
GC28 - 6786 - 0

Systems Guide to PL/S-Generated Listings

First Edition (July, 1972)

Changes will appear in new editions or Technical Newsletters.
The RETAIN/370 System will be used to notify the field of new
editions or newsletters.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Publications Development,
Department 058, Building 706-2, PO Box 390, Poughkeepsie, N.Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

Preface

Purpose of Guide

The PL/S (Programming Language/Systems) compiler is a proprietary
program used by IBM to develop other programs that are made generally
available,. The PL/S compiler is not available outside IBM. Programs
written by IBM in PLiS are documented by means of listings in microfiche
form. The Guide to PL/S-Generated Listings provides general information
on reading and interpreting these listings. The book also provides some
guidelines on how to modify compiler-generated assembler code. However,
the specifications of PL/S and the style of assembler code generated are
subject to change in the interest of improving IBM programs.

This guide does not contain information on writing and compiling PL/S
source programs. Furthermore, it does not list the assembler code
generated for each PL/S statement; the large number of possible
combinations of source language elements makes such a list impractical.

Users of Guide

Readers should be experienced systems programmers who have this
background:

• They know the basic assembler language.

• They are familiar with a higher level language such a s FORTRAN,
COBOL, or preferably PL/l (which PL/S closely resembles).

The general knowledge of PL/S obtained from this guide should assist
these programmers in interpreting PLiS program listings. They may find
it easier to understand what a system module does by reading the PL/S
statements rather than by reading the more detailed assembler language
instructions.

Format of Guide

The guide is organized into the following sections:

Section 1" the Introduction. provides an overview of the PLiS language.
the compiler, and the output produced by a compilation.

Section 2, the PL/S Language, describes the purpose and format of PL/S
source statements and built-in functions.

Section 3, Compiler Output, describes the compiler-generated code and
information listings produced by the compiler.

section 4, Guidelines for Code Modification. lists some guidelines for
consideration when modifying the compiler-generated assembler code.

Section 5, the Glossary, defines terms associated with PL/S.

Preface 3

4 Guide to PL/S Generated Listings

SECTION 1: INTRODUCTION
The PL/S Compiler •
Code Modifications

SECTION 2: THE PL/S LANGUAGE.
PL/S Procedures

Saving Registers Across Procedures
Compiler Register Assignments
REENTRANT Option
CODEREG and DATAREG Options
Transfering Control Between Procedures
Communication Between Procedures

Data Definitions
Data Types

Identifying Data Types
Initialization
Boundary Alignment
Where Data Resides

Data in Registers
Data in Main Storage

Data References Across Procedures •
Indirect Addressing •
Arrays
Structures
Note on the GENERATED Keyword •

Data Manipulation •
Operators •
References to Arrays and Strings

Control Flow Within a Procedure
Unconditional Branches
Conditional Branches

IF Statement Format •
Iteration •

Built-In Functions

SECTION 3: COMPILER OUTPUT •
PL/S Source Statement Listing •
PL/S Attribute and Cross-Reference Table
Unreferenced Variables Table
Assembler Listing •

Compiler-Generated Labels
Assembler Cross-Reference •

SECTION 4: GUIDELINES FOR MODIFYING ASSEMBLER CODE •
Modifying Instructions
Modifying Data

Structures

SECTION 5: GLOSSARY

Contents

7
7
9

11
11
12
13
13
14
14
14
15
15
15
16
16
16
17
17
17
18
19
20
21
21
21
22
22
22
23
24
24
25

27
28
29
29
30
32
34

37
37
38
39

41

INDEX • 45

Contents 5

Figures

Figure 1 • Overview of PL/S Translation Process · · · · · 9
Figure 2. Linkage Registers · · · · · · · 12
Figure 3. Save Area Format · · · · · · · 12
Figure 4. Compiler-Assigned Functions for Registers · 13
Figure 5. Parameter List Contents · · 14
Figure 6. Form of PL/S Constants · · · · 16
Figure 7. PL/S Operators · · · · · · 21
Figure 8. IF Statement Comparison Operators · 23
Figure 9. PL/S Built-In Functions · · · · 25
Figure 10. Sequence of Listings for a PL/S Program · · 27
Figure 11 • PL/S Source Statement Listing · · · · · · · · 28
Figure 12. PL/S Attribute and Cross-Reference Table 29
Figure 13. Assembler Listing (Part 1 of 2) · · · · · · 30
Figure 14. Data Area Layout · · · · · · · · · · · · · · 32
Figure 15. Compiler-Generated Labels (Part 1 of 2) · · · · . . . 32
Figure 16. Locating a Variable Not Referenced Symbolically in

Assembler Code · · · · · · · · · ., · · · · · · · 34
Figure 17. Recognizing a Variable Not Referenced Symbolically in

Assembler Code · · · · · · · · · · · · · · · · . . . · · 35

6 Guide to PL/S Generated Listings

Section 1: Introduction

Programming Language/systems (PL/S) is a language designed for IBM
systems programmers. It is related to the higher level languages such as
FORTRAN, COBOL, and particularly PLiI.

PL/S is designed to express operations used in systems programs. One
such operation is the storing and retrieving of information in tables.
In assembler language many instructions are usually required to express
these table operations. With PL/S, a table can be defined and its
elements utilized with fewer statements. Because PL/S is more compact
and English-like than assembler code, PL/S source programs can be
understood by the reader faster than equivalent assembler programs.

PL/S also allows assembler statements to be used in a PL/S program.
The PL/S statement GENERATE (abbreviated GEN) marks such insertions.
GEN DATA marks assembler data definitions; the compiler places this data
in the data area it creates.

The PLjS Compiler

PL/S language statements are grouped into a source program called a
procedure. A procedure is converted to object code through successive
steps of compilation and assembly. These two translation steps can be
summarized as follows:

1. The PLiS compiler translates the PL/S source language statements
into assembler language instructions suitable for input to a
Systernl360 assembler. Several assembler language instructions
usually result from a single PL/S statement.

2. A System/360 assembler program accepts as its input the
compiler-generated assembler instructions and translates them into
an object module, which is link edited in the normal manner.

Figure 1 provides an overview of the PL/S translation process.

section 1: Introduction 7

8 Guide to PL/S Generated Listings

INPUT

* These listings are placed on microfiche.
They may be ordered from the IBM
Programming Information Department.

TRANSLATION STEPS

pL/s
Compiler

Assembler
Source Code

System/360
Assembler

OUTPUT

Figure 1. OVerview of PL/S Translation Process

II

The PL/S language statements are input to the PL/S compiler.

The compiler produces the PL/S source statement listing and the PL/S
attribute and cross-reference table.

The generated assembler language instructions, containing PL/S
statements interspersed as assembler comments, are input to the
assembler.

The System/360 assembler translates the compiler-generated assembler
language instructions into object code. The assembler also produces
the assembler listing.

Code Modifications

If you are considering modifications to your operating system, you can
order the assembler source modules in machine readable form from the IBM
Programming Information Department. After making changes to the
assembler source code, you can assemble and link edit the modules into
the system.

section 1: Introduction 9

Index to PL/S Keywords

ABS 25
ADDR 25
AUTOMATIC (AUTO) 17
BASED 18-19
BIT 16,25
BOUNDARY (BDY) 16
BY 24
BYTE 16
CALL 14
CHARAcr ER (CHAR) 16
CODE 15
CODEREG 13
DATA 21
DA'TAREG 13
DECLARE (DCL) 15
DIN 25
DO 24
DONTSAVE 13
DWORD 16
ELSE 22,24
END 11,24
ENTRY 14-16
EXTERNAL (EXT) 17
FIXED 15
GENERATE (GEN) 7,11 1 21
GENERATED (GEND) 21

GOTO 22
HWORD 16
IF 23
INITIAL(INIT) 16,19
INTERNAL (INT) 17
LABEL 16
LENGTH 25
LOCAL 17
NONLOCAL 17
NOSAVEAREA 12
OPTIONS 11
POINTER (PTR) 16
PROCEDURE (PROC) 11
REENTRANT 13
REGISTER (REG) 17
RELEASE 17
RESPECIFY 19
RESTRICT 17
RESTRICTED 17
RETURN 14
RETURN TO 14
SAVE 13
STATIC 17
THEN 23-24
TO 24
UNRESTRICTED 17
VLIST 14
WORD 16

10 Guide to PL/S Generated Listings

Section 2: The PL/S Language

PL/S statements appear on one or more lines; they are terminated by a
semicolon.

Executable statements may start with one or more labels, which are
separated from the statement and from each other by colons. The
following is an example of a labeled statement:

LABELl:
A = B+C;

PL/S comments are delimited by the symbols /* and */. Fbr example:

/* THIS IS A COMMENT */

PljS Procedures

PL/S programs are divided into external and internal procedures.

An external procedure, after compilation and assembly" is one
assembler CSECT. Internal procedures are subdivisions of external
procedures; they are wholly contained within external procedures.

All procedures begin with a PROCEDURE statement (abbreviated PROC) and
end with an END statement. (You may find a GENERATE statement, but no
others, before the PROC of an externa I procedure.) The label that'
precedes the PROC keyword is the name of the procedure, and is its
primary entry point. For external procedures, this name is the object
module name that you will find on microfiche cards and listings.

Parameters and options often follow the PRoe keyword. Parameters are
a means of communicating from one procedure to another. They are a list
of variables - enclosed in parentheses and separated by commas - that
immediately follow the PRoe keyword. Options affect the way the
compiler produces code for the procedure. They are a list of keywords,
enclosed in parentheses, that follows the OPTIONS keyword.

The sample PROCEDURE statement below has two parameters and one
option:

IKJEFF01:PRoe (A,B) OPTIONS (REENTRANT)

Section 2: The PL/S Language 11

SAVING REGISTERS ACROSS PROCEDURES

The assembler code produced for procedures follows standard linkage
conventions. Figure 2 shows the registers used for the standard linkage
functions.

Register Function

15

14

13

Contains the address of the entry point
in the called procedure.

Contains the address of the return point
in the calling procedure.

Contains the address of the calling procedure's
save area.

1 Contains the address of a parameter list,
if arguments are passed to the called procedure.

Figure 2. Linkage Registers

Every procedure provides a save area to preserve its registers unless
the NOSAVEAREA option appears on its PROC statement. The format of this
area is shown in Figure 3.

Word Contents

1 Not used.

2 Address of calling procedure's save area.

3 Address of called procedure's save area.

4 Register 14

5 Register 15

6 Register 0

7 Register 1

8 Register 2

9 Register 3

10 Register 4

11 Register 5

12 Register 6

13 Register 7

14 Kegister 8

15 Register 9

16 Register 10

17 Register 11

18 Register 12

Figure 3. Save Area Format

12 Guide to PL/S Generated Listings

All of the registers shown in Figure 3., and register 13, are saved on
entry to a procedure and restored on exit from a procedure, unless the
SAVE or DONTSAVE option appears on the PRoe statement. SAVE is followed
by an explicit list of registers to be saved and restored by the
procedure; DONTSAVE is followed by a list of those that are not to be
saved and restored.

COMPILER REGISTER ASSIGNMENTS

As the PL/S compliler produces assembler code, it assigns registers to
the functions shown in Figure 4.

Register

o

1

10

11

13

14

15

All other
registers

Function

Used for some arithmetic calculations.

Parameter list pointer.

Used for data moves.

Base register for addressing code.

Save area pointer.

Used to contain a return address.
Also used for arithmetic calculations and
data moves.

Used to contain an entry point address.
Also used for arithmetic calculations.

Used for indexing, external data addressing,
and pointer manipulation.

Figure 4. compiler-Assigned FUnctions for Registers

These standard assignments apply unless modified by the PROC statement
options REENTRANT, eODEREG, and DATAREG.

REENTRANT OPTION

This option, which you may find on the PROC statement for an external
procedure, tells the compiler to provide for reentrant code for the
external procedure and all procedures internal to it. The compiler
produces code to obtain a storage area dynamically for the external
procedure and its internal procedures on entry to the external procedure.
This storage area contains:

• save areas
• data defined under a GENERATE DATA statement
• temporary storage used by the compiler
• data declared in the procedure, except data with the STATIC or

INITIAL attributes

The compiler maps this area into a DSECT labeled @DATD.

Reentrant code requires separate base registers for addressing the
data in the dynamic area and for addressing code. Register 11 is used
for code addressing and register 12 is used for addressing the data in
the dynamic area. These register assignments will be in effect unless
the CODEREG or DATAREG options were used to change them.

Section 2: The PL/S Language 13

CODEREG AND DATAREG OPTIONS

The CODEREG option is followed by one or more register numbers. These
registers replace register 11 as the base register for code addressing.
CODEREGeO) tells the compiler not to establish addressability - it is
not needed or is provided by a GENERATE statement.

The DATAREG option is followed by one or more registers to be used as
the base registers for addressing data. The combination DATAREGeO) with
REENTRANT tells the compiler not to obtain a dynamic storage area, and
not to establish addressability for data declared with the AUTo~mTIC
attribute.

TRANSFERRING CONTROL BETWEEN PROCEDURES

Control flow between procedures is accomplished by the CALL, RETURN, and
END statements. The CALL keyword is followed by the label of the
statement that receives control. This label is in an external procedure
or in a procedure that is internal to the calling procedure. It is
always the label of a PROCEDURE statement, which is the primary entry
point of a procedure, or of an ENTRY statement, which defines a
secondary entry point.

Control returns to the statement immediately following the CALL when
execution reaches either a RETURN statement or an E~~ statement that
matches a PROCEDURE statement. A RETURN TO statement sends control to a
return point specified on the statement; the return point will usually
be in the calling procedure.

COMMUNIC~TION BETWEEN PROCEDURES

A calling procedure communicates with a called procedure by means of an
argument list on the CALL statement. This list appears, in parentheses,
following the entry point label. It may contain single variables,
expressions, and constants.

The compiler creates an argument list that has one word for each
argument; an address is inserted in each word. The address inserted
depends on the type of argument, as shown in Figure 5.

If the argument is:

A variable, not in
parentheses.

~ constant, not in
parentheses.

A variable or constant
in parentheses.

An expression

The argument list address is:

The address of a variable.

The address of the constant.

The address of a temporary variable that
contains a copy of the variable or
constant.

The address OI a temporary variable that
contains the result of evaluating the
expression.

Figure 5. Argument List Contents

The high-order bit in the last word of the argument list will be set on
if the DECLARE statement for the entry point of the called procedure
contains the keywords OPTIONSeVLIST). The bit indicates the end of a
variable length argument list.

14 Guide to PL/S Generated Listings

'I'he called procedure will receive control at a PROCEDURE or ENTRY
statement. These statements have parameter lists, and the parameters in
them correspond positionally to the arguments on the CALL statement.
Since the correspondence is positional, the names used for an argument
and its associated parameter may not be identical.

When a called procedure returns control by means of a RETURN
statement, it may pass back a value that is obtained from a variable, an
expression, or a constant which follows the CODE keyword on the RETURN
statement. The value is returned to the calling procedure in register
15.

Data Definitions

The attributes of data are described in DECLARE statements (abbreviated
DCL). These statements start with the DeL keyword, followed by the data
item's name, followed by the keywords that define the data item's
attributes. Since m~ny attributes are defined by default, check the
data item's description in the Attribute and Cross-Reference listing for
a complete list of explicit and default attributes of each data item.

A single DCL statement frequently defines multiple data items. Each
declaration is separated from the next by a comma. For example:

I DCL A POINTER(31), AREAl CHAR(12), AREA2 CHAR(12); I

This example is a declaration of three data items - A, AREAl, and AREA2.
Because AREAl and AREA2 share a common attribute - CHAR(12) - the
statement would normally appear in this form, which is equivalent to the
preceding example:

I DCL A POINTER(31), (AREAl,AREA2) CHAR(12);1

When attributes follow data items that are in parentheses, the
attributes apply to all of the data items that are in the parentheses.
If a data item has unique attributes, the unique ones appear after the
data item within the parentheses. For example:

DCL A POINTER(31), (AREAl INIT('ABC'), AREA 2) CHAR(12);

The attribute INIT('ABC') applies to AREAl only; CHAR(12) applies to
both AREAl and AREA2.

DATA 'I'~PES

The DCL statement defines four types of data - arithmetic, string,
pointer, and label.

Identifying Data Types

Arithrr~tic data is interpreted as a binary, fixed-point integer; it is
identified by the keyword FIXED. This keyword may be followed by a
number, in parentheses, which is the precision of the data, expressed in
terms of bits. (Precision determines how many bytes will be assigned to
contain the data).

section 2: The PL/S Language 15

String data is a sequence of bytes or a sequence of bits. Character
strings are identified by the keyword CHARACTER (abbreviated CHAR)
followed, in parentheses, by the number of b¥tes in the sequence. Bit
strings are identified by the keyword BIT followed, in parentheses, by
the number of bits in the sequence.

The keyword POINTER (abbreviated PTR) identifies data that is
interpreted as the address of other data. This keyword may have a
precision following it. This precision is expressed in terms of bits .•

Labels are identified by either the ENTRY or LABEL keyword. A label
declared with ENTRY is the address of a PROCEDURE or ENTRY statement;
labels of other statements are declared with the LABEL keyword. (Often
labels are not explicitly declared.)

INITIALIZATION

The INITIAL attribute (abbreviated INIT) is the means of initializing a
data item at program load time. This attribute is followed b¥ a
constant or an expression involving the ADDR built-in function. PL/S
has five types of constants - decimal, hexadecimal, character, bit, and
binary. The general form of each is shown in Figure 6.

Constant Type Format

Decimal decimal digits

Hexadecimal , any hex digits IX

Binary zeroes and ones

Bit • zeroes and ones 'B

Character , any EBCDIC characters •

Figure 6. Form of PL/S Constants

BOUNDARY ALIGNMENT

The purpose of the BOUNDARY attribute is to provide an explicit boundary
alignment for a data item. This attribute (abbreviated BDY) is followed
by the keyword BYTE, HWORD', WORD, or DWORD, corresponding to byte,
halfword, fullword, and doubleword. These keywords, in turn, may be
followed by a decimal number that indicates the starting byte position
within the boundary. The digit 1 indicates the left-most byte.

WHERE DATA RESIDES

PL/S variables are either areas of main storage or registers. When they
resiqe in main storage, they are assigned storage by one procedure but
they may be used by others. The assigned storage may be in the CSECT of
the assigning procedure or in a dynamic storage area.

16 Guide to PL/S Generated Listings

Data in Registers

A register variable is identified by the keyword REGISTER <abbreviated
REG) on its DCL statement. This attribute is followed by the number of
the general purpose register used for the variable.

The attribute RESTRICTED is used with REGISTER to prevent the
compiler from using the specified register in assembler instructions
that it produces. If RESTRICTED does not appear on the DCL statement,
or if the UNRESTRICTED attribute appears, then the compiler is free to
use the register.

The RESTRICTED attribute does not reserve the register outside of the
declaring procedure <either internal or external). And within the
declaring procedure the register may be released for compiler use at any
point by a RELEASE or RESPECIFY statement. The RELEASE statement
consists of the keyword RELEASE followed by the register numbers or the
variable names of the registers to be freed. The RESPECIFY statement,
when used to release a register, consists of the keyword RESPECIFY, one
or more register numbers or variable names, and the keyword UNRESTRICTED.

Similarly, an unrestricted register may be restricted at any point by
a RESPECIFY statement that contains the keyword RESTRICTED, or by a
RESTRICT statement.

Note on Register Restriction: Restriction applies to a physical
register and, therefore, to all symbolic names by which the physical
register is known.

Data in Main Storage

Data declared with the STATIC attribute is assigned storage in a fixed
area. The AUTOMATIC attribute <abbreviated AUTO) causes the data to be
assigned in a dynamically acquired area, whiCh the compiler maps in a
DSECT labeled MDATD.

Although the STATIC attribute causes data to be assigned in a fixed
area, it does not specify which CSECT the fixed area is in. The LOCAL
attribute does that. Data declared with the LOCAL attribute is assigned
storage in the CSECT of the declaring procedure. A DCL statement with
the NONLOCAL attribute means that the data is assigned storage in a
procedure other than the declaring one.

DATA REFERENCES ACROSS PROCEDURES

A variable declared with the keyword INTERNAL (abbreviated INT) can be
referenced in the declaring procedure and in any procedure internal to
it. When a variable is referenced in two or more external procedures,
it will be declared with the EXTERNAL attribute (abbreviated EXT) in
each procedure.

The compiler produces an assembler language EXTRN instruction and an
~-type address constant for data items declared NONLOCAL EXTERNAL.
Branch points declared NONLOCAL EXTERNAL produce a V-type address
constant. Items declared LOCAL EXTERNAL cause the compiler to produce
an assembler ENTRY instruction.

section 2: The PL/S Language 17

INDIRECT ADDRESSING

storage is assigned to variables declared STATIC or AUTOMATIC. but none
is assigned when a variable is declared with the BASED attribute. A DCL
with BASED simply defines a set of attributes. These attributes are
applied to a storage area specified by a locator address. This locator
may be specified following the BASED keyword. For example:

DCL P PTRi

DCL B CHAR(4) BASED(P)i

When B is referenced, the four bytes starting at the address contained
in P are used. These four bytes are considered to be a character string
variable.

The BASED keyword is not always followed by a locator, but before the
variable is used, a locator will be supplied. PL/S has two facilities
for supplying the locator - pointer notation and the RESPECIFY
statement. (If the BASED keyword does supply a locator, these same
facilities can override it).

Pointer notation has the general form:

I pointer variable -> BASED variable I
For example,

means that a reference to BASED variable B is a reference to the storage
area that starts at the address contained in pointer variable P. The
statement

I P -> B = C + D i I
ca uses this:

P
~

8
I Total of C + D

Multiple levels of pointer notation are also possible. For example:

I Pi -> P2 -> B = C + D i I
causes this:

Pl
~

P2
~

8
I Total of C + D

18 Guide to PL/S Generated Listings

Pointer notation supplies or changes a locator only temporarily; a
locator will be supplied again before or upon subsequent references to
the BASED variable. If pointer notation overrides a previous locator,
then the previous locator will be used for subsequent references to the
BASED variable.

The other facility for supplying or changing a locator, the RESPECIFY
statement, has the form:

RESPECIFY (one or more BASED variable names) BASED(pointer variable);

The specified pointer variable will be used to locate the specified
variable(s). Unlike pointer notation, the RESPECIFY statement has more
than temporary effect. The new locator will be used until the end of the
current procedure, unless pointer notation or another RESPECIFY
statement changes it.

ARRAYS

An array is a collection of variables (called elements) that have
identical attributes and that occupy a contiguous storage area; the
collection has a common name.

A DCL statement defines an array if the variable name is followed
immediately by a decimal number in parentheses. This number is the
dimension of the array, i.e., the number of elements in it.

Attributes on a DCL statement for an array apply to all elements.
However, the INITIAL attribute can initialize each element individually.
For example, the statement

DCL ARY(S) FIXED(31) INIT(O,4,8,12,16);

defines a five-element array of fullword arithmetic variables that is
initialized like this:

When an asterisk appears in place of an initializing value, the
corresponding element is not initia~ized. Multiple elements are
initialized when a replication number appears, in parentheses, before an
initial value. For example, this statement:

DCL ARY (S) FIXED (31) INIT ((3) 0 ,12,16) ;
defines this:

~ tlli
If the INITIAL attribute does not specify enough values to initialize
all array elements, the last elements are uninitialized. If INITIAL
provides too many values, the last values are ignored.

Section 2: The PL/S Language 19

STRUCTURES

A structure is a data collection that is divided into individually named
components. The entire collection can be referenced by the structure
name, or a component can be referenced individually by its name.
Al though all components can have the same attributes, they are usual.ly
assigned unlike attributes.

The DCL statement for a structure defines how components map into the
structure" and defines the attributes that apply to the structure and
its components. This DCL statement

DCL 1 STRUCT FIXED(31),
2 A FIXED(15),
2 B FIXEDC 15) ;

defines a simple one-word structure that has two components, A and B.
The numbers that precede structure and component names indicate the
hierarchy of components within the structure. They are not used in
references to the variables.

Components can themselves be structures and can have their own
components. For example,

DCL 1 STRUCT FlXED(31),
2 A FIXED(15),
2 B FIXED(15),

3 C BIT CS) ,
3 D BITCS) ;

The mapping of this structure looks like this:

STRUCT .

'----v-, ----''''---y-----'

C D
~----~--~--~"'-------~----~

A

If the size of the structure is not sufficient to contain 'its
components, then the components will overlap. For example:

DCL 1 STRUCT,
2 A CHAR(3),

3 B CHAR(2),
3 C CHAR(2),

2 D CHAR(4);

D will overlap both A and C in the. resulting mapping:

STRUCT

'----v---"-,...-v---..J
B C:

~~~--------~---------' 
A D 

If an asterisk appears instead of a structure or component name, then 
the structure or component will never be referenced explicitly by name. 
However, it may be referenced as part of another structure. 

20 Guide to PL/S Generated Listings 



NOTE ON THE GENERATED ATTRIBUTE 

A PL/S program can contain data defined by assembler instructions that 
follow a GENERATE DATA statement. Such data will not be referenced by 
PL/S statements unless the data is also defined by a DeL statement. This 
DeL statement will contain the attribute GENERATE (abbreviated GEND). 

similarly, labeled assembler instructions following a GENERATE 
statement will not be referenced by PL/S statements unless the labels 
are declared with the GENERATED keyword. 

Data Manipulation 

Data is copied from one location to another by a simple assignment of 
the form: I receiving variable = source; I 

When the source consists of operands connected by operators (an 
expression), the specified operations are performed and the result is 
placed in the receiving variable. Source variables are unchanged by the 
operations. 

OPERATORS 

Figure 7 shows the PL/S operators and their meanings. 

Operator Operation 

+ Prefix plus 

Prefix minus 

* Multiplication 

/ Division for quotient 

// Division for remainder* 

+ Addition 

subtraction 

& And 

Or 

Exclusive or 

*This operation yields the remainder 
contained in the even-numbered 
register. 

Figure 7. PL/S Operators 

section 2: The PL/S Language 21 



REFERENCES TO ARRAYS AND STRINGS 

A reference to an array will contain a subscript to specify which 
element is to be used. For example, this statement 

I A = B (4) d 
moves the fourth element of array B to A. The subscript in this example 
is the number 4, but subscripts may be variables or expressions. 

Arrays are referenced one element at a time, but references to string 
variables can be to the entire string or to a portion of it. For 
example, if the character string A is declared like this" 

I DCL A CHAR ( 4) ;\ 

then its first (left-most) byte might be referenced like this: 

I X = A(l); I 
Only the first byte of A is placed ih X. The portion of a string to be 
referenced can be specified by a digit, as in the example above, by a 
variable, or by an expression. When more than one character or bit of 
a string is referenced., the starting and ending locations" separated by 
a colon, are specified. For example, 

DCL A CHAR(80); 
I = 10; 
BUF = A (1: I) ; 

moves the first to the tenth (inclusive) characters of A into BUF. 

When a string is part of an array, then a reference to a portion of 
the string will specify both the array element and the string portion. 
In this example, 

DCL ARY(10) CHAR(80)i 
X = AR Y ( 4, 80) ; 

X receives the last byte of the fourth element of ARY. In this example, 

I = 70; 
X ARY ( 4 , I : 8 0 ) ; 

x rec~ives the 70th through the 80th characters of the fourth element of 
ARY. 

Control Flow Within a Procedure 

UNCONDITIONAL BRANCHES 

The GOTO statement is the PL/S facility for unconditional branches. 
This statement consists of the keywords GO TO followed by a transfer 
point, which is normally in the same procedure. The GOTO statement does 
not set up return linkage. 

22 Guide to PL/S Generated Listings 



CONDITIONAL BRANCHES 

Conditional branches occur at IF statements, which have this general 
form: 

IF definition of one or more comparisons 
THEN clause 

ELSE clause 

The THEN and ELSE clauses are the statements to be executed if the 
comparisons are true or false, respectively. When no ELSE clause 
appears, the statement following the THEN clause is executed if the 
comparison is false. 

A single comparison definition is two operands joined by a comparison 
operator. The operands can be variables, constants, or expressions; the 
operators are shown in Figure 8. 

operator Meaning 

> Greater than 

< Less than 

-,.> Not greater than 

-',< Not less than 

= Equal to 

-',= Not equal to 

>= Greater than or equal to 

<= Less than or equal to 

Figure 8. IE' Statement comparison Operators 

Multiple comparison definitions are linked by the connector & or I. 
If two comparison definitions are linked by &, both must be true for 
the THEN clause to execute. If they are linked by I, either must be 
true. 

Note on the Symbols & and I: These symbols are used to "and" and "or" 
bit strings as well as to join comparison d~finitions. To distinguish 
between the two uses" a comparison operand that contains & or I as bit 
string operators will be enclosed in parentheses in an IF statement. 

section 2: The PL/S Language 23 



IF statement Format 

The keyword ELSE is usually aligned in the same column as the IF keyword 
it is associated with. This alignment helps to identify paths" 
especially when IF statements are nested, i.e., when a THEN or ELSE 
clause contains another IF statement. For example, 

IF 
THEN 

IF THEN 

I 
ELSE 

ELSE 

IF THEN 

I 
ELSE 

The association of IFs with ELSEs is indicated by their alignment. 

ITERATION 

The DO statement is the PL/S facility for grouping statements in 
order to execute them as a group one or more times. Iteration of the 
group is controlled by four values: 

• a control variable 
• an initializing value for the control variable 
• an increment or decrement value for the control variable 
• a terminating value 

These are arranged in the statement as follows: 

DO control variable = initializing value 
BY increment or decrement TO terminating value 

If no increment or decrement appears, it is assumed to be 1. If DO 
appears with no TO or BY values, i.e., DO; or DO 1=10; then the group 
executes only once. 

A single DO group extends from the DO statement to an END statement. 
When DO groups are nested, each will be closed by an END statement. 
An END statement is usually aligned vertically with the DO it closes. 

24 Guide to PL/S Generated Listings 



Built-In Functions 

rhe PLiS language has four built-in functions - ABS, ADDR, DIM, and 
LENGTH. They are not separate statements, but are embedded in PLiS 
statements when their functions are required. Figure 9 shows the 
general form and purpose of the built-in functions. 

General Form 

ABS(variable or expression) 

ADDR(variable or string 
constant) 

DIM (array name) 

LENGTH(variable name or 
string constant or 
arithmetic constant) 

Figure 9. PLiS Built-In Functions 

Purpose 

Obtains the absolute value of 
the variable or expression. 

Obtains the address of the 
specified data. 

Obtains the dimension (the 
number of elements) of the 
specified array. 

Obtains the length of the 
specified data. The length will 
be in bytes, or in bits if the 
data was declared with the BIT 
attribute. 

section 2: The PL/S Language 25 



26 Guide to PL/S Generated Listings 



Section 3: Compiler Output 

PL/S programs are documented by means of the listings shown in Figure 
10. 

pL/s Source Statements 

pL/s Attribute and 
Cross - Reference Table 

pL/s Unreferenced Variables Table 

Assembler External Symbol 
Dictionary 

Assembler Source 
Instructions 

Assembler Relocation 
Dictionary 

Assembler Cross - Reference 

Figure 10. sequence of Listings for a PL/S Program 

This section describes the format and content of these major li'stings: 

• A PL/S Source Statement Listing. 

• A PL/S Attribute and Cross-Reference Table. 

• A PL/S Unreferenced Variables Table. 

• An Assembler Source Listing. 

• An Assembler Cross Reference Table. 

Section 3: Compiler Output 27 



PL/S Source Statement Listing 

Figure 11 shows a sample PL/S source statement listing. 

PL/S 13.1 JUN71 SAMPLE PROGRAM PAGE 0001 18 OCT 71 

II 0001 MAIN: iii PROCEDURE; II m 
0002 DECLARE /*VARIABLE DATA ITEMS FOR THIS PROCEDURE* / 

0003 

0004 
OBTAIN: 

0005 

0006 

0007 
0008 
0009 
0010 
0011 
0012 

0013 

II II 

/* I/O BUFFER AREAS*/ 
BUF CHAR(80), /*INPUT CARD BUFFER */ 
OUT CHAR(121) , /*OUTPUT LINE BUFFER */ 
/*RETURN CODE VARIABLE* / 
CODE FIXED (31) , /*CODE SET BY READ CARD * / 
I FIXED(31) INIT(2); /*INDEX TO OUTPUT LINE */ 

DECLARE /*ROUTINES CALLED*/ 
READCARD ENTRY, /* READS IN A CARD * / 
PRINT ENTRY; /*PRINTS A LINE */ 

/*OBTAIN AN INPUT CARD*/ 
CALL READCARD (BUF ,CODE) ; /*GET A CARD, AND SET CODE: 

=0, NORMAL READ 
=1, END OF FILE 
=2, ERROR */ 

/*CHECK CODE FOR VALIDITY*/ 
IF CODE=O THEN /*VALID INPUT */ 

/*PRINT OUT TillS CARD AND KEEP GOING*/ 
DO; 
OUT (1)'=' '; 
OUT(I:I+80)=BUF; 
CALL PRINT (OUT) ; 
GO TO OBTAIN; 
END; 

ELSE 
RETURN; 

END MAIN; 

II 

/*SET FOR SINGLE SPACING */ 
/*MOVE ONE CARD TO OUTPUT LINE*/ 
/*OUTPUT THE CARD * / 
/*CONTINUE WITH THE NEXT CARD */ 

/*NO MORE INPUT 
/*RETURN TO CALLING PROGRAM 
/*END OF THE PROCEDURE 

m 

*/ 
*/ 
*/ 

Figure 11. PL/S Source Statement Listing 

II The compiler, its level number, and its IBM internal release date. 

iii The name of the compiled PL/S program. 

II The page number. 

II The date of the compilation. 

II The PL/S statements are consecutively numbered for reference 
purposes. 

II Procedure names, entry names, and statement labels appear in this 
column. 

II Remarks, which apply to particular statements, appear to the right. 

28 Guide to PL/S Generated Listings 



PLjS Attribute and Cross-Reference Table 

Figure 12 is a sample attribute and cross-reference table. This table 
lists each variable defined in the PL/S source program, and shows the 
declared and default attributes of each and the numbers of the 
statements that declared and referenced each. 

PL/S 13.1 JUN71 SAMPLE PROGRAM PAGE 0002 18 OCT 71 

DCL'D IN NAME ATTRIBUTE AND CROSS REFERENCE TABLE 

m 2 II BUF 

CODE 

MAIN 

OBTAIN 

OUT 

PRINT 

READ CARD 

iii STATIC, LOCAL, CHARACTER (80), INTERNAL, BOUNDARY (BYTE, 1) 
4, 8 

STATIC, LOCAL, FIXED(31) , INTERNAL, BOUNDARY (WORD,I) 
4, 5 

STATIC, LOCAL, FIXED(31) , INTERNAL, BOUNDARY (WORD,I) 
8, 8 

S1'ATIC, LOCAL, ENTRY, EXTERNAL 
1, 13 

STATIC, LOCAL, LABEL, INTERNAL 
4, 10 

STATIC, LOCAL, CHARACTER(l21) , IN'fERNAL, BOUNDI\RY(BYTE,I) 
7, 8, 9 

STATIC, NONLOCAL, ENTRY, EXTERNAL 
9, 13 

STATIC, NONLOCAL, ENTRY, EXTERNAL 
4, 13 

*** NO VARIABLES WERE DEFAULTED TO FIXED (31) 
iii *** PROC. MAIN HAD NO ERRORS 

000481 BYTES OF THE STORAGE ALLOCATED FOR THE SIZE OPTION WERE USED. 

Figure 12. Attribute and Cross-Reference Table 

m 

The DCL'D IN field identifies the PL/S statement that declared the 
variable. An asterisk following the statement number indicates only 
default attributes are given for the named variable. A variable so 
identified was not defined with attributes in a DECLARE statement. 

The NAME" field lists the program variables in collating sequence. 

The ATTRIBUTE AND CROSS-REFERENCE TABLE field identifies the list of 
attributes that apply to the named variable and identifies, by 
statement number, those PL/S statements which reference the named 
variable. 

Notes pertaining to the compilation appear at the end of this table. 

Unreferenced Variables Table 

The attribute and cross reference table is often supplemented h¥ a table 
of unreferenced variables. These variables are components of structures 
defined in the PL/S source program. Referenced components appear as 
normal entries in the attribute and cross reference table. Those not 
used appear in the unreferenced variables table. A sample entry appears 
like this: 

DCL'D IN NAME IN STRUC 

26 VBLX STRUCTA 

The DCL'n IN field references the PL/S source statement defining the 
entire structure in which the named variable resides,. 

Section 3: Compiler Output 29 



Assembler Listing 

This listing, shown in Figure 13., is a standard assembler listing 
produced by assembling the output of the PL/S compiler. 

SAMPLE PROGRAM 

LOC OBJECT CODE 

000000 
000000 90EC DOOC 
000004 05BO 
000006 
000006 
000006 50DO B06E 
OOOOOA 41FO B06A 
OOOOOE 50FO D008 
000012 18DF" 

000014 41EO B022 
000018 0700 
00001A 58FO B062 
00001E 051F 
000020 000000B8 
000024 00000184 

000028 IBFF 
00002A 59FO B17E 
00002E 4770 B056 

000032 9240 BI02 

ADDRl ADDR2 

00108 

OOOOC 

00074 
00070 
00008 

00028 

00068 

00184 
0005C 

000036 5810 B182 00188 
00003A 41Al BIOI 00107 
00003E D24F AOOO BOB2 00000 000B8 
000044 9240 A050 00050 

000048 41EO BOOE 
00004C 0700 
00004E 58FO B066 
000052 051F 
000054 00000108 

000058 47FO BOOE 

00005C 
00005C 58DO D004 
000060 98EC DOOC 
000064 07FE 
000066 
000000 
000001 
000002 

00014 

0006C 

00014 

00004 
OOOOC 

STMT SOURCE STATEMENT F150CT70 

2 
3 . @001 
4 MAIN 
5 
6 
7 @APSTART 
8 
9 

10 
11 
12 
13 *OBTAIN: 
14 * 
15 * m 
16 * 
17 OBTAIN 
18 
19 
20 
21 
22 

~~ : m 
25 @CL9FF 
26 
27 
28 * 
29 * 
30 * 
3 ] 
32 * 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 * 
44 
45 * 
46 * 
47 * 
48 * 
49 @9FA 
50 @ELOl 
5] 
52 
53 @D1\TAl 
54 (JO 
55 @1 
56 @2 

LCLA 
ANOP 
CSECT 
STM 
BALR 
DS 
USING 
ST 
LA 
ST 
LR 

CALL 

&T,&SPN 

@E,@C,12(@D) 
@B,O 
OH 
@PSTART+OOOOO, @B 
@D,@SAV001+4 
@F,@SAVOOl 
@F,8(0,@D) 
@D,@F 
READCARD(BUF,CODE) ; 

LA @E, @CL9FF 
CNOP 2,4 
L @F,@Vl 
BALR @l,@F 
DC A(BUF) 
DC A (CODE) 

/*GET A CARD, AND SET CODE: 
=0, NORMAL READ 
=1, END OF FILE 
=2, ERROR 

ADDRESS OF READCARD 

II 
0001 
0001 
0001 
0001 
0001 
0001 
COOl 
0001 
0001 
0001 
0001 

*/ 
0004 
0004 
0004 
0004 
0004 
0004 

/*CHECK CODE FOR VALIDITY*/ 
IF CODE=O THEN /*VALID INPUT */ 

0005 
0005 
0005 

SR @F,@F 
C @F,CODE 
BC 07,@9FD 

/*PRINT OUT THIS CARD AND KEEP GOING*/ 
DO; 
OUT (1) =' '. 

MVI OUT,C' 
OUT (I: I+80) =BUF; 

L @l,I 
LA @A,OUT-l(@l) 
MVC 0(80,@A),BUF 
MVI 80(@A),C' 

CALL PRINT (OUT) ; 
LA @E, @CL9FC 
CNOP 2,4 
L @F,@V2 
BALR @l,@F 
DC A(OUT) 

BC 
GO TO OBTAIN; 

15,OBTAIN 
END; 

ELSE 
RETURN; 

END MAIN; 
EQU * 
L @D,4(0,@D) 
LM @E,@C,12(@D) 

~g~ ;5,@E 

EQU 00 
EQU 01 
EQU 02 

/*SET FOR SINGLE SPACING 

/*MOVE ONE CARD TO OUTPUT 

/*OUTPUT THE CARD 

ADDRESS OF PRINT 

/*CONTINUE WITH THE NEXT 

/*NO MORE INPUT 

*/ 
0007 

LINE*/ 
0008 
0008 
0008 
0008 
*/ 

0009 
0009 
0009 
0009 
0009 

CARD */ 
0010 

/*RETURN TO CALLING PROGRAM 
/*END OF THE PROCEDURE 

*/ 
*/ 
*/ 

EQUATES FOR REGISTER 0-15 

0013 
0013 
0013 
0013 

Figure 13. Assembler Listing (1 of 2) 

30 Guide to PL/S Generated Listings 

PAGE 

10/18/71 

00010 
00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 



PAGE 
SAMPLE PROGRAM 

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT 
F150CT70 10/18/71 

00560 
00570 
00580 
00590 
00600 
00610 
00620 
00630 
00640 
00650 
00660 
00670 
00680 

000003 57 @3 EQU 03 

000004 58 @4 EQU 04 

000005 59 @5 EQU 05 

000006 60 @6 EQU 06 

000007 61 @7 EQU 07 

000008 62 @8 EQU 08 

000009 63 @9 EQU 09 

OOOOOA 64 @A EQU 10 

OOOOOB 65 @B EQU 11 

OOOOOC 66 @C EQU 12 

OOOOOD 67 @D EQU 13 

OOOOOE 68 @E EQU 14 

OOOOOF 69 @F EQU 15 

000066 0000 
70 @Vl 000068 00000000 
71 @V2 

DC 
DC ~~:~~~~tRD) II 

00690 
00700 
00710 
00720 
00730 
00740 
00750 
00760 
00770 
00780 
00790 
00800 
00810 
00820 
00830 
00840 
00850 
00860 
00870 

00006C 00000000 
72 DS OF 

000070 
000070 73 DS OD 

74 @DATA EQU * 000070 
75 @SAVOOl EQU @DATA+OOOOOOOO 72 BYTE (S ) ON WORD 

000070 
76 BUF EQU @DATA+OOOOOon 80 BYTE(S) 

0000B8 
77 OUT EQU @DATA+00000152 121 BYTE (S) 

000108 
78 CODE EQU @DATA+00000276 FULLWORD INTEGER 

000184 
79 ORG @DATA+00000280 .. 000188 
80 I EQU * FULLWORD INTEGER 

000188 
81 DC FL4' 2' 

000188 00000002 
000070 82 ORG @DATA 

000070 83 DS 00000284C 

00018C 84 @TEMPS DS OF 

00018C &.185 @DATEND EQU * 
000014 86 @CL9FC EQU OBTAIN 

00005C 87 @9FD EQU @ELOl 

000000 88 END MAIN 

Figure 13. Assembler Listing (2 of 2) 

II 

II 

The PL/S source statements producing executable instructions appear 
as corrments ahead of the generated code. A label on a PL/S statement 
becomes the label of the first generated instruction. 

The compiler-generated labels appear in the label field of the 
listing,;. 

The statement numbers for those PL/S statements producing executable 
assembler code appear in the remarks field of the generated 
instructions • 

The assembler data area. 
in Figure 14. 

This area is laid out in the format shown 

The PL/S source program variables are listed in the data area of the 
assembler listing. For entry points and labels external to the' 
procedure, the compiler creates V-type address constants; for other 
external data, the compiler generates A-type address constants and 
EXTRNs. 

The compiler generates assembler remarks describing the type of data 
being defined. The compiler derives these remarks from information 

. in the original PL/S declaration. 

section 3: compiler Output 31 



@DATA) 

Reentrant Program 

Constants and temporaries. 
Labels are generated by the 
PL/S compiler; they always 
start with the character @. 

Non-reentrant Program 

@DATAI 

)

constants and temporaries. 
Labels are generated by the 
PL/S compiler; they always 
start with the character @. 

@DATA~fixed data area @DATA> 

t------" / ___________ ----1 fixed data area 

GEN DATA 
items 

@DATD @DATEND 

GEN DATA 
items 

@DATEND 

1 label equate, 

dynamic data area 
label equates 

Figure 14. Data Area Layout 

COMPILER-GENERATED LABELS 

The labels (statement identifiers) that appear in the PL/S source program 
are reproduced in the compiler-generated assembler code. However, the 
compiler generates additional labels to identify areas, values, and 
statements created by expansion of the PL/S program into assembler code. 
To help you identify various items in the assembler code, the conventions 
for compiler-generated labels are listed in Figure 15. 

As shown in Figure 15, compiler-generated labels begin with either 
@, &, or A. The label types that are used more than once in a control 
section are followed by an integer that is incremented sequentially. 
For example, if four separate character constants are required, they may 
be labeled @Cl, @C2, @C3, and @C4. 

Label What the Label Identifies 

.@OOl An ANOP following a LCLA assembler instruction. 

&SPN Subpool number of dynamic storage for reentrant 
procedures. 

&T Used to initialize some arrays. 

@ADOl The address of @DATAl in a non-reentrant program when the 
DATAREG option is specified. 

@Ainteger An A-type address constant. 

@Binteger A bit constant. 

@Cinteger A character constant. 

Figure 15. Labels Generated by the Compiler (Part 1 of 2) 

32 Guide to PL/S Generated Listings 



Label 

OlCLC 
OlMVC 
OlNC 
OlOC 
OlXC 

OlCLinteger 

OlCTEMPinteger 

OlDATA 

OlDATAl 

OlDATD 

Ol DAT END 

OlDinteger 

OlDOinteger 

OlELinteger 

OlIFinteger 

Olinteger 

OlPLinteger 

OlPSTART 

OlSAVinteger 

OlSIZOOl 

OlTEMPinteger 

OlTEMPS 

OlTinteger 

OlVinteger 

OlXinteger 

Ol 0 , Ol 1 , • • . OlF 

Ainteger 

What the Label Identifies 

Instructions which are executed 
by means of an assembler EX instruction. 

used in non-reentrant procedures to identify and branch 
around argument lists. 

A string temporary. 

The start of the static data area, and the end of the 
executable generated code. 

The start of the compiler constant and temporary area. 

The start of the DSECT that describes the dynamic 
storage area. 

The end of the DSECT that describes the dynamic storage, 
or the end of the data area in a non-reentrant program. 

An arithmetic constant. 

statements in the generation of a DO loop. 

The epilogue of a procedure. 

A value that represents the length of a temporary area 
to be cleared for string expressions (variable length 
substrings) • 

IF branches and .branches around ELSE statements. 

A value that represents the length of a temporary area 
that must be set to zeros in reentrant procedures. 

An argument list for reentrant procedures. 

First first instruction following the BALR that 
establishes the primary base register. 

A procedure save area. 

A value that represents the size of the dynamic storage 
area. 

An arithmetic temporary which has high-order zeros. 

An area that contains space for temporaries. 

A temporary location used for evaluating an arithmetic 
expression. 

A V-type address constant. 

A hexadecimal constant. 

Symbolic names for the general registers. 

Name generated for items declared with an * instead of a 
name. 

Figure 15. Labels Generated by the Compiler (Part 2 of 2) 

section 3: Compiler Output 33 



Assembler Cross-Reference 

The assembler cross-reference for a PL/S program shows no references for 
many variables actually used in the program. This happens because the 
PL/S compiler does not always use symbolic variable names in the 
assembler source code it produces. Only STATIC LOCAL and AUTO~ffiTIC 
variables that are not in structures or arrays are referenced 
syrnbolica lly. 

To determine which assembler instructions use a given variable, look 
up the variable in the PL/S Attribute and Cross-Reference Table. This 
table shows the statement numbers of the PL/S statements that reference 
the variable. Then find these statement numbers in the assembler source 
listing. The variable will be referenced in the assembler code produced 
from these PL/S statements. Figure 16 illustrates this process for the 
variable VBLE. 

PL/S Attribute and Cross-Reference Table 

DCL'D IN NAME ATTRIBUTE AND CROSS REFERENCE TABLE 

6 VBLE IN STRUCTB, FIXED(31) ,INTERNAL, BOUNDARY (WORD,l) 

Assembler Listinq 

S'I'MT 

500 * 
501 
502 

24 

SOURCE STATEMENT 

DO I=VBl.I·: '1'0 1 BY 
L (dF,'!H4(0,@8) 
BC 15, «l[')09FE 

0024 
0024 

Figure 16. Locating a Variable Not Referenced Symbolically in Assembler 
Code 

You can usually recognize the variable in the assembler instructions 
generated from the PL/S statement. In case of doubt, check the assembler 
cross-reference to find where the variable is defined, and look up the 
definition. The definition will give you a displacement by which you 
can recognize the reference to the variable. Figure 17 shows this 
process. 

34 Guide to PL/S Generated Listings 



PL/S Attribute and Cross-Reference Table 

DCL'D IN NAME ATTRIBUTE AND CROSS REFERENCE TABLE 

VBLE IN STRUCTB, FIXED(31) , INTERNAL, BOUNDARY (WORD,l) 

Assembler Listing 

STMT 

500 * 
501 
502 

1200 VBLE 

24 

SOURCE 

Assembler Cross-Reference 

SYMBOL LEN 

VBLE 00001 

STATEMENT 

L 
Be 

DO 

EQU 

00000180 

I=VBLE TO 1 BY 
@F'3~@8) 
15,@D F~ 

STRUCTB+00000384 

0024 
0024 

FULL WORD INTEGER 

REFERENCES 

1200 

Figure 17. Recognizing a Variable Not Referenced Symbolically in 
Assembler Code 

section 3: Compiler OUtput 35 



36 Guide to PL/S Generated Listings 



Section 4: Guidelines for Modifying Assembler Code 

You can order the assembler source code as machine readable material if 
you want to make modifications to the compiler-generated code. However" 
you should be aware that certain problems may arise from these 
modifications. 

When modules coded in PL/S are recompiled by IBM for a new release, 
the assembler code for certain statements may be generated differently. 
Thus modifications may not work in a new release if they depend on PLiS 
statements always producing the same assembler source code. The 
following guidelines will simplify modifications and will help assure 
that the modifications you make are impacted as little as possible by 
subsequent PL/S compilations. 

Modifying Instructions 

1. Do not make references to compiler-generated labels (shown in Figure 
15, Section 3). These labels may change when a PL/S module is 
re-compiled. since the compiler does not generate labels that begin 
with a dollar sign character" a safe rule for making up your own 
assembler labels is to start them with the dollar sign character. 

2. Give an explicit length when you add instructions that require a 
length. This is necessary because the PL/S compiler defines data to 
the assembler by means of simple equate statements. 

3. Use explicit base and displacement values when making references to 
parameter lists, BASED variables" or NONLOCAL variables. This is 
necessary because the PL/S compiler defines data to the assembler by 
means of simple equate statements. 

4. Do not insert any new assembler instructions into an instruction 
sequence generated for a single PL/S statement. Make insertions 
either before or after the generated instruction sequence. 

5. When making modifications to code generated for a PLIS statement, 
replace the entire group of generated assembler instructions. This 
technique allows you to do a complete code replacement for a PLiS 
statement if a different sequence of instructions is generated for 
the same PL/S statement in a new release. 

6. If you insert assembler instructions immediately after a CALL 
statement, you may also need to change the code generated for the 
CALL statement itself, or the code generated for the statement 
following the CALL statement. This is because the return point for 
the CALL is sometimes defined at the assembler level in terms of 
code generated .for the statement following the CALL. This guideline 
will ensure that your inserted code is not bypassed. 

Section 4: Guidelines for Modifying Assembler Code 37 



In the following example, @CL9FF is the return point from the called 
procedure. 

CALL READCARD(BUF,CODE)i 

OBTAIN LA @E,GlCL9FF 
CNOP 2,4 
L OlF,GlV1 
BALR Oll, OlF 
DC A(BUF) 
DC A (CODE) 

iii 
/* CHECK CODE FOR VALIDITY */ 

GlCL9FF SR GlF,OlF 

Any code inserted before II will be bypassed. To avoid this problem, 
code inserted at EI should have a unique label. Then you can modify 
tbe code generated for the CALL to mqke the new label the return point. 
For example: 

OBTAIN LA OlE, $NEWLABL 
CNOP 2,4 
L OlF, OlV1 
BALR Oll,OlF 
DC A(BUF) 
DC A(CODE) 

/* CHECK CODE FOR VALIDITY */ 

$NEWLABL 

@CL9FF SR @F, @F 

Do not move the compiler generated return point label to your new code, 
because tpis label may change in a subsequent release. 

Modifying Data 

Add new data at the end of the generated assembler data area. The 
symbol @DATEND on the assembler listing identifies the end of this area 
(see Figure 14, Section 3 for a description of this area.) You should 
insert the ad.ditional data just ahead of this symbol. 

If you insert new data elsewhere, all data following the inserted 
data will have new displacements. Then you must modify all instructions 
referring to the displaced data to use the new displacements. 
Similarly, if you increase the length of a data item, move it to the end 
of the generated assembler data area so that it does not displace all 
subsequent data. 

When you increase or decrease the length of a data item, you must 
also modify the length in all instructions that refer to the item. 

38 Guide to PL/S Generated Listings 



Refer to PL/S REGISTER variables by the PL/S name" not by the 
associated general register number. This will help keep such references 
valid if a different physical register is used in future compilations. 

STRUCTURES 

If you add new data to a structure that has the BASED attribute, add it 
at the end of the structure to avoid displacing data within the 
structure. 

If you add new data to a structure that has the STATIC or AUTOMATIC 
attributes, you should als 0 add it at the end of the structure to avoid 
displacing data within the structure. Then you should move the STATIC 
or AUTOMATIC structure to the end of the assembler data area to avoid 
displacing data that follows the structure. 

If you change the length of a component of a STATIC, AUTOMATIC, or 
BASED structure, you rrust change the length in all instructions that 
reference: 

• the changed component, and 

• any structure that contains the changed component 

For example, this structure, 

DCL 1 A 
2 
2 

appears as: 

CHAR(SO), 
B CHAR(40). 
C CHAR(40), 

3 D CHAR ( 20 ) , 
3 E CHAR(20); 

A 

B C 
~ ____ ~A ______ ~V~ ______ AA ______ ~ 

D 

E is referenced when C, its contianing structure, is referenced, and 
when A, the containing structure for C, is referenced. So if you change 
the length of E, you must change the length in all instructions that 
reference E, C, or A. 

If you simply move a data item within a structure, you should modify 
all instructions using this data to use the new location. 

section 4: Guidelines for Modifying Assembler Code 39 



40 Guide to PL/S Generated Listings 



ABS function: One of the built-in 
functions; it is used to obtain the 
absolute value of a variable or expression. 

ADDR function: One of the built-in 
functions; it is used to obtain the address 
of some data. 

argument: A constant, variable, or 
express~on passed to a called procedure. 
Arguments appear on a CALL statement. 

argument list: An area of storage used to 
contain the address of each argument that 
appears on a CALL statement when the CALL 
statement invokes another procedure .• 

array: A collection of data that has 
identical attributes. The data occupies a 
contiguous area of storage and is 
referenced by a common name. 

attribute: A characteristic of data. Most 
attributes have an associated keyword in 
PL/S. 

AUTOMATIC: A data attribute that causes a 
variable to be assigned space in a dynamic 
storage area. 

BASED: A data attribute that causes no 
storage to be assigned to a variable. The 
attributes of a BASED variable are applied 
to a storage area indicated by a locator. 

BIT: ~ data attribute used to define a bit 
string. 

BOUND~RY: A data attribute used to align a 
variable on a specified boundary. 

built-in function: A facility of PL/S that 
causes the compiler to perform a 
programming task. 

BY: A DO statement keyword· that specifies 
a value to be added to or subtracted from a 
control variable in order to control 
iteration of a DO group. 

CALL statement: A statement used to invoke 
an external or internal procedure. 

called procedure: A procedure invoked by 
another procedure. The CALL statement 
invokes another procedure. 

calling procedure: A procedure that 
invokes another procedure. The CALL 
statement invokes another procedure. 

Section 5: Glossary 

CODE: A RETURN statement keyword that 
precedes a return value (a 
constant,variable,or expression.) 

CODEREG: See "code register". 

code register: A register used to address 
compiler-generated code. Register 11 is 
used unless the CODEREG option on the 
PROCEDURE statement indicates otherwise. 

comparison definition: Two operands 
separated by a comparison operator that 
appears on an IF statement. 

components: The parts of a structure. A 
component can itself be a structure. 

connector: Either the & or I operator used 
to connect comparison definitions on an IF 
statement. 

constant: A fixed or invariable value or 
data item. 

control variable: A variable used (in 
conjunction with BY and TO values) to 
control iteration of a DO group. 

DATAREG: See "data register". 

data register: A register used in a 
reentrant environment to address data. 
Register 12 is used unless the DATAREG 
option on the PROCEDURE statement indicates 
otherwise. 

DECLARE statement: A statement used to 
describe the attributes of data. 

DIM function: One of the built-in 
functions; it is used to obtain the 
dimension of a previously declared array. 

dimension: The number of elements in an 
array. 

DO group: A set of statements that begin 
with a DO statement and end with an END 
statement. The group may execute once or 
repeatedly. 

DO statement: A statement used to group a 
number of statements in a procedure. 

dynamic storage area: The storage for data 
that is allocated automatically upon entry 
into a procedure. 

element: One of a collection of data in an 
array. 

section 5: Glossary 41 



ELSE clause: The part of an IF statement 
used to specify the action to be performed 
if the comparision of operands on the IF 
statement is false. 

END statement: A statement used to 
indicate the end of a procedure or the end 
of one or more DO groups. 

ENTRY: A data attribute applied to the 
label of a PROCEDURE or ENTRY statement. 
These labels are entry points. 

entry point: Any place within a procedure 
to which control can be passed by another 
procedure. 

ENTRY statement: A statement used to 
designate a secondary entry point for a 
procedure. 

expression: Constants and variables used 
in combination with operators to represent 
an operation to be performed. 

EXTERNAL: A data attribute. When two or 
more external procedures must reference a 
variable, the EXTERNAL attribute appears on 
the DECLARE statement for the variable in 
each procedure. 

external procedure: A procedure that is 
not internal to another procedure. 

GENERATE: The statement that allows one or 
more assembler instructions to be placed in 
PL/S compiler-generated code. The GENERATE 
DATA statement allows the assembler 
instructions to define data. 

GOTO statement: A statement used to 
transfer control to a point preceding or 
following this statement. 

IF statement: A statement used for 
conditional statement execution. This 
statement is always followed by a THEN 
clause and, optionally, an ELSE clause. 

indirect addressing: A technique used to 
obtain data by referencing a variable that 
contains the address of the desired data. 

INTERNAL: A data attribute which specifies 
that the associated variable is not 
referenced outside the declaring procedure 
and any procedures nested within the 
declaring procedure. 

internal procedure: A procedure that is 
contained within another procedure. 

keyword: A symbol that identifies a data 
attribute, a PL/S statement, or some 
qualifying information for a statement. 

42 Guide to PL/S Generated Listings 

LABEL: A data attribute applied to the 
label of any statement other than PROCEDURE 
or ENTRY. These labels are not entry 
points. 

LENGTH function: One of the built-in 
functions; it is used to obtain the length 
of some data. 

level number: A number assigned to a 
structure or a component to indicate its 
position within the hierarchy of a 
structure. 

LOCAL: A data attribute that causes storage 
for a variable to be assigned in the CSECT 
of the declaring procedure. 

locator: A variable or expression that 
follows the BASED attribute and is used to 
locate data, or a pointer supplied by 
pointer notation when the data is 
referenced. 

microfiche: Microfilm containing program 
listings. 

nesting: Inclusion of one or more 
procedures, IF statements, or DO statements 
within another procedure, IF statement, or 
DO statement, respectively. 

NONLOCAL: A data attribute that causes no 
storage for a variable to be assigned in 
the CSECT of the declaring procedure. 
Storage is assigned elsewhere. 

operand: One or more constants and 
variables that are operated upon. 

operator: One or more symbols used in 
combination to indicate the action to be 
performed on operands. 

parameter: A variable name that appears on 
a PROCEDURE or ENTRY statement. This name 
is used in a called procedure to reference 
information passed to it from the calling 
procedure. 

pointer: Data that is taken to be the 
address of some other data. 

pointer notation: The notation used when 
data is to be located indirectly by an 
address contained at the location of some 
POINTER variable. The composite symbol -> 
appears between the POINTER variable and 
the name of the data. 

precision: The number of bits assigned for 
the maximum positive value of either FIXED 
or POINTER data. 

primary entry point: The major entry point 
of a procedure. It is signified by the 
appearance of a PROCEDURE statement. 



procedure: An independent, named block of 
statements that defines a specific portion 
of a prog ram. 

PROCEDURE statement: A statement used to 
indicate the primary entry point for a 
procedure. 

reentrant: A characteristic of a procedure 
that causes dynamic allocation of space for 
data, save areas, and compiler work areas. 
This characteristic is applied to a 
procedure when the REENTRANT option appears 
on the PROCEDURE statement of the external 
procedure. 

RELEASE statement: A PL/S statement used 
to release a register that was restricted 
earlier in the procedure. 

RESPECIFY statement: A statement used to 
provide or change a locator, or to alter 
register availability. 

RESTRICTED: A data attribute which 
indicates that a specified register is not 
available for the compiler to use in the 
code it produces. 

RESTRICT statement: A statement used to 
restrict the compiler's use of a certain 
register. 

RETURN: The PL/S statement that sends 
control to the statement following the CALL 
statement in the calling procedure. The 
RETURN TO statement sends control to a 
specified labeled statement. 

secondary entry point: An entry point in a 
procedure other than the primary entry 
point. It is signified by the appearance 
of an ENTRY statement. 

source expression: That part of an 
assignment statement that appears to the 
right of the equal sign. Its value is 
assigned to the receiver. 

static storage area: The fixed· storage for 
data that once assigned is never reassigned. 

string: A sequence of a-bit EBCDIC 
characters or else a sequence of bits that 
are unrelated to each other. 

structure: A collection of data that 
usually has unlike attributes (the data can 
have identical attributes). The data 
occupies a contiguous area of storage and 
names are assigned to parts of the data so 
that the entire area or portions of it can 
be referenced. 

subscript expression: An expression that 
appears in parentheses following an array 
name. It is used to reference an element 
of an array. 

substring expression: 
appears in parentheses 
variable name assigned 
is used to reference a 
data. 

An expression that 
following the 
to string data. It 
portion of string 

terminating value: A constant, variable, 
or expression used to stop iteration of a 
DO group,. Iteration stops when the controi 
value exceeds the terminating value. 

THEN clause: The part of an IF statement 
used to specify the action to be performed 
if the comparison of operands on the IF 
statement is true. 

TO: A DO statement keyword that specifies 
a terminating value. 

UNRESTRICTED: A data attribute which 
indicates that a specified register is 
available for the compiler to use in the 
code it produces. 

variable: symbolic representation of a 
quantity or data string that occupies a 
storage area. 

VLIST: A keyword used in the DECLARE 
statement for a procedure name to indicate 
that the number of arguments passed by the 
procedure may vary. VLIST causes the 
parameter list to have its high-order bit 
in the last word set on. 

Section 5: Glossary 43 



44 Guide to PL/S Generated Listings 



& 
as connector in IF statement 23 
as logical operator 21 

as connector in IF statement 23 
as·logicaloperator 21 

ABS built-in function 25 
defined in Glossary 41 

ADDR built-in function 25 
defined in Glossary 41 
used for initialization 16 

argument list 
defined in Glossary 41 
on CALL statement 14 
variable length 14 

arithmetic data 15 
array 19 

defined in Glossary 41 
assembler cross-reference table 27,34 
assembler source listing 27,30-31 

when produced 7 
assembler source modules 9 

guidelines for modifying 37 
asterisk 

following PL/S statement number 29 
used in array initialization 19 
used instead of structure name 20 

attribute 
default 29 
defined in Glossary 41 

attribute and cross-reference table 15,29 
AUTOMATIC 17 

defined in Glossary 41 
extending AUTO~~TIC structures 39 
symbolic variable names for 34 

BASED 18-19 
defined in Glossary 41 
extending BASED structures 39 
referring to BASED variables 37 

BIT 16,25 
defined in Glossary 41 

BOUNDARY 16 
defined in Glossary 

built-in function 
ABS 25 
ADDR 25 
defined in Glossary 41 
DIM 25 
LENGTH 25 

BY 24 
defined in Glossary 41 

BYTE 16 

CALL 14 
defined in Glossary 41 
inserting assembler code after 37-38 

Index 

called procedure 14-15 
defined in Glossary 41 

calling procedure 14 
defined in Glossary 41 

CHARACTER 16 
CODE 15 

defined in Glossary 41 
CODEREG 

affecting code addressing register 13 
defined in Glossary 41 

code register 13 
defined in Glossary 41 

colon 
as PL/S label delimiter 11 
used in string references 22 

comments 7 
on assembler source listing 30-31 
PL/S 11,27 
PL/S delimiters for 11 

comparison definition 23 
defined in Glossary 41 

components 20 
changing the length of 39 
defined in Glossary 41 

connector 23 
defined in Glossary 41 

constant 
defined in Glossary 41 
types 16 

control variable 24 
defined in Glossary 41 

cross-reference table 
(see attribute and cross-reference 
table; assembler cross-reference 
table> 

DATA 21 
DATAREG 

affecting data addressing 
defined in Glossary 41 

data register 14 
defined in Glossary 41 

DECLARE 15 
defined in Glossary 41 

DIM built-in function 25 
defined in Glossary 41 

dimension 19,25 
defined in Glossary 41 

DO 24 
defined in Glossary 41 

dollar sign, for new assembler 
DONTSAVE 13 
DWORD 16 
dynamic storage area 

contents 13 
defined in Glossary 41 
DSECT for 13 

register 

labels 

starting and ending labels 33 

13 

37 

Index 45 



element 22,25 
defined in Glossary 41 

ELSE clause 22 

'END 

alignment with IF 24 
defined in Glossary 42 

defined in Glossary 42 
as DO delimiter 24 
as procedure delimiter 11 

ENTRY attribute 16 
defined in Glossary 42 

ENTRY statement 14-15 
defined in Glossary 42 

expression 21 
defined in Glossary 42 

EXTERNAL 17 
defined in Glossary 42 

external procedure 
defined in Glossary 42 
as division of a PL/S program 11 

FIXED 15 

GENERATE 7 
appearing before a PROCEDURE 

statement 11 
assembler labels following 21 

GENERAT ED 21 
GENERATE DATA 7,21 

in dynamic storage area 13 
GOTO 22 

defined in Glossary 42 

HWORD 16 

IF 23 
defined in Glossary 42 

indirect addressing 18-19 
defined in Glossary 42 
(see als 0 BASED) 

INITIAL 16 
used to initialize an array 19 

INTERNAL 17 
defined in Glossary 42 

internal procedure 
defined in Glossary 42 
as division of a PL/S program 11 

LABEL 16 
defined in Glossary 42 

labels 
as CALL target 14 
compiler-generated 

on assembler source listing 30-31 
modifying 37-38 
return point label 32-33 
table of 32-33 

creating new 37-38 
identified by LABEL or ENTRY 16 
PL/S 11 
on PL/S source listing 27 
on PROCEDURE statement 11 

46 Guide to PL/S Generated Listings 

LENGTH built-in function 25 
defined in Glossary 42 

level number 20 
defined in Glossary 42 

linkage conventions 12 
LOCAL 17 

defined in Glossary 42 

microfiche 7,11 
defined in Glossary 42 

modifying compiler-generated code 37 
data 38 
instructions 39 
structures 39 

nesting 
defined in Glossary 42 
of DO statements 24 
of IF statements 24 

NONLOCAL 17 
defined in Glossary 42 
referring to NONLOCAL variables 37 

NOSAVEAREA 12 

object code 
translation of PL/S to 7 

operator 
arithmetic and logical 21 
comparison 23 
defined in Glossary 42 

OPTIONS 11 

parameter 11 

PL/S 

defined in Glossary 42 
referring to 37 

attribute and cross-reference 
table 7,27-29 

source statement listing 7,27 
pointer 18 

defined in Glossary 42 
POINTER l6 
pOinter notation 18-19 

defined in Glossary 42 
precision 

of arithmetic data 15 
defined in Glossary 43 
of pointer data 16 

primary entry point 
defined in Glossary 43 
as PROCEDURE statement label 11 

PROCEDURE statement 
defined in Glossary 43 
purpose 11 

reentrant 13 
defined in Glossary 43 
REENTRANT option 13 

REGISTER 17 
referring to 38 



registers 
affected by DONTSAVE 13 
affected by SAVE 13 
assigned by compiler 13 
linkage 12-
save area 12-13 

RELEASE 17 
defined in Glossary 43 

RES PECI FY 
defined in Glossary 43 
used to supply a locator 19 

RES'IRICT 17 
defined in Glossary 43 

RES'IRICTED 17 
defined in Glossary 43 

RETURN 14 
defined in Glossary 43 
used to return a value 15 

RETURN TO 14 

SAVE 13 
secondary entry point 

defined by ENTRY 14 
defined in Glossary 43 

semicolon, as PL/S delimiter 11 
source expression 21 

defined in Glossary 43 
source statement listing,PL/S 7 
STATIC 17 

extending STATIC structures 39 
static storage area 17 

defined in Glossary 43 
starting label for 33 

string 16 
defined in Glossary 43 

string data 16 
structure 20 

defined in Glossary 43 
guidelines for modifying 39 
overlap in 20 

subscript 22 
subscript expression 22 

defined in Glossary 43 
substring expression 22 

defined in Glossary 43 

terminating value 24 
defined in Glossary 43 

THEN clause 23 
alignment with IF 24 
defined in Glossary 43 

TO 24 
defined in Glossary 43 

unreferenced variables 29 
UNRESTRICTED 17 

defined in Glossary 43 

VLIST 14 
defined in Glossary 43 

WORD 16 

Index 47 



Guide to PL/S-Generated Listings 

GC28-6786-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? - ________________________________________ _ 
Number of latest Technical Newsletter (if any) concerning this pUblication: ____________ _ 
Please indicate in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments. 

READER'S 
COMMENT 
FORM 



GC28-6786-0 

Your comments, please ... 

This manual is part of a library that serves as a reference source for system analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and pUblishing 
this material. All comments and suggestions become the property of IBM. 

o 
S. 
~ 
"'11 o 
0: 
» 
o 
:s 

OQ 

r-
5· 
CD 

I 
Fold Fold 

- ------ - - - - --- - -----~ 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S,A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

First Class 
Permit 81 

I 
I 
I 

Poughkeepsie I 
New York 

I 
I 
I 
I 
I 
I 
I 
I 
I 

-----------------~-----~ 
Fold 

J!rn~ 
<I> 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corp.oration 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 

G) 
c -. 
c.. 
CD .... 
o 
-0 

-e::. 
Vl 
I 

G) 
CD 

i 
c.. 

c: 
(Il 

::!". 

-0 
~. 
:::s -CD 
c.. 

:::s 
C · Vl · » · 



GC28-6786-0 

!(rn~ 
C!> 

International Business Machines Corporation 
. Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.SA. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Q 
c 
a.. 
(1) 

.... o 
-0 

-c:: 
Vl 
I 
Q 
(1) 
::J 
(1) ., 
o .... 
(1) 
a.. 
r­
C;; • .... 

-0 
:::!. 
::J .... 
(1) 
a.. 
::J 

C · Vl · » · 


