
IBM System/360 Time Sharing System

Support for Time Sharing

Program Logic Manual

File No. S360-48
Form Y28-2040-0

Program Logic

This publication discusses operation of the Support for
Time Sharing (STS) modules that are included in IBM System/360
Time Sharing System to support and facilitate development
of TSS/360.

This program logic manual is directed to the IBM customer
engineer who is responsible for program maintenance. It
can be used to locate specific areas of the program, and
it enables the reader to relate these areas to the corresponding
program listings. Because program logic information is not
necessary for program operation and use, distribution of this
manual is restricted to persons with program-maintenance
responsibilities.

Restricted Distribution

PREFACE

This pUblication is divided into an introduction and a
modular description of STS components. It is organized to
give the reader a clear understanding of the interfaces
between components, as well as their output.

There are two appendixes: "Appendix A: Flowcharts,"
and "Appendix B: Layout of STS Phases," that depict the
composition of the components making up the STS phases.

A related publication, IBM System/360 Time Sharing System:
Support for Time Sharing, Form C28-2034, provides a detailed
explanation of STS commands and is a prerequisite for this
Program Logic Manual.

The reader should also be familiar with

IBM System/360 Principles of Operation, Form A22-682l.

First Edition (October, 1967)

Specifications contained herein are subject to change from
time to time. Any such change will be reported in subsequent
revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this pUblication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Corporation, Time Sharing System/360
Programming Publications, Department 561, 2651 Strang Blvd.,
Yorktown Heights, N. Y. 10598

~International Business Machines Corporation 1967

TABLE OF CONTENTS

PAGE

INTRODUCTION •• 5

MODULAR DESCRIPTION ••• 8

CSFSU - Supervisor ••••••••••••••••••••••••• (SUPVR) ••••••••• 8
CSFSA - Stand Alone Dump ••••••••••••••••••• (SAD) •••••••••• ll
CSF'CD - Command Recognition Routine •••••••• (CRR) •••••••••• 12
CSFRD, WT, ED, GF, GL - POOL Routines •••••• (POOL) ••••••••• 13
CSFEM - EDIT Routine ••••••••••••••••••••••• {EDIT} ••••••••• 14
CSF'FG - GET MESSAGE Subroutine ••••••••••••• (GETFLD) ••••••• 15
CSFKR - READ/WRITE Keyboard •••••••••••••••• (RDKBD,WRTKBD}.15
CSFLG - GET ABSOLUTE CORE LOCATION ••••••••• (GETLOC) ••••••• 16
CSFAD - Test Validity of Address ••••••••••• (ADCOMP) ••••••• 17

CSFAS - Assign Device Address Command •••••• (ASN CMD) •••••• 17
CSF'AN - Assign Device Address Subroutine ••• (ASN SUB) •••••• 18
CSFPB - Display PUB Routine •••••••••••••••• (DISPUB) ••••••• 19
CSF'RU - Execute User Program Routine ••••••• (RUN) •••••••••• 19

CSF'LN - Linkage Editor ••••••••••••••••••••• (LNK) •••••••••• 20
CSF'XR - Exerciser •••••••••••••••••••••••••• (EXCER) •••••••• 21

CSF'VM - Virtual Memory Processor ••••••••••• (VMP) •••••••••• 22
CSF'FP - FIND PAGE •••••••••••••••••••••••••• (FNDPAG) ••••••• 23
CSF'TD - Convert Symbolic Virtual Memory

Addres s •••••••••••••••••••••••••• (TDYADD) ••••••• 24
CSFPL - Locate Virtual Memory Page ••••••••• (PAGLOC) ••••••• 24
CSE'PG - Get Virtual Memory Page •••••••••••• (PAGGET) ••••••• 25
CSFBP - Buffered CSFPG ••••••••••••••••••••• (PAGETB) ••••••• 26
CSE'DB - Dump Block VM •••••••••••••••••••••• (DUMBLOCK) ••••• 27
CSE'PA - PATCH REAL CORE Processor •••••••••• (PAT RC) ••••••• 29
CSF'VP - Patch Virtual Memory Processor ••••• (PAT VM) ••••••• 30

CSFDR - Snapshot Processor ••••••••••••••••• (SNAP) ••••••••• 3l
CSE'DE - The DELETE Routine ••••••••••••••••• (DEL) •••••••••• 32
CSFDO - Dump Out Processor ••••••••••••••••• (DMPOUT). •••••• 33
CSFDU - Dump Command Routine ••••••••••••••• {DUM) •••••••••• 34
CSE'SS - Numeric Symbol Sort Processor •••••• (RC MAP) ••••••• 36

CSFVU - Virtual Memory Dump •••••••••••••••• (DUM VM) ••••••• 36
CSFMB - Dump VM Map •••••••••••••••••••••••• (VM MAP) ••••••• 37

CSFDI - Display Real Core •••••••••••••••••• (DIS) •••••••••• 38
CSF'VD - Display Virtual Memory Processor ••• (DIS VM) ••••••• 39

CSFSE - Set Control Function Status •••••••• (SET) •••••••••• 39
CSFSP - Set Pause Bit Processor •••••••••••• (SET PAUSE) •••• 40
CSF'PZ - Pause Routine •••••••••••••••••••••• (PAUSE) •••••••• 41

CSFDL/02- PATCH,DUMP,DISPLAY DISK •••••••••• (PAT/DUM/DIS
DISK) ••• 42

CSF'AT - Abridged Table Dump •••••••••••••••• (ATD) •••••••••• 44

CSFPF - PSA Access Routine ••••••••••••••••• (GET PSA) •••••• 45
APPENDIX A - FLOW CHARTS •••••••••••••••••••••••••••••••••• 47
APPENDIX B - LAYOUT OF STS PHASES, •••••••••••••••••••••••• 91

INTRODUCTION

STS provides a software interface between the 360/67 hard­
ware and the TSS resident supervisor as a serviceability aid
for TSS/360. All interrupts, except machine check inter­
rupts, are intercepted by STS and processed or passed on to
the TSS resident supervisor. The trapping of interrupts by
STS is accomplished by modifying the new PSWs set up by
STARTUP to point within the STS supervisor (excluding the
machine check PSW) .

When the IPL is performed from the system residence pack,
STARTUP is invoked and link-loads the TSS Initial virtual
memory (IVM) and real core system programs. Real core mod­
ules are link-loaded by STARTUP from the TSS*****.RESSUP.
GOOOOVOO data sets along with the STS supervisor (CSFSU)
and exerciser (CSFXR). STARTUP reads the first page of the
CSFSU module and locates the external new PSW and the address
of the PUB table. STARTUP then fills in the addresses of
SYSRES, SYSLOG, and SYSLST in the PUB table and saves the ex­
ternal new PSW for subsequent linkage to the STS supervisor.

The first page (page zero) of the STS supervisor CSFSU is
the PSA page and is not loaded by STARTUP. It is merely
used to locate the pointers to the PUB table and external new
PSW. The remainder of the STS supervisor is loaded beginning
at core location x'IOOO'. STARTUP reserves core position
x'IOOO' to X'6FFF' for STS use. The exerciser (CSFXR) is
loaded with the remainder of the real core modules in locations
above X' 6FFF' •

Once STARTUP has link-loaded real core, IVM, and the STS
supervisor and exerciser, it transfers control to four bytes
less than the address contained in the new external PSW.
This activates the initializer functions of the STS super­
visor. The initializer sets up a special entry to TSS by
modifying the current PSW in the user save area of the STS com­
munication region (REGON). It then fetches the command recog­
nition routine (CRR-CSFCD)" STS modules other than CSFSU and
CSFXR are contained in a VSAM data set OIl the system residence
pack called TSS*****.SYSSTS.GOOOOVOO. The first page of
this data set is a directory used by STS in locating the "phase"
to be "fetched". Phase refers to a collection of STS modules
link-edited in core-image form (see Appendix A). Fetch refers
to the looking up of the location of a module in the directory
page and the loading of that module into core from the
TSS*****.SYSSTS.GOOOOVOO data set, with control being passed
to the entry point of the loaded module.

5

Once the initializer phase of the STS supervisor fetches
CSFCD, a question mark appears on the console typewriter.
The operator should ASN SYSIPT to the card reader and per­
form an ASN CARDS to set up the PUB table. The PUB table is
a table that defines various devices to STS. STS does not
use any of the TSS device tables constructed by SYSGEN.

After the ASN CARDS, the operator can invoke other STS
functions or simply issue a naked run. This causes STS to
restore the machine to its status prior to entry to STS and
to perform an LPSW from the PSW saved in REGON previously set
by the initializer portion of CSFSU to point to the real core
location defined within CSFXR by the entry name START.

START requests STS to fetch LINK (CSFLN), which com­
pletes the connection across the STS-TSS interface. START
exits to the queue scanner, and TSS is running.

Once TSS is running, a user may reactivate STS by de­
pressing the interrupt key on the CPU console. This sets a
switch in STS that tells the STS I/O interrupt processor that
the next attention interrupt from the operator's 1052-7 con­
sole should be intercepted by STS and cause STS to take con­
trol of the system until the next RUN command is issued. When
the RUN command is issued, the switch that was set by de­
pressing the interrupt key is reset, and TSS is reactivated
and receives future interrupts from the 1052-7 until a sub­
sequent depression of the interrupt key.

Although it appears that TSS is in control, STS remains
under the system, intercepting all interrupts subsequently
passing them on to TSS/360. All I/O interrupts fielded by
STS are maintained in an STS interrupt log which is similar
to the TSS/360 interrupt log CEAJIL. This log's location
can be determined from a dump or by subtracting 12 bytes from
the address pointer in the I/O new PSW. Since STS inter­
cepts all interrupts except machine check, a fundamental rule
is, TSS will never modify the new PSWs.

The resident portions of STS are the supervisor (CSFSU),
the exerciser (CSFXR), and the command recognition routine
(CSFCD). An additional routine, Fetched by CRR on first
entry or by ASN CARDS is CSFSA, also becomes resident with­
in the X'6000' to X'6FFF' area of core. This routine pro­
vides a dump if a catastrophic error occurs in STS.

6

All other phases of STS are fetched into an area termed
the transient area, as they are required. Usually only
one transient phase can be fetched at one time. Upon com­
pletion of a requested operation, a transient routine exits
to the CSFCD module, which produces a question mark and turns
on the PROCEED light on the 1052-7 console.

Only two STS modules are contained within the TSS*****.­
RESSUP.GOOOOVOO data seti however none of the STS modules
may be assembled with the TSS assembler. Since STS modules
are location dependent and size sensitive, none of the STS
modules may be modified in any way.

The remainder of this PLM is concerned with module/phase
description of STS and is intended to give the personnel
maintaining TSS a feel for the function of each STS source
module and how it affects 1:he STS-TSS environment. Details
concerning bit settings and fields used must be extracted
from the source listing.

7

MODULE/PHASE DESCRIPTION

SUPPORT SUPERVISOR -- CSFSU

Function: The STS supervisor is divided into two basic phases
-- initializer and interrupt processor. The initializer is
entered via STARTUP and performs the one-time function neces­
sary to effect the TSS/STS hookup. The interrupt processor
section is interrupt driven and fields all interrupts except
machine check interrupts and either processes them or passes
them on to TSS (Charts AA-AE).

Entry:
SYSEXTI Entry to the initializer phase of CSFSU which is

invoked by STARTUP
SYSSVC Supervisor Call Interrupt Processor
SYSIPO I/O Interrupt Processor
SYSEXTIO - External Interrupt Processor
SYSPRG - Program Interrupt Processor

Exit:
CSFXE
LPSW

- Exit to Exerciser during initialization phase.
- Interrupt processor exit issuing a LPSW at some

points.

External References: None

Operation: The STS supervisor (CSFSU) is initially given con­
trol by STARTUP by transferring control to the A (external new
PSW) -4 (SYSEXTI), which is the initializer portion of the
supervisor. The initializer is subsequently overlaid by
transient programs. The initializer saves the TSS PSWs set
up by STARTUP and replaces them with STS PSWs that point with­
in CSFSU (except the machine check new PSW). The timer is
saved, with the CSW and CAW. The machine configuration is
determined from the hardware and is stored in REGON, with the
STS identification. The actual SYSRES address, including the
CCU (channel control) bit, is determined by performing an
SIO in standard mode and fielding the interrupt in extended
mode and subsequently storing it in the SYSRES entry of the
PUB table. The command recognition routine is fetched and
becomes a resident portion of the supervisor, and a load of
the external PSW is executed which was previously set to
point to the START entry point within the exerciser CSFXR.

The resident portion of CSFSU begins at X'IOOO' and is
entered via interrupts. All interrupts, except machine checks,
are intercepted by STS and either processed by STS or passed
on to TSS.

8

Interrupt Processors

The supervisor is divided into four sections, each of which
processes a distinct interrupt type. An additional major
subdivision of CSFSU is the physical laCS package, which per­
forms the I/O for CSFSU.

The four interrupt processors are serially reentrant,
which implies that distinct interrupts can be processed in
parallel. Upon entry to any of the interrupt processors,
some common functions are performed. The CPU save area
pointer is extracted from the PSA, and registers are saved
within this area, which is a part of REGaN. A switch in
REGON is also tested to determine whether TSS or STS was
the user at the time the interrupt occurred. If TSS was
the user, the timer must be saved and restored, since STS
performs its function in ze.ro time.

SVC Interrupt Processor

The SVC processor decodes the SVC and takes appropriate
action. If the SVC number is greater than 25 it is not a
valid STS SVC and TSS is given the SVC. 'rhere is a table of
SVcs in the SVC processor that indicates where to branch to
process the SVC and which users can issue the SVC. Three
particular users are of interest -- STS, TSS/360 resident
monitor, and a TSS virtual memory task. There are currently
only 11 SVC entries in this table. If TSS issues an SVC
below 25, which is not valid for TSS, it is passed back to the
interrupt stacker.

Program Interrupt Stacker

The program interrupt stacker processes program interrupts.
Upon entry to this processor it checks whether the interrupt
occurred during TSS or STS execution. If it occurred during
TSS's execution, the interrupt is passed on to the TSS inter­
rupt stacker; if it occurred during STS's execution, a test
is made in REGON to determine if an STS routine has supplied
its own program interrupt processor. If so, registers are
restored, and an LPSW is issued to transfer control to this
program; if a user routine was not specified, control is
transferred to CSFSA, which will produce a stand-alone dump
and place the system in wait state.

External Interrupt Processor

The interrupt processor fields two types of interrupts -­
timer interrupts and interrupts generated by depressing the
interrupt key on the CPU console. Timer interrupts are passed
to TSS. An external interrupt generated by depressing the
interrupt key causes a switch to be set in REGaN which informs
S'I'S that the next attention interrupt from the 1052-7 is to
be processed by STS. If the interrupt key is depressed while
S'I'S is executing, the interrupt is discarded.

9

I/O Interrupt Processor

On entry to the I/O interrupt processor l the interrupt
is logged in the STS interrupt log. Pointers to the address
of the next entry in the log, the beginning of the log, and
the end of the log can be determined from three address
constants which immediately precede the I/O interrupt processor.
After logging the I/O interrupt, a branch is executed to the
physical IOCS processor whose function it is to determine if
this is an STS or TSS interrupt by examining I/O interrupt
queues built by PIOS for I/O requests. This processor ad­
ditionally tests for attention interrupts from the 1052-7 and
determines if it is valid to process an attention interrupt
at the time it occurs. Attention interrupts may not be valid
(e.g., if one is received while a transient program is
executing), since another transient program will be fetched
and the currently executing program would be overlaid. The
operator is warned if an attention is received at an in­
appropriate time. After the interrupt is processed, control
is returned to the interrupted program.

Most support routines require that interrupts be enabled
while they are executing. There are only two types of
TSS interrupts that can occur while STS is executing -- ex­
ternal and I/O. Since TSS interrupts are not stackable with­
in STS, they must be passed on to the interrupt stacker;
however, STS requires immediate control from the interrupt
stacker. This is accomplished in the following manner:

1. If the old PSW's relocate bit is not on, the old PSW is set
to point back to STS so that when the interrupt stacker
does an LPSW of the old PSW, control will be returned
to STS.

2. If the old PSW's relocate bit is on, the address of the
queue scanner in the interrupt stacker is modified to
point back to STS so that when the interrupt stacker
exits control will return to STS.

This code is identical for processing both external and
I/O TSS interrupts, with some minor exceptions. If the
interrupt was generated with TSS the user, it is passed
back to TSS via the interrupt stacker immediately.

If STS was entered when TSS was in a disabled state (this
can only be effected by placing a DDR or CMP in the interrupt
stacker or by a SYSER), and an external or I/O interrupt occurs,
a stand-alone dump is taken by CSFSA, and the machine is
dropped into wait state. The user must not insert DDR's or
CMPs in TSS disabled code.

10

There is one other situation that causes a wait state
condition and that is a simulated machine check. This is
caused by the lack of a recovery procedure when certain un­
recoverable errors occur and may be detected by depressing
STOP and displaying the D register, which will be set to
all ones.

STAND-ALONE DUMP CSFSA

Function: CSFSA is a stand-alone dump activated by STS only
in the event of a catastrophic error within STS. It will
output its dump onto a tape or printer (Chart AF) •

Entry Point:
ZY2SAD - control is transferred here to dump core.
SYSAD2 - control is transferred here only when module is

fetched to set up dump output device assignment.

Exit:
Normal: Fetch of SYSDIS to display PUB, at entry SYSAD2;

Send message and AWAIT, at entry SYSADI.
Error: LPSW 0 -- allows operator to restart with new device.

l'1odules Called: None

Operation: CSFSA is first entered at ZY2SAD2, via a fetch,
to set a flag to indicate whether blocked tapes are to be
produced, to set up a physical device address for use at
dump time, to save control registers on a Model 67 for use
at dump time, and to inform the operator of this action. The
actual dump phase is entered at ZY2SAD. Here the wait bit
is set on in prog new PSW (meaning a stand-alone card dump
is necessary in case of a program interrupt while dumping).
All registers are saved, as is low core, and addressability
is established via the PSA. A channel program is established
(CCWSETUP), and the dump is taken on a tape or printer. Main
subroutines are at MAINDUMP (start build reference address),
REFCALL (translates address, secures real core storage key) ,
WRITE (calculates output line and BUMP data pointer), SAMELINE
(omits printing of identical lines), and KEEPTRY N (starts
dump output). Program interrupts due to discontiguous core
terminate the dump if core addressability is lost.

CSFSA writes a message to the operator informing him the dump
is complete, sets restart PSW to allow reentrance to CSFSA,
and enters wait state.

11

COMMAND RECOGNITION ROUTINE (CRR) -- CSFCD

Function: CSFCD's function is twofold: (1) Examine the
commands issued by the STS user and to Fetch the requested
service. (2} Issue the proceed signal accompanied by a
question mark (Chart AG) •

Entry: The entry point to CSFCD is a SYSTRT at core loca­
tion 3120, Entry is made by a Fetch ofSYSTRT by STS Super­
visor or via an SVC6 issued by STS modules.

Attributes: CSFCD is a resident routine occupying the area
between Supervisor and transient routines.

Exit:

1. Fetch of CSFSA in the event of an error.
2. Fetch of appropriate routine. On exit register 3

will contain a pointer to the 1052-7 terminal input
stream.

Modules Called:
CSFRK: to read the input from the 1052-7 terminal buffer.
CSFWK: to print out the diagnostic message for the error

condition or the question mark (?) on a proceed
condition.

CSFGF: Get the first three characters of input stream.

Operation: Upon entrance into CSFCD the contents of a byte
called ERRCODE (located in REGON) is analyzed for a zero (=0)
quantity. If the result is positive, the proceed condition
will be issued. In response to the '?' the first three
characters are concatenated with 'SYS I and a fetch is
performed on the resulting routine with-a-pointer in register
3 to the input stream. However, if the result is negative
)10), indicating that the STS supervisor had detected some
type of error condition, the contents are examined. If the
value is greater than X'CO' a fetch is made of CSFSA for a
stand-alone dump. Otherwise, the specific type of error is
determined, using the value contained in ERRCODE as an in­
dicator, and a diagnostic message is printed out with the PSW.
CSFCD will then await action by the user.

Notes:

1. The first time through CSFCD, a fetch will be made on
CSFSA to insure that it will be in core if needed.

2. Before link-editing, the cards INCLUDE SYSRDK, INCLUDE
SYSGTK, and INCLUDE SYSGTL must be placed at the end of
the object deck in the above order immediately before
the entry card.

12

POOL ROUTINES

These routines are all separate entities. They are included
in the same section because of the similarity in their function.
They are:

CSFGF
CSFGL
CSFED
CSFRK
CSFWK

GETFLD
GETLOC
EDIT
RDKBD
WTKBD

Function: Although the names of the above routines carry
functional descriptions (e.g., EDIT, GETFLD etc.), they are
merely used to provide linkage to the routines that actually
perform the functions (Chart AH).

Entry Point: The entry points for the POOL routines are as
follows:

for CSFGF - GETFLD
CSFGL - GETLOC
CSFED - EDIT
CSFRK - RDKBD
CSFWK - WTKBD

Modules Called: The modules called by the above routines are
as follows:

CSFGF calls CSFFG (GETFLD)
CSFGL calls CSFLG (GETLOC)
CSFED calls CSFEM (EDIT)
CSFRK calls READ entry of CSFKR (Read/Write Keyboard)
CSFWK calls WRITE entry of CSFKR

Exits: These routines branch to their associated routines by
No return is provided to the routines. BRlS.

Operations: Upon entry, the POOL routines pick up one of the
five fields of the REGON area of the supervisor and BR1S to
them.

SYSRDK - RDKBD (READ Keyboard)
SYSWTK - WRTKBD (WRITE Keyboard)
SYSEDI - EDIT (EDIT MESSAGE)
SYSGTF - GETFLD (GETFIELD)
SYSGTL - GETLOC (GET LOCATION)

Note: CSFRK includes CSFED, hence a user of CSFRK does not
have to include CSFED separately.

13

EDIT Routine -- (CSFEM)

Function: The EDIT routine performs the following functions:

1. Converts all lower-case letters to upper case.

2. Substitutes carriage return characters (X'15') for de­
limiters in a supplied parameter string (Chart AI) .

Entry Point: EDIT is the only entry to CSFEM fetched by the
associated POOL routine CSFED. General register 1 contains
the pointer to the character string to be edited.

Modules Called: None.

Exit:

Normal: Unconditional branch BR14, with GRl pointing to the
message character string.

Error: GRl is set to zero before the BR14 is taken.

Operation: Edit assumes that GRl contains the pointer to the
character string to be edited.

It scans the buffer area for delimiters, and replaces them
with carriage return characters. Successive blanks will be
treated as a single delimiter; i.e., only one X'15' character
is substituted for n number of successive blanks. Editing is
suppressed, however, if a vertical bar (X'4F') is encountered.
Editing is resumed when a second vertical bar is encountered.

Lower-case characters between delimiters will be translated
to upper case.

Notes:

1. Applicable to user programs executing in real or virtual
core and STS transient routines.

2. The message must end with an EOB.

3. CSFEM makes two passes over the message buffer.

14

Get Message Subroutine -- (CSFFG)

Function: CSFFG gets a field for the STS user (Chart AJ) •

Entry Points: The only entry to CSFFG is GETFLD. CSFFG
assumes GRO contains the field desired by the STS-USER, and
GRI contains the pointer to the beginning of the message
buffer.

Modules Called: None.

Exit:

Normal: BR14 with GRI containing pointer to the beginning
of the field. GRG contains the size of the field.

Exceptional: GRO is set to zero if a field cannot be found,
and then returns with a BR14. This may in fact
not be an error condition; e.g., the RUN command
might call CSFFG to find out if the second
operand exists (i.e., should a naked RUN be per­
formed) .

Operation: CSFFG will scan the message buffer for delimiters
and increment a counter each time it encounters a delimiter.
Two successive delimiters indicate the end of the message.
If the field is found, it will place the size and the address
of the first byte of the field in GRO and GRl, respectively.

If the field is not found, the exceptional exit will be
taken.

Read/Write Keyboard -- (CSFKR)

Function: The function of this routine is to read from the
1052-7 operator's console, or to integrate to the device
assigned by the supervisor for SYSLOG (Chart AK) .

Entry Points: There are two entry poini:s to CSFKR: (RDKBD)
for the READ operation and (WRTKBD) for the WRITE operation.

Whether READ or WRITE is desired, CSFKR will assume that
the contents of GRO and GRI are the length of the message
and the pointer to the message, respectively.

Modules Called: CSFEM, the EDIT routine is called to com­
press all the blanks in the message buffer when the READ
operation is desired.

Exit: Normal: BR14, with GRI pointing to the message.

Operation: CSFKR will move the input parameters into the
skeleton CCWs for READ or WRITE and EXCP to retrieve or trans­
mit the message.

15

16

Get Absolute Core Location -- (CSFGL)

Function: The function of CSFLG is to convert an EBCDIC
character string into an absolute core address.

The character string may be one of the following formats:

l. A read core module name
2. A real core module name (±) a hex displacement
3. A real core module name (±) a decimal displacement

preceded by an asterisk
4. A hex displacement preceded by a plus sign
5. A decimal displacement preceded by an asterisk (Chart AL)

Entry Point: The only entry to CSFLG is through its associated
POOL routine CSFGL.

Modules Called: None.

Exit:

Normal: Unconditional BR14 to the calling routine (not the
POOL routine), with GRI containing the converted
address.

Error: If an error condition is encountered r GRI is set to
zero, and control is returned to the calling routine
by a BR14.

Operation: Upon entry, CSFLG assumes that GRI contains a
pointer to the beginning of the character string, and that an
EOB (X'26') or carriage return character (X'15') indicates
the end of the string.

CSFLG will determine which of the five formats the charac­
ter string is supplied. For format types 1 thru 3, the real
core symbol table will be searched to determine the value
of the module name or entry point supplied. The error exit
will be taken if the module name cannot be found. Distinction
is made between hexadecimal and decimal numbers by the presence
or absence of the asterisk with the number.

The final address is checked against the range of core.
The error exit will be taken if the computed result exceeds
the core size of the CPU.

Test Validity of Address -- CSFAD

Function: To determine whether an address is a real core ad­
dress that exists as part of the current executing CPU; i.e.,
to insure against the use of an address that is partitioned out
or is not part of the system (Chart AM) .

Entry Points:

1. ADCOMP is the primary entry point to CSFAD and is entered
via a branch and link on registers 14, 15. Register 1 con­
tains the address to be tested.

2. Secondary entry point is ERRORj the routine is entered at
this point if a program interrupt occurs while testing the
address.

Modules Called: None.

Exits: Return is made via a BR14 with a return code in reg­
ister O. A return code of zero indicates that the address was
invalid; a return code other than zero (~O) signifies a valid
address.

Operation: A pointer to the section of coding in CSFAD to
handle the case of an unavailable address is moved into a commu­
ication area, PGINT, located in REGON. In the event of a program
interrupt, control will be transferred by STS supervisor (using
the contents of PGINT as a pointer) to the secondary entry point
of CSFAD. The address is tested by using the CLC instruction
and REGI in the operand. If the operand of the CLC using reg­
ister 1 references an unavailable location, the operation will
be terminated, causing a program interrupt. If execution of the
CLC caused a program interrupt, a zero return code is set in reg­
ister zerOj otherwise, register zero will be set to contain a
nonzero value. The original contents of PGINT is restored and
return is made to caller.

Assign Device Address Command -- CSFAS

Function: The assign command (ASN) will allow temporary changes
to be made to the STS PUB table (Chart AN) .

Entry points: Entry is made into CSFAS at entry point SYSASN.
General register 3 contains a pointer to the input message.

Modules Called:

CSFAN

CSFGF

CSFWK

CSFEM

performs actual assignment.

obtains the requested fields from message.

prints the message on the 1052-7 for an error or
completion.

edits buffer message.

17

Exit:

SVC 6 When the input stream was from a 1052-7 ter­
minal buffer, or when an error has occurred
on input from cards.

Fetch SYSSA When the input was on cards and assignment
was completed.

Operation: It is determined whether the input will be from cards
or terminal keyboard. If from cards, the card is read in from
SYSIPT. In either case, general register 3 will contain the
pointer to the input stream. At this point, the second field is
obtained, and the symbolic device is presented in the XXX portion
of SYSXXX. The XXX portion is moved into an II-byte parameter
list. The next three fields, containing DEVICE ADDRESS, TYPE,
and MODE, are similarly obtained and placed into the parameter
list. A BAL is made to CSFAN as the result of an expansion of
the ASSIGN macro, with register 14 pointing to the parameter list.
On returning, a test of the return code is made to determine if
assignment was successfully completed or not. If negative, a
diagnostic message is printed out on the 1052-7 terminal, and re-
turn is made to CRR via an SVC 6. If positive, and input was from the
1052-7 terminal, an OK message is printed, and exit is made to CRR.
However, if the input was on cards, the next card is read, and the
above is repeated until //END card was encountered, at which time
exit is made to SYSSA.

Assign Device Address Subroutine -- CSFAN

Function: CSFAN assigns (in the physical unit block (PUB) table)
a symbolic device to a physical device address (Chart AO).

Entry Points: Entry points are ASSGN and CTPUB. Entry is made
by the issuance of an ASSIGN macro from the ASN command routine.
The operand is the address of an II-byte field (whose address is
contained in register 14) containing four subfields.

1. Symbolic device (three bytes EBCDIC) RDR, LST, IPT, OPT,
LOG, or 000-255.

2. A value from 0000-3PFF (4 bytes EBCDIC) representing:

Channel Controller - 0-3
Channel - o-p
Control Unit - O-F
Device Unit - O-F

3. MODE (two bytes EBCDIC)

a. For 7-track tape Tl.
b. Ignored if none possible.

4. TYPE (2 bytes EBCDIC) indicating device type.

18

Modules Called: None.

Exit: Exit is made by a B 4(14).

Operation: The location of the parameter string is contained
in register 14. The XXX portion of SYSXXX is compared to RES;
if equal, the relative address (relative to PUB) is obtained.
If not equal, the address of the PUB and the particular entry
is obtained. The address, mode, and type are converted to
entry form, and the PUB is set up.

Note: For all MODE bytes, two blanks or zeros are accepted
as indicating that no mode settings are required.

Display PUB Routine -- CSFPB

Function: Display entire PUB table (series of devices) or a
particular entry in the table (Chart AP).

Entry Points: DISPBI is the single entry point to CSFPB.
Register 3, on entrance, contains a pointer to the 1052-7 ter­
minal message buffer.

Modules Called:

CSFWK print out the PUB entries.

CSFGF obtain the fields of the input stream.

CSFGL resolve absolute core location.

Exit: Exit is made via an SVC 6 to CRR.

Operation: The address and number of entries of the PUB table
is obtained from REGON. It is then determined whether there is
a third field in the input stream. If the third field exists,
a particular entry within the table is desired, and the table
is searched for the entry and printed out via a BALR to CSFWK.
If no third field is present, a printout of the entire PUB
table is wanted. Each full word entry is tested for zerOSj if
the entry contains all zeros, it will not be printed out. This
testing is conducted for the entire table until the end is
reached, at which time exit is made by issuing an SVC 6.

Execute User Program Routine -- CSFRU

Function: The RUN command activates the execution of a user
program phase or restarts execution if processing was stopped
for a specific reason (Chart AQ).

19

Entry Point: SYSRUN is the only entry point. General
register 3 points to the input stream.

Modules Called:

CSFWK - writes messages on the 1052-7.

CSFFG - finds a particular field in parameter list.

CSFGL - computes absolute core location of specified field.

Exits:

With an SVC 7 to the user program after successful operation.

With an SVC 6 to the command recognition routine when the re­
quested starting location is below STS's supervisor end, and
the user program is in problem state.

Operation: CSFRU is invoked by the command recognition routine.
Upon entry, R3 is pointing to the input buffer. Parameters are
set up, GETFLD is called, and returns with a pointer in Rl to
the second field of the RUN command. The second field specifies
the starting address and may be a symbol or an absolute address.
If the second field is defaulted, the machine status, as saved
on entry to STS, is restored. The old PSW in REGON is checked
to see whether the task was in problem state or supervisor state.
If the requested starting location is in the supervisor and the in­
terrupted program was in supervisor state, a warning message is
issued, and processing continues. If the starting location is in
the supervisor and the interrupted program was in problem state,
a message is printed, and control returns to the command recog­
nition routine.

LINK -- CSFLN

Function: CSFLN informs STS that TSS is the user and resolves
an entry point within the interrupt stacker that contains the
address of the queue scanner (Chart AR) .

Entry Point: linkl control is transferred here when phase
CSFLN is FRASUed by the exercisor (CSFXR).

Exit:

Normal: SVC 7 restore user program--in manual.
Fetch CSFXR--in automatic mode.

Error: Appropriate error messages, followed by SVC 6.

Modules Called: CSFGL (GETLOC) is invoked to obtain an address
with the Interrupt Stacker.

20

Operation: CSFLN is invoked via a fetch and performs initial­
ization functions for STS. Basically, it informs STS that TSS
is the user by setting the MODTSS bit in the MODESW. Since
TSS/360 currently operates only on a Model 67, we call CSFGL to
translate the address in the interrupt stacker (CEAJIA), which
contains the address of the queue scanner. This address is
modified at times by STS when it receives a TSS interrupt that
it cannot stack but which requires control returned to it. Upon
completion of this function, exit is made in normal mode via an
SVC 7, which restores the status of the machine prior to the
FRASU state, which returns to the exercisor.

Exercisor -- CSFXR

Function: To provide initialization at the START entry point
and to set up for a PAUSE (user requested task stop) at the
EXER2 entry point (Chart Am.

Entry Points:

EXER called from START to complete initialization.

EXER2 entered when a task is about to get control to
permit PAUSing of the task.

START initial entry to CSFXR by the initializer phase
of CSFSU after STARTUP.

TIMECON an external definition to hold the timer value
set up by STARTUP.

Exit: CEAJQS - queue scanner (TSS module).

Modules Called:

1. CEAJQS - Queue Scanner.

2. CEALOI - Supervisor Core Allocation.

Operation: The initializer phase of CSFSU sets up the current
PSW in the STS communication region (REGON) to point to the entry
point START in CSFXR. START immediately FRASUs CSFLN to perform
some housekeeping functions, which return to the point in CSFXR
following the FRASU. The timer value set up by STARTUP and the
save in TIMECON by the initializer of the supervisor are restored,
and the initial entry point (EXER) of the exercisor (CSFXR) is
invoked. This results in an immediate exit to the queue scanner
(CEAJQS).

Entry point EXER2 is invoked by the dispatcher just prior to
activating a task. If the TSI pointed to by 188 does not have
the pause bit on, an immediate return to the dispatcher is ef­
fected. If the TSI pointed to by 188 does have the pause bit on,
the page pointed to by the PSW contained in the XTSI is tested
to determine if it is in core. If the page is not in core, the
routine exits to the dispatcher; if the page is in core and the
pause set bit is on, exit is also made to the dispatcher, since

21

we have already completed the exercisor's pause procedure.

Assuming that the page pointed to by the PSW in the XTSI is
in core and the pause set bit is not on, supervisor core allo­
cation (CEALOl) is invoked to obtain a save area for the task
registers 14, 15, 0, and 1. The task registers in the XTSI
are then modified so that GRI contains a pointer to the core
allocated by CEALOl; GR14 and 15 contain the character
C'PAUSEbbb'; and GRO contains the two bytes of the first in­
struction to be executed by the task. These two bytes which
were saved are overlaid by a FRASU SVC 10, the pause set bit
is set on, and control is returned to the dispatcher.

virtual Memory Processor -- CSFVM

Function: Designed to process two types of requests (from
programs operating in virtual memory, only).

1. TCOM - transmits and receives messages to and from the
1052-7 console.

2. TDUMP - permits dumps of real or virtual core memory
areas or combinations of both (Chart AT) .

Entry Point: Entry isatSYSUMPlO; it is the result of a macro
expansion into an SVC 5. A parameter list generated in a CSECT
or PSECT follows the SVC 5.

Modules Called:

CSFRK

CSFWK

CSFPG

Exits:

obtains information from the 1052-7 when an input
message is desired.

prints out TCOM information on the 1052-7.

obtains the address of the virtual memory page.

There are two types of exits made from CSFVM:

1. SVC 7 - issued on entry via a TDUMP or TCOM to print a
message.

2. SVC 6 - issued when entered through TCOM when message
being printed is a question mark (?).

Operation: The location of the parameter string is calculated,
and from the first byte configuration it is determined whether
the macro was TCOM or TDUMP. At this point, a branch is made
within CSFVB to perform the desired operation. The type of out­
put for TDUMP is further determined whether a real core or virtual
memory dump is wanted; whereas for TCOM it is determined if the
request is for receiving or transmitting messages.

22

TDUMP: After obtaining the type, the parameter list is
further examined for the from and to addresses. The dump is
taken, and CSFVM refers back to the parameter list to check for
a chained parameter list. If the list is chained, the above is
repeated; if not, an SVC 7 is issued.

TCOM: It is determined whether CSFVM is to receive or trans­
mit messages:

1. Receive -- if CSFVM is not expecting a response, it proceeds
to check for a chained parameter list and reacts as it did
in TDUMP. If a response is expected, CSFVM awaits the re­
sponse and inquires into a chained list upon receipt.

2. Transmit -- determines the type of message. If it is a
question mark (?), an SVC 6 is issued; otherwise, the
message is printed out on the 1052-7, and a check is made
for a chained parameter list, as before.

Find Page -- CSFFP

Function: CSFFP locates segment, auxiliary segment, page, and
external page table entries. A subroutine will locate the proper
RSPI entry location in RC for any SPT number or will locate the
next available entry in the RSPI (Chart AU).

Entry Points:

FNDPAG - standard linkage.

Input - R3 = location of XTSI.
R4 = VM address.

Exits:

Normal: Standard linkage - return to calling routine.
R9 number of remaining page t:able entries.

Error:

RIO = A (Segment Table Entry) •
RII = A (Auxiliary Segment Table Entry) •
Rl2 A (Page Table Entry).
R13 A (External Page Table Entry) .

Error in search RSPI table
Segment not assigned
Segment or page table length invoked
Segment length exceeded
Page length exceeded

- CC
- CC
- CC
- Rl3
- R13

Modules Called: None.

= 1
2

= 3
= 0
= 1

23

Operation: CSFFP first checks the length of the segment
table and computes the address of the segment table entry
and the auxiliary segment table entry. If the segment is
shared, an internal subroutine locates the RSPI pointer and the
shared page table number and returns the address of the pointer
to the page table and external page table. From XTSI the seg­
ment table is located first, then the auxiliary segment table,
the page tables, and the external page table. These addresses
are passed back in R9-12, respectively. If errors are de­
tected, a condition code is set, with a more specific code in
R13, and CSFFP returns to the calling program by a B on R14.
Normal return is also a B on R14. CSFFP is called only by
CSFPL.

Convert a Symbolic Virtual Memory Address -- CSFTD

Function: CSFTD converts the EBCDIC representation of a hexa­
decimal number into actual hexadecimal notation (Chart AV) .

Entry Point: The entry point is TDYADD. Upon entry, CSFTD
assumes that GRO contains the number of hexadecimal characters
to be unpacked, and GRI contains the pointer to the hexadecimal
string.

Modules Called: None.

Exit: Exit is made by a BR14 with converted quantity in general
register 1.

Operation: By a series of executes in MVC, TR, and PACK, the
VM address is converted into actual hexadecimal notation.

Note: CSFTD assumes that the maximum number of hexadecimal
characters to be converted is eight, and that the unpacked re­
sult will be able to fit into a general register (GRl).

Locate Virtual Memory Page -- CSFPL

Function: CSFPL is a subroutine called by VM routines to get
a physical memory address for a given VM address or an external
address (TSS symbolic address) (Chart AW).

Entry Points:

PAGLOC - standard linkage.

R15 V (PAGLOC)

RO VM address

24

Exits:

Normal: B 4 (14)

Error: BR 14
Rl =
Rl

Error Code

TSS symbolic address if CC=O
Error code if CC~O

Meaning

o
1
2
3
4
5
6
7
8
9

Page is not assigned external storage address.
Segment specified is too large.
Segment specified is not assigned.
Page specified is too large.
Page table specification error.
Error in locating system table.
NO active TSI.
XTSI not in core.
Control register 0 error.
Error encountered searching RSPI table.

Modules Called: Find page (CSFFP) to locate segment and page
tables for VM address.

Operation: After initial housekeeping, CSFPL calls CSFFP to get
the segment and page table addresses, which are returned in R9-R12.
Assuming that CSFFP detected no errors, a check is made of the
page table to see if the page is in core or if it has been paged
out (last byte of entry = 8). If it is in core, CSFPL returns to
the calling program with an address in RI. If the page is marked
out of core, the block entry is checked, and if forward and back­
ward core block pointers = 0, it is still in core, and the core
address is returned.

If core block pointers are ~ 0, the page is out of core, and
the symbolic device address associated with it is used from the
external page table. The page table entry is zeroed out so that
the next time it is paged in the entry it will be filled out by
passing the reclaim page function. Normal exit is B 4(14); error
exit is B14, with condition code set to nonzero and error code
in Rl or CC=O, with symbolic device address in Rl.

Get Virtual Memory Page -- CSFPG

Function: CSFPG is called to obtain the pointer in core to the
VM page requested and, if necessary, to b}:-ing this page into core 1&

(Chart AX).

25

Entry Point:

PAGGET - Standard linkage.
Rl - Address of W~ page.

Exits:

Normal: B 4{R14) standard linkage.
Rl Core address of page.
RO = CCB address.

Error: B (R14)
CCfO Rl
CC=O Rl

Modules Called:

Error code (returned from pageloc).
Error code -- error detected by CSFPG.

CSFPL - obtains the physical address of the VM page address.

CSFGL - converts EBCDIC character to absolute core locations.

Operation: CSFPG first calls pageloc to obtain the physical ad­
dress of the VM page address. If page core finds the page in core
it returns the physical address in Rl, and CSFPG returns. If the
page is not in core, either the page is external or an error
occurred. CSFPG analyzes the return code, and if no errors oc­
curred it takes from the external page entry the symbolic device
address of the page. In the physical/actual table, CSFPG locates
the device group table printer and constructs eight possible ad­
dresses. It then calls reverse pathfinding until it returns a
symbolic device address matching that of the device address in
the external address passed from PAGLOC (CSFPL). Now CSFPG has
access to the physical address for paging operation. The specific
location on disk or drum is read by PAGGET, and it returns to the
calling program with the address of the page brought in Rl,
RO=CCB address. Return is made by B 4(R14). In detection of
error conditions, CSFPG does a BR 14 with an error code in Rl.

Buffered Page Get -- CSFBP

CSFBP is identical in operation to CSFPG (Chart AY).

CSFBP is called in the process of dumping virtual memory, and
it includes the dump block (CSFDB).

CSFDB contains instructions from the VM processor that are
executed only once. After execution, control is passed to
CSFPB, which overlays the CSFDB code with its I/O buffer. Sub­
sequent calls to GET PAGE call CSFPG.

26

Dump Block (VM) -- CSFDB

Function: CSFDB processes parameters for a VM dump, checking
for validity in both form and logic. It then prints task iden­
tification user supplied parameter information, registers, the
TSI f XTSI and shared page tables. After establishing dump for­
mat, dump address parameters are computed and CSFDB returns to
calling p:r:ogram (Chart 1\2).

Entry Point: DMBVDM - standard linkage.

Exits:

Normal - standard linkage.
Rl VM map indicator.
R7 from VM address
RO then VM address

Error - following errors result in an appropriate message to
operator and SVC 6 ('?'):

1. No active tasks.
2. Error in parameter.

Hodules Called: CSFDO - at entry points:

DUMP to print TSI, XTSI, and page tables.

SETUP establish print format.

IOCCW set print spacing and page ejection.

Li\BEL set labels for print of registers.

LOOPC8 print registers.

10 print heading and skip lines.

LINE obtain dump line count (for print).

HEADING store ID information for print.

CSFTO convert VM addresses.

Operation: After saving the SYSVOMs, return register CSFDB
checks if there are any active VM tasks, and puts task 10 in­
formation from the TSI and input parameters into an external
buffer area in CSFDO entry point HEADING.

27

A request to "dump" VM map or "VM all" will result in a
subsequent fetch of SYSPVM. Parameters of specific V1'1 ad­
dresses are validated by branching to CSFTD. A branch to
CSFD at entry point SETUP formats the floating point dump,
and floating point registers are printed by a branch to
CSFDO at entry point LOOPC8. Control and general registers
are obtained from REGON or the XTSI, formatted in hexa­
decimal by SETUP, and printed. A pointer to the TSI is
passed to the CSFDO routine for printing. This procedure
is repeated for the XTSI and shared page tables. Internal
branching to ADJLINE determines line spacing and page
ejection for printing. Dump format is established by a
branch to SETUP with specified input parameter. The "from"
and "thru" VM addresses are loaded in registers 7 and 0,
respectively. A VM map indicator is set in register 1, re­
turn registers are restored, and CSFDB returns to calling
routine. If map is the only parameter, SYSPVM is immediately
fetched.

28

Patch Real Core Processor -- CSFPA

Function: CSFPA is used to patch real core, general registers,
control registers, communication points (CMPS), dynamic dump
requests (DDRS), and to accept card input (in specified format)
from SYSIPT (PAT CARDS). It additionally provides linkage to
other patch routines, depending on the specification of the
first operand (Chart BA).

Entry Points: CSFPA is fetched by CSFCD when the first three
letters in the first field typed by thE! user are PAT. CSFCD
passes a pointer to the input message huffer in general register
3. '1'he parameters following the PAT in the input message
specify the type of patch and contents.

The sole entry point is SYSPAT1.

Exit: CSFPA exits with an SVC6 to invoke CSFCD. If the input
is froin cards a "patend" precedes the SVC6 call.

"DONE" is printed upon completion of a patch rE0uested from
the 1052-7.

Modules Called:

CSFVP - pat VM processor.
csr~l - pat disk processor.
CSFGL - used to get absolute core location if a symbol is

specified for patching.
CSFGF - used to write diagnostic messages to the 1052-7

terminal.
CSFED - used to edit card input. (CSFRK edits output from

the 1052-7.
CSFAD - used to insure CSFPA that the user is patching a

valid core address.

Operation: Upon entry CSFPA analyzes the first operand to
determine what is to be patched. If the first operand is VM,
DA, or DISK, CSFVP or CSFDI is fetched; otherwise, processing
is internal to this routine. If patching general or control
registers are specified, the patching is done in the user re­
gister save area (REGSTR, SCTLREG, respectively) in REGaN.
This is because the supervisor will load the hardware regis­
ters from these areas when the user resumes running.

When patching real core, CSFPA first makes certain that the
user may access the core he requests be patched, via a call to
CSFAD.

29

30

When a CMP or DDR is patched; CSFPA first checks to see that
the location specified for the CMP or DDR contains a "replace­
able instruction" (i.e., a branch instruction may not be over­
laid for a CMP or DDR) .

If the instruction is replaceable, its core address is stored
in the CMP or DDR table, with the first two bytes of the instruct­
ion. The DDR or CMP count is upped by one. A maximum of 50 DDRS
and 50 CMPs may be requested.

Virtual Memory Patch -- CSFVP

Function: CSFVP provides the capability to modify virtual memory
core locations, registers, and PSWs (Chart Bill.

Entry Point: Entry into CSFVP is SYSUPT. A pointer to the
parameter input stream is contained in register 3.

Modules Called:

CSFPG - locate page in core or on external device.

CSFWK - print out error message if any errors encountered.

CSFFG - scan parameter string for necessary data.

CSFLG - interpret number from EBCDIC to Hexadecimal.

Exit: Return is made to CRR via an SVC 6.

Operation: A BALR is made to CSFFG to obtain the contents of
the third field of input stream. The area to be patched is
determined, and the proper branch is made. If a register or
PSW is to be patched, their locations are determined according
to the status of the system (i.e., locations may be in either
REGON or XTSI) I and the modification is performed. If, however,
the patch is in virtual memory, a BALR to CSFPG is made to obtain
the location of the page in question. On returning, register 1
will contain a pointer to a page which in turn will contain the
area to be patched. Register 0 will contain either one of two
values:

1. Zero Quantity: This return code signifies that the page
was in core, and modification can be made.

2. Non zero Quantity: A return code other than zero indicates
that the page was external and had to be brought into core.
Upon completing modification, an EXCP is issued on a CCB
constructed by CSFPG, to restore status of page. In both

cases, after modification is completed, return is made
via an SVC 6 to CRR.

Note:

1. If page was external, the modification will be permanent,
as opposed to a temporary patch when it is in core.

2. Patches may not cross page boundaries.

Snapshot Processor -- CSFDR

Function: CSFDR is used to process dynamic dump requests and
cormnunication points (Chart BC) .

Entry Point: CSFDR is invoked by an SVC 5 which was implanted
in core when a CMP or DDR was requeste6.

Modules Called: CSFDO - used by CSFDR to perform the dumping
requested onto the device assigned to SYS001.

Exits: CSFDR exits by an SVC 7 to allow the user program to
continue processing.

Operation: CSFDR is entered when an SVC 5 is encountered during
execution. CSFDR first checks the DDR'J'ABLE in the REGON area to
determine whether any (more than one may be specified) DDRS were
requested at this location. If there are DDRs requested, they
are serviced by means of using CSFDO to do the dumping to SYS001.
At the beginning of each dump, a symbol table is printed. This
is followed by the control registers and general registers. If
the DDR ID is between 50 and 99, the symbol table will not be
printed.

When all dynamic dump requests are ~;erviced, an attempt is
made to execute the instruction previously overlaid by the SVC
5 to cause the dynamic dump or the communication point. The
machine status, as saved prior to invoking the snap processor,
must be restored before executing the ~nstruction. This is
done by modifying the PSWs to point to the instruction followed
by an SVC 7. This instruction is reconstructed, placed in the
PSA, and will then be the subject of an EXECUTE instruction.
If a program interrupt occurs, the supervisor checks the field
PGINT in REGON (the transient program interrupt processor). If
there is an address in PGINT, control is transferred to that
address. Otherwise, the supervisor will handle the interrupt
in its usual fashion. If no interrupt occurs, execution follows

31

32

the logical sequence of code that will result in another SVC
5. This will again save the user's condition and will cause
a second invocation of the snap processor. A switch, previous­
ly set, indicates that the snap processor was called the second
time. Then the PSW will be set up to point to the instruction
that would have normally been executed. A test is made as to
whether there was a CMP. If there was none at this location,
the machine status as saved upon entry to the snap processor
is restored, and an SVC 7 returns control to the user. If
there was a CMP request, CSFWK puts out the CMP message and
ID, followed by an SVC 6 to return to the command recognition
routine.

DELETE Routine -- CSFDE

Function: To delete dynamic dump requests (DDRs or DRs) and
real core communication points (CMPS) (Chart BD).

Entry Point: The only entry point is SYSDEL. CSFDE is fetched
by the command recognition routine (CSFCD), which passes CSFDE
a pointer to the input message buffer in general register 3.

Modules Called:

CSFGL - used to get the core location of the CMP or DDR to be
deleted.

CSFGF - to access the fields typed in by the user.

CSFWK - to write diagnostic messages to the 1052-7 terminal.

Exits: If the CMP or DDR delete request is valid, a message,
"DONE", is printed after the entry in the CMP or DDR table
has been deleted. If the request is invalid (i.c., no DDR
or CMP is found at the specified address) a message. "NO",
is printen. In either case, after the message has been printed,
CSFDE issues an SVC 6 to call CSFCD.

Operation: Upon entry, CSFDE examines the message buffer to
determine whether

DEL ALL

DEL CMP [at address]

DEL DDR (or DR) [at address]

has been specified. If ALL has been specified, all CMPs and
all DDRS are deleted; otherwise, the CMP or DDR at the address

specified is deleted.

The deletion is accomplished in the following way. The
symbols DDRTABLE and CMPTABLE, found in the REGON DSECT,
point to the table desired. The byte immediately preceding
t~hese tables is a count of the CMPs or DDRs in the respective
t~ables. Each table may have a maximum of fifty entries.

After locating the desired table, CSFDE obtains the at
address specified by the user and converts it to an absolute
core location. The appropriate table is then scanned for a
nlatching absolute core location. If a match is found, the
SVC 5 at the core location is overlaid by the two bytes stored
in the table when the request was made. The count is decreased
by one and the DONE message is printed.

If the at address, when converted, does not match any core
location in the table, "NO" is printed.

~)ump Out Processor -- CSFDO

Function: CSFDO is a subroutine used to dump information onto
1:he device assigned to SYSOOI (printer or tape). If the dump
is to tape, and an EOF is detected, the dump will continue to
SYSOIO if it is similarly assigned (Chart BE) .

Modules Called: None

~ntry Points: Entry points to CSFDO include:

SETUP - to set up dump format.

HEADING - user may move in a 112 character header into this
area.

DUMP - enter here to do actual dumping. FROM and TO addresses
in R8 and R9 respectively.

I/O - entry point to have CSFDO execute the CCW at I/O CCW.

CONVX - convert input (pointed to be GRI) to hexadecimal format
and place it in output buffer (pointed to by GR2) .

CONVF - convert input to full-word output - GRI and GR2 used.

CONVH - convert input to half-word output - as in CONVX.

IOCCW - move in the CCW to be executed here.

33

LABEL - label for dump may be moved in here.

Exits: CSFDO is a closed subroutine and exits with an uncond­
itional branch to general register 14.

Operation: A user generally enters CSFDO initially at an
entry pOlnt called SETUP. Here the user is able to set up
the format he wishes for the dump (hexadecimal characters,
etc.), and also the blocking of the data (halfword, fullword,
etc.). Before entering SETUP, the user may move into an ex­
ternally defined area called HEADING, a l12-character heading
which will be printed at the top of each page of the dump.
In addition, a user may move a lO-byte "id" into an exter­
nally defined area called LABEL. This is printed on the same
line with the heading.

After SETUP, the user enters at DUMP to perform the actual
dumping, in the format specified at SETUP time. The from and
to address for the dump is specified in general registers 8
and 9, respectively.

The I/O required for this dumping is performed internally.
All translation is also performed internally by subroutines
and CSFDO may be called for the sole purpose of translation.
The parameters passed are pointers (1) in general register I
to what is to be translated, and (2) in general register 2,
a pointer to the drop area. Four bytes are translated before
the called routine exits with a BR 14.

Additionally, CSFDO may be called to execute a CCW specified
by the user. The CCW is moved into the area specified by the
external symbol IOCCW. The user then enters at the ENTRY point
10 to execute the CCW.

Dump Command Routine -- CSFDU

Function: The DUMP command (Chart BF provides the user with:

1. dumps of real core.

2. linkage to other dump routines which dump:

a. TSS System status information (abridged table dump) ;

b. the contents of direct access devices;

c. a sorted real core symbol table, or

d. the current active task virtual memory.

34

Entry Point: SYSDUM is the only entry point. Upon entry,
GR 3 is pointing to the input buffer.

tJlodules Called:

CSFDO - prints dumps on SYSOOI and SYSOIO.

CSFGL - to compute absolute values.

CSFFG - to locate a field.

CSFWK - to write on terminal.

CSFPF - to get address of prefix area.

CSFAD - to determine whether the specified storage element
belongs to the dumping CPU.

Exit: If the operand is DA, VM, ATD, or MAP, the module
aIITliated with these parameters is fetched. In any other
case, it exits with an SVC 6 to the command reccanition
routine upon completion of processing.

9peration: CSFDU is invoked by the command recognition routine.
Upon entry, GR 3 points to the input buffer. When CSFDU is enter­
ed, the interrupt log is transferred from the standard area to
t:::le space between the end of SYSDUM and SYSEND (i. e., available
space in the transient area), since dumping destroys the user
log progressively as it dumps. If the log is longer than the
available space, the log is truncated, losing the oldest inter­
rupts.

Saving starts with the last known interrupt and moves back
as much as the space allows. If the operand is DA (direct
access), VM (virtual memory), ATD (abridged table dump) or
~~P (sorted symbol table map), the module affiliated with
"these parameters is invoked. If the operand is ALL, the
FROM and TO addresses are computed, using a pointer in REGON
which gives the size and configuration of the machine. If
it is not any of the above, it is sent to GETLOC. If the
operand is a symbol, GETLOC will return its address. If the
operand is an absolute decimal address, it must be preceded
by an asterisk.

The PSWs, control registers and general registers are
dumped, and the portion of real core tha.t was requested is
dumped by DMPOUT. A symbol table map is also dumF-ed vlith

35

36

with the real core dump. The map is set up by CSFSS. The
output goes on SYSOOI or SYSOIO.

If the to address is out of range, no dumping takes place,
and a message is sent to the terminal. Holes within the from
and to addresses are deleted, and dumping takes place.

Numeric Symbol Sort Processor -- CSFSS

Function: The sole function of CSFSS is to output a numer­
ically sorted version of the real core symbol table to the
device assigned to SYSOOI. (Chart BG) .

Entry Point: The only entry point to CSFSS is SYSNSS. CSFSS
is fetched by CSFDU when the user types "dum map" on the 1052-7
terminal. CSFCD fetches CSFDU, which, in turn, fetches CSFSS.

Modules Called:

CSFIO - an I/O package used by CSFSS to dump the map to
SYSOOI.

CSFWK - used to send diagnostic messages to the 1052-7
terminal.

Exits: CSFSS exits by issuing an SVC 6 to invoke CSFCD.

Operation: When entered, CSFSS gets the contents of PCTADR,
a symbol in the REGON DSECT. PCTADR points to the halfword
immediately following the real core symbol table that contains
a count of the number of II-byte entries in the table.

The count is multiplied by 11. By subtracting this product
from the end of the table, we can begin our scan. The scan is
accomplished by searching for the low entry in the table, print­
ing it, and setting a flag to exclude this entry from subsequent
scans. When all entries have been printed, the flags are turned
off.

If PCTADR is zero, a message is printed indicating this.

Virtual Memory Dump -- CSFVU

Function: This routine dumps virtual memory in one of four
formats (Chart BH).

Entry Point: CSFVU has a single entry point at SYSVDM. A
pointer in register 3 will point to 1052-7 terminal buffer

message and will be the input to CSFVU.

Modules Called:

CSFPG - locates virtual memory page.

CSFDO - dumps indicated area.

CSFWK - used to print out any error messages encountered.

CSFDB - prints out header, general registers, control
registers, floating point registers, PSWs, TSI
page, XTSI pages, and shared ta.bles.

Exit: Exit is made via an SVC 6 to DRR. A DONE message is
printed on the keyboard upon completion of the dump.

Operation: A BALR is made to CSFDB to have the header, general
registers, etc., printed out. Upon returning, the from and to
addresses are obtained from the input st.ream and passed to CSFPG
(CSFPG is called for each page to be dumped). After obtaining
proper pages, a branch and link is made to CSFDO (as parameters
in registers 8 and 9) passing the from and to addresses and the
format to dump out page. After the entire area has been dump­
ed, return is made to CRR.

Note:

1. Area is dumped according to the assignment of SYSOOI.

2. will manufacture a to address to the end of core if the
parameter is omitted from input.

!)ump VM Map -- CSFMB

Function: CSFMB accesses the task dictionary table for a part­
icular virtual memory task and prints a listing of all control
sections referenced, vii th additional information, such as VM
address, attributes, length, and VM address and separation of
all external references (Chart BI).

Entry Point: SYSPVMi no parameter list.

Exits:

Normal: SVC 6 - "7" at console.

SVC 7 - restore system at point of FRASU.

37

38

Error: return code from called routines printed in error
message, followed by"?", SVC 6.

Modules Called:

CSFPL - finds VM page.

CSFPG - access as VM pages of TDY.

Operation: CSFMB accesses the ISA for the address of the TDY
header and, using subsequent calls to CSFPG, accesses a program
module dictionary group, computing relocation adjustment and
real core addresses of last PMD in the group. Accessing this
PMD preface again through CSFPG, the PMD body is finally accessed.
If it is determined that any portion of the PMD group may extend
to another VM page, an execute instruction is modified to branch
to a subroutine that checks the VM address in the next instruction.
If it exceeds page boundaries, CSFPG is called to access that VM
page, and the real core addresses and relocation adjustment are
modified. For each control section, CSFMB prints name, sequence
numbers, VM address, separation, and attributes, as well as a
list of all entry points and external references with VM address­
es and separation. A subroutine at Print $ modifies and executes
printer CCW, while routines at taprtn modify tape CCW. Any error
in VM discovered by CSFPG results in appropriate error message.
Normal return is resumption of frasud task or '?' at consoles.

Display Real Core -- CSFDI

Function: CSFDI provides a means of displaying the contents of
real core storage, general and floating point registers, PSWs,
CAWs, and CSWs (Chart DJ).

Entry Point: SYSDIS is the only entry point. Upon entry, GR3
points to input buffer.

Modules Called:

CSFLG - to compute absolute values.

CSFFG - to locate a field.

CSFWK - to write to 1052-7 terminal keyboard.

Exits: If the operand is DISK, DA, STATUS, or PUB, the modules
affiliated with these parameters are fetched. OthenJise, it
exits with an SVC 6 to the command recognition routine.

Operation: CSFDI is invoked by the conunand recognition routine.
When the routine is entered, R3 is pointing to the input buffer.
Parameters are set up, GETFLD is called, and returns with a
pointer in RI to the second field of the DISPLAY conunand. If the
operand is DISK, DA, STATUS, or PUB the modules affiliated with
these parameters are fetched. All other display requests are
processed within SYSDIS. Pointers to the fields to be displayed
are picked up in REGON. The display request forces full-word
alignment.

Display Virtual Memory Processor -- CSFVD

Function: To display virtual memory locations and affiliated
registers and PSWs (Chart BK).

Entry Point: SYSVDS is the entry point to CSFVD. Upon entry,
register 3 contains the address of the parameter input stream.

Modules Included:

CSFPL - get a physical memory address from a given virtual
memory address.

CSFPG - obtain location of virtual memory page and insure
that it is in core.

CSFFG - obtain parameter of input stream.

CSFLG - convert EBDIC characters in hexadecimal notation.

CSFWK print error messages and co'mplete message.

Exit: Exit is to CRR via an SVC 6. A DONE message is printed
out on the 1052-7 upon completion of display.

Operation: The third field is obtain via a BALR to CSFFG. Upon
returning, the type display requested is determined from the con­
tents of the field (registers, PSWs, core). The from and to add­
resses are determined from the input stream, and any necessary
conversions are made via a BALR to CSFLG. The area of interest
is printed out, and an SVC 6 is issued.

Set Control Function Status -- CSFSE

Function: The SET conunand activ2tes or deactivates control
functions related to STS/TSS operations.

39

40

Its function is to pause virtual memory execution (Chart BL).

Entry Point: SYSSTT is the only entry point. SYSSTT is enter­
ed with R3 pointing to the input buffer.

Modules Called:

CSFGF - finds a particular field in parameter list.

CSFWK - writes messages on 1052-7.

Exits:

1. with a fetch to the routine requested by the operator.

2. With an SVC 6 upon error detection in the parameter
list of the SET command.

Operation: CSFSE is invoked by the command recognition routine.
Upon entry, R3 is pointing to the input buffer. CSFGF is called
and returns with a pointer in Rl to the second field of the SET
command. The second field is examined, and when a match is found
the appropriate routine is fetched to analyze the remaining par­
ameters of the SET command.

If no match is found, or the second parameter is missing, the
operator will be made aware of the error via a message on the
1052-7 terminal. Control will be given to the operator, so that
he may reenter the SET command.

Set Pause Bit Processor CSFSP

Function: This command is used to set the pause mechanism in the
TSI for a particular task on or off (Chart B~1).

Entry Point: SYSPAU is the only entry point. At input general
register 3 is pointing to the 1052 terminal message buffer.

Modules Called:

CSFRK - reads messages from the 1052-7.

CSFWK - writes messages on the 1052-7.

CSFGF - finds a particular field in the parameter
list.

CSFGL - computes absolute core location of specified
field.

Exits: With an SVC 6 whether or not the operation is success­
ful.

Operation: CSFSP is invoked by the SE'l' command. Upon entry,
R3 is pointing to the input buffer.

CSFGF examines the third field for the ON or OFF condition.
If the third field is missing, the user is asked via a message
on the 1052-7 console, to specify ON or OFF.

The user is asked to identify the task with either the task­
id, conversational user-id, batch user-id, or batch sequence
number. The task-id must be entered as a 4-character number,
the BSN must be entered as a 3-character number. If it is a
user-id it must be preceded by the word BATCh or CONV.

CSFSP scans the active and inactive lists to determine
whether the specified task exists. If the task is not found
in either of these lists, a diagnostic message is issued, and
control returns to the command recognition routine. If the
task does exist, the pause bit in the TSI is set to ON or OFF,
as requested by the user. If the task is in the middle of a
pause, the operator will be notified with a message on the
1052-7 terminal, and control returns to the command recognition
routine. Scanning of the active list is accomplished by pick­
ing up a pointer to the first task in the first word of the
DSECT CHBSYS (systems table). From there on each TSI has a
pointer to the next TSI in the chain until a match is found
or the forward pointer is zero; either case terminates the
scan. If the task is not found in the active scan, CSFSP
uses SYSFIT (a field in CHBSYS) to get a pointer to the first
inactive task and continues in the same way as the inactive
scan.

Pause Subroutine -- CSFPZ

Function: The pause subroutine prints the userid, the deviceid
and taskid of the current user task on SYSLST or SYSLOG. It
additionally resets the task status as it was prior to the exer­
cisor (CSFXR) modification of the task (Chart BN).

Entry Point: Pausel - control is transferred here when phase
CSFPZ is fetched via a FRASU (SVClO) (executed in the task
virtual memory) that was set up by the exercisor.

Normal: SVC 7 - resume user task (in automatic mode) .

SVC 6 - '?' enter CRR (in manual mode).

41

42

Error: None

Modules Called:

CSFGL - obtains address CEAL2.

CEAL2 - releases supervisor core allocated area; PAUSE is
invoked via a FRASU that is set up by the exercisor
at entry point EXER2.

Operation: After obtaining TSI and XTSI addressability, CSFPZ
obtains the system PSW (SVC9) to save the current system mask.

Interrupts are disabled, using an SSM, and pointers are set
to the old PSW and the registers saved in either the XTSI (if
TSS interrupt) or in the STS save area. The old PSW instruct­
ion counter is bumped back to the SVC, which is modified in
real core to reflect the true instruction that was saved in
user register 0 by the exercisor. The address of supervisor
core allocated area (previously obtained by CSFXR) is obtained
from user register I and used to restore user registers 0, 1, 14,
and 15. CSFGL is called to obtain the address of the super­
visor core release routine (CEAL2), and CEAL2 is called to re­
lease the supervisor core allocated area (64 bytes). Inter­
rupts are enabled using the saved current system mask, and
the pause set bit is turned off in the TSI to indicate that
a pause has been completed. The pause bit, used to indicate
that a pause is desired for this task, is reset.

The taskid and userid are translated and printed on SYSLST
if in automatic mode, or on SYSLOG if in manual mode. If the
task is in automatic mode, an SVC 7 resumes the user; if in
manual mode, an SVC 6 ('?') returns control to CSFCD.

Patch, Dump, Display Disk -- CSFDI/CSFD2

Function: This routine provides the STS user with the capabil­
ity to patch, dump, and display direct access service contents.
(Chart DO and BP).

Entry Point: SYSDKO is the entry point to CSFDI, and SYSDKI
the entry point for CSFD2. Upon entry, R3 is pointing to the
input buffer.

Modules Called:

CSFGF - to locate a field.

CSFGL - to compute absolute values.

CSFWK - to write on terminal,

CSFRK - to read from terminal~

Exit: When an EOB is sensed and the input stream has been
processed, the routine exits with an SVC 6 to the command
recognition routine.

Operation: Phase I (CSFDI) provides co~munication between
Phase I and Phase II (CSFD2) and preserves all information
prepared by Phase I and used by Phase II.

This routine is invoked by standard dump, display, or
patch commands, upon encountering either DUM DA, DIS DA,
OR PAT DA. CSFDI is fetched to perform the desired operat­
ion. CSFDI will respond on the terminal with one of the
following messages:

UNIT CYL TRK REC FROM TO FORMAT

UNIT CYL TRK REC AT FORMAT TEXT

The first message is for dumping or displaying; the second
one for patching.

Upon return from CSFWK, a switch is set to bypass the print­
ing of this message when CSFDI is refetched at the end of CSFD2.
The user enters the desired values for each field.

Each of these fields is sent to CSFGL. Upon return, the
cylinder, track, and record are validated to ascertain that
they are all in the ranges of the device. Once that is assur­
ed, a decision is made whether this was .~ dump, display, or
patch request; then the appropriate CCWs are constructed.

If it is a display request, the area requested is display­
ed on the terminal.

If it is a dump request, the dump is sent to the printer,
in the format specified in the request. There are two formats
for displaying or dump; the characters C or D for characters,
X or a blank for hexadecimal.

If it is a patch request, the operator types in the patch
as soon as the proceed light on the 1052-7 comes on.

When the requested operation is completed, CSFDI is refetch­
ed. The test bit, previously set, directs the flow of execut­
ion to rereading the input message. If an EOB is found, control
returns to the command recognition routine; otherwise, it waits
for another input message.

43

44

Abridged Table Dump -- CSFAT

Function: The function of CSFAT is to output to SYSOOl inform­
ation about the current active task in an easily readable format
(Chart BQ).

Entry Point: SYSATD is the sale entry point in CSFAT. CSFAT
is fetched by CSFDU when the user enters DUM ATD.

Modules Called:

CSFGL - used to get the core locations of tables used by
CSFAT (i.e., CHBSCN).

CSFWK - used to write diagnostic messages to the 1052-7
terminal.

Exits: CSFAT exits by issuing an SVC 6 to invoke CSFCD.

Operation: CSFAT operates by means of a series of BALS to
internal subroutines. CSFAT initially determines whether
SYSOOl is assigned to a tape or printer and sets switches to
perform the required I/O. If SYSOOI is a tape, the output
is in 133-byte records, the first of which is a machine con­
trol character for the printer. After printing a header,
CSFAT scans the TSI and outputs the pertinent flags that
are on {i.e., conv., in the wall, etc.}.

If the XTSI for the current active task in in
current PSW, interrupt code, general registers,
registers are taken from the XTSI and printed.
skipped if the XTSI is not in core.

core, the
and control
This step is

CSFAT checks the current TSI and XTSI for other pertinent
data (i.e., I/O op pending, pging op pending, current and
last T/S value). Information from the TSI is always printed;
information from the XTSI is printed if the XTSI is in core.
If not, the entry is followed by the XTSI-out message (i.e.,
CURNT T/S VAL - XTSI OUT).

CSFAT uses the segment table to print out the page locat­
ions in real core and whether they are available. At the
side of this page table a task interrupts pending table is
printed. This table indicates whether any I/O, timer, async,
external, program or SVC interrupts are pending. If any are
pending, the number of such interrupts is printed, with a
pointer to the first GQE for the specific type of interrupt.

Those entries in the core block table having the same
userid as the current active task are marked user owned
(X'BC') and have their block numbers, segment numbers and
page numbers printed.

Finally, CSFAT dumps the scan table. The device number
and the first and last GQE for each device is noted.

PSA Access Routine -- CSFPF

Function: Locate the prefix storage area (PSA) for the CPU
requested (Chart BR).

Entry Point: Entry point -to CSFPF is GETPFA. On entry
general register 1 contains CPU# whose PSA it desires.

Exit: Return is made via a BRl4, also passing as return
codes:

GR 0 Low-Order­
Byte Contents Meaning

X'OO' - GRl contains address of requested prefix area.

X'Ol' - GRl contains 0 since no CPU status table exists.

X'02' - GRl contains FFFFFFFF, since GRl contained an
invalid CPU number.

X'04' - GRl contains FFFFFFFF, since CPU is not available
in this installation.

X'08' - GRl contains prefix address, but CPU is not
available due to malfunction.

X'lO' - GRl contains FFFFFFFF, since CPU is partitioned
out of TSS domain.

X'20' - GRl contains FFFFFFFF, since CPU is not entered
in status table.

X'40' - GRl contains FFFFFFFF, since status table indicates
neither prefix area is active.

Modules Called: None

Operation: It is determined whether CPUl or CPU2's PSA is re­
quested. The corresponding ID is searched for in the CST (CPU
status table) until a match is obtained, then the address of the
active PSA (i.e., the prime or alternate) is placed into register
I, and an appropriate return code is placed in register O.

45

APPENDIX A: Flowcharts

The charts in this section are identified in alphabetic sequence
and appear in the same order in which they are discussed in
the text.

Chart AA. Supervisor - Initialization (CSFSU) (Part 1 of 5)

::r:;...1\.l..~\. ...
~\"\

• "!>'i"
~'''$\ 6~e ..)

o
'J: ~1'f'''j"I .. e'

R ... ~\ .. '11£.1\.S

47

Chart AB. Supervisor-Program Interrupt

48

~ ..

Chart AC. Supervisor-Extrnl. Inter. Proc. (CSFSU) (Part 3 of 5)

1- - - - - --I
1 ONLY -IIMEr 1
I tni) ("\'1 n"·,'I,,a1

1 T"TEf_KtJP T 5 I

L ~.~ ~fJ=·.~ _ J

'1/.-1(;,:{

Ip.j'-r-t: ~'.I~": /------">l

i<f 5~~.:?E­
M"o.:H'N~ $"1AV;'')

rli' ~~ .,..,-,
: OJ'1' e:-..R u .. ' r

ti'·l,.~rJ

--~

49

Chart AD. Supervisor-I/O Inter. Proe. (CSFSU) (Part 4 of 5)

50

j...OG:INTI~1
11" SoTS
rj\!)~f.~"\lt>T
~.

s.£T"'P f"
1'1\ ~10
J:'I\lT-.l..t"I'T
"'TIl ;::..nQ.wuP"r
S.T~L'l.

lal~'" TO
s;J~I.II.U"
srltt; I(6/1.

~--------.-•• ---. __ ·_,_,,_··_· __________ .. _____________ ·_·_·c .. ··_~_.-.---.--••. ,.~.-

, ~
! ,

Chart AE. Supervisor-SVC Inter. Proc. (CSFSU) (Part 5 of 5)

IS
0

C.:rllfC.\<..
~T.s ... ,,'­
"A1!.l-iS

\S
s.vc.

de.~\,,~ \'"
,..we./

<'

~ /
//~'lS
u!.£t

/'

'It!>

()

-----------------------_.

.>-~~o __ ~~~~.!~~-~
IN ·

.- .,_.----./

D1

51

Chart AF. Stand Alone Dump (CSFSA)

52

c

I :SAVE ALI-
~c-r.. c ~-.'- <. r " ~ _ -'- -._

! &(-:, f"~ ·~F

i

\ -,':'1'<"' J tl't
\, r-u ~ .'

\:';~

~\ r 'n"'; o·)

\ ,",,----,/ ',' I

,i,.

\ fj:.,~';'-/
\
\ CLo::' 'N<~...,..

\ tv1SG-
\c.-,---'

L _. __ .,._ .. ,

T

!

____ """" _ "' 11:11 ... "',. _.l '"' __ _._._I._~ ___ " ££0 , _______ •• _'" -_,....._ ... "' __ ,_~~ •• "....""'_,..,,_ ""'_,~. <f,!~""--~'

Chart AG. Command Recognition Routine (CSFCD)

.1"""""'.

o It,.,., .tJ
F'Rs"" "\"~"f

(:.-1\-1\ R ... c.-r E FU

i'I'-TCKM'Nf=

1"'.lr'0

UiA.D~

53

-------_._--._. __ ._----------------_. __ ._ _ ... _---------

Chart AH. Pool Routines

54

o&7A.N 'ftiE
SYSG-Tt flfLD
of T"HE I\EGor:
AI'I £: A AS "POII-,f""

oB,AJN THE
SyS £.DL F,.tY

.-
eolIT.AJ"" nle
SVSf<VK "frHP
of ,HE flfGot>1
Atl.£A MI'cIAJ'ftI,

J'I1""';' "11)
-mAT ""YN.E:".,
(<-SF I<"-)

08TA IN "T"~~
SY$WI,(3 CiS_"-:

Chart AI. Edit Routine (CSFEM)

ANALYZe 4-
\)1."1"I.".UI"'''1<

CtlMl ... c·tER.~
<:>olE SY o"'E

,..AkE
N[('~ <;6~ I>.. 'f

~l\I'I~G." S.

~1S'l Aq: Atj..

Ilzel. 1M. TlfR5

"'ltTn)("5'

Tltttlll:n.fl ~
.ow £IC.. ("1\!lE
LErre,...s 'n)

,-"Pcp. <-Alii:

f..---.- - r
: f'AssL I
I SC~"H'Ncr

I .--

--1
I - - - ---,
I fAs:s 2-

I ScANN IN G- I
I I

• L _____ .J

,------.-----------~-------.-.----------

55

C1lart AI. GEl' Message SUbroutine (CSF:ro)

56

01E:1""1J

Pf't~M""~:,
C'ouJ'rJ1"" t:
@MB~"'C ...

s""*", f"<>r<
Srf£<'F't])
r:-,~ '-!)

Yf:S

1JE'1't~""I:;
U'N!',-<ri ,,"
r,r,t..D ~!)

(!? OF ,'G l.v

''-Ac:'tj "C:-.J'-~;J"

,,' 6-11 I .,-.!.
(,(<f

k'f'~'t'(("-',l~~ f '{

-- ------_._._------------_._ ... __ ._._.,._ _------.---

f'
j

,!4I)<fE PIISSIfO

PAfl.A"'E1'c/l.S

14ITI> S «E'Elt>'"
CcWS

ISsu!!" S"fC

""' E)(E~U1t
'rilE 'REAP'
"HAt.lNE~ f,.it~

tfM"& "51',,"
U''I THE
AlESSA4!!

ElIE<vTI; A
cHANNEl ~
"filA PuTS our
A'$' T"C> sY"",o6-

/'1 0Jt'E l' A s.5 \; 1>
PAAA~E!ftR< Ir'nJ

fol(ELt t»N "ct.Y5

E1.£C"T(THE'
'w/tIT"&'Ctt
1'rt,)I!>_,

57

Chart AL. GE.r Absolute Cl:lre I.ocation (CSFIG)

58

1) l!: 1"'CI'I •• ., Nt:;

rvfE o~
90 ~ tcA~aM""

c.oN"~"1" T'D

\!!of ",.All" IF
DISPLACE"MErlT
t.s f'I't-OVI DF"1>

cH{"u< 1 F
f,N)\1.. ~L"r'

\.5 -'III L.,g \cOlt
CoRe ":A"~E

!> c A-IJ 31M 80C.

TtlE' "

.:5tT cR(ioP..
fi:~"T'Tjf"f.J 0rE

YES
LD""I"HT"n I
RI"Id .. l o(~'f(""'i

',A LV!:"

~ .L")!5~Ac'~-!_tf(r

VAt.- u 6- 'f.,
f.;' r:~."'-:;'p.';""1

'I'
I
!

Cbart JIM. Test Validity of Address (CSFAD)

>fr '-l"\.\~
I<-i yVlt..v
(.Co£ l.o)

59

--_._-----_._-. ·--___ .., """_441 ___ _____ · __ ~'· _________ '_'r.~ __ ----'.-.~-----~~ _____ _

Chart AN. lIssign Device hXIress (CSFAS)

NO

fIeND" >-_N_O ____ ---.. ...
?

-~ - --- " "-"~
oe-rA'r·' P~Vf<f" i
~1lf>R. J TV?''', ~ i
MOllE - fltOM ",,JPv1i

S,IQ'EA /IINJ;) h\6tl:

L ''''111 PA '-'ST!

=-=r~= csPAtJ !

RE6't ~1"IfA 1-4 :
C.O",""ltlJ\t$ ''''&l~~

T
~" ~~fo/"'£"""

.~------' ..s...c.c.c»,. ... H.':-
7

\

60

"-~.------------------..... -.-.--.-. -

T
i

Chart JID. Assign Device Address SWr. (CSFAN)

• i 8

S£.T "'01 ",7S..,
To)(voe
""ClL'TIO,v oC

~ .. "IC'~

, ,
~~,..,1 {£ ,:r.:il-;;
1\'" """'I\., S'I:.\
I '" p -rt'f'C!) ~,,~<!
,O£Ult.€

:I'
("R£~"~'V
\<~N ("I':Q...

61

Chart AP. Display Pt:b. lbutine (CSFPB)

62

oB,,,,,,, (-\1>,,0(

.,. Y1'f I /"'-I>!>E 'f
U>"'IIFP.~ Tc- !«----'-"-----c.
t"R I N'At!L€

'"0' X

e.j3T"'~ ftQI)lt .
..,r PuS
Tl'WLE

/VI 01/(; "Tl>

rJCY<'--tJ~"1

:5>EAAq' P<>e
yEs 'f/i:u: FoR

fA~,.t(... I.jL'f::.

';?N"'PY

'1,
i

.!N1,-tALIZE

ern- 1\ 8sCLU'1E
AWR. fo~
ST7tRrtllltr

Lc",,""'or.¥

/?1!"S'I'1)t!f -rfIe-
N l) forK'! us o~

f\A".-tl,rJF'
rUrOlf~
l>.t'fr~fl.l'P'r

Cllf<"J:::.

L-." """ ",.J

YE'S

63

'Chart AR. LINK (CSFlN)

64

I
L_

L-ClAJ..s~v~'­

"sA f'Ff
AfJD 'F:stl>/ •

--- -1--'~--

",-.. ..

RfSn>#t~
PIIC:VIOUSLY
..sI\1lE.P 1",,'''''''1(,
JofALO&

1<" fL~~"" ,,~ ..
!. i"'!""S ,... PuT
Cot<~ "U.&c.-"!
liTe. ,N ;:.fft/.

IN 'UW·ISA.\'I-\

1l>l!.o.t
'rAu.s($1::1" ",'I'
.,N

65

._--------------------_.

Chart AT. Virtual Mem.:>ry Processor (CSPVM)

66

CA<",,,'A'IG
Ttl.. LO(,.r'ol<l
of -rtf~ L f'lr{V~€n;:II. L,.IS"T"'

1:> ~"-£"""III(:.

.,.-y l' E Of' OII~\" 1-----1
"'<0 A ~ t .. llr;
0 "'I"M

o,g-rA,t,v t rfiolot'

:t'TO' "'01)1<',1-____ -\
~t',,,"~ t"A1<N\
L! ~,-

'S)l:'~"f.'.!_E'

'r'ff'f- oF
MES$"GOli.

NI>

'I
i

Clart AV. F'lR> Page (CSFEP)

"'-1il'CK 5~c.,..

PM"" ~
LE 11I foR
e-RR"R~

D~-reN-ttNE:

IF PAGrt;.

l' S~~"'{.D

rUD"'~ .on.
fi'ol'l:'\!..

[/.>11'/.1

67

--

Chart AV. Convert A Syn'OOlic VM .l\ddr. (CSF'ID)

68

'--'~.----"-. -------

lOWTjO.Y -r"
c..sFTD

eS"lA It" fl\5SfJ>
PARAi"lEHP.S '.
LEN/i-rH ;lN~

LocAilotJ of
,y,R IN&-

<'t>N>J.EI("" -rtfE
t'A$SC]J ~'11"

IN AC"NH It'"

"'-AC/i "(500'"
IN <0-1'1. I

RHIJRN

n.
!

I

locate VII Page (CSFPL)

CNe'C1<
(;l>IJ/)lno,", 7"

1l! SIC S17l~<.I~

CHFcf< PA4t

~leS. F'o~
¥A.~ Sf'(r.;,<

Cf>-tc II L"''"IE

~f'A1. COr! f
AbJlic s~

Pf.6", I'-'t>
t..L'~-J"'rr? ,,,/

"I~:"
PltSs ~ "11"' gp"t­
P~6tr: "r.lI-<:LE
e'"",,:y '""''':1>
!AJ».<"A '1F f,<4E
f.vk'f t-i"f'1!.p' L

~E'I"'

f?~ (' ... £
c O~£

69

.------~----------------

Olart AX. Get: VM Page (CSFPG)

I'
I
i

70

-----~.---'----- ~ ------- '- --- --

,
Omrt AY. Buffered Page GEl' (CSPm»

LO Cfl'Te

PAGE MU)
t>~THi
£ RR ~

PIIGE;
IN cOR& 01'\
E)l.T£IHJ~L

LocATE IiNj)

D!;iE~MIIJE

IlEVIC£ TYPE

SET uF
POIIJTE'/>. T"o

euHfR t
C.ClIJ

---------.-----------------------------.--~-.-.~-.----.------

71

Chart AZ. DUMP Block (CSFDB)

J2

ilt'Tf:/I..", 'Ni2-
i\1-JI- 5E'""

1'1'11 Grc Pol'_
4rM

IN IT IIlL 11./0:

H 10,\1> FIt, «lUi
t:~v.,"!'" c:TC. ~

Chart BA. Patch Real Q:xre Processor (CSFPA)

/1oflANcll 'TO
RooT,ME. ,I",A"'"
se-r-s <It iYt't
of' fOil Tell
SPt:clr,Eb

[7:::0:
@ I

ft 1 elf

c 5FCj) /

-----------.---------------------

73

Chart BB. Patch Virtual MeI1my Proc. (CSPVP)

74

PE'TE'I'I ,s
~HtA-r ,ro
1'" !Sy
PA'T'-!I&. P

R£Sn.R.
57l\TUS
Of rA~11

L
H r: '" '..;; ItJ(-;r

75

<llart BO. DEIZl'E (CSFDE)

76

t> E"!1;1< M 'AJ E­
Type
D'CL';"f e-

OBT,.,.,1\1 At<>R.
o P :t>l>Q. f­
eM (' Tl\1S\.£
FoR Re~,J

U> 1iH.J MI\"'~ I
l~ _ ... ,JD

brl~-rt ~,r.fJ1
At.J~ f'L"I"!"P.. T];r:
l.,?,..n.y ':ttt.nJi

Qlart BE. ~ OUt Pmoessor {CSPOO}

10"'"t>

£0 f~rK

VES

77

------ -------_ .. _-.--._--------

Olart SF. Dmp Cl:mnard lbutine (CSFDU)

78

TfOt/t1o.l.:>ft:'R
1 mF-RP,<..,)P'! L ~
r(>OM A:ltVl<S"-~j)
~A- t"-l t1:W"'N!
"t1<~l:.I~ Af',c~

1!-D'-1 PuTC
<!.t> ~I£ ',:;
UFfE-lt
!.. t I-~ I"":"",,

.1:'" tTl,. t/ Y..E
Ii~A.bI/<J G-

CTr.,- 'fll",,'
AN D "'TO;'

A.x>J:1I U.s

YES

Olart ro. Ntmaric Syl!ix>l sort Proc. (CSFSS)

OI!·TMN @
of PC-I :t.
Sl''''If,oL (ouuT"

Lo<-J'o n;
Sr~·"'T' 01="
~I.'"

f\.!ovr:: 0>vNT i

J\~j) 3>1<. f
!NT'!:> lIe,H)~(

SCh>J 'YMAoI.6
po It l-OWt:sT ,,,
/k>pll. ... tf1'
!+j\S N''''' 6 H·,}
t'A, .. rtD .. u-

.....

79

Chart w. Virtual MaIory DtIIp (CSFW)

80

~C;SOI.'>I~

'FRoM' t
• TO • ,4 J)j)1'l. •

Olart 81. DImp \1M Map (cmm)

! GET iO"Y
\-IE.:j\OE-R

i (,)\) rsf\)

~"".~'lQ.

).----~ "''\'::' Gr
\
L~._/

81

Olart BJ. Display ~ Cl:>re (CSPDI)

82

.»«1 e-R" ,,., e
T'lFE ,,1=
D'~'f'L"''t
Jl~"C5""'EJ) By
USE'"

Ul~

D L'5Y<' op

'><fM
"

ND

P"RJ\1..Ic~ To
to>u"t~5- TO
,:;,,-.,.- <J1' Fo,",­
TYPr .~ l>15PlA'
!> f".i.Ct ~ t S'l)

Ft;17(,
C:;'F 'ofP ("'/~'l
,,~ C.:.t'D!1 /
:: D:r'S i<)~/

1· ,

T
i

am:t BIt. Display Virtual Menmy Proc. (CSFYD)

Df'lEII1:Mflot£

'lY1'£ oF'
>.rJp, bJS'f"JY

O6TA3: ... ' l=i<w'
~" ''-0' AttN

~:l" .• ,.,S
NEce}SAl't.

83

Chart BL. Set Control Function Status (CSFSE)

84

bart 1M. Set Pause Bit Pmoessor (CSI!'SP)

&€-r TliH!:.

r·:= ~?

i
/~

1<[(\(<1(\"

01'-'1'
'7

y(s ... nH~fJ 50 \ --r (' P.

\ ~ ,:. -;-:-;-:~;
~'1.::...r..;:s __ ---\\ • "" '"! I

,'d. ,,~ ,::~l',.~.,~// \ t-:- 7" -' /r----r
-------/ r ~D

r -"-,, i)-'\"<~-

"------------------ ~,~;, i' ':'-------------
r '---',

j ' II\.:-r __ j ~ J.I '\
TO '>

85

Chart lfi. Pause (CSFPZ)

CSF'Pc

INITIALIZe'

A-NJ)

1+ouSl (~p,., (f'

6-I"r
/-O(.AnON

C-e'<SlFuC',

-nJ"
PA".:> f' fI"IS(i

.~¥-..

'I'

\ P""/ ,MJet

t;:"KII
TO

86

----,------------,-------- ------------------- ---,--

Olart 00. IQIp/Display/Patch Disk (csml)

'TE:".rr
c.....o,. ... · (_- .. -,..J!) j

.:st.
~PPI\O~11'\ T'E

f-.l- !:-," ,..(":--:

(0.
\

t' t':cx~t.-: <'.

R8h',

L

A \4'«)Ii ...

87

t; ...

(])art BP. DImp/Ilisplay/Patch Disk (csm2)

c. 'SFJ.>L

I
RESc>L¥f;

-reST"

COMMANP

Locl\"-E

A"'J> O&.,4f t-l

RE" CbR.I>

r----...

l',,-oc-E5~

Iic-r& R!>
P;r:,t>o":YJ.1(,.
"T1) (.~t~;4~(',h_:;

/:;;:::)
\ !

88

Chart BO. Abridged Table IUJp (CSFAT)

yes

<'-11<<:1'. TSr t
;C'lS:r. foR

"rll"fI"'~"'1' I
l>P'I,\ ----.l

t><>

l e

\ '\¥!II"'-:>"~ /

/------4 5c /d-> ~ ____ _

\ Tf> t . ~ \ .. I
'----~.

1':1\'-:­
n

,(.~ f\.

\

89

Chart DR. PSA J\coess lbutine (CSFPF)

90

II.
I< e-llhJ/2$"'"

"fJ.('L>

M Pc'rc If
IDC',.rl:'!

/3y7E

b E.,r::~l!'! ItJ f
.s"",,-ru~ or
cpu

DI3TIlIN h:l
.sAvE j'1l>b~ !
of PRo>PGR
e/!E:/OIY

No

,~---,,---------------------------.. ,-------

" , ,

APPENDIX B: IAYour OF STS PHASES

This appendix depicts a mapped layout of the phases crnprised by STS.
A phase is a collection of object nodules which have been link-edited
together in core-image form with one primary entry point defined. Phases
are nonnally loaded into core via the Fetch mechanism.

Phase SYSVMP

• (CSFPG)

Phase SYSDKl-SYSDK2

'" (CSFWK)
..

(CSFGF)

(CSFVM)

1

(CSFD1~D2)
I
I

~
(CSFGL)

+
(CSFPL)

+
(CSFFP)

~
(CSFRK)

+
(CSFED)

91

Phase SYSASN

ir
(CSFAN)

Phase SYSA'ID

~
(CSFGL)

Phase SYSTRI'

~
(CSFKR)

~
(CSFE7'1)

Phase SYSDEL

92

~
(CSFGF)

• (CSFGF)
l

(CSFFB)

(CSFAT)

I
~

t
(CSFWK)

(CSFCD)

" ...
(CSFFG)

(CSFDE)

I
I ..
~

(CSFGL)

~
(CSFWK)

i
(CSFED)

t
(CSFGF)

• (CSFIL;)

• (CSFWK)

Phase SYSDIS

* (CSFGL)

Phase SYSDSV

Phase SYSDlM

!
(CSFOO)

~
(CSRili)

i
(CSFGF)

(CSFDS)

(CSFDU)

1

• (CSFWK)

~
(CSFGF)

~ , ~
(CSFWK) (~F) (CSF~)

93

Phase LINK

Phase SYSPVM

.­
(CSFPG)

Phase SYSPAT

r
(CSFAD)

Phase SYSPUB

94

.r-­
(CSFWK)

(CSFLN)

(CSFMB)

1

(CSFPA)

1

~
(CSFPL)

+
(CSFFP}

I • ~ t t
(CSFPF) (CSFGL) (CSFGF) (CSFWK) (CSFED)

(CSFPB)

I
~

(CSFGF)

Phase PAUSE

Phase SYSREX::

Phase SYSRUN

• (CSFWK)

Phase SYSSAD

• (CSFGL)

(CSFPZ)

l
(CSFGL)

(CSFRE)

(CSFRU)

~
• (CSFSW)

(CSFSA)

95

Phase SYSCPU

+
(CSFGF)

Phase SYSSET

~
(CSFGF)

Phase SYSPAU

.­
(CSFRK)

~
(CSFED)

Phase SYSNSS

96

~
(CSFWK)

~
(CSEWK)

(CSFSP)

1

(CSFSS)

L
(CSFED)

..
(CSFGF)

+
(CSFSW)

• (CSFWK)

+
(CSFGL)

Phase SYSTAT

~
(CSFWK)

Phase SYSTRA

r
(CSFRK)

+ (CSFED)

Phase SYSVDS

~
(CSFPL)

~
(CSFFP)

• (CSFGF)

+
(CSFGL)

(CSFVD)

I ,
+

(CSFPG)

+
(CSFPF)

* (CSFWK)

..
(CSFGL)

+
(CSFGF)

~
(CSFGF)

97

Phase SYSVPT

~
(CSFPG)

Phase SYSVIM

• (CSFBP)

~
(CSFDB)

Phase SPVR67

98

" (CSFPL) • (CSFFP)

t
(CSFDD)

(CSFVP)

I
~

(CSFSU)

~
(CSFGL)

• (CSF'ID)

..
(CSF'ID)

• (CSFPL)
..

(CSFFP)

Y28-2040-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
jUSA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
r International I

c

-<
~
I

~
a
I

C>

