
Systems Reference Library

IBM System/360 Time Sharing System

System ProQ.rammer's Guide

File No. S360-50
Form C28-2008-0

IBM System/360 Time Sharing System (TSS/360) makes a
distinction between user and system programmers. This
pUblication is specifically intended" for persons
responsible for maintaining, modifying, or extending
the system and discusses:

• Operating environment
• Program structure
• Coding practices and conventions
• Privileged supervisor call instructions
• Serviceability aids
• System macro definitions
• Changing TSS/360
• Privilege Class E

TSS

PREFACE

This publication will aid you as a
system programmer -- extend and modify IBM
System/360 Time Sharing System. We'll dis
cuss the programming capabilities available
to you and the conventions followed in
developing the programs that are al~eady
part of TSS/360. We'll also cover a number
of examples designed to give you a feeling
for what is involved in changing the
system.

There are four sections to this publica
tion. The Introduction, Section 1, con
tains a reader's guide to help you find
your way through the publications devoted
to system programming. In Section 2, Resi
dent Programs, we'll discuss some of the
factors that go into writing resident TSS/
360 programs. The same topics are dis
cussed for Nonresident programs in Section
3. Section 4, Defining Macro Instructions,
discusses the types of macro instrunctions
used in TSS/360 and the techniques you can

First Edition (October 1967)

use in wrfting them. Section 5, Generating
and Maintaining TSS/360, shows some sample
changes to the system. Finally, in Section
6, Programming with Privilege ClassE, the
additional facilities that are available to
the System Monitor are discussed.

You may be reading this ~ublication just
for interest; you may have no intention to
modify TSS/360. If this is the case, te
sure and see the reader's guide -- it will
help you in selecting those publications
most beneficial to you. If you plan to
change TSS/360, you should be an
experienced programmer who knows the over
all design of the systerr. You should have
read or have handy most of the
user-programmer publications. Finally, you
should thoroughly understand IBM System/360
Principles of Operation, Form A22-6821, and
IBM System/360 Model 67 Functional Charac
teristics, FormA27-2719.

Significant changes or additions to the specifications contained in this
publication will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impreSSions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Time Sharing System/360 Programming Publications,
Department 561, 2651 Strang Blvd., Yorktown Heights, N.Y. 10598

©International Business Machines Corporation 1967

SECTION 1: INTRODUCTION ••••
Reader's Guide • • • • • • • • •

Program Logic Manuals
Assembler Language Manuals

System Programming With TSS/360 ••••

7
7
7
7
8
8
8
8
9
9
9
9

Who ••••••• • • • •
Why ••••••••••••

TSS/360 Organization • • • • •
Format And Notation • • • • • • • •

Name Field • • • • • • • •
Operation Field
Operand Field
Notational Symbols • • • • • 13

SECTION 2: RESIDENT P~OGRAMS 16
Operating Environment • • • • 16

Getting Started • • • • • • 16
Normal Operation. • • • • •• 16

Extended Control PSW • 16
The Prefixed Storage Area 17

Summary • • • • • • • • • 18
Dummy Sections • • • • • •••••• 19

Purpose 19
Use ••• • • • 19

Module Structure • • • 20
System Control Blocks • • 21
Module Design Considerations • 22
Enabling And Disabling Interrupts • 22
Naming Conventions • • • • • • • 23

Program Module Names • • • • 23
System Control Block Names • • • • 23
Secondary Entry Points • • • • • 24

Supervisor Linkage Conventions • • • 25
Getting Resident Working Space • • • 25
Programming Convention Comments • • 26

SECTION 3: NONRESIDENT PROGRAMS • • • • 28
Virtual Machine Structure • • 28

Virtual Program Status Word 28
Interrupt Storage Area • 28

Linkage Conventions 30
Type-I Linkage • • • _ • • • 30

Use of the Save Area • • • • • • • • 32
Contents of the General Registers • 33
Transfer of Control • • • • • • 33

Type-II Linkage • • • • • • 34
The Save Area • • • • • • 34
Content and Usage of the General
Registers • • • • • • • 35
Transfer of Control • • • • • • 35

Type-1M/II Linkage • • • • • 36
Type-III Linkage • • • • •• 36

The Save Area • • • • 36
Content and Usage of
General-Purpose Registers
Transfer of Control

Type-IV ~estricted) Linkage
Conventions • _ • • • • • • •

Use of the General Registers
Transfer of Control ••••

Linkage Convention Comments
Fence Straddlers • • • • • • •

37
• • • 37

38
38

• • 38
• • 39

39

CONTWS

System Programmer Authority Codes • 40
Privileged SVCs • • • • • • • • • • 40
Program Checkout System •.••••• 40
Dynamic Loader __ • 41

Privileged Programs 42
I/O Device Addressing •• _ • • 42
Storage Protection • • • • _ • • • 44
Timekeeping •••• • • 45
Initial Virtual Storage • 45
privileged Supervisor Call
Instructions • • _ • _ • • • • • • 45

CRTSI -- Create Task Status Index
(R) ••..• _ • • • • _ • _ • _ _ _ • 47

SCRTSI --Special Create Task
Status Index ~) • • • • • • _ • • • 48
DLTSI -- Delete Task Status Index
~) _.... _ • • • • • • • • • • 48

SETUP -- Set Up Task Status Index
Field (R) • • • • • • • • 48
XTRCT -- Extract Task Status Index
Field (R) ••••••••••••• 50
SETXTS -- Set Up Extended Task
Status Index Field ~) • • • • • 51
XTRXTS -- Extract Extended Task
Status Index Field ~) • • • • 52
CHAP -- Change Task Priority ~) • • 52
XTRTM -- Ext~act Accumulated CPU
Time (nonstandar~ • • • • • • • • • ~3
SETSYS -- Set System Table Field
(R) •••••••••• • • • 53

XTRSYS -- Extract System Table
Field (R) ••••••• _ • • 54
RSTTIM -- Reset System Time
(nonstandard) •••••••• • 55

ALLTI -- Allow Task Initiation ~) • 56
SETYMD -- Set Year, Month, and Day
(nonstandard) • • • • • 56

SETTOD -- Set Time of Day
(nonstandard) •• _ • • • • 56

RDI -- Reset Drum Interlock
(nonstandard) ••••••• 57

SETTU -- Set User Timer ~) • 57
SETTR -- Set Real Time Interval
(nonstandard) ••••••••••• 58

REDTIM -- Read Elapsed Real Time
(nonstandard) ,. _ • • • • • • • • • 58

TSEND -- Force Time Slice End (R) • 58
AWAIT -- Wait for an Interrupt (R) • 59
TWAIT -- Wait .for Terminal I/O
Interrupt (R) ••••••• • 59
ADDPG -- Add Virtual Storage Pages
~) ••••••••••••• • 60

ADSPG -- Add Shared Virtual
Storage Pages (R) ••••••••• 61
DELPG -- Delete Virtual Storage
Pages (R) • • • • • • •• \ 63
CNSEG -- Connect Segment to Shared
Page Table (R) • • • • • • • • • • • 63
DSSEG -- Disconnect Shared Page
Table From Segment (R) _ • • • • 64
LSCHP -- List Changed Virtual
Storage Pages (R) ••••••••• 65

CKCLS -- Check Protection Class (R)
ADDEV -- Add Device to Task
Symbolic Device List (R) • • • •
RMDEV -- Remove Device from Task
Symbolic Device List (R) • • • •
PURGE -- purge I/O Opera.tions (R)
RESET -- Reset Device Suppression
Flag ~) • • • • • • • • • • •
SPATH Set I/O Device Path (R)
SETAE Set Asynchronous Entry (R)
lOCAL I/O Call (~ ••••
PGOUT Write Virtual Storage
pages to External Storage
SETXP Set External Page Table

65

66

67
• 67

• 68
69
70
71

• 75

Entries (R) • • • • • • 77
MOVXP -- Move Page Table Entries
(R) ••••••••••••••

LVPSW -- Load Virtual Program
Status Word (R) ••••••••
VSEND -- Send Message to Another
Task (R) • • • • • • • • • •
ERROR -- In~~cate Supervisor
Detected Erro'r (nonstandard)

77

78

• • 79

• • 79
SYSER -- Indicate
Nonresident-Program Detected Error
(nonresident) ••••••••••• 82

privileged Program Naming Conventions 83
Writing Privileged System Programs • • 84

Nonprivileged Programs • • • • • • • • • 86
Operating Environment • • • • 86
Program Design Considerations • • 87
Nonprivileged Supervisor Call
Instructions • • • • • • • • •

ENTER -- Enter Privileged Service
Routine (R) ••••••••
DLINK -- Transfer to Dynamic
Loader for External Symbol
Resolution (R) ••••••
DELET -- Enter Delete Program

• 88

• 88

• • 89

(nonstandard) ••••••••••• 89
PCSVC -- Enter Program Checkout
Subsystem (nonstandard) •••••• 90
CLIC -- Read Command From SYSIN
(conditional) (nonstandard)

CLIP -- Read Command From SYSIN
(uncondi tional) (nonstandard)

RTRN -- Enter Command Language
Director to End RUN (R) ••••
RSPRV -- Restore Privilege (R)

• • 90

91

91
92

SECTION 4: DEFINING MACRO INSTRUCTIC~S 93
R-Type Macro Definition • • • • • • 93

addrx • • • • • • 93
addx • • • • 93
integer 94
absexp • • • • • • • 94
value • • • • 94
code • • • • • • • • 94
text and characters 95
symbol • • • • • • • • • • 95

L~nkage • • • • • • • 95
S-Type Macro Defintions 97

Standard-forro S-type macro definition 98
addr and relexp • • • 98
integer, atsexp, and value • • • 98
code • • • • • • • • • 98
text and characters 98
symbol • • • • • • • • • • • • • 99

L-form S-type macro definition •
E-form S-type macro definitions

addrx • • • • •
integer, absexp, and value.
code and symbol • • • •
Linkage •••• • • • • •

Modified R-type macro definitions
Modified S-type macro definitions
Nonstandard macro definitions

Techniques used in writing macro
definitions ••• •

Register notation

• 99
• •• 101

• .101
.102
.102

• •• 102
• .104
• .104

.104

.104
• .104

packing Parameters ~ • • • • • • .105
.106 Defining Inner Macro Instructions

Naming the First Executable
Instruction • • • • • • • • • ~ • • .107
Setting the Sign Bit • • • • •
processing a Single Apostrophe '.
Referencing the DCB

• .107
• •• 108

• .109
.109
.109

Size Limitation • • • • • • • •
Address Constants ••• • • • • • •
Terminal Apostrophe and Size
Limitation. • • • • • • • • • .110
Keyword Operands and Standard Values .110
Substring Notation Processing .110
N Attribute Usage ••••• 111
NI&SYSLIST Handling in Mixed Mode
Macro Instruction
Subscripts and Sublists
SETC Symbol Length • • • • • • •
Logical Terms in Relational

• • 111
• • 111

.111

Expressions •••••••••• .111
Inner Macro Instructions ••••••• 112

CHDINNRA -- Generate Type-1 or
Type-2 Linkage (nonstandard) •••• 112
CHDERMAC -- Generate Error Message
(nonstandard) ••••••••••• 113

CHDPSECT -- Reserve Storage for
Parameter List (nonstandard) • .116

SECTION 5: GENERATING AND MAINTAINING
TSS/360 •••••••••• • •• 118
Systerr Generation .118
Serviceability Aids •• 118

SYSER Dump. • • • ••• 118
Program Checkout Subsystem (PCS) • 121

System Maintenance. • • • • .122

SECTICN 6: PROGRAMMING WITH PRIVILEGE
CLASS E ••••••••• • •• 125
Designating I/O Equipment ••••••• 125

Symbolic Device Address ••• 125
Designating Devices fo~ MSAM • .125
Designating Devices for TAM •• 126

Controlling 1/0 Devices For BSAM •••• 126
CNTRL -- Control On-Line
Input/Output Devices (R) ••• 126
PRTOV -- Test for Printer Carriage
Overflow (R) •••••••••••• 128

Multiple Sequential Access Method
(MSAM) • • • • • • • • • .130

General Description • • • • •
DCB options • ~ • • • • • •

• .130
.130
.134
• 134

DDEF Command and Macro Instruction •
General Service Macro Instructions •

OPEN -- Prepare the Data Control
Block for Processing (S) • • • • • .134

CLOSE -- Disconnect Data Set from
User' s Problem Program (S) • • 135

Macro Instructions for MSAM ••••• 136
Interrupt Entry Handling • • 136
SETUR - Unit Record Device Set Up
(R) ••••••••••• • • 137

GET -- Get a Record (R) ••• 141
PUT -- Put a Record (R) •••••• 144
FINISH -- End of Data Set (R) .146

Terminal Access Method Macro
Instructions. • • • • • • • • • .148

DCE -- Set Up Data Control Block
(nonstandard) • • • • • • 1 48

DCED -- Specify DCB DSECT
(nonstandard) •••••• • • 149

OPEN -- Prepare DCB for Processing
(S) •••••••••••••••• 149

CLOSE -- RemOVe Communication
Lines From Use (S) • • • • • • • 150
READ -- Read From Another Terminal
(S) •••••••••••••••• 150

WRITE -- Write a Message (S). .152
CHECK -- Wait for and Test for
Completion of Read or Write
Operation (R) • • • • • • • 154
DFTRMENT -- Define a Polling List
(nonstandard) • • • • • • 156

APPENDIX A: SYSTEM MACRO INSTRUCTIONS .158
ATPOL -- Poll for pending
Attention Interrupt (nonstandard) .158

FINDDS -- Locate JFCB
Corresponding to Data Set Name ~) .158
FINDJFCB -- Locate JFCB and Ensure
Volume Mounting (S) •••• • • 159
INVOKE -- Transfer Control
(nonstandard) ••••••• .159
ITI -- Inhibit Tqsk Interrupts
(nonstandard) • • • • • • • • • 159

PTI -- Permit Task Interrupts
(nonstandard) •••••••• • 160

RESUME -- Return to Calling
Program (nonstandard) • • • .160
STORE -- Store Register Contents
(nonstandard) •••••••• • 1 60

VSENDR -- Send Message to Task and
Await Response (nonstandard) •••• 161

APPENDIX B: TIME CONVERSION ROUTINE •• 162

APPENDIX C: ORGANIZATION OF DIRECT
ACCESS STORAGE. • • • • •••••• 164

Drum Storage Format •••• 164
Disk Storage Formats ••••••• 164

APPENDIX,D~ TSS/360 EXTENDED PROGRAM
INTERRUPT CODES • • • • • • .167

APPENDIX E: CODES FOR SYSER MACRO
INSTRUCTICN PARAMETERS

Index

.169

••• 177

ILLUSTRATIONS

FIGURES

Figure 1. Extended Control
Program Status Word • • • • • • • • 11
Figure 2. Virtual Program Status
Word • • • • • • • • • • • • • 29
Figure 3. Format of Standard
Save Area •••• • • • • • • • • • 31
Figure 4. Virtual Program
Linkage Conventions • • • • • • 32
Figure 5. Format of Three-Part
Hash Table •••••••••••• 41
Figure 6. Relationship of
TSS/360 Program Modules, CSECT,
CSECT Attributes, Sharability, and
Storage Key Assignment •••••• 43
Figure 1. PSW and Storage
Protection Keys •••• • • 44
Figure 8. Format of Fixed Area
of Input/Output Request Control
Block as Set Before lOCAL • • 13
Figure 9. Organization of a Page
List Entry •••••••••••• 13
Figure 10. Channel Command Word
List Entry Before lOCAL is Issued • 14
Figure 11. Fixed Area of I/O
Request Control Block as Set by
lOCAL • • • • • • • • • • • • • 14
Figure 12. Channel Command Word
List Entry After Task I/O Interrupt -
Occurs Occurs •• • • • • • • • • • 14

TABLES

Table 1. Effect of Authority
Code in Dynamic Loader Processing • 42
Table 2. Main Storage Page Key
Assignments •••••• • • • • • • 44
Table 3. Processing Unit and
Data Channel Key Assignments • • • • 44
Table 4. privileged- Supervisor
Calls (SVC 128-255) (Part 1 of 2) • 46
Table 4. privileged Supervisor
Calls (SVC 128-255) (Part 2 of 2) • 41
Table 5. System Error Codes ••• 80
Table 6. Dump Option Codes for
System Error Processor • • • • • 80
Table 7. Resident Supervisor
Module Codes • • • • • • • • • • 81
Table 8. Nonprlvileged
Supervisor Calls (SVC 64-127) ••• 88

Figure 13. I/O Paging Control
Block • • • • • • • • • • • 16
Figure 14. Coding addrx Operands • 93
Figure 15. Determining the Length
of a Character String ••••••• 99
Figure 16. Standard and L-form
S-type Macro Description •••••• 101
Figure 11. Parameter List
Generated by L-form •••••••• 101
Figure 18. E-form S-type Macro
Description •••••••••••• 103
Figure 19. packing Two Halfword
Parameters Into Register 1 •• 105
Figure 20. Complete Entry in
SYSUCS (5 line records, each 68
characters long, including KEYS) .141
Figure 21. Complete Entry in
SYSURS (4-line record, each 68
characters long, including KEY) ..141
Figure 22. DECB Format •••••• 155
Figure 23. Flag Field of tbe DECB 156
Figure 24. Organization of IBM
2301 Drum ••••••••••••• 164
Figure 25. Organization of IBM
2314 Volume for VAM .165
Figure 26. Format of IBM 2311
Volume for VAM ••••••• .166

Table 9. Error Messages Issued
by CHDERMAC (Part 1 of 2) • .115
Table 9. Error Messages Issued
by CHDERMAC (Part 2 of 2) .116
Table 10. Sources of DCB
Information for MSAM • • • • .131
Table 11. Return Codes for SETUR
Macro ••••••••••••••• 140
Table 12. Return Codes for MSAM
GET Macro Instruction ••••••• 143
Table 13. Return Codes for MSAM
PUT Macro Instruction ••••••• 145
Table 14. Return Codes for MSAM
FINISH Macro Instruction •••••• 141
Table 15. Character Set Codes ••• 152
Table 16. Input Formats Accepted
by Time Conversion Routine. .162
Table 11. Results of Time
Conversion • • • • •• 163

SECTION 1: INTRODUCTION

READER'S GUIDE

Several publications concerned with System/360 Time Sharing System
are devoted to system programming; they describe how TSS/360 was
designed and constructed, how it can be modified, and how you can
construct programs that will become part of it. The following descrip
tions will familiarize you with the purpose of the system programming
publications that are available to you; they stress the role of each
publication in presenting a complete picture of TSS/360, from the system
programmer's viewpoint.

• System Proqrammer's Guide, Form C28-2008, describes the facilities
available to system programmers in designing programs to be a part
of TSS/360; also, it discusses the conventions used throughout the
system.

• System Generation and Maintenance, Form C28-2010, describes the
procedure for creating and maintaining the object and source forms
of TSS/360; specifically, the macro instructions and commands yeu
may use to add, delete, or modify system object program modules.

Program Logic Manuals

These TSS/360 publications describe the detailed design and implemen
tation of specific groups of programs within the system:

• System Logic Summary PLM, Form Y28-2009

• Resident Supervisor PLM, Form Y28-2012

• Command Languaqe Subsystem PLM, Form Y28-2013

• Program Checkout Subsystem PLM, Form Y28-2014

• Access Methods PLM, Form Y28-2016

• System Service Routines PLM, Form Y28-2018

• Assembler PLM, Form Y28-2021

• FORTRAN IV PLM, Form Y28-2019

• Linkage Editor PLM, Form Y28-2030

• Dynamic Loader PLM, Form Y28-2031

• System Contro1 Blocks PLM, Form Y28-2011

When possible, you should use the program logic manuals in conjunction
with a current assembly listing of the program modules of interest.

Assembler Language Manuals

The manuals described herein represent the TSS/360 documentation
specifically intended for system programmers, who should, of course, be
familiar with other IBM System/360 Time Sharing System publications,
such as:

Section 1: Introduction 7

• Assembler Programmer's Guide, Form C28-2032

• Assembler User Macro Instructions, Form C28-2004

System programmer publications need not be read in sequence since,
usually, each deals with a variety of TSS/360 considerations. As a
recommendation, however, depending on your experience with ,the design
and implementation of TSS/360, you probably will find it easier to read
System programmer's Guide and System Generation and Maintenance after
you have read System Logic Summary. The program logic manuals should be
read only after you have acquired a thorough familiarity with System
Logic Summary. Finally, don't forget the program listings -- these
should always be carefully checked before you attempt a local modifica
tion to TSS/360.

SYSTEM PROGRAMMING WITH TSS/360

Time Sharing System/360 is a set of programs. Each program is
intended to perform a part of the overall job that the system as a whole
was designed and developed to do. Systerr prograITming with TSS/360
involves adding to, deleting from, or modifying these programs. By
changing the function of the parts, the function of the whole is
changed. This is the purpose of system programming.

As a system programmer, you are expected to be an experienced
programmer charged with the responsibility of modifying, extending, and
generally tailoring TSS/360 to suit the needs of your installation. To
do this you should be knowledgeable in two areas: ~he design and
construction of TSS/360 and the needs and capacity of your installation.
Within TSS/360 you will have greater authority than nonsystem prograrr
mers. The power to create, however, is also the power to destroy.

Any large, general-purpose programming system is a comprorrise of the
many conflicting demands of its prospective users. System designers
attempt to take these diverse derrands and create a cohesive, efficient
programming system. All situations can never be anticipated. Generali
ty must sometimes be sacrificed for efficiency. Realizing this, the
developers of TSS/360 have produced a modular system; this facilitates
change. The rules, suggestions, and operating conSiderations for making
these changes are described in the following pages.

TSS/360 ORGANIZATION

The programs that make up TSS/360 are of two types. The first type,
resident programs, are brought into main storage and left there,
basically, until the machine is turned off. The second type, virtual
memory programs, are brought into main storage as required and are
removed from main storage when the space is needed. We call the first
kind of program resident; the second kind, nonresident. During the
operation of TSS/360, both kinds of programs "talk" to each other by
using a well defined interface. We will discuss this interface later
when we talk about virtual machines.

Resident programs generally have the responsibility of scheduling the
use of the system's resources. For this reason they take care of most
of the administration of the multiprogramming and multiprocessing going
on in TSS/360. Nonresident programs have the responsibility for
providing services to the user, making it easier for hiro to use the

8

system. An attempt has been made to separate these responsibilities as
much as possible. In this way, resident programs needn't "worry" about
providing user services, and nonresident programs needn't worry about
scheduling a polymorphic computing system. If you keep this division of
function in mind as you read this publication, you'll probably find it
easier to understand the material. Sometimes you will think that we are
discussing two different machines. In a way, we are.

This publication is organized along the lines of TSS/360, itself. A
program that is part of TSS/360 resides in either main or virtual
storage. In other words, it runs with the address translator turned off
or on. This is the basic subdivision of the remainder of the material
in this manual. No matter what area interests you, however, you should
read this entire publication.

FORMAT AND NOTATION

The general format of the macro instructions and supervisor calls
represented in this publication is:

r----T-----~---T---,

I Name I Operation I Operand I
~----+---------+---~
I I I I
I I I I L ____ ~ _________ ~ ___ J

Na:rre Field

The name field may contain a symbol or remain blank. Normally, this
symbol is the name associated with the first executable instruction of
the macro expansion.

Operation Field

The operation field contains the rrnewonic operation code of the macro
instruction or supervisor call. This code rray ce a string of not more
than eight alphameric characters, the first of which is alphabetic.

Operand Field

The operand field may contain no operands (in which case the word
"none" appears in the format illustratio~, or one or wore operands
separated by commas; the two types of operands dre positional and
keyword.

The user must supply positional oferands in the same order as that
shown in the format illustration. If a positional operand is orritted
(the rules about omission are explained later in this section) and
another positional operand is written to the right of the orritted
operand, the comma that would have preceded the omitted operand must be
retained. For example, assume positional operands A, B, and C. These
may be written:

r-------------T------------T-----------T---------T----------T----------,
I I I I I I I
I A,B,C I A"C I A,B I A I ,B I "C I L _____________ i ____________ i ___________ i _________ ~ __________ i __________ J

Keyword operands can appear in any order after the positional
operands. Commas are not used to show omitted keyword operands. All
~eyword operands have the general form: KEYWORD=value-mnemonic.

Section 1: Introduction 9

The terms and· formats used to illustrate operands are defined below:

OPERAND NAME: This is a single word, usually a mnemonic, that
identifies the operand. Unless it is shown in upper-case letters in the
command format, operand name represents a variable for which the user
must supply specific information. A typical operand name is started;
i.e., the address at which you are going to start.

VALUE MNEMONIC: This is a single word or mnemonic that tells how an
operand should be written. The value mnemonics used in this publication
are:

absexp

addr

addrx

10

An absolute expression may be an absolute term or any arithmetic
combination of absolute terms; an absolute term may be an absolute
symbol or self-defining term. All arithmetic operations are
permitted between absolute terms.

In the following examples, ALAN and JAY are relocatable and defined
in the same control section; MARK and ERIC are absolute:

331
MARK
MARK+ERIC-2
ALAN-JAY
MARK*4-ERIC

A relocatable expression or register notation. A relocatable
expression is one whose value would change by n if the program in
which it appears is relocated n bytes away from its originally
assigned area of storage. A general-purpose register can be
written as an absolute expression enclosed in parentheses. When
evaluated, the absolute expression must have a value between 0 and
15, corresponding to the designations of the general-purpose
registers. If, in the following examples, ALAN, GAIL, and JAY are
relocatable and defined in the same control section, and MARK and
ERIC are absolute, the following are relocatable expressions:

ALAN
ALAN + GAIL-JAY
GAIL-MARK * 5
JAY + 3

and the following are valid uses for register notation:

(5)
(ALAN-GAIL)
(ERIC)
(MARK+2)

Register notation, an explicit address, or an implied address. The
valid forms of register notation are described above. An eXFlicit
address is written in the same form as an assembler language
operand, that is , with a base, displacement, and index value. An
explicit address might be written as:

2 (0,5)
o (2,4)
5 (3)

An implied address is written as a symbol, optionally indexed by a
specified index register. For example:

addx

LEE
CARL (2)

An explicit or implied address, as described above.

characters
The character operand is written as a character string. Embedded
commas or blanks are not permitted. Two apostrophes or two
ampersands must be used to represent one apostrophe or one
ampersand in the character string. The character string may not be
enclosed in apostrophes. For example:

2+SADORE*LANE W6H"

A value written exactly as indicated in the description beneath the
format illustration. Thus, LIEN would be written exactly that way
within the program.

hexinteger
A hexidecimal value, which can be written as one or more hexadeci
mal characters from O-F. The limit on the number of hexadecimal
characters that are permitted is given under each format illustra
tion in which this value mnemonic appears. The following are
examples of hexintegers:

integer

01
A2
ABC

A decimal value, which can be written as one or reore decimal digits
from 0-9. The limit on the number of decimal digits that are
permitted is given under each format illustration in which this
value appears. The following are examples of integers:

relexp

006452
100
2134

A relocatable expression is cne whose value would change by n if
the program in which it appears is relocated n bytes away from its
originally assigned area of storage. All relocatable expressions
must have a positive value. A relocatable expression may be a
relocatable term. A relocatable expression may contain relocatable
terms alone or in corr.bination with absolute terres -- under the
following conditions:

1. There must be an odd number of relocatable terms.

2. All relocatable terrrs but one must be paired.

3. The unpaired term must not be directly preceded by a rrinus
sign.

4. A relocatable term must not enter into a multiply or divide
operation.

A relocatatle expression reduces to a single relocatable value.
This value is the value of the odd relocatable terrr, adjusted ty
the values represented by the atsolute terms and/or paired relocat
able terms associated with it. The relocatability attribute is
that of the odd relocatable term. Complex relocatable expressions

Section 1: Introduction 11

are also permitted. Refer to IBM System/360 Time Sharing System:
Assembler Language, Form C28-2000.

In the following examples of relocatable expressions, SAM, JOE, and
FRANK are in the same control section and are relocatable; PT is
absolute.

SAM
SAM-JOE+FRANK
JOE-PT*5
SAM + 3

Note that SAM-JOE is not relocatable, because the difference
between two relocatable addresses is constant.

specsym
A special symbol that may consist of any mixture of alphabetic,
numeric, and/or special characters. For example,

lA370ABCD
OPENHOUSE+PARTY

symbol

text

value

A symbol may be a symbolic address (i.e., a single relocatable
term), such as the name of an instruction in an assembler-language
program, or it may merely be a character string used for identifi
cation, not location (such as the ddname parameter of a DCB macro
instruction) •

In TSS/360, the alphabetic characters are the letters A-Z, and $,
ru, and i. The alphameric characters are the alphaoetic characters
plus the digits 0-9.

The symbol is written as a string of up to eight
characters, the first of which is alphabetic. Embedded
blanks are not permitted. Symbols beginning with the
CHD may not be used, since symbols beginning with those
are reserved for system use. Examples of symbols are:

DDNAMEl
LOOP12
START
#1

alphameric
comIl'·as and
characters
characters

A text operand is written as a string of alphameric characters
enclosed in apostrophes. Embedded blanks and special characters
are permitted. Two apostrophes or two ampersands must be used to
represent one apostrophe or one ampersand in the character string.
The text operand may not exceed 255 characters including the
enclosing apostrophes. For example:

'AREA,PCB,132, ,1256'

A value may be written as an integer or as register notation. For
example of each, see above.

CODED VALUE: This is a string of characters that is to be written
exactly as shown. Coded values always appear in the command formats as
numbers of upper case letters.

positional operands are therefore represented with these elements in
one of three ways, as shown below. The hyphen and the value mnemonic

12

are never written in the actual command.
convenience in displaying the command format.

They serve only as a

Operand
Example From
Command Format

operand name-value mnemonic action-code

operand name-coded value {
TOD }

field - YMD
TASKINIT

coded value EDIT

What the programmer actually writes for each kind of positional
operand is:

Positional Operand
Representation Prograrrrrer Writes

action-code The appropriate action. For example; OFF

field - YMD
{

TOO } The appropriate field. Either TOD, YMD, or
TASKINIT

TASKINIT

EDIT EDIT

The keyword operand consists of a keyword followed by an equal sign
and either a value mnemonic or a coded value. The programmer writes the
keyword, the equal sign, and, when indicated, the coded value exactly as
shown.

Notational Symbols

The symbols listed below are used in command formats to help the user
decide how and when to write certain operands. None of these symbols is
written by the user.

II Brackets are used to denote options. Anything enclosed
within brackets may be entered once or not at all. Stacked
items show alternatives within the optional syntactical
unit. For example:

[line-integer]

[E]

[~~J
{} Braces are used to denote grouping. Stacked items within

the syntactical unit show alternatives. Examples:

ldsname-name t
*ALL ~

Three dots indicate the Freceding syntactical unit may occur
one or more times in succession. For example:

Section 1: Introduction 13

userid-alphname, •••

Underlining of a stacked item Reans it is the default value
of that syntactical unit. (The system will assume the
underlined item is desired if nothing is entered for the
unit.) For example:

[access-a~J 1

This means the user may enter anyone of the four iterr.s or,
if RW (the underlined item) is his choice, he may default
the entire syntactical unit.

In addition to the notational symbols described above, the comma and
the parentheses have a special significance in the coromand formats.

Commas must always be entered to separate operands. They may also be
used to show the omission of o~tional positional operands. Those
operands may be omitted (i.e., defaulted) whenever their default values
are desired. Mandatory postional operands must always be given. The
rules for showing omission are as follows:

1. If another operand will be entered after the omitted operand(s), a
comma must be given for each omission. (Technically, this is the
comma that would have preceded the omitted operand.) The user will
not be prompted for omitted o~erands in this case. For example,
this command shows three omitted operands:

PRINT MYDATA""ERASE,SKIP,1234

Note that a comma must follow the last omitted operand, to separate
it from the following operand.

But if initial operand(s) are omitted, only the separator comroa(s}
are necessary. For example, when a command contains optional
operands A, B, and C, default of A is indicated as

,B,C

and default of A and B would be indicated:

, ,C

2. If no operand will be entered after the omitted operand(s), commas
are optional. In nonconfirmation mode, the user will not te
prompted for the omitted operands. In confirmation mode, he will
te prompted unless he enters co~mas to show the omissions are
intentional. For example, a user in nonconfirmation mode omits the
last six operands of a command:

14

PRINT MYDATA

He is not prompted, and default values are assigned for the missing
operands. If he made the same entry in confirmation mode, he would
be prompted for each missing oFerand. To avoid this, he can write
the command with commas to show that he wants the default values.
Thus he enters

PRINT MYDATA"""

There is no prompting, and default values are assigned.

Note: Commas may not be used to indicate the omission of keyword
operands.

The following table shows various ways of indicating
of a command with optional operands A, B, C, D,
confirmation mode.

default
and E.

values
Assuroe

Contents of Operand Field

A,B,C,D,E

,B,C,D,E

A""E

""

A,

A

A""

A",

no operand entered

System Response

No prompting; operand values are as given.

No prompting. Default value of A assumed;
other operand values are as given.

No prompting. Default values assumed for
B, C, and D; A and E values are as given.

No prompting; default values assumed for
all operands.

Prompting messages issued for C, D, and E.
Default value assumed for Bi A value is
as given.

Prompting messages issued for B, C, D,
and E. A value is as given.

No prompting. Default values assumed for
B, C, C, and Ei A value is as given.

Prompting messages issued for E: Default
values assumed for B, C, and Di A value
is as given.

Prompting messages issued for A, B, C, D,
E

Parentheses must be written by the user exactly as shown. They are
used to mark a group of similar items, such as a series of volume
numbers. They must be given even if there is only one item in the
group.

Section 1: Introduction 15

SECTION 2: RESIDENT PROGRAMS

This section discusses the characteristics of resident TSS/360
programs. These programs make up the resident supervisor.' If you are
primarily interested in the scheduling and resource allocation done by
TSS/360, you will find this section of special interest. We will
discuss the facilities available to you, and the conventions that should
be followed in producing programs that are to be parts of TSS/360.

OPERATING ENVIRONMENT

GETTING STARTED

In TSS/360, a program called Startup has, as one of its duties, the
job of bringing into main storage all the modules that make up the
resident supervisor. Resident programs have the same physical
appearance as any other TSS/360 object prograrr module; they have a
program module dictionary (PMD) and text. Startup acts as a limited
purpose link-loader. It reads the various resident program modules from
a disk pack called the IPL volume, resolves the symbolic references
between these modules, assigns them main storage space, and resolves
address constants contained in them to appropriate values. Startup also
initializes prefixed storage areas (PSAs) and issues an external start
to a second processing unit, if one is attached.

Resident program modules are relocatablei however, once Startup has
transferred control to the resident supervisor, the relocation of
resident programs is complete.

A number of tables, or system control blocks, are also initialized by
startup. Basically, these tables tell the resident supervisor what
resources it has to work with. One of these resources is main storage
space, which will be reserved for the resident supervisor's use. Space
not used Tor resident programs, or set aside for their use, will be
available for allocation to nonresident programs.

NORMAL OPERATION

Extended Control PSW

When Startup transfers control to the resident supervisor, the IEM
2067 processing unit is in the extended control mode. The format of the
extended control program status word (XPSW) is shown in Figure 1.
Because resident programs operate unrelocated, bit 5 in the XPSW, the
relocation bit, is always O. The XPSW is also 0, allowing resident
programs to access all available main storage. The problem state bit is
0, too, since resident programs operate in the supervisor state. Any
program interrupt in the supervisor state is considered an error; to
allow detection of program interrupts, the four program mask bits are
ls. The second word of the XPSW contains the instruction address.
Resident programs are responsible fer controlling dynamic relocation of
programs; they do not, themselves, run with the address translator on.
Addresses used by resident programs are always real addresses, limited
by the storage phYSically available. ~he maximum allowable amount of
main storage is 2,097,151 bytes (221-1) (16 million for 32 bit
addressing) •

16

r--------~~T-~T--------T--------T---T---~------T-------------------,

I 1 I I I I I I I I 1 I
10 1 2 3 141516171 0 1 2 31 4 5 6 710 112 314 5 6 71 0 1 2 3 4 5 6 7 I
~--------+-+-+-+-+--------+--------+---+---+-------+-------------------~
I I 1 I I 1 I 1 I I 1 1
10 0 0 0 1010lXlXl 0 0 0 01 0 x x Olx xix xll 1 1 11 0 0 000 0 0 0 I
~--------+-+-+-+-+--------+--------+---+---+-------+-------------------~
I I I I I I I I I I 1 I
1 NU IMIRIIIEI KEY 1 A M W PIILCIC CIP M S KI NU I L ________ i-i-~i_~ ________ i ________ i ___ i ___ i_ ______ L__ _________________ ~

r--,
I I
I 0 1 2 345 670 1 234 567 0 1 2 345 670 1 2 3 4 567 I
~--i
I I
I 000 0 0 0 0 0 0 0 0 x I
~--~
I I
I INSTRUCTION A[DRESS I
~---~

M
R
I
E
KEY
A
M
W
P
ILC
CC
PMSK

NU

Mode, 24-bit (~ or 32-bit (1)
Relocation, off (0) or on (1)
I/O interrupt mask, disallowed (O) or allowed (1)
External interrupt mask, disallowed (0) or allowed (1)
Storage protection key
Character code, EBCDIC (0) or ASCII (1)
Machine check mask, disallowed (0) or allowed (1)
Wait state, running (0) or waiting (1)
Privileged state, supervisor (0) or problem (1)
Instruction length code
Condition code
Program mask

Not used -- must be 0 __ J

Figure 1. Extended Control Program Status Word

The Prefixed Storage Area

In a simplex or half-duplex System/360 Model 67 configuration, there
is only one processing unit. In addition to its general-FurFose and
floating-point registers, this processor has 16 extended-control regis
ters, eight associative registers, an interval timer, a dynarric address
translation (DA~ unit, and other components necessary for fetching and
executing instructions. (For a description of the nature and the
function of the extended-control registers, refer to Functional Charac
teristics.) Associated with the CPU, and logically a part of it, is a
page (4096 bytes) of main storage called the prefixed storage area
(PSA); it is the main storage page referenced by real addresses 0
through 4095. The processing unit uses the prefixed storage area for
fetching and storing new and old PSWs, for storing the interval tirr-er
value, and for initial~prograre load (IP~.

The PSA is a special page; the high-order 12 bits of its addresses
are always zero. Because of this, a PSA address can always be detected
by the computing system; any real address whose 12 high-order bits are
zero is a PSA address. Prefixing involves substituting an alternate set
of bits for the 12 high-order zero bits in a PSA address before
accessing main storage. It permits the prefixed storage area to be
designated in any place in rrain storage. The ability to vary thE
location of the PSA gives us the flexibility of not having to rely on

Section 2: Resident Prograws 17

the operation of a single main storage unit for the successful operation
of the system.

There are two prefix quantities available for changing PSA addresses:
the primary prefix and the alternate prefix. The selection of the
prefix quantity enables us to select which page of which storage unit
will be used to contain the PSA.

In a duplex System/360 Model 67 configuration, there are two
processing units; each has its own prefixed storage area, just as each
has its own set of general-purpose registers, floating-point registers,
extended-control registers, associative registers, and interval timer.
Each processing unit also has its own primary and alternate prefix
quantity.

It does not matter how a PSA address is produced; it may be the
result of normal program execution.

A PSA is addressable by two sets of (real) addresses. Clearly, the
PSA can be addressed by using 0 through 4095; this is why it is a PSA.
If we know what prefix quantity a processing unit is using to address
its PSA, we can use that prefix quantity ourselves to access the PSA
without prefixing. This is like using "before" and "after" addresses.
Each PSA has a set of "before" addresses, 0 through 4095, and a set of
"after" addresses, the addresses produced by substituting a processing
unit's prefix quantity for the 12 high-order bits of the "beforen
addresses. A processing unit can use either set of addresses to access
its PSA; the first set involves prefixing, the second set does not.

The advantage of the second set of addresses, the "after" addresses,
is not that a processing unit can address its own PSA. If processor A
knows processor B's prefix quantity, then by using that quantity,
processor A can access processor B'S PSA. Processor A cannot access
processor B'S PSA in any other way, since the other set of addresses
(0-4095) causes processor A to access its own PSA because these
addresses are automatically prefixed. By knowing each other's prefix
quantity, processors in a multiple processor system can fetch and store
from one another'S PSAs. This is an important capability for errcr
recovery and reconfiguration. In a dual system, page zero in main
storage is not used since its actual and prefix addresses would be the
same; this would prohibit one of the processing units from referencing
page zero by using its actual (not prefix) addresses.

Even though we keep each processing unit's PSA separate from the
other's, the PSAs are organized in the same way. This is somewhat
analogous to a processor's private registers. The PSAs, like the
registers, are physically separate but logically identical. A PSA may
be considered as a nsocket" when a processing unit is "plugged" into the
main storage of the system.

The format of the prefixed storage area can be seen by copying the
DSECT. Bytes 0 through 327 are fixed by the design of the IBM 2067
processing unit. Bytes 328 through 4095 are not required for an
explicit 2067 processing unit function, such as interruption handling,
but are used as a special storage area by TSS/360. The PSA is used to
store data that relates to the processing unit in which the PSA belongs;
data that applies to the systerr. as a whole is kept in common storage.

SUMMARY

Resident programs make up the part of TSS/360 known as the resident
supervisor. The extended control mode of operation is normal for
resident programs. These programs operating in the supervisor state
with the address translator turned off, with an XPSW protection key of

18

zero, may execute any Model 67 instruction, and access all main storage
except page zero in a dual system. Although each processing unit in a
multiprocessor configuration shares common main storage, each also has a
single private page of main storage, the PSA. Each processing unit also
has 16 general-purpose registers, four floating-point registers, 16
extended-control registers, eight associative registers, an interval
timer, an address translator, and other components for fetching and
executing instructions.

DUMMY SECTIONS

PURPOSE

The dummy section (DSECT) is used extensively throughout ~SS/360 so
that parts of the system can refer to commonly used data items by
symbolic names. You can refer to a field in a system control block ty
the name assigned to that field in the dummy section; this frees you
from having to use the fieldls numeric location. (Actually, the dummy
section supplies a n~ber of symbolic field names, lengths, and relative
positions Which the assembler translates into numeric displacements.)
yOU neednlt worry about the specific physical structure of the systerr
control block to which you are referring if you use a DSECT to describe
the control block. All you need be concerned with is the field
structure ~it, byte, halfword, etc.). Essentially, you donlt care
where the field is located within the system control block. Thus, if
the field position changes, but the field length, boundary alignment,
and the meaning of its contents donlt change, your program will still
run properly after it is reassembled. Reassembly is necessary since
displacement values may have changed as a result of using the new dumny
section.

In TSS/360, the dummy section is more than a programmer convenience.
Dummy sections for system control blocks, obtained from the asserr-bler
copy/macro library, ensure that all programs using the same system
control block use the identical format. The set of ~SS/360 dumrry
sections can be viewed as a central, current, assembler-oriented
description of all system control blocks.

USE

A typical TSS/360 dummy section is illustrated in Figure 3. We use
several conventions when working with dummy sections. These conventions
are intended to minimize the need for redesigning programs if the dummy
sections they use are changed. Dummy section fields that are integral
multiples of bytes in length are simply referred to in a program by
using the name of the field. Fields that are less than one byte long
are referred to by using a mask; we must do this since the IEM 2067
processing unit can directly address no field shorter than a tyte. The
name of the mask associated with a field that is less than one byte long
is obtained by adding the character M to the field name. If Ne wanted
to determine whether the field VPSAI were a 1 we might write,

TM
BZ

VPSAI,VPSAIM
FIELDOFF

TEST UNDER MASK
BRANCH IF ZERO

Note that we donlt have to know where the field VPSAI is located
within the system control block or what bit pattern defines the mask
VPSAIM. This information is supplied by the dummy section which we
incorporate into our program from the assewbler copy/rr-acro litrary. The
field we are testing, with the test under mask (TM) instruction, need
not be restricted to a single bit. It can be any co~bination of up to
eight bits, as long as all the bits fall within one byte. The

Section 2: Resident Programs 19

conditional branch instruction can be used to determine if the bits we
are testing are all 1s, alIOs, or mixed.

For bit fields, the field name is always the name of the byte in
which the bits appear. Since a single byte can have up to 256 different
conbinations of bits, a single byte could have up to 256 different bit
fieldS. We frequently find, therefore, that the names of different bit
fields are synonomous; that is, they ~oint to the same byte. The tit
mask corresponding to the field name must be used to extract the proper
bits.

The dummy section itself does not take up program storage space; it
is used exclusively to describe a storage area to which it is applied.
To properly use a dummy section, we first load a general register with
an address constant, pointing to a storage area containing information
descrited by the durr~y section. Then we issue a USING pseudo-operation
to tell the assembler that the corresponding dummy section format is to
be applied to the storage area pointed to by the general register given
in the USING statement. It looks like this:

L
USING

5,ADCON
CHAVPS,5

assuming that ADCON has been defined as,

ADCCN DC V (WCRKAREA)

This would apply the format given by CHAVPS to the storage area
beginning at the symbolic location work area.

We can, of course, define our own dummy sections and use them as we
see fit. In most cases, though, we will get the du~my section froIT the
assembler copy/macro library (see Section 4, "Generating and Maintaining
TSS/360"). We can do this simply by issuing a CCFY pseudo-operation,
with the name of the dummy section we want, as the operand. Here is an
example:

COpy CHAVPS

The dummy section currently contained on the assembler copy macro
library will be included in our program at the point of the COpy
statement. This will enable us to symbolically reference the system
control block CHAVPS, as it is currently defined (see IBM System/360
Time Sharing System: System Control Blocks, Forff Y28-2011) •

MODULE STRUCTURE

Like any other object module, resident object program modules consist
of a program module dictionary (PMD) and hexadecirral text. Usually,
resident programs contain a single read-only, nonprototype control
section. A resident program may contain address constants to te
computed and placed into the text by startu~. The read-only control
sections do not change; they are never ITodified during frograrr
execution.

In addition to read-only control sections, the resident supervisor
contains tables or system control blocks. A systero control block is
nothing more than some data contained in main storage and organized in
some way known to the programs that use it. The system table, CHBSYS,
is an example of a systerr· control block used by d number of resident
programs; it contains such inforrraticn as the size of the time slice,
the operational cycle tirre, and other ~arameters affecting the cverall
operation of the system.

20

possibility that one processor can change a system
the same time another processor is working on it, the
be protected, or interlocked, with a lock byte. A
single byte used to control the accessing of variable

If there is any
control block at
control block must
lock byte is a
information. The
byte is on or off

test and set instruction is used to find out if a lock

TEST TS
BC

(and also to turn it on). For example:

LOCK
1,WAIT

tests a lock byte called LOCK; if LOCK is all ls, control is transferred
to WAIT. A lock byte is set (or on) if it is all ls (actually, cnly the
high-order bit is teste~; it is reset (or off) if it is alIOs.

Some programs do not need to test lock bytes, since they are
subroutines of programs that do test. Some control blocks are net
individually tested (and do not contain a lock byte) but are gathered
into queues; the entire queue is interlocked instead of its rrembers.

A lock byte is reset w.hen the prograre that set it has finished using
the protected information. In most cases a second processing unit will
only wait a certain length of time for a lock byte to be reset: if the
lock byte is not reset within that time period, a minor system error is
recognized. When control is returned to the point of interruption ty
the ERROR routine, accessing the protected data proceeds.

In addition to read-only control sections and interlocked system
control blocks, the resident supervisor also contains a nurrber of pages
or a "pool" of main storage that may be used, as required, by resident
programs. The program controlling the use of this storage pool is the
supervisor core allocation module. Since the supervisor core allocatien
module itself cannot require the allocation of storage space to free
working registers it saves the registers in a special area in the FSA.

Relatively few system control blocks continuously require main
storage space; most have transient storage needs. Resident prograrrs
usually obtain storage space for transient data from the supervisor core
allocation module. When the need for this data no longer exists, the
space is returned to the supervisor core release subroutine; this
dynamic allocation of main storage space ensures that the resident
supervisor doesn't tie up more storage space than it actually needs.
Most transient data areas cannot be accessed simultaneously by rrultiple
processing units; these control blocks are not interlocked. However, a
few transient data areas can be accessed by rrultiple processing units
and are, therefore, interlocked.

Some data areas are known only to one processing unit because one of
its registers points to the data area; other data areas are known te all
processing units because the address of the data area is kept in COIT'mon
main storage.

SYSTEM CONTROL BLOCKS

The resident supervisor consists of three parts: read-only centrol
sections (resident), nontransient system control blocks, and a pool of
dynamically allocatable main storage. The resident supervisor uses the
storage pool to create transient systerr control blocks such as the
generalized queue entry (GQE) and the page control block (PCB). During
their "lifetimes" transient control blocks are resident in wain storage.
Transient control blocks exist only as long as they are needed; this rray
be a few milliseconds or a few minutes. When they are no longer needed,
the main storage space they occupy is returned for reallocation.

Section 2: Resident Proqrarrs 21

The resident supervisor also creates nonresident system control
blocks. Nonresident system control blocks are brought into Rain storage
only when needed. They exist on sOIDe storage device for a relatively
long time, for example, for an entire terminal session. However, their
time in main storage may represent only a srrall fraction of their
lifetime in the system.

MODULE DESIGN CONSIDERATIONS

Let's assume you have a change to TSS/360 in mind, and that you very
clearly understand the logic of the change you wish to make. The next
question is: How do you construct the program? Resident programs are
different from nonresident programs in one n.ajor way: Resident r;rograns
do not contain prototype control sections (PSECT). As you know, the
purpose of a prototype control section is to contain any part of a
program that changes as a result of relocation or execution. As r;ointed
out previously, resident programs never change during execution. The
address constants used by resident programs are resolved by startur;;
they will not be changed after the system is initialized. The only
thing left in the resident supervisor that can change are the variables
used by resident programs. These variables are kept in general
registers, system control blocks, or workiug storage obtained from the
supervisor core allocation subroutine. Your program must be designed to
use one of these areas for holding variable information; which cne you
use depends on what you are attempting to do. The key test of a
resident program's correct construction is that it be simultaneously
executable by multiple processing units. If the general registers are
used as working storage, multiple processors may simultaneously execute
the program, since each processor sur:r:lies its own registers. If a
system control block is used, the lock byte controls the ~odification of
variable information. If storage obtained from the supervisor core
allocation subroutine is used, each allocation of storage is ker;t
separate from the others to ensure the protection of variables.

ENABLING AND DISABLING INTERRUPTS

Because they operate in the sur:ervisor state, resident programs can
enable and disable interrupts by setting and resetting the system mask
or by altering the contents of extended-control registers 4, 5, and 6.
The instruction

SSM =X'OO'

will set bits 0 through 7 of the extended program status word to zero.
The processing unit affected will interpret these bits as: 24-bit
relocation mode, address translator off, and I/C and external interrupts
disabled. To restore interrupts,

SSM =X'OB'

will be interpreted by the r;rocessor as: 32-bit relocation mode,
address translator off, and I/O and external interrur:ts enabled. When
the address translator is turned off, the setting of the relocation mode
bit is academic; it is set to 32-bit Kode here only for the sake of
illustration. If you wish to rrodify the extended-control registers, the
instructions

22

STMC
L
N
ST
LMC

4,4,SAVE
6,SAVE
6,=X'BFFFFFFF'
6,SCRATCH
4, 4, SCRATCH

will save the contents of control register 4, and disable interruFts
from channel 1 (as viewed by the Frocessing unit issuing the LMC). The
instruction

LMC 4,4,SAVE

will restore the original contents of control register 4. The work
areas for SAVE and SCRATCH would be obtained from the supervisor core
allocation subroutine.

NAMING CONVENTIONS

PROGRAM MODULE NAMES

All TSS/360 programs have standardized ~rogram module names, control
section names, and entry point names. When a rrogram nodule tecorres
part of the system, any reference to it must use the module name, an
entry point name, or a control section name. TSS/360 prograrr rrodule
names consist of five characters; resident program module names have the
form:

CEAXX

where XX are alphameric characters that uniquely identify the module
within the resident supervisor. All TSS/360 rrogran module names regin
with C; the characters EA identify resident supervisor modules.

All entry point and control section na~es begin with the frogram
module name, like this:

CEAXXN

where N is a character that uniquely identifies the entry feint or
control section within the program mcdule. Note that special characters
are not used in TSS/360 names.

As an example, the pathfinder module has the narne, CEAA5; its ent~J
points are CEAA5P, CEAA5R, and CEAA5S.

SYSTEM CONTROL BLOCK NAMES

In addition to program modules, the resident supervisor is made uF of
system control blocks. A system control block usually requires two
names: the name of the dummy section (DSECT) that describes its format,
and the symbolic address that points to the inferrration described by the
dummy section. All TSS/360 programs, resident and nonresident, use the
same rules to name system control blocks. A dummy section name looks
like this,

CHAXXX

The characters XXX are assigned to uniquely identify the Jumny
section. All fields used within the dummy section look like this:

XXXFFF

The characters XXX are the sarr.e as the last three characters of the
dummy section name. The characters FFF are any three characters that
uniquely identify the field within the dummy section. For example,
these are the assembler statements for a typical dumThY sectien:

Section 2: Resident Prograrrs 23

CHAABC DSECT CONTROL BLOCK NAME
ABCFCA DS 1F FIELD NAME
ABCRJG DS 4F FIELC NAME
ABCXYZ DS 3C FIELD NAME
ABCFLG EQU ABCXYZ FLAG NAME
ABCFLGM EQU X'SO' FLAG MASK

Note that the field name, ABCFLG, is the name of a byte ~ontaining a
flag tit. The field ABCFLGM can be used as a mask byte in a test under
mask instruction (TM) to test the condition of the flag. Mask names are
of the form,

XXXFFFM

where XXXFFF is the name of the dummy section field to which the mask is
applied. For more information on dummy section usage, see " Dumrry
Sections" above.

The dummy section is, of course, only a description of information;
it does not supply anything more than the format of the information it
describes. Symbolic addresses that foint to areas of storage described
by dummy sections are named like this:

CHBXXX

where the characters XXX are the same as the last three characters of
the dummy section name. For example,

DATA DC V (CHBABC)

is an address constant pointing to an area of storage organized as
described by the dummy section CHAABC.

Remember, CHAXXX says what the information looks like; CHBXXX says
where the information is located. The DSECT can only be used for
nontransient system control blocks. Symbols generated by macro instruc
tions always begin with CHD. For example,

CHD103 MNOTE 3,'ERROR'

might be found in a ~acro definition.

SECONDARY ENTRY POINTS

Resident modules with more than one entry point are designed sc that
their base register always points to the primary entry point, even if
control of the modules has been transferred to secondary point coding to
set up the module's base register to point to the primary entry point.
Sometimes its done like this:

24

BASE
ENTRY 1

ENTRY2

ADCON

EQU
USING
•
•
•
BASR
USING
L
USING
•
•
•
DC

15
*,BASE

BASE,O
*,BASE
BASE,ADCON
ENTRY1,BASE

A (ENTRY1)

where ENTRY2, the secondary entry point, establishes its own addressabi
lity and· sets up BASE with the address of ENTRY1 (ADCON roust be within
4096 bytes of BASE). If we don't do this, and try to use an address
"above" the secondary entry point, that address can't be reached; this
is why ADCON is "below" ENTRY2. Although we could have assumed that
register BASE contained the address of the secondary entry point and
eliminated the BASR instruction at the secondary entry ~oint this
wouldn't allow us to proceed sequentially from the instruction immedi
ately preceeding the BASR instruction. The secondary entry Feint,
ENTRY2, coded this way, will operate properly if control is transferred
to it, or if control passes to it sequentially; that is, without a
branch.

SUPERVISOR LINKAGE CONVENTIONS

Resident programs link to subroutines by using a v-type address
constant N-con) or an A-type address constant and an EXTRN staterrent.
Startup will resolve all symbolic references among resident programs,
and supply the correct values for the address constants. Resident
programs never use R-type address constants (they do not contain
prototype control sections). One resident program transfers control to
another by a branch-and-store (BASR) instructien. Any understanding
between the calling and the called programs concerning the contents of
the general registers is arbitrary and deFends on the particular
programs involved. The calling program must know what register the
called program is using as a base register. To transfer control, the
calling program loads the address of the called program's entry point
into the called program's base register, like this,

L BASE,=V(ENTRYPOINT)

Then the calling program branches to that entry point,

BASR 14,BASE

At the other end of the line, the called program eXFects its base
register to contain the address of its entry points. The called program
usually begins like this:

USING *,BASE

to tell the assembler that register EASE will contain the address of the
called program's entry point when control is transferred.

GETTING RESIDENT WORKING SPACE

We do not assemble working space into resident prograrrs for twe
reasons: it is inefficient to asserrble sFace that may not be used into
d program; it would require the resident program to schedule the use cf
that space if the program were to be simultaneously executed by multiple
processing units. Resident prograrr.s use four rrodules to obtain werking
space for their execution. These routines are supervisor core alloca
tion (CEAL01), supervisor core release (CEAL02), user allecatien
(CEANB), and user core release (CEAL04). User core is allocated frer:.

one pool and supervisor core from another but the surervisor pool reay be
replenished from the core released by user core release. The su~erviser
core allocation routine satisfies requests for resident working space
such as control blocks like the generalized queue entry (GyE) and the
task status index (TSI). The user core allocation routine satisfies
requests for storage for extended task status indexes (XTSI) and fcr
nonresident program pages.

Section 2: Resident Proqraros 25

The supervisor core allocation subroutine is a special program since
it has private space in the prefixed storage area (PSA), which it uses
to store the contents of the general registers. It must use this area
since there is no subroutine that it can call to get working space.
Programs that call the supervisor core allocation subroutine must save
four registers (0, 1, 14, and 15) before transferring control. They
can't do this without working space, though, so four words in the
prefixed area (PSASC~ are set aside for programs calling the supervisor
core allocation subroutine. This lets a called program immediately
become a calling program without losing the contents of any of the
general registers that were supplied to it. Since a program calling
supervisor core allocation must use registers 0, 1, 14, and 15 to
transfer control (and parameters), it would lose the original contents
of these registers if it had no place to save them. A typical use of
the supervisor core allocation subroutine might leok like this:

SUBR

RTRN

USING
COpy
USING
CSECT
STM
LA
SR
L
BASR
LM
•
•
•

ADCON DC

*,15
CHAPSA
CHAPSA,O

14,1,PSASCU
0,128
1, 1
15,ADCON
14,15
14,1,PSASCU

V (CEALO 1)

REGISTER 15 CCNTAINS BASE
GET THE DSECT
PSA DSECT NEEDS NO BASE
REESTAELISH CSECT
SAVE REGS 0, 1, 14, and 15 IN PSA
REQUEST 128 BYTES
CPT IONS ALL ZERO
POINTER TO SUPVR CORE ALLOC
TRANSFER CONTROL
RESTORE REGS 14, 15, 0, AND 1

ADDR SUPVR CORE ALLOC

In this example, when supervisor core allocation returns control,
register 1 points to a 128-byte area of main storage that can be used
for any further transient storage needs this program may have. The
supervisor core allocation subroutine will not disturb the register
contents saved by this program in PSASCU since supervisor core alloca
tion has its own private save area in the PSA (PSACAS).

In order to give this space back to the supervisor core release
module, the program might be coded like this:

DONE STM
L
LA
L
BASR

RTRN LM
BR

ADCN2 DC

14,1,PSASCU
1,SCAREA
0,128
15,ADCN2
14,15
14,l,PSASCU
14
V (CEAL02)

SAVE REGS
ADDRESS OF SPACE WE'RE RETURNING
GIVE BACK 128 BYTES
PCINTER TO SUPVR CORE RETRN
TRANSFER CONTRCL
RESTCRE REGS
RETURN TO ORIGINAL CALLER
ADDR SUPVR CORE RELEASE

This will return for reallocation the 128 bytes obtained in the previous
example.

PROGRAMMING CONVENTION COMMENTS

There is no requirement for resident programs to use particular
registers as base registers, return registers, or parameter registers;
however, almost all resident programs use these registers,

26

register 0 -- parameter register
register 1 -- parameter register
register 14 return address of calling rrogram
register 15 -- entry point of program being called

Because of these register assignments, most programs being called begin
with,

USING *,15

and end with,

BR 14

or the equivalent.

A number of resident programs, such as SVC processing routines,
return control to a location pointed to by a V-type address constant
instead of branching to the address contained in register 14. For
example,

THRU L
BR

ADCN3 DC

14,ADCN3
14
V (CEAHND)

GET RETURN ADDRESS
TRANSFER CONTROL
ACDR SVC Q PROC RETURN

is the way that a SVC processing routine can transfer contrel back tc
the superv1sor call queue processor. This is done because most SVC
processors require two common functions to be performed and this Forticn
of the SVC queue processor provides them with the functions.

Section 2: Resident ProgrdITS 27

SECTION 3: NONRESIDENT PROGRAMS

Nonresident, or virtual storage, frograrr.s are programs that oferate
with the address translation unit turned on; they do not permanently
reside in main storage. There are two kinds of virtual storage
programs: privileged and nonprivileged. For a conceptual understanding
of virtual storage, you should read System/360 Concepts and Facilities.

VIRTUAL MACHINE STRUCTURE

A virtual machine is a one level store achieved through the use of
the address translator. A virtual machine running in the froblerr state
is analogous to, though not identical with, one computer being emulated
by another. A virtual machine has storage and an instruction set. Just
as System/360 sUbdivides its instruction set into two states, supervisor
and problem, a virtual machine has a frivileged and a ncnprivileged
supervisor call set.

The resident supervisor is responsible for scheduling and allocating
the computing system's resources to satisfy the collective derrands
placed upon these resources by virtual machines. The resident supervi
sor does this by parceling processing unit time, rr-ain storage space, and
data channel time to the virtual machines it is sUfPorting.

A virtual machine has a large virtual storage whose size is
essentially inde~endent of the physical main storage available to the
resident superv~sor. Virtual storage is thought of as being organized
into pages of 4096 bytes which are. further collected into segments cf
256 pages. Depending on the type of address translator installed on the
IBM 2067 processing unit, virtual storage can consist of a rroaxirrum cf 16
segments (16,777,216 bytes) or 4096 segments (4,294,967,296 bytes).

A virtual machine appears to be like any other machine to a user.
Its implementation, however, is different; it is implerrented with
programming as well as hard-wired components. By "juggling" the
system's resources, the resident supervisor can sUffort a numter of
virtual machines at the same time. Each of these machines appears to be
independent of tbe others. As we discuss virtual wachines, we generally
will talk about a single one for simrlicity of discussion; what we say
about a single virtual machine applies to all. The fact that there way
be many virtual machines supforted at the same time by the resident
supervisor - although it may cause problems of contention for resources
- does not affect the logical appearance of any of the virtual machines.

VIRTUAL PRCGRAM STATUS WORD

Each virtual machine has 16 general-pur~ose registers and four
floating-point registers. The status cf a virtual machine is described
by its virtual program status word (VPSW), which is shown in Figure 2.

INTERRUPT STORAGE AREA

Virtual machines can be interrupted with a virtual, or task,
interrupt. When this occurs, the inforrration comprising the current
VPSW is stored in a predetermined area of virtual storage; a new VPS~,
obtained from another location in that area, becomes the current VPSW
(it is not apparent to the task that this is done by supervisor
programming). The area, called the interrupt storage area (ISA) is

28

analogous to the prefixed storage area (PSA) in the sys,tem' s real main
storage. The interrupt storage area is bytes 0 through 4095 of virtual
storage. There are six different virtual, or task, interrupts: pro
gram, supervisor call, external, asynchronous I/O, task-tirr.er, and
synchronous I/O. The occurrence of four of these interrupts is
controlled by the task mask in the VPSW, analogous to the system mask in
the PSW. If the mask bit corresponding to a given interrupt type is 0,
or if the interrupt storage area is locked, interrupts for that type
will be ·stacked," i.e., saved by the resident supervisor, until the
mask bit is set to 1.

Each virtual machine has an instruction set consisting of all
System/360 problem state instructions and a nu~ber of superv1sor call
instructions. The supervisor call instructions are further divided into
SVCS that can be issued only by 'privileged prograrr-s, SVCs that can be
issued only by nonprivileged programs, and SVCs that can be issued by
privileged or nonprivileged programs depending on the authority code of
the programmer. The privileged SVCs are analogous to System/360
supervisor state instructions. Each of these SVCs will be described in
detail later.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

P NU X A T I ILC CC DO EU SF INTERRUPT CODE

o 2345670 2345670 2345670

INSTRUCTION ADDRESS

Legend

P=Privilege. (0) privileged or (1) nonprivileged

NU=Not used

The next four bits are the task mask and are interpreted:

X=External interrupts

A = Asynchronous interrupts

T=Timer interrupts

I = Synchronous interrupts

In all cases, ~ero indicates interrupts disallowed and one indicates
interrupts alloWed
ILC=lnstruction length code
CC=Condition code
FO = Fixed point overflow mask
DO=Decimaloverflow mask
EU=Exponential overflow mask
SF= Loss of significance mask

In each of the' above four bits, one permits an interrupt on the
occurrance of the condition and zero inhibits the interrupt.

Figure 2. Virtual Program Status Word

2 3 4 5 6 7 -

2 3 4 5 6 7

The current VPSW includes the address of the instruction fcllowing
the last instruction executed prior to the interrupt. While the
interrupt is being serviced or is waiting tc be serviced, this address
is Significant in that it points to the instruction at which expcuticn
is to be resumed. ence execution is resuwed, the current VPSW continues

SfC:'ction 3: Nonresident Proqrar·.1:3 29

to point to the same instruction; it is not incremented as each
instruction is executed and, therefore, loses its significance.

LINKAGE CONVENTIONS

The purpose of a linkage convention is to standardize the method of
transferring information and control froIT one :r:rogram (the calling
program) to another (the called program). Standardization elirrinates
redundant register usage and allows the use of system macro instructions
for the generation of program linkages. Any linkage convention is a
compromise between generality and efficiency - the rr.ost general linkage
convention is not the most efficient, and vice versa. Therefore,
TSS/360 uses a number of linkage ccnventions designed to fit a variety
of situations while attempting to keep the conventions as similar as
possible.

TSS/360 linkage conventions require the calling :r:rograro to sUffly a
save area for use by th~ called program. A save area is an area cf
virtual storage, accessible to the called program, in which it can save
the contents of general-purpose registers, if necessary. Also, a save
area contains forward and backward address Fointers to other save areas,
forming a chain. If one program calls another, and the second :r:rogram
calls a third, the address :r:ointers relate the respective save areas.
Thus, if you know one save area is located, you can find the others.
The format used in TSS/360 is shown in Figure 3.

The four basic linkage conventions followed by TSS/360 programs
residing in virtual storage are summarized in Figure 4. Note that tYfe
I has two variations; this yields five distinct linkage conventions;
these are the only linkage conventions in use among virtual storage
program in TSS/360. All TSS/360 programs are constructed to receive or
transfer control, using one of these linkage types. If you wish to add
or modify TSS/360 programs you must use these linkage conventions.

In general, TSS/360 systeIT programs use macro instructions for
generating program linkages. You should take care, therefore, not to
confuse a linkage-producing rracro instruction with the program linkage
itself. It is preferable to use a macro instruction to generate a
program linkage. Some macro instructions generate more than one type of
program linkage; for example, GETMAIN can generate either a type-I or a
type-II linkage.

The called program frequently does not know which linkage type was
used to transfer control to it; generally, it does not need to know.
There are exceptions; we shall cover them later. The linkage type must
be known by the calling programs, since it is the calling :r:rcgrarr that
supplies the linkage instructions, save area, and proper register
contents.

TYPE-I LINKAGE

Type-I linkage is used for transfer of control and information
between two programs of the. saroe privilege. A nonpri vi leged Frograro rr.ay
never use type-I linkage to call a privileged program; a privileged
program may never use type-I linkage to call a nonprivileged frograrr..
Type-I Linkage involves these conventions:

1. Use of the standard save area.
2. Use of specific registers for designated functions.
3. Use of the branch-and-store instruction for the transfer of contrel

from the calling prograro to the called.
4. Preservation of register integrity.

30

r-------T-----T--,
CHASAV DSECT FORMAT OF STANDARD 19-WCRD SAVE AREA

DS

SAVLEN DS

SAVBPT DS

*
SAVFPT DS

*
SAVR14 DS

SAVR15 DS

SAVRO DS

SAVRl DS

SAVR2 DS

SAVR3 DS

SAVR4 DS

SAVR5 DS

SAVR6 DS

SAVR7 DS

SAVR8 DS

SAVR9 DS

SAVR10 DS

SAVR 11 DS

SAVR12 DS
I

OF

IF

lF

IF

1F

IF

IF

1F

IF

IF

IF

lF

IF

lF

IF

IF

1F

1F

1F

ALIGN ON WORD BOUNDARY

LENGTH OF SAVE AREA AND APPENDAGES IN BYTES

BACKWARD POINTER. ADDRESS CF SAVE AREA, IF ANY,
USED BY CALLI,NG ~OUTINE

FORWARD POINTER. ADDRESS OF SAVE AREA, IF ANY,
SUPPLIED BY USER OF THIS AREA TO PROGRAMS IT CALLS

USED BY CALLED PROGRAM TO SAVE GPR 14

USE CALLED PROGRAM TO SAVE GPR15

USED BY CALLED PROGRAM TO SAVE GPR 0

USED BY CALLED PROGRAM TO SAVE GPR 1

USED BY CALLED PROGRAM TO SAVE GPR 2

USED BY CALLED PROGRAM TO SAVE GPR 3

USED BY CALLED PROGRAM TO SAVE GPR 4

USED BY CALLED PRCGRAM TO SAVE GPR 5

USED BY CALLED PRCGRAM '10 SAVE GFR 6

USED BY CALLED PROGRAM TO SAVE GPR 7

USED BY CALLED PRCGRAM TO SAVE GFR 8

USED BY CALLED PROGRAM TO SAVE GPR 9

USED BY CALLED PROGRAM TO SAVE GPR 10

USED BY CALLED PROGRAM TO SAVE GPF 11

USED BY CALLED PRCGRAM TO SAVE GPR 12

SAVPCT IDS IF R(ENTRY POINT) THIS IS SET BY ~HE CALLING
* I PROGRAM BEFORE TRANSFERRING CCNTROL AND
* I POINTS TC THE CONTROL SECTION IN WHICH THE
* I ENTRY POINT IS DEFINED
~-------~-----~--~
I Notes:
I 1. If a program is called and, in turn, calls another ~~ograw, it
I must, upon receiving control, establish its own save area, save
f the address of the calling programs save area in the second word
I of its own save area and save the ~ddress of its own save area in
I the third word of the calling ~rograro's save area.
I
I 2.
I
I
I
I
I
I
j

Field SAVPCT contains the R-con of the called prograw's entry
point. This R-con way or way not be an address of a PSECT. If
the called program was assembled without prototy~e centrel
sections (PSECTs), the control section containing the ENTRY
statement for the entry point being used by the calling ~rcgrarr
will be the control section ~ointed to by SAVPCT. See System/360
AssemDler Languaqe for more details concerning R- and V-typej
address constdnts. I l __ J

£igure 3. Format of Standard Save Area

Section 3: Nonresident PrograRs 31

Type Transfer Save-area Parameter Entry-Point Return Save-Area PSECT

Control Format Registers Address in Address in Address in Address in

via (maximum) Register * Register Register Register **

I (normal) BASR Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A

II SVC 121 Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
(ENTER)

1M/II BASR or Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
SVC 121
(ENTER)

III SVC 254 Standard GPR 1 GPR 15 GPR 14 GPR 13 N/A
(LVPSW)

IV BASR None GPR 0-6 GPR 15 GPR 14 None GPR 13

(restricted)

Also used for return code, if any.

Very often, but not always, the PSECT and the save-area address are the same.

Figure 4. Virtual Prograro Linkage Conventions

Use of the Save Area

You will find it helpful to refer to Figure 3 for the following
discussion. Whenever a program uses type-I linkage to call another
program, the calling program wust supply a save area for use by the
called program. Prior to transferring control to the called prograrr,
the calling program puts certain information, if applicable, into the
save area. The calling program is required to preset some fields of the
save area; it may preset others. The first word of the save area
(SAVLE~ must contain the length, in bytes, of the save area (minirruIT 76

bytes) and any appendages to it. The last, or 19th, word .of the save
area (SAVPCT) must contain the R-type address constant (R-con) of the
entry point to which the calling progaro is transferring control.

The R-value is the address of the control section in which the entry
point is defined. It is possible, however, that the called program
doesn't have any prototype control sections (PSECTS). In this case, the
R-con will be the address of the control section containing the ENTRY
statement for the entry point. In addition to narring an entry point,
and R-value can use a control-section name or a program-module name. If
a control-section name is used, the R-value will point to the beginning
of the control section. If a program-module name is used, the R-value
will point to the first prototype control section contained in the
program module. If the module does not have any prototype control
sections, the R-value will point to the first nonprototype control
section.

One other field that rr,ust be set by the calling prograw, prior to
transferring control to the called program, is the second word (SAVBPT)
of the save-area. This field is an address pointer to a save area used
by the calling program when it was a called program. The calling
program may not be using a save area, though, and this field rray contain
zero. If this field does not contain zerc, the called program may
assume that it points to the save area being used by the calling
program.

All other fields of the save area may contain anything.
program should not assume that fields other than the length
R-con field, and the backward-pointer field contain
information.

The called
field, the
meaningful

After receiving control, the called program must save the contents of
all the general registers, except register 13, in the save area. ThA
called program does not need to use the save area. If it does, it rrust
save the registers in the exact fields designated for those registers.

32

At the time the called program receives control, register 13 will
contain the address of the save area. The other registers are stored in
the save area by using register 13 as a base address. For example, STM
14,12,12, (13) will save all the general registers, except 13, in the
proper locations of the save area pointed to by register 13. If the
called program wishes to use register 13 for its own purposes, it must
save register 13 in the backward pointer of its save area. If the
called program is going to call another program, and is going tO'provide
a save area for that program, it must store register 13 in the second
word of that save area. In this instance, register 13 serves as the
backward pointer. Optionally, the user can store register 13 sorreFlace
else; not in a save area. Rerrember, if you save register 13 in a save
area that you make available to another program, say prograrr. A, you
depend on program A not to write over the save area you're letting it
use. If program A is unreliable, you might want to save register 13 in
an area accessible to your program alone. That precaution will enable
you to restore the registers regardl~ss of what the program you call
does to the save area you are providing.

The called program does not need to save and restore the floating
point registers. If the contents of the floating-point registers are to
be preserved, it is the responsibility of the calling program to save
their contents and the contents of its interruft mask.

contents of the General Registers

Registers 13, 14, and 15 must be preset by the calling prograrr..
Hegister 13 must contain the address of the first byte of the save area
that the calling program is providing for the called prograro. This
address must be on a fullword boundary; i.e., the two low-order bits of
the address must be zero. Register 14' must contain the adoress to which
control is to be returned by the called program. Register 15 must be
set to contain the address of the entry point in the called program to
which control is being transferred.

A number of macro instructions can be used to generate type-I linkage
to specific programs. Examples of these roacro instructions are GE~,
PUT, OPEN, and CLOSE. Note, in using CALL, you specify the name of the
program to which you wish to transfer control; in using GET, however,
the name of the program to which control is to be transferred is
supplied by the macro instruction.

The called program always uses register 15 as a return-code register,
if applicable. If a parameter list address is passed in register 1,
there must be an understanding between the called and calling programs
as to its content. In variable length lists, the first word of the
parameter list contains a count of the number of parameters in the list.
Each following entry is the address of a parameter which has been
prestored.

Transfer of Control

A type-I linkage always causes control to be transferred from the
calling program to the called program by using the branch-and-store
register (BAS~ instruction. Specifically, the resident supervisor is
never used to assist in transferring control (no interrupt occurs) ,
since the calling and the called programs have the same privilege.

Register 1 may be preset by the calling program with the address of a
parameter list. Register 1, 13, 14, and 15 are the only registers used
by type-I linkage.,

The CALL macro instruction should be used to generate a normal type-I
linkage. The use of CALL is discussed in the Assembler User Macro
Instructions.

Section 3: Nonresident Programs 33

EXAMPLE: A program transferring control to another program via a type-I
linkage might use these instructions:

DEPART LR
L

*

*

USING
ST
L
ST
L
L
BASR

6,13 MOVE SAVE AREA POINTER
13, =A(SAVEREA) LOCATION OF SPACE FOR STANDARD

SAVE AREA

CHASAV,13
6,SAVBPT
6, =R (SUBR)
6, SAVPCT
15, =V (SUER)
1,A (PARAMLIST)
14,15

INDICATE FCRMAT
POINT TO CALLERS (OUR) SAVE AREA
GET R=CON OF CALLED PROGRAM
STCRE R-CC~ IN SAVE AREA
GET ADDRESS CF ENTRY POINT
SET POINTER TO PARAMETER LIST
PUT RETURN ADDRESS IN GPR 14
AND BRANCH

The program receiving control, might use these instructions,

XYZ

ABC
SUBR

PSECT
ENTRY SUBR MAKE NAME SUBR EXTERNAL
CSECT READONLY
STM 14,12,12(13)SAVE ALL REGISTERS

to save the general registers and establish definitions for the V-cons
and R-cons of .,the name SUBR. when its processing is finished, the
program SUBR might do this,

EXIT LM 14,12,12(13) RESTORE REGISTERS
LA 15,4 SET RETURN CODE 4
BR 14 RETURN TO CALLING PROGRAM

TYPE-II LINKAGE

Type-II linkage is used when the calling program is ncnprivileged and
the called program is privileged. All programs designed to be called
V1a type-II linkage run in the privileged problem state. Ty~e-II
linkage involves these conventions:

1. Use of the standard save area.

2. Standardizing the content and usage of the general
registers.

furpose

3. Standardizing the method of transferring control from the calling
to the called program.

4. Preservation of register integrity.

'l'he Save Area

The standard format 19-word save area is used in type-II linkage (see
Figure 3). Unlike type-I linkage, the calling ~rogram does net Frovide
this save area. Instead, it ,is provided by the task monitor, which
translates type-II linkage into what appears to the called frograrr as
modified type-I linkage. The transfer of control from the calling to
the cal~ed program is through the sUFervisor when type-II linkage is
used. Coding contained in the task monitor is, therefore, an integral
part 9f the linkage process.

Prior to passing control to the called program, the task monitor
initializes a save area for the called prograrr's use. The length field
(SAVLEN) contains a byte count of 76 (decirral); the backward ~cinter
(SAVBPT) is zero. The last word of the save area (SAVPCT) contains the

R-con of the entry point of the called program. All other bytes of the

34

save area are unpredictable. All programs designed to be called via
type-II linkage can assume that the save-area pointed to by register 13
is arranged in this way.

Content and Usage of the General Registers

Type-II linkage conventions assign special functions to registers 0,
1, 13, 14, and 15. The calling program is responsible for presetting
registers 0, 1, and 15. The calling program loads registers 0 and 1
with parameters or address pointers to parameter lists; it loads
register 15 with a code, called an ENTER code. The purpose of the ENTER
code is to identify the prograro to be called. When control is returned
to the calling program, the contents of registers 2 through 14 will be
unchanged. Registers 0 and 1 may be used by the called Frograw fer
returning results; they do not need to be used, however, and may be
unchanged. If the called program supplies a return code, it rr-ust use
register 15; of course, the called program is not required to supply a
return code.

The task monitor saves all the general-purpose and floating-point
registers in its own save area; the task monitor builds a saVe area for
the called program's use, as desc~ibed in the previous sectien. The
task monitor sets an address pointer to this save area in register 13.
The contents of registers 0 and 1 are set as received from the calling
program. Register 15 is set to the address in the called program to
which the task monitor will transfer control. This address is deter
mined by the task monitor, based on the ENTER code that was in register
15 when control was received by the task monitor. Register 14 is set to
the address in the task monitor to which control is to be transferred by
the called program when it has been corrpleted. 'l'he contents of
registers 2 through 12 are arbitrary; they shculd not be assurred, by the
called program, to be significant.

The called program must save the contents of the general registers,
since the task monitor requires the contents of the registers passed to
the called program to remain Unchanged. The called rrogram ITust return
control to the address in register 14. The called prograrr rr.ay Fut a
return code in register 15; it may put results in registers 0 and 1.
Registers 0, 1, and 15 will be passed back to the calling prograIT as
they are received f:r.·om the called prcgraro when it returns to the task
monitor.

Transfer of Control

The calling program transfers control tc the called prograw by
issuing this instruction, SVC 121.

An SVC 121 is also generated by issuing the rr-acro instruction ENTER.
SVC 121 passes control through the task rronitor to the called prcgrarr.
~ost of the time ENTER is used as an inner rracro instruction. For
example r the macro instruction GETMAIN generates an E~TER if the ~rcgrarr
in which GETMAIN is issued has been declared by the prograro~er to be
nonprivileged (DCLASS USER). All programs that transfer centrol via SvC
121 must adhere to type-II linkage conventions.

EXAMPLE: Assume you want to get 16 ~ytes of virtual storage, fcssitly
for use as d save area; you wight cede it like this:

SR
LA
LA
SVC

1, 1
1,16
15,48
121

SET OPTIONS: NONPRIVILEGED, VARIABLEr BYTE
BYTE COUNT 16
ENTER CODE 48 GETMAIN (BYTE)
TRANSFER CONTROL

Section 3: Nonresident Prograws 3S

Control will be returned to the instruction following the SVC after
GETMAIN has been completed. If yeu had wanted to use the macro
instruction GETMAIN, you could have written, GETMAIN F,LV=76 which would
have generated equivalent instructions.

TYPE-1M/II LINKAGE

Ty~e-IM/II* linkage applies only to called rrograrrs that can te
called via both type-I and type-II. Type-II called rrograms are always
privileged programs. The calling rrograro, however, may be privileged,
in which case a modified type-I linkage is used (with both registers 0
and 1 usable as parameter registers); or the calling program may be
nonprivileged, in which case type-II is used. Since the task ~onitor
makes all type-II linkages arpear, to the called program, like type-I,
the called program is, generally, not affected by the privilege of the
calling program.

If a privileged program is being called via type-1M/II, it may need
to determine the privilege of the caller. It can do this by comparing
the return address in register 14 to the address of the point in the
task monitor to which control is returned when a type-II linkage has
been used; for example,

CL
BE

14,=V{CZCJER)
NPCLLR

COMPARE GPR 14 TO TYPE-II RE~URN
IF EQUAL, CAlLER IS NCNPRIVILEGED

The call~ng program uses either a type-1M or a type-II linkage as
described previously; if the called rrograrr can be called by either of
these linkage types, it is using type-1M/II. The calling program treats
this linkage as described under type-II.

TYPE-III LINKAGE

Type-III linkage is used when the calling Frogram is rrivileged and
the called program is nonprivileged. All programs designed to receive
type-III are designed to run in the nonprivileged state. Type-III
linkage involves standardizing

1. The save area

2. The content and usage of the general-purpose registers

3. The method of transferring control froIT calling to called program

The Save Area

Type-III linkage requires the standard forrrat 19-word save area;
however, the save area is not supplied by the calling program. It is
supplied by the leave-privilege subroutine. The calling program calls
the leave-privilege subroutine, which supplies and initializes a save
area for use by the called program (see Figure 3). The leave-privilege
subroutine establishes a 19-word save area which is not read- er
write-protected; the nonprivileged called program can access it. The
leave-privilege subroutine sets the first word (SAVLE~ equal te 76.
The last word of the save-area (SAVPCT) is loaded with the R-con of the
called program's entry point. The calling prograrr supplies this R-con

*The use of M with type-I linkage indicates that register
used as a rararneter register - in addition to register o.
may contain a parameter or a pointer to a parameter list.

36

may also be
Register 1

to the leave-privilege subroutine which inserts it into the save area.
The remaining 17 words are left unchanged.

Content and Usage of General-Purpose Registers

Type-III linkage standardizes the use of registers 0, 1, 13, 14, and
15; the contents of the other registers are arbitrary. The contents of
the other registers will be returned, intact, to the calling prograrr.
'llhe leave-privilege subroutine will not pass to the called program the
original contents of registers 2 through 12. Registers 0 and 1 are used
for parameters or addresses of parameter lists. These registers are
passed to the called program as received by the leave-privilege
subroutine from the calling program. The leave-privilege subroutine
loads register 13 with a pointer to the save area it is supplying fcr
the called program. It loads register 15 with the address of the entry
point in the called program to which it will transfer control. Then it
loads register 14 with the address of an SVC 120 (RSPRV) instruction,
which is in the part of the interrupt storage area (ISA) that
nonprivileged programs can read and write.

Transfer of Control

control is transferred from the calling program to the leave
privilege subroutine with the standard type-I linkage. Control is
transferred from the leave-privilege subroutine to the called program by
an SVC 254 (LVPSW). The use of type-III linkage always results in an
SVC interrupt.

EXAMPLE: Within a privileged progra~, if you want to call a nonprivi
leged subroutine, you might write:

*
PARAMTRS

ADCONS

PARAM1
PARAM2

L
L
ST
LA
L

BASR
DC
DC
DC
DC
DC
DC
DC

13,=A (SAVEAREA)
A,=R (CZCJLE)
14,72(13)
1,PARAMTRS
15,=V (CZCJLE)

14,15
A (ADCONS)
A (PARAM1)
A (PARAM2)
V (CALLED)
R (CALLED)
F'P1'
F'P2'

GET ADCRESS OF SAVE AREA FOR LVPRV
R-CCN OF LEAVE-PRIVILEGE SUBROUTINE
PUT R-CON IN 19TH WORD OF SAVE AREA
PARAMETER LIST INTO GFR 1
ENTRY POINT OF LEAVE-PRIVILEGE
SUBROUTINE
TRANSFER TO LEAVE-PRIVILEGE SUER
PCINTER TO V- AND R-CONS
POINTER TO PARAMETER 1
FCINTER TC PARAMETER 2
ENTRY POINT OF CALLED ROUTINE
R-CCN CF ENTRY FCINT
PARAME'IER 1
PA.RAMETER 2

The leave-privilege subroutine will get space to set up a save area
for use by the called program. It will load parameters one and two into
general registers 0 and 1. It will set up registers 13, 14, and 15, as
descrited previously, and transfer control to the called prograrr via an
SVC 254 (LVPSW).

When the called program is completed, it might return like this:

LA
LA
BR

0,RESULT1
1,RESULT2
14

RETURN CF RESULTS
TO CALLING FRCGRA~
PE'IURN 'TO CALLER

General register 14 points to an SVC 120 (RSPRV) which will cause the
restore-privilege routine to be entered. The restore-privilege routine
will restore the calling routine's original register contents, without.
disturbing registers 15 ~he return code register), 0, and 1 (the result
registers) •

Section 3: NonresiJ0nt Frograrrs 37

TYPE-IV (RESTRICTED) LINKAGE CONVENTICNS

Type-IV linkage is used by TSS/360 rrograms under restricted circun.
stances for the sake of linkage efficiency. Type-IV is much more
restricted general linkage than types I, II, and III. TYFe-IV linkage
is found principally in the coding of the language processors.

Type-IV linkage may be used between two programs if, and enly if,
these conditions are met:

1. Both the called and the calling programS use the save prototYFe
control section (PSECT).

2. The values of address constants required for the linkage have
already been supplied by the dynamic loader.

3. The called program is not designed to accept type-I, -II, or -III
linkage at the same entry point to be used for type-IV.

4. Both the called and and the calling programs have the privileges.

Type-IV linkage conventions standardize the use of the general
registers and the method of transferring control from the calling to the
called program. No provision for a standard save area is included in
this convention.

Use of the General Registers

Registers 0 through 5 are used by type-IV linkage as parameter
registers or as address pointers to parameter lists. These registers
may be used by the calling program to supply information to the called
program, or by the called program to return information to the calling
program. In general, the calling program must not assume that the
contents of any of these registers will be returned intact by the called
program. It is the responsibility of the calling program to load the
address of the common PSECT into register 13 before transferring control
to the called program. The calling program must set, in register 15,
the address of the entry point to which it will transfer control; the
address to which control is to be returned is set in register 14. The
called program uses register 15 as a return code register, if applic
able. The contents of registers 6 and 7 are irrmaterial; the called
program should not make assuwFtions acout the contents of these
registers. Registers 6 and 7 need net be saved by the called program.

The contents of registers 8 through 12 must be saved by, the called
program if the called program changes them. The calling program may
establish any of registers 8 through 12 as comrron registers; the calling
program may do this only if it has not been called via type-IV linkage.
A common register is a register whose function is understood siwilarly
by the calling and the called prograws. If the function performed by a
common register, such as pointing to a control block, is required by the
called program, the called program may assume the contents of the common
register can be used, as mutually understood between the calling and the
called programs. The function of corrmon registers must remain constant
in all programs called, in turn, by the called program; their functiens
must be returned intact to the calling program. The designation of
common registers and the nature of their implied contents is not part cf
this convention; the nature of cowmon registers is as mutually under
stood between the calling and the called prograros.

Transfer of Control

Control is transferred from the calling to the called program by
using the instruction

38

BASR 14,15

An interrupt must never take place because of a type-IV linkage.

EXAMPLE: Three macro instructions have been defined to assist your use
of type-IV linkage: INVOKE, STORE, and RESUME. In order to emphasize
the linkage coding itself, we will not use these macro instructions in
this example. To transfer control using type-IV linkage, you might
write:

LM 0,5,PARAMS
L 15,=A (ENTPOINT)
BASR 14,15

LOAD PARAMETERS INTO GPR 0-5
ENTRY FeINT
TRANSFER CONTROL

The called program need, at most, save register 8 through 12 in any
manner it chooses. It must ensure that the contents of these registers
are returned intact to the calling prograw. The return might be coded:

LM
LA
BR

8, 12, SCRATCH
15,RETCOD
14

LINKAGE CONVENTION COMMENTS

RESTORE REGISTERS FeR CALLER
RETURN CODE
RETURN

In this discussion, we'll exclude type-IV linkage, Which is found
principally in the IBM-supplied application programs: Asserrbler, FOR
TRAN, and Linkage Editor. Type-IV linkage is used to minimize the
overhead associated with program linkage by capitalizing on certain
situations that occur in those programs.

We can look at program linkages in two ways: the calling program is
the activator; it organizes the linkage information and transfers
control. The called program has a more passive role; it receives
control and assumes that the linkage inforrration has been organized
according to the rules. For some linkage types, a program is inserted
between the calling and the called programs; this program perforrrs sorre
of the duties normally associated with the caller. In type-II linkage,
the task monitor's ENTER routine is interposed tetween the calling and
the called programs; in type-III, the LVPRV subroutine is between the
calling and called programs.

From the viewpoint of the called program, most callers look the sarre.
Type-I linkage doesn't use register 0; the other linkage types may.
This is the principal difference from the called program's viewpoint.
The called program may return the contents of register 0 to the caller
when type-I is used; for the others, the contents of register 0, if not
meaningful, can be ignored. Because of this Similarity of appearance to
the called program, many called programs can be written in much the sarre
way. For instance, the SAVE macro instruction can te used to save the
contents of the registers in the standard save area supplied by the
calling program, and the RETURN macro instruction can be used to restore
the registers, load a return code, and return control to the caller.
The macro instructions SAVE and RETURN, therefore, apply not only tc
type-I linkage, with which they are most often associated, but also to
types 1M, II, 1M/II, and III.

FENCE STRADDLERS

There are a number of programs in TSS/360 that have nc tuilt-in
privileges; these programs assume the privilege of the calling program.
Because these programs have no privileges, they are neither true
privileged nor true nonprivileged programs; they are "on the fence," so
to speak. We call them fence straddlers.

Section 3: Nonresident Prograrrs 3q

Fence straddlers must be constructed very carefully. If a nonfrivi
leged program is using a fence straddler and the straddler is inter-;
rupted, it is quite possible that a privileged frogram will use the
straddler during the period of interruption. The fence straddler must,
therefore, be reenterable. This reenterability apflies within the task.
Programs may be reentered between tasks or within a task. The use of a
prototype control section (PSECT) enables different tasks to use the
same read-only control section. Within a task, however, a program is
generally made up of one nonprototype control section ~hich rray te
shared with other tasks), and one prototype control section (which is
never shared with other tasks) •

Interruptable service routines, to be reenterable within a task, use
multiple save areas and dynamically allocated virtual storage (via
GETMAIN) •

Fence straddlers can use a number of techniques to prevent destruc
tion of data if they are interrupted and reentered. Some straddlers do
not have a PSECT or, if they have one, never modify it. Other
straddlers require the ~alling program to supply working storage; still
others use GETMAIN to obtain working storage.

There are times when fence straddlers become calling prograros. They
must know their current privilege status so they can use the correct
linkage type. There is one set way to determine privilege status; that
is to check the privileged bit in the VPSW. The status depends on the
fUnction a fence straddler is perforrring. Parameters can be supplied by
the calling program to tell the straddler what privilege it has.
Sometimes the fence straddler can determine the privilege of the calling
program by using information supplied by the calling frogran, such as
the data control block (DC B) •

Fence straddlers are called either type-I or type-1M linkage. Since
the straddler assumes the privilege of the caller, there is no change in
the privilege status. Thus, no interrupt is caused by calling a
straddler and no linkage-assisting program is required.

SYSTEM PROGRAMMER AUTHORITY CODES

A frogrammer becomes known to TSS/360 as a system prograrrrrer when he
is joined to the system by the systerr manager or one of the system
administrators. The JOIN command contains an authority code which may
have the values U (user), P (system programmer), or C (privileged system
programmer). When a user logs on, information is taken from the user
table specified in the JOIN cororrand processor and inserted into the
user • s task status index and interrupt storage area. 'The SVC queue
processor controls what programs are allowed to issue privileged SVCs;
it uses the information LOGON stores in the task status index (TSIF4)
for this purpose. The dynamic loader and program checkout systerr use
information stored by LOGON in the interrupt stcrage area (ISAUTH) to
determine if the task may perform certain privileged operations.

Privileged SVCS

The SVC queue processor controls the execution of SVCS 128 through
255. System programmers W or ~ may issue all the resident supervisor
SVCs (128-255). Any program operating in the privileged-prograrr state
NPSW p-bit =0) -- even if being run by a user-programmer -- may issue
all the privileged SVCs.

Program Checkout System

The program checkout sub-system (FCS) is not, in general, aPFlicatle
to system programs. The RUN cororrand always transfers control in the

40

nonprivilege state and cannot be used to transfer to a privileged
program. PCS uses the user save area of the task rr.cnitor and cannot,
therefore, be used to set or dis~lay registers or VPSWs in use by
privileged programs. Nevertheless, PCS can be used by privileged systerr
programmers to modify (commands AT and SET) privileged, public control
sections; this is the only way that privileged, pUblic control sections
can be changed from a terminal. (See the discussion of PCS in the
section on serviceability aids.)

Dynamic Loader

Every task has a task dictionary (T~Y) which contains, in addition to
the PMDs, the hash tables used by the dynamic loader to process syrr:tolic
definitions (DEFS) and references (REFs). The hash table is split into
three parts: privileged system, nonprivileged systerr:, and user syrrbols.
(See Figure 5.) When the loader encounters a REF in a control section

with the attribute of PRVLGD, it searches the privileged systerr hash
table; if the attribute of the control section is nonprivileged SYSTEM,
the nonprivileged system hash table is searched; if the attribute of the
control section indicates that it is a user's, then the user hash table
is searched. One exception to this rule is that case in which the
user's authority code is P or O. In this case the loader ignores the
user hash table and searches the two system tables. Table 1 sumrrarizes
the actions of the loader in processing the REFs and DEFs.

Notice that the loader erases the attributes of PUBLIC, READCNLY,
SYSTEM, and PRVLGD from any module loaded from any library for a
programmer with authority code O. The same attributes are erased trorr
any module loaded from JOBLIB or USERLIB for a programmer with authority
code P. If a programmer with authority code P loads a module fro~
SYSLIB, only the PUBLIC and READCNLY attributes are erased.

Remember, though, the
(IVM) ; you will always ~et

The loader's action ~n
governed by the attributes
6.)

loader does not load initial virtual rrerrcry
a public, read/write protected copy of IVM.
assigning storage keys to control sections is
of those sections. (See Table 1 and Figure

r---,
I LINK TC FIRST PMD GRCUP I
~---~
I HASH TAELE LENGTH/DIVISOR(L) I
~---~

r----~ ADDRESS CF SYSTE~ HASH TABLE I
I ~---~

r-------------+----~ ADDRESS OF USER BASH TABLE I
I L ___ >~---~
I SYSTEM I PRIVILEGED SYSTE~ HASH TABLE I
I HASH I (PREFIXES CZ AND CHE) I
I TABLE I I
I ~--~
I I NONPRIVILEGEC SYSTEM HASH TABLE I
I I (PREFEXES OTHER TBAN CZ OR CHm I
L _________________ >~----------------------------------_________________ ~

USER I ALL USER SYMBOLS I
a~SH I I
TABLE I I L ___ J

Figure 5. Format of Three-Part Hash Table

Section 3: Nonresident Prograrrs 41

Tab1e 1. Effect of Authority Coce in Dynarric Loader Processing

ISAUTH If section Search If hash If section And
set to: containing this hash table yields containing attributes of

reference is: table to no definition, definition section
resolve search this is found in containing
reference: library first: this library: definition are:

U nonsystem USER* JOBUB JOB or USER any
U nonsystem USER* JOBUB SYSUB not S or P
U nonsystem USER* JOBUB SYSUB S
U nonsystem USER* JOBUB SYSUB P

U system SYSTEM SYSUB SYSUB notSorP
U system SYSTEM SYSUB SYSUB S
U system SYSTEM SYSUB SYSUB P

P any SYSTEM JOBUB JOB or USER any
P any SYSTEM JOBLIB SYSLIB any

0 any SYSTEM JOBLIB any any

legend

U = User authority code S SYSTEM control section attribute
S = System programmer authority code
o = Privi leged system programmer

P PRVlGD con trol section attribute

authority code

Notes

Erase these Consider Put valid
attributes in definitions definitions
definition starting with in this
section: these characters hash table:

invalid:

S, P SYS USER
none SYS USER
none CZ or CHB SYSTEM**
none not CZ or CHB SYSTEM**

none SYS USER
none CZ or CHB SYSTEM
none not ~Z or CHB SYSTEM

Pb,RO,S ,P CZ or CHB SYSTEM
Pb,RO not CZ or CHB SYSTEM

Pb,RO,S,P none SYSTEM

Pb = PUBLIC control section attribute
RO = READONlY control section attribute

* Symbols starting with SYS are always defined in the system hash table; nonsystem programs are not permitted to define SYS
symbols. Any program can reference SYS symbols; the louder always looks for SYS symbols in the system hash table.

** A user causing a system program to be loaded wi II only be able to use the definitions supplied by a program that begins
with SYS. These two cases will result in the transmission of a diagnostic message if the REF doesn't begin with SYS
indicating an undefined symbol, even though the program supplying the proper definitions has had it's PMD hashed into
the system hash table.

PRIVILEGED PROGRAMS

Privi1eged programs are virtual J;:rograms recognized by having their
virtual program status word (VPS~ privilege bit (bit 0) set to 0,
analogous to the problem bit (bit 15) in the real PSW. Privileged
programs differ from nonprivileged user prograrrs in two principal ways:
they operate with a PSW protection key of zero and they rray issue most
supervisor call instructions. Privileged programs can access all
virtual storage in their own virtual machine; they cannot access private
virtual storage in other virtual machines.

Privileged programs exist to provide services to nonprivileged
programs. privileged service routines that can be called by users are
"connected n to the task monitor thrcugh a table, called the ENTER table
(see ENTER); other privileged service routines are closed surrcutines
used only by privileged callers.

I/O DEVICE ADDRESSING

Generally, each I/O device appears to have its own data channel. The
initiation of a virtual I/O operation does not require the use of the
interrupt storage area in the way a real I/O oJ;:eraticn requires the use
of the prefixed storage area to start an I/C operation. Virtual channel
programs are constructed using I/O request control block (IeReB) and
channel command words that are similar to real tCWs (see discussion of
IOCA~ • All I/O operations in a virtual machine needn't use IORCB

42

channel command sequences, though. Some I/O operations such as Vitual
Access Method NAM) operations are performed by using two special
supervisor call instructions which take advantage of the of the
characteristics of the address translator (see decriptions of PGCUT and
SETXP) •

r----------------T-------------T--------------T------------------------,
I I I I Resultant Segment I
I I I I Assignment I
I I I I And Storage Key I
IClass of TSS/3601 CSECT Types I ~----------l------------~
IProgram Module I For Modules I Attributes I Public I Private I
~----------------+-------------+--------------+-----------i------------~
I SYSTEM I REENTERABLE I CSECT I C I I
I PRIVILEGED I EXECUTABLE I SYSTEM, PRVLGD I I I
I I CODE IFXL,PUB,RDC I I I
le.g., VAM OPEN IDATA, ADCONS,IPSECT I I C I
I I etc. I SYS, PRVLGD, I , I
I I IFXL I , I
~----------------+-------------+--------------+-----------f------------~
ISYSTEM FENCE IREENTERABLE ICSECT IB(USER READ I ,
I SITTER I EXECUTABLE ISYS,PUB ICNLY) I I
I I CeDE IRDO,FXL I I I
le.g., VM~ GET INONMODIFIABLEIPSECT I IB(USER READ I
I I DATA, etc. I SYS, Rr::O, FXL I I ONLY) I
~----------------+-------------+--------------+-----------+------------~
I SYSTEM IREENTERABLE ICSEC~ IB~SER READ I I
I NONPRIVILEGED IEXECU~'ABLE I SYS,PUE I CN"LY) I I
I I CODE IRDe,FXL I I I
le.g., ASSEMBLER IDATA, ADCONS,IPSECT I IA(USER READ I
I LPC I etc. I SYS,FXL I I WRITE) I
~----------------~-------------i ___ -----------i-----------~------------i
IA=Key 1 B=Key 2 C=Key 2 with fetch protection I L __ J

Figure 6. Relationship of TSS/360 Prograrr Modules, CSECT, CSECT Attri
butes, Sharability, and Storage Key Assignment

Because most I/O devices attached to the system have more than one
path to storage, these devices have multiple real addresses. ~he
supervisor's pathfinding program has the responsibility of selecting the
address to be used to access an I/O device. To distinguish an I/O
device from the path (i.e., address) used to access it, each device
attached to the system is given a unique number, called the symbolic
device address. The assignment of symbolic device numbers is unique at
each installation.

In addition to the symbolic device address, some I/O operations
require the use of a relative page number. The relative page nunber is
a 16-bit quantity allowing a device to have 65,536 pages. For certain
I/O operations (for example PGCUT), each device is organized into pages;
since each page is 4096 bytes, the position of a given page on all
devices of the same type can be determined. Thus, page 136 begins at
the same cylinder, track, and record address for all IBM 2311s. In
other words, given a relative page nuwber and a device type, it is
always possible to figure cut where, on that device, the page can be
found.

The system symbolic device address and the relative page number,
together, make up the external page address; they uniquely identify the
location of a page on external storage.

Figure 7 shows the significance cf various combinations of PSW and
storage keys and the programs tc which they may be assigned. Those
within the heavy line designate ncnrrivileged user key combinations.
The other combinations are available cnly to privileged system prograns.

Section 3: Nonresident Programs 43

Storage protect key 2F is the same as key 2 but with fetch protecticn
added.

PSW Storage

Key Key

0

1

1 2

Read
Read -Write Write

Read
Read-Write

Only

~---------~~---------~ Nonprivi leged
User

2F

Read
Write

l'-lot
Used

Privileged
execution

Nonprivi leged
execution

Figure 7. PSW and Storage Protection Keys

STORAGE PROTECTION

Although the virtual prograrr status word doesn't contain a PSW key,
storage protection is 1n effect for virtual programs. The resident
supervisor assigns storage keys to virtual programs when it creates
external page table entries for them; it sets keys in the «ain storage
pages it allocates ~ee ADDPG and ADSPG). All main storage pages are
assigned a storage protection key; Table 2 illustrates these
assignments.

Table 2. Main Storage Page Key Assignments
r--------------------------------T"---T---------------------------------,
IType of Page IKeylFetch Protection Bit I
~--------------------------------+----+---------------------------------~
'Nonprivileged read/write I 1 'off I
INonprivileged read-only I 1 I off I
I Pri vileged I 2 I on I
'Engaged in paging operation , 3 'off ,
IStorage obtained from supervisor' 4 'off I
Icore allocation , , ,
IResident supervisor , 5 'on , L ________________________________ ~ ____ i _________________________________ J

The ability of a processing uni"t or a data channel to access storage
is controlled by the protection key contained in storage and the key
used by the processing unit (PSW) or data channel (CAW). 'Ihe resident
supervisor assigns keys to programs and channel programs before starting
them; these assignments are shown in 'Table 3.

Table 3. Processing Unit and Data Channel Key Assignments
r-----------------------------------T-----------------------------------,
I Category I Key I
~-----------------------------------+-----------------------------------~
IProcessing Unit Programs I ,
I Nonpri vileged I 1 I
, Privileged , 0 ,
, Resident supervisor , 0 ,
'Data Channel Programs' ,
, Nonpri vileged I/O I 1 I
, Privileged I/O I 2 ,
, Paging I/C , 3 ,
, IORCB I/O , 4 ,
, Sense Data I/C , 4 , l ___________________________________ ~ ___________________________________ J

44

'l'IMEKEEl> ING

There are a number of different cells used by TSS/360 to store
information about elapsed time, esti~ated ti~e, and related data. Data
concerning calender time is kert in several places.

The prefixed storage area of each processing unit includes a
double-worn, called PSAETM, which contains the number of 13-rricrosecond
"ticks" that the processor's interval timer has been running since
PSAETM was last cleared to zero (see RSTTIM). Every time an interruI=t
occurs, and every time a virtual task is restarted, the elapsed tirre
since the timer was previously loaded is added to the contents of this
cell.

The system table contains two double-words that record time for the
entire system. The calendar date (year, month, day), rreasured in
microseconds from March 1, 1900 to midnight of the previous day, is
stored in a doubleword called SYSYMD. March 1, 1900 is chosen as the
starting date since, from that date, every year divisible by four is a
leap year (366 days); century years are not lear years. A double word
called SYSTOD contains the time of day measured in microseconds from
midnight. By adding SYSYMD, SYSTOD, and PSAETM we can obtain a current
value in microseconds from IVJarch 1, 1900.

Information concerning the elafsed time for individual tasks is kept
in each task's extended task status index (XTSI). The total numter cf
microseconds of time quanta a task has received since LOGON is stored in
a word called XTSATI. A word called XTSCTI contains the nurrber cf
microseconds of time quanta a task has received since it's last
task-timer interrupt. The number of microseconds of time quanta that
must elapse before the next task-timer interrupt is stored in a word
called XTSUTI (see SETT~ •

Appendix B describes a time ccnversion module that maY'be used ty
system programmers.

INITIAL VIRTUAL STORAGE

The task monitor and a nurrber of programs (both privileged and
nonfrivileged) are collected into what is called initial virtual
storage, (IVS). Startup establishes initial virtual storage ty ccn
structing a standard set of segment and rage tables to be used by newly
created virtual machines. Initial virtual storage programs are never
dynamically loaded; we think of them as being permanently resident in
virtual storage. Of course, IVS programs are paged in and out of main
storage. All other privileged programs are trought into virtual
storage, as required, by the dynareic loader (which must be part of IVS).
Virtual storage is never "empty;" it always contains at least. the
prograws that make up the IVS.

PRIVILEGED SUPERVISCR CALL INSTRUCTICNS

If a nonfrivileged program teing run by a user-programmer attempts to
lssue a privileged supervisor call, the resident sUfervisor will create
a task program-interrupt (code hex 50 or hex 21 privileged opera
tien) • When the task monitor receives the interrurt, it calls DIAGNC.
Generally, supervisor calls that can disrupt the operation of TSS/360
are privileged. Supervisor calls that allow access to private infor~a
tion are also privileged.

Usually, the operation requested by a privileged SVC is a synchronous
one which is completed by the resident supervisor before it returns
control to the task which issued the SVC. The principal exception to

Section 3: Nonresident Programs 45

this is lOCAL, an asynchronous SVC, which is processed concurrently with
the issuing task. For simplicity of explanation, t;:rivileged sUfervisor
calls are divided into nine groups (see Table 4). (Note: task program
interrupts, which may result from improper use of these ~acrc instruc
tions, can be found in Appendix D."t

Table 4. Privileged Supervisor Calls (SVC 128-255) (Part 1 of 2)
r--,
IMAINTENANCE OF TASK STATUS INDEX I
~-------T--T-------~
ISVC 253 I Create task status index I CRTSI I
ISVC 20&ISpecial create task status index I SCR~SII
ISVC 2521Delete task status index I DLTSI I
1 SVC 2351 Set up task status index field , SE'I'UP !
ISVC 2461Extract task status index field ! XTRCT I
ISVC 2141Set up extended task status index field , SETXTSI
ISVC 2131Extract extended task status index field , XTRXTSI
ISVC 230lChange task priority I CHAP !
ISVC 2091Extract accumulated CPU time I XTRTM I
~-------i---___ --i---____ ~
'MAINTENANCE OF SYSTEM TABLE ,
r------T-------------------------"---------------------------"T-------~
ISVC 2161Set system table field , SETSYSl
ISVC 2151Extract system table field 1 XTRSYSI
ISVC 2121Reset system time I RSTTIMI
ISVC 2161Allow task initiation , ALLTI I
ISVC 2161Set year, month, and day I SETYML!
ISVC 2161Set time of day , SETTODI
ISVC 2011Reset Drum Interlock 'RDI 1
r------..L.--------------------.--------------------------___ i _______ ~

1 TASK SYNCHRONIZATION/TASK TIMER f'JIAINTENANCE I
~-----~---T-------~
ISVC 2511Set user timer 1 SETTU I
ISVC 2171Set real time interval I SETTR I
ISVC 2181Read elapsed real time 1 REDTIMI
ISVC 2431Force time slice end I TSEND I
ISVC 2481Wait for an interrupt 1 AWAI'I I
I SVC 2291 Wait for terminal I/O in1:errupt 1 TWAIT 1
r------i --i-------1
IVIRTUAL STCRAGE ALLOCATION I
~-------T---T-------~
'SVC 2501 Add virtual storage page8 1 ADDPG I
ISVC 2361Add shared virtual storaqe fages I ADSPG I
1 SVC 2491 Delete virtual storage pages 1 DELPG I
ISVC 2381Connect segment to shared page tal::le I CNSEG I
ISVC 2371Disconnect shared page table from segrrent I DSSEG ,
ISVC 2471List changed virtual storage pages I LSCHP I
ISVC 241 1 Check protection class I CKCLS I
~-------i---________ i ____ ---~
I DEVICE MANAGEMENT I
~-------T---T-------~
ISVC 2341Add device to task sYIlibolic device list I ADDEV !
ISVC 2331Remove device from task syml:olic device list I RMDEV I
~SVC 2221purge I/O operations I PURGE I
ISVC 2211Reset device suppression flag I RESET I
ISVC 2111Set I/O device path I SPATH I
ISVC 210lSet asynchronous entry I SETAE I L _______ i __ i _______ J

(Continued)

46

Table 4. Privileged Supervisor Calls (SVC 128-25~ (Part 2 of 2)
r--1
11/0 OPERATIONS I
r-------T------------------------------------,------------------T-------~
ISVC 2311I/C call I lOCAL I
ISVC 2421Write virtual storage pages to external storage I PGCUT I
ISVC 2441Set external page table entries I SETXP I
ISVC 2451Move page table entries I MCVXP I
~------~---~~------~
ISTATUS SWITCHING I
~-------T--T-------i
ISVC 2541Load virtual program status word I LVPSW I
~-------~--~-------~
IINTERTASK CO~MUNICATICN I
~-------T--T-------i
ISVC 240lSend message to another task I VSEND I
~------~--~------~
IERROR RECOVERY and RECCNFIGURATION I
~-------T--T-------~
ISVC 2541 Indicate supervisor detected error I ERROR I
ISVC 2281Indicate nonresident-rrograro detected error I SYSER I L _______ ~ __ i _______ J

CRTSI -- Create Task Status Index (R)

The CRTSI allocates storage for a TSI and initializes it for a new
task if the system limit on TSIs has not been reached.

r--------T---------~---,
I Name I Operation I Operand I
~--------+---------+---i
I [symbol] I CRTSI I None I L ________ ~ ________ i__ ___ J

EXECUTION: A new task status index is created if the system TSI limit
has not been reached. The task identification is returned to the SVC
iS$uing program in register 1; if the system TSI limit has been reached,
register 1 is set to O.

The TSI created is initialized like this:

1. XTSI page count set to 1 (TSINX)
2. XTSI pointer set to system skeleton (TSIXXL)
3. All task-interrupt mask bits are set to 1
4. The conversational bit is set on (TSICV)
5. The XTSI swapped out bit is set on (TSIIXT)
6. The TSI internal priority is set to the highest possitle second

level priority (TSIUPR)
7. The task identification number in the system table (SYSTID) is

incremented by 1 and is placed in the TSI as the task identifica
tion (TSITID)

EXAMPLE: If you want to create a TSI, you wight write:

XYZ CRTSI

This would generate,

XYZ SVC 253

~'lote: This SVC must be used in conjunction with VSEND. See IBM
System/360 Time Sharing System: Task Monitor (Form Y28-2041) for a
description of the action of the external interruf-t processors (XIP).

Section 3: Nonresident Prograrrs 47

SCRTSI -- Special Create Task Status Index (R)

The SCRTSI macro instruction allocates storage for and initializes a
TSI the same as does CRTSI, cut does so regardless of the nurrrer cf TSIs
presently in existence.

r--------T---------T---,
IName IOperationlOperand I
~-------+---------+---~
I [symbol] I SCRTSI I None I L ________ ~ _________ ~ ___ ~

EXECUTION: A new task status index is created regardless of the number
of TSIs currently in existence. The task identification is returned to
the SVC issuing program in register 1; if the system ~SI limit has been
reached, it is incremented until the new TSI will not exceed the lirrit.
After the TSI has been created, the systero limit value is restored.

The TSI created is initialized the sarre as in the CR~SI macro
instruction discussed above.

EXAMPLE: If you want to create a TSI, you might write:

ABC SCRTSI

This would generate,

ABC SVC 206

DLTSI -- Delete Task Status Index~

The DLTSI macro instruction deletes the specified TSI and removes its
associated task from the system.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] I DLTSI I None I L ________ i-________ i-__ J

EXECUTION: The task issuing the SVC is eliminated from the system. All
nonshared pages of main storage and paging storage used by the task are
returned for reallocation. All storage required for table entriEs
pertaining to the task in the resident supervisor is released.

EXAMPLE: If your program is completed and you wish to release all the
resources it is using -- logically eliminating the task you wight
write:

FJG DLTSI

This would generate,

RJG SVC 252

Note: This SVC is the last step in a sequence rEquired for removing a
task. Other steps include closing data sets and releasing external
storage.

SETUP -- Set Up Task Status Index Field (R)

The SETUP macro instruction perrrits you to alter cr set the ccntents
of a selected field in the TSI."

48

r--------T---------~--,
I Name IOperationlCperand I

t--------t---------t-[-------{~~d~~-}-[-------------{~~l~~-}J----------------1
I [symbol] I SETUP I field , register - I
I I I (2) UJ I L ________ ~ ________ ~ __ J

field
specifies the field you want to set or alter and may be specified
as one of these codes:

USERID - set the user. identification field
SYSIN - set the input data set location field
SYSCUT - set the output data set location field
BSN - set the batch sequence number field
CONV - set the intertask roessage flag
ITMFLG - set the intertask message flag
XPR - set the external priority flag
AUTH - set the privilege field

If you choose to write the instruction as register notation you must
first select the proper value from the following list and place it in
register 15 in the low-order byte.

Field
USERID
SYSIN
SYSOUT
BSN
CONV
ITMFLG
XPR
AUTH

register

Value
1
3
4
5
10
12
13
14

designates the even-odd register pair in which you have placed the
information you want put into the specified TSI field. The
register pair must be specified in terrrs of the odd register and
may not be an external symbol or an expression containing an
external symbol. If you wish to place this information in
registers 12 and 13 you would write:

SETUP USERID,DATA
where:

DATA EQU 13

or you could write:

SETUP (15) , (1)

where register 15 contained the value one and registers 1 and 0
contained the appropriate values.

EXECUTION: From one to eight bytes of registers 0 and 1 are inserted
into the task status index field specified by the low-order byte of
register 15. The number of bytes to be inserted depends on the field
specified.

Field
USERID
SYSIN
SYSOUT
BSN

Code Implied
-1-

3
4
5

length
8
2
2
1

(bytes)

Section 3: Nonresident Progra~s 49

CONV
ITMFLG
XPR
AUTH

10
12
13
14

1
1
2
1

EXAMPLE: Assume that registers 12 and 13 contain an eight-character
user identification. The macro instruction

TEST SETUP USERID, (13)

causes this code to be generated

TEST DS OB
LA 15,1
LR 0,13-1
LR 1,13
SVC 235

XTRCT -- Extract Task Status Index Field (R)

The XTRCT macro instruction permits you to extract and exarrine one of
a selected number of fie,lds from your TSI.

r--------~--------T_--,
I Name ! Operation I Operand I
~--------+---------+---~
I I I[{COde }] I I [symbol] IXTRCT I field - I
I I I (2) I L ________ i-________ L--____________ . _____________________________________ J

field
designates the TSI field you want to extract and examine and may be
anyone of these codes

USERID - extract the user ID field
PRICRITY - extract the priorit~t field
SYSIN - extract the input data set symbolic device address
SYSCUT - extract the output dat:a set syrobolic device address
BSN - extract the batch sequence number field
SOPRIV ~ operator privilege
SPRIV - system programmer, nonprivileged
SRPRIV - system programmer, privileged
UPRIV - user
CONV - extract the conversational task flag
TASKID - extract the task ID field
XPR - extract the external priority flag
ITMFLG - extract the intertask message flag
AUTH - extract the privilege field
PENDIO - extract the pending I/O operations count field

If you choose to write register notation, select the proper value
from the following list and place it in register 15 before issuing the
macro instruction.

50

Code
USERID
PRIORITY
SYSIN
SYSOUT
BSN
SOPRIV
SPPRIV
SRPRIV
UPRIV
CONV

Value
---1

2
3
4
5
6
7
8
9

10

TASKID
ITMFLG
XPR
AUTH
PENDIO

11
12
13
14
15

EXECUTION: The task status index field indicated by the code contained
in register 15 is extracted and returned to the program issuing the
XTRCT. The extracted field is returned right-justified in reg·isters 0
and 1. The number of tytes returned is:

Register 15 'lSI Field ImElied Length {bytes}
1 TSIUID 8
2 TSIUPR 1
3 TSISIN 2
4 TSISOT 2
5 TSIBSN 1
6 TSIIOP (TSIF4) 1 (bit 0)
7 TSIIPP (TSIF4) 1 (bit 1)
8 TSIISP (TSIF4) 1 (bit 2)
9 TSIUP (TSIF4) 1 (bit 3)

10 TSICV (TSIF2) 1 (bit 5)
11 'ISITID 2
12 TSIME (TSIF4) 1 (bit 6)
13 TSIXPR 2
14 TSIF4 1
15 TSICIO 15 1

The smallest field size extracted is one byte. If you are interested
in a particular bit within a byte, you must mask out the rerraining bits.

EXAMPLE: Suppose you want to find out if your task is being run in the
conversational mode; you might write:

EXAMP XTRCT CONV

This would generate,

EXAMP DS
LA
SVC

OH
15,10
246

SETXTS -- Set Up Extended Task Status Index Field {R)

The SETXTS macro instruction er3bles you to set the estimated run
time of your task in the XTSI.

r--------.---------T---,
I Name ICperation I Operand I
~--------+---------+---~
I I I [1 ESTIM lJ I
I [symbol] I SETXTS I field- m) ~ I L ________ ~ _________ ~ ___ J

field
specifies the XTSI field to be set by this macro instruction and
may be coded: ESTIM - indicates that the estimated run time field
of the XTSI is to be set.

If you select the register notation, by design or by default,
register 15 must contain the value 1.

EXECUTION: The value contained in registers 0 and 1 when SETXTS was
issued is stored in the extended task status index field indicated by
the code contained in register 15. Cnly this code is defined,

Section 3: Nonresident Prograres 51

Code
1

Implied Length (byte:~
4

EXAMPLE: Suppose you wished to set the estimated run time field of the
extended task status index. You could write:

L O,F'runtime'
NAME SETXTS ESTIM

This would be produced,

NAME DS OH
LA 15,1
SVC 214

XTRXTS -- Extract Extended Task Status Index Field (R)

The XTRXTS macro instruction enables you to extract and examine one
of a selected set of XTSI fields.

r--------T---------T--,
IName I Operation I Operand I
~--------t---------~--~
I I I [{UTIME jlJ I
I [symbol])XTRXTS I field- ATIME J' I
I I I ~) I L ________ ~ ________ ~ ______________ . _____________________________________ J

field
designates the XTSI field you want to extract and examine and may
be specified by one of these codes:

UTIME - extract the user time field
ATIME - extract the accumulated time field

If you choose to write register notation, select the proper value
from the list below and place it in register 15 before issuing the macro
instruction

Code
UTIME
ATIME

Value
1
2

EXECUTION: Register 0 is loaded with information extracted from the
issuing task's extended task status index. The field extracted depends
on the code contained in register 15. These codes are acceptable:

Code
1
2

Implied Length (byte~
4
4

EXAMPLE: Suppose you want to find out how much time your task had used
since LOGON; you might write:

NAME XTRXTS

This will generate,

NAME DS
LA
SVC

ATIME

OH
15,2
213

CHAP -- Change Task Priority (R)

The CHAP macro instruction lets you change the priority of your task.

52

r--------T---------T---,
I Name ,Operation I Operand I
~--------+---------+-----------------------~---------------------------i
I I I [{ValUe}] , I [symbol] ICHAP I prior - @) I L-_______ ~ ________ ~ __ J

prior
designates the new priority you want assigned to your task and ~ay
be any value from 0 to 255. If you choose to write register
notation, place the new priority in register 0 before issuing the
macro instruction.

EXECUTION: The low-order byte of register 0 is stored in the task
status index's priority field. The TSI is removed from the TSI list and
restored to a position in the list corresponding to its new priority.
If the priority supplied in register 0 is equal to 0, the system default
priority is used.

EXAMPLE: Suppose you want to give your task maxiH-um ~riority; you might
write:

NEW CHAP

This would generate,

NEW DS
LA
SVC

1

OH
0,1
230

XTRTM -- Extract Accumulated CPU Time (nonstandard)

The XTRTM macro instruction enables you to extract and examine the
total CPU time used by your task.

r--------T---------T---,
,Name I Operation I Operand I
~-------t---------+---1
I [symbol] IXTRTM 'None I L ________ ~ _________ L-__ J

EXECUTION: The total accumulated CPU time of the issuing task is
computed and returned to the task in general register 1. The address of
the taSk's XTSI is passed to the SVC processor. The accumulated time is
computed by subtracting the current timer value from the last time slice
value and adding the accumulated time value to the difference.

EXAMPLE: If you want to extract your task's accumulated time, you might
write:

TIME XTRTM

This would generate:

TIME SVC 209

SETSYS -- Set System Table Field (R)

The SETSYS macro instruction allows you to set or alter one of a
selected set of system table fields.

Section 3: Nonresident Prograrr.s 53

r--------T---------T---,
I Name I Operation I Operand I

r--------t---------t-[-------{~~---·--~--J--------------------------------1
I [symbol] ISETSYS I field- YMD I
I I I TASKINIT I
I I I (J2) I L ________ i-________ ~ __ 1

field
designates the system table field you wish to set or alter and may
be written:

TOD - set time of day :Eield
YMD - set year, month, day field

TASKINIT - set task initiation status field

If you choose to write register notation, you must select the proper
value from the list below and place it in register 15 before you issue
the macro instruction.

Code
TOD
YMD
TASKINIT

Value
1
2
3

EXECUTION: The contents of registers 0 and 1 are placed in the system
table field corresponding to the code contained in register 15. The
number of bytes to be insertE~d into the system table depends on the
code:

Code
1
2
3

Implied Length (byt€~
8
8
1

EXAMPLE: Suppose you wish to inhibit the initiation of any further
tasks. This 1S controlled by a flag byte in the system table called
SYSTI; the appropriate bit mask (see dummy section usage) is called
SYSTIM. The task initiation bit haFFens to be bit 2 of the SYSTI byte.
SETSYS replaces the entire flag byte, so an XTRSYS should be used to
extract the flag byte. Then you might write:

DOUG SETSYS

This would generate

DOUG DS
LA
SVC

OH
15,3

216

TASKINIT

XTRSYS -- Extract System Table Field (R)

The XTRSYS macro instruction enables you to extract and exarrine one
of a selected set of system table fields.

r-------T--------~------------·-------------------------------------,

I Name I Operation I Operand I

t--------t--------t-[----{-;~~--·----JJ -------------------------------1
I [symbol] IXTRSYS I field- YMD I
I I I TASKINIT I
I I I ~~) I L-_______ ~ _________ i _____________ . _____________________________________ 1

54

field
designates the system table field you wish to extract and examine
and must be one of these codes:

TOD - extract the time of day field
YMD - extract the year, month, day field

TASKINIT - extract the task initiation status field

If you choose to write register notation, you must select the proper
value from the list below and place it in register 15 before issuing the
macro instruction.

Code
TOD
YMD
TASKINIT

Value
1
2
3

EXECUTION: A number of bytes are extracted from the system table and
placed in registers zero and one. The number of bytes and the field to
be extracted is determined by the code contained in register 15.
Register 15 must contain one of these codes:

Code
1
2
3

Implied Length (bytes)
8
8
1

EXAMPLE: Suppose you want to learn the time of day (in microseconds
from midnight to issuance of RSTTIM) •

You might write:

NAME XTRSYS TOD

The expansion would produce,

NAME LA
SVC

15,1
215

RSTTIM -- Reset System Time (nonstandard)

The RSTTIM macro instruction enables you to update the tirre of day
field, in the system table, to reflect additional elapsed time since the
last setting of that field.

r--------T---------~--,
I Name I Operation I Operand I
~--------t---------+---i
I [symbol] IRSTTIM I None I L ________ i-________ i-__ J

EXECUTION: The supervisor adds the elapsed time cell (PSAETM) to the
system table field SYSTOD and then sets the elapsed time cells (PSAETM)
in each prefixed storage area to zero. If the resulting time of day
value exceeds 24 hours, one is added to the year-month-day cell (SYSYMD)
in the system table and a value equivalent to 24 hours is subtracted
from the time-of-day clock.

EXAMPLE: Suppose you want to reset all the elapsed time cells of all
processing units in the system, possibly as a restart procedure. You
might write:

BLAST RSTTIM

Section 3: Nonresident Programs 55

This would produce,

BLAST SVC 212

ALLTI -- Allow Task Initiation (R)

The ALLTI macro instruction enatles you to allow or disallow task
initiation for your task.

r--------~--------T--------------·-------------------------------------,
I Name I Operation I Operand I
~--------t------+-----------·-----------------------------------~

I I I {OFF} I I [symbo~ IALLTI I action- I
I I I ON I L ________ ~ ________ ~ __ J

action
indicates whether you wish task initiation allowed or disallowed
and must be one of these codes:

ON - task interrupts are to te enabled
OFF - task interrupts are to be disabled

EXECUTION: The ALLTI macro instruction examines the operand and
generates either

SR
LA

1,1
1,1

if it is OFF or
if it is ON

after generating SR 0,0 in either case. AIITI then invokes SETSYS as an
inner macro instruction, passing it the above code in registers 0 and 1
and TASKINIT as parameters.

EXAMPLE: If you want to enable task initiation you should write:

STOPME ALLTI

This would generate:

STOPME SR
SR
SETSYS

OFF

0,0
1, 1
TOD

SETYMD -- Set Year, Month, and Day (nonstandard)

The SETYMD macro instruction enarles you to set the year, month, and
day field of the system table.

r--------T---------~--,
I Name I Operation I Operand I
I------f-------+-------------.--------------------------------------~
I [symbol] I SETYMD I None I L-_______ ~ _________ ~ _____________ . ______________________________________ J

EXECUTION: The SETYMD macro ins1:ruction invokes SETSYS as an inner
macro instruction and passes it Y~D as a parameter. You rrust ~reload
registers 0 and 1 with the year, month, and day.

SETTOD Set Time of Day (nonstandard)

The SETTOD macro instruction enables you to set the time of day field
in the system table.

56

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] I SETTOD I None I L ________ ~ _________ ~ ___ J

EXECUTION: The SETTOD macro instruction is used to set the time of day
by issuing the SETSYS inner macro and specifying the TOD field. You
must preload registers 0 and 1 with the time of day.

RDI -- Reset Drum Interlock (nonstandard)

The RDI macro instruction enables you to reset the task/task drum
interlock byte contained in the system table.

r--------~---------T---~
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] I RDI I None I L ________ i _________ ~ ___ J

EXECUTION: The task ID of the caller is matched against that of the
drum (TT) interlock and causes the PSW condition code (contained in the
XTSI) to be set as follows:

o (the drum interlock is cleared)
1 (the drum interlock was not cleared because the task ID of the

issuing program did not match that of the TT interlock)
2 (the drum interlock was not found set)

The use of the RDI macro instruction results in the generation of SVC
201.

SETTU -- Set User Timer (R)

The SETTU macro instruction enables you to set the user timer field
.in the XTSI thereby limiting your task's execution time.

r--------T---------T---,
I Name I Operation I Operand ,
~--------+---------+---1
I I I [j-value t] I
I [symbol] I SETTU I time-1 tl) f I L ________ i-________ L-__ J

time
sFecifies the time duration, expressed in milliseconds, which you
want placed in the user timer field. It may be any value from 0 to
55,364,812.

EXECUTION: The quantity contained in register 1 is converted to a
multiple of 13-microsecond "ticks" and stored in the extended task
status index field called user timer value (XTSUTI).

EXAMPLE: Assume register 5 contains the number of milliseconds to which
you'd like to set the user timer. The macro instruction

NAME

will produce

NAME

SETTU

DS
LR
SVC

(5)

OH
1,5
251

Section 3: Nonresident Programs 57

SETTR -- Set Real Time Interval (ncnstandard)

SETTR enables you to set a time limit, in terms of a real tirre, on
the execution of your task.

r--------T---------~--------------·------------------------------------,
I Name I Operat:i}<Dn IOper:and I
~--------t---------+_--------------·------------------------------------1
I [symbol] I SETTR I None I L ________ i _________ ~ _______________ . ____________________________________ J

EXECUTION: When the doubleword time-of-day cell in the systerr tatle
equals or exceeds the time, in micI~oseconds, supplied in registers 0 and
1, a task-timer interrupt is generated for the task issuing the SETTR.
If the system limit for queuing real time interruFt requests has been
reached, a condition code of X'10' is returned to the SVC issuing
program.

EXAMPLE: Suppose you want to receive a task-timer interrupt at three
o'clock (54,000,000,000 microseconds after midnight). You could write:

TIME

PROC
NAME

OS
DC
LM
SETTR

SETTR will generate:

NAME SVC

00
FL8E9' 54'
O,l,TIME

217

REDTIM -- Read Elapsed Real Time (nonstandard)

The REDTIM macro instruction enables you to read the system time in
microseconds.

r--------T---------T---------------·------------------------------------,
I Name I Operation I Operand I
~--------t---------+_---i
I [symbol] I REDTIM I None I L ________ i _______ ~_~ __ J

EXECUTION: The year, month, day c1ell (SYSYMD) in the systerr table
(CHASYS) is added to the time-of-day cell (SYSTCD) in the system table

and to the elapsed-time cell (PSAE'rM) in the prefixed storage area
giving the current instant in microseconds. The resulting double
precision fixed-point number is returned in registers 0 and 1.

EXAMPLE: Suppose you want to find -the date and time. You might write:

NAME REDTIM

This will generate:

NAME SVC 218

TSEND -- Force Time Slice End (R)

The TSEND macro instruction enables you to impose a time slice end on
your task prematurely.

r--------~---------T--~
I Name I Cperation I Cperand I
~--------t---------+--~
I [symbol] I TSEND I None , L-_______ i-________ ~ _____________________________________ ~ ______________ J

58

EXECUTION: The current time slice .ofthe task issuing the BVC is
terminated. The task becomes a candidate for another time slice in the
next operational cycle.

EXAMPLE: Suppose you want to cause your current time slice to come to
an end. You might write:

XYZ TSEND

This would generate:

XYZ SVC 243

AWAIT -- Wait for an Interrupt (R)

The AWAIT macro instruction enables you to check for the cOltlpietion
of an event and to enter your task into the delay state toa-wait
completion.

r--------y---------~---,
I Name I Operation I Operand ,
~--------+---------+---i
I [symbol] IAWAIT I None I L ________ i _________ i ___ J

EXECUTION: The AWAIT routine checks to see if the SVC was the subject
of an execute (ILC=2) and if the SVC lies on the second halfword of a
fullword (implying an event control block). If both these conditions
are satisfied, the event control block complete bit (bit 1 of the first
byte) is checked. If this bit is on, the event is complete, no waitinQ
is required, and control is returned to the issuing program. If t~i~
bit is off, a wait is required; the task is put into the· delay state.

EXAMPLE: Suppose you want to place your task in the delay state
(inactive TSI lis~ until an I/O operation associated with an event
control block is completed. You might write:

WAIT

ECE

EX
B
DS
DC
AWAIT

0, ECB+2
SOMEPLACE
OF
H'O' SECOND BIT IS COMPLETE BIT

AWAIT MUST BE SUBJECT OF EXECUTE

The AWAIT will generate the SVC 248.

TWAIT -- Wait for Terminal I/O Interrupt (R)

The TWAIT macro instruction enables you to check for a response to a
message you have sent and, pending its arrival, to enter the delay
state, which causes any pages for your task to be moved to auxiliary
storage.

r--------T---------T---,
I Name I Operation I Operand !
r--------f---------+---~
I [symbol] !TWAIT I None ! L ________ i _________ i ___ J

EXECUTION: The sve must be the subject of an execute instruction and
must occupy the second halfword of a fullword control block called an
event control block (ECB). The supervisor checks the second bit of the
halfword preceding the supervisor call and interprets this bit as the
event complete bit. If this bit is one., the supervisor returns control
and the SVC has the effect of a NOP (no operation). If the bit is zero,
the supervisor will set the TWAIT flag in the task's TSI to one and put

Section 3: Nonresident Programs 59

the task in the delay state; this ~,ill cause time slice end to occur for
the task and cause any pages of the task occupying drum storage to be
moved to paging disk storage. The task will be removed from the delay
state when any task-interrupt -- if the task is enabled -- occurs.

EXAMPLE: Suppose you send a message to some terminal and are waiting a
response. The posting routine associated with the lOCAL (see lOCAL)
used to transmit the message to the terminal is responsible for setting
the event-complete bit of an event control block to one. You have
reached a point in your program requiring comt:letion of the lOCAL
activity; you do not wish to continue until the ICCAL posting routine
has been entered. You might write:

TEST

EX
B
DS
DC
TWAIT

O,TEST+2
IOCOMPLETE
OF
H'O'

ALIGN
POS'l'ING FLAGS

The TWAIT will generate an SVC 229 ..

ADDPG -- Add Virtual Storage Pages~

The ADDPG macro instruction enables you to add virtual storage pages
to your task.

r--------~---------T--,
I Name I Cperation I Operand I
~--------+---------+---~
I I I [{value}-I [{ {addrX } I I [symbol] I ADDPG I pgcnt- ~ , startad- I
I I I (1) -- (Q) I
I I I] I I , I , protcls-codc:; f I L-_______ ~ ________ ~ _____________________________ ------------__________ J

pgcnt
indicates the number of virtual storage pages you want added to
your task.

startad
designates the address of the first page you want to add. This
address must be a multiple of 4096.

protcls

60 .

specifies the protection class you want assigned to each halfpage
and may be coded:

A - both halfpages nonpr~lileged read/write.
AB - first halfpage nonprivileged read/write, second halfpage

nonprivileged read only.
AC - first halfpage nonprivileged read, second haifpage

privileged.
BA - first halfpage nonprivileged read only, second halfpage

privileged.
B - both halfpages nonprivileged read only.
BC - first halfpage nonprivileged read only, second halfpage

privileged.
CA - first halfpage privileged, second halfpage nonprivileged

read/write.
CB - first halfpage privileged, second halfpage ncnprivileged

read only.
C - both halfpages privileged.

If you choose to write register notation, you should load the actual
page count into register 1 and pack register 0 with the next two
parameters.

The start address must be left aligned and the ~rotection class code,
selected from the list below, must be right aligned.

Code
A
BA
CA
AB
B
CB
AC
BC
C

Value
1
2
3
4
5
6
7
8
9

For example you might write:

STARTAD
CODE

L O,STARTAD
SLL 0,8
IC O,CODE

DC
DC

XL4'QOOO'
BL1'00000001'

EXECUTION: New page table entries and, if necessary, segment table
entries are constructed, corresponding to the virtual storage address
contained in register O. The number of page table entries to be
constructed is determined by the page count contained in register 1.
The low-order byte of register 0 is used to determine the setting of the
storage keys for all the pages being added.

EXAMPLE: Assume you want to add 100 pages of virtual storage, starting
at location FFFF1 with user read-only protection keys. You might code
it this way:

LABEL ADDPG 100,START,B

where START is a page boundary address.

This would generate,

LABEL DS
LA
LA
o
SVC

OH
1,100
0, START
0,=F'5'
250

ADSPG -- Add Shared Virtual Storage Pages (R)

The ADSPG macro instruction enat1es you to add shared pages to your
task's virtual storage.

Section 3: Nonresident Programs 61

r--------T---------~---------------------~----------------------------,
I Name I Operation I Operand I
~--------+---------+---~

: [symbol] IADSPG I [startad_{addrX}] [, pgcnt- {ValUe}] r

I I I U> (Q) I
I I I - I : : I ['lsptnbr- value ,protcls-COdel] I
I I I (J2) I L-_______ ~ _________ i-__ J

startad

pgcnt

specifies the virtual storage address at which you want to start
adding shared pages.

indicates the number of shared ~ages you want to add.

sptnbr
indicates the shared page table to which you are adding the shared
pages.

prot cIs
indicates the protection class you want assigned to each pair of
halfpages. The valid codes are the same as those for ADDPG.

CAUTION: Unlike the ADDPG macro instruction, the two pararreters to te
packed into register 15 each occupy a halfword.

EXECUTION: The number contained i:o bytes two and three of register 15
is used to determine if pages are -to be added to an existing shared page
table or if a new shared page table is to be constructed. If bytes two
and three of register 15 are zero, or if there are not enough pages
remaining in the shared page table indicated by bytes two and three, a
new shared page table is constructl~d. Once the shared page table is
selected or constructed, a number of ~age table entries corresponding to
the number contained in bytes zero and one of register 0 is added to it.
Storage protection keys are assiqned as requested by the code in bytes
zero and one of register 15.

The parameters contained in registers 0, 1, and 15 are returned
intact to the program issuing the SVC unless a new shared ~age tatle had
to be constructed; if that weJce the case, the new shared page tatle
number and new starting virtual storage address replace the correspond
ing input parameters.

EXAMPLE: Suppose you want to add two shared pages with key B, starting
at location RJG; assume the shared page table number is five. You might
do it like this:

NAME ADSPG RJG,2,5,B

where RJG is a page boundary address.

This would generate,

NAME

62

DS
L
LA
o
CHDINNRA
L
SVC

OH
1 5, =F • 5 * 6 !i 5 3 6 •
0,2
15, =F' 5*6!i536'
RJG, 2, (236)
1,=F ' RJG '
236

INNER MACRO INSTRUCTICN
GENERATED INNER MACRO
INSTRUCTICN GENERATED

DELPG -- Delete Virtual storage Pages(R)

The DELPG macro instruction enables you to delete pages from your
task's virtual storage.

r--------T---------~--,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] IDELPG I I

I I I[{addrX}] [{ValUe}] I I I I startad- , pgcnt- I
I I I (Q) (1) I L ________ i _________ L-__ J

startad

pgcnt

specifies the address of the first virtual storage page you want
deleted.

specifies the number of contiguous virtual storage pages you want
deleted.

EXECUTION: The contiguous pages, beginning at the address contained in
register 0 and equal to the count in register 1, are deleted from the
issuing task's virtual storage. Main storage and paging storage space
in use for the released pages are freed for reallocation. If an entire
segment is deleted, the auxiliary segment table entry is marked
unassigned, the segment table entry is marked not available, and an
indicator is set to represent the deleted segment. If the page table
entries and external page table entries are not in the first XTSI page,
the space they occupied is returned for reallocation. If the auxiliary
segment table entry is marked shared, the entry corresponding to the
segment in the resident shared page index is deleted.

Note: DELPG can be used for deleting both un shared and shared pages.

EXAMPLE: Suppose
starting at ABCXYZ~

you want to delete three pages of virtual storage,
You might write:

TEST DELPG ABCXYZ,3

This would generate,

TEST DS OH
LA 1,3
CHDINNRA,ABCXYZ, (249)
LA O,ABCXYZ
SVC249

INNER MACRO GENERATElD
INNER MACRO GENERATED

CNSEG -- Connect Segment to Shared page Table (R)

The CNSEG macro instruction enables you to connect a new seq'ment to
the shared page table.

r--------T---------T---.--------,
I Name I Operation I Operand I
~--------+---------+--.--------~
: [symbol] I CNSEG '[J segnbr-value. sptnbr-value IJ :
I I I (<1) I L ________ i-________ L-__ . ________ J

segnbr
srecifies the segment that you want connected to the shared page
table.

Section 3: Nonresident Proqrams 63

sptnbr
specifies the number of the shared page table to which the segrr.ent
is to be connected.

If you choose to write register notation, the segment nurr-ber should
occupy the high order halfword of the register 1 and the SPT number
should occupy the low order halfword.

EXECUTION:
halfword of
table. If
shared page
of register

The shared page table number contained in the low-order
register 1 is used to search the task's auxiliary segrrent
an auxiliary segment -table entry is already connected to the
table, its segment number replaces the high-order halfword
1 and control is retu:rned to the SVC- issuing program.

If no auxiliary segment ta:ble entry is already connected to the
specified shared page table, the segrrent table entry indicated ty the
high-order halfword of registe:r 1 is set not available; its auxiliary
segment table entry is marked assigned and shared and the shared fage
table number in register 1 is inserted into the auxiliary segment table
entry.

EXAMPLE: Suppose you want to connect shared page table number 3 to
segment 12. You might write:

RJG CNSEG

This would generate,

RJG
tA3

DS
SETA
L
SVC

12,3

OH
3+12*65536
1,=F'&A3'
238

Shared page table 3 is connected to segment 12 and the high-order
halfword of register 1 is left unchanged (as 1~ to indicate the actual
segment to which the shared page table was connected.

DSSEG -- Disconnect Shared Page Table From Segment @>

The DSSEG macro instruction '~nables you to disconnect a shared ~age
table from its segment.

r--------T---------T--,
I Name I Operation I Operand I
i---------f-- .-------+--- ~

I I I [{ value }] I
I [symbol] I DSSEG I sptnbr - CD I L ________ -L ______ .L ___ J

sptnbr
specifies the shared page table you want to disconnect.

EXECUTION: The shared page table number in the low-order halfword of
register 1 is used to search the auxiliary segrr.ent table. If a rratching
auxiliary segment table entry is found, it is set not assigned; the
segment table entry is set not available.

EXAMPLE: Suppose you want to remove shared page table number 23 from
the segment to which it is attach(~d. You wight write:

ANY DSSEG 23

This would generate,

64

ANY DS
LA
SVC

OH
1,23
237

LSCHP -- List Changed Virtual Storage Pages (R)

The LSCHP macro instruction enables you to obtain a listing of
virtual storage pages which have been changed.

r--------T---------T--,
I Name I Operation I Operand I
~--------+---------+-------------------~--------------------------------~

I I I [iddrX}] [{ValUe}] I I [symbol] I LSCHP I startad , pgcnt- I
I I I (1) (Q) I L ________ ~ ________ i ___ J

startad

pgcnt

specifies the virtual storage address of the first page you want
checked.

s~ecifies the number of consecutive pages you want ch,ecked; the
maximum number of pages is 16.

EXECUTION: The number of pages specified by register 0 and st':irting at
the page address found in register 1 are checked. The resul·ts of this
check are stored in register O. The condition of a given page, page n,
is found by checking bits 2n - 2 and 2n - 1 in register O. The bit pair
is interpreted as follows.

Bit Pair Meaning

00 Page in core and changed
01 Page in core and unchanged
10 Page not in core and changed
11 Page not in core and unchanged

EXAMPLE: Suppose you wish to
location XYZ, have been changed.

find out if three pages, beginning at
You might write:

NAME LSCHP XYZ,3

The macro expansion would produce,

NAME DS OH
LA 0,3
CHDINNRA XYZ" (,247)
DS OH INNER MACRC GENERATED
LS 1,=F'XYZ' INNER MACRO GENERATED
SVC 247 INNER MACRO GENERATED

CRCLS -- Check Protection Class (R)

The CKCLS macro instruction enables you to check the most restrictive
protection class assigned to a group of halfpages.

r--------T---------~--,
I Name I Operation I Operand I
~--------+---------+--.---------~
I I I [{addrX}] [{ValUe}] I I [symbol] I CKCLS I startad- , hpgcnt- I
I I I (1) (Q) I L ________ ~ ________ i ___ J

Section 3: Nonresident Programs 65

startad
specifies the virtual storagf~ address of the first halfpage you
want to check.

hpgcnt
specifies the number of consE~cutive halfpages you want to check.

EXECUTION: A code indicating the most restrictive protection class of
the pages checked is returned in 1:he low-order byte of register O. One
of these codes will be returned:

Code
o
1
3
7

Protection Class
Page unassigned
User read/write Ueast restrictiv~
User read only
User cannot read or write (most restrictive)

Consecutive halfpages starting at the address contained in register 1
and equal to the halfpage count c(mtained in register 0 are checked.

EXAMPLE: Suppose you want to check the protection class of the five
halfpages beginning at RJG. You might write:

CKCLS RJG,5

This would generate,

DS
LA
CHDINNRA
LA
SVC

OH
0,5
RJG" (,241)
1,RJG
241

INNER MACRC GENERATED
INNER MACRO GENERA 'I-ED

ADDEV -- Add Device to Task Symbolic Device List (R)

The ADDEV macro instruction ena.bles you to add additional I/O devices
to your task. You may have up to 15 devices assigned to your task.

r--------~---------~--,
I Name I Operation I Operand I
~--------t---------+---i

I I I [{ValUe}] I I [symbol] IADDEV I devnbr- I
I I I (Q) I L ______ ...L-_______ ..L ___ J

devnbr
specifies the symbolic device nurr.ber of the I/{) device yeu want
added to your task's symbolic device list (TSDL).

EXECUTION: The supervisor adds a~_ entry corresponding to the symbolic
device number contained in register 0 to the task's symbolic device
list. If the device is already in the task's syrebolic device list, the
count of the number of times the- device has been added is increased by
one; if this count exceeds 15 an error is indicated. Before returning,
the supervisor will set the high-order bit of register 0 to one if the
count of the number of times the device has been added exceeds 15.

EXAMPLE: Suppose you want to add syrr-bolic device 17 to your symbolic
device list. You might write:

ADD ADDEV 17

This would generate,

66

ADD DS
LA
SVC

OH
0,17
234

RMDEV -- Remove Device from Task Symbolic Device List (R)

The RMDEV macro instruction enables you to remove an I/O dE~vice from
your task's list of available devices.

r--------~--------~--,
I Name I Operation I Operand I
~--------+---------+---~
I I I [{Val ue }] I I [symbol] I RMDEV I devnbr- I
I I I lQ) I L ________ ~ ________ ~ __ J

devnbr
specifies the symbolic device nunber of the I/O device you want
removed from your task's symbolic device ~ist (TSDL).

EXECUTION: The supervisor reduced the ADDEV count in
symbolic device list by one. If the count is reduced to
device entry is removed from the task's symbolic device list.

1:he task's
~~ero, the

If the symbolic device number is not found in the task's symbolic device
list, the supervisor sets the high-order bit of register 0 to 11.

EXAMPLE: Suppose you want to remove symbolic device 46 from your
syrr~olic device list; assuming no other part of your task had 2Llso added
device 46, the ADDEV count for device 46 would be one. You mi9ht write:

GONE RMDEV 46

This would generate,

GONE DS
LA
SVC

OH
0,46
233

PURGE -- Purge I/O Operations (R)

The PURGE macro instruction allows you to suppress or to r€!move any
or all I/O devices from your task's list of available devices.

r--------T---------T---.--------,
I Name I Operation I Operand I
~-------t---------+---.--------~
I I I [5action-code, ~evnbr-VaIUe] lJ[5, task- code I
I [symbol] I PURGE I 1 lQ) .~ 1 {J OJ I
I I I [,taskid-value] ~ I L ________ ~ _______ -L-__ . ________ J

action
specifies the purging action you want and may be anyone of these
codes:

devnbr

AR - purge all devices immediately
AS - purge all devices but let the active ones quiesce
AL - purge all I/O requests immediately, leave TSDL alone
AD - remove the TSDL
SR - purge the specified device after it quiesces

specifies the symbolic device number of the device you want purged.

Section 3: Nonresident Programs 67

task
specifies the combination of tasks froID which you want, the device
purged and you may write:

AT - the purge is for all tasks
ST the purge is only for the task srecified in the next

operand

taskid
is actual ID of the task for which the purge is to be effective.

EXECUTION: The I/O devices to te purged are either suppressed or
removed from the task symbolic device list (TSDL) of the task or tasks
to which the purge is to apply_ If a device is to be allowed to
quiesce, its task symbolic device list entry is merely suppressed, if a
device is to be purged immediately, its task syrr.bolic device list entry
is removed from the task symbclic devicE list. The TSDLs to be used
depend on whether one or all tasks are to have their I/O devices purged.

General register 0 is returned to the calling program with tit zero
containing an error flag, if applical:le. Depending on the request, this
bit can have these interpretations:

For one device, one task -- device not assigned to task

For all devices, one task -- no task symbolic device list exists

For all tasks, one or all devices -- devices not assigned to any
task

If a task that does not have the system operator rrivilege issues SVC
222 for all devices and all tasks, a system error (SYSERR CeDE RSC
6101·) is generated.

EXAMPLE: Suppose you wish to purge the I/O device assigned syrol:olic
device number 351 for any tasks that might be using it, but you are
willing to wait for the device to quiesce. You might write:

NAME PURGE SR,351,AT

The macro expansion would produce,

NAME DS
L
o
L
SVC

OH
0,=CL4'SSOO'.
0,=F'351 1

1,=CL4'ATOO'·
222

.The zero in this character string is only for illustration; a
hexadecimal zero doesn't have an assigned graphic ana must be punched
as 12-0-9-8-1.

RESET -- Reset Device Suppression Flag (R)

The RESET macro instruction all.ows you to cancel a previous PURGE ty
resetting a device's snrpression flag in the TSDL.

r--------T-------T-------------.---------------------------------,
I Name I Operation I Operand I
~--------+--------+--------------.-------------------------------------~
, I '[{Valu.e }] I 1 [symbol) 'RESET I devnbr- 'AI,L, I
I I I <!)~) I L ________ i _________ i ______________ . ___________________________________ J

68

devnbr
specifies the symbolic device address of the device whose flag you
wish reset. 'ALL' indicates all device suppression flags are to ce
reset.

EXECUTION: The supervisor clears the device suppression flag in the
task symbolic device list for the symbolic device number contained in
register O. This has the effect of cancelling a previous PURGE for the
symbolic device.

Before control is returned, an error flag may be set in the
high-order bits of register 0; if this bit is set to one, it means that
the symbolic device is not contained in the task's symbolic device list.

EXAMPLE: Suppose you want to allow I/O operation to proceed on symbolic
device 25. You might write:

GO RESET 25

This would generate,

GO DS
LA
SVC

OH
0,25
221

SPATH -- Set I/O Device Path (R)

The SPATH macro instruction enables you to set flags indicating units
along a path are partitioned or malfunctioning.

r--------~--------T---,
I Name I Operation I Operand I
~-------+---------+---~
I I I[{COde}] I I [symtol] I SPATH I flag- I
I I I (Q) I

I I '[,1cowP-integer,devad-hexintegerl] I
I I I (1) I L ________ ~ _________ ~ ___ J

flgst

comp

specifies the flag and the setting you desire and must be one of
these codes:

POF - set unit's partitioned flag off (0)
paN - set unit's partitioned flag on (1)
SOF - set unit's malfunction flag off (0)
SON - set unit's malfunction flag on (1)

indicates the component (channel, control unit, device) you want
set and may be coded:

1 - I/O device only
2 - Control unit only
3 - Control unit and 1/0 device
4 - Channel only
5 - Channel and I/O device

Section 3: Nonresident Prograros 69

devad

6 - Channel and control unit
7 - Channel, control unit, and I/O device

specifies the actual device address of the path you want set and
must te a hexadecimal value less than X'2000'.

EXECUTION: The appropriate flag i.n the pathfinder's tables is set on or
off according to the codes contained in registers 0 and 1 fer the
device, control unit, and/or channel represented by the actual device
address contained in bits 19-31 of register 1.

EXAMPLE: Suppose you wish to part.ition device A01 and its control unit.
You might write,

NAME SPATH PON,3,X'A01'

This would produce,

NAME L
L
SVC

0,=X'40020000'
1,=X'000061~01'
211

SETAE -- Set Asynchronous Entry (F~

The SETAE macro instruction permits you to process your own asynch
ronous interruptions by moving t~he device capable of producing such an
interruption to another task.

r--------~---------~-------------.-------------------------------------,
1 Name I Operation I Operand I
~--------+---------+--------------.-------------------------------------~

I I I [{Value}~ [{ValUe}] I I [symbol] I SETAE I devad , task- I
I I I (.!) (Q) I L ______ ..L-________ -'--_____________ . ____________________________________ J

device

task

specifies a symbolic device address whose value cannot 1:e greater
than 2 11 &t-1.

specifies a task identification number whose value must be less
than 2 116-1. If task is null, the entry is restored to its neutral
state; otherwise, the entry is updated to point to the task
specified.

EXECUTION: The entry in the asynchrenous device group table (CHAAD'I)
corres~onding to the symbolic device address is set to point to the task
status index of the task corresponding to the task ID supplied in
register O. If task is zero, the symbolic device is marked unassigned.
An entry is also placed in the TSDL for the new task.

EXAMPLE: Suppose you want attention interrupts received froIT device 124
to be processed by the task, with task-identification 233. You might
write:

ESTAB SETAE

This would generate,

ESTAB

10

DS
LA

124,233

OH
1,124

LA 0,233
SVC 210

lOCAL -- I/O Call (R)

The lOCAL macro instruction provides for the initiation and execution
of an I/O operation.

r--------~--------T--,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] IIOCAL I None I L ________ ~ ________ ~ __ J

EXECUTION: An IOCAL macro instrllction must always be the subj4~ct of an
execute. The supervisor call is assumed to occupy the first halfword of
a variable-length parameter list called an I/O request con1:rol block
(IORCB). The IORCB supplies the information necessary for the su~ervi
sor to perform the requested I/O o~eration.

An IORCB consists of four parts: A fixed part of 10 doubI4=words; An
optional I/O data buffer which cannot exceed 225 double ~l7ords; An
optional page list which cannot exceed eight doublewords; A channel
command word (CCW) list. The entire IORCB cannot exceed 240 d()utlewords
and must be wholly contained within a single page.

When an lOCAL is executed, the supervisor after some error
checking obtains main storage space for the ICRCB and COFiE~s it intc
that space. Based on the options selected by the user and indicated in
the IORCB, the supervisor obtains a ~ath to the requested I/O device,
translates the virtual CCW addresses to real storage addresses, brings
any required buffer pages into zr.ain storage, and starts the I/O
operation. After the I/O operation is com~lete, the supervisol~ releases
the device path, allows the data buffer pages to be paged out of storage
-- if necessary -- and queues a pending task-I/C interrupt for the task
associated with the ICRCB.

When (and if) the pending interrupt is accepted by the task, the
supervisor copies the IORCB int.o the task' s interrupt sto:I'age area
(ISA) • After the IORCE has been copied, the main storage space it
required is released for reallocation and the lOCAL oFeration is
completed. A task may have more than one lOCAL in operation at one time
and may operate asynchronously with an active lOCAL.

Figure 8 shows the format of the fixed area of the IORCB as it is
viewed prior to issuing an lOCAL. Every ICCAL must have a 20 'Word fix€d
area regardless of the fields used. You may use sFace within the IORCB
itself as a data buffer; you can do this if the data does not exceed 225
doublewords (or whatever space is left in the IORCB after the other
items you need are included). You must include an IORCB data buffer if
you are using a direct access device and if you wish record zero to be
read into the IORCB by the supervisor if a unit check occurs. In this
case, the IORCB data buffer (the first 56 bytes) are used to hold record
zero. You may also use data buffers outside the IORCB; if you do this,
you must include a page list. The page list contains one doubleword
entry for each virtual storage buffer Fage; you may not have more than
eight ~age-list entries. Figure 9 shows the format of a page-list
entry.

Section 3: Nonresident Programs 71

Each page-list entry is associated with a channel command word (CCW)
list entry; the CCW entry tells what operation is to be performed with
the data buffer. A CCW ent~' does not need to point to a page-list
entry; a page-list pointer of zer() is assumed to mean the IORCB buffer
is to be used. You can use any number of CCW entries as long as the
size limits of the IORCB are not E~xceeded. Figure 10 illustrates the
format of a CCW list entry. You always have at least one CCW entry,
since the CCW represents the work you want the supervisor to do.

If the software command chain flag is one (see Figure 11), the
supervisor will continue to r.~l.ssue start-I/O instructions at the
current point in the CCW list when a device-end interrupt is received.
This has the effect of making the CCW list appear chained, even though
the path to the I/O device may be free for certain periods during the
operation. The most common use of software command chaining is to chain
a seek to its read or write coromand.

If the IORCB chain flag is 1 (see Figure 8) , the supervisor will
change the last ccw entry to a transfer in channel (TIC) command if
another (secon~ lOCAL for the same device is received before the final
channel-end/device-end interrupt for the first IORCB is received by the
supervisor. This TIC command will link the CCW lists of the two IORCBs.
The supervisor will also set the program controlled interrupt (PCI) bit
on, in the start CCW of the second IORCB. The receipt of this PCI
signals the completion of activity for the first IORCB; the supervisor
then enqueues a pending task-I/O interrupt for that IORCB.

The IORCB received by the task monitor as a result o~ the task-I/O
interrupt has been changed by the sUFervisori it is not identical to the
IORCB originally received by the supervisor. Figure 11 shows the fields
in the fixed area of the IORCB that may be set by the supervisor.
Figure 12 shows the changes to the CCW list entry.

As part of its interrupt handling logic, the task monitor transfers
control to the posting routine pointed to by the IORCB it receives as a
by-product of the task-I/O interrupt. This posting routine informs the
program originally issuing the lOCAL that the I/O operation has been
completed.

72

0123456701234567 012345670123456701234567012345670123456701234567
--- .- ---------- ---

lOCAL (SVC 231) USED BY ACCESS METHODS -- NOT SET OR INTERROGATED BY lOCAL
--

length of 10RCB length of page relative origin storage start I/o fai 1- length of CCW relative origin relative origin
in 64-byte units list in of page list in protection key ure count. list in of CCW list in of starting CCW
(blocks) doublewords doublewords (lor 2) (note 1). doublewords doublewords in doublewords

-

length of 10RCB relative origin actual I/o address to system symbolic device
data buffer in of 10RCB data be used for th i s not used address ml1st be given if
doublewords buffer in operation (note 2). actual path not supplied

doublewords
USED BY ACCESS METHODS -- NOT SET OR INTERROGATED BY lOCAL

-
V-type address constant of posting routine to be transferred to R-type address constant of posting routine (see preceeding
by the task monitor when the task-I/O interrupt associated with word)
this 10RCB occurs

USED BY ACCESS METHODS -- MAY BE SET BY lOCAL

USED BY ACCESS METHODS -- NOT SET OR INTERROGATED BY lOCAL

MAY BE SET BY lOCAL USED BY ACCESS METHODS -- NOT SET OR CHECKED BY lOCAL

users' options
SET BY lOCAl.

options
NOT USED

Sill RI ~I: H IU liP I nlo~e 14 rill (note 3)

USED BY lOCAL FOR PERFORMING SENSE OPERATION

012345670123 4567012345670123456701234567012345670123456701234567

Note 1.

Note 2.

Note 3.

Note 4.

Figure

If flag R (note 3) is one, the start I/o instruction is reissued the
number of times spec ified by this count, or unti I the start I/O
instruction is successfully initiated.

If flag S (note 3) is one, the I/o address contained in this halfword
is used and the symbolic device address is ignored.

S =specific I/o address; 1= ignore device malfunctioning indicator in
pathfinder; R = if start I/o not accepted because device is busy,
reissue start I/o (see Note 1.); C=Software command chain;
H= issue halt I/O on device before start I/O; U= if unit check occurs,
read direct access device record zero into 10RCB data buffer; P= treat PCI
as channel end/device end.

10RCB chaining flag; if another lOCAL is received for this device whi Ie
the channel program for this 10RCB is running, the last CCW of this list
is TlCed to the first CCW of the other 10RCB.

8. Format of Fi~d Area of Input/Output Request Contl:ol
as Set Before IOCAL

Block

012345670123456701234567 o 1 234567 01 234567 0123456701 23456701234567

high-order 20 bits of virtual storage address; the flages set to actual main storage location used for this
segment and page number of virtual buffer page IA UNUSED page -- before 10RCB is returned to task monitor

(note 1) at task-I/O interrupt time

Note 1. A = (paging storage) copy of this page does not need to be used; use any core page and release paged copy

Figure 9. Organization of a Page List Entry

Section 3: Nonresident Prograws 73

01234567 01234567 o 123 456701234567 01234567 012345670 123456701234567

CON Operation position of page flags

~
displacement within

code as in
OS/360

Note 1.

Note 2.

list entry page buffer or from
1,2 •.• 8 (note 2) start of 10RCB buffer
(note 1) or from start of CON

list if T'C

If this field is 0, the 10RCB data buffer is assumed

I = do not relocate CON addresses

CCW flags as Os BYTE COUNT
in S/360
hardware

Figure 10. Channel Command Word List Entry Before lOCAL is Issued

0123456 70 12 3456701234567012345670123456701 2345670123456701234567
'-----

UNCHANGED

UNCHANGED

set to actua I I/o address used

I
UNCHANGED for this operation, or left UNCHANGED

unchanged if user supplied

UNCHANGED

UNCHANGED

condition codes real main storage address used for 10RCB data

UNCHANGED I 1IIIICICISIs buffer. If no 10RCB buffer used set to real
Note 1 address of 10RCB itself

r---

Uf'..CHANGED

sense c codes sense CSW status placed here sense fai led fg halt I/O retry

IICCSS if both requested operation and 01 count UNCHANGED

(Note 2) sense operation fail (Note 3) (Note 4)

flags

UNCHANGED I SI pIli HI RINlwlT I xl xl ci NOT USED

(Note 5)

CCW FOR PERFORMING SENSE OPERATION ON REQUESTED I/o DEVICE

0123456701234567012345670123456701234567012345670123456701234567

Note 1. If operation came to abnormal end, these condition Godes are stored: I=test I/O
condition code; C=test channel condition code; S=!.tart I/O or halt I/o condition
code.

Note 2. If sense operation failed, these condition codes are ~.tored for I/o instructions used
to attempt sense (see note 1).

Note 3. O=a device other than the one requested has monopcolized the control unit; sense
dqta applies to that device.

Note 4. If user requested both a retry of start I/o and halt VOs before each start I/o,
this field is set equal to the user suppl ied start I/o count.

Note 5. S=CON specification error; P=no path exists to requested device; I=start I/o
failed; H=halt I/o failed; R=read record 0 (on direct access error) failed;
N=sense failed; W=CON addresses are relocated (changed to real addr)
T=IORCB aborted because previous (pending) 10RCE for same task had abnormal
end; x = internal flag for lOCAL; C = interrupt code applies to device other
than one requested monopolizing control unit.

.figure 11. Fixed Area of I/O Request Control Block as Set bv lOCAL
01234567

UNCHANGED

Figure 12.

--------.---~-.-- -

012345670123456701234567 01 2 3 4 5 6 7 0 1 2 34 5 6 7 0 1 2 3 4 5 6 7 0 1 2 345 6 7

MAIN STORAGE ADDRESS
USED FOR OPERATION

Channel Command Word List
Occurs Occurs

UNCHANGED

Entry After Task I/O Interru~t

EXAMPLE: Whenever you use an lOCAL, you should be sure to refer to the
current version of the IORCB. The format of the lORCB is described by a
dum~y section in the system copy/macro library. You can get a copy by

74

assembling a program with this in it:

COpy CHAIOR

Suppose you want to read 120 bytes from symbolic device 85.
write,

YOU might

BGN

TEST

ENDFIX
BUF
CCW
IOREND
READ

EX
B
lOCAL
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC

DS
DC
CCW
DS
EQU

O,TEST
AWAY

3H
C' (TEST-IOREN~)/64'
CL2'0'
C'2'
C'O'
C' 1 •
C' (CCW-TEST) /8'
C'O'
C'120/8'
C' (BUF-TEST) /8'

H'O'
H'O'
H'8S'
D'O'
A (POST)
R (POST)
7F'0'
3F'0'

OD
lSD'O'
READ,0,X'20',120
OD
194

WE DCN'T USE THIS

NO FAGE LIST
WE'RE PRIVILEGED
DEVICE SHOULDN''I BE BUSY
ONLY CNE CCW
RELATIVE ORIGIN CF CCW LIST
START CCW IS FIRS'l'
IORCB BUFFER LENG'l'H
RELATIVE ORIGIN OF' IORCB

BUFFER
NCT GIVING ACTUAL ADDRESS
NOT USED
SY~'BOLIC DEVICE ADDRESS
WE WON''I USE THIS
THE ADDRESS OF CUR
POSTING PROGRAM
WE WON'T USE THIS
WE'LL ELECT "NO" ON THE

CPTICNS
END CF FIXED AREA OF ICRCB
120 BYTES OF BUFFER

END OF IORCB
COMMAND FOR 2540 BCD READ

Notice that the CCW page-list entry and displacement fields are beth
zero; this causes the IORCB buffer to be used and the information to be
read into the first byte of the buffer. After the oFeration is
complete, the supervisor will cause a task-I/C interrupt which will
store the IORCB in the interrupt storage area. Our posting program
(POST) can, if it wishes, move the data out of ICRCB buffer at that
time.

The macro instruction above would generate:

CNOP

TEST SVC

0,8

231

MAKE CERTAIN THA'I THE EXECU'IABLE
INSTRUCTIONS ARE DCUBLE-WORD
ALIGNED.

PGOUT -- Write Virtual Storage Pages to External Storage

The PGOUT macro instruction enables you to write froIT one to eight
virtual storage pages to one or more external storage devices.

r--------T---------T---.--------,
I Name I Operation I Operand I
~-------+---------+---.--------~
I [symbol] I PGOUT I None I L ________ ~ ________ ~ ___ . ________ J

Section 3: Nonresident Proqrams 7S

EXECUTION: The PGOUT macro instluction must be the subject of an
execute instruction and must occupy the high-order halfword of the first
word of a parameter list called an I/O paging control block (IOPCB).
The IOPCB consists of a header and a number of external storage list
entries (see Figure 13).

The supervisor reads into main storage any pages in the list that
aren't already in main storage; when all pages are in, the supervisor
writes them out at the external storage locations sUJ;:J;:lied in the
external storage list. From one to eight consecutive virtual storage
pages may be transmitted; the destination external storage locations
need not be consecutive and may be on different devices.

Before returning, the supervisor J;:uts information in register zero to
describe the action with each J;:agE! in the external storage list. Four
bits of register 0 are assigned to each page; bits 0-3 for the first
page, bits 4-7 for the second, etc. The four bits are interpreted as
follows:

Value
0000
0011
0100
0101
0110
0111
1000
1001
1010
1011

Meaning
No error - page transmitted
Virtual storage page not assigned to task
Request for zero pages
Symbolic device not assigned to task
Page in bad device -- volume is movable
Page in -- bad device -- volume is fixed
Page in -- medium failure
Page out bad device -- volume is movable
Page out bad device -- volume is fixed
Page out medium failure

EXAMPLE: Suppose you want to write virtual storage page RSLTS on the
127th page position of symholic device 34. You might write,

OUT

MOVE

EX
B
PGOUT
DC
DC
DC
DC

O,MOVE
SOMEPLACE

H' 1 '
A (RSLTS)
H'34'
H'127'

1 PAGE TO BE TRANSMITTED
EXTERNAL S~ORAGE LIST ENTRY
SYMBOLIC DEVICE NUMBER
RELATIVE PAGE NUMBER

The macro instruction above would generate an SVC 242 to make certain
the executable instructions are full word aligned.

r--1
I Format of I/O paging control block header I
~----------------------------------T-----------------------------------~
10123 4 567 0 1 234 567 I 0 123 4 5 670 1 234 567 I
~----------------------------------+-----------------------------------~
I PGOUT -- SVC 242 I number of ESL entries I
~---------------------------------i--------------------_______________ ~
I Virtual storage address of first of 1-8 pages to be transmitted I l __ J

r--,
I Format of external storage list entry (rraxirnurn of eight) I
~---------------------------------T-----------------------------------~
10123 4 567 0 1 234 567 I 0 123 4 5 670 1 234 567 I
~----------------------------------+-----------------------------------~
I System symbolic device nwrber I relative page number I l __________________________________ i ___________________________________ J

Figure 13. I/C Paging Control Block

76

SETXP -- Set External Page Table Entries (R)

The SETXP macro instruction enables you to flag external page table
entries that you are currently setting up as ·unprocessed hy dynarr.ic
loader.· The first reference to the page or pages indicated in those
entries will then cause control to be given to the dynamic loader.

r--------T---~-----T---.--------,
I Name I Operation I Operand I
~--------+--------+--------------------------------------.--------~
I [symbol] ISETXP I None I L ________ ~ ________ i __ . ________ J

EXECUTION: The first bit of the halfword immediately following the SVC
is interpreted as a bit string flag. If this bit is one, each
unprocessed-by-Ioader bit for each entry modified in the ext€~rnal page
table must be on. The page count maximum is 1022. The low-·order 10
bi ts of the halfword following the SVC are interpreted as a f2lge count.
The first fullword following the SVC contains the virtual storage
address at which the external page table entries are to be S€~t. After
this word -- and depending on the page count -- are a number of words;
each word contains an external page table entry that is to be set. If a
bit in the string is one, the corresponding page table entry is marked
·unprocessed by loader.· If a bit is zero, the unprocessed-by-lcader
bit is not set for the external page table entry. If the unprocessed
by-loader flag is set for a page, the first reference to that rage by a
program will cause control to be given to the dynamic loa.der via a
task-program interrupt type 16 or 17.

The external page table entries sUfflied in the parameter list are
set as indicated. The unprocessed-by-loader bit is set for each page
whose tit string flag is a one.

EXAMPLE: Suppose you want to set external page table entries for three
pages beginning at location NEW. You might write,

SAMPL

SET

EX
B
DS
SETXP
DC
DC
DC
DC
DC

SET
SOMEPLACE
OF

H 1 3'
A (NEW)
F'1251 1

F'356'
F'1234'

SVC MUS'l BE CN FULL WORD BOUNDARY

NC BIT STRING, THREE PAGES
ADD EXTERNAL PAGE TABLE ENT AT NEW
EXTERNAL PAGE ADDRESS
EXTERNAL PAGE ADDRESS
EXTERNAL PAGE ADDRESS

The SETXP macro instruction generates an SVC 244.

MOVXP -- Move Page Table Entries (R)

The MOVXP macro instruction enables you to move page table and
external page table entries from one table to another or from one part
of a table to another.

r--------T---------T---.--------,
I Name I Cperation I Operand I

t--------t---------t-[---------{~dd~;-~-[--------{~dd~;-}-J----------·--------1
I [symbol] I MOVXP I startad- , toad- I
I I I (Q) U) I
I I I I
I I I [{ValUe}] I I I I ,pgcnt- I
I I I t1~) I L _______ i _________ i ___ . ________ ~

Section 3: Ncnresident Programs 77

startad

toad

pgcnt

specifies the address of the first page ta£le or external page
table entry you want moved and must be a multiple of 4096.

specifies the address to which you want the first entry moved and
must be a multiple of 4096.

specifies the number of consecutive entries you want rroved.

EXECUTION: The page table and external page table entries beginning at
the page address contained in register zero are moved to the page
address contained in register 1; the number of entries to be moved is
contained in register 15. Each "from" page table entry is marked
assigned but unavailable: each from external page table entry is cleared
to zero.

EXAMPLE: Suppose you want to move 300 pages located at IN to an area
beginning at OUT; both IN and CUT roust be page boundary addresses. You
might write,

NOVE MOVXP IN,OUT,300

This would generate,

MOVE DS
LA
CHDINNRA
LA
LA
SVC

OB
15,300
OUT,IN,
1,OUT
O,IN
245

(,245)
INNER MACRC GENERATED
INNER MACRO GENERATED
INNER MACRO GENERATED

LVPSW -- Load Virtual Prograrr Status Word (R)

The LVPSW macro instruction enables you to alter the flow of your
program by changing its PSW in virtual storage.

r--------~---------~---,
I Name I Operation I Operand I
~--------+---------+---~
I I I [{addrX IIJ I I [symbol] I LVSPW I pswad- J> I
I I I (1) I l ________ i-________ ~ ___ J

pswad
specifies the virtual storage address at which the new VPSW is
presently stored.

EXECUTION: The virtual program status word whose address is in register
one becomes the current virtual program status word. The previous
contents of the virtual prograrr status word are lost.

EXAMPLE: Assume location NEWVPSW contains a new virtual program status
word that is to be loaded. The macro instruction

NAME LVPSW NEWVPSW

causes this to be generated,

NAME

78

CNOP
TM
TM
SVC

4,8
o (0) ,0
NEWVPSW,O
254

VSEND -- Send Message to Another Task (R)

The VSEND macro instruction enables you to send info]~mation to
another task.

r--------~--------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] IVSEND I None I L-_______ ~ ________ i __ J

EXECUTION: The SVC 240 resulting from a VSEND macro instruction must be
imbedded in a message control block (MCB) and be the subject of an
execute instruction. The format of a message control block can be fcund
in System Control Blocks PLM.

The receiving task is alerted to the message by a task-external
interrupt. When the external interrupt is acceJ;:ted, the supervisor
moves the MCB into the recipient task's ISA. No more than 1904 bytes
can be transmitted. If the receiving task's intertask message flag
(TSIMB) is one, it does not wish to receive messages. If the sending
task's identification indicates that it is a system operator or the
batch monitor, the receiving task gets the message (i.e., the Fending
task-external interrupt) in any event. If the sender is neither the
batch monitor nor a system operator and the recipient's intertask
message flag is one, register 1 is set to four, telling the sender that
his message was not accepted. If the recipient task cannot be found,
register 1 is set to zero. If the message is sent, register 1 is set to
eight. If and when the message is accepted by the recipient task, and
if the reply flag in the senders MCB is one, the complete bit in the
event control block pointed to by the sender'S MCB will be set to one.

EXAMPLE: Suppose you want to send the message, "This is a test." to a
task whose task identification is 1273. You might write,

ANY EX 0,MCB+4
B UPUPAWAY

MCB DS OD DOUELE WORD BOUNDARY
DC C'2' NUMBER OF LOUBlE WCRDS OF MESSAGE TEXT
DC CL3'0' MESSAGE CODE FIELD
VSEND
DC H'O'
DC H'1234' OUR 'IASK ID
DC H'1273' TASK ID OF RECIPIENT
DC A (ECB) AD DR OF EVENT CeNTRel BLOCK
DC CL1S'THIS IS A TEST. ,

The VSEND would generate an SVC 240. 'Ihe reroaining inforrration
composes a message control block (MCB).

ERROR -- Indicate Supervisor Detected Error (nonstandard)

The ERROR macro instruction provides the means by which the resident
supervisor reports the occurrence of a major or minor software error or
a hardware failure.

r--------T---------T--1
'Name I Operation I Operand I
~-------+---------+--1
I [symbol] I ERROR I errtype-integer, dump-integer, module- integ,er, I
I I lidno-integer[,tskint-{integer}] ,
I I I .Q I L ________ .L-________ ~ __ J

Section 3: Nonresident Proqrams 79

errtype

dump

specifies the type of error ,~hich has occurred.
given in Table 5.

The codes are

specifies the content of the dum~ you want supplied. The codes are
given in Table 6.

Table 5. System Error Codes
r--T--------------,
I Type of Error I Code I
~---+--------------~
IMinor software error I 1 I
IMajor software error I 2 I
IHardware failure I 3 I
IHardware failure -- generate task-program interrupt I 7 I
IMinor software error -- generate task-program interrupti 9 I L __ ~ ______________ J

Table 6. Dump Option Codes for System Error Processor
r---~-------------,
I Dump to be Taken I Code I
~--+--------------1
IBasic output (error message, address of TSI, address ofl 00 I
IGQE, address of DCB, general-purpose and floating-point I I
~registers, storage locations 0-127) I I
~--+--------------~
IBasic output and all storage from 4096 I 02 I
~---t--------------l
IBasic output and all storage as specified by storage I 04 I
Ilist pointed to by register 1 I I
~---t--------------~
I Basic output and I I
ITSI lOf current processing I I
I XTSI unit task (PS.ATPT) I I
ITask interrupt log I I
lISA I 10 I
~-------------------------------.----------------------+--------------~
IBasic output and all virtual storage of processing I 20 I
lunit's current task (PSATPT) I I L __ ~ ______________ J

module

idno

designates the supervisor module issuing the ERROR macro instruc
tion (see Table 1) •

designates a specific ERROR call in modules which issue wultirle
calls and must be in the range 0-99

taskint
task interrupt code to be used for error types 7 and 9 and must be
in the range of 0-9999

Note: Both LVPSW and ERROR use the same SVC code (254) i an SVC 254
occurring in the problerr state is considered LVPSWi an SVC 254 occurring
in the supervisor state is considered ERROR.

EXECUTION: ERROR is the only SVC that way be issued by the resident
supervisor. The processing unit receiving the ERRCR SVC will stop all
other processing units in the systero. The information to be dumped is
converted to heaxadecimal format and transmitted to the system errcr
output device.

80

Table 7. Resident Supervisor Module Codes
r------T---,
I Code IModule Name I
~------+---~

01 Dispatcher
02 Queue scanner and Enqueue-dequeue
03 Timer interrupt queue processor
04 Page turning
05 Core allocation and release
06 Program interrupt queue processor
07 Task initiation
08 XTSI overflow
09 Interrupt stacker (program, SVC)
10 Page posting
11 Activate and deactivate TSI
12 Supervisor call queue processor
13 Auxiliary storage allocation
14 Interrupt stacker (external, I/C, machine check)
15 Inter-CPU communication
16 TSS/360 recording
17 System inventory routine
18 Reconfiguration routine
19 Locate page
20 Real core diagnostic and error recovery
21 Data recording screen
22 Start recording SVC processor
23 Buffer packing for data recording

24-50 Unassigned
51 I/O call routine
52 I/O device queue processor
53 Pathfinding
54 Channel interrupt queue processor
55 Page drum interrupt queue processor
56 Page drum queue processor
57 Page direct access request and interrupt queue processor
58 Page out service routine
59 Task interrupt control
60 Device allocation and release
61 Purge
62 External page location address translator
63 Queue GQE on TSI
64 Dequeue I/C request
65 Start I/O
66 Paging I/C error recovery control
67 Task communication control
68 Suppress auxiliary alloc~tion routine
69 Paging path analysis
70 Reinitialize operator task
71 Alternate path retry
72 Standard area retry
13 Scan on task ID routine
74 Same path retry
15 Standard area retry analysis
76 Rebuild DAIB/SYSDIC and restart I/O
17 External machine check interrupt ~rocessor
78 Locate outstanding CCU I/O oferaticn
79 Set asynchronous entry
80 Data recording I/O
81 Data recording error recovery

182-99 Unassigned L ______ i ______________________________________ . ________________________ _

If the error type is major (2, 3, or 1), the SVC 254 routine
transfers control to the recovery nucleus; if the error tYfe is rrinor (1
or 9) , or if the recovery nucleus returns control to the SVC 254

Section 3: Nonresident Proqraros 81

routine, all other processing units in the system are restarted. If a
task-interrupt has not been requested, control is returned to the
instruction following the ERROR farameter list. Otherwise, a GQE is
constructed and enqueued on the TSI fointed to by the prefixed storage
area field PSATPT, subsequently causing a task-frogram interrupt.

The ERROR code transmitted as part of the basic output is of the
form:

mmnn

Where rom is the two-digit rrodule code and nn uniquely identifies
multiple SVC 254s within the same module.

EXAMPLE: Suppose you detect a major error
less than, equal to, nor greater than quantity B.

quantity A was neither
You might write,

BLAST ERROR 3,01,23,02

This would generate,

BLAST SVC
DC
DC

254
X'83',X'Ol'
X'23',X'02 1 ,XL2'OO'

SYSER -- Indicate Nonresident-Program Detected Error (nonresident)

The SYSER macro instruction is the means by which a nonresident task
reports errors it has detected.

r--------~--------T---1
I Name I Operation I Operand !
~--------+---------+---~
I [symbol] !SYSER lerrtype-integer, dump-integer,optt-integer, !
I I lopt 2 -integer,opt 3 -integer,idno-integer I L ________ ~ ________ L-__ J

errtype

dump

idno

82

specifies the type of error the task has detected. The codes are
given in Table 5.

specifies the dump output you wish to receive. The codes are given
in Table 6.

specifies the first of three unique identifiers, in the range 1-83;
see Appendix E for values of this fararoeter for specific modules.

specifies the second of three
1-99; see Appendix E for
modules.

unique identifiers, in the range
values of this parameter for specific

sfecifies the third of
1-999; see Appendix
modules.

three unique identifiers, in the range
E for values of this parameter for specific

is a number from 1 to 99 which is used to uniquely identify one cf
several calls in a module.

EXECUTION: The processing unit receiving the SYSER SVC will stop all
other processing units in the system. The information to be dumped is
converted to hexadecimal format and transroitted to the system error
output device.

If the error type is major (2, 3, or 7), the SVC 228 routine
transfers control to the recovery nucleus; if the error ty~e is rrinor (1
or 9), or if the recovery nucleus returns control to the SVC 228
routine, all other processing units in the system are restarted. If a
task-interrupt has not been requested, control is returned to the
instruction following the SYSER parameter list. Otherwise, a GQE is
constructed and enqueued on the TSI pointed to by the prefixed storage
area field PSATPT, subsequently causing a task-program interrUpt.

The SYSER code transmitted as part of the tasic output is of the
form:

vvccsssnn

where vvccsss identify the o~t1 ~v), opt2 (cc), and Opt3 (SSS) codes,
respectively, for the module issuing the SVC 228 and nn uniquely
identifies multiple SVC 228s within a single module.

EXAMPLE: Suppose your task detects a minor software error and you want
to get just the basic SYSER output. You might write,

BUG SYSER

This will produce

CNOP
BUG SVC

DC
DC

1,00,2,0,23,01

0,8
228
X'81',X'00'
AL. 1 (1) , AL • 23 (* 1 00000 + 0 * 1 000 + 2 3) , X ' 0 1 •

PRIVILEGED PROGRAM NAMING CONVENTIONS

As discussed in the section about resident supervisor naming conven
tions, all TSS/360 prograro module names begin with the letter C. All
privileged program module names have the form:

CZxxx

where the characters xxx are used to uniquely identify all program
module names beginning with CZ. All control section names and entry
point names of privileged virtual programs add a character to the end of
the module name to form a unique entry point or control section name.
This is analogous to the way entry point and control section names are
formed for resident supervisor modules. For example, an entry point of
privileged module CZCJT might be CZCJTH.

Dummy sections for system control blocks are used by privileged
virtual programs in the same way that they are used by resident
superv1sor programs. All system dummy section names begin with CHA; the
location of the first byte of data described by a systerr durrmy secticn
is named by a label beginning with CHB. CHAXYZ is a dummy section
describing data located at virtual storage address equivalent ·to CHBXYZ.

The dynamic loader treats all external nanes (ENTRY, EXTRN, V-tYI=e
adcons, etc.) beginning with the characters SYS as system names. A
control section without the attribute PRVIGD cannot define systerr names
(externally) • (See Table 1 for the effect of authority code in dynamic
loader processsing.)

Section 3: Nonresident Prograrrs 83

WRITING PRIVILEGED SYSTEM PROGRAMS

Virtual system programs are divided into two classes: programs that
make up initial virtual storage and prograrrs that are dynarrically
loaded. Broadly speaking, initial virtual storage (IVS) is composed of
all those system programs (both privileged and nonprivileged) necessary
to dynamically load a program. An attempt to dynamically load a program
will not require or depend upon the ~rior dynaRic loading of some other
program. This is another way of saying that the dynamic loader is not a
recursive program; it doesn't call itself. Privileged prograrrs that are
not part of IVS are brought into virtual storage, as required, by the
dynamic loader and the miscellanous frograros it uses for assistance.

In writing a system program, you must know whether it will te
dynamically loaded or be part of IVS. Programs that are part of IVS
must not attempt to dynamically load other ~rograros that are ~art of
IVS. If your program is not to be part of IVS, you needn't worry about
whether the programs you call are or are not part of IVS. For exam~l€,
if programs A and B are both in IVS, program A might call program B like
this,

NAME CALL B,DATA,I IMPLICIT CALL

If program A were not in IVS, either this could have been written,

NAME CALL B,DATA,E EXPLICIT CALL

or this could have been written

NAME CALL B,DATA,I IMPLICIT CALL

regardless of where program B is.

The use of the E option in the CALL requires action by the dynamic
loader; this is not allowed for programs that are part of IVS -- unless
the program being called is outside of IVS.

Almost all TSS/360 programs can be shared by several users. When a
program is shareable, or public, it must be put together in a special
way. Each public program is thought of as consisting of two parts.

One part is made up of all the instructions and data in the program
that never change because of relocation in virtual storage by the
dynamic loader or because of execution by a processing unit (variables).
This part of a public program is ~ure procedure; it is literally
constant -- it never changes under any circumstances.

The second part of a public ~rogram consists of those parts of the
program that may change because of relocation or execution the
program's adcons and variables.

There is no requirement that each and every program have parts that
change and parts that don't change. Indeed, some ~rograms ,don't contain
a single byte that ever changes; these programs keep all their variables
in the general registers.

The parts of a public program that may change, the adcons and
variables, are collected in a prototype control section (PSECT). All
other control sections of a public program should te given the
attribute, READONLY, since they can never be modified. As an exception
to this, there are a few tables, such as the synbolic device allocaticn
table (SDA~, that are protected with lock bytes and are shared
nonread-only control sections. The devision of a public prograrr. into
prototype control sections and read-only control sections allows a
number of different tasks to share the same program without destroying

84

one another's results~ This is accom~lished by giving each task that is
sharing the public program its own private copy of the prototype control
section, while allowing each task to share a single copy of the public
program's read-only control sections. In this way, each task has a
private copy of those parts of the public program that may change, thus
preventing tasks from destroying one another's variables and allowing
each task to have its own adcon values.

You should take care not to confuse intertask program reenterability
with intratask reenterability. The use of prototype and read-only
control sections permits programs to be shared among many different
tasks: this is intertask reenterability. The use of a prototype control
section for storing variables does not automatically guarantee that,
within a single task, a program can be reentered. All problen prograrr.s
are freely interruptable by any real (not virtual) interrupt. When such
an interrupt occurs, before control is returned to the interrupted
program in virtual storage, the resident supervisor checks to see if
there are any pending task-interrupts. If there are pending task
interrupts, the corresponding task-mask bit in the virtual ~rograw
status word is set to 1 (enabling task-interrupts) and the ISA lock byte
is zero: control is returned, not to the interrupted program, but to the
task monitor. The task monitor, after some housekeeping, transfers
control to the appropriate task-interrupt-handling routine. In some
instances, the interrupt handler may have to use the interrupted program
as a subroutine: GET, for example. When this happens, the interrupted
program is being reentered. It is thus task-interrupt sensitive and it
must be constructed to allow for this sensitivity. The prototype
control section is no help in permitting intratask prograrr reenterabili
ty, since, within this single task, there is only one prototype control
section for each public program and only one copy of variables and
adcons can be preserved in it.

Although address constants change as a result of program relocation
and are placed in a public program's prototype control section, and may
assume different values fro~ task to task, they are not considered
variables within a task. Once supplied by the dynamic loader (or by
startup for IVS), an address constant within a given prototype control
section will not change. (The equivalent address constant in other
copies of the same prototype control section will, in all probability,
be different. In other words, if the only thing in a prototype control
section were a set of address constants, then such a PSECT would be
read-only since it would never change after dynamic loading.

Within a single task, we are concerned about those parts of a program
(public or otherwis~ that change as a result of that program's
execution by a processing unit. If a program that stores variables in
fixed areas of virtual storage can be called by a number of other
programs, it must protect itself against task-interrupts. If a program
must be interruptatle (ty task-interrupts), it must use GET:MAIN (or
something equivalent) to dynamically allocate virtual storage and thus
prevent the accidental destruction of variables. GET and PUT are
examples of progTams that Cdn be in use by one prograIl', interrupted, and
reentered for use by another program within the same task.

If you wish to disable task-interrupts during some proceSSing, you
can use the macro instruction ITI (inhibit task interrupts); to enable
task-interrUpts, the wacro instruction PTI (permit task interrupts) may
be used (see Appendix A). For example,

LOCK
COpy
ITI

PTI

CHAISA
DISAELE TASK IN~ERRUP~S
MISCELLANEOUS INTERRUPT-SENSITIV:e: CODING

ENABLE TASK INTERRUPTS

Section 3: Nonresident Programs 85

shows how task-interrupt might be disabled and restored in a progran.
The COpy statement must be included, since it is needed to define a
field (ISALCK) used by the macro expansions of ITI and PTI.

Excluding dummy control sections, which are not true control sections
(see discussion of dummy usage), you may have two kinds of control
sections in your program: prototype (PSECT) and ncnprototy];e (CSECT).
From the standpoint of the dynamic loader, there is very little
difference between a PSECT without qualifying attributes and a CSECT
without qualifying attributes. Throughout TSS/360, however, PSECTs are
used in public programs to contain address constants and variables; you
should think of prototype control sections as the private part of shared
program modules.

Be careful not to confuse the attributes PRIVLGD and SYSTEM. PRIVLGD
automatically includes SYSTEM; eVf:ry privileged program is a system
program as far as the dynamic loader is concerned. SYSTEM does net
automatically include PRVLGD, ho,,,ever; every system program is not
automatically privileged.

You might code a sample privileged program like this,

TITLE 'SAMPLE PRIVILEGED PROGRAM'
DCLASS PRIVILEGED THIS ALLOWS PRIV

MACRC EXPANSICNS
COpy CHAISA GET FCRMAT OF

ISA
CZABP PSECT PRVLGD PUT ALL THE

ADCONS AND
VARIAELES HERE

EXTRN CHBXYZ LOCA'I I ON OF
TABLE XYZ'S DATA

CACABC CSECT READONLY,PUELIC,PRVLGD PURE PROCEDURE
SECTION ANYTHING
HERE BUT ADCCNS
AND VARIAELES

END CZAEC

NONPRIVILEGED PROGRAMS

We're not going to say a great deal about writing nonprivileged
system programs since most of the TSS/360 literature deals with writing
nonprivileged programs; it would be redundant to repeat it here. Of
particular interest to you, if you want to write nonprivileged system
programs, is the information in Assembler User Macro Instructions and
Assembler Programmer's Guide.

There isn't a great deal of difference between privileged and
nonprivileged system prograll'i alJmost everything we've said about privi
leged system programs applies to nonprivileged system prograIl's. The
most significant difference between them is that nonprivileged system
programs operate with a program status word protection key of 1; they
cannot read or write privileged control sections.

OPERATING ENVIRONMENT

A nonprivileged program operates in a virtual ll'achine. 'Ihe storage
of this machine contains all the ~rograms that make up IVS and any other
programs that have been brought into virtual storage by the dynamic
loader. A nonprivileged system];rogram may be Fart of IVSi assembler is
an example of nonprivileged initial virtual storage];rograrr.s.

86

A nonprivileged program may use any System/360 problem state instruc
tion and any of the nonprivileged supervisor call instructions. Nonpri
vileged system programs may not, in general, use the privileged
supervisor call instructions. (Remember, if the logged-on user is a
system programmer, any SVC that does not violate the privileged status
of the issuing program can be used. SVCs cannot be used indiscriminate
ly, however. For example, privileged or not, you can't issue an SVC 121
(ENTER) if your program is running in the privileged state; this is
considered an error.

In essence, we're saying that a nonprivileged program cannot issue a
privileged SVC and vice versa. The resident supervisor will find out
from the task status index that such a prograrr cannot issue privileged
SVcs (whether or not the SVC was correctly used). On the other hand,
you, as a system programmer, are allowed by the supervisor to issue any
SVC, privileged or otherwise, but there is no guarantee that you'll do
it correctly.

Since a number of SVC codes are used by the resident supervisor, a
kind of substitute SVC, called ENTER, is used for most transfers of
control from nonprivileged to privileged programs. A nonprivileged
program can't transfer to a privileged program via a branch instruction
since all privileged programs are fetch protected from all nonprivileged
programs (both system and user). ENTER codes, analogous to SVC codes,
are used by the task monitor to figure out where to transfer control.
We'll have more to say about ENTER when we discuss it as a nonprivileged
SVC.

PROGRAM DESIGN CONSIDERATIONS

In thinking about nonprivileged programs, be careful not to confuse
the privilege of a program with the authority of the progralmmer who
directed that the program be loaded. Despi te any declar.ations at
assembly time, you, as a system programmer, may always issue p:rivileged
SVcs. Therefore, any problem you write is implicitly a syste:m J:rogram
as long as you LOGON using your S or a authority code. Remember that
all sections you load using your S or 0 authority code are private -
the dynamic loader ignores the PUBLIC attribute.

In the section about conventions, we talked about fence st:raddlers.
A fence straddler should never be designed to issue privilieged SVCs
based on the authority code of the user. If this were done, and a
programmer with a user authority code (~ attempted to use -the fence
straddler, he wouldn't succeed. To be on the safe side, when yC)U write
system programs, you should always give the control sec1tions the
attributes they need to be able to run; do not rely on your iiuthority
code unless all intended users will have an equivalent authority code.

Nonpri vileged system programs accessible by user programs hav'e module
names that begin with SYS. Analogous to the resident supervisor and
privileged programs, control section and entry point names are formed ty
adding a character to the end of the module name. For instance" SYSABC
is an entry point in the nonprivileged system program SYSAlB. Names
beginning with SYS can be freely referenced by all programs, pJrivileged
or otherwise; SYS names can only be defined by control sections with the
SYSTEM attribute.

Nonprivileged system programs not accessible by user programs gener
ally use symbols beginning with CE.

Section 3: Nonresident Proqrams 87

NONPRIVILEGED SUPERVISOR CALL INS~rRUCTIONS

Nonprivileged supervisor calls are those whose processing programs
are in virtual storage; these SVCs use codes 64 through 127. When a
nonprivileged supervisor call is :iss-qed, the supervisor simply passes it
back to the task monitor as a taslt-SVC; no task-program interrupts are
generated. The task monitor 1transfers to the appropriate privileged
program for processing. Nonprivileged SVCs are used to pass control
from a nonprivileged program to a privileged program. Since nonprivi
leged programs can neither read, write, nor transfer control to
privileged programs directly, some form of interrupt is required. The
nonprivileged SVCs described in this publication are listed in Table 8.

Table 8. Nonprivileged Supervisor Calls (SVC 64-127)
r--------------~----------------.----------------------------~--------,

SVC 121 Enter pri vilel}ed service routine I ENTER

SVC 127

SVC 123

SVC 125

SVC 119

SVC 118
SVC 122

Transfer to d:fnamic loader for external
symbol resolution

Enter delete program

Enter program checkout subsystem

Read command from SYSIN (conditional)

Read command from SYSIN (Unconditional)
Enter comwand language director to end
RUN

I
I DLINK
I
I
I DELET
I
I PCSVC
I
I CLIC
I
I CLIP
I RTRN
I

SVC 120 Restore privilege I RSPRV L---____________ ~ ___ ~ _______ _

ENTER -- Enter Privileged Service Routine (R)

r--------T---------T---,
I Name I Operation I Operands I
~--------+---------+-------------.--------------------------------------~
I [symbol] IENTER I None I L-_______ ~ ________ ~ __ J

EXECUTION:

Supervisor
A task SVC interrupt is created to transfer control to the task
monitor.

Task Monitor

The enter routine (part of the task monitor) transfers control to a
privileged program using modified type-I linkage. The low-order byte of
register 15 contains a code, the enter code, that is used by the enter
routine to determine which privileged program is to receive control.
Only the contents of registers 0 and 1 are passed to the privileged
program; registers 0 and 1 are the only registers the privileged program
can use to pass results back to the program issuing the ENTER.
Registers 2 through 15 are saved and restored by the enter routine for
the ENTER issuing program.

EXAMPLE: Suppose we want to get 256 bytes of working storage (without
using the GETMAIN macro instruction). We might write,

NAME

88

SR
LA
LA
ENTER

1,1
0,256
15,48

CLEAR GP R1 TO SET OPTIONS
SE'l BYTE COUNT
SE'l ENTER CODE IN GP R15

The ENTER would generate:

NAME SVC 121

Note: For a list of the ENTER codes, see System Control Blocks PLM.

DLINK -- Transfer to Dynamic Loader for External Symbol Resolution W)

r--------T---------T---,
I I I ,
I Name I Operation I Operands I
~--------t---------+---1
I [symbo~ IDLINK I None I L ________ i-________ ~ ___ J

EXECUTION:

Supervisor
The resident supervisor creates a task SVC for the task monitor.

Task Monitor

Control is transferred to the dynarric loader's dynarric-linkage
routine. DLINK can be used for explicit linking (external symbol
resolution and transfer of control to loaded ~rograrr) or exrlicit
loading (no transfer of control). DL·INK must be the subject of an
execute instruction. (For usage of DLINK, see CALL, LOAD, ARM, and
ADCON in Assembler User Macro Instructions.)

EXAMPLE: Suppose you want to dynamically load a program called HELP and
have control transferred to its entry ~oint, BEGIN. You might write,

LOAD

ADCNGRP

EX
B
DS
DLINK
DC
DC
DC

The DLINK would generate,

SVC 127

ADCNGRP
AWAY
OF

X'0100'
CL8 'BEGIN'
2F'O'

OPTIONS: LeAD AND ~RANSFER

This will cause the dynarric loader to receive control from the task
monitor via the supervisor; it will then load HELP and transfer to
BEGIN.

DELET -- Enter Delete Program (nonstandarQL

r--------T---------T---,
I Name I Cperation I Operands I
~--------+---------+---~
I [syml:ol] I DELET I None I L ________ i-________ ~ ___ J

EXECUTION:

Supervisor
A task-SVC interrupt is created to transfer control to the task
monitor.

Task Monitor
Control is transfered to the dynamic loader's delete routine (see
Asseml:ler User Macro Instructions for a description of DELETE.)

Section 3: Nonresident Programs 89

EXAMPLE: If you want to cause your J;:rograrn to enter the delete program
within the dynamic loader, you would net use the ENTER mecbanisn; yeu
could write,

NAME

EX
B
DELET
DC
DC

0, NAME
AWAY

CL8 'DESTRYME'
X'OOOO'

DELET would expand as,

NAME SVC 123

PCSVC -- Enter Program Checkout Subsystem (nonstandard)

r--------T---------T--------------'-------------------------------------,
lName I Operation I Operands I
~--------+---------+---~
I [symtol] I PCSVC I None I L ________ i-________ ~ ___ J

EXECUTION:

Supervisor
A task-SVC interrupt is created to transfer control to the task
monitor.

Task ~onitor
Control is transferred to the Frograrn checkout subsystem (PCS).
This SVC is used by pes to reFlace user instructions in response to
the AT command (see Command Language User's Guide) •

EXAl4PLE:
coded:

Suppose PCS wants to plant a transfer of control; it ITigbt te

MOVE

PLANT

MVC
B
PCSVC

NAME (2) ,PLANT
AWAY

The PCSVC would expand as an SVC 125.

CLIC -- Read COITmand From SYSIN ~cnditionaU (nonstandard)

r--------T---------T---,
IName IOperationlOperand I
~-------+---------+---~
I [symbol] I CLIC I None I L ________ ~ _________ ~ ___ J

EXECUTION:

Supervisor
The supervisor creates a task-SVe interrupt for the task monitor.

Task I~oni tor

90

The task monitor transfers centrol to the command systen, which
checks to see if the task issuing the SVC is conversational. If a
conversational task issued the SVC, the user at the SYSIN terwinal
is given an o~portunity to enter a corrmand (underscore, backspace,
unlock keytoarct). If a nonconversational task issued the sve,
ncthing is done; i.~., the sve has the effect of a NOP (no
olx~ration) •

EXAMPLE: SVC 119 is used by the FORTRAN pause routine. Suppose you
arrive at a point in your program where you want the terminal user
running your program to be able to enter commands. You might write,

JFB CLIC

This would generate,

JFB SVC 119

If the SYSIN terminal user didn't want to enter any conmands, he
would enter RUN, followed by carriage return. If the task issuing the
SVC 119 were being run nonconversationally, the SVCwould be ignored.

CLIP -- Read Command From SYSIN (unconditional) (nonstandard)

r--------T---------T---,
I I I I
I Name I Operation I Operands I
~--------+---------+---i
I I I I
I [symbol] ICLIP I None I L ________ ~ ________ ~ ___ ~

EXECUTION:

Supervisor
The supervisor creates a task-SVC interrupt for the task monitor.

Task Monitor
The task monitor transfers control to the command system, which
attempts to read a command from the SYSIN device.

EXAMPLE: SVC 118 is used by the FORTRAN halt routine. Suppose your
program is finished and you want to return control to the terrrinal user
or cause the command director to read the next command from a
nonterminal input source. You might write,

DONE CLIP

This would produce:

DONE SVC 118

which would cause the command director to try to obtain a conmand frem
the SYSIN device.

Note: The CLIP macro instruction reads from the SYSIN data set and does
not require a terminal; CLIC reads only from a terwinal and must,
therefore, only be used in a conversational task.

RTRN -- Enter Command Language Director to End RUN @)

r--------y---------T----------------------------~----------------------,
I Name I Operation I Operand I
~--------t---------t---i
I [symbol] IRTRN I None I L-_______ ~ ________ ~ __ ~

EXECUTION:

Supervisor
A task-SVC interrupt is created to transfer control to the task
monitor.

Section 3: Nonresident Programs 91

Task Monitor
Control is transferred to the command language director (see
Assembler User Macro Instructions, EXIT macro instructions) •

EXAMPLE: If the program you caused to the run is finished and you want
to return control to the command language director for end-of-run
processing, you might write,

NAME RTRN

This will produce,

NAME SVC 122

RSPRV -- Restore Privilege (R)

r--------y---------T--,
I Name I Operation I Operands I
t--------+---------+--i
I [symbol] I RSPRV I None I L ________ i _________ ~ __ J

EXECUTION:

Supervisor
A task-SVC interrupt is created to transfer control to the task
monitor.

Task Monitor
Control is transferred to the restore-privilege routine for the
purpose of completing type-III linkage. The restore-privilege
routine restores registers 2 through 14 to the values they
contained. when received from the privileged calling prograrr.
Registers 0, 1, and 15 are left unchanged (see the section on
linkage conventions) •

EXAMPLE: Suppose you have written a type-III progran. which has received
control from the leave-privilege routine and is now ready to return
control to the privileged calling program. YoU might write,

DEPART RSPRV

which will expand as,

DEPART SVC 120

You could also write,

BR 14

since register 14 is set to Foint to an SVC 120 by the leave-privi'lege
routine.

92

SECTION 4: DEFINING MACRO INSTRUCTIONS

As a system programmer you are well aware of the convenience and the
power of the macro instruction. You are also familiar with the
procedures for defining macro instructions that are outlined in Asserrbl
er Language. This section deals with the process of defining rracro
instruction, concentrating on precautions you should observe and limita
tions imposed by the various types of macro instructions.

This section has been organized around three tasic types of fuacro
definition: the R-type, the S-type, and the rocdified R- and S-types
together with nonstandard.

R-TYPE MACRO DEFINITION

You may use the standard R-type macro instruction when all the
subparameters can be contained in the two pararr-eter registers 0 and 1.
The R-type does not generate a parameter list but may generate constants
or addresses. You are also limited in your choice of value rrnerrcnics
from the available set described in the introduction. We'll list the
acceptable ones and some examples to illustrate the precautions you
should observe.

addrx

You must remember to cover ~ith a base register) the addresses that
may be written for an operand having this value rrnemonic. Figure 14
shows a portion of the correct coding of the STORE macro definition.
Notice the use of the LA instruction to provide an overriding base
register for the STM instruction. You should not write

STM ®S (1) ,®S (2) ,&AREA

The value mnemonic of &AREA is addrx which permits the coding of indexed
addresses. But the STM instruction does not allow for indexing. In
general, you must employ addrx-type operands only in instructions which
are indexable. So, in the example, you would have used tbe operand
&AREA in the LA instruction, which is indexable.

r--,
& NAME STORE &AREA,®S

•

•

•
& NAME LA 6,&AREA

STM ®S (1) , ®S (2) ,0(6)
---~----------------------------______________________________________ J

Figure 14. Coding addrx Operands

addx

The value mnemonic addx imposes the same restrictions as does addrx.
This mnemonic, however, does not perrrit register notation.

Section 4: Defining Macro Instructions 93

integer

If you select integer as the mnemonic of the operand &INT several
alternatives must be considered.

If the operand will always be less than 4096, you may write

LA 1, &INT

If the possibility exists tha·t &INT will exceed 4095, you must first
test its magnituqe and, in the cases in which it does exceed this value,
write

L 1, =F ' & I NT '

The F-type literal is chosen, rather than
data, to avoid organizing the literal
PSECT.

the R-type, for invarient
in the user's first declared

You may choose the mnemonic integer for an operand which is not a
parameter but serves to indicate the proper path through the macro
definition. This type of operand should be treated in conditional
assembly instructions.

absexp

If the value of an absexp operand is less than 4096, you may use the
LA instruction. If this value is greater than 4095, you must take into
account the fact that the operand may be of the form 15280'.. In this
case, the instruction L 1,=F'&INT' would generate the instruction L
1,=F'C'S280". The apostrophes of the F-type constants argument, in the
second operand, would be flagged as a syntax error.

You must first resolve the value of the operand by placing it in the
operand field of a SETA instruction in this manner

&RIGHT
LCLA
SETA
L

&RIGHT
&INT
1, =F' &RIGH'T'

INITIALIZE -r'HE SETA VALUE
ASSIGN THE VALUE OF &INT TO &RIGHT

In this example the value of &INT is computed and the variable symbol
&RIGHT is assigned that value. 'The literal may then be loaded into the
parameter register.

The absexp operand may also be used as a path indicator and would be
treated by conditional assembly instructions.

value

This type of operand may be written as an absolute expression or as
register notation. In this case, you must test for the type of notation
used as we have done in the general R-type example in Figure 16. Once
you have determined the operand format, your processing should follow
the appropriate rules.

code

A coded value may be enclosed in aFostrophes or not. However, some
macro instructions offer code or some other mnemonic as alternate
choices for coding an operand. In these cases, it would not be possible
to distinguish between the alternates without sorr.e kind of test. The
Simplest way to handle this possibility is to require the use of
delimiting apostrophes and code your macro definition to test the
operand for a leading apostrophe.

94

If the coded value is to be passed in a register as a parameter,
restrict it to four characters; if t~o parameter registers can be used,
restrict it to eight.

You may choose a code to indicate the path to te taken through the
macro expansion or to be passed as a parameter in some forre other than
character string. In this latter case, you must provide a translation
algorithm th~ough the use of conditional assembly instructions.

text and characters

You will rarely use these ronemonics in an R-type macro instruction,
but might choose to pass a character string parameter in one or a pair
of registers. If you choose to do so, be sure to limit the size of the
string to conform with the amount of available register space.

You may use a character, self-defining term as the displacement field
of an LA instruction if the string consists of one character. If the
string is longer than one character, your Ifacro definition lfUSt ell'plcy
the L instruction to load a literal.

symbol

You may specify this mnemonic if you want to force the ~riter of the
macro instruction to specify a character string which conforms to
assembly language conventions.

You may also permit the writer to provide a
first executable instruction in the expansion.
provide for the inclusion of the name with each
may generate the first executable instruction.
example of this.

symbolic name for the
If so, te sure to
model statement which
Figure 14 gives an

Nearly all the routines called by macro instructions are privileged.
If the module issuing the macro instruction is privileged, the macro
instruction must generate a type-1 linkage; if the issuing module is
nonprivileged a type-2 linkage must be generated. If a macro instruc
tion may be issued by either type of module, then your macro definition
must test for the privilege class.

The privilege class is set by the DCLASS macro instruction and is
contained in the global SETB syrrbol &CHDCLS. If the DCLASS macro
instruction specifies USER class or is omitted, &CHDCLS is given a value
of 0; if PRIVILEGED is specified, &CHDCLS is given a value of 1.

Some macro instructions generate only type-1 linkage regardless cf
the issuing module's privilege class. If you write one of these
so-called "fence-straddlers·, be sure it's entry point name begins with
;JYS. These characters will be used to generate a type-1 linkage.

Finally, some macro definitions generate code without reference to
parameters. That is, the same code is generated every time the macro
defintion prototype name appears in a source program.

EXAMPLE: Here is an example of a typical R-type macro instruction and
it's associated macro definition which illustrates some of the points
just made. Your macro description would be

r--------T---------T---,
I name loperator loperand I
~--------+---------+---~
I [symbol] IRTYPE Iloc-addrx,len-value I L ________ ~ ________ ~ __ J

Section 4: Defining Macro Instructions 95

and your macro defintion might look like this

(1) MACRO

(2) & NAME RTYPE &LOC,&LEN

(3) AIF (T' &LOC EQ "0') .E1

(4) *

(5) AIF (, LOC I (1, 1) EQ' (I) • RNOT

(6) & NAME LA 1,&LOC

(7) AGO .CP2

(8) .RNOT ANOP

(9) & NAME LR 1,&LOC

(10.) .OP2 AIF (T'&LEN EQ '0') .E2

(11) AIF ('&LEN' (1, 1) EQ' (I) .RNOT2

(12) AIF (&LEN GT 4095) .LLIT

(13) LA O,&LEN

(14) AGO .LINK

(15) .LLIT ANOP

(16) LCLA &A

(17) &A SETA LEN&

(18) L O,=F'&A'

(19) AGO .LINK

(20) .RNOT2 LR O,&LEN (1)

(21) .LINK CHDINNRA " (CZCXYZ) ,X 'FF'

(22) MEXIT

(23) .E1 ANOP

(24) .E2 ANOP

(25) MEND

HEADER STATEMENT

PROTOTYPE STATEMEN~

IF 1ST OPERAND IS
MISSING

GENERATE AN ERROR
STATEMENT

IS FIRST OPERAND
REGISTER NOTATION

FIRS'! GENERATED
STATEMENT

FIRST STATEMENT IF
REGISTER NOTATION

IF 2ND OPERAND IS
MISSING

IF 2ND OPERAND
REGISTER NOTATION

INITIALIZE SETA
SYMBOL

SET VALUE CF SETA
SYMBOL

TERMINATE PROCESSING

1ST OPERAND MISSING

2ND OPERAND MISSING-

TRAILER STATEMENT

In this example, line 3 te~:ts for the presence of a first oFerand
and, if it is missing, branches to an ANCP statement in line 23. In
practice you would want to place some error processing code at this

96

point. We'll discuss error processing and the CHDERMAC macro instruc
tion later.

Line 5 tests for register notation by determining if the first
character of the operand &LOC is a left parenthesis.

Line 6 is the model statement which generates the first executatle
instruction for nonregister notation and would also generate the name
assigned to the macro instruction.

Line 9 would generate the first instruction in register notation and
also contains the symbolic parameter &NAME in the name field. Line 6
and line 9 would never be generated together.

Notice the technique employed in lines 5 and 8. Line 5 determines if
line 6 or line 9 should' generate the first instruction and the symbolic
name. In branching to line 9 the use of &NAME would be arrbiguous, so an
ANOP instruction, named .RNOT, is inserted in line 8 and a branch is
taken to it.

The second operand is processed in much the same way. Notice that
line 12 tests the magnitude of the operand &LEN and lines 15 through 18
cover the situation in which &LEN is greater than 4095.

Finally, line 21 generates the linkage by means of the CHDINNRA inner
macro instruction, which weill also discuss later. The third oFerand,
(CZCXYZ), represents the type-1 linkage entry point and the fourth

operand represents the ENTER code for type-2 linkage. You will see that
CHDINNRA determines which type linkage to use.

S-TYPE MACRO DEFINTIONS

You should employ the S-type macro definition when you wish to
generate a parameter list in storage because the Farameters cannot be
contained in two registers. When writing an S-type macro definition,
bear in mind that, by convention, three forms of S-type definitions are
required.

The standard form, indicated by the keyword operand MF=I or by the
omission of the MF=operand, generates a parameter list and the required
linkage to the called routine.

The L-form, indicated by MF=L, only generates a
does not generate any executable code. For
notation is not allowed in the L-form.

parameter list; it
this reason, register

The E-form, indicated by MF=(E,parloc- addrx (1» generates the
proper linkage and may also alter an eXisting parameter list.

This convention permits the programmer using your macro instructicn
to conserve space in storage by generating a parameter list by means of
the L-form and the altering the same list, in subsequent calls, by means
of the E-Form.

The placement of the paraneter list may be indirectly controlled by
the user of your macro instruction and he should be advised about these
precautions:

1. The S-type macro instruction places the parameter list in the first
declared PSECT of the assembly module.

2. If this PSECT is declared by a macro instruction, then that
instruction must appear in the user's program before any macro
instructions which reference the list.

Section 4: Defining Macro Instructions 97

3. If rule 2 is violated, or if no PSECT exists at all, the standard
form S-type macro instruction must place the parameter list in line
with the code it generates and insert a branch around the list.

4. L-form macro instructions always generate the parameter list in
line. Therefore, if the user is writing a reenterable body cf
code, be will want the parameter list generated in the area
occupied by his working s·torage, presumably his PSECT. This is
done for him by the standard :Eorm S-type, l:ut the L-form may only
be used in the PSECT.

STANDARD-FORM S-TYPE MACRO DEFINITION

As in the case of R-type rracro definitions, the value mnemonics you
choose will dictate certain steps in your n:acro definition. Here are
some precautions for you to observ4:!.

addr and relexp

Since relexp is implied by addr and, in turn, implies both relocat
able and complex relocatable expressions, your macro definition must
treat such operands by using them in the argument of an A-type address
constant. This A-type address constant must be generated as a BC
statement or as an A-type address constant literal. You must_also
include a test for register notation since this is allowed by the
n;nemonic addr.

integer, absexp, and value

If the operand specified by one of these mnemonics is an actual
numeric value, it is only necessary to generate an A-type address
constant bearing in mind any size constraints which might necessitate
the use of length modifiers.

The mnemonic value permits register notation, and you would have to
test for this. If register nota1:ion is used and the register contains
the parameter, the register contents may be placed into the list. If
the register points to a user supplied list, you must supply space and
move the data in. You may also choose one of these mnemonics for an
operand which is a path indicator.

code

If the coded value is to be passed as a parameter or is to l:e
translated to a value to be passed as a parameter, you must pass it in
the parameter list and not, as in the case of the R-type macro
instruction, in a register. Since the coded value may only be one term,
you may employ any type of cons~an1c to generate the parameter in the
list. If the coded value 1S a character string which includes
apostrophes, you must pass it as a character constant and adhere to the
rules for writing such constan1:s. Notice also that the TSS/360
Assembler will reduce all double apostrophes and double ampersands to
single apostrophes and ampersands.

Again, you may choose to use th~~ coded value as a path indicator. If
you wish to pass a variable-length parameter list, you might use a coded
value to indicate the length of the list being passed.

text and characters

These types of operands may b«~ used in two ways. You may cheose to
pass the operands to the called routines as character strings in the
parameter list or may choose to gE~nerate the character strings and then
enter a pointer to them in the parameter list. Since the parameter list

98

produced by the S-type macro instruction normally is a list of pointers.
you will, with few exceptions, use these o~erands in character constants
or character literals.

You are responsible for verifying the presence of a leading a~os
trophe in a text operand and for providing error processing in the event
that it is missing. The assembler program checks for the terminal
apostrophe.

Two methods for checking the length of a character string are
available to you. As you can see in Figure 15, you may test for either
the K or the L attributes. The reason for subtracting two froro the
count of &text before placing it in the SETA cell is that the assembler
will include the delimiting apostrophes in the count. If you choose to
ascertain the length attribute of the character string, bear in mind
that delimiting apostrophes will have been stripped and double a~os
trophes and ampersands will have been reduced. Thus, had the programmer
written the operand &TEXT

'USE THIS SYMBOL &&'

you would find its K attribute to be 20 (including terminal apos
trophes). Statement 3 of the example would yield the value 18 in the
SETA cell. Statement 5 would yield a value of 17 in the SETA cell since
statement 4 would have generated &TEXT stripped of its terJrina1
apostrophes and only one of the two aupersands.

r--,
(1)
(2)

(3)

(4)

(5)

tAl

CHDXX

&Al

MACRO
MACX

SETA

DC

SETA

MEND

&TEXT

K • & TEX'I'- 2

C&TEXT

L'CHDXX

Figure 15. Determining the Length of a Character String

symbol

You may use this type of operand in any of several ways: in the name
field of a generated statement, as a character string to be passed as a
parameter, or as an entry point or module name to be used as the
argument of an address constant, usually R-type or V-type.

L-FORM S-TYPE MACRO DEFINITION

Register notation is not allowed in the L-form of the S-type macro
instruction. The L-form is used to generate a ~arameter list cnly.
Since register notation would require the generation of executable code
to store the ~egister contents, it is to be avoided.

Section 4: Defining Macro Instructions 99

EXAMPLE A: Coding an S-Type Macro Instruction

(1) MACRO HEADER STATEMEN1:'
(2) &NAME STYPE &LENLOC, &PROC, &SYM, &SYMLEN, PRCTOTYPE

&MF=l

(3) .LFORM AIF (' & NAME ' EQ ' ') .El IS NAME FIELD OK
(4) AIF (R' &LENLOC EQ 0) .OMITl IS FIRST FIELD OK
(5) & NAME DC A (&LENLOC) ENTER FIRST OPERAND
(6) .SYM AIF (' &SYM' EQ ' ') .E2 3RD OPERAND OK
(7) DC CL8'&SYM' ENTER 3RD OPERAND
(8) AIF (K ' & SYMLEN EQ 0) .E4 4TH OPERAND OK
(9) DC AL1 (&SYMLEN) ENTER 4TH OPERAND
(10) LCLB &B ESTABLISH SETB
(11) .PROC AIF (K' &PROC EQ 0) .OMIT3 IS 2ND OPERAND PRESENT
(12) AIF (' &PROC' NE 'E' AND IS 2ND OPERAND VALID

'&PROC' NE 'P ') .E3
(13) &1:: SETB ('&PROC' EQ 'F':I SET CODE
(14) .OMIT3 DC ALL (&B) DEFAULT 2ND OPERAND
(15) MEXIT DEFAULT 2ND OPERAND
(16) .OMITl ANOP DEFAULT 1ST OPERAND
(17) &NAME DC A (0) RESUME PROCESSING
(18) AGO .SYM
(19) .EI ANOP
(20) .E2 ANOP
(21) .E3 ANOP
(22) .E4 ANOP

(23) MEND

Example A points up this constraint in a subtle manner. If you
intend to permit the user of your macro instruction to employ the
L-type, you might want to highlight this point in your macro descr~p
tion. All other value mnemonics allowed in the standard forrr are also
allowed in the L-form. Although operands in this form may be used as
path indicator, they are generally used as the argurrents of DC
statements or are translated to values which are used as arguments.

Since the user has complete con1:rol of the placement of the parameter
list, you needn't concern yourself with including a staterrent to
generate a control section; specifically, don't attempt to locate the
parameter list in the PSECT.

EXAMPLE: Notice that the L-forrn rracro instruction shown in Figure 16
indicates the name field as being rnandatory. This is a good general
rule to follow because most users will generate the parameter list and
later modify it with an E-form. The name assigned is the only safe way
to identify the parameter list for later rrodification. Also take note
of the subtle changes in value mnemonics that elirrinate the use of
register notation.

The coding shown in Example A would generate the parameter list shown
in Figure 17. Statements 3, 4, 6" 8, 11, and 12 test for the existence
and the validity of each parameter. Statements 5, 7, 9, 14, and 17
generate the parameter list. Notice that lines 3 and 6 errploy a null

100

test in verifying the presence of operands with a value nnemonic of
symbol.

Standard form
r--------T---------T---,
I Name I Operation I Operand I
t--------~---------~--i
I I I {F} I
I [symbol] I STYPE Ilenloc-addr, proc- P , I
I I Isym-symbol,symlen-value I
, I , [,MF=I] I L-_______ ~ ________ ~ ___ J

L-form
r--------~---------T---,
IName I Operation I Operand I
t--------f---------f---i
, I' JF} J ' ,symbol ISTYPE , [lenloc-relexp] [,procl!: , I
I "sym-symbol,symlen-absexp, I
, I IMF=L I L-_______ ~ ________ i ___ J

Figure 16. Standard and L-form S-tyfe Macro Description

Default options have been provided in lines 14 and 17. If the second
operand is omitted, line 11 branches to line 14 which uses &B as the
argument of the address constant. Since &B was initialized to zero by
the LCLB instruction, line 14 defaults to zero (indicating P) •

In your definition, lines 19 through 22 would be followed by error
processing.

symbol + 0 len

+4 sym

+12 symlen

+13 0
1

Figure 17. Parameter List Generated by L-form

E-FORM S-TYPE MACRO DEFINITIONS

The E-form macro instruction may modify a parameter list and may
generate the linkage to the called routine. Since this requlres the
generation of executable instructions, sorre changes must be made in the
value mnemonics.

addrx

This type of operand must be substituted wherever addr was specified
in the standard form. The use of these operands will differ from their
use in the standard form in that you will use them to compute the
effective address and then store that address in the pararreter list.
You should alert the user to the fact that base register coverage rrust
be provided.

Section 4: Defining Macro Instructions 101

By convention, general registers 14 and 15 are used as working
registers in the macro definition because the linkage you generate will
destroy their original contents anyway.

integer, absexp, and value

Operands specified by these value mnemonics are treated much the same
as in the R-type. A Load or Lead Address instruction is used to load
register 14 with the operand value. The choice of instructions again
depends on the magnitUde of the oFerand value.

Because register notation must be allowed in the MF= oferand, you
must include a test for it and previde for loading register 1 from the
register specified. If register notation is specified for other
operands, utilize the register Sfecified as a working register and
-generate an appropriate store instruction.

code and symbol

These operands may be used as path indicators and symbol may te used
to name generated instructions. Although operands of this type are
permitted in the E-form, you will seldom find them useful.

Linkaqe

When your macro definition is generating the linkage to the called
routine, you should generate the entry point in a V-type address
constant literal. Not only is this a convenient method, tut the
assembler program will place this constant in the proper control section

a PSECT, if one exists.

When generating a Type I linkage, your E-form macro definition must
generate both V-constant and R-collstant literals. You can use the inner
macro instruction CHDINNRA, which we will discuss later, for this
purpose.

102

EXAMPLE B: Coding an E-form S-type Macro Instruction.

(1)
(2) &NAME

(3) .EFORM
(4) &NAME
(5)

(6)

(7)

(8)
(9)
(10)
(11) • RNOT 1
(12) • PROC

(13)

(14)
(15) &B
(16)
(17)

(18) .L·INK
(19)
(20) .El
(21)

MACRO
STYPE

ANOP
DS
CHDINNRA

AIF

AIF

LA
ST
AGO
ST
AIF

AIF

LCLB
SETB
LA
STC

CHDINNRA
MEXIT
ANOP
MEXIT

&LENLOC,&PROC,&MF=I

OH
&tvJF (2)

(K'&LENLOC EQ 0) .PROC

(' &LENLCC' (1,1) EQ' (') .RNOT 1

14,&LENLOC
14,0(0,1}
.PROC
&LENLOC (1) ,0 (0,1)
(K' &PROC EQ 0) • LINK

('&PROC' NE 'F' AND '&PROC'

&B
('&PROC' EQ 'F')
14,&B
14, 13 (0, 1)

" (CZCXYZ) ,X'FF'

HEADER STATEMENT
PROTCTYPE

ENTRY peINT
ALIGNMENT
LIST ADDRESS IN
REGISTER 1
IS THERE A 1ST
OPERAND
IS IT REGISTER
NOTATION

1ST OPERAND TO LIST

1ST OPERAND TC LIST
IS THERE A 2ND
OPERAND

NCT EQ 'P ') • E 1
IS IT VALID
ESTABLISH SETB CELL
SET SETB CELL

STORE CODE IN PARA
LIST
GENERATE LINKAGE

Figure 18 demonstrates the E-form of the macro instruction descrited
in Figure 16 and the parameter list shown in Figure 17. The coding for
a typical E-form S-type macro instruction is shown in exarrFle B.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---1
I I I {F} I
I [symbol] I STYPE I [lenloc-addr] [, Froc- P], I
I I IMF= (E,parIOC-{addrX}) I
I I I (1) I L ________ i _________ ~ ______________ ~ ____________________________________ J

Figure 18. E-form S-type Macro Description

The logic of this macro definition should be clear in the light cf
previous descriptions. Note that the only error test is for an invalid
second operand. All other para~eters may be orritted if no change is
desired in that field of the pararreter list.

Section 4: Defining Macro Instructions 103

MODIFIED R-TYPE MACRO DEFINITICNS

You may choose to pass parameters in registers other than 0 and 1;
this makes the definition a wodified R-type. If your macro instruction
links to the called routine by means of an SVC, you may pass parameters
in registers 14 and 15.

Should you choose to pass parameters in other registers (i.e., 2
through 1~ you must save and restore these registers for the user.

No change in value mnemcnics occurs between R-type and modified
R-type macro instructions.

MODIFIED S-TYPE MACRO DEFINITIONS

An S-type macro instruction may have no standard form and an E-form
that does not generate any linkage. These are modified S-type rracro
instructions and they serve only to generate and to alter a parameter
list.

Another type of modified S-type macro instruction is the type that
has only a standard form but neither an L-form nor an E-form.

NONSTANDARD MACRO DEFINITIONS

These macro instructions generate a pararreter list and/or inline code
but not a linkage. Your selection of value mnemonics is unlimited in
this type.

TECHNIQUES USED IN WRITING MACRO DEFINITICNS

REGISTER NOTATION

Special register notation should be specified when you wish to allow
the user to load parameters into the required registers before executicn
of the macro instruction. By convention, these registers are restricted
to 0 and 1 for standard R-type macro instructions. Registers 14 and 15
may also be used if the R-type ~acro instruction can be of the modified
ty~e. Your method of linkage may place additional restrictions en the
use of registers 14 and 15.

Register notation shall be lirrited to registers 2 through 12 in order
to avoid the loss of parameters. Let us assume that you want to pass
parameter P1 in register 0 and parameter P2 in register 1. Without this
restriction on register usage, the user might issue the HAVOC macro
instruction like this:

L
L

HAVOC

RO,P2
R1,P1
(0) , (1)

Your macro p.xpansion would tben do this:

LR RO,R1
LR R1,RO

This is ~arameter P1
This is not parameter P2

If you use registers other than the conventional ones for working
registers, and do not save and restore thew, be sure to caution the user
that those registers are volatile.

104

PACKING PARAMETERS

If you wish to pass two parameters in one register, you must pack the
parameters. Figure 19 shows the methods for packing two parameters,
each a half word long, into register 1.

&OPB is
register
notation

&OPA is register
notation

&OFA is an
absolute expression

r-------------------------------~--------------------------~
I I LCL&A I
I LR 1,&OPA(1) I &A SET&OPA*65536 I
I SLL 1,16 I L 1 ,=F' &A' I
I OR 1,&OPB(1) I CR 1,&OPB(1) I
~---------------------------------+--------------------------~

&OPB is I LR 1 ,&OPA (1) I LCL&A I
an absolute I SLL 1,16 I &A SET&OPA*65536 I
expression I LCLA &A I L 1 ,=F' &A' I

I&A SETA &OPB I &A SET&OPB I
I 0 1 , =H' &A' I C 1 , =F ' &A ' I L ________________________________ ~ __________________________ J

Figure 19. packing Two Halfword Parameters Into Register 1

Similar techniques can be used for other cases.
examples:

EXAMPLE C:

Parameter P1 - three bytes left aligned
Parameter P2 - one byte right aligned
Both parameters given in register notation

&A

&A

EXAMPLE D:

LCLA
SETA
L
SETA
o

&A
&P1*256
1 ,=F' &A'
&P2
1,=F'&A'

Procedure

Parameter P1 - one byte left aligned
Parameter P2 - three bytes right aligned
Both parameters given as acsolute expressions.

Procedure
LCLA &A

&A SETA &P1
L O,=F'&A'

&A SETA &P2*256
L 1 ,=F' &A'
SRDL 0,8

Here are two

Section 4: Defining Macro Instructions 105

DEFINING INNER MACRO INSTRUCTIONS

We have already employed an inner macro ilrlstruction, CBDINNRA, in
previous examples. You will find the use o:f this type of instruction
not only convenient but also economical, in -terms of lines of code
written, lines of code generated, and time expended in assembly.

The assembler retains a copy of the inner macro instruction in
virtual memory. Your first refere:rlce to the instruction will cause it
to be read into main storage from the library but successive references
will not require this delay.

You needn't write as much code in your oute;r macro definition since
the inner macro instruction will sllFFly it for you. You may also reduce
the number of generated stateml::!nts by the user of conditional calls.
You might, for example, write

AIF C'&OP' GT'S') .INR

.INR ANOP

The inner macro instruction would only be called if &OP were greater
than five. As you can see, the use of the inner macro instruction is
somewhat analogous to the use of a subroutine.

Basically, the same criteria should govern your use of inner macro
instructions as govern your use of subroutines. If time and space will
be saved, define and use an inner macro instruction.

Den't nest more than three levels of macro definition.
technique will keep the definition clean and intelligible.

This

Don't define an inner macro instruction for only one outer macro
instruction; use a conditional assembly subroutine instead. Let us
assume you want to conditionally enter a subroutine froR Foints A, B,
and C. You must provide a means by which the subroutine can return to
the correct point after each of the three calls. You can do this ty
establishing a SETC call and al1:ering its contents prior to each
conditional branch. Example E illustrates this technique.

106

EXAMPLE E: Branching To and Returning From a Conditional Subroutine

MACRO

LCLC

&RTRN SETC
AIF

.RTRN1 ANOP

&RTRN SETC'
AIF

.RTRN2 ANOP

&RTRN SETC
AIF

RTRN3 ANOP

.SR ANOP

AGO

MEND

&RTRN

• .RTRN1 '
(' &OP1' GT 10) .SR

.RTRN2'
(K'&OP2' EQ 0) .SR

, .RTRN3'
(L'&OP2' LT 1) .SR

&RTRN (END OF SUBROU'IINE)

NAMING THE FIRST EXECUTAELE INSTRUCTION

If a given instruction may be conditionally assembled as the first or
second executable instruction, you will find it convenient to generate
the statement

NAME DS OB

this provides a vehicle for the symbol regardless of which instruction
comes first.

SETTING THE SIGN BIT

If you define a macro instruction in which the user way specify the
sign of operand two by the presence (negative) or thE absence (~ositive)
of operand one, you may find it difficult to properly set the sign tit.
Examples F and G illustrate two techniques you might find helpful.

After establishing SETA and SETE cells, line 5 places the proFer bit
value in the SETB cell, based cn the presence or the absence of OPl.
Line 6 then generates the pararoeter in storage using the value in the
SETB cell for the sign. Notice that the length rrodifiers in line 6
specify the length in bits. You must use one line for the DC statement.
If you use two lines, the second line will be aligned on a byte boundary
and the sign bit will be lost.

Section 4: ~efining Macro Instructions 107

In the second example, line 7 tests for the absence of OP1. If it is
absent, the sign is to be positive and lines 15 and 16 generate a
positive value in register one.

If the sign is to be negative and OP2 is zero, line 12 generates a
negative zero in register one.

If OP2 is to be a negative number other than zero, line 9 co~~utes
the two's compliment of OP2 and ~laces it in the SETA cell. Line 10
loads re~ister one with the negative SETA symbol. The assembler will
convert the value in &A to its negative two's com:r;:liment. Since the
value in &A is already the two's complirrent of CP2, line 10 will load
the absolute value of OP2 with the sign bit on.

EXAMPLE F:

(1)
(2)
(3)
(4)
(5)

(6)

&NAME

&B

EXAMPLE G:

(7)
(8)
(9) &A
(10)
(11)
(12) .ZEPC
(13)
(14) .ONIT
(15) &A
(16)
(17) .DONE

MACRC
MACEX
LCLA
LCLB
SETB

DC

AIF
AIF
SETA
L
AGO
L
AGO
ANOP
SETA
L
ANOP

&CP1,&CP2
&A
&B
(K ' & OP 1 NE 0)

AL.1 (&B) ,AL. 31 (&CP2)

(K' &OP 1 EQ O} • CMIT
&OP2 EQ 0) • :ZERC
X'7FFFFFFF'- (&CP2-1)
1,=:F'-&A'
.DONE
1,=X'80000000'
.DONE

&OP2
1 ,=F' &A'

PROCESSING A SINGLE APOSTROPHE

You must exercise caution in the treatment of operands which rray
validly contain single a~ostro~hes. If, for example, a single apos
trophe is found in a character relation in a character relation in an
AIF instruc~ion~ it will produce invalid syntax.

There is a special technique you can em~loy to test for single
apostrophes without violating syntax rules. You rright write

AlF (' &OPND' (1,1) .' &OPND' (1, 1} EQ "") .TEXT

This use of substring notdtion ccncatenates the operand field you want
to test with itself, thereby generating a pair of the tested character.
Thus if the character tested is an aFostro:r;:he, 9aired apostrophes will
be prcduced dnd no violation of the rules cf syntdx ~ill result.

108

It's worth noting here that there are three methods available te you
to test for the presence of an o~erand

1. AIF (1< ' & OPERAND EQ 0) .OMIT

2. AIF (T ' &OPERAND EQ '0 ') .OMIT

3. AIF (. &OPERAND' EQ ' ') • OMIT

Method one tests for a count of zero, two tests for a type of
"omitted", and three tests for a null character string. You should net
use this latter method if it is ~ossible for a single apostrophe to
appear in the operand. A test for the K attritute is your best course.

REFERENCING THE DCB

If the macro instruction you define must reference the user's DCB,
express referenpes to the various fields in terms of actual byte
displacements from the origin of the CCB. The use of symbolic field
names would require the user to have previously issued a DCBD rracro
instruction or the macro instructien currently being defined must issue
a DCBD inner macro instruction. The forreer requires an unwarranted
assumption on your part, while the latter could result in multiply
defined terms if the user has issued a DCBD macro instruction.

SIZE LIMITATION

If the
characters.
individual
characters
the number

operand is not a sublist, it may contain no more than 255
If the operand is a sublist and the only references are to

members of the sublist, each member may be up to 255
long. You are not restricted in the number of operands or in
of sublist elements.

ADDRESS CONSTANTS

If a R-type address constant refers to a syrrbol defined in a ~rogram
which has no PSECT, then the R-valu€ defined is the origin of the
control section containing the ENTER statement whose operand field
contains the argument of the R-type constant. Thus, given R(X), where X
is defined in an assembly module having no PSECT, the R-value is the
origin of the control section containing the staterrent:

ENTRY X

If there is a PSECT, all address constant literals will be located in
it. If no PSECT exists, the constants will be placed in the ~ro~er
literal pool.

v-type and R-type constants must have only a single relocatable
symbol as an argument. If an o~erand is to become the argurrent of such
an address constant, you should show its value mnemonic as "symbol".

A symbol X and a V-type constant with an argument of X rray ceth te
defined in one assembly module. Unless X is also defined as an ENTRY
point to the module, the V-type constant will be resolved by searching
for a definition of X/outside the current module.

Testing the type attribute of a syrobol for the value T will only
indicate whether it is defined as the operand of an EXTRN staterrent in
the assembly. If a symbol is externally defined as the argument of a
v-type or R-type address constant, its attribute will be given as U fcr
undefined. This cannot be considered as a conclusive test, however,

Section 4: Cefining Macro Instructions 109

since U is also the attribute assiqned to symbols internally defined by
an EQU statement. The test for a type attribute of T can only be used
to indicate a symbol externally defined by means of an EXTRN statement:

When establishing addresses for entry to a routine that mayor may
not be in the current assembly module, it is best to use a pair of
A-type constants and to require the user to define them with EXTRN
statements if the routine is not in the same module. The use of a
V-type and an R-type would require <the use of ENTRY statements in the
defining module if the routine is internal to the current assembly
module. Because this latter requirement is so unnatural, A-type
constants are better.

If your macro instruction generates an implicit adcon group and may
be called from a user written progra~, it is not safe to assume that he
has defined its entry points with either EXTRN or ENTRY staterrents. The
type of constants you generate should be determined by testing for the
T-value of the type attribute. If it is present, you may generate a
V-type and R-type constant pair. If it is not present, generate an
A-type constant pair. Admittedly, the user may have defined the syrobols
with ENTRY statements but, since th'ere is no way to test for them, this
is your only safe course.

Conventionally, the R-value of the A-type constant is assigned from
&SYSPSCT (i.e., the first PSECT). If this variable is null, indicating
that no PSECT exists, the R-value is assigned ~rom &SYSEC~ the origin
of the CSECT from which the macro instruction has been issued.

An exception to this convention occurs in the ADCON rracro instrUC
tion. Since the user controls the placement of the ADCON rracro
instruction and probably wishes the adcon group constructed in the same
PSECT, the R-value is always assigned the value frorr &SYSECT. You
should employ this same technique when you wish to allow the user the
flexibility of declaring more than one PSECT and generating the adccn
group in a PSECT other than the first.

TERMINAL APCSTROPHE AND SIZE LIMITATION

Assume that a user writes a text operand which is 258 characters
long, including terminal apostrophes. After you have tested for the
initial apostrophe, you seek to det,ermine the K attribute. Since this
attribute operates modulo 256, you would receive a character count of 2:
the initial apostrophe and the firs·t character. The terminal apostrophe
would be missing and an error message would be generated by the
assembler program.

KEY-WORD OPERANDS AND STANDARD VALUES

If you write a macro definition and include a keyword operand to
which you assign a standard value, then the type attribute of the
standard value will be assigned to the operand if it is completely
omitted by the user. If he writes KEYWORD=, and follows the equal sign
by a blank or a comma, the type attribute of the operand will be 0 for
omitted, and the standard value is overridden by the explicitly
specified null string.

SUBSTRING NOTATION PROCESSING

If you employ substring notation to refer to a subset of characters
in a character string, you must first ensure that the characters are
present. Assume, for example, that you want to test the first four
characters of an operand to see if they specified some specific acticn

110

to be taken. You should write something like this:
AIF CK'&OP LT 4) .ERROR
AIF C'&OP' (1,4) EQ 'REG1') .PROC

If you don't do this and the user codes some character string of less
than four characters, the assembler will produce error diagnostics.

This technique must be employed where register notation is allowed.
Since you will employ substring notation to test for the opening
parenthesis, you must first determine that the operand has been coded.
The user may have chosen a default option and omitted the operand.

Notice also that you can access a character subset in an element of a
sublist by writing something like this:

'&OPERAND(2) I (1,1)

This refers to the first character of the second element in the
sublist &OPERAND.

N ATTRIBUTE USAGE

The N attribute counts the number of operands or the number of
elements in a sublist by counting the number of commas and adding one.
As a result, the N attribute cannot be used to count the number cf
non-null operands or non-null elements in a sublist.

N'&SYSLIST HANDLING IN MIXED MODE MACRO INSTRUCTION

Keyword operands are not included in the value of the N attribute of
&SYSLIST in mixed mode operands. If there are no positional oferands,
N'&SYSLIST is zero.

SUBSCRIPTS AND SUBLISTS

If a subscripted reference is
sublist, the whole operand will be
A(&OP(l~) and the operand is not
operand as the argument of the A-tYFe
written DC A (&OP) •

SETC SYMBOL LENGTH

made to an oferand which is not a
used. Thus, if you write LC

a sublist, you will generate the
constant just as if you had

The maximum length of a SETC symbol is eight characters. As a
result, you may not be able to use in its entirety the operand of a SETC
statement written as a relocatable symbol, absolute expression, text, cr
character string. Instead, it is better practice to use the operand in
groups of eight, being careful to test for the presence of characters
before attempting to use them.

LOGICAL TERMS IN RELATIONAL EXPRESSIONS

When a relational expression is used in the oferand of an AIF or SETB
statement, the terms on either side cf the relational operator must both
be arithmetic expressions or character expressicns; neither of the terrrs
can be logical expressions. This is illustrated in the samples below,
only some of which are valid. &B (1), &E (2), and &B (3) are SE'IE
variables.

Section 4: Defining Macro Instructions 111

valid
invalid
invalid
valid
valid
valid

AIF
AIF
AIF
AIF
AIF
AIF

((&E (1) +&B (2) +&B (3» NE 0) .ON
«&B (1) OR I~B (2) OR &B (3» EQ 0) .ON
(&B (1) EQ 0) • eN
((&B (1) +0) l!:Q 0) .ON
(&E (1» .ON
(&B (1) OR &13 (2) OR &B (3» .ON

INNER MACRO INSTRUCTIONS

We have spoken previously o:f inner roacro instructions that could be
used as closed subroutines in a macro de:finition. Three such inner
macro instructions exist and have been cited in previous examples. The
following paragraphs are designed to describe these macro instructions
so that you may make use of them.

CHDINNRA -- Generate Type-1 or Type-2 Linkage (nonstandard)

The primary :function o:f the CHDINNRA macro instruction is to generate
a type-lor a type-2 linkage or to generate a linkage by means o:f an
SVC. It may also be employed to furnish the limited services of loading
general registers 0 and 1 with specific parameters or loading the second
element of the MF sublist in the E-form of the S-type macro instruction.

r--------T---------T---,
I Name I Cperationl Operand I
~--------+---------+---~
I I I [{ a ddrx }] [{addrX }] I I symbol I CHDINNRA I paraone - (1) , parazero- (0), I
I I I symbol }] r I
I , I [([Sublista- i.nteger L, sublistb-integer]~ I
I I I , , I
I I I [entrcd-absE~xp,] [mcrcd-code] I L ________ i-________ i-_____________ . _____________________________________ J

paraone
specifies a parameter to be loaded into register 1.

parazero
Sfecifies a parameter to be loaded into register o.

sublista
is the first element of a two element sublist. If specified by
itself, it designates the en1:ry point for a type-l linkage. If
specified together with the second element, it indicates the
relative byte location within the DCB at which OPEN has placed the
R-value. This parameter may be omitted. If it is, and sublistb is
also omitted no linkage is generated.

sublistb
is the second element in the sublist. If it is specified ty
itself, it is interpreted as the integer specified in the operand
field of an SVC instruction. If specified together with sublista,
it is interpreted as the relative byte location of the V-value
within the DCB.

entrcd
specifies the enter code to be used in generating a type-2 linkage.

mcrcd
specifies a code to be stored in the macro code field of the DCB.

CAUTION: Since the omission of both elements of the sublist in
parameter three will result in no linkage being generated, you must net
leave this field tlank when using CHLINNRA to generate a type-2 linkage.

112

In addition to providing an enter code in parameter four, you must also
provide a dummy entry point in parameter three.

CAUTION: The mcrcd parameter must only be used when the outer rracro
instruction has a DCB operand whose address is to be placed in register
1. Also, paraone and parazero may be used only when the value to ce
loaded into the appropriate register can be validly used as the second
operand of an LA or LR instruction.

EXAMPLE A: The macro instruction

.LINK CHDINNRA, , (CZCXYZ) ,X'FF'

will result in the generation of either a type 1 linkage to CZCXYZ or a
type-2 linkage to that routine with an enter code of 255 depending on
the privilege class of the issuing module. This determination is made
by testing the value in CHDCLS.

EXAMPLE B: The coding

EFORM CHDINNRA MF (2)

will result in the second element of the MF
register 1.

operand being placed in

EXAMPLE C: The macro instruction

ERROR CHDINNRA , , (,254)

will result in the generation of SVC 254.

CHDERMAC -- Generate Error Message (nonstandard)

This inner macro instruction is used to generate error messages
pertaining to errors encountered in macro expansions.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---i
I ICHDERMAC Imesno-integer, [oFnm-characters] , I
I I I [opva-characters] , [opvb-characters], I
I I I [opvc-characters] [, S=integer] I L ________ ~ _________ ~ ___ J

mesno

opnm

specifies a numerical code identifying the message to be generated.
The codes and the messages issued by CHDERMAC can be found in Table
10.

specifies the name of an outer rracro instruction operand, or other
information as desired.

opva, opvb, opvc

S

specify operands of the outer rr.acro instruction. A maximum of
three operands can be specified in anyone error message. These
operands may also be used for such other purposes as the programmer
may define.

specifies the severity code associated with the error.
default severity code exists and is shown in Table 9.

A systerr

EXECUTION: For each value of the operand rr.esno, an MNOTE instruction is
generated to produce an error message of this form

Section 4: Defining Macro Instructions 113

nnnnnn (B*sc+S) ***CHDromm text

where (B*SC+S)
B

sc
S
nnnnnn

rnrnm

is the severity code.
is set equal to zero if the S operand is present or to
1 if it is null.

is the default severity code shown in Table 9.
is the severity code operand; it has a default of O.
is the six digit line number of the macro instruction
for which the MNCTE is generated
is the error rr.essage number shown in Table 9.

The severity code algorithrr, (B*sc S) ,
manner. If you specify an S operand, E is
code is calculated as (O.s~ +S~S. If
assigned a value of 1 and S a value of O.

is evaluated in the following
set to 0 and the severity

you omit the operand, B is
The algorithm then becomes

(1.sc) +O=sc.

114

Table 9. Error Messages Issued by CHDERMAC (Part 1 of 2)
r-----T--~--~--,
ImesnotsclmmmlMessage Text I
~----f--f---+---~

1 2 0041REQUIRED OPERAND(S) NOT SPECIFIED I
2 2 001 I FIRST OPERAND REQ'D-NOT SPECIFIED
3 2 001 I SECOND OPERAND REQ'D-NOT SPECIFIED
4 2 0011THIRD OPERAND REQ'D-NOT SPECIFIED
5 2 0011FOURTH OPERAND REQ'D-NCT SPECIFIED
6 2 0011DCB OPERAND REQ'D-NOT SPECIFIED
7 2 0011DECB OPERAND REQ'D-NCT SPECIFIED
8 2 0011REY OPERAND REQ'D-NOT SPECIFIED
9 2 0011FIFTH OPERAND REQ'D-NOT SPECIFIED

10 2 0011LOW. LIM. OPERAND REQ'D-NOT SPECIFIED
13 2 0011AREA OPERAND REQ'D-NOT SPECIFIED
14 2 001 1 LENGTH OPERAND REQ'D-NCT SPECIFIED
15 2 001 VALUE OPERAND REQ'D-NOT SPECIFIED
17 2 001 MODE OPERAND REQ'D-NCT SPECIFIED
18 2 001 REGISTER OPERAND REQ'D-NOT SPECIFIED
19 2 001 MESSAGE OPERAND REQ'D-NCT SPECIFIED
21 2 001 NAME OF DCB REQ'D-NOT SPECIFIED
22 2 001 NAME OF ADCON REQ'D-NOT SPECIFIED
23 2 001 NAME OF CSECT REQ'D-NCT SPECIFIED
24 2 ~OOl NAME OF L FORM REQ'D-NCT SPECIFIED
25 2 001 TYPE OPERAND REQ'D-NOT SPECIFIED
28 2 001 CODE OPERAND REQ'D-NCT SPECIFIED
31 2 001 EP OR EPLOC OPERAND REQ'D-NOT SPECIFIED
35 2 002 INVALID MF OPERAND SPECIFIED-opva
36 2 002 INVALID FIRST OPERAND SPECIFIED-opva
37 2 002 INVALID SECOND OPERAND SPECIFIED-opva
38 2 002 INVALID THIRD OPERAND SPECIFIED-opva
39 2 002 INVALID FOURTH OPERAND SPECIFIED-opva
40 2 002 INVALID FIFTH OPERAND SPECIFIED-opva
42 2 002 INVALID EP OR EPLOC OPERAND SPECIFIED-opva
44 2 002 INVALID LENGTH OPERAND SPECIFIED-opva
45 2 002 INVALID MODE OPERAND SPECIFIED-opva
46 2 002 INVALID REG(S) OPERAND SPECIFIED-opva
47 2 002 INVALID AREA OPERAND SPECIFIED-opva
48 2 002 invalid type operand specified-opva
49 2 002 INVALID OPTION OPERAND SPECIFIED-opva
50 2 002 INVALID OPTION 1 OPERAND SPECIFIED-opva
51 2 002 INVALID OPTION 2 OPERAND SPECIFIED-opva
54 2 002 INVALID KEYWORD OPERANB SPECIFIED-opva
55 2 002 INVALID REGISTER NOTATION SPECIFIED-opva
56 1 025 PACK OPERAND NOT ALLOWED W/MODE=R
57 2 002 INVALID PR OPERAND SPECIFIED-opva
58 2 002 INVALID PACK OPERAND SPECIFIED-opva
59 2 002 LV OPERAND REQ'D-NOT SPECIFIED
62 1 0671ADCOND MACRO PREVIOUSLY SPECIFIED
63 2 0021 INVALID TAM CHARACTER CODE OPERAND SPECIFIED-opva
69 2 006 REGISTER NOTATION INVALID W/MF=L
78 0 024 CSECT NAME BLANR. MACRO NAME OMI~~ED.
85 1 013 MESSAGE OPERAND NOT ALLOWED W/MF=E
86 1 013 OPLIST OPERAND NCT ALLOWED W/MF=E
87 2 014 DECB NOT SPECIFIED AS SYMBOL
88 1 015 MORE 'I'HAN CNE OF EP OR EPLOC PRESENT
89 0 050 opnm OPERAND INCONSISTENT WITH TYPE=opvaopvb
90 2 050 opnm INCONSISTENT W/opva OPERAND

147 0 050 opnm OPERAND INCONSISTENT-IGNORED
157 1 051 INVALID CODE FOR opnm-IGNCRED-opva
159 1 053 INVALID CODE FOR DSORG-IGNORED-opva
162 1 056 MACRF INVALID WITH SPECIFIED DSCRG-IGNCRED-opva
163 1 056 EXLST INVALID WITH SPECIFIED DSORG-IGNORED-opva

-----~--~---~---
(Continued)

Section 4: Defining Macro Instructions 115

Table 9. Error Messages Issued by CHDERMAC (Part 2 of 2)
r-----T--T---T---------------------'------------------------------------,
ImesnolsclmmmlMessage Text I
~-----+--+---+---i

166 1 10601 INVALID CODE FOR DEVD WITH SPECIFIED DSORG-
1 IIGNORED-opva

167 1 10651MACRF INVALID-IGNORED-opva
169 1 10671DCBD MACRO PREVICUSLY USED
173 1 10621 DDNAME LCNG-TRUNCATED 'IO 8 CHAR
174 1 l070ldevd=opvb IGNORES opnm=opva
175 1 1071 1 INVALID opnm OPERAND SPECIFIED-IGNCRED-opva
176 1 1072 MULTIPLE DEVICE-DEP. PARAM. 1 SPECIFIED-

1 IGNORED-opva=opvb
177 1 1073 MULTIPLE DEVICE-DEP. PARAM. 2 SPECIFIED-

1 IGNORED ~RTCH=opva
178 0 074 PAD OPERAND GT 50-SPECIFIED VALUE USED-opva
179 0 101 CSECT ORIGIN USED FOR opnm RCCN
180 1 opnm OPERAND INVALID OR NOT SPECIFIED-SET

TO opva
181 1 076 BPY CNTR INDICATES WF~AP AROUND TC TCP CF CRT
182 1 077 BLC GREATER THAN OR EQUAL TO BLIM
183 1 002 OPNM INVALID-SET TC opva
184 * 078 * CURREm, BUFFER opnm=c{:va
185 * 079 * CURRENT BEAM POSITION COUNTER IS

X=opnm, Y-opva
186 1 080 opnm COUN~ER EXCEEDS CRT LIMITS
187 1 081 LOAD VARIABLE SPACE ORtER MAY NOT HAVE

BEEN SPECIFIED PRIeR TO ENTERING STRCKE MODE
188 2 103 opnm MACRO NOT AI.LOWED FOR PRIVII.EGED USER
200 1 101 ZERO USED FOR opnm RCON
201 1 075 VAR OPERAND NOT ALLO~~ED W/MODE=R
210 2 001 opnm OPERAND REQ'D-NCT SPECIFIED
211 2 002 invalid opnm OPERAND SPECIFIED-opva _____ i-_~ ___ i-_______ ~ __ _

In general, you should attempt to continue processing a macro
expansion after detecting an error and generating a roessage. Hcwever,
although it is difficult tc generalize, some errors should cause
termination of processing. An example is an invalid MF o{:erand in an
S-type macro instruction, which ~akes further processing impossible.
Another instance is the occurrance of an error that propogates other
errors, thereby using up valuable ,time.

The termination of processing i:mFlies that you know the user has made
a mistake and cannot continue. It is better to give him the benefit of
the doubt and let him continue. When his program fails, it will fail in
his code and won't attempt to blame his problerf on you.

CHDPSECT -- Reserve Storage for Pararreter List (nonstandar~

The CHDPSECT macro instruction establishes the next available loca
tion in the user's PSECT as the location at which the parameter list
will be located. If no PSECT exists when the ~acro instruction is being
assembled, then the next available location in the current control
section is used, and CHDPSECT gene'rates a branch around the list.

r--------~--------T---,
'Name 1 Cperation I Operand I
~--------+---------+--------------.-------------------------------------~
I "{OF} , 1 [symbol] 1 CHDPSECT 1 [loc-addr] , [align-] [, string- text] ,
, I' OH I l ________ i-________ ~ ______________ . ____________________________________ J

116

symbol

loc

align

is the symbolic location of the first byte to be assigned to the
parameter list.

specifies the location to which the branch instruction is to
transfer control. If this operand is omitted, CHDPSECT establishes
its own branch address. All symbols generated by the macro
instruction must be of the formCHD [~ tSYSNDX where x is an
optional letter used to distinguish symbols when more than one must
be generated. x must be unique for each symbol.

specifies the alignment you wish for the beginning of the parameter
list.

OF - specifies alignment on a full word boundry.
OH - specifies alignreent on a half word

string
specifies a character string, originally specified as an operand in
the outer macro instruction, which is to be placed, as is, in the
parameter list. When the character string is used as an operand,
the CHDPSECT inner macro instruction generates X'21' to indicate
end of string.

PROGRAMMING NOTES: When the string operand is not specified, you must
specify the address for the branch instruction in the loc operand.

The use of a CNOP to force alignment will be generally ineffective
since the parameter list may be generated in another control secticn
(the PSECT). Placing the CNOP instruction before CHDPSECT will have no
effect other than to align the macro instruction.

Section 4: Defining Macro Instructions 117

SECTION 5: GENERATING AND MAINTAINING TSS/360

System programmers are responsible for generating the sFecific
version of TSS/360 used at each installation; and, they are responsible
for troubleshooting and maintaining that system once it is generated.
Maintenance involves analysis of any system problems that occur, design
of installation required changes (addition, deletions, etc), and the
incorporation of IBM-issued changes applicable to the installation.

SYSTEM GENERATION

The system generation process consists basically of reassembling and
replacing system modules containing configuration-dependent tables and
other installation-option parameters. System generation macro instruc
tions are used to control this operation. These macro instructions, as
well as the sysgen process, are described in detail in System Generation
and Maintenanc~.

SERVICEABILITY AIDS

YOU have the following facilities for monitoring system performance
and for analyzing sources of system errors once your system has been
generated:

• SYSER Dump: A system output which provides you with information
regarding system failure, and may enable you to Finpoint the source
of trouble in the system.

• Program Checkout Subsystem (PC§l: A set of commands that enable you
to locate problem sources in nonprivileged, virtual storage pro
grams. PCS also provides similar, but restricted, facilities for
troubleshooting privileged virtual storage programs. (In the ini
tial release, no PCS facilities are available for resident
programs) •

SYSER DUMP

The supervisor will provide you with a dump, whenever it encounters
an error, by issuing the ERROR macro instruction. Dumps are also
provided by privileged programs; these are supplied by Reans of the
SYSER macro instruction. Both of these macro instructions produce
basically the same output.

When an ERROR macro instruction is issued, a message is printed at
the operator's console in this format:

CEAIS SYSERR CODE RSC mmnne t userid volid

where

nun

nn
e
t

userid
volid

118

=

=
=

=
=

module ID assigned to the module issuing the call (see Table
7 for a list of these codes)
indicates the specific error Which caused ERROR to be issued
error type code
time at which the error occurred
user ID of the task in which error occurred
volume identification of the output tape

ERROR also causes the construction of one of these header records in
the output buffer:

RSC mmnnl t MINOR SYSTEM SOFTWARE ERROR userid (for error types 1 or 9)

RSC mmnn 2 t MAJOR SYSTEM SOFTwARE ERROR USERID=userid (for error
type 2)

RSC mmnn 3 t SYSTEM HARDWARE ERROR USERID=userid (for error types 3
or 7)

where mm, nn, t, and userid are as defined above.

When a SYSER macro instruction is issued, a rressage is printed at the
operator's console in this format:

CEAIS SYSERR CODE vvccsssnn t userid volid

where

vv
a unique, two-digit identifier (see Appendix E, optft)

cc
a unique, two-digit identifier (see Appendix E, opt2)

sss
a unique, three-digit identifier (see Appendix E, Opt3)

nn
indicates a specific error condition in the module

t
time at which the error occurred

userid
user ID of the CPU's current task

volid
volume ID of the output t~pe

SYSER also constructs a header record in one of these formats:

vvccsssnn t MINeR SYSTEM SOFTWARE ERROR userid (for erro~ types 1 or 9)

vvccsssnn t MAJOR SYSTEM SOFTWARE ERROR USERID=userid (for error type 2)

vvccsssnn t SYSTEM HARDWARE ERROR userid (for error types 3 or 7)

After writing the message and
and ERROR proceed to fill the
information. (Refer to Table 6
As the buffers become filled, they
form the SYSER dump. This tape is

constructing the header record, SYSER
output buffers with the specified
for a list of the options availatle.)
will be written to the output tape to
nine track with standard labels.

Retrieving Your Dump: When it becomes necessary to diagnose system cr
task errors, you will want to retrieve the dump data set and print it en
the system's high speed printer. You can do this by issuing the DEFINE
DATA and PRINT commands described below.

section 5: Generating and Maintaining TSS/360 119

r-----------T--,
I Operation I Operand I
~-----------+--~
UDEFINE DATAijddname-alphname,dsorg-PS,DSNAME=SYSTEM.ERROR.DUMP, I
RDDEF nUNIT=(TA,9) ,VOL=(,volserno-alphnu~), I
I ILABEL= (,SL) ,DISP= (OLD) I L ___________ i--__ J

ddname

dsorg

specifies the symbolic data dE!finition name associated with this
data set definition. It provides the link between the DCB in the
print program and the data set: definition. It must contain from
one to eight alphameric characters, the first of which must be
alphabetic. The ddname may not begin with SYS since system
reserved names are prefixed with those characters.

specifies PS because the data set is on magnetic tape and has a
BSAM organization.

DSNAME

UNIT

VOL

LABEL

DISP

specifies SYSTEM.ERROR.DUMP, the name of data set to be printed.
Since the name has been specified by the system, no choices are
available.

specifies that the dump is on nine track tape

specifies the volume serial number of the tape on which the dump is
recorded

specifies that standard labels (SL) are used

specifies that the data set already exists (OLD).
must be included since the default option is NEW.

This parameter

After defining your data set, you can obtain its printout by issuing
the following PRINT command.

r---------T---,
I Operation 1 Operand 1
~---------+---~
11 PRI NT t 1 SYSTEM. ERROR. DUMP, , 1
1 PR \ I [{ l } }] I I I {spacing- 2 , [H] , [lines- integer] , [P] , , I
I 1 3 I

I : [e1:.ror-{~~i~PT}J, [for~--specsym] I
I I END I L _________ .l. __ . ______________________ J

SYSTEM.ERROR.DUMP
specifies the data set you want printed. You have no option in
this case.

spacing

120

specifies the number of spaces you want between lines and may be
one, two, or three. If you omit this parameter your listing will
be single spaced. Since the systerr. error processor constructs the
data set without control characters, you cannot specify EDIT.

H

lines

P

specifies that you want the first logical record in the data set
used as a header line on each page. As you recall, this first
logical record is supplied by SYSER or ERRCR processing and serves
to identify the dump that follows. You might find this header
misleading for all PAGES tut the first; if so, omit the parameter.

specifies the number of lines you want printed on each page. It
may consist of one or two decimal digits, but two digits are
preferred and 54 lines are standard.

specifies that you want the listing pages numbered.

error

form

specifies the action you want taken when an uncorrectable error
occurs while reading the data set. You might choose to:

ACCEPT - the error record,
SKIP - the error record, or
END - the print operation.
This last option is not only the default option but possibly the
least desirable. Since you are in the process of diagnosing Fast
errors, it is doubtful that you would want your diagnostic tool
destroyed by the occurrence of another error. If this is the case,
don't omit this parameter.

specifies the form number of the paper you want used. Omission of
this parameter indicates that you want the installation's standard
form.

The output you receive will depend on the option that was specified
in the macro instruction. In general, storage locations are printed
eight words to a line. Each line is preceeded by the address of the
first byte in the line and each word consists of eight hexadecimal
digits.

PROGRAM CHECKOUT SUBSYSTEM (PCS)

The eight PCS commands and their function are discussed in detail in
the Command Language User's Guide. The following discussion covers the
precautions you must observe as a system programmer while using pes
commands because of the limitations imposed on their use by the acticn
of the dynamic loader.

Each D class user is assigned an authority code at JOIN time. Code
'P' specifies system programmer, code 'C' specifies a roaster systerr.
prograromer, and code 'U' specifies an ordinary user. When a user
logs-on, this authority code is used to govern the operaticn of the
dynamic loader and his use of PCS.

The dynamic loader ignores or overrides control sectien attributes
depending on the programmer's authority code and the library froIT which
the module is loaded.

If you are a system programrr.er with authority code P, you can
checkout nonprivileged system prograrrs. These programs can be dynamic
ally loaded from anyone of the three major libraries. If the Frogram
is loaded from either JOBLIB or USERLIB, they are assigned to private,
read/write storage. The attributes of public, read-only, systerr., or
privileged are overridden. If it is loaded from SYSLIB, only the public
and read-only attributes are overridden. As a result, you will get a

Section 5: Generating and Maintaining ~SS/360 121

private copy of any module dynamically loaded from SYSLIB. Non~rivi
leged modules so loaded will be assigned write/fetch protected. This
provides continued protection for the ~rivileged routine.

This action of the dynamic loader on modules you invoke as a user
with authority code P has the following impact on your use of PCS
commands:

1. You may utilize all PCS commands in testing your nonprivileged
programs,

2. You may utilize symbolic addressing to display or dump any
privileged CSECTs which have been dynawically loaded,

3. You may display or dump the contents of virtual memory.

If you are a master system prograwmer (authority code 0), any Irodule
you dynamically load will be assigned to private read/write storage.
The attributes of public, read-only, system, and privileged are overrid
den by the dynamic loader.

Your PCS capabilities with respect to ncnprivileged programs are the
same as they are for a nonprivileg1ed system program. In addition, you
can display,dump, or set IVM. You must exercise extreme caution in
setting IVM, particularly in a mul-ti-CPU environment, since other CPUs
may be accessing the code you are setting.

You cannot access other shared codes in the system for PCS testing,
since it is not part of your virtual memory.

You will also find that your ability to check dynamically loaded
privileged modules is quite limib~d due to several factors. Pri:rrarily,
the LOAD and RUN commands will not accept module names beginning with
CHB or CZ. These are the prefixes of the privileged routines.

You can, of course, load one of these modules under an alias. The
RUN command, however, activates wii:h a nonprivileged PSW key of 1. If
you do manage to load the module under an alias, it will :rranage to run
until it attempts to access or transfer control to another privileged
module. _.At that point, the disparity in PSW keys will result in a
program interrupt.

PCS operates with nonprivileged save area one. As a result you
cannot display, dump, or set registers or PSW information relating to a
program executing in privileged mode.

SYSTEM MAINTENANCE

You should not attempt modifica1:icn of TSS/360 unless you are an
experienced system programmer who has a thorough knowledge of the
system's internal specifications (in particular of the interfaces
involved in each modification). Detailed information atout system
modification may be found in System Generation and Maintenance.

In designing local changes to T~)S/360 you will follow a procedure
something like this:

1. Define the function to be accom{:lished.

2. Identify the modules to be added, amended, or deleted.

3. Define the interface of these modules with all other TSS/360
modules. The control section dictionaries of modules currently in
the system provide you with GI listing of all the module's REFs and

122

DEFs. This is a start in determining, for example, how an existing
module (that is to be changed) is currently ·plugged into· the
system. However, care must be exercised, as this information may
be deceptive. For example, an external address can be loaded into
a register, and the register (instead of the external address) can
subsequently be referenced in the program. You might see this,

BOLD

SNEAKY

L
USING
L
L

5, =V (CHBSYS)
CHASYS,5
6,SYSOCT
7,60 (5)

SYSTEM TABLE ADDRESS
FORMAT OF SYSTEM TABLE
EXTERNAL REFERENCE
EXTERNAL REFERENCE

The symbol CHBSYS is an external symbol and would appear in the
control section's dictionary as an external reference ~EF). The
reference to SYSOCT would not appear as an external reference,
though, and the reference 60(5) isn't even a symbolic reference.
The cross reference dictionary ·would show you that statement BOLD
references the externally defined symbol CHBSYSi you have to figure
out that its also referenced by SNEAKY.

Unfortunately, there's no convenient way to
programs actually do reference the external symbols
given program. The instruction,

ENTRY ABCRJG

deterIrine what
defined in a

allows other programs to reference the symbol ABCRJG. There is no
guarantee, however, that any other programs will actually reference
ABCRJG. Consequently, if you delete a program from TSS/360, you
have no systematic way to determine which programs reference cr
make use of the program you're deleting. You can determine such
referencing only by carefully studying the function of the prograrr
being modified or replaced, and by understanding its role in the
overall design you're trying to change.

You might be tempted to list all the external symbol dic
tionaries of all the program modules that rrake up TSS/360, as a way
of determining their respective interdependencies. Although this
might prove helpful, it is not foolproof. Some programs set up
registers with external addresses for use by other prograrrs that
know what the registers are supposed to contain. A program using
registers set up by another prqgram might not contain a single
explicit external reference. You might see this,

OBVIOUS L
L
BASR

6 ,=V (CHBSYS)
15, =V (SNEAKY)
14,15

LOAD EXTERNAL SYMBOL
LOAD ADDR OF SUEROUTINE
TRANSFER

The SUbroutine might look like this,

SNEAKY USING *,15 DECLARE BASE
L 8,12 (6) HIDDEN EX'IERNAL REFERENCE

The external reference to CHBSYS would never show up in the
external dictionary of the program module containing SNEAKY. You
must, therefore, beware of this situation, as you will encounter it
often.

4. Write the necessary assembler statements.

5. Assemble. and test the new or amended Irodules and store theIr in the
same library.

Section 5: GeQerating and Maintaining ~SS/360 123

6. Update the TSS/360 system data sets using the system-edit control
statements and procedures described in System Generation and
Maintenance.

124

SECTION 6: PROGRAMMING WITH PRIVILEGE CLASS E

As a system programmer, you may be joined to the system with combined
privilege classes D and E; each class is associated with a particular
set of facilities that is available for your use.

The assignment of privilege class D (along with your authority code
of P or S) designates you as a system programmer. This privilege class
"provides you with the facilities described in Assembler User Macro
Instructions and Command Language User's Guide; in conjunction with your
authority code, class D also provides you ~ith the facilities discussed
earlier in this publication.

The assignment of privilege class E, which designates you as a system
monitor, extends the range of facilities availatle to you. 'Through
certain options that only the privilege class E programmer can use 1n
the DATA DEFINITION (DDEF) co~mand and macro instruction, and in the DCB
macro instruction, you can designate specific I/C devices and directly
utilize unit record equipment. It also provides you with the ability to
use (for system routines) the rrultiple sequential access method (MSAM)
and the terminal access method (TAM), denied to ordinary users and to
system programmers who have not been assigned privilege class E in
addition to their privilege class D. It also provides you with the
ability -- denied to privilege class D prograrrrr.ers to directly
control unit record equipment when using the basic sequential access
method (BSAM).

DESIGNATING I/O EQUIPMENT

When you have been joined with privilege class E, you have several
options in the operand field of the r:ATA DEFINITION (DDEF) command and
macro instruction, and DCB macro instruction, that are not shown in the
detailed descriptions in Corrmand Language User's Guide and Assembler
User Macro Instructions. Except for these options, which will be
described in detail here, the parameters you may use are those shown in
Appendix G of each of those publications.

SYMBOLIC DEVICE ADDRESS

One of the options available to you, as a system programmer with
privilege class E, is to designate the I/O device you want to use by its
symbolic address. This can be accomplished by entering

, UNIT= (SDA=code)

in the operand field of the DATA DEF"INITION (DDEF) command or macro
instruction, where "code" is a one-to-four-hexadecimal-digit symtcl
(from 1 to lFFF) assigned at system generation to the desired I/O unit
as its symbolic address. By choosing this option, you can designate a
particular terminal (for TAM programming), a particular unit record
device (for MSAM, BSAM, or IOREQ programming), or a particular tape
drive or direct access I/O device (for BSAM, ICREQ, or VAM ~rograrrrr.ing) •

DESIGNATING DEVICES FOR MSAM

In addition to SDA=integer, three other codes may be used with the
UNIT keyword parameter of the DDEF corrmand and rr-acro instruction, when
using MSAM. You may write

Section 6: Programming With Privilege Class E 125

I sDA=codel
UNIT= PC

PR
RD

where SDA= is followed by the symbolic device address of the desired
unit record device, PC is a card J9unch, PR is a printer, and RD is a
card reader. If you use the multiple sequential access method, one of
these options must be specified.

When using MSAM, you must specify the code PS (physical sequential)
for the positional data set organization (dsorg) parameter of the DDEF
command and macro instruction, and the code MS (multiple sequential) for
the keyword data set organization (DSORG=) parameter of the DCB macro
instruction.

DESIGNATING DEVICES FOR TAM

When using TAM, you must denote the terminal with which you want to
communicate, by means of its symbolic device address. Hence, the only
permissible entry in the UNIT subparameter field of the DDEF command and
macro instruction is

, UNIT= (SDA=code)

In addition, when using TA~1, you must spec1fy the code CX in the
second.positional parameter (dsorg) of the DDEF command and macro
instruction. This code must also be used with the DSORG keyword
parameter of the DCB subpararoeter list of the DDEF command and macro
instruction and the DCB macro ins1:ruction.

CONTROLLING I/O DEVICES FOR BSAM

In addition to those detailed in Assembler User Macro Instructions,
two macro instructions are available to you as a privilege class E
programmer when you are using the basic sequential access method (BSAM).
These macro instructions provide you with the ability to exercise
greater control over the I/O devices you are using.

CNTRL -- Control On-Line Input/Out~put Devices (R)

The CNTRL macro instruction is
magnetic-tape drives and on-line card
is not transferred. The followring
tape positioning, card-reader stacker
control.

used to perform operations on
readers and printers in which data
functions are provided: magnetic
selection, and printer carriage

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] I CNTRL I { dCb-addrx}, J a ction-code [, number-ValUe]} I
I I I (1) l (0) I L ________ ~ ________ ~ ___ J

dcb
specifies the address of the data control block opened for the data
set being processed. If you write (1), the address must be loaded
into general register 1 before execution of this macro instruction.

action
specifies, by a code, the service to be performed:

126

5S

SP

SK

BSR

BSM

FSR

FSM

FSF

BSF

WTM

REW

RUN

ERG

number

causes a stacker to be selected for a card reader (stacker 1
or 2) •

causes a line space on a printer, space 1, 2, or 3 lines.

causes a skip on the carriage-control tape for a printer skip
to channels 1 through 12.

causes a
magnetic
omitted;

causes a
forward
assumed;

causes a
magnetic
omitted;

backspace over a specified number of blocks cn
tape; one block is assumed if the number operand is

BR 'is the abbreviated code.

cackward motion past a magnetic-tape mark and a
space over the tape mark; a number value of 1 is
BM is the abbreviated code.

forward space over a specified number of blocks on
tape; one block is assumed if the number operand is

FR is the abbreviated code.

causes forward motion past a magnetic-tape mark and a backs
pace over the tape mark; a number value of 1 is assumed; FM is
the abbreviated code.

causes forward motion past a magnetic-tape roark; a numcer
value of 1 is assumed; FF is the abbreviated code.

causes backward motion past a magnetic-tape mark; a number
value of 1 is assumed; BF is the abbreviated code.

causes a tape mark to be written on magnetic tape; a number
value of 1 is assumed; WM is the abbreviated code.

rewinds magnetic tape; RW is the abbreviated code.

rewinds and unloads magnetic tape; RU is the abb~eviated code.

causes an erase gap to be executed for magnetic tape; ER is
the abbreviated code.

If you write (0), the two-character action code must be placed
in the two high-order bytes of general register 0 before
execution of this macro instruction. In the case of three
character action codes, the abbreviated code must be placed in
those bytes.

specifies a value for the stacker number, number of lines to be
skipped on the printer, printer carriage-tape channel, or nurrber cf
blocks on magnetic tape to qualify the action operand. The maximum
value is 32,767. If you write (0), the value must be placed in the

Section 6: Programming With Privilege Class E 127

two low-order bytes of general register 0; value is a binary
integer.

CAUTICN: If magnetic-tape ~ositioning is performed, an uncorrectable
tape-s];:acing error results in linkage to the user's SYNAD routine; this
does not apply to action codes SS, SF, SK, REW, or RUN. See A~pendix E
of Assembler User Macro Instructions for a description of SYNAD.

Abnormal termination occurs if:

1. Action code is undefined or not applicable.
2. Number parameter is undefined for the action parameter.
3. A SYNAD-type error occurs Clnd you have not provided a SYNAD

address.
4. The specified data control block has not been validly o~ened.
5. The outstanding read or wri tE~ o{:erations have not been checked.

PROGRAMMING NOTES: For stacker selection, the DCBNCP field of the data
control block must be 1. Each RE1\D macro instruction directed to a card
reader must be followed by a CHECK macro instruction and a stacker
selection CNTR macro instruction directed to the same device. Stacker
selection is not available for thc~ card punch exce~t through changing,
in your program, the DCBSTA field in the data control block.

You must check READ and WHITE o~erations for com~letion before
issuing the CNTRL macro instruc"tion. If you are using the' macro
instruction to control stacker selection, you must issue it for each
read oFeration except the last. 'rhe CNTRL macro instruction rrust not be
issued for the last read operatio:n (i.e., the READ macro instruction
which, when checked, invokes EODAD) since no card was read.

For printers, a skip to a given channel results in no action if the
device is already at that channel.

Control is returned to you if a tape mark or a load point is
encountered while an attempt is being made to forward space or backspace
blocks (control is not given to the SYNAD routine). Register 15
contains binary Os if the operation is com~leted normally; otherwise, it
contains a count of the remaining nUIl'ber of forward sFaces or backs~aces
that were not completed in its low-order two bytes.

NOTE: The CNTRL macro instruction may also be used by a class D
programmer for magnetic-tape ~ositioning. However, use of the CNTRL
macro instruction for card-reader stacker selection and for Frinter
carriage control is restricted tc class E programmers.

PRTOV -- Test for Printer Carriace Overflow (R)

The PRTOV macro instruction is used to control the page format for an
on-line printer. As a privilege class E programmer, you can test
channel 9 or 12 of the printer control tape to determine if an overflow
condition exists.

Before testing overflow indicators, PRTCV waits for completion of all
previously requested printing.

r--------T---------T--1
IName I Operation I Operand I
t--------f---------+--~
I [symbol] ,PRTOV I {dcb-addrX}, number- {9 112}[, userrtn-addrX}J I
I I I (1) (0) I l ________ i-________ ~ __ J

128

dcb
specifies the address of the data control block opened for the data
set being processed. If you write (1), the data control block
address must be loaded into general register 1 before execution of
this macro instruction.

number
specifies either 9 or 12 as the channel to be tested for an
overflow condition.

userrtn
specifies the address of a routine which is to be given control if
the appropriate prograH: indicator (for channel 9 or 12) is on when
tested. If you write (0), the address must be loaded into general
register 0 before execution of this macro instruction. If you omit
this operand, and if the overflow condition exists, an automatic
skip to channel 1 will be performed prior to the next WRITE
operation.

CAUTION: Abnormal termination occurs if the data control block you have
specified is not validly opened.

PROGRAMMING NOTES: This macro instruction causes no action if used for
a device other than a printer.

If a WRITE macro instruction is directed to the printer and a CHECK
macro instruction is not issued to verify its execution, the channel
overflow indicator may not have been set to produce the desired results
when the PRTOV macro instruction is issued.

If the user routine includes a PSECT, it must be the same PSECT as
the routine that issues the PRTOV macro instruction. To continue
processing at the point where the PRTOV macro instruction was issued,
the user routine must branch to the address that was contained in
general register 14 upon entry to the user routine. A RETURN macro
instruction cannot be used for this purpose.

If no user routine is specified, execution of the problem program
continues after a PRTOV macro instruction is issued. When the line
associated with the first WRITE macro instruction issued after the PRTCV
is to be printed, the appropriate program indicator is tested. An
automatic skip to channel 1 is performed if an overflow has occurred.

If a user routine is specified, the control program waits after a
PRTOV macro instruction is issued. When all prior print operations are
complete, the appropriate program indicator is tested.

The contents of the general registers upon entry to the user's
overflow routine are:

r--------T---,
IRegister) Contents I
~--------t---~
10 I Unspecified I
11 IAddress of data control block 1
12 to 13 ISame as before macro instruction was executed 1
114 IReturn address . 1
115 IAddress of userrtn routine I L ________ ~ _____ ~ __ J

Section 6: Programming With Privilege Class E 129

EXAMPLES: In EX1, an overflow condition on channel 9 of the printer
control tape results in an automatic skip to channel 1 since the
operand, userrtn, is omitted. In EX2, an overflow condition on channel
12 results in control being given to the user's overflow routine.

EX1
EX2

PRTOV
PRTOV

OUTDCB,9
PRINTDCB,12,OVERFLOw

MULTIPLE SEQUENTIAL ACCESS METHOD (MSAM)

The multiple sequential access method, MSAM, provides a fast and
efficient mechanism for simultaneously driving, under the control of a
single task, several card readers, card punches, and printers. The
access method's macro instructions provide automatic buffering and
automatic error retry options.

GENERAL DESCRIPTION

MSAM will support both fixed (F) and variable (V) format records.
MSAM routines buffer logical records into system-provided buffers, each
of which resides in a separate page of virtual memory. The basic user
interface to MSAM is the GET, PUT, OPEN, CLOSE, SETUR, and FINISH macro
instructions.

MSAM also provides you with the capability of efficiently processing
data on multiple unit record devices within one task. While this is
possible within other TSS/360 access methods, MSAM alone has defined its
user-interface (macro instructions) in such a manner that the system
service routines need not end the task's time-slice while waiting for
the occurrence of an event, such as I/O completion. This efficient
device utilization is accomplished by defining macro instructions which
provide a return code to infoz'm the inVOking routine that a delay is
necessary before the request, sucb as GET, PUT, or FINISH, can ce
completed. This transference of t.he resfonsibility of waiting, from the
control ~rogram to the invoking routine, provides the atility for the
task to process all its opened DCBs until all DCBs accessed require
waiting. Then the task may wait for the first I/O interrupt for any DCB
in the task.

MSAM also differs from other sequential access methods in that each
MSAM I/O request of the system processes a buffer group of physical
records. In the other methods, each I/C request of the system is for
only one physical record. ConsidE!ratle processing is required in lOS
and the access mechanism for each I/O request of the system, regardless
of buffer size. Usually, MSAM will invoke an I/C request only once for
proceSSing each buffered page. However, some cUffers, such as the last
buffer in a data set, may contain fewer records.

DCB OPTIONS

You can reference the inforrration stored in the data control block by
means of the DCBD macro instruction, which is described in Assewbler
User Macro Instructions. The options available to you may be selected
by correctly filling in the DCB fields described below. The sources of
this information are given in Table 10.

130

Table 10. Sources of DCB Information for MSAM
r--,
IDCB Field Alternate Sources I
I r-------------T-----------------T-----------T------------~
I IYour program IDDEF coromand and IDCB roacro IYour ~rograrrl
I Iprior to OPENlroacro instructionlinstructionlafter OPEN I
~-------------+-------------+-----------------+-----------+------------~
I DSORG X
IMACRF X X X
IDDNAME X X
IDEVD X X X
,"PRTSP1I X X X X.2
I MODE3 X X X X2
ISTACK3 X X X X.2
IRECFM X X X X.2
ILRECL X X X X4
I POCKET X X.2
I RETRY X X.2
I SUR X5
IINHMSG X X X X
IFIP X6
I COMBINE X
I FORMTYPE X X.2
~-------------~-------------i----__ -----------i-----------i--__________ ~
10nly checked if DEVD specifies a printer (PR).

20nly if a FINISH macro instruction has been executed and a return
code other than 4 was provided, and if no GET or PUT macro
instruction has been executed after the FINISH.

30nly checked if DEVD specifies a card punch (PC) or a card reader
(RD) •

4For format-F records, footnote 2 aFplies.

50nly if a SETUR macro instruction has been executed and a return code
of 4 was provided.

160nly if a FINISH macro instruction has been executed and a return I
I code of 4 was provided. I L __ J

DSORG

MACRF

must be set to indicate MS.

must specify only GET or PUT macro instruction (all other corrbina
tions will cause abnormal termination of the task in OPEN) •

DDNAME

DEVD

PRTSP

must be three to eight alphameric characters.

must be PR, PC, or RD.

specifies the line spacing as 0, 1, 2, or 3 after ,printing. The
PRTSP field will be ignored if (A/M) is specified in the DCE RECFM
field. PRTSP may be used but cannot vary between each PUT. If the
field is not supplied in the DCB at OPEN tiroe, one line of spacing
is assumed. If neither A nor M was specified in the DCE, and
channel 12 is sensed in the carriage control tape, an automatic
skip to channel 1 is performed by the system.

Section 6: Programming With Privilege Class E 131

MODE
must be C (column binary mode) or E (EBCDIC rr,ode). The value cf
the MODE field may not be modified after the LCE is opened except
tetween a completed FINISH and the next GET or PUT macro instruc
tion. A binary value of 1 in this field specifies column binary
and binary value of 0 specifies EBCDIC. If the mode is not
specified, EBCDIC is assurred.

STACK
sFecifies the stacker bin (1, 2, or 3); stacker bin 3 rray be
sFecified only if the punch (PC) is specified. The STACK field is
ignored if (A/M) was specified in RECF~ at CPEN time. STACK way
not be changed for each GET or PUT to a card punch so that the
stacking of each card varies. If the field is not sUFFlied,
stacker bin 1 is assumed.

RECFM

LRECL

~ 32

specifies the characteristics of the records in the data set.
Although any of the following order are valid

(F /V) [B] [A/M]

B will be ignored. Any other record format designations will cause
OPEN to abnormally terminate the task.

Control Characters [A/M]: As an optional feature, records .may
include a control character in each logical record. This contrel
character will be recognized and processed if a data set is being
written to a printer or punch ty MSAM. This character is provided
by the user as the first byte of the logical record. Two options,
A and M, are availatle. If either option is specified in the data
control block, the character must appear in every record.

Machine Code (M) - The user may specify in the data control tlock
that the machine code control character has been placed in each
logical record. The byte sUFplied by the user must contain the bit
configuration specifying a write and the desired carriage- er
stacker-select operation (this permits independent carriage- and
stacker-select operations) •

Extended USASI Code (A) - The user may choose to specify this code
rather than the machine code; the control byte must appear in each
logical record if this option is chosen.

For format-F records, LRECL specifies the length in bytes. This
length must include the control character for an output data set if
~/M) is specified in RECFM. LRECL may not exceed 80 bytes for

reading in EBCDIC mode, and 160 bytes for column binary mode. For
an output data set, on a printer, the maximuw is 133 bytes; on a
card punch, 81 bytes for EBCDIC and 161 bytes for column binary
the additional tyte for output data sets is for the control byte
only if (A/~ is specified in the RECFM.

For format-V records, LRECL specifies the maximum length in bytes
of a logical record. LRECL may be modified after the DCB is oFened
at any time. LRECL for an inFut data set way not exceed 84 bytes
for reading in EBCDIC mode and 164 bytes for column binary mode.
For an input data set, on a printer, the maximum is 131 bytes; for
a card punch, 85 bytes for CI EECDIC and 165 bytes for column
binary. The additional byte for output data sets is for the
control byte only if ~/M) is specified in the RECFM. The four or
five control bytes of a format-V logical record are not punched or
printed. A forrnat-V logical record will have five control bytes
when a USASI or machine control character is specified.

BLKSIZE
this field is not referenced by MSAM routines, as only unit record
equipment is supported. Unit records (card images or print lines)
are considered to be unblocked. Unblocked is defined as one
logical record recorded on one physical record.

EODAD
not referenced by MSAM routines.

SYNAD
not referenced by MSAM routines.

POCKET
a one-byte field to indicate error card stacker bin (for card
reader on 2540 only). Options are eRG, 1, or 2. ORG Ireans stack
as if no error occurred, 1 means stacker bin 1, and 2 means stacker
bin 2.

RETRY

SUR

a one-byte field to indicate data check error retry for 2540
reader. The options are N or U, where N indicates no retry and U
indicates unlimited retry.

this bit will be set to 1 by the SETUR routine when the SETUR macro
instruction is issued. The bit is set to 0 when the SETUR routine
returns any return code other than 4. Thus the bit indicates that
the unit record setup is in progress. If a problem program has
issued a SETUR macro instruction and received a return code of 4
and if, for any reason (such as an asynchronous operator message),
the problem program wants to suppress the completion of the SETUR,
it may do so by setting this bit nnCBSUR n to 0 and reissuing the
SETUR macro instruction.

INHMSG

FIP

this bit should be set to 1 if the problem program wants to inhibit
messages to the operator, to remove the data group when a CLOSE or
FINISH macro instruction is issued. If this bit is set to 0, and
CLOSE or FINISH is issued, a Iressage will be sent to the operator
to remove the data group from the device. When the operation
indicated by the WTO is complete, the operator will generate an
asynchronous interruption by changing the status of the device from
"not readyn to nready". This bit "DCBINH n may be referenced ty
users of the DCBD macro instruction.

this bit will be set to 1 when the FINISH macro instruction is
issued. The bit is set to 0 when the FINISH routine returns any
return code other than 4. Thus, the bit indicates that FINISH is
in progress. If a problem program has issued a FINISH macro
instruction and received a return code of 4, and for any reascn
(such as an asynchronous operator message) the problem program

wants to suppress the completion of FINISH, it Ray do so by setting
this bit "DCBFIp n to 0 and reissuing the FINISH macro instruction.

COMBINE
if this bit is set to 1, both the card reader and the card punch on
the same 2540 will be assigned to the output operation. Each tirre
a FINISH or a CLOSE macro instruction is issued, a card will be
read from the reader and stacked in pocket 3.

FORMTYPE
specifies the print error retry. Normally, this parameter is
provided by SETUR's SYSURS specification. There are three options:
D, F, and S. The D, or dump-type, option specifies that after

Section 6: Programming With Privilege Class E 133

retry the line in error is to be struck out, one line space is to
be skipped, and the line is tCt be rewritten.

The F, or form-sensitive, option specifies that after retry the
entire page containing a line in error is to be reprinted: control
characters must be in use and at least three buffers must be
available. The S, or sequence-sensitive, option specifies that
after retry printing is to be continued with the next line after
the line in error. If SETUR is not called, the default value for
the option is D.

DDEF COMMAND AND MACRO INSTRUCTION

The general format of the DEFINE DATA (DDEF) command and macro
instruction are given in Appendix G of Command Language User's Guide and
Appendix G of Assembler User Macro Instructions, respectively. When you
are using MSAM, you must specify the code PS as the dsorg positional
parameter. In addition, you can specify SDA=code, PC, PR, or RD with
the UNIT keyword parameter, as described in detail earlier under
"Designating I/O Equipment," and the DISP keyword parameter must be OLD
when using the card reader, and NEW when using the card punch or
printer.

GENERAL SERVICE MACRO INSTRUCTIONS

Two general service macro inst~uctions, OPEN and CLOSE, are available
for use with MSAM routines.

OPEN -- Prepare the Data Control Block for processing (m
The OPEN macro instruction

blocks for processing of their
execution of OPEN, the user1s
supplied by the user.

initializes one or more data control
associated data sets. During the
DCB exit routine is given control if

r--------T---------T--,
I Name I Operation I Operand I
~--------+---------+--~
I [symbol] I OPEN I ({ dcb-addr, [(opt-code)] ,} •••) I L ________ i _________ i _____________ . ______________________________________ J

dcb

opt

specifies the address of the data control block to be initialized.

specifies the intended method of input/output processing of the
associated data set. The codes and their meaning are:

INPUT Input data set: this value is assumed if opt is omitted.

OUTPUT Output data set.

CAUTION: The following errors cause the results indicated:

134

r--~--------------1
I Error I Result I
~---+--------------1
IOpening data control block that is already open INo action I
I I I
Specifying address of invalid data control block ITask terminated I

Opening data control block when DDNAME has not been
provided

Opening data control block when corresponding DDEF
macro instruction or command has not been provided

I I
ITask terminated I
I I
I I
ITask terminated I
I (prompting willi
Ibe given if I
Itask is conver-I
Isational) I
I I

Opening data control block containing invalid DSORG ITask terminated I
specification I I L ___ i-______________ J

PROGRAMMING NOTES: yOU may specify any number of data control
addresses and associated options in the OPEN macro instruction.
facility allows parallel opening of the data control blocks and
associated data sets.

block
This

their

OPEN initializes all the fields in the MSAM portion of the DCB, as
well as obtains all the pages necessary for MSAM operations.

If the DCB COMBINE flag is set, the reader is assumed to be on the
same 2540 frame as the punch and the symbolic device address of the
reader must be one greater than that of the punch.

A violation of any of the following restrictions will cause the OPEN
macro instruction to abnormally terminate the task.

1. The DCB MACRF field must specify only that GET or PUT macro
instructions will be issued.

2. The DCB DEVD field must specify (possibly from the DDEF command) a
card reader, card punch, or printer, and this device must corres
pond to the device specified in the DDEF command.

3. If the device is a card reader, the data set must be opened for
input.

4. If the device is a card punch or printer, the data set must be
opened for output.

5. The DCB RECFM field must indicate fixed-format records or variable
format records; A/M control characters may also be specified.

6. The DCB DEVD must specify the card punch, if the DCB COMBINE flag
is set.

USE OF L- AND E-FORM: You may use
instruction. The E-form may specify any
parameters specified in the E-form will
the L-form. The E-form may not specify
specified in the L-form.

the L- and E-form of this macro
parameters. Furthermore, the
overlay parameters specified in

more DCB operands than are

CLOSE -- Disconnect Data Set from User's Problem Program (S)

The CLOSE macro instruction disconnects one or more data sets from
the user's problem program.

Section 6: Programming With Privilege Class E 135

r--------T---------~---,
I Name I Operation I Operand I
~-------+--------+_-------------.-------------------------i
I [symbol] I CLOSE I (dcb-addr, •••) I L-_______ ~ ________ ~ __ J

dcb
specifies the address of the data control block opened for the data
set whose processing is to terminate.

CAUTION': The following errors cause the results indicated:

r---T---------------,
I Error I Result I
~--------------------------------.------------------+-------------1
IClosing data control block that is already closed INo action I
I I I
IClosing when dcb operand does not specify address of I I
Idata control block ITask terminated I
I I I
IClosing data control block containing invalid DSORG I I
I specification ITask terminated I l ___ ~ ______________ J

PR(x;RAMMING NOTES: You may specif~r any number of data control
addresses and associated options in the CLOSE macro instruction.
facility makes it possible to close data control blocks aHd
associated data sets in parallel.

block
This

their

In most instances, the FINISH macro instruction should precede CLOSE
(see the more detailed explanation of the FINISH macro instruction in
"Macro Istructions for MSAM") sinc·e you cannot be informed from CLOSE of
errors that may have occurred in processing the last output buffer page.
Additionally, the use of CLOSE without a preceding FINISH that returned
a normal completion code would cause the task to wait until the I/O
operation for that DCB is complete.

The CLOSE macro instruction for MSAM releases all the storage area
that was used for MSAM. The options of REREAD and LEAVE are ignored.
If the FINISH macro instruction did not precede the CLOSE, and if the
DCB INHMSG=O, a message will be written to the operator to remove the
data set from the device. If the DCB COMBINE flag is set and if a
FINISH did not precede the CLOSE, a card will be read from the reader on
the same 2540 as the selected punch and stacked in pocket 3.

USE OF L- AND E- FORM: You may use the L- and E-forms of this macro
instruction. The E-form of the macro instruction may specify any
parameters. Furthermore, the parameters specified in the E-forro will
overlay those specified in the L--form. The E-form may not specify more
dcb operands than are specified in the corresponding L-form.

MACRO INSTRUCTIONS FOR MSAM

There are four macro instructions that you may use in your MSAM
programs. One of these, SETUR, enables you to specify the unit-record
configuration you desire for on-line printers and punches. Two of the
others, GET and PUT, access logical records and may be specified in
either a move mode or a locate mode; the third, FINISH, informs the MSAM
routines that a break point has been reached in processing a data set.

Interrupt Entry Handling

For each of the
FINISH), a return

136

MSAM macro instructions (SETUR, GET, PUT, and
code of 4 indicates that the operation has not yet

been completed. In each case, the macro should be reissued, until a
return code other than 4 is received. However, between repetitions of
the macro instruction, you should interrogate DCBICB and, if it is
non-zero, invoke the interrupt inquiry routine by issuing the INTINQ
macro instruction (which is described in Assembler Users Macro Instruc
tions) to determine whether an asynchronous interrupt is pending. If
you should find that this is indeed the case, you should give control to
the appropriate interrupt-handling routine and defer reissuing the MSAM
macro instruction until you have control returned to your program.

SETUR - Unit Record Device Set Up (R)

The SETUR macro instruction enables you to specify the unit record
configuration for on-line printers and card punches.

r-------T----------~--,
'Name 10peration ,Operand ,
~-------+----------+---~
, , ,{addr} {addr} , 'symbol 'SETUR I dcb-, par am- ,
I I I (1) {O} I L _______ ~ __________ ~ ___ J

dcb

param

sFecifies the address of the data control block opened for
processing a data set on a printer or card punch.

specifies the address of the unit record device-setup parameter.
For card punches, the parameter is the desired form number and is
10 bytes in length. For printers, the parameter is a six-byte key
used to refer to a VISAM system data set (SYSURS).

PROGRAMMING NOTES: The SETUR macro instruction should be
any I/O operations are directed to a printer or punch, to
setup. This is done by issuing SETUR immediately after
set or after the FINISH macro instruction is executed
operation completed.

issued before
ensure a valid
opening a data

and the I/O

Card Punch: The setup for a card punch is described by the form numbe
of the card that the operator is to load into the punch-feed hopper o~
the 2540. This form number is an installation-defined constant. When
the macro instruction is executed, the SETUR routine checks to see which
form is mounted in the punch (the currently mounted form number or
zeros if the DCB was just opened -- is stored for each device in the
SDAT). If the desired form is already mounted, control is returned tc
the invoking routine with a return code of O. If the form is not
mounted, a message is written to the operator (WTO) to mount the desire{
form number (10-byte parameter), and to ready the 2540 punch. A returr.
code of 4 is provided to the calling task. When the operator indicate~
the punch is properly loaded, by causing a not-ready to ready interrupt,
the SDAT is changed to reflect the new form number and on the next call
to SETUR control is returned to the invoking routine with a return COdE
of O.

Printer: A maximum of nine variables can be used to describe the setup
of a printer. The six-byte parameter whose address is specified in the
SETUR macro instruction is used as a key to read the VISAM systeIT data
set SYSURS. This data set, maintained by the installation, defines a
setup configuration for each KEY (parameter). The following setup
variables are specified in the SYSURS data set and are stored in the
SDAT or DCB or DEB page.

1. Form Number: the number of the form to be mounted; this number is
an installation-defined 10-byte EBCDIC constant.

Section 6: Programming With Privilege Class E 137

2. Carriage Tape Number: the number of the carriage control tape to
be mounted; this number is an installation-defined four-byte EBCGIC
constant.

3. Chain/Train Type Number: the number of the print chain or print
train to be mounted in the 1403; this number is an installation
defined four-byte EBCDIC constant.

4. Density Number: the density of lines per inch to be selected for
the printer; this is a TSS/360-defined one-byte number, Which must
be an EBCDIC '8' or EBCDIC '6'.

5. Form Type Code: specifies the error retry to be used with this
printer configuration; it is a TSS/360-defined one-byte code, which
must be an EBCDIC 'D', an EBCDIC 'F', or an EBCDIC'S'.

D

F

S

designates a storage DUMP-t:Yfe retry including striking over the
line in error, spacing one line, and rewriting the line. If
three such strike-out lines should appear on one page, an eject
to channel 1 is performed. The strike-over character for nonUCS
(universal character set) printers is an EBCDIC ·X'.

designates a FORM-sensitiv'e error retry including write-to
operator (WTO) to mark the E!rror form, eject to channel 1, and
rewrite the entire form (page). If a form-type F is specified,
the USASI or machine-type control characters must be used to
control the carriage and printer. Also, SDAMRB, the number of
buffers specified in the SDP.T, must be at least 3 to ensure that
at least one page image is available for error retry.

Note: Buffers required to store page images reduce I/O overlap.

designates a SEQUENCE-sensit.ive error retry including write-to
operator (WTO) to mark the error form. The system completes the
error form and continues to the next form when a not-ready to
ready interrupt is receivE!d. No attempt is made to reprint the
error form. If a form-ty'pe S is specified, the USASI or
machine-type control characters must be used to control the
carriage and printer.

6. UCS Folding Code: specifies whether the folding option of the
universal character set fealture is desired. The code is not
referenced if the printer is not equipped with the UCS special
feature. This one-byte EBCDIC code is TSS/360-defined. The
possible codes are F (folding) and U (unfolded).

7. UCS Strike-out Character Code: determines the UCS strike-out
character to be used in connE!ction with error retry. This code is
never referenced if the printer is not equipped with the universal
character special feature, or if the form-type code is not D. The
code is a two-byte EBCDIC field; each of the bytes may be set to a
numeric 0-9 or a letter in the range A-F and represents one
hexadecimal digit. The two combined hexadecimal digits represent
the UCS strike-out character. For example, an EBCDIC two-byte code
of 'D8', when translated into hexadecimal, becomes '1101 1000' in
binary, which is the graphic _Q" in EBCDIC. This may be printed
with UCS as another graphic.

8. UCS Buffer Load Key: a six-byte, installation-supplied constant
key used to read the VISAM system data set SYSUCS, which specifies
a Des buffer configuration. This key is not referenced if the

138

printer is not equipped with the ues special feature. sysues also
contains a 40-byte verification message.

9. Printer Alignment Message: a message occupying one print line of
132 bytes, to be written on the printer so that longitudinal form
alignment may be accomplished.

EXECUTION: Upon completion of the SETUR macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All return codes are multiples of 4 and their
meanings are given in Table 11.

When the SETUR macro instruction is executed, the routine determines
if the present configuration of the printer, specified in SDAT, is the
configuration specified by the SETUR parameter. If the desired form,
carriage tape, chain/train, and/or density is already as required, the
operator is notified of the current configuration; control is returned
to the invoking routine. If the desired setup configuration is not
present, the system initiates the action necessary to achieve the
desired setup. This may include:

1. A write-to-operator message to mount the desired form or carriage
tape or chain/train type; to select a different density; or any
combination of the above. When the message to the operator has
been written, a return to the invoking routine is made with a
return code of 4.

2. After an asynchronous interrupt is received from the device
indicating that the operator has hit the STOP button and then the
START button, subsequent issuance of the SETUR macro instruction
may cause the ues buffer to be loaded.

3. For type-F and type-S forms, an eject to channel 1 is taken, and a
printer alignment message is written on the printer. A WTO message
is sent to the operator to align the printer, and control is
returned to the invoking routine with a return code of 4. (See the
section on "Interrupt Entry Handling," above, for a description of
the proper procedure to be followed.) The operator indicates that
alignment is complete by causing an asynchronous interruption. He
does this by hitting the STOP button and the START button on the
printer. When a SETUR is issued after the alignment is complete, a
return code of 0 is returned. If an unrecoverable error has
occured, a return code of 8 is returned.

If a routine wants to stop the SETUR procedures, the DeB field SUR
should be set to 0, and the SETUR macro instruction should be issued.
The SETUR routine sets the flag to ON when a code of 4 is returned, and
sets the flag to OFF when any oth~r code is issued. If a return code of
4 is provided and the invoking routine wants to purge or discontinue the
SETUR procedures, the setting of DCBSUR flag should be changed from 1 to
o before the next SETUR macro instruction is issued.

The following procedure is used when loading the UCS buffer. (The
carriage control tape, print chain/train, and density will have already
been selected and/or mounted at this time.)

1. Eject to channel 1.

2. Write first 120 bytes of the 240-byte buffer on the printer.

3. Skip one line.

4. Write second 120 bytes of the 240-byte buffer on the printer.

Section 6: Programming With Privilege Class E 139

5. Skip two lines.

6. Write first 20 EBCDIC characters of verification message in SYSUCS
on the printer.

7. Eject to channell.

8. Write second 20 EBCDIC characters of verification message in
SYSUCS, on the console typewri,t:er.

9. Write to operator (WTO) to verify that the same print line was
printed on the on-line printer and on the console. When the
oFerator has completed this action, he replies by pressing the STOP
button followed by the START button.

NOTE: The printer output graphics must be the same as those written on
the console typewriter. Therefore, the two 20-byte segments combined in
the verification message in SYSUCS may be different in storage. The
difference between these segments is determined by the UCS buffer load
and the print chain/train mounted.

Table 11. Return Codes for SETUR Macro
r------T---,
I Return I I
ICode I Meaning I
~------+---------------------------.------------------------------------~
I 0 IOperation completed successfully !
I 4 IOperation not complete; SETUR macro instruction should bel
I I reissued I
I 8 IUnrecoverable error occurred in (1) reading SYSURS or SYSUCS,I
I lor (2) attempting to writE~ UCS buffer load or UCS verification I
I Imessage, or (3) attempting to load UCS buffer I
I 12 IParameter specified in SETUR macro instruction is not valid I
I !SYSURS KEY I
I 16 ISYSUCS buffer load key as specified in SYSURS is not valid I L ______ ~ __ J

All messages written to the ope:~ator are by WTO. If UCS is involved,
a command to unblock data check will always be issued.

SYSURS and SYSUCS are VISAM partitioned data sets, maintained and
created by each installation. The formats are shown in Figures 20 and
21.

140

o 7 8 27 28 47 67
r--------T-T---------------T----------------T-------------------,

Line 1 Ixxxxxxl I IVerification I Message I Reserved I
r-------+-+---------------+----------------1 I
I I I (printer) I (typewriter) I I
I I IFirst 20 bytes I Second 20 bytes I I
I I lof verification I of verification I I
I I Imessage I message I I
~--------i-i---------------i----------------i-------------------1

Line 2 Ixxxxxx2 1st 60 bytes of 240-byte buffer load I
~---~

Line 3 Ixxxxxx3 2nd 60 bytes of 240-byte buffer load I
~---~-------------1

Line 4 Ixxxxxx4 3rd 60 bytes of 240-byte buffer load I
~---~

Line 5 Ixxxxxx5 4th 60 bytes of 240-byte buffer load I
L-__ J

xxxxxx=6-byte parameter key provided by SETUR routine from
entry in SUSURS routine

Figure 20. Complete Entry in SYSUCS (5 line records, each 68 characters
lonq. includinq KEYS)

Line 1

Line 2

Line 3

Line 4

5 6 7 8 9 10 19 20 23 24 27 28 30 Jl

XXXXXX I
I

Key from 1 R+--
SETUR I

I
XXXXXX

Key from 2 R
SETUR

XXXXXX

3 R

XXX XXX

4 R

R = reserved
Byte 6 = line number

XXXXXXXX XXXX XXXX X

Carriage Chain
Form No. tape train R Density

No. No. No.

1st 60 bytes of alignment message

2nd 60 bytes of alignment message

last 12 bytes of alignment message

32 34 35 36 38 39 40 41 42 43 44 49 50 55 56 67

X xx XXXXXX

form UCS UCS
UCS buffer

R type R folding R Strike R
load Key

R
code code out

used to read
SYSUCS

--

-~

- -"--- ------------~-- -- --

--

Figure 21. Complete Entry in SYSURS (4-line record, each 68 characters
long, including KEY)

GET -- Get a Record (R)

The GET macro instruction may be specified in either the locate mode
or the move mode. When you specify the macro instruction in the locate
mode, GET locates the next sequential record in the specified input data
set and places its address in general register 1. When you specify the
macro instruction in the move mode, GET locates the next sequential
record in the specified input data set and moves it to the work area you
have specified in virtual storage.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] I GET I 1 addrx ! [1 addrx !J I
I I I dcb- ,area- I
I I I (1) (0) I
L ________ i _________ i ___ J

dcb
specifies the address of the data control block opened for the data

Section 6: Programming With Privilege Class E 141

area

set being processed. If (1) is written, you must load the address
of the DCB into general register 1 before execution of the macro
instruction.

specifies the address of the work area into which you want the
record to be moved; hence, this operand is used only when the macro
instruction is specified in the move mode. If (~ is written, you
must load the address into general register 0 before execution of
the macro instruction.

PROGRAMMING NOTES: You must place the address of a save area in general
register 13 before executing the GET macro instruction.

When you are using MSAM, the GET macro instruction roay only be
employed to obtain records frorr a card reader. Hence, the RECFM field
of the data control block must indicate format F, since format V is not
supported for the card reader. At OPEN time, the LRECL field of the
data control block should be set to a maximum of 80 bytes for EBCDIC, or
160 bytes for column binary. ThE~ mode field in the data control block
must be set to a binary 0 for EBCDIC or to binary 1 for column binary.

CAUTION: Should any field of the DCB be altered by an improper source,
the results are unpredictable when this macro instruction is executed.

EXECUTION: Upon completion of the GET macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All return codes are multiples of 4; their
meanings are given in Table 12.

142

Table 12. Return Codes for MSAM GET Macro Instruction
r-------T--,
IReturn 1 Meaning \
ICode \ ,
~-------+--1
, 0 10peration completed successfully. ,
~-------+--~
1 4 11/0 not complete; no record has been ~rovided since next I
I Isequential buffer has not yet been filled; GET macro instruc-\
I I tion should be reissued. I
~-------+--1
1 8 I Unrecoverable I/O error occurred in connection with record I
, Ibeing read; normally, CLOSE macro instruction should bel
, 'issued; however, a record has been provided, content of whichl
I lis buffer image. If I/O error was not permanent (DEBNF2 orl
1 IDECG1 not on), you may accept record and continue processing, I
I lor you may skip record by issuing another GET macrol
1 1 instruction. I
~-------+--~
I 12 I End-of-file; no record has been provided. The FINISH macro \
I linstruction should be issued. I
~-------+--~

16 Control card sensed; attempt to read an EBCDIC record resulted \
in validity check; first four columns of card contain samel
predetermined control mark, a 12-11-3-4 punch. Record pro-\
vided is buffer image, control bytes of which should be testedl
for such installation-defined codes as (~ change of mode frorr\
EBCDIC to column binary or (b) change of data group without I
end-of-file indicator. Depending on installation assignment I
and control code usage, processing may continue. Control cardl
will be stacked as if it were valid data card. If subsequent I
GET macro instruction is issued, it will refer to next card inl
reader, following control card. If any fields in data control I
block are to be changed, FINISH (or CLOSE and OPE~ macro I
instructions must be issued before the next GET. I L _______ ~ __ J

EXAMPLE: In the following example, which illustrates the use of both
the locate-mode and move-mode GET rr,acro instructions, you want to read
65 EBCDIC bytes from the first 65 columns of the next sequential card,
in a 2540 reader. Any cards with errors will be stacked in bin 2, with
no attempt to reread the record; cards containing no errors will be
stacked in bin 1. Since the return codes Frovided from the macro
instruction are multiples of 4, it is possible for you to set up a
branch table to provide proper control of processing.

ADL

MOVE

LOCATE

WORK

DCB

OPEN
LA
LA
GET
L

BR
GET
L
BR

DC

,MACRF=G,DDNAME=MYDD,
DEVD=RD,MODE=E,
STACK=1,RECFM=F,LRECL=65
(ADL, (INPUT))

3,RCTABLE
1,ADL
(1) ,WORK
5,0 (15,3)

5
ADL
5,0 (15,3)
5

CL65

BUILD DCB

OPEN DCB
SET UP BRANCH TABLE
LOAD ADDR OF DCB
MOVE-MODE GET MACRO
BRANCH CN RC INDEX AND
AS BASE

LOCATE-MODE GET MACRO
BRANCH ON RC INDEX AND
RC TABLE AS BASE

RCTABLE

INPUT AREA FOR MOVE-MODE
GET MACRC

Section 6: Programming With Privilege Class E 143

RCTABLE DC A (NORM) ADDR FOR PROCESSING AFTER
RC OF 0

DC A (PAUSE) ADDR FeR PROCESSING AFTER
RC OF 4

DC A (ERROR) ADDR FOR PROCESSING AFTER
RC OF 8

DC A (END) ADDR FOR PROCESSING AFTER
RC OF 12

DC A (CONTROL) ADDR FeR PROCESSING AFTER
RC OF 16

Both the move-mode and locate-mode GET wacro instructions result in a
type-I linkage to the DOMSAM routine.

PUT -- Put d Record (R)

The PUT macro instruction may be specified in either the locate mode
or the move mode. When you specify the macro instruction in the locate
mode, PUT returns, in general register 1, the address within an output
buffer of an area large enough to contain an output record; you should
then construct, at that address, the next sequential logical record of
the output data set. When you specify the macro instruction in the move
mode, PUT moves the next sequential logical record of the output data
set, from the location you have specified into an output buffer.

r--------T---------T---1
i Name I Operation I Operand I
~--------+---------+---~

I [symbol] I PUT : dCb-l addrxl [,area_laddrx tJ I
I I I (1) \ (0) \ I L ________ i _________ L ___ J

dcb

area

specifies the address of the data control block opened for the data
set being processed. If (1) is written, you must load the address
of the DCB into general register 1 before execution of the macro
instruction.

specifies the address of the next logical record to be moved into
the output buffer; hence, this operand is used only when the macro
jnstruction is specified in the move wode. If (0) is written, you
must load the address into general register 0 before execution of
the ITacro instruction.

eROGRAM~ING NOTES: The length of the logical record is determined by
t.he value o~ the LRECL field of the data control block for fixed-length
(format-F) records and by the value of the control bytes for
variatle-length (format-V) recordS. If you write forrnat-V records, the
value of the LRECL field must be set equal to the maximum length of the
logical record prior to the locate-ffiode PUT macro instruction. The
value ruay be changed between executions of the PUT macro instruction and
will be used t.O determine when to truncate the present buffer. The
control program uses the current value of the LRECL field to determine
the arrount of buffer space needed for the record, even though the actual
length is determined by the built by the user in the buffer area after
the corrpletion of the locate-wade PUT wacra instruction.

If you do not s~ecif} USASI or machine code in the RECFM field of the
ddta control block, the PRTSP and S'IACK fields of the DCB will be used
ta control line spacing and stacker selection, res~ectively.

144

Printer: The MODE field of the data control is not referenced for the
printer. The LRECL field of the data control block must be set to a
value not exceeding 133 bytes for format-F records, and 137 bytes for
format-v records. These values are 132 bytes and 136 bytes, respective
ly, if the USASI or machine code was not specified in the RECEM field of
the data control block. If you use control characters (A or M) for
carriage control, channel 12 is ignored (greater efficiency is achieved
by not having a channel 12 punched on the CC tape). However, if you do
not use control characters and channel 12 is sensed, an immediate eject
to channel 1 is performed.

Card Punch: For format-F records, you must set the LRECL field of the
data control block to a value not exceeding 81 bytes for EBCDIC, and 161
bytes for column binary. These values are 80 bytes and 160 bytes,
respectively, if the USASI or machine code was not specified in the
RECFM field of the data control block. For format-V records, you must
set (for locate mode only) the LRECL field to a value not exceeding 85
bytes for EBCDIC or 165 bytes for column binary; these values are 84 and
164 bytes, respectively, if the USASI or machine code was not specified
in the RECFM field. The MODE field of the data control block must
contain a binary 0 for EBCDIC or a binary 1 for column binary.

CAUTION:
task may
executed.

If any field of the DCB is altered by an improper source, the
be abnormally terminated when a PUT macro instruction is

EXECUTION: Upon completion of the PUT macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All codes are multiples of four, and their
meanings are given in Table 13.

Table 13. Return Codes for MSAM PUT Macro Instruction
r-------T--,
IReturn 1 I
1 Code I Meaning I
~-------+---------------------~-~--------------------------------------~
I 0 10peration completed successfully.
~-------+--i
I 4 II/O not complete; the record has not been accepted as there isl
I Ino room remaining in present buffer and next sequential bufferl
I Ihas not yet been released from prior I/O request. PUT macro I
I linstruction should be reissued. (See discussion of "Interrupti
I IEntry Handling," above.) .
~-------+--~
I 8 1 Unrecoverable I/O error occurred and record was not accepted.
I IGeneral register 1 points to record on which I/O error,
I I occurred in the case of an equipment check on card punch, I
I Igeneral register 1 points to record immediately following that I
1 Ion which error occurred -- and general register 0 points tal
I lassociated DECB. FINISH and/or CLOSE macro instructions mayl
I Ibe issued. However, if I/O error was not permanent (DEBNF2 orl
1 IDECG1 not on) , you may continue processing records beyond thel
I lone that failed by reissuing PUT. I L _______ i __ J

EXAMPLE: In the following example, which illustrates the use of both
the locate-mode and move-mode PUT macro instructions, you want to print
a file of 132-byte EBCDIC records. After each line is printed, one line
is spaced. Since the return codes provided by the macro instruction are
multiples of 4, it is possible for you to set up a branch table to
provide proper control of processing.

section 6: Programming With Privilege Class E 145

JHL

MOVE

LOCATE

WORK

RCTABLE

DCB ,MACRF=P, BUILD DCB
DDNAME=TODD,DEVD=PR,
PRTSP=1,RECFM=F,LRECL=132

OPEN (JHL, (OUTPUT» OPEN DCB

LA 3,RCTABLE SET UP BRANCH TABLE
LA 1,JHL LOAD ADDR OF DCB
PUT (1) ,WORK MOVE-MODE PUT MACRO
L 5,0 (15,3) BRANCH ON RC INDEX AND
BR 5 RCTABLE AS BASE
LA 1,JHL
PUT (1) LOCATE-MODE PUT MACRO
L 5,0 (15,3) BRANCH ON RC INDEX AND

RCTABLE AS BASE
BR 5

DS CL132 OUTPUT AREA FOR MOVE-
MODE PUT MACRO

DC A (NORM) ADDR FOR PROCESSING
AFTER RC OF 0

DC A (PAUSE) ADDR FOR PROCESSING
AFTER RC OF 4

DC A (ERROR) ADDR FOR PROCESSING
AFTER RC OF 8

Both the move-mode and locate-mode PUT macro instructions result in a
type-I linkage to the DOMSAM routine.

FINISH -- End of Data Set (R)

The FINISH macro instruction is used to inform the MSAM routines that
processing of the current d::-,ta group (subsection of a data set) is at an
end. A task may process more than one data group (within the same data
set) with the same data control block, without closing and reopening the
DCB (and the assignment and release of the associated I/O device)
between data groups.

r-------T---------T- ---,
IName ,OperationlOperand I
~-------+---------+--~
, , I laddr (I
Isymbol IFINISH I dcb- I
I I I (1) I l _______ ~ _________ ~ __ J

dcb
specifies the address of the data control block opened for the data
set being processed.

PROGRAMMING NOTES: The FINISH macro instruction provides for

1. Initiating any necessary I/O activity so that an output data set
may be closed;

2. Testing the results of all outstanding I/O on an output data set;

3. Awaiting completion of outstanding I/O requests on an input data
set;

146

4. Notifying an operator to remove the data set from the device (under
control of the INHMSG flag of the data control block) ;

5. Reading a card from the card reader and stacking it in pocket 3 of
the same 2540 as the selected punch, if the COMBINE flag of the
data control ~lock is set.

You should precede the CLOSE macro instruction with the FINISH macro
instruction, if you want to avoid an automatic WAIT condition, which may
result from the access method CLOSE, or to receive notification of any
I/O error. (CLOSE MSAM is the only ~SAM routine to invoke AWAIT.)

CAUTICN: The FINISH macro instruction will cause the operator to be
notified to remove the data group from the device in use if the INHMSG
flag of the data ccntrol block is not set to 1.

EXECUTION: Upon completion of the FINISH macro instruction, a code
indicating the manner in which the instruction was completed is returned
in general register 15. All return codes are multiples of 4; their
meanings are given in Table 14.

Table 14. Return Codes for MSAM FINISH Macro Instruction
r-------T--,
'Return , I
I Code ,Meaning ,
~------+--1
, 0 ,Operation completed successfully. CLOSE macro instruction maYI
, Ibe issued or further processing may be initiated without I
I ,reopening data control block; the DCB parameters LRECL, MODE, I
, ,STACK, PRTSP, RECFM, POCKET, FORMTYPE, and RETRY may bel
I 'altered at this time. I
~-------+---. -------------------~
, 4 ,Operation was not completed since I/O was not finished.
, 'FINISH macro instruction should be reissued later, until al
, Ireturn code other than 4 is received. (See discussion ofl
I I"Interrupt Entry Handling," above.) I
~-------+--~
I 8 IOperation was completed with I/O error. If data control blockl
I 'was opened for input, descriFtion of GET macro instruction I
I Ireturn code of 8 (Table 12) applies; if data control block wasl
I lopened for output, description of PUT macro instruction return I
I Icode of 8 (Table 13) ap~lies. In order to flush remaining I
I loutput buffers, if error was not permanent (DEBNF2 or DECGll
, Inot on), FINISH may be reissued. I L _______ ~ ___ . _________________ J

Example: The following example is £ased uFon the coding in the example
for the PUT macro instruction. It would follow the locate-mode PUT, L,
BR:

Section 6: Programming With Privilege Class E 147

LA 7,FINTAB
REPEA FINISH JHL

L 5,0 (15, 7)
BR 5

HALT CLOSE JHL

FINTAB DC A (HALT)

DC A (REPEAT)

DC A (ERROR)

TERMINAL ACCESS METHOD MACRO INSTRUCTIONS

SET UP BRANCH TABLE
END OF DATA SET
BRANCH ON RC INDEX AND
FINTAB AS BASE

ACDR FOR PROCESSING AFTER
RC OF 0
ADDR FOR PROCESSING AFTER
RC OF 4
ADDR FOR PROCESSING AFTER
RC OF 8

This section provides you with a description of the macro instruc
tions you will need to make use of the Terminal Access Method (TAM)
routines. These routines comprise control unit and TERMINAL oriented
functions. The access method provides macro instructions which enable a
user to read messages into the comFuter and to write messages to
terminals. The facilities providej include:

• Terminal polling
• Terminal addressing
• Answering
• Message receiving
• Dynamic buffering
• Message Transmitting
• Dialing
• Conversion
• Interrupt Control
• 2702 Control Orders

DCB Set Up Data Control Block (nonstandard)

The DCB macro instruction establishes a parameter list which provides
the interface between the user's program and data set and the system I/O
routines.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+--------------.-------------------------------------~
I symbol I DCB I [DDNAME=symbol] [, DSORG=CX] I
I I I I
I I I { (R) 1 I I I I [,MACRF= (W)] (,BUFNO= absexp] I
I I I (R, vJ) I
I I I I
I I I [,BUFL=absexF] [,BF'IEK=D] I
I I I {,EXLST=relexp] (,SYNAD=relexp] I l ________ i _________ i __________________________________ - _________________ J

DDNAME

DSORG

148

designates the name of the DD statement associated with this DCB.

SFecifies the data set organization as being that of a communica
tion line.
cx - specifies communication line.

MACRF

BUFNO

BUFL

BFTEK

EXLST

SYNAD

indicates that access to this data set is to be gained through this
DCB only by the specified macro instructions.
~) - access can be gained only by use of the READ macro

instruction.
~) - access can be gained only by use of the WRITE macro

instruction.
(R,W) - access can be gained by use of either the READ or the WRITE

macro instruction.

specifies the number of buffers to be provided for the buffer pool.
The maximum you may specify is 255.

specifies the byte length of each buffer in the pool or a standard
length for user provided buffer. The maximum length you can
specify is 32,767 bytes.

specifies that dynamic buffer allocation is to be provided. If you
omit this parameter the system assumes that you have provided for
your own buffer allocation.
D - dynamic allocation.

specifies the symbolic address of the exit list.

specifies the address of the synchronous error routine.

PROGRAMMING NOTE: BUFNO, BUFL, BFTEK, and SYNAD may be supplied at
execution time at any point up to OPEN time. BUFNC, BUFL, and BFTEK may
be specified in the DD staterrent.

DCBD -- Specify DCB DSECT (nonstandard)

You may use the DCBD macro instruction to access the fields in the
DCB. See Assembler User Macro Instructions for a description of DCBD.

OPEN -- Prepare DCB for Processing (S)

The OPEN macro instruction prepares the DCB for use with a communica
tion line. Each DCB must be opened before message transmission can
begin.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---1
I [symbol] IOPEN I ({dcb-addr,} ••••••) I
I I I L I
I I I [MF= { l] I
: : : (E,list- {a~~~x}) I
L ________ ~ ________ ~ ___ J

dcb

MF

specifies the address of the DCB associated with the communication
line to be opened.

specifies the form of the macro instruction. If this operand is

Section 6: Prograrr.ming With Privilege Class E 149

list

omitted, the macro instruction is executed with all the parameters
specified in this issuance of the roacro instruction.

L L-forrn. No execu1:able code is generated and the DCB is
not actually opened. Only a parameter list is generated and
is assigned the name of 1:he OPEN macro instruction.
E - E-form. The OPEN function is actually executed.

specifies a previously built pararoeter list. The OPEN function is
performed for each entry in the list.

CLOSE -- Remove Communication Lines From Use (S)

The CLOSE macro instruction is used to close a previously opened DCB
associated with a communication line. The CLOSE macro instruction can
be used in conjunction with the OPEN macro instruction to control data
set organization for communication lines in the system.

r--------T---------T--,
I Name I Operation I Operand I
~--------+---------+--~
I [symbol] I CLOSE I (dcb-addr, •••) I
I I I L I

I I I [MF= {(E,list-.raddrX})}] I
I I I ! (1) I l ________ i _________ i _______________ . ____________________________________ J

dcb

MF

list

specifies the DCB associated with a communication code to be
closed.

indicates the form in which this macro instruction is written. If
this parameter is omitted, the function is executed using the
parameters supplied in the macro instruction.

L - L-form. No executable code is produced and the close
function is not actually performed. A parameter list is
generated using the parameters supplied in the first operand.
E - E-form. The CLOSE function is performed.

designates a previously generated pararoeter list.
function is performed for each entry in the list.

The close

READ -- Read From Anoth~r Terminal J2L

The READ macro instruction causes contact to be established with a
terminal. If that terminal has a message to transmit, contact is
maintained until an EOT or FOB character is received. The message is
decoded from line code to EBCDIC and posted as complete in the DECB and
the READ operation is then considered coroplete. Although control
returns to you imrrediately upon initiation of the channel program, you
must test for the completion of the event before issuing another READ or
WRITE. The CHECK macro instruction is provided for this purpose.

150

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] IREAD Idecb- {SymbOl} ,ty{:e-code, dcb-addr, I
I I I (1) I

: I 'area- { addr}, length- {v~~ ~e } , :
I I I 'S' ·C· I

I I I [argl-addrJ • [arg2-COdeJ[. MF= {~}] I L ________ ~ ________ ~ ___ J

decb

type

dcb

area

specifies the address of the DECB in which you want completion
information to be posted. If register notation is used, you must
place this address in register 1.

specifies the type of transmission you require and may be one of
six codes.

TID read initial with dialing. This indicates that an
automatic dial connection is to be made with the terminal.
The dialing digits must be specified in the terminal entry
list specified in "argI R

• If the terminal type require
polling, the necessary polling sequence characters are
generated.

TIN - read initial. A previously established line connection
is assumed. If the terminal type requires polling, the
necessary polling sequence characters are generated.

TCN - read continue. When polling is not required, specify
this option. You may use this option when contacting a
terminal which was previously polled and in a transmit state.

The next three options apply when automatic retransmission of
messages received in error is desired and the terminal is equipped
with error correction facilities. A predetermined number of
retries, specified by the terminal type, will be attempted for each
message received in error. The posting of uncorrectable errors
will include the appropriate error information. The basic types
are as above.

TDR - read initial with dialing/repeat.

TNR - read initial/repeat.

TCR - read continue/repeat.

specifies the DCB associated with the line.

specifies the address of the first byte of your input area.
write 'S' TAM will provide the buffer area based on the
parameter.

If you
length

length
specifies the byte length of the input area which will receive the
mes:..;age.

Section 6: Programming With Privilege Class E 151

argl

arg2

MF

's' - tells TAM to use the buffer length you have specified in
the DeB.

·C· - tells TAM to use a standard buffer length aFpropriate to
the type of terminal. A mode of operation will be started in
which one line or record will be read from the terminal.

specifies the address of the terminal entry list which contains the
dialing digits. If this parameter is omitted, a standard station
character is to be used.

indicates the character set to be used in decoding the message. If
omitted the standard character set will be used. The permissable
codes and their meaning can be found in Table 15.

specifies t~e form in which the macro instruction has been written.

L L-form. Only a parameter list is generated. The read
function is not performed.

E E-form. A previously generated parameter list is
accessed, may be changed, and is then used in performing the
read function. When either L or E is specified, the only
parameters required are decb and type.

If the MF operand is omitted, a parameter list will be generated and
the executable form of the read function will be generated.

Table 15. Character Set Codes
r--------T------------------------"-------------------------------------,
I I TERMINAL KEYBOARD TYPE I
I ~------------T-----------·---T------------T--------------------~
I CODE I IBM 1050 I IBM 1052-7 I IBM 2741 I TELETYPE MODE 35 f
~--------f------------f---------------f------------+--------------------~
I A I PTTC/8 I EBCDIC I PTTC/8 I GSA I

I B I PTTC/6 I I I I

I C I I I I I l ________ i ____________ i _______________ i-___________ i ____________________ J

WRITE -- Write a Message (S)

The WRITE macro instruction causes the transmission of a message to a
terminal and generates a control order for the device control unit.

r--------T---------T--,
I Name I Operation I Operand I
r--------f---------f---~
I [symbol] I WRITE I decb- J synboll, type-code, dcb-addr, I

I I I t (1) f I
I I I [area-add~, length-value, I

I I I [{L}] I I I I [arg 1-addr], [arg2-code] , MF= I

I I I E I l ________ i-________ i ___ J

decb

152

SFecifies the DECB in which you want completion information to be
posted. You must CHECK for completion before issuing another READ
or WRITE. If register notation is used~ this address must first be
L-laced in register 1.

type
specifies the type of transmission you require or the type control
order you want generated. Anyone of 18 codes may be specified in
this operand.

TID - write initial with dial. An automatic connection is
made with the terminal. The dialing digits should have been
specified by the DFTRMENT macro instruction and located in
terminal entry list specified by arg1. If the terminal
requires addressing, the necessary addressing sequence charac
ters will be generated.

TIN - write initial. This option assumes that you have
already made the line connection. The necessary addressing
sequence characters will be generated, if required.

TCN - write continue. Specify this option when addressing is
not required; if you have previously addressed the terminal
and it is in a receive state.

TIA - write with res~onse. This option assumes that you have
previously made a line connection. If the terminal requires
polling and addressing, the necessary sequence characters are
generated. This option provides the ability to transmit a
message to a terminal and to receive its next output record or
line as a response. The maximum size message you can transmit
is 32,161 bytes; the maximum size res~onse you can receive is
one logical record or line as specified by terminal type.

The next four options apply to terminals equipped with error
correction facilities and automatically retransmit messages sent in
error. A predetermined number of retries, depending on the
terminal type, will be attempted for each erroneous message. The
posting of uncorrectable errors will include appropriate error
information.

TDR - write initial with dialing/repeat.

TNR - write initial/repeat.

TCR - write continue/repeat.

TAR - write with response/repeat.

The remaining ten optional type parameters are used to issue
control orders.

AUTOWRAP - causes the transmission control unit to wrap the
output of the addressed line to the input of line zero. The
command within the channel operates as a write.

DISABLE - causes the transmission control unit to reset the
~nable latch within the line adapter of the addressed communi
cation line. No data transfer occurs.

ENBLASYN causes the transmission control unit to set the
enable latch within the line adapter of the addressed corrmuni
cation line, with software providing the necessary interrupt
to invoke posting. No data transfer occurs.

ENBLSYN causes the transmission control unit to set the
enable latch within the line adapter of the addressed corr,muni
cation line with hardware providing the necessary interrupt to
invoke posting.

Section 6: Programming With Privilege Class E 153

dcb

area

PREPARE - sets up the communication line to detect attention
signaling.

SADONE. - 0h' acceptance of this command, the 2102 will set the
TC :f:iield wi·thin the addr.essed LCW to one. This has the effect
of associating the terminal control with the line oscillator
with internal address o:E one with the addressed communication
line. No data transfer occurs.

SADTWO - Operates the same as SADONE except that terminal two
is associated with the addressed line.

SADTHREE
line.

terminal three is associated with the addressed

SADZER - terminal zero is associated with the addressed line.

BREAK causes the addressed line to transmit a continuous
space signal. Bytes transferred from the channel to the
add.Iiessed unit must be all zeros. To provide control over the
leng;t.h- of space signal, a byte count must be specified in the
lengtlf:r field. If no count is given, a value of two is
assumed:.

specifies the address of the DCB for the line.

specifies the address of the first byte of your output area.

length

argl

arg2

MF

specifies the number of bytes in the output message.

indicates the address of the terminal entry list. If you omit
this parameter, a standard status code will be used.

specifies the character set to be used to translate EBCDIC to
the proper line. The codes to be used are the same as those
used for READ and can be found in Table 8.

specifies the forIT in which the macro instruction is written.
If this parameter is omitted, standard form will be assumed.
The valid form codes are:
L - L-form. A pararreter list will be generated but the write

function will not be performed.
E - E-form. A previously generated parameter list will be

accessed and the write function Ferforwed. The parameter
list may be altered 'vi th this form.

Note: When using the E-forrn, the only parameters required are decb and
type.

CHECK -- Wait for and Test for Completion of Read or Write Operation (m
The CHECK macro instruction tests for the comFletion of a read or

write operation. If not complete, CHECK waits for completion. CHECK
also detects errors and exceptional conditions.

154

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+--_._--------1

I I I {addrX} I I [symbol] ICHECK Idecb- I
I I I (1) ! L ________ ~ ________ ~ ____________________________ ~-_-_---_______________ J

decb
specifies the DECB created as part of the expansion of a READ or
WRITE macro instruction and in which completion information is
posted. If you write (1), you must first load the address of the
DECB into register 1.

PROGRAMMING NOTES: If an I/O error occurs and the read or write
operation did not complete correctly, control will be given to your
SYNAD routine, if one exists. If you have not specified one your task
will be abnormally terminated. Your SYNAD routine may use the RETURN
macro instruction to resume processing.

Figure 22 shows the format of the DECB, with the flags field detailed
in Figure 23.

When the read or write function completes normally, byte zero of the
DECB is set to X'7F'. The CSW and sense inforroation are also stored but
have no significance.

In posting the completion of a normal write operation
with Response - TIA) the write bit in the DECB flag field
other fields are undisturbed.

(except Write
is set; all,

In posting the completion of a type TIA write operation, the dpta
area address field of the DECB will be changed to contain the address of
the input data and the length field will contain the input data length.
The read bit in the DECB flag field is set.

In posting the normal completion of a read operation, the data area
address field will contain the address of the edited data and the length
field will contain the number of bytes in the data area and the read bit
in the DECB flag field is set.

In posting a completion with exception conditions, byte zero of the
DECB is set to X'41' and appro~riate flags are set in the DECB. (See
Figure 23.)

7 8 15 16 31 32 39 40 47 48 55 56 63
r--------T------------------------T----------------T------------------,
I EVENT I I TYPE CODE I LENGTH I

o I CONTROL I I I I
I BLOCK I I I I
~--------~------------------------+----------------~------------------~

llDCB ADDRESS IDATA AREA ADDRESS I
~---------------------------------+------------------------------------1

21pOINTER TO STATUS INDICATORS ITERMINAL ENTRY ADDRESS (arg 1) I
~--------T--------T-------T-------+-----------T-----------T-----------~

31LOGICAL I RESERVED I SENSE I SENSE I RESPONSE I CHARACTER ! FLAGS !
I FUNCTION! FOR ! BYTE I BYTE I FIELD I SET I I
I I STATUS I 1 I 2 I , CODE arg21 I
~--------~--------~-------~-------~-----------~-----------~-----------~
I CHANNEL STATUS WORD I L ___ J

Figure 22. DECB Format

Section 6: Programming With Privilege Class E 155

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
r----------------------------------·----------------------------------,
1 I
I FIJAGS I
I I
~--T--~---T----T---~----T----T---·-T----T----T----T----T----T---T--T--~

A U I B S I I A I I R 1 I I W R IR IA 1
1 I f J 1 I I I

C S N U Y NIB liE N IRE IE IA I
1 1 I I I I I

T E P F S TIE IrQ I I A IS IT I
t I I I I I

I R U F TEN I U U lTD IP IE I
I' I I I I

V TEE V D t E S, E 10 IN I
I I I I I

E E R MEl S E f IN IT I
I I I I I

RAN R I T 1 IS II I
l I f I I

R ROE TEl I IE 10 I
I I I t I

o E V R I Q IS r fiN
I 1 I, I

R A FRO IY I I I
I 1ft

LON I Nil
fit

o 0 R I A I I
1 I I

V W R ID t I I
I II I

F E I I I t
I I I I

L Q I I I I
I I 1 1

o I I 1 I
I I I I

W I I I 1 I I I L-_i __ i-___ L--__ i ____ ~ ___ i ____ i __ . __ i_ ___ i ____ i ____ i ____ i ____ i-__ i-_i-_J

Figure 23. Flag Field of the DECB

DFTRMENT -- Define a Polling List (nonstandard)

The DFTRMENT macro instruction provides the capability for defining a
polling or addressing list and entering the physical addresses and
device specifications into the generated list.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I [symbol] I DFTRMENT I [DIAL= (integer, •••)] r
I I I I
I I I [,ADRID=(adrid-characters, ___)] I
I I I I
I I I [,POLLID= (pallid-characters, •••)] I L ________ i _________ i ___ J

DIAL
sFecifies the dial digits.

ADRID
specifies the addressing character sets. The number of addressing

156

character sets cannot exceed four, but the nu:wber of characters per
set must be constant.

POLLID
specifies the polling character set. The number of polling
character sets cannot exceed four, but the number of characters per
set must be constant. The number of characters per ~olling
character set need not be the same as the number of characters per
addressing character set.

Section 6: programming With Privilege Class E 157

APPENDIX A: SYSTEM MACRO INSTRUCTIONS

There are a number of macro instructions that, if they are to be
used, require system programmer privileges, but don't generate SVCs.
These macro instructions are simply used as an assembly language vehicle
to make it easier for you to produce code frequently used in system
programs. Some of these macro instructions require you to define
certain symbols in your program _.- usually via a dummy section. We're
only going to discuss the external a~~earance of these macro instruc
tions in this appendix; if you want: to see the macro definition, use the
system macro/copy library. The following roacro instructions are listed
alphabetically by mnemonic:

Poll of pending attention interrupt
Locate JFCB corresponding to data set name
Locate JFCB and ensure volume mounting
Transfer control
Inhibit task interrupts
Permit task interrupts
Return to calling program
Store register contents
Send message to task and awa.i t response

ATPOL
FINDDS
FINDJFCB
INVOKE
ITI
PTI
RESUME
STORE
VSENDR

ATPOL -- Poll for Pending Attention Interrupt (nonstandar~

ATPCL is used to find out if thE're is a pending attention (task
asynchronous asynchronous I/O interrupt; if there is, control is
transferred to the address specifiEd by operand "pgmad. n To use this
macro instruction, you must define the symbols ISAAT and ISAATM unless
you supply "switch"; these may be defined by copying the interrupt
storage dummy srction (CHAISA) from the system rr:acro/copy library.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I I I I
I [symbol] IATPOL Ipgmad-addx [,switch-addx] I L ________ ~ ________ ~ ___ J

pgmad
address of a program interestEd in a pending attention.

switch
address of byte whose contents are to be tested.

FINDDS -- Locate JFCB Correspondinq, to Data Set Name (S)

The FINDDS macro instruction is used to obtain the location of the
JFCB corresponding to a given data set name. If the data set name
specified is not in the task definition table ~D~, but is in the
catalog, the user can request that a JFCB be created.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I I I I
I [symbol] I FINDDS I dsname-addr, byte-addr, area-addr I L ________ ~ _________ ~ ___ J

dsname
specifies the address of a fully qualified data set name.

158

byte

area

specifies the address of a byte that the user has set to zero if he
wants a JFCB created for a catalogued data set, or to non-zero if
he does not want a JFCB created.

specifies the address of a word in which the pointer to the JFCB is
to be placed.

FINDJFCB -- Locate JFCB and Ensure Volume Mounting (S)

The FINDJFCB macro instruction is used to locate the JFCB for a given
data definition name and, optionally, to ensure the volumes specified in
that JFCB are mounted.

r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I I I I
I [symbol] IFINDJFCB Iddname-addr, byte-addr, area-addr I L ________ ~ ________ ~ ___ J

ddname
specifies the location of an 8-byte field containing the data
definition name. If the ddnarne has fewer than 8 characters, it
must be left-adjusted with trailing blanks.

byte
specifies the location of a 1-byte field containing a code.

area
specifies the location of a 4-byte fielj in which the address of
the JFCB is to be placed.

INVOKE -- Transfer Control (nonstandard)

INVOKE causes transfer of control from one program or routine to
another by means of the BASR instruction.

r--------T---------T---,
I Name I Operation I Operand I
~-------+---------+---1
I I I I
I [symbol] I INVOKE I address-addrx I L ________ ~ ________ ~ __ J

address
specifies the address of a word that contains the address of the
program to be invoked.

ITI Inhibit Task Interrupts (nonstandard)

ITI is used to prevent the occurrence of task interrupts;
this by setting the interrupt storage area lock byte (ISALCK) to
use ITI, you must define the symbol ISAICK; you can do this by
the interrupt storage area dummy section (CHAISA) froro the
copy/macro library.

it does
1s. To
copying

system

r--------T---------T---,
I I I I
I Name I Operation I Operands I
~--------+---------+---~
I I I I
I [symbol] IITI I None I L ________ ~ _________ ~ ___ J

Appendix A: System Macro Instructions 159

PTI -- Permit Task Interrupts (nonstandard)

PTI is used to cancel the effect of an ITI macro instruction; it
allows pending task interrupts to occur (if the task-mask bits in' the
VPSW are 1s). You must define the symbol ISALCK to use PTI; you can do
this by copying the interrupt storage area dummy section (CHAISA) from
the system macro-copy library.

r--------T---------T---,.'
I I I I
I Name I Operation I Operands I
~--------+---------+--_ _--+
I I I Ii
I [symbol] I PTI I None r L ________ ~ _________ ~ ___ J

RESUME -- Return to Calling Program (nonstandard)

The RESUME maCI'O instruction restores the specified registers from
the specified area and returns control to the calling program.

r--------T---------T---,
I I I I
IName IOperation/Operands I
~--------+---------+---~
/ [symbol] IRESUME I [area-addrx, (regl-integer [,reg2-integer])] I
I I I [,RC=integer] I l ________ ~ _________ ~ ___ J

area

regl

reg2

RC

specifies the address at which the data to be restored is located.

specifies the first register to be restored from the specified area
and must be greater than 7 but less than 16.

specifies the last register to be restored from the specified area.
The restoration has the same wrap around feature as the STM or LM
instructions. If this operand is omitted only the first register
will be restored.

s~ecifies a return code to be sent back to the calling routine.
This code must be less than 4092 and be a multiple of four.

STORE -- Store Register Contents (nonstandard)

The STORE macro instruction stores the specified register or regis
ters in a specified area.

r--------T---------T---,
I / I I
/Name I Operation I Operand I
~--------+---------+---~
I I I I
I [symbol] ISTORE larea-addrx, (reg 1 -integer [,reg2-integer]) I l ________ ~ _________ ~ ____________________________________ ~ ______________ J

area

160

specifies the address of the storage area in which the the
specified register or registers are to be saved.

reg~ and reg2
specify the range of registers to be stored.
specified, only reg 1 is stored.

If reg2 is not

PROGRAMMING NarES: reg1 must be specified as equal to or greater than 8
and not greater than 15.

The specified area must be large enough to contain the specified
range of registers.

VSENDR -- Send Message to Task a.nd Await Response (nonstandar.QL

The VSENDR macro instruction is used to send a message to another
task and to wait for a response from the receiving task.

Standard form
r--------T---------T---,
I Name I Operation I Operand I
~--------+---------+---~
I I I I
I [symbol] I VSENDR I msg-text, radd-addr, rleng-val ue, mcode-value, I
I , ,tid-addr , L ________ i _________ ~ ___ J

L-form
r--------T---------T---,
,Name LOperation I Operand I
~--------+---------+---~
I I , I
I [symbol] IVSENDR Imsg-text, [radd-relexp] [rleng-absexp], I
I I '[mcode-absexp] [,tid-relexp], MF = L I L ________ i _________ ~ ___ J

E-form
r--------T---------T---,
I Name IOperationlOperand ,
~--------+---------+---~
I [symbol] t:VSENDR , , [radd-addrx] , [rleng-value] , [meade-value] ,
I I I [,tid-addrx], MF= (E,list-Jaddrx~) ,
I " t (1) J , L ________ ~ _________ ~ __________ . _________________ . ________________________ J

msg

radd

mcode

tid

list

specifies the text of the message, and must be enclosed in single
quota'tion marks.

specifies the location into which the reply is to be placed.

specifies the length of the reply in bytes.

specifies the message code.

specifies the ID of the sending task (i.e., the task to which the
reply is to be sent) •

specifies the location of the L-form of the macro instruction to
which this E-form refers.

Appendix A: Systerr Macro Instructions 161

APPE~DIX B: TIIvJE CCNVERSION ROUTINE

A number of privileged conversion routines are provided to enable you
to convert tiIDe data, in any of several formats, into a form you can use
with macro instructions SET'I'H and .SE'I'IU. Twp types of conversions are
performed: type-T; used for opE~rations with the SETTU macro instruc
tion, yields a 32-bit binary time interval in rricroseccnds; type-R, used
for operations with the SETTR ~acro instruction, yields a 64-bit binary
time interval in microseconds elarsed since March 1, 1900 ~ee nTime
keering"). Two' different forms of inrut data may be used for type-T
conversion (0 and 1); six forms (0-5) may be used for type-R. Table 16
summarizes the different input forns.

Table 16. Input Formats Accepted ty Time Conversion Routine
r--------------~--,

I I I
IInput data codelInput form I
~---------------+--~
I
I 0 time interval in hours (~, roinutes (m), seconds (s),
I
II tenths (t), and hundredths (h) of seconds; eight BCD
f
I characters: hhrrmssth
r
I tiThe interval in milliseconds; 32-bit binary number
I
r 2 time of day in hours ~), minutes ~), seconds (s),

tenths (t), and hundredths (h) of seconds; eight BCD

characters: hhrrmssth

3 day of week; four left-justified BCD characters:

MOND, TUES, WEDN, THUR, FRIO, SATU, SUND

4 day of month; two left-justified BCD characters:

00 through 31

5 day of year; eight left-justified packed decimal

characters: OOyyddd+ _______________ i __ J

To use the time conversion routine, you must put a pointer to a
parameter list in register 1, the return address in register 14, and the
address of the time conversion routine in register 15. It looks like
this:

LA

L

BASR

RETURN

162

1,ilARAM POINTER TO PARAMETER LIST IN
REGISTER 1

15,=V~ZCJXA) ADDRESS OF CONVERSION ROUTINE

14,15 GO THERE

PARAM DC C'c' FORM OF INPUT DATA - 0,1,2,3,4,
or 5

DC Cit' TYPE OF CONVERSION - T OR R

DC B'O' NOT USED

DC D'data' INPUT DATA PLACED HERE - RESULTS
FOUND HERE

After completing the requested conversion, the time conversion
routine returns control to the address found in register 14. The
results are placed, right-justified, in the second and third words of
the parameter list.

Note: The SETTU macro instruction expects a time value in milliseconds;
~you use the time conversion routine to get a time interval (type-T),
you must divide the result by 1000 to convert it to milliseconds.

Table 11 lists the meaning of the results obtained from the various
conversions.

Table 11. Results of Time Conversion
r----------T---,
I I I
I Conversion I Result I
r----------+---~

I
TO time interval in microseconds I

I
T1 time interval in microseconds I

I
RO Current time + input time interval in microseconds 1

from March 1, 1900

R1 Current time + input time interval in microseconds

from March 1, 1900

R2 Next occurrence of input time in microseconds from

March 1, 1900

R3 Next occurrence of day of week in reicroseconds from

March 1, 1900

R4 Next occurrence of day of month in microseconds from

March 1, 1900

RS Next occurrence of day of year in microseconds from

March 1, 1900 l __________ i ___ J

A~pendix B: Time Conversion Routine 163

APPENDIX C: ORGANIZATION OF DIRECT ACCESS STORAGE

DRUM STORAGE FORMAT

Each IBM 2301 drum contains 900 pages of 4096 bytes. Dummy records
of 246 bytes separate each data page on the drum to allow data channels
to fetch and execute channel command words between pages. The 2301
contains 200 tracks; every even-odd pair of tracks is organized to
contain 9 pages, with each track containing nine contiguous half pages.
Figure 24 shows the organization of a typical even-odd track pair.

r------------T-----------T---------T------------------~-----------------,

I Address I Record size I Gap sizE~ I Page number (within track pair) I
I CCH H R I I I I
r------------+-----------+---------+------------------------------------1

000
000
000
000
000
000
000
000
000

000
000
000
000
000
000
000
000
000

2n
2n
2n
2n
2n
2n
2n
2n
2n

2n+1
2n+1
2n+1
2n+1
2n+1
2n+1
2n+1
2n+1
2n+1

* I
1 I
2 I
3 I
4 I
5 I
6 I
1 I
8 I
9 I

I
1 I
2 I
3 I
4 \'
5 I
6 I
-, I
8 I
9 I

4096
246

4096
246

4096
246

4096
246

2048

2048
246

4096
246

4096
246

4096
246

4096

133
133
133
133
133
133
133
133
133

133
133
133
133
133
133
133
133
133

a
dummy record

1
dummy record

2
dUIl'my record

3
dummy record

4 (first half)
3 bytes are left over

4 (second half)
dumroy record

S
dUlllf(lY record

6
dummy record

7
dUll'IIly record

8

and unused

I 3 bytes, left over and unused
~------------~-----------~--------~------------------------------------~
I*Each track begins with IBM standard record zero I
ICCH is always zero for all 2301 tracks I
In is an integer between zero and 99 inclusive I l __ J

Figure 24. Organization of IBM 2301 DrUffi

The track pair (0-99) on which a drum page is contained may be
obtained by dividing the page number by 4.5. The quotient is the track
nurober; thp remainder will be 0, 1, 2, 3, 4, .5, 1.5, 2.~, or 3.5;
these remainder values correspond to the page number (0-8) within the
track pair.

DISK STORAGE FORMATS

These restrictions apply to the use of the IBM 2314 or 2311, when
formatted in pages:

1. Cylinder 199 is reserved for standard error-recovery retry.
2. Page 895 (2311) is not used because of overflow restriction.

Each IBM 2314 volume contains 3600 pages of 4096 bytes (each 2.314
DASD contains 28,800 pages). Pages a and 1 contain three IPL records

164

(records one, two, and the last record on track 0 -- after the
label and any user labels) , and the IBM standard volume label
three). Pages 0 and 1 are not available for VAM allocation.

volume
~ecord

Each 2314 disk pack has 200 cylinders with 18 tracks per cylinder,
each cylinder is organized to contain 30 pages. Figure 25 shows a
typical organization.

r--------------------T-----------------------T-------------------------,
I Record Address I Record Size I Page Number I
I CC HB R I I I
~--------------------+-----------------------+-------------------------~

* I
nn 00 1 4096 0 I
nn 00 2 2190 1 I
nn 01 1 1306 1 I
nn 01 2 4096 2 I
nn 01 3 1302 3
nn 02 1 2194 3
nn 02 2 4096 4
nn 03 1 4096 5
nn 03 2 2790 6
nn 04 1 1306 6
nn 04 2 4096 7
nn 04 3 1302 8
nn 05 1 2794 8
nn 05 2 4096 9
nn 06 1 4096 10
nn 06 2 2190 11
nn 07 1 1306 11
nn 07 2 4096 12
nn 07 3 1302 13
nn 08 1 2794 13
nn 08 2 4096 14
nn 09 1 4096 15
nn 09 2 2790 16
nn 10 1 1306 16
nn 10 2 4096 17
nn 10 3 1302 18
nn 11 1 2794 18
nn 11 2 4096 19
nn 12 1 4096 20
nn 12 2 2190 21
nn 13 1 1306 21
nn 13 2 4096 22
nn 13 3 1302 23
nn 14 1 2794 23
nn 14 2 4096 24
nn 15 1 4096 25
nn 15 2 2790 26
nn 16 1 1306 26
nn 16 2 4096 27
nn 16 3 1302 28
nn 17 1 2794 28
nn 11 2 4096 29

~--------------------i-----------------------i--------_________________ ~
I *Each track begins with the IBN standard record zero I L __ J

Figure 25. Organization of IBM 2314 Voluroe for VAM

Each IBM 2311 volume contains 1616 pages of 4096 tytes. Pages 0 and
contain three IPL records {records one and two of track 0 and record

one of track 1, and the IBM standard voluITe label (record three); they

Appendix C: Organization Of Direct Access Storage 165

are not avai1able for allocation.. A 2311 disk pack contains 202
cylinders of 10 tracks each; thE! cylinders are organized to contain 8
pages each. Figure 26 shows a typical cylinder organization.

~----------------I---------------'--------------------------------------,
IRecord Address I Record Size t Page Number I
I CC HH R I I I
~----------------+---------------+-------------------------------------i

nn 00 1 3625! 0
nn 01 1 471 f 0
nn 01 2 3069 ~ 1
nn 02 1 1027 ~ 1
nn 02 2 2486 ~ 2
nn 03 1 1 6 1 0 Ii 2
nn 03 2 1875 ~ 3
an 04 1 2221 ~ 3

nn
nn
nn
nn
nn

05 1
06 1
06 2
07 1
07 2

nn 08 1
nn 08 2
nn 09 1

3625
471

3069
1027
2486
1610
1815
2221

I 1234 unused bytes, track 4
'1 4
I 4
I 5
I 5
I 6
I 6
I 1
I 7
I 1234 unused bytes, track 9 ________________ i ________________ L _______________________________ ~ ____ _

Figure 26. Format of IBM 2311 Volume for VAM

166

APPENDIX D: TSS/360 EXTENDED PROGRAM INTERRUPT CODES

The Supervisor must pass back to the virtual memory error processors
a code identifying the type of software error perpetrated by the task
and detected by the supervisor. To accomplish this, the Supervisor
Processor must enqueue a GQE on the appropriate task's TSI program
interrupt queue. The interrupt code in the GQE contains a value which
uniquely identifies the cause of the program interrupt.

There are 17 interrupt codes used by the hardware. We reserve codes
18 thru 31 for future hardware interrupt expansion. This leaves codes
32 to 65535 for specifying software program interrupt errors. Further,
codes 65280 thru 65535 are reserved for those errors which are
temporary in nature.

The currently defined codes are:

Code
Decimal

0

31
32
33

34
35

36

37
40

41

42

43
44

45
46
47

48

50

51

53

54

61

70

71

Hexadecimal
0000

through
001F
0020
0021

0022
0023

0024

0025
0028

0029

002A

002B
002C

002D
002E
002F

0030

0032

0033

0035

0036

003D

0046

0047

Error Type

Per Principles of Operation Manual
Not assigned
Nonprivileged program issued lOCAL,
PGCUT
IOPCB or IORCB page list too long
Specified virtual address is not in
user's virtual memory (lOCAL)
Program has no I/O devices assigned
to it (lOCAL)
IORCB size of zero
TSI Service Call interrupt counter
overflow
TSI External Interrupt counter
overflow
TSI Asynchronous interrupt counter
overflow
TSI Timer Interrupt counter overflow
TSI Input/Output interrupt counter
overflow
GQE type code is in error
rORCB size exceeds 1920 bytes
IORCE or IopeB crosses a page
toundary
Device not assigned to task
(lOCAL, PGOUT)

lOCAL or PGCUT SVC page address does
not exist in virtual memory
lOCAL or PGOUT SVC page is not in
core
Request to delete page from segment
not previously assigned
Request to delete page not previously
assigned
Invalid Segment number given to ADSPG
SVC Processor
User estiwated time exceeded or user
timer value not reset within quantum
SYSERR detected while processing pag
ing I/O error for this task

Appendix D: TSS/360 Extended Program Interrupt Codes 167

168

72

73

74

75

'16

80

81
82
83
85
86

93

94

96

97

98

99

100

101

102

103

108
109

124
125
145

146

147

148

149

150

151

0048

0049

004A

004B

004C

0050

0051
0052
0053
0055
0056

005D

005E

0060

0061

0062

0063

0064

0065

0066

0067

006C
006D

007C
007D
0091

0092

0093

0094

0095

0096

0097

Illegal code given to SETUP/XTRCT SVC
Processor
AWAIT SVC not executed remotely or
else not on the last half word of an
ECB
Invalid Shared-Page Table number
given to ADSPG SVC Processor
Software has detected a possible har
d\04'are malfunction
A VSEND message is too long or
extends over a page boundary
User's task not of sufficient priori
ty to issue SVC
SVC not on word l:oundary
count of external addresses is zero
All parameters are not in one page
Page unassigned
Count exceeds 1022, bit string flag
not set SETXP
Illegal code given to SETSYS/XTRSYS
SVC Processor
Illegal code given to SETXTX/XTRXTS
SVC Processor
Enter SVC issued to interrupt table
tYFe routine while Type III linkage
in effect and Pl flag on
Enter SVC issued with invalid enter
code-over 255 1 or not assigned
SVC issued on nonprivileged state and
no interrupt routine specified
No Asynchronous Error Routine defined
for device with error
Asynchronous Interrupt received but
no DE available for device
SETTR not accepted because System
Limit Reached in Table
Program Interrupt received while in
Type III linkage
SVC Interrupt received while in Type
III linkage
PGOUT request for zero pages
l~ttempt to add more than 256 shared
pages to a segment
Unsuccessful dequeue I/O request
DRAM Flag illeg-ally on
Relocation page-in error (device
defective) -- permanent volume
Relocation page-in error (device
defective)
Relocation page-in error ~edium
defective)
IOCAL page-in error (device defec
tive) -- permanent volume
lOCAL page-in error (device defec
tive) -- moveable volume
lOCAL page-in error (medium
defective)
Operator task has been reinitialized

APPENDIX E: CODES FOR SYSER MACRO INSTRUCTION PARAMETERS

r-------T--~----T----T----'
I Module I Name I Opt 11 I Opt21 Opt 31
~-----_+---+----+----+----1
ICEAAO 11/0 Call Routine 3 2 25 I
ICEAA5 IPathfinding Subroutine 3 2 27 I
ICEAA6 IPage Direct Access Queue 3 2 31 1
ICEAA1 IPage Direct Access Interrupt 3 2 32 I
ICEAAA ICommand Word Relocator 3 2 35 t
ICEAAB ISet Path SVC Routine 3 2 36
I CEAAC I Queue Device on Task Routine 3 2 37
ICEAAD Remove Device from Task 3 2 38
ICEAAH Reset Device Supression Flag 3 2 42
ICEAAI Halt I/O 3 2 45
ICEAAW Data Recording I/O 3 2 55
CEAAX Start Retry Operation 3 2 56
CEAAY Data Recording Error Recovery 3 2 58
CEABE External Machine Check Interrupt Processor 3 3 30
CEABQ Generate and Enqueue Interrupt GQE 3 3 31
CEAH2 Setup TSI Field Subroutine 3 1 42
CEAH3 Extract TSI Field SVC 3 1 42
CEAH4 Delete TSI SVC 3 1 42
CEAH5 Add Pages 3 1 42
CEAH8 List Changed Pages 3 1 42
CEAIl Sense Partitioning Switches 3 1 42
CEAIM Machine Check New PSW 3 3 26
CEAIR Recovery Nucleus 3 3 25
CEAIS System Error Processor 3 3 29
CEAJE Enqueue/Dequeue Routines 3 1 46
CEAJM Move GQE Routine 3 1 50
CEAJS Set Suppress Flag 3 1 54
CEAKR Create Real Time Interrupt 3 1 51
CEAL2 Supervisor Core Release 3 1 33
CEAL4 User Core Release 3 1 34
CEAMA Activate TSI Routine 3 1 40
CEAMC Create TSI Routine 3 1 42
CEAMT Task Initiation Routine 3 1 36
CEAMX XTSI Overflow Routine 3 1 37
CEAP6 Add Shared Pages 3 1 42
CEAP8 Move Real Core SVC 3 1 42
CEAP9 Time Slice End SVC 3 1 42
CEAQ7 Connect Segment to Shared Page Table 3 1 42
CEAQ8 Disconnect Segment from Shared Page Table 3 1 42
CEAS2 Setup System Table Field 3 1 42
CEAS3 Extract System Table Field 3 1 42
CEAS4 Setup XTSI Field 3 1 42
CEASS Extract TSI Field 3 1 42
CEASS Restore Time Subroutine 3 1 42
CEATO Cancel Recording 3 1 42
CEAT1 IExtract Accumulated Time 3 1 42
CEAT2 ISpecial Create TSI Routine 3 1 42
CFADA ILPC MAIN S 4 25
CFADB ILPC GETLINE S 4 26
CFADC ILPC PUT DIAG S 4 27
CFAMA IPCS INPUT PHASE 5 9 28
CFAMB IPHASE 1 RUN 5 9 28
CFAMC IPHASE 1 STOP S 9 28
CFAMD IFORMLIST (Form Parameter List) 5 9 28 L-______ i ___ ~-__ ~ ____ i ____ J

Part 1 of 8

Appendix E: Codes for SYSER Macro Instruction Parameters 169

r-------T--~----T----T----'
IModule IName IOpt 1 10pt2 10pt3 1
~-------+-------------------------.----------------------+----+----+----~

CFAME IPHASE 1 IF 5 9 28
C}'AMF I PHASE 1 AT' 5 9 28
CFAMH IEXPSCAN (Expression Scan) 5 9 28
CFAMJ ISUBPOL ~ubscript to Polish) 5 9 28
CFAMM IINSTLOC (Form Instruction Location Definition) 5 9 28
CFAMR IQualify Directive 5 9 28
CFAMS IRemove Directive 5 9 28
CFANA IPCS Input PHASE-II 5 9 28
CFAND IPHASE II AT 5 9 28
CFANE IPHASE II LIST2 5 9 28
CFANF I CODEGEN (Code Generator) 5 9 28
CFANH ICOMCON (Combine Constants) 5 9 28
CFANV IGETBASE (Base Register Assignment) 5 9 28
CFANW DIAGNO (Issue Diagnosti~ 5 9 28
CFANX Prompt 5 9 28
CFAOA VALMOD (Evaluate Module Name) 5 9 28
CFAOB VALSYM (Evaluate Internal Symbol) 5 9 28
CFAOD GFTREG (Register Assignment) 5 9 28
CFAPA PCS Output Overall 5 9 29
CFAPB PCS Output Control 5 9 29
CFAPH LINE (Output Line Routine) 5 9 29
CFAPK SAVIX (Saved Instruction Execution) 5 9 29
CFAQA Display/Dump Control 5 9 30
CFAQB NEXTLIST (Process Parameter List) 5 9 30
CFAQC NEXT ITEM (Process Display List) 5 9 30
CFAQD NEXTISD (Process Next ISD Entry) 5 9 30
CFAQF DISREG (Display Registers) 5 9 30
CFAQG SIMVAR (Display Simple Val~iable) 5 9 30
CFAQH ADDITEM (Convert an Item hy Data Type) 5 9 30
CFAQI DISINST (Display an Instruction) 5 9 30
CFAQJ DISARAY (Display an Array) 5 9 30
CFAQK DISALINE (Display d Line of an Array) 5 9 30
CFAQM DISHEX (Dis};lay a Range in Hexadecimal) 5 9 30
CFAQN DISHLlNE (Display a HexadE~cimal Line) 5 9 30
CFAQR DISYM (Display Symbol) 5 9 30
CFAQU DISOUT (Output a Line) 5 9 30
CFAQV REALCON (Real Number COnVE!r sion) 5 9 30
CFAQW SUBERR (Output Subscipt Diagnostic) 5 9 30
CFAUC Cancel Data Recording 8 14 27
CGCCA Allocate Module 8 2 28
CGCCB Select Hash 8 2 28
CGCCE Resolve Syn,bol 8 2 28
CGCCH Load PMD 8 2 28
CGCCJ Fix PMD 8 8 28
CGCCK Attach Text 8 2 28
CGCCL Fix 8 2 28
CGCCN Adj PMD 8 2 28
CGCCO Drop PMD 8 2 30
CGCCP Reject Diag 8 2 28
CGCCR Bisearch 8 2 28
CGCCT PCSA 8 2 28
CGCCU Check DEF Legal 8 2 28

ICGCCV Link DEFS 8 2 28
ICGCCW Get Storage 8 2 28
ICGCCY Define REF 8 2 28
ICGCDA Modify MUT Counts 8 2 30
ICGCDB Delete Caller Mutes 8 2 30
ICGCDC Delete Selected Mutes 8 2 30
ICGCDD Modify Use Counts 8 2 30
ICGCDE Test User Counts 8 2 30 L _______ ~ __________________________ . _____________________ ~ ____ ~ ____ i ___ _

Part 2 of 8

170

r-------T--~----Y----T----l
I Module I Name I Opt 1 I Opt21 Opt 31
~-------+---+----+----+----~

CGCDG Add Mute 8 2 28
CGCDPR Loader Gate 8 2 28
CGCKA Symbolic Library Indexing Routine 8 10 25
CGCKB SYSXBLD (Build Symbolic Library Index) 8 10 26
CGCKC SYSEARCH (Symbolic Library Search Routine) 8 10 21
CGCKZ Control Section Store Routine 8 11 25
CGCMA Reconfiguration 3 3 28
CHCAA SQRT (Single-Precision Square Root Subroutine) 9 9 25
CHCAB DSQRT (Double-precision Square Root Subroutine) 9 9 26
CHCAC EXP (Single-Precision Exponential Subroutine) 9 9 27
CHCAD DEXP (Double-Precision Exponential/Subroutine) 9 9 28
CHCAE LOG and LOG10 (Single-Precision Logarithm Sub-

routine) 6 29
CHCAF DLOG and DLOG10 (Double-Precision Logarithm

Subroutine) 9 9 30
CHCAI SIN and COS (Single-Precisicn Sine and Cosine

Subroutine) 9 9 31
CHCAJ DSIN and DCOS (Double-Precision Sine and Cosine

Subroutine) 9 9 32
CHCAK TANH (Single-Precision Hyperbolic Tangent

Subroutin~ 9 9 33
CHCAL DTANH (Double-precision Hyperbolic Tangent

Subroutine) 9 9 34
CHCAM CEXP (Single-precision Complex Exponential

Subroutine) 9 9 35
CHCAN COEXP (Double-precision Complex Exponential

Subroutine) 9 9 36
CHCAO CLOG and CLOG10 (Single-precision Complex

Logarithm) 9 9 37
CHCAP CDLOG and CDLOG10 (Double-Precision Complex

Logarithm) 9 9 38
CHCAQ CSIN and CCOS (Single-Precision Complex Sine

and Cosine) 9 9 39
CHCAR COSIN and CDCOS (Double-Precision Complex Sine

and Cosine) 9 9 40
CHCAS CSQRT (Single-Precision Complex Square Root

Subroutine) 9 9 41
CHCAT CDSQRT (Double-Precision Complex Square Root

Subroutine) 9 9 42
CHCAU CABS (Single-precision Complex Absolute Value

Subroutine) 9 9 43
CHCAV COABS (Double-precision Complex Absolute Value

Subroutine) 9 9 44
CHCAW ARCSIN and ARCCOS (Single-precision Arcsine and

Arccosine) 9 9 45
CHCAX DARSIN and DARCOS (Double-Precision Arcsine

and Arccosine) 9 9 46
CHCAY TAN and COTAN (Single-Precision Tangent

and Cotangent) 9 9 47
CHCAZ DTAN and DCOTAN (Doutle-precision Tangent

and Cotangent) 9 9 48
CHCBA SINH and COSH (Single-Precision Hyperbolic Sine

and Cosine 9 9 49
CHCBB OSINH and DCOSH (Single-Precision Hyperbolic

Sine and Cosine 9 9 50
CHCBC Eight-Byte Complex Number to Integer Power

Exponentiation 9 9 51
CHCBO Interrupt and Machine Indicator 9 9 52

ICHCBE Specification Interrupt Program 9 I 9 53 L _______ ~ ___ ~ ____ i ____ i ___ _

Part 3 of 8

Appendix E: Codes for SYSER Macro Instruction Parameters 171

r-------T---~----T----y----,
IModule IName IOpt tl Opt2 10pt3 1
~-------f--f----+----~----~
ICHCBG FJXPJ,FJXPI,FIXPJ,FIXPI (Base to Integer
I Integer Power)
ICZAAB Gate Subroutine
. CHCBH FRXPJ, FRXPI (Real Four-Byt,e Base to Integer

CHCBI

CHCBJ

CHCBK

CHCBM

CHCBQ
CHCBR
CHCBT

CHCBU

CHCBV

CHCBW

Power)
FDXPJ ,FDXPI (Real Eight-By"te Base to Integer
Power)
FJXPR,FIXPR,FRXPR (Integer and Four-Byte Real
Base to four-Byte ~eal Power
FJXPD,FICPD,FRXPD,FDXPR,FDXPD (Real Eight-Byte
Base or Power to Real Power)
Sixteen-Byte Complex Number to Integer Power
Exponentiation
AT AN and ATAN2 (Single-Precision Arctangent)
DATAN and DATAN2 (Double-Precision Arctangent)
GAMMA and ALGAMA (Single-Precision Gamma
Function)
ERF and ERFC (Single-Precision Error Integral
Function)
DGAMMA and DLGAMA (Double-precision Gamma
Function)
DERF and DERFC (Double-precision Error Integral

5

9

9

9

9

9
9
9

9

9

9

1

9

9

9

9

9
9
9

9

9

9

26

55

56

51

58

59
60
61

61

61

65

Function) 9 9 61
CHCBZ LIBER (Library Program Error Handling Routine) 9 9 62
CHCIA Initialization 9 8 25
CHCIB DCB Maintenance 9 8 26
CHCIC I/O Control 9 8 21
CHCID Namelist Processor 9 8 28
CHCIE List Item Processor 9 8 29
CHCIF Format Processor 9 8 30
CHCIG Integer Input Conversion 9 8 31
CHCIH Integer Output Conversion 9 8 32
CHCII Real Input Conversion (NO Exponent) 9 8 33
CHCIJ Real Output Conversion (No Exponent) 9 8 34
CHCIK Real Input Conversion (ExI~onent) 9 8 35
CHCIL I Real Output Conversion (E~~ponent) 9 8 36
CHCIM IComplex Input Conversion 9 8 31
CHCIN IComplex Output Conversion 9 8 38
CHCIO IAlphameric Input Conversion 9 8 39
CHCIP Alphameric Output Conversion 9 8 40
CHCIQ Logical Input Conversion 9 8 41
CHCIR Logical Output Conversion 9 8 42
CHCIS General Input Conversion 9 8 43
CHCIT General Output Conversion 9 8 44
CHCIU List Termination 9 8 45
CHCIV Dump Module 9 8 46
CHCIW Exit Module ? 8 47
CHCIX I/O Error Message Control 9 8 48
CHCIY I/O psect Module 9 8 49
CMAGA Option Selection Routine 8 9 29
CMASA SERR Bootstrap 3 3 21
CMASB Environment Recording 3 3 21
CMASC Immediate Print 3 3 21
CMASD Checker 3 3 21

ICMASE Pointer 3 3 21
ICMASF Restore and Validate 3 3 21
ICMASG Instruction Retry Execution 3 3 21
I CMASH CPU/~lemory Checkout-1 3 3 27
ICMASI CPU/Memory Checkout-2 3 3 21 L _______ i ___ i ____ i ____ i ___ _

Part 4 of 8

172

r-------T---T----T----T----'
IModule IName IOpt 1 10pt 2 10pt 3 1
~------+---+----+----+----~
ICMASJ CPU/Memory Checkout-3 3 3 27
ICMASK DUM-l 3 3 27
ICMASL DUM-2 3 3 27
ICMASM DUM-3 3 3 27
ICMASN Environment Recording Edit and Print 3 3 27
~CMATC OLTS Print 8 9 34

CMATD OLTS Utilities-Compare 8 9 35
CMATE OLTS Conversion 8 9 36
CMATF Setup Control Routine 8 9 25
CZAAA Director 5 1 25
CZAAB GATE Subroutine 5 1 26
CZAAC Scan 5 1 27
CZAAD MSGWR 5 1 29
CZAAE Gatex 5 1 28
CZAAF VMTI (Virtual Memory Task Initiation) 5 1 30
CZABA Batch Monitor 5 1 25
CZABB Execute Command Routine 5 2 26
CZABC Background Command Routine 5 2 27
CZABD Bulkio Preprocessor 5 2 28
CZABE Batch (Read Cards) 5 2 29
CZABF RTAPE (Read Tape) 5 2 30
CZABG List (print) 5 2 31
CZABH Card (Punch Cards) 5 2 32
CZABI Tape {Write Tape} 5 2 33
CZABJ Cancel 5 2 34
CZABQ XWTO 5 5 76
CZACA MOCP {Main Operdtor Control Program} 5 3 25
CZACB MOHR (Main Operator Housekeeping Routine) 5 3 26
CZACC OXIP (Operator External Interrupt Processor) 5 3 27
CZACD Reply 5 3 28
CZACE Message/Announce 5 3 29
CZACF Braodcast 5 4 29
CZACG Force Command Routine 5 3 31
CZACN Shutdown 5 3 38
CZACQ ABEND Processor 5 5 67
CZACR ABEND Processor 5 5 67
CZACP ABEND 5 5 67
CZACS Pair Table 5 5 66
CZADF Data 5 5 45
CZAEA Datadef 5 5 25
CZAEB Findjfcb 5 5 26
CZAEC Findds 5 5 27
CZAED Load 5 5 28
CZAEG Modify 5 5 31
CZAEH LOCFQN 5 5 32
CZAEI Catalog 5 5 33
CZAEJ Erase/Uncatalog 5 5 34
CZAEK Present Director 5 5 35
CZAEL Present Data Set Status 5 5 36
CZAEM Present Line 5 5 37
CZAEN Present VTOC 5 5 38
CZAFG Unload 5 5 56
CZAFH Permit 5 5 57
CZAFI Share 5 5 58
CZAFJ Release 5 5 59
CZAFK Join 5 5 60
CZAFL Quit 5 5 61
CZAFM Logon 5 5 62
CZAFN Logoff S 5 63

ICZAFS Ddcall 5 5 68 l _______ i ___ i ____ i ____ i ____ J

Part 5 of 8

Appendix E: Codes for SYSER Macro Instruction Parameters 173

r-------T--~----T----T----'
IModule IName IOpt 1 10pt2 10pt 3 1
~-------+---+----+----+----1
CZAFU Reserve 5 5 70
CZAFV Dscopy 5 5 11
CZAGA Accounting Routine 5 6 25
CZAHA Diagno 5 7 25
CZAHB IAIP (Initial Attention Interrupt Processor) 5 7 26
CZAHC XIP/XIIS (External Interrupt Processor) 5 7 27
CZAHD External Interrupt Subprocessor (message/Error)
CZAMA Dump 5 9 28
CZAMI DATAFLD (Form Data Field Definition) 5 9 28
CZAML DATALOC ~orrn Data Location Definition) 5 9 28
CZAMN INTERNAL (Form Internal Symtol Definition) 5 9 28
CZAMO EXTERNAL (Form External Symtolic Definition) 5 9 28
CZAMP Offset 5 9 28
CZAMQ SCANFLD (Scan Field to Delimiter) 5 9 28
CZAMT PCS Unload 5 9 28
CZANG SUBGEN (Subscript Computatio~ 5 9 28
CZANI OPGEN (Operator Code Generation) 5 9 28
CZANT LOADOP (Load Operan~ 5 9 28
CZAPC FINDLOC (Location Table Scan) 5 9 29
CZAPG SYMGEN (Symbol Generator) 5 9 29
CZAPL FINDREAL (Find Real Address) 5 9 29
CZAQA PCS Debug 5 9 26
CZASE VMEREP (Virtual Melltory Environment Recording

Edit and Print) 4 10 31
CZASX Error Control 4 10 28
CZASY Drum Access Module 4 10 21
CZATA OLTAM Execute I/O 8 9 32
CZATB OLTAM Posting 8 9 33
CZATG Device Allocation 8 9 28
CZAUC Data Recording Cancel 8 14 26
CZCAA MTREQ Routine 8 5 25
CZCAB Bump Routine 8 5 26
CZCAC Pause Routine 8 5 28
CZCAD Release Routine 8 5 27
CZCCD Loader Logoff 8 2 31
CZCDH LIBE Maintenance 8 2 32
CZCDL1 Explicit Linkage 8 2 28
CZCDL2 Hash Search 8 2 28
CZCDL3 LIBE Search 8 2 28
CZCDL4 Page Relocation 8 2 29
CZCDL5 Map Search 8 2 28
CZCDL6 Set Search Flags 8 2 28
CZCDU1 Explicit Unlinking 8 2 30
CZCDU2 Delete Module 8 2 30
CZCEA Allocate 8 3 25
CZCEB VAM Search 8 3 27
CZCEC SAM Search 8 3 29
CZCED VAM Merge 8 3 30
CZCEE SAM Merge 8 3 33
CZCEG Give Back SAM Storage (GIVBKV~ 8 3 31
CZCES Scratch Data Set 8 3 32
CZCEV Give Back VAM Storage (GIVBKV) 8 3 26
CXCEX Extend 8 3 28
CXCFA Addcat 8 1 27
CZCFD Delcat 8 1 29
CZCFG Get SBLOCK 8 1 35
CZCFH Search SBLCCK 8 1 36
CZCFI Index 8 1 26
CZCFL Locate 8 1 25

ICZCFO Obtain 8 1 32 L _______ ~ __ ~ ____ ~ ____ ~ ____ J

Part 6 of 8

174

r-------T---T----T----T----'
IModule IName IOpt 1 10pt2 10pt3 1
~-------t---+----+----+----1
CZCFR Retain 8 1 33
CZCFS Share 8 1 30
CZCFU Shareup 8 1 28
CZCFV Unshare 8 1 31
CZCFZ Rename 8 1 34
CZCGA Virtual Memory Allocation 8 6 15
CZCJA Stimer Routine 8 13 32
CZCJC Cleanup 8 13 36
CZCJD Delete Interrupt Routine (DIR) 8 13 30
CZCJI Interrupt Inquiry (INTINQ) 8 13 31
CZCJK Task Monitor Scanner and Dispatcher 3 13 28
CZCJL Leave Priyilage (LVPRV) 8 13 27
CZCJQ Queue Linkage Entry 8 13 26
CZCJS Specify Interrupt Routine (SIR) 8 13 29
CZCJT Task Monitor Interrupt Processor 8 13 25
CZCJX Time Conversion Package 8 13 33
CZCJY Set Clock Routine 8 13 34
CZCJZ Cancel Clock Routine 8 13 35
CZCLA Open (Common) 4 1 25
CZCLB Close (Common) 4 1 27
CZCLD Force End of Volume 4 1 30
CZCMA GETBUF 4 1 31
CZCMB GET POOL 4 1 34
CZCMO Configuration Console System Sequence Control)
CZCNA Freebuf
CZCNB FREEPOOL
CZCOA VAM Open
CZCOB VAM Close
CZCOC VAM Move Page
CZCOD VAM Insert/Delete Data Set Pages
CZCOE VAM Reqpage (Assign External Entries in RESTBL)
CZCOF VAM Insert (Insert Page Entries in RESTBL)
CZCOG VAM RECLAIM (Delete Data Set Pages and Make

CZCOH
CZCOI
CZCOJ
CZCOK
CZCOL
CZCOM
CZCON

External Pages Available)
VAM INTLK ~outine for Imposing Interlocks)
VAM RLINTLK (Routine for Releasing Interlock)
VPAM Find Macro Instruction and Routine
VPAM Stow Macro Instruction and Routine
VPAM Search
VPAM Extpod (Extend POD)
VPAM RELMBRS (Relocate Partitioned Data Set
Members by POD)

CZCOO VPAM GET NUMBER
CZCOP VSAM OPEN
CZCOQ VSAM CLOSE
CZCOR GET LOC
CZCOS VSAM PUT LOC
CZCOT VSAM SETL
CZCOU VSAM PUTX
CZCOV VSAM FLUSHBUF
CZCPA VISAM ~UT MV
CZCPB VISAM GET MV
CZCPC VISAM SETL
CZCPE VISAM Read/Write
CZCPI VISAM Get Page
CZCPL VISAM ADE (Add Directory Entry)
CZCPZ VISAM Open
CZCQA IVISAM Close

ICZCQE ISRCHSDST (Shared Data Set Table Manipulation

4
4
4
4
4
4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

1
1
5
5
5
5
5
5

5
5
5
8
8
8
8

8
8
6
6
6
6
6
6
6
7
1
7
7
7
1
7
?

32
35
28
29
30
31
32
33

34
35
36
27
28
29
30

31
32
30
31
26
27
28
29
32
30
32
33
37
54
41
40
41

I IRoutin~ 4 5 38 L _______ ~ __ -~----~----~----

Part 7 of 8

Appendix E: Codes for SYSER Macro Instruction Parameters 175

r------T-------------------------.---------------------~----T----T---'
IModule IName IOpt 1 10pt2 1opt3 1
~-------+------------------------.-------------------+----+----+----~
CZCQF
CZCQI
CZCQQ
CZCRA
CZCRB
CZCRC
CZCRF
CZCRG
CZCRH
CZCRM
CZCRN
CZCRP
CZCRQ
CZCRR
CZCRS
CZCRX
CZCRY

GETSDST and RELSDST 4 5 39 I
EXP RESTBL 4 5 50 I
VAM ABEND INTLK 4 5 40 I
BSAM Read/Write 4 2 25 I
BSAM Control Routine 4 2 32 I
BSAM Check 4 2 26 I
BSAM Prtov 4 2 31 I
BSAM Backspace a Block 4 2 30 I
SAM Direct Access Error Retry Routine 4 2 36 I
BSAM Point Position to a Block 4 2 28 I
BSAM Note Address of Last: Block Processed 4 2 21 I
BSAM Posting and Error Retry 4 2 36 I
BSAM Determines Records per Track 4 2 31 I
BSAM RELFUL 4 2 38 I
BSAM FULREL 4 2 29 I
VMER (Virtual Memory Error Recording) 4 10 26,
VMSDR (Virtual Memory Statistical Data Reco- 4 10 25 I
rding) I

CZCSB IOREQ (I/O Request 4 11 25 I
CZCSC IOREQ open 4 11 26
CZCSD IOREQ close 4 11 27
CZCSE IOREQ Posting 4 11 28
CZCWB Build Common Portion of Data Extent Block 4 2 41
CZCWC BSAM Close Mainline 4 2 34
CZCWD Direct-Access Open 4 2 33
CZCWF Tape Input Trailer Label Processor 4 2 43
CZCWH Tape Input Header Label Processor 4 2 43
CZCWL Build Direct-Access Data Extent Block 4 2 41
CZCWM SAM Shared Routines Message Processor 4 2 42
CZCWO BSAM Open Mainline 4 2 33
CZCWP Tape Positioning 4 2 42
CZCWR Read Format-3 DSCB 4 2 41
CZCWT SAM Open Tape 4 2 33
CZCWV SAM Shared Routines VolUIlle Sequence Convert 4 2 42
CZCWX Volume-Label Reader 4 2 40
CZCXC Tape Output-Label Creator 4 2 43
CZCXD Direct Access Output End-'of-Volume Processor 4 2 35
CZCXE SAM End-of-Volume Mainline 4 2 35
CZCXF Tape Output Trailer-Label Processor 4 2 43
CZCXH Tape Output Header-Label Processor 4 2 43
CZCXI BSAM Direct-Access Input EOV 4 2 35
CZCXK Check for Tape Read/Write 4 2 43
CZCXN Direct-Access Input-Label Processor 4 2 43
CZCXO Tape Output End-of-VolumE! 4 2 35
CZCXS Set DSCB 4 2 35
CZCXT Tape Input End-of-Volume 4 2 35
CZCXU Direct-Access Output-LabE!l Processor 4 2 43
CZCXX Concatenation Processor 4 2 35
CZCYA TAM Open 4 4 25
CZCYG TAM Close 4 4 26
CZCYM TAM Read/Write 4 4 27
CZCZA Tam Posting 4 4 28
EAINV System Inventory Program 3 1 53

ISYSKA Systime Conversion 8 15 25 L _______ i ________________________ . ______________________ i ____ i ____ i ___ _

Part 8 of 8

116

Absexp, value mnemonic 10,94,98,102
Add device to task symbolic device list

(see ADDEV macro instruction)
Add shared virtual storage pages

(see ADSPG macro instruction)
Add virtual storage pages

(see ADDPG macro instruction)
ADDEV macro instruction (SVC 234) 66

example 66
ADDPG macro instruction (SVC 250) 44,60

example 61
Addr, value mnemonic 10,98
Address translation

(see dvnaroic address translation)
ADDRX, value mnemonic 10,93,101
Addx, value mnemonic 11,93
ADSPG macro instruction (SVC 236) 44,61

example 62
Allow task initiation

(see ALLTI macro instruction)
ALLTI macro instruction (SVC 216) 56

example 56
Alternate prefix 18
Apostrophe, in macro instructions 108,110
ATPOL macro instruction 158
Authority codes 40
AWAIT macro instruction (SVC 248) 59

example 59

Basic sequential access method (BSAH)
controlling I/O devices 126-130
symbolic device address 125
(see CNTRL macro instruction, PR'I'OV

macro instruction)
BSAM

(see basic sequential access method)

CALL macro instruction, in type-I linkage
33

Change task priority
(see CHAP ~acro instruction)

CHAP macro instruction (SVC 230) 52
example 53

Characters, value mnemonic 11,95,98
CHDERMAC macro instruction 113

error messages 115,116
severity code 113
severity code algorithm 114

CHDINNRA macro instruction 112
examples 113

CHDPSECT macro instruction 116
CHECK ~acro instruction 154-155
Check protection class

(see CKCLS macro instruction)
CKCLS macro instruction (SVC 241) 65

example 66
CLIC macro instruction (SVC 119) 90

example 91
versus CLIP macro 91

CLIP macro instruction (SVC 118) 91
exarrple 91
versus CLIC macro 91

CLOSE macro instruction
for MSAM 135,147
for TAM 150

CNSEG macro instruction (SVC 238) 63
example 64

CNTRL macro instruction 126-128
Code, value mnemonic 94,98,102
Coded value 12
Comma, as delimiter 9,13,14
Connect segment to shared page table

(see CNSEG macro instruction)
Control on-line input/output devices

(see CNTRL macro instruction)
COpy instruction, pseudo-operation 20
Core allocation 25

example 26
Core release 25

example 26
Create task status index

(see CRTSI macro instruction)
CRSTI macro instruction (SVC 253) 47

example 47

DAT
(see dynamic address translation)

Data channel key 44
Data control block

(see MSAM DCB fields, DCB macro
instruction)

Data event control block
flag field 156
format 155
(see also DECB macro instruction)

DCB rracro instruction
for MSAM 130
for TAM 148

DCBD macro instruction
for MSAM 130

for TAM 149
DECB

(see data event control bloc~
DEF

(see symbolic definition)
DELET macro instruction (SVC 123) 89

example 90
Delete task status index

(see DLTSI macro instruction)
Delete virtual storage pages

(see DELPG macro instruction)
DELPG macro instruction (SVC 249) 63

example 63
DFTRMENT macro instruction 156-157
Direct access storage 164-166

disk storage format 164-166
drum storage format 164

INDEX

Disconnect shared page table from segment
(see DSSEG macro instructio~

Disk storage format 164-166
DLINK macro instruction (SVC 127) 89

example 89
DLTSI macro instruction (SVC 252) 48

example 48

Index 177

Drum storage format 164
DSECT

(see dummy sections)
DSSEG macro instruction (SVC 237) 64

example 64
Dummy section (DSECT) 19

naming conventions 23
Dynamic address translation 17,18
Dynamic loader 41

effect of authority code 42
hash table 41
task dictionary 41

Enter command language director to end RUN
(see RTRN macro instruction)

Enter delete program
(see DELET macro instruction)

ENTER rrracro instruction (SVC 121) 35,88
examFle 88

Enter privileged service routine
(see ENTER macro instruction)

Enter program checkout sUbsystem
(see PCSVC macro instruction)

Entry Foint
macro instructions 107
program module names 23
secondary entry points 24
system control blocks 23

ERROR macro instruction (SVC 254) 79-82
dumF option codes 80
example 82
serviceability aid 118
system error codes 80

Extended control program status word
(XPSW) 16,17

Extended program interrupt codes 167-168
Extract accumulated CPU time

(see XTRTM macro instruction)
Ex.tract extended task status index field

(see XTRXTS macro instruction)
Extract system table field

(see XTRSYS macro instruction)
Extract task status index field

(,see XTRCT macro instruction)

Fence st~addlers
(see linkage conventions)

Field name 19
bit fields 20

FINDDS macro instruction 158
FINDJFCB macro instruction 159
FINISH macro instruction 146-148

example 147
interrupt entry handling 136
return codes 147

Force time slice end
(see TSEND macro instruction)

GET macro instruction 141-144
exarople 143
interrupt entry handling 136
return codes 143

Hexinteger, value rrnemonic 11

Indicate nonresident-program detected
error

(see SYSER macro instruction)

178

Indicate supervisor detected error
(see ERROR macro instruction)

Inhibit task interrupts
see ITI macro instruction)

Inner macro instructions 112-117
CHDERMAC error messages 115
defining 106
nesting 106
severity code 113,115
(see also CHDERMAC, CHDINNRA and

CHDPSECT macro instructions)
Integer, value mnemonic 11,94,98,102
Interrupt entry handling 136
Interrupt storage area (ISA) 28
Interrupts

disabling 22
enabling 22

INVOKE macro instruction 159
I/O call

(see IeCALL macro instruction)
lOCAL macro instruction (SVC 231)
42,46,71-75

example 74
ISA

(see interrupt storage area)
ITI macro instruction 159

Keyword operand
(see operand field)

Linkage conventions 30,39
fence straddlers 39
general-register use 33,35,37,38
nonresident programs 30
resident programs 25
type-I linkage 30
type-1M/II linkage 36
type-II linkage 34
type-III linkage 36
type-IV (restricted) linkage 38

List changed virtual storage pages
see LSCHP macro instruction)

Load virtual program status word
(see LVPSW macro instruction)

Locate JFCB
(see FINDJFCB macro instruction)

Locate JFCB corresponding to data set name
(see FINCDS macro instruction)

Lock byte 21
LSCHP macro instruction (SVC 247) 65

example 65
LVPSW macro instruction (SVC 254) 37,78,80

example ""8

Macro instructions
defining 93-117
defining nonstandard 104
defining R-type 93-97,104
defining S-type 97-103,104
error messages 115
generating nonprivileged SVCs 88-92
generating privileged SVCs 45-83
inner macro instructions 106,112-114
operand size 109,110
packing parameters 105
register notation 104
setting sign bit 107
severity code 113,115

sublists 111
subscripts 111

Message
CHDERMAC 115-116
send to task 161
system error processor 79,82

Move page table entries
(see MOVXP macro instruction)

MOVXP macro instruction (SVC 245) 77
exaIllple 78

MSAM
(see multiple sequential access method)

MSAM DCB fields 131-134
alternate sources 131
COMBINE 133
DDNAME 131
DEVD 131
DSORG 131
FIP 133
FORMTYPE 133
INHMSG 133
LRECL 132
MACRF 131
MODE 132
POCKET 133
PRTSP 131
RECFM 132
RETRY 133
STACK 132
SUR 133

Multiple sequential access method (MSAM)
130-148

DCB options 130-134
DDEF command 134
DDEF macro instruction 134
designating devices 125
interrupt entry handling 136
symbolic device address 125,126
(see also CLOSE, FINISH, GET, OPEN, PUT,

and SETUR macro instructions)

Naming conventions
dummy sections 23
fields 24
nonprivileged programs 87
privileged programs 83
resident program modules 23
secondary entry points 24
system control blocks 23

Nonprivileged programs 86-92
design 87

Nonprivileged supervisor call instructions
88-92

(see also CLIC, CLIP, DELET, DLINK,
ENTER, PCSVC, RSPRV, and RTRN macro
instructions)

Nonresident programs 28-92
definition 8
linkage conventions 30-40
privileged SVCs 45,46-83
system control blocks 22

Nonstandard macro instructions, defining
104

OPEN macro instruction
for I~SAM 134
for TAM 149

Operand field 9

keyword operands 9,13,110
positional operands 9,12
use of comma 9,13,14
use of parentheses 14
writing positional operands 13

Parentheses, in operand field 14
PCS

(see program checkout subsystem)
PCSVC macro instruction (SVC 125) 90

example 90
Permit task interrupts

(see PTI macro instruction)
PGOUT macro instruction (SVC 242) 43,75

example 76
Poll for pending attention interrupt

(see ATPOL macro instruction)
Positional operand

(see operand field)
Prefixed storage area (PSA) 16,17,18

addressing 18
definition 17

Prefixing 17
Primary prefix 18
Privilege class E 125
Privileged supervisor call instructions

40,45,46-83
(see also ADDEV, ADDPG, ADSPG, ALLTI,

AWAIT, CHAP, CKCLS, CNSEG, CRTSI,
DELPG, DL~SI, DSSEG, ERROR, lOCAL,
LSCHP, LVPSW, MOVXP, PGOUT, PURGE,
RDI, REDTIM, RESET, RMDEV, RSTTIM,
SCRTSI, SETAE, SETSYS, SETTOD, SETTR,
SETTU, SETUP, SETXP, SETXTS, SETYMD,
SPATH, SYSER, TSEND, TWAIT, VSEND,
XTRCT, XTRSYS, XTRTM, and XTRXTS macro
instructions)

Privileged SVC
(see privileged supervisor call

instruction)
Program checkout sUbsystem (PCS)

40,121-122
definition 118

Protection key
data channel key 44
processing unit key 44
PSW key 43
storage page key 44

Prototype control section (PSECT) 84-86
address constants 85
attributes 84,86
purpose 22

PRTOV macro instruction 128-130
examples 130

PSA
(see prefixed storage area)

PSAETM 45,55,58
PSECT

(see prototype control section)
PTI roacro instruction 160
Purge I/O operations

(see PURGE macro instruction)
PURGE macro instruction (SVC 222) 67

example 68
PUT macro instruction 144-146

card punch 145
example 145
interrupt entry handling 136

Index 179

printer 145
return codes 145

R-type macro instructions
definition 93-97
exarople 95
linkage 95
modified R-type 104

RDI macro instruction (SVC 201) 57
Read command from SYSIN (conditional)

(see CLIC macro instruction)
Read command from SYSIN (unconditional)

see CLIP macro instruction)
Read elapsed real time

(see REDTIM macro instruction)
READ macro instruction 150-152

character set codes 152
REDTIM macro instruction (SVC 218) 45,58

example 58
REF

(see symbolic reference)
Relexp, value mnemonic 11,98
Remove device from task symbolic device
list

(see RMDEV macro instruction)
Reset device suppression flag

see RESET macro instruction)
Reset drum interlock

(see RDI macro instruction)
RESET macro instruction (SVC 221) 68

example 69
Reset system time

(see RSTTIM macro instruction)
Resident programs 16-27

definition 8
dummy sections 19
linkage conventions 25
module design considerations 22
module structure 20
naming conventions 23
use of registers 26

Resident supervisor 16
Restore privilege

(see RSPRV macro instruction)
RESUME macro instruction 160
Return to calling program

(see RESUME macro instruction)
RMDEV macro instruction (SVC 23~ 67

example 67
RSPRV roacro instruction (SVC 120) 37,92

example 92
RSTTIM macro instruction ~VC 21~ 45,55

exaIPple 55
RTRN macro instruction (SVC 122) 911

exarople 92

S-type macro instructions
definition 97-103
E-form 101
exarople 100,102
L-form 99,101
linkage 102
modified S-type 104
standard form 98,101

Save area 30,31

180

type-I linkage 32
type-II linkage 34
type-III linkage 36

(see also STORE macro instruction)
SCRTSI macro instruction (SVC 206) 48
SDA

(see symbolic device address)
Secondary entry point

(see entry point)
Send message to another task

(see VSEND macro instruction)
Set asynchronous entry

(see SETAE macro instruction)
Set external page table entries

(see SETXP macro instruction)
Set I/O device path

(see SPATH macro instruction)
Set real time interval

~ee SETTR macro instructio~
Set system table field

(see SETSYS macro instruction)
Set time of day

(see SETTOD macro instruction)
Set up extended task status index field

(see SETXTS macro instruction)
Set up task status index field

(see SETUP macro instruction)
Set user timer

(see SETTU macro instruction)
Set year, month, and day

(see SETYMD macro instruction)
SETAE macro instruction (SVC 210)

example 70
SETSYS macro instruction (SVC 216)

example 54
SETTOD macro instruction (SVC 216)
SETTR macro instruction (SVC 217)

example 58
time conversion 162

SETTU macro instruction (SVC 251)
example 57
time conversion 162,163

SETUP macro instruction (SVC 235)
example 50

SETUR macro instruction 137-141
card punch 137
interrupt entry handling 136
printer 137-139
return codes 140
SYSUCS 138,139,140,141
SYSURS 140,141

SETXP macro instruction (SVC 244)
example 77

SETXTS macro instruction (SVC 214)
example 52

SETYMD macro instruction (SVC 216)
SPATH macro instruction (SVC 211)

example 70
Special create task status index

(see SCRTSI macro instruction)
Specsym, value mnemonic 12
Startup 16
Storage page key 44
Storage protection 44

PSW key 43
STORE macro instruction 160
SVC 118

{see CLIP macro instruction}
SVC 119

(see CLIC macro instructio~
SVC 120

70

53

56
45,58

45,57

48

43,71

51

56
69

(see RSPRV macro instruction)
SVC 121

(see ENTER macro instruction)
SVC 122

(see RTRN macro instruction)
SVC 123

(see DELET macro instruction)
SVC 125

(see PCSVC macro instruction)
SVC 127

(see DLINK macro instruction)
SVC 201

(see RDI macro instruction)
SVC 206

(see SCRTSI macro instruction)
SVC 209

(see XTRTM macro instruction)
SVC 210

(see SETAE macro instruction)
SVC 211

(see SPATH macro instruction)
SVC 212

(see RSTTIM macro instruction)
SVC 213

(see XTRXTS macro instruction)
SVC 214

(see SETXTS macro instruction)
SVC 215

see XTRSYS macro instruction)
SVC 216

(see ALLTI, SETSYS, SETTOD, and
macro instructions)

SVC 217
(see SETTR macro instruction)

SVC 218
(see REDTIM macro instruction)

SVC 221
(see RESET macro instruction)

SVC 222
(see PURGE macro instruction)

SVC 228
(see SYSER macro instruction)

SVC 229
(see TWAIT macro instruction)

SVC 230
(see CHAP macro instruction)

SVC 231
(see lOCAL macro instruction)

SVC 233
(see RMDEV macro instruction)

SVC 234
(see ADDEV macro instruction)

SVC 235
(see SETUP macro instruction)

SVC 236
(see ADSPG macro instruction)

SVC 237
(see DSSEG macro instruction)

SVC 238
(see CNSEG macro instruction)

SVC 240
(see VSEND macro instruction)

SVC 241
(see CKCLS macro instruction)

SVC 242
(see PGOUT macro instruction)

SVC 243

SETYMD

(see TSEND macro instruction)
SVC 244

(see SETXP macro instruction)
SVC 245

(see MOVXP macro instruction)
SVC 246

(see XTRCT macro instruction)
SVC 247

(see LSCHP macro instruction)
SVC 248

(see AWAIT macro instruction)
SVC 249

(see DELPG macro instruction)
SVC 250

(see ADDPG macro instruction)
svc 251

(see SETTU macro instruction)
SVC 252

(see DLTSI macro instruction)
SVC 254

(see ERROR and LVPSW macro
instructions)

Symbol, value mnemonic 12,95,99,102
Symbolic definition (DEF) 41
Symbolic device address (SDA)

in DDEF command 125
for MSAM 133

Symbolic device list

43

(see task symboli c device list)
Symbolic reference (REF) 41
,SYSER dump 118-121

definition 118
header record 119
message format 118,119
retrieval 119-121
use of DDEF command 119
use of P~INT command 120
(see also ERROR and SYSER macro

instructions)
SYSER macro ~nstruction (SVC 228)

dump option codes 80
example 83
option parameters
serviceability aid
system error codes

169-177
119
80

Syscem control block
definition 20

21

naming conventions 23
System monitor 125
SYSTOD 45,55,58
SYSUCS, for MSAM 138,139,140,141
SYSURS, for MSAM 140,141
SYSYMD 45,55,58

TA1'-1
(see terminal access method)

Task dictionary (TDY) 41
hash table 41

Task interrupts
inhibiting 159
permitting 160

Task status index (TSI)
alter 48-50
creation 47,48
deletion 48
extract 50-51

82

setting estimated task time 51-52
TWAIT flag 59

Index 181

Task symbolic device list (TSDL)
67,68,69,70

TM
(see task dictionary)

Terminal access method (T~ 148-157
character set codes 152
designating devices 126
symbolic device address 125,126
(see also CHECK, CLOSE, DCB, DCED,

DFTRMENT, READ, and WRITE macro
instructions)

Test for printer carriage overflow
(see PRTOV macro instruction)

Text, value mnemonic 12,95,98
Time conversion 162-163
Timekeeping 45

time conversion routine 162-163
(see also REDTIM, RSTTIM, SETTR, SETTU,

and XTRTM macro instructions)
Transfer to dynamic loader for external

symbol resolution
(see DLINK macro instruction)

TSDL
(see task symbol device list)

TSEND macro instruction (SVC 243) 58
example 59

TSI
(see task status index)

TWAIT macro instruction (SVC 229) 59
example 60
type-I linkage
(see linkage conventions)

Type-1M/II linkage
(see linkage conventions)

Type-II linkage
(see linkage conventions)

Type-III linkage
(see linkage conventions)

Type-IV (restricted) linkage
(see linkage conventions)

Unit record device set up
(see SETUR macro instruction)

USING instruction

182

linkage convention 25
pseudo-operation 20

Value, value mnemonic 10,12,94,98,102
Value mnemonic

{see absexp, addr, addrx, addx,
characters, hexinteger, integer,
relexp, specsym, symbol, text, value)

Virtual ffiemory programs
(see nonresident programs)

Virtual program status word ~PSW) 28,29
privilege bit 42
storage protection 44

Virtual storage program
(see nonresident program)

VPSW
(see virtual program status word)

VSEND macro instruction (SVC 240) 47,49
example 79

VSENDR macro instruction 161

Wait for an interrupt
(see AWAIT macro instruction)

Wait for terminal I/O interrupt
(see TWAIT macro instruction)

WRITE macro instruction 152-154
Write virtual storage pages to external

storage
(see PGOUT macro instruction)

XPSW
(see extended control program status
wor~

XTRCT macro instruction (SVC 246) 50
example 51

XTRSYS macro instruction (SVC 215) 54
example 55

XTRTM macro instruction (SVC 209) 45,53
example 53

XTRXTS macro instruction (SVC 213) 52
example 52

XTSATI 45
XTSCTI 45
XTSUTI 45,57

READER'S COMMIE NT FORM

IDM System/360 Time Sharing System
System Programmer's Guide

C28-2008-0

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
• Does this publication meet your needs? 0 D
• Did you find the material:

Easy to read and understand? 0 D
Organized for convenient use? 0 0
Complete? 0 0
Well illustrated? 0 D
Written for your technical level? 0 D

• What is your occupation?

• How do you use this publication?
As an introduction to the subject? 0 As an instructor in a class? 0
For advanced knowledge of the subject? 0 As a student in a class? 0
For information about operating procedures? 0 As a reference manual? D

Other

• Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C:28-2OOB-o

YOUR COMMENTS PLEASE • . •

This publication is one of a series which serves as reference for systems analysts, program
mers and operators of IBM systems. Your answers to the questions on the back of this
form~ together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold .. :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

ATTN: Time Sharing System/360
Programming Publications Dept. 561

IBM Corport::ttion
PO Box 344
2651 Strang Bou levard
Yorktown Heights, N.Y. 10598

FIRST CLASS
PERMI T NO. 34

YORKTOWN HTS., NY

... :
Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International] .

Fold

"TI

~
3
n
~
I

~
I o

C28-2008-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	replyA
	replyB
	xBack

