i<£4WtN§l./_KFH#HP?fﬁﬁﬁA;VEy:}[/f 16/e 1%/

The value of the result assigned to V1 in statement 30 does not depend on the order in which
the two additions are carried out. However, the order in which the operations are carried out
in statement 40 onwards is critical. -

For example, the expression in statement 40 could be evaluated as:

(V2*V3) + (V4*V5)
or V2* (V3+V4) * V5
If we let the current contents of the variables be:
V2 =2
V3 =3
V4 =4
V5=35
The result of evaluating the expression in the first way will be:

(V2*V3) + (V4*V5)
= (2*3) + (4*5)
=6+ 20
= 26
The result of evaluating it the second way will be:
V2 *(V3+V4) * V5
=2*3+4)*5
=2*7*5

Page 4 -4

Topic 4: The Assignment Statement

To remove this ambiguity, PL/I has a hierarchy of operators which is shown below. The
hierarchy determines the order in which any expression is evaluated.

Operators Priority Order of Processing
* % T S I A Lt

* . e - - o

In statement 40 above, there are two operators, * and +. In the priority table, the prefix + is
shown as having the highest priority, together with **. The infix + and - have the lowest
priority. In this statement, the + has an operand either side of it, and so is an infix + which
has a lower priority than *.

The expression will be evaluated as:

(V2*V3) + (V4*V5)
The order in which the two parenthesized expressions are evaluated is not significant.

The ** operator of statement 50 has a higher priority than the * operator, and so is processed
first. This means that the expression does give the result desired. The current value in R will
be squared, and that value will be multiplied by the current contents of PI, which hopefully will
have been set to 3.1416 - probably by initializing it.

Statement 60 has two operators with the same level of priority. The order in which they are
processed is critical, and will cause either:

VARIABLE/(BASE * 100)

or (VARIABLE/BASE) * 100
The last column of the priority table shows the order in which they will be processed, from left
to right. VARIABLE will be divided by BASE, and the result of that will be multiplied by 100.
This is the second option above, and is presumably what is desired.

Addition and subtraction are on the same level of priority, and a series of these will be
processed from left to right also.

Statement 70 shows a statement containing three operators, all with the highest possible
priority, since the two - signs are prefix -s. Operators at the highest priority are processed from
right to left, and thus the expression means:

-(Y2)

Similarly, the expression in statement 80 will be evaluated as the sequence of statements 90 to
130.

Although the order in which the expression in statement 80 will be evaluated is unambiguously
defined, the exact meaning of it may not be immediately clear. It is not difficult to make a
mistake in interpreting the order. in which a complicated expression will be evaluated. Also,
due to the priorities of operators, some expressions cannot be written as a single PL/I expres-
sion using only the operators and operands. To overcome these problems, parentheses may be
used in PL/I statements, as in algebraic expressions, and their use will over-ride the normal
priorities, if necessary.

Thus, statement 80 and statement 140 have the same effect. Where brackets are nested, the
expression in the inner-most parentheses will be evaluated first, following the normal priority
of operators. When this has been brought to a single result, this result will be used as an
operand in evaluating the next level of parentheses etc.

Page 4 -§

Topic 4: The Assignment Statement

The parentheses in statement 140 merely emphasize the order in which the expression is to be
evaluated. If the parentheses are removed, the result will be unchanged. However, the
expression:

A+B

C+D

could not be coded in PL/I in one statement without the use of parentheses. Statement 150
shows it incorporated in a PL/I statement.

In statements like 150 and 160, where there are several pairs of parentheses at the same level
of nesting, the order in which the expressions in them are evaluated is not defined, and is not
significant. When all parentheses at the lowest level have been evaluated, then the rules of
priority of operators will be applied at the next level of nesting, so that the expression in
statement 160 is:

A+B
(C+D) E+F

You should now attempt questions 1 and 2 in the exercises at the end of this topic.

Precision in Expression Evaluation

Page 4 -6

As we have seen, when an arithmetic expression is evaluated, it is as a series of steps. Each
step involves one operator and two operands, and produces a single result.

This result will be held in a work field, which is supplied by the system, and will be used as an-
operand in the next step, if any.

Thus, statement 30 involves three steps:

1) Add the contents of V2 and V3 and hold the result.

2) Add this result and the contents of V4.

Hold that result.
3) Assignitto V1.

The intermediate work fields, like all other fields, must have attributes of base, scale and
precision. These attributes depend on the attributes of the operands and on the operation
which generated the result. In turn, the attributes of an intermediate result will influence the
attributes of further intermediate results, and the final result.

The purpose of this section is to define the rules which determine the attributes of intermediate
results.

We shall be considering two operands with precisions (p;,q;) and (p,,q,) which will produce a
result with precision (p,q). If an operand or the result has a binary base, the relevant p and q
will be in binary digits. If it has a decimal base, they will be in decimal digits. If an operand or
the result is of floating point scale, the relevant q will not apply.

Topic 4: The Assignment Statement

Precision of the result
Attributes
of resuit ADDITION or MULTIPLICATION DIVISION
SUBTRACTION
p= 15
| - _ _ _
FIXED DECIMAL (p. q) p= 1+ MAX (p1 a, p, q3)+ q p=p,+ pz+ 1 q= 15—((p;—a1)+ Q2)
D BINARY am M, e A=A 9 p= 31
FIXED BIN (p.
p. @ q= 31 —((p;—a,)+ G2)
A __
FLOAT DECIMAL (p)
p= MAX(DvP;)
FLOAT BINARY (p)

Note: For FIXED DECIMAL results, if the calculated value of p is greater than 15, 1t

will be reduced to 15. poniHons

For FIXED BINARY results, if the calculated value of p is greater than 31, it will be
reduced to 31.

Base and Scale the Same
The precision of the result of any operation, where the bases and scales of both operands are
the same, is shown in the preceeding table.

Floating point operands are dealt with in a completely different manner from fixed point
operands. If the operands are floating point, then the precision of the result is the maximum of
the precisions of the two operands. This applies whatever operation is performed.

L i 1 [] \ l |
DiclL FlLlo= 1] [FLoAT([4)] (INIIT(1lelel- oD]; 7 16 K/
DejL FLP—2 [FLOAT(l6)| I'N1TI(199/9-19919); |/* 20 w/
et FILp—3 [FLOAT([14]); ' | /e 3l el/
S A EE R } 5
| Atb=3 = FLOL.1 |¥ [FLD—2;| | RAN/CRZTRCYE
Pt i i1 T T 1 ‘ +

When statement 40 is executed, FLD__1 and FLD__2 will be multiplied together to give a
result whose precision is MAX(4,6) = 6. This result will be assigned to FLD__ 3, and will be
padded to the precision of FLD__3 with non-significant zeros.

When dealing with fixed point operands, the precision of the result is dependent on the
operation. In all cases, the total precision. p. cannot exceed the maximum for that data type -
15 tor FIXED DECIMAL, and 31 for FIXED BINARY. If the calculated value exceeds these
limits, it will be reduced to the limiting value.

Page 4 -7

Topic 4: The Assignment Statement

Addition and Subtraction

Page 4 -8

L N N B] | 4
»me,FoJu;Fﬁxgggigﬁx gNdf(quQQ), [¥ 1o */
| pelt Floljz Fl1xeo|(s, 2, 1 NIT(4al9q94lal-[qaD] | /¢ (2] %/
| dlclL Flp|l3_ F|i xED|(19. 2]) ; L | /% 39 %/

: INEEEGNE RN |

_|F|D|~3, [=| (FD—|1, + |FID-2|; /¥ 40 */
| o
”T rﬁb_k‘klfm_(Lw FD_2;! BRERECRC
o i [N I AR R] ' 1

When two fixed point variables are added, the extreme situation is when both variables hold
the largest numbers that they can. e.g.:

FD_1 99999.
FD_2 999999.99
7099998.99

The number of fractional digits in the result will be the higher of the numbers of fractional
digits in the operands. The number of integer digits will be one more than the higher of the
numbers of integer digits in the operands.

This is the precision given by the formula for the addition and subtraction of fixed point
variables and constants.

For this example:

g=max (qq,q2)
max (0,2)
2

nn

p=1+max (p1~q1,p2-d2) +4
= T+max (5 ,6) +2
=9

Where the application of this formula gives a value of p greater than the permitted maximum
for that base, p will be reduced to that maximum. This will cause the number of integer digit
positions to be reduced.

dici, [Flol1] [FlIIXEIDIC113], 13| [1INI1ITI(|55!5/5|55/515(5. 1555D);
biC|L, |F|D|J2| [F{I|XIED|(I113, 16| I INIIITI(] | |55155/5/5]5(. |5/5|515/5/5)]);
nlele] [elpl3] Flilx|elplCl1is), o)) ;

The precision needed for the result will be:

=max (dy,dz)
max(3 ,6)
6

nu

p=1+max (p1-q1, pP2-q2) +q
=1+max (13-3,13-6)+6
=17

Multiplication

Topic 4: The Assignment Statement

As a precision of (17,6) is not allowed, it will be reduced to (15,6). In this situation, the sum
will be:
FD 1 555,555,555.555

FD 2 5,555,555.555,555
561,111,111.110,555

which can be held in a fixed point decimal field with precision (15,6).

However, if the value in FD__1 were 5,555,555,555.555, the sum would become:

FD_1 5,555,555,555.555
FD 2 5,555,555.555,555
5,561,111,111.110,555

This value could not be held in a precision of less than (16,6). In this situation, the result
obtained is not defined.

’.
It is the programmers responsibility to endure that the result of the calculation can be held in
the result field which will be provided.

Similar considerations apply to subtractions. The extreme situation here is when one operand
holds the maximum positive value and the other holds the maximum negative value.

In multiplication, the extreme situation is again when both operands hold their maximum value,
positive or negative. The formula which gives the precision of the result allows for this

situation.
Example: i
MCL FOl-1| FIIXED[C2, 1D [IINIITI(9]-12D;

DiciL. [F[D|l_2| Fl1IXED[(13[, 12| [I|N[1ITIC19[-199)

DiciL [Fpl-3 F|1 XED|C6|, 3));

|

|

The calculation performed is:
9.99 * 9.9 = 98.901

The precision of the result will be:

p= prrpz v]

5 -
- 5t

gq= it
T+ 2

A field with a precision of (6,3) will hold any result which can be produced by multiplying
together these two variables.

As with addition and subtraction, when the required precision is not available due to limits on
maximum precision, the programmer must ensure that the result field given can hold the result
obtained.

Page 4 -9

Topic 4: The Assignment Statement

Division

Page 4 -10

In division the total number of digits needed to hold the quotient with complete accuracy is not
predictable from the numbers of digits in the dividend and divisor. Thus, 1/3 would need an
infinite number of digits for the quotient: 0.333....

Because of this. the formula for calculating the precision of the result of a division always sets
p to the maximum for the base of the operands. What can be predicted from the precision of
the operands is the maximum number of integer digits in the quotient, which is the difference
between p and q. The value calculated for q does not indicate how many fractional digits are
needed to hold the result with complete accuracy, but how many digits are left for fractional
places after allocating all that are needed to hold the integer part of the result.

Example:
N I T o Y I A A O O B S B !
| Dc|L Dlt\VIDEND, ﬁ:xIED ét}s) IINIITI(9)99- 9199)
| DejL p:vufs;pR;,_fnxao(sl,;z) INIUTC] 001D |]
| DclL QUOTIENT FlLOATI(15)]; | E
L ;_TIQuqf:EN;rM: D1 v|IIDEN[D! /] [DitIViI[SOR];

‘ ‘ b ! i ! i !

The extreme situation for division is when the dividend holds the largest value it can and the _
divisor holds the smallest, (see example above). The result of dividing 999.999 by 0.01 is
99999.9, needing 5 integer places.

Application of the appropriate formula for division of fixed point decimal operands shows that
the precision given for the result will be:

p = 15

q = 15-((p1~q1 + d2)
=15 - 5
= 10

Thus, the precision will be (15,10), which will give S integer digits and 10 fractional digits - the
minimum number of integer digits required to hold the extreme situation.

If the values in the dividend and divisor are taken to the other extreme - the minimum value in
the dividend and the maximum value in the divisor, the result will be:

0.001/9.99 = 0.00017 approximately

This will still be held in a result field with precision (15,10), and so will only be held to 7
significant figures, the first 8 digits being leading zeroes.

When selecting the precisions of fixed point variables which may be used in division, selecting
the smallest precisions that are adequate for the data to be processed will give the maximum
number of significant digits in the result. Using unnecessarily large variables will cause a loss
of precision in the result.

Problems of this nature may be avoided by the use of floating point variables. With these, the
number of s1gn1fxcant digits held in the result will be the same as the precision of the result.

\/ You should now attempt question 3 in the exercises at the end of this Topic.

Topic 4: The Assignment Statement

Bases and /or Scales Differ

All calculations in PL/I are done on data items which have the same base and scale, although
the precisions need not be the same. If the programmer codes operands whose bases or scales
differ, then the operands will be automatically converted to a common base and scale accord-
ing to the following rules:

a) If the bases differ, the operand with a DECIMAL base will be converted to
BINARY.

b) If the scales differ, the operand with a FIXED scale will be converted to FLOAT.

Examples:

BN EEE N NN |
ot Flilx_B1lN | Fl1xED| 81N, 6D [[N1TIC18)]; /% 1lg] [#7
DCjL FlIX_DE|C, . F|/ XED| DIEC|(4,!1))) | UINIT(128)}; /% 2|0 &/
_Dclt FlLjo_B !N - FLOAT] B[l N|(21D IINITIC38D); /% _3lg |«/
_DclL IFILio_DEC, : FLOAT| DEC|(6) (NI TI(48) ; /% 4o %/
olc|t |ANjsweR| | FLoaT] DEC|(1l6D]; /1 _[s|g| |/

B ‘ BERNEREE r
- ,- -t) ' 1 ,I T
| _AINSweR| = FAix_[BN +| Fl1x|_IDE[c]; /% |6lo] |*
| T ANsweR| = Flix_[B[IN | FiLlol_[BlI|N]; /¥ 7l e/ |
\ __AINISWER| = 'FlI X—BIIN |+ FLODEC| # [FlIx-DIEC; |/¥ 89 ¥/

In statement 60, both have the same scale but the bases differ, so rule a) will apply and
FIX__DEC will be converted to FIXED BINARY.

In statement 70, both have the same base, but the scales differ, so rule b) will be followed and
FIX__BIN will be changed to FLOAT BINARY. '

In both of the examples above, one operand was converted so that its base and scale were the
same as those of the other. In statement 80, FIX__ BIN has the dominant base - BINARY, but
FLO__DEC has the dominant scale - FLOAT. In this case both operands are converted, so
that the operation is carried out on operands which do not have the attributes of either of those
coded. FIX__BIN and FLO__DEC will both be converted to FLOAT BINARY.

When operands are converted, the precision, as well as the base or scale will have to be
changed.

If the precision before conversion is (py,qy), then the precision after the conversion, (p,,qs),
will be given by:

a) If the scale is changed from FIXED to FLOAT, the precision will be:
Po=mM

b) If the base changes from DECIMAL to BINARY, the number of binary digits
needed to represent each decimal digit is approximately 3.32.

A variable cannot have a fractional number of binary digits, so the precision will be:

3:32 * p
3.32 * q

<)
Q2

o

where p, and g, are both rounded to the next higher integer.

Page 4 -11

S vpee e amu ASOIEIMUTHL Slateinent

¢) If the base changes from DECIMAL to BINARY, and the scale changes from
FIXED to FLOAT, then the precision of the converted operand is:

p.=332*p;
rounded up to the next integer.
Applying these rules to statement 60, FIX__DEC will be converted to FIXED BINARY, with

a precision:

P2 = 3.32%p
3.32% 4
13.28
14

nonon

d»2 =3. 32*q1
3.32% 1
3.32

4

W onn

The result of the addition will be in FIXED BINARY, and its precision will be that resulting
from adding two FIXED BINARY variables with precisions (15,0) and 14,4):

q = max (dp,d2)
max (0,4)
4

[T

p =1+ max (p1~di1,P2-92) + 4
1 + max (15-0, 14-4) + 4
1+ 15 + 4

20

oo

In statement 70, FIX_;BIN will be converted to FLOAT BINARY, with a precision of (15).

Statement 80 has two operations. The order in which they are carried out will depend on the
relative priorities of the operators. The multiplication has the higher priority, and will be
performed first. Both operands have the same base, but their scales differ, so FIX__DEC will
be converted to FLOAT DECIMAL, with a precision (4). The product will also be in FLOAT
DECIMAL, and its precision will be given by:

p = max (pg,p2)
max (6,4)
6

o

This result will now form the second operand.in the addition, giving an addition of a FIXED
BINARY (15) to a FLOAT DECIMAL (6). Both operands will be converted to FLOAT
BINARY. The converted precision of FIX__ BIN will be (15). The converted precision of the
product of FLO__ DEC and FIX_DEC will be:

p = 3.32 * p,
3.32 % 6
19.92

20

Won

The precision of the sum will be:

p = max (p;,p2)
max (15,20):
20

In all cases where conversion is done, the contents of the original variable will not be changed.
A work field with the converted attributes is supplied by the system and the converted value is
held there.

Page 4 -12

10pic 4: 1ne Assigmmen siatcucn

Conversions are all done automatically. They become important to the programmer when
conversion is done from FIXED DECIMAL to FIXED BINARY. Fixed binary fields may not
hold as large a number as fixed decimal fields, and fractional decimal numbers are not held
exactly.

You should now attempt question 4 in the exercise at the end of this topic.

Conversion of Assignments
In each of the examples the attributes of the result did not match the attributes of the target
variable, ANSWER. In each case, conversion will be done to the attributes of ANSWER.

When converting the attributes of the result to the attributes of the target, the base and scale
will first be changed, if necessary, and their precision will be adjusted.

Base and Scale

Apart from the conversions which may occur during expression evaluation, conversions may
occur from FLOAT to FIXED and from BINARY to DECIMAL.

When data is converted from FLOAT to FIXED, the precision of the converted value will be:

P P1
the number of fractional digits in the wvalue

held in the FLOAT field.

L]

When the data is converted from BINARY to DECIMAL, similar considerations apply as
when converting from DECIMAL to BINARY; each decimal digit may represent approximate-
ly 3.32 binary digits, and the precision of the converted value will reflect this. Thus:

(p1/3.32) rounded up to the next integer

P [
(g1/3.32) rounded up to the next integer

a

hon

" Precision

If the precisions of the converted value and the target do not match, the following will occur:

For floating point values, if the precision of the target is greater than that of the source,
the source will be padded with lower order (right hand) zeroes.

If the precision of the target is less than that of the source, the source will have low order digits
truncated.

For fixed point values, assignment will take place with decimal point alignment preserved. The
fractional part will have the low order end padded or truncated, as appropriate. The
integer part may be padded with high order (left hand) zeroes. If the integer part of the
target is smaller than the integer part of the source, and the value in the source is such
that significant digits would be lost, then the result is undefined.

You should now attempt question 5 in the exercises at the end of this tbpic.

Character Data in Arithmetic
Expressions

It is possible to use character string variables and constants in arithmetic expressions, providing
that the character variables contain valid arithmetic values. A valid arithmetic value in a
character string variable consists of characters which obey the rules for numeric constants of
one type or another, optionally preceded and followed by blank characters. There must be no
alphabetic or special characters, other than those allowed in the format of numeric constants.
The following are character string constants which could be used in an arithmetic expression.

Page 4 -13

Constant Value

' 123.45" 123.45
' 123.45" 123.45
' 0123.45" 123.45
' 1.2345E+2' 123.45
' 101B’ 5

The following character string constants could not be used in arithmetic expressions:
Constant Reason

'APPLE PIE' Alphabetic data
'12 34" Embedded blank in the numeric characters
'12/34" Arithmetic expressions are not allowed.

If character string variables or constants are used in simple assignment statements, then the
attributes of the value they represent will be those implied by the way in which the value is

written e.g.
Constant Attributes
! 123.45" FIXED DECIMAL (5,2)
' 123.45" FIXED DECIMAL (5,2)
' 0123.450" FIXED DECIMAL (7,3)
' 1.2345E+2' FLOAT DECIMAL (5)
' 101B' FIXED BINARY (3)

A simple assignment statement in this context has the form:

variable = variable;
or variable = constant;

~
/
/

If a character string variable or constant is used in an arithmetic expression, then the value
contained in it will be converted to FIXED DECIMAL (15,0), whatever the implied attributes
may be.

All conversion takes processing time, but the conversion of character string data to numeric is
more time consuming than most and should be avoided where possible.

Numeric data which comes from punched cards or other keyboard input forms in character

format. Ways of processing this data without doing slow character to numeric conversions will
be discussed in Topic 6.

Character Expressions

A character expression is an expression whose result is a character string. There is only one
operation which gives a character result - the concatenation operation. Concatenation is the
process of joining together strings of characters to form a larger string. The length of the
character string produced by a concatenation is equal to the sum of the lengths of the ope-
rands.

W

The operator used ia like the exponentiation operator, made up of two characters, in adjacent
positions. It is two vertical lines, (= /in adjacent columns. Care should be taken when coding
it to write full length lines, to avoid confusion with the number 1.

Below are some examples. In each case, the character string after the concatenation operator is
joined to the character string before the operator with no intervening blanks. Thus, statements
20, 30 and 40 have identical meanings.

Page 4 -14

Topic 4: The Assignment Statement

L. L - [o - - —1—-7-L— —v~————~~L
bﬁaugggggL; CHAR(b), 1 F /e 7lel 1%/

UL ek E] = NeHar]] i g sE] T /% 26 %/ |
UL AR E] = Ml] T AR E /% 3le| %/ ||
| ciH|AlRILI1E] [=] |*|c|H|alRIL|1E|"] /% 40 %/

L] CHARL |CHIARIL|1IE|" |3 “ 4o /)]
(Pleiw] cluialel|rE[s] [clalkicabls| [T[T /%] e/ |
| cliaR|L|/[ElS| |- clrlaRILE] (1] [M[MMsltll | e el /] ||

loicle] lplewTic|r WiE] lclmlalricr Bl 5[[T 11111 1 7o W/
L PR i =] | lalela=] o] 1] (clal % [8D]5] /1] 8le| lxl/
1L IPRWITILIIVE! = |*Alx(Bl=| |’| [I]I * Bl /% 9lg| |/
JE SO T ——1- Mgl SRR NN SN SN S Sy A o - —4L L -
[T N Y o S R S -} _,J,‘,
AWNIS! =| |A #* (v ;::3*' iy 74;_5_'61')i il /% e */
- I R B S R - od et - bl pod
CHARILIIE = ‘Cf.“ﬁ,‘?'_’ L || L/4(- /70wi/7_ﬁ
L elHlaRL]r e T lekiaRlL e T ERRRRVENEIREY
LD elHariclrel | l=] [N ckialRl s I RERVERGEZREY
clalalelcirle] | 1= Iclulalklcl =l 1] <1 2] | /% 1lale] ¥/

Those statements all show both operands as character string constants, but either or both m—ay
be variables. Statement 60 shows the first operand as a variable and the second as a constant.

Just as character data may be used in arithmetic expressions, so numeric data and expressions
may be used as operands of the concatenation operation.

Statement 80 shows a typical example of building up a printline to contain some text and
numeric information. The variables A and B will be multiplied together. The result will be
converted to a character representation of that value, and this will be concatenated to 'A*B="
and the whole assigned to PRINTLINE.

Statement 90 is the same as statement 80, except that the brackets around A*B have been
removed. What will be the effect? Will the concatenation be performed before or after the
multiplication? The situation is defined by an extension of the hierarchy of operators, shown
below.

Operators Priority Order of Processing
* % prefix + prefix - highest right to left
* / left to right
+ - left to right
i1 lowest left to right

From this it can be seen that the concatenation operator has a lower priority than any of the
arithmetic operators, and so will be performed after all arithmetic operations in the expression.
These priorities can be over-ridded by brackets, as with the arithmetic operators on their own.

Statement 100, however unlikely to be written, is quite legal. Because of the brackets, the
priority will be over-ridden. The concatenation of '123' and '456' will be done first to give
'123456', a character string of length 6. This will then be converted to FIXED DECIMAL
(15) and multiplied by the contents of A, with further conversion, if necessary.

Page 4 -15

1opic 43 1ne Assignment Statement

This expression is said to be an arithmetic expression, because the last operation carried out is
an arithmetic operation, giving an arithmetic result.

Assignment of Character Expressions

Page 4 -16

When the result of a character expression is assigned to a character string, the following rules
apply.

1) If the lengths of the target and source are the same, then direct assignment takes place.

2) If the target is longer than the source, then the source will be padded with blanks on the
right up to the length of the target.

3) If the target is shorter than the source, the source will be truncated on the right.

This means that statements 20, 30, 40 and 60 will give direct assignment with no padding or
truncation. In statement 110, 'CHAR' will be padded to 'CHARDbbb' before any assignment,
and in statement 120, 'CHARLIE''S' will be truncated to 'CHARLIE' before assignment.

It should be noted that the sequence of statements 130 and 140 will not have the effect which
appears to be intended. Statement 130 will cause ‘CHARDbbDD' to be assigned to CHARLIE.
The expression in statement 140 will cause the string "CHARbDbDDBLIE' to be generated and this
will be truncated to '"CHARDbbDb' on assignment to CHARLIE, so that statement 140 has no
effect on the contents of CHARLIE.

As was noted earlier in this topic, if a character string constant, variable or expression is
assigned to a numeric variable, then it ‘must contain characters which represent a numeric
constant of some form, optionally surrounded by blanks. The attributes of the constant will be_
those implied by the format of the constant.

The assignment statement may take many forms, and many levels of complexity. It is a very
important statement in PL/I. You will learn of further forms of the assignment statement in
later topics. Before continuing, you should complete the exercises at the end of this topic.

Topic 4: The Assignment Statement

Exercises
1) By the use of brackets, show the order in which the expressions in the following state-
ments will be evaluated.
7|% |A] |%|/ x| 1= Ual b [BAH] [C|5
/% |B| |*/ x| 1=l lc| +| B |* B];
/1% Ic] el x| |=| (a] x| [BD*| [c]
/|%| D| |/ X| |=| |A] |** (B |*/%| |C)
/1% [E| 1#/ x| |= (Al |7] 18)) % lc|;
sl IF] 1/ x| |=| (|| [el¥ 8D |-| (A] |*/# |B
/x| & ¥/ X| [=L(A] |+ B # lcr\e] 7] €D # (F] [#1% |2)

2) Write the following algebraic expressions as PL/I expressions.

a) (A+B)2 ¥ = Bt Bkko

) A+g+C+D “ /(A‘\V%*C'.\’D)

0)1?11 L‘i/(—J|E5+1€:‘}§z§_§"‘/‘:-'J"‘ID3 -
R Rt
ABCD

d) (A—AﬁAR 2) 1/2 ((H - ﬂ@ﬁ@**@) /N) -%4(&

€) A+B Q}'f’ﬁ) / (C"f’o)

C+D

Page 4 -17

10pic 4: 1he Assignment Statement

3)

- + e R
_ | L
e
{ i N i
Lol ! o
F\/ \IMI PN :
elmiT~~. -
NI NS
W] -] S~ siNIN
~ SN NN Wiw
I IR
R T
m o aqgaan;
! ! ! |
Al ao o s,
Wiy wiwiw o
EIEIEIEIER IS
| =l= === 3
phofw MM
I ; ; !
I~~~
MH aQ Qa~NN
ol vaQ
X[x>x|x'X 1
~l=—=l— =N~
SIS IS
|
NSNS
QU Q Vv Q!
Qlaa/anaa
i .
T i

Given the above declarations, what will be the precisions of results R1 to R9 in the

following expressions?

~—~~
=T e

_ h n o 2
\J)N)D[ml; =
7 s D1 11 3
(—ﬂ& W 3%({XX m
RN, B ey e D [T TS 3
4L | TKRK 2
NN ANANAN NN S
e
] 1 [&
XXX (DR FNe 2
—— | am— S | o am— | s— _Ill i, w\J.m
FFFFFFHFF o~/
ESE NS IIE IR INNE AR
~ 3 =
OO =QD &+ .
YT = O~
XXXXXXH*.XX y B3
lr..wFFFFFHFF,S %)
_— - £
s-::..:|_.||=l,s m
192}
N[N IS EBeS 1 4 5
"ozl ot oela e oz od| o2 >
—|= -
(3]
= g
(8]
QL
o
R G m
NS SIS €
*****WMMMMW- 5
>
< OO WD T~ °
] =
X XEXEXEEK =
NN NI - A
=
3

following expressions be? What problems might arise in each case?

Page 4 -18

Topic 4: The Assignment Statement

Ranged & Buro

I /
/A AL/ | R = Fix|iBl1] [+ Al xL(brEl;
/¥ '8 [#|/| | | R2] 1= FIXLD1 ¢ FLI-DIT;| T8 t.| P4
/e] ¥/ 1 R3] 1| IF1X|81] |+ [FL-D1}; L Uit
/e D] [#]/] | R4 =] IFux|JD[1] |+ Flilx-[Di2] ¥ |Fl1x|-8[1];
1/*%5 *®|/ RS = FL[D1| i+ |Fl1ixpl2] [% [FlI|x—81

5) In the following assignments, what will be the base, scale and precision of the converted
source value before the precision is adjusted to match that of the target?

| 1 [| | L
Jd Al e/l TRl = E el
/e B e/ |11 IFIXidD) =] Floixl—Bi1;] | | 1
/%l ic] e/l Tle=ol1] | =] [Flix|—Dl1; |
/| D pel/| 1] Fliulxl-[pi1] [=] FlLD1l;
/1% €| [/ Fﬂ-DI =| [Fli[x|_8[2]; |
6)
I |
| pcL lcvil | ICHARI(ISDI; -
I ; DICIL [Cvi2 | [CHARCT);
| Iolcl vl | CHARI(14D];
[piclt INUM | Flixelp| blekci(ls], 2]];

Given the declarations above, what will be the contents of the target variable after each
of the following assignments?

Page 4 -19

oy -y
)
uw w
>4 [+4
o © o~
< < [o~
oo G O N wD o~
-~ = [~ |- |~ |« | >
« & [~ ®
w o (VY BRI N i I 0
[— V] o] |~ L
4~ o | - o~
BRI GNEIEE
- Ol ol- (o - [olojo
Wlulalo{ulw wlu| w|u
N~
S>> [>>> x> IS
O VO VVVVOIZZ
SININSSNININSISINGSIS
;*ﬁ********
<V AWML ITX —i>
LIEIEIEIEIEIEAEIEIED
NININISNISININISN NSNS

Page 4 -20

Topic 4: The Assignment Statement

Answers
1)

| ! | [| i L [i Lo

/| Al ¥/ x| =] [cla] |# gl [+ tefil T T T
/% 8] ¥/ x| 1= le| 14 [cla] el 18OG] [T [T T e T
NEREARTT x| = [cla] [« 18] 1 lcls] T EEEREREE
/(%] (D] ||/ x| [=] 1a] =% [¢[8] %% [chisl |0 EEERRRE
7% E (%7 X l=Tclal T 8ol [elsl [T T T
RCRGERCG x| = [c[-lc[A] [=s (8D =] 1Al =% gy T T[T
/*45 */ X\ 1= |ClA] ! (8] [IcDD] ol 171 B # (R el (20010151
IR [i i R T 1T

2) These solutions use the minimum parentheses. Extra parentheses could be used in ¢) and

3)

4)

d).
a)
b)
c)
d)
e)

a)
b)
c)
d)
e)
f)
g)
h)
i)

a)

b)

c)

(A+B)**2

4/(A+B+C+D)
4/(1/A+1/B+1/C+ 1/D)
((A - ABAR) **2/N) ** (1/2)
(A+B) / (C+D)

FIXED BIN(19,3)
FIXED BIN(31,3)

FIXED BIN(31,13) ‘
FIXED DEC(10,4)

FIXED DEC(15,6)

FIXED DEC(15,6)

FLOAT DEC(16)

FIXED DEC(15,9)

FIXED DEC(15,9)

FIX__D2 will be converted to FIXED BIN(24,14).
The result will be in FIXED BIN(30,14).

FIX__D1 will be converted to FLOAT DEC(7).
The result will be in FLOAT DEC(7).

Both operands will have to be converted; FIX__B1 to FLOAT BIN(15), and
FL__D1 to FLOAT BIN(20).

The result will be in FLOAT BIN(20).

Page 4 -21

s vpre vh AU ASIIFMIUICHL JLALCHICHIL

Page 4 -22

5)

6)

d

e)

a)

b)

c)

d)

e)

a)
b)
c)
d)
e)

f)
g)
h)
i)
)

The multiplication will be done first.

FIX__D2 will be converted to FIXED BIN(24,14), and the intermediate result will
be in FIXED BIN(31,14). For the addition, FIX D1 will be converted to FIXED
BIN(24,7), and the final result will be in FIXED BIN(31,14).

The multiplication will be done first in the same way as in d).

The\ result will be in FIXED BIN(31,14). For the addition, FL__D1 will be
converted to FLOAT BIN(20), the intermediate result will be converted to FLOAT
BIN(31), and the final result will be in FLOAT BIN(31).

FIX D1 will be converted to FIXED BIN(24,7).

On assignment, any fractional part of FIX__D1 will be truncated. If-the value in
FIX_ D1 cannot be held in FIXED BIN(15), the result of the assignment will be
undefined.

FIX _B1 will be converted to FIXED DEC(S,0).

Any value which can be held in FIX__B1 can be held in FIX__D1.

FIX D1 will be converted to FLOAT DEC(7).

Approximately 1 decimal digit of precision will be lost in the assignment.
FL__D1 will be converted to FIXED DEC(6,9).

The value of q is not defined by the precision of FL__D1, but by the magnitude of -
the value held in it. The value could be too large to be held in FIX__DI1, so causing
an undefined result, or could be so small that no significant digits are stored in
FIX__D1; only leading zeroes.

FIX__B2 will be converted to FLOAT DEC(6). No problems will arise, as this is
the same precision as FL__D1.

'"WALTERD'

'"WALTE'
'"WALTERbGABRIEL'
'"WALTERbbbbbbbb'
'WALTERbbbbbbbb'

An intermediate field of 'WALTERbbbbbbbbGABRIEL' will be formed, but this
will be truncated on assignment.

'111.1°

1222.22b'
'111.1222.22bbb"'
111.10

333.00

When the character string variables are converted to FIXED DEC(15), the
fractional part will be lost.

Topic

I S P
D
A A
E D T
Y P Y I
D U E T
§ M D N M D
) 0 G 0 P
U P D E U P E = D
[R A T
Y [N T Y I N T Y I DE
0G P T 06 M E T 0G M = T D
o] E N TU 0 E ST R D N uD
0G E D Y 0G E D D RO D N ST
M D NT DY R AM D NT D R AM D NT PO
M ND EN D P R M ND ENT D P R M IND ENT D RO
IN E N U P A IN E N TU P R IN E N U R
EP NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TU Y 0 ND
N E T R G D EN E T R G D EN TU R R M E
p) ST P O [PE D T ST PO N PED T STU A ND N
NT S U Y ROGR NT S UDY ROGR NT S UY ROG EN
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE
TU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T
Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S
PR GRAM IN P ND N S D PR GRAM I PNDNTS D PRORMTI E EN T STU
ROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY

GRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROC
AM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGR#

INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM
NDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IM
EPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
}IDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
J cNT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENI
NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE!
" STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
»TUDY PROGRAM [INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S°
JDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STU
" PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM I[NDEPENDENT STUDY PI
T ToT mTomy annrDAM TNDRERPENNFNT STHDY PROI

Topic 5

Record Input/Output Part 1 - Move Mode

Objectives

Introduction

General

This topic deals with MOVE mode input/output. It covers the statements used, their effects,
and the declaration of the files.

On completion of the topic you should be able to:

« read, write and update records in consecutively organized files using MOVE mode
input/output

« understand the process of the physical movement of data between the external device
and main storage '

« write file DECLARE statements
« write OPEN and CLOSE statement.

PL 1 has two distance approaches to input. output - ‘record’ and “stream’ Record is more
frequently used within installations because it is a much quicker form of input, output. Stream
is reserved normally for particular uses, for instance the output of debugging information or
when greater control is required over the format of printed output. Stream input/output will
be discussed in Topic 15. -

Within record input/output there are two modes - move mode and locate mode, the main
difference being a question of where the data will be processed. This topic discusses move
mode record input/output. Locate mode will be discussed in Topic 8.

Data held externally to a program is held in data sets. Data sets may be organized so that the
records in them may be accessed sequentially, directly via an index or directly by the record
address. These data set organizations are called SEQUENTIAL, INDEXED SEQUENTIAL,
DIRECT and VIRTUAL STORAGE ACCESS METHOD. We are concerned here only with
processing SEQUENTIAL data sets. The others will be discussed in later topics.

External data is represented in a PL/I program by a FILE. The actual data set to be processed
is defined by Job Control Language, thus a program can be used to process different data sets
without modification, so long as the data sets match the FILE attributes in the program. Job
Control Language is described in more detail in the appropriate OS/VS and DOS/VS courses.
A file must be given attributes by declaration. Some of these attributes relate to the organiza-
tion of the external data set with which it will be associated, others relate to the way in which it
is to be processed. File declarations will be dealt with later in this topic.

Page 5 -1

Topic 5: Record Input/Qutput Part 1 -

MOVE Mode

The READ Statement

Page 5 -2

The READ statement causes the transfer of a logical record from an external storage device to
a variable in main storage. The external device may hold several logical records in one physical
record or block. This is done for efficient usage of the external device. The logical records will
be extracted from the physical records automatically by the READ statement. This process is
called de-blocking.

The program may be processing several files, perhaps a master stock file holding information
on part numbers, stock levels etc., a transaction file holding information on stock issues and
receipts, and a report file to print notices of items to be re-ordered. The program will almost
certainly use many variables. The READ statement then. must identify the operation to be
performed, the particular file to be read from, and the variable in which the record is to be
stored.

Hence:
READ FILE(file name) INTO(variable name);

The keyword READ must be the first part of the statement. The options FILE (file name) and
INTO (variable name) may be in either order.

The file name is an identifier, which may be referred to outside the procedure in which it is
declared. Like a procedure name, its length may not be greater than 7 characters, and it may
not contain the break character.

For DOS/VS users, some attributes must be given in a DECLARE statement. For both _
DOS/VS and OS/VS users all attributes may be given in a DET,CARE statement, but some
may be acquired by implication from other attributes, or by default. This will be covered later
in this topic.

The variable in the INTO option may have any attributes of type, base, scale, precision or
length, but must match the attributes of the data in the record read. The length of the variable
must be the same as the length of the logical record, and its base, scale and precision, or type
and length must be the same as those of the data in the record. If the data originates from
keyboard driven devices, such as card punches, diskettes, visual display units and such, it will
be in a character format, even if the characters are numeric. If it comes from a magnetic disk
(DASD), or tape, it may be in any format.

Wherever the record comes from, it is likely that it will contain several fields. For instance, a
record on a personnel file might contain a person’s name, their personnel number, department,
age, sex, position etc. This information will normally be held in one record, and the different
parts or fields of the record must be separated to be used in the program. Topic 6 describes
techniques for doing this by using aggregates. An aggregate is a group of variables which may
be referred to by a group name, which is used in the READ statement. The fields of the record
are then referred to by the individual variable names.

Topic 5: Record Input/Output Part 1 -
MOVE Mode

The WRITE Statement

I'he WRITE statement performs the reverse function to the READ statement, and takes the
form:

WRITE FILE(file name) FROM(variable name);

The statement type is identified by the first keyword, WRITE, and the file and variable are
identified by the options FILE and FROM, which must follow WRITE, but may be in either
order.

The contents of the variable will be copied out as the next record on the file identified.

The name used for the file must conform to the same rules that apply to the name used for the
file in READ statement. It must be associated with a data set on a suijtable device - not, for
example, a card reader.

The variable may be of any type. If the information is to go to a printer, it must be in character
format. If it is to go to a magnetic device, it may be in any format, but the variable or aggre-
gate which is used to read it back must have the same attributes as the variable or aggregate
used to write it out. The length of the logical records on the data set and the length of the
variable used in the WRITE statement must be the same.

Input and Output MOVE Mode

T he Input Operation

Let us consider first, data being read directly from punched cards, and look at the operationl of
a card reader.

A card reader may work at a rate of 1000 cards per minute, but this is very slow relative to the
rate at which the CPU operates on data in main storage. Further, the operation of reading a
card and storing the information in main storage is controlled by the channel. The CPU merely
initiates the process and is free to do other work while the channel obtains the record required.

A similar situation occurs when data is read from a magnetic disk or tape. The rate at which
data can be transferred from a disk or tape is much higher than the rate at which cards are
read, but it still takes a considerable amount of time in terms of the amount of processing that
can be done by the CPU.

The process of reading a physical record from the data set may be overlapped with other
processing.

To achieve this, PL/1 files normally use two intermediate work areas called buffers. A buffer is
an area in main storage the same size as a physical record of the data set being processed. It is
automatically provided and is filled by the channel. A READ statement extracts a logical
record from the buffers. As the physical records are put into the buffer by the channel without
using the CPU, using two buffers allows the channel to put the next physical record into one
buffer while the user’s program is reading the logical records from the other buffer by READ
statements, and processing them.

Page 5 -3

Topic 5: Record Input/Output Part 1 -
MOVE Mode

The use of two buffers speeds the input process by allowing the reading of physical records
from the data set to be overlapped with processing of data in main storage. If the physical
records hold more than one logical record each, buffers are necessary as somewhere to store
the physical records in main storage while logical records are extracted from them.

When a READ statement is executed, a logical record is copied from the buffer into a variable.
The data read may be in any form, and the variable may be of any type. The data is not
checked as it is copied. The programmer must ensure that the attributes of the variable used
are the same as the attributes of the data. If a record had been written to a disk data set from a
variable with attributes CHARACTER(4), and was read back into a variable with attributes
FIXED DECIMAL(7), the two variables are of the same length so no program failure would
occur, but, when the receiving FIXED DECIMAL(7) variable is used in a later statement, the
result would be unpredictable.

The Output Operation

The output operation is governed by similar considerations to the input operation. The
physical movement of data between main storage and the external device is governed by the
channel, which may overlap its work with the work of the CPU. To facilitate the overlapping,
and to allow logical records to be blocked, two buffers are normally used. While logical records
are being copied to one buffer by WRITE statements, the contents of the other buffer will be
copied to the data set. The data stored on the data set will be in the same format as the data in
the variables written out.

‘Move mode’ in the topic title refers to the movement of data between data variables and
buffers.

As an example of move mode processing, let us consider the program from Topic 2 which
copied records containing names and addresses from one file to another. To simplify the
situation, we will assume only one buffer is used for each file, and that there are three logical
records in each physical record. The program, and a diagram of the move mode process, is
shown on the following pages.

A Program to Copy Records from one File to Another

1 ! {11 I |
| NClARRD]:| PrO|CEDIURIE] [0|PIT!1 0NSI(MAIIN)|;
Ll |beL NJME IND_ADDRIES|S| CHARACTEER (8! .
L1 || READ Fir|LE(clARDS|IN)| [I NTO|(INAME_AND_ADPRES]S)) ;
L1l DO WHILECNAME_AND_ADDREIS'S| == [|'D];
Ll . WRITE FILE(PRINTOUT) FROM(NAME_AND_ADDRE
o T T TIREAD FHLE(CARDIS[IIND I1INTO (INAME_AND_ADD|RES]S
T [eNnls T[T !
: —”END““ . : % I

Page 5 -4

Topic 5: Record Input/OQutput Part 1 -
MOVE Mode

DATA]
SET

1st

READ
i
INPUT '
BUFFER H
2
1st 2nd 3rd
READ READ READ
VARIABLE
(DATA)
1st 2nd 3rd
WRITE WRITE WRITE
)
ouTPUT H -
BUFFER '
/
/\ WRITE
DATA
SET

The first READ statement will cause the first physical record to be read from the disk into the
buffer, and the first logical record to be copied from the buffer to
NAME__AND__ADDRESS. The first WRITE statement will cause the contents of
NAME__AND__ ADDRESS to be copied as the first logical record in the output buffer. No
record will be written to the output data set at this stage.

The second READ statement will not cause any records to be read from the input data set, but
the second logical record will be copied from the input buffer to NAME__ AND__ ADDRESS,
over-writing what had been put there by the first READ statement. Similarly, the second
WRITE statement will not cause any output, and the third READ and WRITE statements will
not cause any input or output. It is only when the fourth READ statement is executed, and
there are no more records in the buffer, that the next physical record is read from the data set
into the buffer, so allowing the fourth logical record to be read to
NAME__AND_ ADDRESS. It is only when the fourth WRITE statement is executed, and
there is no room in the output buffer for more logical records, that the first record is written to
the output data set, so allowing the fourth logical record to be written into the buffer.

Page 5 -5

Topic 5: Record Input/Output Part 1 -

MOVE Mode

Updating Files

Page 5 -6

This pattern will continue through the program. Only one READ statement in three will
require a physical record to be read, and only one WRITE statement in three will cause a
physical record to be written. The reading and writing of physical records will only be done
when a READ or WRITE statement is executed which cannot be satisfied, so there will be no
overlap of transferring physical records and other processing. However, there will still be a
gain in performance as reading and writing a record of 240 bytes takes less than three times as
long as reading or writing a record of 80 bytes.

If two buffers were used, as the fourth READ statement was executed, causing the first logical
record to be read from the second buffer, the re-filling of the first buffer would be initiated,
and would possibly be completed before all three logical records in the second buffer had been
processed. Similarly, as the fourth WRITE statement was executed, causing the first logical
record to be written to the second buffer, the writing of the first physical record to the output
data set would be initiated, and would continue while the three logical records were written to
the second buffer. Thus, there would be a double gain. The input and output operations would
take less time, and the time which they took would be overlapped with other processing.

The blocking and de-blocking of records and the switching between buffers is transparent to
the programmer. He simply codes READ or WRITE statements in his program whenever he
wants to read or write the next logical record. Any operations required to enable those
statements to be executed will be carried out automatically. The process of blocking and
de-blocking and the use of buffers becomes more important to the programmer when doing
locate mode processing, which will be covered in Topic 8.

You should now attempt questions 1 to 3 in the exercises at the end of this topic.

Records in sequential data sets which are held on a DASD may be updated in place. This is
done in PL/1 by the REWRITE statement:

REWRITE FILE(file name) FROM(variable name);

The REWRITE statement causes the logical record last read from a file to be over-written by
the contents of the variable named. The last statement executed for a file before a REWRITE
statement must have been a READ statement.

On the next page is an example of the use of the REWRITE statement. The RECEIPT file
contains stock receipt records in the same order as the stock level records on the STOCK file.
There is one receipt record for each stock level record. The end of the receipt records is
indicated by a receipt record of -1. If any stock has been received for an item, the receipt
record will hold the amount, which will be added to STOCK___ LEVEL, and the new value in
STOCK__ LEVEL used to over-write the old value on the file.

Topic 5: Record Input/Output Part 1 -

MOVE Mode
The Use of the REWRITE Statement
i 1 | | | |
READ| [FlI[LE(IRECE[IPT)| 1IN[TlOI([ADDI!T]I[ON]) /e 110 [/
Doo| wH|t|LIE (AlDp 1 TIION H= -[1D]; /1| 1210 |*/
' [| READ] FILE(STocK) INT0/(sITlocKILEVEEL); /¥ 131@ %/
DO| WHILE(ADDITION = @)[; /% 4/d ¥/
1| SToCK_LEVEL |= [ST/0oCK_LEVEIL '+ ADD)ITION /i sld %/
1L REWRIITE [FiLE/(SToOlCK) FROM(STOCK _LEVEL)[, | 1 /% 6@ [/
1 1] |aoDifT1ION = #|; | i T e el e/
END; | L T T } ! /i 8@ %/
.|| READ FIILE(RECE!IPT) IINTO(JADDITION]) ; /i 9@ e/
EN‘FDJ L f h.i } Tl L—[| /1% 1¢[*/
t ST IR i T

The following should be noted about this program:

STOCK__LEVEL is used as the variable into which the data is originally read, and the
variable from which the new value is written. The variable used in the REWRITE
statement may be any variable with suitable attributes.

File Attributes

File names must have a series of attributes which specify the attributes of the data set with
which it is to be associated, and how this data set is to be processed. There are many of these
attributes, which may be given by the DECLARE statement or other means. The coding may
be reduced by the use of defaults and implications as shown in the following list.

Attributes Abbreviation Implies

FILE

STREAM FILE

RECORD - FILE

INPUT FILE

OUTPUT FILE

UPDATE FILE RECORD
SEQUENTIAL SEQL FILE RECORD

DIRECT FILE RECORD

BUFFERED BUF FILE RECORD SEQUENTIAL
UNBUFFERED UNBUF FILE RECORD SEQUENTIAL
ENVIRONMENT ENV FILE

Page 5 -7

Topic 5: Record Input/Qutput Part 1 -

MOVE Mode

FILE

STREAM

RECORD

INPUT

ouTPUT

UPDATE

SEQUENTIAL

DIRECT

BUFFERED

The meanings of the attributes are:

Specifies that the identifier is a file name.

Specifies that the tile will be processed by stream input/output statements. These will be
discussed in Topic 15.

Specifies that the file will be processed by record input/output statements.

Specifies that the file will be used for input only.

Specifies that the file will be used for output only.

Specifies that the file may be used for input and output. If the file is to be processed sequen-
tially (see below), it may be processed by the READ and REWRITE statements, not the
WRITE statement. :

Specifies that the file is to be processed in a sequential manner. It does not specify the
organization of the data set. Thus, an indexed sequential data set may be processed either
sequentially or directly. (Abbreviation SEQL).

Specifies that the file 1s to be processed directly, accessing specified records on the data set.
Like SEQUENTIAL, it does not specify the organization of the data set being accessed. Both
indexed sequential and direct data sets may be accessed directly.

Specifics that the file is to be processed using buffers. All the discussion in this topic has been
on the basis of buffered processing. It is not usual to process sequentially without using
buffers. (Abbreviation BUF).

UNBUFFERED

Specifies that buffers are not to be used if not needed. In many situations, for instance the
processing of blocked records, buffers will still be used, even though the UNBUFFERED
attribute is specified. (Abbreviation UNBUF).

ENVIRONMENT

Page 5 -8

Allows the attributes of the data set which is to be associated with the file to be described by a
series of options. The options of the ENVIRONMENT attribute are specified in a list,
separated by spaces and enclosed in parentheses, following ENVIRONMENT. They may be in
any order. The options vary slightly between OS/VS and DOS/VS, and will be discussed
separately for the two operating systems. (Abbreviation ENV).

Topic S: Record Input/Output Part | -
MOVE Mode

ENVIRONMENT Options For DOS/VS
0OS/VS users turn to the section headed "ENVIRONMENT OPTIONS FOR OS/VS".

The ENVIRONMENT options under DOS/VS must fully describe the data set to be associat-
ed with the file. The options appropriate to sequential data sets with fixed length records are:

MEDIUM
F
FB

CONSECUTIVE

RECSIZE(n)
BLKSIZE(n)
BUFFERS(n)

where n is an integer constant.

MEDIUM

MEDIUM(symbolic device name, physical device type)

The MEDIUM option describes the symbolic device name for the data set and the physical
device type to be used.

Symbolic Device Name

The symbolic device name is used to link, through Job Control Language (described in a later
segment) a file to a physical device - a particular disk drive, magnetic tape unit, card reader etc.
It takes the form SYSxxx, where xxx may be:

IPT

LST

PCH

000 to 221

The system input device, normally the card reader. If SYSIPT is used as the
symbolic device name, no Job Control ASSGN statement will be needed for
the card reader.

The system output device used for listing. If SYSLST is used, no Job
Control ASSGN statement will be needed to associate the file with the line
printer, but the records of the file must contain information to control the
vertical spacing. How this is done will be discussed in Topic 9.

The system output device used for card punching. This will be associated
automatically with the card punch.

Symbolic device names SYS000 to SYS221 may be used for files which are
to be associated with data sets on any type of device, including the standard
system input and output devices.

The choice of the symbolic device name is open to the programmer, but, in a similar way to the
file name, the choice made must be reflected in Job Control.

.Physical Device Type

The physical device type must be the type number of the device on which the data set is stored

or is to be stored.

The following table shows devices which may be attached to a System/370 and the physical
device type specifications to be used for each of them. Probably not all of these devices will be
available on the computer which you will use.

Page 5 -9

Topic 5: Record Input/Output Part 1 -

MOVE Mode

Page 5 -10

Device Device-Type
Type Number Specification
IBM 2540
IBM 2560 2560
{BM 1442N1 1442
Card IBM 1442N2 1442
Readers 1IBM 2520B1 2520
and IBM 252082 2520
Punches 1BM 252083 2520
1BM 2501 2501
IBM 3504 3504
1BM 3505 3505
1BM 3525
(multi-line print) 3525
(2-line print) 35257
IBM 3881 3881
IBM 5425 5425
[1
IBM 1403 1403
Printers iBM 1404 1404
IBM 1443 1443
IBM 1445 1445
1BM 3211 3211
IBM 5203 5203
1BM 3203 3203 4
Magnetic 1BM 2400 (9-track) 2400
Tape IBM 2400 (7-track) 2400
Drives IBM 3410/3411 3410
IBM 3420 3420
IBM 2311 2311
DASD IBM 2314 2314
IBM 2321 2321
IBM 3330 3330
IBM 3340 3340
Diskette IBM 3540 3540
Unit
_ —

A file which is to be associated with a data set on a 7-track 2400 tape drive might be declared
with MEDIUM(SYS008, 2400). The symbolic device name could be any number not used
elsewhere in the program and which is reflected in the number used in Job Control. A file
which does not use SYSLST may still be associated with a line printer, for example,
MEDIUM(SYS121,3211).

Files which use the standard system input and output devices - SYSIPT, SYSLST and SYSPCH
need not have a physical device type specified. They will use whatever the standard system
input and output devices are. For example:

MEDIUM(SYSIPT)
MEDIUM(SYSLST)

Whether the physical device type is needed or not, the MEDIUM option must be given in file
declarations.

Topic 5: Record Input/Output Part 1 -
MOVE Mode

F
Specifies that the file will contain fixed length, unblocked records.

FB
Specifies that the file will contain fixed length, blocked records. One of F and FB must be
specified.

CONSECUTIVE
Specifies that the data set will have CONSECUTIVE organization. It is the default for data set
organization, but does not specify how the data set is to be processed. This is done through the
SEQUENTIAL attribute.

RECSIZE(n)
n is the length of logical records on the data set, in bytes. It must be the same as the length of
the variables used in input/output statements for this file.

BLKSIZE(n)
n is the length of physical records on the data set, in bytes. If the record format is F, n must be
the same as RECSIZE. If the record format is FB, n must be a multiple of RECSIZE.
If the record format is F, it is not necessary to specify both - the one which is not specified will
default to the same value as the one which is.

BUFFERS(n) -

n is the number of buffers to be used in processing the file. In DOS/VS n can be 1 or 2. The
default, in DOS/VS, is 2 for CONSECUTIVE and sequentially accessed INDEXED file, 1
otherwise.

The ENVIRONMENT attribute must be supplied to describe the attributes of the data set with

which the file is to be associated.

You should now attempt questions 4 and 5 in the exercises at the end of the topic, before
continuing the topic at ‘Alternative Attributes’.

Page 5 -11

Topic 5: Record Input/Qutput Part 1 -

MOVE Mode

ENVIRONMENT Options

For OS/VS

B

The ENVIRONMENT options under OS/VS may be used to describe the attributes of the
data set with which the file will be associated through Job Control Language statements, which
is covered in another course. The options which are appropriate to sequential data sets with
data sets with fixed length records are:

F

FB
CONSECUTIVE
RECSIZE(n)
BLKSIZE(n)
BUFFERS(n)

Specifies that the file will contain fixed length, unblocked records.

Specifies that the data set contains fixed length, blocked records.

CONSECUTIVE

BLKSIZEN]

BUFFERS(n)

Page 5 -12

Specifies that the data set will have CONSECUTIVE organization. It is the default for data set
organization, but does not specify how the data set is to be processed. This is done through the
SEQUENTIAL attribute.

n is the length of logical records on the data set, in bytes. It must be the same as the length of
the variables used in input/output statements for this file.

n is the length of physical records on the data set, in bytes. If the record format is F, n must be
the same as RECSIZE. If the record format is FB, n must be a multiple of RECSIZE.

If the record format is F, it is not necessary to specify both - the one which is not specified will
default to the same value as the one which is.

n is the number of buffers to be used in processing the file. If the BUFFERS option is not
specified, a default value of 2 will be taken. If it is specified it may be any value from 1 to 255.
The more buffers that are allocated, the faster the program will be executed, in general, but the
more storage it will use.

The ENVIRONMENT attribute may be used to describe the attributes of the data set with
which the file will be associated. All of the options shown here, with the exception of the
CONSECUTIVE option, which is a default, may be replaced by sub-parameters of the DCB
parameter of Job Control, or, for an existing data set, by information from the data set label.
For sequential data sets, the ENVIRONMENT attribute may be omitted from the file declara-
tion, so allowing the user to specify such information as block size when the program is
executed, rather than when the program is compiled. This allows one program to process data
sets with different record formats and blocking factors using the same file, with no re-
compilation.

% QooA :ORO‘\ 'kb o P €0 /C‘byg Topic 5: Record Input/ OK;%I{J Eal\r':old;
Stutemeots Y

If information is supplied in the ENVIRONMENT attribute, it will over-ride similar informa-
tion supplied through Job Control.

You should now attempt questions 6 and 7 in the exercises at the end of this topic.

Alternative Attributes

Not all attributes may be specified for the same file. For example, a file may not be declared
with both INPUT and UPDATE attributes. A group of attributes of which only one may be
specified is called a group of alternative attributes. For each group of alternative attributes
there is a default, as shown below.

Alternative Default

Attributes Attribute

Usage STREAM RECORD STREAM
Function INPUT OUTPUT UPDATE INPUT
Buffering BUFFERED UNBUFFERED BUFFERED
Access SEQUENTIAL DIRECT SEQUENTIAL

These defaults are not always taken. The list below shows that all file attributes, except FILE,
imply some other attributes. Where an implied attribute is not the default attribute for a group, -
it will over-ride the default. In this situation, no attribute for that group, except the implied
attribute, may be specified. If such a clash does occur, the error will be detected when the file

is opened.
Attributes Abbreviation Implies
FILE
STREAM FILE
RECORD FILE
INPUT FILE
OUTPUT FILE
UPDATE FILE RECORD
SEQUENTIAL SEQL FILE RECORD
DIRECT FILE RECORD
BUFFERED BUF FILE RECORD SEQUENTIAL
UNBUFFERED UNBUF FILE RECORD SEQUENTIAL
ENVIRONMENT ENV FILE

File Opening and Closing

Before input or output operations may be carried out on a file, it must be opened. When a file
is opened, it is associated with a data set, its attributes are checked, and buffers are allocated to
it. If the file is a sequential input or update file, the buffers will be filled with the first records
from the data set.

Page 5 -13

Topic 5: Record Input/Qutput Part 1 -

MOVE Mode

A file may be opened in one of two ways; by executing an OPEN statement for that file. or by
exeeuting an input or output statement tfor it. An OPEN statement causes an explicit open. lIts
format is:

OPEN FILE(file name)|attributes];

If attributes are supplied in OS/VS they may be any file attributes except the ENVIRON-
MENT attribute. For example:

L T
OPEN FILECIND [INPU
OPEN |FliiLE (jouT)| REC|ORD

~—

~

OUTPUTI;

However in DOS/VS only the INPUT or OUTPUT attributes can be supplied and even then,
there are restrictions (see Topic 9).

An input or output statement, without a previous explicit open, causes an ipplicit open.

When a file is opened, the attributes are said to be merged. At this point there must be no
clash in the attributes. If the file is opened explicitly, the attributes on the OPEN statement, if
any, are treated in the same way as the attributes on the DECLARE statement. They will all
be processed by the following rules:

There may be only one attribute from any group of alternative attributes.

If any attributes are implied, they must not contradict any attributes which are explicitly
stated.

If any group of alternative attributes has no member either explicitly stated or implied,
then the default for that group will be taken.

If a file is declared:

+
|

Page 5 -14

3t
=
m
5]
:«
k4
o~
D
<
v
—y
B =Y
oY

L.
w
s
S
Ner
1l
)
m
Q
[%]
N
m
7~
0
1SN
N
(N

+
. S
[

-"_TPHI;

(the MEDIUM option would be omitted for an OS/VS system) the file will gain the following
attributes when it is opened:

a) All attributes given will imply FILE.
b) The usage is explicitly specified as RECORD.
c) The function is explicitly specified as OUTPUT.

d) Defaults of BUFFERED and SEQUENTIAL will apply for the buffering and
access.

e) The record format and record size are specified.

f) The block size will default to the record size, for DOS/VS, but Job Control and, if
available, the data set label will be checked for OS/VS. If it is specified in either of
these, it must match the record length. If it is not, a default of the record length will
apply. Defaults of CONSECUTIVE and BUFFERS (2) will also be taken.

lopic 5: Record Input/Output Part 1 -
MOVE Mode

If a file is opened implicitly by an input or output statement, it will acquire further attributes
which will be deduced from the statement type - similarly to contextual declaration.

Statement Attributes Deduced
READ RECORD INPUT
WRITE RECORD OUTPUT

(If the file is declared with the UPDATE attribute, INPUT or OUTPUT will not be deduced).
These attributes will be merged with the attributes on the DECLARE statement in exactly the
same way as if the file had been explicitly opened with them.

When a CONSECUTIVE file is being processed for input or output under OS/VS, it is
possible to avoid all declaration, if the defaults are suitable. If the file is to be used for input
only, the first READ statement will cause the file to be opened. The effect will be as if the file
had been declared:

L ;N!AIH E

— JRe . S O Y N O O Lyb b I 1
FFL‘E‘J@LE]:CTQ[RLJL Ni&%u.id ‘;Btuﬁsfqnfsjoﬁ j_;gal L j;uv(CIONSEICUT]I|VEEl [BIWFIFERS|(2)

In each case the data set attributes would have to be supplied through Job Control or from the
data set label. -

For DOS/VS, the minimum requirement is that the files should be declared with the ENVI-
RONMENT options of record format, record length, block size and MEDIUM.

Before a program is terminated, all files must be closed. When a file is closed, the reverse of
opening takes place. The file is disassociated from the data set, the buffers are released and,

for an output file, the last record is written out. A file may be closed explicitly by a CLOSE

statement, or implicitly by executing the last statement of the program, whatever that may be.
The format of the CLLOSE statement is:

CLOSE FILE(file name);

For example:

RN o R |
| CLlosE[[FiLE[(IN)];

cLose FiI LEI(WORK) ; f

i H ! ' ‘ T

The major use of explicit closing is in connection with explicit opening. If a file is to be used as
a work file within a program, that is, data is to be written to it at one point in the program and
read back at a later point, it cannot be opened with any set of attributes which will allow this to
be done. It may be done as follows:

Page 5 -15

Topic 5: Record Input/OQutput Part 1 -
MOVE Mode

RN PR RN R, O S S O Sy I G M S
el WRKE L] FiLe! f@9;91@1-.,-4§MV(H510liuM(_s;vi&mmis 3306)| F [RECS]I ZE([126)]
bbb e BLKSZE(488)D ;
OPIEN. |F|1 LE (WRKF ey jowTeT: | |
. . ik UL T T T T T
H R e - +- l B s e e e S S S + B A n SRS + -y §
* DATIA L e e ? . ;
i t Mk,l‘tgrﬁj\l TO| FilLIE ¥/ 1 AR [,
clLio'sle] [Fi LE[(WRKEITL)]; SiRISURSaAREN NN NEl |
oplen [Frce (wRKF LT NS
B S S NN RN NN L L
L |[/* [ReAD [THE IDATA BACIK, “/] i e i ,

The medium option should be omitted for OS/VS.

When the file is first opened, it is opened for output, and records may be written to it. When it
is closed, any attributes given on the OPEN statement will be lost, so that when the file is again
opened INPUT may be specified on the OPEN statement, or may be left to default, as here.
When the file is re-opened, it will be positioned automatically at the beginning of the file, so
that data will be read back in the order in which it is written out.

Record input/output is a very heavily used feature of PL/I. It allows efficient input and output
of data in the form of records in any data format. This topic has covered one mode of record
input/output for sequential data sets. Topic 8 will cover the use of locate mode for sequential
data sets.

You should now complete the exercises at (‘he end of this topic.

Page 5§ -16

Topic 5: Record Input/Output Part 1 -
MOVE Mode

Exercises
1) What errors are there in the following statements?
L I I R Y N I I S S T S A G
7w A ¥/ REWD FliLE(IND! INTOCVARD | T T valid
| /* B ¥/ WRITE fﬂLECowr)juwTo(NAR); 3‘+l11: L NpT 1TU
t ST SN i vt S 2w TRTSY — '
/W C [/ WRITE [FiLE(OUT) FRIOM([CARD] L1STING"); yae come?
! /Pﬂ D [#/, READFIILE(IN) IINTO(WAR);: | | | ' =pacc RIE
/¥ E ¥/ READ FIILE(IN) INTO(VAR) | | | | o sec
! ' i . : LT o : : H T ' i
LooX 2) The file IN1 contains records which were written from a variable with attributes FIXED
At] DEC(5,2).
¢ yamg L
The file IN2 contains records which were written from a variable with attributes FIXED
DEC(7,1).
Write a program to produce a third file, OUT. Each record on OUT should contain the
product of the corresponding records on IN1 and IN2. The end of input data will be
indicated by a record on IN1 containing 0.
Records on OUT should be written from a variable with attributes FIXED DEC(7,2).
Declare all necessary variables, and call the program PRODUCT. -
Hint - the processing logic could be:
Read arecord from IN1.
If that is not O, read a record from IN2, multiply them together, write a record
to OUT and read another record from IN1. If that is not O,
3) What errors could occur in the program PRODUCT?
4) This question should be attempted by DOS/V'S users only.
What errors are there in the following declaration?
| 1 !
FitiL FIILE OUTPUT BUFF RIEC |SEQL| [ENV (MED) UM((333l8)|sySlplgls)] |
;flnggﬁlmgfzspg B|LK|S|1/zIE|(|5/1:2])| CONSE|ciuT I VIE] BUFFER|([1)])];
i] i ‘ !] i

6) This question and the next should be attempted by OS/VS users only.

What errors are there in the following declaration?

FlllLE/(IFl1iL])! {UPDAITE BUF
EIN[VI([F| IREEICIS|!IZIE|(|25/6])| SEQ
1

EN

FERRS|(14)| RE
UEINT]
I

7) What advantage is to be gained by putting information about a data set in Job Control
rather than the ENVIRONMENT attribute?

Page 5 -17

ropic 3 Kecord Input/Output Part 1 -
MOVE Mode

8) What is the minimum declaration that could be given for the following files under your
operating system?

Assume that the files will be bpened by a READ or WRITE statement. OS/VS program-
mers should ignore the MEDIUM option.

A |/ pell FilL1] (FAiiLle [RElC/ORID] [INPluT] [BIUFIFERED] 'SE|QUENT!I AL
| ENlV(MEDIluM(sly's|o2¢, [1442]) [F [RECS|1 ZIE(|8p!) |BILKS|I ZE(|8]¢)
L }c=o~l.s&icw'rt vei iBMF)FERS(ii) ; B | | SRR
HEEEREERNEERERREEE HERR IEREE
B [¥/ dcll Filtz FliiLE [REC/ORD T PulT UNBUFF e'nfa“o SEQUENT]I AL
ENV(ME[DI UM(S'ys|93i¢),|11443)) F [RECS|1ZE (|132)] BLK|SIZE(13]2)
R CONSECMTIVIE); | .]! iR i "

Page 5 -18

Answers

Topic 5: Record Input/Qutput Part 1 -
MOVE Mode

1) a) Valid.
b) Invalid. The WRITE statement may not have the INTO option, it must have the
FROM option.
¢) Invalid. The FROM option must have a variable name in parentheses.
d) Invalid. There must be at least one space between READ and FILE.
e) Invalid. The statement contains legal minimum spacing, but the semi-colon is
missing.
2) One solution is:
S N AIL'A-.-L t.,H,HA | L
 PRlobUC]T ;| PRoc’ |OPT I [oNS (MATND; Bl
‘ DicL, VIART |FIXED DECI(5,2); | |
N _DlciL! vIAR2 [FIXED DECCT 1D | | |
-+ l‘ _DICIL| VAlR@i F"lﬂED’l LDEEC‘(_I: 2)‘; L P
Lo LLL . REaD [P LECINIDT INTO(VART) 1
L.l]|. . Do WHILE(VART == 10); | | | .
s READ FILE(IN2)| INTIO(VAR2) ;| | |
N " VAR3 ' VAR % varR2; | |
] T H K H T H T
- | WRITE |FILE(OUT|)FROM(VARS) ;| -
‘ R READ FIILE([INT)| INTO(VART) | |
| __END; [IHEERE
[DL] | EEEREE
< i ! 1 ™ 1 17 B N B B
3) There might be a mistake in the records on IN1. If no record on IN1 contained 0, records

would be read until there were no more. Similarly, if there were fewer records on IN2
than on IN1, the end of the file IN2 would be encountered while records were being read.
PL/I has facilities for detecting and dealing with such situations. They will be covered in
later topics.

The variable VAR3 has attributes FIXED DEC(7,2). When multiplying two fixed
decimal variables, the precision of the resuit will be (p,q), where:

g= d1 + a2

p=p1 + pp + 1
In this case, the operands have precisions (5,2) and (7,1). The precision of the resuit will
be:

+ 1

Q

fe]
W onon

+ 7 41

2
3
5
13

A result of precision (13,3) will be assigned to a target of precision (7,2), with possible
loss of high order digits. If this occurs the value assigned is undefined.

These errors are examples of GIGO - Garbage In, Garbage Out. This is an old principle
of computing. Garbage is defined as any data which the program cannot successfully

.-

Page 5§ -19

Topic 5: Record Input/Output Part 1 -
MOVE Mode

handle. If the programmer is not absolutely certain that the files IN1 and IN2 contain
correct data, he should take steps in his program to check it.

4) Something of a tragedy.
The abbreviation for BUFFERED is BUF.
RECORD has no abbreviation.

The symbolic device name and physical device type in the MEDIUM option should
be in the other order.

The block size is twice the record size when the record format has been specified as
F. The keyword for the number of buffers is BUFFERS.

5) SEQUENTIAL describes how the file will be processed - in the order in which the
records are stored. It is the opposite of DIRECT. CONSECUTIVE describes how the
data set is organized. A CONSECUTIVE file may only be processed sequentiaily.

6). Another tragedy.

FILE(FIL) is the file option as used in a READ or WRITE statement. This is a
declaration and so should have an identifier followed by a series of attributes, of
which FILE is one.

The BUFFERS option should be part of the ENVIRONMENT attribute.
- There is no abbreviation for RECORD.
CONSECUTIVE is an option of the ENVIRONMENT attribute.
SEQUENTIAL and BUF should both be outside the ENVIRONMENT attribute.
The right parenthesis at the end of the list of ENVIRONMENT options is missing.

7) Job Control may be varied from run to run of a program. If the block size of the data set
is changed, the Job Control can be changed without changing the program and so having
to re-compile it.

8) For DOS/VS:

]
/1% 1Al [#17] |piclL] (Flr L/ A/V(HEDIl(l. CisjyiS|e|2(el . |7 414|120 F gEg?/ZE(?Q) BIUFIFIEIRIS|CI71)])];
71 | l¥|7] Tolcle| TFl/lciz] uimialulr] EWVIcimlE|o]/|din|(5]Y]S|eI3le]. |7 l¢i43))] [F RiEc]s[7]2]e[¢| 712235
r1#| \8lelx|3)/2g| [clolaiLio| [halviE| BEE W [Sllplpic| [ElD| [/ wis|TiEAD (o F| REECIS)/(2E| %/ | |
| |€19 uladi i \TIERPL I AL
For OS/VS:

D |

¥ A ¥/ DclL [FIL|f] EINVI(BUFFERS ([1))];

/1* B, |¥// DclLl FiI|L2 UNBUF|; :

T T I R R » !

Page 5 -20

Topic

I S P
D
A A
E D T
Y P Y I
D U E T -
M D N M D
0 G 0 P
U P D E u P E P D
I R A T
Y I N T Y I N T Y I DE
0G P T oG M E T oG M P T D
J E N TU 0 E ST R D N ub
E D Y 0G E D D RO D N ST
" D NT DY R AM D NT D R AM D NT P O
ND EN D P R M ND ENT D P R M IND ENT D RO
E N U P A IN E N TU P R IN E N V) R
P NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TU Y 0 ND
z T R G D ENE T R G D EN TU R R M - E
ST P O I PE D T ST P O N PE D T STU A ND N
5 U Y ROGR NT S UDY ROGR NT S U Y ROG EN
JD PROGRAM E N UbDY PRO RA E N UD PRO RA ND PE
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T
°R GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S
GRAM IN P ND N S D PR GRAM 1 P NDNTS D PRORMI E EN T STU
R NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY

M INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROG
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRZ
NDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM
DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IN
ZPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
'DENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
)LNT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENC
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENM
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S1
DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUL
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PF

— — m o~~~ A NN N e e it L TR T V] 2 laXa¥Xd

Topic 6
Data Structures and Picture Variables

The declarations of the various data elements have already been discussed. This topic will deal
with the declarations of more complex data variables.

Objectives
At the end of the topic you should be able to:
o declare and use data structures

« declare and use picture variables.

Introduction

The READ and WRITE statements transfer information form/to a file; this information is
held in records. It is normal for a single record to hold several items of information, some of
which may be numeric. This topic covers efficient methods of isolating the items in a record,
and of processing numeric information held in a character format.

Page 6 -1

Topic 6: Data Structures and Picture Variables

Structures

Page 6 -2

Records on files commonly consist of several elements or fields. The stock records referred to
in Topic 5 might each contain a part number or other item identification, an item description,
the current stock level, the stock level below which they should be re-ordered and the re-order
quantity. In record input/output statements, all of this information must be referred to as if it
were a single variable. When the record is processed, the various parts of the record must be
available. Using ordinary variables, these two requirements contradict each other. Structures
overcome this contradiction.

A structure is an aggregate of data items which have a logical relationship, but do not necessar-
ily have similar attributes. It is a hierarchical organization, where the levels of the hierarchy are
identified by numbers and names. The lowest level of the hierarchy contains element variables,
with any attributes which element variables may have. The highest level is called the major
structure, and intermediate levels are called minor structures. Major and minor structures may
not have attributes of base, scale, precision or length.

The information in the stock record could be organized as follows:

STOCK RECORD

IDENTIFICATION STOCK LEVEL REORDER -

[/

PART NUMBER DESCRIPTION LEVEL QUANTITY

The whole of the information concerning an item is known by the name STOCK__RECORD -
the major structure name. The individual elements of information in the record are identified
by the names PART_ NUMBER, DESCRIPTION, STOCK__ LEVEL, LEVEL and QUAN-
TITY. These are the elements, and the only identifiers which will have attributes of base, scale,
precision or length. Some of these elements can be grouped together into minor structures.
PART _NUMBER and DESCRIPTION together make up IDENTIFICATION, a minor
structure. LEVEL and QUANTITY together make up REORDER, another minor structure.

Topic 6: Data Structures and Picture Variables

The structure could be drawn up with logical level numbers:

Logical
Level
1 STOCK RECORD
2 IDENTIFICATION STOCK LEVEL - REORDER

/0

3 PART_NUMBER DESCRIPTION LEVEL QUANTITY

STOCK__LEVEL is on logical level 2, with the minor structures, although it is an element.
This is because the only grouping above it is at level 1. The items on level 3 can be grouped
together by minor structures at level 2, or by the major structure at level 1.

This hierarchy or structure may be declared by PL/I as:

| olefd] 11 [s[Tojc[k_rRE[c/orD],

IR 2| 1|D|ENTL|F[1]clAlTi1|oN],

ol 3] PARTLNUMBIER |FiIIXED DEIC ((17)))|

?] 13 oEsicirRPT 0N [cHAR (48], |

N " |2 siTockJLEVEIL [FliIx[eD] [DEC [(5))), |
e ' . |2) IRE|JORDER, ‘
e T I3[JueviE[L] [F]1[xED] [DEIC] [(5]),

e { 3| lQuANTIT)Y| [F[1)x|ep DIEC! ((IsD]; B

The name of each major structure, minor structure or element must conform to the rules of
names in PL“1. Each name must be preceded by a level number, which must be separated
from it by at least one blank. Major and minor structures must not have any attributes of base,
scale, precision or length. The attributes follow element names in the normal way and for any
level of name the list of attributes, if any, is terminated by a comma. If the last element of the
structure is the last name in the DECLARE statement, the comma is replaced by a semi-colon.

Page 6 -3

Topic 6: Data Structures and Picture Variables

Accessing a Structure

Using the major and minor structure names, and the element names, it is possible to refer to
the whole of the structure, to sub-sets of the structure and to individual elements. Thus,
STOCK__RECORD will refer to all the five elements in the structure. IDENTIFICATION
will refer to the two elements PART_ NUMBER and DESCRIPTION. REORDER will refer
to the elements LEVEL and QUANTITY. Individual elements may be referred to in the
normal way by their element names. If there is no need to refer to sub-sets of a structure, then
it may be declared with no minor structures:

“ bt — | ! TR I P N
| pele 1 [sToclk_Recornl, [T T T
EE |2, PART_NUMBE[R [F|IIXED [DEC [(;7),] |
| 2 DelsckIPTION [CHAR (l4¢), ’
”f?:: |2, sTlock_|LEIVE[Ll FIXED [DlEC| |(15])
| |2 RelORDER_LEVEL |FIXED DE[C (5],
T 45@5qaoea~QuA~T:Ty F|I X|ED DEF (51
1 i ! 1 | ! i

This structure contains the same information as the previous one. The minor structure names
have been removed and the last two element names have been changed as a documentation
aid, since the minor structure name previously indicated their use.

Level/ Numbers in Structures

Page 6 -4

In the two preceding examples the level numbers used corresponded to the logical levels within
the structure. This is not obligatory, although they must reflect the relative levels of adjacent
items in the structure:

ol bpii b | | B
" belc 1 [STOCK_RECORD, |
|, |3 IDENTI|FICATIION,

117 [PARTINUMBER |FlixElD DE[C (7)),

e - 7 IDESCIRIPT|ION ICHAR ([420)], T
3] STIOCK_|LEVEIL, Filx gDl [DElC ()], |||

. _|. 3 REORDEIR, 1 |

- | |7 |LEVIEL| |FilxED [DEC! |(]5)), g
1.7 QuANTITY FilxleD blec (5D]] |
[Y B ! ! i i { T T T T T

This declaration has exactly the same meaning as the previous declaration.

Structures may have a maximum of 15 logical levels and the highest level number permitted is
255.

All the structures shown have had a similar layout - each name on a new line, each logical level
indented two spaces from the next level above. Structures follow the normal rules of PL/I for
spacing, with the level numbers being treated as identifiers, they must be separated from other
identifiers by at least one blank but may be immediately adjacent to any separator. In this
situation, the only relevant separator will be a comma. The layout used here conforms to these
rules. It is usual to adopt a convention like this to aid readability and to facilitate alterations.

Topic 6: Data Structures and Picture Variables

You should now attempt question 1 in the exercises at the end of this topic.

Using Structures

Input /Output

The effect of referring to a major or minor structure name will vary depending on the context

in which 1t 1s used.

When a major or minor structure name is referred to in the INTO or FROM option of an 1.0
statement, itis treated as a single item. The length of the structure is the sum of the fengths of
the clements. (There can be exceptions to this rule - see Topic 23, but not now),

Structure Element Length (bytes) ,

PART_NUMBER 4
DESCRIPTION 40
" STOCK_LEVEL 3
LEVEL 3
QUANTITY 3

Total 53

If STOCK__RECORD is used in input/output statements, the records on the file must have a
length of 53. Different elements of STOCK__RECORD have different attributes. The
corresponding fields of the records must have the same format as the elements of the structure.
If they do not, unpredictable processing errors will occur. If a record from a data set is read
into STOCK _ RECORD, the first 4 bytes must have a fixed decimal format, the next 40 must
have character format, and the last 9 bytes must have 3 fields of 3 bytes each in fixed decimal
format. This can be most easily ensured by writing and reading the records using structures
with identical declarations.

Assignment and Expressions

Major and minor structure names may be used in assignment statements in a similar manner to
element variables. When so used, a structure is treated as a group of elements. The general
form of a structure assignment is:

structure element expression;

or

structure structure expression;

where ‘structure’ may be a major structure or minor structure. The coding below shows
examples of these forms. In this coding, all the variables are declared in one statement. In this
situation, the end of a structure is indicated by a name with level 1, or a name with no level
number. Thus, MAJS1 is terminated by the level 1 name STOCK__RECORD, and
STOCK__RECORD is terminated by the name A, which has no level number.

Page 6 -5

Topic 6: Data Structures and Picture Variables

i

SSNSKNSERRRRNNS SSNNSSN SKRNNDT KKK SS
%* %] FIEIEIEIEIEIEIE IR IEIEILIEILIEIEIEIF IE IR IEIEIEIMNE I IR I LI 36 IEIE IE
| S SN — | bttt e o
sosseeleveslaseS oo s/euSeen [sessEE weseeessww
N N[O~ 5O v D WO 000~ QN M W~ oe Qv N9 r~leo/e |
[PRy [Ny PR Pl jrus iy ey puay e L0 o~ NN NN NN MMM M mitmmeniomn
N******************vm EIEIMNEIE IR IR IR IR 3 FIEIE IEIEIE ILIEIE IE
NSNS S SNNN N NN SOSINNSSNN
1
B s S S Lo
<W|, ‘L! llu—lw - - . Y
x+ +
= L
”‘\)Tl‘l e 4 ..v#,n? vq\‘
A S S I
e e e A o
H H T H
— e - +- P, A
L 1 e e A S
. o e A A DR B
[l B - -~ < : ! Aﬁ ! '
~ ~ N R +Pﬁr
I I YL T A = BT IO T SR S S S A
[T ") AW ; 0 O Tt
we N RENCIEET-) [1 T —
T T TewQl A= =IO »@ﬁ‘.ﬂlhww-w; R A S
-~ -l ~ ~w o ~ o e b |M \v L.Y ! T :ﬂ |
[~ Q 48 iJw ~ VoW o A . .
~ R C) Wil Q W Ix ; [A R
I~ —~ ~ X < Q [§) Q RAIQI~) B H TN
@ ~[T W wa w wiiL 11 \f,;* DU R SR ENE
O~ OOl TIwox| a/w YENT-1ES N T LTS
W ww F3 BES I B3 N = >~ 1 | S B L o~
ald[o JalAlTjol® zlu] [a/- T als/xi [BRI -1 I
~w|] —wio] T Twi] ;] Twid=[(= S SN €S G G S S B A=
Q18| B/~ 4 X~ IX~Ela [D TR SR L~ 3] =
(VL4 wi<lel<sF W] [=[>w] = wiZ DR RS W N R R I I
X[<[A] XP¥oSa>] Wk i@ > < IR N JE=) C N LI B T
—Tjw j=Nol=[Z=w| { = 18 twws B R RIS < L I L I 3
wolx] WUo &4 €I FOKOX S I DA - ‘W] NS
~ =] ~ Wi—Ho |wWwwiZwiofZzow T | Lo Lo v (Wi
bl IS ILY R A CAUSTIC ST 3E 38 SRS 4R 5 R S T LN AR TN
Jalda]TTaldST (2w o I w0 ¥« ; ,,,AA elal T TNwy
~ZWymZzJuX wa ad 0 d8 - &&n X 0.0 - TN e d N Z R+
)| — = o Q = < <|w i~ ww -~ Mrf 0. Q0w Olw 3/ <]
SE[GGWEBBLO =~ wBncwnoXaawneas [< | 1 oda<[Su T%e
< e BRSNS _ T AN Wl E R I TS
) G N ol m MF52w222,2 ..‘m?nrAArAh R_R_u..o:,Li.T i W
] R O D) N R IR PO 1 SN H 1
= 1oL -1 . 4L — .m.h nin] x X] e < NS
T i) 199 kvelwizial
]] S-[A®mFB . 0/o wod < 2T ¥ h
ol L L 1] T 1 - [R R U AR, 4 E e R B N o ol ST M T S P
a LT DU e 41 O A (MR NESED B e {11
e e - booe W’, L %ﬁjt Pt J -+)ﬁl.« H w . \“ Lff% bk AAn*li

Page 6 -6

Topic 6: Data Structures and Picture Variables

First look at the form:
structure = element expression;

The element expression will be evaluated according to the rules described in Topic 4. The
result will then be assigned to each individual element of the structure, with conversion at each
assignment, if necessary. Thus, statement 240 is exactly equivalent to statements 250-290. A
will have default attribute of DECIMAL FLOAT(6), and will be converted to the attribute of
each target.

Statement 300 shows a simple method of setting every element in a structure to the null value
of that type of data. It is done by assigning the null string to the structure name. The null
string consists of two single quote characters in adjacent positions. It has a length of zero and,
on assignment, will be padded up to the length of the elements with the appropriate characters.
For character strings it will be padded with blanks. For numeric variables it will be padded
with zeroes. For all other data types which will meet in this segment and later, it represents the
appropriate null value. Thus, statement 300 causes all the numeric elements of
STOCK__RECORD to be set to zero, and the character element to be set to blanks.

It is not possible to do assignments of the form:

element variable = structure expression;
/* NOT ALLOWED */

The other form of the statement is:
structure = structure expression; -

At its simplest, a structure expression is merely a structure name, as in statement 310. When
one structure is assigned to another, both must have identical structuring. That is, not only
must they have the same number of elements, but at each logical level they must have the same
number of clements and minor structures, in the same order. One or both of the structures
may be a minor structure, as long as the structuring within it is the same as in the major
structure.

The names used for minor structures and elements do not matter, nor do the attributes of the
elements, or the level numbers used. Assignment is done on an element by element basis, with
conversion if necessary. Thus, Statement 310 is equivalent to statements 320 to 360, but an
assignment from STOCK__RECORD to STK__RECORD, or the other way round, is not
allowed, even though either could be used as the structure into which the stock records are
read.

A more complicated structure expression may be an expression which involves at least one
structure name. It may also involve element variables and constants. When an expression
involves a major or minor structure and an element, it is expanded to operate on each element
of the structure. Thus, in statement 370:

REORDER*2
will expand to:

LEVEL*2
and QUANTITY*2

When an expressioh involves two structures, equivalent elements of the two structures are
combined. Thus, statement 370 has identical effect to statements 380 and 390.

Page 6 -7

Topic 6: Data Structures and Picture Variables

All structures in a structure assignment statement must have identical structuring. As in simple
assignment, they may be major structures, minor structures or a mixture of the two.

Structures used in input/output statements are treated as a single variable whose length is the
sum of the lengths of the elements. Structures used in assignment statements are treated as a
collection of element variables. The individual elements may be accessed as shown in the
previous diagram. However, this is not always adequate, as the name of each element or minor
structure within a structure does not have to be unique within a PL/I program.

ocld] 17] TplalylrlolL]e] J /1o T rle] [#7
B 2| Wialwle| IclHlale] ci¢len], sl | [2lel e/
2| molulRls, | | | I] RN /% | 13le [#/]

3| [RIE[e|c]AlR], IRERR el 1 ale] 4/

3| [OVIEIRIT|I ME|, /| S| |*|/

2| (®ATE], /1%l | l6le] T#/
BRGCEGAANGE T i ERRUCRE

3| lo|VER|T]/ME|; /1% | 18lel |/

plclc] 171 1Plalyi, . el RERRC RN
1 2| NAME! IcHAR] [((418])) i 11 /[# [7lele| |/
2| |IAMOWINT', ! | ! e RGLEREE

3| REGVLAR], 1 i 1l : /1! |712]0 ¢/

3] OVEIRT I ME, /x| |7]309] [/

TIOTAIL; BRERN i /%] (1lela] [¥/

Apmoluwr] =] [HoURIS] % RIAITIE]; | /(x| 17i5l8| |¥|s
ToTAlL PAlY!. AMOUNMTI. RIEIGI|L AR [+] PlalY]. |aMlolalMT] lolviERIT I mE]; | | 7]%] |7l6le] %]/
TlolTlalL] =] lallolulT| RElGul|AalR] [+] PlAlY]- lolViERIT]I IME 715 7]7]e| |#7

T

The -declarations above are valid, but pose a problem in accessing the elements of the struc-
tures. Every element or minor structure name in a structure may be made unique by qualifying
it by the names above it in the hierarchy. The fully qualified names of the various elements
named REGULAR are PAYROLL.HOURS.REGULAR, PAYROLL.RATE.REGULAR and
PAY.AMOUNT.REGULAR. The qualifying names must appear in order, with the highest
level name first and the lowest level name last. '

When any element or minor structure is accessed, it is only necessary to use sufficient levels of
qualification to remove ambiguity. Thus, PAYROLL.HOURS.REGULAR may be referred to
as HOURS.REGULAR, and PAY.AMOUNT.REGULAR may be referred to as
PAY.REGULAR or AMOUNT.REGULAR. The statements starting at lines 160 and 170
have identical effect. '

You should now attempi question 2 in the exercises at the end of this topic.

Page 6 -8

Topic 6: Data Structures and Picture Variables

PICTURE Variables

Numeric Input/Output

Keyboard originated data - punched cards, data from terminals and data from diskettes, is in
character format, but the content may be numeric. It may be read into a character string
variable, but this has disadvantages. If character string variables are used in calculations, a
slow conversion is done every time they are used, and the contents are then held in FIXED
DECIMAL (15) format, causing the truncation of the fractional part. If they are assigned to
numeric work fields, then truncation will not occur, but the conversion will be slow.

Output to the printer or to terminals is also in character format. Numeric values could be
assigned to character variables for printing, but this would make the achievement of any
sophisticated editing and layout of output very difficult. To overcome these difficulties, PL/I
provides numeric PICTURE variables.

Numeric PICTURE Variables

Numeric PICTURE variables hold numeric data in zoned gc_clmal format. The format of zoned

decimal and character data is identical, but zoned decimal fields may only contain the charac-
ters of decimal numbers (0 to 9) and some special characters, which will be listed later.

A numeric PICTURE variable is declared with the PICTURE attribute, followed by a numeric
picture specification. PICTURE may be abbreviated to PIC. The specification defines what
sort of data may be held in the variable, and is enclosed in single quotes. There is no default
for the specification of picture variables, it must always be given.

Although any PICTURE specification may be used for input or output, some are muchmore
likely to be used as input specifications than others. Let’s look first at specifications which are
more suitable for input.

Input PICTURE Specifications

The simplest specification is for positive decimal integer values. For example:

pcld laRlAMS| [P1CTIURE ‘?aqq‘

The picture character 9 specifies that this position may contain any of the characters 0 through
9, and so this specification defines a variable which may hold any number, in character form,
from 000 to 999. It may contain neither a sign nor a decimal point, and it must be right aligned
in the filed. Leading zeroes need not be included, but the whole field may not be blank.

The following are valid strings of characters to be read into GRAMS:

joj ol
999
12
012
jejold)

The following are not valid

1.2 contains a decimal point
ggg% the rightmost character is blank

-6 contains a minus sign

Page 6 -9

Topic 6: Data Structures and Picture Variables

Page 6 -10

The result of reading improper data into a picture variable is unpredictable and it may cause
errors. It is the programmer’s responsibility to ensure that the data put into a picture variable is
valid for the specification of the variables.

Values which contain a fractional part may also be processed. It may be specified that,
although the data contains no decimal point, certain digits are to be considered as fractional
digits.

L] |

Dl AMouNT [Plilc] [*1991a\vi9al’ |,
T I

The V specifies that, although there 1s no decimal point in the field read, the last two digits of
the field are to be assumed to be fractional digits. The V does not represent a position for a
character, it represents the position of an assumed decimal point. The total width of the
variable is S digits, of which two are fractional digits. The 9s have the same significance as
above - AMOUNT may hold values in the range 0.00 to 999.99.

The following are valid strings of characters to be read into AMOUNT with the values which
they represent.

 Characters | Value

The following are not valid strings of characters to be read into AMOUNT:

:3332§ No decimal point is allowed.
-1234 No sign is allowed.
b126b The last character is a blank.

If a decimal point is to be included in the input data, it must be in a fixed position, and its
position must be indicated by the picture specification. However, if it is indicated, it is taken as
being the indication of a period character, with no numeric significance. The position at which
the decimal point is to be assumed must also be specified.

As before, the V indicates the assumed position of the decimal point. It does not indicate a
digit position. The period indicates the position at which a period should appear in the input. It
does indicate a digit position, but does not indicate the position of a decimal point. The length
of KILOS is 6 characters, and it may hold values in the range 0.000 to 99.999. The following
are valid strings of characters to be read into KIL.OS, with the values which they represent.

Topic 6: Data Structures and Picture Variables

Characters Value

The following are not valid strings of characters to be read into KILOS:

123.45 The period is in the wrong position.
1.2345 The period is in the wrong position.
-1.234 Negative values are not allowed.
$1.20b The last character is a blank.

In KILOS, the V and . are adjacent. They do not have to be. If they are not, the V will
indicate the position of the assumed decimal point, and the . will indicate where a period
character should appear in the data.

| ' 7
Del cenTs pie 99999V |||

N o

CENTS has the V and . in non-adjacent positions. The 6 digits of input data should have a
period in the fourth position, but will be considered as an integer. CENTS would be suitable
for reading input which had been punched as dollars and cents, with three digits of dollars, a
period, and two digits of cents, and treating it as cents.

The PICTURE specification of AMOUNT, '999!, was said to be suitable for decimal integer
values, as in the picture specification for CENTS. As this implies, if a V is not included in a
PICTURE specification, then it is assumed that it should be after the last digit.

DICIL| |CIE
L

TS| P|I|C |~9)99-99VI';
DiC 299

N
PEWWN|IES| (P1IC| 299199

- e
~-e

The above declarations give CENTS and PENNIES identical attributes.

The following are valid strings of characters to be read into CENTS, with the values which
they represent.

Characters Value
123.45 12345.
001.23 123.
bb1.23 123.

bbbO01 l.

Page 6 -11

Lopic 6: Data Structures and Picture Variables

The following are not valid strings of characters to be read into CENTS:

123456 No period.

12345. The period is in the wrong place.
b-1.23 Negative values are not allowed.
bH1.0b The last character is a blank.
$12.34 $ is not a permitted character.

You should now attempt question 3 in the exercises at the end of this topic.

If data containing a negative sign is to be read, then this information must be put into the
PICTURE specification. The programmer may select whether the sign is to be the first digit in
the field, or is to appear immediately before the first significant digit of the numeric value.

O I A
DclL BALANC
T

R SRS,
E PIC '=-999V-99'|;
TR S o o S o e

The picture specification for BALANCE says that data read into BALANCE will be 7 digits
wide. If the value is negative, the first position should contain a -, otherwise it should be blank.
The rest of the specification has the same meaning as for KILOS. The last six positions should
contain a decimal number with a period in the fourth position, which is also the position of the
assumed decimal point. BALANCE may hold values in the range -999.99 to 999.99..

The following are valid strings of characters to be read into BALANCE, with the values which
they represent.

Characters Value

-123.45
-b12.34
bb12.34
-001.23

The following are not valid strings of characters to be read into BALANCE:

1234.46 The first digit must be a blank or -.
bb-1.23 The - is only allowed in the first position.
-1.0bbb The period is in the wrong position, and the

last character is a blank.

If a - sign is to be included immediately before the first significant digit, then it is said to be a
floating sign. It is indicated, as follows, in a PICTURE specification:

priovprbrpr it r b bt bl
. DCIL CHANGE PIc| '---49V.99',;
Pt i re i rrrrrrrrrTid

=

The three - characters indicate that the sign may appear in any of the first three character
positions, immediately before the first digit. The declaration forCHANGE is otherwise the
same as the declaration of BALANCE.

Page 6 -12

Topic 6: Data Structures and Picture Variables

The following are valid strings of characters to be read into CHANGE, with the values which
they represent.

Characters Value

-123.45
bb—1.23
bb10.36

The following are not valid strings of characters to be read into CHANGE:

-1bbpbH There is no period, and the last
character is a blank.
BH+1.23 A + is not allowed.

Using these PICTURE specifications, most forms of input data may be read. Variables with
these specifications may be included in structures to describe parts of input records. The
variables could then be used directly in calculations. The contents will be converted first to
fixed decimal format. The precision will be the same as the number of positions which can hold
numeric digits.

The\conversion is much quicker than the conversion of character data to fixed decimal, but will
still take time. Because of this, if the value is to be used more than once in calculations, it is
more efficient to assign it to a fixed decimal variable one, and then to use that variable in
calculations.

Before continuing with the PICTURE specifications used in output, please do questions 4 and
5 at the end of this topic.

Qutput PICTURE Specifications

The main advantage of PICTURE variables in the output situation is that they provide a simple
method of performing elegant editing and formatting of numeric output for reports. The
normal mode of use is that a PICTURE variable is an element of a structure which describes a
line of print. The result which is to go at that position is calculated and is then assigned to the
PICTURE variable. The structure is then printed.

Suitable choice of PICTURE specifications might cause a monetary amount which had been
calculated as -123456 cents to be printed as $**1,234.56 CR, simply by assigning the value to
a picture variable with a suitable specification and then writing it out.

Page 6 -13

1opic 6: Data Structures and Picture Variables

Simple Specifications

The simplest specifications are made up of characters 9 and V. Each 9 in a specification causes
one of the characters 0 to 9 to be printed. The V causes no output. When a value is assigned
to a picture variable, the decimal point in the value is aligned with the V in the specification,
and the integer and fraction parts are moved into the PICTURE variable. If there are mo¥e
digits in the fraction positions of the picture specification than there are in the source value,
then it is padded on the right with zeroes. If there are less, then the fraction will be truncated
on the right. If there are more digits in the integer part of the PICTURE specification than
there are in the source value, then the source value will be padded on the left with zeroes. If
there are less, the result of the assignment is undefined. The error will not necessarily be
detected by the system. It is the programmer’s responsibility to ensure that the PICTURE
specification used is adequate.

Below are two specifications and the effect of various assignments.

\VEITT: Characters
Assigned | Printed .

Value Characters
Assigned Printed
i 0100
1.23 0123
12.3456 1234
0.001 0000

Zero Suppression Characters

One of the undesirable features of the specifications of PIC1 and PIC2 above is that they
cause all leading zeroes to be printed. This can be overcome in several ways.

If the Z picture character is included in a picture specification, it must not be preceded by any
9 picture characters, or any other zero suppression characters. A Z in any position in a picture
specification causes a leading zero in that position to be replaced by a blank.

Page 6 -14

Topic 6: Data Structures and Picture Variables

A leading zero is a zero which precedes all non-zero characters in a number. If the digit is a
non-leading zero, or a digit 1 to 9, then it appears as if the picture character had been a 9.

Below are some examples and the effect of assigning values to them. The first five are covered
by the rules above. The last four illustrate Z picture characters following a V picture character.

Picture Value Assigned to Characters

Specification Picture Variable Printed

77779 103 bb 103
| ZZZ99 ! bHb0 1
{22799 1.02 bbbO01
| ZZZV99 1.02 bb102
. ZZ9V99 100.12 10012
L 7727ZV1Z 0.01 bbb01
- ZZZIVZ7Z 1.00 b5 100
- 222V7Z 0.00 bbbbb
! 7727ZV71Z 0.001 bbbbb

If a picture specification contains a Z picture character to the right of a V picture character, all
fractional digit positions and all integer digit positions must be shown by Z picture characters.
If the value assigned to the picture variable causes all positions in the picture variable to
contain leading zeroes, then the picture variable will contain all blanks. If it does not, then the
picture variable will contain a result as if the Z picture characters after the V picture character
had been 9 picture characters. -

In some situations, it may be required to replace leading zeroes by some character other than
blanks. A typical application might be a program which produces checks. If leading zeroes
were replaced by blanks, fraudulent alterations would be relatively simple. The * picture
character obeys the same rules and acts in the same manner as the Z picture character, but
suppressed leading zeroes are replaced by * characters. A picture specification may not include
both Z and * picture characters.

Below are some examples of picture specifications containing the * picture character, and the
effect of assigning values to them.

Picture Value Assigned to Characters

Specification Picture Variable Printed
*kk%Q 103 **103
*k *9 1 sk 1

***V** 0.00 kkkRk

Page 6 -15

L cev e st v WAL A ILLUI T Y ALIAUICD

The Z and * picture characters both recognize leading zeroes as a special situation, but do not
recognize embedded zeroes as special. The Y picture character causes a zero at that position to
be replaced by a blank, whether it is a leading zero or embedded zero. Y picture characters
must not appear to the left of a Z or * picture character in a specification, but they may appear
to the right of them and in any position where a 9 picture character could otherwise occur.

Below are some examples of picture specifications which contain Y picture characters, and the
effect of assigning values to them.

Picture - Value Assigned to Characters

Specification Picture Variable Printed
ZZYYY 103 bb163
ZIYYY 10000 10bbb
Z9Y9Y9 010175 b1b175
YYYVY9 0.04 HbHDH4

You should now do question 6 in the exercises at the end of the topic.

Insertion Characters

The need to insert decimal points and other characters in printed fields is met by the insertion
characters. Unlike the zero suppression characters, insertion characters do not indicate -
positions which could hold numeric digits. Insertion characters may appear at any point in the
specifications discussed so far, and will normally cause the character specified to be printed at
that position. If leading zeroes are suppressed, then insertion characters may also be sup-
pressed.

period insertion character(.)

Page 6 -16

The period insertion character causes a period to appear at the associated position. There is no
relationship between the appearance of the period character and the arithmetic value. If a
period insertion character does not appear adjacent to a V picture character, the value printed
will appear to be different from the value assigned into the picture variable.

Here are some examples:

Picture Value Assigned to Characters
Specification | Picture Variable | Printed—
IR 7779V .99 12.34 bb12.34
MR 7V99.99 0.1234 b12.34
RN 77.79V99 123.45 b1.2345
R 77.79V99 1.23 bbbb123
N 77.79V99 12.34 bbb 1234
O 7777.V1Z 0.01 bbbbbO1l
B 77727V.77 0.01 bbbb.01
W 7777V.77 0.001 bbbbbbb

Topic 6: Data Structures and Picture Variables

The first example above shows a typical picture specification for printing out decimal results in
a ‘conventional’ manner. The second example has the V picture character separated from the
period insertion character by two positions. When a value is assigned to the picture variable, it
will be aligned with the V picture character. The period insertion character will appear where
specified. This specification would be suitable if a ratio had been calculated, and it was to be
printed as if it were a percentage, or if an amount had been calculated in cents and it was to be
printed as if it were dollars. It should be noted that, if the variable which had had 0.1234
assigned to it were used in an arithmetic expression, it would be taken to contain the value
0.1234.

Due to the suppression of leading zeroes by the Z or * picture characters, period insertion
characters may be replaced by blanks or *’s, as appropriate. If all digits to the left of the period
insertion character are suppressed as leading zeroes, then the period insertion character will be
suppressed as well. If the zero suppression characters are Z’s the period insertion character will
be replaced by a blank. If the zero suppression characters are *’s, the period insertion charac-
ter will be replaced by an *. This situation is illustrated by the third to sixth examples above.

However, if the period insertion character appears to the right of a V picture character, it will
not be replaced by a blank or asterisk unless:

all digit positions to the right of the V are indicated by Z or *
AND
there are no significant digits in the field.

This situation is illustrated by examples 7 and 8 above.

For most applications, periods will be wanted in output unless the whole field is suppressed, so
specifications containing the sequence V., as in example 7, will be required, rather than-the
sequence .V, as in example 6. Suppression of insertion characters is normally more useful
when using the comma insertion character.

comma insertion character(,)
The comma insertion character follows the same rules as the period insertion character, except
that, when not suppressed, it causes a comma character to appear in the equivalent position.

Below are some typical uses of the comma insertion character. Example 6 shows printing of
large numbers using the European format.

Picture Value Assigned to Character
Specification Picture Variable Printed

2,279V .99 1234.56 1,234.56

2,279V .99 123.45 bb123.45

. 2,279V .99 0.00 bbvb0.00
S8 2,222,279V .99 1.23 bbHHHbOOH1.23
R 72,222,229V .99 1234567.89 1,234,567.89
R 2.227.279V 99 1234567.89 1.234.567,89

The slash insertion character follows the same rules as the period and comma insertion
characters. It causes a slash character to be inserted in the equivalent position. A common use
for the slash insertion character is for formatting the date, held as a six figure integer
DDMMYY or MMDDYY. The following would be a suitable specification for the purpose.

Page 6 -17

29/Y9/Y9

The Y specification characters will cause zeroes in these positions to be suppressed. It will
cause the following results:

Printed

101280
010181

10/12/80
b1/b1/81

B
The B insertion character causes a blank character to be inserted at the equivalent position in
the string of characters. If it occurs in a situation where the period, comma, or slash insertion
characters would be replaced by an asterisk, the B insertion character will still cause a blank
character to be inserted.
Below are some uses of the B insertion character.
Picture Value Assigned to Characters
Specification Picture Variable Printed
99B999BV .99 1234.56 01b234b.56
KEBHRPH* 123.0 **p* 1523
Currency Symbol

The currency symbol is shown in IBM manuals as $. The currency symbol may be used in a
static or drifting manner.

Static Currency Symbol

A static currency symbol appears as either the first or the last character in a picture specifica-
tion. It acts as an insertion character in the same. way as a B; it may not be suppressed. A
picture specification containing a static currency symbol will cause a currency symbol to be
printed as the first or the last character, as appropriate, in the printed string.

Drifting Currency Symbol

The drifting currency symbol causes leading zeroes to be suppressed, and a currency symbol to
be inserted before the first digit. It is coded in a similar, but not identical, way to a Z or * zero
suppression character, as two or more currency symbols in the first digit positions of a picture
specification. The string of currency symbols may contain insertion characters. The period,
comma and slash insertion characters will be suppressed or replaced by a currency symbol if
they are not preceded by a digit. If all digit positions in the specifications are currency
symbols, and there are no significant digits, the whole field will be treated as blanks.

The difference between the use of the zero suppression characters and the drifting currency
symbol is that the first currency symbol does not specify a possible digit position, but is
reserved for use as a currency symbol if all other digit positions contain digits. A picture
specification which contains a drifting currency symbol may not also include Z or * zero
suppression characters. Following are some uses of the currency symbol.

Page 6 -18

Topic 6: Data Structures and Picture Variables

Picture ~ Value Assigned to Characters

Specification Picture Variable Printed

Static Currency Symbol

$Z,2729V .99 12.36 $vdb12.36
999V.99§ 12.36 012.36%

Drifting Currency Symbol

$5,589v.99 12.36 bbb$§12.36
$8,889v.99 112.36 bb$§112.36
$8,889v.99 0.01 bbbH50.01
$8,583V.88 0.01 bbdHH$.01
$8,558V.83 0.00 bbbbbbbbdd

You should now attempt question 7 in the exercises at the end of this topic.

Sign Indication

The sign of a number may be indicated in several ways. We will consider first the use of + and

Signs may be requested by using the following specification characters: -
a) S print + if positive, - if negative
b) - print a blank if positive, - if negative
¢) + print + if positive, blank if negative

S. - and + may be used in an identical way to the currency symbol, as static or drifting
characters. A drifting sign indication may not appear in the same specification as a drifting
currency symbol, or a Z or * zero suppression character, but may appear with a static currency

symbol.

It should be noted that a static sign symbol, or the first of a string of drifting sign svmbols, may
not be used as a digit position, even if it is not needed for a sign with any particular number.
Thus, a picture variable with the specification ‘999’ or ‘---9’ could not accommodate the
number 1234. The maximum number it can accommodate is 999, and the first position will
print as a blank.

Following are some uses of the S, - and + sign characters.

Page 6 -19

Topic 6: Data Structures and Picture Variables

Picture Value Assigned to Characters
Specification Picture Variable Printed
SZZ9V .99 1.23 +bb1.23
SZZ9V.99 -0.23 -550.23
$—,—-—9V.99 -1.23 $bbb-—-1.23
$—,——9V.99 1.23 $Hbbb1.23
++9V.99 1.23 b+1.23
++9V.99 -1.23 Hb1.23

Other Sign Indications

CR

DB

It is a common business practice to indicate negative values by writing either CR (credit) or
DB (debit) to the right of a number. Picture specifications provide this facility by the CR
picture character pair and the DB picture character pair.

The characters CR may be coded in a picture specification to the right of all digit positions. If
the value assigned into the picture variable is negative, the characters CR will be printed in the
corresponding position. If it is positive, two blanks will be printed.

The characters DB may be coded in a picture specification to the right of all digit positions. If
the value assigned to the picture variable is negative, the characters DB will be printed in the
corresponding position. If it is positive, two blanks will be printed.

Below are some examples of the use of the CR and DB picture specification characters.

Picture Value Assigned to Characters
Specification Picture Variable Printed
$BZ,ZZ9V.99BCR —-12.61 $bbbb12.61BCR
$BZ,ZZ9V.99BCR 12.61 $bbbb12.6160D
$$8,889V.99BDB -12.61 bbbb$12.615DB
$$8,589V.99BDB 12.61 bbbb$12.616Hd

You should now answer question 8 in the exercises at the end of this topic.

Picture Variables in Assignment and E xpressions

Picture variables form a bridge between the character and numeric data types. This is reflected
in their use in assignments and expressions, where they may sometimes be treated as character
variables, and sometimes as numeric variables.

Picture Variables as a Target

Page 6 -20

When a picture variable is the target of an assignment statement, it is always treated as a
numeric variable. The source must be either '

a) an arithmetic constant or variable

Topic 6: Data Structures and Picture Variables

b) an arithmetic expression

¢) a character string constant or variable, the contents of which could be used us a

numeric constant
The source will be edited as it is assigned.

Note that the statement:

DiciL
P

>0
S
<
>
A
Ry,
S
(»)
»w
9
~
<
| D
D

S~
©
<

would cause an error.
A $is not allowed in a character string constant which is to be converted to numeric.
Picture Variables Used in a Character Context

If a picture variable is assigned to a character variable, or forms an operand in a character
expression, it is treated as a character variable. The contents are the characters which would
be printed if the picture variable were printed.

RN i
' pelL PilclvAR| [Picl |'1$-]-9vl.[919]'[; ¥ 1lo| ¥/
| Dejt PRIINLINE c|HAR/([132)]; x 20 e/
. DC|L CHARVAR CHAR (7D} * 39 */
L PilcvAR = 123, | K 40| ¥

_ CHARVAR = PICVIAR; | % [sd ¥/
. PRIINLIINE =] ' PRIOF 1T = ‘IJPICVAR, ¥ [6g| ¥/

In the above, statement 40 would assign '$b -1.23' into PICVAR. Statement 50 would assign
'$H -1.23' to CHARVAR, and statement 60 would assign
'PROFITH =b$b -1.23' to PRINLINE.

Note that, although statement 50 caused the contents of PICVAR to be quite legally assighed
to CHARVAR, it would cause an error to assign CHARVAR to PICVAR after statement 50.

Picture Variables used in a Numeric Context

If a picture variable is assigned to a numeric variable, or appears in an arithmetic expression, it
is treated as a numeric variable, with the value which was last assigned to it. The position of
the decimal point will be indicated by the V picture character, or taken as after the last digit
position if there is no V in the specification. Any insertion characters and currency symbols
will be ignored, but any indication of sign will be heeded.

If the current value was put into the picture variable by a READ statement, then the numeric
value will be that value which would have been assigned to the variable to cause the same
characters to be held.

Picture variables used in arithmetic expressions are converted to FIXED DECIMAL with
precision (p,q), where p is the total number of digit position in the specification and q is the
number of digit positions after the V picture character. In this context a digit position is a

Page 6 -21

Topic 6: Data Structures and Picture Variables

9,Z,*)Y or a drifting $, S, + or - which is not the first such character. Thus, the precision of a
variable with a specification '$---9V.99' would be (5,2). Only the underscored characters
count towards the precision.

The maximum number of digit positions allowed in a picture specification is 15.

You shouldnowcompletequestions9and 10 intheexercises at theendof this
topic.

DEFINED attribute

Page 6 -22

A variable may be declared, using the DEFINED attribute, so that it occupies the same area of
storage as some other variable. A structure can also be declared, using the DEFINED attrib-
ute, so that it occupies the same area of storage as some other structure (or array or variable).
This is useful when you want to interpret one area of storage (e.g. a record workarea) in
different ways depending on the record type. For example:

plclcl 1] |RECT!,
2| clople clHAlR|(1))] 1,
2 Fl1lRis|T | [c|HAR|c|2]0)]/
2| |slElclom o] [clw|alRr|¢|5l9])];
plciL] 1] |Rielc|2] [o[EFiWED] [RIEIC]7],
2| [clojole| |clH|alr|cir])] |, .
RIES|T| clH|AlR|(|7|9])];

Here is a coding technique that makes use of the DEFINED attribute.

Suppose part of an output record has the specification:

2 OUTVALUE PIC 'z9v.9',

If the data involved are valid the statement

OUTVALUE = VALUE;

will result in a suitable printed format for OUTVALUE. Let us suppose that we want four
asterisks to replace OUTVALUE if we have tested and found some invalid data. We will get
an error if we use the statement:

OUTVALUE = 'H***1.
as the character string does not conform to the picture for QUTVALUE, which requires

numeric data. To get around this we can use:

DCL OUTSTARS CHAR(4) DEFINED OUTVALUE;
OUTSTARS = ‘'***x%',

The DCL statement causes the PL/I compiler to assign the same storage locations for
OUTSTARS as for OUTVALUE. Since OUTSTARS has the character attribute we can
readily assign the desired character string value to it.

The DEFINED attribute (abbreviation: DEF) will be described in greater detail in topic 21.
The above information should be sufficient for you at this stage.

Topic 6: Data Structures and Picture Variables

Exercises

1. Write a declaration for a structure to contain the following items. Call it
CUST__STRUC. It is required to be able to refer to the last 3 items as LAST _ TRAN.

CUST__NAME CHAR(30)
CUST__ADDR CHAR(100)
ACC__NO FIXED DEC(7)
CRED__LIM FIXED DEC(5)
CRED__LEVEL FIXED DEC(7,2)
DISCOUNT FIXED DEC(3,2)

DAY CHAR(2)

MONTH CHAR(2)

YEAR CHAR(2)

2.

DlciL| (1| |DAITE|,

2! DIAlY| ICHIAIR |€|2])],
2| MIOWNVTIH ICIHAIR (€221,

N 2! Y EAR| [CHAR| |€l2)):

Given DATE declared as above, and CUST STRUC as declared in question 1., write
statements to read a record from a file CUSTFIL into CUST__STRUC, replace the data
in the last three elements of CUST__STRUC by the data currently heid in DATE, and
update the record on the file. Do not code any declarations.

Page 6 -23

Topic 6: Data Structures and Picture Variables

Page 6 -24

" Declare picture variables PIC1 to PIC4 capable of being used to read the following

characters

512345

12345 to be interpreted as 12.345
$12.34 to be interpreted as 12.34
P12.34 to be interpreted as 123.4

Declare variables PIC1 to PIC3 capable of being used to read the following characters.

-$12.34 to be interpreted as -12.34
bH~-12.3 to be interpreted as -12.3
-12.34 to be interpreted as -1234

What are the largest positive and negative values which could be held in PIC1 to PIC3,
declared in question 47?

Declare picture variables which could generate the following output.

Value Characters

Assigned Printed

1001 001001

1001 HH1001

1001 **1001

10.01 **1001

10.01 bb1bbl -

Topic 6: Data Structures and Picture Variables

7. Declare one picture variable which would cause the following outputs.

Value | Characters

Assigned Printed

1 $6bb0H0.01
100 $ubddd1.00
12345 6512345
1234567 | $12,345.67

8. Declare a structure containing a character string variable and a picture variable such that,
if -123456 were assigned to the picture variable, a line could be printed as follows:

BALANCE IS $**1,234.56 CR
" Pad the structure to a length of 132 with a character variable containing blanks.

9. What values will be held if the following strings of characters are read into a variable
declared as shown below:

Diclt Pllcli N [Plile] [V[-[-]-[alv[9l4]'];
-12345)
bBH123
bH-123

10. What will be printed if the values put into PICIN in question 9 are assigned to a variable
PICOUT, and printed.

S L] J
r’ LDTCLJ; Pl;lc:ouT Plilc| ' 1$'sls, Sislavl. 9a]' ;
[1 ’ i

Page 6 -25

Topic 6: Data Structures and Picture Variables

. Answers
1.
plcle] 1! [elulsfr]s[Tlruc
T T 20 Teluls|Ti-InfalmE] [ciHalR] (131 [,
|2 culsT_APpDR [cHAR (199
: L ZEACC_NO F/1x|elD| blelc| |()'
1 12 cRED-LliM [Fliixen] DEC] (5],
o |2 cRED_|LIEIVEL] Fliix|eD] DEIC |(
oo |2, DilsicojuNT |Fl1ix|ED| DEKC] I(
‘ ‘ QWLASTQT AN,
. |3 [oAy cHAR (2],
e 13, MONT] HAR [([2)
o ;ﬂ YEAR| CHA .

N>
SIE!
= (mf

2.

| REWD_Fi LE [(cu
WLAIST_TIRAN |= D
iiREWRLT& FilLE

[T ;

ﬂ_sﬂ'uc DAlY| = i
ﬁ‘—s RHC MOIN M
Sﬂ_sqauc YE = £

3.

oot pratl iPlic *999999V |
L /* OR %

_DClL Puici2 [PlIC| [A[99VvI999

ot Plilc’s Plilc] [*lqlalalv].9]9

'[m L pilci# [Pl al.[avi9

Page 6 -26

Topic 6: Data Structures and Picture Variables

There could be more - characters in PIC2’s specification

DiciL| [Pu|c|3] [Pltic| |'|=~[919].819M'|;

There could be more - characters in PIC3’s specification, and the V could be omitted.
PIC1: 999.99 and -999.99

PIC2: 9999.9 and -9999.9

PIC3: 99999 and -99999

The first - picture character does not indicate a possible decimal digit position.

pclL| |Pliiclt] [Plticl |'[991919[a1a)vV!'|;
dcly Pljcj2 Plilc] ZZ4919aV'|;)
DiCiL! |P/1|C|3| |PjIIC| |'|**9994|V]|,
DIC|L |[PltIC|4 PlIIC| |'|%x%94Vaq"|;
DclL |[PIIC|S] PlilC| |‘lZZ4Y|IViYa'l;
}

In the declarations of PIC2 to PIC4, the zero suppression characters may be continued in
all positions.

In the declaration of PICS, all digit positions could be Y picture characters.

Page 6 -27

Topic 6: Data Structures and Picture Variables

8.
. - ! ‘1 | l lr
_boL 1 LINE,
B 2 TXT CHAR (|11))] [i1NpT] |('BALANICE] [1is|)],
e 2 Pilci Pilc) | $lxwx, xdq).|a[a|ViBIcR]' |,
L |2, PApD }YCHAR ([1o7)| [tNT (17D
[N T [
Every character in the picture specification will occupy one position on the print line,
except the V. The number of *’s in the picture specification is flexible. There must be a
minimum of 2. All decimal digit positions could be shown by *.
9.
Characters | Value
Read Held
—12345 —123.45
bbb 123 1.23
bb—123 —1.23

10.

Original Characters | Characters
Read Printed

—12345 $6b—123.45
bbb 123 $6bdH+1.23
bb—123 $66Hb-1.23

Page 6 -28

Topic

I S P
D
A A
E D T
Y P Y 1
D U E T
M D N M- D
O G 0 p
U P D E U P E P D
I R A T
Y I N T Y I N T Y I DE
0G P T oG M E T 0G M P T D
0] E N TU 0 E ST R D N ub
5 E D Y oG E D D RO D N ST 0]
M D NT DY R AM D NT D R AM D NT P O
ND EN D P R M ND ENT D P R M IND ENT D RO
N E N U p A IN E N TU P R IN E N U R In
EP NDE ST GR EP ND RA : U £
ND T STU PR D ND TU PR R D ND TU Y 0] ND
E T R G D ENE T R G D EN TU R R M ENC
ST P O I PE D T ST P O N PE D T STU A ND N
S UY ROGR NT S UDY ROGR NT S U Y ROG EN T
TUD PROGRAM E N UbY PRO RA E N ub PRO RA ND PE S

STU PR R N E END T ST PR G AM N EPE T T
PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S U
R GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMTI E EN T STU Pl
IGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY 0
AM INDEPEN ENT S UDY PROG AM IND ENDE T S uUDY ROGRAM I DEPENDEN STUDY PROGR,
| INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
NDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM 1!
JEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IND
'ENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEP
YENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEN
}J'STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDE

STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
5TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT S
JDY PROGRAM INDEPENDENT STUDY PROGRAM 'INDEPENDENT STUDY PROGRAM INDEPENDENT STU
{ PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
>ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY P

DGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PRO
~~~~~~~~~ ~Toinv. AnNACDAM ITNDFPFNDENT STUDY PROGR

PROG AM N EPE DE



Topic 7

Control of Program Flow

Objectives

Introduction

This topic describes the facilities available in PL/I to control the circumstances under which
parts of a program will be executed. A data type, BIT strings, will be described. These are
useful for holding the results of tests and acting as program flow switches. Arrays are discussed
towards the end of the topic - these are useful PL/I aggregates of data which can be manipu-
lated very easily within a DO group.

On completion of this topic you should be able to:
« use the IF statement to control program flow

« use the various forms of DO statements to enable groups of statements to be executed
repeatedly

o use SELECT groups to provide multiway conditional branches

'« use the GOTO statement to control program branching

« use the LEAVE statement to transfer control from within a DO group
« use BIT string variables as program indicators

« be able to declare and use arrays.

In all programs shown so far, all statements in the program have been executed once, in the
order in which they were coded, unless they were included in a DO group. The group of
statements in a DO group will be executed repeatedly until the condition on the DO statement
is met, when control will pass to the first statement after the DO group. This is a very useful
facility. It enables a program to produce any pay slips until there are no more employees'
records to be processed. It enables a program to produce invoices until there are no more
orders to process. However, there is a need for a finer level of control over which statements
will be executed and when. Overtime pay should not be calculated unless the employee has
worked overtime. A customer should not be invoiced for an item if there is no stock of that
item to send him. '

Page 7 -1



The IF Statement

" The IF statement causes different groups of statements in a program to be executed, depending
on some condition. It has a similar affect to the use of ‘if’ in speech.

‘If it is sunny, I will go out, otherwise I will stay in’.
The form of the statement is:

IF condition THEN then clause;
ELSE else clause;

Example

S | -
e 1
H i
i !

\

] AL
LF| HolulRs| > |38 [THEN
4‘}‘ i | ‘ : |

I M =
| ME| (= @;
|

im
P
n
m
Qo
GIE!

T

IF, THEN and ELSE are keywords. They must be separated from other identifiers by at least
one blank.

The condition is typically a comparison of two element variables, or a variable and a constant,
using relational operators. If the comparison is true, the THEN clause is executed, and the
ELSE clause is not executed. If it is false, the THEN clause is not executed and the ELSE
clause is. This flow of control is shown below.

Page 7 -2



Topic 7: Control of Program Flow

STATEMENT
BEFORE IF
STATEMENT

THEN
CLAUSE

ELSE
CLAUSE

STATEMENT
AFTER IF
STATEMENT

Y

In speech, the ‘otherwise’ option is not always needed. Instructions on how to prepare to go
out might be:

Put on your jacket,
If it is cold, put on your overcoat.
Go out.

There is no statement of what to do if it is not cold.
PL/I allows a similar form with the IF statement, by omitting the ELSE clause.

IF condition THEN then clause;

Page 7 -3



Topic 7: Control of Program Flow

Example

| 111
PAlY! |=| HouRls| ¥l [RATIE];
1A HoluRls: >| |38, [THEN PAY| = [PIAY] '« |((HOWUR'S| |- [3/8])| [ [RIATTIE] ¥l lof-5;
TAX =l IPAY M . 3];] : %

If the comparison is true, the THEN clause is executed. If it is not, the THEN clause is

by-passed and control passes straight to the following statement. The flow of control is shown
below.

|

STATEMENT
BEFORE IF
STATEMENT

TEST TRUE
CONDITION
FALSE
THEN
CLAUSE
-~}
STATEMENT
AFTER IF
STATEMENT

Page 7 -4



Topic 7: Control of Program Flow

The absence of an ELSE clause is shown by the statement after the THEN clause not starting
with ELSE.

Relational Operators

The relational operator in the examples is '>', standing for ‘is greater than’. The condition in
these statements is ‘If the value held in HOURS is greater than 38, then. ...’

Relational 48-character
Operator Meaning Set Equivalent
= is equal to = |
< is less than LT |
> is greater than GT l
<= is less than or equal to LE
> = is greater than or equal to GE !
= is not equal to NE ?
< is not less than NL '
> is not greater than NG

The relational operators are shown above. They allow all the comparisons which are normally
made. The composite operators, those made of two characters, like <=, must be coded in
adjacent columns. The ‘not’ symbol is sometimes shown as -~. If this form is used, it must be
written carefully so that it is not confused with seven, 7. Of the relational operators, only =
appears in the 48-character set. All others have equivalents in the 48-character set which_are
made up of pairs of alphabetic characters. If the 48-character set is being used, LT, GT, LE,
GE, NE, NL and NG are reserved words; that is, they may not be used on their own as
variable names or file names. Thus, LT would not be a valid variable name, but LTA would.

The operands of relational operators may be element expressions of any data type. They may
not be structure expressions. The expressions are evaluated according to the Fule laid out in
Topic 4, and each reduced to a single value. When compared, both operands must have the
same attributes. If they are coded with different attributes, one or both will be converted, in a
similar way to that used in arithmetic and character expression evaluation.

Page 7 -5



Topic 7: Control of Program Flow

Character Operands

If both operands are character strings, the shorter string is padded to the length of the longer
string with blanks on the right hand end. Character operands may be compared by the = and
- = operators. If the two strings, after padding, have identical contents, character by character,
they will be counted as equal. If they do not, they will not be. Thus:

'THIS ' will be equal to 'THISH b,
'"'THAT ! will not be equal to ' b bTHAT!.

Numeric Operands

If either or both of the operands is numeric, including PICTURE, then both operands will bee
converted to numeric.

If one operand is CHARACTER, it will be converted to DECIMAL FIXED(15,0), as in an
arithmetic expression. If an operand is PICTURE, it will be converted to DECIMAL FIXED,
with a precision as implied by the picture specification.

Once both operands are in coded arithmetic form, they will be converted to the same base and
scale, as in an arithmetic expression. If the bases differ, the DECIMAL base will be converted
to BINARY. If the scales differ, the FIXED scale will be converted to FLOAT.

Consider the following examples:

el clHarRT | cHar () 1T NGl Tr]2lsle D 7 10| [¥/
DC|L C|HAR2 | | CHAR (6], . ,iﬁwgygraw123«¢g); /1 20| |/
DelL Plilc _Prcrqava’ | | INIT(12 1)) /4 3@ |w/

pgﬁ;g:x_uzc_flxso DEC(]S.,2) INITCo-|8)5| | /K 49 |x/

Dclt |FiLlo-bE/C FLIOAT MEQ(Qx? UNITCT (3D /¥ 5@ [%l/

! Lo [

CU|rE |cHART] = clWARZ THEN cHARY = pulel [T /60| |x/
_|lF [CHART| > PlicC THEN |CHAR[Z = [‘Bual'; | [ 1 17d [7le (7
i L T T EUSE CHAR2 = [ sMALL ] /| [8lp| ¢/

_ [tFIFlr x-dlec” >]=" 'FLiol_Delc] [THEN RIX_0EC] = [FiLo|-DEC]:| /|« 9@ [*/
: jg | ;; Ll _ELSE FILO-DIEC| [=| R!XI-DEC];| |/} 1120]

Page 7 -6

In line 60, CHAR1 and CHAR?2 are both character strings, and will be compared as character
strings. As CHARI1 is shorter than CHAR?2, it will be padded to the length of CHAR2 with
blanks on the right hand end, giving a value '1234b b'. This will be compared, character by
character, with CHAR2.

CHAR1 123455
CHAR2 123405

The fifth character will not compare as equal. The THEN clause will be by-passed, and control
will pass to line 70.

In line 70, as PIC is PICTURE, the comparison will be done in numeric form. CHARI1
contains a valid number, which will be converted to FIXED DECIMAL(15,0) and held as
1234. The 12.1 in PIC will be converted to FIXED DECIMAL(3,1), and the two numbers
will be compared. As the value in CHARI is greater, the test will be true, and the THEN



Topic 7: Control of Program Flow

clause will be executed. The ELSE clause on line 80 will be by-passed, and control will pass to
line 90.

Lines 90 and 100 cause FIX__DEC and FLO__DEC to be set to the value of whichever is the
smaller. If the value held in FIX__DEC is greater than or equal to the value held in
FLO__DEC, the THEN clause will be executed. If not, the ELSE clause will be executed.

In all the examples, ELSE has been positioned directly under THEN, and both clauses have
been assignment statements. If desired, ELSE could come immediately after the semi-colon of
the THEN clause. Positioning it under THEN helps make the program more readable. The
THEN and ELSE clauses of an IF statement may contain any executable statement, or a group
of statements. The full options will be covered later in this topic.

You should now complete question 1 in the exercises at the end of this topic. “

Page 7 -7



LUPIL /. LUNUUL UL TTUOEraim riow

Logical Operators

Decisions are often made on more than one condition - ‘If it is sunny and I have nothing better
to do, I will go out’ or ‘If it is cold or it is raining, I will stay in’. PL/I allows such tests to be
made by means of the logical operators shown as follows:

Logical
Operator

48-character
Meaning Set Equivalent

and
or (inclusive)
not

As before, the 48-character set equivalents of the symbols are reserved words.

The logical operators may be used to link together expressions involving relational operators in
the following ways.

&
If two expressions are linked by the & operator, and if the expression to the left of the operator
gives a true result and the expression to the right of the operator gives a true result, then the
whole expression has a true resuit, otherwise it has a false result.
Examples:
1F| [C(WEATIHIEIR| = |*IF|1IME! Q1 (/WTIEIRIEISITIS] =1 |Nw|oWIE]’|) |TIHIEW] |AICIT|1|0IM |=| |* lglo! |olu|T]’|;
ds|g| lalc|r]riow 1= [risiTlaly| Trwl"];
.
1F| [(|a B & (clc| |=| [ph| [THEW x| |=| I¥is
BRGEASERGEEREE
|
1] (Al Dl lep! g [da] k=] 7leh] [TIHIEWM ic] = A | B
| EILISE| €| = @l

Page 7 -8

The first example shows the first 'prose' example as it might appear in a PL/I program. The
second shows two arithmetic comparisons.

The third example tests whether A is in the range greater than O but not greater than 10. In
PL/I1, each operand of & or the other logical operators must be a complete relational expres-
sion.

You may not code:

F

o




Topic 7: Control of Program Flow

The | operator is coded as the same character that is used to make the concatenation operator,
| |. With the & operator, both operands must give a true result for the whole expression to
have a true result. With the | operator. if either of the operands is true. or if both are true. the
final result 1s true.

Fxamples:

i 1
mipl <] e [T] [(WIEMITIHER] (=] [ [R|A[1IN/[2] [TIH[EW] Alclr|tlow] |=| |*is|Tlaly] 1]V ’];
olc|k| <[ lolelple[ml] |[[ I¢{c|rieloiiT] b [clrp[e[Th| T{H[EW W|sle| 1=| | plojw]|*I7] Ipg|L|1|vIE[R]"];
E|LISIE| MISig| i=| ‘DIE|L{IIVIEIR]"|;
<= TeD [T IclAl I [7leD | THEW |cl = lel; 1]

The first example is the PL/I equivalent of the second ‘prose’ example. If the temperature is
low, stay in. If it is raining, stay in. If it is both cold and wet, stay in.

Page 7 -9



Topic 7: Control of Program Flow

The second example shows an order processing situation. Delivery will be stopped by insuffi-
cient stock or by the customer exceeding his credit limit.

The third example will cause C to be set to 0 if A is 0, negative or greater than 10. If it is
greater than 0 but not greater than 10, C will be set to A * B.

The -~ operator is used as a prefix operator. It reverses the result of the expression to which it
is attached. If (A>B) gives a true result, -~ (A>B) will give a false result. When attached to a
simple expression, as here, it is often clearer to rewrite the expression than it is to use the -
operator. Thus, -(A>B) is the same expression as (A<=B), which probably has a more
obvious meaning to anyone reading the program. However, the - prefix may be attached to a
more complicated expression, which itself forms only a part of a larger expression.

Example

T

el Tdal ) teb e Ficde, Bl ol bl [ Iclel D] IFbITT Tex 5;P3) TIHE - 2

m
<<

~e

[ ! {

In such a situation the - operator may make the expression easier to understand.

Operator Hierarchy
In all the IF statements shown, brackets have been used to show the order in which expressions
will be evaluated. The relational operators and the logical operators may be added to the
hierarchy of operators-to show the order in which expressions without brackets will be
evaluated. The full hierarchy of operators is shown as follows:

Operators l Priority

** prefix + prefix — — highest
*

infix + infix —

I

< WK L==>5=> 1>
&

| lowest

Note:

In an expression with several operators at the same level of priority, if they are at the
highest level, they will be processed from right to left; if they are at any other level, they
will be processed from left to right.

Following this hierarchy, the expression:

1 |
A+B*c**-b>F*FIc>DQﬂ(F*xG>x- )

Page 7 -10



Topic 7: Control of Program Flow

is a valid expression, but it would probably be easier to understand its meaning, and be sure it
would be interpreted as intended, if it were written as:

’._-

Lo

I
A+ C[BlC ¥ x|(

: e
i

. | |
eer) 1] lcllsoh @ i demead] 1o (x= 72D

A
~

The use of parentheses in expressions does not incur any penaity. If they are not used in
expressions, a misunderstanding of the priority of operators will normally not cause a failure,
but may cause the program to produce incorrect results. If the programmer coding the
expression above, with parentheses, had been mistaken about the priorities of the operators +
and &, the significance of the expression would be completely changed.

You should now attempt question 2 in the exercises at the end of this topic.

THEN and ELSE Clauses

In all the examples in this topic, THEN and ELSE clauses have been assignment statements.
They may be any executable statement, but may not be DECLARE, PROCEDURE or END
statements.

Examples

b | |_t,Jf,L l T dLb Yk ol b | [ | |
| s[TojcK > ‘OIRLDERI ;Tﬂf-l“i.ﬂ oclK |=| |S|TOCIK |- ORDER,; A 110 [ElXAMPILE 1] ¥/
doal +-~f—J o i.if"-isﬁ {wgmjr wFilLE(R]EPogTPT_ | /% (210 ¥/
: oL, FRIOM(STOC KL 0MT —Ms &) /e B /]

T 1Ir4'-“ e IR RS SRR By ke ! Ff-tt e 4 + ; b —+—

I I 1 pa 4‘ . , i ! @ ,'4,,,._', '._l_ w'”L ! ; ] _l. . ,__4,__;,_‘;,_‘ 1 4"__1
BirgaElsr = W | LT T P /¥ |10l [EXAMPLE 2 ¥/
I'F| 8 | B1GGEST THEN BIlaGEST = |85 | | il BEBRNZCRCCRCYARERENEE
IF| € > BIAGEST| THEN 81 alﬁf-s_jg:' Cii; ol ; fl;x- 30 e/

S P RS RSN SRS S SRR L
R WL; >| B THEN |IF, A 21 € iTﬂENuB’;l}G,GFS,,T},— L * 18] EXAMPILE (3] e/

CLLE ol e | ELsle, Biri@GlEST = do g [T ]/ ole] ¥/
ol ELSE [1F (B > €] THEN iBjIG]GESE#:jg-LuH P e 3] (#/
I T""?r“"“‘i e \ELs|e |BIGGEST = IC; | | | /% 416 ¥/
R B : ol Poob T T
Fpe I N A R .
BilaalElsir = W [T L] LT 10 lelxiAmplLe] 4] ¥/
LF|_ B> c TIHEN [1F 8 [ Bl1a@lElsT) THEIN [B1G@lEST |- [Bl| /% 210 ¥/
B ‘. th‘ Nk . ELLSE]: * (3¢ ¥/
i t B I ‘v =
1 ElLSE iF ] > Jﬁxhenﬂ THHEIN BlijalslesiTl |<| C: G 40 1/

In the first example, the ELSE clause is a WRITE statement.

The second example uses only THEN clauses. After it has been executed, BIGGEST will hold
the largest value in A, B and C.

Page 7 -11



Topic 7: Control of Program Flow

Page 7 -12

The third and fourth examples show different ways of solving the same problem as the second
example. The IF statement is an executable statement, and in these examples it has been used
as the THEN and ELSE clauses. These are nested IF statements. IF statements may be nested
up to 49 deep.

When IF statements are nested, each ELSE is associated with the innermost, unmatched
THEN.

In example 3:
The ELSE on line 20 will be associated with the second THEN on line 10
The ELSE on line 30 will be associated with the first THEN on line 10
The ELSE on line 40 will be associated with the THEN on line 30.



Below is a flowchart for example 3.

Topic 7: Control of Program Flow

TRUE
—
FALSE
TRUE TRUE
A>C
FALSE FALSE
BIGGEST= C BIGGEST= B BIGGEST= C BIGGEST= A
-~ -
-}

Page 7 -13



10pic /: control of Program Flow

The flowchart for example 4 is shown below.

TRUE
:
TEST 2
TRUE TRUE
C > BIGGEST? - B > BIGGEST?
FALSE FALSE
BIGGEST=C BIGGEST= B
il —al}
-t}

Page 7 -14

In the program, all IF statements have\ ELSE clauses, but in the flowchart only the first test has
both THEN and ELSE clauses. The others have THEN clauses only.

If the ELSE clause of the second test, B>BIGGEST, were left off, the ELSE clause of the first
test would be taken as the ELSE clause of the second test, so changing the logic of the
program. This problem is overcome by using the null statement, consisting of only a semi-
colon, as a dummy ELSE clause for the second test. The null ELSE clause is needed only in
nested IF statements to cause the correct logical construction.



Topic 7: Control of Program Flow

You should now attempt questions 3 and 4 in the exercises at the end of this topic.

In many programs, action to be taken as a THEN or ELSE clause will be more than one
statement. They cannot be coded simply as a series of statements after the THEN or ELSE,
because the second and subsequent statements would not be considered as part of the THEN
or ELSE clause; they would be considered as statements following the IF statement. If a
THEN or ELSE clause is to be more than one statement, it must be grouped together in a DO
group.

Page 7 -15



C m e a R UBIRL A AUTY

DO Groups

An example of a DO group was shown in Topic 2 in the form:

L
Do }VHILE (INAMEL_ANDL_AIDDIRES|S] H=| [*] [“D];

The group of statements between the DO statement and the END statement will be executed
repeatedly until the condition in the WHILE option is false. This is one form of DO group
which allows repetitive execution of a group of statements. In its simplest form, the DO group
merely groups together a set of statements.

Simple DO Group
A simple DO group consists of one or more PL/I statements preceded by a simple DO

statement:
DO; \é&

§

and terminated by an END statement:

END; \\»9/&‘/
2

Page 7 -16



Topic 7: Control of Program Flow

Below are some examples of simple DO groups and how they might be used.

|
olRIDEIR [s|Tlolcik;

LIO|RIDIER |=
=| Isirjojcik!; 5
ER| = |RIE/OIRDIERQTY!;
FltILEI(|REPIORT))| |[FROM(RELIRDERL LINE)];
: |

LOIRDER| |=| |¢1; | ;
=| |siTio|c/K_{o[RDER|; ! [
EOIRDER| |=| @1;
<| [ORIDIERD| [TIHEIN| [DlOf;
siHo[RTLO[RIDER| |=| [0RIDIERL [STolcK;
ORDEER] [=| [s[To[cIK];
REORDER| |= [RIE/ORDIERL QTY|;
RutTE| [FliILE/([REPIORT]) | [FRIOM(RIEDIRIDIEIRL[L|IINIE
EINID|;
EILISIE| |plol;
SHORT_ORDER] =] ol;
siriolcik| [=| [sTiolc/K_0|RIDIER]; _
RIEOIRDIER] [= @
EN[D|; ‘ |

Both DO groups contain executable statements, but they may contain any statements. If a
simple DO group appears in the normal flow of execution between other executable state-
ments, the DO and END have no effect. Its most common use is as the THEN and ELSE
clauses of an IF statement, as in the above example.

The whole of the first DO group will be the THEN clause, and all the statements in it will be
executed if the test is true. If it is false, the whole of the first DO group will be by-passed, and
all of the statements in the second DO group will be executed. The DO and END statements
are not executed. They delimit the group.

A DO group may contain any PL/I statements, so it may contain nested DO groups. If DO
groups are nested, each END statement will be associated with the nearest preceding unat-
tached DO statement, as below.

Page 7 -17




Topic 7: Control of Program Flow

li i '1
_doli | /¥ nlo] o1l [/
R |
RN REEE /1% Dlo| INlo|2] %/
| i'
END|; /| MATICHES DO NO|2 */
o] ] 1/l (ool N3] ]/
T END]; /% MATICHES blol No|3] i/
I
| ENIDI; /x| MAITICHIE'S| [pjo] INjo[1] [#|/
[

The maximum permitted depth of nesting is 49.

{terative DO Groups

WHILE Option

Page 7 -18

Jterative DO groups cause the statements within the DO group to be executed a number of
times depending on options on the DO statement.

The option may be the WHILE option:
DO WHILE (expression);

The expression may be any expression which can be used in an IF statement. Before the
statements in the group are executed, the expression is evaluated. If it gives a true result, the
statements in the group are executed, and control passes back to the beginning of the group to
re-evaluate the expression. This continues until the expression gives a false result, when
control passes to the statement following the END statement for the group.

Below is an example to add together the first N integers (1+2+3+.....4+N). If N is zero or
negative, the statements in the DO group will not be executed at all, and the ISUM will be O at
the statement after END;

=T
IouM 1= 19
plo| wH|/|le] (] =] W)[;




UNTIL Option

Topic 7: Control of Program Flow

The general format of the UNTIL option is
DO UNTIL (expression);

The expression may be any expression which may be used in an IF statement. After the
statements in the group are executed, the expression is evaluated. If it gives a true result,
control passes to the statement following the END statement for the group. If it gives a false
result, control passes back to the beginning of the group and the statements in the group are
re-executed.

Below is another example which adds together the first N integers. In this case, if N is zero or
negative, the UNTIL expression will never be true and the program will be in a continuous
loop.

1 1= 1]
| SUM |= |@;
plo| [UWIT| LIt (= W] |+ |1D];
lS|dM |=| |1iSluM 4| [1];
b oj= 1) H s
EWD|;
/|8 WIEX|T SITIATIEMIEWNT] [/

Note that the major difference between the WHILE option and the UNTIL option is that in
the former case the expression is evaluated at the beginning of the DO group and in the latter
case it is evaluated at the end of the DO group. This implies that with the UNTIL option, the
DO group will always be executed at least once. This is not true with the WHILE option.

Index Variables

DO groups may also be executed repetitively by assigning a series of values to an index
variable, and executing the statements of the DO group once with the index variable set to
each value.

This type of DO group may be specified in several ways.
Its simplest form is:
DO variable = expression, expression, ....;

Examples:

oo

o] ICHARS =] I'lA‘] |‘[siciol’ ], CHARI|I] MK ]:] |
i i 1 T I

The variable may be any type of element variable and is called the index variable. The
expressions may be any sort of element expression whose result can be converted to the
attributes of the index variable. All the expressions are evaluated before the group is entered,

Page 7 -19



swpiLv 7 LUILUL UL TIUEram riow

70 Option

Page 7 -20

and the statements of the group are executed once with the index variable set to the result of
each of the expressions in turn.

The group which would follow the first DO statement would be executed with I set to 10, then
20, 3*N, X**2 and 1. The group which would follow the second DO statement would be
executed with CHARS set to 'A', 'BCD' and the character value of CHAR1 extended with
the characters 'ITK'. Any reference to the index variable within a DO group will refer to the
value to which it was set before that execution of the group.

Execution of the DO group with the index variable set to the result of any particular expression
may be made conditional by use of the WHILE option.

~

| I Jo I
L;b | P,Iﬁ 3@LMHIL£(A>8),2*X;

The group will be executed once with I set to 1 and once with I set to 10. It will be executed
with I set to 39 only if A is greater than B. Whether or not it is executed with I set to 39, it will
then be executed with I set to 2*X. 2*X will be evaluated before the group is entered for the
first time, so that, if X is changed within the group, this will not influence the values to which I
will be set.

However, the expression A>B is evaluated after I has been set to 39, using the values currently
in A and B. The expression in the WHILE option is the only expression used in the control of
DO groups which is evaluated during the execution of the DO group; all others are evaluated
before the group is first executed.

You should now attempt question 5 in the exercise at the end of this topic.

The index variable may be set to a series of values by one or more iterative specifications:
DO variable = expression 1 TO expression 2;

Examples:

%f o
b0| VAR| = 1ld ro| 3] |

Do IND| = Alx8 1o R-26); i

TO is a keyword, and must be separated from preceding and following identifiers by at least
one space.



Topic 7: Control of Program Flow

When the DO group is executed, both expressions are evaluated. The index variable is set
equal to the value of the first expression. If it does not exceed the value of the second expres-
sion, the DO group is executed. 1 is then added to the value of the index variable. Control
passes to the top of the group and the index variable is tested again. This continues until the
value in the index variable exceeds the value of the second expression, when control passes to
the statement after the END statement. An iterative DO group in PL/I will not be executed at
all if the value of the first expression is greater than the value of the second expression.

e S L O N O A
DQ ._I, _._1 - Tl N’ PR + . : Iw + _L g
: ! [ o

would cause the DO group to be by-passed if N were O or negative. If N were 1 it would be
executed once only.

1
T
|

¥
-

——

! [

Above you have been shown statements to calculate the sum of the first N integers, using a
DO statement with the WHILE and UNTIL options. This may be coded more simply using
iterative DO statements.

: T

. - SR S D TS S S S L 5

s A (N NN N B
r-EF_D,” % ! Lo L { |

/¥ N@XT STATEMENT #/ | | || {

AR S S o SRRt S S A A M S N f -

You should now attempt question 6 in the exercises at the end of this topic.

Page 7 -21



Topic 7: Control of Program Flow

BY Option

Page 7 -22

An increment other than 1 may be specified for an iterative DO group by using the BY option:

P

ol VAR = 1B Tol 3o By 2,

..Dt,,}_{iﬁp = AxB By -3 To }R‘—2?¢; ' |

[P TEREU - —

The BY option may precede or follow the TO option. The value of the expression in the BY
option is used as the increment for the index variable. The expression is evaluated once only
before the DO group is entered. If the expression used in the BY option has a negative value,
the group will be executed until the index variable is less than the value of the expression in the
TO option.

"

-

. Ll
Lbb I 1@
! :

ST
.

et
o
S
@l
< H
R

will cause the group following to be executed 11 times with I having value of 10, 12, 14, 16,
18, 10,11;-14,-16;-18 and 30.
2 - .

i

‘ L R Y O O T j
bol L |= 32 fo;].Lﬁ!,rQb!Li
T . A I

will cause the group following to be executed 11 times with I having values 30, 28, 26, 24, 22,
20, 18, 16, 14, 12 and 10.

L SNERE
bo| I |=| 3@ [To 1i¢;

I S S
1t
5 S

t

will cause the group following to be by-passed, since the value of I, 30, will exceed the limit
value, 10, the first time.

These types of specification may also be qualified by the WHILE or UNTIL options:

DO variable = expression 1 BY expression 2 TO expression 3
JWHILE {(expression 4);
TUNTIL |
Examples

- e O R e e | L
Dol I arﬂrTO1L¢4qMTiH(ERm>LIMlF);
: ! ; [ o o
I o e 5 : s
bo| J |=| 10 ﬂa'sﬁﬁlayzz WHI LIE(N®T ==| M) | .
BN R B R I e o A I T | B

In the UNTIL case, the index variable is incremented and tested against the limiting value. If it
is not out of the range the group is executed and the UNTIL expression is then evaluated on
reaching the end of the group. If the expression is true then control passes to the statement
after the END. Otherwise control passes back to the start of the group and the index variable



Topic 7: Control of Program Flow

is incremented again. In the WHILE case, after the index variable has been incremented and
tested against the limiting value, the expression in the WHILE option is evaluated. If the
control variable is used in the expression in the WHILE option, the incremented value is used.
If the expression is true the group is executed, otherwise control passes to the statement after
the END.

Where there is no definite maximum, but a value in a control variable is still needed, an
iterative specification may be used with a BY option but no TO option.

DO variable = expression 1 BY expression 21 WHILE i(expression 3);
FUNTIL |

Example.

. L fr It
DO E(ERRKILIMIIT); ;
~ -} L; L |
Dio| J. I > XD
AR £ -

The DO groups will be executed repeatedly, with the value of the index variable being
incremented, until they are stopped by the WHILE or UNTIL option. These options are not
obligatory but will normally be present. If they are not, some other means will have to be used
to stop the execution of the loop, or it will continue until the index variable is unable to hold
the value being assigned to it. Other techniques for stopping the execution of the DO group
will be discussed later in this topic. .

Using this form, the BY option must be specified, even if it is 1. If it is not, the index variable
will not be incremented and the group will be executed once at the most.

REPEAT option
The TO and BY options allow the index variable to be incremented by fixed negative or
positive amounts. In contrast, the REPEAT option, an alternative to the TO and BY options,
allows the index variable to be incremented non-linearly. It is used in the following way.

. N I .
do| T |=| 11 REPEAT 12[1);] | ||
=t ; P ' ] .
! . [
ESEE I % |
— — ] }

In this example the initial value of the index variable (I) is 1. On subsequent executions of the
loop the evaluation of the REPEAT expression is assigned to the index variable. Thus, the
index variable will have the following values when the DO group is executed

1,2,4,8,16, ...

Note that with the REPEAT option no terminal value is specified and thus to halt execution of
the loop, an UNTIL or WHILE option will need to be specified.

The simplest form of an iterative DO group was defined as:

DO variable = expression, expression,....;

Page 7 -23



Topic 7: Control of Program Flow

The more complicated forms may also have more than one specification:
DO variable = specification, specification,....;
where each specification may be:

expression 1 BY expression 2 TO expression 3 { UNTIL }(expression 4);

WHILE
Example
ol T | NENEEREEEN
Dgu_I = b 1@1 *M;H’ ]LLEI EIRR > LlMléTﬂ%ZQ Tlo 3[¢ By 12};
‘ T { ! 1 i

When execution terminates under control of the first specification, it starts under control of the
second. If the condition ERR>LIMIT stopped execution of the group under control of the
first specification as it was about to be executed with I set to 6, the group would be executed a
total of 11 times, withIsetto 1, 2, 3, 4, 5, 20, 22, 24, 26, 28 and 30.

The specifications which may be used to control the execution of a DO group may take varied
forms. Very often, the specification will take a simple form, either:

DO WHILE (expression);
or
DO variable = constant TO constant;

If more complicated forms are used, it is important to remember that:

1. Expressions in the TO and BY options are evaluated once only, before the group is
entered.

2. Expressions in the WHILE option are evaluated every time they are referred to,
after the new value has been assigned to the index variable and before the group is
executed.

3. Expressions in the UNTIL option are evaluated every time they are referred to,
after the group has been executed.

4. The current evaluation of the expression on the REPEAT option is assigned to the
index variable. It is not a fixed increment.

You should now attempt questions 7 and 8 in the exercises at the end of this topic.

Page 7 -24



Topic 7: Control of Program Flow

SELECT Statement

Earlier in the topic you learned about the IF statement and how it could be nested within
THEN and ELSE clauses as follows:

o | | |
; 1F| A>8B N? X=115 | | 1.
il E |IF| Al=lc| THEN| X=|2;
L IERRE ELSEE X/=[3;
. L.. B N X=4; L
Ral .
NE B R L

As the level of nesting increases so does the difficulty of understanding the logic of the
program coding.

The SELECT statement. which heads a select group, provides a multiway conditional branch
and ulso is an alternative to nested IF statements. The general format of the SELECT

statement and group is as follows:

SELECT(E):
WHEN (E1, E2. E3) action 1;
WHEN (E4. ES5) action 2;

OTHERWISE action n;
END;

Here E, E1 etc. are expressions. When control reaches the SELECT statement, the expression
E is evaluated and its value saved. The other expressions are evaluated in the order specified in
the coding and compared with the saved value of E. As soon as an expression is found to have
a value equal to that of E the corresponding action of the WHEN clause is executed. No
further expressions of WHEN clauses are evaluated. If none of the expressions is equal to the
expression in the SELECT statement then the action of the OTHERWISE statement is
executed.

The action after a WHEN or OTHERWISE clause can be a single or compound statement, a
DO group. « SELECT group or a BEGIN block. After the action has been carried out. control
returns to the first statement after the END of the SELECT group unless the flow of control
has been altered by the specified action.

Example

b I A Lo NS I S 1 | i (! |
SELEC (F?na@ungsi)i_ﬁ ‘ i‘i 2l I | i J
| WHEN| (" SIQUARE') AREA| = R * R; | | ]
| WHEN| (“CIIRCLE') AREA = 3-14 # R ¢ R;| | |
b.__tWHxaN ('SIPHERE') WREA = 4] ¥ 314 x R I« R;
| oTHERWISEE AREA =l @; | [ ]
RC 78N N IS NN AR AN BRI NN N EREREN B

Page 7 -25



Topic 7: Control of Program Flow

The expression in the SELECT statement can be omitted, in which case each expression in the
WHEN clauses is evaluated and converted to a bit string. The corresponding action will then
be executed if any of the bits have value "1’B.

Example
! f] L !
SEAEEGE | l
WHIEWICIAl D] 1B ISITIRI/ VE| |=| | |B|! | 9EIR' ;i
WIHIEW|(|A] |=| 8)| ISITR|INEG |=| | E®WAL'|;
WHIEN (|A| < )| SITRI WG |= NSMAILLER!|;
EWD|;

In the above example there was no need for an OTHERWISE clause because one of the
WHEN clause actions must be executed. However, if the OTHERWISE clause is omitted and
the execution of a SELECT group does not result in a WHEN clause action being executed,
then the program will terminate abnormally.

- ! | H
SEAEEGE T ] | ﬁ 1]
wiHgi [(]al b [@)] VialLlde] = [ri+viE! 5] |
wHEN (A [<| (@) VIALlwE| = [*=V[E"];] B
EW|Di | | EERE
i a | BRRE

In the above example, if the value of A is O then neither of the WHEN actions will be execut-
ed. There is no OTHERWISE clause specified in the SELECT group and so in this case the
program will terminate abnormally.

At the beginning of this topic there is an example of nested IF statements. Using nested
SELECT groups the same logic can be presented in a more comprehensible fashion as follows:

S|E|L|EC|T); IERERED f
WHIEW (|A5B)| [SIEILIEICIT]> ARRNREREREN
| WHEEMADIC)| X=73] 7 [T 1]
| WHEN|(Al=lc)| xi=205) 1 ]
, WHIEM (lAi<|cl)| X(=35G] | [ [ 1] ] ]
(1] EW[D]; REEERRRERENERE
| WHEWCa=]83] Ix|=|¢/; EENEERREENNR
| WlHieldal<l8s] [x]=I5]s | EEERNERERENN

EWiD|; HRERENERREEN

P T T

You should now attempt question 9 in the exercises at the end of this topic.

Page 7 -26



Topic 7: Control of Program Flow

Transfer of Control

GOTO Statement

DO, IF and SELECT statements may cause groups of statements to be executed or not.
Another method of causing statements to be executed is to branch to any statement from any
other, by means of a GOTO statement. Below is the main body of the card listing program
from topic 2, re-written using GO 1O statements.

e e -

NEXT:| [READ| FILE(CARDSIN) |IINTO/(INAME. AND_ADDRESS]) ;
ol llrF(naMe _|AND_ADDRES!S |s| | [')| THEN @OTO| lOUT];
Ll I WRITE Fu LJE(IPRyiTiOUQT)!FRLOM(NAAMEL.AND_.;AbbRES'S);
CUU T leo ol NexT; T T BENEER
o 1L L EEN

T v " ; i T ™ T

NEXT and OUT are called label constants. A label constant may be attached to the beginning
of any PL/I statement. It consists of an identifier of up to 31 characters, and is separated from
the statement by a colon. The colon character does not appear in the 48-character set, and is
replaced by two periods in adjacent position (..). There may be one or more spaces between
the label constant and the colon, and between the colon and the statement. The main use of a
label is to identify a statement which is to be branched to by a GOTO statement.

The format of the GOTO statement is:
GOTOQO label;

There must be at least one space between GOTO and the label. There may be one space
between GO and TO, but not more. The effect of the statement is to cause the next statement
executed to be the one identified by the label, as if it had been the statement following the
GOTO statement.

Page 7 -27



Topic 7: Control of Program Flow

Page 7 -28

The label must be on an executable statement. A GOTO statement may not branch to a label
on:

A PROCEDURE statement
A DECLARE statement
A statement instde a repetitive DO group. unless the GOTO statement is also inside it

A GOTO statement may branch out of a DO group: If it does, the group is terminated and, if
it has a repetitive specification, it cannot be branched back into.

A GOTO may form all or part of a THEN or ELSE clause on an IF statement, as shown
above. If it does, it is executed and the statements following the IF statement will not be
executed. When a GOTO statement appears as the THEN clause of an IF statement, the IF
statement is sometimes called a conditional GOTO statement. Statements following a condi-
tional GOTO statement will be executed only if the condition is not met. The statement
following an ordinary GOTO statement can only be executed if it bears a label, and this label is
referred to elsewhere in a GOTO statement. It is an error if the statement following an
unconditional GOTO statement does not bear a label.

When studying programs with GOTO statements it becomes difficult to decide how control
was passed to any particular labelled statement in a program. It may possibly have been
branched to from one of several GOTO statements. The coding of GOTO statements hence
makes a program more difficult to maintain or modify and they should be avoided whenever
possible. In fact, in PL/I, by the careful use of switches and DO groups they can be avoided
altogether, with one exception (see topic 19, Handling Exceptional Conditions).



Topic 7: Control of Program Flow

LEAVE Statement
The LEAVE statement is used to transfer control from within a DO group to the first executu-
bic statement after the END statement of the DO group.

Example:
A g | [ | q t |
| [oiols] | EENEEENNRERNEREN
T N || ! |
L|E|A|VIE|;
EW\D ;
A:|/|# WENX|T| |SITATEMENT */

In this example, if the LEAVE statement is executed, then the next statement to be executed
will be the one labelled A.

The LEAVE statement can specify a label, in which case control will be passed to the first
statement that tollows on tfrom the DO group which has that specitied label on the DO

statement.
Example:
] L L | —
A plo];
Bl:| DO| [I| |= 1] |TIO| |I\¢i
LHF L > THIEWNM |LIEIAIVE|l Al
EWI|D|;
. | |
EWDl; NENRRAN
cl:| |7l#] |s|T]AlTlEMENT] /] 1 HEEREEN
1 i ] T LT 11T [ i I

In this case if the LEAVE statement is executed than control will be passed to the statement
labelled C.

Page 7 -29



Topic 7: Control of Program Flow

Bit String Data

Page 7 -30

Bit string variables and constants hold data of a binary nature -1 or 0, Yes or No, True or
False. The information is held as a series of binary 1s and Os at a rate of one per bit, eight per
byte.

A bit string variable is declared with the attribute BIT, and a length, in a similar way to a
character string variable. For example:

{ b | ! . [ |
plc|c| [8]1[7]s| [els]T]¢|8)>]; HERRRNRRR
piciL| |AITITIEWD| |BII|T|CI6]) )5 RERRER
olcld] [TIRuTH (8T c7IGT T RERBER
| | P | [

The length is the number of binary digits it may hold, and may not exceed 32767. The default
is 1.

A bit string constant consists of a string of 0 and 1 characters, preceded by a single quote, and
followed by a single quote and a B. For example:

'0010'B
'1'B
10010110'B
(2)'11001'B



Topic 7: Control of Program Flow

The last example demonstrates that a bit string constant may have a repetition factor attached
to it, like a character string constant. The length of a bit string constant is the number of 0 and
1 characters in the string multiplied by the repetition factor, if applicable. The lengths of the
examples are 4, 1, 8 and 10 respectively. The maximum permitted length depends on the space
available to the compiler, but will never be less than 4096.

Bit string variables may be initialized with bit string constants:

| |
Dielc) [Bi1[Tis| 81 TI([8]) [IINUITICtI1tn]t]a]1]1]"BD];
DCiL, AITTIEND| BlIT|I(6)] [INITI( 9pl0ePd ' B);
de|L TRUTH BT (1) IP!T(‘Q'B);

T he Use of Bit Strings of Length 1
In an IF statement. or the WHILE or UNTIL option of a DO statement. the result of the test is
a bit string of length 1. This will be "I'B if the test is true and "O°B it the test is talse. Bit string
variables may be used to hold results of comparisons and logical expressions and mav be used
in IF statements and WHILE options, either as the whole of the expression, or as a part of the
expression. For example:

| L
| TRUTH |= |A>B & |ci<D]i
[F| A>8| & |cl<p THEN [TRUTH = |'1'8|;
‘ EILSE [TRUTH = |*¢'B|;
I F| TRUTH [ THEN |X=Y|;
E|LISIE X:Z}
1F MTRUTH ﬂ TIEXT|=*[LAST]' [THEN [X|= #

The assignment statement and the first IF statement have identical effects. Having assigned a
value to TRUTH, it may now be used as in the second IF statement, as the expression in the
test. If TRUTH contains a 1 bit, the THEN clause will be executed, otherwise the ELSE
clause will be executed. In the last statement, TRUTH is an operand of the - operator. If
TRUTH contains a 1 bit, it will be switched to a 0 bit. If it contains a 0 bit, it will be switched
to a 1 bit. This will then be ANDed with the result of comparing the contents of TEXT with
‘LAST’. That is, if TRUTH contained a 0 bit and TEXT contained ‘LAST’ the THEN clause
will be executed, otherwise it will not.

Bit string variables of length 1 are often used as simple indicators in a program. For example,
in the following program extract, certain functions must be performed for the first record
processed. FIRST will give a true result in the IF test the first time it is executed, but will give
a false result afterwards, as it is assigned ‘0’B within the THEN clause of the IF statement.

Page 7 -31



Topic 7: Control of Program Flow

s ! ol 1 | |
plele] lrlilRls T [slrimi((1)| uintlricl 1" 8D ]; ]
REIAD| [FIIILEC[IIN)| [t NTO(VARD ;| | ]
blo| WHIIILE (VAR ' ])]; ;
L L IF| [FIIIRST| THEN D0|; i
/\# IPERR|FORM ISIET| UP, [PRINIT HEADINGS [ETC| #l/
FILIRS T [3]'[¢]’|B;
ND|; |
_
END: ;

A bit string variable of length 1 is often used to process a sequential input file until the end of
data is reached. In the following program extract, when the first attempt to read beyond the
end of data occurs the ON ENDFILE statement will be invoked and a zero bit will be assigned
to MORE__DATA. The program then continues from the location just beyond the point
where the end of data condition was recognized. This will be at the end of the DO group
whereupon the DO WHILE (MORE__DATA); statement is executed. This is equivalent to
DO WHILE (MORE__ DATA = '1'B);. Thus, when MORE_ DATA contains a zero bit the
DO GROUP will no longer be executed. ON statements will be discussed in greater detail
later, but this will serve for now. -

DCL MORE__DATA BIT(1) INIT ('1'B);
ON ENDFILE(TRANS) MORE__DATA = '0'B;
READ FILE(TRANS) INTO (INREC);
DO WHILE(MORE__DATA);

/* PROCESS THE INREC */
READ FILE(TRANS) INTO (INREC);
END; .

The Use of Bit Strings of Length Greater Than 1

Bit strings of any length may be used in similar ways to bit strings of length 1. If a larger bit
string is used as the expression in an IF statement, then if any bit in the string is a 1 bit, the
string gives a true result. The following strings would all give a true resulit:

'11111111'B

'10000000'B

'00000001'B

The following strings would all give a false result if used in a test:

'00'B
'0000'B
'00000000'B

The string ATTEND could be used as the attendance register for one student for six days. In
the test:

Page 7 -32



Topic 7: Control of Program Flow

picl| [alrlrlelnn 3
I'F} ATITIEND [THE

if the student attended on any day or days, the THEN clause will be executed. If the NOT
operator (=) is applied to a bit string, every bit has its setting reversed. Thus, every bit which
is 1 is set to 0, every bit which is 0 is set to 1. In the test:

RS — . Lhd
TF AT ehu4TH4N* tliLi++* :T;f

| l

the setting of every bit in ATTEND will be reversed. If any bit in the string which is the result
of this operation is 1, the THEN clause will be executed. The effect of the test is that if the
student failed to attend on any day, the THEN clause will be executed.

When the AND and OR operators (& and |) are applied to bit strings, they operate on each
bit position separately to produce a result string of the same length as the longer operand.
When the AND operator is used, each position in the result string will be 1 if the equivalent
position in both operands is 1, otherwise it will be 0. For example:

001101001
& 101100110
001100000

This operation could be used with the string ATTEND to establish whether a student attended
on a particular day. The requirement is to obtain a 1 bit if the student attended on that day,
and a 0 bit for all others. Thus, to establish whether the student attended on day 2:

1 B |
"d|189¢l¢ "8 [THEN| DO [.[ |.]].

L i L |
|
T T

| |
L!F hT1EMD!]

i
e +
]

If the student attended on days 2, 3, 5 and 6, the effect will be:

011011
& 010000
010000

The test will give a true result, and the THEN clause will be executed.

If the OR Operator is used, the result string will contain a 1 in each position if either or both of
the operands had a 1 in that position:

0100110
1010101
1110111

This could be used to change the setting of some of the bits in a string. If there were a query
regarding the marking of the attendance of a student on day 3, it could be turned on by:

L | | ]
Arre@p aiA#Te@n l '¢ﬂQo¢¢'B;

Page 7 -33



Topic 7: Control of Program Flow

Whatever the setting of the third bit before the statement is executed, it will be 1 afterwards.
The other bits will not be changed.

Bit Strings and Concatenation

Bit strings may be manipulated by the concatenation operator in the same way as character
strings. When two bit strings are concatenated, the result string consists of the two operand
strings joined together. The length of the result string will be the sum of the length of the
operands. Thus:

"00'Bf | "111'B gives '000111'B

'0101'B| | '1010'B gives '01011010'B
"0'B|]|'1011010'B gives '01011010'B

Padding and Truncation of Bit Strings

Bit strings are padded or truncated in similar circumstances, and in a similar way to character
strings.

If a bit string 1s assigned to another bit string which is shorter, it will be truncated on the right.
Thus:

NN

I
}A TEND g

} ,‘ » ,L,,,‘_.“A,,‘ e
;' wgojw»f utz;u, '8

Y
e

e —

will assign '000000'B to ATTEND.

When two bit strings of unequal lengths are operated on, the shorter will be padded to the ~
length of the longer with binary zeroes on the right. Thus:

'1111111'B& '1111'B

will have the same effect as:
'"1111111'B & '1111000'B

and will give a result of '1111000'B.

Bit strings provide a very efficient and compact method of processing binary data. If your
bﬁgground is non-mathematical, the & and tloperations may, at first sight, appear a little
strange. Their operation on single bit strings is similar to their common English usage. When
applied to larger strings, they continue to work in the same way, but work on each position in
the strings.

You should now attempt exercise 10 at the end of this topic.

Page 7 -34



Arrays

Topic 7: Control of Program Flow

In Topic 6, structures were discussed. A structure is an aggregate of elements, not necessarily
with similar attributes. The elements are identified by unique names, which may need levels of
qualification to make them unique.

An array is an aggregate of elements with identical attributes. The elements are identified by
the array name and a subscript - a subscript is a number which uniquely identifies a particular
element in an array. Arrays have many uses, such as holding tables of values and sets of similar
measurements.

Arravs must be declared. Their declarations give the nume of the array, the attributes of each
clement and how many ¢clements there are. The number of clements s put in brackets immedi-
ately after the array name and is called the dimension attribute. There may be spaces between
the array name and the brackets, but not attributes.

~e

L1 L] ] oele] |AVIE|-wWE]1 lelHIT] [c/6))| [Fli1ixED| olE/c|(3])
(I Fo

The above declaration will give an array of six elements, each with attributes FIXED DEC(3).
The individual elements of the array may be used as element variables, and are identified by
the array name and a subscript. In its simplest form, the subscript is an integer enclosed in
brackets. The integer must not be greater than the dimension attribute of the array.

|

AVE|.WE|Il |§HTI(3))|=\1¢

o
1

will assign 10 to the third element of AVE__ WEIGHT.

Page 7 -35



Topic 7: Control of Program Flow

A subscript may be any expression whose result can be assigned to a FIXED BINARY (15,0)
field. If it is an expression, it will be evaluated and its result truncated to an integer.

! | , 1
AVIE_WE|IlGH[T|(lalaE|/|710-7)) |=] I7l9] | |
! T I | ]

If AGE holds a value of 26 the element of AVE__ WEIGHT accessed will be:

6

26/10-1
2.6-1
1.6
1

U I

So far we have been talking about one-dimensional arrays, i.e. arrays which need only one
subscript to identify a particular element within them. The need for two or more dimensional
tables is met by two or more dimensional arrays, up to a limit of 15 dimensions. In declaring a
multi-dimensional array, the various dimension attributes are separated by commas. A two
dimensional array, which might hold a table of average weights, classified by age group and
sex, would be declared:

]

pclL| ITwollol1 M(c|2].|e])| [Fl/ix[ElD] [plelc|c|3);
i ! !

2 and 6 are the two dimension attributes of the array. TWO__DIM will have 12 elements and
might be interpreted as follows:

15-+20 21-+30 31-s40 4150 5160 6170

MALE 1,1
TWO — DIM

FEMALE 21

In the above diagram element (2,3) of array TWO__DIM would contain the average weight
for females between 31 and 40 years of age. For a two-dimensional array the first subscript
could be interpreted as a ‘row number’ and the second subscript as a ‘column number’. When
accessing the elements of a multi-dimensional array, there must be as many subscripts as there
are dimensions; the subscripts are separated by commas. The subscripts must be in the same
order as the dimensions, and no subscript may exceed the value of the equivalent dimension
attribute.

]
Tiwlo|_|p
Ww|E|/
|

b

Ml Clr
TWio|_|p|1 |
|

el
x
pur}

[]

Page 7 -36



Topic 7: Control of Program Flow

The constant wiven for the dimension attribute s called the upper bound for that dimension.

he lower bound is 1. The number of integers between the lower and upper bound is called the
extent, In some circumstances, it may be more convenient to specify a lower bound other than
1. This might be useful if the array were to hold, say, average weights for all ages between 70
and 80, or densities at all temperatures from -10°C to +10°C. If the lower bound is not 1, it
must be specified as an optionally signed constant, preceding the upper bound in the declara-
tion, and separated from it by a colon:

S S O ) S

DL WE[1GHT/(2,7)/8:8¢) FIXED DEC(3)];

DClL_DENSITY (~11@: @) FILOAT(l6
P L T H

R

B O
S~

The extent for a dimension which has both bounds specified is:
upper bound - lower bound + 1

The total number of elements for WEIGHT will be 2*(80-70+1) = 22. The number of
elements for DENSITY will be 10-(-10)+1 = 21.

The range of subscripts allowed for any dimension which has both lower and upper bounds
specified is from the lower bound to the upper bound. The lowest value which may be
specified as the lower bound is -32767. The highest value which may be specified as the upper
bound is 32767. The upper bound must be greater than the lower bound.

Referring to Arrays

A reference to an element of an array may appear anywhere that a reference to an ordinary
variable may appear. In most situations, it does not matter whether an array is declared:

DCL AR(2,06);
or DCL AR(6,2);

as long as references to the elements of the array are consistent with the declaration. Iterative
DO groups are often used where all the elements of an array are to be processed in a similar
way. If the array has more than one dimension, it may be necessary to nest DO groups, as
shown below.

e

)
-

<
ps]
~
M
<
[N
"
+
'~
i=ml
)
—t
Nt
*
N

m
Zz
[+]

END

T e

This code will give identical results to the following:

Page 7 -37



Topic 7: Control of Program Flow

ai
S
0
=T
>
x
=
S
N
Nr?

4

>> >

I~

-

LRRE]

b o

Yoo

- -

oo

i

[aY aY YN aaNHa N allaY aNa SN
Y e N I A I L N T S
-

N | " | N |t | Nt |t N [ o Nt [t e [
N = D
oo

RV VRPDADPDIIII
Secnan PRGN N=a
R RN SN AR RN

> > > > B> >

You should now attempt question 11 in the exercises at the end of this topic.

Array Assignment

Page 7 -38

If exactly the same operation is to be carried out on all elements of an array, it may be done by
an array assignment statement.

Array assignments, like structure assignments, may take two forms:

array name = element expression;

array name = array expression;
An array expression is an expression, one of whose operands is an un-subscripted array name.
In the first form, the expression on the right-hand side is evaluated and the result is assigned to
each element of the array, e.g.

@ ;

N R

will assign O to every element of the array AR..

In the second form, all arrays in the statement must have the same number of dimensions, and
each dimension must have the same bounds; having the same extents is not adequate.

Given the following arrays:

il olclt ARl1(el, 25
.;'LDCL AiRZ(p‘SrZ))
i . ;;DCL] A‘%R3(16,2);

* ! T !

ART1 and AR3 could appear in the same assignment statement, but AR2 could not appear with
either of the others.



Topic 7: Control of Program Flow

Array elements are stored in contiguous storage with the right-hand subscript of each element
varying fastest. For a two-dimensional array this means that the array elements are stored ‘row
by row’. For example, AR1 above is a ‘6 by 2’ array which can be represented as follows:

Sy
11 1.2
21 2,2
31 3,2

e AR

41 4,2
5,1 5,2
6,1 6,2

-~

The elements of AR1 will be stored in the following order:

When an array expression is evaluated and assigned to another array, this is done in the same
order as that in which the array is stored. Thus,

!
AR|1=/2)4AR3;
1

[N S
f—
—_—t

—t

{1
P Do [r=[1| [To| |6 ;
: Do =1 [To |2/;
AR1I(IT, V) I=2%AR3I(T,¥D];
ENDi;
ENrD,'

For this assignment, it does not matter in what order the expression is evaluated. In other
situations it will

Page 7 -39




1opic /: Lontrol ot Program klow

will expand to:

T

Dio| 'I=1| [Tlo |6; i
Do V=1 TO 2;
; AR1(I, J)|=AR!(13],2])*AR|3(T,V);
! | [END|; | ‘ !
]fEND; ! \ l(
,, T i

The order here is vital, as AR1(3,2) will be changed part way through the calculations, and the
new value will be used in the remaining calculations (see question 12 at the end of this topic).

Arrays in Input and QOutput

Page 7 -40

An array name may be used in READ and WRITE statements in the same way as a structure
name. If so used, it refers to the whole space occupied by the array. If an input record
contained the average weights for six age groups and two sexes, with all the age groups for one
sex followed by all the age groups for the other sex, the record could be read as follows:

| PR § !

| L
"oelt Two_pimM(2,le)

m
Q
B
()
T~
Moo

FII XED D

Lo Ly i | i
READ FlIILE([IN) |[INTO| ([TWo_DiI M)];
R A f R T . i

For input and output, it is important to consider the order in which the elements of a multi-
dimensional array are stored in main storage, i.e. with the right hand subscript varying fastest.
The order of the array elements must be reflected in the order of the fields in the input records.

You should now attempt questions 12 and 13 in the exercises at the end of this topic.



Topic 7: Control of Program Flow

Arrays and Structures

If necessary, an array may be an element of a structure. If a record contained the name of a
customer followed by the codes of 6 items which the customer has bought, it could be read into
STRUCI, declared:

- } . N ! J
T pefe s TR,
.bﬁer oLl ]2 NAME CHAR(318)],
| T2 i ems (e [cHARCTlED | ;
’ 0 B B T ! T )

When a structure contains an array, itis called a structure of arravs. Anyv or ull of the clements
of a structure may be arravs. The elements of ITEM may be referred to in unqualified form -
ITEM(]), or qualified form - STRUC1.ITEM(I), as required.

It is also possible to have arrays of structures.

An array of structures is a structure which has dimensions on the major structure name or on
one or more minor structure names. The elements may also be arrays. The record which could
be read by STRUCI, does not reflect the information which would normally be available in
such a situation. Normally there would be at least a quantity associated with each item, and the
record would be held as:

CUSTOMER ITEM QUANTITY ITEM QUANTITY —-—— — ——

This information could be read into the structure:

i I |
] pcl. 1l [STRuUC2,
B 2 INAME CHAR/(1318)],
2 I TEMS/(l6))
3| [CloDE CHAR/([118)],
] 3] INuUmMBlE[R | [P[1]c['[alal9]'[;

The minor structure ITEMS will be repeated six times, like the elements of an ordinary array.
The structure will be organized in main storage with 30 bytes for the name, followed by 10
bytes for the first code, 3 bytes for the first number, 10 bytes for the second code, 3 bytes for
the second number, and so on.

It is important to understand that the declaration of STRUC?2 will cause a different organiza-
tion from STRUC3, declared:

Page 7 -41



Topic 7: Control of Program Flow

Page 7 -42

pclu 1] [smrRuld3),
B | 2 NAME CHAR(3]2) ],
L L (2l 1 TlEMS, |
- Ll ]3] [cloDE|Ce) | cHAR( 18,
i Dl fpo ]3] NUMBIER e PHC 999 ;)

STRUCS3 will be organized in main storage with the 30 bytes of NAME, followed by 6 groups
of 10 bytes each for the codes, followed byzgroups of 3 bytes each for the numbers.

i



Topic 7: Control of Program Flow

Considering STRUC?2, the elements may be accessed by unqualified or qualified names.
Although the dimension is on ITEMS, the subscript in the reference may be on any level of
qualification. The following are all valid references to the same elements:

CODE(I)

STRUC2.ITEMS.CODE(I)
STRUC2.ITEMS (I) .CODE
STRUC2(I) .ITEMS.CODE

If a structure has subscripts at all levels:

N P S 1] ] |
o oeiL 1 JACtED, || |
ol 2 B|(le)l, |
EEEEER R RN R
T s s (2,
; 2, Ci(lel, 2
R ‘ . : I ‘} F(z)J
BRSNS BN ERRCP

references to each element must have the correct number of subscripts in the correct order,
but, if qualified names are used, the subscripts may all be grouped together after any level of
qualification, or they may be attached in groups at different levels. The correct number of
subscripts in the correct order must be supplied. The following all refer to the same element of

D: -
D(8,6,2)
A B. D(8 6,2)
B(8 ,2).D
A B(8) D(6 2)
A(8) .B(6 ) D(2)
A(8,6,2).B.D

They all refer to the second element of D within the eighth level of A and the sixth level of B.

The following all refer to the same element of G:

G(8,4,1)

A(8,4,1).G

A.C(8,4,1).G

A(8).C.G(4,1)
They all refer to the element G within the eighth level of A, the fourth level of the first
dimension of C and the first level of the second dimension of C

You should now attempt question 14 in the exercises at the end of this topic.

Initialization of Arravs
When an array is initialized, an initial value must be provided for cach element that is to be
initialized. Arrays are initialized in the order in which the elements are stored, with the
right-most subscript varying fastest. If the number of initial values supplied is greater than the
number of extents in the array, the excess values will be ignored; if the number of initial values
supplied is less than the number of extents in the array, the remaining eclements will not be
initialized.

Page 7 -43



Topic 7: Control of Program Flow

The initial values may be supplied as a list of constants, separated by commas as shown below:

S Y 0 AU A S A e S R i

I o bc L:;A‘Rﬁ( 2;22;)' FlIXED| DEC| INIIT(1,]2,3, 4)|;

b ;;QGHJARACQMEXJFUXQQJQEC:FMlﬂCbeJ;

T 'meiunswppznzflxﬁp DEC| INIT(1,]2,2,13,4);
B0 Ut e e ey S S S A AR BN LN S A S S A A A (N A G A

These declarations will cause the following initializations:

Element Initial Value

AR1(1,1)
AR1(1,2)
AR1(2,1)
AR1(2,2)

N - P W -

2,1) uninitialized
2,2) uninitialized
1) 1
2
) 2
3
The last initial value in the declaration of AR3 will not be used.

Where some elements of an array are not to be initialized, an * may be used at the appropriate

point in the list of initial values. Thus -
ey b +

DelL AR4(2,[2) FixeD] DEC| INTT(T1], [¥, ke, [1)];

[R A A R B :

will cause AR4(1,1) and AR4(2,2) to be initialized to 1, and AR4(1,2) and AR4(2,1) to be
uninitialized.

Page 7 -44



Topic 7: Control of Program Flow

Where many elements of an array are to be initialized to the same value, that value may be
shown once with an iteration factor, as in the coding below:

: |
piclt] ARS8, 8] [F1xe[p] DlElc] TiNr[Ti(I((8]|ai, [C([8D s, [1], [2], [([4le])|gD];

DciLl AR[G((3,13) CHARC4D, HINTCC4D AL Q3D 4D 18l IGSDICID [ lalBCy' D s

The first 8 elements of ARS will be initialized to 0, the next 8 will not be initialized, the next 2
will be initialized to 1 and 2 respectively, and the remaining 46 will be initialized to 0.

When a character string variable is initialized. the initial value may be expressed as a character
string with u repetition factor, which is coded in a similar manner to an iteration factor. When
only one factor precedes a character string constant, it is taken to be a repetition factor, so that
the first element of ARG6, above, will be initialized to ‘AAAA’. When two factors precede the
constant, the first is taken to be the iteration factor, and the second to be the repetition factor,
so that the next three elements of AR6 will each be initialized to ‘BBBB’. Where no repetition
factor is required, a repetition factor of 1 must be supplied, so that the last five elements of
ARG6 will each be initialized to ‘ABCD’.

If the lengths of constants which are being used to initialize arrays of character string variables
do not match the lengths of the elements, padding or truncation will occur on an element by
element basis, so that:

oicld] ARITICI1IED] icHAR Cld)! 1IN (1]eD] |aBlcD!')];!

! l [ | H

will cause a character string of length 40 to be generated and assigned to the first element of
AR7. It will be truncated to a length of 4 and AR7(1) will be initialized to ‘ABCD’. The rest
of the array will be uninitialized.

Initialization of Structures of Arrays

el 1] |sT([11@)),

B 2 |Al |Fl1\x|EID| DE|C],
| 2| |8 |[Fl1 XEID DEC;
i 1

If all of the elements of the above array of structures are to be initialized enough initial values
must be specified. The declaration:

1) %
@),
(1¢)?)z

-~

NN D
@ >~
x
m
(> ]
)
m
[g)
=
-‘
N[~

NIT
. |

[ S

xX
™
o
o
m
[g)

will cause only the first A to be initialized, but all B’s will be initialized.

Page 7 -45




Topic 7: Control of Program Flow

You should now answer questions 15 and 16 in the exercises at the end of this topic.

Page 7 -46



Topic 7: Control of Program Flow

Exercises
1. Write statements to fulfill the following requirements:
a) Add the absolute value of X to Y.
(The absolute value is the value of X, ignoring the sign. If X is positive, it is X. If X
is negative, it is -X).
b) Assign "HEADING!' to TEXT if ITEM contains 1, otherwise blank out TEXT.
c) If the setting of SWITCH is 'OFF", change it to ON.
2. Write statements to fulfill the following requirements:
(a) If there is enough stock and the customer is within his credit limit, put 'DELIVER'
into MSG, otherwise, put 'HOLD' into MSG. The current stock level is in
STOCK, the order quantity is in ORDER, the customer’s current level is in CRED-
IT, and his credit limit is in CRED_ LIM.
b) If an employee has not been late and his output is 100, add BONUS to PAY. No
special action should be taken otherwise. The number of times late is held in
TIMES_ LATE and the output level in OUTPUT.
¢) Given information held in the same variables as in b) above, if the employee has
either been late or has failed to reach 100 output, set ACTION to 'SACK', other-
wise set ACTION to 'KEEP'.
3. Using nested IF statements, write statements to meet the following requirements: -
(a) Using the same variables as in question 2 (a), if the customer’s credit is within the
limit, set MSG to 'DELIVER' if there is adequate stock, otherwise set MSG to
'BACK ORDER'. If the credit is not within the limit, set MSG to '"NO CREDIT".
(b) If a person is male, they receive a pension if aged 65 or over. If a person is female,
they receive a pension if aged 60 or over. A person’s sex is indicated by ‘M’ or ‘F’
in SEX. Their age is held in AGE. MSG should be set to 'PENSION' or 'NO
PENSION'! to indicatethe position.
4. The following code should perform the following function:
If a worker is hourly paid and has worked more than 38 hours, he should receive
overtime pay. '
If a worker has worked less than 38 hours, he should have some pay deducted.
S B N U U R I N O I I L 1 N O
CE[ HRS| > B TN | e e
LTI ol = |"HouRLY | THEN P s PAY ¥ [(HR'S| | 18leD| ' o T_RATE
LTl RS < (38 THEN [PAY. [< PAy - (38 |- HRS) W RATE; |

What alterations are needed to make this work?
5.  Write code to fulfill the following requirements:

a) When a customer orders goods, if there is sufficient stock to meet the order, and the
new order will not take him over his credit limit, take the following action:

Page 7 -47




Topic 7: Control of Program Flow

Put DELIVER into MSG.
Deduct the quantity of the new order from STOCK.
Add the value of the new order to his amount of credit.
If the conditions are not met, simply put '"HOLD' into MSG.
The current stock level is held in STOCK.
The customer’s credit limit is held in CRED__LIM.
His current credit level is held in CREDIT.
The quantity ordered is in ORDER.
The value of the order is in VALUE.

b) FINISH will hold '"PAINT! if a room is to be painted. If it is, calculate the volume
of paint and the cost of paint as:

NN NN L 1

QY| 1= [¢(ILIENMITIH] |+ WilDTIHI)| [# HEllerHT % [2l/ clolViER];]
clos|t| |=| |@|Tly| | |Plei/|c|E[; | |
| [

I I ! ! I I

¢) Write code to sum the contents of A, X, G, I and D into SUM, using a DO group.

d) Modify your answer to (c) so as not to add in I if the sum of A, X and G is greater™
than 100.

6. The program NCARD reads and lists cards until a blank card is read:

;CARDLXPROCEbpkE olp|Titiowis|CMA TNV || T RERER
E DIEIC|LIAIRIE| WiAMIE||AWID|_|ApIDREIS|S| |c|H|AIRIAlC TIERICIBI®) 5 | | | || @ ||
| | | |RIE|A|D| |F|1|LIE|C|c|AlR|p|S|1IM))| [1wiT|O| (¢ WAMIE_|AW|D_IADIDIRIEISISD:! | | | | ]
] olo| WH|1|L|E|cWalie|_|aw[Dl[alplolRlE|S|S| [af= [T DT T T T T ]
i | WRl1|TIE| |F|¢|L|E|C|PIR|! MTIOWT)| [F|RIOM (IWAME_|aAWDI_AlDDRIEIS|S!)I;
L] L1 L L] |eElale] [Flicie|cic|alrlpis|sw)y| |1 wiT|oicwam|E_ AWl |AID DIRIEISIS)) 5| | |
N Ew5 | | || 1] IR BERRRE
L] Ewp| || ]| BERERENEEERERNEREN

i1 i IR T T T Il P

Page 7 -48

The data is to be changed. The first card will contain, in columns 1 to 3, the number of
cards which follow. Write the executable statements needed to read the first card into the
structure REC1, and use NUM to control the number of cards read.

RIE|C
2| W
2| |P

X

X
alk]
N

’

)

)




Topic 7: Control of Program Flow

a) Write code to sum the squares of all even integers up to 1000, but stop if the sum at
any point exceeds 1,000,000.

b) Write code using the REPEAT option to sum the series:
1, 2, 4, 16, 256 ....
and stop when the sum exceeds 1,000,000.

What is the difference between:

T A B b

| DOl 1| |=| 1| TI0] 1@ WHIILE(1]=V)]; |

S + == -

R

INEERERENE i ;

;ENID{’ 1 ] | L JI;

! H [ |

and

~ e i + % o
4&6 1=} 11, 2,13, 4,5 is,'/,'s,q,w WHIILE ([1=1=9));
e Vo ‘ ! | i ' : | -
— — R A s s = 1 !
- e e e e T
ME N .  E E EE S
BB e A

a) Rewrite the solutions to exercise 3 using SELECT groups.

Page 7 -49



Topic 7: Control of Program Flow

10.
- a) Set SW, a bit string of length 1, such that:

i i : H H T [
It SR it RS St S o e [
| ; ’ H .

T SW THEN X = ¥, [T 1T T
ELSE X = Z; |

R R e —n o

SO U P e

will cause Z to be assigned to X.

b) SWI1 and SW2 are two bit strings of length 1. Code an IF statement such that the
THEN clause will be executed if SW1 is switched on and SW2 is switched off.

(c) The bit string HEALTH, of length 6, contains information concerning illnesses
suffered by a patient. Code an IF statement which will cause the THEN clause to
be executed if the patient has had any of of the illnesses.

(d) Code an IF statement to execute the THEN clause if the patient has had the third
or fifth illnesses.

11.

N

“nx
D™

&
i~
-
{8~
o’
(3}
s o
>
P
N
-~
AN
N

a) Write code to set all elements of AR to zero.

b) Write code to write the elements of MSGS to the file PRINT, stopping when an
element is found which is blank.

12. What will be in AR1 after executing the following code?

oo
oo
=~

-y
~
)
e d
]
w
el

o (2 | 2>
DA
u
N

]
>
I~
S
I~
w
N
A
*
3
P
w

Page 7 -50



Topic 7: Control of Program Flow

13.

T
3N
1

If the record read contained:

ABCDEFGHI
What will be in LETTER(2,1)?

14. A record on a file will contain the maximum temperature, minimum temperature and
rainfall for each month of a year. The information will be in the order:

TEMP TEMP RAINFALL TEMP TEMP RAINFALL ...

Declare a suitable structure to hold this record, letting each temperature be calied TEMP,
and the rainfall RAINFALL. Call the whole structure WEATHER.

15. What will be the effects of the following initializations?

a)

b)

16. What is the easiest way to obtain the following initializations?

a)
DiclL| INuMS|(319));
The first 10 elements to be set to 1. The next 10 elements to have any value, and
the last 10 elements to be set to 1.
b)
] | [ [ |
DclL C%ARMMM(1¢47) CHAR(2/¢)];
P IR !

Fill the whole array with character zeroes.

Page 7 -51




Topic 7: Control of Program Flow

Answers

HEN
LSE

S S S0
W

-

— '* ‘

IRT

1 TH

z

Je OR e/ || |
IF| X K= @ THEN Y = Y = X;. | L

. . _ELSE| Y = ¥ +# X :
/% OR m/ |- s L | |
e X > L¢ff’Ti|‘;E§Ri§" Y"’ay X |
ol ElLsE [y =Y -l X5 | .
/£h9ﬁ ®/ Lo B il
T X bl 8 [reN Y[y e [T

i ELSE Y =| Y [ x; | |

- o C . N T [

™

<!

Jia BN
n

E
I ELS

mz

S PO S

e

-
Tﬂanijw:

1|F| |sTlolck| 1>|=| [o|R|D|E|R] kt| |C|REID|1T] [<| |C|RIEID|-|L|/|M| |TIHIEW| MiSlE] |= L
ElL|S|E] Misle| |= L

"

c)

Page 7 -52




Topic 7: Control of Program Flow

_ | ||
/ MES|_ILIalTE] D] el [1] lolulTlPllT < |7]elel [TiHIEW |AlciTlr|0 ~Islalcik[';
1 H L L ELsE lalcirom 1] [ kEEPL;

3. a)
L 4] R I | ;
£ ekl T e T F Sk el Bl ozﬁﬁn THIEW Mislel =~ olEL] VER;
‘ EiL|S|E| MSi4l |= |‘|BIAIC k| |ORID|EIR| i
ElL|sE| Misle| =] [Wo!| [cleleloliir]'!; B |
. I
b)
X ‘| \TIHIEW| |1|F| |AIGEl [>=| |65 [THIEWN| MS|&| |=| |'IPIEWVIS|TION '
EILISIE| MISig| |=| NWVO| PEWIS|IIOW )
EIL|SIE! |I|[F| |AGEl |>= |6|@# [THEW MiS|q| = |°IPIEWSITIOM'];
I }ELSE HSﬁ- =| |\WIO| \PENSTIONM|;
1 T T .
This problem could be solved without using nested IF statements: i
= [VIM]7] it AIGIE| Dl=| (65 >=,éP’
THEWN ”_l
E|L|SE] T

4. The layout of the code is deceptive. The ELSE clause will be associated with the nearest
preceding unmatched THEN: the one on the second IF. The logical construction may be
corrected by the use of a null ELSE clause.

H TlHlew| [1lF] Llojs] [=| T Wlojulr|cly! Tusv‘éfii?ii{tyks—ss)*o_T_RArE;
10181 1=| ' ¥ V YItICHIR
ABEEE T
E\L{s|E| |1iF| |HIRlS] I<]| |318] |TIHIEW]| |P|AlY] [=] |p|Aly —(3FtrR$)kRATE;
st el

Page 7 -53



Topic 7: Control of Program Flow

5. a)
- (I | | 1]
LF| is[Tlolck [>|s| ORDER | [([C[RED]I|T| '+ [VIALUED| Kl=| [CRED[-IL{IM [TIHIEN
L D|9|;
Sia| [=| |'DE|L|I |VER'|;
S;TolCK| |=| [siTlolck| |~ |ORDIER ;
0 CREDI|T| |= |CRIED[IT |+ VIAILlUE
EIND|;
E|L|S|E
s@ |= |'HolLD' ;
I T
b)
I | [ ] | 1Py
LE] FlijUsH] [=| [ PlAl1NT]’| [TIHIEN Dlo]; -
. QTY| |=| |(|LIENGTH+W!IDTH|) #HE ! 6HT|#2/CloVvIER
. z colsit| = |QTY/#PRICIE;
| I EIND|;
1 i
c) _
- L} - i
SuM = lo-o'] | |
bO| §| |=| A, X G 1], D
| suM = slum '+ sl;
Sl %

The index variable, S, should be chosen to have suitable attributes, considering that the
implied attributes of the items in the list vary. A safe course is for it to have the same
attributes as SUM.

d)

3
Do
.

n
B
=
j )

(73 4
=

P
™m
~
[ 7
s
X
N
"
-
)
~
[-d

Page 7 -54



Topic 7: Control of Program Flow

6.
e N SRR T I O i | ] * [
" REJAD] [Ft LECCARD|S[1IN)]| [INTIO/(REICI1) 5] || BB j
Dol 1] [ 1 TO NUM; ! ‘
 |READ| FiI LEE(CARDSIIIN) /INTO/(NAME_ANDLADDRES|S|);
. WRIITIE FIILE[(PIRNTOMT) |FROM(NAME-ANDL_IADDRE[SS]);
HENRL L

In the program in topic 2, the data was restricted because a card could not be processed
which was all blank. This restriction is removed, but replaced by a limit of 999 cards, due
to the specification for NUM.

7. a)
|
IISUM |=| ¢;
dg 1| |={ |2 [BlY 12| [Tlo| [1|@0¢® WHILE(/1SUM K 190Reed);
1SjuM =] [1isluM | 1] Telwi2|;
END i
/%l (OR %/
|
ASuM 1= @ | -
DO 4| |=| 12 |BlY |2 [TO |1/608 WUNTIL(ISUM >= [100000)
; ISUM = [ISUM + |12 ;
END; | | ||
1TI |
b)
| [ 7L
SUM = ;
Do 1] |2 |1, 2] [REPIEAT ([1]%1])] UNTI L[ (sluM 5= [1eldelesle) ;
SHM=SUM+ ’/
Ewb; } |

8. In the first case, every time I is set, it is tested against J.
If it is the same, the whole group is abandoned.

In the second case, I is only compared with J for the last setting of I, i.e., 10.

Page 7 -55



Topic 7: Control of Program Flow

9. a)
P EEE RSN NN 4 |
SELECT: L_l 1 ‘}L ‘+ ' ]
WHENCCRED! T |< [CRED_LIM)| |SiELECT ; | !
ERRE R R R wHEN (|s|TiolclK '>= 0IRDERRD| Msa |d ' DE[LIVER"
At**i SRR RN i OTHERWIS[El MSG |= |* BAICK |ORDE
L U T T e |
:“;_OEIIQ-IER;WIS Msla = [INo| [clREDi T 5 ‘
ENpD ;. HERERN REEN
T 1 ! T
b)
] R e S S A
SE|LECTI(SEX|) ; f
_MWVHEN<‘M'55§ELECT; |
. : || WHEN(AQE >= 165) Mss [= 'PENSION";
NEENEE | [OTHERW!ISE MSa [= ['NO |pPENIS| ;
. L END ; | |
L WHENI(*F' ) SEILECT;
! ‘ . WHEN(Al6E| > = |6lg)| Msia 'p oN|;
. __|OTHERW!'s|e Msie = | No| IPENS[ION’ |
e e END ;
ENDG L | )]
Note that the OTHERWISE clauses could have been replaced by WHEN clauses.
10.
|
/% Al %)/ SM |= |'|9'B|;
/% B *#|/ [IF sWi1| & (WSW2])| [THEN |-|-|
ELSIE LR AN ]
/1% (C| %/ |IIF| HEALTH THEN| |- -
5 ELSE| |-|-|-
/|| D %}/ |i|F| HEALTH lp|@lilp)ilo|‘|8] [THEN] |- -
ELSE| |-/ .

Page 7 -56




Topic 7: Control of Program Flow

Do| |li=1]| [TIO |6;
Do WJi=l1| [Tlo 12};
AR(I1, V)| |=18;
END|;
EN!D;

The order of the DO groups could be reversed, as long as the first subscrlpt varies
from 1 to 6, and the second varies from 1 to 2.

b)

AR1(1,1)=6 AR1(4,1)=12
AR1(1,2)=6 AR1(4,2)=12
AR1(2,1)=6 AR1(5,1)=12
AR1(2,2)=6 AR1(5,2)=12
AR1(3,1)=6 AR1(6,1)=12
AR1(3,2)=6 AR1(6,1)=12

Page 7 -57



Topic 7: Control of Program Flow

14,
|
pcit] [1] WEATHER|(]112)),
2| TEMP|(|2)),
2 [RA[/NIFAILL|;
15. (a) AR(1,1)=0 AR(2,1)=1
AR(1,2)=0 AR(2,2)=1
AR(1,3)=0 AR(2,3)=1
AR(1,4)uninitialized. AR(2,4)=1
(b) TEXT(1,1)='ABC!
TEXT(1,2)="'DEF'
TEXT(1,3)="GHI'
The rest of the array will be uninitialized. (6) 'GHI' will cause the 6 to be treated
as a repetition factor and so create a string of length 18, which will be truncated to
3.
16. a)

pclt| INuMs|(3|gh] [1INTClC[3lgDl1D;

I I i

If it does not matter what value goes into the middle 10 elements, it is alright to put
1 into them.

L | | |
olc|d NumMs[(3l@)] 1IN T¢(cltiglrl, [C1le) =], i 1igD 1)

I | I | li

-
o
M

would also be correct.

b)

Page 7 -58




Topic

I S P
D
A A
E D T
Y P Y I
D U E T
N M D N - M D
) o] G 0 P
U P D E U P E P D
I R A T
T Y I N T Y I N T Y I DE
0G P T 0G M E T 0G M P T
O E N TU 0 E ST R D N ub
0G E D Y 0G E D D RO D N ST
) M D NT DY R AM D NT D R AM D NT P C
R M ND EN D P R M ND ENT D P R M IND ENT D RO
IN E N U P A IN E N TU P R IN E N U - R
EP NDE ST GR EP ND RA U
) ND T STU PR D ND TU PR R D ND TU Y 0 NL
EN E T R G D EN E T R G D EN TU R R M
D ST P O I PE D T ST P O N PE D T STU A ND M
NT S U Y ROGR NT S UDY ROGR NT S U Y ROG EN
TUD PROGRAM E N ubDY PRO RA E N ubD PRO RA ND PE
STU PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T

Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR [NDEP DENT S

PR GRAM IN P ND N S D PR GRAM I P NDNT S D PRORMTI E EN T STU
PROGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY
OGRAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PR(
RAM INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGH
M INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRA!
INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM
DEPENDENT STUDY PROGRAM [INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INI
SENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEI
NDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEI!

NT STUDY PROGRAM [NDEPENDENT STUDY PROGRAM [NDEPENDENT STUDY PRCGRAM INDEPEND
IT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
‘UDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
)Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD

PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM I[INDEPENDENT STUDY
I e L L T ACMACEMT CcTHNY PRNAGCRAM INDEPENDENT STUDY PR



Topic 8

Record Input/Output Part 2 - LOCATE Mode

Objectives

Introduction

This topic covers locate mode record input/output. It also deals with pointer and based
variables.

On completion of the topic you should be able to:

« read, write and update records in consecutively organized files using LOCATE mode
input/output

« write statements to declare POINTERs and BASED variables.

Topic 5 looked at move mode record input/output in DOS/VS and OS/VS systems. In this
topic we will look at the alternative form of record input/output - locate mode. Before the
input/output process can be understood, two new types of variables have to be met: pointers
and based variables. These will be explained in sufficient depth in order that you can under-
stand locate mode processing.

Page 8 -1



Ciue U RCLUVIU 1HpUL; UUtpul rar £ - LUCALL vioge

MOVE Mode Review

Before looking at locate mode input/output, let us review the processes of move mode file
input/output using single buffers.

We will look at a program which reads records from an input file INFIL, into a structure
INSTRUCT. For each logical record which it reads, it puts information into OUTSTRUCT,
and writes this out as a logical record to OUTFIL.

The end of processing is indicated by the first three bytes of an input record containing
'END'.

The program and the process are illustrated below.

| | ]
| MolvEl:| [PRlojc| [o/PiT{1io[N's| [(MA[IIND ;T
i pciti [INFIlL RElCIORD| [1INPlulr [ENVIC |/#] Islu1lT]AlslLE
! 1 EN|V/I RIOINMENT |Flo|R| DOIs| OIR| 0S| |[#/! DI;
anl pciL louTE[1L] [Rec|olrp| [oluT/PlulT] [ENV[(] [/le [sulilralBlLlE
L ? EN\VIIROINMEINIT |FlO[R| |Dlo|s| [O[R| [ols| I#/| DI;
0 DICIL| |1] [INISTRRUICT, /1% [INPUT |STIRUCTIURIE |#/
B 2 |IDENT | ICHARI(|3)
! | 2 [IINDA[T1| |F|I\XED| DEICI(]7))

| 2 |1INDAIT2 [F|1|x]EID] DIEIC|(IS])];
L DCiL| || OUTSTRUCT, [\% [ OUTPUT STRUCTURE #/
; 2 ouTDAT|T| |FlIXED DE|C|(]3)], |
il 2| |[OUTDIAT|2| |F|i|xE[D] IDEICI(|T])];
| READ| [FlIILIE[([IIN[FI1]L])| [1IN[TIO[([1 N[sITIRlu|c[T])
! DO| WIH!ILE[(| [1DlENT] [=| [*lelND]'] DI;

/# BU|I LD OUTSTIRUC|T FRIOM |IINSTIRUCT (#/

WIR! TEE| |FlIILIEICOUTF|IIL])| (FIRIOM(IOUTIS TIRUCIT)) ;

READ| [FIIILEI([IINFIIL) | IINTO|(lIINSITIRUCIT)!;

ENID;
FND [i* wOvs ¥/, )

Page 8 -2




DATA
SET

INPUT
BUFFER

INPUT
WORKAREA

OUTPUT
WORKAREA

QUTPUT
BUFFER

DATA
SET

Unit 8: Record Input/Output Part 2 - LOCATE Mode

]

|
1st READ \
|
— 4]

1st N\ 2nd I READ 3rd
READ / READ

L

1st 3rd
WRITE 2nd y WRITE WRITE

l 3rd WRITE , -

prom—
| -

The first READ statement executed will cause the buffer associated with INFIL to be filled
with the first physical record on INFIL. The first logical record will be copied from the buffer
to INSTRUCT. In the processing of this record, ‘information will be assigned to OUTDAT1
and OUTDAT?2. Execution of the first WRITE statement will cause the first logical record of
output to be copieﬁ to the buffer for OUTFIL. No physical records will be written to OUTFIL.

The processing of the next two logical records from INFIL will not cause any physical records
to be read from INFIL, nor any physical records to be written to OUTFIL. Each READ or
WRITE will cause data to be copied from the input buffer, or to the output buffer.

Reading the fourth logical record will cause the second physical record to be read from INFIL
to the input buffer, and the first of the logical records in that physical record to be copies\from
the input buffer to INSTRUCT. Having processed the record, the fourth WRITE will cause
the first physical record to be written to OUTFIL, and the contents of OUTSTRUCT will be
copied to the first position in the output buffer.

At any stage in the execution of the program, as long as it is not in the middle of executing a
READ or WRITE statement, one logical record from INFIL and one logical record from

Page 8 -3



Unit 8: Record Input/Output Part 2 - LOCATE Mode

Declarations

OUTFIL will exist in main storage in two copies - one in a buffer and one in INSTRUCT or
OUTSTRUCT.

If the input records can be accessed directly in the input buffer, and the output records can be
built up directly in the output buffer, we will be able to save duplicating the records in main
storage, and save the copying of data between buffers and structures where it may be worked
On.

Locate mode record input/output allows this to be done.

A common problem in data processing is that a series of input records being read contains
mixed record types, and as each record is read it is not known what type it will be. A typical
situation is to have a record giving information about a customer - name, address, account
number, discount rate etc., followed by a series of records, each detailing one purchase - item
number, quantity, price etc. Before each record is read, it is not known whether it will be
another transaction for the last customer, or the identification of the next customer. Only
when the record has been read can some record type identification field be inspected.

Locate mode record input/output provides one of PL/I’s solutions to this problem.

Move Mode Declarations

The declaration of INSTRUCT in the first example will cause a total of 10 bytes to be
reserved. In a READ statement which names INSTRUCT in the INTO option, 10 bytes will
be copied from the input buffer to the 10 bytes of space reserved for INSTRUCT. A reference
to IDENT will access the first three bytes of this information, interpreting them as CHARAC-
TER data. Reference to INDAT1 will access the next four bytes of data, starting at the fourth
byte of the structure, and interpret it as FIXED DECIMAL data. Reference to INDAT2 will
access the next three bytes of data, starting at the eighth byte of the structure, and interpret it
as FIXED DECIMAL data.

Locate Mode Declarations

Page 8 -4

The requirements of locate mode processing are that the declaration of a variable or structure
should not cause space to be allocated to it, but when, in the case of INSTRUCT, the locate
mode input statement is executed, reference to IDENT should cause a reference to the first
three bytes of the next logical record; reference to INDAT1 should cause access to the next
four bytes of that logical record, and reference to INDAT?2 should cause access to the next
three bytes of it. A

To enable this to happen, the structure, or element variable, must be declared to be BASED on
a pointer variable.



Unit 8: Record Input/Output Part 2 - LOCATE Mode

Pointer Variables and Based Variables

Pointer Variables
A pointer variable is a variable which may hold main storage addresses of variables. It may
acquire the POINTER attribute explicitly, by declaration e.g.

_‘_f;}!!llugurtlt
“4_%C}r#ﬁTPOJP{TERP4,
: T [ o Lo

or contextually, by appearing in the BASED attribute of the declaration of a variable or
structure.

The keyword POINTER may be abbreviated to PTR.

A pointer variable does not hold any predictable address when the program starts executing. It
may be set to an address by being referred to explicitly or implicitly in a locate mode
input/output statement. _

BASED Attribute
A variable is defined as being based by being declared with the BASED attribute.

The BASED attribute must include the name of a pointer variable in brackets. The use of PT
in the declaration of VAR contextually declares it to be a pointer variable. The BASED
attribute can come in any order with the other attributes, but where attributes include informa-
tion in brackets, it must not come between the preceding keyword and those brackets.

The BASED attribute may be attached to an element variable name, an array name or a major
structure name, but may not be attached to a minor structure name or a structure element.
name. A structure must occupy a continuous area of main storage. If the BASED attribute
appeared on a minor structure or an element of a structure, it would imply that that part of it
was to occupy a different area of main storage, which it cannot do.

The following are valid declarations of based variables:

I ; |

DelL 1] |s BIASIEID [(lPT)

? 2 Ms|t,

i 3 [EIL)1] CHAR(]3),
M 3| |E|L2| [FJIXED|(]5))

{ 3| [E[L'3] |Flt|XED[(I5])];

Dic|L! |AIR| (120} 3] IBASIED! |(IPD! [FlIIXED| [([T.12)];
DiclL| [1TIEM TFIXED BIASIED|(|PT])| IDIEIC|(|1|5))1;

I

Page 8 -5



unit 3: Kecora input/ Uutput Part 2 - LOCATE Mode

Note that both ST and ITEM are based on PT. This is quite legal. It is the means of dealing
with the situation described earlier, where a record being read could be any of several types.

LOCATE Mode Input/Qutput Statements

The locate mode input and output statements cause a pointer variable to be set to indicate the
beginning of the next logical record in the buffer, so that variables based on that pointer may
be used to access that record. The statements are:

READ FILE(filename) SET(pointer);

LOCATE based variable FILE(filename);

READ Statement

When the locate mode READ statement is executed, the specified pointer is set to point to the
next logical record in the input buffer for that file. If there are no more logical records in that
buffer, then the buffer is re-filled with the next physical record on the file, and the pointer is
set to point to the beginning of the buffer.

Note that no variable is named in the statement. Reference to any variable which is based on
the specified pointer will now cause reference to the area in the buffer following the address
pointed to by the pointer. The area in the buffer can continue to be referred to until the
pointer is set to some other address. No movement of data is caused by the locate mode
READ statements, except the movement of physical records from the file to the buffer as
necessary.

LOCATE Statement

Page 8 -6

When the LOCATE statement is executed, the pointer on which the based variable is based is
set to point to the next logical record position in the output buffer for that file. As with move
mode, the length of the variable and the record length for the file must be the same. If there is
not room for any more logical records in the buffer, then the contents of the buffer are written
out as the next physical record on the file, and the pointer is set to point to the beginning of the
buffer.

Reference to any variable which is based on the same pointer as the named based variable will
cause reference to the space in the buffer immediately following the address pointed to by the
pointer. The output record may now be built. The physical record will be written out when a
WRITE or LOCATE statement tries to add a logical record which cannot be put into that
buffer.

It is most important to remember, when using locate mode output, that the results may not be
assigned to the output structure until the LOCATE statement has been executed. If this is not
done, then reference to the based variables before the execution of the first LOCATE
statement will cause unpredictable, but almost certainly undesirable results, as the address
pointed to by the pointer will be unpredictable.

Remember:

LOCATE,
then assign.

The use of the LOCATE statement enables the output records to be built up directly in the
output buffer. They do not have to be moved there after they have been built up.



Unit 8: Record Input/Output Part 2 - LOCATE Mode

The next coding example and its associated process illustrate the previous program in this topic

-tewritten for locate mode processing.

|
Z ~ {
uJ %*
- X (3
z Z| -~ [Y)
[M] ol~w of
X o o S
Z N =N3 -
O[>k (%)
[ z (%) =
— N3 (4
> % ol ¥~
Z w - )
Wwn d[divn
o[®m™[o [
] < [ =
Jd X[ =13 o ~
DO [=[Oa - £3
< S0 Z =
wlw - =) -
—- O o [3)
S Q R[Olk * =
vy NN ~N —~| &
& =
RIQ |~ Pl )
<. N PPN Wi'Z
> ] o~ o~ — -
~ [=Z [~ (== N o
Z I S~ <0l S[QA
W | - Olo |~ ww| ~ =~ [W[&&J
3| I~ ~|jww|gala~AQldw~
[ a| [al~aqQ[~ o Z (- W
3 ] [~ alaal WK =[w
~Na S aN~aAQiwiw Wik~ (¥}
~Z [<) wadiw/Wivni xwu =S|~
Z| = NLIX XL~/ O] I
= & <x~=oWL [FISr[=
<a [4 LIS ™ ~ (K713
b4 [s) Q= =Z
~ O [€) = - NO R [=ZwWw 3~ N
(¥ w Ol R KIS < </Liu/FFol~ *
v u o S Z< < aloZz2aS ]
Z Lluwaar- i< -0/ald w
490 Nl (WolZIZWV I S (=] |
o e -~ V= ——koou IS O
JE[=L el 12 _ =] SwES =1
Lm.r,N.. W lzl‘abfﬂ‘ZHLABD N
s 13, e LI CCINNE bl
T rerist—i= - ol ww 1N
ol o LT T laR[AN[@] ~ -~
494 ) I 1=l T QA
_@[o] (97 TSl col T dio Z/ 2z
a o 18 Q X a 7]
BT -
3
~J L B S
L

Page 8 -7



Unit 8: Record Input/Output Part 2 - LOCATE Mode

L. 2 N K N N |
DATA
SET
L. Rk 1 B B N J
\ )
1
1st READ\
|
14 A}
INPUT
BUFFER
P e 1 p |
T | i T i
| ! |
1st { 2nd | 3d |
READ 1 READ | READ i
|
| | |
1st | 2ng 1 3 }
LOCATE | LOCATE | LOCATE |
! |
Q & a 4 o ¢y
OUTPUT
BUFFER
\ ]
1
3rd LOCATE , -
|
I \
DATA
SET

Page 8 -8



Unit 8: Record Input/Output Part 2 - LOCATE Mode

Pointer Usage

The use of P and Q in the declarations of INSTRUCT and OUTSTRUCT contextually
declares them to be pointers. Execution of the first READ statement causes the first physical
record to be read from INFIL into the buffer, and P to be set pointing to the beginning of it.
Reference to IDENT in the DO statement will refer to the first three bytes of the input buffer.
Assuming that they do not contain 'END', the LOCATE statement will cause the pointer Q to
point to the first byte of the output buffer. Before this statement is executed, the address to
which Q points is now known. It may even be an invalid address. When it has been executed,
and Q points to the buffer, anything assigned to OUTDAT1 will be assigned to the first two
bytes of the output buffer, and anything assigned to QOUTDAT?2 will be assigned to the next
four bytes of the buffer.

Execution of the next READ statement will cause P to point to the second logical record in the
input buffer, so that the next reference to IDENT will refer to the first three bytes of the
second logical record. Similarly, the second execution of the LOCATE statement will cause Q
to point to the second logical record position in the output buffer. References to OUTDATI1
and OUTDAT?2 will refer to the first two and next four bytes of that record, so that the second
output record can be built. The first output record cannot now be accessed.

A similar process will occur with the third READ and LOCATE statements.

When the fourth READ statement is executed, there will be no more logical records in the
input buffer. The second physical record will be read in, and P will point to the first byte of the
buffer, now containing the fourth logical record. When the fourth LOCATE statement is
executed, there will be no more room in the output buffer, so the first physical record will be-
written out, and Q will point to the first byte of the buffer.

~ This process will continue until an input record is read with '"END! in the first three bytes.
When the program terminates, the last physical record will be written out, containing as many
Jogical records as have been LOCATEGA in it, whether valid data was assigned to them or not.

In this program, the use of locate mode will have saved main storage for INSTRUCT nd
OUTSTRUCT, 16 bytes, against which must be offset the 8 bytes needed for the two pointers.
It will have saved little main storage. The principal saving will have been the execution time
saved in not having had to copy each input logical record from the input buffer to INSTRUCT, -
and each output logical record from QUTSTRUCT to the output buffer."

Processing Files with Mixed Records

Advantages of Locate Mode

Processing files with a mixture of record types does not pose great problems in locate mode.
The keys to processing are:

1) The locate mode READ statement does not name a variable, only a pointer.
2) Many variables may be based on the same pointer.

The following example shows some code to process records from a file containing customer
identification records, identified by 'CUST" in the first four bytes, and transaction records,
containing '"TRAN! in the first four bytes. The order in which they will be read is not known.
The last record will be identified by "END' in the first three bytes.

Page 8 -9



Unit 8: Record Input/Output Part 2 - LOCATE Mode

oR PRlolc| |ojp|Tit jo|Ms|(MlAlt IND]; o [ 118 W/ ]
T dcle] [INFi|L] [RiElciorip] [1|NPluT] [EINV]([ [/]#] Isjult [TiAlBIL]E] [EINV]IIRIOINMENT |~
il ; FOR| Dois| OR [0S #®/| Di;| 1!
IRER Dcl] [cHK| [cHAR (|4])] BAlSED|([P))]; /+ | a0 ¥/
i DClLl 1] ICUSTLIREC| BASED|(IP)), ! /x| [sle W/
‘ N 2 [IIDENT CHAR (4], /* | ol ¥/
i B 2 [clulsTIOMER! CHAR/(|3@) , | /e [ 17/d /T
T 2 Acle=NlumslER] | | [R1lc;*1919199 9V /% sl W/
. 1112 pislclouNT Plic| 4RV’ ; /% | |2 ¥/
] dclL, 1! ITIRAN|sACTREC| BASED([P))], ; /#1109 */
i 2] [IDEINT| | CHAR (4], B /118 ¥/
. 2| |1TIEM | | Pl1ic|' 999199V’ ], 1 /¥ [1120] [«/
o 2| QTY Plilc] izzglv’ ? /¥ |1]30 %/
‘ 2| PRi1cE | Pl1ic|*'99v9[9'];] | /% (140 [/
RelAD| FliLE(INFLILD] IseT (PD]; ? /¥ [1slg] ¥/
i Do| WHILE[C [CHK |=| ‘lEIND’] ); /% [1leld %/
1|F| [ClU[S|TIREC|-I1DEINT| '=| *lCUSIT]'| THEN /e 1718 %/
Do ; /| 11810 ¥/
/% Plrloclelsls| cluis'TlomMEeR [RE/c/oRD| [¥|/ /% 1190 |#/
END|; /% 2lpig] ¥/
ELLSIE /¥ [2(1l@ [/
INEE iF TIRANS|ACTIREC]. [i[DENT [z ['|TIRAIN| THEN [/|% [2]2/0 [*/
Do[; /¥ 230 |7
/% |PRIOCIE'S|S| | TRIANISIAIC/T|I|O|N REICORD /| (/1% (249 %/
EIND|; B | | /% 2|50 4|/
| f L E[LSE |/* |2leld ¥/ |
| ‘ Djo]; 1 | B ! /% 270 #/
I /I PRloclesls Erlrior |/ L 7w 2slg W/
g | EIND;| | | IR f /% 249 ¥/
.| ReAD| FilLel(lINFIL) SET(PH]; RN CREC R
€Nl | | 7« [oF| (A ¥/l L/ 3l1e 1/
ﬂnP /% _TWORELC |x/; ; /% 3zl #/

Page 8 -10

CHK and the two structures, CUST__REC and TRANSACT _ REC, are based on the same

pointer, P. When a record is read, in statement 150 or 300, P will point to the beginning of it

in the input buffer. The first four bytes of it may now be referred to as CHK,
CUST__REC.IDENT or TRANSACT__ REC.IDENT. They all refer to the same area of
storage. Statement 160 refers to them as CHK, to check whether they contain 'END". If they
do, processing is ended. If not, statement 170 refers to them as CUST__ REC.IDENT, to
check whether they contain 'CUST'. If they do, the fields of the record are accessed and
interpreted by the names of the elements of CUST__REC, for the record is a customer record.
If not, statement 220 refers to them as TRANSACT__ REC.IDENT, to check whether they
contain 'TRAN'. If they do, the fields of the record are accessed and interpreted by the names
of the elements of TRANSACT_REC, for the record is a transaction record. If the first four



Unit 8: Record Input/Output Part 2 - LOCATE Mode

bytes contain none of these things, it is processed as an error, before the next record is read at
line 300.

There are some points to note about this type of program.

If the records were being read from punched cards, they would be 80 byte records. CHK has a
length of 4 bytes, CUST__REC has a length of 41 bytes and TRANSACT__REC has a length
of 16 bytes. As long as the structures are not longer than the records, that is quite alright. If
the structures are all shorter than the record read, then the end of the record cannot be
accessed, but presumably it will not contain useful information.

In this program, the customer record contains a discount rate for the customer. This informa-
tion will be needed when processing the transactions for that customer. However, when the
READ statement is executed which reads the first transaction for the customer, the pointer P,
which was the means of locating DISCOUNT, will be moved to point to the first transaction
record. Also, the customer record may be over-written, as it may have been the last record in
the block. Thus when processing a file in locate mode, information in an input record is
available only until the execution of the next READ for that file.. Any information which will
be needed after that must be assigned to a variable outside the buffer before the next READ is
executed.

Similar considerations apply to locate mode output. Once a LOCATE statement has been
executed, the contents of the previous record are unobtainable. If information from the
previous record is required to build any record, then it must be duplicated in a variable outside
the buffer.

File Declaration

File Update

It is not specified in a file declaration whether a file is to be processed in move mode or locate
mode. A file may be processed in both move mode and locate mode by using both move mode
and locate mode input/output statements. However, it is more efficient to use one mode only
for any one file.

Sequentially processed files on DASD may have their records modified if they are declared
with the UPDATE attribute.

In move mode. the READ statement causes the next record to be copied to a variable. When
the REWRITE statement is executed, the contents of the variable named in the statement are
copied back to the file in place of the record last read. The variable may be the same as that

“used in the READ statement, but need not be.

Updating in locate mode is done within the buffer. The statement used has the form:
REWRITE FILE(file name);

Example

No variables or pointers are specified. It causes the last record accessed to be re-written to the
file. If any records on a file are being updated by locate mode statements, no input records for
that file should be changed in the buffer, unless they are to be updated.

Page 8 -11



Unit 8: Record Input/Output Part 2 - LOCATE Mode

Page 8 -12

The unit of data transfer between files and main storage is the physical record. This applies in
file updating as well as in reading and writing. When a locate mode REWRITE statement is
executed, the whole block is marked as a block to be re-written. It is re-written to the file
when the whole block has been processed, i.e. when the first logical record is read from the
next physical record. Thus, if any other logical record in the block is changed, or if the record
or records to be updated are changed after their REWRITE statement has been executed, the
information written to the data set when the block is re-written will not be correct.

Locate mode input/output allows input records to be accessed directly in the buffers and
output records to be built up directly in the buffers by means of based variables and pointers.
This has implications in that the data can only be accessed while it remains in the buffers, and
while the pointers point to the correct position for it. If this is remembered, it allows quicker
program execution and reduced main storage requirements. It also facilitates the processing of
files which have a mixture of record types, when the order of records is not know.

Before continuing with the next topic, you should complete the exercises at the end of this
topic.



Unit 8: Record Input/QOutput Part 2 - LOCATE Mode

Exercises

1. What errors do the following statements contain?

ix A |4/ RéAD ElULEI(1INFlIILIED| |SETI(PDI; i
D¥ B %/ | IRIEAD| |F{{LE/([INF[IILIE)]| [1INTlo] [{VIARD;
7w}c #|/ | [RIEAD [FlILE[([IINFILIED] [1NTlOl [(VIARD| [SIET (P);
/¥ (Dl [#|/| | [LlolclaTmE] [Fl1[LE/([OMITIFIILED s

/1% E| [#|/ | LIOCATIE| [FI|LIE(OUTIFIILE)| |OUTVIAR

4« F| #|/| | ILIOCATIE| lOUTVAR] |RiLE(OUTFILE)

/# G #/ | R W {TE [FlILIE(UPFIILE)]| [SETI(P);

2. Assuming INFILE and OUTFILE are syitably declared, are there any errors in the
following section of code?

(>

Q=
F 3N
~ I

~
|
m[oo [&]
g
)

[mlll=3.~1(= J(=]
oS moO O
QA »iric
o
mom s
-
Ll=mmo

mmi—OX

—1

3. Assuming that INFILE and OUTFILE are suitably declared, are the - ~ny errors in the
following section of code?

1 | |
DiclL| |IINIREIC| |ICHARI(|8¢)| |BASIED ((IP)|;
DIC|L; (OUTIRIEIC| [CHAIR (18¢]) |BIAISED| |(IPDI;
REJAD| |FlIILE| [(|{|NIF|IILE])]| |SETI(P);
|Llolc|AITIE| lOUTIREC| [FlILIE! [(lOMTIFIIILIED;
QOuTRec= unpec-

4. Assuming that INFILE and OUTFILE are suitably declared, what problems would the
following code cause, and how could they be overcome?

Page 8 -13




Unit 8: Record Input/Output Part 2 - LOCATE Mode

]
diciL| [i|NIRECI1] [Plilc! ' 9lqiala]’ BAS[ED|(Ph];
(DiCIL, [IINIREIC]2! [P[1ic{‘[91919199!" | | BIASIED (IQD;
IDiC|L! [ouTIREC| [Pl1ic[*|91919/91919” | BAIS|EDI(R] |;
READ| [Flt|LE| [(UINFIILE)| SET| (P)];
READ| [FlIILE [(rNFI1LE)] [slelT] (@D s
Lolc/aTe| louTREIC! [Fli[LE] [clolultFli [L]Ee])|;
;oufREc=11~R£c1 H |IINIREIC|2 ;

5. Using locate mode, write a program to read records from a personnel file until one is
found with a personnel number of 53000. When it is read, change the
MARITAL _ STATUS field to 'M' and update the record on the file.

Call the program WEDDING.

The following declarations are appropriate for the program. Do not code them in your
program, but put a comment to indicate where they would go.

Page 8 -14



Unit 8: Record Input/Output Part 2 - LOCATE Mode

I
i

45

T

~
*
Q
o
[¥) -
W -~
o o
q
L -
ewt W) *a)
) S| Z (&) ~
(o] S Z - -
uwy || -~ w|io a. N
W W~ i o
-~ of P S S .Y - <
u~8a W] A~ A~ >~ Jd=F
=6 =a~|eWwnwmuin < [—~©
N L NS ~ < Ao o v Qv
- YR RAa Zivn~raQaNol vy
ol w 6.0 Ziuww W T XL
S| "N Zisu A< % %X <[ X<
< el < WX~ ZXT L
¥ Qv Zalunowuwo=Clo]/-
4R34 v < () [
O 0O[wn 4 Olo[IS|an L - }
2/ O[> a0 4™ 3 Wi ~3
MLNIIEYY woio Z > O <
v Si— v EuuvnF] <w[> |-
oldSio Od- I loaF- I X&
= N —wun/<wwo/</<] |w<
wialuw] [Zlu] [@'ZIla[0 5V A™MwE
<MW Ww[N| v tiw
4P AS ZSoaNgaga NN NN
Xiw~—wn ~4IMIY
olal>v o Z|v
W Zlw (W] [~
=4 ~J -~
* O IRIEIS) 1
N[e SeiNe

Page 8 -15



Unit 8: Record Input/Output Part 2 - LOCATE Mode

Answers
1. a) No errors. This is a valid locate mode READ statement, assuming that INFILE is an
input file and P is a pointer.
b) No errors. This is a valid move mode READ statement.
¢) A READ statement may not have both the INTO and SET options.
d) It does not identify a based variable.
e) The name of the variable must be immediately after LOCATE.
f) No errors.

g) There should be no SET option. The correct form is:

]

REWR( [TE| | F{IILIE/(UPFI[LED]

2. If these are the only references to these files and pointers, Q will hold an undefined
address when the assignment statement is executed.

The LOCATE statement should be exacuted before the assignment statement.

Page 8 -16



Unit 8: Record Input/Output Part 2 - LOCATE Mode

3. Both records are based on the pointer P. When the READ statement is executed, P will
point to the input buffer. The input record could be referred to now as INREC or
OUTREC. They both refer to the same space. When the LOCATE statement is execut-
ed, P will point to the output buffer, and the record in the input buffer can no longer be
accessed. The assignment statement will have no effect.

There are two simple solutions.
1) Change the name of the pointer for OUTREC.

2) Change the output to move mode.

| i |
plc|t| [1|NRE|C] [cHARIC[gl@D] [BIAISIED|([P);
Relap! [FllLe [ INFITLED] SET(IP);
wiR[ITE| [FlIILE] [(louTFliIL[E)] FI[RoM [([fINIREC);
h 7 1 T |

Using a based variable in the FROM option is permitted, as long as its pointer indicates a
suitable address.

4. This problem is not well suited to locate mode processing. The assignment statement
refers to the contents of two records from the same file. Although different pointers are
used for INREC1 and INREC2, the first record may not still be available, once the
second record has been identified by the second READ statement. There are two simple
solutions:

1) Remove the BASED attributes from INREC1 and INREC2 and use move mode
input.

2) Assign INREC1 to a non-based variable before the second READ statement is
executed, and use this variable in the assignment statement.

5.
[ [
WEDDI1|Nlq :| [PIROIC| [0[PT/(jo]NIS|(MAIN]);
/1% THE| IDECILIARAT]IIOINS| IClOULD| |GO| HERE|,| (OR| [BEF|ORE
ANlY! OTHER| [STAITEMENT, [IIN THIE| [PIRI0OGIRIAIM, |AS| ILIONG| |AlS
TIHElY |ARE [BEFORE !THE FlI NJALH (END| ISITATEMENT,
REeAD [FI1LEI((PERISIEIILD) | [SEITI(IPD];
| /e [1F] [THIS| walsl NolTl THE RElQu I RED| RECIORD, KEEP
RIEAD/I|NG| [UNTII[L] [1TT] [1'S| [FlOUND| ¥/
Dlo| WH|IILE [([PER[S_NuM H=| |53/gl¢¢));
AD| [Fl1ILE(IPERISIFNLD] SETI(PD
EIND|;
/1 HAlvIINla| [Flojulnip| [1]T], [ulpDlAITIE] [1]T] |/
MAR I TALSTATUS] [=] 'IM‘[;
Rewr1|TE FliLE(PERS[FIL)];
; EIND|;

Page 8 -17



e eep s e st e T AL A X LVAUUC

Note:
There are many ways to write this program, as there are for most programs.
This is one way.

It is generally regarded as bad practice to write a program which produces no
printed output. It might be useful here to print out what the record has been
changed to.

Page 8 -18



Topic

1 S P
D
A A
E D T
Y P Y I
D U E T
N M D N M D
0 G 0] P
v P D E U P E P D
I R A T
Y I N T Y I N T Y I DE
0G P T 0G M E T 0G M P T D
0 E N TU 0 E ST R D N ub
0G E D Y 06 E D D RO D N ST o
M D NT DY R AM D NT D R AM D NT PO
M ND EN D P R M ND ENT D P R M IND ENT D RO
IN E N V) P A IN E N TU P R IN E N U R ]
EP NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TU Y 0 ND
N E T R G D EN E T R G D EN TU R R M Et
ST PO I PE D T ST P O N PED T STU A ND N
T S UY ROGR NT S UDY ROGR NT S U Y ROG EN
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE ¢
U PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T
Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S
PR GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMI E EN T STU
!OGR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY

'RAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROG
\M. INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRA
INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM

{DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IN
IPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
"NDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
INT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT

TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
- e A~ v T ncancMT CTHNY PRNOGRAM INDEPENDENT STUDY PROG



Topic 9
Input and Output - Further Considerations

This topic will look generally at PL/I files and the type of input/output supported by
PL/1. The need for OPEN and CLOSE statements and the action resulting from the
execution of these statements will be discussed.
Objectives
On completion of this topic you should be able to:
« explain the differences between STREAM and RECORD 1/0

« determine which file attributes are in force for a specified filename at any stage during
the execution of a given program

+ describe how PL/I files are associated with OS/VS or DOS/VS data sets

« use OPEN and CLOSE statements in appropriate situations

o code valid DISPLAY statements using REPLY and EVENT options

« state the situations in which the TRANSMIT and RECORD conditions will be raised.

Page 9 -1



Topic 9: Input and Qutput - Further Considerations

Terminology

Data Set

File

Confusion can arise as to the differences between a data set and a file. This is of more
importance to the OS/VS programmer than the DOS/VS programmer. The latter tends to use
the term ‘file’ to mean both file and data set. However, in this segment, the terms ‘file’ and
‘data set’ will be used in the context explained below.

A data set is an actual collection of data on a physical device, such as on cards or on disk,
completely independent of any program.

A file in PL/1 is a symbolic representation of a data set which enables the programmer to deal
with the logical aspects of the data, rather than with its physical organization. Except for the
MEDIUM option in DOS/VS where the type of device must be specified, the programmer can
write a PL/I program without specifically referring to any data set. Thus a file is nothing more
than a declaration by the programmer of the way in which he intends to manipulate a data set.

Access Method

These are the routines which link the file in the program to the physical data set. Normally
these are brought in from a library on execution of an I/O statement.

Data Set Organization

Page 9 -2

Data can be organized in several different ways depending upon the methods of retrieval
required. Below is a table which summarizes the different organization. Alongside each one is
the associated PL/I file and access methods.



Topic 9: Input and Output - Further Considerations

|
0S/DOS NAME PL/1 NAME ACCESS
SEQUENTIAL CONSECUTIVE Sequential
INDEXED Sequential
SEQUENTIAL INDEXED or Direct
DIRECT REGIONAL (1) Sequential
REGIONAL (2) or Direct
REGIONAL (3)
VSAM
key-sequenced
VSAM VSAM Sequential
entry- or Direct
sequenced
VSAM
relative record
_’ R
NOTE:

1. Regional(2) files only exist in OS/VS.

2. The type of PL/I file must be stated as an ENVIRONMENT option in the file declara-
tion statement. If omitted, then CONSECUTIVE is assumed by default.

In later topics each organization will be discussed in full detail. The PL/I coding of the file
declaration statements and I/O statements required will be introduced. In this topic we will
not be referring to any specific organization.

Stream and Record 1/0

Two types of data transmission can be used in PL/I. stream-oriented and record-oriented
(hereafter referred to as Stream I/0 and Record 1/0, respectively).

In Stream I/0, the data set must have CONSECUTIVE organization (and therefore must be
accessed sequentially), but the physical organization of the data is ignored within the prograj .
and it is treated as a continuous stream of characters. Data is converted from character form to
a programmer defined internal form on input; the converse happens on output. For example
on input, if the data is to be read into a fixed decimal field, it will be converted to fixed decimal
format before being assigned to the field. If there were alphabetic characters in the data then
an error would occur and the program would probably terminate. The details of Stream I/O
will be discussed in Topic 15.

Page 9 -3



Topic 9: Input and Output - Further Considerations

In Record I/0, the data set consists of discrete records which are transferred without any
conversion. It is therefore necessary for the programmer to be fully aware of the way in which
data is stored on the external medium.

Stream I/0 is less efficient both in execution time and physical storage economy (e.g. disk
space) - and it can only handle consecutively organized, sequentially accessed data sets. It is,
however, easier to use, particularly for punched card input and printed output and can be very
useful for testing purposes. It would not, however, be recommended for normal production
programs.

A summary of the differences is given in the table below.

STREAM RECORD
Format of External Data Character Any
Statements GET/PUT READ/WRITE/LOCATE
REWRITE/DELETE
Data Conversion Yes No
Access Sequential Sequential / Direct
Speed Stream is slower than Record |/O
because of the data conversion item
by item
File organi}_ation CONSECUTIVE CONSECUTIVE
INDEXED
REGIONAL
VSAM

Opening PL/I Files

Since opening a file associates a file definition with a data set and prepares it for I/0, all PL/I
files must be opened before they can be used. The various events which occur at OPEN time
are as follows:

a) If it is an output file, a check is made to see if there is room for it.

b) If it is an input file being read from disk or tape, then label checking routines are
preformed.

¢) If it is an output file being written to disk or tape, then label writing is performed.
d) The PL/Ifile is associated with the physical data set.
e) The file attributes are merged.

The last two events will be discussed in this topic.

Page 9 -4



Topic 9: Input and Output - Further Considerations

Associating PL/I Files
With DOS/VS Data Sets

Unit Record Devices
A file in a PL/I program is associated with a physical data set on execution of the program.
This link is set up at 'OPEN' time as follows:

In a file declaration one of the mandatory options of the environment is the MEDIUM option.
The ‘symbolic device name’ SYSxxx in this option corresponds to an identical one in the JCL
assignment statement.

| i |

pcl] x| |Fli]ce] [REkclolrD] louiTiplulT [elnvi(MEeDlsuiM (Islylsi@ld7], l1leol3D].[.].D];

1 [ I

In Job Control

I i

[/l |AsislalN [slylsigigi7], (X ‘| glplE]

! I (

Thus by means of the ‘symbolic device name’, the link has been set up between the file, known
as X. in the program and the physical device with address X'00E".

DASD

In this case the initial link is set up by the name of the file. This must correspond with an
identical filename in a DLBL statement. The ‘symbolic device name’, is not taken from the
MEDIUM option as above but from the EXTENT statement associated with the DLBL
statement.

{

|
pelc, x| IFilLel 1. [.] 1. Euv(qqonumcsv5¢¢8,3ssm)...).

DILIBIL| X| | MASTIER| |S|T|o|Cc(K| [Fl1|LIE]
IEXTIENT] |Sly|si@it|@
AlsSlaIN [s]y|sgltla], x| *]1]5/A]°

1 |

In this example no use is made of the 'SYS008' in the MEDIUM option and hence its value is
unimportant. However an entry must be present.

The ‘symbolic device unit’ can be omitted from the EXTENT statement. In this case, the value
is taken from the MEDIUM option.

] | ! |

|
DclL x;?:ue ...-e@y( En:%ﬂ(svsqps,333q)...)

oo

Page 9 -5



Topic 9: Input and Output - Further Considerations

Tape Devices

In Job Control

1
DILBIL| [x[,[' MAISITIE[R] |s|Tiolcik]| [Fl1|L]g’
/|/| [EXTEINT]
/| |Asis|aN [sly|s|@a@8], (x| '[1]s/A]’
[T |

With tapes, as with DASD, the link is set by the filename and this must correspond with the
filename in the TLBL statement. The ‘symbolic device name’ in the ASSGN statement must
match that in the MEDIUM option.

| [ T I !l [

~
m

TITLE Option

Page 9 -6

—_— l
;p RIEC/oRD] [.[-]- 5~w(~15io%l u%M(S ys ¢‘t¢‘1‘u 24/deD | [T D
I

T

In Job Control

L
TILB|L| Ix],|' IMASITIER] |s|Tlolcik| |F|1|L|E|"
ASSGN SYS@PT, X ‘18

T R 17 I

In all these cases, the other operand appearing in the MEDIUM option (2400 in the last
example) must correspond with the physical device whose address is specified in the ASSGN
statement.

The TITLE option allows the programmer to associate a PL/I file with several different
physical data sets. ‘

~

DiC
oP

X| |F
N |F
1B

—

|
El.].[.[EINV
I

1 |
MED|1 UM
TILIE 3

(|' MAs]

mic
P
mr
I~
x
N
=

In Job Control

|
DiLBL] MAS|ITER,|‘[IINVIENTIORY| |Fl1]L e
i

In this case the link is not made by the filename but by the name given in the TITLE option.
Thus, the association of the file with different data sets is achieved by closing the file and
reopening it with a different name in the TITLE option. The expression in the TITLE option
can be a variable whose character string value at execution time is used.



Topic 9: Input and Output - Further Considerations

Example
FLFT
piclL| 1] [INRlEl], 11
20 FIHIEILIDI T «|<|¢]s
2 FlILiE1D| [CHAR([7);
Dic|tl |DlefAir(L] [Fl1 L{E|l [1INIPUT].
D/C AlSITER FIILE [IINPUT!.|. .
OPEN| |AIILE(DETA[IIL);
READ |F|I|LE([DETA|IIL)) IINTIO (I NREIC)!;
% INAME| [OF| [FlilL|E] TO| |BlE] [PRIOCIEIS|SIEID| [HIAlS
ow BEEEIN READ [IINTo [‘[F1[L|E 1D’ %/
OPIEN| |FII|ILE(MASTIER) T TLE| FIILEID])};
# |C/ODIE To| PIRO|CIEIS|S| MASITER [FI|LE| W%/
CLIOSIEl [F1LIE|(MASITER)|;

In Job Control

DILIB|L| DETAIIIL,| |- -

DL B[L] MAISITER1],[' MAISTIER1]’
///| [p|LB|L] MASITER?2,|'MASTIE[R2]']..

DL B|L| MASITIERS|, | MA[SITIER3'

Associating PL/1 Files
With OS/VS Data Sets

OS/VS programmers may omit this section and recommence with the section called ASSOCIAT-
ING PL/I FILES WITH OS/VS DATA SETS). '

A file in a PL/I program is associated with a physical data set on execution of the program.
This link is set at 'OPEN" time as follows:

The filename in the file declaration statement is taken as the link and it must correspond with
the name of a DD statement in the Job Control.

DICIL| |X| [FiiLE| REECIOIRD [OUTIPIUTI;

In Job Control

x| bjo| |-

Page 9 -7



Topic 9: Input and Output - Further Considerations

TITLE Option

Page 9 -8

At OPEN time PL/I library subroutines create a skeleton data control block and commence
filling it in with attributes from the DECLARE and OPEN statements and with any that they
imply. The routines then examine the DD statement to see if there is any information there
which is still required. Finally, if the data set exists, the routines will try and fill any gaps

remaining with information from the Data Set Label (DSCB).

DCL MASTER FILE ENV (F?\BLK SIZE (400)
RECSIZE (40))"
OPEN FILE (MASTER);

DATA CONTROL BLOCK

RECORD FORMAT FB8
DD STATEMENT
BLOCK SIZE 400
RECORD LENGTH 40
/1 MASTER DD UNIT= 2400 e
VOLUME= SER= 30WORK »| DEVICE TYPE 2400
DSNAME= LIST |__»| nNumsER OF BUFFS 2
DCB= (BUFNO= 2, RECORDING
DENSITY 1600
RECFM= F,
BLKSIZE= 400
LRECL= 100)

DATA SET LABEL

RECORD FORMAT = F

RECORD LENGTH = 100

BLOCK FACTOR = 4

RECORDING DENSITY = 1600

The TITLE option allows the programmer to associate a PL/I file with several different

physical data sets.

m

e

e




Topic 9: Input and Output - Further Considerations

In Job Control

|
MASITIER DD

In this case the link is not made by the filename but by the name given in the TITLE option.
Thus file X can be associated with several data sets by closing and then reopening with
different names in the TITLE option. The expression can be a variable whose character string
value at execution time is used. Example

miar
rs
[«]

ol

(o)
r
2O
a(’"
RN =
(]
- =101,
be o}
Yi»
-4

I~~~ N |~~~

(-4

[+
mimm mnm
[0

NAalo] [Uo
= I

x|fni‘o
D
[=]
Xm™n
r
-o—\a

~

47>
mOoimm mi~/m"Mx
olm[o
~
n [ WRZ
o
©

N
(o]
o
©
~

__;Q Q - mi™n
o)
o
Q
[n]
1)
N
(%
=
>
[
)

w12

=)
]
m
Z| |2
P
m

ClLioSE| [FIiL
i

In Job Control

fl
Mﬁ..

1L D
ER1
EIR2
sﬁs

DlE
MA
MA
MaA

R

<

SI%[>]:
[

1414
m
x
[ ]

[~ 2l=d
(=2(~]

T
S
S
o

~/HAA>]
(=]~
QOO W
uin

<

M

T
|

SIN

SIN

SN
j

~—

File Attributes

File attributes were introduced and the usage e)_(plairied in Topic 5. We will now give a brief
recap of some of the features already mentioned with the intended aim of explaining how,
when a file is opened, the complete list of attributes for the file is built up. You should refer to
the figure called ‘file declarations’ in SECTION I of the PL/I LANGUAGE REFERENCE
MANUAL (for a complete list of attributes). Most of the attributes mentioned in this figure
were discussed in Topic 5. Two new ones will now be introduced.

KEYED

KEYED implies that keys will be used when creating or accessing a file (see later topics on
INDEXED, REGIONAL and VSAM files).

Page 9 -9



Topic 9: Input and Output - Further Considerations

Page 9 -10

PRINT
The PRINT attribute specifies that the data of the file is ultimately to be printed and implies
that the file is STREAM and OUTPUT.
Explicit Attributes
These are the attributes which are mentioned by name in the file declaration statement.
* Explicit File Open
It is possible to add further attributes for a file on the OPEN statement.
Example
OPIEIN| |FlIILIE/( X)) IOJUTIPUIT;
% [CODIE TO| PROICESS| F!LIE ¥
CLIOISIEl |FI1ILE(IX)];
olPleN |FlIILE(IX) :rﬂrpur;
! :
In this example we are first of all opening file X as an output file and then later on in the
program as an input file. In this case neither OUTPUT nor INPUT must be an explicit
attribute otherwise there will be a contradiction of attributes for the file (see UNDEFINED
FILE CONDITION later in the topic). In OS/VS it is possible to add any attribute except
EXCLUSIVE, EXTERNAL or ENVIRONMENT. In DOS/VS, only INPUT or OUTPUT
can be added and then only if the file is CONSECUTIVE and UNBUFFERED.
We have now met two situations when there is a need for an explicit OPEN statement.
1) When using the TITLE option.
2) When there is a requirement to add attributes at OPEN time.
There is only one other situation when there is this need and that is when the page size and line
size of a STREAM output file needs changing (see Topic 15 on STREAM I/0).
Implicit File Open

If none of the above situations apply then the file can be OPENed implicitly i.e. when the first
I/0 statement referring to the file is executed. This method is as efficient as an explicit OPEN
and also there is no requirement to code an OPEN statement.

In OS/VS only, an implicit OPEN deduces various attributes for the file according to the



Topic 9: Input and Output - Further Considerations

following table:

Statement Identifier Attributes Deduced

GET STREAM, INPUT
PUT STREAM, OUTPUT

* READ RECORD, INPUT

* WRITE RECORD, OUTPUT
LOCATE RECORD, OUTPUT

SEQUENTIAL, BUFFERED

DELETE RECORD, UPDATE
REWRITE RECORD, UPDATE

* FEAD and WEITE only imply INPUT and G UTPUT where

Lo srecrfiad,

AL DL beasm i LTl

Implicitly opening a file in OS/VS is equivalent to issuing an OPEN statement that specifies
the deduced attributes.

Implied Attributes

So far we have seen two sources from which file attributes can be determined:

explicit declarations
explicit/implicit OPEN time attributes

From these attributes various others can be determined. For example, UPDATE implies
RECORD, because a STREAM file cannot be updated. A full list of implied attributes is given
in the table in the LANGUAGE REFERENCE MANUAL. There is no need to learn the
table. Once you have understood it you will see that all the implications are perfectly logical.

Default Attributes

In Topic 5 you learned about alternative attributes i.e.

STREAM/RECORD
INPUT/OUTPUT/UPDATE

* SEQUENTIAL/DIRECT

**  BUFFERED/UNBUFFERED
If in any group, no member is mentioned, then the default is taken (the underlined member).
Hence a final source of attributes for a file is the default attributes if none of the alternatives
have been specified.

* Since all STREAM files are sequential, the SEQUENTIAL attribute is only used for
RECORD files.

**  You only specify BUFFERED or UNBUFFERED for SEQUENTIAL RECORD or
VSAM files. Other files are also buffered or unbuffered, but you have no control over
their buffering.

Example 1 - OS/VS only

'—
o
5}
™m
[2)
~|O

Page 9 -11



C g me memse srsaspenes A UL LUHSIUCT ZUVID

EXPLICIT ATTRIBUTES: RECORD

OPEN ATTRIBUTES: DIRECT
IMPLIED ATTRIBUTES:
DEFAULT ATTRIBUTES: INPUT

Hence the full attributes of the file are given in the statement.

FILE KEYED (both implied by DIRECT)

clL, x| [FIILE REC

ORD |D/{|RECT| KIE

Y|

D

Example 2

LJE3
CaES!

m
-

OS/VS

EXPLICIT ATTRIBUTES: KEYED

OPEN ATTRIBUTES:

IMPLIED ATTRIBUTES:
DEFAULT ATTRIBUTES:

DOS/VS

RECORD, INPUT

: FILE
SEQUENTIAL BUFFERED

EXPLICIT ATTRIBUTES: KEYED
IMPLIED ATTRIBUTES: FILE RECORD

DEFAULT ATTRIBUTES:

INPUT SEQUENTIAL BUFFERED

Hence in either case the full attributes of the file are given in the statement:

|

5
1

|
LE| [REC|ORD [1IN/PU
|

|
KElYED [SEQUENT

File Variables

Page 9 -12

One attribute which has not been mentioned yet is VARIABLE. If this attribute is used then

all other attributes are excl

TIdentifiers which have been declared as files in the ordinary way (file constants) may then be
assigned to the file variable at any stage during the program. This enables the files referenced

T

luded.




Topic 9: Input and Output - Further Considerations

by 170 statements to be selected dynamically, according to the outcome of programmed tests.
Example

L P

—r

e

r
M M (>iMm
©
AN
[
|z
o

m n on
>
o

(%)

(o)

-1

[o)

f'\

on

»

o0 >»
X
P

mol+

REJAD

1

UNDEFINED FILE Condition

If during the build up of the attributes of a file a contradiction is obtained, then what is known
as the UNDEFINED FILE CONDITION is raised. In the topic called "HANDLING EXCEP-
TIONAL CONDITIONS' you will learn how to code PL/I statements to handle such géndi-
tions. At present it is sufficient to know that the default course of action is for a message to be
printed and the program to terminate.

Example 1
|
Dicit| x| |Fit iLigl lodTiPuT [ENVI(].[.].])];
OPIEN [F{1ILE[(IX])| [1|N/PlU[T];
Example 2 -
1 I i i
picit| ly| |F1Le] D[t |rlEciT |ENVI({I NIDEIXIED] |- -l ]<]-]-D;
»
*| FlILE Yy |1|s| O/PENEID [IMPLIIIClITLY! By MHE NEXT STMT |
LolcAme! [FiELD] [Fl1ILIE/(Y))];
# |IMPILYINIG [SEQUENITII ALl %
1

Closing PL/1 Files

When a file is closed it is disassociated from the data set. If the file is an output file, the
remaining records in the buffer are also written out to the data set.

Implicit CLOSE

All files which are still open at the end of the job will be closed by PL/I routines before
control is returned to the operating system. Hence normally there is no need for an explicit
CLOSE.

Explicit CLOSE
The formal CLOSE statement is only required in three situations:

a) When the file needs re-opening using the TITLE option.
b) When the file needs re-opening with different attributes added.

c) When tape ENVIRONMENT options are required to control the action of a magnetic
tape when it is closed. These options are:

Page 9 -13



Topic 9: Input and Output - Further Considerations

LEAVE
LEAVE which prevents the tape from being rewound.
REREAD
REREAD (OS/VS only) which rewinds the tape to permit reprocessing of the data set (or
volume if it is a multivolume data set). ‘
UNLOAD

UNLOAD (DOS/VS only) which rewinds the tape and unloads it.

Example

| l

cLos;t-: FLE/([TIA!ILE) EN!V(LEAVE);

Multiple File OPEN and
FILE CLOSE

Opening or closing more than one file with a single statement can save execution time, even
though it results in a temporary increase in the use of internal storage.

Example
SO R * PR .+T"4.wﬂ,, RGNS S boaor b L S
oPleN (FiLE (W), F .L.Eg?)f.f rLE( XyZ) FILECE); | -
ciose o) preac@eny (deave)

Thus if there is a need to explicitly open or close one file, any other files should be opened or
closed at the same time, if appropriate.

Operator Communication

DISPLAY Statement

This is a STREAM output statement which displays character strings on the operator’s console
and hence is useful for operator communication. The general format of the statement is:

DISPLAY (element expression)[REPLY (character variable)
[EVENT (event variable)]];

REPLY Option

The REPLY optivin specifics a chiaracter vanapie mmto which any response from the operator
will be assigned.

EVENT Option

The EVENT option permits asynchronous /0O (i.e., overlap of I/O and CPU processing). By
specifying' EVENT (event variable) in the DISPLAY statement, the output to the console will
commence simultaneously with the execution of the subsequent instructions. An event variable
can be any identifier, and is contextually declared by appearing after the keyword EVENT.

Page 9 -14



Topic 9: Input and Output - Further Considerations

Example
Ll |
Dlo| wWH{1[LE|([sW)];
D\1sieiLialy|(| ‘la[1[VIE] |PlAISISWORD!’ ),
RE[PILY|([PIASSMO|RD) E|VEINITI (RIES |PlONIS E )| ;
/14 loTHER] [Plrlolc|Els|s|i Nla] ¢
WAl ITI(RIE|SIPION|SE])];
I|F| [PASISWORD| 3| ICJURRENT THEN Do,
DIsPiLAY|(|' PASISWORD| AlCICEPTIED!' )],
SW 1= |'l@'18;
NID ;
11
Notice how the DISPLAY instruction is issued well before the reply is needed, so that other
processing can take place while the response is being keyed in.
WAIT Statement

Just before the response is required, the WAIT instruction is issued. The general format is:

WAIT(event);

where the event is the identifier in the corresponding EVENT option. At this point program
execution will be suspended until the 1/O operation is complete.

Notes: -
1. The maximum length of the displayed message and the reply is 72 characters.
2. The DISPLAY statement can be coded without the REPLY option.
3. The EVENT option can only be used if the REPLY option has been used.
Further examples of the use of EVENT and WAIT will be met in the topics 'INDEXED
ORGANIZATION' and 'REGIONAL ORGANIZATION!.
Exceptional Conditions

Here we will discuss two possible reasons why an INPUT/OUTPUT operation may fail. Full
details of these and other reasons can be found in Topic 19, '"HANDLING EXCEPTIONAL
CONDITIONS'. At this stage it is sufficient to know that the resulting action is to print a
message (which includes information as to the location of the error) and to terminate the
program.

RECORD Condition

We will only consider here fixed length records. Variable length records will be dealt with
later. The condition can be raised in either a READ INTO, WRITE or LOCATE statement. It
is caused by the record length specified for the file being different to the size of the variable in
the I/0 statement.

Page 9 -15



Topic 9: Input and Output - Further Considerations

Example

| |

diclu |y [F1LE| RECORD |JouTiPuT ENV ([F RECIS!I|ZE|(2lB) D]
ol x| [R1]uE] [RiEc|oRD] [1INPuT | [EINVI([F [REC]S|1 ZIEl(8lgh ) |;
DCIL A |CHAR|(I811)];

DCiL| B] CHARI|((79))] BASIED(IP])];

READ| [FIILEI(X)! uiNTO(lA);

LOICATIE| 1B |[FIVLE(lY)]; 1

Both the READ and LOCATE statements would cause RECORD condition to be raised since
A and B are not 80 bytes long (the record size of the files).

Most input and output is to and from structures. Hence it is important that the sizes of the
structures are known and checked to ensure that they are the same as the record size of the

file.

TRANSMIT Condition

Summary

Page 9 -16

This is raised when there is a permanent transmission error such as a hardware error. It
signifies that any data transmitted is potentially incorrect. One of the causes could be an
incorrectly specified block size. ’

A PL/I file is a logical description of a data set, and it expresses the way in which the data is to
be accessed, together with aspects of its physical organization. This is achieved by means of
attributes, which may be either explicitly specified, deduced from I/O statements, implied by
other attributes or, finally, generated by defaulit.

A file, however, is of no use until it has been associated with a data set (where the data
physically resides) and although certain aspects of this data set may be specified in the
ENVIRONMENT attribute, the actual link between program and data set is created by the
operating system, via the JCL. DD or DLBL statement.

In the exercises which follow there are some questions on LOCATE/MOVE mode processing.
This has not been covered in this topic but it is essential at this stage that you understand the
differences between the two modes. If you are at all unhappy with the differences, you are
advised to refer back to Topics 5 and 8.



Topic 9: Input and Output - Further Considerations

Exercises

1. Write an OPEN statement to link the following file declaration and the JCL statement
appropriate to your operating system.

|
olcl] x| [Fla[cel [.[.1.][.[EWv{(].[.]1.{.DI;

vl olof [.[.].

2. What will be the complete set of attributes for the files A and B after they have been
opened?

|
R

1RE .
LEI(|A)];
E|(|B)|;

DICIL| Al D
olPlEIN |F
GE[T |F1L

—

1

w

When is it necessary to code an explicit OPEN statement?

>

(OS/VS only) What is wrong with the following coding and what will be the result of it?

RE|CIORD;
) PRI INT];
T

NERRER G
(

OP|EIN| |F|I|LIE
T

5. What is wrong with the following coding?

i
plcld o] [F1[UEl VAR 1Al8lL]
] 1

|
B [INPUT];
!

] !

o

Compare the examples in this topic under the headings TITLE OPTION and FILE
VARIABLES. Suggest advantages/disadvantages of using either method for processing
more than one data set.

7. What is the major difference between MOVE and LLOCATE mode processing and what
overheads are involved in each method.

Page 9 -17



Topic 9: Input and Output - Further Considerations

8. When accessing a data set DIRECTly which mode must you be in?
9. Rewrite the following coding in LOCATE mode.

-

> N> (%

1) | | o (a [
r

- MmN~

IE IS

[ X~

mIT > oo
Z D moa
~d4n e

m

Page 9 -18



Answers

Topic 9: Input and Output - Further Considerations

OPIEN, |FIILE (XD [THITLIE(] Iyl D

a) FILE DIRECT RECORD INPUT KEYED ENV(CONSECUTIVE);
b) FILE STREAM INPUT ENV(CONSECUTIVE);

a) When using the TITLE option

b) When adding OPEN time attributes

c) When altering the page size or line size of STREAM files.

The merged attributes include PRINT, which implies STREAM. This is in confilct with
the explicit declaration of RECORD. The UNDEFINED FILE condition will be raised
when the OPEN statement is executed.

No other attributes can be specified if VARIABLE is specified.

TITLE is more flexible in that the names of files and even the number of files can be
specified at execution time. However, the file must be closed and then re-opened after
each data set has been processed. With FILE VARIABLES, if the names or number of
files needs altering, then it will become necessary to alter the program and re-compile it.
However, the advantage of FILE VARIABLES over the TITLE OPTION is that all files
can be opened together and then closed together, this is faster in execution speed.

In MOVE mode records are moved from the input buffer to the work area before being
processed and then moved to the output buffer before being written. In LOCATE mode
records are processed in the input buffer and created in the output buffer.

In MOVE mode there is the overhead of moving records from one part of storage to
another. In LOCATE mode the value of a pointer has to be saved. The latter is normally
more efficient.

MOVE mode. LOCATE implies SEQUENTIAL processing (see section headed
'IMPLICIT FILE OPEN'). Note that an exception to this rule is with VSAM files. Then
LOCATE mode can be used for DIRECT processing (see topic called VSAM ORGANI-
ZATION).

diciL |(|X], Y])| IFltILiEl |.].].1;

Dic|L |A[1] |Pl1ic('191919]'| [BIA|SIEIDI(|PD;
DICIL A2 P|iic|'|91919|' | BAISIEID/(IQ)!;
REWAD| |FlI|LE(\x))| |S|eTI(P)
LlolclalTie] |Al2] [Fi[LElCy)];
Al2] |=| [AlT] % ;

ENID;

Page 9 -19



Topic

I S P
D
A A
E D T
Y P Y I
D U E T
N M D N M D
\ 0 G 0 P
/ U P D E U P ' E P D
I R A T
Y I N T Y I N T Y I DE
0G P T 0G M E T 06 M P T D
0 E N TU 0 E ST R D N uD
0G E D Y 0G E D D RO D N ST
M D NT DY R AM D NT D R AM D NT PO
M ND ™ EN D P R M ND ENT D P R M IND ENT D . RO
IN E N U P A IN E N TU P R IN E N U R
EP NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TU Y o} ND
N E T R G D EN E T R G D EN TU R R M E
) ST PO I PE D T ST P O N PED T STU A ND N
IT S UY ROGR NT S UDY ROGR NT S UY ROG EN
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE
U PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T T

Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S

PR GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMTI E EN T STU

0GR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY

'RAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROG
\M INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGR#
INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM
{DEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IN
IPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
IDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
§<NT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENC
T STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
)Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUC
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY
ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR



Topic 10

Consecutively Organized Data Sets

In this topic you will learn about the processing of consecutively organized data sets.

Objectives
By the end of the topic you should be able to:
« state the record formats supported for CONSECUTIVE data sets
« code statements to create, read and update CONSECUTIVE data sets
« code statements illustrating the correct use of CTLASA control characters

o describe the use of the IGNORE option for CONSECUTIVE data sets.

Page 10 -1



Topic 10: Consecutively Organized Data Sets

Review

In data sets with the CONSECUTIVE organization, records can only be added or retrieved in
strict physical sequence. When the CONSECUTIVE data set is created, each new record
occupies the next vacant space on the output medium.

The sequence of records on a CONSECUTIVE data set is, therefore, identical with the order
of the original output. You should appreciate that only sequential access may be used with such
a data set, since there is no way of accessing any record directly. The file which is associated
with a CONSECUTIVE data set must therefore have the attribute SEQUENTIAL.

If there is a requirement to insert or delete records then the data set must be re-created and the
modifications made at the relevant positions in the new data set. It is possible, however, to
update records which already exist on the data set.

Record Formats Supported

All PL/1 formats are supported for CONSECUTIVE files:

Format Details
F Fixed length, unblocked
FB Fixed length, blocked
A\ Variable length, unblocked
VB Variable length, blocked
U Undefined

(An undefined format record is a variable length record without the standard variable control
bytes i.e. the BDW and RDW, see topic 14, 'VARIABLE LENGTH RECORDS' for further
details).

In other words, whether or not the data set consists of blocked or unblocked records with
variable or fixed lengths, it is possible for it to be processed by a PL/I program.

Accessing Sequential Data Sets

Page 10 -2

There is a figure in the PL/I Language Reference Manual in the chapter called 'RECORD
ORIENTATED TRANSMISSION' which lists all the required file declarations and
input/output statements for processing SEQUENTIAL data sets. Locate this table now and
study the various possibilities. Note that LOCATE or MOVE mode can be used when the
BUFFERED attribute is specified, otherwise MOVE mode must be used.



Topic 10: Consecutively Organized Data Sets

Update
The UPDATE attribute specifies that a RECORD file is to be used both for input and for
output. This attribute is required when a record is to be read, updated and then written back
into the data set.
Records may be READ as for an input file, but the statement REWRITE may be used to
rewrite the latest record read.
Example
REJAD| [Fit|LE (lojtp])| |1 NTIO/(|O|LIDIF|1 E|LID])|;
/% Clo]pltING |TO| |A|[LITIER] DIATIA [1|N] |O\LDIF|1 |EILID] |%
EWR1|TIEl FI|LIEI(I0|LID)| [FIRIOM( O LID|F|1|EILID])
%| (OR| |I|N] |L|OICIA|TIE| MOIDIE| ||
 IREAD| [FIILIE(JOLD)] ISET|([POIINTVIAR])
ad
/% [clojp|tNG| [Tlo| |AlsiS|tlaIN| [NEMW IDA[TA| IT|o| |THE| [IINlPlUT |BlulFIFIER| ¥/
i
Rewanfq FlilLie[(lollo] ;
T | -
Notice the second REWRITE statement has no FROM option. This may be used after
READ.. in the input buffer. The REWRITE then causes immediate transfer of the updated
‘record to the output buffer.
Although READ and REWRITE statements may alternate, as shown, this need not be so.
Several READ statements may follow each other, but with CONSECUTIVE files a REWRITE
must always be preceded by a READ statement. It is always the last record read which is
updated.
IGNORE Option

The general format is
READ FILE(file-expression) IGNORE(n);

This option is used with SEQUENTIAL, INPUT or UPDATE files to skip records. The
expression n is converted to an integer, if necessary, and that number of records is skipped and
will not be processed.

READ specified without an INTO or SET option may be used in place of IGNORE(1).

Page 10 -3



Topic 10: Consecutively Organized Data Sets

Page 10 -4

Example 1
RElAD| [FltiLiE ([F);
REEIAD| (FlI{LIE (IF))| |1|aINJORIE|(|1])];

The above are equivalent, each causing a single record to be skipped.

Example 2

Suppose that a variable block consists of two types of records, the first record in each
block being of the following format:

FIELD NAME BYTES FORMAT
PART_NO 1-6 CHARACTER
NO__OF _DEPTS 7-8 PICTURE

and the rést of the block consisting of records, one for each department, of the following
format:

FIELD NAME BYTES FORMAT
DEPT__NAME 1-10 CHARACTER
NO__IN__ STOCK 11-15 PICTURE

Then the following coding will check the first record to see if the part is ‘current’, if not then.
the whole block will be skipped and the first record of the next block read in:

I
dicic| [1] (PARIT],
2 PlAlRT_ N0 IcHAR(4]),
2 NOLloF_piePTis| |Pl1]ci‘lal9’ ;
Dio] WiHI[LIE(ISW)|;
RIE|AID| FlI |LE (|s|Tiolc|K)|!NTIO[(IPAIRT); :
1F % (clopdii|Ne |70 |cH[Eck| [1iF| [PlARIT] |is| |0B|S|OLIETE
] HleiN| [RlElAlD] [Fl1iLlel((siTlolcik) 1|gNORIE (INO—l0lF_IDlEPITS]) ],
ElLISEE| Dlo; |
# |ClODIE| [TIo! |PIRlO|CIE|S|S| RIEIST] |O[F| |BILIO|CIK| | |
END;
ENID|;

When the first record of the block has been read in, the '"PART__NO' is checked and if
necessary the rest of the block is ignored. Note that the READ-IGNORE statement does not
in fact read any records, it only skips records. The next READ-INTO statement will read the
first record of the following block.



Topic 10: Consecutively Organized Data Sets

EVENT Option

The EVENT option was introduced in Topic 9, 'INPUT AND OUTPUT - FURTHER
CONSIDERATIONS! in association with the DISPLAY statement. Further uses will now be
introduced.

If a file is buffered then the number of buffers required for that file can be stated as an
ENVIRONMENT option. If there is only one buffer then there is a delay in processing the
data while a block of records is being moved from external storage to that buffer. This delay
can be overcome by having two buffers. While data is being processed from one buffer, a
block of records can be moved into the other. When the former buffer has been processed,
another block of records can be moved into it while the later buffer is processed. This overlap
of processing and movement of data from external storage applies similarly in the output
process. The EVENT option can be used with unbuffered CONSECUTIVE files to simulate
this overlap and so increase the speed of processing. This can be achieved as follows:

Dio| \wiM|1|LIE|(|sW);
REIAD| FIIILIEI(IX])! [1N[TIO|(|A])];
RIE|AID [FlI|LE/(|X])| [1N[TIO/(/8])| EVIENTI(|REC8))|;
% PIROICIE|SIS| |A| |
wAI T (Relc8)[;
* PROCIEISS| |B| |% -
EN|D|;

Within the loop, the record in A can be processed while the next record is being read into B,
the latter being named as EVENT (REC__B). When this event is complete the record in B
will be processed. Thus there is some overlap: the processing of record A and the reading in of
record B.

Page 10 -5



Topic 10: Consecutively Organized Data Sets

Control of Printer Spacing

One particular device which allows only sequential output processing is the printer. A techni-
que will be presented now which gives the programmer control over the spacing of output print
lines.

CTLASA Control Characters

Page 10 -6

One of the options of the ENVIRONMENT is CTLASA. This indicates that the first byte of
the output record is to act as a printer control byte only and not to be printed. To accommo-
date this byte, the RECSIZE option of the ENVIRONMENT should be increased by one.
Note that in OS/VS it is more usual to specify the CTLASA and RECSIZE options as
parameters of the DD JCL statement. In the PL/I Language Reference Manual, in the chapter
called 'RECORD ORIENTATED TRANSMISSION' there is a table which lists out the
possible CTLASA values. Locate this table now. As can be seen these are actions which will
be taken before printing occurs. In the same table there are listed CTL360 code values. These
are specified and used in a similar way to CTLASA codes but the action takes place either
after or without printing. We will consider only CTLASA control characters in this topic.

The more commonly used values are ‘+°, *H’, ‘0’ <=, ‘1’

The ‘+’ could be used, say, if there was a requirement to return to the beginning of the current
line with the intention of underlining that line. The ‘1’ is a skip to channel 1 which is normally
the start of a new page. You should ensure that the correct control character is in the first byte
of an output structure before issuing WRITE or after issuing LOCATE.



Topic 10: Consecutiveiy Organized Data Sets

Example 1

NN
x[Ex Q>
WN |- [0
Qoo X
XXM
>
AN DO
A I
NS |S T
~ [~

NN O
0o o0+
WIN [ [>
OO0 oor
AN >M
it Wi~
L=
(sl (OO M

|~
©
P
x
T
([
m
)
m
[x)
(o]
]
S
o
[~
-1
v
=
-‘
m
2
<
Py
.+
m
()
()
N
m
I~
)
W
W
N’
=)
-.‘
r—
>
“n
>
T
Nt

7 | b
- -
~

mbe
p -
[~}
(]

x[x[xlo

Niqimwin/=idl0[w/nal~
™
<
m
~
>
-lx

x

e Y Y I el 0
P

smni -]t

[
TNIM N~ T |~

[}

(]

Z

o

e (uiju in

-—
b
[2)
i |

hee

T ooz [vog/oo
L8 (8~ I8N TN S s] al >
| | |

On execution of the above program, 'HEADING' will be printed at the top of a new page,
two lines will be left blank (space 3) before '"FIRST' is printed and then 'SECOND' will be
printed on the following line. '

Page 10 -7



Topic 10: Consecutively Organized Data Sets

Example 2
1 ‘
1|F] ILhiNe_lciT] (= [sle| [TH|elN] Dlo];
CTILIHEAD (= |'1]'];
H’ = VAR
H2 = | HEADDI NG| |;
H3 = "
R|I|TE [FlIILE[(X])! [FROM(HEAD)
LI INE_CIT (= @;
EIND|;
EILSIEl (Dio;
CITILDETAIIL (s [']'];
D1 = l|;
D|2 = |‘|Fl1Rls|T]"];
03 =i Hyj,
WIRII TIE| [F|!ILIE[(|X])]| [FROM[(|DEMA|: L))];
LItINELiClT] |= [L|t|NELICIT] [+ 1],
EINID|;

This example is a section of coding which maintains a line count. When the line count reaches
50, a new page is started.

Control of Source Statement Listing

As well as controlling the spacing of the output from a program it is also possible to control the
source statement listing (the listing of the coded program). Normally when coding in PL/I,
you code between columns 2 to 72. Column 1 is reserved for a subset of the CTLASA
characters and it is these which control the source listing. The permitted characters are:

-+ | O

and they have the same action as if they were used as full CTLASA characters. If any other
character appears in column 1 then an error message is generated and the character is replaced

by a blank.
Example
1| 18|:| [PlRlo/c];
@ picle| | Al ICHIAR(15])(;
/% |Li|S[T| |O/F |[D|E|CILIAIRIATT]I|OINIS

DiciL | {Z |PlIlci‘'|99)'!;

= ¥ |clalLlcluLiafri/oNs| [s[TialrRT [HERE |/
] [

This will ensure that the procedure starts at the top of a new page, there is a blank line before
the declaration statement and two blank lines before the calculations commence.

Page 10 -8



Topic 10: Consecutively Organized Data Sets

Summary

CONSECUTIVE data sets are the simplest form of data organization. You have seen here
how to process them either within buffers (locate mode) or in a programmer-defined variable
(move mode). Some of the other facilities such as the IGNORE, EVENT and WAIT options
will be mentioned again when other data organizations are covered. You should ensure that
you understand all the I/O statements listed in the table in the manual before you look at the
other organizations.

Page 10 -9



Topic 10: Consecutively Organized Data Sets

Exercises

Page 10 -10

1. Briefly, what is the main difference in meaning between the keywords CONSECUTIVE
and SEQUENTIAL.

2. What is the effect of the following

-

/¥ [a] 1%/ | [RIEAIDI [Fl1|LIE|(IF])];

/¥ bl [¥l/| | [RIgAD] [Fli[LIEl((F] [1laINOIRIEI(12])];

3. What is the function of the REWRITE statement? Under what conditions can it be used?

4. a) Write a record output statement for the unbuffered file UNBUF, so that subsequent
processing may be overlapped with the actual output of data from the field OAREA.

b) Write the statement which will ensure the output in the above example is complete
before processing resumes.



Topic 10: Consecutively Organized Data Sets

5. An output structure has been declared as follows:
DICIL| |1| [H L |NIE|,
2 lciTiL [CHARI(I1])],
2 F[ILILI1] [CIHAR|(|S|9))],
2 HEAD|I|NIG| CHAR(39))!,
2 Fi1{LIL2 [CHARI(I52)];
DiciL| |1]| |LII|NIE| |DIEF LIINE,
2. ASIACHAR (CHAR([1])],
2| |[FLDA [CHAR([2/S))| | | |
2 |FILip/8| P1|C|'|(18)A4)' |,
FLIDC| CHAR/(]2]2)],
2 SIPIARE |CHARI(717)];

Write PL/I statements to print HEADING at the top of a new page, to skip a line, and to
print the contents of LINE.

You should indicate where you would assign values to HEADING, FLDA, FLDB and
FLDC but need not write the actual statement.

Page 10 -11



‘T'opic 10: Consecutively Organized Data Sets

Answers
1. CONSECUTIVE refers to the data set organization. SEQUENTIAL refers to the way in
which the data will be accessed.
2. a. The next record will be skipped
b. The next two records will be skipped.

3. The REWRITE statement is used to replace or alter the latest record input from a given
data set. It can only be used when the file has the UPDATE attribute and the most
recent 1/0 statement for the file was a READ.

Page 10 -12



Topic 10: Consecutively Organized Data Sets

T

l¢|;

011;

R TEE| |AILE|(X) |FROM(HLIINE);

CTIL

/% |Als{s|I|@aiN [HEAD|I|NG| [VAILILES| |3

AS|ACH|AR |=

/¥ |ASIS|1/GN |DETAM|L| [VIAILIUES| |#
WIR|! TIE] |Fl1|LE[(IX]) [FROMC(IL|IINIE)|;

Page 10 -13



Exercise

I S P
D
A A
E D T
Y P Y I
D U E T -
M D N M D
) 0 G 0 P
U P D E U P E P D
I R A T
Y I N T Y I N T Y [ DE
0G P T oG M E T 0G M P T D
0 E N TU 0] E ST R D N ub
s E D Y 0G E D D RO D N ST 0
M D NT DY R AM D NT D R AM D NT P O
ND EN D P R M ND ENT oD P R M IND ENT D] RO
J E N u P A IN E N TU P R IN E N u R IN
IP NDE ST GR EP ND RA U E
ND T STU PR D ND TU PR R D ND TU Y 0 ND
E T R G D EN E T R G D EN TU R R M END
ST PO I PE D T ST P O N PE D T STU A ND N
S U Y ROGR NT S UDY ROGR NT S U Y ROG EN T
rub PROGRAM E N UDY PRO RA E N UD PRO RA ND PE S
PROG AM N EPE DE STU PR R N E END T ST PR G AM N EPE T TD

PR GR INDEPEN EN S Y PR GR I DEPE ENT ST DY PR GR INDEP DENT S u
R GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMTI E EN T STU PR
sR NDEP NDEN S UDY P OGRAM NDEP NDENT TUDY PR GRAM IND PEN ENT TUDY o)
AM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM [ DEPENDEN STUDY PROGRA
INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRAM
J\DEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM IN
IPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
INDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
MINT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
ﬁT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
Y PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
TDAM TNINEDFENNENT CTIINY PRAGRAM INNFPFNNFNT STIIDY PROGRAM INDEPENDENT STUDY: PROG



Exercise A

At this point, you have sufficient PL/I knowledge to code simple PL/I programs. The
specifications for three such programs are given below as well as sample data and suggested
job control statements. Having coded your solution, have it punched along with the data and
job control. You are then in a position to test your solution.

We have not yet covered the testing and correcting or programs; this will come later. However
by studying the output listings produced by the compiler, attempts at correcting the program (if
necessary) can be made. While you are waiting for your output to be returned, you can carry
on reading further topics.

Page Ex. A -1



Exercise A

Exercise 1

Description of the Program

The purpose of the program is to calculate the areas of circles and the volumes of spheres for
given radii.

Record Format and Message Layout

Input

Output

Page Ex. A -2

Filename is INFILE.

Record length is 80.
Blocksize is 80.
Logical unit for DOS/VS programmers is SYSIPT.

The records contain the radius in the first two characters. The remaining portion of the record
is blank.

You may assume that the radii are numeric but no check has been made for zero or negative
radii.

Filename is OUTFILE.

Record length is 60.
Logical unit for DOS/VS programmers is SYSLST.

The following notes refer to the printer spacing chart below.



Exercise A

Radius
The input radius.
Area
The area of the corresponding circle, truncated to 2 decimal places. If the radius is invalid,
then AREA is to be replaced by ‘****’,
Volume
The volume of the corresponding sphere, truncated to 2 decimal places. If the radius is invalid,
then VOLUME is to be replaced by ‘****’,
TRl fvie)2y2i2421242]21212431313| 31 313 (313 3|3[4)4[4[ 4| 4|ata|4|4{415)5[5]5]5]5[5] 5] S5|51616|616|616]|616(61617171717]7
11213]4 011{2{3]4]|5|6|7|8]|?|0|1]|2|3]4|5[6|7|8(?|0]1]2]3]4]5|6|7|8{Pi0]11213]4|516|7 |8[P|0]1{2]3|4]5{6]7|8|9|0}1{2{3|4|5(6|7|8|ol0}1{2]3]4
1
2 RIAD| I {U[S AREA VIO ILIUME
3 zId 2! 2z . [X|x! ZIZiZ[ZiZzizIX| » XX
4
5 . .
6 . . .
7 .
8 . . 1] .
9 —
10 411
11
12 .

Figure XA.3: AREA/VOLUME REPORT

Page Ex. A -3



Exercise A

Processing Requirements

Main Program Logic

Formulas .

Page Ex. A -4

Read a record.
Check for validity.
Calculate the area and volume and print a line.

Continue reading and printing until the end of INFILE is reached.

AREA = 3.1416 * RADIUS?

VOLUME = 4*3.1416*%RADIUS3
3




Test Data

The following should be punched and used to test your program:

Expected Output

RADIUS
3
5
60
90
99
0
-7
-5
6

AREA
28.27
78.53
11309.75
25446.95
30790.81

* kK

kR
* Kk ok
113.09

VOLUME
113.09
523.59

904780.31
3053634.00

4064387.00
* 3 kK

* % %k %
o ok % %k

904.78

Exercise A

Page Ex. A -5



Lxercise A

Job Control Statements

The following job stream will be required to run your program:
DOS/VS

miolS
xX|v|O

Page Ex. A -6



Exercise A

0Os/vs

/\/Jlolbinlalme| J[08
Exelc| PiL/iixcitla
PlL1].[slys|1/IN] [DlD| |#
| | |plrjoigiriaim
a .
*
/ /6|0 1|N[FTILIE[ DD] %
il data ||
!*: 4
Aﬂqg olulrFl1/Lle DD SYSOUTsA,DCBﬂ(RECFMﬂF,BL&S!IE=6%)
(R

Page Ex. A -7



Exercise 2A - Scientific

Description of the Problem

The purpose of this program is to calculate the mean and variance of various samples, the latter
being the input to the program. (Do not worry if you do not know what variance is).

Record Formats and Message Layouts
Input
Filename is CARDIN.

Record length is 80.
Blocksize is 80.
Logical unit for DOS/VS programmers is SYSIPT.

A record can contain up to and including 40 fields, each of 2 numeric characters. Each field
represents one sampie.

The unused portion of all input records is blank.

You may assume that the contents of the fields have been checked and are, hence, valid.
However, there may be records with no samples in them.

Page Ex. A -8



Exercise A

Output
Filename is REPORT.
Record length is 70.
Logical unit for DOS/VS programmers is SYSLST.
The following notes refer to the printer spacing chart below.
SAMPLES
The number of items in the sample.
MEAN
The average value of the items in the sample, truncated to one decimal point.
VARIANCE
The variance of the items in the sample, truncated to one decimal place.
The entries in the MEAN and VARIANCE fields are to be ‘****’ when there are no samples
in the input record.
vy 12§24242(2)212121212131313131 313 {3]3[3]3]4}4 14 4| 4|4|414|4]{415}5]5|515{5]|5] 5] 5|5|6)6|616]|6l6161616\6171717]17|7
1]213]44{5 0]112]3]|415|6]|7|8]9(0]1 |2|3|4]|516|7]|8|?|0]1]2|3]|4|5(6]7|8|9{0 12345678901234567890123456789b|234
1
2
3 O | SAMPIL 2| [ZX MIEAN| |=] [2X]- X VIAIR 1]AINIC[E] ZZz24x . Ix
4
5 B -
6
7 . . .
8 . N .
9 . . L .
'o . . u L .
11 . . .
12

Page Ex. A -9



Exercise A

Processing Requirements
Main Program Log}’c
Read a record.
Check for no samples.
Calculate the necessary values and print a line for each card read (see formulas below).
Continue reading and printing until the end of CARDIN is reached.
Formulas

MEAN

SUM OF SAMPLES
NO. OF SAMPLES

VARIANCE = SUM OF (SAMPLE-MEAN):?
NO. OF SAMPLES

Page Ex. A -10



Exercise A

Test Data

The following should be punched and used to test your program.

0204060810121416

242634364446
01020304050607080910111213141516171819202122232425262728293031323334353637383940

80808080808080

01000001020304050698
0000

4

COL 1

Note that the fifth card is blank.

Page Ex. A -11



Exercise A

Job Control Statements

The job stream required to run the program is the same as for exercise 1, except that, for
0S/VS, the output filename for the 'GO" step is REPORT, the BLKSIZE is 70 and the input
filename for the 'GO" step is CARDIN.

Page Ex. A -12



NO.
NO.
NO.
NO.
NO.
NO.
NO.

OF
OF
OF
OF
OF
OF
OF

SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES

EXPECTED OUTPUT
MEAN = 9.0
MEAN = 35.0
MEAN = 20.5
MEAN = 80.0
MEAN = *%¥x%xx%
MEAN = 12.0
MEAN = 0.0

VARIANCE
VARIANCE
VARIANCE
VARIANCE
VARIANCE
VARIANCE
VARIANCE

21.0
67.6
133.2

e ke ok %

825.5
0.0

Exercise A

Page Ex. A -13



Exercise A

Exercise 2B - Commercial

Description of the Problem
The purpose of this program is to prepare an inventory report.

Record Formats and Message Layouts

Input
Filename is CARDIN.
Record length is 80.
Record length is 80.
Blocksize is 80.
Logical unit for DOS/VS programmers is SYSIPT.
Col # Field
1-6 Item number (6 characters)
7-26 Description (20 characters)
27-30 Unit cost (PIC '99V99')
31-34 Unit sell price (PIC '99V99')
35-38 Quantity on hand (PIC '9999')
39-80 Unused

You may assume that the contents of the fields have been checked and are, hence, valid.

Page Ex. A -14



Exercise A

Output

Record length is 82.

Logical unit for DOS/VS programmers is SYSLST.
Col # Field

1-6 Item Number
9-28 Description

31-34 Quantity on hand (suppress high order zeroes)
37-41 Unit cost (ZZ.XX)
44-53 Total cost ($$8,$8X.XX)
56-60 Unit sell (ZZ.XX)
63-72 Total sell ($$3,88X.XX)
76-82 Profit Ratio (ZXX PCT, or ****#%x*¥)

Processing Requirements
Total cost is the product of quantity on hand and unit cost.

Total sell is the product of quantity on hand and unit sell.
PROFIT RATIO.
Compute the profit ratio on each item, as follows:
(Unit sell - unit cost)/unit cost.
Round to the nearest whole percentage.

If less than or equal to 25%, print asterisks in the profit ratio field. If greater
than 25%, print the percentage with 'PCT"' following.

Accumulate a final total cost and a final total sell equal to the totals of the total cost and total
sell fields, respectively, and print these totals two lines below the last detail line. (See expected
output).

Page Ex. A -15



Exercise A

Test Data
The following should be punched and used to test your program.

014713WIDGETS 017301980319
127912GADGETS 091214980020
232417DEALIES 007800980100
299887DILLIES 003300490500
31662 1SNAZZLES 003400790178
421488FRAZZLES 003400790700
517329BLOOPERS 001900390000
6913 12WHOOPSIES 143419980003
814612WHOPPERS 253229790102
923178THING-A-MA-BOBS 017802590113
+ 4

COL 1 coL 27

Job Control Statements

The job stream required to run the program is the same as for exercise 1, except that, for
0S/VS, the output filename for the 'GO" step is OUTFILE, the BLKSIZE is 82 and the input
filename for the 'GO! step is CARDIN.

Page Ex. A -16



Expected Output

ITEM ITEM
NO DESCRIPTION

014713 WIDGETS

127912 GADGETS

232417 DEALIES

299887 DILLIES

316621 SNAZZLES

421488 FRAZZLES

517329 BLOOPERS

691312 WHOOPSIES
814612 WHOPPERS

923178 THING-A-MA-BOBS

ON
HAND

319

100
500
178
700

102
113

UNIT
COsT

1.73
9.12
.78
.33
.34
.34
.19
14.34
25.32
1.78

TOTAL ITEM
CosT

$551.87
$182.40
$78.00
$165.00
$60.52
$238.00
$0.00
$43.02
$2,582.64
$201.14

$4,102.59

UNIT
SELL

1.98
14.98
.98
.49
.79
.79
.39
19.98
29.79
2.59

TOTAL ITEM
SELL PRICE

$631.62
$299.60
$98.00
$245.00
$140.62
$553.00
$0.00
$59.94
$3,038.58
$292.67

$5,359.03

Exercise A

PROFIT
RATIO

+ K K K Kk K

64
26
48
133
133
105
39

PCT
PCT
PCT
PCT
PCT
PCT
PCT

¢ 3k ok ok ok ok %

46

PCT

Page Ex. A -17



Exercise

I S P
D
A A
E D T
Y p Y I
D U E T
N M D N M D
\ 0 G 0 p
/ u P D E u P E p D
I R A T
Y I N T Y I N OOT Y I DE
0G p T 06 M E T 06 M p T D
0 E N Tu 0 E ST R D N uD
06G E D Y 06 E D D RO D N ST
M D NT DY R AM D NT D R AM D NT P O
M ND EN D P RM ND ENT D P R M IND ENT D RO
IN E N u P A IN E N TU P R IN E N U R
EP NDE ST GR EP ND RA U
ND T STU PR D ND TU PR R D ND TUY O ND
‘N E T R G D EN E T R G D EN TU R R M E
) ST P O I PED T ST P O N PED T STu A ND N
IT S UY ROGR NT S UDY ROGR NT S UY ROG EN
TUD PROGRAM E N UDY PRO RA E N UD PRO RA ND PE
‘U PROG AM N EPE DE STU PR R NEEND T ST PR G AM N EPE T T

Y PR GR INDEPEN EN S Y PR GR I DEPE ENT ST bY PR GR INDEP DENT S

PR GRAM IN P ND N S D PR GRAM I P NDNTS D PRORMTI E EN T STU
Q0GR NDEP NDEN S UDY P OGRAM NDEP NDENT TuDY PR GRAM IND PEN ENT TUDY
;RAM INDEPEN ENT S UDY PROG AM IND ENDE T S UDY ROGRAM I DEPENDEN STUDY PROG
\M INDEPENDENT STU Y PROGRAM IN EPE DENT ST D P OGRAM INDE ENDENT STUDY PROGRA
INDEPENDENT STUDY ROGRAM INDEPENDE T STUDY PR GRAM INDEPENDENT STUDY PROGRAM
JDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM IN
IPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDE
SNDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPE
QENT STUDY PROGRAM INDEPENDENT STUDY- PROGRAM INDEPENDENT STUDY PROGRAM INDEPEND
WT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDEN
STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT
TUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT ST
DY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUD
PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY

ROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PROGRAM INDEPENDENT STUDY PR
e e aa At e AlEainELT TNV DDNACDAM TNNEPFENNDFNT STUHDY PROG



Exercise B

At this point you should be able to code a solution to the following problem. You have now
learned enough PL/I to do so. On completion, have it punched up along with the given data
and the suggested job control statements. You are then in a position to run and test the
program. While you are waiting for the punching to be done or the job to be run, you should
carry on with the text. Two later topics which may help you debug the program are as follows:

TOPIC 16, 'CONTROLLING THE COMPILER' - this will help you remove compile
time errors. '

TOPIC 20, 'TESTING AND DEBUGGING AIDS' - this will help you remove execu-
tion time errors.

Page Ex. B -1



Exercise B

Description of the Problem

Program Objective

The purpose of this program is to produce a report showing the rate of depreciation in the
value of second-hand cars. The input data is based on published tables of second-hand car
prices.

Record Formats and Message Layouts

Input
Depreciation detail records

Filename is CARFILE.

Record length is 80.

Blocksize is 80.

Logical unit for DOS/VS programmers is SYSIPT.

There are two types of record in this file:

1. Car-name records identified by the character ‘A’ in column one (see Fig. B.1) and
containing the name of the car.

2. Depreciation records identified by the character ‘B’ in column one (see Fig. B.2). Each
depreciation card contains up to four sets of depreciation details relating to the preceding
‘A’ card.

For every ‘A’ record there will be one or more ‘B’ records.
The end of the input is indicated by a record with the character ‘9’ in column one.

The unused portion of all input records is blank.

Page Ex. B -2



Exercise B

You may assume that the sequence of the records and the contents of the fields have already
been checked.

CNAME (blank)

CODEA

Figure B.1 CARFILE: CAR NAME RECORD FORMAT

CODEA Record type identifier: Character ‘A’
CNAME Car name: Character, left aligned.

Page Ex. B -3



Exercise B

Page Ex. B -4

COLUMN 1

CODEB

NPRICE

CPRICE
AGE
NPRICE
CPRICE
AGE

NPRICE

a1

CPRICE

48

AGE

NPRICE

57

CPRICE

64

AGE

(BLANK)

Figure B.2 CARFILE: DEPRECIATION DETAIL RECORDS

CODEB
NPRICE

CPRICE
AGE

Record type identifier: Character ‘B’

Price when new: numeric character, right aligned, cents up to

digits.

Current price: format as for NPRICE.

Age of car: numeric character, right aligned, years up to two digits.

seven



Output

Exercise B

Printed Depreciation Report

Filename is PRFILE.
Record length is 70.

Logical unit for DOS/VS programmers is SYSLST.

The following refer to the printer spacing chart (Fig. B.3 below).

CNAME
AVPERC

AVDEPN

AGE

FLAG

HTOT

MEANPERC

Car name, taken directly from the input record: character(20).

Average annual depreciation, expresses as a percentage, calculated to
one decimal place, rounded up and printed with suppression of lead-
ing zeroes up to the first integer digit. If negative, a floating sign
should be provided.

Average annual depreciation, expressed in decimal dollars, rounded
up to the nearest whole new penny. Source and format as for
AVPERC.

Age of car, taken from the input record with suppression of leading
Zero.

A constant, ‘****’ which is to be printed only if the average annual
depreciation is less than eleven percent after rounding.

Hash total. The sum of the CPRICE fields in all the input records,
edited as shown on Fig. B.3.

Mean annual depreciation of all cars submitted, expressed as a
percentage with suppression of leading zero.

For further clarification of the format of the report, see Fig. B.4,
SAMPLE OUTPUT.

Page Ex. B -5



Exercise B

TTT
H v |2§21212121212[2:212131313131 313 131313131414 14} 4] 41414} 4a141415]5]15]|5]5]|5]5]| 5] S|5i616]616]6]61616{616|71717|7
125345 of1]21314|5|6l7(8|9(0}112(31415(6|7[8[2]0]1]213{4({516(7|8]2{0]1]12]13|4]5(6]7(819 11213{4|5|6]|718|9|01112{3]|4|S{6{7|8[910}112{3
1MAKE AININ|ulAlL] DiE|PRIEICITIAT]IIOIN: | (1% ] ) 3 FiL|Alg]
2 fx{xix{x(x x[x il |x]x x| x x| | ! U Flx - X+ |Xx] Z/x
3 ! :
4 ( AME]) ' T(lAlviPle VD
5 i . B
6
7
8HA|SIH AL |={ (222, (22X x| L E NILLA
9 -
10 (IHTOT
11
12

Page Ex. B -6

Figure B.3 PRFILE: DEPRECIATION REPORT LAYOUT.




Exercise B

Processing Requirements

Main Program Logic

Print the Heading.
Read a name record and a detail record.

Calculate the necessary value and print one line for each set of NPRICE, CPRICE and AGE
(see Fig. B.3).

Continue reading and printing until the end of CARFILE is reached. This will be indicated by
a character ‘9’ in column one.

Calculate the mean annual depreciation and print the last line of the report.

Percentage depreciation formulas

MEANPERC

Rounding

The average percentage depreciation (d) of a particular car of age (a) can be calculated from
the current selling price (c) and the price when new (n) using the following formula:

d = 100 (1 - (c/n)\/2)
This gives a compound rate of depreciation.

The average depreciation in dollars (d) of a particular car of age (a) can be calculated from the
current selling price (c) and the price when new (n) using the following formula:

n - ¢
d =2—-¢
a

The overall average percentage depreciation for all cars submitted (MEANPERC) is the
average of the individual values of AVPERC.

By ‘Rounding’ we mean that a percentage of 14.5 should be printed as 15 and one of 14.4 as
14,

Page Ex. B -7



Exercise B

Test Data

The following information should be punched and used to test your program:

AFLASHMAN DE LUXE
B0339199006245009033919900710400803490750094000070367933014354006
ACONQUESTIDOR BANGER
B0O061850001100012006185000129751100538990018500090053899002045008
B0054000002397508005400000275400600549990032049050068075005302002
AFLIEDERMAUS 1000

B00920990058999020094225006949901

AMAZAWATEE 7.5 LITRE
B053400003489990406017990425500030700700053302502

AKAMIKAZE BOREALIS 50
B0177350004250006017735000509900501227000060525040132690007200003
AGNOMOBILE RUSHTON

B74327514913421032240099073421002

AGLADSTONE STEAM CAR

B0001050026500072

9999999999

f

Col 1

Page Ex. B -8



Exercise B

Job Control Statements

The following job stream will be required to run your program.
DOS/VsS

m o
x|
Mmoo
Qlt-.
viZ|o
P
v/ Z|3 |
EIEIN

ro
‘
Q
I )
»
13

Page Ex. B -9



Exercise B

0s/vs

Page Ex. B -10

i/jobnaHe f 08 T
[ _|EXE|] PiLIXCLE
//PlL1].[slYs 1 N[ (DD
! RN
' Iplrlojg r am| |
RENREERER
* || P L
"/6lo'. ClalRF 1 L|E| DD i*
dia tia: i :
EERR
% ]
/6lo .{PRIF1iL:E] 'DD! |slyl = =
I RERREE




Exercise B

EXPECTED OUTPUT

MAKE ANNUAL DEPRECIATION:

FLASHMAN DE LUXE

CONQUESTIDOR BANGER

FLIEDERMAUS 1000

MAZAWATEE 7.5 LITRE

KAMIKAZE BOREALIS 50

GNOMOBILE RUSHTON

GLADSTONE STEAM CAR
HASH TOTAL = 81,452.07

-7

$)
307.50
335.20
364.39
373.99
42,38
44.43
39.33
41.81
42.89
44 .10
4% .90
75.28
165.50
247.26
462.50
587.66
838.38
224.75
252.72
155.44
202.30
8397.77
7529.45
~-36.65

AGE

— =D
NWWPUONWE SNV UOANIOW 2N IDW

72

FLAG

* %k k

* k% ok

LE X X 4

MEAN ANNUAL DEPRECIATION 15%

Figure B.4: SAMPLE OUTPUT

Page Ex. B-11



	0001
	0002
	001
	002
	01-00
	01-01
	01-02
	01-03
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11

