
File No. S360-31
GY28-2031-3

Program Logic

Version B.1

IBM System/360 Time Sharing System

Dynamic Loader

Follows the organization of the dynamic loader in
the descriptions of the loading, unloading, and special
service routines. Library maintenance, a housekeeping
function not part of the dynamic loader proper, is also
discussed.

This manual is directed to persons involved in
program maintenance, and system programmers who are
altering the program design. . It can be used to locate
specific areas of the program, and it enables the
reader to relate these areas to the corresponding
program listings. Program logic information is not
necessary for program operation and use.

The dynamic loader assigns virtual storage for a
task's program modules and resolves address constants
for those pages referred to at execution time. In
addition, the dynamic loader deletes modules from the
task and performs several housekeeping functions.

Before using this publication, the reader must be
familiar with the contents of:

IBM System/360 Time Sharing System: concepts and
Facilities, GC28-2003

IBM System/360 Time Sharing System: Assembler
Language, GC28-2000

Fourth Edition (September 1971)

This is a revision of, and makes obsolete, GY2B-2031-2 and
Technical Newsletter GN28-3128. This edition contains the
following changes:

• TSS/360 now supports Q-type address constants (Q-cons) and
dummy external definition symbols (DXDs), ~hich allow the
user to define the offsets of variables froID the beginning of
a table. To support this function, two new routines are
added to the loader module: Q-CHAIN and RESOLVE Q-REF. In
addition, changes are made to EXPLICIT LINKING, ALLOCATE
MODULE, DELETE MODULE, and the program module dictiollary.

• ExtensiVe chanqes to DELE'rE t-10DULE, d$ well as Chdft(-J('S to GE'r
STORAGE and LOADER LOGOFF, improve the handling of packed
control seL~ions that are shared.

• When the dynamiC loader encounters a control-section or
entry-pOint rejection condition, it checKs REJMSG, a new
default value, to determine whether to issue the rejection
message.

• A new routine, SETPAGE, has been added to accept and stack
requests to build external page table entries. SETPAGE will
call the supf'rvisor routine SETXP to have external page table
entries built for contiguous virtual storage pages.

• Miscellaneous corrections and improvements are made to the
manual.

Each change to the manual is indicated by a vertical line in
the margin to the left of the change.

This edition is current with Version 8, Modification 1, of the
IBM System/360 Time Sharing System (TSS/360), and remains in
effect for all subsequent versions or modifications of TSS/360
unless otherwine noted. Significant changes or ddditions to this
publication will be provided in ne" editions or Technical
Newsletters. Before using this publication, refer to the latest
edition of IBM BysteIT~360 Time Sharing System: Addendum,
GC28-2043, which may contain information pertinent to the topics
covered in this edition. The Addendum also lists the editions of
all TSS/360 publications that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format_. Page impress ions for photo-off set printing were obta i ned
from un IBM 1403 Print.l2r using a special [,r:i nt chdin.

Requests for copies of IBM public,)t_ion~, should be mad..;> t.Q your
IBM representative or to the IBM bx'anch office servinq your
locali ty.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments may be
addressed to IBM Corporation, Time Sharing System/360 Programming
Publications, Department 643, Neighborhood Road, Kingston, New
York 12401.

'~Copyright IIlternational Business Machines corpordtion 1967 1

1968, 1970, 1971

•
This manual describes the internal logic

of the dynamic loader of IBM System/360
Time Sharing System (TSS/360). It is
intended for persons involved in program
maintenance, and system programmers who are
altering the program design.

Each of the loader's 36 routines is
described and flowcharted. The manual
follows the organization of the loader:
four sections cover the fC>llr modules of the
dynamic loader and the subordinate routines
that each calls. Three autonomous
routines, which are entry points in the
main modules, are discussed in separate
sections.

An introductory section defines terms,
provides an overview of the loader'S
operations, and concludes with a set of
decision tables which permit the reader to
trace any possible path through the
loader's routines.

Flowcharts for all routines are grouped
alphabetically in Section 9.

PREFACE

Appendixes contain additional reference
material.

Readers should have a thorough knowledge
of TSS/360 assembler language and a general
knowledge of the entire system as described
in IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003.

PREREQUISITE PUBLICATIONS

Before using this publication, the
reader must be familiar with the contents
of:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
Assembler Language, GC28-2000

iii

CONTENTS

SECTION 1: INTRODUCTION
Program Modules
Control Sections
Module Residence -- External
Module Residence -- Internal
External Symbol Definitions
External Symbol Values
External Symbol References
External Dummy Sections
User Authority
Split Hash Table
Load Errors

Major Functions of the Dynamic Loader
Explicit Linking
Page Relocation
Explicit Unlinking
Loader Logoff
Loader Cleanup
Loader Release
Library Maintenance •

The Loading Process
Invoking the Loader •
Allocation
Symbol Lookup •
PMD Loading
Control Section Rejection
Control Section Storage Assignment
DEF and REF Processing
Page Relocation
Loading Example •

The Unloading Process
Invoking the Unloader
Creating Deletion candidates
Eliminating Deletion Candidates
Module Removal
Unloading Example

Dynamic Loader Construction •
Assembly Modules
Routine Labels and Loader Entry Points
Loader Module
Unloader Module
LOADER LOGOFF Module
LIBE MAINT Module
Dynamic Loader Routine Linkages

SECTION 2: EXPLICIT LINKING •
EXPLICIT LINK (CZCDL1)
MAP SEARCH (CZCDL5)
BISEARCH (CGCCR)

iv

RESOLVE SYMBOL (CGCCE)
SET SEARCH FLAGS (CZCDL6)
HASH SEARCH (CZCDL2)
LIBE SEARCH (CZCDL3)
LOAD PMD (CGCCB)
ADD PMD (CGCCN)
ALLOCATE MODULE (CGCCA)
PCSA (CGCCT)
CHECK DEF LEGAL (CGCCU)
SELECT HASH (CGCCB)
REJECT DIAG (CGCCP)
GET STORAGE (CGCCW)
SRCHPACK (CGCCC)

'.

1
1
1
2
3
3
4
5
6
6
6
7
7
7
7
8
8
8
8
8
8
8
9
9
9

10
10
10
11
11
12
12
12
13
13
13
14
14
14
15
15
15
15
15

29
32
34
35
36
39
39
41
43
44
45
47
48
48
49
50
53

LINK DEFs (CGCCV)
Q-CHAIN (CGt;QC)
RESOLVE Q-REF (CGCRQ>
ATTACH TEXT (CGCCK)
FIX PMD (CGCCJ)
FIX (CGCCL)
DEFINE REF (CGCCY)
ADD MUTE (CGCDG)
LOADER PROMPT (CGCDPR)
SETPAGE (CGCSP)

SECTION 3: PAGE RELOCATION

SECTION 4: EXPLICIT UNLINKING •
EXPLICIT UNLINK (CZCDU1)
DELETE CALLER MUTES (CGCDB)
MODIFY MOT COUNTS (CGCDA)
MODIFY USE COUNTS (CGCDD)
TEST USER COUNTS (CGCDE)
DELETED SELECTED MUTES (CGCOC)
DELETE MODULE (CZCDU2)
DROP PMD (CGCCO)

SECTION 5: LOADER LOGOFF
LOADER LOGOFF (CZCCDU

SECTION 6: LOADER RELEASE.
LOADER RELEASE (CZCCD2)

SECTION 7: LOADER CLEANUP.
LOADER CLEANUP (CZCCD4)

SECTION 8: LIBRARY MAINTENANCE
LIBE MAINT (CZCDH)

SECTION 9: FLOWCHARTS

APPENDIX A: ANALYSIS AIDS
Symbol Processing
Dynamic Loader Routine Index
Data References

APPENDl.X B: TABLES
Access to Loader Tables
Task Dictionary Table (TDY)

TDY Heading (CHATDH)
Program Module Dictionary (PMD) Group _

PMD Group Header
PM!) Preface •

Program Module Dictionary (PMD)
PMD Heading

Control Section Dictionary (CSD>
CSD Heading
Definition Table
Reference Table •
Relocation Dictionary (RLD)
Virtual Storage Page Table (VMPT)

Module Usage Table (CHAMUT)
Purpose
Links and Addresses
Contents of MUTE
Adding MUTEs
Deleting MUTEs
MUT Count

Storage MAP Table (CHAMAP)
Hash Tables (CHASHT and CHAUHT)
Vacant Space Table (VST)

54
55
56
57
60
61
62
63
64
64

67

11
71
15
76
76
77
77
78
80

81
81

84
84

86
86

88
88

91

.146

.146

.148

.149

.150

.150

.150

.150

.151

.151

.152

.153

.153

.156

.156

.158

.158

.159

.160

.161

.161

.161

.161

.161

.162

.163

.163

.163

.163

v

APPENDIX C: ABBREVIATIONS • . • • .165

APPENDIX D: LOADER RESTRICTIONS • • .166

APPENDIX E: DIAGNOSTIC MESSAGES • .168

INDEX • • • .171

I LLUSTRATI ONS

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
F'igure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
PMDs
Figure 28.

Table 1-
Table 2.

Chart M.
Chart AB.
Chart AC.
Chart AD.
Chart AE.
Chart AF.
Chart AG.
Chart AH.
Chart AI.
Chart AJ.
Chart AK.
Chart AL.
Chart AM.
Chart AN.
Chart AO.
Chart AP.

vi

Program Module Structure and Residence • • • • • • 4
Loading Example • • • . . • • • • • • 11
Loading Example Showing Control Section Rejection • • 12
Unloading Example - Before • • • • 13
Unloading Example -- After • • • • • 14
Dynamic Loader Routine Linkages •• 17
Explicit Linking•• • 30
Functional Diagram of Explicit Linking • 31
Sample SDST tvlember Entry • • • • 51
RLD Modifier Format . • • • . 62
Page Relocation • . • • 68
Explicit Unlinking • • • • • • • 72
Functional Diagram of Explicit Unlinking • • • • • • 75
Loader Logoff • 83
Loader Release • . . • 85
Loader Cleanup . • 87
Library Maintenance . 89
Dynamic Loader Symbol Lookup Rules .146
Symbol Posting Rules . • . • • •••• 147
Task Dictionary Organization • • • • • • .150
TDY Heading. . . • • •••• 151
PMD Group Header . . • . • .151
Sample PMD Group • . . . • • • • .152
PMD Preface . • . . . • • .152
Format of PMD Entry .154
Format of MUT, MUTE Entry, and Available Space Entry •. 161
Diagram of Sample MUT, Showing Linkages and Appropriate

Memory MAP Entry • • • • • • • • • • •

Load Error Summary . . • . • . • • •
Data References by Loader Routines •

ADD MUTE - CGCDG • • . • .
ADD PMD - CGCCN • • • • •
ALLOCATE MODULE - CGCCA
ATTACH TEXT - CGCCK
BISEARCH - CGCCR . . . •
CHECK DEF LEGAL - CGCCU • . . .
DEFINE REF - CGCCY . . •
DELETE CALLER MUTES - CGCDB
DELETE MODULE - CZCDU2 • . .
DELETE SELECTED MUTES - CGCDC . • . •
DROP PMD - CGCCO • . . • •
EXPLICIT LINK - CZCDLl • •
EXPLICIT UNLINK - CZCDU1 .
FIX - CGCCL
FIX PMD - CGCCJ
GET STORAGE - CGCCW

• • .162
• • • • . • .163

• • 34
.149

• 92
• 93

94
• 98

• • 99
• .100
• .101
• .102
• .103

.105
•••• 106

• •••• 107
• .108
• .111
• .112

.113

Chart AQ. HASH SEARCH - CZCDL2 · · · · · · .11.5
Chart AR. LIHE MAINT - CZCDH1 · · · · · · .116
Chart AS. LIBE SEARCH - CZCDL3 · · · · · · · · · · · · .117
Chart AT. LINK DEFS - CGCCV · · · · · .118
Chart AU. LOADER CLEANUP - CZCCD4 · · · · · .119
Chart AV. LOADER PROMPT - CGCDPR · · · · · · · · · · .120
Chart AW. LOADER LOGOFF - CZCCD1 · · .121
Chart AX. LOADER RELEASE - CZCCD2 · · · · · · · · · .123
Chart AY. LOAD PMD - CGCCH · · · · · .124
Chart AZ. MAPSEARCH - CZCDL5 · · · · · · · · · .125
Chart BA. MODIFY MUT COUNTS - CGCDA · · .126
Chart BB. MODIFY USE COUNTS - CGCDD · · · · · .127
Chart BC. PAGE RELOCATION - CZCDL4 · · · · .128
Chart BD. PCSA - CGCCT . . · · · · · · · · .129
Chart BE. Q-CHAIN - CZCDL7 · · · · · · .130
Chart BF. REJECT DIAG - CGCCP · · · · · · · .132
Chart BG. RESOLVE Q-REF - CGCRQ · · · · · · · .133
Chart BH. RESOLVE SYMBOL - CGCCE · · · · · · · · · · · · · .137
Chart BI. SELECT HASH - CGCCB · · · · · · .139
Chart BJ • SET SEARCH FLAGS - CZCDL6 · · · · · · · · · · .140
Chart EK. SETPAGE - CGCSP · · · · · · · · · .141
Chart BL. SRCHPACK - CGCCC · · · · · · · · .144
Chart EM. TEST USER COUNTS - CGCDE · · · · .145

vi i

The dynamic loader operates as a set of
privileged reenterable system service rou
tines within the virtual storage environ
ment of IBM System/360 Time Sharing System
(TSS/360). The loader's function is to
allocate virtual storage for user-selected
object modules residing in external
storage. Realizing that partitioned data
sets may be other than object modules (that
is, data that is not executable), the
dynamic loader ascertains, during the load
ing process, whether or not the found mem
ber is actually a module. If the member is
determined not to be a module, the member
is rejected as invalid. Included among the
loader's routines is the unloader, whose
fUnction it is to remove user-selected
object modules from the user's virtual
storage. Both loading and unloading are
performed in response to explicit user
request. The loader is dynamic in the
sense that only address constants on text
pages actually referred to at execution
time are resolved by the loader. The aux
iliary functions of loader logoff and
library maintenance are also included in
the set of loader routines.

Program Modules

The program module is the primary output
of all TSS/360 language processors. The
input to a language processor (that is, the
FORTRAN compiler, the PL/I compiler, or the
assembler) consists of a stream of source
language statements that are translated
into hexadecimal instructions and data.
Input to the linkage editor, a service pro
gram, consists of directive statements and
a set of object modules to be combined into
one output object module. The object mod
ule, a member of a partitioned data set, is
divided into three parts: the program mod
ule dictionary (PMD), one or more control
sections, and, optionally, the internal
symbol dictionary (ISO). The PMD and ISO
contain information used by system pro
grams; the control sections contain the
·program- -- the hexadecimal instructions
and data that are the translation of the
user's source language statements.

Control Sections

The control section organization is
determined solely by the user in the case
of machine language assembly, by ~he user
and language processor in the case of the
FORTRAN compiler, and solely by the lan
guage processor in the case of the PL/I
compiler. Within the PMO (described in
Appendix B) are the control section die-

SECTION 1: INTRODUCTION

tionaries (CSDS), which describe each con
trol section in the module. There is one
CSO for each control section and, indeed,
aside from a small amount of header infor
mation, the PHD consists mainly of a group
of CSOs.

The language processors aSSign text
locations within each control section rela
tive to the base of the control section.
This allows the dynamic loader to allocate
virtual storage independently for each con
trol section within a module. The dynamic
loader operates on object modules as its
gross building blocks, but allocates virtu
al storage by control section group. (A
control section group consists of all those
fixed-length control sections in a single
module having identical attributes.> If
the control section packing option is not
used, storage is allocated to the control
section group beginning on a page boundary
and for an integral number of pages. if
control section packing is used, storage is
allocated to the control section group
beginning on a doubleword boundary.
Variable-length control sections are allo
cated storage beginning on a page boundary,
for an integral number of pages.

At the time the user creates a control
section, he may assign to it one or more of
eight attributes:

1. Fixed-length control sections -- A
fixed-length control section is allo
cated an integral number of pages of
virtual storage by the loader. This
number of pages is the minimum that
will contain the limits of the control
section. For example, in an assembly
of CSECT A, if the location counter
stops at (decimal) 11,000, the loader
allocates three pages of virtual
storage at load time. Fixed-length is
the default attribute when variable
length is not set.

2. Variable-length control sections -- A
variable-length control section is
allocated pages in addition to the
required minimum (defined above).
This additional number of pages is an
installation parameter. (If the
variable-length attribute bit is not
set in the CSO, the control section is
fixed-length by default.)

3. Read-only control sections -- Read
only control sections are allocated
storage with a protection key that
prevents the user from storing or

Section 1: Introduction 1

writing into any byte of the control
section.

4. Privileged control sections -- Privi
leged control sections are allocated
storage with a protection key that
disallows reference to the control
section by any other than a privileged
system service routine. An attempt by
a nonprivileged user to write or read
a privileged control section results
in a storage protection error. Privi
leged control sections contain only
entry pOints whose names begin with
CHB or CZ. The normal user may not
declare privileged control sections;
the loader will erase such an attri
bute from control sections in any mod
ule except those that corne from the
system library (SYSLIB).

2

5. System control sections -- control
sections marked "system" are main
tained by the loader so as to prohibit
user reference to them, except through
SYS symbols. SYS symbols are used to
label entry points to nonprivileged
system routines to which the user may
transfer control by a standard CALL
linkage. (Examples of such routines
are GETBUF and FREEBUF of the access
methods.)

The loader will not allow the user to
declare system control sections; the
system attribute will be uncondition
ally erased from control sections in
any module but those that are loaded
from SYSLIB.

Only system control sections may con
tain SYS symbols; therefore, the user
is prevented from defining symbols
beginning with SYS. (This is the only
symbol-naming restriction imposed upon
the user.)

6. Public control sections -- Public con
trol sections are aSSigned storage by
the loader in such a way as to make
the control section available to more
than one task at the same time. For
example, if two or more tasks each
reference a public control section
named A, and that reference is
resolved from the same shared data
set. they all share the same physical
copy of A. The first task to
reference A will cause the loader to
allocate A to public (known as shared)
storage. References from other tasks,
then, will be tied to the copy already
allocated to public storage.

The use of public storage techniques
is the method by which TSS/360 imple
ments reenterable programming. An
attempt is made to place all public

control sections of a given module
within the same segment. Public con
trol sections must not contain any
relocatable address constants (adcons)
for external references.

7. Prototype control sections -- Proto
type control sections (PSECTs) are
allocated storage such that they are
packed on page boundaries within a
segment. (The loader ordinarily makes
no such effort to pack nonprototype
control sections from different
modules within a segment.) PSECTs
will normally contain the private cOI~
of modifiable storage that is made
available to each task for public rOil-
tines, the executable control sections
of which have been allocated public
storage. This modifiable storage will
consist of save areas. working
storage. and variable program data.
The normal reenterable module will
consist of a public control section
containing executable instructions and
a prototype control section containiny
all the adcons and other modifiable
data.

8. Common control sections -- Any lan
guage processors may produce control
sections with the common attribute.
-The loader examines the common attri
bute only in the event of control se~
tion re jection and then only for diaq-
nos tic purposes (see Appendix E,
"Loader Diagnostics").

Module Residence -- External

To be available to the user, each obje~~
module must be contained in one of the pnr
gram libraries. Furthermore, the library
that contains a user-required module must
be made accessible by the task. There are
three types of program libraries in the
TSS/360 environment:

1. The system library (SYSLIB) is the
source of all standard system routin~s
and is available to all users.

2. The user library (USERLIB) is a pri
vate library assigned to each user
when he joins the system. This
library is associated with the user '~;
ID and is made available to him at
LOGON.

3. The job library (JOBLIB) is a librarj
that the user defines by means of DfJr:f'

. commands. The user is allowed to
define any number of JOBLIBs during
his task, and these are normally used
for the purpose of stowing away and
retrieving object program modules
created by the language processors.

Thus, SYSLIB and USERLIB are automatic
ally accessible to each task and to the
dynamic loader. as are those job libraries
that the user defines during his task.
These libraries form a hierarchy for
searching purposes:

1. Job libraries
2. USERLIB
3. SYSLIB

The job libraries are at the lowest
position in the hierarchy; while SYSLIB is
at the highest position (that is, it is
searched last). Within the job libraries,
a hierarchy is dictated by the order in
which the job libraries were defined; the
last-defined library will be searched
first. The user may review the job library
hierarchy by the DDNAME? command, and may
move a job library to the top of the
library list with the JOBLIBS command.

Each of these libraries must be a parti
tioned data set. Each program module,
then, is a member of the partitioned data
set, while each entry point and non-common
control'section name is an alias for that
member. Thus, a module may be loaded by
module (that is, member) name, or by any
alias name. Object program libraries
created during the process of assembling,
compiling, or link-editing are automatical
ly formed as partitioned data sets. The
user's only responsibility is a DDEF com
mand, with a JOBLIB option, for each job
library that he wants to establish for his
task.

The actual dsname of the system library
is SYSLIBi of the user library. USERLIB,
while the job libraries are named by the
user -- the word JOBLIB being a keyword
operand value in the DDEF command.
Libraries defined by DDEF commands that
omit the JOBLIB keyword are not accessible
by the loader.

The purpose of the library hierarchy is
to allow supersedure of routines by hierar
chy position. For example, if more than
one open library contains a symbol name
that is the object of search by the loader,
the symbol contained in the lowest library
in the hierarchy will be extracted.

Module Residence Internal

Once it has been determined that a mod
ule is to be loaded from an external
library, it is allocated space within the
user's virtual storage. The dynamic loader
deals only with the module's PMO and text;
the module's lSD, if any, is not examined
or processed in any way. The loader trans
fers the PMO from the partitioned data set
into a chain of PMOs known collectively as
the task dictionary (TDY). The text pages

of the module are allocated virtual storage
addresses; however, the loader itself does
not transfer the text paqes. The resident
supervisor paging mechanism causes a text
page to be transferred physically to real
storage the first time the text page is
referenced by the user's code. Unre
ferenced text pages are ~ transferred
into real storage. See Figure 1 for a pic
torial summary of module structure and
residence.

External Symbol Definitions

External symbol definitions (DEFs) are
symbols within a module, referable by name
from other modules. Referability is
effected by the language processor's crea
tion of DEF tables within the control sec
tion dictionary (CSD) which name all sym
bols referable by other modules. DEFs
arise from three sources:

1. creating a module causes a DEF entry
to be created for the module name,
alternatively referred to as the stan
dard entry point.

2. Declaring a control section (including
common) causes a DEF entry to be
created whose name is the name of the
control section. If blank common is
declared, the name is a name of
blanks. If an unnamed CSECT is
declared, its name is the module
sequence number.

3. Declaring an ENTRY statement for a
symbol causes a DEF entry to be
created whose name is the name appear
ing in the operand field of the ENTRY
statement.

There are three types of DEFs defined
for the PMD: absolute, relocatable, and
complex.

Absolute DEFs are those whose
defined by an EQU statement with
that is an absolute expression.
example, the code:

A101
ENTRY
EQU

A1Dl
100

names are
an operand
For

will produce an absolute DEF entry for the
symbol A10l whose value will be 100. The
dynamic loader does not process the value
field of absolute DEFs; the definition as
produced by the assembler becomes the value
of the symbol at execution time.

Relocatable DEFs are those whose value
is storage allocation dependent. For these
DEFs, the language processors always output
a value relative to the base of the defin
ing control section. For example, if
CHXAAA is the label of some statement at

Section 1: Introduction 3

Transferred by Loader c:J] ------------------------1 I I

TEXT for 1---_ ~!LiL- ________________ -,
,--_C_S_EC_T_2_--, j :

0_ Module residing in
partitioned data set

I
I

I

I

PMD HEADING

CSD]

CSD2

CSD3

r
-1 ,.
~

>-
~

>-
--..;

'-

lb. Module residing in
virtual storage

I

-,

Task Dictionary
(TDY)

Virtual Storage Pages
Allocated by Loader
for Module'. Text

Figure 1. Program Module Structure and Residence

byte location 1000 relative to the origin
of its control section, the code

ENTRY CHXAAA

will produce a relocatable DEF entry for
the symbol CHXAAA whose value will be 1000.
The dynamic loader processes relocatable
DEFs by adding to the value assigned by the
language processor the base address of the
defining control section as allocated by
the loader.

Complex DEFs are of two types. Type 1
are simply relocatable DEFs whose ENTRY
statement appears in a control section
other than the one in which the symbol
itself is defined. The DEF entry for such
a symbol always appears in the CSD of the
control section containing the ENTRY state
ment. Clearly, then, a means must be pro
vided to denote the control section whose
base must be added to the symbol value
created by the language processor. This is
effected by an external reference (REF)
which names the control section containing
the definition. Type 2 are DEFs of which
the symbol is defined by an EQU statement

q

whose operand field contains one or more
external symbols.

There is a special entry point used to
define the nominal execution starting point
for a module: the standard entry point.
The language processor prepares a complex
DEF entry for this entry point whose namE
is the module name. This treatment allow:
external references to modules by name;
that is, a V-con or R-con naming a module
is a legal coding practice.

External Symbol Values

TSS/360 has adopted a convention tor
linkage to reenterable routines, requiril1<1
that any external symbol have associated
with it two values:

1. The V-value, which is the virtual
st.orage location that the external
symbol labels.

2. The R-value, which is the viruLdl
storage location of the origin of thf'
control section in which the ENTRY

statement for that symbol appeared in
thp SOll'Ce code.

ThE> v- v·Jl'1e is used to identify that
instn"~'!.) nn. .; '. the public, reent..:::-aOle
CSFT'T t hrl. t +, r"~; user wants to be executed
fi r-st elt {<,)i,'\ i.ne entry. The R-value is
us('rJ t () ;'1 ,,' i fy the origin of the related
priv,-,+" n c,:;'!' The user effects this by
'Nr} tin,] 5 '1 \ Ii'; PSECT an ENTRY s1:atement
na"li n,) U ~ ""21 of the first instruction
in the C:':E:CT Lo be executed. By conven
ti"n It!" '. ';nterable linkage is effected
in th •. ' ,~"rL "\cro instruction by branching
to tt.", l(lc,.l.i.on that is the V-value of the
named '~'i:d,c-l dnd at the same time making
aVdilr,,",l, L !he called routine the R-value
of tha 1.. ',<1rH"~ symbol (which is normally the
addr :' cf '1 C' called routine's PSECT).

Th., fe,l', : ng coding example will be
used t OJ'. Lrate:

A PSFC'_l

B

C

E
D

EN'I'~Y

EN'T'\< v
ORG
EQf.l

("So i,'("'i

ENTRY
FCn
FQI!

B
E
A+X'SOO'

*

D

*
2

As~;; 1 "..1 ~ ·.ther that the loader
as~~~ ~ ..,,,, .. A to virtual storage loca

'~:d CSECT C to virtual tjrln "(t ':J~"',

stn'r-"':ji

V-v') 2 ",'
'0 X'205000', these are the

, -, values for all external
sy!r'~ ''',1 .

A

B

C

D

F

R-value DEF Type
I ""·T-----'·---·-T---·------------,
100 0 n000 100080000 IRelocatable* I
} --t---------t-------------~
I orH;,?', ·00 100080000 IRelocatable I
: "~.' t·-----,----t-------------~
10020 ','),)0 100205000 I Relocatable* I

I
I
! I) n ""
I

-t---------t-------------~
('2 100205000 IAbsolute I
--+---------t-------------~
o 100080000 IComplex I
. _l_. ________ J. ______________ ~

I * I> f" ,,~' r I ! '!

l
,1 section name I _______________________ J

. ' , r, this example is the only
is properly cod .. ": t.o per-

,
~ '\\..'1ge; that is, the R-value

of F ~ ; l, .; .J Il of PSECT A.

The [HT C'(,; ry for a contI'ol section name
is 'J ' '~ 'he control section state-

ment -- not by an ENTRY statement. There
fore, the control section name DEF entry is
always in the CSD for that control section
such that the DEF for a control section
name always has an R-value equal to the
V-value. (Note A and C, above.) Given
these definitions, then, a reenterable mod
ule should not be cdlled by a control sec
tion name.

The program module name, or standard
entry point DEF, is treated somewhat dif
ferently. Its V-value is the value of the
expression contained in the END statement
of an assembly; the language processor pre
pares a complex DEF entry for the standard
entry point from the END card statement.
For example, an assembly might look like:

x
Y
Z

CSECT
EQU
PSECT
END

X+4

Y

In this example, the assembler will con
struct a complex DEF for the standard entry
point that references CSECT X. If X is
assigned virtual storage location 212000 by
the loader, the V-value for the standard
entry point will be 212004. The R-value
for the standard entry point is computed at
load time by the dynamic loader. This com
putation results in an R-value equal to the
origin of the first declared PSECT in the
module or the first CSECT if no PSECT is
declared. Furthermore, the module name
then assumes all the attributes of the
PSECT or CSECT that defines the R-value.

If, in this example, the module name is
M, the net result of the standard entry
point computation would be as if the fol
lowing code had been written:

X
M
Z

CSECT
EQU
PSECT
ENTRY
END

X+4

M

In the case of a blank END statement or
compiler output, the ·value of the expres
sion contained in the END statement- may be
taken to mean the address of the first
executable statement in the compilation.

External Symbol References

External symbol references, or REFs, are
symbols referred to within a module but
defined outside the module. The user can
create a REF by means of the assembly EXTRN
statement: symbols appearing in the operand
field of such a statement appear as REF
entries in the CSD of the control section
containing the statement. The symbols
named in V-con and R-con statements will
also generate REF entries.

Section 1: Introduction 5

REFs may also arise due to complex DEFs.
For example, if CSECT AA has some symbol,
X, and PSECT BB has the statement

ENTRY X

there will be a REF to AA within BB's CSD.

There will also be at least one REF for
the module name complex DEF. For example,
the statement

END Z

where Z is contained in CSECT CC, will
result in a REF that names CC.

External references to other modules
provide the means by which the loader links
modules implicitly; that is, in a module
the occurrence of a REF that names a symbol
not defined in the module will provoke a
search to locate that module that contains
some DEF entry whose name matches the REF
name.

External Dummy sections

External dummy sections facilitate com
munication between programs by allowing the
user to define work areas in several dif
ferent programs and then at execution to
combine them into one block of storage
accessible to each program. Several dif
ferent programs can be assembled together,
each with one or more external dummy sec
tions; after the loader processes these
programs, the user can allocate storage for
the dummy sections in one block. An
external dummy section is defined through
the use of a DXD instruction, or a DSECT,
in combination with a Q-type DC instruc
tion. In order to allocate the correct
amount of storage when the program is
executed, the user must use the CXD
instruction in at least one of the
programs •

User Authority

Users of TSS/360 are divided into three
authority classes. A code, identifying the
class, will be assigned to each user in
accordance with the user's programming
assignment and requirements. This assign
ment, made when the user is joined, is
maintained on file by TSS/360. When the
user wlogs on W the system, this authority
code is extracted from the file and asso
ciated with his task. The user himself
never has any program control over his
authority code. The three authority codes
and classifications are:

6

1. Code U -- Referred to in this document
as the Wnormal user.w This is the
classification normally assigned to

the applications programmer not con
cerned with system maintenance.

2. Code P -- This identifies the ·system
programmer W who is concerned with a
limited level of system maintenance.

3. code 0 -- This identifies the privi
leged system programmer or system
operator, both of whom are concerned
with the highest level of system
maintenance.

The loader makes use of the authority
code in a variety of ways. In general, the
loader uses the authority code to determine
the level of system "protection" that it
will enforce in loading modules. The load
er imposes total system protection for the
normal user, and progressively less protec
tion for the two classes of system program
mers. Specifically, the loader uses the
authority code to determine in which hash
table to search for or post symbols (see
·Split Hash Table"). The loader also may
alter control section attributes according
to user authority and judge on the admiss i-
bility of certain forms of symbols when
loading modules. The total impact of
authority codes on the loader's proceSSing
of symbols and control sections is sum
marized in Appendix A.

split'Hash Table

The loader employs a common symbol ran-'
domizing (hashing) technique to speed sym
bol lookup during the loading and unloadin'l
process. This technique involves the use
of three separate tables that contain the
origin of the "hash chains" of DEF entries.
Two of· the tables are used for system sym
bols (that is, symbols found in routines
extracted from SYSLIB whose control sec
tions are marked system). One system tabl.;
(SYSHASHP) is for symbols from privileged
control sections. the other (SYSHASHNP) for
symbols from control sections not marked
privileged (that is, nonprivileged). The
nonprivileged system table contains symbols
posted as a result of loading the assem
bler, FORTRAN compiler, PL/I compiler, or
linkage editor. When user authorit.y is P
or 0, only these two tables are
constructed.

In addition to the system tables, a
third hash table is constructed for the
normal user (authority U). The use of this
additional table gives rise to the term
"split hash." It is employed to provide
close control over the interface between
the normal user and system routines. This
control is effected by separating the norm
al user's symbols from system symbols, thus
obviating erroneous linkage from system
routines to normal user routines and vice
versa. The normal user's symbols are

;

placed into the user hash table (USERHASrt)i
symbols from system control sections are
placed into the appropriate system hash
table. When modules are loaded and linked
together, the loader obeys the general rule
that REFs from system control sections are
satisfied by DEFs in the system tables,
while REFs from control sections not markH'!
system are satisfied by DEFs in the USER
hASH table. An exception is when a REF
from a nonsystem control section begins
with SYS, in which case it can only be
satisfied by a DEF SYSHASHNP. This symbol
resolution technique is also summarized in
Appendix A.

Load Errors

Whenever the loader encount-ers an anowa
lous situation in its processing, it
advises the user by means of a message on
SYSOUT. All such diagnostic messages are
listed in Appendix E. Certain serious
error conditions warrant the loader's mak
ing additional load error indications,
either to the task monitor or directly to
the user. Such conditions are those that
are liable to impair further execution of
the task (such as the loader's being unable
to locate the module named on a LOAD
statement).

Control over this additional load error
indication is in the hands of the user in
the case of the LOAD macro instruction.
The C2 digit within the LOAD adcon group
can be set by the user. Normally, this
aigit is set to zero; should a serious
error occur, the user is given the appro
priate diagnostic by the loader, after
which control is returned with an e:-ror
indication to the task monitor.

If the user should set the C2 digit to
one prior to executing a LOAD or CALL rna ero
instruction. and the loader should detect -'l

serious error, the C2 digit is set to seV"-,li
as the error indication to the calling ['en
gram (which may initiate program checks for
such condition). In this case, the load~r
returns to the task monitor without error
indication. and the user is not prompted by
the command analyzer and executor.

MAJOR FUNCTIONS OF THE DYNAMIC LOAQER

The collection of routines known as tbe>
dynamic loader performs these privileg'c',1
system service functions:

EXPLICIT LINKING
PAGE RELOCATION

These two make up theC'
loading processors.

EXPLICIT UNLINKING This is the nnload.'.r.

LOA.lJEl-< LC,
LOADl':R CT,!"';;'\- ", -

called by lh,,:: ",."
syst~~m lO'juff
proct::.:::' .. (.1 { '>

vict-::' i.i'J'ji;· 1 ~

the CU!"d"~:'Lr; Sj.~:'~
relpas(~ t-out ~,p'c{.'

LIRE 1-1;\ r NT A :~:~ ".i.'

li h~'_~ ('1 ,=;",_,'[v.i i '-,

rout. iI1"".

EXPI.ICl'r LI.!'<!< . .iNi, 2.:; C U

to a LO~D or: Cf\j.L ",,'i_'(" !'

"

EXPL Ie ['1' LINK 1

bol. Th,,:
contr<J)_ sJ;<~~.i
or any ()'ther ,.,,'

module d(;fj i' ;.i'j
already l(>:J.'.

'"- J

le's P~{~D j,{!'- 1 "i
Cdt.::S virl- ,··1
t.rol s"ctl·,·,
nos tie
satisfy exl.,:. ,.,1 ./.'"
lies valu<:.':c: fo! CXLi i."
up segH,cnt. r·"'j'-·.
ent r i.",,,. ['.H "L'e",-'. 1::'"
cated CU!l(~ _1!

At tld s p ... ; ."t. ,
phase of t-r.\f.:- 1;- "
and virtUe;} '1
None of t lu~.~
been act: I,u:lll y ~

Insted:l, ,:>-_1'--"-'. i ..;'_
storage W3 Q 31]0~

, 1

- .~.'

. '

tables a~:; w U!V; V,~I 1 1 ~_ ~ ,-, ..
loadpr fl'c,,'. _' '1 "

cont .:1. i (t t ~ !,tj :CV-, ~ '_>'
rF~rk-,::·.>d t.L(~ - l:' J

:..lh (:, ;1 t ' , '_'
tual stor'd<j'f-.: J(!ilf ,'j- _C;_.

on an "un-:iv·)il.dhlc i. "J'"',

occurs. Th,' n':, ~ ,~_, -,'
to this int ,c,c; "i' ':'O{; .• ,

ing meChdt~~. t.t,,;":_;.'"
page fn,," ;.:. i."l·

dence into r>: ' '-,~." "j

ces;.--; cd -;--'<.Y 1",; :1 ~

calls th,o' td',k
diate lin~~~~ t~ I'

entr"::ttlr>:" ~_<'; i_\ "

~! '.J '

'1

." . , ~,~

_ ; v

SecLJOJ; 1:,

page of text in virtual storage. This
function is performed in a given task only
once for each text page with adcons. It
occurs at the first ·page unavailable
interruption; that is, when the text page
is first brought into real storage.

The resolving of adcons always involves
the application of some REF value to the
text bytes to be resolved. All such REF
values were already computed during the
EXPLICIT LINKING phase of the loading
process.

Explicit Unlinking

EXPLICIT UNLINKING is called in response
to a DELETE macro instruction or UNLOAD
command. The major argument to EXPLICIT
UNLINKING is the name of some symbol. The
symbol can be a module name, any control
section name, or any other module entry
point. If the argument symbol is defined
in the task, the containing module is
unloaded from the user's virtual storage,
provided the module was explicitly loaded
in the first place, and provided there are
no outstanding external symbol references
from other modules in the task defined by
DEFs within the subject module. Unloading
consists of the removal of the unloaded
module's PMD from the task dictionary and
the freeing of virtual storage for all the
unloaded control sections.

Loader Logoff

LOADER LOGOFF is called at task end by
the logoff processor for terminal house
keeping. It is called only once per task,
and its function is to adjust the shared
data set table (SDST) to show that the cur
rent task is no longer a shared user. User
counts for each of the task's public con
trol sections are decremented in the SDST.
If counts are nonzero after adjustment,
only the current task is disconnected from
the shared page tables. If the user counts
go to zero after adjustment (a task might
be the only one currently using the shared
storage), the public storage is released
through FREEMAIN. Private storage is not
released by LOADER LOGOFF; the private page
tables for the task will be eliminated at
the time the task's TSI is deleted. This
deletion follows LOADER LOGOFF's
processing.

Loader Cleanup

LOADER CLEANUP is called by the command
system logoff processor at the end of each
sub-task during express batch processing.
LOADER CLEANUP calls LOADER RELEASE to
unload from virtual storage all those
modules which were loaded for the specific
sub-task, so that only IVM modules remain
in virutal storage for the next sub-task.

8

Loader Release

When a 'DDEF' for a job library is
released, the release command routin(' call,-;
LOADER RELEASE to unload any non-IVM
modules loaded from that library. LOADER
RELEASE determines which modules should be
unloaded, then calls EXPLICIT UNLINKAGE to
do the unloading. If any module cannot be
unloaded because of outstanding references,
a message to the user is printed and an
error return code set for the release com
mand routine.

Library Maintenance

The LIBE MAINT routine is called to
maintain the data control block (DCBS) for
the program library list; that is, the
hierarchy of open partitioned data set~ ill
a task available for access by the dynamic
loader. It is called at the beginning of
each task to open the system library (SYS
LIB) and the user's private library (USER
LIB). Furthermore, LIBE MAINI' will be
called at times during the life of a task
in response to any JOBLIB DDEF command
entered by the user.

The dynamic loader has no direct inter
face with LIBE MAINI'. Instead, LISE MAINT
is called by other system routines to open
and close DCBs for the user's data sets.
The open DCBs are chained together, and the
loader will make use of this chain in
attempting to locate symbols during EXPLI
CIT LINKING.

THE LOADING PROCESS

Invoking the Loader

The user may initiate the loading pro
cess by a LOAD or RUN command. This action
causes the command analyzer and executor to
issue a LOAD macro instruction to which th""
dynamic loader responds by loading the
named module. The user may also write
inline statements in assembler macro lan
guage to invoke the loading process. These
will take the form of the LOAD or E-type
CALL macro instruction. The LOAD macro
instruction is used only to effect the
loading of the named module; CALL causes
both loading of and branching to the named
module.

When CALL and LOAD macro instructions
are expanded the following code is
generated:

At the point
of CALL -----DS
L
L
ST
BASR

OH
15,CHD&SYSNDX+12
14,CHD&SYSNDX+16
14,72(0,13)
14,15

At the point
of LOAD
LA 15, CHDt;SYSNIIX
EX 0 , 0 (0 I 1 '~)

while in the user's first declared PSECT
the ad con group is generated as follows:

CNOP

CHD&SYSNDX SVC

DC

DC

DC

DC

0,4

127 SVC for expli
cit loading

H'C1C2' Option codes

CLS'name' Module name
(or alias> of
module to be
loaded

A(*-12) V-value of
name filled in
here by loader

F R-value of
na:ne filled in
here by loader

When the DLINK SVC is executed, the task
monitor takes control and effects a type-I
implicit linkage to the dynamic loader with
GR1 pointing to a full word that contains
the virtual storage address of the adcon
group. The loader proceeds to allocate
virtual storage for the named module and to
place the V- and R-value in the adcon
group, loading any and all modules required
to resolve external symbols.

When the loader has completed these
actions, it returns to the task monitor.
In the case of error-free processing, the
task monitor determines whether a CALL or
LOAD was executed. (The loader's return
code indicates both error condition and
type of adcon group; that is, CALL or
LOAD.)

In the case of a LOAD, the task monitor
merely returns control to the point in vir
tual storage immediately following the EX
instruction that occasioned the DLINK. In
the case of a CALL, the task monitor. picks
up the resolved R-con and places it in the
19th word of the calling program's save
area; that is, in the 19th word following
the address contained in register 13. The
task monitor effects linkage by placing the
resolved V-value into the IC field of the
user's old PSW, so that the next time this
PSW is fetched, the called routine is
entered at the V-value location. At the
point of entry, register 13 will be point
ing to the caller's save area, the 19th
word of which will contain the R-value, by
convention the PSECT origin of the called
routine.

In the case of an error return from the
loader while in conversational mode, the
task monitor will effect linkage to the
command analyzer and executor to prompt the

user. The task monitor disregards error
codes in the nonconversational mode.

The option codes, C1 and C2, are inter
preted by the loader as follows:

C1 Code: A CALL is indicated when the low
order bit is a 1. A LOAD is indicated when
the low-order bit is a O. If the high
order bit of the C1 byte is set in an adcon
group located in a system control section,
the loader will resolve the adcon group
symbol from the USERHASH table rather than
from one of the system tables, from Which
such system adcon groups are normally
resolved when the bit is not set. This
feature is implemented so that the load
command processor, which is a system rou
tine, may make explicit LOADs of user rou
ti~es in response t-a thp LOAD command.

C2 Code: The C2 digit governs the loader's
actions in the case of serious load errors
encountered during the response to a LOAD
macro instruction. The details of these
actions are described under -Load Errors.-

Allocation

The loading process is divided into two
phases: the virtual storage allocation
(explicit linking) phase and the text page
relocation (adcon resolution) phase. The
allocation phase commences in response to
the execution of a LOAD or CALL macro
instruction; text page adcon resolution is
effected as the page to be relocated is
referenced by the user's code.

Symbol Lookup

Allocation begins with the looking up of
the symbol name to be loaded. The appro
priate hash chain in the TDY is searched
first. If the loader finds the symbol
defined there, no allocation is necessary,
since the module defining the symbol is
already a part of the task and has had
vir~tal storage allocatpd. The loader
merely fills in the V-value and R-value in
the adcon group associated with the calling
sequence, and returns to the user via the
task monitor. If the symbol cannot be
found in the TDY, a library search is
initiated. If the symbol is not found, an
error condition exists, that is, the symbol
is undefinable for this task.

PMD Loading

If a library is found that defines the
symbol name, the defining module's PMD is
transferred from the partitioned data set
into the TDY, maintained in each task's
virtual storage. The count of modules
loaded from this library, found in the
TDTBLK portion of the JFCB, is incremented
by 1.

Section 1: Introduction 9

Control Section Rejection

After the PMD is loaded into the TDY,
each control section name within the module
is checked. Those control sections whose
names either duplicate entry point names
already within the TDY or whose names are
determined illegal (see Appendix E, "Loader
Restrictions") are rejected. This process
of control section rejection has the side
effect that none of the entry points
defined by the control section will be
entered into the appropriate TDY hash
chain, meaning that references to these
entry pOints must be satisfied elsewhere or
not at all. Control section rejection
finds its primary application in the treat
ment of common control sections. The load
er will accept the first common control
section it encounters of a given name (or
blank), reject all subsequent common con
trol sections of the same name (or blank),
and tie all common references to the loaded
common control sections. Sometimes control
section rejection may be accompanied by or
caused by the anomalous conditions sum
marized under "Loader Restrictions."

The treatment of unnamed control sec
tions deserves some special comment here.
Unnamed common control sections are
assigned a name of eight alphameric blanks.
After the first cornmon control section is
loaded, subsequent unnamed common control
sections will be rejected, as discussed
above.

Unnamed CSECTs are assigned a name of 16
hexadecimal zeros by the assembler. To
render such names unique to the module in
which they were declared, the loader places
a module sequence number in the low-order
16 bits of the first word of the name part
of the DEF entry and all REFs of the same
"zero· name within the module. This tech
nique eliminates control section rejection
for unnamed CSECTs, since unnamed CSECTs
from different modules will be distinguish
able one from another. (See Appendix D,
Restriction 12.)

Control Section Storage Assignment

Virtual storage is allocated for each of
the nonrejected control sections in the
module. Fixed-length control sections of
identical attributes within a module are
allocated storage as a group. Variable
length control sections are allocated
storage individually. (The system actually
allocates an additional fixed number of
pages in response to the variable-length
allocation request.)

Storage protection keys are set up for
each control section group at the time
storage is requested for that group. Read
only control sections are assigned a

10

storage key that will not allow the llser to
store in the virtual storage assigned.
Privileged control sections are assigned d

storage key that will not allow the user to
store into or to read the assigned virtual
storage. Privileged control sections will
only be found in certain system service
routines; the user is not allowed to
declare such control sections. All ottler
control sections are assigned a storage key
that allows unlimited user reading and
writing of the assigned storage.

Public control sections in module'.
loaded from shared data sets are assiglled
shared storage, to make such control sec
tions potentially available to other task,;.
If some public control section has not pre
viously been allocated by some other ta~;k,

the loader will assign shared storage suet,
that this task's copy of the control sec
tion will be loaded into the shared
storage. If some public control section
has already been allocated shared storagt
by another task, the current task is merel.y
"connected" to such shared storage; that
is, all references to such public storage
will be tied to the control section already
loaded.

Page table entries are set up for each
of the nonre jected control section t,ext
pages. The external library storage
address is associated with each external
page table entry, and each page is marked
unavailable. The first user reference to
any byte on the page will cause an inter
ruption. This interruption will cause the
paging supervisor to transfer the page from
the external library into real storage.

At the time the page tables are set, up,
the loader checks each page for the pre
sence of adcons. Those pages containing
adcons are marked unprocessed by the loadl'r
in addition to the unavailable marking.
The referencing of pages marked unprocess'>Q
by loader will cause the paging supervisor
to effect a call via the task monitor on
the page relocation entrance of the loader.
This action is described more fully under
"Relocation."

DEF and REF Processing

The value of all DEFs in the nonrejec'tec1
control sections of the module are computecl
except those DEFs whose names duplicate
DEFs previously loaded or whose namp,; ,-,re
judged illegal. Duplicate or illega 1 DEE',
are rejected with diagnostics. Relocatablp
DEFs are computed by adding to the DEF
value the virtual storage base address
allocated by the loader to the containing
control section. Absolute DEFs require nu
computation. Complex DEFs are computed
last •. Recall that complex DEFs have as,c;o"
cia ted with them REFs to other control sec-

tions. If the external name to which such
a REF refers is not found in the TDY, the
entire loading process is initiated to load
a module that will so jefine r.he REF.
After the complex DEFs are computed, all of
the remaining REFs in the module are satis
fied, which may effect the loading of addi
tional modules. Such a module loading cas
cade will proceed until all REFs in all
modules have either been satisfied or been
marked undefinable.

Note that it is quite possible for the
loader to satisfy some REF by locating an
entry point in some external library, only
to have that entry pOint lost in the allo
cation process by control section rejec
tion. For example, some module has a REF
to symbol X which is found in CSECT C in
module A in some library. During alloca
tion, CSECT C is rejected by the prior
occurrence of some other CSECT C, such that
when allocation for module A is completed,
symbol X is still unsatisfied. The loader
checks for this condition and accommodates
it by initiating the symbol search (and
allocation cycle) once again, this time in
the next library in the hierarchy. A sym
bol is undefined when all libraries from
the hierarchy starting point to and includ
ing SYSLIB have been searched, yielding no
definition.

Page Relocation

Whenever a page-unavailable interruption
occurs, the paging supervisor transfers the
page into real storage and checks the
unprocessed-by-Ioader bit in the external
page table. If this bit is not set, no
loader action is required. If the bit is
set, the paging supervisor effects a call,
via the task monitor, on the page reloca
tion entrance to the dynamic loader. The
loader's action, in this event, is merely
to compute the correct virtual storage
value of each adcon in the page triggering
the interrupt. The processing of adcons
will always involve the application of some
REF value to that portion of the text occu
pied by the adcon. There are five possible
applications:

1. Add the V-value of an external or
internal REF to the text value.

2. Subtract the V-value of an external or
internal REF from the text value.

3. Store the R-value of an external or
internal P~F into the text.

4. Store the value of a Q-REF into the
text.

5. Store the value of a CXD-REF into the
text.

When this page relocation occurs, all
REF values will have been satisfied (during
the allocation phase of the loader). Once
all adcons have been resolved, the loader
returns to the task monitor and eventually
to the instruction in execution when the
page-unavailable interruption occurred.

Loading Example

Assume that Ml, a module already loaded,
executes the following statement:

CALL SINE, E

The loader will search the TDY looking for
some entry point named SINE. Assuming that
SINE is not currently loaded, the loader
will initiate a library search for SINE.
If found, the allocation of the module con
taining SINE commences. Assume now that
SINE is contained in module M2, and that M2
has two REF entries whose names are R1
(satisfied in module M3) and R2 (satisfied
in module M4). Once storage is allocated
for M2, thp two REFs will be processed. R1
will cause the loading of M3 if it is not
already loaded, and R2 will cause the load
ing of M4 if it is not already loaded.
Assuming that M3 and M4 have no external
REFs, following the allocation for M3 and
M4, the V-value and R-value of SINE are
filled in the adcon group in Ml, thus com
pleting the allocation phase of the loading
process. Figure 2 shows the resulting
allocation and links between modules.

During the allocation, of course, all
text pages were marked unavailable and
those with adcons marked unprocessed by

MI M2 M3

D--·---Li_:~~~_E ---'~ = ~ ~ -GJ

Legend: --... Indicates explicit link (CALL or LOAD)

---~ Indicates implicit link (external REF)

[X] Indicates DEF entry for X

(X) Indicates REF entry for X

Figure 2. Loading Example

Section 1: Introduction 11

loader. At the conclusion of allocation,
control via the task monitor will pass to
the entry point SINE in module M2. When
the branch to SINE or its V-con is inter
preted for execution, a page unavailable
interruption probably will occur, and the
page containing SINE will be paged into
real core. If there are unprocessed ad cons
on this page, the relocation phase of the
loader will be called to compute the
correct virtual storage values of these
adcons and to store them in the text, which
is in storage for the first time.

Altering the above example to show an
example of control section rejection,
assume that M4 refers to some named common
A which is defined in M4 and has also been
previously loaded as a result of being
declared in module M1. Figure 3 is a dia
gram of this situation. Note that common A
in M4 is rejected, and that references to A
within M4 are satisfied in module M1's com
mon A.

THE UNLOADING PROCESS

InVOking the Unloader

The user can initiate the unloading pro
cess by the terminal command UNLOAD, or by
the inline coding statement DELETE. The
DELETE macro instruction expands as;

EX O,CHD&SYSNDX

M4

• [R2J
(AJ<

L _________ ---- (A)

Legend: __ Indicates explicit link (CAll or LOAD)

- - -+ Indicates implicit link (external REF)

[xl Indicotes DEF entry for X

(Xl Indicates REF entry for X

indicates reiected Control Seclion

Figure 3. Loading Example Showing Control
Section Rejection

12

at the paint of call, while in the user's
first declared PSECT the DELETE adcon group
is generated as;

OS OF

CHD&SYSNDX SVC 123 SVC for un
loading

DC CL8'name' Module name

DC H'C3C4'

(or alias) to
be unloaded

Unload options
and return
code

When the Unload SVC is executed, the
task monitor takes control and effects a
type-I implicit linkage to the unloader,
with GRl pointing to a word that points to
the DELETE adcon group. The unloader pro
ceeds to unload the named module and pos
sibly modules referenced by it from the
user's virtual storage, according to the
option byte, C3. Upon completion of the
unloading process, the unloader returns to
the task monitor, which then returns to the
user's code following the EX instruction.

The first byte of the halfword of
options and return code is used to allow
two variants to the standard DELETE:

1. The high-order bit of C3 may be set tn
reverse the effects of the system
attribute of the control section con
taining the DELETE adcon group. (See
the discussion of the CALL/LOAD adcon
group high-order Cl bit, under "The
Loading Process.") This feature is
implemented so that the UNLOAD command
processor, a system routine, can issue
DELETE macro instructions on user
modules in response to the UNLOAD ter
minal command.

2. The low-order bit of C3. if set,
directs the loader to unload only the
module defined by name in the DELETE
adcon group. The unloader makes no
attempt in this case to delete modules
referenced by the named module.

Cq is used to contain the unloader's
return code.

Creating Deletion Candidates

The explicit unlinking entrance to the
dynamic loader is called whenever a DELETE
macro instruction is executed. The major
argument is some symbol, either a module
name or alias (control section name or
other entry point name) whose containing
module "is to be unlinked from all other
programs and deleted from the task.

Module deletion, or unlinking, includes
several processes:

1. Locating all errlicit references ~~
the module to be deleted and -rearm
ing- them.

2. Tracing explicit references from this
module to identify subordinate modules
that may be deleted as well.

3. Tracing implicit references from this
module for the same purpose as (2).

4. Deleting all extant DEFs defined in
the deletable modules from the DEF
chains.

5. Deleting all control sections and fre
eing allocated storage.

6. Deleting all deletable modules' PMOs
from the TDY.

A deletion candidate, then, is either a
module whose name (or alias) appears in the
DELETE statement (primary candidate), or
another module (secondary candidate) that
is referenced ~ the primary or by the
other secondary candidate. There are two
ways in which a module may reference anoth
er module. An explicit reference is
effected by a module's executing a I.OAD or
CALL macro instruction naming an external
symbol defined in another module. An
implicit reference is effected by a modu
le's having a REF entry that is satisfied
by a DEF entry in another module.

The allocation phase of the loading pro
cess sets up appropriate explicit and
implicit chains linking referenced PMOs
with referencing PMOs. Secondary deletion
candidates are located during the unloading
process by tracing these chains and placing
every referenced module on a candidate
list. This tracing process cascades until
all modules referenced by the primary and
secondary deletion candidates have them
selves become deletion candidates.

Eliminating Deletion Candidates

Only those deletion candidates that have
no outstanding explicit or implicit
references to them are retained on the can
didate list. The removal of any candidate
on the list may result in the removal of a
previous candidate from the list. Now this
process is reiterated until a stable can
didate list results, and all those modules
remaining on the li31r may be de.leted freD;
the task.

There is one exception to the forgoing
algorithm. The primary deletion candidate

is deleted so long as there are no out
standing implicit references to it. Expli
cit references to the primary candidate are
traced to thf'ir SOllrce (CALL or LOAD adcon
group), and the original SVC is wrearmedw
such that. subsequent execution thereof will
cause reloading of the deleted module.

Module Removal

At this point, storage is released for
all nonrejected control sections of all
modules to be deleted. The DEFs in each
control section are removed from the TDY
DEF chains, the Q-REFs in each control sec
tion are removed from the chain of Q-REFs,
and the PMD itself is deleted from the TDY.
This process is repeated for each module to
be deleted. Unloading is complete when the
last module on the deletion list has been
removed from the task.

If the low-order bit of the C3 option
byte is set, only the primary deletion can
didate is entered on the candidate list;
the tracing of implicit and explicit links
is eliminated.

Unloading Example

Figure 4 shows the allocation for six
modules. Module A has explicit links to B
"ind E. Mocu:!.e 3 h.S\s e'Cplicit links to C
and F. Note that module C implicitly links
to D, which implicitly links to E, which
implicitly links to F. If the statement
DELETE B is executed from within module A,
the unloading action is shown in Figure 4.

L_
Legend: .------+ indicates explicit reference

- --. indicates implicit reference

Figure 4. Unloading Example - Before

Section 1: Introduction 13

B is placed on the candidate list. B's
references are traced; this results in C
and F being added to the candidate list.
C's references are traced; this results in
D being added to the list. F has no
references, so it causes no new secondary
candidates to be added. Now D's references
are traced, resulting in E being added to
the list. E references only F, which is
already on the list.

Now all modules are checked for out
standing references. B has one outstanding
reference (from A); but since B is the pri
mary deletion candidate, this explicit lin
kage in A is rearmed in such a way that B
remains in the list. Modules C and D have
no outstanding references, so they also
remain. Note, however, that E has an
explicit link from A that is outstanding.
Thus, E is removed from the list, reestab
lishing the implicit link between E and F.
F is examined, and it is discovered that F
has an outstanding implicit reference (just
reestablished from E). Thus, F is removed
from the list.

At this point, modules B, C, and Dare
deletion candidates, and none has any out
standing references. Unloading proceeds,
then, with the removing of modules B, C,
and D from the task. This results in the
allocation diagrammed in Figure 5.

A F o
-___ • expi!dt reference

- -- - ~ implicit reference

Figure 5. Unloading Example -- After

DYNAMIC LOADER CONSTRUCTION

Assembl¥ Modules

The routines of the dynamic loader are
contained in four assembly modules:

1. The loader module is composed of
EXPLICIT LINKING and PAGE RELOCATION.
This is the largest of the four
assembly modules and bears the module
name CZCDL.

2. The unloader, EXPLICIT UNLINKING, is
contained in the second assembly mod
ule, CZCDU.

3. The third assembly module, CZCCD, con
sists of the LOADER LOGOFF, LOADER
RELEASE and LOADER CLEANUP routines.

14

4. The last assembly module, CZCDH, con
sists of the LIBE MAINT service
routine.

Routine Labels and Loader Entry Points

The dynamic loader is divided into small
functional subroutines that bear mnemonic
titles as well as coded labels. There are
two types of coded labels: those that are
solely internal and those that are made
external symbol definitions as well by
means of ENTRY statements. The internal
labels all begin with the letters CGCC OL

CGCD. The external labels are all coded a~
complex definitions; the first five charac
ters are the same as the assembly module
name. For example, PAGE RELOCATION is con
tained in the loader module CZCDL and bears
the coded label, CZCDL4.

The labels are placed in the assembly
code so as to name the first instruction ot
the subroutine. The coded labels used to
describe the loader routines in this docu
ment will coincide exactly with the coded
labels in the assembly modules. Thus, the
routine mnemonically titled ALLOCATE MODULE
bears the label CGCCA in both this manual
and in the code, while DELETE MODULE is
identified (externally as well as internal
ly) by the label CZCDU2.

The entry points of the four assembly
modules of the dynamic loader are labeled
as follows:

EXPLICIT LINKING CZCDLl

EXPLICIT UNLINKING CZCDUl

LOADER LOGOFF CZCCD1

LIBE MAINT CZCDHl

In addition to the four main entry
points, certain other subroutines of the
loader have been coded with external
labels. These routines may be entered by
another privileged routine using standard
type-I linkage. One of the routines, LIBE
SEARCH, has a macro instruction associated
with it, LIBESRCH, which will expand into
either type-lor type-II linkage, depending
on the DCLASS of the assembly module in
which the macro instruction is contained.
The loader routines HASH SEARCH, LIBE
SEARCH, MAP SEARCH and PAGE RELOCATION are
used by other system programs and are,
therefore, coded with external labels. ThE'
loader routines Q-CHAIN and RESOLVE Q-REF
were put in a separate control section to
reduce paging. The loader routine SET
SEARCH FLAGS was made external so that it
might be entered from the unloader assembly
module; similarly, the unloader routine
DELETE MODULE was made external so that it
might be entered from the loader assembly

;

module. The loader logoff routines LOADER
RELEASE and LOADER CLEANUP have external
labels since they are called by other sys
tem programs.

Each of the four assembly modules is
coded as a set of reenterable virtual
storage subroutines. The executable
instructions and nonvariable data are
placed in control sections with the public,
privileged, and system attributes. The
variable data and save areas are contained
in prototype control sections that have
privileged and system attributes. The con
trol sections are named using the five
characters of the module name with a P or C
SUffixed to indicate PSECT and CSECT.
respectively.

The following tables summarize the con
struction and content of the dynamic loader
assembly modules. The names of the main
entry points are underlined.

Loader Module

MODULE NAME: CZCDL
CSECT: CZCDLB (PRVLGD, SYSTEM,

PUBLIC)
ENTRY POINTS: CZCDL7 (Q-CHAIN>
OTHER ROUTINES: CGCRQ (RESOLVE Q-REF)
CSECT: CZCDLC (PRVLGD, SYSTEM,

PUOLIC)
ENTRY POINTS: CZCDLl (EXPLICIT LINK)

CZCDL2 (HASH SEARCH)
CZCDL3 (LIBE SEARCH)
CZCDL4 (PAGE RELOCATION)
CZCDL5 (MAP SEARCH>
CZCDL6 (SET SEARCH FLAGS)

OTHER ROUTINES: CGCCA (ALLOCATE MODULE)
CGCCB (SELECT HASH)
CGCCC (SRCHPACK)
CGCCE (RESOLVE SYMBOL)
CGCCH (LOAD PMD)
CGCCJ (FIX PMD)
CGCCK (ATTACH TEXT)
CGCCL (FIX)
CGCCN (ADD PMD)
CGCCP (REJECT DIAG)
CGCCR (BISEARCH)
CGCCT (PCSA)
CGCCU (CHECK DEF LEGAL)
CGCCV (LINK DEFS)
CGCCW (GET STORAGE)
CGCCY (DEFINE REF)
CGCDG (ADD MUTE)
CGCDPR (LOADER PROMPT)
CGCSP (SETPAGE)

PSECT: CZCDLP (PRVLGD,SYSTEM)

Unloader Module

MODULE NAME: CZCDO
CSECT: CZCDUC (PRVLGD, SYSTEM,

PUBLIC)
ENTRY POINTS: CZCDUl (EXPLICIT

UNLINKING)
CZCDU2 (DELEl'E MODULE)

OTHER ROUTINES: CGCCO
CGCDA

PSECT:

CGCDB

CGCDC

CGCDD

CGCDE
CZCDUP

LOADER LOGOFF Module

MODULE NAME: CZCCD
CSECT: CZCCDC

ENTRY POINTS: CZCCDl
CZCCD2
CZCCD4

PSECT: CZCCDP

LIBE MAINT Module

MODULE NAME: CZCDH
CSECT: CZCDHC

ENTRY POINTS: CZCDHl
PSECT: CZCDHP

(DROP PMD)
(MODIFY MUT
COUNTS)

(DELEl'E CALLER
MUTES)

(DELETE SELECTED
MUTES)

(MODUFY USE
COUNTS)

(TEST USER COUNTS)
(PRVLGD, SYSTEM)

(PRVLGD, SYSTEM,
PUBLIC)

(LOADER LOGOFF)
(LOADER RELEASE)
(LOADER CLEANUP)
(PRVLGD, SYSTEM)

(PRVLGD, SYSTEM,
PUBLIC)

(LIBE MAINT)
(PRVLGD, SYSTEM)

Dynamic Loader Routine Linkages

The following sections discuss the basic
functions of the dynamic loader: EXPLICIT
LINKING, EXPLICIT UNLINKING, LOADER LOGOFF,
LIBE MAINT. PAGE RELOCATION, LOADER RELEASE
and LOADER CLEANUP. Each of the first
three of these functions consists of a main
routine and several subordinate loader rou
tines called to support the main routine.
The main routine is discussed first, fol
lowed by its subordinate routines, in the
order in which they are called by the main
routine. LIBE MAINT has no subordinate
loader routines. PAGE RELOCATION, LOADER
RELEASE and LOADER CLEANUP, although they
are entry points within main modules, are
not subordinate to the main routines, but
are called by other system programs to per
form special functions. These routines
call other loader routines during their
execution, and are described in the same
manner as the main routines.

Figure 6 is deSigned to show at a glance
the calling and called relationship among
the dynamic loader routines. The top row
of the chart shows the main entry points of
the four dynamic loader modules along with
the special purpose PAGE RELOCATION, LOADER
RELEASE, and LOADER CLEANUP routines.

All the routines in rectangular blocks
in Figure 6 are routines with external
entry points, which may be entered by type
I linkage from other privileged routines.
The other routines, in square blocks, are
internal to their ass~mbly modules and are

Section 1: Introduction 15

entered by restricted linkage. The INVOKE
macro instruction is used for routine
entrance; general registers 2 through 8 are
generally considered volatile and not saved
by the called routine.

Note in Figure 6 that all but two con
nective links are shown as solid lines in
the downward direction, indicating the
unilateral nature of the linkage. One
exception is the upward dashed arrow from
DEFINE REF to RESOLVE SYMBOL which is shown
to point out the bilateral nature of this
linkage. In fact, the four routines
RESOLVE SYMBOL, FIX PMD, FIX, and DEFINE
REF form a unique processing chain in which
it is possible for DEFINE REF to enter
RESOLVE SY~rnOL recursively under conditions
described in Section 2. Another exception
is the horizontal dashed arrow from LOADER
RELEASE to EXPLICIT UNLINKING, which indi
cates that EXPLICIT UNLINKING, one of the
four loader modules, can be entered from
LOADER RELEASE, a routine within another
module.

16

The charts on the following pages sup
plement Figure 6 by showing, in addition to
the calling relationship, the conditions
prerequisite to the call. The charts are
divided into levels which describe the
relationship between the routines. The
four main loader routines and the special
purpose routines are at levell, subordin
ate routines are shown at level 2 and
below.· This series of charts also shows
the loader's interfaces with the privileged
system service routines that support the
loader; for example, GETMAIN, FREEMAIN,
SETL, FIND, etc. Asterisks differentiate
these routines from routines local to the
four loader assembly modules.

Given a set of conditions, the reader
can trace through the routine linkages for
any proceSSing sequence. Example:

EXPLICIT LINR to RESOLVE SYMBOL at levell,
RESOLVE SYMBOL to FIX PMD at level 2,
FIX PMD to LINK DEFs at level 3, LINK DEFs
to HASH SEARCH at level 4.

C/l
co o
rt
g
I-'

H

~
1'1 o
P
~ o
rt
o
~

I-'
-..I

":I
\Q c:
11
CO

'"
\:1
'<
~

~.
o

s
~
P
CO
11

g;
r:::
rt
~
CO

t<
t:1
~
~

\Q
CO
III

-
library Page Explicit
Moi ntenonce Relocation Linking

J~
Add
Mute

,------

r-r--------------- -- Re~ol\(e

I Symbol

I
~ I ~ I

I Libe load Fix
I Search PMD PMD
I
I T r-I
I
I
I
I
I
I
I ,...--
I Add link
I Fix PMD Def,
I
I -
I

~-dJ I
I
I --
I
I
I
I
I
I
L-, ! ~

Define Set-
Check

Hash
Del

Rei poge
Legal

Search

loader r--
Prompt 1----

-

LQuder -- Explicit Loader loader

Logoff Unlinking f-------------- Release Cleanup

~ --~
Test Delete Modify

Mod; Iy J I De lete I
lJser Coller MUr Use Selected
Counts Mutes Counts Counts Mutes

~
legend:

t--- C r--- Allocate t-- Set Search

- fY\odule t-- Flags

Collobl.
from
outside
the loader

I
module

'-----l
~ 1 + --1 D Reiect Get Attach Delete

PCSA Di09 Stol'oge Text I Module

L Callable
only from

inside
the loader
module

'---------

I
+

Map-
Q ... Choin SRCHPACK

Search

~.-

-

t

=A1
Select Resolve Drop

Hash Q-Ref PMD

r---, I Routine: EXPLICIT LINK -- Level: 1 !
r-------------T-------------------------------T---------------T-------------------------~
I Routine I Purpose ICalled Routines I Calling conditions I
r-------------t-------------------------------f---------------t-------------------------1
I EXPLICIT LINKIFind the definition of a called IMAPSEARCH I Always called. I
1 Isymbol and allocate storage t---------------+-------------------------~
I Ifor its containing module. IRESOLVE SYMBOL IAlways called. I
I I t---------------t-------------------------1
I I IADD MUTE Icalled unless symbol is I
I I I Inot found. I
I I t---------------t-------------------------1
I I ILOADER PROMPT IDiagnostic when symbol I
I I I Inot found. t
I I t---------------t-------------------------1 I I I SETPAGE I SETXP request pending. I l _____________ i _______________________________ i _______________ i _________________________ J

r---,
I Routine: EXPLICIT LINK -- Level: 2 I
r------------~-------------------------------T---------------T-------------------------1
I Routine I Purpose ICalled Routines I Calling Conditions I
r-------------t-------------------------------f---------------f-------------------------1
IMAPSEARCH IFind, insert, or delete an IBISEARCH IAlways called. I
I lentry in the memory MAP table. t---------------t-------------------------1
I I I ABEND* I Called if MAP is full t
I I I! and insert requested. I
t-------------t-------------------------------+---------------f-------------------------1
I RESOLVE IFind a DEF entry in the TDY or IGETMAIN* ICalled when next level I
I SYMBOL lexternal library to match I Iwill not fit in recursivel
I I input argument name. I I storage page. I
I I t---------------+-------------------------·1
I I ISET SEARCH IAlways called. I
I I I FLAGS I I
I I r---------------t-------------------------i
I I IHASH SEARCH IAlways called. I
i I r---------------t-------------------------i
I I ILIBE SEARCH Icalled if hash table I
I t I I search fails. I
I I r---------------t-------------------------1
I I lLOAD PMD ICalled if library search I
I 1 I I succeeded. I
I I r---------------f-------------------------1
I I I ALLOCATE ICalled if library search I
I I I MODULE t succeeded. I
I I r---------------t---------------------·---1
I I I FIX PMD I Called if library search I
I I I I succeeded. I
I I r---------------t-------------------------1
I I IDEFINE REF ICalled if library search I
I I I I succeeded and module not I
I I I Ideleted in FIX PMD and I
I I I I there are yet undefined I
I I I I REFs. I
I I t---------------t-------------------------~
I I ISTOW* ICalled if library search I
I I I I st:.cceeded. I
t-------------t-------------------------------t---------------+-------------------------~
IADD MUTE Iconstruct a Module Usage Table IGETMAIN* ICalled when required to I
I I Entry (MUTE) and disarm the I lexpand MUT table. I
I Icalling SVC. I I I
t------------f-------------------------------t---------------f---------------------·----~
I LOADER PROMPT I Central routine for output of I PRMPT* I Always called. I
I lall printed matter to SYSOUT. I I I r-------------i-------------------------------i-------________ i __________________ . _______ ._~
I*Privileged system service routine external to the loader. I l ___ J

18

r---,
I Routine: EXPLICIT LINK -- Level: 3 I
~-------------T-------------------------------T---------------T-------------------------~
I Routine I Purpose ICalled Routines I Calling Conditions I
~-------------t-------------------------------t---------------+_-----------------------~
I BISEARCH I Find largest virtual storage I None. I I
I I address in MAP table ::; input I I I
I I argument address. I I I
~-------------t-------------------------------t---------------+_------------------------~
I SET SEARCH I Determine which hash table to I None. I I
I FLAGS Isearch for a given symbol. and I I I
I I if HASH SEARCH fails, which I I I
I Ilibrary to search. I I I
t-------------t-------------------------------t---------------t-------------------------~
IHASH SEARCH IFind. insert, or delete a INone. I I
I I symbol in a hash chain. I I I
~-------------t-------------------------------t---------------t-------------------------~
ILIBE SEARCH ISearch a library for a module IFIND* IAlways called. I
I Ithat defines a given symbol. r-------------t------------------------~
I I ILOADER PROMPT ICalled on error return I
I I I Ifrom FIND. I
t-------------t-------------------------------+---------------+_-----------------------~
ILOAD PMD ITransfer the PMD of a given !ADD PMD IAlways called. I
I Imodule from a library to the ~---------------t-------------------------~
I I TOY. I SETL* I Always called. I
I I ~---------------+_----------------------__1
I I IGET (LOCATE ICalled for each page of I
I I I MODE) * IPMD. I
I I ~---------------+------------------------~
I I IABEND* ICalled if PMD is invalid. I
t-------------t-------------------------------t---------------t-------------------------~
I ALLOCATE Allocate storage for each IPCSA ,Called once for each I
(MODULE Control Section within a I Icontrol section. I
I single module, also compute and~---------------+_------------------------~
I link its absolute and reloca- ICHECK DEF LEGALICalled for each control ,
I table DEFs. I I section name. I
I ~---------------t-------------------------~
, ISELECT HASH IIf control section name I
I I lis legal. I
I ~---------------t-------------------------~
I IHASH SEARCH IIf control section name I
I I lis legal. I
I ~---------------t-------------------------~
I IREJECT DIAG IIf control section name I
I I lis not unique. I
I t---------------t-------------------------~
I IGET STORAGE Icalled when all CSDs of I
I I Ilike attributes are pro- I
I I Icessed; allocates storage I
I I Ifor control sections with I
I I I same attributes. I
I t----------------+_------------------------~
I for fixed-length I SELECT HASH I For control sections I
I control sections I Iwith same attributes. I
I ~---------------t-------------------------~
I ILINK DEFS IFor control sections I
I I Iwith same attributes. I
I t---------------+_------------------------~
I (ATTACH TEXT IFor control sections I
I I Iwith same attributes, notl
I I I public, or public but I
I I Istorage not assigned by al
I I I CONNECT. I
I ~---------------+-------------------------~
I ISRCHPACK IIf CSECT packing is spec-I
I I lified and required stor- I
I I I I age is less than a page. I L _____________ ~ _______________________________ L_ ______________ ~ _________________________ J

Section 1: Introduction 19

r---,
I Routine: EXPLICIT LINK -- Level: 3 I
~-----------T-----------------------------~---------------T----------------------------~
I Routine I Purpose ICalled Routines I Calling Conditions I
r-----------t------------------------------t---------------t----------------------------1
JALLOCATE I IGET STORAGE icontrol section of variable I
I MODULE I I· I length • !
I (Cont.) I ~---------------t----------------------------1
'I ISELECT HASH IControl section of variable I
I I I I length . I
I I for variable-length ~---------------t----------------------------~
I I control sections ILINK DEFS IControl section of variable I
I I I I length • I
I I t---------------t----------------------------~
I I IATTACH TEXT Icontrol section of variable I
I I I I length , that is not public, I
I I I lor public but storage I
I I I I not assigned by a CONNECT. I
I I t---------------t----------------------------~ I I for both fixed- and ILOADER PROMPT IFor various diagnostics. !
I I variable-length control r---------------t----------------------------1
I I sections I MAPSEARCH I For control sections of ,
I I I I nonzero text lengths. I
I I r---------------t----------------------------1
I I IQ-CHAIN IChain Q-REFs after I
I I I I assigning their values. I
I I r---------------t----------------------------1
I I I SETPAGE I RESTBL of shared library is I
I I ! I locked • I
I I t---------------t----------------------------~
I I IGETMAIN* ICalled to get scratch I
I I I I page(s) when CSECT ,
I I I I packing is requested. I
r-----------t------------------------------t---------------t----------------------------1
IFIX PMD IProcess all complex DEFs for alSELECT HASH Icalled unless all control 1
I I module, including the module I I sections are rejected. I
I Inamed DEF. r---------------t----------------------------1
I I ICHECK DEF LEGAL I Called unless all control I
I I I I sections are rejected. I
I I r---------------t----------------------------1
I I IHASH SEARCH ,called unless all control I
I I I I sections are rejected. I
I I t---------------t----------------------------1
I I IDELETE MODULE Icalled when all control I
I I I I sections are rejected. I
I I r---------------t----------------------------1
I I ILINK DEFS Icalled unless all control I
I I I I sections are rejected. I
I I r---------------t----------------------------1
I I IFIX ICalled unless all control I
I I I I sections are rejected, if I
I I I I there are any complex DEFs. I
I I t---------------+----------------------------~
I I ILOADER PROMPT IDiagnostic when module I
I I I I name rejected. I
~-----------t------------------------------t---------------t----------------------------~
I DEFINE REF I Locate a DEF entry whose name I RESOLVE I Always called. I
I Imatches the input REF name. I SYMBOL·· I I
I I ~---------------t----------------------------i
I I ILOADER PROMPT iDiagnostic when module I
I I I I name undefined or defined I
I I I I by complex DEF. I
t-----------~-----------------------------~---------------~----------------------------~
I *Privileged system service routine external to the loader. I
1**Recursive. See discussion of RESOLVE SYMBOL. i l ___ J

20

r---,
I Routine; EXPLICIT LINK --. Level: 4 I
r------------~-------------------------------T---------------T-------------------------,
I Routine I PurpLse \Called houtinesl callIng Conditions I
r-------------t-------------------------------t---------------t-------------------------~
ILOADER PROMPT I Central routine for output of IPRMPT* IAlways called. I
I lall printed matter to SYSOOT. I I I
r-------------+-------------------------------t---------------t-------------------------~
IADD PMD IAllocate space in the TDY for aIGETMAIN* ICalled when old PMD group
I I new PMD. I I will not accommodate new I
I I I IPMD to expand TDY. I
r-------------t-------------------------------t---------------t-------------------------~
IPCSA IAdjust attributes of a control INone. I !
I Isection according to user I I I
! I authority. I I I
r-------------+-------------------------------t---------------t-------------------------~
ICHECK DEF IVerify acceptability of an I None. I I
I LEGAL I external symbol name. I I I
t-------------+-------------------------------t---------------t------------------------~
\SELECT HASH I Determine in which hash table a I None. I I
I Igiven symbol is to be posted, I I I
I lor in which it may be found. I I I
r-------------t-------------------------------t---------------+-------------------------~
IHASH SEARCH ILook up, post, or delete a INone. I I
I I symbol in a hash chain. I I I
r-------------t-----------------------------·--t---------------t-------------------------~
IREJECT DIAG IExamine the attributes of ILOADER PROMPT ICalled for various I
I Irejected control sections (for I I diagnostics. I
I Idiagnostic purposes) and check t---------------t-------------------------~
I Ifor load error conditions. IABEND* ICalled when privileged I
I I I I control section is re- I
I I I I jected by nonprivileged. I
t-------------t-------------------------------t---------------+-------------------------~
IGET STORAGE IRequest private or public stor-!GETMAIN* ICalled for each private I
I lage. based on control section I Icontrol section group. c

I lattributes and total pages. t---------------t-----------------------~
I I I SRCHSDST I Called for each public I
I I I (CZCQE)* Icontrol section group. I
I I t---------------+-----------------------~
I I I CONNECT I Called for each public I
I I I (CZCG7) * Icontrol section group I
I I I I when SRCHSDST returns I
I I I ,"found." I
I I r---------------t-------------------------~
I I IGETSMAIN ICalled for each public I
I I I (CZCG6) * Icontrol section group I
I I I I when SRCHSDST returns I
'I I I"not found." I
I I t---------------t------------------------~
I I ISRCHPACK IIf CSECT packing is I
I I I I specified.
I I r---------------t------------------------~
I I I LOADER PROMPT I Diagnostics for unnamed I
I I I I public control sections. I
r-------------+--·-----------------------------t---------------t------------------------~
ILINK DEFS IPost legal DEF names in a hash ICHECK DEF LEGALIAlways called. I
I I chain, and compute values for t---------------+-------------------------~
I Irelocatable DEFs. IHASH SEARCH IAlways called. I
I I t---------------+-------------------------~
I' I LOADER PROMPT I For various diagnosti cs • I L-____________ ~ ______________________________ i _______________ i ________________________ _

...
•

Section 1: Introduction 21

r--,
I Routine: EX PLICIT LINK -- Level: 4 1
r-------------T-------------------------------T---------------T-------------------------1
I Routine I Purpose Icalled Routines I calling Conditions I
r-------------+-------------------------------+---------------t-------------------------i
IQ-CHAIN IAssign values for Q-REFS and IRESOLVE Q-REF ICalled when no duplicate I
I Ipost REFs in a hash chain. I IDXD name found. I
I I r---------------+------------------------~
I I I LOADER PROMPT I Diagnostic when DXDs have I
I I I I same name but conflicting I
I I I Ilength or alignment. I
r-------------+-------------------------------+---------------+-------------------------1
IATTACH TEXT ISet up page table entries for ILOADER PROMPT IDiagnostic if public I
I Itext pages of a control sec- I ICSECT not relocated. !
I Ition. ~---------------+_------------------------1
I I I SETPAGE IRequests for external I
I I I I page table entries are 1
I I I I pending. I
1--------------+-------------------------------+---------------+-------------------------"1
IDELETE MODULE!Delete a specified module and ISELECT HASH IAlways called. I
I Itable entries which describe t---------------+-------------------------~
I lit. IHASH SEARCH IAlways called. I
I I r---------------t-------------------------1
I I IDROP PMD ICalled unless module name I
I I I I was not found. I
t-------------+-------------------------------+---~-----------+-------------------------1
IFIX IProcess the RLDs for external IDEFINE REF ICalled unless REF is !
I IREFs, internal REFs, or complex I lalready defined. I
I I DEFs for a Sing Ie page of text I I I
I I or PMD. I I I
t-------------4-------------------------------4---------------~-------------------------~
I*Privileged system service routine external to the loader. I L ___ J

22

r---,
I Routine: EXPLICIT LINK -- Level: 5 I
r------------~-------------------------------T---------------T---------------~---------~
I Routine I Purpose ICalled Routines I Calling Conditions ,
~-------------+-------------------------------+---------------+-------------------------~
ICHECK DEF IVerify acceptability of an ex- I None. I I
I LEGAL I ternal symbol name. I I I
r-------------+-------------------------------+---------------t_------------------------~
piASH SEARCH I Look up, post, or delete a sym-, None. I I
I I bel in a hash chain. i I
~-------------+-------------------------------+---------------+-------------------------~
IMAPSEARCH IFind, insert, or delete an IBISEARCH IAlways called. I
I lentry in the memory MAP table. ~---------------t_------------------------~
I I IABEND* Icalled when MAP is full. I
r-------------+-------------------------------+---------------+------------------------~
I SELECT HASH I Determine in which hash table I None. I I
I la given symbol is to be posted, I I I
I lor in which it may be found. I I I
r-------------+-------------------------------t_--------------+-------------------------~
IHASH SEARCH ILook up, post. or delete a INone. I I
, Isymbol in a hash chain. I I I
t-------------f-------------------------------+---------------+-------------------------~
IDROP PMD IRelease a PMD from a PMD group.IFREEMAIN* lCalled when PMD group I
" 'Icollapses. I
t-------------f-------------------------------+---------------+-------------------------~
IDEFINE REF ILocate a DEF entry whose name I RESOLVE IAlways called. I
, I matches the input REF name. I SYMBOL** I I
I I ~---------------+-------------------------~
I I I LOADER PROMPT I For various diagnostics. I
r-------------+-------------------------------+---------------t_------------------------~
ISRCHPACK ISearch a vacant space table or IGETMAIN* ICalled when space not I
I I create a host or symbiont I I available for entry. I
"entry. I I I
r-------------t-------------------------------+---------------+-------------------------~
IRESOLVE Q-REFIAssign value for a Q-REF (that IGETMAIN* ICalled to begin or expand \
I lis, assign offset value for I IPseudo Vector Available I
I I the DXD>. I IOffset Table (PVAOT) I 'I t---------------t_------------------------~
I I IFREEMAIN* ICalled after an entire l
I I I IPVAOT is deleted. I
r-------------f-------------------------------+---------------+-------------------------~
ILOADER PROMPT I Central routine for output of IPRMPT* IAlways called. I
I I all printed matter onto SYSOUT I I I
I Idata set. I I I
t-------------+-------------------------------+---------------+-------------------------~
I SET PAGE Accept and stack requests to IGETNUMBR* IIncorrect member header I
I build external page table I I in RESTBL. I
I entries, issue any pending ~---------------+-------------------------~
I SETXP requests, or unlock the IABEND* IInvalid return code from I
I RESTBL of a shared library. I IGETNUMBR, RVN too large, ,
I I lor RPN too large. ,
I t---------------+-------------------------~
I I INTLK* I SETPAGE has not been I
I I' called earlier I and I
I I llibrary is shared. I
I t---------------+-------------------------~
, I RLINTLK* I "Write" interlock on ,
I I I RESTBL header. I
I t---------------+-------------------------~
I I SETXP* I Request for external page'
I I I I table entry is pending. I
t-------------~------------------------------~--------------~-------------------------~
I *Privileged system service routine external to the loader. I
1**Recursive. See discussion of RESOLVE SYMBOL. I L ___ J ..

Section 1: Introduction 23

r---,
I Routine: EXPLICIT LINK -- Level: 6 I
~-------------T-------------------------------T---------------T-------------------------~
I Routine I Purpose Icalled Routines I Calling Conditions I
r-------------+-------------------------------+---------------+-------------------------~
I BISEARCH I Find largest virtual memory I None. I I
I laddress in MAP table s input I I I
I I argument address. I I I L- ____________ ~ _______________________________ ~ _______________ L-________________________ J

r---, I Routine: PAGE RELOCATION -- Level: 1 I
~------------~-------------------------------T---------------T--------------------------1
I Routine I Purpose ICalled Routines I Calling Conditions I
~-------------+-------------------------------+---------------+-------------------------1
I PAGE ICompute the correct value of I MAP SEARCH IAlways called. I
I RELOCATION ladcons on the referenced page. ~---------------+-------------------------1
I I IFIX IAlways called. I
I I ~---------------+_------------------------~
I I IFREEMAIN* ICalled to release scratch I
I I I I pages. I
~-------------~-------------------------------~-------________ L-________________________ ~

I*Privileged system service routine external to the loader. I l ___ J

r---,
I Routine: PAGE RELOCATION -- Level: 2 I
~------------~-------------------------------T---------------~------------------------~
I Routine I Purpose ICalled Routines I calling Conditions I
r-------------+-------------------------------+---------------+----------------------·---1
IMAPSEARCH IFind an entry in the memory MAPIBISEARCH IAlways called. I
I I table. I! I
r-------------+-------------------------------+---------------+-------------------------~
I FIX I Process RLDs for external REFs, I None. (FIX I I
I linternal REFs, or complex DEFs Iwill never calli I
I I for a single page of text or IDEFINE REF when I I
I I PMD. I called by PAGE I I
I I I RELOCATION.) I I l _____________ ~ _______________________________ ~ _______________ ~ _________________________ J

24

,---,
I Routine: EXPLICIT UNLINKAGE -- Level: 1 I
r-------------T-------------------------------T---------------T-------------------------)
I Routine I Purpose ICalled Routinesl Calling Conditions i

r-------------+-------------------------------+---------------+-------------------------~
I EXPLICIT I Remove a module from alloca- I MAPSEARCH I Always called. I
IUNLINKAGE Ition. t---------------+-------------------------~
I I ISET SEARCH IAlways called. I
I I I FLAGS , ' 'I r--------------+-------------------------,
I I IHASH SEARCH IAlways called. I
I I I-----------+--------------------~
I I IPRMPT* IIf the symbol is not I
I I I I found. At this point I
I I I lexit is taken; otherwise, I
I I I I the following: I
I I I--------------+------------------------~
I I I DELETE CALLER I Always called. I
I I I MUTES I I
I I I---------------+------------------------~
I I IMODIFY MUT IAlways called. I
I I I COUNTS I I
I I t--------------+-------------------------~
I I I MODIFY USE I Always called. I
I I , COUNTS I I
I I I---------------+-----------------------~
I I I TEST USER I Always called. I
I I I COUNTS I I
I I I---------------+-----------------------~
I I I DELETE 'Called unless all candi- I
'I ISELECTED MUTES Idates are disqualified. ,
I I I--------------+------------------------~
I I IDELETE MODULE ICalled unless all candi- ,
I I I Idates are disqualified. I
I I r---------------+---------------------~ ,
I I IPCS UNLOAD* ICalled if PCS "AT" state-I
I I I Iments were inserted. I
t------------~-------------------------------~---------------~-------------------------~
I*Privileged system service routine external to the loader. , l ___ J

. ..
Section 1: Introduction 25

r---,
, Routine: EXPLICIT UNLINKAGE -- Level: 2 I
~-------------T-------------------------------T---------------T--------------------------\
I Routine I Purpose ICalled Routines I calling Conditions !
~-------------+-------------------------------+---------------+-------------------------1
IMAPSEARCH IFind an entry in the memory MAPIBISEARCH IAlways called. I
I Itable. I I !
~-------------+-------------------------------+---------------+-------------------------i
I SET SEARCH I Determine which hash table to I None. I I
I FLAGS Isearch for a given symbol. I I I
r-------------+-------------------------------+---------------+---------------------------\
IHASH SEARCH ,Find a symbol in a hash chain. INone. I i
~-------------+-------------------------------+---------------+--------------------------1
I DELETE CALLER I Delete all MUTEs for explicit I None. I I
I MUTES ICALLs to a specified module. I I !
t-------------+-------------------------------+---------------+--------------------------1
lMODIFY MUT IIncrement or decrement the MDT INone. I
I COUNTS Icount in the PMOs of all mod- I I
I I ules explicitly called by a I I
I 19iven module. I I i
r-------------+-------------------------------+---------------+-------------------------1
I MODIFY USE I Increment or decrement, for I None. I I
I COUNTS I every REF in a specified PMD, I I I
I I the use count in the CSD which I I I
I I contains the referenced DEF. I I I
r-------------t-------------------------------+---------------+----------------------------\
ITEST USER ITest a specified PMO for any I None. I I
I COUNTS lexplicit CALLs or implicit I I I
I I references. I I I
t-------------t-------------------------------t---------------+--------------------------1
I DELETE IDelete all MUTEs for explicit INone. I I
I SELECTED Icalls by a specified module. I I !
I MUTES ! I I I
r-------------+-------------------------------+---------------+--------------------------\
I DELETE MODULEI Delete a specified module and I MAPSEARCH IAlways called for del e-
I Itable entries which describe I Ition of module name. I
I I it. 1----------------+--------------------------1
I I ISELECT HASH ICalled for each nonre- I
I I I I jected CSD. I
I I ~---------------t-------------------------~
I I IHASH SEARCH (Called for each nonre- I
I I I Ijected CSD. I
I I r---------------t-------------------------1
I I IQ-CHAIN ICalled for deletion of I
I I I IQ-REFs from selected hashl
I I i I chains. I
I I t---------------+-------------------------~
I I IFREEMAIN* (Called for each nonre- I
I I I I jected nonpublic CSD. I
I I t---------------t-------------------------~
I I ISRCHSDST ICalled for each public I
I I I (CZCQE) * I CSD group. I
I I r----~----------+-------------------~-----1
I I IFREEMAIN* !Called for each public I
i I I ICSD in group of like CSDs I
I I ! Iwhen SRCHSDST returns I
I I I Iwith user count zero. I
I! r---------------t-------------------------1
I I I DROP PMD I Always called. I
I I t---------------t-------------------------~
I I IDISCONNECT* ICalled for each public I
I I I ICSD in qroup of like CSDsl
I I I I when SRCHSDST ret urns I
I I I Iwith user count nonzero. I
r-------------i-------------------------------i---------------i--------------------------1
I*Privileged system service routine external to loader. I L ___ J

26

r---,
I Routine: EXPLICIT UNLINKAGE -- Level: 3 I.

~-------------T-----------------------------T--------------r-------------------------
I Routine I Purpose Icalled Routinesl Calling Conditions I
~-------------+------------------------------+--------------+------------------------~
I BISEARCH I Find largest virtual storage I None. I I
I I address in MAP table ~ input I I I
I I argument address. I I L

t-------------+------------------------------+_-------------+_------------------------
ISELECT HASH IDetermine in which hash table INone. I I
I I a given symbol may be found for I I !
I I deletion. I I I
~------------+-------------------------------+---------------+-------------------------~
I HASH SEARCH I Find a symbol in a hash chain. I None. I I
~-------------+-------------------------------+---------------+-------------------------~
IDROP PMD IRelease a PMD from a PMD group.IFREEMAIN* Icalled when PMD group I
I I I I collapses. I
t-------------~-------------------------------~--------------~------------------------~
,*Privileged system service routine external to the loader. l __ j

r---,
I Routine: LIB MAINT -- Level: 1 I
~------------T-------------------------------T---------------T-------------------------~
I Routine I Purpose ICalled Routines I Calling Conditions I
r-------------+-------------------------------+---------------+-------------------------~
ILIB MAINT IMaintain DCBs for the program IGET~AIN* ICalled when required to I
I Ilibraries accessible by the I lexpand number of avail- I
I I loader within a single task. I lable DCBs. I
I I r---------------+_------------------------~
I I IOPEN* I Called on the "add- I
I I I Ifunction. I
I I t--------------+-----------------------~
I I ICLOSE* ICalled on the "delete" I

I I I I function.
I I ~-----------.----+-------------------------_t
I I IGATWR* IDiagnostic on close when I
I I I I unable to match JFCB I
I I I I pOinters. I
I I ~---------------+-------------------------~
I I ISHARE* IMark USERLIB as shared I
I I I I in catalog. I
~-------------~------------------------------~--------------~-------------------------~
I*Privileged system service routine external to the loader. I l __ J

r---,
I Routine: LOADER LOGOFF -- Level: 1 I
~-------------T-------------------------------T---------------T------------------------~
1 Routine I Purpose ICalled Routines I calling Conditions I",

~-------------+-------------------------------+---------------+------------------------
ILOADER LOGOFFICalled at task end to clean ISRCHSDST ICalled for each CSD with I
I lup the SDST. I (CZCQE)* '''public name" bit on. I
I I ~---------------+_------------------------~
I I I DISCONNECT ICalled for each nonre- I
I I I <CZCGS)* Ijected public CSD group I
I I I I when SRCHSDST returns I
I I I Iwith user count nonzero. I
I I ~--------------·-·t-------------------------~
I I I FREEMAIN* I Called for each nonre- I
I I I I jected public CSD group
I I I I when SRCHSDST returns
I 1 I Iwith zero user count. I
I I ~---------------+------------------------~

•
I I IMAPSEARCH IAlways called. I
~------------J.-------------------------------J.----------_____ J. _________________________ }.
I *Privileged system service routine external to the loade:r. L-__ ~

Section 1: Introduction 27

r---,
I Routine: LOADER LOGOFF -- Level: 2 I
r-------------T-------------------------------T---------------T--------------------------~
I Routine I Purpose ICalled Routines' Calling Conditions I
r-------------+-------------------------------+---------------+-------------------------~
IMAPSEARCH ICalled to find virtual storage IBISEARCH IAlways called. I
I ,address for control section " I
I Iname. I I I ______________ J. _______________________________ J. _____ -__________ J. ________________________ J

r---,
, Routine: LOADER RELEASE -- Level: 1 I
t--------------T------------------------------T--------------T------------------------~
, Routine I Purpose ICalled Routines I calling Conditions I
r--------------t------------------------------+---------------+-------------------------~
I LOADER RELEASE I CALLED BY RELEASE to unload I EXPLICIT I Called if TDTBLR count I
I Imodules before releasing DDEF; IUNLINKAGE lis nonzero. I
I Iby LOADER CLEANUP to unload t---------------+-------------------------~
I !non-IVM modules. IHASH SEARCH ICalled to look up module I
I I I lin Hash Table. I
I I t---------------t------------------------i
I' \PRMPT* IDiagnostic for each mod- I
I iii ule not unloaded. I
r--------------J.------------------------------J.---------------J.-------------------------1
'*Privileged system service routine external to the loader. I L __ J

r--,
I Routine: LOADER RELEASE -- Level: 2 I
r--------------T------------------------------T---------------T---------------------------i
, Routine I Purpose ICalled Routines, Calling Conditions I
r--------------t------------------------------t---------------+-------------------------1
I EXPLICIT ,Called to unload non-IVM mod- IDescribed under I ,
I UNLINKAGE I ules. , EXPLICIT I !
I I I UNLINKAGE. I I L ______________ J. _____________________________ J. _____ -.: _________ J. _________________________ J

r---,
I Routine: LOADER CLEANUP -- Level: 1 I
r--------------T------------------------------T---------------T-------------------------1
I Routine I Purpose ICalled Routines I Calling Conditions I
r--------------+------------------------------+---------------+-------------------------~ I LOADER CLEANUP/Called by LOGOFF to unload ILOADER RELEASE Icalled to unload modules.,
I I all modules loaded during an " I
I I express batch subtask. " I l ______________ J. ______________________________ L-____ ~ _________ J. _________________________ J

r---,
I Routine: LOADER CLEANUP -- Level: 2 I
r--------------T------------------------------T---------------T-------------------------i
1 Routine I Purpose Icalled Routines I Calling Conditions I
r--------------t------------------------------+---------------+-------------------------~
ILOADER RELEASE I Called to unload modules. IDescribed under I !
I I I LOADER RELEASE. I I L ______________ J. ____________________________ J. ______________ J. ___________________________ J

28

EXPLICIT LINKING's fUnction is to
resolve an adcon group by filling in the
V-value and R-value of the symbol whose
alphameric name appears in the adcon group.
The routine RESOLVE SYMBOL is called by
EXPLICIT LINKING to define the named sym
bol. There are three possible outcomes to
RESOLVE SYMBOL's processing:

1. The symbol is already defined in the
TOY.

2. The symbol is located in an external
library.

3. The symbol is undefinable for this
task.

Case 1 entails no loading action, but
case 2 will cause the complete loading
mechanism to add the defining module to the
task. The following discussion outlines
the symbol resolution and module loading
process which is the very heart of EXPLICIT
LINKING (see Figure 7).

The first step in the symbol resolution
process within RESOLVE SYMBOL is the call
to SET SEARCH FLAGS. This routine sets the
hash table pointer for the later calIon
HASH SEARCH, and sets a library index (a
DeB pointer) for LIBE SEARCH in the event
that HASH SEARCH cannot find the symbol
defined in the TOY. Now HASH SEARCH is
called to attempt to locate the argument
symbol in the TDY hash table selected by
SET SEARCH FLAGS. If the symbol is found,
the resolution process is complete. If the
symbol is not found, then LIBE SEARCH is
called to locate the symbol by executing
successive FINDs on each of the DCBs in the
chain, beginning with the DeB selected by
SET SEARCH FLAGS, until the symbol is found
or the chain exhausted. If the chain is
exhausted, the argument symbol is undefin
able for the current task. If the symbol
is located, the module loading process is
put into motion.

The first step in loading is the trans
ferring of the found module'S PMD from the
partitioned data set into the task dic
tionary (TDY). This function is performed
by LOAD PMD. which further calls on ADD PMD
to allocate space in the TDY.

At this point RESOLVE SYMBOL calls on
ALLOCATE MODULE, which examines each con
trol section dictionary (CSD) in the PMD.
ALLOCATE MODULE collects fixed-length CSDs
with the same attributes into single

SEC'nON 2: EXPLICIT LINKING

groups. PCSA is called to adjust the
attributes in each CSD, in accordance with
the rules summarized in Appendix A. Con
trol sections not named uniquely within the
selected hash chain are rejected. and
REJECT DIAG is called to diagnose the con
ditions causing the rejection for pOSsible
anomalies warranting messages to the user.

SRCHPACK is called if private fixed
length control section packing is requested
and the amount of storage required is less
than a page. Otherwise GET STORAGE is
called to request virtual pages to satisfy
the storage requirements for either (a)
groups of fixed-length control sections of
like attributes, or (b) individual
variable-length control sections. The
legal DEFs in each nonrejected CSD are
linked into the appropriate hash chains by
LINK DEFs, and the page table entries for
each nonrejected private control section
are set up a text page at a time by calls
on ATTACH TEXT. Pages from a public con
trol section processed in the current task,
but allocated to a public segment in anoth
er task, are not Wattached. R However, if
the current task is the first to process a
public control section, ALLOCATE MODULE
will call ATTACH TEXT to set up the shared
page table entries for the public pages
that have been assigned to a public
segment.

During the loading activity, RESOLVE
SYMBOL will calIon FIX PMD to process the
complex DEFs in the new module. FIX PMD in
turn will call upon FIX to execute the com
plex DEF RLD modifiers. FIX will process
the modifiers by applying REF values to the
complex DEF value words. FIX in turn will
calIon DEFINE REF to produce the value of
any undefined REF. and DEFINE REF in its
turn will call upon RESOLVE SYMBOL to
obtain that definition. This defines a
recursive entrance to RESOLVE SYMBOL, since
it is called from within the nest of rou
tines called Qy RESOLVE SYMBOL prior to the
point of standard exit from the nest back
to RESOLVE SYMBOL.

If the symbol to be defined on this
recursive entrance is found in an external
library, the loading process is begun
again. This recursive process will be
repeated as long as any loaded module con
tains a REF that is satisfied by a DEF in a
module that requires loading. Only four
routines are contained in the recursive
chain: RESOLVE SYMBOL, FIX PMD, FIX, and
DEFINE REF. Since each of these routines

Section 2: Explicit Linking 29

w "l
0 1-"

<.Q
C
~
<D

-.J

trJ
X
'0
t-'
f-"
("J
f-"
(i"

t-<
fJ·
:;:l
;:.;-
f-'.
:;:l

t.O

library
Maintenance

,
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'-----

I '
I !

LJlJ

L-_

Define
Ref

'"---r--

Peg<>
Relocation

J
6
L:J

Explicit
Linking

Loader
logoff

Test
Use,
COU'1ts

Modify
MUT
Counts

Explicit
Unlinking

! I I

f..------------

Delete
Selected
Mutes

L....- 1_ .-+-++---

---t--- ... '-'--~-- ---ll
: I - i I 1 --- 'I' Set Se,,,rl !

i I t ;" •• O'::~ I G J i +1-- =--~--~ ill 1

~~~ lli··· ~.;, I I lUll ·m ~~' -~::= I' i II 

I ! I I ! 
I I " I ' r---- 1'--1 I I 1 ,ii --- -+=-- , -=- ---1." --t-r+++++-

, III r= i r--' -+- ===+--~ '_I 

Mf Ii -=r=+F 
Set
poge 

Check 
Def 

Legel 
'---Q·'~;"~n"':·1 -I r '~: "I 

Loader 
Release 

L_ 

i i 

I 

_J 

,--~- j I 

----... j I 
-I ~ I [¥j:====--El ~"nlve,~ -- "'\FAReH:0 
-->j L,·d", '. _J :~c',,," ::'-Re LJ ----L '.V.I' _ 

loader 
Cleonllp 

legend : 

D 
Callable 

from 
outside 

the loader 
ll10duie 

D 
Callable 
only from 
inside 
the loodtor 
module 



, 

may be reentered to process a new module 
prior to completion of its processing of 
the ·current- module, variable storage 
describing the processing of the current 
module must be maintained uniquely at each 
recursive level. The contents of this 
recursive storage and the mechanism for its 
allocation are described under -Resolve 
Symbol. • 

When RESOLVE SYMBOL returns to EXPLICIT 
LINKING via the not found exit, it has been 
determined that the symbol is undefinable 
for the task. There are three possible 
causes for this inability of the loader to 
resolve the V- and R-values of the name 
symbol: 

1. The symbol is not defined in the TDY 
or in any partitioned data set that is 
part of the program library hierarchy 
available to the task at the time 
EXPLICIT LINKING was entered. 

2. The symbol is defined in the TDY, but 
in one of the opposite hash tables -
a condition tantamount to the symbol's 
not being available at all. For 
example, the user attempts to make 
explicit linkage to some symbol, say 
CEZYK, whose module is loaded form 
SYSLIB, and whose defining control 
section is marked with the system 
attribute. In this case, the module 
will be loaded, and all the module's 
symbols will be posted in the appro
priate system hash table according to 
the rules summarized in Appendix A. 
Symbols in the system hash tables, 
excepting those beginning with SYS, 
are not available for linkage by the 
user, so the explicitly names symbol 
is undefinable for this task. 

3. The symbol is located in one of the 
partitioned data sets other than SYS
LIB, and the defining module loaded. 
In the process, the control section 
containing the adcon argument symbol 
is rejected. In this case, the module 
loading will be completed after which 
RESOLVE SYMBOL will discover that the 

symbol is not to be found in the TDY 
and the not-found exit to EXPLICIT 
LINKING is made. 

In the event of a found return from 
RESOLVE SYMBOL to EXPLICIT LINKING, the 
adcon v-value and R-value are correctly 
filled in, and the adcon group is availabl, 
for linkage. 

A general flow of explicit linkage is 
presented in Figure 8. It is divided into 
functional segments, rather than specific 
routines, to aid the reader in following 
the explicit linking process. 

~ 

ENTER 

-. 
Look up 

Fou 
Symbol in -

Set Up V - con 
d and R - con in n _____ CALl/LOAD 

TDY 

1 Not Found 

Colling 
Sequence 

Look up 
Symbol in 
External 
Libraries 

! Found 

Load Defining 
Module's PMD 
Into TDY 

~ 
Allocate 
Storage fOT 

Module 

l 
Compute Value 
of and Link 
All DEFS in 
PMD 

~ 
Define All 
REFs in 
PMD 

Not 
- Found Set Error 

Mode 

EXIT 
,'-------" 

( 
EXIT 

Figure 8. Functional Diagram of Explicit 
Linking 

Section 2: Explicit Linking 31 



EXPLICIT LINK (CZCDL1) 

r----------T------------------------------r----------------------------------------------, 
I I I Parameters I 
'ROUTINES I ~-----------------------_r--------------------~ 
I CALLED I Purpose of call I In I Out I 
~----------+-----------------------------+------------------------+--------------------~ 
IMAP SEARCH ILocate calling CSD. IAddress of adcon group. IPointer to CSD of I 
I I I I control section con-I 
I I I I taining adcon group. I 
r-----------t-----------------------------t------------------------t---------------------~ 
,RESOLVE IProvide value of symbol namedlName of symbol. I Pointer to defining I 
I SYMBOL I in adcon group., I DEF entry in TDY. I 
r-----------t-----------------------------+------------------------+--------------------i 
,ADD MUTE IExtend BABY chain for called Icalling PMD address, I None. ! 
I I module; extend PAPA chain of ICalled PMD address, I 
I I calling module. I Adcon group address. I I 
t-----------+-----------------------------+--------·~---------------+--------------------~ 
,LOADER IDiagnostic on undefined IPointer to parameter I 
t largument symbol. Istring. I l 

r-----------t-----------------------------+------------------------+--------------,---------\ 
ISETPAGE tIssue a pending SETXP I Pointer to parameter INone. I 
I t request. ,string; function code I I 
I I I is a parameter. I \ L-__________ ~ _____________________________ L_ _______________________ ~ ____________________ j 

EXPLICIT LINK is called by the task mon
itor in response to an SVC executed as part 
of an explicit LOAD or CALL macro instruc
tion. Its function is to provide the value 
of some symbol and, in the process, alloc
ate storage for the containing module if 
the module is not already a part of the 
current task (see Chart AL). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Entrance to this routine by 
a type-I linkage is restricted to the task 
monitor. 

Entries: The task monitor calls EXPLICIT 
LINK with GRl pointing to a single parame
ter that is the virtual storage address of 
the explicit LOAD or CALL adcon group that 
caused task monitor to be entered. The 
form of the adcon group is: 

CNOP 0,4 
CHD&SYSNDX SVC 127 

32 

DC H' C1C2' 
DC CLS'name' 

DC 

DS F 

SVC for explicit 
loading 

Option codes 
Module name (or 

alias) of 
module to be 
loaded 

V-value of name 
filled in here 
by loader 

R-value of name 
filled in here 
by loader 

Exits: 
GR15 0, normal LOAD; 8, abnormal LOAL 

4, norma 1 CALL; 12, abnorma 1 CAL L 

Operation: EXPLICIT LINK first disables 
Load Error Switch. This switch may be 
enabled by a variety of routines called hy 
EXPLICIT LINK in the loading process, suet! 
enabling being in response to some detected 
anomaly which is always accompanied by a 
diagnostic to the user. EXPLICIT LINK nfc'xt 
disables all flags used by SETPAGE and its 
other ,callers. 

EXPLICIT LINK now examines the Cl option 
byte, checking for the setting of the high
order bit, the wxpOS w bit, and sets the 
transpose flag for RESOLVE SYMBOL accor
dingly. This flag will be used ultimatei} 
by SET SEARCH FLAGS. If the flag is ',oct, 
the loader will reverse the normal seare:j. 
algorithm. The normal search algorithm 
requires that (1) adcon qroups appearing In 
SYSTEM control sections will be resolved 
from the system hash table, or that searetl 
failing, from SYSLIB, and (2) adcon groups 
appearing in nonsystem control sections 
will be resolved from the user hash tablE:: , 
or that search failing, from any library .in 
the program libr~ry hierarchy beginning 
with the last defined JOBLIB. The presence 
of a transpose bit effectively complements 
the system attribute bit of the control 
section containing the adcon group to be 
resolved. In the transpose case (1) adcon 
groups appearing in nonsystem control :3ec-
tions will be resolved from the appru~ridte 
system hash table, or that search failing, 
from SYSLIB, and (2) adcon groups appearing 
in system control sections will be resolved 
from the user hash table, or that search 



failing, from any library in the program 
library hierarchy beginning with the last
defined JOBLIB. 

MAP SEARCH is called with the SVC 
address as an argument to locate the CSO, 
within the TOY, of the control section in 
which the adcon group appeared. This 
information is obtained to create the prop
er MUT linkage from calling to called PMD 
and back. 

Next, an attempt is made to find the 
value of the symbol contained in the cal
ling sequence. This is effected by enter
ing RESOLVE SYMBOL with the name to be 
found. If the symbol is, in fact, resolv
able, the found exit is taken back to 
EXPLICIT LINK. At this pOint, the module 
containing the symbol (the symbol could be 
a module name) will have been allocated 
virtual storage, and its PMD will have been 
completely processed and entered into the 
TOY. If RESOLVE SYMBOL must load a new 
module from an external library into the 
TOY to match the symbol, the following cas
cading could occur: the processing of the 
new PMD consists of computing the value of 
its external REFs, if any. Should there 
exist a REF whose symbol name cannot be 
found in the TOY, an attempt is made to 
locate that symbol in an external library. 
If such a symbol is resolved in this way, 
the module satisfying the REF is also 
loaded. 

EXPLICIT LINK constructs a MUT entry 
(MUTE) for this linkage. (The MDT table is 
discussed in Appendix B.) The calling 
module's PAPA chain is extended to include 
the new MUTE while the called module's BABY 
chain is extended to point to this same 
MUTE. This MUTE linkage is accomplished 
within the subroutine, AOO MUTE, whose last 
task it is to disarm the calling SVC. This 
disarming consists in replacing a LOAD SVC 
with a NOP. This is done so as to prevent 
redundant entrance to the dynamic loader in 
order to load an already loaded module, 
thus reducing system overhead on such 
repeatedly executed code. 

Having resolved the symbol, EXPLICIT 
LINK fills in the V-con portion of the cal
ling sequence with the V-value of the sati
sfying OEF and fills in the R-con portion 
of the calling sequence with the R-value of 
that same DEF. 

Should RESOLVE SYMBOL be unable to 
resolve the adcon group, it will return not 
found to EXPLICIT LINK. In this event, 
EXPLICIT LINK will insert an illegal 
address in both the V-value and R-value 
slots in the adcon group so that dynamic 
reference to such an address will cause an 

addressing error interrupt in the task. 
EXPLICIT LINK will issue a diagnostic in 
the event of an unresolved adcon group. 

EXPLICIT LINK's final actions are to set 
the return code in GR15, and to determine 
if there is a SETPAGE request still pend
ing. This return code serves to inform the 
task monitor as to type of adcon group as 
well as to error condition. A normal 
return code is set, if the load error 
switch is zero, as follows: 

o Explicit LOAD adcon group pro
cessed properly. 

4 = Explicit CALL adcon group pro
cessed properly. 

If the load error switch is nonzero, the 
C2 option byte in the adcon group is 
examined. If the C2 option byte value is 
1, its value is set to 7 and a normal 
return code is set as above. 

If the C2 option byte value is zero, an 
abnormal return code is set as follows: 

8 = Explicit LOAD adcon group pro
cessed with major error. 

12 = Explicit CALL adcon group pro
cessed with major error. 

An abnormal return code enables the task 
monitor, if in conversational mode, to 
cause the user to be prompted for possible 
corrective action. A normal return code 
simply causes resumption of the calling 
program execution. If the C2 option byte 
value is 1 and a load error occurs, the 
task monitor is not made aware of it but 
the calling program is (C2 option byte 
value set to 7) and it then has the option 
of initiating corrective measures. 

Had there been a SETPAGE request pend
ing, EXPLICIT LINK would call SETPAGE with 
a function code which tells SETPAGE to 
issue a SETXP for pages still in the SETXP 
parameter stack. Following this, EXPLICIT 
LINK will return to the task monitor. 

Table 1 summarizes all conditions that 
result in load error switch setting and by 
what loader routine the switch is set. 

EXPLICIT LINK's final action is to 
determine if ALLOCATE MODULE posted any 
CXD-REFs, that is, if any of the modules 
loaded as a result of the explicit load 
contains a CXD instruction. If a CXO-REF 
has been found, EXPLICIT LINK places the 
CXD value (the largest current offset plus 
the length of that offset's OXO> in all 
CXO-REFs. 

Section 2: Explicit Linking 33 



Table 1. Load Error Sununary 
r---------------------.--------------------T----------------T-----,-------------------, 
I I Load Error I I 
I Error Condition I Switch Setting I Routine Detecting Error ! 
t------------------------------------------ -+ ----------------+------------------------'-i 
IAdcon group symbol unresolvable. I 1 I EXPLICIT LINK (CZCDL1) I 
t--------------------------------------------+----------------+-------------------------~ 
IEntry pOint rejected because it duplicates I 5 I LINK DEFS <CGCCV) I 
la previously loaded control section name. I I I 
t------------------------------------------+----------------+------------------------~ 
Ipublic control section loaded with a text I 7 I ATTACH TEXT (CGCCK) I 
I page that contains adcons. I I I 
l---------------------------------------------+---------------+-------------------------\ 
IControl section rejected by previously I 8 I REJECT DIAG (CGCCP) I 
Iloaded entry point not a control section I I I 
Iname. I I I 
t--------------------------------------------+----------------+-------------------------~ 
IControl section rejected whose text length I 12 I REJECT DIAG (CGCCP) I 
I exceeds that of previously loaded control I I I 
I section of same name. I I I 
t-------------------------------------------+---------------+-------------------------\ 
I Undefined REF. I 13 I DEFINE REF (CGCCY) I 
r--------------------------------------------t----------------+------------------------.-.j 
IREF found to be defined by a yet undefined I 14 I DEFINE REF (CGCCY) I 
I complex DEF. I I I 
t------------------------------------------t----------------+--------------------------1 
IA module is loaded during the EXPLICIT I 19 I ALLOCATE MODULE <CGCCA) I 
I LINKING process that was noted to have been I I I 
I created with level 2 errors or greater. I I I 
L ______ ~-------------------------------------~--------_______ ~ ________________________ j 

MAP SEARCH (CZCDLS) 

r----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I r----------------------r-------------------; 
I CALLED I Purpose of Call I In I Out I 
r-----------t-----------------------------t------------------------+--------------------~ 
IBISEARCH ISearch MAP table and locate IArgument VMA. IRelative index into I 
I I MAP entry whose VMA is the I I MAP of found E!nt.ry. I 
I I highest :S argument VMA. I I I 
1-----------+-----------------------------+------------------------+---------------------.--\ 
I ABEND I Terminate task if MAP is full 1 Address of error 1 I 
I I and insert requested. Imessage. I I L ___________ .J. ____________________________ ~ ________________________ ~ __________________ .. _J 

MAP SEARCH is called with a virtual 
storage address either to find, insert, or 
delete an entry in the memory MAP table 
that relates to the argument address (See 
Chart AZ). 

Attributes: Privileged, public, system, 
reenterable, recursive. 

Restrictions: MAP SEARCH will accept type
I linkage only from other privileged system 
components. 

Entries: Type-I linkage to MAP SEARCH is 
made with GRI pointing to a parameter which 
is the address of the following list: 

1. A virtual storage address. 

34 

2. A function code: 0 indicating lookup, 
1 indicating insert, and 2 indicat:inq 
delete. 

3.A pOinter to a CSD to be inserted in 
the event of the insert function; or 
pointer to the found CSD in the event 
of a lookup function. 

Exits: Normal only, no return code. 

Operation: A memory MAP entry consists of 
two words. The first word contains the 
virtual storage address of the base of a 
control section. The second word contain!'; 
a pointer to the CSD of this same control 
section. The MAP table is maintained i.n 
ascending order of virtual storage 
addresses thus facilitating a binary Fea! eh 
for lookup purposes. A MAP entry ex isu; ill 



the MAP table for each nonrejected control 
section in the user's task whose t.ext 
length is nonzero. 

MAP SEARCH calls BISEARCH with the input 
address. BISEARCH will return with a 
pointer to the MAP entry whose virtual 
storage address is the highest one in the 
table that is less than or equal to the 
argument address. 

The MAP SEARCH find (lookup) function is 
complete at this point. The MAP entry 
found will point to the CSD of the control 
section containing the argument address. 

For the add (insert) function, MAP 
SEARCH moves all the MAP entries past the 
one returned by BISEARCH down one entry 
position and physically inserts the argu
ment address and the CSD pointer supplies. 

For the delete function, MAP SEARCH 
erases the argument MAP entry by moving all 
following MAP entries one entry position ~ 
to (and including) the one to be deleted. 

Both the add and delete functions adjust 
the current MAP entry count word in the TDY 
heading and set the MAP-changed-flag for 
BISEARCH. 

On the add function, MAP SEARCH checks 
for a full MAP (current count equal to 
maximum ~~) and if full calls ABEND. 

Error Checks: On lookup, MAP SEARCH does 
not perform validity checks to see that the 
found control section's text bounds can 
contain the argument address. 

BISEARCH (CGCCR) 

BISEARCH is called by MAP SEARCH to find 
the largest virtual storage address in the 
MAP table that is less than or equal to the 
input argument address (see Chart AE). 

Attributes: Privileged, public, system, 
reeenterable. 

Restrictions: Internal to the loader mod
ule, not available to other system 
components. 

Entries: BISEARCH is executed in-line by 
MAP SEARCH. GRl contains the argument VMA. 

Routines Called: None. 

Exits: In-line, no return code. 

Operation: BISEARCH is designed to make a 
minimum of K+1. lookups on the MAP table 
where 2**K is less than N, the current 

number of MAP entries, and 2**(K-1.) is 
greater than or equal to N. BISEARCH first 
checks the MAP-changed-flag set by MAP 
SEARCH on any Frevious add or delete func
tion. When the MAP has been changed, 
BISEARCH recomputes K in an iterative 
fashion. 

Initial values are set: 

1. j is set to K+1. j will count the 
number of looks. 

2. i is set to 2K*S. i is the index into 
the MAP table; the multiplier 8 is 
applied because each MAP entry is 
eight bytes in length. 

3. d is set equal to i. d is always 
maintained in the main loop equal to 
i/2 and is the increment or decrement 
applied to i (hence the binary nature 
of the search). 

The main loop is begun with d divided by 
2. d is not allowed to be reduced past 8 
since i must be maintained in multiples of 
8 in order to index the MAP table correct
ly. Next, the argument address is compared 
against the i MAP entry. 

If the argument address is less than the 
ith MAP entry, i is reduced by d, j is 
reduced by 1, and the loop reentered, which 
will cause an -earlier R MAP entry to be 
examined on the next pass. 

If the argument address is greater than 
or equal to the ith MAP entry, j is checked 
for terminal value (zero or less), in which 
case the ith MAP entry is that MAP entry 
whose related control section base address 
is the highest VMA less than or equal to 
the argument VMA. If j does not test for 
zero or less, the search is continued. i 
is incremented by d and checked to ensure 
that it has not exceeded the maximum bounds 
of the MAP table. If the bounds are 
exceeded, i is decremented by d to bring i 
back within the limits of the MAP table. 
Note that in this latter case, the next 
pass will examine the same MAP entry as the 
previous pass, but other variables will 
have been altered, namely, j and d, so that 
future passes may examine new entries, or 
the search will be terminated. 

A minimum of K+l passes guarantees that 
the correct MAP entry is found. 

On exit, GRq will contain the address of 
the found MAP entry, which address is rela
tive to the origin of the MAP table. 

Section 2: Explicit Linking 35 



RESOLVE SYMBOL (CGCCE) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I t-----------------------~--------------------~ 
I CALLED I Purpose of Call I In I Out I 
t-----------+-----------------------------+-----------------------+----------------------~ 
ISET SEARCH ISelect hash table pointer andlsymbol name, referencinglHash table pointer, I 
I FLAGS Ilibrary index I CSD llibrary index I 
t-----------+-----------------------------+------------------------+------------------.-~ 
I HASH ILook up argument symbol in ISymbol name, hash table ,Pointer to matching I 
I SEARCH Iselected hash table I pOinter IDEF entry I 
r-----------+-----------------------------+------------------------+--------------------1 
ILIBE IFIND symbol in external ISymbol name, library IUser information I 
I SEARCH ,library when HASH SEARCH lindex I describing library I 
I I unable to locate in TOY I I if found , 
r-----------+-----------------------------+------------------------+--------------------~ 
I LOAD Pl-'lD I Transfer found PMD into TOY I User information ,Pointer to PMIJ I 
I I I I preface in TOY I 
r-----------+-----------------------------+------------------------+--------------------1 
,ALLOCATE 'Allocate virtual storage for IPMD address I None I 
I MODULE I the loaded module's control I I I 
I I sections I I ! 
r-----------+-----------------------------+------------------------+---------------------1 
IFIX PMD IProcess complex DEFs in IPMD address INone I 
I Iloaded module I I I 
r-----------+----------------------------+-----------------------+------------.------- -1 
IDEFINE REF IDefine each REF in module notlREF pointer, CSD pointerlNone I 
I I defined by FIX PMD. I I I 
t-----------+-----------------------------+------------------------+--------------------1 
I GET MAIN IObtain storage for recursive INumber of Protection ILocation of assigned I 
I I levels I class (2) I page I 
r-----------+-----------------------------+------------------------+--------------------~ 
I STOW IRelease member interlock set IDCB address INone , 
I I by FIND I' I I L ___________ J. _____________________________ ...l-______________________ -.l. ____________________ ._J 

RESOLVE SYMBOL is called to find a DEF 
entry in the TDY or external library whose 
name matches the input argument name (see 
Chart BH). 

Attributes: Privileged, public, system, 
reenterable, recursive. 

Restrictions: Internal to loader assembly 
module, not available to other system 
components. 

Entries: GR1 points to a list of five 
parameters; 

1. The address of the alphameric name of 
the symbol to be resolved. 

2. A pOinter to the CSD of the control 
section that contains the reference 
(either explicit LOAD/CALL adcon group 
or REF entry). 

3. A transpose flag, which is merely 
passed on to SET SEARCH FLAGS. 

4. The not found exit address. 

5. Exit parameter: pointer to resolving 
DEF entry on found exit. 

36 

Exits: Normal, or to not found exit pro
vided as input parameters. 

Operation: RESOLVE SYMBOL is called by 
only two routines, EXPLICIT LINK and DEFINE 
REF. RESOLVE SYMBOL may itself call the 
routines DEFINE REF, HASH SEARCH, LIBE 
SEARCH LOAD PMD, ALLOCATE MODULE, FIX PMD, 
and SET SEARCH FLAGS. RESOLVE SYMBOL 
begins a circular chain of routines: 
RESOLVE SYMBOL could call FIX PMD, which 
will .call FIX which could call DEFINE REF 
to compute a REF value. 

DEFINE REF will in turn call RESOLVE 
SYMBOL to obtain the REF value. This 
entrance to RESOLVE SYMBOL constitutes the 
recursive call described earlier. Since at 
the time of recursive entrance each of the 
routines RESOLVE SYMBOL, FIX PMD, FIX, and 
DEFINE REF will not have completed proces
sing of the current module, a mechanism is 
provided to preserve the variable data 
describing the current conditions at eaclJ 
recursive level. 

A DSECT, CHARCS, is defined in the load
er module which describes all of the vari
able data used by the four routines requir
ing recursive preservation. A block of 



storage which will accommodate a large 
number of recursive levels, is set aside in 
the loader module PSECT. Each time RESOLVE 
SYMBOL is entered, it assumes that symbolic 
general register RC is pOinting to the 
beginning of the recursive storage block 
currently in use. When EXPLICJT I.INK makes 
its call on RESOLVE SYMBOL, RC is set to 
pOint to the first recursive storage block. 
At entrance, RESOLVE SYMBOL saves general 
registers 11-1 in the locations defined for 
the purpose in CHARCS, which is covered by 
RC. RESOLVE SYMBOL pushes down to the next 
level by adding to RC the size of the 
recursive storage block CHARCS. By this 
method, new variable data generated at the 
new level will be saved by the four rou-

tines in the current recursive storage 
block, leaving intact data stored in the 
previous block. 

When RESOLVE SYMBOL exits, it reverses 
the above procedure by subtracting from RC 
the size of the recursive storage block 
thus ·popping-up· to the previous level. 

If the amount of space needed for the 
current level exceeds the space available, 
a GETMAIN is issued to add another page to 
the recursive storage block. 

The following DSECT describes the con
tents of the recursive storage block 
CHARCS. 

CHARCS 

* • 
• • • • 
RCSFWD 
RCSBAK 
• 
• * ••••• 
RCSESV 
RCSESA 
RCSESC 

• ••••• 
RCSJSV 
RCSJSA 

• •••••• 
RCSLSV 
RCSLSA 

• •• * ••• 
RCSYSV 
RCSYSA 

• •••••• 
RCSFCE 
RCSNAM 
RCSCSE 
RCSLOF 
• 
RCSNFE 
RCSSYE 

· .* .... 
RCSFCL 
RCSPAG 
RCSMCT 
RCSPFM 
RCSRFT 
RCSLCS 

· .... *. 
RCSFCY 
RCSSYM 
RCSCDS 

* 

DSECT RECURSIVE STORAGE FOR RESOLVE 
SYMBOL-FIX PMD-FIX-DEFINE REF 
CHAIN RC USED TO COVER, 
MAI~rAINED IN RESOLVE SYMBOL 

FORWARD & BACK RECURSIVE STORAGE CHAINS 

OS 
DS 

SAVE 
DS 
OS 
EQU 

F 
F 

AREA FOR RESOLVE SYMBOL 
7F 
1F 
RCSESV+4 

FORWARD CHAIN POINTER 
BACK CHAIN POINTER 

(CGCCE) 
SAVE RB/RA 
SAVE FOR RA 
SAVE FOR RC 

SAVE AREA FOR FIX PMD (CGCCJ) 
OS 6F SAVE RB THRU RZ 
OS 1F SAVE FOR RA 

SAVE AREA FOR FIX (CGCCL) 
DS 6F SAVE RB THRU RZ 
DS iF SAVE FOR RA 

SAVE AREA FOR DEFINE REFS (CGCCY) 
OS 6F SAVE RB THRU RZ 
OS iF SAVE FOR RA 

PARAMETER LIST FOR CALLS ON RESOLVE SYMBOL 
NAME LIST OS OF 

DS 1F 
OS 1F 
OS 1F 

DS 1F 
DS iF 

LOC (INPUT SYMBOL NAME) 
CSO POINTER OF REFERENCING CSECT 
LOAD FLAG - 0 = NOT EXPLICIT LOAD 
1 = EXPLICIT LOAD, C1(O) = 0 
NOT-FOUND EXIT ADDRESS 
POINTER TO OEF ENTRY ON • 'FOUND" 

PARAMETER LIST FOR CALLS ON FIX 
DS OF 
OS iF 
OS 1F 
DS 1F 
OS iF 
OS 1F 

PARAMETER LIST FOR CALLS ON 
DS OF 
OS 1F 
DS 1F 

NAME LIST 
POINTER TO PAGE TO BE FIXED 
MODIFIER COUNT FOR PAGE 
POINTER TO FIRST MODIFIER 
POINTER TO REF TABLE 
POINTER TO CSD OF REF TABLE 

DEFINE REFS 
NAME LIST 
POINTER TO SYMBOL TO DEFINE 
COMPLEX DEF SWITCH - NON-ZERO 
INDICATES REF IS PART OF COMPLEX 

Section 2: Explicit Linking 37 



DEF * 
RCSCSD DS iF POINTER TO CSD CONTAINING REF 

* ****** 
RCSLBX DS 

MISCELLANEOUS RECURSIVE STORAGE 

* 
* 

iF LIBRARY INDEX - 0 = LAST OPEN 
JOBLIB; N+l = SYSLIB FOR N OPEN 
JOBLIBS; N = SYSULIB. 

* A NEGATIVE VALUE ALSO REFERS TO 
* SYSLIB 
RCSPMD 
RCSCRF 
RCSPCM 

DS 
DS 
DS 

iF 
iF 
iF 

POINTER TO PMD PREFACE (R/S) 
REF COUNT (R/S) 

* RCSRFP 

POINTER TO CURRENT MODIFIER 
(FIX) 

DS 
DS 
DS 
DS 
DS 
DS 
DS 
DS 

iF 
iF 
iF 
iF 
iF 
iF 
iF 
iF 

REF ENTRY POINTER (R/S) 
RCSPME 
RCSMNL 
RCSPMJ 
RCSFCP 
RCSHTP 
RCSPMP 
RCSMPE 

POINTER TO 1ST BYTE PAST PMD END 
MODULE NAME CSD LINK (FIX PMD) 
POINTER TO 1ST BYTE PAST PMD END 
POINTER TO 1ST CSD (FIX PMD) 
HASH TABLE POINTER 

* 

POINTER TO MOF'R PRT (FIX PMO) 
POINTER TO END OF MODIFIER 
POINTERS 

RCSREF 
RCSFMC 
RCSSNM 
RCSBKL 
RCSMAX 

DS 
DS 
DS 
EQU 
EQU 

iF REF POINTER FOR FIX 
iF 
CL8 
*-CHARCS 
30 

MODIFIER COUNT STORAGE (FIX) 
CURRENT MODULE NAME (DEFINE REF) 

RESOLVE SYMBOL calls SET SEARCH FLAGS 
which: 

1. Sets up the hash table pointer for 
HASH SEARCH. 

2. Sets the library index for LIBE 
SEARCH, which determines the starting 
paint in the chain of libraries to be 
searched in the event HASH SEARCH 
fails to find the symbol in the 
selected hash chain. 

At this point HASH SEARCH is called to 
look up the symbol to be resolved. If the 
symbol already exists in the hash chain, 
the found return is made, and RESOLVE SYM
BOL's job is done. 

In the event that the symbol is not 
found in the hash chain, then RESOLVE SYl'l
BOL must proceed to look for the symbol in 
the libraries according to the index set 
earlier. LIBE SEARCH is called, and if it 
returns not found, RESOLVE SYMBOL takes its 
not found exit: that is, the symbol is --
undefined. 

If LIBE SEARCH is able to locate the 
symbol in one of the libraries, there pro
ceeds the chain of events that effects the 
loading and processing of the module that 
defines the symbol. This takes place in 
four steps: 

1. LOAD PMD is called to transfer the PMD 
of the defining module into the TDY. 
When LOAD PMD returns, RESOLVE SYMBOL 
sets the "loaded by Dynamic Loader" 
flag in the PMD. 

38 

2. The ALLOCATE MODULE routine is called, 
which effects the following: 

a. All the control sections are allo
cated storage (except those that 
are rejected for duplicate or 
illegal control section name). 

b. The absolute and relocatable DEFs 
are linked into the hash chain, and 
the relocatable DEFs are relocaLed. 

c. Page table entries are made for 
nonrejected control sections. 

3. An R-type STOW macro instruction 
closes the member and releases the 
interlock set by FIND. 

4. Following this action, RESOLVE SYMBOL 
enters the routine FIX PMD which: 

a. Links all complex DEFs into the 
hash chain and computes their value. 

b. Computes the complex DEF for the 
standard entry point (module name). 

5. Each REF that was not defined during 
execut_ion of the campI ex DEF modi f ien; 
in FIX PMD is computed by DEFINE REF; 
tbat is, its V-value, R-value and CSD 
link are filled in. This routine 
calls RESOLVE SYMBOL for each unde
fined REF (thus the need for the pre
viously described recursive design). 

If, in its processing, FIX PMD discovers 
that all the module's control sections were 
rejected, it sets a return code that force~; 
RESOLVE SYMBOL to loop back to the calIon 



• 

LIBE SEARCH to continue searching in the 
program library hierarchy. 

Following a normal return from FIX PMD, 
RESOLVE SYMBOL proceeds to make a linear 
pass on the REF table in each CSD of the 
module to define those REFs not defined 
during FIX PMD's processing. DEFINE REF is 
called during this sequence, which will 
again recursively call RESOLVE SYMBOL. 

It is possible during this module load
ing sequence that although the original 
argument symbol to RESOLVE SYMBOL was con
tained in the loaded module, the symbol's 
containing control section could have been 
rejected, thus rejecting the symbol defini
tion as well. It could also be the case 
that the defining module was loaded but in 
the opposite hash table to that originally 
selected by SET SEARCH FLAGS. In either of 
these cases, the symbol is, in effect, 
undefined. To accommodate this phenomenon, 
when RESOLVE SYMBOL completes the REF pro
ceSSing, it executes the HASH SEARCH call 
once again to verify that the defining sym
bol was not lost in the PMD loading 
sequence. 

In the event that the symbol is so lost, 
LIBE SEARCH will be called again to search 
the next library to attempt to find the 
symbol. The library index is undisturbed 
on exit from LIBE SEARCH to allow this 
sequential library search, beginning with 
the library following the last searched. 

On its found exit, RESOLVE SYMBOL places 
a pointer to the first word of the defining 
DEF entry in the exit parameter cell. 

On both the found and not found exits, 
RESOLVE SYMBOL pops-up its storage to main
tain recursive integrity. 

SET SEARCH FLAGS (CZCDL6) 

SET SEARCH FLAGS is called to determine 
in which hash table to search for a given 
symbol and in which libraries to search in 
the event of HASH SEARCH failure (see Chart 
BJ)' 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Will accept type-I linkage 
only from other privileged system 
components. 

Entries: On entrance to SET SEARCH FLAGS, 
GRl contains the address of a parameter 
that pOints to the following list: 

Inputs 

1. 

2. 

A pointer to the argument symbol. 

A pointer to the CSD of the control 
section that contains the reference 

symbol, which is contained in either 
(a) an explicit CALL/LOAD adcon group, 
or (b) a REF entry arising from some 
adcon. 

3. The transpose flag, which when nonzero 
indicates that transposed search flags 
are to be set. 

Outputs 

1. A pointer to the hash table to be 
searched. Thi.s parameter will ultim
ately be used by HASH SEARCH. 

2. A pointer to a DCB header that defines 
the first library in the program 
library hierarchy to be searched by 
LIBE SEARCH in the event of HASH 
SEARCH failure. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: The searching algorithm deve
loped by SET SEARCH FLAGS is based on a set 
of variables. The first variable is the 
task authority code. If the authority code 
is either P or 0, the algorithm is simple: 
search only the appropriate system hash 
table, and in the event libraries must be 
searched, search all, beqinning with the 
last-opened job library. 

If the authority code is U, the rules 
are more complex. The second variable is 
the name of the symbol to be resolved. If 
the symbol begins with SYS, it will appear 
only in the nonprivileged system hash 
table, and failing the system hash table 
search, only SYSLIB will be searched by 
LIBE SEARCH. 

The third variable is the SYSTEM attri
bute bit of the calling control section; 
that is, the control section containing 
either the explicit LOAD/CALL adcon group 
or the REF. If the control section is a 
SYSTEM control section, the normal case is 
to search only the appropriate system hash 
table, or, that search failing, LIBE SEARCH 
will search only SYSLIB. If the calling 
control section does not have the SYSTEM 
attribute set, then HASH SEARCH will search 
only the ~ hash table, or, that search 
failing, LIBE SEARCH will search the entire 
hierarchy of open libraries beginning with 
the last-opened job library. 

If the transpose flag is set, the effect 
of the SYSTEM attribute as described above 
is reversed. 

HASH SEARCH (CZCDL2) 

HASH SEARCH is called to look up, post, 
or delete a symbol in a hash chain (see 
Chart AQ). 

Section 2: Explicit Linking 39 



Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Accepts type-I linkage only 
from other privileged system components. 

Entries: On entrance to HASH SEARCH, GR1 
contains the address of a parameter which 
points to the following list: 

1. Hash table pointer, which points to 
either the privileged system or user 
hash table. 

2. The function code, which tells whether 
to look up(O), post(l), or delete (2) 
the argument symbol. 

3. A pointer to the symbol name, which is 
either a REF entry or name part of an 
explicit CALL/LOAD adcon group on 
lookup, or a DEF entry on post or 
delete. 

4. The module sequence number of the mod
ule containing the name in parameter 3. 

5. Exit parameter. <See text.) 

Routines Called: None. 

Exits: Normal only. no return codes. 

Operation: The collection of all nonde
leted DEFs in the TDY constitutes a symbol 
table. To speed symbol lookup, a hashing 
scheme is employed as follows: There exist 
within the TDY three hash tables of length 
n, which length is set in the TDY by STAR
TUP as a system parameter. The three hash 
tables are the user hash table and the 
privileged and nonprivileged system hash 
tables. Each is a list of pointers to the 
heads of a possible n chains of DEFs. The 
member DEFs of each chain share their hash 
value in common. These linear hash chains 
are built by the HASH SEARCH ·post" 
function. 

Pointer to 
SYSTEM HASH 

Table Privileged System Hash Table 
(System symbols beginning 

with CZ and CHB) 

Nonpriviieged System Hmh Table 
(System symbols not beginning 

with CZ and (HB) 

Pointer to 
USER HASH 

Table 
User Hash Table 

40 

The hash value of a given DEF is com
puted by performing an "exclusive OR- of 
the first four characters of the symbol 
with the last four characters. This value 
is then divided by n, and the remainder is 
the index into the hash table. This index 
is multiplied by 4 and added to the base 
address of either the privileged system or 
user hash table, according to the first 
input parameter. If a system symbol begins 
with CZ or CHB it is privileged and will be 
processed in the privileged system hash 
table. For nonprivileged system symbols, 
an additional offset equal to the size of 
the privileged system table is added. 

The -problem of relating internal REFs 
that reference unnamed control sections to 
the correct control section is solved 
within HASH SEARCH. Recall that unnamed 
CSECTs are given a name of binary zeros by 
the assembler. DEFs for and REFs to such 
unnamed CSECTs are rendered unique in HASH 
SEARCH by replacing the low-order half of 
the first word of the name of zeros with 
the module sequence number, a unique number 
aSSigned the module in LOAD PMD. (The 
second word of the zero name is reserved 
for the linkage editor'S use to render such 
names uniquely relatable to their defining 
unnamed CSECT in the event of link editing 
more than one unnamed CSECT.) 

The basic search function in HASH SEARCH 
proceeds as follows: 

1. The hash value is computed. 

2. The head of the hash chain in the 
correct hash table is obtained. (both 
the head of the hash chain and alJ 
search links are the 32-bit virtual 
storage addresses of the first word of 
the next DEF in the chain.) 

3. Each DEF Name in the hash chain is 
compared with the argument name for a 
match. 

~. The search terminates on either a name 
match or at the end of chain, which is 
denoted by a zero search link. 

On the lookup function, if no name match 
is found, the exir. parameter is set to 
zero. When a name match is found on look
up, this exit parameter is set to point to 
the defining DEF entry. 

On the post function, if no match is 
found, the new DEF is inserted into the top 
of the chain. A pointer to the last DEF in 
the old chain is placed in the search link 
of the new DEF. (The search link of the 
first DEF placed in the chain is zero to 
mark the end of the chain.) The exit pa-



rarneter is set to zero to denote posting 
performed. 

If on the post function a name match is 
found, the new DEF is not inserted in the 
chain, and the exit parameter is set to 
point to the duplicate DEF entry. 

LIBE SEARCH (CZCDL3) 

On the delete function, the hash chain 
must be relinked. Relinking is accomp
lished by changing the search link in the 
previous DEF in the chain to point to the 
DEF in the chain immediately following the 
DEF to be deleted. 

r-----------T-----------------------------~--------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~-----------------------T------------------~ 
I CALLED I Purpose of Call I In I Out I 
~----------+-----------------------------f_-----------------------+--------------------~ 
IFIND ILOOK UP ARGUMENT SYMBOL IN ISymbol name, DCB Iuser information I 
I (CZCOJ) lopened data set. I pointer. I describing found I 
I I I I module. I 
t-----------+-----------------------------f_-----------------------+--------------------~ 
I LOADER IDiagnostic on FIND error. IPointer to parameter I I 
I PROMPT I Istring. I I l ___________ ~ _____________________________ ~ _______________________ ~ ____________________ J 

LIBE SEARCH is called to locate a pro
gram module in an external library that 
defines a certain symbol (see Chart AS). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: LIBE SEARCH accepts type-r 
linkage only from other privileged system 
components; the LIBESRCH macro instruction 
is associated with it and will expand into 
type-II linkage for DCLASS USER. 

Entries: LIBE SEARCH is entered with GRl 
pointing to a parameter that contains the 
address of the following list: 

Inputs 

1. Pointer to argument symbol to be 
defined. 

2. Library index; that is, pointer to DCB 
header of first DCB in the program 
library hierarchy to be searched. 
(This may also be considered an output 
parameter since it is modified by LIBE 
SEARCH during its processing.) 

3. Caller-supplied location where LIBE 
SEARCH will place its user information 
on a found exit. 

output 
DDNAME of library in which the argu
ment symbol was found is placed in 
this location (8 bytes) by LIBE 
SEARCH. 

Exits: GR15 = 0 normal, 4 not found. 

Operation: LIBE SEARCH begins its proces
sing by executing a FIND macro instruction, 
with the argument symbol to be defined, on 
the DCB defined by the second input parame
ter. Both a zero and an X'14' return code 
from FIND are treated by LIBE SEARCH as 
successful. In these cases, LIBE SEARCH 
will have received back from FIND 24 bytes 
of information describing the module as a 
partitioned data set member. This includes 
the retrieval address and length of the 
module's PMD, text, and ISO. 

The loader will attempt to verify that 
the wuser data" received from the FIND 
actually represents the user data from an 
actual module, and not some other kind of 
partitioned data set member. In the user 
data there are six words giving the rela
tive page position (in the member) of the 
PMD, TEXT, and ISO, including their respec
tive lengths in bytes. These are ordered 
as follows: 

Word 1 - Relative page number of the PMD 
Word 2 - PMO length 
Word 3 Relative page number of the 

TEXT 
Word 4 - TEXT length 
Word 5 Relative page number of the ISO 
Word 6 - ISO length 

The following checks will be made in 
LIBE SEARCH after retrieving a wmodule.-

• The user data is tested for correct 
length (24 bytes). 

• As the PMD must always be PUT first, 
word 1 must equal O. 

• The PMO length (word 2) must be greater 
than 76. 

Section 2: Explicit Linking 41 



• The relative page number of the TEXT 
(word 3) must equal 0 (a module without 
TEXT) QE be equal to the integer por
tion of (PMD length + 4095) / 4096. 

• The relative page number of the ISO 
(word S) must equal 0 (no ISD) or be 
equal to word 3 plus the integer-por
tion of (TEXT length + 4095) / 4096. 

If the member retrieved cannot be veri
fied as a module, the member is rejected as 
being invalid. Otherwise, LIBE SEARCH pre
fixes this information with the JFCB 
address and the DCB address for the 
library. The last word of the user infor
mation block is set to nonzero if the 
defining library is SYSLIB. These nine 
words of user information are set up in the 
caller's area according to the third param
eter. LIBE SEARCH will also return the 
DDNAME of the library, so that a nonprivi
leged user of LIBE SEARCH may construct his 
own DCB for possible data set manipulation. 

On an unsuccessful FIND return, LIBE 
SEARCH will link to the next DCB in the 
chain and repeat the FIND call, unless the 
chain has been exhausted, in which case 
LIBE SEARCH will make a not-found exit. 
Input parameter 2 is modified by LIBE 
SEARCH to point always to the current DCB 
header, so that possible successive calls 
by the loader routine RESOLVE SYMBOL 
(CGCCE) will result in continued chain 
search. 

LIBE SEARCH sets GR15 with a return 
code: 

o = found 
4 = not found 

Notes: 

1. 

42 

The chain of DCBs that define the pro
gram library hierarchy is built by the 
routine LIBE MAINT (CZCDH). The DCBs 
are chained through headers prefixed 
to the DCBs by LIBE MAINT. These hea
ders are four words in length. 

r-----------------------------, 
Word 0 I Link to word 0 of next DCB I 

I header I 
t-----------------------------~ 

1 I Link to word 0 of previous I 
I DCB header I 
r-----------------------------~ 

2 IPointer to JFCB for this I 
I library I 
t-----------------------------~ 

3 I Not used I l _____________________________ J 

The end of the chain is denoted by 
header word 0 = zero. ISA location 

ISAJLC points to the first DCB header 
in the chain, which will be for the 
last-defined JOBLIB. The last DeB in 
the chain is for SYSLIB, and ISA loca
tion ISASLP points directly to the 
SYSLIB DCB header. 

When LIBE SEARCH is entered, the 
library index will point to one of 
these headers or possibly be zero. 
Whenever the library index = 0, LIRE 
SEARCH takes the not found exit. 

2. The format of the retrieval address in 
the user information is as follows: 

r---------------------T--------------l 
I Page Number I Zero i l _____________________ ~ ______________ J 

The 2-byte page number is relative to 
the beginning of the member; that is, 
module, of the partitioned data set. 
Since a PMD is normally stored as the 
first item of the module, its ret~riev·
al address is normally zero. The 
length of the PMD, text, or ISD is noi~ 

necessarily an even multiple of 4096, 
but the first byte of PMD, text, or 
ISO will always fallon a new paqe if: 
the data set. 

3. LIBE SEARCH assumes that the user 
information returned by FIND in fact 
delimits a correctly formatted TSS/360 
program module, and not some other 
type of partitioned data set member. 

4. The format of the user information 
returned by LIBE SEARCH is as follows: 

User 
Information 
returned 

by 
FIND 

\"lord 0 
1-------

Word 1 DeB Address for Library where Name w-, F ~nd 

Address 0' JFCB for Library ,n WI"cf -1 
Name was Found 

r 'Sord 2 '--____ Retrieval ~ddr:~~f :~,~-I r- j 

Ii Werd 3 ___ -=~ngth of~_MD ;~ytes Ii 

Word 4 Retrieval Address of Text 1 

Word 5 Length of T e.t in Bytes I 

-Nord 6 ~- __ R_C:i~:~~~dre" of lSi> I 

II Word 7 length of ISD in Bytes I 
- I-SYSLIB Switch-Z;;;o if Libror, Wher~ ii,H' 111 

vVcrd 8 was Found is not SYSLlB, Nonzero if it is. J 



LOAD PMD (CGCCH) 

r----------r-----------------'-----------T----------------------------------------, 
I I I Parameters I 
I ROUTINES I t------------------------r-------------------~ 
I CALLED I Purpose of Call I In I Out I 
r---------+-----------------------------+-----------------------+-------------------~ 
IADD PMD IFind space in new PMD. ISize of new PMD. ILocation of new PMD I 
I I I I preface. I 
r----------+----------------------------f------------------------+-------------------~ 
ISETL I Initialize DCB for fetching IPointer to DCB, relativel I 
I Ifirst page of PMD from data Ipage number of first I I 
I I set. I page of PMD. I I 
t-----------+-----------------------------+------------------------+--------------------~ 
I GET I Transfer pages of PMD from I Pointer to DCB. I I 
I (locate I data set to buffer page. I I I 
I mode) I I I I 
1---------+----------------------------+-------------------------+--------------------~ 
I ABEND I Incorrect PMD passed. IAddress of error I I 
I I Imessage. I I l ___________ ~ ___________________________ i_ _____________________ ~ ____________________ J 

Error Checks: Error returns from FIND 
result in a diagnostic by LIBE SEARCH but 
are otherwise treated the same as a not
found return from FIND. 

LOAD PMD is called by RESOLVE SYMBOL to 
transfer the PMD of a module from an 
external library into the TDY (see Chart 
AY). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader assembly 
module; not available to other system 
components. 

Entries: The input parameter to LOAD PMD 
is in GRl, which points to the user infor
mation returned by LIBE SEARCH. 

Exits: Normal only, no return code. 

Operation: LOAD PMD's first function is to 
allocate space for the new PMD in the TDY 
and set up the PMD preface. This is accom
plished by calling ADD PMD. 

The SYSLIB flag is set in the PMD pre
face. This indicator is used later in 
checking control section attributes. 

The TDTBLK field of the JFCB for this 
library is then incra~ented by 1 to indic
ate the loading of a module from it. 

LOAD PMD now transfers the PMD into the 
TDY, through calls to VAM SETL and locate
mode GET. Following the GET, LOAD PMD 
actually block-transfers the data into the 
allocated TDY space. The PMD is trans
ferred a page at a time, as required by the 
·undefined record format- GET function. 
The locate-mode GET will transfer a full 
page into a buffer; but if the required 
number of bytes is less than a page, LOAD 
PMD will only transfer the meaningful numb
er of bytes from the buffer into the TDY 
space. 

For example, a PMD 396 bytes long would 
be loaded by GET's fetching a full page, 
396 bytes of PMD plus 3700 bytes of inap
plicable information. Then LOAD PMD would 
move only 396 bytes into the TDY. 

On exit, LOAD PMD returns a pOinter to 
the newly loaded PMD preface. 

Comments: LOAD p~~ compares the PMD length 
in the user information with the first four 
bytes in the PMD returned by GET. If the 
values are not equal, ABEND is called. 

Section 2: Explicit Linking 43 



ADD PMD (CGCCN) 

r-----------T-----------------------------T-------------------------~-------------------, 
I I I Parameters I 
I ROUTINES I t------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out ! 
r-----------t-----------------------------f------------------------+--------------------1 
IGETMAIN IGet space for new PMD in TDY. I Number of pages, IAddress of page. I 
I I I protection class. I I L-__________ ~ _____________________________ ~ _______________________ ~ ____________________ J 

ADD PMD is called by LOAD PMD to alloc
ate space in the TDY for a new PMD (see 
Chart AB). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GR1 contains the input parameter 
to ADO PMD; the length of the new PMD in 
bytes. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: PMD space is allocated within 
the TDY on a group basis. The pointer in 
the TOY to the last allocated group is 
fetched, and this group is now examined for 
available space. The end-of-group pointer 
in the PMD group header is fetched. Avail
able space within a group is that space 
between the end of group and the end of the 
last (or only) page of that group. If this 
space can contain the new PMD, it is 
assigned space in that area; otherwise, 
GETMAIN is called to fetch storage for a 
new PMD group which is created with the new 
PMD as the only member. (Note that any PMD 

44 

longer than a page will begin a new PMD 
group. ) 

Data References: TOY 

The module sequence number is computed 
and set into the PMD preface by fetching 
the sequence number of the last module 
loaded and adding 1. 

In the event a new PMD group is begun, 
the group header is linked into the PMD 
group chain in both directions: the for
ward link points to the new PMD group; the 
back link to the PMD group pointer in the 
TDY heading, that is. it is inserted into 
the head of the TDY. 

Now the new PMD preface is linked withi!:l 
the PMD group. This linkage is a circular 
linkage; that is, the last PMD is linked 
back to the PMD group header. (This circu
lar linkage facilitates recognition of an 
empty PMD group, as described under "DROP 
PMD." ) 

Finally, ADD PMO clears the remainder of 
the PMD preface, which effects initializa
tion of the various flags and links. 

ADD PMD returns with the virtual storage 
address of the new PMD preface. 



ALLOCATE MODULE (CGCCA) 

r-----------T-----------------------------~--------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~-----------------------~--------------------~ 
I CALLED I Purpose of Call I In I Out I 
~-----------+_----------------------------f_-----------------------+--------------------~ 
I PCSA I Adjust attributes vi control I Pointer to CSD. I I 
I I section to be all.::>cat-.ed. I I I 
t-----------+-----------------------------f_-----------------------+--------------------~ 
ICHECK DEF I Check le~ality of cont:r:ol i !'oin~er to control II1:<:!gal name exit. I 
I LEGAL Isection names. Isection name. . I I 
~-----------+-----------------------~-----+--~-~-----------------~-+--------------------~ 
,SELECT HASHIChoose hash table pointer IPointer to CSD. IHash table pointer. I 
I I for posting of control I I I 
I I section's DEFs. I I I 
~-----------+-----------------------------+------------------------+--------------------~ 
I HASH I Post control sectil!m I Hash table pointer, I Duplicity indica- , 
I SEARCH I names in selected hash I DEF for control I tion. I 
I I table. Isection name. I I 
~-----------+-----------------------------+------------------------+-------------------~ 
I LOADER I Diagnostic on illE:ga: I Pointer to parameter I I 
I PROMPT Icontrol section name. Istring. I I 
~-----------+-----------------------------+------------------------+-------------------~ 
I REJECT IDiagnose rejected control IPointer to rejected I I 
I DIAG I section conditions. I CSD, pointer to I I 
I I Irejecting DEF. I I 
r-----------+-----------------------------f_-----------------------+--------------------~ 
I GET IObtain virtual storage for INumber of pages IAddress of storage I 
,STORAGE Icontrol sections. Ir-equired, control I assigned, number of I 
I I Isection attributes. Ibytes actually as- I 
I I I I signed if variable. , 
r-----------+-----------------------------+------------------------+--------------------~ 
ILINK DEFs Icompute relocatable DEF IPointer to first DEF, IPointer to end of I 
I Ivalues and post relocatable IDEF count, pointer Ilast DEF. I 
, land absolute DEFs in Ito containing CSD. I , 
I I selected hash chair.. I I I 
r-----------+-----------------------------+------------------------+--------------------~ 
IQ-CHAIN IAssign values for Q-type REFs I Address of CSD, functionl I 
I I and post REFs in select~d I t.::ode (post). I I 
I I hash chain. I I , 
r-----------+-----------------------------+------------------------+--------------------~ 
,ATTACH TEXT I Set up page table entries ,CSD pointer. I I 
I I for control section text. I , I 
r----------+-------------------... -.- .... --.-.---+-----------------------t--------------------~ 
IMAP SEARCH I Insert MAP table entry for IVMA of control section, I I 
I I allocated control S\::!ctiOll. I pointer to CSD. I I 
~-----------+-----------------------------+------------------------+--------------------~ 
ISRCHPACK ILocate virtual storage for INumber of bytes IPointer to host I 
I la control section group less I required. I entry found. VMA I 
I I than a page long. I I assigned. I 
I ~-----------------------------+----------------.--------+--------------------~ 
I Icreate a host or symbiont INumber of bytes in the IPointer to the new I 
I I entry for the VST. I control section group I host or symbiont I 
I I land pointer to the I entry created. I 
I I I first control section orl I 
I I I pointer to the host I I 
I I I entry. I I 
~-----------+-----------------------------t------------------------t--------------------i 
ISETPAGE IUnlock RESTBL of the shared IPointer to parameter I None. I 
I Ilibrary being used. I string; function code I I 
I I lis a parameter. I I L ___________ ~ _____________________________ ~ ______________________ -i ____________________ J 

Section 2: Explicit Linking 45 



ALLOCATE MODULE is called to allocate 
storage for all of the control sections 
within a single module and to compute and 
link into the hash chain all absolute and 
relocatable DEFs in the module (see Chart 
AC). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GRl contains the input parameter 
to ALLOCATE MODULE, which is a pOinter to 
the PMD preface of the module to be 
allocated. 

Exits: Normal only, no return code. 

Operation: Storage allocation is based on 
the following algorithm: 

1. Storage is requested in a single block 
for all fixed-length control sections 
of identical attributes. 

2. Storage is requested for variable
length control sections individually. 

3. Storage is not allocated for rejected 
non-PUBLIC control sections, but space 
is allocated for rejected PUBLIC con
trol sections so that the allocation 
in different tasks is the same for 
shared storage. 

Upon entry, ALLOCATE MODULE disables the 
SETPAGE flag, specifying that SETPAGE has 
been called during the loading of the pre
sent module. 

The CSOs are examined in order, the 
first unprocessed CSO defining "current 
attributes." All CSOs whose attributes 
match current attributes are located and 
checked for possible rejection. Rejection 
is caused if a control section's name is 
already in the hash chain, or if the name 
is determined illegal by CHECK OEF LEGAL. 
If an attribute matching control section is 
not rejected, its length is added to the 
allocation sum. When all CSOs have been 
examined, and each one whose attributes 
match is marked as processed, storage is 
allocated by a call to GET STORAGE. 

If the packing option is set for this 
control section group, the loader computes 
the storage requirement of the group allow
ing for all control sections in the group 
to be placed on doubleword boundaries. 

When a non-page-aligned control section 
overlaps into the next page of virtual 
storage, since the storage requirement is 
computed and alocated by subgroups, the 
control section overlapping the page becom-

46 

es the first control section in the next 
subgroup. 

If packing of private control sections 
is requested and the group length is less 
than one page, an attempt is made to alloc
ate space from a partially filled page 
belonging to another control section of the 
same storage-protection class. SRCHPACK is 
called. to search the vacant space table 
(VST). If an adequate vacant area is 
found,· allocation is made at the specified 
VMA, and ~he VST is updated to reflect the 
assignment. If an adequate vacant area is 
not available, a full page is allocated by 
a call to GET STORAGE as mentioned above. 

At this point, OEFs are computed and 
linked for each control section just allo
cated. LINKOEFs is called once for abso
lute OEFs and once for relocatable OEFs, 
with the base address allocated for the 
control section as an argument in each 
case. Absolute OEF values are, of course, 
unmodified, but relocatable OEFs are com
puted by adding to the OEF value the base 
address of the control section. Next, pri
vate storage page tables are set up for 
each control section separately by a call 
on the ATTACH TEXT routine. Finally, Q
REFs are assigned values and chained 
together by a call to the Q-CHAIN routine; 
CXO-REFs are also chained together. When 
all control sections of the current attri
butes group are processed as described 
above, another pass is made on the PMD to 
process control sections of different 
attributes. 

Transfer of private packed control sec
tions from external storage to virtual 
storage is accomplished by assigning 
scratch pages and creating entries in the 
VST. If packing is requested, a host or 
symbiont VST entry is created for eacli con· 
trol section in the group irmnediately 
before ATTACH TEXT is called. If storage 
for the group is allocated from a hOST. 
entry, a symbiont entry is created for each 
control· section in the group and is linked 
to the host entry for the page from which 
the storage has been allocated. If storag.· 
bas been allocated by GETMAIN, a host entry 
is created for the first control section in 
the group and symbiont entries are created 
for each additional packed control section 
in the group. These entries are created by 
a call to SRCHPACK. (See the SRCHPACK rou
tine description for a further discussion 
of the vacant space table, VST.) 

Control sections of variable length go 
through the GET STORAGE, LINK DEFs, ana 
ATTACH TEXT sequence described above, but 
on an individual control section basis. 
Also, the number of bytes actually allo
cated is filled in the CSD heading. 



• 

public Storage Considerations: The alloca
tion process for public control sections is 
the same as for private control sect. ions , 
with these exceptions: 

All storage addresses are returned to 
ALLOCATE MODULE by GET STORAGE. Private 
storage addresses are always obtained by 
GETMAIN calls. Public storage, on the 
other hand, need be obtained but once for 
any given control section group -- or indi
vidual variable-length control section -
by a cal.l to GETSMAIN (Get Shared Main). 
Subsequent tasks loading a public control 
section group already allocated are merely 
·connectedW to the a:':i.ocated si..~rQge by a 
call to the CONNECT routine. GET STORAGE 
sets a flag in the CSD heading of those 
control. sections whose publ.ic storage 
address was returned by CONNECl' linkage, 
rather than by GETSMAIN l.inkage. If a sym
biont entry for this control. section al.rea
dy exists in the SDST, (the control section 
has been packed on a page obtained by GETS
MAIN>, the CONNECT flag is set without cal
ling the CONNECT routine and the SPT number 
is filled in from the host entry. This 
flag is necessary for ALLOCATE MODULE's 
processing, for two reasons: 

1. Page tables need not be set up for 
connected public storage: consequent
ly. on detection of this flag for 
public control sections, ALLOCATE MOD
ULE bypasses the call to ATTACH TEXT. 

2. When storage is obtained by GETSMAIN, 
GET STORAGE returns with the newly 
created SDST l.ocked to other tasks. 
(The locked entry is denoted by the 

SPT number being set to al.l bits on.) 

This entry must remain locked to all 
other tasks until ALLOCATE MODULE has 
finished all processillg for the public C0I1-

trol section group, at which point ALLOCATE 
MODULE unlocks the entry by filling in the 
SPT number returned by GET STORAGE, which 
obtained it from GETSMAIN. 

Another consideration for public control 
sections is packing: if a shared public 
control section is already loaded, the 
addressing for that control section depends 
on whether the control sections in the 
group are loaded on page boundaries or are 
packed. V- and R-cons are calculated for 
either eventuality: GET STORAGE determines 
the amount of storage needed (and the set 
of V- and R-cons to be used) by checking 
the CSECTs-packed flag in the SDST member 
entry. 

The only other special public storage 
consideration involves the -Module Public 
Name Switch.w This fl.ag is disabled at the 
beginning of ALLOCATE MODULE'S processing: 
that is, it is disabl.ed once for each mod-

ule. It is used and enabled only by the 
GET STORAGE routine, and only to obey nam
ing conventions within the SDST. 

The reader is directed to the descrip
tion of the GET STORAGE routine for a 
detailed discussion of all aspects of publ
ic storage allocation, packing of public 
control sections, the SDST, etc. 

Before returning to its caller, ALLOCATE 
MODULE checks a SETPAGE flag to determine 
it the RESTBL of the present job library is 
locked because the library is shared. If 
this is the case, ALLOCATE MODULE calls 
GE'ITAGE, requ.esting it +;0 release the 
interlock on the shared library'S RESTBL 
(Relative External Storage correspondence 
Table). 

~rror Checks: Whenever a control section 
is rejected, a call is made on REJECT DIAG 
to issue possible diagnostic messages to 
warn the user. REJECT DIAG discusses these 
cases in detail. 

Comment: Whenever a publ.ic control section 
group is detected al.l of whose control sec
tions are rejected, the public name bit is 
turned off in the control section of this 
group in which it was originally turned on. 
Public storage is not allocated for such a 
group. 

PC SA (CGCCT) 

PCSA is called to adjust the attributes 
of a control section according to user 
authority (see Chart BD). 

Attributes: Privileged, public, system, 
reenterable. 

Rt?Gt!:'iction3; Lnte:rna~~ to loader module, 
not available to other system components. 

Entries: GRl contains a pointer to the 
CSD. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: As a module is allocated, each 
control. section is processed by a calIon 
PCSA. PCSA may al.ter the attributes of the 
control. section accordinq to the following 
rules: 

1. User authority 0: Erase PUBLIC and 
READONLY attributes unconditionally. 

2. User authority P: Erase PRIVILEGED 
and SYSTEM attributes from any control 
section that was not loaded from SYS
LIB. Erase PUBLIC and READONLY attri
butes unconditionally. 

Section 2: Explicit Linking 47 



3. User authority U: Erase PRIVILEGED 
and SYSTEM attributes from any control 
sections that were not loaded from 
SYSLIB, and set the SYSTEM attribute 
if the PRIVILEGED attribute is set in 
control sections loaded from SYSLIB. 
Erase PUBLIC attribute if module not 
loaded from a shared data set. 

Rules 1 and 2 above make it possible for 
certain system programmers to load their 
own copies of various routines for checkout 
purposes. In the case of U authority, PCSA 
is primarily concerned with not allowing 
the normal user to declare PRIVILEGED and 
SYSTEM control sections, to eliminate the 
danger of resolving improperly external 
references from a system routine to a user 
routine. 

Note: PCSA may reference the SYSLIB switch 
and the JFCB pointer in the PMD preface. 
This requires that the PMD link be 
installed in the CSD prior to invoking 
PCSA. 

CHECK DEF LEGAL (CGCCU) 

CHECK DEF LEGAL is called to verify the 
acceptability of an external symbol name 
(see Chart AF). 

Attributes: Privileged, public, system, 
reen terable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: On entrance to CHECK DEF LEGAL, 
GR1 will point to a list of three 
parameters: 

1. Pointer to the DEF entry whose name is 
to be Checked. 

2. Pointer to the CSD containing the DEF. 

3. Reject exit address. 

Routines Called: None. 

Exits: Normal DEF ok; to caller-supplied 
location if DEF is rejected. 

Operation: If user authority is 0, any 
symbol is legal. If user authority is P, 
symbols beginning with CZ or CHB must be 
defined in modules only from SYSLIB. 

If user authority is D, three checks are 
made: 

1. Symbols beginning with SYS may be 
defined only in control sections with 
the SYSTEM attribute set. 

48 

2. Symbols beginning with CZ or CHB may 
be defined in any control section 
except a SYSTEM control section that 
is not also marked privileged. 

3. SYSTEM control sections which are ah;o 
marked privileged may define only 
those entry points that begin with CZ 
or CHB. 

Illegality of a DEF name is indicated to 
the calling routine by CHECK DEF LEGAL's 
taking the reject exit. 

Note: CHECK DEF LEGAL may have to examinE 
the PMD preface of the module containing 
the DEF; this assumes that the PMD link has 
been filled in the CSD heading. 

SELECT HASH (CGCCB) 

SELECT HASH is called to determine in 
which hash table a given symbol is to be 
posted during allocation or in which hash 
table a given symbol may be found for dele
tion purposes (see Chart BI). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GRl contains a pointer to the CSD 
for whose symbols the hash table pointer is 
being selected. 

Routines called: None. 

Exits: Normal only, no return code. 

Operation: Given a pointer to a CSD, all 
symbols within that CSD are posted in the 
same hash chain. For U authority users: 

1. If the PMD containing the CSD did not 
come from SYSLIB, the hash table 
pointer is set to the origin of the 
user hash table. 

2. If the PMD containing the CSD was 
extracted from SYSLIB, the system 
attribute bi~ is checked. System con
trol sections will have their symbols 
posted in the appropriate system hash 
table; non-system control sections, in 
the user hash table. 

P and 0 authority users have all symhols 
posted into the appropriate system hash 
table unconditionally. 



REJECT DIAG (CGCCP) 

r-----------T------------------------------~--------------------------------------------, 
I I I Parameters I 
I ROUTINES I t-----------------------~--------------------~ 
I CALLED I Purpose of call I In I Out I 
r-----------+-----------------------------+------------------------+-------------------~ 
I LOADER I Diagnostics on rejected I Pointer to parameter I I 
I PROMPT I control section conditions. I string. I I 
~-----------+-----------------------------+------------------------+--------------------~ 
I ABEND I Abnormal termination of I Address of diagnostic. I I 
I I task. I I I L-__________ ~ _____________________________ ~ _______________________ ~ ____________________ J 

REJECT DIAG is called to examine the 
attributes of rejected control spctions for 
diagnostic purposes and to check for possi
ble error conditions (see Charc BF). The 
purpose of this rout:.i.::ce is to i!roT1ide the 
user with diagnostic information so that he 
may identify the cause of potential task 
error. 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: Entrance is made with GR1 point
ing to the following list: 

1. A pOinter to the rejected control sec
tion's CSD. 

2. A pointer to the DEF entry of the name 
causing rejection. 

Exits: Normal with no return code, or 
ABEND if a privileged control section is 
rejected by a nonprivileged control 
section. 

Operation: REJECT DrAG's processing con
sists mainly of attribute comparisons. 
Those events causing load errors are as 
follows: 

1. A control section is rejected by a 
non-control section. 

2. A privileged control section is 
.• :ejected by a nonpri vileged control 
section. This could result in a priv
i'leged routine's entering nonprivi
leg€d ("::.d~ jnaover.t.ently. This 
results in an immediate ABEND. 

3. A control section is rejected whose 
length exceeds the length of the con
trol section causing rejection. This 
condition could result in possible 
storage protection error if the excess 
portion of the rejected control is 
subsequently referenced. 

Those events that cause only a warning 
message to be issued are: 

1. A non-read-only control section is 
rejected by a read-only control sec
tion. This may result in a storage 
protect error. 

2. A COMMON control section is rejected 
by a non-COMMON control section or 
vice-versa. 

3. A COMMON control section is rejected 
by another COMMON control section, and 
the length of the rejected section 
exceeds that of the retained section. 

4. A ncnpr.ivileged control section is 
rejected by a privileged control sec
tior.. 'This may result in a storage 
protect error or a readout error. 

Section 2: Explicit Linking 49 



GET STORAGE (CGCCW) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I t------------------------.--------------------~ 
I CALLED I Purpose of Call I In I Out I 
t-----------+-----------------------------+------------------------+--------------------1 I LOADER I Diagnostic on unnamed public I Pointer to parameter I I 
I PROMPT I control section group. I string. I I 
r-----------+-----------------------------+------------------------+--------------------1 
IGETMAIN IRequest private virtual INumber of pages, storagelVMA of storage as- I 
I I storage for nonpublic control I class. I siqned. ! 
I I sections. I I I 
t-----------t-----------------------------f------------------------+--------------------1 
ISRCHSDST IOpen public control section IMember name. Icode indicating I 
I Igroup member entry in SDST. I Iwhether member I 
I I I I already open and I 
I I f I being shared by I 
I I I I other tasks. I 
t-----------t-----------------------------+------------------------+--------------------1 
IGETSMAIN IRequest shared storage for INumber of pages, SPT ISFT number, rela- ! 
I Ipublic control sections. I number, storage class. Itive page number I 
I I I I assigned. I 
t-----------+-----------------------------t------------------------+--------------------1 
I CONNECT IConnect current task to ISPT number, relative IVirtual storage I 
I Ipublic control section pages Ipage number. I address. ! 
I I if public control section I I I 
I I group in use by other tasks. I I I 
t-----------+-----------------------------t------------------------+--------------------1 
ISRCHPACK ILocate virtual storage for a INumber of bytes require~IPointer to host I 
I Icontrol section group less I lentry found, VMA I 
I I than a page long. I I assigned. I 
I t-----------------------------t------------------------+--------------------1 
! Icreate a host or symbiont INumber of bytes in the \Pointer to the new I 
I lentry for the VST. Icontrol section group Ihost or symbiont I 
I I land pointer to the firstl entry created. I 
I I I control section or to I I 
I I Ithe host entry. I I l ___________ ~ _____________________________ ~ ______________________ ~ ____________________ j 

Given a set of control section attri
butes and total pages, GET STORAGE requests 
private or public storage for a control 
section group (see Chart AP). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GET STORAGE is invoked by 
ALLOCATE MODULE to obtain virtual storage 
for either a non-variable-length control 
section group or for an individual 
variable-length control section. GRI will 
contain the address of the following param
eter list: 

Input: 

1. The attributes of the current fixed
length control section group or indi
vidual variable-length control 
section. 

50 

2. The total number of pages required for 
the control section group or variable
length control section. 

3. A pointer to the first (or only) CSD 
of the group. 

4. A pointer to the PMD preface. 

Output: 

1. The virtual storage address of the 
virtual storage block assigned. 

2. The actual number of bytes assigned l_f 
it is a variable-length control 
section. 

Exits: Normal only, no return code. 

Operation: The first step in this routine 
is to establish the storage key for the 
group. Privileged control sections are 
assigned storage key C, which is both read 
and write protected against nonprivileged 
users. Read-only control sections are 
assigned storage key B, which provides 



write protection. All other coni.:>:'ol s~~r:
tions are assigned storage key A, which 
allows unrestricted us er reads &L1C wr it,es;. 

Next, private fixed-length control sec
tion groups are assigned storage with a 
single call on GETMAIN. PSECTs .l.:-e 
assigned storage with the system packing 
parameter overridden to effect uncondition
al packing. 

GET STORAGE requests virtual storage for 
variable-length control sections by setting 
the VAR flag in GRO prior to the calIon 
GETMAIN. GET STORAGE computes the actual 
number of pages assigned in the variable 
request, as follows: 

The ISAVAR byte in the ISA is examined. 
If this value is nonzero, it represents the 
number of pages GETMAIN has assigned in 
addition to the requested number. If the 
ISAVAR byte is zero, then GETMAIN will have 
allocated the number of full segments 
required to contain t.he requested number of 
pages. GET STORAGE makes the computation, 
converts the total pages assigned into 
bytes, and sets the second output parameter 
accordingly. 

The assignment of storage for public 
fixed-length control section groups and 
individual variable-length public control 
sections is a more complex process. A sys
tem table, the shared data set table 
(SDST), contains entries for each open 
shared data set. The table also contains 
individual member entries that describe the 
control section groups (or individual 
variable-length control sections) allocated 
storage by GET STORAGE. 

The following rules govern the SDST mem
ber entry naming conventions for a single 
modUle: 

1. The first control section group (or 
individual variable-length control 
section) is entered in the SDST with 
the current module name as the member 
name. 

2. Subsequent member entries from the 
module bear the name of the first (or 
only) named control section in the 
group. 

3. Groups of all unnamed control sections 
will not be entered in the SDST, and 
GET STORAGE will not assign public 
storage for such a group. 

The module public name switch is dis
abled at the beginning of ALLOCATE MODULE'S 
processing. GET STORAGE checks this, and 
finding it disabled, sets the item Public 
Name equal to the current module name, thus 
conforming to rule 1 above. Now GET 

STORAGE enables the module public name 
switch so that any subsequent aSSignments 
for control section in the current module 
will conform to rule 2. 

The VAM routine SRCHSDST (CZCQE) is 
called by GET STORAGE to search for a mem
ber entry whose name matches the item Publ
ic Name. One of the parameters for 
SRCHSDST is the address of the JFCB 
describing the data set from which the cur
rent module was loaded. When SRCHSDST 
finds a matching member name, it checks 
further for a match on data set names, as 
follows: 

Referring to Figure 9, observe that each 
SDST member entry contains a pointer to the 
SDST data set entry describing the shared 
partitioned data set from which the module 
was loaded (the module that contained the 
contro~ section group represented by the 
member entry). SRCHSDST checks for data 
set match by matching the SDST data set 
ent:cy nam~ with the da::a !'>et name contained 
in the JFCB whose pointer is passed by GET 
S'rORAGE. 

If SRCHSDST finds both member and data 
set entry matches, it will increment the 
user count in the matching member entry, 
set a found return code for GET STORAGE, 
and return a pointer to the SDST member 
entry. The found return from SRCHSDST 
informs GET STORAGE that the current con
trol section group has been allocated 
shared storage by another task, and that 
the shared page table entries have been set 
up. In this case, GET STORAGE extracts ~he 
shared page table number from the SDST mem
ber entry and calls CZCG7 to CONNECT the 

Word 0 Hash Link 

Word 1 User Count SPT number 

I Codes (1 byte) I 
7th bit set if Byte address relative to beginning 
CSECT, rc·cked I of seT,,'nt (3 bytes) 

8th bit set if 
symbiont entry 

\Nord 2 

Number of pages assigned (first 2 bytes) 
if host entry; Pointer to host entry if symbiont 

Word 3 

Pointer to Data Set Entry for shared data set 
to wh i ch this member be longs 

Word 4 

Word 5, 6 Alphameric name of CSECT group 

Figure 9. Sample SDST Member Entry 

Section 2: Explicit Linking 51 



control section group to the shared page 
table. This CONNECT linkage merely con
verts the SPT member into a virtual storage 
address for this control section group for 
this task. 

If SRCHSDST fails to find a member and 
data set entry match, it sets up a new 
entry for this control section group in the 
SDST and returns an indication of this fact 
to GET STORAGE. In this event, GET STORAGE 
will request public storage by calling the 
VMA routine GET-SHARED-MAIN (GETSMAIN). 
The loader always uses the previously allo
cated SPT number when calling GETS MAIN, 
such that if room exists in the previously 
allocated shared segment, the current requ
est will be satisfied from that same seg
ment. GET STORAGE fills in the new SDST 
entry the relative page number returned by 
a GETS MAIN (to be used in subsequent CON
NECT calls as described above). At this 
point, the SDST entry is locked to other 
tasks by all bits having been set on by 
SRCHSDST in the SPT number slot in the SDST 
entry. Later on, the SPT number as actual
ly returned by GETSMAIN will be inserted in 
the SDST entry, but only after all proces
sing for that PUBLIC storage has been com
pleted in ALLOCATE MODULE. 

If control section packing has been spe
cified and if SRCHSDST returns a "not 
found w and if the control section length is 
smaller than a page, an attempt is made to 
pack it on a partially filled page before 
allocating storage by GETSMAIN as described 
above. This is done by locking the SDST 
and calling SRCHPACK to thread through the 
vacant space table (VST), looking at the 
available space entry for each page. (The 
section on SRCHPACK describes the vacant 
space table.) A host/symbiont relationship 
exists among control section groups sharing 
the same paqe. The first group on this 
page is the host; the remaining groups on 
the page are symbionts. This relationship 
is established by the 'code' and 'pointer 
to host' entries in the SDST. For control 
section groups smaller than a page, when 
SRCHSDST has created a member entry, the 
vacant space table for this group's storage 
class is scanned for space. If vacant 
space is found, the group is assigned to 
that page, and the relevant vacant space 
table entry is modified to reflect the 
aSSigned space. The newly created SDST 
entry is flagged as a symbiont entry, and a 
pointer to the host SDST entry is filled 
in. (Host pointer is obtained from the 
relevant vacant space table entry.) The 
byte address relative to the segment is 
filled in, and the SPT number (obtained 
from host SDST entry) is saved. The user 
count in the host SDST is incremented and 
the SDST is unlocked. If vacant space is 
not found, allocation is made via GETSMAIN. 
A new vacant space entry is created if more 

52 

than eight bytes of available space exist 
on the last page of the last control sec
tion in the group (if it is a text page}. 
This is accomplished by a call to SRCHPACK 
with the function code set to create a host 
entry in the vacant space table. After the 
return from SRCHPACK, a pointer to the host 
SDST entry is set in the new packing table 
entry and the SDST is unlocked. 

Error Checks: GET STORAGE will refusf' to 
assign PUBLIC storage for an unnamed CSEC1 
group. This condition results in: 

1. A diagnostic to the user. 

2. Private storage being allocated for 
the group. 

Comments: 

Note that the strict naming rules are 
enforced by the dynamic loader so that 
PUBLIC storage is allocated identically 
within a segment in different tasks. 

The SDST is a public system table 
accessible by each task in the manner 
described above. It is the common link 
between tasks that effects the sharing 
concept. 

Considering, for example, a module, M, 
of the following structure: 

CSECT A (READ ONLY, PUBLIC) 
CSECT (unnamed) (PUBLIC) 
CSECT B (READ ONLY) 
CSECT C (READ ONLY, PUBLIC) 
CSECT D (PUBLIC) 
PSECT E ( PROTOTYPE) 
CSECT F (PUBLIC, VARIABLE) 
CSECT G (PUBLIC, VARIABLE) 

The following SDST entries would appear a~; 
a result of public storaqe allocation for 
M: 

An entry name "Mit describing the control 
section group composed of A and C. 

An entry named "Fit describing the 
variable-length CSECT F. 

An entry named ItG It describing the 
variable-length CSECT G. 

The module name M is used to identify the 
first control section group, composed of II 
and C. Variable-length control sections F' 
and G are allocated storage individually, 
and have unique SDST entries. 

The second control section group is 
assigned private storage, rather than publ
ic, since the first CSECT in the group is 
unnamed. The group is identified by the 
first named CSECT, D. 



SRCHPACK (CGCCC) 

r-----------T-----------------------------~--------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~-------.:..----------------... -------------~ 
I CALLED I Purpose of Cal~ I . In I Out I 
~---------+----------. ---------~ ----_.---+--------------------+------------------~ 
I GET MAIN IGet space for new VST entry. INumber of pages, pro- IAddress of page. I 
I I I tection class. I I L-_________ ~ ________________________ ~ _______________________ ~ ____________________ J 

SRCHPACK is called either to search a 
vacant space table (VST) for an unused 
storage area large enough to meet the 
requirements of a control section group or 
to create a VST entry (host or symbiont) 
(see Chart BL). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to the loader mod
ule; not available to other system 
components. 

Entries: On entrance to SRCHPACK, GRl 
points to the followi~y parameter list: 

Inputs 

1. Number of bytes in the control s~ction 
group for which storage is n~ed~d. 

2. Function code (0 = search a VST, 1 = 
create a host entry, 2 = create a sym
biont entry). 

3. For function code = 1, the VMA of the 
first control section in the group: 
for function code = 2, a pointer to 
the host entry. 

output 

Function code = 0: 

1. A pointer to the host entry found. 

2. The VMA assigned. 

Function code = 1: 

A pointer to the new host entry. 

Function code = 2: 

A painter to the new symbiont entry. 

Routines Called: None. 

Exits: 

Function code = 0: 

GR15 

GRIS 

o means that space was found. 

4 means that vacant space was 
not found. 

Function code = 1 or 2: 

Normal only, no return code. 

Op€'rC'.t:ion: If the fnncT.ion code is 0 
(search a VST>, the VST is searched for a 
text page with sufficient unused space to 
accomodate the group. If such a page is 
found, the control section group is 
assigned to this page and the number of 
available bytes in the host table entry is 
updated. A pointer to the host entry found 
is placed into word 3 of the parameter 
list, the virtual storage address assigned 
is placed into GRl, a return code of 0 is 
placed into GR1S, and return is made. If a 
page with sufficient unused space is not 
found, a return code of 4 is placed into 
GR15 and return is made. 

If the function code is 1 (create a host 
entry>, an available space entry is 
obtained and t.he unused space on the last 
page of the last control section in the 
grcup is then computed. This is placed 
into the available space entry along with 
the page origin. This new host entry is 
then linked into the VST chain. A pointer 
to the new host entry is placed into word 3 
of the input parameter list and return is 
maGe. 

If the fUnction code is 2 (create a sym
bi.ont: entry), an available space entry is 
obtained and is linked to the host or to 
the last symbiont entry created for this 
host if any exist. A pointer to the new 
symbiont entry is placed into GR1 and 
ret.urn is made. 

Section 2: Explicit Linking 53 



LINK DEFs (CGCCV) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I r------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
~-----------+-----------------------------+------------------------+--------------------1 
ICHECK DEF ICheck legality of DEF name. IDEF name, CSD pointer. I I 
I LEGAL I I I I 
~----------+-----------------------------+------------------------+--------------------~ 
I HASH IPost legal DEFs in hash IDEF entry pointer, hash IDuplicity indi- I 
I SEARCH I chain. I table pointer. I cation. I 
r-----------+-----------------------------+------------------------+--------------------, 
I LOADER I Diagnostics on DEF I Pointer to parameter I I 
I PROMPT I rejections. Istring. I I L ___________ ~ _____________________________ ~ _______________________ ~ ____________________ J 

LINK DEFs is called to post legal DEF 
names in the hash chain for a single type 
of DEF for a single nonrejected control 
section (see Chart AT). (In the case of 
relocatable DEFs, the value is also 
computed. ) 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: On entrance to LINK DEFs, GRl 
points to the following parameter list: 

Inputs 

1. DEF type code (0 is absolute, 1 is 
relocatable, and 2 is complex). 

2. Address of the first DEF entry. 

3. The number of DEFs of this type. 

4. A pointer to the CSD containing the 
DEFs. 

5. The base address assigned the control 
section. 

Output 

Pointer to the first byte past the end of 
the last DEF linked. 

Exits: Normal only, no return code. 

Operation: LINK DEFs first checks the name 
of the DEF in CHECK DEF LEGAL; illegal DEFs 
are not linked. The DEF name is looked up 
in the hash chain. If the name already 
appears and is a control section name, a 

54 

diagnostic is issued if the default value 
REJMSG is set to N, and the load error 
switch is set. If the name is duplicated 
but is not a control section name, t.hen a 
diagnostic is issued if the default valuE' 
REJMSG is set to N, and the error switch is 
not set. Duplicate DEF names are never 
added to the hash chain. 

DEFs surviving the above checks are now 
posted. First R-values are computed by 
adding the base address of this control 
section (input parameter 5) to the ftR-value 
displacement- in the DEF entry (nonzero 
only if this control section's module has 
been link-edited and this control section 
combined to produce an offset). 

At this point, the CSD link is set in 
the DEF entry. For absolute and relocat
able DEFs, this is set to point to the CSD 
heading (input parameter 4). Complex DEFs 
are not so linked until later; their CSD 
link is set to all l's to indicate they 
have been linked but not processed. 

Complex and absolute DEFs are processed 
no further. The absolute DEF's V-value 
requires no change: complex DEF V-values 
are computed later in the FIX PMD routine. 
Relocatable DEFs, however, are computed by 
adding to the DEF value the base address of 
the containing control section. When all 
DEFs of a single type have been so pro·
cessed, LINK DEFs returns with a pointer to 
the end of the DEF table just processed. 

Error Checks: By system convention a DEF 
may not duplicate the name of a previously 
loaded control section. This condition 
produces a faulty load and so indiccl t_(~~3 ny 
setting the load error switch. 



Q-CHAIN (CGCQC) 

r-----------T-----------------------------~--------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~---.-----:_-------------_r--------------------~ 
I CALLED ( Purpose of Call i In I Out I 
~----------+-----------------------------+---------~--------------+--------------------~ 
IRESOLVE IAssign DXD offset value for alA function code indicat-I I 
IQ-REF IQ-type REF, or designate ling whether the offset I I 
I loffset as available. lis to be assigned or I I 
I I I fIeed~ and a Q-type REF. I I 
~----------+-----------------------------+------------------------+--------------------~ 
I LOADER IDiagnostic when DXDs have IPointer to parameter I I 
IPROMPT Isame name but conflicting I string. I I 
I Ilength or alignment. I I I L ___________ ~ _____________________________ ~ ________________________ ~ ____________________ ~ 

Q-CHAIN processes Q-REFS. See Chart BE. 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GRl points to the following pa
rameter list: 

1. The address of a CSD. 

2. A function code (post or delete). 

Exits: Normal on~y, no return code. 

Operation: When Q-CHAIN is called by 
ALLOCATE MODULE (function code = post), the 
proper chain of Q-REFs is searr.hed to 
determine if there is a duplicate. If a 
duplicate is found, the offset of the PLC
viously loaded Q-REF is assigned and the 
duplicate Q-REF is side chained to the pre
viously loaded Q-REF. The length and alig
nment of the duplicate DXD is compared with 
those of the previously loaded DXD. If a 
conflict exists, and if the duplicate DXD 
requires more restrictive alignment 
(example: doubleword as opposed to word) 
or greater length than the first DXD, a 
diagnostic is issued: 

CZCDL022 PROCEEDING: CONFLICTING ALIGNMENT 
OR LENGTH WITH DXD(xxxxx) 

If no duplicate is found, Q-CHAIN calls 
RESOLVE Q-REF to assign an offset to the 
Q-REF. Once a value is assigned, Q-CHAIN 
chains the Q-REF into the proper primary 
chain. 

Eleven primary hash chains ax:e main
tained for posting Q-REFs. The method of 
hashing is similar to that employed by the 
LINK DEFs rout.ine for DEFs. Wnen postir,g ti 

Q-REF to the chains, its name is hashed and 
the proper chain is searched for a dupli
cate. If a duplicate is found in the 
chain, the Q-REF is not posted to the pri-

mary chain but is chained to a secondary 
chain. The base of this secondary chain is 
the sixth word of the Q-REF previously 
posted to the primary chain. (This form of 
chain is called a binary tree chain.> A 
typical chain might look like this: 

r-------_, 
I BASE I 

~ 
t-----_r------T---------T--- ---T---------, 
INAME 1iOFFSETILENGTH ~ I PRIMARY! SECONDARY I 
I I I ALIGNMENT I CHAIN I CHAIN I 
L------~------~---------~-------~----r----J 

r---~-_r-----_r---------T------_r--------_, 
INAME 1iOFFSETILENGTH ~ I 0 I 0 I 
I I I ALIGNMENT I I I l ______ ~ ______ ~ _________ ~ ______ ~ _________ J 

r--y---T------T---------T-------T---------, 
INAME 2 I OFFSET I LENGTH 6 I PRIMARY I SECONDARY I 
I I I ALIGNMENT I CHAIN I CHAIN I 
l------~------~---------~--r---~---------J 

r--j[--T------~--------T-------T---------, 
INAME 310FFSETILENGTH & I 0 I SECONDARY I 
I I ! ALIGNMENT I I CHAIN I 
L------~------~--------~-------~----r----J 

r--i-_r-----.-T---------~------T---------, 
INAME 310FFSETILENGTH ~ I 0 I 0 I 
I I I ALIGNMENT I I I l ______ ~ _______ ~ _________ ~ ______ ~ _________ J 

Q-CHAIN can also be called by DELETE 
MODULE, to delete Q-REFs. If a Q-REF is 
the last one of the same name on the chain, 
Q-CHAIN calls RESOLVE Q-REF to reclaim the 
oifset assigned to tilat Q-9.EF. 

I Once all Q-REFs in the CSD are pro
cessed, Q-CHAIN returns to the calling 
module. 

Section 2: Explicit Linking 55 



RESOLVE Q-REF (CGCRQ) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I r-----------------------~--------------------~ 
I CALLED I Purpose of Call I In I Out I 
r-----------+-----------------------------+------------------------+--------------------~ 
IGETMAIN IGet page for Pseudo Vector INumber of pages (1); I Location of assignedl 
I I Available Offset Table I protection class (2). I page. I 
I I (PVAOT) . I I I 
r-----------+-----------------------------+------------------------+-------------------.. -~ 
I FREEMAIN I Free PVAOT space. I Address a nd number of I I 
I I I pages. I I L ___________ ~ _____________________________ ~ ______________________ ~ ____________________ J 

RESOLVE Q-REF assigns or frees the off
set for a Q-REF. See Chart BG. 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GRl points to the following pa
rameter list: 

1. A function code (assign or free). 

2. A Q-REF. 

Exits: Normal only, no return code. 

Operation: RESOLVE Q-REF uses the Pseudo 
Vector Available Offset Table (PVAOT). 
PVAOT describes the storage areas available 
to combined dummy sections. Each entry is 
two words long; the first word contains the 
length of an area and the second word con
tains the offset from the beginning of the 
combined sections. The PVAOT entries are 
in order of ascending length. When search-

56 

ing PVAOT for an available offset, RESOLVE 
Q-REF finds an entry with the smallest 
length that will satisfy the request. It 
then adjusts the alignment to see if the 
entry will still satisfy the request. If 
the entry now fails, RESOLVE Q-REF serially 
examines the following entries until an 
acceptable entry is found. The needed 
length is subtracted from the entry's 
length, the offset is updated, and the 
table is reordered as required. 

When an offset is freed, RESOLVE Q-REF 
updates the appropriate offset and length 
fieldS. 

The space for PVAOT is acquired and 
initialized upon encounter of the first 
Q-REF. If the table becomes full, RESOLV~ 
Q-REF expands it with the requirement t.ha1 
it be contiguous in virtual memory. 

CGCRQ places the largest offset plus i t.s 
DXD's length in the PSECT of the dynamic 
loader for future reference by EXPLICIT 
LINK (CZCDLl>. 



• 

ATTACH TEXT (CGCCK) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
~----------t-----------------------------t------------------------+--------------------~ 
I LOADER IDiagnostic when pubi~c page IPointer to parameter I I 
I PROMPT I contains adcons. I str ing. I I 
t-----------t-----------------------------t------------------------t--------------------~ 
I SETPAGE I (l) Process a request for an IFainter to parameter I Non.::. I 
I I external page table I strinq; fu.nction code I I 
I I entry. I is a parameter. I I 
I I I I I 
I I (2) Issue pending SETXP I I I 
I I request when pac':ec1 I I I 
I I public CSECT text is to I I I 
I I be moved from 3cratch I I I 
I I page to unassigned VMA. I I I L ___________ i _____________________________ i _______________________ -L ____________________ J 

ATTACH TEXT is called to set up page 
table entries for text pages of a single 
control section (see Chart AD). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: Entrance to ATTACH TEXT is made 
with GR1 pointing to this parameter list: 

1. The address of the CSD whose section 
text is to be attached. 

2. The address of the PMD preface. 

Exits: Normal only, no return code. 

Operation: The virtual storage page table 
(VMPT) within the CSD is examined an entry 
at a time. This table is producef', as part 
of the CSD by the language processor that 
created the module. There will be a VMPT 
entry for each page of virtual storage 
spanned by the control section, whether 
hard text was produced for each page or 
not. A VMPT entry is two bytes and may 
contain either: 

1. X'FFFF', which indicates that no text 
page exists to match the virtual 
storage page. 

2. A number, not X'FFFF', which is the 
number of the text page in the data 
set relative to the first page of the 
control section text in the data set 
member. 

For example, a control section may contain 
two pages of code, an empty page (say, a DR 
4096C, to reserve the page), and ciuother 
page of data. The VMPT for such code would 
be: 

0000 
FFFF 

0001 
0002 

from which it may be seen that the first 
two virtual storage pages have correspond
ing text pages 0000 and 0001. The third 
page of virtual storage spanned by the con
trol section has no corresponding text 
page, and the last virtual storage page 
corresponds to text page 0002. 

The routine SETPAGE is called to process 
requests for a page table entry relating 
thA virtual storage address of a text page 
to the external storage address where the 
text page resides in the data set. The 
loader does not actually move text pages 
from their data sets into real storage. 
Instead, the external page table (XPT) 
entries are set to point to the data set 
text residence, while the page table entry 
is marked "unavailable." When the CPU 
ma~~s a virtual storage address reference 
to a virtual page whose page table entry is 
flagged unavailable, an interruption 
occurs. The resident supervisor processes 
the interruption by assiqning a real 
storage page to contain the virtual page, 
resetting the unavailable bit, filling in 
the main storage page address in the page 
table, and processing the corresponding XPT 
entry. If the XPT entry is zero, no action 
is required; that is, the virtual page has 
no corresponding external page. If the 
entry is not zero, it will contain the 
external or auxiliary storage address of 
the page that Ll~ resident supervisor pag
ing mechanism will transfer into the 
aSSigned real storage paqe. A bit is also 
contained in the XPT entry that when set 
causes the task monitor to enter the PAGE 
RELOCATION entrance (CZCDL4) of the loader 
to process adcons on the referenced page. 
This bit is known as the ·unprocessed by 
loader· bit and is set or reset by parame
ter when ATTACH TEXT calls SETPAGE. 

~Section 2: Explici t Linking 51 



For purposes of this discussion the fol
lowing fields of the page tables and XPT 
are discussed: 

1. The page table entries are one half
word. Bits 4-11 contain the main 
storage page address, while bit 12 is 
the wunavailable" bit: 

1 11111 
0123456789012345 

rLJ~t~:aJIOble bit 

2. 

o 

Rea I core page 
number 

The XPT entry is two words in length. 
The first word is the external storage 
address expressed as symbolic unit and 
relative page number on the unit. The 
second word is a series of flag bits 
including the unprocessed by loader 
bit: 

15 16 31 

Symbolic Unit Number Relative Page Number 

01234567 

II 
L Unprocessed by Loader Bi t 

ATTACH TEXT examines Each VMPT entry in 
the argument CSD. There will be a VMPT 
entry for each page of virtual storage to 
be spanned by the control section. This 
count is easily determined by rounding up 
the text length to the next integral page. 
The CSD field, TDYCTL, contains the number 
of bytes of virtual storage to be spanned 
by the control section. Adding 4095 to 
this value and dividing by 4096 (right 
shift of 12) produces the page count and 
VMPT entry count. 

ATTACH TEXT checks the VMPT entry for 
all Fs, in which case the SETPAGE linkage 
is skipped, and the next VMPT entry is 
examined. When the entry is discovered to 
contain a relative text page number, the 
number is used as an index into the extern
al and internal Relocation Dictionary (RLD) 
tables. There will be no RLD entry for a 

58 

given virtual page if there is no corres
ponding text page. 

The RLD tables are constructed so that 
the modifier pointers are in order by text 
page number, that is, the first pointer is 
for page 0 of control section text, the 
second for page 1 of control section text, 
etc. Virtual pages with no corresponding 
text pages have no pOinters in the RLD. 
(Such pages cannot contain adcons, so RLD 
entries are unnecessary.) The RLD is kept 
as compact as possible by including poin
ters only for those text pages through the 
last one in the control section to contair; 
adcons. The pointer for a text page with 
no adcons will paint to that portion of the 
RLD where the modifiers would have been 
placed had there been any. In the case of 
a control section with no external adcons, 
for example, the external RLD would consist 
of a single pointer and no modifiers: 

COllnt = a 0000 0002 

Poi!)ter points to where modifier(s) would have been placed. 
In this case, it point> to the end of the external RLD. 

Referring back to the earlier example, 
aSGuming that only pages 0000 and 0001 con
tain external adcons while pages 0000 dod 
0002 contain internal adcons, the RLDs 
would look like this: 

External RLD: 

-
0003 0006 

0002 GaGE ~ - c' 

Poge 0 Modifier .. 
~ "/,(yFf'; r'o ;: 

Page 0 Modifier T(';.~ Poc"- ( 

Page 0 Morl i fi (II 

Page 1 Mccifier f--. 
t 7. !\\~1(:!.i' 

(" Ie", Pa,}e 1 
Page 1 Mod;f(er 

Note that since there are no external 
adcons on text page 2, there is no modifier 
pOinter for that text page in the Ex~erna] 
RLD. 



Internal RLD: 

Pointer for Text Page 0 0002 OOOA 

Pointers Pointer for Text Page 1 0000 OOOE 

Pointer for Text Page 2 0001 OOOA 

Page a Modi fi er 

Modifiers Page 0 Modifier 

?r:me 2,"Aodifier 

'---

~ Count:=: 2 

I 
-1-., Count=O 

I I 
-I·-~ Count=1 

.. 

I--

I I 
.J I 

1 

2 Mod i fi er5 for 
Text Page 0 

__ , 1 Modifier for 

TE':>...t ?age .1 

Note that text page 2 corresponds to 
virtual page 3, and that there i~, no poj nt
er for vacuous virtual page 2. 

The location of the last pointer within 
an RLD is determined from the fact that the 
last pointer and the first modifier are in 
adjacent words. The first pointer in each 
RLD points to the first modifier; that is, 
the location of the second half of the 
pointer plus the contents of the second 
half of the pointer locate the first modi
fier. ATTACH TEXT makes this computation 
for each RLD separately and uses this loca
tion to delimit the end of the RLD 
pointers. 

If a text page exists, ATTACH TEXT will 
call SETPAGE with the unprocessed by loader 
parameter set, if a nonzero modifier count 
for the current page is discovered in eith
er RLD. ATTACH TEXT will call SETPAGE with 
the unprocessed by loader bit Feset in the 
event that in both RLDs either: 

1. The current text page falls beyond the 
last page for which there exists a 
modifier pointer. 

2. The current text paqe has an RLD modi
fier pointer but with a zero modifier 
count. 

If A~TACH TEXT discovers a public page 
with adcons, a diagnostic is issued, the 
load error switch is set, and ATTACH TEXT 
calls SETPAGE with the unprocessed by load
er bit reset • 

When private control section packing has 
been specified and the unprocessed by load
er bit is ·on- at page relocation time, 
thi~ inforMs the lo;).de:.: t.hat some of the 
text page to be relocated may not have been 
loaded on the page. The last text page of 
any control section group (if this last 
page has a corresponding text page) has the 
unprocessed by loader bit set uncondition
ally since this page may be a packed one. 
If the control section to be attached is 
packed, the virtual storage address of its 
scratch page is obtained from the relevant 
symbiont entry in the vacant space table. 
The control section text is attached to the 
scratch page via a call to SETPAGE. The 
text is properly packed and the scratch 
page released at page relocation time. For 
the calls to SETPAGE mentioned above, 
ATTACH TEXT supplies a function code speci
fying that a request for an external page 
table be placed in a stack which SETPAGE 
maintains. 

For public packing, the unprocessed by 
loader bit has no significance. If control 
sections do not begin on internal page 
boundaries, the adjustment must be made by 
ATTACH TEXT. ATTACH TEXT calls SETPAGE, 
giving a function code specifying that any 
pending requests to build external page 
table entries must be performed. Then the 
<.:oni.:1:01 section tex-t is :;.t-.tached to a 
scratch page and immediately transferred to 
the assigned storage area in the packed 
page. 

Section 2: Explicit Linking 59 



FIX PMD (CGCCJ) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~-----------------------~--------------------~ 
i CALLED I Purpose of Call I In I Out I 
r-----------+-----------------------------t------------------------+--------------------~ 
iSELECT HASHISelect hash table pointer forlCSD pointer. IHash table pointer. I 
I I posting of complex DEFs (in- I I I 
I I cluding module name DEF). I I I 
r-----------+-----------------------------+------------------------t--------------------~ 
ICHECK DEF ICheck legality module name IModule name, CSD lIllegal DEF exit. I 
i LEGAL I DEF. I pointer. I I 
r-----------t-----------------------------t------------------------t--------------------~ 
IHASH SEARCHIPost module name DEF in IModule name DEF pointer, I Duplicity I 
I Iselected hash chain. Ihash table pointer. lindication. I 
r-----------+-----------------------------+--------- ---------------+----------------.--- '-'1 
I LOADER IDiagnostics on rejected IPointer to parameter I I 
I PROMPT Imodule name. I string. I I 
r-----------t-----------------------------+------------------------t--------------------~ 
I DELETE IRemove PMD from TDY when all IPMD address. I I 
I MODULE I control sections rejected. I I ! 
r-----------t-----------------------------+------------------------+--------------------1 
ILINK DEFS ILink complex DEFs into IPointer to first complexl I 
I Iselected hash chain. IDEF, DEF count. I 1 
r-----------+-----------------------------t------------------------+---------------------1 
IFIX IProcess complex DEF RLDs and IModifier count, pOinter I I 
I I module name RLD. I to first modifier, PMD I I 
I I I address. I I L ___________ ~ _____________________________ ~ _______________________ ~ ____________________ J 

FIX PMD processes all the complex DEFs 
for a module including the module name DEF 
(see Chart AO). 

Attributes: Privileged, public, system, 
reenterable, recursive. 

Restrictions: Internal to loader, not 
available to other system components. 

Entries: FIX PMD is called with GRl point
ing to the PMD preface. 

Normal - GR15 = 0: module not deleted. 

Lrror - GR15 = 4: module deleted because 
all control sections 
rejected. 

Operation: FIX P~ill makes four separate 
passes on the CSDs of a module. 

Pass 1 finds a control section to be 
associated with the module name (standard 
entry point) DEF. This involves locating 
the first nonrejected PSECT (or CSECT if no 
PSECT found) and saving its base address. 
During this process, if it is discovered 
that all control sections have been 
rejected, the entire module is dropped with 
a call to DELETE MODULE. In this case, 
GR15 is set to 4, and the exit is taken. 

60 

The successful locating of such a con
trol section is followed by a legality 
check on the module name. If this tes~ 
passes, an attempt is made to insert the 
name in the hash chain. If the name is 
either illegal or duplicately defined, a 
diagnoptic is issued advising the user that 
the standard entry point is not defined for 
this module. If the module name is posted 
successfully, the CSD link in the module 
name DEF entry is set to X 'FFFFFFFD , to 
flag the DEF as a module name DEF whose 
value is not yet computed. The CSD pointer 
is saved in recursive storage for later use 
in plugging in the module name DEF CSD 
link. 

Pass 2 calls LINK DEFs to link the com
plex DEFs in each CSD into the hash chain 
and also to set the CSD link to 
X'FFFFFFFF'. DEFs not posted because of 
illegal or duplicate names will have eSD 
links = 0 on return from LINK DEFs. 

Pass 3 calls FIX to process the complex 
DEF modifiers for each nonrejected control. 
section. 

Pass 4 examines all the complex OEFs f,}l 

CSD links equal to all 'F's and changes 
these links to point to the defining CSD. 
Complex DEFs with zero CSD links will be 
unmodified. 

This four-pass design is necessary to 
avoid possible looping definitions of com-



plex DEFs. Loops could occur because FIX 
PMD calls FIX, which, in the processes of 
resolving a REF for a complex DEF, might 
call DEFINE REF, which calls RESOLVE SYM
BOL, which could again call FIX PMD. Thus, 
the following situation could occur: 

Module A has a complex DEF, Y, referring 
to symbol X. Symbol X is contained in mod
ule B, which is then loaded and its complex 
DEFs processed; this involves a reference 
back to undefined symbol Y in module A. To 
protect against this circular definition, 
the device of setting the high-order five 
digits of the CSD link to all X'F's is emp
loyed. DEFINE REF always examin~~ the CSD 
link in the defining DEF, and if it notes 
that the high-order five digits are all 
X'F's, it knows a IO(Jping possibility 
exists and therefore calls the symbol unae
fined. The lo~orde4 three digi~s are used. 
to distinquish between complex DEFs and the 
module name DEF. complex DEFs axe identi
fied by the low-order three digits = 
X'FFF'; the module name DEF is identified 
by X'FFD'. This distinction is made solely 
for diagnostic purposes, so that when any 
REF is defined by a DEF with such a CSD 
link, it will be possible to provide more 
detailed diagnostic information. 

Note that the CSD link is not set for 
any complex DEF in the module until all 
complex DEFs have been computed by FIX. 
This also prevents some situations that 
could be resol va.ble but cannot be dis tin-

FIX (CGCCL) 

quished from the looping case without 
exceedingly costly checks. 

FIX PMD's final task involves processing 
the complex DEF for the module name. 
First, the module name CSD link is checked 
for zero indicating rejection in pass 1; 
that is, the CSD link for the module name 
DEF is set to point to the CSD of the con
trol section whose base defines the R-value 
for the DEF. In the case of module name 
rejection, no further processing takes 
place. If the module name CSD link is not 
zero, the R-value is installed, using the 
CSD pointer saved during pass 1. Once the 
module ~ame R-value is set, the V-value is 
determined by calling FIX to compute the 
DEF va lue. The CSD li nk = X' FFFFFFFD • 
func·t.ions likE! t-he all IF's CSD link; that 
is, to catch possible looping definitions 
in a module loading cascade started by cal
ling FIX. 

Associating the module name DEF with 
some control section in the module causes 
the module name to assume, and be governed 
by, the attributes of that control section. 
An example of such effect would be the 
posting of the module name DEF in the sys
tem hash table if the system attribute bit 
is set in the associated control section. 

Comments: See "Resolve Symbol" for discus
sion of recursive chain of routines that 
includes FIX PMD. 

r-----------T-----------------------------T-----------------.----------------------------, 
I I I Parameters I 
I ROUTINES I ~------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
r----------+---.--------------------------+----------.---------------+--------------------~ 
IDEFINE REF I Provide value of undefined tREF pointer, CSD I I 
I tREF. \pointer. I I l ___________ .L ___ . _____ . _______________________ .L-_________________ . __ . ___ .L ____________________ J 

FIX is called to process the RLDs for 
either external REFs, internal REFs, or 
complex DEFs for a single page of text or 
PMD (see Chart AN). 

Attributes: Privileged, public, system, 
reenterable. recursive. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: Entrance is made to FIX with GR1 
pointing to the following list: 

1. A pointer to the page to be fixed 

2. Count of modifiers 

3. Pointer to the first modifier 

4. A pointer to the base of the REF table 
to which the modifiers refer 

5. A pointer to the CSD containing the 
REF entry 

Exits: Normal only, no return code. 

Operation: FIX is called separately for 
each text page to be fixed and for each 
type of REF, external and internal. FIX is 
called again to compute the complex DEF 
values within the PMD. This is also done 
by pages individually. 

Section 2: Explicit Linking 61 



The first step in fixing is to fetch an 
RLD modifier (Figure 10), according to the 
RLD modifier pointers. For processing, the 
modifier is unpacked into its component 
parts. The length field, L, determines the 
number of bytes of text (or PMD) to be 
modified. A zero length field is inter
preted as a four-byte modification. This 
length is taken to mean the number of bytes 
beginning with the byte pointed to by the 
"byte" field. 

o 2 16 

REF Number 

20 

Byte Displacement 
from Page Origin 

Figure 10. RLD Modifier Format 

31 

FIX now computes RN, which is the "REF 
number" portion of the modifier multiplied 
by the size in bytes of a REF ent -y. (The 
REF number is the ordinal position of the 
REF in the REF table. The numbering begins 
with zero and ascends in increments c_ 1.) 

The modifier operation, T, determines 
the modification to be effected. A value 
of 1 means addition of the REF value to the 
text (or PMD) slot. A value of 2 means 
subtraction of the REF value from the text 
(or PMD) slot. A value of 3 means to sub-

DEFINE REF (CGCCY) 

stitute in the text slot the R-value of the 
REF. 

The byte pointer, B, is the relative 
location within the page of the word to be 
modified. 

Unpacking completed, FIX fetches the -ry 
link of the REF at the location determi. 
by adding RN to the base of the REF table. 
If this CSD link is nonzero, this means the 
REF is already defined. The modification 
proceeds by performing the modifier opera
tion as determined by T on the L right
adjusted bytes at location B plus the base 
of the page being fixed. The REF value to 
be applied is right-aligned with the text 
-field to be modified, with high-end trur 
tion applied for text fields less than i 

full word. 

If the CSD link in the REF entry is 
zero, this indicates that the REF has not 
yet been satisfied. FIX proceeds then to 
call DEFINE REF, with the REF name as the 
main argument in order to set the REF's 
V-value, R-value, and CSD link in the REF 
entry. REFs will always be defined when 
FIX is called during page relocation. 

Comments: See- RESOLVE SYMBOL for discus
sion of recursive chain of routines that 
includes FIX. 

r-----------T-----------------------------T----------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
r-----------t-----------------------------t------------------------t--------------------~ 
I RESOLVE 10btain value of REF symbol. IREF name, CSD address. IPointer to resolving I 
I SYMBOL I I I DEF entry in TOY. I 
t-----------t-----------------------------t------------------------t---------------------~ 
I LOADER IDiagnostics on REF definitionlPointer to parameter I I 
I PROMPT lanomolies. I string. I I L ___________ ~ _____________________________ ~ ________________________ k ____________________ J 

DEFINE REF is called to locate a DEF 
entry whose name matches the input REF name 
(see Chart AG). 

Attributes: Privileged, public, system, 
reenterable, recursive. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: On entrance to DEFINE REF, GRl 
contains the address of the following pa
rameter list: 

1. The pointer to the REF entry to be 
defined. 

62 

2. The complex DEF switch. 

3. A pointer to the CSD containing the 
REF entry. 

Exits: Normal only, no return code. 

Operation: RESOLVE SYMBOL is called to 
locate a matching DEF. If the return is 
"not found,· a diagnostic is emitted, a 

.dummy value substituted, and the load e c 
switch is set. A found return from RESOLVE 
SYMBOL is followed by a sequence of checks. 

First, the CSD link of the definlng DEF 
entry is examined for the high-order fi
digits = X'FFFFF'. If this condition 
occurs, a possible loop has been uncovered. 



A diagnostic is issued advising tP3.t. a REF 
has been defined by an as-yet-undefined 
complex DEF. Again, a dummy value is sub
stituted, and the load error switch is set. 

If the CSD link is a.legitimate link, 
the complex DEF switch is checked. If the 
switch is set (indicating the processing of 
complex DEFs), a check is made to see if 
the defining DEF, although properly 
defined, is a complex DEF. If it is, the 
definition is made properly, but the user 
is warned. This warning is issued because 
following the link-editing of two modules, 
one of which has a complex DEF defined by a 

ADD MUTE (CGCDG) 

..:::omplex DEF in the other, such definition 
will not be possible because of the all 
bits protection device. 

Following all diagnostic checks, the REF 
entry V-value, R-value, and CSD link are 
filled in from the defining DEF entry. 
Finally, the use count in the defining 
DEFfs CSD is incremented to reflect this 
implicit reference. 

comments: See ~RESOLVE SYMBOL- for a dis
cussion of the recursive chain of routines 
that includes DEFINE REF. 

r--------T--·-------------------------y-°----------------------------------------, 
I I I Parameters I 
I ROUTINES I t--0--------------------"-T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
~----------+--------------------------+-----------------------+--------------------~ 
IGETMAIN IGet page for MUT table when INumber of pages (1); ILocation of assignedl 
I I current MUT full. IPr:-otection class (2). I page. I L ___________ .1. ____________________________ .1._o _____________________ .1. ___________________ J 

A new module usage table entry (MUTE) is 
constructed, and the calling SVC is dis
armed (see Chart AA). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module; 
not available to other system components. 

Entries: GRl points to a parameter list 
with the following: 

1. Location of SVC 

2. calling PMD pointer 

3. Called PMD pointer 

Exits: Normal only, no return code. 

Operation: Space for the new MUTE is allo
cated in the module usage table (WJT) at 
the location indicated in the MUT available 
space pointer. If there is no available 
space, a new page is acquired by GETMAIN, 
and all of its space is linked into the 
available space chain. The new MUTE is 
constructed and linked, as follows: 

1. It is linked into the PAPA chain of 
the PMD of the module that initiated 
the explicit CALL. The head of the 
PAPA chain in the calling PMD preface 
pOints to the new MUTE's forward PAPA 
link word. (See Appendix B for 
description of MOT linkage.) 

2. It is linked into the BABY chain of 
the PMD that was explicitly called. 
The head of the BABY chain in the 
called P~~ preface now points to the 
new MUTE's forward BABY link word. 

3. A pOinter to the called PMD is 
inserted in the new MUTE. 

4. The virtual storage address of the SVC 
that initiated the CALL is inserted in 
the new MUTE. 

5. The SVC that initiated the explicit 
linkage is disarmed with a NOP. 

6. The MUT count in the called PMD is 
increased by one. 

Section 2: Explicit Linking 63 



LOADER PROMPT (CGCDPR) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I t------------------------r--------------------~ 
I CALLED I Purpose of call I In I Out I 
t-----------+-----------------------------+------------------------+--------------------~ 
I PRMPT I Issue diagnostic. I Address of message ID. I I L-__________ ~ _____________________________ ~ ________________________ ~ ____________________ j 

LOADER PROMPT provides a centralized 
routine for output of loader diagnostics 
through PRMPT, thus making unnecessary the 
repetition of the costly PRMPT linkage at 
each diagnostic point (see Chart AV). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to loader module~ 
not available to other system components. 

Entries: LOADER PROMPT is entered by 
restricted linkage. 

GR1 contains the address of the parame
ter string. 

RB contains the address of the loader 
PSECT, CZCDLP. 

SETPAGE (CGCSP) 

Routines Called: PRMPT, with the address 
of the parameter string in register 1. 

Exits: Normal only, no return codes. 

Operation: The address of the parameter 
list for the diagnostic is passed in 
register 1. Symbolic general register RE 
is used to cover the loader's PSECT into 
which the variable portion of the PRMPT 
macro instruction is expanded. Register 1] 
may not be covering CZCDLP, but will be 
covering the save area currently available 
when the PRMPT linkage is effected. For 
example, LIBE SEARCH, which calls LOADER 
PROMPT, operates with GR13 covering the 
loader's second save area; other routines 
that call LOADER PROMPT operate with GR13 
covering the first save area, that is, the 
origin of CZCDLP. 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I t------------------------r--------------------~ 
I CALLED I Purpose of Call I In I Out I 
r-----------+-----------------------------+------------------------+--------------------~ 
I ABEND I (1) Invalid return code from IPointer to ABEND mes- INane. 
I I GETNUMBR. Isage. I 
I 1(2) RVN found in external I I 
I I page entry in RESTBL too I I 
I I large. I I 
I I (3) Reference beyond data set I I 
I I end (RPN requested too I i 
I I large) • I I I 
r-----------+-----------------------------+------------------------+--------------------1 
IGETNUMBR ICorrect the "first external IPointer to word with DCBIRelative page numberi 
I lpage entryft locator field laddress. lof page requested I 
I I in the member header of the I I into data set. i 
I I RESTBL. It also converts I I I 
I I relative page number into I I I 
I Imember to relative page I I I 
I I number into data set. I I I 
t-----------+-----------------------------+------------------------+--------------------~ 
IINTLK IPlace Wwrite" interlock on IPointer to a list of I None. ! 
I I RESTBL header. I pointers. \ I 
r-----------+-----------------------------+------------------------+--------------------1 
IRLINTLK IRelease "write" interlock on IPointer to a list of INane. I 
I IRESTBL header. I pointers. I I 
r-----------+-----------------------------+------------------------+--------------------1 
ISETXP \Build one or more external IPointer to a parameter INane. i 
\ \page table entries. Ilist. \ i L ___________ ~ _____________________________ ~ ________________________ ~ ____________________ J 

64 



SETPAGE will accept requests to buIld 
external page table entries and will stack 
these when possible. SETPAGE will call a 
supervisor routine, SETXP, to have external 
page table entries built for contiguous 
virtual storage pages represented L~·3., t:pe
cial parameter list. (S'ee Chart BK.) 

Attributes: Privileged, public, read-only, 
system. 

Restrictions: Internal to dynamic loader 
module; not available to other system or 
user modules. 

Entries: Entered using -INVOKE CGCSP$-. 

Input: A parameter list and a set of 
flags: 

1. GR1 points to the following two-word, 
one-byte parameter list: 

2. 

Word 1: Pointer to a DCB (if function 
code 00). 

• DCBN (halfword) - specifies the 
relative page number into the 'member 
which is requested. 

• DCBOP (halfword) - specifies opera
tion performed (that is,_ value of 
X'8000' is always guarantpEtl rnei:ming 
-input-; if value of X'4000' is pre
sent (giving X'COOO'), ~hen 

"unprocessed-by-Ioader- flag setting 
for the requested page is wanted. 

• DCBNI (halfword) - not used by SET
PAGE. It is changed by GETNUMBR 
when it is called. 

Word 2: VM address for page 
requested. 

Byte: A function code for SETPAGE: 

00 - Process a page request. 

04 - Issue a pending SETXP. 

08 - Release the write inter
lock on the RESTBL of the 
present (shared; library. 

SETPAGE flags (DYSPFLGS): 

Output: i'ne desired fUllction has been per
formetl; one or more of the SETPAGE flags 
will have been set on. 

Normal - Return via RESUME macro; no 
return code. 

Error - ABEND completion code 2, module 
name, and library DDNAME are 
supplied. 

Reasons: 

1. Invalid return code from CZC001 
(GETNUMBR) • 

2. RVN (relative volume number) 
found in external page entry 
(EPE) in RESTBL was too large. 

3. Reference beyond data set end -
RPN (relative page number) passed 
in DCBN was too large for data 
set. 

Operation: SETPAGE will examine the func
tion code it receives and will act upon it 
in one of these ways: 

00 - Process a page request as described 
later. 

04 - Issue any pending SETXP request and 
return. 

08 - Unlock the RESTBL header of a 
shared library and return. 

page requests (code 00) are processed as 
follows: 

If SETPAGE has not been called yet for 
this member (module), SETPAGE will calcul
ate the address in the RESTBL (of the 
library used) of the first external page 
entry for the member. Also, the limiting 
address for EPEs will be calculated and 
saved for later error checking. GETNUMBR 
(CZCOO) will be called to adjust the mem
ber's header in the RESTBL if the member 
EPEs had been moved. 

With the 1st member EPE address known, 
SETPAGE will now locate the external page 
entry (EPE) in the RESTBL for the page 
requested by SETPAGE's caller. The rela
tive page number in the member is passed to 

DYSPCALM (X'Ol') - SETPAGE called ear- SETPAGE. SETPAGE will use this number 
lier (same module). • I times the proper EPE byte size to look past 

the 1st member EPE for the desired page's 
DYSPSXPM (X'02') - There is a pending EPE. 
SETXP. 

DYSPSHRM (X'04') - The RECTBL of the 
present (shared) library is locked 
(write interlock). 

Having located the proper EPE, SETPAGE 
will place the external page number from 
the EPE in the next entry being built for 
the stack of SETXP parameters. The rela-

Section 2: Explicit Linking 65 



tive volume number (RVN) in the EPE must be 
used to set into the new SETXP entry the 
proper symbolic device address (SDA) on 
which to find the external page. If the 
RVN is the same as for the last call to 
SETPAGE, then the SDA last placed in the 
SETXP entry build area is still valid, 
otherwise, the RVN must be used to locate 
the proper SDA in the public/private volume 
table (PVT). This SDA found is placed in 
the SETXP entry being built. 

SETPAGE will stack the SETXP page requ
est entry with any preceeding requests if 
there are any and if the stack is not full 
(1021 entries). As it becomes necessary, 
SETPAGE will issue a SETXP request and 
empty the stack of page requests. Multiple 
page requests must refer to contiguous 
ascending VM addresses, so such a check is 
made before each new entry is added to the 
stack. If ·unprocessed-by-loader- marking 

66 

is not wanted for a page, a flag is put in 
the page's SETXP stack entry to suppress 
UPL bit setting by SETXP. 

Note: The following are control blocks 
used by SETPAGE: 

CHADCB - Data Control Block (VPAM tor VSP 
member) 

RHD - RESTBL (Relative External 
Storage correspondence Table) 
header 

DHD - DCB header (in RESTBL) 

MHD - Member header (in RESTBL) 

EPE - External Page Entry (in RESTBL) 

PVT - Public/Private Volume Table 



; 

SECTION 3: PAGE RELOCATION 

· . 
r-----------T-------------------- --------'---T- -----------:--------------------------------, 
I I I Parameters I 
I ROUTINES I t------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
t-----------+-----------------------------t------------------------+--------------------~ 
IMAP SEARCH ILocate CSO of control sec~ionlVMA of Page. leso address. I 
I I containing page to be re- I I I 
I I located. I I I 
t----------t-----------------------------t------------------------t-------------------~ 
I FIX I Process external RE.F F'LO and I Modifier count, Pointer I I 
I I internal REF RLD. Ito first modifier, Page I I 
I I laddress. I I 
r-----------t-----------------------------t------------------------t--------------------~ 
IFREEMAIN IRelease scratch pages. IAddress and number of I I 
I I Ipages. I I L __________ .1. _____________________________ .1. _________________________ .1. ____________________ J 

PAGE RELOCATION is called by the task 
monitor whenever a "page unavailable" 
interrupt occurs, and the referenced page 
is also "unprocessed by loader" (see Chart 
BC and Figure 11). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Entran!7e by type- I 1 in!<age 
is restricted to the task monitor. 

Entries: The input parameter to PAGE RELO
CATION is in GRl and is the addl.ess of a 
cell that contains the virtual storage 
address that caused the interrupt. This 
address is used as an input argument to MAP 
SEARCH to locate the CSD of the control 
section that contains this address. 

Exits: Normal only, no return co~p.. 

Operation: Once the CSD is located by MAP 
SEARCH, the base address of the control 
section is extracted from the CSD and sub
tracted from the argument address. This 
difference is shifted right 12 places to 
obtain the page number of the referenced 
page, relative to the first virtual storage 
page of the control section. This page 
number is used as an index into the VMPT. 
The text page number is extracted from the 
VMPT entry and used as a relative index 
into the external RLD to locate the correct 
modifier pointer. The pointer for the sub
ject page is obtained and the count 
extracted; then the VMA of the first modi
fier is computed from the pointer. FIX is 
called to process th.e external lnoc1"cfiers. 
The internal RLD is now processed in a 
fashion parallel to U.a,t for the cxt~rnal 
RLD. FIX is called again for the internal 
modifiers. 

For example, PAGE RELOCATION is entered 
with an argument VMA = 8A32E. MAP SEARCH 
is entered and returns with a pointer to 
the related CSD from which the base address 
of the CSECT is extracted = 88000. The 
difference is computed. 232E, yielding a 
relative virtual page number equal to 2. 
Assume that the VMPT for this CSECT looks 
like: 

r--·-----------------T--------------------, 
IFF F FlO 0 001 
t--------------------t--------------------~ 
I 0 0 011 F F F F I L ___________________ ~ ___________________ J 

The relative text page number is extracted 
from VMPT entry #2, giving 0001. The numb
er 1 is a ·word· index into both the 
external and internal RLDS; that is, the 
index must be multiplied by 4 to compute 
the offset in bytes from the origin of each 
of the RLDs to the modifier pointer for the 
argument page. 

When privage control section packing is 
specified, PAGE RELOCATION is aware that 
some of the text pages to be relocated may 
not have been loaded into the page. 

Any privage page that is being packed 
in~o iJ set unprocessed by the loader. The 
actual movement into its proper place in 
virtual storage takes place when the page 
is r.efere~c~d< At this time all control 
sections to be packed into the page are 
read In';:o a scratch Fage of virtual storage 
and transferred to their aSSigned virtual 
storage address in the packed page. 

Section 3: Page Relocation 67 



Q\ "J 
<Xl ..... 

l.Q 
t:: ., 

.... 

i~aiI"r ··~i~ .... ljb~ry, Page El<plicll looder -- Explicit f------------Moirtt.rtQftca Re location linkif19 logoff Unlinking Ie.!""'" )~~r"" .. ' .. , 'i" 
' . 

Cl) 

I-' 
I-' 

to 
III 

1.0 

.--J L~ 
· .. ::;dd ,~ I~~~ Modify Delete 

'M.!te User Caller MUT Us. Selected 
Counts N\utes Counk Counts Mut .. 

Cl) 

:.u 
Cl) .... r----- ---~-~-.' ,----- . -
0 
C'l 
\II 
rt r-1---------------- -- Resolve ..... 
0 ::s 

I Symbol 

~ I 
-L I legend: 

I 

C I 11-- ~T1 Ube \.ood Fix ~~ - - - --- .-- A Hocate r------.- -l Set Search 
I Search PMD PMD f----- - Madule r----c Flags 
I 

I 
I II I ';S- f I I Callable 

I 
I i L L---~ ------~---- from 

I I I outside 
I ~~_"_~_ 

the loader I I I I 

I I j I ~ I 
module 

I 
I 
I 

c;., I I .~" G.: ,,.. 
t I 

D I 

I ~ 'Delele I Fix 
I 

PMD Der. I I PCSA Diog Storage Text ·Modul. 
......... 

I 

~ I! L_ I i Callable 

I 
I only from 

I I inside 

I i--- ' -' L I the loader 

I module 

I 
I ! I , .- f--
I 1---- --
I 

J j L, 1.--U- -- t 
Define Set- Check 

Hash Map-Del Q-Chain SRCHPACK Ref 1'<'9" legal Search Search 

- r---

j iT----- - -- ----
_.-----ill I _n 

---- ._--
,,-_._-- . -

1 
._- ---

'-------- -'-- -'--

L 
L - ..... --~--- l.J:Ioder r-- Select Resolve Drop 

Prompt I- ........ Hash Q-Ref anARCH 
PMD 

- -- -



When the relocation entrance of the 
loader is called, the low-order 12 bits of 
the referenced virtual storage address are 
cleared and MAPSEARCH is called to locate 
the CSD of the first control section 
assigned to the page. -The adcons in the 
page are then relocated in the conventional 
manner. 

Next, the packing table is searthed {b:t· 
storage key) for a hORt entry for the 
referenced page. If a host entry exists 
for this page, all of the remai'1;ng control 
section text is processed, one CSD at a 
time, by processing each subseque.t ~}~~ 
biont entry. The text is moved from the 
scratch page to the patked page and its 
adcons are relocated. 

Relocation is complete when the last 
symbiont entry has been processed or, if no 
packing entry exists, when the referenced 
page has been relocated. 

Each control section is packed before 
any scratch pag'~s are released. Coritiguous 
pages of storag,~ are released in a block 
with a single call to FREEMAIN. Then the 
host and symbiont entries (if they exist) 
are deleted and linked back into the avail
able space table to prevent later packing 
into the page. 

comments: The techniques used in proces
sing the RLDs are discussed in the follow
ing paragraphs. 

Each RLD is divided into two parts, the 
first of which contdins a set of point~rs, 
the second a set of modifiers. The RLD is 
organized by related control section text' 
page. Modifiers exist in the RLD only for 
those text pages that contain adcons 
requiring relocation. A pointer exis~.s for 
each page of the control section's text, up 
to and including the last page that con
tains a relocatable adcon. The RLD poin
ters are in linear order by relative text 
page number -- the first pointer is for 
text page 0; the second, for tex~ page 1; 
etc. 

Each pointer has two parts. The upper 
half contains the modifier count for the 

related page; the lower half contains a 
pointer (relat.iveto this halfword itself) 
to the first of the group of modifiers for 
this page. If a pOinter has a count field 
of zero, the pointer field will point to 
the location where the modifier group would 
have been located had there been any modi
fiers. The modifiers for each RLD are 
packed in such a way that the first modifi
er is in the word irful1ediately following the 
last pointer. Furthermore, the last modi
fier for the complex DEF RLD immediately 
precedes the first pOinter of the external 
REF RLD, and the last modifier for the 
external REF RLD immediately precedes the 
first pointer of the internal REF RLD. The 
last modifier of the internal REF RLD imme
diately precedes the virtual memory page 
table. 

Given the or~g~n of any RLD, the end of 
the RLD is located as follows: The first 
RLD pOinter contains a relative pointer to 
the first modifier, which immediately fol
lows the last pointer. Now the contents of 
the lower half of the first pointer are 
added to the location of the first pointer. 
This computes the location of the lower 
half of the last pointer. (Recall that the 
pointer is relative to the lower half of 
the pOinter word and, therefore, adding the 
pointer to the location of the upper half 
of the pointer -- as is done here -- pro
duces the location that precedes the modi
fier by two bytes. In the case of the 
first modifier, this locates the middle of 
the last pointer.) Now the modifier count 
is obtaine~ from the upper half of the last 
pointer. (An index of -2 is used to back 
up from the lower half of this last pointer 
to obtain the modifier count from the upper 
half.) The modifier count is multiplied by 
four (the size in bytes of each modifier) 
to obtain the size of the last group of 
modifiers. Now it remains to compute the 
origin of this last group of modifiers by 
adding the location of the lower half of 
the last pointer (already computed above) 
to the contents of the lower half of this 
same pointer. The size of the group is 
added to this computed origin, and the sum 
is the location of the first byte past the 
end of the RI.D. 

Section 3: Page Relocation 69 



The RLD mOdifiers are discussed more 
fully in Appendix B and in the description 
of the routine FIX. . 

A sample RLD: 

Complex 
DEF RLD 

External 
REF RLD 

Internal 
REF RLD 

70 

r----------------------, 
I I 

Complex I 0000 0002 I No Complex DDEFs 
DEF Pointer I I 

~----------------------~ 
I I No External Modifiers 
I 0000 OOOA I for Page 0 
t----------------------~ 

External I I 1 External Modifier for 
REF Pointers I 0001 0006 I Page 1 

~----------------------~ 
I I 2 External Modifiers 
i 0002 0006 I for Page 2 
t----------------------~ 
I I 
I Modifier for Page 1 I 
t----------------------~ 
I I 
I Modifier for page 2 I External Modifiers 
t----------------------~ 
I I 
I Modifier for Page 2 I 
~----------------------~ 

Internal I I 2 Internal Modifiers 
REF Pointer I 0002 0002 I for Page 0 

t----------------------~ 
I I 
I Modifier for Page 0 I 
r----------------------~ Internal Modifiers 
I I 
I Modifier for Page 0 I 
t----------------------~ 
I I 
I VMn I 
I I 



SECTION 4: EXPLICIT UNLINKING 

EXPLICIT UNLINK (CZCDU1) 

r-----------T--'---------------------------T---------------------------------------------, 
I Routines I I Parameters I 
I Called in I ~-----------------_,_--------------~ 
I Pass 1, Purpose of Call I In , Out , 
~-----------+----------------------------+------------------------+------------------~ 
I MAP SEARCH I I.ocat~ :::3D of con~r9J sect,ion I VMA of adcrm.gxoup. I CSD address. I 
, I containing DELETE adcon , I I 
I I group. ! I I 
r-----------+----------------------------+-----------------------+--------------------~ 
ISET SEARCH ISelect hash table pointer forlArgument symbol, CSD IHash table pointer. I 
I FIAGS Ilooking up argument symbol I pointer. I I 
I I in DELETE adcon g=o.Jp. . I I I 
~---------+-----------------------------+------------------------+--------------------~ 
IHASH SEARCHILook up argument symbol in ISymbol name, hash table IPointer to found DEFI 
I Iselected hash chain. I pointer. lentry in TDY if I 
I I I I found, else zero. I 
r-----------+-----------------------------+------------------------+--------------~ 
I PRMP'I' I Unloader diagnostics. I Pointer to parameter I I 
I I Istring. I I 
r-----------+-----------------------------+------------------------+--------------------~ 
I DELETE ,Collapse BABY chain for pri- IPMD address of primary I I 
I CALLER lmary deletion candidate and ,deletion candidate. , , 
I MUTES I rearm all explicit CALL/LOAD , I , 
I I adcon groups. I I , 
r----------+-----------------------------+------------------------+--------------------~ 
IMODIFY MUT IIdentify modules explicitly 'Candidate PMD address. I , 
I COUNTS Ireferenced by deletion candi-I , I 
I I dates, decrement their MUT I , I 
I I counts, and add referenced I , , 
I ,modules to the candidate I I I 
I I list. I I I L ___________ ~ _____________________________ ~ _______________________ ~ ___________________ J 

In response to a lJ3er'S DEI,ETE macro 
instruction, or a call from LOADER RELEASE, 
explicit unlink att2~npts to rCI!'0\'e from the 
task the module defining the named symbol 
and possibly subordinate module~ as well 
(see Chart AM and Figure 12). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Entrance by type-I linkage 
is restricted to the task monitor. 

Entries: EXPLICIT UNLINK is entered with 
GR1 pointing to a word that contains the 
virtual storage location of the DELETE 
adcon group, execution of which caused the 
task monitor to be entered. This adcon 
group has the format: 

DS OF 
CHD&SYSNDX SVC 123 

DC CL8'name' 

DC H'C3C4' 

o = Normal 

SVC for unloading 
Module name (or 

alias) to be 
unloaded 

Unload options and 
return code 

4 = Symbol to be unloaded not found 
(accompanied by diagnostic #16) 

8 Module not deleted because of out
standing references (accompanied by 
diagnostic #17) 

Section 4: Explicit Unlinking 71 



-J Pzj 
N ..... 

o.Q 
J:;: 
ti 
(\) 

~ 
N . 
tx:I 
>: 

't1 
I-' ..... 
0 ..... 
rt 
C 
::s 
I-' ..... 
::s 
~ ..... 
::s 

o.Q 

Ubrary 
MointeMn~1II 

r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I F' I IX 

I 

I 
I 
I 

ll-, 
J1 

Define 
Ref 

Page 
R,focotioo 

~ 
Add 
/,jul<! 

'----' 

Explicit 
Linking 

loader 
Logoff 

r---

Modify 

MUT 
Counts 

Explicit _______ ~~ __ 
Unlinking 

I I I 

LL 
~ 

Modify 

Use 
Counts 

Delete 
Selected 
Mute~ 

L-- -+ III 

--t-l ~~~ I 
~ ~~~ 

Fix 
PMD 

~-+--

, I r=~,------+--l nm lllrl~~'h 
II!, 

lib. 
Search 

load 
PMD 

~ 
Add 
PMD 

L-

,.----

I III "n' 
_J III ~ I II r~_:a-=£TI II ___ ~~J 

~-

PCSA I 

Set Search 
Flags 

L-_____ _ 

I I I I I 

,--- I ---+-+ I I I-+-H-+--

Delete 
Module 

I I I II If-LI ===_~= ;.l.illl.f 
r·++------' 

.t=-=r=t=--=tl.--l.t~~.nlJ-

--

Set
page 

Check 
Pel 
\.egal. 

HQsh 
Search i 

Q-Chain 

f-=:J J 
----Tr--~- I -

'----+r 
I I 

_.-J 
L _____ .-----1 

SltCHPACK 
! 

---

tt- I 4---1 

Map
Search 

I"":<eel 
r-'----, 

Drop 
PMD 

legend: 

D 
Callable 
from 

outside 
the loader 
mod,)le 

D 
CoHoble 
only from 

imide 

the looder 
rtlQd\lle 



operation: UNLINK'S first action is to 
locate the CSD of the control section that 
contains the DELETE adcon group by calling 
MAP SEARCH (CZCDLS) in the loader module 
CZCDL with the adcon group address. Next 
SET SEARCH FLAGS (CZCDL6), also in the 
loader module. is called to set the hash 
table pointer for HASH SEARCH's eventual 
use in looking up the argument symbol. The 
high-order bit of the C3 option byte is 
used as a transpose-search flag. similar to 
the way in which the C1 option byte high
order bit is used in the loader processing 
of the LOAD/CALL adcon group. If this bit 
is set in the DELETE adcon group, UNLINK 
will set the transpose flag for SET SEARCH 
FLAGS. SET SEARCH FLAGS will return to 
UNLINK a hash table pointer (and a library 
index, which will ~e jgnored). Now the 
loader routine HASH SEARCH (CZCDL2) is 
called to look up t~e argument symbol in 
the selected hash chain. If the symbol is 
not found, UNLINK will issue a diagnostic. 
set a return code of 4 in the C4 byte. and 
return to the task monitor with CR15 also 
set to 4. 

If the symbcl is found, UNLINK locates 
the containing module by using the defining 
DEF'S CSD link to locate the containing CSD 
whose PMD link will locate the defining PMD 
preface. This PMD address is passed to 
DELETE CALLER I-IUTES (CGCDB), Which will 
trace the BABY chain from the defining PMD 
preface to delete each MUT entry in the 
chain, rearm the original CALL/LOAD adcon 
group, and return the deleted MUTE to the 
MUT available-space chain. 

Further processing by UNLINK is executed 
in four passes on a list of modules that 
are candidates for 'deletion at some time or 
other. This ·candidate list· is a linear 
list of PMD preface addresses and is headed 
by the module defining the argument symbol 
name in the DELETE group. Construction of 
this list is under control of the low-order 
bit of the C3 option hyte. If this ·named-
only· bit is set, the module defining If.od
ule becomes the ·primary· candidate, and 
·secondary· candidates may not be added to 
the list. A secondary candidatp. is one 
that either (a) contains a DEF that defines 
a REF in the primary candidate 0::- another 
secondary candidate. or (b) has been expli
citly called or loaded by the primary can
didate or another secondary candidate. The 
module containing the DELETE adcon group is 
the only module in the task unconditionally 
proscribed from deletion candidacy (to pre
vent a module from unloading itself). 

UNLINK pass 1 constructs the candidate 
list. Symbolic general register RN is 
initialized to zero and contains the rela
tive displacement from the top of the list 
of the last module to have been entered. 
Symbolic general register RM is also 
initialized to zero and contains the rela-

tive pointer to the list member currently 
being processed in each of the four passes. 
The list is constructed by calling the two 
routines MODIFY MUT COUNTS (CGCDA) and 
~ODIFY USE COUNTS (CGCDD) for the current 
candidate. 

MODIFY MUT COUNTS traces the candidate'S 
PAPA chain; that is, the chain of MUT 
entries describing each explicit CALL or 
LOAD made by the module. (This chain is 
constructed during EXPLICIT LINKING.) The 
MUT count in the PMD preface of each module 
explicitly referenced by the current can
didatp. is decremented by one, and the 
referenced module becomes a secondary can
didate with RN incremented to reflect the 
list addition. 

Similarly, MODIFY USE COUNTS processes 
the REF table in each CSD of the current 
I~odule. During EXPLICIT LINKING, the CSD 
link in each REF entry is set to point to 
the CSD containing the defining DEF (except 
in the case of undefined REFs whose CSD 
link is set to point to the CSD containing 
the REF itself). Now each REF's CSD link 
is used to locate the defining CSD whereu
pon the ·use count" field is decremented by 
one, and the containing module is added to 
the candidate list as a secondary candid
ate. Again, RN is incremented to reflect 
the addition of the candidate. 

Both MODIFY MUT COUNTS and MODIFY USE 
COUNTS set a flag in each candidate's PMD 
preface, which is checked prior to entering 
a new candidate, so as to preclude dupli
cating candidacy. These two routines are 
called for each candidate placed on the 
list until all candidates have been pro
cessed. RM will eventually catch up with 
RN, signaling the end of pass 1. Note that 
if. the named-only option is in force, these 
two routines will refuse to post secondary 
deletion candidates on the list. 

Pass 2 is a more cOll,c>:ex loop designed 
to check the validity of each deletion can
didate. The conditions favoring successful 
candidates are: 

1. The primarj candidate will be unloaded 
as long as there are no outstanding 
implicit references to any of the 
module's control sections. (There are 
no more explicit references to the 
primary candidate because DELETE CALL
ER MUTES has eliminated the BABY chain 
and rearmed the adcon groups.) 

2. Secondary candidates will be unloaded 
so long as no implicit or explicit 
references to the candidate remain. 

3. Any module may be unloaded except the 
one containing the DELETE adcon group 
being processed. 

Section 4: Explicit Unlinking 73 



r-----------T-----------------------------T---------------------------------------------, 
I Routines I I Parameters I 
I Called in I ~------------------------T--------------------~ 
I Passes 2-41 Purpose of Call I In I Out I 
~-----------t-----------------------------+_-----------------------t--------------------~ 
IMODIFY USE IIdentify modules implicitly ICandidate PMD address. I I 
I COUNTS [referenced by deletion candi-I I I 
I Ida tes, decrement their CSD I I [ 
I I use counts, and add I I I 
I I referenced modules to the I I I 
I I candidate list. I I I 
~-----------t-----------------------------+------------------------t--------------------i 
[TEST USER ICheck each candidate for zerolCandidate PMD address. IFlag indicating all I 
I COUNTS [MUT count and zero use I I zero counts, or one I 
I I counts. I I count not zero. I 
r-----------t-----------------------------t------------------------t--------------------~ 
IMODIFY MUT IIncrement MUT counts in ICandidate PMD address. I I 
I COUNTS I modules explicitly referenced I I I 
I I by a disqualified candidate. I I I 
t-----------t-----------------------------t------------------------t--------------------~ 
IMODIFY USE IIncrement use counts in CSDs ICandidate PMD address. I I 
I COUNTS lof modules implicitly I I I 
I I referenced by a disqualified I I I 
I I candidate. I I I 
t-----------+-----------------------------t------------------------t--------------------~ 
I DELETE ICOllapse PAPA chain for each ICandidate PMD address. I ! 
[SELECTED I successful candidate. I I ! 
I MUTES I I I I 
r-----------t-----------------------------+_-----------------------+--------------------~ 
I DELETE IRemove PMD and text of each ICandidate PMD address. I ! 
I MODULE I successful candidate f rom I I I 
I I virtual storage. I I I 
r-----------+-----------------------------t------------------------+--------------------~ 
IPCS UNLOAD IProcess PCS tables for Icandidate PMD address. I I 
I I unloaded modules. I I I L ___________ ~ _____________________________ L-______________________ ~ ____________________ J 

The first two conditions are examined in 
pass 2 by the routine TEST USER COUNTS 
(CGCDE), which is called for each candid
ate. TEST USER COUNTS tests for zero the 
MUT count field in the PMD preface and the 
use count field in each of the candidate's 
nonrejected CSDs for zero. If any of these 
fields is nonzero, a reference exists from 
some module not a candidate, and UNLINK 
proceeds to erase the candidate by: 

1. Calling MODIFY MUT COUNTS to process 
the candidate's PAPA chain by examin
ing each MUT entry in the chain to 
locate the referenced Pt-1D in whose 
preface the MUT count field is now 
incremented by one. 

2. Calling MODIFY USE COUNTS to process 
each REF entry in each of the candi
date's CSDs to locate the defining CSD 
in which the use count field is incre
mented by one. 

3. Erasing the candidate flag in the PMD 
preface of the disqualified candidate. 

4. Marking the candidate "disqualified" 
in the candidate list by setting a 
low-order 1 bit in the list. (Since 

74 

the list consists of PMD preface 
addresses which are fullword address, 
the low-order bit is a convenient 
method of flagging disqualified 
candidates.> 

Each time a candidate is disqualified, d 

flag is set at the bottom of the pass 2 
loop. Restoring the MUT and use counts 
during disqualification makes possible the 
disqualification of other candidates on the 
list. Therefore, after the candidate list 
has been completely processed, this flag is 
checked. If it has been set, indicating a 
disqualification, the flag is reset and the 
list processed once again to identify any 
newly disqualified candidates. This pro
cess is repeated until a pass is made on 
the list that results in no new disqualifi
cations. At this point pass 2 is complete, 
and all the candidates remaining on the 
list will be unloaded. 

Pass 3 is a simple pass in which DELETE 
SELECTED MUTES (CGCDC) is called for each 
candidate to trace the PAPA chain of the 
module, deleting all the MOT entries, and 
returning the MUTEs to the MOT available 
space chain. Since each module explicitly 
referenced by the candidate is now a suc-



cessful candidate, the MUTEs s€' .... ·.·~ no 
further function. 

Pass 4 is the unloading pass in which 
DELETE MODULE (CZCDU2) is called tJr each 
candidate. DELh~E MODULE performs the fol
lowing functions: 

1. Deletes all nonrejected DEFs in each 
nonrejected control section from the 
appropriate hash chain. 

2. Frees for reassignment the DXD areas 
not referenced by modules that are 
still loaded. 

3. Frees virtual storage for each nonre
jected control section. 

4. Deletes the MAP entry associ;~ted with 
each nonrejected control section. 

5. Deletes the candidate's PMD from the 
TDY. 

Pass 4 is made separate from pass 3 
because during the processing of the PAPA 
chains in pass 3, the PMD preface of each 
candidate will be referenced in the process 
of collapsing the chain. Since the preface 
must still be intact during this process, 
the deletion is placed in a fourth pass. 

Normal exit is made after pass 4 with 
the C4 byte and GR15 set to zero. Note 
that if after pass 3 it is discovered that 
the primary candidate has been disquali
fied, pass 4 is bypassed. It is impossible 
to have qualified secondary deletion candi
dates if the primary candidate is disquali
fied; hence, no unloading can take place. 
In this event. a diagnostic is issued, and 
GR15 and the C4 byte are set to 8. 

Notes: 

1. Modules loaded into initial virtual 
storage nVl'l) by STARTUP will have had 
their MUT count fields set to an arbi
trarily high number by STARTUP to pre
clude the unloading of any IVM module. 

2. A corollary to the unloading algorithm 
describ~d in this section is that only 
modules explicitly loaded (by virtue 
of an explicit CALL or LOAD macro 
instruction) may ever be successful 
primary deletion candidates. • 

Comment: Figure 13 shows the general flow 
of explicit unlinking. It is separated 
into functional segments, rather than spe
cific routines, to aid the reader in 
obtaining an overview of the unlinking 
process. 

See Appendix B for a detailed account of 
the MUT structure. 

( ENTER 

~ 
Rearm Explicit 
LOADs/CALLs to 
this Module 

Build Deletion 
Candidate List 
with this Modu Ie 
and all Modules 
Explicitly or 
Implicitly Referenced 
by this Module 

Decrement Use Count 

in Each Candidate 
for Each Explicit 
!'J.,d 1rr.~licit 

Reference to it 

Remove from the 
ConJidote ~;st 
Any Module with 
Non - Zero Use Count· 

I ncrement User ] 
Counts in Modules 
Referenced by 
Removed Candidate 

All 
Candidates 

Examined After 
lost Candidate 

Remova! ? 

Yes 

Unlink DEFs for ] 
Each Unremoved 
Module 

'----r---

• 
Free appropriate 
DXD :.reos 

Free CSECT s 
from Storage 

No 

Delete PMD 
of Each Module 
from TDY 

I 
t 

C,-_E_XI_T __ ) 

Figure 13. Functional Diagram of Explicit 
Unlinking 

DELETE CALLER MUTES (CGCDB) 

For a particular module, all module 
usage table (MUT) entries for explicit 
CALLs on that module are deleted (see Chart 
AH) • 

Section 4: Explicit Unlinking 75 



Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to unloader module, 
not available to other system components. 

Entries: On entrance, GRl contains the 
address of the PMD for a specified module 
(subject PMD) as an input parameter. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: From this PMD preface, the BABY 
chain head is fetched that points to the 
first MUT entry in the chain. This MUT 
entry is then deleted, as follows: 

1. It is removed from its BABY chain by 
relinking the chain in the forward 
direction so that the BABY chain head 
in the subject PMD is pointing to the 
next MUTE in the chain (or is zero). 

2. It is removed from its PAPA chain by 
relinking the PAPA chain 
bi-directionally. 

3 •. The space occupied by the MUT entry is 
returned to the MUT available space 
chain. 

4. In the subject PMD preface, the.MUT 
count field is zeroed. ~, 

5. The SVC within the adcon group that 
originally effected the explicit link
age is rearmed with the DLINK SVC. 
Additionally, the V-con portion Of .. 
this adcon group is set to pointt6 
the DLINK. (The address of the adcon 
group is contained in the MUTE.) 

Any additional MUT entries in the sub
ject PMD's BABY chain are similarly 
deleted. The processing stops when the 
BABY chain head in the argument PMD preface 
is zero. 

See Appendix B for a description of MUT. 

MODIFY MUT COUNTS (CGCDA) 

The MUT count field in the PMD preface 
of each module explicitly referenced by the 
argument module is decremented or incre
mented by one, according to a parameter 
(see Chart BA). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to unloader module; 
not available to other system components. 

76 

Entries: On entrance to MODIFYMUT COUNTS, 
GRl contains the address of t~e_argument 
PMD preface, and GR2 contains a function 
code. The function code is 0 for decrement 
and 1 for increment. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: The PAPA chain head in the 
argument PMD preface begins the chain of 
MUT entries that descrihe each of the 
explicit references made by the module. 
Each MUTE in this chain'is examined in 
turn, and the PMD preface address of the 
referenced module is extracted. Within 
this referenced PMD preface, the -MOT 
count- field is either incremented or 
decremented by one according to GR2. 

On the decrement function, MODIFY MUT 
COUNTS will check to see if the named-only 
option is in force, in which case the next 
MUTE is examined, as in the increment case. 
If the named-only option is not in force, 
the referenced PMD preface is checked for 
the setting of the deletion candidate flag. 
If this flag is not set, the PMD preface 
address is added to the candidate list, the 
candidate flag is set in the PMD preface, 
and symbolic general register RN is incre
mented by 4 to pOint to the new candidate'S 
relative position on the list. If the 
deletion candidate flag is found to be set, 
MODIFY MUT COUNTS will not again add the 
module to the candidate list. 

MODIFY USE COUNTS (CGCDD) 

For every REF in a specified PMD, the 
use count in the CSD that contains the 
referenced DEF is incremented or decre
mented according to an input parameter (see 
Chart BB). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to unloader module; 
not available to other system components. 

Entries: On entrance to MODIFY USE COUNTS, 
GRl contains the address of the argument. 
PMD preface, and GR2 contains a function 
code. The function code is 0 for decrement. 
and 1 for increment. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: Each REF in each nonrejected 
CSD is examined. The CSD link in each REF 
entry will point to the CSD of the DEI" 
entry that defines the REF. (Undefined 
REF's CSD links will point to the CSD con
taining the REF entry.) The user count 



field in the defining '{;SD is no...., decre-> 
mented or incremented by one according to 
GR2. 

On the decrement function, ~ODrFY USE 
COUNTS wil.l check to s~e if the ~d.:ned->oLlly· 
option is in force, in which case the next 
REF is examined, as in the increment case. 
If the named-only option is not in force, 
the PMD containing the defining C3D is 
checked for the setting of the del.etion 
candidate flag. If this flag is not set, 
the PMD preface address is added to the 
candidate list, the candidate flag is set 
in the PMD preface, and symbolic general 
register RN is incremented by 4 to point to 
the new candidate's rel.ative position on 
the list. If the deletion candidate flag 
is found to be set, MODIFY USE COUNTS will 
not again add the module to the candidate 
list. 

TEST USER COUNTS (CGCDE) 

A specified PMD is tested to discover if 
there are any expl.icit CALLs or implicit 
references to it (see Chart BM). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal. to unloader module; 
not available to other system components. 

Entries: On entrance, GR1 contains the 
address of the argument PMD preface. 

Routines Call.ed: None. 

Exits: GR2 is zero if all counts test 
zero; GR2 is nonzero if some count tests 
nonzero. 

Operation: For the argument PMD, the MUT 
count field in the PMD preface and the user 
count field in each nonrejected CSD heading 
is tested for nonzero. On exit, GR2 will 
contain a condition code; zero indicates 
that all count fields tested zero; and a 
positive number indicates that some field 

tested nonzero. On a nonzero test. TEST 
USER COUNTS exits immediately. 

DELETE SELECTED MUTES (CGCDC) 

For a particular module, all module 
usage table (MOT) entries for explicit 
CALLs by that module are deleted (see Chart 
AJ). 

Attributes: Privileged, public, system. 
reenterable. 

Restrictions: Internal to unloader module: 
not available to other system components. 

Entries: On entrance, GRl will contain the 
address of the PMD for a specified module 
(subject PMD) as an input parameter. 

Routines Called: None. 

Exits: Normal only, no return code. 

Operation: From the PMD preface, the PAPA 
chain head is fetched that points to the 
first W~T entry in the chain. This MUT 
entry is then deleted as follows: 

1. It is removed from its PAPA chain by 
relinking the chain in the forward 
direction so that the PAPA chain head 
in the subject PMD is pointing to the 
next MUTE in the chain (or is zero). 

2. It is removed from its BABY chain by 
relinking the BABY chain 
bi-directionally. 

3. The space occupied by the MUT entry is 
returned to the MUT available space 
chain. 

Additional MUT entries in the subject 
PMD's PAPA chain are similarly deleted. 
The processing stops when the head of the 
PAPA chain in the argument PMD preface is 
zero. 

See Appendix B for a description of MUT. 

Section 4: Explicit Unlinking 77 



DELETE MODULE (CZCDU2) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I t-----------------------~--------------------~ 
I CALLED I Purpose of Call I In I Out I 
t-----------+-----------------------------+------------------------+--------------------~ 
I SELECT ISelect hash table for DEF ICSD address. IHash table pointer. I 
I HASH I deletion. I I I 
t-----------+-----------------------------+------------------------t--------------------~ 
I HASH IDelete DEFs from selected IHash table pointer, DEF I I 
I SEARCH Ihash table. lentry pointer. I I 
t-----------f-----------------------------f------------------------t--------------------i 
IQ-CHAIN IDelete Q-REFs from selected IAddress of CSD, functionl I 
I Ihash chains. Icode (delete). I I 
t-----------f-----------------------------+------------------------+--------------------1 
IMAP SEARCH IDelete MAP entry for each IControl section address. I I 
I I control section., I I 
t-----------+-----------------------------f------------------------+--------------------1 
ISRCHSDST IClose control section group IMember name. ICode indicating I 
I Imember entry in SDST. I Iwhether control sec-I 
I I I I tion group is still I 
I I I I being shared by I 
I I I lother tasks. I 
~-----------+-----------------------------+------------------------t--------------------~ 
IFREEMAIN IFree private text pages or IPage count, address. I I 
I I free public text pages if no I I I 
I lother task using. I I I 
t----------f-----------------------------f-----------------------t--------------------; 
'DISCONNECT IDisconnect task from control ISPT #, relative page I I 
I Isection group shared pages iflnumber. I 
, lother tasks still using. I , I 

~-----------+-----------------------------+------------------------+--------------------~ 
IDROP PMD IDelete PMD from TDY. IPMD address. I L ___________ ~ ____________________________ ~ ________________________ ~ ____________________ J 

A specified module and the table entries 
that describe it are deleted from the task 
(see Chart AI). 

Attributes: Privileged. public, system, 
reenterable. 

Restrictions: Accepts type-I linkage only 
from other privileged system components. 

Entries: DELETE MODULE is entered by type
I linkage with GR1 pointing to a parameter 
that contains the address of the PMD pre
face of the module to be deleted. 

Exits: Normal only, no return code. 

Operation: The first function is the dele
tion of the module name OEF entry, if the 
DEF was not rejected during loading. 
SELECT HASH is called with the CSD address 
obtained from the module name OEF CSD line; 
then HASH SEARCH is called to delete the 
DEF entry from the selected hash chain. 

Now each CSD is processed as follows: 

Private Control Sections: 

1. The MAP table entry is deleted by cal
ling MAP SEARCH with the delete 

78 

option. Note that only control sec
tions of nonzero text length have 
associated MAP entries; hence, text 
length is checked prior to the MAP 
SEARCH call. 

2. Q-CHAIN is called to reclaim storage 
areas that were reserved by DXD (or 
DSECT) and CXD instructions but are no 
longer referenced by loaded modules. 

3. SELECT HASH is called to select the 
hash chain in which all the DEFs for 
the current CSD are posted. 

4. Each relocatable, absolute, and com
plex DEF is processed, and those with 
nonzero CSO links are deleted from thp. 
hash chain by a call on HASH SEARCH. 
(Those with zero CSO links were 
rejected during the loading processed 
and never posted.) 

5. Rejected private CSDs are not pro
cessed, since no DEFs may be posted 
from rejected CSDs, and no virtual 
storage is allocated. 

6. Control section text pages, if any, 
are freed by calling FREEMAIN. If 
control section packing is specified 



for private control sections, .all but 
the last page are released uncondi
tionally. Theu 3 search is made of 
the MAP table for another con~roi sec
tion with the la3~ page acd~ess. ~f 
other control sections exist on the 
last page, no FREJ!:MAIN is d0iie, and 
the MAP entry for the unloaded control 
section is deleted. 

Public Control sections: 

l-q Steps 1 through 4, above, are the same 
for public control sections. 

5. Following the DEF deletion process. 
the public name bit in the CSD attri
butes halfword is tested. If the bit 
is not set, processing skips to the 
next CSD in the module. If this bit 
is set, the item ftSDST name· is set to 
the current control section name, 
except the first time through this 
path for each module. The first tim~ 
through, SDST name is set to the mod
ule name. The public name bit is set 
in the first named CSD of each group 
of public CSDs of like attributes by 
the EXPLICIT LINKING routine ALLOCATE 
MODULE (CGCCA). This bit tells DELETE 
MODULE that the name of this control 
section is the name carried in the 
SDST member entry that describes the 
public control section grollp. 
(Remember the exception: the first 
public control section gro~p carries 
the module name in the SDST member 
entry. ) 

6. Now SRCHSDST (CZCQE) is called to 
close out the SDST member entry whose 
name is the same as SDST name, and 
whose parent data set SDST entry bears 
the same name as the data set name in 
the JFCB from which the current module 
was loaded. (Each PMD preface con
tains the address of the JFCB describ-' 
ing the containing data set.) If 
SRCHSDST returns with a code indicat
ing that the user count for this entry 
is nonzero, DELETE MODULE merely calls 
DISCONNECT to disconnect the task from 
the shared pages. If SRCHSDST returns 
indicating a zero use count -- meaning 
that there are no more shared users of 
the storage -- DELETE MODULE goes 

through a loop, processinng each CSD, 
and looking for all those whose attri
butes are an exact match of the cur
rent CSD. The text pages for those 
CSDs ..,hose at.tributes match are freed 
by calling FREEMAIN. 

If a packed control section in the 
group overlaps into the next page of 
virtual storage, storage is allocated 
by subgroups. The control section 
overlapping the page is the first con
trol section in the next subgroup. If 
an overlap is detected in the process 
of searching each CSD for the attri
butes that match the ·current· CSD, 
the search is discontinued and the 
text pages for the CSDs in the group 
are freed by calling FREEMAIN. 

7. Storage is allocated to variable
length public control sections indivi
dually, which requires each control 
section's CSD to have the public name 
attribute bit on. When SRCHSDST 
returns, indicating zero use count, 
variable-length control section text 
pages are freed without going through 
the attribute-matching loop described 
above. 

The conditions under which packed public 
control sections are released are more com
plex. When SRCHSDST is called to close out 
a member entry, it must decrement the user 
count in the found entry and in the host 
SDST entry, if the found entry is a sym
biont SDST entry. SRCHSDST takes the zero 
user count exit only if both the symbiont 
and host SDST entries have gone to zero. 
(Note that the host SDST entry can only go 
to zero if all symbiont user counts have 
gone to zero as well as user count for the 
control section group represented by the 
host entry itself.> 

In the event that SRCHSDST returns with 
user count equal to zero, the unloader 
knows that it is free to release the shared 
storage via FREEMAIN. In this case, the 
VST is searched for an entry for the last 
page of the control section group repre
sented by the host SDST entry. If none is 
found, there is no action. If one is 
found, this entry is deleted from the pack
ing table. 

Section 4: Explicit Unlinking 79 



DROP PMD (CGCCO) 

r-----------T----------~------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
~-----------+-----------------------------+------------------------+--------------------~ 
IFREEMAIN IFree storage occupied by IPage address, page I I 
I I collapsed PMD group. I count. I I L ___________ ~ _____________________________ ~ ________________________ ~ ____________________ J 

DROP PMD is called to release a PMD from 
a PMD group (see Chart AK). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: Internal to unloader module; 
not available to other system components. 

Entries: GRl contains the input to DROP 
PMD, which is a pointer to the preface of 
the PMD to be released. 

Exits: Normal only, no return code. 

Operation: DROP PMD unlinks the current 
PMD from the group. First the TDTBLK field 
of the JFCB of the library from which the 
module was loaded is decremented, to indic-

80 

ate the unloading of a module. Since there 
are no back links, the forward links are 
traced through the circular chain until the 
PMD to be released is found, at which pOint 
the link from the previous PMD is changed 
to point to the PMD immediately following 
the released PMD. 

Because of the circular chain structure, 
a collapsed PMD group is defined when a 
pointer to the next PMD points to itself, 
and this pointer will always be in the PMD 
group header. If the PMD group does not 
collapse, DROP PMD exits. If the group 
does collapse, DROP PMD reI inks the PMD 
group chain, both forward and backward, and 
releases the space occupied by the PMD 
group through FREEMAIN. 



SECTION 5: LOADER LOGOFF 

LOADER L(x;OFF (CZCCPJ.? 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~-------------------------T--------------------~ 
1 CALLED 1 Purpose of Call I In 1 Out I 
1------------+----------------------------+--_._---------------.-----+--------------------~ 
lSRCHSDST lClose control section group IMember name. ICode indicating I 
I 1 member entry in SDS';. I I whether any other I 
I I I I shared users. I 
~----------+---------------------------+-.----------------------+-------------------~ 
IFREEMAIN IFree storage for control sec-IPage count, page I I 
I I tion groups with no other I address. I I 
I I shared users. I I I 
~-----------+-----------------------------+------------------------+--------------------~ 
IDISCONNECT IOisconnect current control ISPT number, relative I I 
I Isection group shared pages Ipage number. I I 
I I when there remain other I I I 
I I shared users. I I I 
~----------+-----------------------------+-------------------------+--------------------~ 
I MAP SEARCH lFind CSD for control section. IVirtual storage address. I Address of CSD for I 
I I I I that control I 
I I I I section. I L ___________ ~ ____________________________ ~ _________________________ ~ ____________________ J 

LOADER LOGOFF (see Figure 14) is called 
at task end for public storage housekeeping 
to reflect that the current task is no 
longer a shared user (see Chart AW). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: LOADER LOGOFF is a special 
purpose routine avai1.able to other p:d.vi
l.eged system service routines by type-I 
l.inkage, but not designed for general sys
tem service usage. 

Entries: LOADER LOGOFF is entered by type
I linkage, with no parameters. 

Exits: Normal on1.y, no return code. 

Operation: LOADER LOGOFF will examine each 
non-IVM PMO in each pr<1D group in the task 
dictionary (TOY). The public flag in each 
PMD preface is tested. If the flag is not 
set, the PMD has no public control sec
tions, and the next PMO is examined. PMDs 
with the public flag set are further pro
cessed. a CSD at a time, as follows: 

1. Public CSOS are checked for public 
name attribute bit on. 

2. The item SDST name is set to the con
trol section name for those CSOs with 
the public nam~ bit on, except Lh."1<:' 
the first time each module travels 
this path, the item SDST name is set 

to the module name. This algorithm is 
identical to the one used in the load
er routines ALLOCATE MODULE and GET 
STORAGE in the allocation of public 
~toraye during EXFLICIT LINKING. 

3. SRCHSOST (CZCQE) is called to close 
out the member entry in the SDST: (1) 
whose name matches public name, and 
(2) whose parent data set SDST entry 
matches the data set name in the JFCB 
that describes the data set from wich 
the current module was loaded. (The 
JFCB pointer is extracted from the PMD 
preface.) If SRCHSDST returns, indi
cating that the user count for this 
member is nonzero, LOADER LOGOFF mere
ly calls DISCONNECT to disconnect the 
task from the shared pages used by the 
member. (These shared pages are all 
pages allocated for the control sec
tion group when it was first loaded.) 
If the user count went to zero on the 
close. LOADER LOGOFF executes a loop, 
processing each CSD. The CSDs whose 
attributes match the current CSO's 
will have their text length added to a 
running total. At the end of the 
loop, the total number of text pages 
from the control sections of matching 
attributes is computed, and the origin 
of this block of paqes will be the 
origin of the first control section 
pn..cessed with the"'''' attributes. The 
block of pages is now freed through 
FREEMAIN, and processing of the module 

Section 5: Loader Logoff 81 



82 

proceeds to the next CSD with public 
name on. 

If SRCHSDST returns a code of "data 
set does not exist,· a SYSER is 
caused. Upon return from SYSER, pro
cessing continues normally. 

The conditions under which packed 
public control sections are released 
are more complex. When SRCHSDST is 
called to close out a member entry, it 
must decrement the user count in the 
found entry and in the host SDST 
entry, if the found entry is a sym
biont SDST entry. SRCHSDST takes the 
zero user count exit only if both the 
symbiont and host SDST entries have 
gone to zero. (Note that the host 
SDST entry can only go to zero if all 
symbiont user counts have gone to zero 
as well as user count for the control 
section group represented by the host 
entry itself.) 

In the event that SRCHSDST returns 
with user count equal to zero, the 

loader knows that it is free to 
release the shared storage via FREE
MAIN. In this case, the VST is 
searched for an entry for the last 
page of the control section group 
represented by the host SDST entry. 
If none is found. there is no action. 
If one is found, this entry is deleted 
from the packing table. 

If a packed control section in the 
group overlaps into the next page of 
virtual storage, storage is allocated 
by subgroups. The control section 
overlapping the page is the first con
trol section in the next subgroup. If 
an overlap is detected in the process 
of searching each CSD for the attri
butes that match the ·current" CSD. 
the search is discontinued and the 
text pages for the CSDs in the sub
group are freed by calling FREEMAIN. 

LOADER LOGOFF ceases its processing when 
the forward PMD group link is equal to the 
IVM pOinter in the TDY header. 



CJl 
ro 
~ 
1-'" 
Cl 
~j 

(~ 

s 
(lJ 
0-
ro 
Ii 

b 
\Q 
o 
Hl 
Hl 

co 
w 

"l 
~. 

\Q 
!=: 
11 
ro 
t-' 
~ 

t"' o 
(lJ 
0-
ro 
11 

S 
I.Q 
o 
Hl 
i'1\ 

-
Library 
MointenqnCtt 

Page 
Relocation 

~ 
Add 
Mute 

Explicit 
Linking 

Loader 

iovoff r------------.--------

Exptici.t I---- _ __ _ 
IJ,dlnh'Jlg 

~ 
M"d,fy 
US~ 
COUJlt~ 

D.:lete 
Selected 
Mutes 

t.o"der 
Relense 

I I cdJI 1 l I 

III L ___ . ____ ==:: __ _ 

L-.... III, 

I r_~__________---t--, -----~-- Resolve 

Symbol 

I ----

I 
I 
I 
I 
I 
I 
I 
i 
I 
I Fix 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i I 

~l 
L 

Define 
Ref 

libe 
Search 

LOCld 
PMD 
~ hx Set Search 

Flog$ 

I I ! j 

~ 
L:J 

I 

r-

-

---~~ 

I I L,nk 
Defs 

11+'1+-
I I 

I ! 
I .---

PCSA I Attoch 
Tel(t 

+-- ---t---' 
. L_ I I I I 

r _ PII ~-+--

tM' I I I L 1_ ---, I ~ r--___ +_....J . ' 
I II 111 __________ -t~+--

Clk 
li 

Sel- lee 
poge f:fal ~::~r.h 1 Q-Cha;n 11 SRCHPACK 1 f ~ 9 I ~::h 

,---

I i I I -+-----

Delate 
Module 

L ____ ~ 
~-. -j 

Loader J-----l 
Prompt ~ 

Resolve 
tlu~h Q-Ref 

---§ 
BIIEARCH r;-

PMD 

'-- L-J 

Louder 
Clcanup 

legend: 

D 
Callable 
from 

outside 

the IOdder 
modlil~ 

o 
Callable 
only from 

inside 

the loader 
module 



SECTION 6: LOADER RELEASE 

LOADER RELEASE (CZCCD2) 

r----------T-----------------------------T------------------------""'.--------------------, 
I I I Parameters I 
I ROUTINES I ~--------------~---------T--------------------~ 
I CALLED I Purpose of Call I In . I Out I 
~-----------+-----------------------------+------------------------+--------------------~ 
I EXPLICIT IUnload modules from library IVMA of adcon group. Icode indicating t 
I UNLINKING Ito be released. I Iwhether module was I 
I I I I unloaded. I 
~-----------+-----------------------------+------------------------+--------------------~ 
I HASH ILook up module in Hash Table. I Module name. ICode indicating I 
I SEARCH I I I whether module was I 
I I I I found. I 
~----------t-----------------------------+------------------------+--------------------~ 
IPRMPT IInform user module was not IPointer to parameter I I 
I I unloaded due to outstanding I str ing. i I 
I I references. I I I l ___________ ~ _____________________________ ~ ________________________ ~ ____________________ J 

LOADER RELEASE (see Figure i5) is called 
to unload from virtual storage all modules 
belonging to a library (remove them from 
the TDY) before a 'DDEF' is released (see 
Chart AX). 

Attributes: Privileged, system, 
reenterable. 

Restrictions: Accepts type-I linkage only 
from other privileged system components. 

Entries: LOADER RELEASE is entered by 
type-I linkage, with GRl pointing to the 
JFCB of the library to be released. 

Exits: Return code in GR15: 

84 

o = no errors found 
4 = errors found 

Operation: LOADER RELEASE searches through 
the TDY for all non-IVM modules with TDYJFC 
(JFCB pOinter in PMD preface) equal to thp 
parameter passed. Whenever one is feund, 
an attempt is made to unload it by a call 
to EXPLICIT UNLINK (CZCDU1). If the 
attempt is not successful <indicated by an 
error return code), the module name is 
added to an internal list. When the search 
through the TDY is complete, a return code 
of zero is set if there were no error codes 
returned from EXPLICIT UNLINK. If there 
were errors, a return code of four i~; set. 
and, if LOFOFF is not in process, HASH 
SEARCH is called to look up each module 
name in the list. The user receives a dia
gnostic message containing the module name 
for each module still not unloaded. 



0; 
(1) 
n 
rt .... 
o 
::s 
Cf\ 

t"' 
o 
IlJ 
0. 
(1) 
1'1 

~ 
(1) 
I-' 
Ol 
IlJ 
til 
(1) 

(X) 

U1 

I'J:j .... 
\Q 

~ 
(1) 

.... 
U1 

~ 
0. 
(!) 
1'1 

~ 
(1) 
I-' 

re 
IJI 
(1) 

I 

.... 

Library Page Explicit 
Moi ntenance Relocation linking 

.~ 
Add 
Muh:l' 

,----- ,--, 

r- r--------------- -- Resolve 
I Symbol 

1 

.-L 'l I 
1 

! I Lib. Load Fix 
Seorch PMD 

! 
P~'D 

I ',r-I 

J J 
I I 

I 

I ,--'--- I 

Add I 
Fix: 

PMD r-j -- '---
c-----' 

I I --
I ,.--- I 

I 
I 

I I 
I 

~ 
,--

I 

pi] LL, I I -1 1 

Define 
Check 

Ref 
Der pogo 
legol 

-r-

_I Loader ~ 1 Prompt 

Loader 
logoff 

Test 
User 
Counts 

- AlloC;:Cl~e 

r- Madule 

I 

I link. I 
Deb 

! 

I j ,-- --
i 

Ha:.h 
Search 

r---

- ---
--'--

Select 
tlash 

Explic:il Loader LoaJer I 
Unlinking ro----------- Release Cleunup 

S .----. 
De!t!te Modify 

Modify I Delete 
Caller MUJ lise Selected 
Mutes Counts (OU"Its Mute, 

---

.. ~""~-.- j Legend: 

r--- C f---
f--- Flags I 

I I 

Callable 
from 

outside 
the looder 

I module 

'-------J --1---
t j 1. t 

Reject Get Attacn Delete D PCSA Diog Storage Text t-AoJule 

L I I Callable 
only from 

I 
I inside 

! 

the loader 
module 

; 

~- .. ~.----1 ,,-~- f------ --- " 

+ 
Mop-O-Chain SR(HPACK I Search 

I 

I 
I 

I 

J --
--

-, 

-'--- r--'---

Resolve 
BJ5EARCH 

Drop 

f)-Ref PMD 

- '---



SECTION 7: LOADER CLEANUP 

LOADER CLEANUP (CZCCD4) 

r-----------T-----------------------------T---------------------------------------------, 
I I I Parameters I 
I ROUTINES I t-----------------------~--------------------~ 
I CALLED I Purpose of Call I In I Out I 
t-----------t-----------------------------+------------------------+--------------------~ 
I LOADER ITo unload all modules loaded IPointer to JFCB. I I 
I RELEASE I from a JOBLIB. I I I L ___________ ~ _____________________________ ~ _______________________ ~ ____________________ J 

LOADER CLEANUP (see Figure 16) is called 
by LOGOFF to unload all modules loaded dur
ing an express batch subtask so that the 
TDY is clean for the next subtask (see 
Chart AU>. 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: LOADER CLEANUP is a privi
leged system service routine available only 
to other service routines by type-I link
age, but not designed for general use. 

entries: LOADER CLEANUP is entered by 
type-I linkage with no parameters. 

86 

Exits: Normal only, no return code. 

Operation: LOADER CLEANUP picks up the 
ISAJLC pointer to the DCB of the last 
defined job library; the JFCB is covered by 
the address in the DCB header. The count 
of modules loaded (TDTBLK) is checked for 
zero; if nonzero, the address of the JFCB 
is passed as a parameter to LOADER RELEASt;. 
Upon return from LOADER RELEASE, or if the 
count was zero, the DCB pointer is movedt~o 
cover the DCB pointed to by the forward 
pointer of the DCB header. If this pointer 
is nonzero, LOADER CLEANUP loops back t_o 
check the count; if it is zero LOADER 
CLEANUP returns to the caller. 



OJ 
(1) 
(') 
rt .... 
o 
::l 
..,J 

t"' o 
III 
0.. 
(1) 
11 

(') 
to" 
(1) 
III 
::l 
~ 
'0 

co 
..,J 

>lj .... 
~ 
Ii 
(1) 

.... 
'" 
t"' 

~ 
0.. 
(1) 
Ii 

(') 
to" 
(1) 
I'll 
::l 
r:: 
'0 

-
Ubrory Page Explicit looder .~~--.,.~-."-- . LOllder f+---
Moirltenonce Relo~otion linking L090ff r------- - ---- Release 

I ,~ Uhje" Delete I ~~, ~;.rY -~IO"'" Ll 
Mutt: User Call1l:r MIJT Use Selelld 

Counts Mutes CU;Jnh I Counts Mutes 

r--- '----_~ ____ L_ ..'~ ____ -~=-l 
,---t----------+- ~_ .. _~ __ _ 
r-f---------------- --+ R.",lve 1---------------------., 
I Symbol 1--------------------. 

I ,-L ~ 
libe Load F;x r--- Allocat. =~n ,,, ,,'"" I 
Search PMD PMD ,- Mlodul. ~ FI.'gs I 

I ' '--r- --_I I 
I ~_ U L : r-'----.! L--_ -----~--

~ I ~--~ ,I ...-..-1 ----. 

F- Add I j link ~ei.ct I I Get Attach Delete 
IX PMD Defs PCSA Diag $torc~ge Text Module 

I _.I !~j L_ 

1

- ~-- +-:- -~--- ~ I 
I---~ 

i -- --- -1---"-4-+-+--+---+-+-+-+-1-+-----' 

I "JJ 0
1 

I II j j I . [F.-- r-. ----~.-- _-_l=~+-·~·-_ ~----------+------' . ;-___ ---.J 

. S t Check I 
Define e - Def H~lSh O-Chain SRCHPACK ~op-
Ref ;;lOge Legal Search Search 

-;-- - I 
- _________ I 

,----___ --+-+ _ r- I 

~----- ---1~ade, 14-_ 19j5Clect . ~o~--- =-:- Drop 
'--------------- Prompt Hf1sll Q-Ref I A H PMD 

'--- '--

V)(ld,-"r 

Clemlup 

Legend 

D 
C<J111 ~Jle 

from 
outsice 
the Joader 
modL"le 

D 
Colloble 
only from 

inside 
the loader 
module 



SECTION 8: LIBRARY MAINTENANCE 

LIBE MAINT (CZCDH) 

r-----------T-----------------------------~--------------------------------------------, 
I I I Parameters I 
I ROUTINES I ~------------------------T--------------------~ 
I CALLED I Purpose of Call I In I Out I 
~----------+-----------------------------+------------------------+---------------------~ 
IGETMAIN IGet storage to expand DCB IPage count, storage IAddress of page. I 
I 1 chain. I class. I I 
~-----------+-----------------------------+------------------------+--------------------~ I OPEN IOpen new DCB. IDCB address. I I 
~-----------+-----------------------------+------------------------+--------------------~ 
I CLOSE IClose DCB. IDCB address. I I 
r-----------+-----------------------------+------------------------+--------------------~ 
I GATWR I Diagnostic when library to be I Pointer to parameter I I 
I I clos ed not found. I str ing. I ! 
~-----------+-----------------------------+------------------------+--------------------1 
ISHARE lMark catalog entry as shared. IFully qualified data setl I 
I (CZCFSl) I I name, number of sharers, I I 
I I llist of sharers. I I L ___________ ~ _____________________________ ~ ________________________ ~ ____________________ J 

LIBE MAINT (see Figure 17) is called 
during virtual memory task initialization 
to open SYSLIB for the task. It is called 
again by LOGON to open the user's private 
library (USERLIB), and again in response to 
any JOBLIB DDEF command the user has 
entered during the life of his task (to 
open DeBs for the newly defined libraries). 
LIBE MAINT may also be called at various 
times to close JOBLIBs opened earlier and 
will be called at LOGOFF to close USERLIB 
and SYSLIB (see Chart AR). 

Attributes: Privileged, public, system, 
reenterable. 

Restrictions: LIBE MAINT is a special pur
pose routine available to other privileged 
system service routines by type-I linkage, 
but not designed for general system service 
usage. 

Entries: LIBE MAINT is entered by type-I 
linkage with GRl pointing to a word that 
contains the address of the following list: 

1. A pOinter to the JFCB of the data set 
to be processed. 

2. A function where 0 indicates "add" and 
1 indicates "delete" the library from 
the chain. 

Exits: 

88 

Normal: GR15=0 
Error: GR15=4, library to be closed not 

found 

Operation: LIBE MAINT maintains a crlai_n of 
open DCBs, each preceded by a header. Th~ 
chain defines the program job library 
hierarchy used by both the dynamic loader 
and linkage editor to locate symbols 
defined in program modules. The libraries 
are all in the form of partitioned data 
sets. LIBE MAINT's PSECT (CZCDHP) is coded 
wi th a sma 11 number of builtin DCBs. Each 
of these is preceded by a four-word header, 
the first word of which is used to chain 
these DCBs together in an available DCB 
chain. The DCBs are each coded with DSORG= 
VP, LRECL = 4096, and RECFM=U; that is, the 
format is virtual partitioned, records will 
be transferred a page at a time, and the 
record format is undefined (meaning records 
are merely Single pages of hexadecimal 
data>. This chain of DCBs residef; iL priv
ileged storage, and therefore can be used 
only by privileged routines. Also main
tained in LIBE MAINl"s PSECT is a model DCB 
that is never opened and is used to gener
ate new DCBs when the available DCB list is 
exhausted. 

The open DCBs for a single task are 
chained together through headers. There 
are two pointers in the read-only half of 
the ISA which delimit this chain: ISAJLC 
points to word 0 of the header for the 
last-opened DCB in the chain, and ISASLP 
points to word 0 of the header of the first 
DCB opened for the task. Both the dynamic 
loader and LIBE MAINT assume that the first 
opened data set is, in fact, the SYSLIB 
data set; SYSLIB is defined for the loader 
as the first-opened data set, not one whose 
DDNAME is necessarily "SYSLIB." 



en 
(!> 
(') 
1"1' 
1-" 
o ::s 
co 

~ 
0-
t; 
~ 

~ 

~ 
1-" 
::s 
1"1' 
(!> 
:;:I 
III 
::s 
(') 
(!> 

co 
\D 

"J 
1-" 
\Q 
s:: 
t; 
([) 

..... 
-.I . 
t" 
1-" 
0-
t; 
III 

~ 
s:: 
III 
1-" 
::J 
1"1' 
([) 
::J 
~ 
:;:I 
(') 
([) 

-
library Page Explicit lander Explicit 
Moi ntenance Relocotion Linking logoff Unlinking ro----- -----

~ L~ J 
Add 

Test D.I.,. I Modify Modify I Delete 

Mute 
User Callm MUT U,e Selected 
Counts Mute:. Counts Counts Mvtes. 

I ~ 
'------

-
-- -- --

'---------
r-- ----------------- -- Resolve 

I Symbol 

1 
I 

~ I 
I 
I libe Load Fix ,--- Allocot. ~ Set Search 
I Search PMD PMD ,-- 't'!' ~llk "" I 
I 
I 
I 
I 

I ~---I 
-'-- i =;I t 

Add Link I I B ,.;." Get Attach 
Fix PMD Defs PCSA Di09 Storage Text 

I 
I -
I I g] I L 
I I L _____ I ,---

! 

11-I I 8 
-, 

J_i I 
-'.-

Define r±J Check 
Hash Map-Def O-Choin 

Ref poge 
Legal 

S~arch Search 

I 
r-----

J r---------

LL. ~-.. --rc.-
--- ------------

--

- :~ 
r-

.- r--'-- r--'--

loader Resolve 
SISEARCH 

Prompt -. Ho,h O·R.f . 
'--- '---- '---

LQQder 

Release f---

I _ I , , 

I ! 
I 

I 

t 1 
Delet. i Module 

I 

.j 

Omp 
PMD 

Loader 

OecH'up 

legend' 

[_J 
::=olloLle 
from 
olJtside 
the lood., 
toodu'e 

D 
Callable 
only from 

inside 

the loader 
rT10Jule 



The DCB headers are chained bi
directionally through the first two words 
of the header. The forward link of the 
SYSLIB DCB header will be zero; the back 
link of the last-opened JOBLIB will point 
to ISAJLC. DCB headers are of the follow
ing format: 

r-----------------------------------------, 
I Forward Link: I 
IPointer to Word 0 of Next DCB Header I 
~-----------------------------------------~ 
I Back Link: I 
IPointer to Word 0 of previous DCB Header I 
t-----------------------------------------~ 
I Pointer to JFCB for Data Set I 
t-----------------------------------------~ 
I Not Used I l _________________________________________ J 

The Add Function: The DCB availability 
chain is checked: if the pointer is zero, 
indicating no available DCBs, one storage 
class C page is requested via GETMAIN. The 
model DCB with its header is copied into 
this until the page contains the maximum 
number of DCB/header blocks. The available 
space pointer is set to point to the first 
word of the new page (which is word 0 of 
the first header), and the remainder of the 
DCBs are chained together in the availabi
lity list through word 0 of their respec
ti ve headers. 

Now the first DCB is plucked from the 
availability list and chained into the head 
of the existing program library chain. 
That is, the forward link of the new header 
is set to the contents of ISAJLC, the new 
header back link is made to point to 
ISAJLC, and ISAJLC is set to point to the 
new header. The original contents of 
ISAJLC are checked for zero -- indicating 
the first add calIon LIBE MAINT. In the 
first call, ISASLP is set to point to the 
new header, whose attached DCB is assumed 
to be the DCB for SYSLIB. 

If ISAJLC was not zero, the back link of 
the previous head of the chain is set to 
point to word 0 of the new header. 

The JFCB pointer -- parameter 2 is 
now placed in the DCB header, and an OPEN 
macro instruction is executed to open this 
new DCB, making the data set available to 
the loader and link editor. If the library 
opened is USERLIB and the data set is not 
shared, CLOSE is called. Then SHARE 
(CZCFS1) is called to mark the catalog as 
shared by the owner, and then OPEN is 
called again. This permits a user to have 
multiple tasks running simultaneously. 

90 

A typical chain might look like this: 

ISAJLC 

I 

I 
i 
L ~~. f------f 

ISASlP 

DO foc SYSllB 

I ! 

I 
I 
I 
I i 
I I 

JFCII~;; )OBlI~"'; 
JFCB foc JOBUBI 

JFCB for Uj.ERLIB 

JFCft for (,YSllf'. 

The Delete Function: The chain is searched 
from the beginning, and each header is 
examined to locate that one whose JFCB 
pointer matches the first input parameter. 
If no match is found, a diagnostic is 
issued via GATWR and an error exit is 
taken. If a match is found, the DCB header 
is removed from the chain. The DCB with 
header is added to the head of the availa
bility list, and a CLOSE macro instruction 
is executed on the removed DCB. 

Exit on the add function is always made 
with GR15 set to zero. Norroal exit on the 
delete function is made with GR15 set t~o 
zero; error exit on delete is with GR15 set 
to 4. 



Program Logic Manual 

GY28-2031-3 

Dynamic Loader 

Flowcharts on pages 91-144 were not scanned. 



Chart BM. TEST USER COUNTS - CGCDE 

CGCDE 

INPUT PARAMETER 
RA; PMDAD IJF CANDIDATE 

j. 
DE 1 00 

CF!~ 

Section 9: Flowcharts 145 



APPENDIX A: ANALYSIS AIDS 

Appendix A contains two symbol proces
sing tables, a list of loader routines 
indexed by entry point name, a list of 
loader routines indexed by routine title, 
and a table of data references listed for 
each routine. 

SYMBOL PROCESSING 

Figures 18 and 19 summarize the symbol 
processing algorithms performed by the 
loader and unloader. Figure 18 shows the 
dynamic loader symbol lookup rules for 
resolving symbols in either explicit CALLI 
LOAD or DELETE adcon groups or in external 
REFs. Figure 19 shows the symbol posting 
rules for inserting DEFs into TDY hash 
chains. 

The conditions set forth in Figure 18 
are tested by the routine SEl' SEARCH .FLAGS 
(CZCDLG), which produces as output a hash 
table pointer and library index (column S). 

The routine PCSA (CGCCT) checks the con
ditions in columns 1 and 2 of Figure 19 and 
performs the necessary CSECT attribute 
modifications indicated in column 3. The 
routine CHECK DEF LEGAL checks the condi
tions in columns 1, 2, and 4 to judge the 
admissibility of DEF symbols about to be 
posted. Finally, SELECT HASH (CGCCB) 
checks the conditions in columns 1, ,), and 
4 before selecting the hash table [lOLnt.el 
(column 5). 

The symbols U. P, and 0 stand for normal 
user, system programmer, and operator or 
privileged system programmer, respectively. 

r---------T------------T-----------------T-------------------~-----------------------·l 
111 2 I 3 I 4 I 5 I 
~---------+------------+---------------+-------------------_+-----------T------------~ 
I if I and I and I and I then I or I 
~---------+-------------+-----------------+--------------------+-----------+------------~ 
lauthoritylloader is Ihigh-order bit of I control section con-Ilookup IIf symbol isl 
Icode is: Iresolving IC1 or C3 byte of ltaining adcon group Isymbols in Inot found inl 
I Isymbol from: ladcon group is: lor REF is: Ihash table:lhash Ulble, 
I I I I I I search 
I I I i I Iii br a r y : I 
~---------+------------+-----------------+--------------------+-----------+------------~ 

I Explicit I I SYSTEM I SYSHASHP or I SYSLIB I 
I LOAD/CALL or I I I SYSHASHNP I I 
I DELETE adcon I 0 ~--------------------+---------_+--------.----~ 
Igroup I I NONSYSTEM IUSERHASH***IALL** I 

U i ~-----------------+-------------------+-----------+------------~ 
I I I NONSYSTEM I SYSHASHP or I SYS LIB I 
I I I I SYSHASHNP i I 
ill r--------------------+-----------+------------~ 
I I I S:iSTEM I USERHASH*** I ALL" I 
~-------------+-----------------+--------------------+-----------+------------~ 
I External REF I I SYSTEM I SYSHASHP or I SYSLIB I 
I I I I SYSHASHNP I I 
I I NA* r-------------------_+-----------+------------~ 
I I I NONSYSTEM I USERHASH*** I ALL** I 

r---------+-------------+-----------------t-------------------_+----------+-----------.. -~ 
I P or 0 I NA* I NA* I NA* ISYSHASHP orIALL** I 
I I I I I SYSHASHNP I I 
~---------~------------~-----------------~-------------------~-----------~------------~ 
INotes: I 
I *NA - not applicable, in the sense that the condition is not tested by the loader. I 
I **ALL - the entire hierarchy of open libraries beginning at the last defined J013LTB ! 

I and ending with SYSLIB (or with that library yielding a valid definition). 
1***If the symbol to be resolved begins with SYS t the loader will look in SYSHII~)HJ· (Or 
I SYSHASHNP, and then in SYSLIB. L ___________________________________________________ --______________ ----- - ----- - _ .. -- ....• 

Figure 18. Dynamic Loader Symbol Lookup Rules 

146 



r---------T-------------T-----------------~------------------~----------~------------, 
111 2 I 3 I 4 I 5 I 6 I 
~---------+-------------+-----------------+--------------------+-----------+------------~ 
I if I and I then I and if I then I and I 
~---------+-------------t-----------------+--------------------+-----------+------------~ 
I authority \ control sec- Icontrol section Icontrol section t;hat\DEFs may lall legal I 
Iclass is:\tion that lattributes may Icontains DEF has Ibegin with Isymbols froml 
I Icontains DEF Ibe altered: lattributes: lonly the Icontrol sec-I 
I I came from: I I I symbols: I tion are I 
I I I I I I posted in: I 
~---------+-------------+-----------------+---------~---------+-----------+------------~ 
I I I If control sec- I I PRVLGD I CZ, CHB I SYSHASBP , 
, I Ition is PRVLGD, I SYSTEM ~----------t-----------+------------~ 
I , ,loader sets I INONPRVLGD lez, eHB ISYSHASHP I 
, , I SYSTEM attribute; I , I-----------+----------~ 
\ I , 'I I All others I SYSHASHNP I 
I I SYSLIB \ hence, NON- ~---------.l.---------_+-----------+------------~ 
lUI I SYSTEM and , NONSYSTEM I I I 
I I I PRVLGD is I I I I 
I I ,impossible. I I I I 
I ~-------------t---------------+-·-------------------~ Any but SYS I USERHASH I 
I I USERLIB or I PRVLGD and I NA* I I I 
I I JOBLIB I SYSTEM erased. I I' I 
t---------+-------------t-----------------+--------------------+----------_+----------~ 
, , SYSLIB I PUBLIC and I I Any I SYSHASHP or I 
I I I READONLY erased. I 'I SYSHASHNP I 
I ~-------------t-----------------~ NA* t----------_+------------~ 
I P I I I I I SYSHASHNP I 
I I USERLIB or I PUBLIC, READONLY, I I Any but I I 
, I JOBLIB I PRVLGD, I I CZ, eHB I , 
I , I SYSTEM erased. I I I I 
t---------+-------------t-----------------+-------------------_+-----------+----------~ 
I I I PUBLIC and I I I SYSHASBP or I 
I 0 I NA* I READONLY erased. I NA* I Any I SYSHASHNP I t---------.l.-------------.l.-----------------.l.--------------_____ -.l. __________ -.l. ____________ ~ 

I*NA - not applicable, in the sense that the condition is not tested by the loader. I L ______________________________________________________________________________________ -l 

Figure 19. Symbol Posting Rules 

• 

Appendix A: Analysis Aids 147 



DYNAMIC LOADER ROUTINE INDEX 

These routines may be accessed from out
side the loader: 

Label (Entry Point) 
CZCCDl 
CZCCD2 
CZCCD4 
CZCDHl 
CZCDLl 
CZCDL2 
CZCDL3 
CZCDL4 
CZCDL5 
CZCDL6 
CZCDL7 
CZCDUl 
CZCDU2 

Routine 
LOADER LOGOFF 
LOADER RELEASE 
LOADER CLEANUP 
LIB MAINT 
EXPLICIT LINK 
HASH SEARCH 
LIBE SEARCH 
PAGE RELOCATION 
MAP SEARCH 
SET SEARCH FLAGS 
Q-CHAIN 
EXPLICIT UNLINK 
DELETE MODULE 

These routines are internal to the 
loader: 

Label (Entry Point) 
CGCCA 
CGCCB 
CGCCC 
CGCCE 
CGCCH 
CGCCJ 
CGCCK 
CGCCL 
CGCCN 
CGCCO 
CGCCP 
CGCCR 
CGCCT 
CGCCU 
CGCCV 
CGCCW 
CGCCY 
CGCDA 
CGCDB 
CGCDC 
CGCDD 
CGCDE 
CGCDG 
CGCDPR 
CGCRQ 
CGCSP 

148 

Routine 
ALLOCATE MODULE 
SELECT HASH 
SRCHPACK 
RESOLVE SYMBOL 
LOAD PMD 
FIX PMD 
ATTACH TEXT 
FIX 
ADD PMD 
DROP PMD 
REJECT DIAG 
BISEARCH 
PCSA 
CHECK DEF LEGAL 
LINK DEFS 
GET STORAGE 
DEFINE REF 
MODIFY MOT COUNTS 
DELETE CALLER MUTES 
DELETE SELECTED MUTES 
MODIFY USE COUNTS 
TEST USER COUNTS 
ADD MUTE 
LOADER PROMPT 
RESOLVE Q-REF 
SETPAGE 

For quick reference, both kinds of rou
tines are listed alphabetically. 

Routine 
ADD MUTE 
ADD PMD 
ALLOCATE MODULE 
ATTACH TEXT 
BISEARCH 
CHECK DEF LEGAL 
DEFINE REF 
DELETE CALLER MUTES 

*DELETE MODULE 
DELE~E SELECTED MUTES 
DROP PMD 

*EXPLICIT LINK 
*EXPLICIT UNLINK 
FIX 
FIX PMD 
GET STORAGE 

* HASH SEARCH 
*LIB MAINT 
*LIBE SEARCH 

LINK ·DEFS 
*LOADER CLEANUP 
*LOADER LOGOFF 

LOADER PROMPT 
*LOADER RELEASE 

LOAD PMD 
*MAP SEARCH 

MODIFY MUT COUNTS 
MODIFY USE COUNTS 

*PAGE RELOCATION 
PCSA 

*Q-CHAIN 
REJECT DIAG 
RESOLVE Q-REF 
RESOLVE SYMBOL 
SELECT HASH 

*SET SEARCH FLAGS 
SETPAGE 
SRCHP'ACK 
TEST USER COUNTS 

Label 
CGCDG 
CGCCN 
CGCCA 
CGCCK 
CGCCR 
CGCCU 
CGCCY 
CGCDB 
CZCDU2 
CGCDC 
CGCCO 
CZCDLl 
CZCDUl 
CGCCL 
CGCCJ 
CGCCW 
CZCDL2 
CZCDHl 
CZCDL3 
CGCCV 
CZCCD4 
CZCCDl 
CGCDPR 
CZCCD2 
CGCCH 
CZCDL5 
CGCDA 
CGCDD 
CZCDL4 
CGCCT 
CZCDL7 
CGCCP 
CGCRQ 
CGCCE 
CGCCB 
CZCDL6 
CGCSP 
CGCCC 
CGCDE 

*Externally referable routines 



DATA REFERENCES 

Table 2 shows which tables are ref~renced by the loader's routines, by LOADER, LOGOFF, 
and by LIB MAINT. Entries are shown only for tables directly referenced by the routine 
itself; not for references by a c;;,.l.led routine. 

Table 2. Data References by Loader 
Routines 

r--------T---r---r---r---r----T---T---T---' 
I ITDYIMAPIISAIDCBISDST\TDTIMUT\VSTI 
t--------t---+---t---t---+----t---+---+---~ 
IADD MUTE I • I I I , I ,. I I 
t--------+---+---t---+---+___-t---+---+---~ 
I ADD PMD I • I I· I I I I I I 
t--------+---+---+---t---+---_+---+---+---~ 
I ALLOCATE , I I , , I , , I 
, MODULE I· I , I , ., I I·' 
t--------+---t_--+---t---t----t---+---+---~ 
,ATTACH, , I I I , , I I 
,TEXT I·' , I· I I I I· I 
t--------+---t---t---+---t----t---t---+---~ 
I BISEARCH I • I • I , I I , I I 
.--------+---+---+---+---t----+---+---t---~ 
,CHECK I I I I I I I I I 
IDEF I I I I I I I I I 
, LEGAL I·' ,. I I I I I I 
t--------+---+---+---t---t----+---+---+---~ 
I DEFINE ! , , \ , I I I I 
I REF I • I I I I \ I , I 
t--------+---+---t---+---t----t---+---+---~ 
,DELETE I I I I I I , I I 
I CALLER I I I I I I I I , 
, MUTES I. I , I I Ii· I I 
.--------t---+---t---t---t----+---+---+---~ 
I DELEl'E I , I I , I 1 I , 
\ MODULE I· \ I I· I I I I· I 
.--------t---t---t---+---f----+---+---+---~ 
I DELEl'E, I , I I I I I I 
, SELECTED' , , \ I I I I I 
I1-1UTES ,. I I I I I ,. I I 
t--------t---t_--t---t---t----+---+---t---~ 
'DROP PMD\ • I I I , I I , , 
.--------t---t_--t---t---t----t---t---t---~ 
,EXPLICIT, I I I I , , I I 
I LINK ,. I I I I I , I I 
t--------t---t_--t---f---t----+---+---+---i 
,EXPLICIT I I I , , I I I , 
IUNLINK I· I I I , I , , I 
t--------+---+---+---+---+----+---+---+---i 
I FIX I • I I , I , , I I 
t--------+---+---+---+---+----t_--+---+---~ 
'FIX PMD , • I I I I , I I I 
t--------+---+---t---t---+----t---+---+---i 
I GET 1 I , , I I I I I 
I STORAGE I ., I· I I • I I I· I 
t--------t---+---+---+---t----t---+--_+---i 
, HASH I I I , I I I I I 
, SEARCH ,., I·' I I , I I 
t--------+---+---+---+---t----+---+---+---~ 
I LIBE I I I I I I I I I 
, SEARCH I I I·'·' , I I I 
.--------+---+---+---+---+----+---t-~-+---~ 
I LINK I I I I I I I I I 
I DEFS ,. I , I I I I I I L ______ --.J.. ___ J.. ____ J.. ___ J.. ___ J.. ___ J.. ___ J.. ___ J.. ___ J 

r--------T---r---r---T---r----~~---T---' 

, ,TDY,MAPIISA\DCB!SDSTITDT,MUTIVSTI 
t-----t---t_--+---+ I I --+---+-~ 
, Q-CHAIN I • I I I I I I I I 
t--------t---+---t---+---t----t---+---+---~ 
'LOADER I , I , I I ! I I 
I PROMPT I I I I I I I , , 
t--------t---t_--+---+---+-+---+---t---~ 
'LOAD PMD' • I I ,. I , I I I 
t-------t---t_--+---+---+----t--+---f-~ 
IMAP I I I I I I I I ! 
I SEARCH I· I • I • I I I I I , 
~--------t---+---+---+---t----+---+---+---i 
I MODIFY I I I , , I , I , 
'MUT I I I I I I , I , 
, COUNTS I·' , I , I I· I I 
t--------t---t_--t---+---+----+---t---t---~ 
I MODIFY I , I , , , I I I 
IUSE I I I , I , I I I 
I COUNTS I· I I , I I I I I 
~--------+---+---t---+---t---+---t---t---i 
'PAGE RE-I I , I I I I , I 
, LOCATION I • I I , I I I I· I 
t------+---+---t---t---+---+---+---f---~ 
I PCSA ,., I·' , ,. I , , 
t-~------+---+---+---t---+----t_--t---t---~ 
I REJECT I I I I I I I I I 
I DIAG I· I I I I I , I I 
t--------t---+---t---+---t----+---+---+---~ 
'RESOLVE' , , I , I , , I 
I SYMBOL I·' I I , I I I , 
t--------+---+---t---+---t----+---t---+---~ 
, SELECT I I I , , , I I I 
,HASH I·' I· I , , I , , 
t-------t---+---+---+---t----+---+---+---~ 
, SET I I I I , I I I I 
, SEARCH I I I I I I , I I 
, FIAGS ,. I ,. I , , I I , 
~--------+---t---+---+---+__--+___+--_+---~ 
,SRCHPACK, I I , I I I I· I 
r--------+---+---+---+---+----t---t---+---~ 
I TEST , I I , I I , I , 
, USER I I I I I I , I I 
, COUNTS I· I I , I , I I I 
.--------+---+---+---+---t----t---+---+---~ 
I LOADER I I I I , , I I I 
I LOGOFF ,. I I I I , I I I 
.--------t---t---t---t---t----t---+---+---~ 
, LOADER, I I I I I I I I 
I RELEASE , • I I· I I ,. I , , 
~--------+---+---+---+---+----+---+---+---~ 
,LOADER, I I I I I I I I 
I CLEANUP I I I·'·' ,., I I 
.--------+---+---+---+---+----t_--t--_+---~ 
I LIB , I I I I I I I I 
I MAINT I I ,. I • I I· I I I 
t--------+---t---+---+---+----+---+---t---~ 
I SErPAGE* I I I I·' I I I I r-_______ J.. ___ ..L-__ J.. ___ J.. ___ J.. ____ J.. ___ J.. ___ J.. ___ ~ 

I*Also references PVT, RHD, MHD. DHD, and I 
I EPE I L-________________________________________ J 

Appendix A: Analysis Aids 149 



APPENDIX B: TABLES 

Appendix B contains descriptions and 
examples of the following tables: 

Task dictionary table (TOY). 

PMD group 
PMO group header 
PMD preface 
PMO 

CSO 
Definition table 
Reference table 
Relocation dictionary 
Virtual storage page table 

Module usage table (MDT) 

Memory map table (CHAMAP) 

Hash tables (CHASHT and CHAUHT) 

Vacant space table (VST) 

ACCESS TO LOADER TABLES 

Access to PMOs within PMD groups and to 
the PMD groups themselves is described in 
the discussion of the TOY. Access to the 
TOY is gained via the TDY heading; a point
er to this is set in the read-only half of 
the ISA. This pointer is identified sym
bolically in the ISA DSECT (CHAISA) as 
ISATOY. 

Access to the hash tables and storage 
MAP table is through pointers in the TOY 
heading. 

The module usage table (MUT) is main
tained in the loader PSECT (CZCOLP) and is 
identified externally as CHBMUT. The loca
tion CHBMUT actually contains a pointer to 
the head of a chain of available blocks of 
MUTEs. The various MUT chains must be 
traced from their sources in the PMD pre
faces (PAPA chain heads and BABY chain 
heads). If MUT space is exhausted in 
CZCOLP, additional space will be obtained 
by ADD MUTE (CGCDG). 

TASK DICTIONARY TABLE (TOY) 

The dictionary table (TDY) contains 
information needed to load (and unload) the 
modules in a particular task. It consists 
of a heading, three hash tables (two system 
and one user), the storage map table (MAP), 
and one program module dictionary (PMD) for 
each module loaded during the task (Figure 
20). The PMOs are arranged in irregularly 

150 

located PMD groups discussed in this appen
dix. TOY is initialized by STARTUP and 
maintained by the dynamic loader. 

TDY Heading 1--. 

Privileged System Hash Table (SYSHASHP) 

Nonpriviie9Ed System Hash Table (SYSHASHNP) 

User Hash Table 

MAP 

PMD Group I 
NUll \-. 

r.'",D Group 

I 

i 
I tl i 

PMD Group J 

Figure 20. Task Oictionary organization 

TDY Heading (CHATDH) 

The TOY heading (see Figure 21) is 16 
words in length and contains: 

Word 0 - Link to PNO group: The addresE, 
of the first word of the last PMD 
group to be entered into the TOY. 

Word 1 Hash divisor: This is some num
ber less than the length (in 
words) of each hash table. It is 
provided by STARTUP and remains 
unchanged during a task. 

Word 2 - Pointer to system haSh table: 
The virtual storage address of 
the beginning of the privileged 
system hash tabl e. The nonpr i Vl-· 

leged system hash table begins ~t 



the end of the privileged system 
hash table. 

Note: If the user authority is P 
or 0, LOGON sets word 3 .. (pointer 
to user ha~r table) equal to the 
contents of word 2 (poi.nter to 
privileged system hash tavlpl. 

Word 3 - Pointer to user hash table: The 
virtual storage address of the 
beginning of the user hash tablz. 

Word 4 - The virtual storage address of 
the origin of MAP table. 

Word 5 - The length, in bytes, of the 
maximum space allocated by the 
system for the task's storage 
MAP. 

Word 6 - A count of currently valid MAP 
entries. 

Words 
7-15 

o 

2 

3 

4 

5 

6 

7 -15 

Several words reserved for 
future expansion. 

Link to PMD Group 

Hash Divisor 

Pointer to Privileged System Hash Table 

Pointer to User Hash Table 

Pointer to MAP 

Maximum length of MAP 

Length of Current MAP 

Reserved 

Figure 21. TDY Heading 

PROGRAM MODULE DICTIONARY (PMD) GROUP 

Each PMD group consists of at least one 
PMD with its associated PMD preface. When 
a new PMD is to be added to the TDY. if 
room exists in the same page that contains 
the last inserted PMD, the new PMD will be 
added to that page and become part of that 
PMD group. If such space does not exist in 
the page, a new PMD group is formed start
ing with the new PMD. Note that the first 
PMD in a group may exceed a page in length, 
but that successive PMDs in a group may not 
exceed a page. Space for PMD qroups is 
allocated by the loader subroutine, ADD PMD 
(CGCCN). 

PMD groups are chained together bi
directionally through the first two words 

in each PMD group header (see Figure 22). 
The TDY heading contains a pointer to the 
beginning of the chain of the PMD groups. 

Pointer to Next PM~ grovp header 

Pointer to Previous PMD group header 

P,)inter to Lost PMD in this group 

Poi nter to End of group 

Figure 22. PMO Group Header 

PMD Group Header 

Each PMD group header consists of four 
pointers: 

Word 0 - A pointer to the next PMD group 
header. 

Word 1 - A back pointer to previous PMD 
group header. 

Word 2 - A pointer to the last PMD in this 
group. 

Word 3 - A pointer to the first byte past 
the end of this PMD group. which 
therefore defines the beginning of 
available space in this group. 

The PMO group header is at the beginning 
of a page. 

POINTER TO NEXT PMD GROUP HEADER: This 
either contains the address of the next PMD 
group header, or is zero if this is the 
last PMD group in the chain. 

POINTER TO PREVIOUS PMO GROUP HEADER: This 
contains the address of word 0 of the pre
vious PMO group header in the chain. The 
most recently added group will back-link to 
word 0 of the TDY heading (CHATDH). 

POINTER TO LAST PMD IN THIS GROUP: This is 
the beginning of a circular chain of all 
PMOs in the group. It contains the address 
of the last (most recent) PMD preface in 
this PMO group. When the group collapses, 
this pointer will point to itself; the 
unloader routine DROP PMD (CGCCO) will 
recognize this condition and release the 
pages containing the collapsed group 
through FREEMAIN. 

Figure 23 shows a sample PMD group. 

POINTER TO END OF GROUP: Contains the 
addr~ss of th~ beginning of the available 
space at the end of the last page in the 
group. Space made available by deletion of 
a PMD within a group is not accounted for. 
Space is only released on a full group 
basis. 

Appendix B: Tables 151 



Pointer to Next P"ID Group Beginning of Poge 

~-------------
Beginning _ 
of Page Pointer to Previous PMD Group 

-------------
1----, 

Pointf'f to lost PMD in Group -4____ r 

f-------------------- I 

ro-- Pointer- to End of Group U This Mey 
Exceed a 

_____________ I--

PMD 

Refl.'05-ed PMD Space J 
I----~ 

---------------

PMD 

f-------

PMD 

'-----________ -1 End of Page 

This Will 
be Less Than 
o Page 

I 

J 
Figure 23. sample PMD Group 

PMD Preface 

The PMD preface (Figure 24) is generated 
by STARTUP if the PMD preface is part of 
initial virtual storage or by the loader if 
it is not. The contents are maintained by 
the loader. It immediately precedes the 
PMD at load time: and when the term PMD is 
used in the following description, the PMD 
preface is generally inferred. The PMD 
preface contains the following entries: 

Word 0 

Word 1 

152 

A link to next PMD in the chain 
of PMDs within this PMD group. 
The PMO group header contains a 
pOinter to the last PMD of this 
group. Since each new PMD is 
inserted at the beginning of the 
chain, PMOs are in reverse order 
of appearance within a PMD 
group. The link contains the 
address of the first word of the 
PMD preface of the next PMD. 
The last PMD in the chain points 
to the third word in the PMD 
group header. 

A link to the MUTE <module usage 
table entry} chain for modules 
which explicitly call this mod
ule. This chain is further 
described under "Module Use 
Table." This entry is the 
beginning of the BABY MUTE chain 
for this module. It is zero if 
there are no entries in the 

Word 2 

U<,e r 

Informat,-on 

from 

Library 
for 
Module 

chain: otherwise, it contains 
. the address of the forward BABY 
link entry in the MUT chain. 

- A link to the MUTE chain for 
modules that are explicitly 
called by this module. This 
chain is fUrther described under 
"Module Use Table." This entry 
is the beginning of the PAPA 
MUTE chain for this module. It 
is zero if there are no entries 
in the chain; otherwise, it con
tains the address of the respec
tive forward PAPA link entry in 
the MOT chain. 

o Link 10 Next PMD Preface in Chain of PMD 's within this 
PMD Group 

Link to MUTE Chain for Modules that Expliei;!; Cail I 
this Module (BABY Chainl -i 

3 
Number of Explicit CALL's/ I 

LOAD's on this Module PMD Flogs 
(MUT Count) 

4, 

Link to MUTE Chain for Modules that are EXPI~,eitIY 
Coiled by this Module (PAPA Chain) 

5 

6 Retrieval Address of PMD 

7 

8 Retrieval AJdress of Texl _~ 

9 f-______ le_n_g_th_O_f_T_e_xt_i_n_B_Y_Ie_s ______ .~ 
10 Retrieval Address of ISD 

Length of ISD In Byte~ 

f------------------------
12 SYSLIB Switch - Zero if library \"vhere NO!""le wm Ft)'JrlrJ 

I--____ i.:..s ;....Nc:0 .:..t .:.SY.:..S::..:L::.IB:.J'c..Nc....:..0n;....-_Z::.e:::r..:.0c:i_f ;....il;....i::.s _ -----1 

13 L _____ M_Od_u_le_Se_q_u_en_c_e_N_'u_m_,h_€_, _______ Ji 
14 Reserved for Future Use 

Figure 24. PMD Preface 

Word 3 - The number of explicit links 
left half (CALLs/LOADS) to this module. 

For each explicit link to this 
module the value of this field 
is incremented by one. When ttw 
corresponding MUTE is removed 



(see MUTE processing routines), 
the value is decremented. The 
contents are initially zero. 

Word 3 - PMD Flags. The PMD flags field 
right half is a halfword containing flags 

used by the loader. The follow
ing flags are defined (bits num
bered from left to right start
ing with 0): 

Word 4 

Word 5 

Words 
6-11 

Bit 15 - Public flag -- this bit 
is set if this module 
contains any public 
control sections, 

Bit 14 - Condidate flag -- this 
bit is set if this mod
ule is on the deletion 
candidate list. 

- A pointer to the JFCB for 
library containing this module. 

- Address of DCB for library in 
which name resolved. 

- User information from library 
where this module was obtained. 

The form of the retrieval 
address is: 

Bits 0-15 - Relative page 
number. 

Bits 16-31 - Zeros. 

Note, therefore, that the retri
eval address for the PMD will 
always be zero. 

Word 12 - SYSLIB switch: set nonzero if 
module was extracted from 
SYSLIB. 

Word 13 The module sequence number. 
Each module is assigned a conse
cutive sequence number as it is 
loaded. 'This sequence number is 
used to differentiate unnamed 
(non-common) control section 
references among modules. 

Word 14 - Reserved for future use. 

PROGRAM MODULE DICTIONARY (PMD) 

The output from an assembler, compiler, 
or the linkage editor is known as a program 
module. This is composed of a program mod
ule dictionary (PMD), text, and internal 
symbol dictionary (ISD). 

Each PMD consists of one PMD heading 
plus as many control section dictionaries 
(CSD) as there are control sections in the 
module. Address pointers in the PMD are 
initially relative to the beginning of the 

PMD itself (not the PMD preface), except 
where otherwise specified. Some fields in 
the PMD are filled in by the loader. These 
are left zero by the language processor. 
The PMD format is shown in Figure 25. 

PMD Heading 

1. Length of PMD in bytes: This length 
does not include the PMD preface. 

2. Diaqnos~ic code (1 byte): The diag
nostic code indicates the highest 
level diagnostic encountered during 
generation of the module by the lan
guage processor that created it. 

3. Flags (1 byte): The flag bits are 
numbered from left to right starting 
with zero and are defined as follows: 

o 7 

'----- Version I D Flog 
'------ FORTRAN Flag 

'--------- FORTRAN !vIain Prog. Flag 
'------------ PCS Communication Flag 

'------------- Link Editor Flag 
'---------------- ISD Flag 

'----------------- Modification Flag 

Bit 0 - In a system module indicates 
that module was modified by 
other than a language 
processor. 

Bit 1 - This module has an associated 
ISD. This bit is set by the 
processor creating the PMD. 

Bit 2 This module was produced by 
the link editor. 

Bit 3 - PCS is to be called before 
module is unlinked. This bit 
is set by PCS and examined by 
the unloader (CZCDU). 

Bit 5 - FORTRAN flag, set by FORTRAN 
compiler. 

Bit 6 - FORTRAN main program flag, set 
by FORTRAN compiler. 

Bit 7 - Version ID indicator. If this 
bit is set, the module version 
1D '~DYMID) is to be inter
preced as a 64-bit binary num
ber which is the creation date 
of the module expressed as the 
number of microseconds that 
have elapsed from March 1, 
1900, until the time of module 
creation. If this bit is not 
set, the version ID is eight 
alphameric EBCDIC characters. 

Appendix B: Tables 153 



The PMD 
Preface j~ 
Prefixed 
here by 
either 
STARTUP 
or.he 
Dynamic 
Loader. 

PMD 
Heod:ng 

o 

6 

10 

12 

13 

14 

, 1. 

16 

17 

18 

length of PMD in I)ytes 

Oiog. 

I Flogs I 
Length of P MD 

Code Heading in Byfes 

4 - Character I. D. Nome 

Version ID 

----------------
of Module 

No. REFs for Entry I No. Mod~. for 
Point Entry Point 

Alphameric Nome 

------------------

I 
of Module 

I VcL.)e of DEF 

! Value Displacement 
(Creofed by LINK EDITOR) 

[CSD LlNKI 

(Res€"'",ed for Future u,e) 

[Seorch Lirk) 

Alphameric Nome 

---------------
of REF 

[Value of REFl 

[R - Vol ue of REFJ 

[C50 LINK) 

(Reserved for Futvre Use} 

} 
Fo, Deck 
Punchout 

DEf fo, 
Stondard 
Entry Pain~ 

REF (,) to
(ntrl Pairt 

Figure 25. Format of PMD Entry (Part 

154 

PMD 
Heod,ng 

(SD 
Head!ng 

Definition 
Table 

Oefinition{s) 
P('lotive 

,Ahol'Jre 

Complex 

of 2) 

(lI-L-1I __ R_E_F '_'"_m_oe_' __ I<----LI __ BY_'e_'_--il ~~f~:i~~ in, 

N umber Bytes in CS D 

le0grh of Control Section 
in BytE'S 

Poge Number in Text of Page 0 
of CS Text 

(SECT 

f-- ----------------
Version ID 

:PMD Link] 

No. Q-REFs or CXD-REF 
flog (TDYCQR\ 

No. Re!ocatoble 
OfF, 

No. Complex 
DEF, 

(No, REFs into this 
Control Section (user 

count) ) 

No. Absolute 
OfF, 

No. of External and 
Internal REfs in 
Reference Table 

No. Pogesof Text 

,A.lphomertc Name 

-- ------------- ----
of OEF 

Value of DfF 
;Modir;ed by loode<1 

k-Votve O;$ptoceme:-\t 
(Modified b)'- loader! 

1---------------------------
LCSD Link) 

(Re~erved for Future Use) 

lS~arch lInkl 

1 ·----1 



• 

Reference 
Tsbfe 

(Value :)f REF! 

~R-V:Jlue of REFj 

fCSD linkJ 

(Re~erved for Future Us:e) 

t'Jr)"l"le of 

1-------------
DXD In .. t"udion 

(Q·Value of REF\ 

[Link to Next DXD r..o""'e J 

[ljr,~ ~c' Same DXD Name] 

~ _________ R_e,_e_r~_e_d_fc_~C_F_u_,u_ce __ u,_e_i ________ -;l 
'Reserved for FIJ~'cJre Use, 

,'Volue of CXD) 

"Reserved for Future Usel 

[q.e~efved ter Future Use) 

ICXD REF Link) 

) 

Modifier 
Pointers for 
Complex DEFs 

Exterl"lo! 

or !dernol 
REF 

Modi fiefS for 
Complex DEFs 

Modifier Pointers 
for External REFs 

Modi fi ers for 

External KEF., 

Q-Type 

REF 

Modifier Painter!. 
for Intemal REFs 

Modifier~ for 
Internol R.E Fs 

Virtual Me."ory 
Poge Table 

1 No. Mod;fiers for Re!ativ~ Locotion of First 
Page 0 of PMD Modifie~ for PMD Page 0 

No. Modifiers for Relative locoti'.:m of First 
Page x of PMD Modifier for PMD Page x 

L I REF Number T I Byte .... 

-
No. Modifiers for I Reloti,e Location of Fi", 

P:Jge 0 of Text Modifier for T exf Page 0 

No. Modifiers. for I Relative Location of Fie>' 
Page y of Text Modifi'Jf for Text Page 'j 

iLl 
REF Number i T I Byte 1+ 

-l 

No. Modifiers for Relative Locotion of First t-
Page 0 of Text Modifier for Text Poge 0 

No. Modifiers for Reloti ve Location of First 
Poge z. of Text Modifier for Text Page z 

L I REF Nl,,;mber T I Byte 1+ 

Page No. in Text I Page No ;n Text 
of Vidual Memory Page 0 I of Virt;Jat Memory Page 1 t l f--------r-------i 

Page No. in Text of I Page No. in Text of 
Virtual Memory Poge'm-l' Virtuo! Merr.ory Poge 'm' 

Remoinil"9 CSD, 

C.:,mplex DEF RLD 
Note: Poge x is the last 

PMD page for which there 
are any Complex 

DEF mooiflen 

External REF RLD 
Note' 

1. Modifier'S tor Q-REL and 

CXD-REFs Oie included in 
this RlD. 
2. Page y is the last text 
pDge for whicr tl-,ere ore 
Gny Extern':l! REF modifiers. 

!nternal REF RlD 
Note: Pcge l. ;s the !ost 

text page far wh;c!-' there 
are any Internal REF 
modifiers 

Figure 25. Format of PMD Entry (Part 2 of 2) 

4. 

5. 

6. 

7. 

Length of PMD heading: This is the 
length of bytes of the PMD heading. 

4-Character I.D. Name: The 4-
character I.D. name is supplied by the 
user to serve as deck identification 
if the module is punched into cards. 
This field is currently unused. 

Version 1.0.: See 3. above (bit 7 
discussion> for interpretation of ver
sion I.D. 

Number of REFs for the standard entry 
point: The DEF for the standard entry 
point is always treated as a complex 
DEF. This field contains the number 
of REFs. It may be zero. 

8. 

9. 

Number of modifiers for the standard 
entry point: This field contains the 
number of modifiers that are to be 
used to compute the DEF for the stan
dard entry point. 

DEF for standard entry point: This 
seven-word pntry describes the DEF for 
the standaru entry point of the mod
ule. It has the same form as the 
individual DEF entries within the 
CSDs. The standard entry point DEF 
for the module belongs to the first 
PSECT of the module and is treated the 
same as a complex DEF whose ENTRY sta
tement appears within that PSECT. If 
no PSECT is declared, the standard 
entry point will be associated with 

Appendix B: Tables 155 



10. 

the first CSECT instead. This DEF 
entry contains the following sub
fields, which are described in the 
discussion of DEF entries, under "Con
trol Section Dictionary." 

a. Alphameric name of module 
h. Value of DEF 
c. R-value displacement 
d. CSD link 
e. Reserved for future use 
f. Search link 

The alphameric name is also the name 
of the module. 

REF(s) for entry point: These have 
the same form and function as the REFs 
described in the CSD discussion, 
following. 

11. Modifier(s) for standard entry pOint: 
These have the same form and fUnction 
as the modifiers described in the CSD 
discussion below except that they 
apply to standard entry point DEF. 

CONTROL SECTION DICTIONARY (CSD> 

The control section dictionary is made 
up of: 

1. CSD heading 

2. Definition table 

3. Reference table 

4. Relocation dictionaries (RLDs) 

5. Virtual storage page table (VMPT) 

CSD Heading 

1. Number of bytes in CSD: This field 
specifies the length of the control 
section dictionary in bytes. 

2. Length of control section in bytes: 

3. 

156 

This specifies the virtual storage 
span of the control section. The 
length of the virtual storage page 
table is derived from this length. 
For example, if the length of the con
trol section is 8192, the virtual 
storage page table will contain two 
entries, but if the length is 8193 
bytes, the virtual storage page table 
will contain three entries. This 
value will be equal to the highest 
location counter value assigned by the 
language processor, plus one. 

Page number in text 
trol section text: 
control section in 
an integral number 
resident data set. 

of page 0 of con
The text for each 

the module occupies 
of pages in its 

The text pages for 

all control sections in a module are 
contiguous. This number is the page 
number, relative to the first page of 
text for this module, of the first_ 
page of text for this control section. 
(Numbering begins with 0.) 

4. Version I.D.: This is a 64-bit binary 
number which is the creation date of 
the control section expressed as the 
number of microseconds that have 
elapsed from March 1, 1900, until the 
time of control section creation. 

5. PMD Link: The PMD link is filled 
by STARTUP or the dynamic loader. 
pOints to the beginning of the PMD 
preface. 

in 
H_ 

6. Number of Q-REFs or CXD-REF flag 
(TDYCQR): The number of Q-REFS in 
this control section, and whether 
there is a CXD-REF in this control 
section. 

Bit 0 (leftmost): Set to 1 if there 
is a CXD-REF. 

Bit 1: Not used. 
Bits 2-14: The number of Q-REFs. 

7. Number of implicit references to this 
control section (user count): This is 
a count of the number of REF entries 
that refer to this control. section and 
are linked to this CSD through their 
CSD link. It is computed by the load
er. It includes both external and 
internal references. This number is 
arbitrarily set to X'7FFF' by STARTUP 
for each control section in initial 
virtual storage (IVM) to prevent 
unloading of IVM modules. 

8. Number of relocatable definitions: 
This is the number of relocatable 
definitions in the definition t_dble. 
It is always at least one; namely. the 
control. section name DEF. 

9. Number of absolute definitions: Thir; 
is the number of absolute definitions 
in the definition table. It may be 
zero. 

10. Number of complex definition~;: This 
is the number of complex definitions 
in the definition table. It may be 
zero. 

11. Number of references from this eSD: 

12. 

This is the sum of external and 
internal references in the referencf~ 
table. It may be zero. 

Attributes: This halfword has one b1t 
set for each attribute possessed by 
the control section. Currently 
defined attributes are shown below. 



Bits are numbered from left to right, 
starting with O. 

a. Public Name (Bit 0 on).. < 

This is used only by tbe dynamic 
loader to specify nonblank control 
sections whose names appear in the 
shared data set table (SDST). The 
first such control will appear in 
the SDST under the module name. A 
control section may be indicated 
as both having a public name and 
rejected. 

b. CSD has been allocated storage 
(Bit 1 on) 
Set by the dynamic loader, if 
applies. 

c. PCSA (CGCCT) called for this CSD 
(Bit 2 on) 
Set by the dynamic loader, if 
applies. 

d. Public Storage Assigned by CONNECT 
(CZCGA7) (Bit 3 on) 
Set by the dynamic loader, if 
applies. 

e. Bits 5 and 4 are not used. 

f. Common CSECT Rejected (Bit 6 on) 
The dynamic loader sets this flag 
to indicate to the Progra~ Control 
System that the CSECT was rejected 
as a common CSECT that was already 
loaded in another module. 

g. TDYCQR Validity (Bit 7) 
The dynamic loader sets this flag 
to indicate that the count of Q
REFs in TDYCQR is valid. If bit 7 
is off, the count of Q-REFs is not 
valid. 

h. System (Bit 8 on) 
Any external symbol that appears 
in a control section with the sys
tem attribute can not be 
referenced by a user program 
unless the symbol begins with SYS. 
Conversely, no reference from a 
control section with a system 
attribute may be to a user symbol. 

i. Privileged (Bit 9 on) 
A control section with a priVi
leged attribute is aSSigned 
storage key C, which provides 
fetch as well as store protect. 
Tbis attribute overrides R/O. 
Anything in a privileged CSECT may 
be referenced only when the PSW 
key is zero. 

j. Common (Bit 10) 
A common section is a control sec
tion common to all modules in 
Which it is declared. Common sec-

tions are more fully discussed in 
Linkage Editor and Assembler 
Language. 

Common sections are of two types: 

(1) Named common sections (those 
with a name not all blanks). 
These are treated as fixed
length sections. 

(2) Blank common sections, whose 
name consists of eight blanks. 
FORTRAN blank common is 
assigned the variable and com
mon attributes by the FORTRAN 
compiler. 

The treatment of blank common 
sections differs from that of 
blank non-common sections. 
Control section rejection is 
instituted between blank com
mon sections of different 
modules, whereas blank noncom
mon sections of different 
modules are treated as inde
pendent control sections. The 
latter are called unnamed con
trol sections. 

k. PSECT (Bit lion) 
If this bit is set. the dynamic 
loader overrides the system pack
ing indicator and inserts this 
control section as packed. 

1. Public (Bit 12 on) 
Control sections are not shared by 
control section name alone. A 
public control section of a module 
residing in a given data set 
(library) is shared if another 
user has access to the same data 
set and module. Control sections 
of a given module need not all be 
public or nonpublic. Fixed-length 
public control sections with the 
same attributes are assigned 
storage in the same assignment. A 
public control section must never 
contain relocatable adcons (A-,V-, 
or R-type). 

m. Read-only (Bit 13 on) 
Read-only specifies that the con
trol section may not be stored 
into. It causes memory protection 
by means of a storage class B 
aSSignment to all pages of the 
control section. Non-read-only 
and nonprivileged control sections 
are assigned storage class A. 

n. Variable-length (Bit 14 on) 
A variable-length control section 
will be allocated pages in excess 
of the length stated in the CSD 
heading. 

Appendix B: Tables 157 



o. Fixed-length (Bit 14 off) 
A fixed-length control section 
will be allocated a fixed number 
of pages at load time. 

13. Number of pages of text: This speci
fies the number of pages of text for 
this control section in the data set. 
It should be noted that this generally 
does not correspond to the number of 
pages in the virtual memory page 
table. It cannot, of course, be 
larger. 

Definition Table 

The definition table is made up of 
seven-word entries, one for each external 
definition in the current control section. 
Definitions are grouped as relocatable, 
absolute, and complex in that order. The 
first definition in the table is the name 
of the current control section. 

A relocatable definition is an external 
definition whose value may be computed as 
the sum of the origin of the control sec
tion wherein it appears and a constant 
which is the symbol·s displacement from the 
section origin. 

An absolute definition is an EQU item 
with an absolute value whose name has been 
declared an entry point in the control sec
tion in which the name is defined. 

A complex definition is either an EQU 
item with a complex relocatable value (that 
is, containing external symbols) or a 
simple relocatable definition whose ENTRY 
statement appeared within a control section 
other than the section in which it is 
defined. The definition entry appears 
within the CSD of the control section that 
contains the ENTRY statement. (Note that 
the origin of the same control section is 
the R-value for the DEF.) The complex DEF 
is required in this case, with one REF 
entry that names the control section in 
which the DEF symbol is actually defined. 

Each DEF in the definition table con
tains entries of the following form: 

1. Alphameric name of DEF: This field 
contains the eight-character alphamer
ic name of the DEF. 

2. Value of DEF: The value of the DEF is 
set by the language processor and is 
modified by STARTUP or the loader in 
the case of complex and relocatable 
definitions. For relocatable DEFs, 
the value portion of the definition 
entry contains the displacement value 
of the symbol relative to the base of 
its control section. For absolute 
DEFs, this entry contains the absolute 
value; for complex DEFs it contains 

158 

the absolute portion of the DEF value, 
which may zero. 

3. R-value Displacement: The displace
ment for R-value word contains the 
displacement of the original defining 
control section origin with respect. to 
the head of the control section within 
which the definition now appears. 
This is required to compute valid R
values for control sections that have 
been combined by linkage editing. In 
creating the PMD, only the linkage 
editor will ever produce a nonzero 
value in this word. 

4. CSD link: The CSD link is initially 
·zero. It is filled in by STAR'l'UP or 
the dynamic loader when the control 
section is loaded as a pointer to the 
beginning of the CSD in which this DEF 
appears, provided neither the DEF nor 

":the control section has been rejected. 

5. For future use. 

6. Search link: This field is filled t~ 
"the HASH SEARCH routine of either the 
loader or STARTUP. It contains the 
address of the beginning of the next 
DEF entry which hashes to the same 
value. It contains zero if there are 
no more DEFs with the same hash value 
:in this chain. 

Reference Table 

The reference table is made up of six
word entries, one for each external symbol 
referenced within the control section" 
Each entry for an external or internal REF 
contains: 

1. ' Alphameric Name of REF: This field 
contains the eight-character alphamer
ic name of the REF. 

2. Value of REF: This is filled in by 
STARTUP or the dynamic loader. It 
contains the value of the DEF to WtLl eft 
the REF refers. If the DEF is unde
fined, it contains the address of a 
portion of virtual storage wherein 
reference is illegal. 

3. R-value of REF: This is filled in by 
STARTUP or the dynamic loader. It 
contains the virtual storage addres~ 
of the beginning of the control sec-· 
·tion in which the DEF appears. Ttli,: 
value is obtained from the R-vdluc 
displacement word of the satistying 
DEF entry. If the DEF is undefined, 

"this word contains the address of a 
portion of virtual storage whereln 
reference is illegal. 

4. eSD Link: This pOinter, initially 
zero, is filled by STARTUP or thE' 



dynamic loader. It points to the 
beginning of the CSD in which the DEF 
that defines this REF appears. If a 
corresponding DEF could no~ be found 
upon the appearance of a REF, the CSD 
link is to the beginning of .. he CSD 
Wherein the REF ir.self appears. 

5. For future use. 

Each entry for a Q-REF contains: 

1. Name of DXD instruction: The eight
character alphameric name of a DXD 
instruction. 

2. Q-value of REF: This is filled in by 
the RESOLVE Q-REF routine of the 
dynamic loader. It contains the dis
placement from the beginning of the 
combined dummy sections of the dummy 
section defined by the DXD 
instruction. 

3. Alignment, Length: The alignment and 
length specified by the assembler lan
guage processor. 

4. Link to Next DXD Name: This is filled 
in by the Q-CHAIN routine of the 
dynamic loader when Q-CHAIN posts the 
REF on one of the eleven hash chains 
for Q-REFs. 

5. Link to Same DXD Name: Th~s is filled 
in by the Q-CHAIN routine of the 
dynamic loader when Q-CHAIN posts the 
REF on one of the secondary Q-type REF 
chains for duplicate-name DXDs. 

Each entry for a CXD-REF contains: 

1. For future use. 

2. Value of CXD: This is filled in by 
the EXPLICIT LINK routine of the 
dynamic loader. It contains the 
length of the combined dummy sections. 

3. For future use. 

ij. CXD REF Link: This is filled in by 
the ALLOCATE MODULE routine of the 
dynamic loader as CXD-REFs are chained 
together. 

Relocation Dictionary (RLD) 

Three RLDs appear in each control sec
tion dictionary. They are: 

1. RLD for complex definitions 

2. RLD for internal references 

3. RLD for external references 

Each RLD has the same format, consisting 
of modifier pointers and modifiers. The 

RLD for complex definitions differs in that 
pages mentioned in this table are pages of 
the PMD rather than the text. 

Modifier Pointer: Modifier pointers are 
used to designate the application of modi
fiers to adcons on appropriate pages of 
text (or of the PMD for complex DEFs). The 
first modifier pointer applies to the first 
text page, the second modifier pointer to 
the second text page, etc. Null (textless) 
pages do not have modifier pointers. There 
always exists at least one modifier pOinter 
for an RLD. However, there need not be a 
modifier pointer for each page of text: the 
modifier pointers may be ended at the last 
text page for which there exists any 
modifier. 

The modifier pointers consist of two 
fields, in the left and right halfwords: 

Left half - Number of modifiers for page 

This field contains the number 
of modifiers that apply in 
this page. 

Right half - Location of first modifier for 
this page 

This contains the locations, 
in bytes, relative to the 
right half of the pointer 
itself for the first modifier 
for this page. If there are 
none, it points to the loca
tion where one would have 
appeared if there were any. 

A special note should be made 
of the technique for determin
ing the length of an RLD. The 
location of the first modifier 
for this page is in the right 
half of the first pointer for 
the RLD. In the word preced
ing the first modifier word is 
the last modifier pointer for 
the RLD. Adding the location 
of the right half to the con
tents of the right half of the 
last pOinter gives the begin
ning of the last set of modi
fiers. Add to this four times 
the number of modifiers in the 
le31-, set to get the end of the 
RLD. 

Modifier: The modifiers themselves are 
each a fullword and are divided into 4 
fields : 

Appendix B: Tables 159 



o 

II 
1. 

2. 

3. 

16 20 31 

REF Numbior Byte 

L: L (2 bits) is the length, in 
bytes, of the adcon to be modified. A 
value of zero indicates a fullword (4 
bytes). 

Ref Number: Reference number (14 
bits) is the ordinal number in this 
CSO's reference table of the reference 
whose definition value is to be used 
in modifying the adcon. References 
are numbered starting with zero. 

T: T (4 bits) is the operation to be 
performed in modifying the adcon by 
the definition value. The values of T 
currently defined are as follows: 

a. Addition (T = 1) 

The definition value is added to 
the field of L bytes at the loca
tion specified by "Byte." 

b. Subtraction (T = 2) 

Same as addition, except that the 
definition value is subtracted 
from the field of L bytes. 

c. R-value (T = 3) 

The R-value of the REF is stored 
into the field of length L at the 
location specified by "Byte." 

d. Q-value (T = 4) 

The Q-value of the REF is stored 
into the field of length L at the 
location specified by "Byte." 

e. Value of CXD (T = 5) 

The value of the CXO instruction 
is stored into the field of length 
L at the location specified by 
"Byte. n 

4. Byte:. Byte (12 bits) is the displace
ment 1n bytes (from the origin of its 
original containing page) of the adcon 
to be modified. Note that since PMOs 
are packed to word boundaries this 
displacement will be added to'an 

160 

address for complex DEFs which gener
ally is not a page boundary. 

RLD for complex definitions: The format of 
these modifiers is as described above. 
These modifiers apply to the values of com
plex definitions; that is, the byte 
addresses in the modifier will be to the 
value words of complex DEF entries in the 
definition table, and the page numbers in 
the modifier pOinters are for pages of thp 
program module dictionary itself. 

RLO for text external reference: This 
relocation dictionary is in the same form 
as described above. It has one pointer for 
each page of program text up to that text 
page that is the last to contain an adcon, 
and appropriate modifiers for each adcon in 
the text that refers to a symbol defined 
externally to this module. The page num
bers are based on the first page for this 
control section, beginning with O. 

RLD for text internal reference: This is 
identical to RLO for text external 
reference above, except that the modifieD; 
apply to adcons in the text that reference 
symbols defined within this module, such <is 
con~rol.section names. This permits com
mun1cat1on between control sections of the 
same module that may be allocated nonconti
guous virtual storage. 

Virtual Storage Page Table (VMPT) 

This table has a halfword for each pag p 

of virtual storage that the control section 
occupies, beginning with page 0 and con
tinuin~ upward in order. 

The contents of each entry will be 
either: 

1. All bits if the corresponding page is 
empty as a result of a DS or ORG 
statement. 

2. The number of the page in the text 
relative to the beginning of text for 
this control section if the page con
tains code or data. This value multi
plied by four becomes an index into 
both the external and internal RLDB, 
and is used to select the correct 
modified pointer word for adcon 
relocation. 

This table is the means by which the 
text of the control section is relatfcd tc 
the virtual storage assigned the control 
section. This is necessary because J.an
guage processors do not necessarily output 
a byte of text for each byte of virtual 
storage aSsigned; that is, large ORG and OS 
statements may result in pages of text 
being skipped. 



If for example, a source program were to 
begin with 

ORG 10000 

there would be no text output for the first 
two pages of virtual storage and the first 
page of text would correspond to the third 
page of the user's virtual storage. The 
first two VMPT entries would be all bits, 
and the third would contain zero. Within a 
page, however, the bytes of text correspond 
directly to the bytes of virtual storage. 
Thus, in the example above, the first page 
of text would represent virtual storage 
locations 8192-12287, and the first 1808 
bytes of the page of text would be vacant 
(10000 - 8192=lBOB). The pages of text 
will always begin on page boundaries within 
the text module. 

MODULE USAGE TABLE (CHAMUT) 

Purpose 

For each CALL (in this description, 
·CALL- will be used when referring to 
explicit CALL or LOAD) during a task, a MUT 
entry (MUTE) is created by the explicit 
linkage routine, ADD MUTE (CGCDG). It pro
vides a record of all CALLs on and by 
modules in the task and is used to ensure 
correct unlinkage of called modules. See 
Figure 26. 

Links and Addresses 

All addresses and links used in the MUT 
are 32-bit virtual storage addresses. 

Location of MUT: Each task creates and 
uses its own MUT. The head of each MUT and 
space for a number of MUTEs reside in the 
loader PSECT (CZCDLP) for that task. If 
additional MUT space is required, the MUT 
is extended by allocating a new page via 
GETMAIN. 

Location of MUTEs: Prior to use, the MUT 
is initialized so that a chain of available 
space entries is anchored by a pOinter in 
the loader PSECT. This cell is labeled 
externally as CHBMUT. A newly created MUTE 
is assigned space in the first available 
space, and the available space chain is 
relinked. When a MUTE is deleted, the 
released space is added to the beginning of 
the available space chain. 

Contents of MUTE 

A MUT entry is linked into two chains 
which have their origin in two different 
PMOs. The MUTE serves to tie together a 
called module and its explicit calling mod
ule. When a MUTE is created, it is linked 
bi-directionally into the calling PMD's 

0 

1 

2 

3 

4 

5 

~~ 
l~ 
I 
13 

4 

5 

~ 

j 

Pointer to First Avqi iable )p<1ce Entry 

Fc-rwo~d PAP-Ali nk 

Bo,o::kward PAPA Link 

Address of CALling SVC 

Fcr'Hcrd EABY li nk 

Bo·:kward BABY link 

Pointer to PMD CALLEd by SVC 

Pointer h Next Avoi lable Space 

Additiora! ,V.UTEs and ,.1,<,foiloble Space Entries 

~ ....... ~~ --- ~ 

/',j,UT Heading 

MUT Entry 
(MUTE) 

Available Spcce Entry 

Figure 26. Format of MUT, MUTE Entry, and 
Available Space Entry 

PAPA chain through the PAPA link words in 
the MUTE. The MUTE is also linked bi
directionally into the called PMD's BABY 
chain through the BABY link words in the 
MUTE. Thus if A calls Band C, two MUTEs 
and three chains are created (see Figure 
27): 

1. A PAPA chain that originates in A and 
links to both MUTEs. 

2. A BABY chain that originates in Band 
links to one MUTE. 

3. A BABY chain that originates in C and 
links to the other MUTE. 

In addition to the links, each MUTE 
contains: 

1. The address of the SVC that initiated 
the CALL. This information is used in 
explicit unlinkage to rearm the SVC. 

2. The address of the PMD named by the 
CALL. This address is required during 
explicit unlinkage. 

Adding MUTEs 

When an ent.ry is added to the MOT, its 
chains are linked, as follows: 

Appendix B: Tables 161 



PMDA 
CALling Sequence 

AcollsC 
A calls B 

MUT Nealis B 

------BABY Chain Head;O 

I 

F ; Forward 
PAPA Chain Head B;Backword 

MUT Count;O I F. PAPA 

I 
-

B. PAPA 

MUTE 
for Address of SVC in A 
A calls B 

F. BABY;O PMDC 

B. BABY: 

Address of PMDS 

F. PAPA=O r--- I BABY Chain Head I 
~ I 

B. PAPA I PAPA Chain Head =0 MUTE 
for 
AcollsC Address of SVC in A MUT Count = 1 J 

F. BABY;O 

I 
B. BABY 

I 
Address of PMD C I 

~;:::.. 

I 
~ 

~ 

PMDS 

F. PAPA=O MUTE 

I for 
N calls B B. PAPA ----til PMD N 

BABY Chain Head 

I 
Address of SVC in N I ! I 1 

I 

PAPA Chain Heod =0 F. BABY ,--_J ! I 

MUT Count; 2 J B. BABY BABY Chain Head = a 

-
Address of PMOS PAPA Chain Head 

MUT Count = 0 I 
.r--::- --

Figure 27. Diagram of Sample MUT, Showing Linkages and Appropriate PMDs 

The new MUTE becomes the first MUTE in 
both its BABY and PAPA chains. The heads 
of the respective chains within the chain 
origin PMD will point to the new MUTE'S 
forward BABY and PAPA links. The new 
MUTE's forward links themselves will point 
to the forward links of the previously 
entered MUTEs. If there is no previous 
entry, the forward link(s) will contain O. 

The backward BABY and PAPA links of each 
MUTE point to the respective forward BABY 

162 

and PAPA links of subsequently entered 
MUTEs. Thus, the backward BABY and PAPA 
links of t.he last MUTE to be entered will 
point ot the BABY and PAPA chain heads iI, 
the respective called and calling PMOs. 

Deleting MUTEs 

When a module is to be deleted (see 
"Explicit Unlinking," Section 4) I all MUTE,; 
for CALLs it made, as well as for CALLs 
made 'upon it, are deleted. In other words, 



i 

all entries in both its BABY and PAPA 
chains are removed from the MUT. Such 
deleted ~lUTEs are added to the chain of 
available MUTEs that are threaded through 
the forward PAPA link words. 

MUT Count 

Each time a MUTE is created, the MUT 
count in the called PMD is incremented by 
one. When a MUTE is deleted, the corres
ponding MOT count is decremented by one. 
This count is used during the unlinking 
process to determine whether or not a mod
ule may be deleted; that is, modules whose 
MOT counts are nonzero at a certain point 
in the unlinking process are judged to be 
ineligible for deletion because of the 
existence of outstanding explicit 
ref erences • 

STORAGE MAP TABLE (CHAMAP) 

The loader maintains a storage map table 
(MAP) which contains one entry for each 
control section involved in the allocation. 
(See Figure 28.) The table is a conti
guous, ordered set of two-word entries. 
The first word contains the virtual storage 
address of the beginning of the control 
section; the second word contains the vir
tual storage address of the beginning of 
the corresponding CSD in the TDY. The 
table is maintained in compact ascending 
order according to the 32-bit, unsigned, 
virtual storage address of the beginning of 
the control section. 

The maximum size of the table is estab
liShed at STARTUP time. A pOinter to the 
beginning of the table, the maximum length 
of the table in bytes, and the current 
length of the table are specified in the 
TDY headings. 

Virtual Storage Address of Beginning of Control Section 

Virtual Storage Address of Beginning of CSD 

Figure 28. Memory MAP Entry 

HASH TABLES (CHASHT AND CHAUHT) 

There are three hash tables whose loca
tion and length are specified in the TOY. 
The system hash tables contain hash entries 
for SYSxxxxx symbols and symbols which 
appear in control sections with the system 
attribute. The user hash table contains 
all other symbols. 

A pointer in the TOY points to the ori
gin of the privileged system hash table. 
Nonprivileged system symbols (those not 
beginning with CZ or CHB) are contained in 
the nonprivileged system hash table, which 
immediately follows the privileged table. 

Each hash entry consists of a single 
word which either contains the address of 
the beginning of the first corresponding 
DEF chain or is zero. The pOSition of a 
symbol in the hash table is determined by 
the hashing algorithm. Whenever DEFs with 
different names hash to the same hash 
value, they are linked together through 
their search links. 

The hash value, H, is obtained by an 
exclusive OR of the first four characters 
of name with the last four characters. 
This reSUltant 32 bits is now divided by 
the hash divisor. and the remainder of this 
division multiplied by 4 is a relative 
index into the appropriate hash table. 

Privileged Sys'em Hash Tobie ) 
(SYSHASHP) 

t------------------l n=Hosh Table Length 
Nonprivileged System Hash Table 

(SYSHASHNP) 

User Hash Table 
(USER HASH) } n = Hash Table Length 

VACANT SPACE TABLE (VST) 

The vacant space table is used for con
trol section packing and contains three 
types of entries {host, symbiont, and 
available space entry} each three words in 
length. 

Host Entry 

r---"--------------------------, 
Word 1 ILink to next host entry in I 

Itable (zero if last) I 
t----------T----------------~ 

2 \Page origin Inumber of bytes \ 
I (20 bits) lavailable on I 
I Ipage (12 bits) I 
f ~---------------1 

3 ILink to first symbiont entry if I 
Iprivate control section. I 
\Pointer to SDST entry if publici 
Icontrol section. I L __________________________ -J 

Appendix B: Tables 163 



Symbiont Entry 

r-------------------------------, 
Word 1 ILink to next symbiont entry fori 

Ithis page (zero if last) I 
~-------------------------------~ 

2 IPointer to CSD I 
~-------------------------------~ 

3 IScratch page VMA if packed con-I 
Isection (zero if 1st control I 
Isection on page) I L _______________________________ J 

Available space entry 

r-------------------------------, 
Word 1 ILink to next available space I 

lentry (zero if last) I 
~-------------------------------~ 

2 Inot used I 
~-------------------------------~ 

3 Inot used I L _______________________________ J 

A host entry is created for the first 
control section in a control section group 
at a page boundary. It reflects unused 
space on the last page of the control sec
tion group (if the last page contains 
text). Host entries are maintained in 
ascending order of the number of bytes 
available on the page. Host entries are 
not created for public pages if the amount 
of unused space is less than 8 bytes. Host 
entries for private pages are maintained 
until the relocation of the page is 
requested. If a host exists for the page 
being relocated, it is deleted and relinked 
into the available space entry list. 

Symbiont entries are created for all but 
the first control section in a private con-

164 

trol section group. Hence the first con
trol section (host) owns the page, and 
secondary control sections (symbionts) are 
packed into the page. 

Symbiont entries are not created for 
public control sections. A host entry for 
a public page points to the SDST entry 
(host) that owns the page. If a control 
section group is packed into a public page, 
the SDST entry for the group is flagged as 
symbiont. 

A vacant space table pointer for each 
storage class and an available space pOint
er are maintained in the loader PSECT. 
These are initially zero. The first time 
SRCHPACK is requested to create a table 
entry, a page of virtual memory is obtained 
and available space entries are threaded to 
the available space pointer. 

Table pointers in the loader PSECT are 
as follows: 

r------------------------------------------l 
IPointer to next available space entry I 
t-----------------------------------------~ 
IPointer to list for private storage key Al 
t-----------------------------------------~ 
IPointer to list for private storage key BI 
~---------------------------------------.-~ 
IPoi~ter to list for private storage key CI 
t--~-------------------------------------~ 
IPointer to list for public storage key A I 
~-----------------------------------------~ 
IPointer to list for public storage key B I 
~-----------------------------------------1 
IPointer to list for public storage key C I L _______________________________________ J 



Adcon 

CHAISA 

CHARCS 

CHASDM 

CHASHT 

CHATDH 

CHAUHT 

CHBMUT 

Address constant 

DSECT for ISA 

DSECT for recursive storage block 
(in Resolve Symbol) 

DSECT for SDM (shared data set 
table entry) 

DSECT for SYSHASH 

DSECT for TOY heading 

DSECT for user hash table 

Entry point name of module usage 
table (in Unloader PSECT) 

CSD Control section dictionary 

CSECT 

DCB 

DDEF 

DEF 

EPE 

GR 

ISA 

ISATDY 

ISAUTH 

ISD 

IVM 

JFCB 

JOBLIB 

MAP 

MUT 

MUTE 

A control section other than a 
prototype (PSECT) or COMMON or 
DSECT 

Data control block 

DDEF command or macro instruction 

External symbol definition 

External page entry 

General register 

Interrupt storage area 

Pointer in ISA to TOY 

User authority cell in ISA 

Internal symbol dictionary 

Initial virtual storage 

Job file control block 

A user library created by a DDEF 
command with a JOBLIB keyword 

Memory map table 

Module usage table (in Unloader 
PSECT) 

Module usage table entry 

o 

P 

PCS 

APPENDIX C: ABBREVIATIONS 

Authority code for the system 
operator or privileged system 
progrannner 

Authority code for the system 
progrannner 

Program control system 

PMD Program module dictionary 

PSECT 

PVAOT 

A prototype control section 

Pseudo vector available offset 
table 

REF External symbol reference 

RESTBL 

RLD 

RN 

SDST 

SPT 

Relative external storage corres
pondence table 

Relocation dictionary 

REF number 

The shared data set table 

Shared page table 

SYSHASHNP The nonprivileged system hash 
table 

SYSHASHP The privileged system hash table 

SYSLIB The system library 

TOT Task data definition table 

TDY Task dictionary 

U Authority code for a wnormal 
userw 

USERHASH The user hash table 

USERLIB The user library 

VMA Virtual storage address 

VMPT Virtual storage page table 

VST Vacant space table 

XPT External page table 

Appendix C: Abbreviations 165 



APPENDIX D: LOADER RESTRICTIONS 

The following restrictions are imposed 
on the TSS/360 user. Those marked with an 
asterisk are enforced by the dynamic 
loader: 

1.* The user is not allowed to declare 
either system or privileged control 
sections. The dynamic loader will 
erase such attributes from control 
sections that are not contained in 
modules extracted from SYSLIB. This 
has a secondary effect: the user is 
prevented from declaring entry points 
whose names begin with the letters 
Sys. The user may declare any other 
form of entry point name. 

2. No user-written program called by 
type-III linkage nor any routine 
called by such a program may execute a 
LOAD, explicit CALL, or DELETE 
statement. 

3.* Complex DEFs may not be defined in 
terms of another complex DEF within 
the same module. Such a situation 
could result in a complex definition 
loop, which the loader protects 
against by not allowing such symbol 
resolution in any case. Note that 
this situation can only arise through 
control section rejection or through 
the link-editing together of two 
modules. For example: 

166 

Module A 
P1 PSECT 

ENTRY El 
Cl CSECT 
El EQU * 

END 

Module B 
P2 PSECT 

ENTRY E2 
El CSECT 
E2 EQU * 

END 

If A and B are link-edited together, 
and CSECT El is deleted by the prior 
occurrence of DEF El in module A. com
plex DEF E2 will be defined in terms 
of complex DEF El within the ~ mod
ule, a situation which the loader will 
not allow. 

If A and B are not link-edited, howev
er, and the loader is called to LOAD 
first A and then B. CSECT El will be 
rejected by complex DEF El in A. This 

will result in complex DEF E2 being! 
defined in terms of complex DEF El j 
a different module. The loader will 
allow this situation, but will ;~SUE 
warning diagnostic. 

4. The user is advised that executing a 
CALL or LOAD of a CSECT name will 
return an R-value equal to its v
value; namely, the origin of the 
CSECT. Thus, calling reenterable rc 
tines by CSECT name will result in t 
PSECT address not being available wh 
the routine is entered. 

5. The loader will issue diagnostic_ fc 
undefined external references and su 
stitute for them an illegal address 
which will usually cause an address 
specification error at attempted use 
by the task. Such an error may not 
produced, however, if the user shoul 
dynamically mOdify a V-con containin 
an undefined REF. 

6. * The user is advised to inc1 'Jde no 
adcons within public CSECTs. The 
loader will refuse to resolve adcons 
appearing on public pages. 

7.* Control section rejection aris( ro 
two sources: If a control sect~~,1 
name is illegal, the control section 
is rejected by the loader I or if a 
control section name duplicates the 
name of some previously entered DEF 
(not necessarily a control section 
name), the loader will reject the co 
trol section. Control section rejec 
tion means that none of the DEFs in 
the rejected CSD are to be included 
the allocation. and that any REFs th 
might have been satisfied by such DE' 
must either be satisfied elsewhere 0 
go undefined. Control section rejec 
tion may be caused by some anomalous 
circumstance which will result a 
diagnostic adVising the user. ~h 
diagnostics and their causes are 
listed under -Loader Diagnostics.-

8. * No module may delete i t.self by a 
DELETE operation, eithl2r as d primar 
or secondary deletion candidate. Th 
loader protects against this by rema 
ing the deleting module from the can 
didate list if it is ever post( 
there. 

9.* The primary deletion candidate may nl 
be deleted if there are dny outstand 
ing implicit references to it after 
the candidate list is construc' 



... 

10.* Secondary deletion candidates may not 
be deleted if there are any outstand
ing implicit or explicit references to 
them after the-candidate list is 
constructed. 

11. The loader will allow a module that is 
loaded or called by another module to 
delete that module, using a DELETE 
procedure. The user is therefore 
advised not to attempt to return to 
the wcallerw in such a case, as it 
will have disappeared. For example, 
module A calls module B, whose first 
step is to DELETE A. Any attempt by B 
to return to A may cause an addressing 
exception error and is in any case a 
programming practice that is to be 
avoided. 

12. The following discusses TSS/360's 
treatment of unnamed control sections. 
Unnamed control sections arise from 
three sources: a CSECT statement with 
a blank symbol field, omission of any 
CSECT statement, and declaring of 
blank COMMON. Blank COMMON carries a 
name of eight alphameric blanks; all 
others carry a name of sixteen hexa
decimal zeros. Unnamed noncommon con
trol sections are treated as unique to 
the module in which they were declared 
by the following devices: 

a. When the linkage editor processes 
unnamed CSECTs, it substitutes a 
unique number in the lower eight 
hexadecimal digits of the name of 
each such CSECT it processes. In 
addition, the name part of each 
REF (in the original module) that 
references the unnamed CSECT is 
also modified to match the altered 
CSECT name. This technique pre-

serves unnamed references in the 
event two such CSECTs are combined 
during l.ink editing. 

b.* When the dynamic loader processes 
unnamed CSECTs (identified by the 
fact that the first half of the 
CSECT name consists of eight hexa
decimal zeros), it adds further 
modification to the name. Each 
module as it is loaded is assigned 
a unique number, a module sequence 
number, by the loader. The loader 
places this number in the lower 
four hexadecimal digits of the 
first half of the name of each 
unnamed non common CSECT and each 
REF in the module that references 
the CSECT. The combination of the 
linkage editor's and the dynamic 
loader's treatment of unnamed non
common CSECTs will prevent CSECT 
rejection among such CSECTs. Of 
course, blank COMMON sections may 
cause rejection; the blank name is 
handled just as any other name. 
This is reasonable, since the con
cept of control section rejection 
was instituted for the purpose of 
tying together common references 
across modules. 

13.* Privileged system service routines may 
define only external symbols that 
begin with the letters CZ or CHB. 
This means that all normal entry 
points, CSECT names, and module names 
must conform to this naming standard. 
Furthermore, nonprivileged system rou
tines may not define external symbols 
beginning with CZ or CHB. (These 
restrictions do not apply to user 
programs.) 

Appendix D: Loader Restrictions 167 



APPENDIX E: DIAGNOSTIC MESSAGES 

This section contains a list of diag
nostic messages that may be issued by the 
dynamic loader. Each diagnostic contains 
an explanation of the cause of the diag
nostic, with loader action, where applic
able. In this list, brackets are used to 
denote that a substitution will be effected 

by the loader; that is, that such bracketed 
portions of the message are variable. 
Those diagnostics that result in additional 
serious load error indication by the loader 
are marked by an asterisk (*> after the 
diagnostic number. 

r-------------------------------------------T-------------------------------------------1 
I DIAGNOSTIC I COMMENT I 
r-------------------------------------------t-------------------------------------------~ 
I 1. CZCDL002 CANCELLED: SYMBOL [x] TO BE IThe loader is unable to find the symbol, x, I 
I {CALLED} NOT FOUND I that occurred in the operand field of an I 
I LOADED lassembly LOAD or CALL statement or a com- I 
I Imand language LOAD or RUN statement or, if I 
I lit was found, all control sections were I 
I Irejected in attempting to load it. It may I 
I lalso be true that a module was in fact I 
I Iloaded that defines x, but that x was I 
I Iresolved from a system module which the I 
I luser is unable to reference, since x is I 
I Iposted in the SYSHASHP or SYSHASHNP table. I 
~-------------------------------------------t-------------------------------------------~ 
I 2. CZCDL011 CANCELLED: LIBRARY SEARCH IThe loader used the FIND function of VPAM I 
I ERROR FOR [x) Ito locate symbols in the external 1 
i I libraries. If FIND is called to locate I 
I Isome symbol, x, and returns with a code I 
I lindicating some error, the loader will I 
I I issue this diagnostic. I 
t------------------------------------------t-------.:...-----------------------------------~ 
I 3. CZCDL010 UNNAMED CSECT ASSIGNED ISince unnamed CSECTs are assigned unique I 
I PRIVATE STORAGE Inames within each task, it is impossible I 
I Ifor the loader to correlate such names I 
I lacross tasks. The user must, therefore, I 
I Iname his public CSECTs. I 
r-------------------------------------------t-------------------------------------------.~ 
I 4. CZCDL012 PROCEEDING: ILLEGAL ENTRY IThis diagnostic arises from several I 
I NAME [xl IN MODULE [a] 'II lpossible sources: 1 
I I I 
I 11. An SYSxxxxx symbol appearing in a non- I 
I I system control section. I 
I I I 
I 12. See Figure 19, column 5, for a complete 1 
I 1 list of naming restrictions. 1 
~-------------------------------------------t-------------------------------------------i 
I 5. CZCDL013 PROCEEDING: ENTRY POINT [xl, ISelf explanatory; the symbol, x, is 1 
I MODULE [a] DUPLICATES CSECT NA~£ IN Irejected. I 
I MODULE [bJ 1 I 
t-----------------------------------------+-----------------------------------------~ 
I 6. CZCDL020 PROCEEDING: ENTRY POINT [x], IThe symbol, x, a1ready exists within the I 
I MODULE [a] DUPLICATES ENTRY POINT IN lsearched DEF chain; the symbol is rejected. I 
I MODULE [bJ I I 
t-------------------------------------------t---------------.---------------------------.-~ 
I 7. CZCDL006 PROCEEDING: PUBLIC CSECT [xl, I The loader has encountered a text pag ~ I 
I MODULE [ala UNRESOLVED ADCONS Iwithin a public CSECT that has adcons. I 
I I This is not allowed. The adcons on thi!", I 
I Ipage will never be relocated if the user I 
I I decides to proceed. I l ___________________________________________ ~ ___________________________________________ J 

168 



r-------------------------------------------T-------------------------------------------, I DIAGNOSTIC I COMMENT I 
~-------------------------------------------+-------------------------------------------~ 
I S. CZCDL014 PROCEEDING: CSECT [xl IN IThe loader has rejected the control section \ 
I MODULE [aJ REJECTED, DUPLICATE ENTRY /named x because x already exists in the DEFI 
I POINT IN MODULE [b] Ichain as an entry point (not a CSECT name). I 
~-------------------------------------------+-------------------------------------------~ 
I {COMMON } IIf a common section is rejected by the I 
I 9. CZCDI018 PROCEEDING: NONCOMMON Iprior occurrence of a noncommon section of I 
I CSECT [x], MODULE [aJ REJECTED BY Ithe same name (or vice versa), the loader I 
I {COMMON }CSECT, MODULE [bl I issues this diagnostic. I 
1 NON COMMON I I 
~------------------------------------------+-------------------------------------------~ 
I {NONPRIVILEGED} IThis diagnostic results when either a I 
110. CZCDI017 PROCEEDING: NON-READ-ONLY Inon-read-only CSECT is rejected by a read- I 
1 CSECT [xl, MODULE Cal REJECTED lonly CSECT or a nonprivileged CSECT is I 
I {PRIVILEGED} Irejected by a privileged CSECT. For I 
I BY READ-ONLY CSECT, MODULE [bl I example, if some user CSECT A is rejected I 
I Iby some read-only CSECT A, any attempt by I 
I Ithe user to store into A will result in a I 
I Istorage protection error. , 
t--------------------------------------+-----------------------------------~ 
111. CZCDL016 TERMINATED: PRIVILEGED IIf a privileged CSECT name x is rejected byl 
I CSECT [xl, MODULE [a] REJECTED BY Ithe prior occurrence of a nonprivileged I 
I NONPRIVILEGED CSECT, MODULE [bl ICSECT name x, this diagnostic results. I 
I IThis situation could result in user code , 
I Ibeing executed in PSW key 0, so the loader I 
I linitiates ABEND procedures immediately. I 
~-------------------------------------------+-----------------------------------------~ 
112. CZCDL015 PROCEEDING: LENGTH OF REJECTEDIIf the length of a rejected CSECT exceeds I 
I CSECT {xl, MODULE [a] EXCEEDS Ithe length of the CSECT causing rejection, I 
I LOADED CSECT OF MODULE [bl Ithis diagnostic is issued. Since the user I 
I Imay possibly refer to that segment of the I 
I Irejected CSECT that lies beyond the upper I 
I Ilimit of the already loaded CSECT, there I 
I lexists the potential for either a storage I 
I Iprotection error or an erroneous reference I 
1 linto another CSECT or storage block. , 
~------------------------------------------+-----------------------------------------~ 
113. CZCDL003 UNDEFINED REF [xl IN IThe symbol x cannot be defined for this I 
I MODULE [ale ADDRESS FFFFFOOO ASSIGNED Itask. It does not exist in the libraries I 
I Isearched, was contained in a rejected I 
I ICSECT, or exists in the wrong hash table. 1 
I IA nonreferable segment and page address is I 
I lassigned. I 
~------------------------------------------+-----------------------------------------~ 
114. CZCDLOOS PROCEEDING: REF [xl IN lOne situation that might produce this I 
I MODULE [a] REFERS TO UNDEFINED COMPLEX Imessage is: Module A has a complex DEF, B I 
I DEF, MODULE (bl Iwhich has a REF to some symbol. There is I 
I Idiscovered some REF that refers back to I 
I I complex DEF R, still undefined. 1 
~------------------------------------------+-------------------------------------------~ 
115. CZCDL007 PROCEEDING: COMPLEX DEF [xl INIIn this case, some complex DEF x has a REF I 
I MODULE Cal DEFINED AS COMPLEX DEF [y), Ito complex DEF y which is defined in I 
I MODULE [b) lanother module at the time the reference isl 
I Imade. This warning is issued even though I 
I Ithe REF is properly satisfied. Should the I 
I Itwo modules that contain the REF and DEF byl 
1 I link-edited, attempts to load the combined I 
I Imodule will result in diagnostic 14 for I 
I I that same REF. I L-_________________________________________ ~ _______________________________________ J 

Appendix E: Diagnostic Messages 169 



r-------------------------------------------T-------------------------------------------, 
I DIAGNOSTIC I COMMENT I 
/--------------------------------------------+--------------------------------------------1 
116. CZCDU001 CANCELLED: ARGUMENT SYMBOL FORIThe unloader is unable to find the symbol xI 
I DELETE [xl NOT FOUND lin the TDY. Symbol x is that symbol which I 
I loccurred in the operand field of either an I 
I lassembled DELETE statement or a command I 
I Ilanguage UNLOAD statement. This is issued I 
I Iby UNLINK (CZCDU1) and is accompanied by a I 
I lreturn code of 4. I 
j--------------------------------------------t---------------------------------------------~ 
117. CZCDU002 CANCELLED: MODULE IThe primary deletion candidate; that is, I 
I DEFINING SYMBOL [x) NOT UNLOADED - Ithe module that contains the symbol x named I 
I OUTSTANDING REFERENCES lin a DELETE macro instruction or UNLOAD I 
I I statement, was not, in fact, unloaded I 
I Ibecause of outstanding implicit references I 
I lremaining to that module after the candid- I 
I late list was constructed. This is issued I 
I tby UNLINK (CZCDU1) and is accompanied by a I 
I I return code of 8. I 
1--------------------------------------------+--------"---------------------------------------.~ 
118. CZCDL004 CSECT [xl IN MODULE [a) t Refer to diagnostic #4 for explanation of I 
I REJECTED - ILLEGAL FORM OF CSECT NAME lillegal forms. I 
j--------------------------------------------t-------------------------------------------1 
119. CZCDL001 PROCEEDING: SYMBOL [xl IN IThe loader could not find symbol x defined I 
I LIBRARY [a] NOT OBJECT MODULE OR ENTRY lin a valid object module. This diagnostic ! 
I POINT Imessage is issued by LIBE SEARCH (CZCDL3) I 
I land can be further explained with the I 
I I EXPLAIN command. ! 
r------------------------------------------+--------------------------------------------~ 
120. CZCDL005 PROCEEDING: MODULE [x] I Loader found that module was produced I 
I PRODUCED WITH LEVEL [AJ ERRORS Iwith errors: I 
I 11 = minor errors I 
I 12 = major errors I 
j-------------------------------------------+-------------------------------------------~ 
121. CZCDL009 PROCEEDING: MODULE [x) IS !Module name was either illegal or I 
I {ILLEGAL} Iduplicate, a standard entry point is 
I ,DUPLICATE, STANDARD ENTRY POINT NOT Inot defined. 
I DEFINED I I 
j-------------------------------------------+-------------------------------------------~ 
122. CZCDL021 PROCEEDING: CSECT [xl, iThe loader has rejected a control section I 
I MODULE [a] DUPLICATES A CSECT IN Inamed [x] because x already exists in the I 
I MODULE [b] I DEF chain as a CSECT name. I 
j--------------------------------------------+-------------------------------------------~ 
123. CZCCD201 CANCELLED: MODULE [x] NOT IThe named module could not be unloaded I 
! UNLOADED. OUTSTANDING REFERENCES. I when doing an ERASE, RELEASE, or a DELETE 
I lof the library from which the module was 
I I loaded. Another module (which was not 
I lunloaded) contains a reference to an I 
I lexternal symbol in the named module. I 
~-------------------------------------------t--------------------------------------------~ 
!24. CZCDL022 PROCEEDING: CONFLICTING IQ-CHAIN (CZCDL7) has encountered DXD 1 
I ALIGNMENT OR LENGTH WITH DXD [xl linstructions with identical names but con- I 
i Iflicting lengths or alignments. i 
t------------------------------------------+--------------------------------------------1 
125. CZCDL023 PUBLIC CSECT [x] in MODULE [aJ!The loader cannot assign public storage to I 
I ASSIGNED PRIVATE STORAGE Ithe control section named [x) in modulp [a]! 
I Ibecause x's text length is greater than onel 
I Isegment (256 pages). Private virtual I 
I I storage is assigned. I L-__________________________________________ ~ ___________________________________________ 1 

170 



Where more than one page number is 
indicated, the major refer~nce is first. 

abbreviations 165 
absolute DEFs 

(see external symbols) 
access to loader tables 150 
adcon group 

CALL, LOAD 8,32 
DELETE 12,78 

adcons 2,9,29 
ADD MUTE routine (CGCDG) 

description 63 
flowchart AA 92 
routines called 63 

ADD PHD routine (CGCCN) 
description 44 
flowchart AB 93 
routines called 44 

alias 3,12 
ALLOCATE MODULE routine (CGCCA) 

description 46 
flowchart AC 94 
routines called 46 

allocation 
(see storage assignment) 

analysis aids 146-149 
assembler language processor 1 
assembly modules 

LIBE MAINT (CZCDH) 14,8B 
LOADER (CZCDL) 14,32 
LOADER LOGOFF(CZCCD) 14,81 
UNLOADER(CZCDU) 14,71 

ATTACH TEXT routine (CGCCK) 
description 57 
flowchart AD 98 
routines called 57 

attributes of control sections 
common 2,10,49 
fixed length 1,29,50 
privileged 2,47 
prototype 2 
public 2,10,47 
read only 1,47 
relation to authority code 47,146 
system 2,41,47 
variable length 1,50 

(see also Appendix A) 
authority codes 

def ini tion 6 
use 39,47,146 

BABY chain 63,73,76 
BISEARCH routine (CGCCR) 

description 35 
flowchart AE 99 

blank common control section 
(see COMMON control section) 

CALL 
adcon group 8,32 
expansion 8 

macro instruction 5,7 
CHECK DEF LEGAL routine (CGCCU) 

description 48 
flowchart AF 100 

code 
authority 

(see authority code) 
load option 

(see load errors) 
COMMON control sections 

attribute 2 
blank (unnamed) 10 
rejection 10,49 

(see also control sections) 
complex DEFs 

(see external symbols) 
control section dictionary (CSD) 

CSD heading 156 
CSD link 60,73 
definition table 158 
description 1,156 
reference table 158 
use 3 

control sections 
attributes 

(see attributes of control section) 
COMMON 2,9 
CSECT 5 
group 1,55 
packing 1,46 
private 46,50 
public 2,10 
PSECT 2,4 
rejection 10,49 

(see also Appendix E, loader 
restrictions) 

unnamed 10,3 
CSD link 60,73 

data control block (DCB) 149 
data definition (DDEF) 3 
DCB (data control block) 149 
DDEF command 3 
DEF 

(see external symbol) 
DEFINE REF routine (CGCCY) 

description 62 
flowchart AG 101 
routines called 62 

DELETE CALLER MUTES routine (CGCDB) 
description 75 
flowchart AH 102 

DELETE 
adcon group 12,71 
macro instruction 8,12 

DELETE MODULE routine (CZCDU2) 
description 78 
flowchart AI 103 
routines called 78 

DELETE SELECTED MUTES routine (CGCDC) 
description 77 
flowchart AJ 105 

Index 171 



deletion candidates 
creation 12 
elimination 13 

diagnostic messages 168 
(see also load errors) 

DLINK SVC 9 
DROP PMD routine (CGcco) 

description 80 
flowchart AK 106 
routines called 80 

duplicate entry pOint names 
(see control section rejection) 

DXD 55 
dynamic loader 

assembly modules 14,15 
construction 14 
entry points 14,15,148 
flowcharts 91-145 
functions 7 
linkage 14 
loading example 11 
loading process 8 

(see also explicit linking) 
restrictions 166 
routine labels 15,148 
routine linkages chart 18-28 
routine linkages diagram 17 
tables 150-164 
unloading example 13 
unloading process 12 

(see also explicit unlinking) 

END statement 5 
ENTRY statement 3,5 
entry pOint names 

for dynamic loader 15 
(for loaded modules see external 
symbols) 

errors 
(see load errors) 

EXPLICIT LINK routine (CZCDL1) 
description 32 
flowchart AL 107 
routines called 32 

explicit linking function 
description 7,29 
functional diagram 31 
routine linkages chart 18-24 
routine linkages diagram 30 

explicit reference 13 
EXPLICIT UNLINK routine (CZCDU1) 

description 71 
flowchart AM 108 
routines called 

in pass 1 71 
in pass 2 74 

explicit unlinking function 
description 8 
functional diagram 75 
routine linkages chart 25-27 
routine linkages diagram 72 

external dummy section 6 
external page table (XPT) 10,57 
external page table entry 10 
external symbols 

172 

definitions (DEFs) 3 
absolute 3,47 
complex 4,60 

relocatable 3,47 
lookup rules 9 
posting 48 
processing 
references 
resolution 
unresolved 
values 

10,54 
(REFs) 
9,146 
31,38 

V-value 4,31,38 
R-value 4,31,38 

external storage 3 

FIX routine (CGCCL) 
description 61 
flowchart AN 111 
routines called 61 

5,11,158 

FIX PMD routine (CGCCJ) 
des cription 60 
flowchart AO 112 
routines called 60 

fixed-length control sections 1,29 
FORTRAN language processor 1 

GET STORAGE routine (CGCCW) 
description 50 
flowchart AP 113 
routines called 50 

GETSMAIN 47 

hash chain 
(see task dictionary) 

HASH SEARCH routine (CZCDL2) 
description 39 
flowchart AQ 115 

hash tables 
hashing technique 6,39 
pointer 29,39 
split hash table 6 
system hash tables 

nonprivileged (SYSHASHP) 6,163 
privileged (SYSHASHNP) 6,163 

user hash table (USERHASH) 6,163 
host ··53,164 

implicit reference 12,73 
initial virtual storage 75,86 
internal symbol dictionary (ISD) 1,41 
interrupt storage area 88,149 
interruption, page-unavailable 11,57,67 
ISA 88,149 
ISD 1,41 

job libraries 2-3 
DDEF for 3 

JOBLIB 
(see job libraries) 

language processors 1 
LIBE MAINT routine CCZCDH) 

description 88 
flowchart AR 116 
routines called 88 

LIBE SEARCH routine (CZCDL3) 



description 41 
flowchart AS 117 
routines called 41 

LIBESRCH macro instruction 14,41 
libraries 

hierarchy 3, 11 
job (JOBLIB) 2,8 
user (USERLIB) 2,8 
system (SYSLIB) 2,8 

library maintenance function 
description 8 
routine linkages chart 27 
routine linkages diagram 89 

LINK DEFS routine (CGCCV) 
description 54 
flowchart AT 118 
routines called 54 

linkage editor 1 
LOAD command 8- 9 
load errors 

C1 option code 9,32 
C2 option code 7,9,33 
C3, CA option codes 12 
load error switch 6,32,57 
messages 49,64,168 

LOAD 
adcon group 7,8 
command 8-9 
macro instruction 7-9 
macro instruction expansion 8 

LOAD PMD routine (CGCCH) 
description 43 
flowchart AY 124 
routines called 43 

loader cleanup function 
description 8 
routine linkages chart 28 
routine linkages diagram 87 

LOADER CLEANUP routine (CZCCD4) 
description 86 
flowchart AU 119 
routines called 86 

loader logoff function 
description 8 
routine linkages chart 27 
routine linkages diagram 83 

LOADER LOGOFF routine (CZCCD1) 
description 81 
flowchart AW 121 
routines called 81 

LOADER PROMPT routine (CGCDPR) 
description 64 
flowchart AV 120 
routines called 64 

loader release function 
description 8 
routine linkages chart 28 
routine linkages diagram 85 

LOADER RELEASE routine (CZCCD2) 
description 84 
flowchart AX 123 
routines called 84 

loading 
(see dynamic loader) 

MAP SEARCH routine (CZCDL5) 
description 34 
flowchart AZ 125 

routines called 34 
MAP table 149,163 
member 

(see program module) 
memory MAP table 149,163 
MODIFY MUT COUNTS routine (CGCDA) 

description 76 
flowchart BA 126 

MODIFY USE COUNTS routine (CGCDD) 
description 76 
flowchart BB 127 

module 
(see program module) 

module public name switch 47 
module usage table (CHAMUT) 149,161 
module usage table entry (MUTE) 149,161 
MOT 149,161 
MDT count 73.76 
MUTE 149,161 

names 
control sections 5 
module 60 

nonconversational task load errors 9 
nonprivileged 

(see attributes of control sections) 

Object program module 
(see program module) 

option codes 
C1 9,32 
C2 9,33 
C3, C4 12 

packed control sections 47,146 
packing table 69 
page relocation fUnction 

description 7,11 
paging mechanism 3 
routine linkages chart 24 
routine linkages diagram 68 

PAGE RELOCATION routine (CZCDL4) 
description 67 
flowchart BC 128 
routines called 67 

page table 
(see virtual storage page table) 

page unavailable interruption 11,57,67 
paging supervisor 11 
PAPA chain 63,77 
partitioned data sets 

member 
(see program module) 
rejection of members 1,41 

PCSA routine (CGCCT) 
description 47 
flowchart BD 129 

PLiI language processor 1 
PMD 

(see program module dictionary) 
privilege 

(see authority code) 
privileged control sections 2,47 
privileged system programmer 6 
program libraries 

creation 2 

Index 173 



hierarchy 3,11,43 
JOBLIB 2 
list 3 
SYSLIB 2 
USERLIB 2 

program module 
deletion 13 
description 1 
loading 8 
names 60 
residence 

external 2 
internal 3 

unloading 12,71,84 
verification 41 

program module dictionary (PMD) 
chain (TOY) 3 
description 153,1 
format of PMD entry 154 
group 151 
group header 151 
heading 153 
loading 9,43 
preface 152 
release 80 
transfer 43 

prototype control sections (PSECT) 2,4 
pseudo vector available offset table 

(PVAOT) 56 
public control sections 2,10,47 
PVAOT 56 

Q-CHAIN routine (CZCDL7) 
description 55 
flowchart BE 130 
routines called 55 

Q-REF 55-56 

R-value 4,31,54 
read-only control sections 1,47 
REF 159 

(see also external symbol reference) 
REJECT DIAG routine (CGCCP) 

description 49 
flowchart BF 132 
routines called 49 

relocatable address constants 
Cadcons) 2,8,29 

relocatable DEFs 
(see external symbols) 

relocation dictionary (RLD) 58-59,159 
sample 70 

REF number (RN) 61 
RESOLVE Q-REF routine (CGCRQ) 

description 56 
flowchart BG 133 
routines called 56 

RESOLVE SYMBOL routine (CGCCE) 
description 36 
flowchart BH 137 
recursive storage DSECT 37 
routines called 36 

restrictions, naming 5,48 
RLD 58-59,159 
routines 

labels 15,148 

174 

linkage charts 18-28 
RUN command 8 

SDST 8,29,51 
SELECT HASH routine (CGCCB) 

description 48 
flowchart BI 139 

SET SEARCH FLAGS routine (CZCDL6) 
description 39 
flowchart BJ 140 

SETPAGE routine (cGCSP) 
description 65 
flowchart BK 141 
routines called 64 

SETXP routine 65 
shared data set table (SDST) 8,29,51 
shared page table (SPT) 29,51 
shared storage 2,10,47 
split hash table 6 
SRCHPACK routine (CGCcc) 

description 53 
flowchart BL 144 
routines called 53 

standard entry point 4 
STARTUP 75 
storage assignment 

public 47,52 
real 3 
virtual 1,10 

storage map table (CHAMAP) 149,163 
storage protection 

authority codes 6 
protection keys 10,50 
system protection 6 

symbiont 52,69,164 
symbol 

(see external symbol) 
SYSLIB ". 

(see system library) 
system control sections 2,47 
system library (SYSLIB) 2 
system programmer 6 

task monitor 9,32 
task dictionary (TDY) 3,29,151-152 

hash chain 9,78 
heading (CHATDH) 150 

TDY 
(see task dictionary) 

TEST USER COUNTS routine (CGCDE) 
description 77 
flowchart BM 145 

text page 
(see" external page table and virtual 
storage page table) 

UNLOAD command 7,12 
unloader 

(see dynamic loader) 
unnamed control sections 10,3 
use count 76-77 
user authority codes 39,47,146 
user hash table (USERHASH) 6,163 
user library (USERLIB) 2,3 
USERHASH 6,163 
USERLIB 2,3 



V-value 4,31,54 
vacant space table (VST) 163,53,149 
variable-length control sections 1,50 
virtual storage allocation 1,9,50 
virtual storage address(VMA) 34 
virtual storage page table (VMPT) 160,67 
VMPT 160,67 
VST 163,53,149 

Index 175 



GY28-2031-3 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

G) 

>< 
tv 
00 
i ,,, 

o 
w 

i 
W 


