IBM System/360 Time Sharing System

PL/I Library

Computational Subroutines

This publication gives details of the computational subroutines available in the PI/I Library. These subroutines are used by the PLII compiler in the implementation of PL/I built-in functions and of the operators used in the evaluation of $P L / I$ expressions. Not all PL/I built-in functions and expression operators are 10nerators are

This publication provides the PL/I user with detailed information about the computational subroutines which are part of the IBM System/360 Time Sharing System PL/I Library.

The reader is assumed to be a TSS/360 user with a particular concern for performance information associated with individual subroutines. The numerical analyst is provided with a description of the algorithms, and a specification of accuracy and range, where these are considered to be significant.
Useful background reading is provided inthe following IBM publications:
IBM System/360 Principles-of Operation, Order No. GA22-6821
IBM System/360 Time Sharing System:
Concepts and Facilities, Order No.GC28-2003
Assembler Language, Order No.GC28-2000
PL/I Reference Manual, Order No.GC28-2045

Gecond Edition (June 1970)
This is a major revision of, and makes obsolete, the previous edition, Form C28-2046-0.

This edition is current with Version 7. Modification 0 , of IBM System/360 Tine Sharing System (TSS/360) and will remain in effect for all subsequent versions or modifications of TSS 360 . Significant changes or additions to this publication will be provided in new editions or Technical Nevrsletters.

This publication was prepared for production using an IEM computer to update the text and to control the page and line format. Page impressions for photo-offset printing were obtained from an IBM 1403 printer using a speciai print chain.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

[^0]INTRODUCTION 1
Module Names 1
CHAPTER 1: STRING OPERATIONS AND BUILT-IN FUNCTIONS 2
Bit String Operations 2
The 'And' Operator (() (Bit Strings) 2
The 'Or' Operator (|) (Bit Strings) 2
The 'Not' Operator (7) (Bit Strings) 2
Concatenate/REPEAT/General Assign (Bit Strings) 3
Comparison (Bit Strings, Byte-aligned) 3
General Comparison (Bit Strings) 3
Assign/Fill (Bit Strings) 4
Bit String Functions 4
SUBSTR (Bit Strings) 4
INDEX (Bit Strings) 4
BOOL (Boolean Function) (Bit Strings) 5
Character String Operations 5
Concatenate/REPEAT (Character Strings) 5
Compare (Character Strings) 5
Assign/Fill/HIGH/LOW (Character Strings) 6
Character String Functions 6
SUBSTR (Character Strings) 6
INDEX (Character Strings) 6
CHAPTER 2: ARITHMETIC OPERATIONS AND BUILT-IN FUNCTIONS 7
Real Operations 8
Positive Integer Exponentiation (fixed binary) 8
Positive Integer Exponentiation (fixed decimal) 8
Integer Exponentiation (floating-point) 8
General Floating-Point Exponentiation 9
Shift-and-assign, Shift-and-load (fixed decimal) 9
Complex Operations 9
Multiplication/Division (fixed binary) 9
Multiplication/Division (fixed decimal) 10
Multiplication (floating-point) 10
Division (floating-point) 10
Positive Integer Exponentiation (fixed binary) 11
Positive Integer Exponentiation (fixed decimal) 11
Integer Exponentiation (floating-point) 11
General Floating-Point Exponentiation 11
Functions with Real Arguments 12
ADD (Fixed decimal) 12
MAX, MIN 12
Functions with Complex Arguments 12
ADD (Fixed decimal) 12
MULTIPLY (fixed binary) 13
MULTIPLY (fixed decimal) 13
DIVIDE (fixed binary) 13
DIVIDE (fixed decimal) 13
ABS (fixed binary) 14
ABS (fixed decimal) 14
ABS (floating-point) 14
CHAPTER 3: MATHEMATICAL BUILT-IN FUNCTIONS 16
Accuracy 16
Hexadecimal Truncation Errors 17
Hexadecimal Constants 17
Algorithms 17
Terminology 18
Functions with Real Arguments 18
SQRT (short floating-point real) 18
SQRT (long floating-point real) 18
EXP (short floating-point real) 19
EXP (long floating-point real) 20
LOG, LOG2, LOG10 (short floating-point real) 20
LOG, LOG2, LOG10 (long floating-point real) 21
SIN, SIND, COS, COSD (short floating-point real) 22
SIN, SIND, COS, COSD (long floating-point real) 23
TAN, TAND (short floating-point real) 24
TAN, TAND (long floating-point real) 25
ATAN (X), ATAND (X), ATAN (Y, X), ATAND (Y, X) (short
floating-point real) 26
$\operatorname{ATAN}(X), \operatorname{ATAND}(X), \operatorname{ATAN}(Y, X), \operatorname{ATAND}(Y, X)$ (long floating-point real) 26
SINH, COSH (short floating-point real) 27
COSH, SINH (long floating-point real) 28
TANH (short floating-point real) 29
TANH (long floating-point real) 30
ATANH (short floating-point real) 30
ATANH (long floating-point real) 31
ERF, ERFC (short floating-point real) 31
ERF, ERFC (long floating-point real) 32
Functions with Complex Arguments 34
SQRT (short floating-point complex) 34
SQRT (long floating-point complex) 34
EXP (short floating-point complex) 35
EXP (long floating-point complex) 35
LOG (short floating-point complex) 36
LOG (long floating-point complex) 36
SIN, SINH, COS, COSH (short floating-point complex) 37
SIN, SINH, COS, COSH (long floating-point complex) 38
TAN, TANH (short floating-point complex) 38
TAN, TANH (long floating-point complex) 39
ATAN, ATANH (short floating-point complex) 39
ATAN, ATANH (long floating-point complex) 40
CHAPTER 4: ARRAY INDEXERS AND BUILT-IN FUNCTIONS 41
Input Data 41
Effect of Hexadecimal Truncation 41
Array Indexers 42
Indexer for Simple Arrays 42
Indexer for Interleaved Arrays 42
Array Functions 43
ALL (X), ANY (X) 43
SUM (X) 43
PROD (X) 44
POLY (A, X) 44
INDEX 46

FIGURES

Figure 1. Interpretation of Seventh Character in Module Names 1
Figure 2. Bit and Character String Operations and Functions 2
Figure 3. Arithmetic Operations 7
Figure 4. Arithmetic Functions 8
Figure 5. Mathematical Functions With Real Arguments 18
Figure 6. Mathematical Functions With Complex Arguments 18
Figure 7. Bit String Array Functions and Array Indexers 41
Figure 8. Arithmetic Array Functions 42

The PL/I Library computational subroutines provide support for the operators and tuilt-in functions of the PL/I language in four major categories:

1. Bit and Character Strings
2. Arithmetic
3. Mathematical
4. Arrays

This publication gives detailed information in each of the four sections mentioned above with respect to accuracy, choice of algorithr, and range of values handled (where appropriate).

A number of exceptional conditions may arise in the execution of the library subroutines. Many of these are not directly related to $P L / I$ ON conditions. The method of treatment in these cases is to write a diagnostic message and raise the ERROR conaition. This allows the user the opfortunity to investigate the error by use of the ONCODE built-in function in his ON

ERROR unit and to program the action he wants taken.

Module Names

The module name for each of these subroutines is IHEWxxx, where xxx is usually a mnemonic group indicating the module function.

The seventh character usually defines the kase, scale, mode and precision of the arguments for a given module. In the arithmetic, mathematical and array subroutines, this suffix is usually one of the characters shown in Figure 1; the only exceptions to this are the array indexing subroutines, where the suffixes are mnemonic only, and the ALL (x), ANY(x) subroutines, where the suffix is 1 or 2 .

In the string subroutines, the seventh character in each module name has only a mnemonic significance. In some cases the seventh character may be one of those given in Figure 1. This is purely coincidental; the meanings in Figure 1 do not apply to the string subroutines.

| $\left\lvert\, \begin{gathered} \text { Seventh } \\ \text { Character } \mid \end{gathered}\right.$ | Argument Attributes | \|Argument (or element of |argument) Passed in | Maximum Precision |
| :---: | :---: | :---: | :---: |
| B | Real fixed-point binary | \| Fullword | 31 |
| I | | | 1 15 |
| D | Real fixed-point decimal | Up to 8 bytes | 15 |
| 1 | | | |
| F | Real fixed-point binary or decimal | \| Binary: fullword | \|Binary: 31 |
| I | | \|Decimal: up to 8 bytes | \|Decimal: 15 |
| G | Real or complex short floating-point | \|Real: 1 fullword | \|Binary: 21 |
| 1 | | \|Complex: 2 fullwords | \|Decimal: 6 |
| H | Real or complex long floating-point | \|Real: 1 doubleword | \|Binary: 53 |
| 1 | | \|Complex: 2 doublewords | \|Decimal: 16 |
| L | Real long floating-point | \| Doubleword | \|Binary: 53 |
| 1 | | | \|Decimal: 16 |
| S | Real short floating-point | \|Fullword | \|Binary: 21 |
| | | | \|Decimal: 6 |
| I | | | |
| U | Complex fixed-point binary | 12 fullwords | 31 |
| 1 v 1 | | | |
| v | Complex fixed-point decimal | \| Up to 16 bytes | 15 |
| X | Complex fixed-point binary or decimal | \|Binary: 2 fullwords | \|Binary: 31 |
| 1 I | | \|Decimal: Up to 16 bytes | \|Decimal: 15 |
| W | Complex short floating-point | $\mid 2$ fullwords | \|Binary: 21 |
| 1 | | I | \|Decimal: 6 |
| $2 \quad 1$ | Complex long floating-point | \| 2 doublewords | \|Binary: 53 |
| ! | | | \|Decimal: 16 |

CHAPTER 1: STRING OPERATIONS AND BUIIT-IN FUNCTIONS

The library string package contains modules for handling bit and character string operations. Generally, a string function or operator is supported by only one module, but in the interests of efficiency some of the bit string operators are provided with additional modules to deal with byte-aligned input data.

A complete list of the modules provided in the Library string package is given in Figure 2.

BIT STRING OPERATIONS

The 'And" Operator (() (Bit Strings)

Module Name: IHEWBSA
Entry Point: IHEBSAO
Function:
To implement the 'and' operator between two byte-aligned bit strings, placing the result in a byte-aligned target field.

Method:
The current length of the target string is set equal either to the maximum length of the operands, or to the maximum length of the target field (when truncation is necessary to avoid exceeding the length of this field). The strings are 'and'ed together for a length equal to the minimum of the lengths of the operands, and the result is extended with zeros, if necessary, up to the current length calculated for the target field.

The "Or" Operator (1)(Bit Strings)

Module Name: IHEWBSO

Entry Point: IHEBSOO

Function:

To implement the 'or' operation between two byte-aligned bit strings, placing the result in a byte-aligned target field.

Method:

The current length of the target string is set equal to either the maximum length of the operands or to the maximum length of the target field (when truncation is necessary to avoid exceeding the length of this field). The strings are 'or'ed together for a length equal to the minimum of the lengths of the operands and the remainder of the longer string is moved into the target field up to the current length; the remainder of the target field is left unchanged.

The 'Not' Operator (1) (Bit Strings)

Module Name: IHEWBSN
Entry Point: IHEBSNO

Function:
To implement the 'not' operator for a
byte-aligned bit string, placing the
result in a byte-aligned target field.

$\begin{gathered} \text { PL/I } \\ \text { operation } \end{gathered}$	$\begin{gathered} \text { PL//I } \\ \text { Function } \end{gathered}$	Bit String		Character			
		General	\| Byte-aligne	String			
\| 'And' (E)		-	Use BOOL	IHENBSA	-		
1 'Or' (\|)	-	Use BOOL	IHEWBSO	-			
\| 'Not' (7)		-	Use BCOL	IHENBSN	-		
\| Concatenate ()		REPEAT	IHEWBSK	-	IHEHCSK
\| Compare		-	IHEWBSD	IHENBSC	IHENCSC		
\| Assign	-	IHEWBSK	IHEWBSM	IHEWCSM			
\| Fill	-	IHEWBSM	-	IHENCSM			
1	HIGH/LOW	-	-	IHEWCSM			
I	SUBSTR	IHEWBSS	-	IHENCSS			
1	INDEX	IREWBSI	-	IHEWCSI			
-	BOOL	IHEWBSF	-	-			

Figure 2. Bit and Character String Operations and Functions

Method:

The current length of the target string is set equal to either the current length of the operand or to the maximum length of the target field (when truncation is necessary to avoid exceeding the length of this field). The target field is set to a string of 1's for a length equal to its calculated current length and the result is obtained by an 'exclusive or' with the operand. The remainder of the target field beyond the calculated current length is left unchanged.

Concatenate/REPEAT/General Assign (Bit Strings)

Module Name: IHEWBSK

Entry Points:

Operation	Entry	
Concatenate (\|)	Point
REPEAT(Bit string, n)	IHEBSKK	
General assign	IHEBSKR	
IHEBSKA		

Function:
IHEBSKK: to concatenate two bit strings into a target field.

IHEBSKR: to concatenate $n+1$ instances of the single source string into a target field. If $n \leq 0$, the result is the string itself.

IHEBSKA: to assign a bit string to a target field without zero filling.

Method:

The current length of the target field is made equal to the smaller of two values:

- the sum of the current lengths of the source strings
- the maximum length of the target field

All entry points use a subroutine that obtains data from a source, aligns it correctly and moves it to the target field:

IHEBSKK: uses this subroutine twice to move the source strings to the target field.

IHEBSKR: uses the subroutine to concatenate the contents of the target field with itself (whenever possible) as well as concatenating the contents of this field with the source string. Direct concatenation of the source string $\mathrm{n}+1$ times is not used.

IHEBSKA: Uses the subroutine once to move the source string to the target field.

For all entry points, the remainder of the target field beyond the calculated current length is left unaltered.

Comparison (Bit Strings, Byte-a ligned)
Module Name: IHEWBSC
Entry Point: IHEBSC0

Function:

To compare two byte-aligned bit strings and to return a condition code as bits 2 and 3 of a fuliword target field as follows:

00 if strings are equal
01 if first string compares low at the first inequality
10 if first string compares high at the first inequality

The shorter string is treated as though extended with zeros to the length of the longer.

The first byte of the target field is also used to preserve the program mask in the PSW for the calling routine. This byte contains:

$$
\begin{aligned}
& \text { Bits } \quad \frac{\text { Contents }}{0 \text { to } 1} \text { Instruction length code } 01 \\
& 2 \text { to } 3 \text { Condition code as above } \\
& 4 \text { to } 7 \text { Program mask (calling routine) }
\end{aligned}
$$

Method:

The two strings are compared up to the current length of the shorter string. The remainder of the longer string is compared with zeros.

General Comparison (Bit Strings)

Module Name: IHEWBSD

Entry Point: IHEBSD0

Function:

To compare two bit strings and return a condition code as bits 2 and 3 of a fullword target field as follows:

00 if strings are equal
01 if first string compares low at the first inequality

10 if first string compares high at the first inequality

The shorter string is treated as though extended with zeros to the length of the longer.

The first byte of the target field is also used to preserve the program mask in the PSW for the calling routine. This byte contains:
$\frac{\text { Bits }}{0} \begin{aligned} & \text { Contents } \\ & 0 \text { to } 1\end{aligned}$ Instruction length code 01
2 to 3 Condition code as above
4 to 7 Program mask (calling routine)

Method:
The two strings are compared up to the current length of the shorter string. The remainder of the longer string is compared with zeros.

Assign/Fill (Bit Strings)
Module Name: IHEWBSM
Entry Points:

Operation	Entry
Fixed-length assign	Point
Variable-length assign	IHEBSMF
Zero fill only	IHEBSMV

Function:

IHEBSMF: to assign a byte-aligned string to a byte-aligned fixed-length target, filling out with zero bits if necessary.

IHEBSMV: to assign a byte-aligned string to a byte-aligned variable-length target.

IHEBSMZ: to fill out the target area from its current length to its maximum length with zero bits.

Method:
IHEBSMF: the minimum of the source current length and the target maximum length is calculated and the source string is moved to the target for a length equal to this length. zero filling of the target is performed if necessary. The current length of the target is set equal to the maximum length.

IHEBSMV: the source string is moved to the target field as above, but without zero filling. The current length of the target is set appropriately.

IHEBSMZ: zeros are propagated in the target from the current length to the
maximum length. The current length of the target is set equal to the maximum length.

Other Information:

> This routine supplies assignment of bytealigned bit strings of both fixed and variable lengths. Non-aligned strings may be assigned by using the general assign module (entry point IHEBSKA). Any filling required for fixed length strings can then be obtained using the IHEBSMZ entry described above.

BIT STRING FUNCTIONS

SUBSTR (Bit Strings)
Module Name: IHEWBSS
Entry Points:

Operation	Entry
PUBSTR(Bit-string,i)	Point
SUEBSS2	
SUBSTR (Bit-string, $i, j)$	IHEBSS 3

Function:

To produce a string dope vector describing the SUBSTR pseudo-variable and function of a bit-string.

Method:
Arithmetic is performed according to the function definition, using the current length of the argument string. The result describes a fixed-length string.

Error and Exceptional Conditions:
STRINGRANGE

INDEX (Bit Strings)

Module Name: IHEWBSI
Entry Point:
IHEBS IO

Function:

To compare two bit strings to see if the second is identical to a substring of the first, and, if it is, to produce a binary integer (the index) which indicates the first bit position in the first string at which such a substring begins. If no such index is found, or if either string is null, the function value is zero.

Method:

The index is found by shifting and comparing portions of the two strings in registers.

BOOL (Boolean Function) (Bit Strings)

Module Name: IHEWBSF
 Entry Point: IHEBSFO

Function:
To take two source strings and perform one of the sixteen possible logical operations between corresponding bits. The particular operation performed is defined by inserting the bit pattern -
 into the table below:

Method:

The current length of the target string is set equal to either the maximum of the current lengths of the source strings or to the maximum length of the target field (when truncation is necessary to avoid exceeding the length of this field). The necessary operation is performed on the strings and the result stored in the target field. If one string is shorter than the other, it is regarded as being extended on the right with zeros up to the length of the longer. The field between the calculated current length and the maximum length of the target is left unchanged.

CHARACTER STRING OPERATIONS

Concatenate/REPEAT (Character Strings)

Module Name: IHEWCSK
Entry Points:

Operation Concatenate REPEAT (Character string.n)	Entry Point
IHECSKK	

Function:

IHECSKK: to concatenate two character strings into a target field.

IHECSKR: to concatenate $n+1$ instances of the single source string into a target field. If $n \leq 0$, the result is the string itself.

Method:

The current length of the target field is made equal to the smaller of two values:

- the sum of the current lengths of the source fields.
- the maximum length of the target field.

Both entry points use a subroutine that moves characters from a source to the target:

IHECSKK: Uses the subroutine to perform the required number of source moves.

IHECSKR: Uses the subroutine to concatenate the source string with the target field and also to concatenate the target field with itself (whenever possible).

For both entry points, characters beyond the range of the target current length remain unaltered.

Compare (Character Strings)

Module Name: IHEWCSC
Entry Point: IHECSCO

Function:

To compare two character strings and to return a condition code as bits 2 and 3 of a fullword target field as follows:

```
00 if strings are equal
0 1 ~ i f ~ f i r s t ~ s t r i n g ~ c o m p a r e s ~ l o w ~ a t ~ t h e
    first inequality
10 if the first string compares high at
    the first inequality
```

The shorter string is treated as though extended with blanks to the length of the longer one.

The first byte of the target field is also used to preserve the program mask in the PSW for the calling routine. This byte contains:

$\frac{\text { Bits }}{}$	Contents
0 to 1	Instruction length code 01
2 to 3	Condition code as above
4 to 7	Program mask (calling routine)

Method:
The two strings are compared in storage. If the strings are of different lengths and are identical up to the length of the shorter, the remainder of the longer is compared with blanks.

Assign/Fill/HIGH/LOW (Character Strings)

Module Name: IHENCSM
Entry Points:

Operation	Entry Point
Fixed-length assign	IHECSMF
Variable-length assign	IHECSMV
Blank fill only	IHECSMB
HIGH	IHECSMH
LOW	IHECSML

Function:
IHECSMF: to assign a character string to a fixed-length target, filling out with blanks if necessary.

IHECSM: to assign a character string to a variable-length target.

IHECSMB: to fill out the target field from its current length to its maximum length with blanks.

IHECSMH: to fill a target field with the highest character in the collating sequence, up to its current length.

IHECSML: to fill the target field with the lowest character in the collating sequence, up to its current length.

Method:
IHECSMF: The minimum of the source current length and the target maximum length is calculated and the source string is moved to the target for a length equal to this length. Filling of the target with blanks up to the target maximum length is performed if necessary. The current length of the target is set equal to its maximum length.

IHECSMV: moves the string as above, but without blank filling. The current length of the target is set appropriately.

IHECSMB: propagates blanks and sets the current length of the target equal to its maximum length.

IHECSMH, IHECSML: uses part of the blank fill routine to propagate the highest or lowest character in the collating sequence up to the current length of the target.

CHARACTER STRING FUNCTIONS

SUBSTR (Character Strings)

Module Name: IHEWCSS

Operation	Entry Point
SUBSTR(Character-string,i)	IHECSS2
SUBSTR (Character-string, $i, j)$	IHECSS 3

Function:

To produce a string dope vector describing the SUBSTR pseudo-variable and function of a character string.

Method:

Arithmetic is performed according to the function definition, using the current length of the argument string. The result describes a fixed-length string.

Error and Exceptional Conditions:
STRINGRANGE

INDEX (Character Strings)

Module Name: IHEWCSI
Entry Point: IHECSIO
Function:
To compare two character strings to see if the second is identical to a substring of the first, and, if it is, to produce a binary integer (the index) which indic ates the first character position in the first string at which such a substring begins. If no such index is found, or if either string is null, the function value is zero.

Method:

The first string is scanned from left to right for a character equal to the first character in the second string. If a match is found, the whole of the second string is compared with a substring of the first string beginning at the matching character. If they are equal, an index is produced. The scanning continues until either an index is produced or the end of the first string is reached.

Library arithmetic modules support all those arithmetic generic functions and operators for which the compilers neither produce in-line code nor (as for the functions FIXED, FLOAT, BINARY and DECIMAL) use the conversion package. The names of the library modules which support the arithmetic operations are given in Figure 3; the names of those which support the arithmetic functions are given in Figure 4.

Statistics for accuracy of floatingpoint modules are given where considered meaningful and helpful; an explanation of their use is given in the chapter on mathematical routines. precise results are obtained from all fixed-point modules except complex division and complex ABS, where small truncation errors inevitably occur, and the ADD function (fixed decimal), in which the effect of truncation errors depends on the relative values of the scale factors of the arguments.

Any restrictions on the admissibility of arguments are noted under the headings 'Range' and 'Error and Exceptional Conditions*

Range: This states any ranges of arguments for which a module is valid. Arguments outside the ranges given are assumed to have been excluded before the module is called.

Error and Exceptional Conditions: These cover conditions which may result from the
use of a routine; they are listed in four categories:

P -- Programmed conditions in the module concerned. Programmed tests are made where this is not too costly and, if an invalid argument is found, a branch is taken to the entry point IHEERRC of the execution error package (EXEP). This results in the printing of an appropriate message and in the ERROR condition being raised.

I -- Interruption conditions in the module concerned. For those routines where SIZE and FIXEDOVERFLOW are detected by programmed tests or where hardware interruptions may occur, the OVERFLOW, UNDERFLOW, FIXEDOVERFLOW, SI ZE and ZERODIVIDE conditions pass to the ON handler (IHEERR) and are treated in the normal way. The machine is assumed to be enabled for all interruptions except significance, which is masked off.

O -- Programmed conditions in modules called by the module concerned. These occur when invalid arguments are detected in the module called.

H -- As I, but the interruption conditions occur in the modules called by the module concerned.

Figure 3. Arithmetic Operations

REAL OPERATIONS
Positive Integer Exponentiation (fixed binary)

Module Name: IHEWXIB
Entry Point: IHEXIB0

Function:
To calculate $x^{* *} n$, where n is a positive
integer.
Method:
The result is set initially to the value of the argument. The final result is then obtained by repeated squaring of this value or squaring and multiplying by the argument.

Range:

$$
0<n<2 * * 31
$$

The precision rules of $P L / I$ impose a further restriction in that if x has a precision (F, q), this module will be called only if $n *(p+1)-1 \leq 31$. This implies that $n \leq 32 /(p+1) \leq 16$ for all such cases.

Positive Integer Exponentiation (fixed decimal)

Module Name: IHEWXID
Entry Point: IHEXIDO
Function:
To calculate $x^{* *} n$, where n is a positive integer.

Method:

The result is set initially to the value of the argument. The final result is then obtained by repeated squaring of this value or squaring and multiclying by the argument.

Range:

The precision rules of $P L / I$ impose the restriction that if x has a precision (p, q), this module will be called only if $n *(p+1)-1 \leq 15$. This implies that $n \leq 16 /(p+1) \leq 8$ for all such cases and, in fact, this module will operate only for the range $0<n \leq 8$.

Integer Exponentiation (floating-point)

Module Names and Entry Points:

Argument	Module Name	Entry Point
Short float	IHEWXIS	IHEXIS0
Long float	IHEWXIL	IHEXILO

Function:

To calculate $x^{* *} n$, where n is an integer between $-2 * * 31$ and $2 * * 31-1$ inclusive.

Method:

If the exponent is zero and the argument nonzero, the result 1 is returned immediately. Otherwise the result is set initially to the value of the argument and the exponent is made positive. The argument is raised to this positive power by repeated squaring of the contents of the result field or squaring and multiplying by the argument. Then, if the exponent is negative, the reciprocal of the result is taken, otherwise it is left unchanged.

Accuracy:

The values given here are for the relative error divided by the exponent for exponents between 2 and 1023; the arguments are uniformly distributed over the full range for each exponent for which neither OVERFLOW nor UNDERFLOW occurs. There are $2 * *(10-k)$ arguments for each exponent in the range $2 * * k \leq$ exponent \leq $2 * *(k+1)-1$, where k has integral values from 1 to 9 inclusive.

IHEWXIS

Error and Excectional Conditions:
$\mathrm{P}: \mathbf{x}=0$ with $\mathrm{n} \leq 0$
I : OVERFLOW, UNDERFLOW
Since $x * *(-m)$, where m is a positive integer, is evaluated as $1 /(x * * m)$, the OVERFLOW condition may occur when m is large, and the UNDERFLOW condition when x is very small.

Other Information:

IHEWXIS: For large exponents, for example, those greater than 1023, it is generally faster and more accurate to use the module IHEWXXS rather than IHEWXIS, passing the exponent as a floating-point argument. However, it should be noted that IHEWXXS will not accept a negative first argument, and thus it is necessary to pass the absolute value of this argument, and also, in cases where the exponent is odd, to test the sign of the argument in order to be able to attach the correct sign to the numerical result returned.

General Floating-Point Exponentiation

Module Names and Entry Points:

Argument	Module Name	Entry Point
Short float	IHEWXXS Long float	IHEXXS0 IHEWXXL
IHEXXL0		

Function:
To calculate $x^{* *} y$, where x and y are floating-point numbers.

Method:
When $x=0$, the result $x * * y=0$ is given if $y>0$, and an error message if $y \leq 0$. When $x \neq 0$ and $y=0$, the result $x * * y=1$ is given. Otherwise $x * * y$ is computed as $\operatorname{EXP}(y * \operatorname{LOG}(x))$, using the appropriate mathematical function routines.

0 : a. $x<0$ with $y \neq 0$: error caused in LOG routine
b. y *LOG(x) > 174.673: error caused in EXP routine

Shift-and-assign, Shift-and-load (fixed decimal)

Module Name: IHEWAPD
Entry Points:

Operation	Entry Point
Shift and assign	IHEAPDA
Shift and load	IHEAPDB

Function:

IHEAPDA: To convert a real fixed decimal number with precision (p_{1}, q_{1}) to precision $\left(p_{2}, q_{2}\right)$, where $p_{1} \leq 31$ and $\mathrm{F}_{2} \leq 15$.

IHEAPDB: To convert a real fixed decimal number with precision (p_{1}, q_{1}) to precision ($31, q_{2}$), where $p_{1} \leq 31$.

Method:

The argument scale factor is subtracted from the target scale factor. The argument is converted to precision 31 in a field with a shift equal to the magnitude of the difference between the scale factors; the shift is to the left if the difference is positive and to the right if negative.

If entry point IHEAPDB is used, the field is moved unchanged to the target. If entry point IHEAPDA is used, the result is checked for FIXEDOVERFLOW and then assigned to the target with the specified precision. The assignment may cause the SIZE condition to be raised.

Error and Exceptional Conditions:
I : FIXEDOVERFLOW or SIZE

COMPLEX OPERATIONS

Multiplication/Division (fixed binary)

Module Name: IHEWMZU
Entry Points:

Mathematical Operation	Entry Point
$z_{1} * z_{2}$	IHEMZUM
z_{1} / z_{2}	IHEMZUD

To calculate $z_{1} * z_{2}$ or z_{1} / z_{2}, where z_{1} and z_{2} are fixed-point binary complex numbers.

Method:

```
Let }\mp@subsup{z}{1}{}=a+bI and \mp@subsup{z}{2}{}=c+dI. Then
for multiplication, an incorporated sub-
routine is used to compute a*c - b*d and
b*c + a*d; these are tested for FIXED-
OVERFLOW and then stored as the real and
imaginary parts of the result.
For division, the subroutine is used to
compute a*c+b*d and b*c - a*d. The
expression c**2 + d**2 is computed and
the real and imaginary parts of the
result are then obtained by division.
The subroutine computes the expressions
u*x + v* Y and v*x - u* y.
```

Error and Exceptional Conditions:

```
I : FIXEDOVERFLOW in either routine,
    ZERODIVIDE in the division routine.
```

Multiplication/Division (fixed decimal)

Module Name: IHENMzV

Entry Points:

Mathematical	Entry Operation $z_{1} * z_{2}$
z_{1} / z_{2}	POint
	IHEMZVM
	IHEMZVD

Function:
To calculate $z_{1} * z_{2}$ or z_{1} / z_{2} where z_{1} and z_{2} are fixed-point decimal complex numbers.

Method:

Let $z_{1}=a+b I$ and $z_{z}=c+d I$. The products $a * c, b * c, a * d$ and $b * d$ are computed. Then the required result is obtained as follows:

```
Multiplication:
    Real part a*c - b*d
    Imaginary part b*c + a*d
Division:
    Real part (a*c+b*d)/(c*c + d*d)
    Imagi nary part (b*c-a*d)/(c*c+d*d)
```

Error and Exceptional Conditions:

```
I : FIXEDOVERFLOW in either routine,
        ZERODIVIDE in the division routine.
```


Other Information:

Where the operands differ in precision, it is faster to present the longer operand as the second argument rather than the first.

Multiplication (floating-point)

Module Names and Entry Points:

Argument	Module Name	Entry Point
Short float	IHEWMZW	IHEMZW0
Long float	IHEWMZZ	IHEMZZO

Function:

To compute $z_{1} * z_{2}$ in floating-point, when $z_{1}=a+b I$ and $z_{2}=c+d I$.

Method:
The real and imaginary parts of the result are computed as $a * c-b * d$ and $b *$ $c+a * d$, respectively.

Error and Exceptional Conditions:
I : Exponent OVERFLOW and UNDERFLOW

Division (floating-point)

Module Names and Entry Points:

Arqument	Module Name	Entry Point
Short float	IHEWDZW IHEDZWN	
Long float	IHEWDZZ	IHEDZZO

Function:

To compute z_{1} / z_{2} in floating-point, when $z_{1}=a+b I$ and $z_{z}=c+d I$.

Method:

1. ABS (c) \geq ABS (d)

Compute $q=d / c$
then REAL $\left(z_{1} / z_{2}\right)=(a+b * q) /(c+d * q)$
IMAG $\left(z_{1} / z_{2}\right)=(b-a * q) /(c+d * q)$
2. $\operatorname{ABS}(c)<\operatorname{ABS}(d)$
$(a+b I) /(c+d I)=(b-a I) /(d-c I)$. which reduces to the first case.

The comparison between ABS (c) and ABS (α) is adequately performed in short precision in both modules.

Error and Exceptional Conditions:
I : OVERFLOW, UNDERFLOW and ZERODIVIDE

Positive Integer Exponentiation (fixed
binary)

Module Name: IHEWXIU
Entry Point: IHEXIU0

Function:

To calculate $z *{ }^{n} n$, where n is a positive integer less than $2 * * 31$.

Method:

The contents of the target field are set to the value of z. The final result is obtained by repeated squaring of the contents of the target field or squaring and multiplying by z. Multiplication is performed by the complex multiplication routine Ihemmzu.

Range:

```
0<n< 2**31.
```

The precision rules of $P L / I$ impose a further restriction in that if z has a precision (p, q), this module may only be called if $n *(p+1)-1 \leq 31$. This implies that $n \leq 32 /(p+1) \leq 16$ for all such cases.

Positive Integer Exponentiation (fixed decima1)

Module Name: IHEWXIV

Entry Point: IHEXIV0
Function:
To calculate $z * * n$, where n is a positive integer less than $2 * * 31$.

Method:

The contents of the target field are set to the value of the argument. The final result is obtained by repeated squaring of the contents of the target field or squaring and multiplying by the argument. multiplication is performed by the complex multiplication routine IHEWMZV.

Range:
The precision rules of $P L / I$ impose the restriction that if z has a precision (p, q), this module may only be called if $\mathrm{n} *(\mathrm{p}+1)-1 \leq 15$. This implies that $n \leq 16 /(p+1) \leq 8$ for all such cases and, in fact, this module will operate only for the range $0<n \leq 8$.

Integer Exponentiation (floating-point)
Module Names and Entry Points:

	Module Argument	Entry Pa me
Short float	IHEWXIW	IHEXIW0
Long float	IHEWXIZ	IHEXIZO

Function:

To calculate $z^{* *} n$, where n is an integer between -2**31 and 2**31-1 inclusive.

Method:

If the exponent is 0 and the argument non-zero, the result 1 is returned irmediately. If the exponent is non-zero, the contents of the target field are set to the argument value. The exponent is made positive and the argument raised to this positive power by repeated squaring of the contents of the target field or squaring and multiplying by the argument. Multiplication is performed by a branch to the complex multiplication subroutine. Then, if the exponent was negative, the reci procal of the result is taken, otherwise it is left unchanged.

Error and Exceptional Conditions:

```
p:z=0 with n \leq 0
I : OVERFLOW, UNDERFLOW
    Since x**(-m), where m is a positive
    integer, is evaluated as 1/(x**m).
    the OVERFLOW condition may occur when
    m}\mathrm{ is large and the UNDERFLOW condi-
    tion when }x\mathrm{ is very small.
H : OVERFLOW or UNDERFLOW in complex mul-
    tiplication routine (IHEWMzW or
    IHEWMZZ)
```


General Floating-Point Exponentiation

Module Names and Entry Points:

Arqument	Module Name	Entry Point
Short float	IHEWXXW	IHEXXW0
Long float	IHEWXXZ	IHEXXZO

Function:
To calculate $z_{1} * * z_{2}$, where z_{1} and z_{2} are complex numbers of the same precision.

Method:
When $z_{1}=0$, the result 0 is returned if REAL $\left(z_{2}\right)>0$ and IMAG $\left(z_{2}\right)=0$.
Otherwise, $z_{1} * * z_{2}$ is computed as

$$
\operatorname{EXP}\left(z_{2} * \operatorname{LOG}\left(z_{1}\right)\right),
$$

with the proviso that if IMAG $\left(z_{1}\right)=0$ then LOG (ABS $\left.\left(z_{1}\right)\right)$ is calculated by a call to the real LOG routine, not to the complex LOG routine.

```
Error and Exceptional Conditions:
```



```
        IMAG(z_ )}\not=
    O : a. REAL(zz*LOG(z
        caused in IHEWEXS or IHEWEXL
    b. IHEWXXW:
        ABS (IMAG(z (z*LOG(z
        error caused in SIN routine
        (IHEWSNS)
        IHEWXXZ:
        ABS (IMAG(zz*LOG(z_))) \geq 2**50*pi:
        error caused in SIN routine
        (IHEWSNL)
```

FUNCTIONS WITH REAL ARGUMENTS
ADD (Fixed decimal)
Module Name: IHEWADD
Entry Point: IHEADDO

Function:
$\operatorname{ADD}\left(x_{1}, x_{2}, p, q\right)$ where x_{1} and x_{2} are real fixed-point decimal numbers, and (p, q) is the required precision of the result.

Method:
If both arguments are non-zero, a call to the module IHEWAPD is used to shift the one with the larger scale factor to give it the scale factor of the other, and convert it to precision 31. The arguments are added together, and IHEWAPD is used to convert the sum to the specified precision and to assign it to the target field.

If one of the arguments is zero, the other is treated as the sum above.

Error and Exceptional Conditions:
H : FIXEDOV ERFLOW or SIZE may occur in IHEWAPD.

MAX, MIN
Module Names and Entry Points:

Arqument	FL/I Function	Module Name	Entry Point
Fixed binary	MAX	I ${ }^{\text {HEWMXB }}$	IHEMXBX
	MIN		IHEMXBN
Fixed decimal	MAX	IHEWMXD	IHEMXDX
	MIN		IHEMXDN

Short float	MAX	IHEWMXS	IHEMXSX
	MIN		IHEMXSN

Function:

> To find the maximum or the minimum of a group of arithmetic values.
> All arguments must have the same base, scale and precision.

Method:

IHEWMX B, IHEWMXS, IHEWMXL: The value of the current maximum or minimum is set to the value of the first argument; it is then compared algebraically with the next argument and replaced by it if appropriate. The process is repeated until a test on the argument list indicates that all source items have been processed, when the current value is stored as the result.

IHENMXD: The address of the current maximum or minimum is set to the address of the first argument; this argument is then compared algebraically with the next argument, and the address of the latter replaces that of the former if appropriate. The process is repeated until a test on the argument list indicates that all source items have been processed, when the result is moved into the target field.

FUNCTIONS WITH COMPLEX ARGUMENTS

ADD (Fixed decimal)

Module Name: IHEWADV
Entry Point: IHEADVO

Function:

ADD $\left(z_{1}, z_{2}, p, q\right)$ where z_{1} and z_{2} are complex fixed-point decimal numbers, and (p, q) is the required precision of the result.

Method:
The real parts of each argument are added and the sum is assigned to the target field by using the real fixed decimal ADD module (IHEWADD). The imaginary parts are treated similarly.

Error and Exceptional Conditions:
H : FIXEDOVERFLOW or SIZE may occur in IHEW APD.

MULTIPLY (fixed binary)

Niodule Name: IHEWMPU
Entry Point: IHEMPU0

Function:

MULTIPLY $\left(z_{1}, z_{2}, p, q\right)$ where z_{1} and z_{2} are complex fixed-point binary numbers, and (p, q) is the required precision of the result.

Method:

Let the arguments be $z_{1}=a+b I$ and $\mathrm{z}_{2}=\mathrm{c}+\mathrm{dI}$.

Then REAL $\left(z_{1} * z_{2}\right)=a * c-b * d$
$\operatorname{IMAG}\left(z_{1} * z_{2}\right)=b * c+a * d$
The real and imaginary parts of the product are computed. These numbers are then shifted to give them the required scale factor (q).

The results of the shifts are tested for FIXEDOVERFLOW and truncated by left shifts.

Error and Exceptional Conditions:
I : FIXEDOVERFLOW

MULTIPLY (fixed decimal)

Module Name: IHEWMPV
Entry Point: IHEMPVO

Function:
MULTIPLY $\left(z_{1,}, z_{2}, p, q\right)$ where z_{1} and z_{2} are complex fixed-point decimal numbers, and (p, q) is the required precision of the result.

Method:

Let $z_{1}=a+b I$ and $z_{2}=c+d I_{1}$ then:
$\operatorname{REAL}\left(z_{1} * z_{2}\right)=a * c-b * d$.
$\operatorname{IMAG}\left(z_{1} * z_{2}\right)=b * c+a * d$.
The real and imaginary parts are calculated and then each is assigned to the target with precision (p, q) by separate calls to the entry point IHEAPDA of the decimal shift and assign module IHEWAPD.

Error and Exceptional Conditions:
H : FIXEDOVERFLOW or SIZE in IHEWAPD.

DIVIDE (fixed binary)

Module Name: IHEWDVU
Entry Point: IHEDVUO

Function:

$\operatorname{DIVIDE}\left(z_{1}, z_{2}, P, q\right)$ where z_{1} and z_{2} are complex fixed-point binary numbers, and (p, q) is the required precision of the result.

Method:

```
Let \(z_{1}=a+b I\) and \(z_{2}=c+d I\), then:
\(\operatorname{REAL}\left(z_{1} / z_{2}\right)=(a * c+b * d) /(c * * 2+d * * 2)\)
\(\operatorname{IMAG}\left(z_{1} / z_{2}\right)=(b * c-a * d) /(c * * 2+d * * 2)\)
```

The expressions $a * c+b * d, b * c-a * d$, and c**2 + d**2 are computed with a precision of 63. The denominator, $c * * 2+d * * 2$ is shifted to precision 31 by either a right or left shift.

Two calls are then made to an incorporated subroutine which accepts a numerator and shifts it so that it has two insignificant leading digits. It then divides by $c * * 2+d * * 2$ and shifts the quotient to the required scale factor (q).

Error and Exceptional Conditions:

I : FIXEDOVERFLOW or ZERODIVIDE

DIVIDE (fixed decimal)

Module Name: IHEWDVV
Entry Point: IHEDVVO
Function:
DIVIDE (z_{1}, z_{2}, p, q) where z_{1} and z_{2} are complex fixed-point decimal numbers, and (p, q) is the required precision of the result.

Method:
Let $z_{1}=a+b I_{1}$ and $z_{2}=c+d I$, then
$\operatorname{REAL}\left(z_{1} / z_{2}\right)=(a * c+b * d) /(c * * 2+d * * 2)$
$\operatorname{IMAG}\left(z_{1} / z_{2}\right)=(b * c-a * d) /(c * * 2+d * * 2)$
The expressions $a * c+b * d, b * c-a * d$, and $c * * 2+d * * 2$ are computed. Leading zeros are removed from the denominator ($c * * 2$ + $d * * 2$) by truncation on the left and a left shift if necessary. If the
denominator is still more than 15 digits long it is truncated on the right to 15 digits.

Two calls are then made to an incorporated subroutine which accepts a numerator and shifts it to precision 31. with 2 leading zeros by calling IHEWAPD (via entry point IHEAPDB). It then divides by c**2 + d**2 and calls IHEWAPD (via entry point IHEAPDA) to assign the quotient to the target field with the required precision (p, q).

Error and Exceptional Conditions:
I : ZERODIVIDE
H : FIXEDOVERFLOW or SIZE in IHEWAPD

ABS (fixed binary)

Module Name: IHENABU
Entry Point: IHEABUO
Function:

```
To calculate ABS (z)=SQRT(x**2 + y**2),
where z = x + yI.
```

Method:

```
If }x=y\mathrm{ , result is }x*SQRT(2)
Ot herwise,
let X1 = MAX(ABS(x),ABS(y))
    Y1 = MIN(ABS (x),ABS (y)).
```

Then ABS(z) is computed as

$$
\mathrm{X} 1 * \operatorname{SQRT}(1+(\mathrm{Y} 1 / \mathrm{X} 1) * * 2)
$$

where the fixed binary calculation of SQRT (g) for $1 \leq g<2$ is included within the module.

The first approximation to the square root is taken as

$$
g /(1+g)+(1+g) / 4
$$

with maximum relative error 1.8*2**-10.
One Newton-Raphson iteration gives maximum relative error 1.6*2**-20, and suffices if $\mathrm{X1}<2 * *(15-q)$ where q is the scale factor of z.

Otherwise a second iteration is used, with theoretical maximum relative error of $1.3 * 2 * *-40$.

Error and Exceptional conditions:
I : FIXEDOV ERFLOW
ABS (fixed decimal)
Nodule Name: IHEWABV

Entry Point: IHEABVO

Function:

To calculate ABS (z) = SQRT (x**2 $+y * * 2$) where $z=x+y I$.

Method:

x and y are converted to binary, with appropriate scaling if either exceeds 9 significant decimal digits.

Let X 1 be the maximum, and $Y 1$ the minimum, of the absolute values of the two binary numbers thus obtained.

Then if $\mathrm{X1}=\mathrm{Y} 1=0$, result 0 is returned. Otherwise, an approximation to ABS (z) is computed as

```
X1*SQRT(1 + (Y1/X1)**2),
```

where the fixed binary calculation of SQRT(g) for $1 \leq g \leq 2$ is included within the module.

The first approximation to the square root is taken in the form

$$
A+B *(1+g)-A /(1+g)
$$

with maximum relative error 2.17*10**-4, and one Newton-Raphson iteration then gives a value with maximum relative error 2.35*10**-8.

Multiplication by X1 produces a value for ABS(z) which is rounded and converted to decimal, and this suffices if it has not more than 7 significant decimal digits. Otherwise, this approximation is scaled if necessary and used in a final NewtonRaphson iteration for SQRT ($x * * 2+y^{* * * 2)}$ in decimal, with theoretical maximum relative error 2.76*10**-16.

Error and Exceptional Conditions:

I : FIXEDOVERFLOW

ABS (floating-point)

Method:

```
    Let z = x + yI. If x = y = 0, answer is
    0.
    Otherwise let }\mp@subsup{z}{1}{}=\operatorname{MAX(ABS}(x),\operatorname{ABS}(y)
        and \mp@subsup{z}{2}{}}=\operatorname{MIN(ABS (x),ABS (y)).
    Then the answer is computed as
```


Accuracy:

IHEWABW

IHEWABZ

Error and Exceptional Conditions:

I : OVERFLOW

The Library supports all floating point arithmetic generic functions and has separate modules for short and long precision real arguments. Additionally, the Library has separate modules for short and long precision complex arguments where these are admissible.

Since the calling sequence generated in compiled code is the same as that required for passing the same arguments to a PL/I procedure, it is permissible to pass the names of any of the float arithmetic generic functions as arguments between procedures, according to the normal rules for entry names.

Any restrictions on the admissibility of arguments are noted under the heading 'Error and Exceptional Conditions.'

Error and Exceptional Conditions: These cover conditions which may result from the use of a routine; they are listed in four categories:

P -- Programmed conditions in the module concerned. programmed tests are made where this is not too costly and, if an invalid argument is found, a branch is taken to the entry point IHEERRC of the execution error package (EXEP). This results in the printing of an appropriate message and in the ERROR condition being raised.

I -- Interruption conditions in the module concerned. For those routines where an OVERFLOW interruption may occur, the condition is passed to the ON condition error handler (IHEWERR) and is treated in the normal way. For those routines where an UNDERFLOW may occur, the condition is disabled and both intermediate and terminal underflows are accepted as true zero. In certain circumstances, however, where intermediate underflow may cause severe deterioration in the accuracy of the result, the condition is avoided by programmed tests.
o -- Programmed conditions in modules called by the module concerned. These occur when invalid arguments are detected in the module called.

H -- As I, but the interruption conditions occur in the modules called by the module concerned.

Accuracy

In order to appreciate properly the meaning of the statistics for accuracy given with each module, some consideration of the limits and implications of these statistics is required. Because the size of a machine word is limited, small errors may be generated by mathematical routines. In an elaborate computation, slight inaccuracies can accumulate and become large errors. Thus, in interpreting final results, errors introduced during the various intermediate stages must be taken into account.

The accuracy of an answer produced by a routine is influenced by two factors: (1) the accuracy of the argument and (2) the performance of the routine.

Most arguments contain errors. An error in a given argument may have accumulated over several steps prior to the use of the routine. Even data fresh from input conversion may contain slight errors. The effect of an argument error on the accuracy of an answer depends solely on the nature of the mathematical function involved and not on the particular coding by which that function is computed within a routine. In order to assist users in assessing the accumulation of errors, a guide on the propagational effect of argument errors is provided for each function. Wherever possible, this is expressed as a simple formula.

The performance statistics supplied in this document are based upon the assumption that the arguments are perfect (i.e.. without errors, and therefore having no argument error propagation effect upon answers). Thus the only errors in answers are those introduced by the routines themselves.

For each routine, accuracy figures are given for the valid argument range or for representative segments of this. In each case the particular statistics given are those most meaningful to the function and range under consideration.

For example, the maximum relative error and the root-mean-square of the relative error of a set of answers are generally useful and revealing statistics, but are useless for the range of a function where its value becomes 0 , since the slightest error of the argument value can cause an unbounded fluctuation in the relative mag-
nitude of the answer. Such is the case with SIN(x) for values of x close to pi; in this range it is more appropriate to discuss absolute errors.

The results were derived from random distributions of 5000 arguments per segment, generated to be either uniform or exponential, as appropriate. It must be emphasized that each value quoted for the maximum error refers to a particular test using the method described above, and should be treated only as a guide to the true maximum error.

This explains, for example, why it is possible that the maximum error quoted for a segment may be greater than that found from a distribution of different arguments over a larger range which includes that segment.

Hexadecimal Truncation Errors

While the use of hexadecimal numbers in System 360 has 1 ed to increased efficiency and flexibility, the effect of the variable number of significant digits carried by the floating-point registers must be noted in making allowance for truncation errors. In the production of the PL/I Library, special care was taken to minimize such errors, whenever this could be accomplished at minor cost. As a result, the relative errors produced by some of the Library routines may be considerably smaller than the relative error produced in some instances by a single operation such as multiplication.

Representations of finite length entail truncation errors in any number system. With binary normalization, the effect of truncation is roughly uniform. With hexadecimal normalization, however, the effect varies by a factor of 16 depending on the size of the mantissa; in a chain of computations, the worst error committed in the chain usually prevails at the end.

In short-precision representation, a number has between 21 and 24 significant binary digits. Therefore, the truncation errors range from 2**-24 to 2**-20 (5.96* 10**-8 to 9.5*10**-7). Assuming exact operands, a product or quotient is correct to the 24 th binary digit of the mantissa. Hence truncation errors contributed by multiplication or division are no more than $2 * *-20$. The same is true for the sum of two operands of the same sign. Subtrac tion, on the other hand, is the commonest cause of loss of significant digits in any number system. For short-precision operations, therefore, a guard digit is provided which helps to reduce such loss.

In long-precision representation, a number has between 53 and 56 significant binary digits. Therefore truncation errors range from 2**-56 to $2 * *-52$ (1.39*10**-17 to 2.22*10**-16).

Normal care in numerical analysis should be exercised for addition and subtraction. In particular, when two algorithms are theoretically equivalent, it usually pays to choose the one which avoids subtraction between operands of similar size.

Hexadecimal Constants

Many of the modules described below discriminate between algorithms or test for errors by comparisons involving hexadecimal constants; it must be realized that where decimal fractions are used in the descriptions the fractions are only quoted as convenient approximations to the hexadecimal values actually employed.

Al gorithms

The algorithms are the methods by which the mathematical functions are computed. The presentation of each algorithm is divided into its major computational steps, with the formulas necessary for each step supplied. Some of the formulas are widely known; those that are not so widely known are derived from more common formulas. The process leading from the common formula to the computational formula is sketched in enough detail so that the derivation can be reconstructed by anyone who has an understanding of college mathematics and access to the common texts on numerical analysis. 1

Many of the approximations were derived by the so-called "minimax" methods. The approximation sought by these methods can be characterized as follows: given a function $f(x)$, an interval I, the form of the approximation (such as the rational form with specified degrees), and the type of error to be minimized (such as the relative error) , there is normally a unique approximation to $f(x)$ whose maximum error over I is the smallest among all possible approximations of the given form. Details of the theory and the various methods of deriving such approximations are left to the reference.

1Any of the modern numerical texts may be used as a reference. One such text is A. Ralston's A First Course in Numerical Analysis (McGraw-Hill Book Company, Inc., New York, 1965). Background information for algorithms that use continued fractions may be found in H. S. Wall's Analytic Theory of Continued Fractions (D. VanNostrand Co. Inc., Princeton, N.J., 1948).

Terminology

Maximum and root-mean-square values for the relative and (where necessary) the absolute errors are given for each module. These are defined thus:

$$
\begin{aligned}
\text { Let } f(x)= & \text { the correct value for a } \\
& \text { function } \\
g(x)= & \text { the result obtained from the } \\
& \text { module in question }
\end{aligned}
$$

Then the absolute exror of the result is

$$
A B S(f(x)-g(x))
$$

and the relative error of the result is

$$
A B S((f(x)-g(x)) / f(x))
$$

Let the number of sample results obtained be N; then the root-mean-square of the absolute error is
$\operatorname{SQRT}\left(\sum_{i}\left(\operatorname{ABS}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \neq(2) / N\right)\right.$, and the root-mean-square of the relative error is
$\left.\operatorname{SQRT}\left(\sum_{i}\left(\operatorname{ABS}\left(f\left(\mathrm{x}_{\mathrm{i}}\right)-g\left(x_{i}\right)\right) / f\left(x_{i}\right)\right) * * 2\right) / N\right)$.
The Library mathematical modules are summarized in Figures 5 and 6.

Function	Real Arguments	
	Short float	ong Float
\|SQRT	IHEWSQS	IHEWSQL
\| EXP	IHEWEXS	IHEWEXL
\| LOG, LOG2, LOG10	IHEWLNS	IHEWLNL
\|SIN, COS,SIND, COSD	IHEWSNS	IHEWSNL
ITAN, TAND	IHEWTNS	IHEWTNL
\|ATAN, ATAND	IHEWATS	IHEWATL
\|SINH, COSH	IHEWSHS \|	IHEWSHL
\| TANH	IHEWTHS	IHEWTHL
\|ATANH	IHEWHTS	IHEWHTL
\| ERF, ERFC	IHEWEFS	IHEWEFL

Figure 5. Mathematical Functions With Real Arguments

[^1]FUNCTIONS WITH REAL ARGUMENTS

SQRT (short floating-point real)
Module Name: IHEWSQS
Entry Point: IHESQSO
Function:

To calculate the square root of x.
Method:
If $x=0, \operatorname{SQRT}(x)=0$. Otherwise, let

$$
X=16 \neq(2 * p-q) * E^{\prime}
$$

where p is an integer, $q=0$ or 1, and $1 / 16 \leq f<1$. Then

SQRT (x) $=16 * * p * 4 * *-q * S Q R T(f)$
The first approximation, Y_{i}, of SQRT(x) is obtained by the hyperbolic fit

$$
\begin{aligned}
& Y_{0}=16 * * p * 4 * *-q *(1.681595- \\
& 1.288973 /(0.8408065+f))
\end{aligned}
$$

This approximation attains the minimax relative error. The maximum relative error is 2**-5.748.

Two Newton-Raphson iterations then yield

$$
\begin{aligned}
& y_{1}=\left(y_{i}+x / y_{i}\right) / 2 \\
& y_{2}=\left(y_{1}-x / y_{1}\right) / 2+x / y_{1}
\end{aligned}
$$

with a partial rounding. The maximum relative error of y_{2} is theoretically 2**-25.9.

Effect of Argument Error:
The relative error caused in the result is approximately half the relative error in the argument.

Accuracy:

Error and Exceptional Conditions:

$$
\mathbf{P}: \mathbf{x}<0
$$

SQRT (long floating-point real)
Module Name: IHEWSQL

Function:

To calculate the square root of $\mathrm{x}_{\text {. }}$
Method:

```
If x = 0, SQRT (x) = 0. Otherwise, let
x = 16**(2*p - q)*f, where p is an inte-
ger, q = 0 or 1, and 1/16 \leqf< 1. Then
```

 SQRT (x) \(=16 * * p * 4 * *-q * S Q R T(f)\).
 The first approximation of SQRT(f) is computed as:

$$
y=16 * * p * 4 * *(1-q) * 0.2202(f+0.2587)
$$

This approximation was chosen in order to permit the use of single precision instructions in the final iteration by making the quantity $x / y_{3}-y_{3}$ below less than $16 * *(p-8)$.

Four Newton-Raphson iterations of the
form $y=\left(y_{n}+x / y_{n}\right) / 2$ are then applied, two in short precision and two in long precision, the last being computed as

$$
\operatorname{SQRT}(x)=y_{3}+\left(x / y_{3}-y_{3}\right) / 2
$$

with an appropriate truncation maneuver to obtain virtual rounding.

The maximum relative error of the final result is theoretically $2 * *-63.23$.

Effect of an Argument Error:

The relative error caused in the result is approximately half of the relative error in the argument.

Accuracy:

Error and Exceptional Conditions:

$$
P: x<0
$$

EXP (short floating-point real)

Module Name: IHEWEXS

Function: To calculate e to the power x.
Method:

If $x<-180.218$, a zero result is returned immediately.

Otherwise EXP(x) is calculated as follows:

1. Divide x by LOG (2) and write

$$
y=x / \operatorname{LOG}(2)=4 * a-b-d
$$

where a and b are integers, $0 \leq b \leq 3$ and $0 \leq d<1$.

Then $\operatorname{EXP}(x)=2 * * y=16 * * a * 2 * *-b * 2 * *-d$
2. Compute $2 * *-d$ by the following fractional approximation:
$2 * *-d=1-2 * d /(0.034657359 * d * * 2+d+$
$9.9545948-617.97227 /(d * * 2+87.417497))$

This formula can be obtained by the transformation of the Gaussian continued fraction
$\operatorname{EXP}(-z)=1-z /(1+z /(2-z /(3+z /(2-z /(5+z /(2-z$ ((7+z/2-...))))))

The maximum relative error of this approximation is 2**-29.
3. Multiply 2**-d by $2 * *-b$
4. Finally multiply by $16 * * a$ by adding a to the characteristic of the result of step 3.

Effect of Argument Error:

The relative error caused in the result is approximately equal to the absolute error in the argument, i.e., to the argument relative error multiplied by x. Thus for large values of x, even the round-off error of the argument causes a substantial relative error in the answer.

Accuracy:

Error and Exceptional Conditions:
$I:$ OVERFLON if $x>174.673$

EXP (long floating-point real)
Module Name: IHEWEXL

Entry Point: IHEEXLO

Function: To calculate e to the power x.

Method:

If $x<-180.2187$, return zero as the result.

Otherwise EXP(x) is calculated as follows:

1. Divide x by LOG(2) and let

$$
y=x / \operatorname{LOG}(2)=4 * a-b-c / 16
$$

where a, b, and c are integers, $0 \leq b \leq$ 3. and $0 \leq c \leq 15$. Then, as an exact representation for x, obtain

$$
x=(4 * a-b-c / 16) * \operatorname{LOG}(2)-d
$$

where the remainder d is in the range $0 \leq$ $\mathrm{d}<\operatorname{LOG}(2) / 16$. This reduction is carried out in extra precision. Then
$\operatorname{EXP}(x)=16 * * a * 2 * *-b * 2 * *(-c / 16) * \operatorname{EXP}(-d)$
2. Compute EXP(-d) by using a minimax polynomial approximation of degree 6 over the range $0 \leq d<\operatorname{LOG}(2) / 16$. The coefficients of this approximation were obtained by taking the minimax of relative errors under the constraint that the constant term shall be exactly one. The relative error is less than $2 * *-56.87$.
3. Multiply EXP (-d) by $2 * *(-c / 16)$, then halve the result b times.
4. Finally. multiply by 16**a by adding a to the characteristic of the result of step 3 .

Effect of an Argument Error:
The relative error caused in the result is approximately equal to the absolute error in the argument, i.e.. to the argument relative error matiplied by x. Thus for large values of x, even the round-off error of the argument causes a substantial relative error in the answer.

Accuracy:

Error and Exceptional Conditions:
I : OVERFLOW if $x>174.673$

LOG, LOG2, LOG10 (short floating-point real)

Module Name: IHEWLNS
Entry Points:

Mathematical Function		PL/I Log Lomery	Entry Point
Log x to the base e base 2	LOG (x)	IHELNSE	
Log x to the base 10	LOG1 (x)	IHELNS2 (x)	IHELNSD

Function: To calculate log x.
Method:
Let $x=16 * * p * 2 * *(-q) * m$ where p and q are integers, $0 \leq q \leq 3$, and $1 / 2 \leq m<1$.

Two constants, $a(=$ base point) and b ($=$ -LOG2 (a)), are defined as follows:

If $1 / 2 \leq m<1 / \operatorname{SQRT}(2): \quad$ then $a=1 / 2, b$ $=1$

If 1/SQRT(2) $\leq m<1:$ then $a=1, b=0$
Let $y=(m-a) /(m+a)$.
Then $m=a *(1+y) /(1-y)$ and $A B S(y)<$ 0.1716.

Now $x=(2 * *(4 * p-q-b)) *((1+y) /(1-y))$. Therefore

$$
\begin{aligned}
\operatorname{LOG}(x)= & (4 * p-q-b) * \operatorname{LOG}(2)+ \\
& \operatorname{LOG}((1+y) /(1-y)) .
\end{aligned}
$$

To obtain LOG $((1+y) /(1-y))$ first $w=2 * y$ $=(m-a) /(0.5 m+0.5 a)$ is computed (which is represented in System/360 with more significant digits than y itself), then the following approximation is performed:

```
LOG ((1+y)/(1-y))= w* (co
+C1*W**2/(c
```

The coefficients were obtained by the minimax rational approximation of LOG (1+ $y) /(1-y)) /(2 * y)$, in relative error, under
the constraint that the first term shall be one. The maximum relative error of this approximation is less than 2**-25.33.

LOG2 (x) or LOG10 (x) is calculated by multiplying the above result by LOG2(e) or LOG10(e) respectively.

Effect of Argument Error:

The absolute error caused in the result is approximately equal to the relative error in the argument. Thus if the argument is close to 1 , even the round-off error of the argument causes a substantial relative error in the answer, since the function value there is very small.

Accuracy:

IHELNSE

IHELNS 2

IHELNSD

IHELNS 2

IHELNSD

Error and Exceptional Conditions:

```
P : x \leq 0
```

LOG, LOG2, LOG10 (long floating-point real)
Module Name: IHEWLNL
Entry Points:

Mathematical Function	PL/I Name	Entry Point
Log to the base e	LOG (x)	IHELNLE
Log x to the base 2	LOG2 (x)	IHELNL2
Log x to the base 10	LOG10 (x)	IHELNLD

Function: To calculate $\log x$.
Method:
Let $x=16 * * p * 2 * *(-q) * m$ where p and q are integers, $0 \leq q \leq 3$, and $1 / 2 \leq m<1$.

Two constants, a (= base point) and b $(=$ -LOG2(a)), are defined as follows:
if $1 / 2 \leq m \leq 1 / S Q R T(2): \quad$ then $a=1 / 2$, $\mathrm{b}=1$
if $1 / \operatorname{SQRT}(2) \leq m<1: \quad$ then $a=1, b=0$.
Let $y=(m-a) /(m+a)$.
Then $m=a *(1+y) /(1-y)$ and $A B S(y)$ < 0.1716 .

Now $x=2 * *(4 * p-q-b) *(1+y) /(1-y)$ Therefore

$$
\begin{aligned}
\operatorname{LOG}(x)= & (4 * p-q-b) * \operatorname{LOG}(2)+ \\
& \operatorname{LOG}((1+y) /(1-y)) .
\end{aligned}
$$

To obtain LOG ($(1+y) /(1-y))$ first $w=2 * y$ $=(m-a) /(0.5 \mathrm{~m}+0.5 \mathrm{a})$ is computed (which is represented in System $/ 360$ with more significant digits than y itself), then the following approximation is performed:

$$
\begin{aligned}
\operatorname{LOG}((1+y) /(1-y))= & w^{*}\left(c_{0}+c_{1} * w^{*} * 2\right) \\
& \left.\left(c_{2}-w^{*} * 2\right)\right)
\end{aligned}
$$

The coefficients were obtained by the minimax rational approximation of LOG ((1+ $y) /(1-y)) /(2 * y)$, in relative error, over the range $\mathrm{y}^{* * 2} \leq 0.02944$ under the constraint that the first term shall be 1. The maximum relative error of this approximation is less than $2 * *-60.55$.

LOG2 (x) or LOG10(x) is calculated by multiplying the above result by LOG2(e) or LOG10(e) respectively.

Effect of an Argument Error:
The absolute error caused in the result is approximately equal to the relative
error in the argument. Thus if the argument is close to 1 , ever the round-off error of the argument causes a substantial relative error in the answer, since the function value there is very small.

Accuracy:

IHELNL2

IHELNLD

IHELNLE

IHELNL2

IHELNLD

Error and Exceptional Conditions:

$$
\mathbf{P}: x \leq 0
$$

> SIN, SIND, COS, COSD (short floating-point rea 1)

Entry Points:

Mathematical Function	PL/I Sin $(x$ radians $)$	Name SIN (x)
Sin $(x$ degrees $)$	$\operatorname{SIND}(x)$	IHESNSSS
$\operatorname{Cos}(x$ radians $)$	$\operatorname{COS}(x)$	IHESNSS
$\operatorname{Cos}(x$ degrees $)$	$\operatorname{COSD}(x)$	IHESNSK

Function: To calculate $\sin x$ or $\cos x$. Method:

Let $k=$ pi/4

$$
\begin{aligned}
\text { Evaluate } p= & \operatorname{ABS}(x) *(1 / k) \text { if } x \text { is in } \\
\text { or } p= & \operatorname{ABS}(x) *(1 / 45) \text { if } x \text { is in } \\
& \operatorname{degrees}
\end{aligned}
$$

using long-precision multiplication to safeguard accuracy.

Separate p into integer part q and fractional part r, i.e., $p=q+r$ where $0 \leq r<1$.

Define $q_{1}=q$ if SIN or SIND is required and $x \geq 0$;
$q_{1}=q+2$ if \cos or $\cos D$ is required:
$q_{1}=q+4$ if SIN or SIND is required and $x<0$.

Then for all values of x each case has been reduced to the computation of SIN(k^{*} $\left.\left(q_{1}+r\right)\right)=\operatorname{SIN}(t)$ say, where $t \geq 0$.

Thus it is necessary to compute only SIN ($k * r_{1}$) or $\cos \left(k * r_{1}\right)$ where $r_{1}=r$ or $1-r$ and $0 \leq r_{1} \leq 1$, as follows:

1. $\operatorname{SIN}\left(k * r_{1}\right)=r_{1} *\left(a_{0}\right.$
$\left.+a_{1} r_{1} * * 2+a_{2} r_{1} * * 4+a_{3} r_{1} * * 6\right)$
The coefficients were obtained by the Chebyshev interpolation. The maximum relative error is less than 2**-28.1.
2. $\cos \left(k * r_{1}\right)=1+b_{1} r_{2} * * 2+b_{2} r_{1} * * 4+b_{3} r_{1} * * 6$

The coefficients were obtained by a variation of the minimax approximation which provides partial rounding for the short precision computation. The maximum absolute error is $2 * *-24.57$.

The absolute error of the answer is approximately equal to the absolute error in the argument. Hence, the larger the argument, the larger its absolute error and the larger the absolute error of the result. Since the function diminishes periodically for both sine and cosine, no consistent control of the relative error can be maintained outside the range -pi/2 to pi/2 radians (or -90 to +90 degrees).

Accuracy:

IHESNSS

IHESNSC

Error and Exceptional Conditions:

```
P : IHESNSS, IHESNSC:
                ABS(x) \geq 2**18*pi
        IHESNSZ, IHESNSK:
        ABS(x) \geq 2**18*180
```

SIN, SIND, COS, COSD (long floating-point real)

Nodule Name: IHEWSNL
Entry Points:
Mathematical
Function
Sin(x radians)
Sin(x degrees)
$\operatorname{Cos}(x$ radians)
$\operatorname{Cos}(x$ degrees

PL/I	Entry Name
$\operatorname{SIN}(x)$	Point
$\operatorname{SIND}(x)$	IHESNLS
$\operatorname{COS}(x)$	IHESNLC
$\operatorname{COSD}(x)$	IHESNLK

Function: To calculate $\sin x$ or $\cos x$.

Method:

```
Let }y=ABS(x)/(pi/4) for x in radians
or }y=ABS(x)/45\mathrm{ for }x\mathrm{ in degrees,
and y = q + r, q integral, 0 \leq r < 1.
Take q1 = q for SIN or SIND with positive
        or zero argument.
    q1 = q + 2 for cos or cosD,
    q}\mp@subsup{|}{1}{}=q+4\mathrm{ for SIN or SIND with
        negative argument,
and }\mp@subsup{\textrm{q}}{2}{}=\operatorname{MOD}(\mp@subsup{\textrm{q}}{1}{},8)
```

Since $\cos (x)=\sin (\operatorname{ABS}(x)+p i / 2)$
and $\operatorname{SIN}(-x)=\operatorname{SIN}(A B S(x)+p i)$.
it is only necessary to find

$$
\operatorname{SIN}\left(\mathrm{pi} / 4 *\left(q_{2}+r\right)\right), \text { for } 0 \leq q_{2} \leq 7
$$

Therefore compute:

$\operatorname{SIN}(\mathrm{pi} / 4 * \mathrm{r})$,	if $\mathrm{q}_{2}=0$ or 4,
$\cos (\mathrm{pi} / 4 *(1-\mathrm{r}))$,	if $\mathrm{q}_{2}=1$ or 5,
$\cos (\mathrm{pi} / 4 * r)$,	if $\mathrm{q}_{2}=2$ or 6,
$\operatorname{SIN}(\mathrm{pi} / 4 *(1-r))$	if $\mathrm{q}_{2}=3$ or 7.

$\sin \left(\mathrm{pi} / 4 * r_{1}\right) / r_{1}$, where r_{1} is r or (1 - r), is computed by using the Chebyshev interpolation polynomial of degree 6 in $r_{1} * * 2$, in the range $0 \leq r_{1} * * 2 \leq 1$, with maximum relative error $2 * *(-58)$.
$\cos \left(p i / 4 * r_{1}\right)$ is computed by using the Chebyshev interpolation polynomial of degree 7 in $r_{1} * * 2$, in the range $0 \leq r_{1} * *$ $2 \leq 1$. with maximum relative error 2**(-64.3).

Finally, if $q_{2} \geq 4$ a negative sign is given to the result.

Effect of an Argument Error:
The absolute error of the answer is approximately equal to the absolute error in the argument. Hence, the larger the argument, the larger its absolute error and the larger the absolute error of the result. Since the function diminishes periodically for both sine and cosine, no consistent control of the relative error can be maintained outside the range -pi/2 to pi/2 radians (or -90 to +90 degrees).

Accuracy:
IHESNLS

Error and Exceptional Conditions:

```
P : IHESNLS, IHESNLC:
    ABS(x) \geq 2**50*pi
        IHESNLZ, IHESNLK:
        ABS(x) \geq 2**50*180
```


TAN, TAND (short floating-point real)

Module Name: IHEWTNS
Entry Points:

Mathematical	PL/I	Entry
Function	Name	Point
Tan(x radians)	TAN (x)	IHETNSR
Tan $(x$ degrees $)$	TAND (x)	IHETNSD

Function: To calculate $\tan \mathrm{x}$.
Method:

$$
\begin{aligned}
\text { Evaluate } p= & (4 / \mathrm{pi}) * \operatorname{ABS}(x) \text { if } x \text { is in } \\
\text { or } p= & (1 / 45) * \operatorname{ABS}(x) \text { if } x \text { is in } \\
& \text { degrees }
\end{aligned}
$$

using long-precision multiplication to safeguard accuracy.

Let q and r ke respectively the integral and fractional parts of p.

If q is even, put $s=r ;$
if q is odd, put $s=1-r$.

Let $q_{1}=\operatorname{MOD}\left(q_{0} 4\right)$. Then

If $\quad g_{1}=0, \operatorname{TAN}(\operatorname{ABS}(x))=\operatorname{TAN}(p i * s / 4)$
If $\quad q_{1}=1, \operatorname{TAN}(\operatorname{ABS}(x))=\operatorname{COT}\left(\mathrm{Fi}_{1} * S / 4\right)$
If $\quad q_{1}=2, \operatorname{TAN}(\operatorname{ABS}(x))=-\operatorname{COT}(p i * s / 4)$
If $\quad \mathrm{g}_{1}=3, \operatorname{TAN}(\operatorname{ABS}(\mathrm{x}))=-\operatorname{TAN}(\mathrm{pi} * \mathrm{~s} / 4)$

Compute TAN(pi*s/4) and COT(pi*s/4) as the ratio of two polynomials:

```
TAN(pi*s/4) = s*P(u)/Q(u)
COT(pi*s/4)=Q(u)/(s*P(u))
```

where $u=s * * 2 / 2$ and

$$
\begin{aligned}
P(u)= & -8.460901+u \text { and } \\
Q(u)= & 10.772754+5.703366 * u \\
& -0.159321 * u * * 2
\end{aligned}
$$

These coefficients were obtained by the minimax rational approximation in relative error of the above form. The maximum relative error of this approximation is $2 * *-26$. The variable u, rather than $s^{* *} 2$, was chosen for P and Q in order to improve the rounding effect of the coefficients.

Finally, if $x<0$, put

$$
\operatorname{TAN}(x)=-\operatorname{TAN}(\operatorname{ABS}(x)) .
$$

Effect of an Argument Error:

The absolute error of the answer is approximately equal to the absolute error of the argument multiplied by (1 + TAN(x) **2). Hence if x is near an odd multiple of pi/2, an argument error will produce a large absolute error in the answer.

The relative error in the result is approximately equal to twice the absolute error in the argument divided by SIN(2* * x). Hence, if x is near a multiple of pi/2, an argument error will produce a large relative error in the result.

Accuracy:

IHETNSR

Error and Exceptional Conditions:

```
P : IHETNSR: ABS(x) \geq 2**18*pi
    IHETNSD: ABS (x) \geq 2**18*180
I : IHETNSR: OVERFLOW
    IHETNSD: OVERFLOW
```


TAN, TAND (long floating-point real)

```
Module Name: IHEWTNL
```

Entry Points:

Mathematical	PL/I	Entry Function
Tan $(x$ radians $)$	Name	Point
Tan x degrees $)$	TAND (x)	IHETNLR

Function: To calculate $\tan x$.

Method:

Evaluate

$p=(4 / p i) * A B S(x)$ if x is in radians
Let q and r be respectively the integral and fractional parts of p.

If q is even, put $s=r$;
If q is odd, put $s=1-r$.
Let $q_{1}=\operatorname{MOD}(q, 4)$. Then
If $\mathrm{q}_{1}=0, \operatorname{TAN}(\operatorname{ABS}(\mathrm{x}))=\operatorname{TAN}(\mathrm{pi} * \mathrm{~s} / 4)$
If $\mathrm{q}_{1}=1, \operatorname{TAN}(\operatorname{ABS}(\mathrm{x}))=\operatorname{coT}(\mathrm{pi} * \mathrm{~s} / 4)$
If $\mathrm{q}_{1}=2, \operatorname{TAN}(\operatorname{ABS}(\mathrm{x}))=-\operatorname{COT}(\mathrm{pi} * \mathrm{~s} / 4)$
If $\mathrm{q}_{1}=3, \operatorname{TAN}(\operatorname{ABS}(\mathrm{x}))=-\operatorname{TAN}(\mathrm{pi} * \mathrm{~s} / 4)$
compute $\operatorname{TAN}(\mathrm{pi} * \mathrm{~s} / 4)$ and $\cot (\mathrm{pi} * \mathrm{~s} / 4)$ as the ratio of two polynomials:

```
TAN(pi*s/4) = s*P(s**2)/Q(s**2))
COT(Fi*s/4) = Q(s**2)/(s*P(s**2))
```

where both P and Q are polynomials of degree 3 in $s * * 2$. The coefficients of P and Q were obtained by the minimax rational approximation (in relative error) of TAN(pi*s/4) of the indicated form. The maximum relative error of this approximation is 2**-55.6.

Finally, if $x<0$, TAN $(x)=-\operatorname{TAN}(A B S(x))$.

Effect of an Argument Error:

The absolute error in the result is approximately equal to the absolute error in the argument multiplied by $(1+T A N(x) * *$ 2). Hence, if x is near an odd multiple of pi/2, an argument error will produce a large absolute error in the result.

The relative error in the result is approximately equal to twice the absolute error in the argument divided by SIN(2* x). Hence, if x is near a multiple of pi/2, an argument error will produce a large relative error in the result.

Accuracy:

IHETNLR

Error and Exceptional Conditions:

```
P : IHETNLR: ABS(x) \geq 2**50*pi
    IHETNLD: ABS(x) \geq 2**50*180
I : IHETNLR: OVERFLOW
    IHETNLD: OVERFLOW
```

ATAN (X), ATAND (X), ATAN (Y, X), ATAND (Y, X) (short floating-point real)

Module Name: IHEWATS

Entry Points:

Mathematical Function	PL/I Name	Entry Point
Arctan (radians)	NATAN (x)	IHEATS1
Arctan (y / x) (radians)	ATAN (y, x)	IHEATS2
Arctan $x(d e g r e e s)$	ATAND (x)	IHEATS3
Arctan (y / x) (degrees)	ATAND (y, x)	IHEATS

Function:
To calculate $\arctan x$ or $\arctan (y / x)$. The result range is:

> Arctan x (radians) $\pm \mathrm{pi} / 2$
> Arctan (y / x) (radians) $\pm \mathrm{pi}$
> Arctan x (degrees) $\pm 90^{\circ}$
> Arctan (y / x) (degrees) $\pm 180^{\circ}$

Method:

1. $\operatorname{ATAN}(\mathrm{y}, \mathrm{x})$

If $x=0$ or $\operatorname{ABS}(y / x) \geq 2 * * 24$, the answer SIGN(y)*pi/2 is returned except for the error case $x=y=0$. Otherwise

```
    ATAN(y,x) = ATAN(y/x) if x > 0
or ATAN (y,x) = ATAN(y/x) + SIGN(y)*pi
                        if x < 0.
```

Hence the computation is now reduced to the single argument case.

2. ATAN(X)

The general case may be reduced to the range $0 \leq x \leq 1$ since

$$
\operatorname{ATAN}(-x)=-\operatorname{ATAN}(x), \text { and }
$$

$$
\operatorname{ATAN}(1 / \operatorname{ABS}(x))=\mathrm{pi} / 2-\operatorname{ATAN}(\operatorname{ABS}(x)) .
$$

A further reduction to the range $A B S(x) \leq$ TAN (pi/12) is made by using

```
ATAN (x) = pi/6 + ATAN((SQRT(3)*x - 1)/
    (x + SQRT(3))).
```

Care is taken to avoid the loss of significant digits in computing

$$
\operatorname{SQRT}(3) * x-1
$$

For the basic range $A B S(x) \leq \operatorname{TAN}(p i / 12)$, use an approximation formula of the form
$\operatorname{ATAN}(x) / x=a+b * x * * 2+c /(d+x * * 2)$
with relative error less than $2 * *-27.1$.
3. ATAND (x) and ATAND (y, x)

The treatment is as above with the addition of a final conversion of the result to degrees.

Effect of an Argument Error:

Let $t=x$ or y / x; then the absolute error of the answer approximates to the absolute error in t divided by ($1+t * * 2$). Hence, for small values of t, the two errors are approximately the same; however, as t becomes larger the effect of the argument error on the answer error diminishes.

Accuracy:

Error and Exceptional Conditions:
$\mathrm{P}:$ IHEATS2, IHEATS4: $\mathrm{x}=\mathrm{y}=0$

ATAN (X), ATAND (X), ATAN (Y, X), ATAND (Y, X) (long flcating-point real)

Module Name: IHEWATL
Entry Points:

Mathematical	PL/I	Entry
Function	Name	Point
Arctan x (radians)	ATAN (x)	IHEATL1
Arctan (y / x) (radians)	ATAN (y, x)	IHEATL2
Arctan x (degrees)	ATAND (x)	IHEATL3
$\operatorname{Arctan}(y / x)$ (degrees)	ATAND (Y, X)	IHEATL

Function:

To calculate $\arctan x$ or $\arctan (y / x)$. The result range is:
$\operatorname{Arctan} \mathrm{x}$ (radians) $\pm \mathrm{pi} / 2$
Arctan(y/x) (radians) \pm pi
$\operatorname{Arctan} x$ (degrees) $\pm 90^{\circ}$
$\operatorname{Arctan}(y / x)$ (degrees) $\pm 180^{\circ}$

Method:

1. $\operatorname{ATAN}(y, x)$

If $x=0$ or $A B S(y / x) \geq 2 * * 56$, the answer $\operatorname{SIGN}(y) * p i / 2$ is returned except for the error case $x=y=0$. Otherwise

$$
\begin{aligned}
\operatorname{ATAN}(y, x)= & \operatorname{ATAN}(y / x) \text { if } x>0 \\
\text { or } \operatorname{ATAN}(y, x)= & \operatorname{ATAN}(y / x)+\operatorname{SIGN}(y) * \text { pi } \\
& \text { if } x<0 .
\end{aligned}
$$

Hence the computation is now reduced to the single argument case.

2. ATAN(x)

The general case may be reduced to the range $0 \leq x \leq 1$ since

$$
\operatorname{ATAN}(-x)=-\operatorname{ATAN}(x), \text { and }
$$

$\operatorname{ATAN}(1 / \operatorname{ABS}(x))=\mathrm{pi} / 2-\operatorname{ATAN}(\operatorname{ABS}(x))$.
A further reduction to the range $A B S(x)$ $\leq \operatorname{TAN}(p i / 12)$ is made by using

```
ATAN(x) = pi/6 + ATAN((SQRT(3)*x - 1)/
                        (x + SQRT(3)))
```

Care is taken to avoid the loss of significant digits in computing

$$
\operatorname{SQRT}(3) * x-1
$$

For the basic range $\operatorname{ABS}(x) \leq \operatorname{TAN}(p i / 12)$, use a continued fraction of the form
$\begin{aligned} \operatorname{ATAN}(x) / x= & 1+u *\left(b_{0}-a_{1} /\left(b_{1}+u-a_{2} /\left(b_{2}+u\right.\right.\right. \\ & \left.\left.\left.-a_{3} /\left(b_{3}+u\right)\right)\right)\right)\end{aligned}$
where $u=x * * 2$.
The relative error of this approximation is less than $2 * *-60.7$.

The coefficients of this formula were derived by transforming a minimax rational approximation in relative error over the range $0 \leq u \leq 0.071797$ for $\operatorname{ATAN}(x) / x$ of the following form:
$\operatorname{ATAN}(x) / x=a_{0}+u *\left(\left(c_{0}+c_{1} * u+c_{2} * u * u+\right.\right.$ $\left.c_{3} * u * u * u\right) /\left(d_{0}+d_{1} * u+d_{2} * u * u+\right.$ u*u*u)).
under the constraint that $a=1$.

3. $\operatorname{ATAND}(x)$ and $\operatorname{ATAND}(y, x)$

The treatment is as above with the addition of a final conversion of the result to degrees.

Effect of an Argument Error:
Let $t=x$ or y / x; then the atsolute error of the answer approximates to the absolute error in t divided by ($1+t * * 2$). Hence, for small values of t, the two errors are approximately the same; however, as t kecomes larger the effect of the argument error on the answer errcr diminishes.

Accuracy:

IHEATL 1

IHEATL 2

Error and Exceptional Conditions:
$\mathrm{P}:$ IHEATL2, IHEATL4: $\mathrm{x}=\mathrm{y}=0$

SINH, COSH (short floating-point real)

Module Name: IHEWSHS
Entry Points:

Mathematical

PL/I	Entry
Name	Point
SINH(x)	IHESHSS
COSH (x)	IHESHSC

Function:
To calculate hyperbolic sin x or hyperbolic $\cos \mathbf{x}$.

Nethod:

1. $\operatorname{ABS}(x)<1$

Compute SINH(x) as:
$\operatorname{SINH}(x)=x+C_{1} * x * * 3+C_{2} * x * * 5+C_{3} * x * * 7$

The coefficients were obtained by the minimax approximation (in relative error) of SINH (x)/x as a function of $x * * 2$. The maximum relative error of this approximation is $2 * *(-25.6)$.
2. $x \geq 1$

Compute SINH(x) as:

$$
\begin{aligned}
& \operatorname{SINH}(x)=(1+D) *(\operatorname{EXP}(x+\operatorname{IOG}(V)))- \\
&V * * 2 / \operatorname{EXP}(x+\operatorname{LOG}(V)))
\end{aligned}
$$

Using module IHEWEXS.
Here $1+D=1 /(2 * V)$, so that this expression is theoretically equivalent to (EXP (x)-$\operatorname{ExP}(-x)) / 2$. The value of V (and consequently those of LOG(V) and D) was so chosen as to satisfy the following conditions:
a) V is slightly less than $1 / 2$, so that D is positive and small
b) LOG(V) is an exact multiple of 2**(-16).

Condition (b) ensures that the addition $x+L O G(V)$ is carried out exactly.
3. $\mathrm{x} \leq-1$

Use the identity
$\operatorname{SINH}(x)=-\operatorname{SINH}(\operatorname{ABS}(x))$
to reduce to case (2), above.
4. $\cos H(x)$

For all legal values of arguments, use the identity

$$
\begin{aligned}
& \cos H(x)=(1+D) *(\operatorname{EXP}(x+\operatorname{LOG}(v))+ \\
&V * * 2 / \operatorname{EXP}(x+\operatorname{LOG}(V)))
\end{aligned}
$$

Here the notation and considerations are identical to those used in the computation of SINH(x), in (2) above.

Effect of Argument Error:
The relative error caused in the result is approximately as follows:

SINH: The absolute error in the argument divided by TANH(x), i.e., of the order of the absolute error in the argument for large x, or of the relative error in the argument for small x .
cosh: The absolute error in the argument multiplied by TANH(x), i.e.. of the order of the absolute error in the argument.

Thus, for large values of x, even the round-off error of the argument causes a substantial relative error in the answer.

Accuracy:

Error and Exceptional Conditions:
H : OVERFLOW in real EXP routine (IHEWEXS).

COSH, SINH (long floating-point real)
Module Name: IHEWSHL
Entry Points:

Mathematical Function	PL/I Hyperbolic cos x Hyperbolic sin x	Name COSH (x)
SINH (x)	Point	
IHESHLC		
IHESHLS		

Function:

To calculate hyperbolic $\sin x$ or hyperbolic cos x .

Method:

1. $\operatorname{ABS}(x)<0.881374$

Compute SINH(x) as

$$
\begin{gathered}
\operatorname{SINH}(x)=c_{0} * x+c_{1} * x * * 3+c_{2} * x * * 5+\ldots \\
+c_{6} * x * * 13
\end{gathered}
$$

The coefficients were obtained by the minimax approximation (in relative error) of SINH (x)/x as a function of $x * * 2$. The maximum relative error of this approximation is $2 * *(-55.7)$.
2. $x \geq 0.881374$

Compute SINH(x) as

$$
\begin{aligned}
& \operatorname{sINH}(x)(1+D) *(\operatorname{EXP}(x+\operatorname{LOG}(V)))- \\
&V * * 2 / \operatorname{EXP}(x+\operatorname{LOG}(V)))
\end{aligned}
$$

using module IHEEXL
Here $1+D=1 /(2 * V)$ so that this expression is theoretically equivalent to (EXP (x)-EXP(-x))/2. The value of V (and consequently those of LOG(V) and D) was so chosen as to satisfy the following conditions:
a) V is slightly less than $1 / 2$ so that D is positive and small.
b) LOG(V) is an exact multiple of $2 * *(-16)$.

Condition (b) ensures that the addition $x+L O G(V)$ is carried out exactly.
3. $x \leq-0.881374$

Use the identity

$$
\operatorname{SINH}(x)=-\operatorname{SINH}(\operatorname{ABS}(x))
$$

to reduce the case to that of step (2).
4. $\cos H(x)$

For all legal values of arguments, use the identity:

$$
\begin{aligned}
& \cos H(x)=(1+D) *(\operatorname{EXP}(x+\operatorname{LOG}(V))) \\
&V * * 2 / \operatorname{EXP}(x+\operatorname{LOG}(V)))
\end{aligned}
$$

Here the notation and considerations are identical to those used in the computation of SINH (x) in step (2) above.

Accuracy:

IHES HLC

IHESHLS

Error and Exceptional Conditions:

H : OVERFLOW in real EXP routine (IHEWEXL).

TANH (short floating-point real)

Module Name: IHEWTHS
Entry Point: IHETHSO
Function: To calculate hyperbolic tan x.
Method :

1. $\operatorname{ABS}(x) \leq 2 * *-12$

Return x as result.

```
2. 2**-12<ABS(x) \leq 0.7
```

Use a fractional approximation of the form:

TANH (x) $/ x=1-$ $x * * 2 *(.0037828+.8145651 /(x * * 2+2.471749))$

The coefficients of this approximation were obtained by taking the minimax of relative error, over the range $x * * 2$ <
0.49 , of approximations of this form 0.49. of approximations of this form under the constraint that the first term
shall be 1 . The maximum relative error under the constraint that the first term
shall be 1 . The maximum relative error of this approximation is $2 * *-26.4$.
3. $0.7 \leq x<9.011$

Use TANH $(x)=1-2 /(\operatorname{EXP}(2 * X)+1)$.

2. $2 * *-12<\operatorname{ABS}(x) \leq 0.7$

Thus, for large values of x, even the round-off error of the argument causes a substantial relative error in the answer.

Effect of an Argument Error:

The relative error caused in the result is approximately as follows:

SINH: The absolute error in the argument divided by TANH(x), i.e., of the order of the absolute error in the argument for large x, or of the relative error in the argument for small x.

COSH: The absolute error in the argument multiplied by TANH(x), i.e., of the order of the absolute error in the argument.
4. $x \geq 9.011$

Return result 1.
5. $x<-0.7$

Use the identity:

$$
\operatorname{TANH}(x)=- \text { TANH }(-x)
$$

and apply 3 or 4 above, as appropriate.

Effect of an Argument Error:

The relative error caused in the result is approximately twice the atsolute error in the argument divided by SINH(2*x). Thus for small values of x it is of the order of the relative error in the argument, and as x increases the effect of the argument error is diminished.

Accuracy:

TANH (long floating-point real)

Module Name:
IHEWTHL
Entry Point: IHETHLO
Function: To calculate hypertolic tan x.
Method:

```
1. ABS (x) \leq 2**-28
    Return x as result
2. 2**-12<ABS(x)}<0.5493
    Use a transformed minimax approximation
    of the form
    TANH(x)/x=C 0 + d ( * x** 2/(x** 2+C, ( 
    2+c}\mp@subsup{c}{2}{})+\mp@subsup{d}{3}{}/(x**2+\mp@subsup{c}{3}{}
    The minimax of relative error was taken
    over the range x**2 \leq 0.30174 under the
    constraint that the first term is 1.
    The maximum relative error is 2**-63
3. 0.54931\leqx<20.101
    TANH(x)= 1-2/(EXP(2*x)+1)
```

```
4. x 2 20.101
```

Return result 1 .
5. $x \leq-0.54931$

Effect of an Argument Error:
The relative error caused in the result is approximately twice the absolute error in the argument divided by SINH(2*x). Thus for small values of x it is of the order of the relative error in the argument, and as x increases the effect of the argument error is diminished.

Accuracy:

ATANH (short floating-point real)

Module Name: IHEWHTS

Entry Point: IHEHTSO

Function: To calculate hyperbolic arctan x.

Method:

1. $\operatorname{ABS}(x) \leq 0.2$

Use a rational approximation of the form:

```
ATANH(x) = x + x ** 3/ (a + b*x**2)
```

2. $0.2<\operatorname{ABS}(X)<1$

$$
\text { ATANH }(x)=- \text { SIGN }(x) * 0.5 * \text { LOG }(10.5-
$$

$\operatorname{ABS}(x / 2)) /(0.5+\operatorname{ABS}(x / 2)))$

Effect of an Argument Error:

The aksolute error caused in the result is approximateiy equal to the absolute error in the argument divided by $(1-x * *$ 2). Thus as x approaches +1 or -1 . relative error increases rapidly. Near $x=0$, the relative error in the result is of the order of that in the argument.

Accuracy:

Error and Exceptional conditions:
$P: A B S(x) \geq 1$

ATANH (long floating-point real)
Module Name: IHEWHTL
Entry Point: IHEHTLO
Function: To calculate hyperbolic arctan x.
Method:

1. $\operatorname{ABS}(x) \leq 0.25$

Use a Chebyshev polynomial of degree 8 in $x^{*} * 2$ to compute ATANH (x)/x.

$$
\text { 2. } 0.25<\operatorname{ABS}(x)<1
$$

$$
\begin{aligned}
\operatorname{ATANH}(x)=- & \operatorname{SIGN}(x) * 0.5 * \operatorname{LOG}((0.5- \\
& \operatorname{ABS}(x / 2)) /(0.5+\operatorname{ABS}(x / 2)))
\end{aligned}
$$

Effect of an Argument Error:

The absolute error caused in the result is approximately equal to the absolute error in the argument divided by (1-x** 2). Thus as x approaches +1 or -1 , relative error increases rapidly. Near $x=0$, the relative error in the result is of the order of that in the argument.

Accuracy:

Error and Exceptional Conditions:

ERF ERFC (short floating-point real)
Module Name: IHEWEFS
Entry Points:
Mathematical
\quad Function
Error function (x)
Complement of error
function (x)

PL/I	Entry
Name	Point
ERF (x)	IHEEFSF
ERFC (x)	IHEEFSC

Function:

To calculate the error function of x or the complement of this function.

Method:

1. $0 \leq \mathrm{x} \leq 1$

Compute ERF(x) by the following approximation:

```
ERF(x)=x*(a + a ( 
**10
```

The coefficients were obtained by the minimax approximation in relative error of $\operatorname{ERF}(x) / x$ as a function of $x * * 2$ over the range $0 \leq x \neq * 2 \leq 1$. The relative error of this approximation is less than 2**-24.6. The value of ERFC(x) is computed as

$$
\operatorname{ERFC}(x)=1-\operatorname{ERF}(x)
$$

2. $1<x<2.040452$

Compute ERFC (x) by the following approximation:

$$
\begin{aligned}
\operatorname{ERFC}(x)= & b_{0}+b_{1} * z+b_{2} * z * * 2+\ldots \\
& +b_{9} * z * * 9
\end{aligned}
$$

where $z=x-T_{0}$ and $T_{0}=1.709472$. The coefficients were obtained by the minimax approximation in absolute error of the function $f(z)=\operatorname{ERFC}\left(z+T_{0}\right)$ over the range $-0.709472 \leq z \leq 0.33098$. The absolute error of this approximation is less than 2**-31.5. The limits of this range and the value of the origin, T_{o}, were chosen to minimize the hexadecimal rounding errors.

The value of ERFC(x) within this range is between $1 / 256$ and 0.1573 .

The value of ERF(x) is computed as

$$
\operatorname{ERF}(x)=1-\operatorname{ERFC}(x)
$$

3. $2.040452 \leq x<13.306$

Compute ERFC(x) by the following approximation:
$\operatorname{ERFC}(x)=\operatorname{EXP}(-z) * F / x$
where $z=x * * 2$ and
$\mathbf{F}=$
$c_{0}+\left(c_{1}+c_{2} * z+c_{3} * z * * 2\right) /\left(d_{1} * z+d_{2} * z * * 2+z * * 3\right)$

The coefficients of F were obtained by transforming a minimax rational approximation in absolute error of the function $f(w)=\operatorname{ERFC}(x) * x * \operatorname{EXP}(x * * 2)$ over the range 13.306**-2 $\leq w \leq 2.040452 * *-2$ (where $w=x *$ *2). This approximation is of the form
$f(w)=$
$\left(a_{0}+a_{1} * w+a_{2} * w * * 2+a_{3} * w * * 3\right) /\left(b_{0}+b_{1} * w+w * * 2\right)$
The absolute error of this approximation is less than $2 * *-26.1$.

If $2.040452 \leq x<3.9192, \operatorname{ERF}(x)=1-$ ERFC (x)

If $13.306>x \geq 3.9192, \operatorname{ERF}(x)=1$
4. $x \geq 13.306$

Results 1 and 0 are returned for $\operatorname{ERF}(x)$ and ERFC(x) respectively.

$$
\text { 5. } x<0
$$

Reduce to a case involving a positive argument by use of the identities:

$$
\text { and } \begin{aligned}
\operatorname{ERF}(x) & =2-\operatorname{ERF}(-x) \\
\operatorname{ERFC}(x) & =2-\operatorname{ERFC}(-x) .
\end{aligned}
$$

Effect of an Argument Error:

The absolute error caused in the result is approximately equal to the absolute error in the argument multiplied by $\operatorname{EXP}(-x * * 2)$.

ERF(x): As the magnitude of the argument increases from 1, the effect of an argument error diminishes rapidly. For small x, the relative error of the result is of the order of the relative error of the argument.
$\operatorname{ERFC}(x):$ For $x>1, \operatorname{ERFC}(x)$ is approximately $\operatorname{EXP}(-x * * 2) /(2 * x)$. Thus the relative error in the result is approximately equal to the relative error in the argument multiplied by $2 * x^{* * 2 \text {. For negative. }}$ or small positive, values of x, the relative error in the result is approximately equal to the absolute error in the argument multiplied by Exp (-x**2).

Accuracy:

IHEEFSF

IHEEFSC

ERF, ERFC (long floating-point real)
Module Name: IHEWEFL
Entry Points:

Mathematical	PL/I	Entry
Function	Name	Point
Error function (x)	ERF(x)	IHEEFLF
Complement of error	ERFC (x)	IHEEFLC

Function:

To calculate the error function of x or the complement of this function.

Method:

$$
\text { 1. } 0 \leq x<1
$$

Compute ERF(x) by the following approximation:

$\operatorname{ERF}(x)=$

$x *\left(a_{0}+a_{1} * x * * 2+a_{2} * x * * 4+\ldots+a_{1} * x * * 22\right)$
The coefficients were obtained by the minimax approximation in relative error
of $\operatorname{ERF}(x) / x$ as a function of $x * * 2$ over the range $0 \leq x * * 2 \leq 1$. The relative error of this approximation is less than 2**-56.9. The value of ERFC is computed as

$$
\operatorname{ERFC}(x)=1-\operatorname{ERF}(x)
$$

2. $1 \leq x<2.040452$

Compute ERFC(x) by the following approximation:

```
ERFC(x) =
bo+b
```

where $z=x-T_{0}$ and $T_{0}=1.709472$. The coefficients were obtained by the minimax approximation in absolute error of the function $f(z)=\operatorname{ERFC}\left(z+T_{0}\right)$ over the range $-0.709472 \leq z \leq 0.330948$. The absolute error of this approximation is less than 2**-60.3. The limits of this range and the value of the origin, T_{o}, were chosen to minimize the hexadecimal rounding errors.

The value of ERFC(x) within this range is between $1 / 256$ and 0.1573 . The value of ERF(x) is computed as

$$
\operatorname{ERF}(x)=1-\operatorname{ERFC}(x)
$$

3. $2.040452 \leq x<13.306$

Compute ERFC(x) by the following approximation:

$$
\operatorname{ERFC}(x)=\operatorname{EXP}(-z) * F / x
$$

where $z=x * * 2$ and

$$
F=c_{0}+d_{1} /\left(z+c_{1}\right)+d_{2} /\left(z+c_{2}\right)+\ldots+d_{7} /\left(z_{7}+c\right)
$$

The coefficients of F were obtained by transforming a minimax rational approximation in absolute error of the function $f(w)=\operatorname{ERFC}(x) * x * \operatorname{EXP}(x * * 2)$ over the range 13.306**-2 $\leq w \leq 2.040452 * *-2$ (where $w=x^{*}$ *-2). This approximation is of the form

$$
\begin{aligned}
& f(w)=\left(a_{0}+a_{1} * w+a_{2} * w * * 2+\ldots . a * w * * 7\right) /\left(b_{7}\right. \\
& \left.+b_{1} * w+b_{2} * w * * 2+\ldots+b_{6} * w * * 6+w * * 7\right)
\end{aligned}
$$

The absolute error of this approximation is less than 2**-57.9.

If 2.040452 $\leq x<6.092368$, $\operatorname{ERF}(x)=$ 1-ERFC (x)

If $13.360>x \geq 6.092368, \operatorname{ERF}(x)=1$
4. $x \geq 13.306$

Results 1 and 0 are returned for ERF(x) and ERFC(x) respectively.
5. $x<0$

Reduce to a case involving positive arguments by use of the identities:

```
    ERF(x)=-ERF(-x)
and ERFC(x) = 2-ERFC(-x).
```


Effect of an Argument Error:

The absolute error caused in the result is approximately equal to the absolute error in the argument multiplied by $\operatorname{EXP}(-x * * 2)$.

ERF(x): As the magnitude of the argument increases from 1, the effect of an argument error diminishes rapidly. For small x, the relative error of the result is of the order of the relative error of the argument.
$\operatorname{ERFC}(x)$: For $x>1$, $\operatorname{ERFC}(x)$ is approximately $\operatorname{EXP}\left(-x^{*} * 2\right) /(2 * x)$. Thus the relative error in the result is approximately equal to the relative error in the argument multiplied by $2 * x * * 2$. For negative, or small positive, values of x, the relative error in the result is approximately equal to the absolute error in the argument multiplied by EXP(-x**2).

Accuracy:

IHEEFLC

FUNCTIONS WITH COMPLEX ARGUMENTS

SQRT (short floating-point complex)

Niodule Name: IHEWSQW

Entry Point: IHESQWO
Function:

To calculate the principal value of the square root of $z, i . e .,-p i / 2<$ argument of result \leq pi/2.

Nethod:

1. Let $\operatorname{SQRT}(x+y I)=a+L I$
2. Let $\operatorname{SQRT}((A B S(x)+A B S(x+y I)) / 2)=$ $k * S Q R T\left(w_{1}+w_{2}\right)=c$
$v_{1}=\operatorname{MAX}(\operatorname{ABS}(x), \operatorname{ABS}(y))$ and
$v_{2}=\operatorname{MIN}(\operatorname{ABS}(x), \operatorname{ABS}(y))$
3. In the special case when either $v_{2}=0$ or $v_{1} \gg v_{2}$ let
$\mathbf{w}_{1}=\mathbf{v}_{2}$ and $\mathbf{w}_{2}=\mathbf{v}_{1}$
Let $k=1$ if $v_{1}=A B S(x)$
$k=1 / S Q R T(2)$ if $v_{1}=\operatorname{ABS}(y)$
4. In the general case compute:
$\mathrm{F}=\operatorname{SQRT}\left(1 / 4+(1 / 4) *\left(v_{1} / v_{2}\right) * * 2\right)$
If $A B S(x)$ is near the underflow threshold, then take
$w_{1}=A B S(x), w_{2}=v_{1} * 2 * F$, and $k=$ 1/SQRT(2)

If $v_{1} \neq F$ is near the overflow threshold, then take
$w_{1}=A B S(x) / 4, w_{2}=v_{1} * F / 2$ and $k=$ SQRT (2)

In all other cases take
$w_{1}=\operatorname{ABS}(x) / 2, w_{2}=v_{1} * F$, and $k=1$
5. If $\mathbf{c}=0$ then $a=b=0$

If $c \neq 0$ and $x \geq 0$, then
$a=c$, and
$b=y /(2 * c)$
if $c \neq 0$ and $x<0$, then
$a=\operatorname{ABS}(y /(2 * C))$, and $b=\operatorname{SIGN}(y) * C$

Effect of an Argument Error:

Let $\quad z=r * \operatorname{EXP}(h I)$, and $\operatorname{SQRT}(z)=S * E X P(k I)$.

Then the relative error in s is approximately half the relative error in r, and the relative error in k is approximately equal to the relative error in h.

Accuracy:

SQRT (long floating-point complex)

Module Name: IHEWSQZ
Entry Point: IHESCZ0
Function:

To calculate the principal value of the square root of $z, i . e .,-p i / 2<$ argument of result \leq fi/2.

Method:

1. Let $\operatorname{SQRT}(x+y I)=a+b I$
2. Let $\operatorname{SQRT}((\operatorname{ABS}(x)+\operatorname{ABS}(x+y I)) / 2)=$ $k * \operatorname{SQRT}\left(w_{1}+w_{2}\right)=c$
$v_{1}=\operatorname{MAX}(\operatorname{ABS}(x), A B S(y))$ and
$\mathbf{v}_{2}=\operatorname{MIN}(A B S(x), A B S(y))$
3. In the special case when either $v_{2}=0$ or $v_{1} \gg v_{2}$ let
$\mathbf{w}_{1}=\mathbf{v}_{2}$ and $\mathbf{w}_{2}=\mathbf{v}_{1}$
Let $k=1$ if $v_{1}=\operatorname{ABS}(x)$
$k=1 / S Q R T(2)$ if $v_{1}=\operatorname{ABS}(y)$
4. In the general case compute:
$F=\operatorname{SQRT}\left(1 / 4+(1 / 4) *\left(v_{1} / v_{2}\right) * * 2\right)$
If $A B S(x)$ is near the underflow threshold, then take
$w_{1}=A B S(x), w_{2}=v_{1} * 2 * F$, and $k=$ 1/SQRT (2)

If $v_{1} * F$ is near the overflow threshold. then take
$w_{1}=A B S(x) / 4, w_{2}=v_{1} * F / 2$ and $k=$ SQRT (2)

```
In all other cases take
    w
5. If c}=0\mathrm{ then a = b=0
If c}\not=0\mathrm{ and }x\geq0\mathrm{ , then
    a = c, and
    b}=\textrm{y}/(2*\textrm{c}
if c f 0 and x < 0, then
    a = ABS (y/(2*c)), and
    b}=\operatorname{SIGN}(y)*
```

Effect of an Argument Error:
Let $\quad z=r * \operatorname{EXP}(h I)$, and $\operatorname{SQRT}(z)=s * \operatorname{EXP}(k I)$.

Then the relative error in s is approximately half the relative error in r, and the relative error in k is approximately equal to the relative error in h.

Accuracy:

EXP (short floating-point complex)
Module Name: IHEWEXW
Entry Point: IHEEXWO
Function: To calculate e to the power z.

Method:

```
Let z = x + yI.
```

Then $\operatorname{REAL}(\operatorname{EXP}(z))=\operatorname{EXP}(x) * \operatorname{COS}(y)$ and $\operatorname{IMAG}(\operatorname{EXP}(z))=\operatorname{EXP}(x) * \operatorname{SIN}(y)$.

Effect of an Argument Error:

```
Let EXP(x + YI) = s* EXP(kI).
```

Then $k=y$, and the relative error in s is approximately equal to the absolute error in x.

Accuracy:

Error and Exceptional Conditions:

$$
\begin{aligned}
0: & \text { ABS (y) } \geq 2 * * 18 * \mathrm{pi} \text { : error caused in } \\
& \text { real SIN routine (IHEWSNS) }
\end{aligned}
$$

EXP (long floating-point complex)
Module Name: IHEWEXZ
Entry Point: IHEEXZO
Function: To calculate e to the power z.
Method:

$$
\text { Let } z=x+y I
$$

Then REAL $(\operatorname{EXP}(z))=\operatorname{EXP}(x) * \operatorname{COS}(y)$ and $\operatorname{IMAG}(\operatorname{EXP}(z))=\operatorname{EXP}(x) * \operatorname{SIN}(y)$.

Effect of an Argument Error:
Let $\operatorname{EXP}(x+y I)=s * \operatorname{EXP}(k I)$.
Then $k=y$, and the relative error in s is approximately equal to the absolute error in x.

Accuracy:

$0: A B S(y) \geq 2 * * 50 * p i$: error caused in real SIN routine (IHEWSNL)
H : OVERFLOW in real EXP routine (IHEWEXL)

LOG (short floating-point complex)

Module Name: IHEWLNW

Entry Point: IHEINWO

Function:

To calculate the principal value of the natural log of $z, i . e .,-p i$ < imaginary part of result \leq pi.

Method:

1. Let $\operatorname{LOG}(x+y I)=a+b I$
2. Then, $a=\operatorname{LOG}(A B S(x+y I))$ and $b=$ ATAN (Y, x)
3. LOG (ABS $(x+y I))$ is computed as follows:

Let $v_{1}=\operatorname{MAX}(\operatorname{ABS}(x), \operatorname{ABS}(y))$ and
$\mathrm{V}_{2}=\operatorname{MIN}(\operatorname{ABS}(\mathrm{X}), \mathrm{ABS}(\mathrm{Y}))$
Let t be the exponent of v_{1} (i.e., $v_{1}=$ $m * 16 * * t$, $1 / 16 \leq m<1)$

Let $t_{1}=t$ if $t \leq 0$ or
$t_{1}=t-1$ if $t>0$ and
$s=16 * * t_{1}$
Then LOG (ABS $(x+y I))=4 * t_{1} * \operatorname{LOG}(2)+$
$\operatorname{LOG}\left(\left(v_{1} / s\right) * * 2+\left(v_{2} / s\right) * * 2\right) / 2$
Computation of v_{1} / s and v_{2} / s are carried out by suitable adjustment of the characteristics of v_{1} and v_{2}; in particular, if $v_{2} / s \ll 1$, it is taken to be 0 .

Effect of an Argument Error:
Let $z=r * \operatorname{EXP}(h I)$ and LOG(z) $=u+v I$.
Then the absolute error in u is approximately equal to the relative error in r. For the absolute error in $v(=h=A T A N(y$. $x)$), see corresponding paragraph for module IHEWATS.

Accuracy:

Error and Exceptional Conditions:
$0: x=y=0$, error in real LOG routine (IHEWLNS)

LOG (long floating-point complex)
Module Name: IHEWLNZ
Entry Point: IHELNZO

Function:

To calculate the principal value of natural log of $z, i . e .,-p i$ < imaginary part of result \leq pi.

Method:

1. Let LOG $(x+y I)=a+b I$
2. Then, $a=\operatorname{LOG}(A B S(x+y I))$ and $b=$ $\operatorname{ATAN}(y, x)$
3. LOG (ABS $(x+y I))$ is computed as follows:

Let $\boldsymbol{v}_{1}=\operatorname{MAX}(\operatorname{ABS}(x), \operatorname{ABS}(y))$ and
$v_{2}=\operatorname{MIN}(\operatorname{ABS}(x), A B S(y))$
Let t te the exponent of v_{1} (i.e.. $v_{1}=$ $m * 16 * * t$, $1 / 16 \leq m<1$)

Let $t_{1}=t$ if $t \leq 0$ or
$t_{1}=t-1$ if $t>0$ and
$s=16 * * t_{1}$
Then LOG (ABS $(x+y I))=$
$4 * t_{1} * \operatorname{LOG}(2)+\operatorname{LOG}\left(\left(v_{1} / s\right) * * 2+\left(v_{2} / s\right) * * 2\right) / 2$
Computation of v_{1} / s and v_{2} / s are carried out by suitable adjustment of the characteristics of v_{1} and v_{2}; in particular, if $v_{2} / s \ll 1$. it is taken to be 0 .

Effect of an Argument Error:

Let $z=r * \operatorname{EXP}(h I)$ and LOG(z) $=u+V I$.
Then the absolute error in u is approximately equal to the relative error in r. For the absolute error in $v(=h=A T A N(y$. $x)$) see the corresponding paragrach for module IHEWATL.

Accuracy:

Error and Exceptional Conditions:

$$
0: x=y=0, \text { error caused in log rou- }
$$ tine (IHEWLNL)

SIN, SINH, COS, COSH (short floating-point complex)

Module Name: IHEWSNW
Entry Points:

Function:

To calculate sin z or hyperbolic $\sin z$, or $\cos z$ or hyperbolic cos z.

Method:

Let $z=x+y I$.

Then $\operatorname{REAL}(\operatorname{SIN}(z))$	$=\operatorname{SIN}(x) * \operatorname{COSH}(y)$
and $\operatorname{IMAG}(\operatorname{SIN}(z))$	$=\operatorname{COS}(x) * \operatorname{SINH}(y) ;$
REAL $(\operatorname{COS}(z))$	$=\operatorname{COS}(x) * \operatorname{COSH}(y)$
and $\operatorname{IMAG}(\operatorname{COS}(z))$	$=-\operatorname{SIN}(x) * \operatorname{SINH}(y) ;$
$\operatorname{REAL}(\operatorname{SINH}(z))$	$=\operatorname{COS}(y) * \operatorname{SINH}(x)$
and $\operatorname{IMAG}(\operatorname{SINH}(z))$	$=\operatorname{SIN}(y) * \operatorname{COSH}(x) ;$
and $\operatorname{REAL}(\operatorname{COSH}(z))$	$=\operatorname{COS}(y) * \operatorname{COSH}(x)$
and $\operatorname{COSH}(z))$	$=\operatorname{SIN}(y) * \operatorname{SINH}(x)$.

To avoid making calls to evaluate SINH and COSH separately, and thus frequently having to evaluate EXP twice for the same argument, SINH(u) is computed as follows:

1. $u>0.3465736$

$$
\operatorname{SINH}(u)=(\operatorname{EXP}(u)-1 / \operatorname{EXP}(u)) / 2
$$

2. $0 \leq u \leq 0.3465736$

SINH(u)/u is approximated by a polynomial of the form $a_{0}+a_{1} * u * * 2+a_{2} * u * * 4$ (which has a relative error of less than 2**-26.4)

The coefficients were obtained by the minimax approximation in relative error of $\operatorname{SINH}(x) / x$ over the range $0 \leq x * * 2 \leq$ 0.12011 under the constraint that the first term shall be exactly 1 .
3. $u \leq 0$

```
SINH(u) = -SINH(-u). Then
COSH(u) = SINH(ABS(u)) + 1/EXP(ABS(u)).
```

Effect of an Argument Error:

Combine the effects on SIN, COS, SINH and COSH according to the method of evaluation described in the above paragraph.

Accuracy:

IHESNWZ

IHESNWC

IHESNWK

Error and Exceptional conditions:
O : IHESNWS, IHESNWC:
ABS (x) $\geq 2 * * 18 * p i$: error caused in real SIN routine (IHEWSNS)

IHESNWZ, IHESNWK:
ABS (y) $\geq 2 * * 18 * \mathrm{pi}$: error caused in real $S I N$ routine (IHEWSNS)

H : OVERFLOW in real EXP routine (IHEWEXS)

SIN, SINH, COS, COSH (long floating-point complex)

Module Name: IHEWSNZ

Entry Points:
Mathematical
Function
Sin z
Hyperbolic sin z
Cos z
Hyperbolic cos z

PL/ I Name	Entry Point
SIN (z)	IHESNZS
SINH (z)	IHESNZZ
$\operatorname{COS}(z)$	IHESNZC
$\operatorname{COSH}(z)$	IHESNZK

Function:

To calculate sin z or hyperbolic sin z, or $\cos z$ or hyperbolic cos z.

Method:

```
Let z = x + yI.
```

```
Then REAL(SIN(z)) = SIN(x)*COSH(y)
and IMAG(SIN(z))= COS(x)*SINH(y);
    REAL(\operatorname{cos}(z))= = Cos(x)*\operatorname{CosH}(y)
    IMAG(COS(z)) = -SIN(x)*SINH(y);
    REAL(SINH(z)) = COS(y)*SINH(x)
and IMAG(SINH(z))=SIN(y)*\operatorname{COSH}(x);
    REAL(\operatorname{cosh}(z))=\operatorname{cos}(y)*\operatorname{cosh}(x)
and IMAG(COSH(z))=SIN(y)*SINH(x).
```

To avoid making calls to evaluate SINH and CoSH separately, and thus frequently having to evaluate EXP twice for the same argument, SINH(u) is computed as follows:

1. $\mathrm{u} \geq 0.481212$

$$
\operatorname{SINH}(u)=(\operatorname{EXP}(u)-1 / \operatorname{EXP}(u)) / 2
$$

2. $0 \leq \mathbf{u}<0.481212$

SINH(u)/u is approximated by a polynomial of the fifth degree in $u * * 2$ which has a relative error of less than $2 * *-56.07$

The coefficients were obtained by the minimax approximation in relative error of $\operatorname{SINH}(x) / x$ over the range $0 \leq x * * 2 \leq$ 0.23156 under the constraint that the first term shall be exactly 1.
3. $u<0$

$$
\begin{array}{ll}
\operatorname{SINH}(u)=-\operatorname{SINH}(-u) & \text { Then } \\
\operatorname{COSH}(u)=\operatorname{SINH}(\operatorname{ABS}(u)) & +1 / \operatorname{EXP}(A B S(u))
\end{array}
$$

Effect of an Argument Error:
Combine the effects on SIN, COS,SINH and COSH according to the method of evaluation described in the above paragraph.

Accuracy:

IHESNZS

IHESNZC

Error and Exceptional Conditions:

```
O : IHESNZS, IHESNZC:
            ABS(x) \geq 2**50*pi: error caused in
            real SIN routine (IHEWSNL)
        IHESNZZ, IHESNZK:
            ABS(y) \geq 2**50*pi: error caused in
            real SIN routine (IHEWSNL)
H : OVERFLOW in real EXP routine
        (IHEWEXL)
```

TAN, TANH (short floating-point complex)
Module Name: IHEWTNW

Entry Points:

To calculate tan z or hycerbolic tan z.
Method:

Then REAL(TAN(z)) =
TAN $(x) *(1-T A N H(y) * * 2) /$
(1 + (TAN $(x) * \operatorname{TANH}(y)) * * 2)$.

IMAG(TAN(z)) =
$\operatorname{TANH}(y) *(1+\operatorname{TAN}(x) \neq * 2) /$
$(1+(\operatorname{TAN}(x) * \operatorname{TANH}(y)) * * 2)$.

```
TANH(z)= - (TAN(zI))I.
```

Effect of an Argument Error:
The absolute error caused in the result is approximately equal to the absolute error in the argument divided by ABS (COS (z) **2) for IHETNWN, or divided by ABS (COSH (z)**2) for IHETNWH. The relative error caused in the result is approximately twice the absolute error in the argument divided by ABS (SIN(2*z)) for IHETNWN, or divided by ABS (SINH(2*z)) for IHETNWH.

Accuracy:

Error and Exceptional Conditions:
I : OVERFLOW
$0: \operatorname{ABS}(u) \geq 2 * * 18 * p i$, where
$\mathbf{u}=\mathbf{x}$ for IHETNWN,
$\mathbf{u}=y$ for IHETNWH.
H : OVERFLOW or ZERODIVIDE in real TAN routine (IHEWTNS)

TAN, TANH (long floating-point complex)
Module Name: IHEWTNZ
Entry Points:

Mathematical Function	PL/I	Entry		
Tan z	Name	Point		
Hyperbolic tan z		TAN (z)	\quad	IHETNZN
:---				
TANH (z)				

PL/I
TAN(z
TANH (z)

Entry IHETNZN IHETNZH

Function:

To calculate tan z or hyperbolic tan z.
Method:

```
Let z = x + yI.
Then REAL(TAN(2)) =
    TAN(x)*(1 - TANH(y)** 2)/
    (1 + (TAN (x) *TANH (y))**2),
IMAG(TAN(z)) =
    TANH (y)* (1 + TAN (x)**2)/
    (1 + (TAN (x) *TANH (y))**2).
    TANH(z) = - (TAN(zI))I.
```

Accuracy:

IHETNZN

$\|\mathrm{ABS}(\mathrm{x})<1\|$	Uniform	0.172	0.709
$\|A B S(y)<9\|$			

IHETNZH

ABS $(x)<9 \mid$ Uniform $\|0.174\|$
$\|A B S(y)<1\|$

Error and EXCEPTIONAL Conditions:
I : OVERFLOW
$0: A B S(u) \geq 2 * * 50 * p i$, where
$u=x$ for IHETNZN, $u=y$ for IHETNZH.

H: OVERFLOW or ZERODIVIDE in real TAN routine (IHEWTNL)

ATAN, ATANH (short floating-point complex)
Module Name: IHEWATW

Entry Points:

Mathematical	PL/I	Entry
Function	Name	Point
Arctan z	ATAN (z)	IHEATWN
Hyferbolic arctan z	ATANH (z)	IHEATWH

Function:
To calculate arctan z or hyperbolic arc$\tan z$.

Method:

$$
\text { Let } z=x+y I
$$

```
Then REAL(ATANH(z)) = (ATANH (2*x/
    (1+x*x+y*y)))/2
    IMAG(ATANH(z))=(ATAN (2*y.
    (1-x*x-y*y)))/2
    and ATAN(z) = -(ATANH(zI))I.
```

Effect of an Argument Error:
The absolute error in the result is ap-
proximately equal to the aksolute error
in the argument divided by $\left(1+z^{* * 2)}\right.$ in

the case of IHEATWH. Thus the effect may
be considerable in the vicinity of $z=$
$\pm 1 I$ (IHEATWN) or ± 1 (IHEATWH).

Accuracy:

IHEATWN

IHEATWH

Error and Exceptional Conditions:

$$
\mathrm{P}: \begin{array}{ll}
\text { IHEATWN: } & z= \pm 1 I \\
& \text { IHEATWH: } \\
z= \pm 1
\end{array}
$$

ATAN, ATANH (long floating-point complex)
Module Name: IHEWATZ

Entry Points:

Mathematical	PL/I	Entry
Function	Name	Point Arctan z
Hyperbolic arctan z	ATAN(z)	IHEATZN
ATANH(z)	IHEATZH	

Function:

To calculate arctan z or hyperbolic arc$\tan \mathrm{z}$.

Method:

```
Let z = x + yI.
Then REAL(ATANH(z)) = (ATANH(2*x/
                                    (1+x*x+y*y)))/2
        IMAG(ATANH(z))=(ATAN(2*Y,
    (1-x*x-y*y)))/2
    and ATAN(z) = - (ATANH(zI))I.
```

Effect of an Argument Error:

> The absolute error in the result is approximately equal to the absolute error in the argument divided by $(1+z \neq * 2)$ in the case of IHEATZN, or by $(1-z * * 2)$ in the case of IHEATZH. Thus the effect may be considerable in the vicinity of $z=$ $\pm I$ (IHEATZN) or ± 1 (IHEATZH).

Accuracy:

Error and Exceptional Conditions:
$\mathrm{P}:$ IHEATZN: $\mathrm{z}= \pm 11$ IHEATZH: $\quad z= \pm 1$

The Library supports the array built-in functions SUM, PROD, POLY, ALL and ANY, and also provides indexing routines for handling simple (i.e., consecutively stored) and interleaved arrays.

Input Data

The array function moduies are distinguished from the other Library modules in that they all accept array arguments and perform their own indexing, whereas the other modules require that indexing should we handied by compiled code. Calls to conversion routines are included in the SUM, PROD and POLY modules with fixed-point arguments, so that these arguments are converted to floating-point as they are accessed (it should be noted that it is a requirement of the language that the results from these modules be in floatingpoint). On the other hand, the conversions necessary for the ALL and ANY modules (the arguments must be converted to bit string arrays) are not part of the modules and must be carried out before the modules are invoked.

Any restrictions on the admissibility of arguments are noted under the headings 'Range' and 'Error and Exceptional Conditions'.

Range: This states any ranges of arguments for which a module is valid. Arguments outside the ranges given are assumed to have been excluded before the module is called.

Error and Exceptional Conditions: These cover conditions which may result from the use of a routine; they are listed in four categories:

P -- Programmed conditions in the module concerned. Programmed tests are
made where this is not too costly and, if an invalid argument is found, a branch is taken to the entry point IHEERRC of the execution error package(EXEP). This results in the printing of an appropriate message and in the ERROR condition being raised.

I -- Interruption conditions in the module concerned. For those routines where SIZE and FIXEDOVERFLOW are detected by programmed tests or where hardware interruptions may occur, the OVERFLOW, UNDERFLOW, and (when the conversion package is called) SIZE conditions pass to the ON condition error handler (IHEWERR) and are treated in the normal way. The machine is assumed to be enabled for all interruptions except significance, which is masked off.
o -- Programmed conditions in modules called by the module concerned. These occur when invalid arguments are detected in the module called.

H -- As I, but the interrupt conditions occur in the modules called by the module concerned.

Effect of Hexadecimal Truncation

See the corresponding section in the introduction to Chapter 3 for guidance to the accuracy of SUN, PROD, and POLY. If fixed-point arguments are passed to these functions, further errors may be introduced by conversions.

A summary of the Library array modules is given in Figures 7 and 8.

Figure 7. Bit String Array Functions and Array Indexers

Figure 8. Arithmetic Array Functions

ARRAY INDEXERS

Indexer for Simple Arrays

Module Name: IHEWJXS
Entry Points:

Element	Entry
Address	Point
Bit addresses	IHEJXSI
Byte addresses	IHEJXSY

Function:
To find the first and last elements of an array. Their addresses are returned, in general registers 0 and 1 respectively. as bit addresses (IHEJXSI) or byte addresses (IHENXSY).

Method:

The address of the virtual origin B of the array (i.e., the address that would correspond to the element $A(0, \ldots 0)$) is obtained as a byte address for IHEJXSY, or a bit address for IHEJXSI, by referring to the first word of the array dope vector (ADV).

Address of first element $=B+\sum_{i=1}^{n} \quad M_{i} L_{i}$ Address of last element $=B+\sum_{i=1}^{n} M_{i} U_{i}$
where M is the multiplier for the ith dimension

L is the lower bound for the ith dimension
U is the upper bound for the ith dimension, and
n is the number of dimensions.

Range:

$0<n u m b e r$ of dimensions $<2 * * 22$

Indexer for Interleaved Arrays

Module Name: IHEWJXI

Entry Points:

Operation Initialization for bit addresses	Entry Point
Initialization for byte addresses	IHEJXII
Elements after the first	

Function:

To find the next element of an array and to return its bit or byte address in general register 1.

Entry point IHEJXII is used to initialize the routine for bit addresses and to provide the address of the first element in the array; IHEJXIY does the same for byte addresses. Entry point IHEJXIA is used thereafter to obtain the addresses of subsequent elements of the array; one address is returned for each entry into the routine.

Method:
Arrays are stored in row major order. Let L_{i} be the lower bound and σ_{i} the upper bound of the ith dimension, and n the number of dimensions. Starting with the element $A\left(L_{1}, L_{2}, \ldots . . I_{n}\right)$, the routine varies the subscripts through their ranges to $A\left(U_{1}, U_{2}, \ldots \ldots U_{n}\right)$, changing the nth subscript most rapidly; in this way the elements are referenced in the order in which they are stored.

The routine does not deal with actual subscript values but calculates the
extent $E_{i}\left(=U_{i}-L_{i}+1\right)$ of each dimension and uses this as a count that varies from E_{i} to 1 for subscript values L_{i} to U_{i}. A'base address' for each dimension is maintained and, for the ith dimension, is defined as the address of the element with ith subscript equal to its lowest bound L_{i} and with all other subscripts at their current values.

Thus initially the base addresses are all equal to the address of $A\left(L_{1}, L_{2}, \ldots .\right.$. L_{n}). Each subsequent element address is generated from the previous one by adding the multiplier M_{n} from the array dope vector (ADV) and reducing the subscript count by 1. When the count for the ith dimension has been reduced from E_{i} to 1 it is reset to E_{i}, M_{i-1} is added to the (i-1)th dimension's base address and the count for this dimension is decreased by one.

This new base is the starting point for further increments by M_{n}. When a new base address is calculated, the base addresses for all higher dimensions $((i+1),(i+2), \ldots . . . n)$ is set equal to the ith base address.

Range :
$0<$ number of dimensions $<2 * * 22$

ARRAY FUNCTIONS

ALL (X), ANY (X)
Module Names:

Arguments	Module Name
Simple arrays and interleaved arrays with variable-length elements	IHEWNLI
Interleaved arrays with fixedlength elements	IHEWNL2
Entry Points:	
PL/I Function	Entry Point
ALL(X), ANY (X), byte-aligned	I HENLIA
	IHENL2A
ALL(X), any alignment	IHENL1L
	IHENL2L
ANY(X), any alignment	IHENLIN
	IHELN2N

Function:

The argument X is a bit string array (any necessary conversion having been per-
formed prior to the invocation of these
modules). The result is a scalar bit string of length equal to the greatest of the current lengths of the elements of X.

ALL(X): the ith bit of the result is 1 if the ith bits of all the elements of x exist and are 1; otherwise it is 0 .

ANY (X) : the ith bit of the result is 1 if the ith bit of any element of X exists and is 1; otherwise it is 0 .

Method:
For byte-aligned string arrays, AND
(IHEWBSA) and OR (IHEWBSO) are used for ALL and ANY respectively; for string arrays with any alignment BOOL (IHENBSF) is used with appropriate parameter bits.

The elements of the array are passed to IHEWBSA, IHEWBSO, or IHEWBSF one at a time, and the result is developed in the target field. For the first call to any of these logical modules the first element of the array serves as both first and second source arguments. For subsequent calls, the result already developed in the target field is the first argument and the next element of the array is the second argument.

Range:

Bit strings are limited to a maximum of 32,767 bits.

SUM (X)
Module Names and Entry Points:
Simple Arrays

Arguments	Module Name	Entry Point
Fixed, real	IHEWSSF	IHESSF0
Fixed, complex	IHEWSSX	IHESSX0
Short float		
real	IHEWSSG	IHESSGR
complex	IHEWSSG	IHESSGC
Long float		
real	IHEWSSH	IHESSHR
complex	IHEWSSH	IHESSHC
Interleaved Arrays		
	Module	Entry
Arguments	Name	Point
Fixed, real	IHEWSMF	IHES MF0
Fixed, complex	IHEWSMX	IHESMX 0
Short float		
real	IHEWSMG	IHESMGR
complex	IHEWSMG	IHESMGC
Long float		
real	IHEWSMH	IHES MHR
complex	IHEWSMH	IHESMHC

To produce a scalar with a value which is the sum of all the elements of the array argument.

Method:
The elements of the array are added to the current sum in row major order.

For fixed-point arguments each element is converted to floating-point by using the PL/I Library conversion package.

For a complex argument, the summation of the real parts is performed before the summation of the imaginary parts is begun in modules IHEWSSG and IHEWSSH, while the two sums are developed concurrently in other modules.

Error and Exceptional Conditions:
I : OVERFLOW, UNDERFLOW
H: IHEWSSF, IHEWSSX, IHEWSMF, IHEWSMX: ABS (element of the array) > 7.2*10** 75: SIZE condition caused in conversion package

PROD (X)

Module Names and Entry Points:
Simple Arrays

Arguments	Module Name	Entry Point
Fixed real	IHEWPSF	IHEPSF0
Fixed complex	IHEWPSX	IHEPSX0
Short float		
real	IHEWPSS	IHEPSS0
Lomplex	IHEWPSW	IHEPSW0
float		
real	IHENPSL	IHEPSL0
complex	IHEWPSZ	IHEPSZ0

Interleaved Arrays

Arguments	Module Name	Entry Point
Fixed, real	IHEWPDF	IHEPDF0
Fixed, complex	IHEWPDX	IHEPDX0
Short float		
real	IHEWPDS	IHEPDSO
complex	IHEWPDW	IHEPDWO
Long float		
real	IHEWPDL	IHE PDL0
complex	IHENPDZ	IHEPDZ0

Function:
To produce a scalar with a value which is the product of all the elements in the array argument.

Method:

The elements of the array are used in row major order to multiply the current product.

For fixed-point arguments, each element is converted to floating-point by using the PL/I Library conversion package.

Error and Exceptional conditions:
I : OV ERFLOW, UNDERFLOW
H : IHEWPSF, IHEWPSX, IHEWPDF, IHEWPDX: ABS (element of the array) > 7.2*10** 75: SIZE condition caused in conversion package

POLY (A, X)
Module Names and Entry Points:

Arguments	Module Name	Entry point
Fixed, real		
vector X	IHEWYGF	IHEYGFV
scalar X	IHEWYGF	IHEYGFS
Fixed, complex		
vector X	IHEWYGX	IHEYGXV
scalar X	IHEWYGX	IHEYGXS
Short float, real		
scalar X	IHEWYGS	IHEYGSS
Short float, complex		
vector X	IHEWYGW	IHEYGWV
scalar X	IHEWYGW	IHEYGWS
Long float, real		
vector X	IHEWYGL	IHEYGLV
scalar X	IHEWYGL	IHEYGLS
Long float, complex		
vector X	IHEWYGZ	IHEYGZV
scalar X	IHEWYGZ	IHEYGZS

Function:

Vector $X:$
Let the arguments be arrays declared as $A(m: n)$ and $X(p: q)$. Then the function computed is:

$$
\begin{aligned}
& A(m)+\sum_{j=1}^{n-m} A(m+j) * \prod_{i=0}^{j-1} X(p+i) \\
& \text { unless } n=m, \text { when result is } A(m) \text {. } \\
& \text { If } q-p<n-m-1, \text { then, for } p+ \\
& i>q, X(p+i)=X(q) .
\end{aligned}
$$

Scalar X:
This may be interpreted as a special case of vector x, that is, a vector with one
element, $X(1)$, which is equal to X. Then the function computed is:

$$
\sum_{j=0}^{n-m} A(m+j) * x * j
$$

A floating-point result is obtained in both cases.

Method:

1. Vector $x,(q-p \geq n-m-1):$

POLY (A, X) is evaluated by nested multiplication and addition, i.e..
$(\ldots(A(n) * X(k)+A(n-1)) * X(k-1)+$ $A(n-2)) * \ldots+A(m+1)) * X(p)+A(m)$
where $k=p+n-m-1$.
2. Vector $X,(q-p<n-m-1)$:

In the expression above, the terms in X with subscript ranging from k down to q
are all made equal to $x(q)$. The evaluation is treated as for scalar x until sufficient terms in X have been made equal to $X(q)$, when the computation continues as in (1.).
3. Scalar $\mathrm{X}=$

Terms in X with subscript ranging from k to p are equal to x.

For fixed-point arguments each element is converted to floating-point, by using the PL/I Library conversion package.

Error and Exceptional Conditions:
I : OVERFLOW, UNDERF LOW
H : IHEWYGF, IHEWYGX:
ABS (element of the array) > 7.2*10** 75: SIZE condition caused in conversion package

```
\varepsilon 'and' operator 3
|| concatenate operator 4
] 'not' operator 3
| 'or' operator 3
ABS
    complex fixed-point 15
    complex floating-point 15
absolute error, definition 19
accuracy, in
    arithmetic operations 8
    mathematical functions }1
ADD
    complex arguments 13
    real arguments 13
algorithms 18
ALL array function 45
'and' operator 3
ANY array function 45
array functions 45
array indexers
    interleaved arrays 44
    simple arrays 44
assignment operations
    bit string 4,5
    character string 7
ATAN
    complex arguments 41
    real arguments 27
ATAND (real arguments) 27
ATANH
    complex arguments 41
    real arguments 31,32
bit string operations 3-6
    and 3
    assign, general 4
    assign/fill 5
    BOOL }
    comparison, byte aligned 4
    comparison, general 4
    concatenate 4
    INDEX 5
    not 3
    or 3
    REPEAT 4
    SUBSTR 5
BOOL }
built-in functions
    arithmetic 8
    array }4
    bit string 5
    character string 7
    mathematical }1
character string operations
    assign/fill 7
    compare 6
    concatenate 6
```

```
IHEATL
    see ATAN (real arguments); ATAND (real
        arguments)
IHEATS
    see ATAN (real arguments); ATAND (real
        arguments)
IHEATW
    see ATAN (complex arguments); ATANH
        (complex arguments)
IHEATZ
        see ATAN (complex arguments); ATANH
        (complex arguments)
IHEBSA
    see 'and' operator
IHEBSC
    see comparison operator (bit string,
        byte-aligned)
IHEBSD
        see comparison operator (bit string,
        general)
IHEBSF
    see BOOL
IHEBSI
    see INDEX (bit string)
IHEBSK
        see concatenation operator (bit string);
        REPEAT (bit string)
IHEBSM
        see assignment operations (bit string);
        fill operations (bit string)
IHEBSN
        see 'not' operator
IHEBSO
        see 'or' operator
IHEBSS
        see SUBSTR (bit string)
IHECSC
        see comparison operator (character
        string)
IHECSI
        see INDEX (character string)
IHECSK
        see concatenation operator (character
        string); REPEAT (character string)
IHECSM
    see assignment operations (character
        string); fill operations (character
        string); HIGH; LOW
IHECSS
    see SUBSTR (character string)
IHEDVU
    see DIVIDE (complex fixed-point)
IHEDVV
    see DIVIDE (complex fixed-point)
IHEDZW
    see division operator (complex
        floating-point)
IHEDZZ
        see division operator (complex
        floating-point)
IHEEFL
    see ERF (real arguments); ERFC (real
        arguments)
IHEEFS
        see ERF (real arguments); ERFC (real
        arguments)
IHEEXL
    see EXP (real arguments)
```

 IHEEXS
 see EXP (real arguments)
 IHEEXW
 see EXP (complex arguments)
 IHEEXZ
 see EXP (complex arguments)
 IHEHTL
see ATANH (real arguments)
IHEHTS
see ATANH (real arguments)
IHEJXI
see array indexers (interleaved arrays)
IHEJXS
see array indexers (simple arrays)
IHELNL
see LOG (real arguments); LOG2; LOG10
IHELNS
see LOG (real arguments); LOG2; LOG10
IHELNW
see LOG (complex arguments)
IHELNZ
see LOG (complex arguments)
IHEMPU
see MULTIPLY (complex fixed-point)
IHEMPV
see MULTIPLY (complex fixed-point)
IHEMXB
see MAX (real arguments); MIN (real
arguments)
IHEMXD
see MAX (real arguments); MIN (real
arguments)
IHEMXL
see MAX (real arguments): MIN (real
arguments)
IHEMXS
see MAX (real arguments); MIN (real
arguments)
IHEMZU
see multiplication operator (complex
fixed-point); division operator (com-
plex fixed-point)
IHEMZV
see multiplication operator (complex
fixed-point); division operator (com-
plex fixed-point)
IHEMZW
see multiplication operator (complex
floating-point)
IHEMZZ
see multiplication operator (complex
floating-point)
IHENL1
see ALL; ANY
IHENL2
see ALL, ANY
IHEPDF
see PROD
IHEPDL
see PROD
IHEPDS
see PROD
IHEPDW
see PROD
IHEPDX
see PROD
IHEPDZ
see PROD

IHEPSF

see PROD
IHEPSL
see PROD
IHEPSS
see PROD
IHEPSW
see PROD
IHEPSX
see PROD
IHEPSZ
see PROD
IHESHL
see SINH (real arguments); COSH (real arguments)
IHESHS see SINH (real arguments); COSH (real arguments)
IHESMF see Sum
IHESMG
see SUM
IHESMH
see SUM
IHESMX
see SUM
IHESNL
see SIN (real arguments); SIND (real arguments); cos (real arguments); cosD (real arguments)

IHESNS

see SIN (real arguments); SIND (real arguments); cos (real arguments); COSD (real arguments)

IHESNW

see SIN (complex arguments): SINH (complex arguments); cos (complex arguments): COSH (complex arguments)

IHESN2

see SIN (complex arguments); SINH (complex arguments); COS (complex arguments): $\cos \mathrm{H}$ (complex arguments)
IHESQL
see SQRT (real arguments)
IHESQS
see SQRT (real arguments)
IHESQW see SQRT (complex arguments)
IHES QZ see SQRT (complex arguments)
IHESSF see Sum
IHESSG see Sum
IHESSH see SUM
IHESSX see sum
IHETHL
see TANH (real arguments)
IHETHS
see TANH (real arguments)
IHETNL see TAN (real arguments); TAND (real arguments)

IHETNS

see TAN (real arguments): TAND (real arguments)

IHETNW
see TAN (complex arguments): TANH (complex arguments)
IHETNZ
see TAN (complex arguments); TANH (complex arguments)
IHEXIB
see exponentiation operator (real operations, integer exponents)
IHEXID
see exponentiation operator (real operations, integer exponents)
IHEXIL
see exponentiation operator (real operations, integer exponents)
IHEXIS
see exponentiation operator (real operations, integer exponents)
IHEXIU
see exponentiation operator (complex operations, integer exponents)
IHEXIV
see exponentiation operator (complex operations, integer exponents)
IHEXIW
see exponentiation operator (complex operations, integer exponents)
IHEXIZ
see exponentiation operator (complex operations, integer exponents)
IHEXXI
see exponentiation operator (real operations, floating-point exponents)
IHEXXS
see exponentiation operator (real operations, floating-point exponents)
IHEXXW
see exponentiation operator (complex operations, floating-point exponents)
IHEXXZ
see exponentiation operator (complex operations, floating-point exponents)
IHEYGF
see poly
IHEYGL
see poly
IHEYGS
see POLY
IHEYGW
see poly
IEEYGX
see POLY
IHEYGZ
see poly
INDEX
bit string 5
character string 7
indexers
see array indexers

LOG
complex arguments 37
real arguments 21,22
LOG2 (real arguments) 21, 22
LOG10 (real arguments) 21,22
LOW 7
mathematical functions 19
MAX (real arguments) 13
MIN (real arguments) 13
Modules Names 1,2
multiplication operator
complex fixed-point 10,11
complex floating-point 11
MULTIPLY (complex fixed-point) 14

' not' operator 3

'or' operator 3

POLY array function 46
PROD array function 46

```
range of arguments
    in arithmetic operations and
        functions 8
```

 in array indexes and functions 43
 in mathematical functions 17
 relative error 19
REPEAT
bit string 4
character string 6
shift-and-assign, shift-and-load (real operations) 10
SIN
complex arguments 38,39
real arguments 23,24
SIND (real arguments) 23,24
SINH
complex arguments 38,39 real arguments 38,39

SQRT
complex arguments 35 real arguments 19,20
SUBSTR
bit string 5 character string 6
SUM 45

TAN
complex arguments 40
real arguments 25,26
TAND (real arguments) 25,26
TANH
complex arguments 40
real arguments 30,31
truncation
in array indexes and functions 43
in mathematical functions 18

[BiM

International Business Machines Corporation
 Date Processing Division
 1133 Westchester Avenue, White Plains, New York 10604
 [U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

[^0]: A form for reader's comments appears at the back of this publication. Address any additional comments concerning the contents of this publication to IBM Corporation, Programming Publications, Department 636, Neighborhood Road, Kingston, New York 12401

[^1]: Figure 6. Mathematical Functions With Complex Arguments

