

PREFACE

A subset of Time Sharing System/360 (1S5/360) is presented in this book to
allow use of basic system facilities without an extensive knowledge of the
command system, by which system functions are invoked. The reader of the
book is presumed to have at least a basic knowledge of FORTRAN. In addition,
the user profIle under which the reader will use TSS/360 should be altered as
explained in Appendix B. This can be done by the reader himself. if necessary;
preferably, however, it should be done by someone in a supervisory or tutorial
relationship to the reader.

The altered user profIle can be changed again by the reader if he progresses
to using the full command system. The full system is explained in other books of
the TSS/360 Systems Reference Library, such as Command System User's
Guide, Form C28·2001, and FORTRAN Programmer's Guide, Form C28·2025.

This book contains basic information on the three kinds of terminals that
can be used with TSS/360. If more information is needed, see Terminal User's
Guide , Form C28·20 17.

Fifth Edition (September 1970)
This edition. a revision of C28·2048·3. is current with Version

8. Modification 0, of IBM System/360 Time Sharing System and re
mains in effect for all subsequent versions unless otherwise indicated.
Significant changes will be provided on new editions.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving your
locality.

Comments on this publication may be addressed to IBM
Corporation, Time Sharing SystemlJ60 Programming Publications,
Department 643. Neighborhood Road, Kingston, New York 12401.

IBM
©International Business Machines Corporation 1969, 1970

CONTENTS

J ntroduction

One: Gaining Access to TSS/360

Two: Organizing Data
Data Set Names
Source Data Sets
Program Names

Three: Creating and Editing Data Sets

Four: Printing and Erasing Data Sets
Erasing Data Sets

Five: Compiling Fortran Programs .
Lme-by-Line Compilation

.3

.4

.6

.7

.8

.8

10

17
17

20
23

Source Listings 24

Six: Executing a Program . . 26

Seven: Program Input/Output . 30

Eight: Interrupting the System 34

Appendix A: How to Use TSS/360 Terminals 37
IBM 1050 Data Communications System 38
IBM 2741 Communications Terminal 42
Teletype Model 33/35 KSR _ 45

Appendix B: How to Ready the System 47
Entering the DEFAULT and PROFILE Commands 47
What the DEFA OLT and PROFILE Commands Do 47

Appendix C: Command Descriptions 50

INTRODUCTION

TSS/360 is a programming system that runs on the IBM System/360 Model 67
to give a number of simultaneous users access to the services of a computer. It is
as if each user had access to a separate computer. The work being done by one
user cannot interfere with that being done by another.

The Virtual Computer
The illusion that TSS/360 gives each user of having his own computer is

called the virtual machine or virtual computer. TSS(360 provides each user with
a virtual computer that is easier to use than the real computer on which the
time-sharing system operates.

In addition, each user can address a larger main storage capacity than the
real computer has. This is accomplished by sectioning programs and data and
keeping the sections that are not currently in use on secondary storage instead of
in main storage. But you can write your programs and structure your data
without regard for how they are sectioned or where they are actually stored; the
sections on secondary storage will be brought into main storage when you need
them.

This illusion of main storage capacity larger than that of the real computer
is an aspect of the virtual computer that is called virtual storage. You can learn
more about how it is done from other books of the TSS/360 Systems Reference
Library if you want to. But you don't need to know how TSS/360 works in
order to use it.

Facilities of TSS/360
TSS/360 features a set of commands by which you can tell the system what

you want it to do for you. The full command system is very powerful--buL like
any powerful tool, it is hard to learn how to use every feature of it all at once.

This book introduces you to a subset of the command system that still gives
you plenty of power for basic uses. It teaches you how to

• gain conversatlOnal access to the system from a terminal:
• create, edit and erase data sets;
• compile and execute FORTRAN programs;
• debug your programs dynamically that is, while executing them.
After mastering the T SS/360 facilities presented in this book, you can go on

to other manuals to learn more. But by the time you finish this book, you
should be able to use the system successfully; and you may even decide that the
command subset presented here fulfills your computing needs.

3

One: GAINING ACCESS TO TSS/360

To use the facilities ofTSS/360, you must first have

• a user identification and password

• a terminal.

The terminal is a typewriter-like device with which you and the system
communicate. The three kinds of terminals used with TSS/360 are described in
Appendix A. When you find out what kind you will be using, read the part of
the appendix that tells you how to use that kind.

The user identification and password will be assigned to you by the person
who gives you permission to use TSS/360. The user identification, or user ID, is
the name under which the system will keep track of your use of the compu ter.
The password, which can be changed more easily. is provided as a way of making
sure that only you can lise your user ID to gain access to the system. Keep this
information to yourself to prevent others from using the system and charging
you for it.

The user ID and the password are operands of the LOGON command. To
prevent unauthorized observation. the password may be omitted as the second
operand of LOGON, and entered in the blackened space provided by the system,
as below. You must go through the LOGON procedure each time you want to
use TSS(360.

To start the LOGON procedure, turn on your terminal and connect it to the
time-sharing system. (See the instructions on how to do this in Appendix A.)
The system will then unlock the terminal keyboard for you to enter the LOGON

command and your user rD.

The command and the system messages will look like this (this system types
in capital letters, while your entries are in lowercase):

logon smith

(The system responds with a message indicating the level of the system.)

ENTER PASSWD
IiIIiIIlIJUalll1ll8

4

SMITH is the user lD in this example. You enter your password in the
blackened space. If your password is valid, the system will respond with a message
such as:

20 LOGON AT 12:03 ON 09/15/70

In this message, 2D is the task ID number (the system assigns a unique hexa
decimal number to each task).

The system will invite you te enter a command. (On an IBM [052 or 2741
terminal, this invitation will appear as an underscore followed by a backsapce;
on the teletypewriter, it will appear as a right bracket and a left arrow. From
here on in this book, the I BM terminal will be considered standard;
teletypewriter users should use the equivalent characters noted in Appendix A.)

After you have finished using the system, you must disconnect yourself
from it. Do not just turn off the terminal. Instead, issue the LOGO F F command
so that TSS/360 can disconnect you in an orderly fashion.

logoff

LOGOFF ACCEPTED 09/15/70 AT 10:08

Notice that the first letter of your LOG 0 FF command appears directly over
the underscore that the system printed to invite you to enter a command. And
notice again that your LOGOFF command, like your LOGON command, is
typed in lowercase letters while the system's message is in capitals. TSS/360

translates your lowercase letters into capitals; this saves you from constant use
of the SH 1FT key and provides an easy way to tell your entries from the
system's when you read over terminal printout.

After the system accepts your LOGOFF command, turn off the terminal,
which will by then be disconnected from the computer.

Review

• To gain access to TSS/360, you need a terminal, a user identification, and a
password.

• Each TSS/360 terminal session must begin with the LOGON command. If
the user ID is entered as the only operand of tOGON, the system will
prompt you to enter your password in a blackened field which it provides.

• To end a terminal session, issue the LOGOFF command. This causes the
system to disconnect you in an orderly fashion. Do not just turn off the
terminal.

5

Two: ORGANIZING DATA

[n 1'SS/360, data is organized into data sets. A data set is a named collection of
logically related data records. T5S/360 includes data set organizations that were
designed for efficient use with virtual storage. For the purposes of this manual,
only two data set organizations will be considered-the virtual index sequential
organization and the virtual sequential organization.

The virtual index sequential organization will be used here for source data
sets to be processed by the H1RTRAN compiler. Such data sets can be created
or modified with the T5S/360 text editing facilities, as explained in Chapter
Three. The virtual sequential organization is used with FORTRAN LO routines.

A virtual index sequential data set consists of records that are indexed by an
ascending key that is part of each record. This book will consider only
variable-length records in which the key is a seven-digit decimal number at the
beginning of each record. Each record is considered to be a line of data, and the
numbers are known as line numbers. This type of virtual index sequential data
set is called a line data set.

Lines in the line data sets used with this book may vary in length up to 132
characters, including the seven-digit line numbers and five characters of system
information--leaving 120 characters for data.

CNfALOG

~
I
i

Figure 1. Catalog organization.

6

The indexing feature of the virtual index sequential organization allows
nonsequential processing of the data set records. Line numbers that are supplied
by the system are normally produced by adding an increment of 100 to the
previous system-supplied line number. thus allowing as many as 99 insertions
between lines. System routines can be used to display selected lines and to
remove or replace selected lines in an existing data set. and to insert new lines.
However, FORTRAN I/O routines cannot be used to process lines
nonsequentially; these routines can best be used to process virtual sequential
data sets.

Below is an example of a line data set. For illustrative purposes, trivial data
is used; each of these lines from Hamlet's soliloquy corresponds to a line of data.

0000100 TO BE, OR NOT TO BE, THAT IS THE QUESTION:

0000200 WHETHER 'TIS NOBLER IN THE MIND TO SUFFER

0000300 THE SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE

0000400 OR TO TAKE ARMS AGAINST A SEA OF TROUBLES

0000500 AND BY OPPOSING END THEM.

Data Set Names
TSS/360 data sets can be accessed by name alone. This is possible because

the system maintains a catalog of data sets; this catalog associates the name of
each cataloged data set with the physical address of the data set on secondary
storage. The name of each data set is prefixed with the user identification of the
user who created it, so that each user's data sets are uniquely identified and
cannot be confused with those of another user.

A simple data set name consists of one to eight alphanumeric characters, the
first of which must be alphabetic. (For instance, DAT ASETl would be a valid
data set name, but IDATASET would not.)

Longer data set names can be formed by combining a series of such simple
names, called components, so that each component represents a level of
qualification. Several levels of qualification arc possible, but two levels are
sufficient for the applic:Jtions discussed in this book.

For example, the data set name ABLE.BAK ER consists of two components
that are delimited by a period to indicate a hierarchy of categories. Starting from
the left, each component of the name can be considered a category within which
the next component is a unique subcategory.

A jilfly qualified data set name identifies an individual data set and includes
all components of that data set's name. A partially qualified data set name
identifies a group of data sets by omitting one or more of the rightmost

7

components of their fully qualified names. For instance, a TSS/360 user might
have two data sets named ABLE.BAKER and ABLE.CHARLEY. The partially
qualified name AB LE would refer to these data sets as a group; the fully
qualified names ABLE.BAKER and ABLE.CHARLEY would uniquely identify
each data set. (See Figure 1.)

Source Data Sets
The chief application of fully and partially qualified data set names for lIsers

of this book is in naming source data sets for processing by the FORTRAN

compiler. A source data set contains the source program, or source statements,
from which the compiler produces an executable program, called the object
program.

A FORTRAN source program may be pre stored in the system as a data set
or entered from the terminal for line-by-line scanning. In the latter case, the
system builds a data set to contain the source statements; this data set may be
modified and recompiled later. No matter how the source statements are entered
into the source data set-by the L1ser before compilation or by the system during
compilation--the source data set has the partially qualified name so U ReF. The
fully qualified name consists of the component SO l'RCE, the delimiting period,
and the name of the object program to be produced from that source da la set.

For instance, if you had written a FORTRAN source program from which
you wanted to produce an object program to be named ADD UP, YOLI could first
store the FORTRAN source statements in a data set named SOURCE.ADDUP.

You could then call the FORTRAN compiler to process the statements in the
data set SOURCE.ADDUP to produce the executable program named ADDUP.

Alternatively, you could call the FO R T RA N compiler and enter the source
statements one at a time for line-by-line scanning and compilation. In this case
the compiler would not only produce the objec t program ADD UP, it would also
construct the data set SO URCE.A DD UP fur you.

Program Names
Executable programs are also stored as data sets; however. these da ta sets do

not contain data in the usual sense, but machine instructions and control
information that makes it possible to load and execute them as programs.

Each program you compile is made a member of a library of your programs
which is names USER LIB. The program can be invoked by llsing its simple
name~such as ADDUP in the example above. To treat it as a data set, however
(to get rid of it, for instance), YOll would refer to it by the name of the library
followed by the program name in parentheses. In the case of ADD UP, the fully
qualified data set name of the program would be USER LIB(ADD UP).

Although data set names may consist of as many as eight alphanumeric
characters, you should restrict your program names to six or fewer characters.
This will assure the uniqueness of additional names which the compiler generates
based on the program name.

8

Review

• In TSS/360, data is organized into named collections of logically related
records called data sets.

• This book illustrates a special form of index sequential data set called a line
data set-each record is a line indexed by a seven-digit decimal number at
the beginning of each line. Lines may vary in length up to 132 characters,
including the seven-digit line number and five characters of system
informa tion.

• TSS/360 data sets can be accessed by name alone through the system
catalog, which associates a phYSical address with the data set name.

• Simple data set names consist of one to eight alphanumeric characters. the
first of which must be alphabetic.

• Longer data set names can be formed by joining a series of simple names
with periods so that each represents a level of qualification. A fully qualified
name identifies an individual data set; a partially qualified name identifies a
group of data sets.

• All source data sets can be identified by the partially qualified name
SOURCE. For instance, a source data set for a program named ADDUP
would have the fully qualified name SOURCE.ADDUP.

• Executable programs are members of a library of user programs, which is
named USLRLIB. Programs can be called by their simple names (for
instance, ADDUP). but to treat a program as a data set you must address it
by its fully qualified nameUSERLIB followed by the program name in
parentheses. For the program ADD UP, for instance, the fully qualified name
would be USERlll.l(ADDUP).

• Restrict program names to six or fewer characters to avoid possible
duplication of additional names that the compiler generates from the
program name.

9

Three: CREATING AND EDITING DATA SETS

The text editor is a facility that can be used to create line data sets and to alter,
or edit, existing line data sets. To invoke the text editor, issue the EDIT

command. The operand of this command is the name of the data set to be
created or edited. Suppose that you want to create a data set named RHYMES,

in which you intend to store nursery rhymes. (As in Chapter 2, we are
deliberately using trivial data so that you can concentrate on the method of
manipulating data rather than on the data itself.) To create this data set, issue
the EDIT command:

edit rhymes

The system will respond by issuing the first line number of the new data set
RHYMES:

0000100

You enter your first line of data and press the R ETU RN key:

0000100 jack and jill went up the hill

The system will then prompt you with the second line number, following
which you enter the second line of data, and so on. Your entries and the
system-supplied line numbers might look like this:

0000100 jack and jill went up the hill

0000200 jack fell done and broak his crown,

0000300 and jill came tumbling after.

0000400

10

The system has prompted you for your fourth line of data when you notice,
in reading back over your entries, that you have left out a line of the rhyme and
have made some spelling errors in line 200.

You can insert the missing line with the INSERT command. But the system
has just prompted you with another line number; if you type in the INSERT

command now, the system will interpret it as a line of data, and will enter the
line into the data set rather than executing the command.

To tell the system that you want to enter a command now instead of a line
of data, you enter the break character in the first character position of the line
for which the system prompted you-that is, right after the line number. The
break character is the underscore on the IBM 1052 and 2741 terminals; on the
teletypewriter terminal, it is the right bracket, which is the uppercase character
on the "M" key. After receiving the break character, the system will expec t a
command instead of a data line.

You enter the break character:

0000400

Now you can enter the INSERT command. As its operands, enter the line
number of the exiting line that you want your inserted line to follow, and the
incremen t that you want the ,;ystem to add to this existing line number to
produce the line number for your inserted line. You enter the command after
the break character:

0000400 insert 100,50

This command tells the sy:;tem that you want to insert one or more lines
after line 100, and that the first inserted line should have the line Dumber 150.
The system responds by prompting you with the line number 150:

0000150

... and you enter the line to be inserted:

0000150 to fetch a pail of water.

The system will not prompt you with line number 200, since there is
already a line numbered 200 in the data set. Instead, it will prompt you for

11

another command. Perhaps you'd like to check and see that your insertion was
made correctly. Issue the LIST command, giving the line numbers of the first
and last lines of the range of lines you want to review:

list 100,200

The system will then print out on your terminal the data lines from 100 to
200 inclusive:

0000100 JACK AND JILL WENT UP THE HILL

0000150 TO FETCH A PAIL OF WATER.

0000200 JACK FELL DONE AND BROAK HIS CROWN,

Notice that the insertion was made correctly, and that line 200 was not
affected. The INSERT command allows you to make insertions between existing
lines-you could have inserted as many as 99 lines between lines! 00 and 200 by
specifying a line· number increment of l--but it does not allow you to change
existing lines.

Notice also that the system has translated the lowercase letters which you
typed when entering the data lines into capital letters. As mentioned, the system
performs this translation to save you from having to lise the SHIFT key
frequently.

To correct the spelling errors in line 200, use the REVISE command. The
REVISE command removes existing lines from a data set and allows you to
replace them. If you want, you can replace a single line with several new lines.

To remove line 200 and replace it with two lines, you issue the REVISE

command:

revise 200,incr=50

The INCR operand tells the system to increment the line number 200 by 50
when prompting you for additional lines. It responds by prompting you for data,
which you enter:

0000200 jack fell down

0000250 and broke his crown

12

The REVISE command, like the INSERT command, terminates execution
when the increment specified produces a line number equal to or greater than
that of a line already in the data set.

When you are prompted for another command, you enter an INSERT

command to let you add lines to the end of the data set:

insert last

Here the operand LAST specifies the highest-numbered line now in the data
set. This form of relative addressing can be used with the IN SERf, LIST, and
REVISE commands. Using it with the INSERT command allows you to add
lines at the end of a data set.

Since no increment is specified in your INSERT command, the default
increment of 100 is used, and the system prompts you with the line number 100
more than the line number of the last line now in the data set:

0000400

You can now en ter another rhyme:

0000400 mary, mary, quite contrary,

0000500 how does your garden go?

0000600 snips and snans and puppy-dog tails

0000700 and PrE~tty maids all in a row.

0000800

Only after en tering these lines do you notice that your memory has played
tricks on you and you have inserted a line from another poem into this one.
Also, you have entered "how does your garden go?" instead of "how does your
garden grow?"

To correct this, enter a break character and then the REV] SE command,
specifying that you want to remove all of the lines from 500 to 600 and replace
them. You default the increment this time, since you plan to replace two lines
with two new lines:

0000800 revise 500,600

13

The system prompts for the replacement lines and you enter them:

0000500 how does your garden grow?

0000600 silver bells and cockle shells

As before, the system terminates execution of the command when line
numbers match.

To review your work so far, issue the break character followed by the LIST

command. You have seen that the LIST command can specify a single line
number, a range of line numbers, or a relative line (such as LAST). If you enter
no operands, the LIST command causes the entire data set to be displayed:

1 is t

0000100 JACK AND JILL WENT UP THE HILL

0000150 TO FETCH A PAIL OF WATER.

0000200 JACK FELL DOWN

0000250 AND BROKE HIS CROWN

0000300 AND JILL CAME TUMBLING AFTER.

0000400 MARY, MARY, QUITE CONTRARY,

0000500 HOW DOES YOUR GARDEN GROW?

0000600 SILVER BELLS AND COCKLE SHELLS

0000700 AND PRETTY MAIDS ALL IN A ROW.

You decide to stop editing this data set until you find another good poem.
When the system prompts with an underscore, you issue the Ie ND command:

end

This terminates text editing. You could also have issued another ED IT

command. with a different data set name; this would have terminated editing of
the first data set and allowed you to start editing the next one.

14

Later you return to the data set you have named RHYMES. You issue the
EDIT command:

edit rhymes

... and the system responds by prompting with the next available line number:

0000800

You insert a line giving the title of the first poem:

0000800 _insert 0,50

0000050 jack and jill

0000100

Next you remove all the lines of the second poem:

0000100 revise 400,last

0000400 end

When no data is entered following the REVISE command, the specified
lines are removed without being replaced. The END command concludes your
editing of this data set.

Creating Virtual Sequential Data Sets

You may wish to create a virtual sequential data set that is to be used with
FORTRAN IrQ routines. In this example, each line will consist of a number in
F6.2 formaL You enter a D A T A command with a name for the data set:

data numbers

15

The system prompts you to enter a line by issuing a pound sign followed by a
space. You enter the line and are prompted again:

240.00

When you have entered all the lines you wish, you indicate the end of your data
set by responding to the prompt with %e:

125.50

%e

The system then prompts you with an underscore for your next command.
If at a later time you wish to add some more lines to the data set, you

simply issue another DA T A numbers command with the same data set name as
operand, and the system will position you to the end of the d:Jta set and prompt
you for additional lines. Note that the D AT A command is used in creating
virtual sequential data sets-·the text editor cannot be used to modify such data
sets once they have been created.

Review

• The text editor is invoked with the EDIT command.
• Text editing is terminated with the END commalld or with another EOJT

command.
• The text editor creates and alters virtual index sequential da ta sets. For the

purposes of this book, these are restricted to data sets consisting of lines
indexed by seven-digit line numbers in the first position of each line.

• The break character tells the system to expect a command rather than a line
of data.

• The INSERT command inserts one or more data lines between existing lines
in a data set.

• The REVISE command removes a specified line or range of lines, which can
then be replaced with other lines.

• The LIST command allows you to review a tine, a range of lines, or an entire
line data set.

• The 0 A TA command allows you to create or add to a virtual sequential
data set.

l6

Four: PRINTING AND ERASING DATA SETS

In Chapter 3 you learned that you can cuase an entire data set to be printed out
on your terminal by issuing the LIST command with all operands defaulted.
However, this is a slow process compared to having the data set printed on the
high-speed printer at the central computer installation. Use of the LIST

command to print out an entire data set at the terminal should be restricted to
short data sets.

To print a data set on the installation's printer, issue the PRINT command:

Qrint rhymes

If you will no longer need the data set after having it printed, follow the
data set name with the ERASE operand:

Qrint rhymes,erase=y

The ERASE option will cause the data set to be erased after it has been
printed. If ERASE=N is entered, or if the option is omitted, the data set will not
be erased.

The system will respond to the PRINT command with a message like this:

PRINT BSN 0285

"BSN 0285" in this sample message stands for "Batch Sequence Number
0285." The batch sequence number, which the system assigns, will help you find
your printout when you go to the computer room for it.

The system may not execute your PRINT command immediately; another
user may be using the printer. The command will be executed as soon as a
printer is available. After issuing a PRINT command, you must not use that data
set until it has been printed.

Erasing Data Sets
You can erase a data set after printing by using the ERASE option of the

PRINT command. You can also use the ERASE command. To erase the data set
RHYMES without printing it, you could enter this command:

17

erase rhymes

Entering the ER ASE command with no operand results in a review of the
names of all of your data sets; as each name is presented, you can enter E (for
erase) or R (for retain) to erase or retain that data seL Entering an A (for all)
erases all cataloged data sets for which you have not specified R.

Entering the ERASE command with a partially qualified data set Harne as
the operand results in a review of all of the data sets with that partially qualified
name. Suppose you had created several source data sets from which you had
compiled executable programs; you want to erase the source data sets you no
longer need, and retain those which you may need to modify and recompile.
Issue the ERASE command with the partially qualified name SOURCE:

erase source

The system will then present the fully qualified name of each ofyouf source
data sets and invite you to enter E, R, or A for each.

To erase an object program, use as the operand of the ERASE command the
name of the library in which the program is stored, USER Ll B, followed by the
program name in parentheses. For instance, to erase an object program named
ADDUP, you would issue this command:

erase userlib(addup)

This would erase only the object program ADD II P. If you had not
previously erased the source program SOURCE.ADDUP, from which you
compiled the object program, it would remain in the system after execution of
this ERASE command. You could erase SOURCE.ADDUP separately, or modify
it and recompile to produce a modified object program with the name ADDUP.

Do not issue the ERASE command with only USERLlB as an operand. This
would erase your user library and all the programs in it, as well as control
information that the system needs to provide your operating environment, as
described in Appendix B.

18

Review

• The PR lNT command can be used to cause a data set to be printed on the
high-speed printer at the computer installation. The data set may be erased
after printing by using the ERASE option of the PRINT command.

• The ER A SE command can be used to erase a data set. Used with a partially
qualified data set name or with no operand, it allows you to review data sets
and decide whether to erase or retain each.

• Do not erase USERLIB. This would destroy not only all of your programs
stored there, but other information the system needs to provide your
operating environment.

19

Five: COMPILING FORTRAN PROGRAMS

TSSj360 includes a compiler to process source programs written in the IBM

FORTRAN IV language and produce an object program that can be loaded and
executed. Let's use the text editor to create a source data set for a simple
FORTRAN program. Issue the EDIT command:

~dit source.powers

SOURCE.POWERS is the name of the source data set to be created;
POWERS will be the name of the executable program to be compiled from this
source data set. The system prompts with line numbers and you enter your
source statements as lines of data:

0000100 m=l

0000200 n=5

0000300 2 do 1 i=m,n

0000400 j = i**2

0000500 k = j*i

0000600 kk = k*i

0000700 1 print 3, i ,j ,k,kk

0000800 3 format (lx, ;3, i4, i5, i6)

0000900 stop

0001000 end

0001100 end

Line 1000 contains the END statement that will tell the FORTRAN

compiler that it has reached the end of your source program. When the system

20

prompted for line 1 100, you entered the break character and the text-editor
END command, which terminates text editing. Don't confuse the END

statement of FO RTRAN with the text editor END command.
If you make mistakes in entering your source statements, correct the

erroneous lines using the text-editor IN SER T and R E VI SE commands as
illustrated in Chapter 3.

Having created your source data set, you now want to compile the source
statements. The system will prompt for another command following your END

command; after being prompted, enter the FT N command to invoke the
FORTRAN compiler:

ftn powe rs ,Y

As shown here, the FTN command has two operands--the name of the
program to be created, and an indication of whether the source statements for
that program have been stored in the system as a data set.

POWE R S is the name of the program to be created. Notice that you do not
give the name of the data set you have just created. SOURCE.POWERS is the
name of the source data set for your program; the name of the executable
program will be POWERS. It's important to understand that these are two
separate data sets-one containing FO R TR AN source statements, the other
containing executable machine instructions.

The second operand of this FTN command, Y, stands for "Yes" and tells
the system that your source statements are already stored as a data set. The
system will now look for the data set named SOURCE.POWERS and start
processing the source statements in that data set to create the executable
program POWERS.

If the compiler detects an error in the source statements, it issues a
diagnostic message at the terminal, prints out the line in which the error was
found, and invites you to correct the error. The source statements in
SOURCE.POWERS have been entered correctly so that you can copy them
easily if you want to. But suppose that the statement number had been omitted
from the FORMAT statement. When the compiler reached the FORMAT

statement, it would halt its scan, issue a diagnostic message giving the line
number and contents of the erroneous line, and invite you to enter a correction:

0000800 E *** FORMAT STATEt~ENT DOES NOT HAVE

STATEMENT NUMBER

0000800 FORMAT (1 X, 13. 14. 15, 16)

21

The pound sign (#) invites your correction. Enter the line number, a
comma, and the corrected line:

#800,3 format (lx, ;3, ;4, i5, ;6)

After you enter your corrected line. the system prompts with another
pound sign in case you need to enter more than one line. To tell the system that
you have finished making corrections, press the RETURN key to enter a null
line. The compiler will then resume processing your source statements.

Correction lines entered after the pound-sign prompt may be either
replacement or insertion lines. You can also delete a line or a range of lines. To
do this, enter a D immediately after the pound sign, followed by a comma.
followed by the line number of the line you want to delete. To delete tine 600,
for instance, you would enter:

#d,600

To delete a range of lines, enter the D, the comma, the line number of the
first line in the range, another comma, and the line number of the last line in the
range. For instance:

#d,500,700

If the compiler has detected errors while scanning your source statements,
it gives you a chance to enter corrections:

MODIFICATIONS?

If you enter Y for "Yes," you will be prompted for corrections with the
pound sign as described above. If you enter N for "No," processing will COll

tinue.

If the compiler finds no more errors, you will be returned to command
mode. The executable program POWERS is now stored in your library of user
programs, ready to be executed.

22

Line-by-Line Compilation

Instead of creating a source data set and then compiling the source
statements in it, you can also invoke the FOR TR AN compiler and enter your
source statements for line-by-line scanning.

To do this, enter the FTN command in this form:

ftn inout,n

The N as the second operand of this command indicates that your source
program is NOT already stored in the system as a data set. When there is no
second operand of the FTN command, the system assumes the value N, so you
could also have entered the FTN command in this form:

ftn i nout

When N is specified as the second operand of the FTN command, or when
the program name is the only operand entered, the system will prompt you with
line numbers for the lines of your Fa R TR A N source program. Then, as you
enter the source statements, the system will both create the source data set and
compile the source statements into an executable program.

The system prompts with line numbers and you enter your source
statements. The statements may be entered free form. (Note that the FORTRAN

compiler does not provide a blank space between the line numbers and the first
column you enter, as the text editor does.)

0000100 pri nt 2

00002002 format (lx~ 'program started')

00003003 read (5,4, end=8, err=5) figure

0000400 format (lx, f6.2)

You have provided no statement number in entering the FORMAT state
ment. The system issues a diagnostic message and invites a correction immediately,
instead of prompting you for the next line. You enter the corrected line:

23

0000400 E *** FORMAT STATEMENT DOES NOT HAVE

STATEMENT NUMBER

#400 t 4 format (lx t f6.2)

After the second pound sign, you signal the end of your modifications by
pressing the RETURN key to enter a null line. The system then prompts you
with the next line number and you enter source statements as before:

00005005

00006007

0000700

00008008

0000900

write (6,7) figure

format (lx, flO.2)

go to 3

stop

end

The END statement indicates the last line of your source program. After
encountering it, the system will stop prompting you with line numbers and
finish scanning the source program for syntax. It will ask for modifications and
return you to command mode when it has completed an error-free compilation.
The executable program INOUT is now stored in your library of user programs,
ready to be run.

Source Listings

Now that you have successfully compiled the programs POWERS and
INPUT, you may want to print the source data sets to provide you with a record
of the source programs. Issue these PRINT commands:

24

Qrint source.powers

Qrint source.inout

The system will assign a batch sequence number to each PR lNT command;
these numbers will help you find the printout at the central computer
installation.

If you are sure your programs are correct, you may want to add the operand
ERASE=Y after the data set name in each of these PRINT commands, causing
the system to erase your source data sets after printing them.

On the other hand, you may want to wait until you have run the programs
and made sure that they work correctly. If one of them gives incorrect resuits,
you may want to modify the source data set and recompile.

If you decide not to use the ERASE option of the PRINT command, you
can erase the source data sets when you no longer need them with the ERASE

command.

Review

• Source statements can be compiled after being stored in the system as a data
set, or entered line by line from the terminal for compilation.

• The operands of the FTN command, which invokes the FORTRAN

compiler, give the name of the executable program to be created and
indicate whether the source statements are stored as a data set or will be
entered from the terminal.

• The compiler issues a diagnostic message when it discovers an error, and
then invites correction.

• You can use the PRINT command to obtain a listing of your source data
set.

25

Six: EXECUTING A PROGRAM

Now let's execute one of the two programs that you compiled in the previous
chapter. To invoke a program, issue the CALL command with the program name
as the operand:

call powers

The system will load the program POWERS and give it control. POWERS

loops through a sequence of instructions that squares, cubes, and raises to the
fourth power a number I, the value of which is incremented from 1 to 5. (See
Figure 2.)

M=l

N=5

2 DO 1 I=M,N

J = 1**2

K = J*I

KK = K*I

1 PRINT 3,1,J,K,KK

3 FORMAT (lX, 13, 14, 15, 16)

STOP

END

Figure 2. Source statements for programs POWERS.

26

The program prints the results at your terminal:

1 1 1

2 4 8 16

3 9 27 81

4 16 64 256

5 25 125 625

TERMINATED: STOP

The last line of the printout, TERMINATED: STOP, indicates that the pro·
gram has reached its end, corresponding to the STOP statement in your source
data set.

Obviously, you will get the same results every time you run this program
unless you can change the values of the variables M and N. With TSS!360 you
can do so, using program·control commands.

First. issue the QUALIFY command:

..9..ua 1 i fy powers

This command tells the system that you are going to refer to internal
symbols in the program POWERS.

You can use the SET command to change the values of the variables M and
N. But if you do this now, and then execute the program, the variables will be
restored to their original values by the instructions that correspond to the
statements M==l and N=5 in your source program.

What you need is a way of altering the values of these variables just before
the program executes the DO statement. With TSS/360 you can do this with a
dynamic command statement.

A dynamic command statement starts with the AT command, which
indicates at what point in your program the command statement is to be
executed. The commands following the AT command at the command
statement are delimited by semicolons.

You want to use the SET command to alter the values of the variables M
and N just before the DO statement in your program is executed. The DO

statement has a statement number of 2. Enter this dynamic command
statement:

27

~t 2; set m=5~n=7

00001

The system will respond by assigning a reference number (0000l) to your
dynamic command statement. When the command statement is executed, the
system prints out this number; so if there are several command statements im
planted in a program, the reference number helps you tell which one has been
executed.

Now issue the CALL command as before:

call powers

Execution is initiated. When the program reaches the DO statement, the
dynamic command statement is executed, and the system informs you by print
ing the reference number of your statement:

00001

The program then completes execution with the values M=5 and N=7. Its
output looks like this:

5 25 125 625

6 36 216 1296

7 49 343 2401

TERMINATED: STOP

The dynamic command statement implanted in your program will be
executed every time the program is executed, until the program is unloaded;
then the command statement will be removed.

You have seen an example of how program-control commands can be used.
The full use of all the program-control commands is described in Command

28

System User's Guide, Form C28-2001. These commands can be used to debug
programs dynamically through the dynamic command statement as illustrated
above. With them you can display and alter the contents of variables and data
fields and analyze the results; and you can then correct your source program
based on your observations and compile a corrected object program.

However, you can use TSSj360 without employing the program-control
commands; the only one that you need to know is the CALL command to
invoke your programs.

(To use the program-control commands as shown here, you must have an
Internal Symbol Dictionary produced when the program is compiled, as noted in
Appendix B.)

Review

• The CAL L command, with the name of a program as operand, invokes that
program.

• The 0 U A L IF Y command tells the system you will be referring to internal
symbols in the program named as the operand.

• The SET command can be used to alter the contents of variables or data
fields.

• The A T command can be used to form a dynamic command statement; the
commands following the AT command will not be executed until the
instruction location named in the AT command is reached.

• Semicolons delimit commands in a command statement.

29

Seven: PROGRAM INPUT/OUTPUT

In TSS/360, the data set reference number in a FORTRAN I/O statement does
not identify the data set directly. It links the program to the data set through a
control block which the system builds based on information suppJied by the user
in aDD E F command. This method of linking program to data sets allows
flexibility; one program can be linked to any available data set by supplying the
correct linkage with the DDEF command.

DDEF stands for "data definition." The DDFF command defines to the
system the characteristics of a data set that you want to create or process. For
the purposes of this book, the DDEF command has been simplified so that you
need to specify only the name of the data set and two other operands-the data
definition name (DONAME) and the data set organization.

The DDNAME is the link between the program and the control block that
the system builds from the information in your DDEF command. You can think
of this control block as containing the DONA ME and the data set name. The
program is linked to the control block through the DDNAME, and the control
block is linked to the data set through the data set name. See Figure 3.

The OONAME is formed from the data set reference number in the
FORTRAN I/O statement. The data set reference number is a two·digit decimal
number from 01 to 99. For a data set reference number of 55, for instance, the
DDNAME would usually be FT55FOOl; for a data set reference number of99,
the DDNAME would be FT99FOOl.

FORTRAN
PROGRAM

DO 2' !: 1.30

READ ml4) R

CONTROL BLOCK DISK

" .

Figure 3. The program is linked to the data set through the control block that
the system builds from information in the ODEF command.

30

In Chapter 5 you compiled a brief FORTRAN program that reads numbers
from one data set and writes these numbers into another data set. The data set
reference number in the READ statement was 5. (See Figure 4.) Before running
that program, issue a DDEF command to link that READ statement to a data set
named NUMBERS, a virtual sequential data set that you created with a DATA

command (as explained in Chapter Three) or with another 1'0 R T RAN program.
The DDEF command is:

~def ft05f001,vs,numbers

(where f t05fOOl is the D DN A ME,)is stands for virtual sequential organization,
and numbers is the data set name).

The system will then build the control block linking the program to the data
set. If the data set NLMBERS has already been referenced by commands during
this terminal session~-if you have just created it during your current task, for
instance~·· there may be a control block already built for it. In this case, the
system will issue you a message telling you that the system-supplied DDNAME

has been replaced by the DDNAME in your DDEF command, FT05F001.

If you execute it now, your FORTRAN program will read from the data set
NUMBERS. Issue the CALL command:

ca 11 i nout

PRINT 2

2 FORMAT (1 X, 'PROGRAM STARTED')

3 READ (5,4, END=8, ERR=5) FIGURE

4 FORMAT (1 X, F6. 2)

5 WRITE (6.7) FI GURE

7 FORMAT (lX. FlO.2)

GO TO 3

8 STOP

END

Figure 4. Source statements for program INOUT.

31

The system will load fNOUT from your library of programs and initiate
execution. The first output will be the message PROGRAM STARTED. Then
the program will read input records from the data set. (The 1 x in statement 4
causes the REA D command to skip over a control character.)

But you have not defined a data set for the WRITE statement in the
program to link to. The system will therefore assume th:!t you want the records
written out on your terminal. When no DDEF command is issued to provide a
DDNAME that includes a data set reference number that is used in a program,
the system assumes that the records are to be read from or written to the
terminal. Your program's WRITE statement is linked to your terminal and the
numbers from the data set NUMBERS are printed on the terminal.

Now that YOll are sure your program runs correctly, you can use it to
process other data sets, First, however, you must cancel the effect of your
previous DDEF command. To do this, issue the RELEASE command:

release ft05fOOl

This eliminates the system control block containing the DDNAME of
FT05FOO1. Now your program can be linked to another data set. To link it to a
data set named FIG URES, issue another DDEF command, and then issue a
CALL command to run your program:

ddef ft05fOOl ,VS ,fi gures; ca 11 i nout

The program will print out the message PROGRAM STARTED and then
read numbers from the records of the data set F fG U RES.

If no DDEF command with the DDNAME of FT05FOOl is issued, the
system will link your program to your terminal and the program will read input
records from the terminal. You may want to try this. Remember that the
FO R MAT statement in your program causes the first byte of the input records to
be skipped.

When you have finished entering data from your terminal, enter ';'.END the
next time the system expects an input record. This will cause the system to
recognize an end·of-data-set condition. and execution of your program will
terminate.

With the proper FORMAT statement. a l'ORTRAN WRITE statement can
be used to output records to a new data set defined by a DDEF command with
the corresponding DDNAME. (For a data set reference number of 6, the
DDNAME would be FT06FOO1.) For information OIl writing FORMAT

statements, see/EM FORTRAN IV, Form e28-2007.

32

Now you can see the flexibility that the DDEF command provides. You can
link your FOR TR A N program to any existing data set, or use it to create a new
data set, with the proper DDEF commands; or. by defaulting the DDEF

command, you can link either of the FORTRAN 1(0 statements in your
program to your terminal for input or output.

Review

• A program is linked to a data set through a control block which the system
builds from information that is supplied in the DDEF command.

• The data definition name, or DDNAME. is the link between the program
and the control block.

• The DDNAME is formed from the data set reference number in the
FORTRAN !f0 statement; for instance, the reference number 5 would
result in the formation of the data definition name FT05 1'00 1.

• When no DDFF command is issued with a DDNAME corresponding to a
data set reference number, the I/O statement containing that reference
number is linked to the terminal for input or output.

33

Eight: INTERRUPTING THE SYSTEM

At times you may find it necessary to interrupt the system while it is executing a
command, running a program, or printing out a message. For instance. suppose
you have entered the FTN command, intending to compile from lines entered at
the terminal. But you absent-mindedly entered the second operand as Y,
indicating that the source program is already stored in the system as a data set:

ftn prog2,y

The system will search for a data set named SOURCE.PROG2. When it does
not find one, it will issue a message at your terminal:

SOURCE.PROG2 DOES NOT EXIST. REENTER

Now you want to re-enter your FTN command correctly, but if you do so,
the system will interpret it as a program name instead of a command.

To get out of this loop, generate an attention interrupt with the attention
key. (On the IBM 2741 terminal, this key is at the upper right-hand corner of
the keyboard, marked ATTN. On the 113M 1052, it is at the lower left-hand
corner, marked either A TTENTlON or RESET LIN E. On the teletypewriter, it is
to the left of the keyboard, marked BREAK; on this terminal, you must also
press the BRK-RLS key to unlock the keyboard after an attention interrupt.)

The attention interrupt will halt the system's execution of your FTN
command. (It can also be used to halt execution of the FO R T RAN compiler, of
a user program, or of a message being printed on the terminal.) The system will
prompt you for another command by printing a logical-NOT sign (I), an
exclamation mark (!), or an underscore and backspace (or the equivalents on the
teletypewriter). The prompt character will vary depending on what has been
interrupted. (See Table 1.)

Review

• You can interrupt the system with the attention key.
• The attention key is labeled ATTN on the 2741 terminal, ATTENTION or

RESET LINE on the 1052, and BREAK on the teletypewriter. On the
teletypewriter, you must press the BR K-R LS key after an attention
.interrupt.

• After the interrupt, the system will respond with a prompt for a command.
The prompt character will vary depending on what has been interrupted.

34

Table 1. Effect of attention interrupt.

Situation When
Effect

Interrupt Occurs

A line is being entered; All characters in the line as entered so far are
the RETURN key has ignored. You are prompted with a logical-NOT
not been pressed. sign (I) and may enter any command.

The system has just is- The command in operation that is, the last one
sued a message asking for transmitted to the system-is canceled, and you

I information to be en- are prompted with a logical-NOT sign (I). You
teredo may enter any command.

A command is being exe- The command is completed before the attention
cuted. interruption is recognized, unless the system

issues a message saying tha t a command has been
canceled.

A message is being print- The remainder of the message is canceled. You
cd Oll t. are prompted with a logical-NOT sign (I) and

may enter any command.
._-- c---. ---------

The FORTRAN compiler Language processing stops and the system
is in operation. prompts with either an exclamation mark (!) or a

logical-NOT sign (I). You can enter any com-
mand. You may resume language processing from
the point of interruption by issuing the GO
command. I

A user program is in You are prompted with an excl~malion mark (!) I
operatiul1. and may enter any command. To resume the I

program from the point of interruption, issue the
GO command.

35

Appendix A: HOW TO USE TSS/360 TERMINALS

Basic infomlation on the three types of terminal used with TSS/360 is given in
this appendix. If more information is needed, see IBM S~vstem/360 Time Sharing
System: Terminal User:~ Guide, Form C28-2017.

If your terminal looks like this,

turn to page 38
If your terminal looks like this,

turn to page 42
I f your terminal looks like this,

turn to page 45

37

IBM 1050 DATA COMMUNICATIONS SYSTEM

The [B M 1050 Data Communications System as lIsed with T S S/36 0 includes
an IBM 1051 Control Unit, a 1052 Printer-Keyboard, and, optionally, a
telephone-like modulator-demodulator, or modem. Figure A-I illustrates the
printer-keyboard mounted on the control unit. The modem is used to dial up the
time-sharing system.

Figure A-I. 1051 Control Unit and 1052 Printer-Keyboard.

38

Figure A-2. 1052 switch panel.

Initiation Procedure -To ready the IBM 1050 for use with TSSI360. proceed as
follows:
1. Set the panel swi1ches on the IE M 1052 Printer-Keyboard as directed in

Table A-I. (A typical p:meJ is shown in Figure A-2.) If the 1052 has
additional switches. set them to the OFF or HOME position. Do not change
the switch positions while using the terminal.

2. Tu rn on the main-line switch indicated in Figure A-3. The 1'0 W lOR light
shuuld come on. If the DA T i\ CHECK light i-: on, turn it off by pressing the
DAT A CH ECK key. (Sec Figure A-3.)

3a. If the terminal is directly connected to the computer, initiate the LOGON

procedure by pressing the ATTENTION/RESET LINE key.
3b. If the terminal has a modem that resembles a telephone, press the TALK

button on the modem, dial the TSS/360 number and, when a continuous
high-pitched tonG is heard, press the DATA buttun on the modem. The
terminal is now connected 10 the time-sharing system. The receiver of the
modem can be replaced in its cradle.

Table A-I. 1052 switch settings.

Switch Sell ing T- T()ggl~;~lsiri
SYSTEM ATTEND up
PRINTER J SEND REC middle
KEYBOARD SENDION up
READER I ON/SEND I up
STOP CODE I OFF i dmvn
SYSTEM PROGRAM up
SYSTEM ~- up
TEST OFF down
SINGLECY OFF middle
RDRSTOP OFF middle

.--~--

Note: Set all other panel switches 10 OFF or HOl
position.

--

39

Figure A-3. 1052 keyboard.

Keyboard Operation-·-The keys and controls on the keyboard are illustrated in
Figure A-3. The numeric and special-character keys. the space bar. and the
SH 1FT, LOC K, and TAB keys operate like their counterparts on standard
typewriters. Note, however, that no distinction is made between capital and
lowercase alphabetic characters (A through Z); they are all interpreted by the
system as capital letters.

PROCEED Light- .. When the green PROCFf-.D light is on (see Figure A-2). the
keyboard is unlocked and data or commands em be entered. As soon as a line
has been entered, the keyboard is locked; the P R OCE (' D light turns off sllOrlly
afterwards. All keys except the ATTENTION/RESET LINE key are locked out
while the PROCEED light is out.

Attention Key- The ATTINTION/RFSET LINE key in the lower left-hand
corner of the keyboard cannot be locked out. It generates an attentiull
interruption. The attention interruptiDn is explained in Chapter S. (The
ATTENTION key may also be used, as explained above, in initiating the
LOGO 1\ procedure from a directly connected terminal.)

RETURN Key-Pressing the RETUR1\ key callses a line feed and carrier return
at the terminal printer and transmits an end-of-block character to the system.
After the RETURN key is pressed, the keyboard is locked out (except for the
ATTENTION key) and con trot passes to the system.

Continuation Lines--When the hyphen is entered as the last ch~Hacler ill a Iinc.
the system recogniL.es the next line as a continuation. The hyphen is not entered
as part of the line.

Canceling Lines -When a pound sign (#) is entered as the tast character before
the RETURN key is pressed, the entire line is canceled. The system will then
expect the corrected line to he entered without additional prompting. The
pound sign is defined as the tine-kill charactt'r.

40

A line may also be canceled with the CANCE L key. To do this, hold down
the ALTN CODING key at the upper left-hand side of the keyboard and press
the zero key.

Correcting Lines----A line that you have started to enter incorrectly can be
corrected by backspacing to the first incorrect character with the B.\CKSPACE
key and re-entering the line from that point on.

DATA CHECK and RESEND~--The DATA CHECK light may come on after
the terminal is first turned on; it can be extinguished with the DATA CHECK
key. The RESEND lighl will come on brtef1y after the RETURN key is pressed;
it should turn off when the line has been accepted by the system. If the 0 AT A
CHECK and RESEND lights are on together, an error is indicated. While the
RESEND light is on. the system will not accept input from the terminal
keyboard. Press the DATA CHECK and RESEND keys to turn off the lights and
fe-enter the line.

Termination Procedure-·--After the LaC; OFF command has been accepted by
the system, close down the terminal by setting the main-line switch to POWER
OFF.

41

IBM 2741 COMMUNICATIONS TERMINAL

The I1BI 2741 consists of an IBM SELECTRIC typewriter mOlluted un a
stand that includes the electronic controls needed for communication with
TSS/360. Its keyboard may be compatible with that of the Selectric typewriter.
or it may be as shown in Figure A-5.

If the lermin<ll is directly connected to the system. merely tllrning on the
terminal results in connection with the system. If not, it call be connected to the
system through a modulator-demodulator. or modem. that resembles a telephone.

Initiation Procedure- ~To ready the 2741 for use with TSS/360. proceed as
follows:
I. Check that the terminal mode switch on the left side of the stand (see

Figure A-4) is set to COM.

Figure A-4. 274] Communications Terminal.

42

TERMINAL
POWER

. SWITCH
"'ii<

Figure A-S. 2741 keyboard.

2. Press on the ON portion of the terminal power switch (see Figure A-4).
3a. If the terminal is directly connected to the computer, initiate the LOGON

procedure by pressing the A ITN key at the upper right-hand corner of the
terminal keyboard.

3b. If the terminal has a telephone-like modem, press the TALK button, lift the
receiver, dial the T88(360 number, and, when you hear a continuous
high-pitched tone, press the DATA button. The terminal is now connected
to the system. The receiver of the modem can now be placed in its cradle.

Keyboard Operation···The terminal keyboard works like an IBM Selectric
typewriter except for the ATTN key, which is used to generate attention
interrupts as explained in Chapter 8. (It may also be used in initiating the
LOGON procedure from directly connected terminals, as explained above.) The
system unlocks the keyboard when it is expecting input; at other times, the
keyboard is locked. The ATTN key is the only key that cannot be locked out.

Note that the system recognizes no distinction between capital and lowercase
letters; they are all interpreted as capital letters. This saves the user from having
to use the SHIFT key in entering commands. which consist only of capital
letters.

Equivalencies--The 2741 terminal with the keyboard compatible with the
Selectric typewriter (known as the 2741 correspondence terminal) lacks several
characters used in T88(360. The character translation tables used by the system
provide these equivalencies:
• The plUS-Dr-minus sign (±) or the left bracket ([), whichever is present, is

translated into the logical 0 R sign (I).
• The right bracket (]), if present, is translated into the numeral one.
• The degree sign C), for which there is no internal code, is translated into the

less-than sign (<).

43

RETU RN Key - -Pressing the RE T URN key causes a line feed and carrier return
at the terminal and transmits an end-of-transmission character to the system.
The RETURN key must be pressed to end every line of input from the
keyboard. After the RETURN key has been pressed, the keyboard is locked out
(except for the ATTN key) and control passes to the system.

Continuation Lines---When the hyphen is entered as the last character in aline,
the system recognizes the next line as a continuation. The hyphen is not entered
as part of the line.

Canceling Lines----When a pound sign (#) is entered as the last character before
the RETURN key is pressed, the entire line is canceled. The system will then
expect the corrected line to be entered without additional prompting. The
pound sign is defined as the line-kill character.

Correcting Lines--A line that you have started to enter incorrectly can be
corrected before the R E TV R N key is pressed by backspacing to the first
incorrect character with the BACKSPACE key and fe-entering the line from that
point on.

Termination Procedure~--After the LOG 0 F F command has been accepted by
the system, close down the terminal by setting the terminal power switch to

OFF.

44

TELETYPE MODEL 33/35 KSR

The Teletype* Model 33 or 35 KSR (Keyboard Send·Receive) consists of a
printer, a four-row keyboard, and a control unit, all mounted in a special
cabinet. (See Figure A·6).

Initiation Procedure--To ready the teletypewriter for use with TTS/360,

proceed a~ follows:
I. Press the 0 R IG button. The lamp should light under the button, and the

teletypewriter will be on.
2. Dial the T SS (36 () number with the telephone dial. A continuous tone will

be heard momentarily as the connection is made. The LOG 0 N procedure
will then begin.

Keyboard Operation--The alphanumeric and special·character keys, the space
bar, and the SH 1FT key all work like their counterparts on conventional
typewriters (except that the SHIFT key does not lock in the down position).
Only capital letters are provided; lowercase letters are not. the BREAK key is
used to generate an attention in terrupt, as explained in Chapter is. After using
the BREAK key, you must press the BRK-RLS key above the telephone dial to
unlock the keyboard.

Do not use the keyboard when the system is not expecting input. The
keyboard is not locked when the system is not expecting input, and pressing a
key at such a time will cause the equivalent of an attention interrupt.

*A trademark of the Teletype Corporation.

Figure A·6. Teletypewriter control panel and keyboard.

45

Since the teletypewriter lacks keys for the backspace, underscore, and
logical-NOT sign, you must use substitutes. The usual TSS/360 prompt of
underscore and backspace, for instance, will be represented on the teletypewriter
as a right bracket and a left arrow:

1<=

Since the right bracket is the equivalent of the underscore, it is used as the
bre3k character for the text editor (see Ch3pter 2). The right br<lcket is obtained
by holding down the SHIFT key and pressing the "Moo key.

In addition, the backwards slash (\) is the teletypewriter equivalent for the
logical-NOT sign (I). The backwards slash is obtained by holding the S HI FT

key down and pressing the "L" key. The left br3cket is obtained by holding the
SH 1FT key down and pressing the "K" key.

End-of-Line Sequence---To signal the end of an input line. hold down the
CTRL (control) key while pressing the key marked X OFF. After the end-ofline
signal, control passes to the system. Do not use the keyboard again until
prompted for further input. except to generate an attention interrupt. When the
system prompts for additional input, it will issue a carrier return and line feed.

Continuation Lines-·-When the hyphen is entered as the last character before
the end-of-line sequence, the system recognizes the next line as a continuation.
The hyphen is not entered as part of the line.

Canceling Lines----When a pound sign (#) is entered as the last character before
the end-of-line sequence, the entire line is canceled. They system wit! then
expect the corrected line to be entered without further prompting. The pound
sign is defined as the line-kill character.

Correcting Ljnes-~-To correct a line that you have started to enter incorrectly,
enter the left arrow (which is obt3ined by holding down the SHI FT key and
pressing the "0" key) once for each character to be eliminated. In other words,
use the left arrow as if it were the BACKSPACE key on a typewriter. For
instance, if you have typed ERESE and want to change it to ERASE. your
correction would look like this:

ERESE <=<=<=ASE

The left arrows will not be entered as part of the line; TS/360 treats the
teletypewriter left arrow as the equivalent of the backspace, as mentioned' above.

Termination Procedure--After the LOGO F F command has been accepted by
the system, close down the teletypewriter by pressing the CLEAR button on the
control unit.

46

Appendix B: HOW TO READY THE SYSTEM

The instructions given in this book for using TSS/360 are based on the
supposition that the user profile has been permanently altered with DE F A U L T

and PROFILE commands as explained in this appendix. The DEFAULT

command supplies default values for command operands to meet the needs of
the reader of this book and make it unnecessary for him to enter, or even be
aware of, these operands. The PROFILE command makes these defaults a part
of the permanent user profile; the default values will be in force every time the
user logs on. unless and until he changes them with further DEFAULT

commands.

The DEFAULT and PROFILE commands can be entered either by the user
of this book himself, if necessary, or, preferably. by someone in a supervisory or
tutorial relationship to the user.

Ideally. the user's supervisor or instructor should log on with the user
identification assigned to the user, enter the commands as given here, and log
off. The user profile for that user identification will then be ready for the user
the first time he logs on. If necessary. however. the user can enter the
commands.

Entering the DEFAUL T and PROFILE Commands

The DEFAULT and PROFILE commands should be entered precisely as
shown in Figure B-1 or B-2. These commands should be entered as shown in
Figure B-1 unless the user does not want to employ the facilities of the
program-control commands for dynamic debugging, in which case the commands
should be entered as shown in Figure B-2. Simply log on with the user
identification and password to be used by the user, enter the commands as
shown, and issue the LOGOFF command.

If the user himself is entering these commands to prepare the system for use
with this book, he can enter the commands immediately after logging on for the
first time. (Chapter 1 explains how to log on.) He can then proceed. during that
terminal session and all subsequent ones, to use the system as described in this
book.

What the DEFAULT and PROFILE Commands Do

The DE FAll L T command specifies default values other than those supplied
by the system; the PROFILE command records these defaults permanently in
the user profile, so that they will be in force during that user's terminal sessions
from then on, unless altered by further DE FAll L T commands.

47

default slist=n~isd=y~trantab=n; profile

Figure B-1. DEFAULT and PROFILE commands for user who will employ
program-control commands.

default slist=n,trantab=n.isd=n; profile

Figure B-2. DEFAULT and PROFILE commands for user who will not employ
program-control commands.

The SLIST=N operand of the DEFAULT command causes the FORTRAN

compiler to produce no source listing unless S LlST=Y is specified when the FTN

command is entered. Since the system-supplied default for all other listings that
may be specified with the FTN command is N, no listings will be produced by
the compiler when these operands are nut entered. The user can print his source
data set to obtain the equivalent of a source listing.

The TRANTAB=N operand of the DEFAULT command causes the
transaction table of the text editor to be inoperat ive. The facilities provided by
this table are not described in this book, and the text editor will operate Illore
quickly if it does not have to maintain the transaction table.

The ISD=N operand of the DFFA OLT comllland shown in Figure B-2
causes the FO RT RAN compiler to produce no Internal Symbol Dictionary
(ISD l. The ISD is essential for easy use of the program-control commands for
dynamic debugging; if the user does not intend to use these facilities. however,
the generation of the ISD should be inhibited, since the compiler can produce
more efficient code without the ISD.

After This Book

The subset of the commalld system that is presented in this book may
satisfy the computing needs of the user; however. it may also be llsed as an
introduction to TSS/360 by a user who will go on to learn more about the
system after mastering the material here.

In the latter case, the user may set his defaults back to the system-supplied
values by entering the DEFAULT command as shown in Fibure B-1 or 8-2 but
with Y instead of N on the right side of the equal sign in each operand; he
should then enter the PROFILE command to make these values apply until he
changes them again.

After finishing with this book, the lIser who wants more information about
TSS/3 6 0 may turn to these books of the TSS/ 360 Systems Reference Library:

48

• Concepts and Facilities, Form C28-2003, for a description of the full
facilities of the system and a conceptual treatment of how these facilities
are implemented.

• Command System User's Guide. Form C28-2001, for both instructional and
reference material on the full command system.

• FORTRAN Programmer's Guide, Form C28-2025, for instructional material
slanted to the FORTRAN-oriented user of TSS/360. This book also
contains illustrations of the uses of most user commands and discussions of
TSS/360 concepts, as well as reference material.

49

Appendix C: COMMAND DESCRIPTIONS

This appendix describes the commands as illustrated in Chapters I through 8,
except for the program-control commands. Only the operands used in this book
are given in the command descriptions; operands for which a default value has
been established that makes it unnecessary for the user of this book to enter the
operand are omitted. Complete command descriptions may be found in
Command SYSlern User's Guide, Form C28-2001.

Command Format and Notation

The basic format of a command description is:

Command Operand Function

command name one or more operands. description of func lion
i

limited by commas;
field may be blank

The operand field may be blank or may contain several operands. Multiple
operands must be separated by commas. Blank and/or tab characters may also be
used between operands, but they are ignored by the system. The operand field is
separated from the operation field by either a tab character or one or more
blanks.

To facilitate the representation of the statements in the format illustrations,
four metasymbols will be used.

Name Symbol

braces

brackets [I

ellipsis

underscore

Use

to enclose and thus delimit operands; alternatives are
stacked within braces.

to enclose and thus delimit optional operands.

to indicate that the preceding syntactical unit may be
repeated one or more times.

indicates the default value that the system will assume
ifan operand is omitled.

50

Table C-l. Basic command descriptions.

Command

CALL program name

DATA data set name

Operands Function

Invokes Ul.ier program
and gives it control.

Creat~s virtual sequen~

tlal data set.

! links data set to user
DOEI' , data definition name, organization. data set name pro g ram 1 h rough I I I DDNAME, I

~----~-----------------------------~ ~
j Invokes text edit~~r to I EDIT data ,et name !

I create or edit data set,'

END Terminates text-edjt1ng.
---------------------------~--

ERASE Ipartially or fully qualified data set name I

Eras-es data seL used
with no operands or
with partially qualified

I
data set name, provides
review of data set
name~ with option of

erasing or retainlng i each data set whose r---r-------- __________ . ______ , ____ +~na--m_e,..i_,_p_re_,:ce-::",-,te",'d-:::'=--:-:-l
I Invokes FORTRAN

I ;~::;jl::t:t~~t:~:~:~~~; II

FT 1\ i nrogram name [, { ~ } I

{ line number} , ,
INSERT lAST I ,Iflcrement J

LIS1 {line number}l' {S12.cond line Ollmbcr}1
I LAST " LAST

LOGOFf-

LOGON user identification, pa"isword

that SOUIce "Itatemenh

fi~:~"~:::::;:' :::: !II

between c'\istmg lim.'.s
or at the be-ginning or
end of a data !-'et.

i
Causes line or range of '
line~ specified to be i ,
printed on terminal. If '
no operands are t!n- I
tered, entire data set is I'

printed out.

, Ends terminal ge~sjon.

+Identifies user to sys- I
1 tem.

~--------~--------------------------'------------~------~---~~-~,e, data-:~~;-b~
{ y} I printed at computer in-

PRINT data set name I JRASE~ .!::! J 'I stall at !On and oplion-

aHy erased afterwards.

I RF LEASE data definition nan;e

I
I ReVIS' Il{line number} I {second line number} I Ll "'T . .AS'

S1

--~-'----+I-c-a-n-ee-jS previous DOEr

I ,INCR=increment 1

..::ommand.

C~lUses Jint" or range of
I lines specified to be re

moved from data set:
system prompts. for re
placement lines; tf none

f i~ entered, no replace
ment is made: Incre
ment for replacement
line:s is 100 unless speci
fied otherwise.

