ORG=RQ1-WENDY GILLESFIE LOC:HVNT ELDG=1510 DEFT=0426 REQUESTOR= PROC NO=000001652162-A05

FIELD ENGINEERING BILL-5117491
ORG LUC BLDG DEPT ADUKESSEE
A78 HVNT 1512 A78 HVNT 1512. 0607 MIKE FREE

EC LEVEL-9604\%7 LOC-H2.AT
REQUESTOK
PAGE 1
machine type-none
TITLE- INDUS TRY SYSTEMS INSECTIUN NO OOO \quad IN:* TALLATION REPGRT
maintenance reference material

noine						
PARTS AND ASSEMbLIES						
CHECK	part number	Quantity	U/ii	natie	UESCRIPTION	referemce/ec
	5116787	. 1	1	BAG	10×14	
	5117493	1		letter	CE InSTN.	
	5117494	1	1	InREP	INST.REPORT	
	5117495	1	1	envelope	Eivelope (0024)	
COMMEN	- NONE					
*** LAST PAGE ***						

table of contents

000000						REPORT DATE 20JUN79		
VoL BD M/T 36	01 A SER	IAL 5	054041			COL 26 SHIP	28	
LOGIC NUMBER	DESCRIPT	ION				PART NUMBER	EC Number	Feature bm
SLT BOARDS OLAAI	CUSTMZ BD	MODS	2A2B3A30	STGE	2	0006813046	000747306	0004946036

table of contents

REPORT NUMBER 000000
REPORT DATE 20 JUN79

VOL RS M/T 3601 A SERIAL 57054041
LOGIC NUMBER DESCRIPTION
REFERENCE DATA
128
140 SHIP GRP BM (CPP S.GUIDE)
300 INSTALLATION REPORT BM
305 CE INSTR FORM IN FIVE LANGUAGE 310 INSTALLATION REPORT SHEET
315 WINDOW ENVELOPE
320
polythene bag
$\operatorname{COL} 26$ SHIP 26
PART NUMEER EC NUMEER FEATURE BM
00017474870007459490004406053 $1001852162000745961 \quad 0091739382$
0005117491000111111
0005117493004111111
0005117494 OTH11111
0005117495000111111
009511678700011111

table of contents

REPORT NUMBER 000000 VOL 61 M/T 3601 A SERIAL 57054041

LOGIC NUMEER DESCRIPTION
REFERENCE DATA
PRD O1 OPS GUIDE PRD 22 I MANUAL

REPORT DATE 20JUW79

COL 26 SHIP 28
PART NUMBER EC WUMBER FEATURE EM

00016521600007459610001739382 00017474880007459490004406053

table of Contents

REPORT NUMBER 0000\%O
VOL 999 M/T 3601 A SERIAL 57054041
LOGIC NUMBER DESCRIPTION
MINNOW PROGRAM
O1 23619 SUPPORT DISKETTE

KEPORT DATE $20 J U N 79$
COL 26 SHIP 28
part number ec number feature ba aข01651369 200742979 0001651369 PAGE NO. 0004

IBM

Models 2A, 2B, 3A, 3B, and Models C and D

Models 1A and 1B
Finance Communication Controllers
Maintenance Information

Preface

his manual contains maintenance information neces sary to service the IBM 3601 Models, 2A, 2B, 3A, 3B, and Models C and D Finance Communication Controller and the 3602 Modets 1 A and 1B Finance Communic Controller. It contains the following chapters and appendixes:

- Chapter 1 (Left) :
- Chapter 1 (Right)
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Appendix A
- Appendix B
- Appendix C
- Appendix D

Each chapter has its own Contents table where feasible.

First Edition (April 1978)

This manual, written at EC level 745948 will be subject to change from time to time. Any such Change will be reported in subsequent revisions or Technical Newsletters.
form is provided at the back of this publication for reader's comments. If the form has bein removed, comments may be addressed to: IBM Corporation
Dept. 63T. Neighborhood Road, Kingston, NY 12401
© International Business Machines Corporation 1976, 1977, 1978

Use of the MAPs

The starting point for each call is the error indication index, MAP 1. This index directs the Customer Engineer (CE) to MAPs which will isolate the trouble indicated by the error indication. Each MAP contains step by step procedures to locate the failing part. Where necessary, the MAPs refer to operating procedures and maintenance procedures (check, adjustment, removal, and replacement) located in Chapter , right half.
When the CE gets to a point in the MAPs that indicates "call for aid", the error indications should be checked again before calling for aid. If other error indications are present, the MAPs pointed to by MAP 1 should be used. If no other error indications are present, MAP 2 should be used. This MAP provides a systematic approach to nding error ind dions. Adationally, MAP 2 leafs to use (Rofer to 3.3 for detais on starter diskette operation.) A more etailed description of the maintenance approach is contained in Chapter 2.

Safety Notices

The following DANGER notices are also located in the policable procedures

DANGER

Motor case can get hot.
DANGER
When replacing a $60-\mathrm{Hz}$ drive motor, position two large holes in motor frame (4 on 1.26) to top and under bracket.

DANGER

As the first step in removing and replacing the power supply, disconnect the 3601 power cord from the ac outlet.

CE Safety Practices

All Customer Engineers are expected to take every safety precaution possible and obs

1. You should not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your manager 2. Rou MUST work alone.
. Remove an powerAC and DC when removing or assembling major performing mechanical inspection of power supplies and installing Changes in machine circuitry.
2. Waill box power switch when turned off should be locked or tagged in off position. "Do not Operate" "tass, form 229.1266 , at
when applicable. Pull power supply cord whenever possible.
3. When it is absoluteiy necessary to work on equipment having exposed operating mechanical parts or exposed live electrical circuitry anywhere in the
be followed: be followed:
a. Another
immedi
Rings, wrist watches, chains, bracelets, metal cuff links, shal not be worn.
c. Only insulated pliers and screwdrivers shall be ued
d. Keee one hand in pocket.
e. When Using test instruments be certain controls are set
correctly and proper capacity, insul Avoid contactinoper capacity, insulated probes are used. frames, etc. - use suitable rubber mats purchased locally necessary).
4. Safety Glasses must be worn when
a. Using a hammer to drive pins, riveting, staking, etc.
b. Power hand drilling, reaming
. Power hand drilling, reaming, grinding, etc.
d. Soldering, wire cutting, removing steel bands.
e. Parts cleaning, using solvents, sprays, cleaners, chemicals, etc.
All other conditions that may be hazardous to your eves. REMEMBER, THEY ARE YOUR EYES.
5. Special safety instructions such as handling Cathode Ray Tubes and extreme high voltages, must be followed as outlined
Safety Section of the Maintenance Manuals. 7. Do not use solvents, chemicals, greases or oils that have nopt bee 7. approved by IBM.
6. Avoid us
by IBM.

By Beplace
10. The maximum load to be lifted is that which in the opinion of you and managem ent does not jeopardize your own health or well-bei
or that of other emplovees.

1. All safety devices such as
2. Ahall be restored after maintenance.

Each Custor Feineer is rees on his part renders product unsafe or exposes hazards to custome personnel. 13. Place removed machine co
no one can trip over them
14. All machine covers must be
customer.
5. Always place CE tool kit away from wak trip over it (i.e., under desk or table).
16. Avoid touching mechanical moving parts (i.e., when lubricating,
checking for play, etc.).
17. When using stroboscope -
moving.
18. Avovid. wearing loose clothing that may be caught in machinery.
Shir sleeves must be left buttoned or rolled above the elbow.

Shird sleeves must be left buttoned or rolled above the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferab 9. Ties must te tucked in shir or have a tie clasp ((preferably
nonconductive) approximately 3 inches from end. Tie chains are nonconductive) app.
not recommended.
20. Before starting equipment, make certain fellow CE's and customer
personnel are not in a hazardous position.
21. Maintain good housekeeping in area of machines while performing and after completing maintenance.

Artificial Respiration

General Considerations
y. Seconds Co

Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to loosen clothing 2. Wheck the victim or apply stimulants
2. Check Mouth for oberign objects - Pull

Loosen Clothing Kiens - Pull tongue forwarc
Take care of these items after victim is breathing by himself or when
4. hemaip is available.

After victim revives, be ready to resume respiration if necessary.
Have someone summon medical aid
6. Don't Give Up
Continue without interruption until victim is breathing without help or is certainty dead.
Rescue Breathing for Adults
Clear throat of water, food or foreign mater.
2. Tlitar theoat of water, food, or fore

Lift jaw up to keep tongue out of air passes.
4. Pinch nostrils to prevent air leakage when you blow.
5. Blow until you see chest rise.
5. Blow untii) you see chest rise.
6. Remove your lips and allow lungs to empty.
7.
7. Listen for snoring and gurglings, signs of throat obstruction.

Continue rescue breathing until he breathes for h.

Reprint Courtesy Mine Safety Appliances co.

PUBLICATIONS REFERENCE DRAWING

MACHINE TYPE / MODEL NO. 3601 MODELS AO2,AO3,BO2,BO3,C,D
MACHINE NAME CONTROLLER

FORM NO.	ECNO.	DESCRIPTION / COMMENTS	QUANTITY B/M NO
SY27-2519-0	745948	MAINT. INFO., BASE MANUAL (NOTE回)	1747487
SN31-0864	745949	TNL TO SY27-2519-0	$1 \quad 1747487$
S126-0013-2	745948	PARTS CATALOG (NOTE 目)	$1 \quad 1747487$
			-1 1747487
			-

NOTES,
1 assemble maintenance information manual with binder and spine tab PER ASSEmbly INSTRUCTIONS P/N 1652141
2. INSERT PARTS CATALOG AFTER MAINTENANCE MANUAL, CHAPTER 4

Man					DATE	changeno	DATE	CHANGE NO	
NAME	PUB REF DWG (PRD)			REL	MAR 76	742712	NOV 77	745948	-
3601 CONTROLLER					SEP76	743984	AUG 78	745949	\checkmark
DESIGN	LR	MAR76	SHT I OFI		APR77	745946			\cdots
detail	c^{2}	11/5/4			JUN 77	745947			∞
CHECK			classification	MUST CONFORM TO ENG SPE		DEYELOPMENT NO	LOGIC PG NO		
APPRO	JLM	MAR 76						BB	\pm

Chapter 1. Maintenance Procedures

Contents

Procedure No.	Page
Operations	PR

1.1 Startup (Reset) 1-5R
1.2 Logon/Logoff Procedures for CE. 1.7R
1.3 : Assigning the Component to Be Tested 1-9R
1.4 Assigning a Component to Be the Output Printer 1-10R
1.5 Display/Print Statistic Counters $1-11 R$
1.6 Display/Print Controller Log $1-12 R$
1.7 Loop Error Log Message 1-12R
1.8-1.19 Not Used
Diskette Drive, One Read/Write Head
1.20 Diskette Drive Assembly Removal and Replacement 1-12R
1.21 Latch Assembly Removal and Replacement 1-13R
1.22 Cover Assembly Removal and Replacement 1-13R
1.23 Collet Removal and Replacement 1-13R
1.24 Track Indicator Adjustment 1-14R
1.25 Drive Motor Removal 1-15R
1.26 Drive Motor Replacement 1-15R
1.27 Belt Tracking Adjustment 1-15R
1.28 Idler Assembly Removal and Replacement 1-16R
1.29 Hub Assembly Removal and Replacement 1-16R
1.30 \quad Drive Pulley Removal 1-16R
1.31 Drive Pulley Replacement 1-16R
1.32 Pressure Pad Actuator Removal and Replacement 1-17R
1.33 Pressure Pad Actuator Adjustment 1-17R
1.34 Leadscrew and Head Carriage Assembly Removal 1-18R
1.35 Leadscrew and Head Carriage Assembly Replacement 1-18R
1.36 Read/Write Head Adjustment 1-20R
1.37 Head and Pressure Pad Cleaning 1-20R
1.38 Leadscrew Wheel Removal and Replacement 1-21R
1.39 Not Used1-22R
1.41 Upper Limit Stop Adjustment 1-22R
1.42 Stepper Motor Removal and Replacement 1-24R
1.43 Stepper Mo. or Adjustment 1-24R
1.44 Phototransistor Service Check 1-26R
1.45 Phototransistor Adjustment 1-26R
1.46 Phototransistor Removal and Replacement 1-26R
1.47 Light Emitting Diode (LED) Service Check 1-28R
1.48 LED Removal and Replacement 1-28R
1.49 Diskette Drive Control Card Pin Assignment 1-29R
1.50 Diskette Drive Control Card Removal and Replacement 1-30R
1.51 Diskette Drive Control Card Test Points 1-30R
1.52-1.59 Not Used
Diskette Drive, Two Read/Write Heads
1.60 Diskette Drive Assembly Removal and Replacement 1-32R
1.61 Latch Assembly Removal and Replacement 1-33R
1.62 Cover Assembly Removal and Replacement 1-33R
1.63 Collet Removal and Replacement 1-33R
1.64 Head/Carriage Fosition Service Check and Adjustment 1-34RHead/Carriage Assembly Removal1 -38R

Contents (Cont)

Procedure No. Page
1.66 Head/Carriage Assembly Replacement 1-38R
1.67 - Head Load Solenoid/Bail Assembly Service Check and Adjustment 1-40R
1.68 Head Load Solenoid/Bail Assembly Removal and Replacement 1-44R
1.69 Drive Belt Service Check and Adjustment 1-46R
1.70 Drive Motor Removal 1-46R
1.71 Drive Motor Replacement 1-46R
1.72 Drive Pulley Removal 1-46R
1.73 Drive Pulley Replacement 1-46R
1.74 Idier Assembly Removal and Replacement 1-46R
1.75 Stepper Motor Removal 1-48R
1.76 Stepper Motor Replacement 1-48R
1.77 Pulley/Clamp Removal 1-50R
1.78 Pulley/Clamp Replacement 1 -50R
1.79 Wiper Replacement 1-50R
1.80 Drive Band Service Check and Adjustment 1-52R
1.81 Drive Band Removal 1-54R
1.82 Drive Band Replacement 1-54R
1.83 Stepper Drive Idler Assembly Removal 1-56R
1.84 Stepper Drive Idler Assembly Replacement 1-56R
1.85 LED/PTX Alignment 1-57R
1.86 LED Service Check 1-57R
1.87 PTX/Amplifier Service Check 1-57R
1.88 LED Removal 1-58R
1.89 LED Replacement 1-58R
1.90 PTX Removal 1-58R
1.91 PTX Replacement 1-58R
1.92 Diskette Drive Control Card Pin Assignments 1-60R
1.93 Diskette Drive Control Card Removal and Replacement 1-61R
1.94 Diskette Drive Control Card Test Points 1-61R
1.95 Index Test Point 1-63R
1.96-1.99 Not Used
Disk
1.100 Disk Enclosure (DE) Removal 1-64R
1.101 Disk Enclosure (DE) Replacement 1-66R
1.102 Disk Motor Removal 1-68R
1.103 Disk Motor Replacement 1-68R
1.104 Motor Brake Service Check 1-70R
1.105 Motor Brake Adjustment 1-70R
1.106 Motor Brake Assembly Removal 1-72R
1.107 Motor Brake Assembly Replacement 1-72R
1.108 Speed-sensing Transducer Service Check 1-74R
1.109 Speed-sensing Transducer Adjustment 1-74R
1.110 Anti-static Brush Service Check 1-74R
1.111 Disk Storage Card Jumpers 1-76R
1.112 DE Cables 1-77R
1.113 DE Brake Circuit 1-79R
1.114 Disk Storage Diagnostic Run 1-80R
1.115 Disk Storage Error Codes 1-80R1.116-1.119 Not Used

Contents (Cont)

Procedure No.Electrical Devices
1.120 Supply Voltage Test Points 1-95R
1.121 External Modem Wrap Card 1-95R
1.122 External Modem Signal Cable 1-95R
1.123 Transmit Level Adjustment for 1200-bps Integrated Modem 1-96R
1.124 Transmit Level Adjustment for 600 bps Integrated Modem 1-97R
1.125 Receive-level Check for 1200 bps and 600 bps Integrated Modem 1-100R
1.126 Power Supply Removal and Replacement 1-101R
1.127 Logic Board Removal and Replacement 1-101R
1.128 Card Names - Boards where Used (ALL Controllers) 1-102R
1.129 Card Names - Boards where Used (3602 Disk Storage only) 1-105R
1.130 Board Locations 1-107R
1.131 Card Locations 1-108R

Note: The MAPs and the procedures refer to the following 3604 keyboard display terminals: the 3604 at address 1 on loop 1; the control operator's 3604; and the 3604 at which the CE is logged on. With an operating diskette, the 3604 at address 1 on loop 1 may or may not be physically the same 3604 as the control operator's 3604 . With a starter diskette, the 3604 at address 1 on loop 1 is also the control operator's 3604.

1.1 STARTUP (RESET)

The following text (1.1.1, 1.1.2 and 1.1.3) applies to the operating diskette and the starter diskette.

1.1.1 Startup (Reset) Sequence

The startup sequence is as follows:

1. The CE activates the power switch or the reset switch on the controller.
2. The $\mathbf{3 6 0 4}$ at address 1 on loop 1 displays a series of messages in the upper left corner of the gas panel to indicate the progress of the startup diagnostic tests. (This 3604 may require a power off/on reset.) The first message of this series is IDL (initial diagnostic load) and the final message is DTC (diagnostic test complete). Each message is displayed for a number of seconds and then is replaced by the succeeding one.
3. The control operator's 3604 displays a message on the top two lines of the gas panel. (This message indicates that the configuration image and the application programs have been successfully loaded from the diskette.) The top line contains seven groups of characters. From left to right, the groups give the following infor"mation:
a. The control code supplemental version ID.
b. Diskette identification (Volume ID).
c. Configuration identification.
d. The EC level of the controller data.
e. Control unit (controller) address (CUA). The CUA is used by the host to address this controller.
f. Relocate count (a count of the diskette records moved to the error track because of diskette surface defects). .
g. Session identification. As used here, a session is one or more periods of time that the customer thinks of as one continuous period of time for record keeping.
The second line of the gas panel contains a five-digit message, 00001. This message requests the CE to key and enter one digit to specify the type of start wanted.

The type of start specified by each valid digit is as follows:

0 XX = Load utility, where $70=$ diskette format. *
1 = Cold start.
$2=$ Warm start.
$3=$ Diagnostic loop.
4 = Prompt mode.
5 = Prompt mode for optional operations.
$6 X=$ Describe the 3604 model number, where $X=$ model number.
7 XX = Load link module, where
01 = CCA TAM
$02=$ HPCA TAM
03 = CCA CREDIT LYONNAIS
04 = HPCA CREDIT LYONNAIS
$05=$ BSC
8 = Cold start with no start link issued.
$9=$ Warm start with no start link issued.
*Starter diskette only.
Note: Use the Universal Translate Table keyboard locations when entering the required digit. See keyboard chart in 1.2.
Special Note: When using an operating diskette, never specify a cold start (digit 1 or digit 8) unless the customer allows you to do so.
4. The CE keys and enters the correct digit. If 1, 2, 8, or 9 are entered, go to step 5 in this sequence. If 4 is entered, go to step 6. If $\mathbf{5}$ is entered, go to step 7. If 3 is entered, the controller will loop on the startup diagnostic sequence (IDL to DTC).
5. After entering 1, 2, 8 or 9, the gas panel goes blank and the customer's application program takes contro!.
6. If the CE requests a prompt mode start by keying and entering 4, the control operator's 3604 displays a sequence of five-digit messages (00002 through 00004) in the position where 00001 was displayed. After each message is displayed, the CE enters a response as shown in the chart on the next page, and the next message then appears. After the response to message 00004 has been completed, the screen again displays 00001. The CE now enters a $1,2,3,4,5,8$, or 9 to specify the startup, as in step 4.
7. If the CE requests a prompt mode start by keying and entering 5 , the control operator's 3604 displays the message 00005 in place of 00001. The CE keys and enters responses to this message as shown in the chart below. After the responses to 00005 have been completed, the screen again displays 00001 . The CE now enters $1,2,3,4,5,8$, or 9 to specify the startup, as in step 4.
8. The CE may describe the 3604 by entering $6 X$ where X is the 3604 model number.

Prompt Mode Message Sequence*

| Displayed
 Message | CE Response |
| :--- | :--- |$|$| Enter a one- or two-character control unit |
| :--- |
| address (CUA) in hex. This CUA replaces the |
| one on the diskette.** |
| 00002 |
| |
| Enter a 1 to request dump option.
 Enter a 0 to request no dump option. ** |
| Note: The dump is taken only after a system
 failure. See 82060.
 Enter a 1- to 16-character control operator
 identification code, supplied by the customer.
 Valid characters are 0-9, A-F, X, and
 blank.**
 If 90000 is displayed after entering a new
 identification (ID) code, the earlier ID code
 must be entered. If it is not entered correctly.
 00004 will again display; if it is entered cor-
 rectly, the ID code will be changed and 00001
 will display.
 00004
 Enter the ID codes for as many as 16 optional
 modules of controller data. (Press enter after
 each ID code of one or two hex characters.)
 The 00005 message will remain after each
 entry unless the CE has responded by entering
 00 or FF, or by pressing the EM (enter) key
 or the RE (reset) key. If 00 is entered, no
 optional modules will be loaded. If FF is
 entered, all optional modules will be loaded.
 For optional module ID codes on starter
 diskette, see 3.3.3.**
 Enter a 5-character XID.** |
| 00006 |

[^0]
1.1.2 Startup (Reset) Errors

1. If the startup diagnostics detect an error, the startup terminates with no message displayed or with one of the following messages displayed on the 3604 at address 1 on loop 1. (See MAP 1, Error Indication Index.)

IDL	MVO XXX	MV3 0
HSH	ROS	MV1 XXX
LDI	PCK	MV2 XXX
IRT	LSW	MV3 XXX
HSH	HSH	ESA
LDC	LEC	INV
INS	MV2 0	DTC

MV2 and MV3 messages will only appear with the expanded memory. HSH will only appear if there is a diskette read error.
2. If the controller detects an error during the remainder of the startup:
a. $82 \times X X$ error messages* are displayed on the 3604 at address 1 on loop 1.
b. $\quad 9 \times X X X$ error messages* are displayed at the control operator's 3604.

1.1.3 Error-Free Startup (Reset)

If the startup was error-free, the startup message sequence will reach DTC, blank the display, then display a startup message ending with 00001 on the second line of the gas panel, and accept the startup request.

1.2 LOGON/LOGOFF PROCEDURES FOR CE

1.2.1 Operating Diskette

The following procedure assumes that there has been a good startup (1.1.1):

1. At an idle 3604, press the RE (reset) key three times. If reset is not marked, ask the customer to identify the reset key.
2. Message 90000 should be displayed. When 90000 is displayed, the layout of the keyboard keys is as assigned by the Universal Translate Table (UTT). The keyboard layout for the different 3604 keyboards is shown on the next page.
Note: If 90000 is not displayed and the CHECK indicator lights, another 3604 is already logged on.
3. Obtain the control operator identification (ID) code from the customer and enter this code at the 3604, using the 3604 UTT keyboard layout.
Note: The control operator ID is not displayed.
4. Message 91111 should be displayed, indicating a successful logon. If 91111 is not displayed, go to step 1. Note: After 91111 is displayed, the CE is able to give the keyboard commands, described in the IBM 3600 System FE MIM, SY27-2520.
5. Logoff Procedure: To log off, key in 000 and then press the enter (EM) key.

1.2.2 Starter Diskette

As soon as the CE completes the startup by responding to the 00001 message, the gas panel on the control operator's 3604 (address 1 on loop 1) goes blank and the message 92222 appears. This message indicates that the CE is automatically logged on that 3604 and may run exerciser tests by using its keyboard. The CE can log off that 3604 and can then manually log on and log off at another 3604 in the same way as with an operating diskette (1.2.1). Note, however, that the control operator ID code for the starter diskette is 12345 .

$R E$	$B S$	$S P$
7	8	9
4	5	6
1	2	3
0		
	A	B
	X	$F R$
	F	$A V$

A. 30-Key Keyboard

$R E$	$B S$	$S P$
7	8	9
4	5	6
1	2	3
0		

A	B	X
C	D	$F R$
E	F	$A V$
	00	$E M$

Legend
$\mathrm{BS}=$ backspace
$\mathrm{RE}=$ reset
$\mathrm{EM}=$ end of message
$\mathrm{NK}=$ return to normal keyboard $=045$
$\mathrm{SP}=$ space
$\mathrm{AV}=$ advance/clear*
$\mathrm{FR}=$ free*

* Used only for large disk storage utilities and error code diagnostic.

B. 45-Key Keyboard

$F R$	$B S$	$S P$
7	8	9
4	5	6
1	2	3
0	00	$E M$

C. 74-Key Keyboard

	BS	SP
7	8	9
4	5	6
1	2	3
0	00	$E M$

D. 77-Key Keyboard

	BS	SP
7	8	9
4	5	6
1	2	3
0	00	$E M$

E. 92-Key Keyboard

F. 94-Key Keyboard

G. 99.Key Keyboard

Universal Translate Table Keyboard Layout

1.3 ASSIGNING THE COMPONENT TO BE TESTED

1.3.1 Operating Diskette

1. Log on at any idle 3604 (1.2.1).
2. Key in: 007 LSSD X
where:
$L^{\bullet}=$ Loop number.
SS = Terminal address (01 through 16).
$\mathrm{D}=$ Component address, as follows:
$1=$ Keyboard
2 = Display
3 = Encoder
$4=3610,3612$ document printer or 3618 printer
$5=3611$ or 3612 Passbook Printer
$6=3606 / 3608$ keyboard/display
7 = 3608 printer
$8=3614$ Consumer Transaction Facility
$X=1$ for side B.
$X=0$ for side A.
If X is not entered, the default is the A side. If only 007 is entered, the component is reassigned to . its work station.

1.3.2 Starter Diskette

Refer to starter diskette configuration information (3.3.3) to determine how to prepare for use of the starter diskette and also see command code 973. (Refer to the IBM 3600 System FE MIM, SY27-2520.) Test Component on Loop 1

1. Set address switches of the terminal that contains the component to be tested (3.3.3).
2. \log on (1.2.2).
3. Key and enter: 007 LSSD X

The letters LSSD X have the same meaning as with the operating diskette.

Test Component on Loop 2

1. Set address switches of the terminal that contains the component to be tested (3.3.3).
2. \log on (1.2.2).
3. With the starter diskette, loop 2 is named as having a wrappable modem. If loop 2 actually has a wrappable modem (1200 bps), go now to step 4. If loop 2 has no modem or has a modem that is not wrappable (600 bps), then key and enter:
```
0400020002
0 4 0 0
```

4. Key and enter: 007 LSSD X The letters LSSD X have the same meanings as with the operating diskette.

Test Component on Loop Other Than 1 or 2

1. Set address switches of the terminal that contains the component to be tested (3.3.3).
2. \log on (1.2.2).
3. Determine whether the loop has a wrappable modem (1200 bps), a modem that is not wrappable, or no modem (local loop).
4. Key and enter:

$04000 \times 000 Y$ 0400

where:
X is set to 2 if there is no wrappable modem on the loop (local loop or World Trade 600 bps remote loop).
X is set to 3 if there is a wrappable modem (1200 bps remote loop).
Y is set to the loop number of the loop to be tested.
The first of the above commands stops all loops
except loop 1, and specifies the loop to be tested.
The 0400 command starts the loop to be tested.
5. Key and enter : 007 LSSD X

The letters LSSD X have the same meanings as with the operating diskette.

1.4 ASSIGNING A COMPONENT TO BE THE OUTPUT PRINTER

1.4.1 Operating Diskette

1. Log on at any idle 3604 (1.2.1).
2. Key in: 006 LSSD X
where:

- $L=$ Loop number.

SS = Terminal address (01 through 16).
$\mathrm{D}=$ Component address, as follows:

1	$=$ Keyboard
$* 2$	$=$ Display
3	$=$ Encoder
$* 4$	$=3610,3612$ document printer, or 3618
	\quad printer
5	$=3611$ or 3612 passbook printer
6	$=3606 / 3608$ keyboard/display
7	$=3608$ printer
8	$=3614$ Consumer Transaction Facility
$X=1$	for side B

1.4.2 Starter Diskette

Refer to starter diskette configuration information (3.3.3) to determine how to prepare for use of the starter diskette and also see command code 973. (Refer to the IBM 3600 System FE MIM, SY27-2520.)

Output Printer on Loop 1

1. Set the address switches of the terminal that contains the component that is to be the output printer (3.3.3).
2. \log on (1.2.2).
3. Key and enter 006 LSSD X

The letters LSSD X have the same meanings as with the operating diskette.

Output Printer on Loop 2

1. Set the address switches of the terminal that contains the component that is to be the output printer (3.3.3).
2. $L \log$ on (1.2.2).
3. With the starter diskette, loop 2 is named as having a wrappable modem. If loop 2 actually has a wrappable modem (1200 bps), go now to step 4. If loop 2 has no modem or has a modem that is not wrappable (600 bps), then key and enter:
```
0400020002
0400
```

4. Key and enter 006 LSSD X

The letters LSSD X have the same meanings as with the operating diskette.

Output Printer on Loop Other Than 1 or 2

1. Set the address switches of the terminal that contains the component that is to be the output printer.
2. \log on (1.2.2).
3. Determine whether the loop has a wrappable modem (1200 bps), a modem that is not wrappable (600 bps), or no modem (local loop).
4. Key and enter:

04000 OX 00 OY
0400
where:
X is set to 2 if there is no wrappable modem on the loop (local loop or World Trade 600 bps remote loop).
X is set to 3 if there is a wrappable modem (1200 bps remote loop).
Y is set to the number of the loop to be tested.
The first of the above commands stops all loops except loop 1, and specifies the loop to be tested. The 0400 command starts the loop to be tested.
5. Key and enter 006 LSSD X The letters LSSD X have the same meanings as with the operating diskette.

1.5 DISPLAY/PRINT STATISTIC COUNTERS

Note: Statistic counts are located in functional storage and are lost each time there is a reset (warm start or cold start). In contrast, the log is located on the diskette. Thus, the log is lost only on a cold start.

1.5.1 Operating Diskette

After logging on at a 3604 (1.2), the CE can key in either of two commands to obtain statistic counters:

1. 010 LSSD is keyed to display the statistic counters of a specified component,
where:
$L=$ Loop number.
SS = Terminal address (01 through 16)
D = Component address, as follows:
1 = Keyboard
$2=$ Display
3 = Encoder
$4=3610,3612$ document printer, or 3618 printer
$5=3611$ or 3612 passbook printer
$6=3606 / 3608$ keyboard/display
$7=3608$ printer
$8=3614$ Consumer Transaction Facility
LSSD $=9001$ for host link
LSSD $=9002$ for diskette
LSSD $=903 X$ for ALA line
LSSD = X000 for loop control, where X is the number of the loop.
2. 012 X is keyed to print statistic counters for all components on the assigned output printer. X is the number of loops attached to the controller.
The output format is:
LSDM TT SS $X X X X X X X X X \ldots \ldots$
$L=$ Loop number.
$\mathrm{S} \quad=$ Terminal address in hexadecimal
D = Component address, same as input above
$\mathrm{M}=$ Modulus value for a terminal component, or speed of a loop (see below)

TT = Component type (see below)
SS = Work station identification
$X X X=$ error count in decimal
LSDM $=9010=$ Host link
LSDM $=9020=$ Diskette
LSDM $=93 \times 0=$ ALA line
LSDM $=\mathrm{X} 000$ for loop control where X is the number of the loop.
If $M=$ loop speed, values are as follows:

$$
\begin{aligned}
& 01=4800 \mathrm{bps} \\
& 02=2400 \mathrm{bps} \\
& 04=1200 \mathrm{bps} \\
& 08=600 \mathrm{bps} \\
& 8 \mathrm{X}=\text { clocking loop }
\end{aligned}
$$

Component types (TT) are as follows:
$80=$ Loops $\quad 01=$ Host link
$81=$ Keyboard $\quad 02=$ Diskette
$82=$ Display $\quad 03=$ ALA line
$83=3610,3611$ or 3612 printer
85

1.5.2 Starter Diskette

1. Refer to starter diskette configuration information (3.3.3) to determine how to prepare for using the starter diskette by:
a. Setting the address switches of some terminals or by simply turning off power on other terminals.
b. For loops other than loop $\mathbf{1}$, using the 040 command to set up the loop that is to be the working loop.
2. Obtain statistic counters in the same way as with an operating diskette (1.5.1).

1.6 DISPLAY/PRINT CONTROLLER LOG

Note: Refer to 3.3 .5 for more information on the controller log.

1. Log on (1.2).
2. Key in one of the following commands:

Command	Function
001	Display the first part of each of the last five messages in the log. Each display line will contain a four-digit message number and as many as 36 characters of the message. After the first time you press the enter key, you can go back five additional messages each time you press the enter key again.
002 XXXX	Display full text of log message XXXX (maximum 240 characters).
0029999	Display the last $X 1-X X X$ type message in the log. (Display full text of the message; maximum of 240 characters.)
046 XXXX YYYY	Print log messages numbered XXXX through YYYY on the printer assigned to be the output printer by command code 006.
04600019999	Print all log messages on the assigned output printer.

1.7 LOOP ERROR LOG MESSAGE

The loop error message is:
11005 Loop \times Error, Code $=$ Y $\cdot \mathbf{Z}$
Where:

$$
\begin{aligned}
\mathrm{X}= & \text { Loop Number } \\
\mathrm{Y}= & \text { Loop Status } \\
& 0 \cdot \text { Loop Failed (Wrap Good) } \\
& 1 \cdot \text { Modem Check } \\
& 2 \cdot \text { Loop Check } \\
& 4 \cdot \text { Machine Check } \\
& 8 \cdot \text { User Requested Stop Loop } \\
\mathrm{Z}= & \text { Data Set (Modem) Status } \\
& 0 \cdot \text { Transmit and Receive Not Ready } \\
& 1 \cdot \text { Receive Ready (Carrier Detect) } \\
& 2 \cdot \text { Transmit Ready (Clear to Send) } \\
& 3 \cdot \text { Combination of } 1 \text { and } 2
\end{aligned}
$$

1.8-1.19 NOT USED

1.203601 DISKETTE DRIVE ASSEMBLY REMOVAL AND REPLACEMENT

1. Turn off power.
2. Remove the smaller front end cover by raising it from its pivot pins.
3. Remove the side cover by raising up and tilting the top outwards.
4. Remove the diskette drive control card access cover by removing one holding screw.
5. Unplug the diskette drive motor connector.
6. Unplug the cable from the diskette drive control card and remove the ground wire. (The other end of this cable plugs into 01A1Z3.)
7. Remove the holding screw from the diskette drive assembly base plate. The base plate is exposed by the front end cover removal (step 2).
8. Loosen the Zeus* fastener on the inside top of the diskette drive assembly.
9. Remove the diskette drive assembly by sliding it out from the front end of the controller.

Replace the diskette drive assembly by reversing the above procedure.**

[^1]
1.21 LATCH ASSEMBLY REMOVAL AND REPLACEMENT

1. Open diskette drive assembly cover 3
2. Remove the two latch mounting screws 1 .
3. Pull latch 11 away from cover.
4. To replace, reverse above procedure.

1.22 COVER ASSEMBLY REMOVAL AND REPLACEMENT

CAUTION: Do not allow pressure pad arm 40 to snap

 against head.1. Remove diskette drive assembly (1.20).
2. Remove two screws 8 while holding cover.
3. Remove cover carefully to avoid damage to wires.
4. Remove wires from LED 2 and pressure pad actuator 9 .
5. Remove wires from clip on cover.
6. To replace cover, reverse above procedure.

1.23 COLLET REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove cover (1.22).
3. Remove mounting screw 10.
4. Remove collet assembly 5 and spring and washer 4
5. Remove collet 7 by removing clip 6 .
6. To replace collet, reverse above procedure.

1.24 TRACK INDICATOR ADJUSTMENT

1. \log on (1.2).
2. Key in 03400010001 and press the enter (EM) key. This causes the read/write head assembly to seek and - read record 1 on track 0 continuously.
3. Loosen two screws.
4. Adjust track indicator so that zero line is centered on pressure pad arm pointer
5. Tighten screws.
6. Press reset (RE) key twice.
7. Check for gap between pressure pad arm and track indicator bracket at all tracks by keying:

$$
03400017501
$$

8. Press reset (RE) key twice to end the test.

1.25 DRIVE MOTOR REMOVAL

DANGER

Motor case can get hot.

1. Remove diskette drive assembly (1.20).
2. Remove drive belt.
3. Loosen two motor mounting clamps and remove drive motor 3 .
4. Loosen setscrew 2 and remove drive pulley 1

1.26 DRIVE MOTOR REPLACEMENT

1. Replace drive pulley 1. (Align setscrew 2 with flat surface on shaft.)

DANGER:

When replacing a $60-\mathrm{HZ}$ drive motor, position two large holes 4 in motor frame to top and under bracket.
2. Clamp motor to mounting bracket.
3. Replace belt.
4. Inspect belt tracking and adjust if necessary (1.27).
5. Replace diskette drive assembly (1.20).

1.27 BELT TRACKING ADJUSTMENT

Belt must ride in center of drive pulley 1 and hub pulley 12 when drive pulley is rotated counterclockwise viewed from the pulley side.

CAUTION: Drive pulley setscrew must be aligned with flat surface on motor shaft.

1. Remove diskette drive assembly (1.20).
2. Adjust drive pulley 1 and idler position so that belt rides on center of drive pulley and hub pulley. To adjust drive pulley, loosen setscrew 2 . To adjust idler position, loosen screw 6 and slide idler in or out.
 in order to use the latest style diskette drive motor.

1.28 IDLER ASSEMBLY REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove belt and spring 15 .
3. Remove screw 6 and remove idler assembly.
4. To replace idler, reverse above procedure and inspect belt tracking (1.27).

1.29 HUB ASSEMBLY REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove cover from diskette drive assembly (1.22).
3. Remove drive belt.
4. Remove screw 13 and remove hub pulley 12.
5. Remove hub 7 .
6. Remove bearing retaining screws, retaining plate 8 and bearing 9 .
7. Remove bearing retaining screws, retaining plate 11 . bearing, and spacers 10 .

1.32 PRESSURE PAD ACTUATOR REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove cover from diskette drive assembly (1.22).
3. Remove two screws 2.
4. Remove leads and remove pressure pad actuator 1.
5. To replace, reverse above procedure and adjust (1.33).

1.33 PRESSURE PAD ACTUATOR ADJUSTMENT

1. Load diskette into the diskette drive assembly.
2. Energize the coil by installing a jumper between the "-Head Load" and "Ground" test points on the diskette drive control card (1.51).
3. Adjust screw 3 until the pressure pad arm 40 and bail 39 just touch.
4. Rotate adjusting screw 3 clockwise $1 / 2$ to $3 / 4$ turn and check for gap between arm and bail at all tracks. If condition cannot be met within $1 / 2$ to $3 / 4$ turn, look for mechanical defect.

1.34 LEADSCREW AND HEAD CARRIAGE ASSEMBLY REMOVAL

1. Remove diskette drive assembly (1.20).
2. Note routing of head cable.
3. Remove wires from connector by pushing down with small screwdriver, as shown.

4. Center carriage on leadscrew by turning stepper motor wheel.
5. Remove stepper motor 3 per procedure 1.42, and remove leadscrew wheel 2.
6. Remove diskette drive assembly cover (1.22).
7. Loosen clamping screws on upper and lower stops

56.

8. Remove bottom bearing 4 .

CAUTION: Watch for preload spring 1 when removing shaft.
9. Slide leadscrew assembly down until top clears baseplate, then slide assembly out.

CAUTION: Do not allow pressure pad arm to snap against head.
10. Remove top bearing, preload spring, and both stops from leadscrew.

1.35 LEADSCREW AND HEAD CARRIAGE ASSEMBLY REPLACEMENT

Note: If the leadscrew and carriage are disassembled, reassemble by threading the leadscrew into the bottom portion of the carriage assembly and into the carriage nut and spring.
At 7 there should be a movement of approximately 0.202 inch (0.51 mm) against spring tension.

1. Center carriage assembly on leadscrew and install upper and lower limit stops.
2. Replace top bearing and preload spring 1 (depression side up).
3. Replace assembly into baseplate, bottom end first.
4. Replace bottom bearing and check for about 0.030inch $(0.76 \mathrm{~mm})$ up and down movement of leadscrew against preload spring.
5. Replace leadscrew wheel, leadscrew wheel clamp, and stepper motor.

Note: Reroute head cable as noted under step 2 of the removal procedure (1.34).
6. Connect wires (see 1.34 for wire locations).

Note: Make sure that the locking tabs on the terminals engage in the connector slot to prevent the leads from pushing out when plugged in.

7. Adjust stepper motor (1.43) and read/write head (1.36).
8. Replace diskette drive assembly cover (1.22).

1.36 READ/WRITE HEAD ADJUSTMENT

To properly make the head adjustment, you must obtain three simultaneous conditions:

- Correct head-to-CE tool clearance.
- Correct relationship between the stepper motor and leadscrew wheels.
- Correct clearance between the stepper motor and leadscrew wheels.

1. Remove diskette drive assembly (1.20).
2. Access head to track 0 . Leadscrew wheel 12 and stepper motor wheel 13 should line up as in view S.
3. Remove diskette drive assembly cover (1.22).
4. Loosen mounting screw and move phototransistor assembly 1 to the left.

Note: If phototransistor assembly is not moved, the accuracy of the head adjustment may be affected.
5. Loosen clamping screws on lower limit stop 8 and leadscrew wheel 9 .

Note: Steps 6 and 7 provide maximum stepper motor-to-leadscrew wheel pin penetration with no binds.
6. Determine type of stepper assembly, below:

7. With stepper motor wheel 13 and leadscrew wheel 12 positioned as in view S, insert feeler gauge between these wheels. (see $\mathbf{1 1}$ in view S.) The feeler gauge should correspond to the gap setting for X or Y in step 6. Gauge may be left in place.
8. Locate the white dot label or other mark on the outer circumference of diskette drive hub. If hub has both, always use white dot. Rotate hub so that this mark is in the up position.
Note: Step 8 makes sure that any hub eccentricity is located in the same spot and that all head adjustments use the same reference point.

CAUTION: Avoid any contact of CE tool with highly polished face of head.
9. Install CE tool 2 on hub. Clamp into place with thumbscrew.
10. Rotate CE tool so that it contacts surface 4
11. Rotate leadscrew by gripping upper limit stop 3 and adjust for gap 5 . This gap is a number found on the front of the read head assembly 6 . This number represents thousandths. Example: 3 equals $0.003^{\prime \prime}$ $(0.076 \mathrm{~mm})$. Adjust for a very light drag on a $0.003^{\prime \prime}$ (0.076 mm) gauge. A $0.002^{\prime \prime}$ gauge (0.051 mm) must be free.
Note: When doing step 12, be sure that stepper motor wheel and leadscrew wheel remain positioned as in view S .
12. Tighten leadscrew wheel clamping screw 9 . The top of the clamping collar should be nearly even with the top of the metal clamping surface of leadscrew wheel.

Note: If clamping collar is not fastened tightly, machine operation can cause head to go out of adjustment.
13. Adjust phototransistor 1 so that raised edge is in contact with CE tool, and tighten mounting screw.
14. Remove CE tool and adjust lower limit stop (1.40).
15. Recheck gap setting 5 .
16. Rotate stepper motor at least one full revolution and check for binds.
17. Adjust upper limit stop (1.41).
18. If leadscrew wheel is type Y in step 6 , the slot should be 25-40 percent full with IBM \#23 grease.
19. Replace cover (1.22) and adjust track indicator (1.24).

1.37 HEAD AND PRESSURE PAD CLEANING

1. Open the smaller front cover of the controller and remove it by raising it from its pivot pins.
2. Turn off power.
3. Open the cover of the disk drive assembly, and manually rotate the stepper motor wheel until the carriage assembly is at the upper limit stop.

CAUTION: Do not allow pressure pad arm to snap against head. Also, use only the materials mentioned in steps 4 and 5 to clean head and pressure pad.
4. Pivot pressure pad arm 7 away from head and check pad for contamination. If contaminated, use dry brush (PN 2200106) to remove caked deposits and to fluff pad.

CAUTION: Fluid treated cloth should not contact pressure pad.
5. While holding pressure pad arm out, clean polished head surface with isoproply alcohol (PN 2200200) applied to a clean cloth (PN 2108930).

1.38 LEADSCREW WHEEL REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove stepper motor (1.42).
3. Loosen clamping screw 9 and remove leadscrew wheel 12.
4. Replace leadscrew wheel. (Don't tighten clamping screw 9 in this step. This screw is tightened during the read/write head adjustment.)
5. Replace stepper motor (1.42).
6. Adjust stepper motor (1.43).
7. Adjust read/write head (1.36).

(S)

Machine Front (Cover Side)

Note: The lower and upper limit stops are adjusted (1.40, 1.41) to make sure that the carriage can always be accessed to tracks 0 and 76 and will not overtravel, damaging this mechanism.

1.40 LOWER LIMIT STOP ADJUSTMENT

1. Remove diskette drive assembly (1.20).
2. Loosen clampscrew 1. Make sure that leadscrew is $45^{\circ} \pm 15^{\circ}$ beyond track 0 in downward direction. Leadscrew wheel 6 and stepper motor wheel 7 must be in position shown in Detail A.
3. Position limit stop 5 so that projection on limit stop is in front of and against the projection on carriage.
4. Adjust distance 4 between top of projection on limit stop and bottom of carriage for 0.012 to 0.018 inch (0.31 to 0.46 mm).

1.41 UPPER LIMIT STOP ADJUSTMENT

1. Remove diskette drive assembly (1.20).
2. Loosen clamp screw 3 and slide stop up as far as possible.
3. Starting at track 0 , rotate stepper motor wheel to move carriage assembly up to track 76.
4. Adjust stop so that distance 2 is 0.025 to 0.035 inch (0.64 to 0.89 mm).
5. Tighten clamp screw 3.

CAUTION: Do not overtighten clampscrew.

1.42 STEPPER MOTOR REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove five leads from the connector (black, white, yellow, red, and blue).

3. Remove two screws 1 and remove motor.
4. To replace stepper motor, reverse the above procedure and then adjust the stepper motor (1.43).

CAUTION: To avoid breaking parts when replacing the stepper motor, make sure that pins 5 of stepper motor wheel 4 are in slots of leadscrew wheel 3 .

Make sure that the locking tabs on the terminals engage in the connector slot to prevent the leads from pushing out when plugged in.

1.43 STEPPER MOTOR ADJUSTMENT

1. Remove diskette drive assembly (1.20).
2. Loosen two screws 1.
3. Move stepper motor away from leadscrew.
4. Loosen clamping screw 2 and move leadscrew wheel 3 up so that it rotates freely.
5. Position leadscrew wheel as shown in Detail A.
6. Pull leadscrew wheel 3 down until pins 5 on stepper motor drive wheel 4 fit into notches on leadscrew wheel. See Detail A.
7. Slide stepper motor toward leadscrew until pins contact notches. No clearance is allowable. Do not force stepper motor into leadscrew wheel.
8. Tighten two stepper motor mounting screws 1.
9. Move leadscrew wheel up until it rotates freely.
10. Rotate leadscrew wheel and slide down on drive pins in the position shown in Detail B.
11. Adjust head (1.36).

Front of Machine (Cover Side)

1.44 PHOTOTRANSISTOR SERVICE CHECK

Note: Always perform the following procedure with the diskette loaded; otherwise ambient light will be present, causing a faulty reading on the VOM.

1. Unplug motor connector.
2. Attach positive probe of $\operatorname{VOM}(15 \mathrm{~V}$ dc scale) to $+5 \mathrm{~V}$ dc test point on diskette drive control card (1.51).
3. Attach negative probe to "Phototransistor Current" test point on diskette drive control card (1.51).
4. Insert diskette and close cover.
5. With head unloaded, rotate hub until index hole causes phototransistor to switch on or off. (Rotating the hub back and forth causes a continuous switching in the transistor.)
6. A shift in excess of 3.5 V dc should be noted on VOM under normal circumstances.
7. If scope is available, plug motor connector in and test for index pulse width of 1.7 to 8.0 ms .

500 usec/cm

1.45 PHOTOTRANSISTOR ADJUSTMENT

1. Access to track 0.
2. Remove diskette drive assembly (1.20).
3. Remove diskette drive assembly cover (1.22).
4. Loosen mounting screw 3 , and move phototransistor 2 to left.
5. Install CE tool 1 as shown below.

6. Adjust phototransistor 2 so that raised edge is in contact with tool.
7. Tighten mounting screw 3 .
8. Remove CE tool.
9. Replace diskette drive assembly cover (1.22).

1.46 PHOTOTRANSISTOR REMOVAL AND REPLACEMENT

1. Access to track 0 .
2. Remove diskette drive assembly (1.20).
3. If necessary, remove diskette drive assembly cover (1.22).
4. Remove mounting screw 3 and washer.
5. Remove leads from phototransistor assembly.
6. Connect leads to the replacement phototransistor. (Yellow wire goes to terminal marked Y.)
7. Adjust starting at step 5 of 1.45 .

1.47 LIGHT EMITTING DIODE (LED) SERVICE CHECK

1. Attach positive probe of VOM to "LED Current" test point on diskette drive control card (1.51) and attach negative lead to ground test point.
2. Voltage should be +1.0 V dc to +1.6 V dc.

1.48 LED REMOVAL AND REPLACEMENT

1. Remove diskette drive assembly (1.20).
2. Remove diskette drive assembly cover (1.22).
3. Remove two mounting screws 1
4. Remove leads from LED assembly 2.
5. To replace, reverse the above procedure. (Yellow wire goes to terminal marked Y .)

1.49 DISKETTE DRIVE CONTROL CARD PIN ASSIGNMENT

*Note: This cable wire is not point to point.

1.50 DISKETTE DRIVE CONTROL CARD REMOVAL AND REPLACEMENT

The diskette drive control card is positioned with the components and test pins facing out. The card does not have to be moved for servicing.

1. Turn off power.
2. Loosen screw and turn bracket 90°.

> Tighten screw.
3. Remove card.
4. To replace, reverse above procedure. Be sure card is properly seated in socket and retaining bracket.

1.51 DISKETTE DRIVE CONTROL CARD TEST POINTS

Note: 2×2 card test points are on the following page.
(Only the major components are shown as an aid in locating pins.)

1.51 (Cont)

2×2 Card Test Points

Note: If you experience the problem of no index pulse or multiple index pulses because of shine-through, raise the threshold level of the index amplifier by moving the jumper to position 1. You can raise the threshold level again by moving the jumper to position 2. With the jumper in the high threshold position, more LED light is required to switch the PTX amplifier than when the jumper is in the medium or low threshold positions. Do not increase the threshold level more than necessary to ensure proper operation.

1.52-1.59 NOT USED

1.60 DISKETTE DRIVE ASSEMBLY REMOVAL AND REPLACEMENT

3601

1. Turn off power.
2. Remove the smaller front end cover by raising it from its pivot pins.
3. Remove the side cover by raising up and tilting the top outwards.
4. Remove the diskette drive control card access cover by removing one holding screw.
5. Unplug the diskette drive motor connector.
6. Unplug the cable from the diskette drive control card and remove the ground wire.
7. Remove the holding screw from the diskette drive assembly base plate. The base plate is exposed by the front end cover removal (step 2).
8. Loosen the Zeus* fastener on the inside top of the diskette drive assembly.
9. Remove the diskette drive assembly by sliding it out from the front end of the controller.

Replace the diskette drive assembly by reversing the above procedure.**

3602

1. Turn off power.
2. Swing open the right front cover.
3. Remove the right end cover by pulling out on the bottom and lifting off.
4. Remove the holding screw from the front of the diskette drive bottom base plate.
5. Loosen the two holding screws on the frame to the top rear of the assembly.
6. Lift the assembly up and off the screws loosened in step 5.
7. Tilt the assembly out the front.
8. Disconnect the cables if required.

Replace the diskette drive assembly by reversing the above procedure.**

[^2]
1.61 LATCH ASSEMBLY REMOVAL AND REPLACEMENT

1. Open diskette drive cover 3 .
2. Remove the two latch mounting screws 2
3. Pull latch 1 away from cover.
4. To replace, reverse above procedure.

1.62 COVER ASSEMBLY REMOVAL AND REPLACEMENT

1. Turn off power.
2. Open diskette drive cover 3
3. Remove both pivot screws 11 while holding cover.
4. Remove cover.
5. To replace cover, reverse above procedure.

Note: When replacing the cover be sure the two timing pins 12 have been returned to the special holder.

CAUTION: Allow power to remain off if removing the cover to start a diskette drive maintenance procedure. Do not turn on power unless a procedure instructs you to do so or is completed.

1.63 COLLET REMOVAL AND REPLACEMENT

1. Remove diskette drive cover (1.62).
2. Remove mounting screw 13

Remove collet assembly 6 , spring 4 , two washers 10 and shim 9
4. Remove collet 8 by removing clip 7 .
5. To replace collet, reverse above procedure.

1.64 HEAD/CARRIAGE POSITION SERVICE CHECK AND ADJUSTMENT

CAUTION: The head/carriage assembly is a factory-adjusted and tested assembly. Do not try to adjust or repair this internal component. Do not, for any reason, clean the read/write heads. To do so would cause severe damage to the head surfaces or head spring supports.

Service Check

1. Remove diskette drive cover (1.62)
2. Remove cover/wiper assembly 4

CAUTION: The read/write heads must not be allowed to come together without a piece of clean paper inserted between the head surfaces.
3. Insert a piece of clean paper between the head surfaces.
4. Rotate stepper motor pulley by hand to track 40 and -insert timing pin 6 (located inside cover assembly) through pulley 5 and into timing slot 7 in casting.
5. Turn on power.
6. Electrically detent stepper motor to phase $\mathbf{0}$ by installing a jumper between the " - Align Access" and "Ground" test points on diskette drive control card (1.94).

Note: The timing pin should now pass freely through the stepper motor pulley and the timing slot in the casting. If it does not, remove the timing pin and jumper, power off, and adjust the head/carriage position, starting at step 4.
7. Remove the timing pin and return it to its storage location inside cover assembly.
8. Remove jumper installed in step 6.
9. Rotate stepper motor pulley clockwise, by hand, one detent position.

Note: This moves the head/carriage assembly approximately 0.020 in (0.508 mm). Verify by looking for no gap between timing pointer 1 on carriage and timing block 2 on casting.
10. Replace jumper between the "- Align Access" and "Ground" test points on diskette drive control card (1.94).
11. Verify $0.020-\mathrm{in}$. $(0.508 \mathrm{~mm})$ gap 3 between timing pointer 1 on carriage and timing block 2 on casting by looking for no motion of head/carriage assembly when a $0.0195-\mathrm{in} .(0.495 \mathrm{~mm})$ feeler gauge is inserted. Check for motion of head/carriage assembly when inserting a $0.021-\mathrm{in}$. $(0.533 \mathrm{~mm})$ feeler gauge.

Note: If there is motion with a $0.0195-\mathrm{in} .(0.495 \mathrm{~mm})$ gauge inserted, or no motion with a 0.021 -in. (0.533 mm) gauge inserted, the head/carriage assembly requires adjustment. Adjust head/carriage position starting at step 10
12. If for some reason verification in step 11 is not positive, repeat steps 8 through 11. (Accuracy of this verification requires that the stepper motor be electrically detented from a point at least one detent away from track 40.)
13. If verification in step 11 is good, remove jumper installed in step 10.
14. Remove paper from between head surfaces.
15. Replace cover/wiper assembly.
16. Replace diskette drive cover (1.62).

1.64 HEAD/CARRIAGE POSITION SERVICE CHECK AND ADJUSTMENT (Cont)

CAUTION: The head/carriage assembly is a factory-adjusted and tested assembly. Do not try to adjust or repair this internal component. Do not, for any reason, clean the read/ write heads. To do so would cause severe damage to the head surfaces or head spring supports.

Adjustment

1. Remove diskette drive cover (1.62).
2. Remove cover/wiper assembly 4 .

CAUTION: The read/write heads must not be allowed to come together without a piece of paper inserted between the head surfaces.
3. Insert a piece of clean paper between head surfaces.
4. Measure and record gap between stepper motor pulley and casting 10.

```
Gap is:
```


5. Loosen clamp screw 7

Note: The stepper motor shaft should be free to rotate inside the stepper motor pulley.
6. Rotate stepper motor pulley by hand to track 40 and insert timing pin 6 (located inside cover assembly) through pulley 9 and into timing slot 5 in casting.
7. Turn on power.
8. Electrically detent stepper motor to phase 0 by installing a jumper between the "• Align Access" and "Ground" test points on diskette drive control card (1.94).

CAUTION: Do not push clamip 8 against pulley 9 when tightening clamp screw 7 . Clamp must be positioned near the end of the pulley flanges for effective clamping.
9. Make the gap 10 recorded in step 4 and tighten pulley clamp screw 7.

Note: The timing pin should now pass freely through the stepper motor pulley and the timing slot in the casting.
10. Remove the timing pin and return it to its storage location inside the cover assembly.
11. Loosen two band clamping screws 1 on head/carriage assembly.
12. Remove jumper installed in step 8.
13. Rotate stepper motor pulley clockwise, by hand, one detent position.
Note: This moves the head/carriage assembly approximately 0.020 in . (0.508 mm); verify by visually checking for no gap between timing pointer 2 and carriage and timing block 3 on casting.
14. Replace jumper between the "-Align Access" and "Ground" test points on diskette drive control card (1.94).

Note: Verify that head/carriage assembly moved to track 40 by visually checking that timing hole in pulley lines up with timing slot in casting (do not use timing pin).
15. Insert $0.020-\mathrm{in}$. $(0.508 \mathrm{~mm})$ feeler gauge between timing pointer 2 on carriage and timing block 3 on casting.
Note: Apply light pressure to top of carriage to hold gauge in place.
16. With light pressure still applied to top of carriage, tighten band clamping screws 1.
17. Remove jumper installed in step 14.
18. Rotate stepper motor pulley clockwise, by hand, one detent position.
19. Replace jumper between the "- Align Access" and "Ground" test points on diskette drive control card (1.94) and verify alignment of timing holes at track 40.
20. Verify $0.020-\mathrm{in}$. $(0.508 \mathrm{~mm})$ gap between timing pointer and timing block by visually checking for no motion of head/carriage assembly when a $0.0195-\mathrm{in}$. $(0.495 \mathrm{~mm})$ feeler gauge in inserted. Check for motion of head/carriage assembly when inserting a 0.021 -in. (0.533 mm) feeler gauge.
Note: If there is notion with a $0.0195-\mathrm{in}$. (0.495 mm) gauge inserted, or no motion with a 0.021 -in. $(0.533 \mathrm{~mm})$ gauge inserted, repeat steps 11 through 20.
21. If adjustment is good, remove jumper installed in step 19.
22. Remove paper from between head surfaces.
23. Replace cover/wiper assembly 4.
24. Replace diskette drive cover (1.62).

1.65 HEAD/CARRIAGE ASSEMBLY REMOVAL

1. Remove diskette drive cover (1.62).
2. With power off, remove cover/wiper assembly 7.
3. Remove head cable from diskette drive control card.

CAUTION: The read/write heads must not be allowed to come together without a piece of clean paper inserted between the head surfaces.

Note: When removing cable assemblies, observe the original routing for replacement purposes.
4. Remove card retainer and diskette drive control card.
5. Position head/carriage assembly to approximately track 40.
6. Remove two band clamping screws 2 and clamp 1. Carefully place head/carriage assembly at its lower limit (track 0).
7. Remove screw 12 , nylon washer 14 , and guide rod 13.
8. Carefully lift and pivot head/carriage assembly to remove it from guide rod 4.

1.66 HEAD/CARRIAGE ASSEMBLY REPLACEMENT

CAUTION: When installing the head/carriage assembly, make sure bail assembly 5 is under tab 6 of the carriage arm with bail return spring 11 properly installed.

CAUTION: The read/write heads must not be allowed to come together without a piece of clean paper inserted between the head surfaces.

1. Insert a piece of clean paper between the head surfaces.
2. Carefully install head/carriage assembly on guide rod 4 and place it at its lower limit.
3. Replace guide rod 13 , nylon washer 14 , and screw 12.
Note: Ensure guide rod notch 15 is aligned with screw 12 and is properly seated in groove 3 .
4. Position head/carriage assembly to approximately track 40.
5. Replace clamp 1 and two band clamping screws 2. but do not tighten.
6. Replace diskette drive control card and card retainer.
7. Following original routing, carefully replace head cable onto diskette drive control card.
8. Rotate stepper motor pulley by hand to track 40 and insert timing pin 9 (located inside cover assembly) through pulley 10 and into timing slot 8 in casting.
9. Turn on power.
10. Electrically detent stepper motor to phase $\mathbf{0}$ by installing a jumper between the "-Align Access" and "Ground" test points on diskette drive control card (1.94).
11. The timing pin should pass freely through the stepper motor pulley and the timing slot in the casting. If it does, adjust the head/carriage position (1.64), starting at step 11. If it does not, remove the timing pin and adjust the head/carriage position (1.64), starting at step 4.

Properly Seated
Guide Rod

Improperly Seated Guide Rod

1.67 HEAD LOAD SOLENOID/BAIL ASSEMBLY SERVICE CHECK AND ADJUSTMENT

Service Check

1. Turn off power.
2. Disconnect drive motor power cable from socket 3
3. Remove diskette drive cover (1.62).

DANGER:
Voltage is still present at socket with the drive motor power cable disconnected and power on.

4. Turn on power.

CAUTION: The read/write heads must not be allowed to come together without a piece of clean paper inserted between the head surfaces.
5. Insert a piece of clean paper between the head surfaces.
6. Energize the head load solenoid by installing a jumper between the "-Head Load" and "Ground" test points on diskette drive control card (1.94).
7. Verify gap 5 of $0.015 \pm 0.005 \mathrm{in}$. $(0.381 \pm 0.127 \mathrm{~mm})$ between bail 1 and carriage arm 2 throughout carriage travel.
Note: If the gap is not within tolerance, adjust solenoid/bail assembly, starting at step 7.
8. Remove jumper installed in step 6.
9. Remove paper from between head surfaces.
10. Replace diskette drive cover (1.62).
11. With head load solenoid deenergized and cover closed, look for gap 4 of 0.93 to 0.108 in . (2.3 to 2.7 mm) between head surfaces.

Note: This gap cannot be measured and must be estimated.
12. If the gap checked for in step 11 is not within tolerance, adjust the head load solenoid (1.67), starting at step 14.
12. Turn off power.
14. Connect the drive motor power cable to socket 3
15. Turn on power.

1.67 HEAD LOAD SOLENOID/BAIL ASSEMBLY SERVICE CHECK AND ADJUSTMENT (Cont)

Adjustment

1. Turn off power.
2. Disconnect the drive motor power cable from socket 7
3. Remove diskette drive cover (1.62).

DANGER

Voltage is still present at socket with the drive motor power cable disconnected and power on.
4. Turn on power.

CAUTION: The read/write heads must not be allowed to come together without a piece of clean paper inserted between the head surfaces.
5. Insert a piece of clean paper between the head surfaces.
6. Energize the head load solenoid by installing a jumper between the "-Head Load" and "Ground" test points on diskette drive control card (1.94).

DANGER

Solenoid case can get hot.
7. Remove the holding screw from the disk drive assembly base plate.
8. Loosen the Zeus fastener on the inside top of the diskette drive assembly.
9. Slide out the diskette drive assembly so that the solenoid locking screw is accessible 6.
10. Loosen solenoid locking screw 6.
11. Rotate solenoid 4 in casting for gap 9 of $0.015 \pm 0.005 \mathrm{in}$. $(0.381 \pm 0.127 \mathrm{~mm})$ between bail 1 and carriage arm 2.
Note: A clockwise rotation of the solenoid decreases the bail-to-carriage arm gap.
12. Verify this gap throughout carriage travel.
13. With pellet 5 still in place, tighten solenoid locking screw 6.
14. Replace the holding screw removed in step 7.
15. Tighten the Zeus fastener.
16. Remove jumper installed in step 6.
17. Remove paper from between head surfaces.
18. Replace diskette drive cover (1.62).
19. With head load solenoid deenergized and cover closed, look for gap 8 of 0.093 to 0.108 in . (2.3 to 2.7 mm) between head surfaces.

Note: This gap cannot be measured and must be estimated. To obtain this gap, turn the backstop screw 3 clockwise until the heads just touch, then back open the heads by turning the backstop screw one turn counterclockwise.
20. Turn off power.
21. Connect the drive motor power cable to socket 7 .
22. Turn on power.

1.68 HEAD LOAD SOLENOID/BAIL ASSEMBLY REMOVAL AND REPLACEMENT

Removal

1. Turn off power.
2. Disconnect drive motor power cable from socket $\mathbf{9}$.
3. Remove diskette drive cover (1.62).

CAUTION: The read/write heads must not be allowed to come together without a piece of clean paper inserted between the head surfaces.
4. Insert a piece of clean paper between the head surfaces.
5. Remove the solenoid leads 11 from taper pin terminal block 10.

Note: When removing cable assemblies, observe the original routing for replacement purposes.
6. Remove bail return spring 4.
7. Remove mounting screw 3 and bail 2 , pulling solenoid plunger 5 out of solenoid 6 .
8. Remove plunger from bail.
9. Loosen solenoid locking screw 8 .

Replacement

Note: When replacing the head load solenoid, replace both the solenoid 6 and plunger 5 .

1. Install solenoid approximately four turns into casting.
2. Install plunger to bail 2 .

CAUTION: When installing plunger into solenoid, be careful not to damage solenoid surface material.

3 While inserting plunger into solenoid, replace bail and mounting screw 3

Note: Be sure bail is under tab 1 of carriage arm.
4. Replace bail return spring 4.
5. Replace solenoid leads 11 to taper pin terminal block 10

DANGER:
Voltage is still present at socket 9 with the drive motor power cable disconnected and power on.
6. Turn on power.
7. Adjust solenoid/bail assembly (1.67), starting at step 6. wise.

EC 745948

1.69 DRIVE BELT SERVICE CHECK AND ADJUSTMENT

Service Check

1. With power on, check that belt 2 is riding on center of hub pulley 1 and drive pulley 6 .
2. If beit is not centered, adjust drive belt.

Adjustment

1. Turn off power.
2. Loosen idier locking screw 3 and drive pulley setscrew 7.
3. Slide idler assembly 4 and drive pulley 6 in or out so belt is centered on hub pulley 1 and drive pulley when drive pulley is rotated counterclockwise.
4. Align drive pulley setscrew with flat surface 8 of the drive shaft and tighten.
5. Turn on power and do drive belt service check.

1.70 DRIVE MOTOR REMOVAL

DANGER:

Motor case can get hot.

1. - Remove diskette drive cover (1.62).
2. With power off, disconnect drive motor power cable from socket 10.
3. Remove drive belt.
4. Remove two motor bracket mounting screws 12 and remove drive motor and bracket as an assembly 11.
5. Loosen setscrew 7 and remove drive pulley 6

1.71 DRIVE MOTOR REPLACEMENT

1. Install drive pulley $\mathbf{6}$ on new motor. (Align setscrew with flat surface of the drive shaft 8 and tighten.)

DANGER:

When replacing a $60-\mathrm{Hz}$ drive motor, position two large holes in motor frame to top and under bracket.
2. Replace motor and bracket assembly 11 and two screws 12
3. Replace diskette drive cover (1.62).
4. Connect drive motor power cable to socket 10.*
5. Turn on power and do drive belt service check (1.69).

1.72 DRIVE PULLEY REMOVAL

1. Turn off power.
2. Remove drive belt.
3. Loosen setscrew 7 and remove drive pulley 6 .

1.73 DRIVE PULLEY REPLACEMENT

1. Install pulley 6 on motor shaft aligning setscrew 7 with the flat surface 8 of the shaft.
2. Replace drive belt.
3. Turn on power and do drive belt service check (1.69).

1.74 IDLER ASSEMBLY REMOVAL AND REPLACEMENT

Removal

1. Turn off power.
2. Remove drive belt.
3. Remove idler spring 5 .
4. Remove idler assembly locking screw 3.
5. Remove idler assembly 4.

Replacement

1. Reverse above procedure and adjust drive belt (1.69).

[^3]

1.75 STEPPER MOTOR REMOVAL

1. Remove diskette drive cover (1.62).
2. With power off, remove head cable from diskette drive control card.
3. Remove card retainer and diskette drive control card.
4. Disconnect cable from position A2 19 and remove two screws 1 and cover 2
5. Remove stepper motor leads 3 from cable connector by pushing down on terminal tabs with small screwdriver.

6. Remove cover/wiper assembly 8
7. Loosen two mounting screws 5. Push idler assembly 7 against spring tension and tighten screws.
8. Remove clamp screw 17 on pulley 13.
9. Remove clamp 16.

CAUTION: During the following steps be careful not to damage the drive band 14 .
10. Carefully remove drive band ends from pulley pin 15
11. Measure and record gap between stepper motor pulley and casting 18 .

Gap is:
12. Loosen clamp screw 11 and remove stepper motor pulley.
13. Remove three stepper motor mounting screws 4 and remove motor.

1.76 STEPPER MOTOR REPLACEMENT

1. Install stepper motor into its mounting position and route motor cable toward diskette drive control card.
2. Replace and tighten three screws 4.
3. Insert stepper motor leads 3 into cable connector.

Note: Make sure that the locking tabs on the terminals engage in the connector slot to prevent the leads from pushing out when plugged in.
4. Replace connector cover and two screws.
5. Connect cable to position A2 19.
6. Replace stepper motor pulley 13 , clamp 12 , and screw 11 (do not tighten screw).
Note: With the stepper motor pulley clamp screw loose, the motor shaft is free to rotate inside the pulley.
7. Replace drive band ends on pulley pin 15 with notches facing away from stepper motor. Install clamp 16 and screw 17 , but do not tighten screw.
8. Loosen two mounting screws 5 and allow spring tension to position idler 7 . Tighten mounting screws and center drive band on idler pulley as shown 6
9. Replace diskette drive control card and card retainer.
10. Replace head cable on diskette drive control card.
11. Position stepper motor pulley by hand to track 40 and insert timing pin 10 (located inside cover assembiy) through pulley and into timing slot 9 in casting.
12. Turn on power.
13. Electrically detent stepper motor to phase 0 by installing a jumper between the "-Align Access" and "Ground" test points on diskette drive control card (1.94).
14. Make the gap between pulley and casting 18 equal the value recorded during stepper motor removal, step 11 (1.75).

CAUTION: Do not push clamp against pulley when tightening clamp screw. Clamp must be positioned near the end of the pulley flanges for effective clamping.
15. Tighten clamp screw 11 .
16. Tighten band clamp screw 17.
17. Remove timing pin and return it to its storage location inside the cover assembly.
18. Remove jumper installed in step 13.
19. Do drive band service check (1.80).
20. Do head/carriage position service check (1.64).
21. Replace cover/wiper assembly 8 .
22. Replace diskette drive cover (1.62).

1.77 PULLEY/CLAMP REMOVAL

1. Remove diskette drive cover (1.62).
2. With power off, remove cover/wiper assembly 4.
3. Disconnect head cable from diskette drive control card.
4. Remove card retainer and diskette drive control card.
5. Loosen two mounting screws 1. Push idler assembly 3 against spring tension and tighten screws.

CAUTION: During the following steps be careful not to damage the drive band.
6. Remove clamp screw 14 and clamp 13 from pulley 10.
7. Carefully remove drive band ends from pulley pin 12.
8. Measure and record gap between stepper motor pulley and casting 15.

Gap is:

9. Loosen clamp screw 8 and remove pulley 10 and clamp 9.

1.78 PULLEY/CLAMP REPLACEMENT

1. Replace pulley 10 , clamp 9, and clamp screw 8. (Do not tighten screw.)
Note: With the stepper motor clamp screw loose, the motor shaft is free to rotate inside the pulley.
2. Replace drive band ends on pulley pin 12 and install clamp 13 and screw 14 . Do not tighten screw.
3. Loosen two mounting screws 1 and allow spring tension to position idler 3 . Tighten mounting screws and center drive band on idler pulley as shown 2.
4. Replace diskette drive control card and card retainer.
5. Replace head cable on diskette drive control card.
6. Position stepper motor pulley by hand to track 40 and insert timing pin 7 (located inside cover assembly) through pulley and into timing slot 6 in casting.
7. Turn on power.
8. Electrically detent stepper motor to phase 0 by installing a jumper between the "-Align Access" and "Ground" test points on diskette drive control card (1.94).
9. Make the gap between pulley and casting equal the value recorded during pulley/clamp removal, step 8 (1.77).

CAUTION: Do not push clamp against pulley when tightening clamp screw. Clamp must be positioned near the end of the pulley flanges for effective clamping.
10. Tighten clamp screw 8
11. Tighten band clamp screw 14.
12. Remove timing pin and return it to its storage location inside cover assembly.
13. Remove jumper installed in step 8.
14. Do drive band service check (1.80).
15. Do head/carriage position service check (1.64).
16. Replace cover/wiper 4.
17. Replace diskette drive cover (1.62).

1.79 WIPER REPLACEMENT

1. Remove diskette drive cover (1.62).
2. Remove cover/wiper assembly 4 .
3. Exchange wiper 5.
4. Replace cover/wiper assembly.
5. Replace diskette drive cover (1.62).

1.80 DRIVE BAND SERVICE CHECK AND ADJUSTMENT

Service Check

1. Remove diskette drive cover (1.62).
2. With power off, disconnect head cable from diskette drive control card.
3. Remove card retainer and diskette drive control card.
4. - Loosen two mounting screws 3 and allow spring tension to position idler 5 . Tighten mounting screws.
5. Remove cover/wiper assembly 7.
6. Rotate stepper motor pulley and check that drive band is centered 4 on idler pulley 5 throughout travel of head/carriage assembly.
7. If above check is not good, adjust drive band, starting at step 5.
8. Replace diskette drive control card and card retainer.
9. Connect head cable to diskette drive control card.
10. Replace cover/wiper assembly 7.
11. Replace diskette drive cover (1.62).

Adjustment

1. Remove diskette drive cover (1.62).
2. With power off, remove cover/wiper assembly 7 .
3. Disconnect head cable from diskette drive control card.
4. Remove card retainer and diskette drive control card.
5. Position head/carriage assembly to approximately track 40.
6. Remove two band clamping screws 2 and clamp 1
7. Loosen two mounting screws $\mathbf{3}$ and allow spring tension to position idler 5 . Tighten mounting screws.
8. Rotate stepper motor pulley by hand a few turns to allow drive band to find its center 4 on ider pulley.
9. Position head/carriage by hand to approximately track 40 and check that band mounting slots 6 are centered (left to right) over mounting holes on carriage pad.
10. Repeat step 9 for approximately track 76. If both positions are centered, skip step 11.
11. Loosen clamp screw $\mathbf{1 0}$ and adjust stepper motor pulley 12 to position needed for steps 9 and 10 .
12. Measure and record gap between stepper motor pulley and casting 15.

Gap is:
13. Position head/carriage assembly to approximately track 40.
14. Replace clamp 1 and two clamp screws 2 , but do not tighten.
15. Position stepper motor pulley by hand to track 40 and insert timing pin 9 (located inside cover assembly) through pulley and into timing slot 8 in casting.
16. Loosen clamp screw 10.
17. Replace diskette drive control card and card retainer.
18. Connect head cable to diskette drive control card.
19. Turn on power.

Note: With clamp screw 10 loose, stepper motor shaft is free to turn inside pulley.
20. Electrically detent stepper motor to phase $\mathbf{0}$ by installing a jumper between the "-Align Access" and "Ground" test points on diskette drive control card (1.94).
21. Make the gap between pulley and casting 15 equal the value recorded during step 12.

CAUTION: Do not push clamp 11 against pulley 12 when tightening clamp screw 10 . Clamp must be positioned near the end of the pulley flanges for effective clamping.
22. Tighten clamp screw 10.

Note: The timing pin should pass freely through the stepper motor pulley and the timing slot in the casting.
23. Remove timing pin and return it to its storage location inside cover assembly.
24. Remove jumper installed in step 20.
25. Adjust head/carriage position (1.64), starting at step 13.

1.81 DRIVE BAND REMOVAL

1. Remove diskette drive cover (1.62).
2. With power off, remove cover/wiper assembly 5
3. Disconnect head cable from diskette drive control card.
4. Remove card retainer and diskette drive control card.
5. Loosen two mounting screws 3 . Push idler assem. bly 4 against spring tension and tighten mounting screws.
6. Position head/carriage assembly to approximately track 40.
7. Remove two band clamping screws 2 and clamp 1.

Carefully lower head/carriage assembly to rest on casting.
8. Remove clamp screw 6 and clamp 7
9. Remove drive band ends from pulley pin 8 .
10. Remove drive band.

1.82 DRIVE BAND REPLACEMENT

1. Place drive band around idler assembly 4
2. Install drive band ends on pulley pin 8 with notches facing away from stepper motor.
3. Replace clamp 7 and clamp screw 6 , but do not tighten.
4. --Adjust drive band (1.80), starting at step 9 .

1.83 STEPPER DRIVE IDLER ASSEMBLY REMOVAL

1. Remove drive band (1.81).
2. Loosen two mounting screws 2
3. Remove spring 1
4. Remove mounting screws and idler assembly 3

1.84 STEPPER DRIVE IDLER ASSEMBLY REPLACEMENT

1. Replace idler assembly 3 and two mounting screws 2.
2. Replace spring 1 .
3. Push idier assembly against spring tension and tighten mounting screws.
4. Replace drive band (1.82).

1.85 LED/PTX ALIGNMENT

1. Remove diskette drive cover (1.62).
2. Loosen PTX mounting screw 2 .
3. Position PTX assembly 3 against casting stop 1 (away from leads) and tighten mounting screw.
4. Loosen two LED mounting screws 4.
5. Insert two timing pins 7 (located inside cover assembly) through LED and into PTX assembly and tighten LED mounting screws.
6. Remove timing pins and return to storage location inside cover assembly.
7. Replace diskette drive cover (1.62).
8. Turn on power.

1.86 LED SERVICE CHECK

1. Turn on power.
2. Connect negative probe of volt/ohmmeter (VOM) to "Ground" test point on diskette drive control card (1.94).
3. Connect positive probe of VOM (5 V dc scale) to "43FD LED Voltage" test point (1.94).
4. Check VOM for reading of 1 Vdc to 2 V dc.
5. Move positive probe to "33FD LED Voltage" test point (1.94).
6. - Check VOM for reading of 1 V dc to 2 V dc.
7. If either voltage level is not within limits, replace LED assembly 5 .

1.87 PTX/AMPLIFIER SERVICE CHECK

CAUTION: Perform this service check with a diskette inserted backward (with the label facing the hub pulley), or LED light will be present causing a wrong VOM reading.

1. Turn off power.
2. Insert a diskette backward and close cover.
3. Disconnect drive motor power cable from socket 6

DANGER:

Voltage is still present at socket with the drive motor power cable disconnected and power on.
4. Turn on power.
5. Connect positive probe of VOM (15 V dc scale) to "+Index" test point on diskette drive control card (1.94).
6. Connect negative probe of VOM to "Ground" test point (1.94).
7. Check VOM for reading of less than 1 V dc.
8. Install one end of a jumper to "43FD PTX" test point (1.94).
9. While observing VOM, touch other end of jumper to diskette drive casting three times. VOM should read 2.5 V dc or more for at least last two groundings.
10. Repeat steps 8 and 9 with jumper on "33FD PTX" test point (1.94).
11. If either condition fails to generate at least 2.5 V dc output, replace diskette drive control card.
12. Remove diskette.
13. Insert the starter diskette normally.
14. Rotate the hub until the index hole causes the phototransistor to switch on and off. There should be a shift of approximately 2.5 V .
15. Repeat the process with a 2 -sided diskette. This tests the other LED and phototransistor.

1.88 LED REMOVAL

1. Remove diskette drive cover (1.62).
2. Disconnect drive control cable from position A2 on the file control card.
3. Remove cable connector cover 1 and remove four LED leads 2 by pushing down on tabs with a small screwdriver.
4. Remove LED cable from retainers 11.

Note: When removing cable assemblies, note the oriyinal routing for replacement purposes.
5. Remove four screws 10 and guide 9
6. Remove two LED mounting screws 13 and nuts 14 and remove LED assembly.

1.89 LED REPLACEMENT

1. Install LED assembly 12, two mounting screws 13. and nuts 14 into guide 9 .
2. Replace guide and four screws 10
3. Following original routing through three retainers 11 insert the four LED leads 2 (33FD pair identified with tubing) into diskette drive control cable conector.
4. Replace the cable connector cover 1 .
5. . Connect cable to position A2 on diskette drive con. trol card socket.
6. Align LED/PTX (1.85), starting at step 2.

1.90 PTX REMOVAL

1. Remove diskette drive cover (1.62).
2. With power off, remove four screws 10 and guide 9.
Note: Be careful not to damage the LED leads.
3. Disconnect the diskette drive control cable from position A2 on the file control card.
4. Remove connector cover 3 and remove four PTX leads 4 by pushing down on tabs with small screwdriver.
5. Remove PTX mounting screw 7 and washer 6.
6. Remove PTX assembly 8 .

Note: When removing cable assemblies, note origina! routing for replacement purposes.

1.91 PTX REPLACEMENT

1. Install PTX assembly 8 against casting stop 5 (away from leads) and replace screw 7 and washer 6.
2. Following original routing, insert four PTX leads 4 (33FD pair identified by tubing) into diskette drive control cable connector.
3. Replace connector cover 3 and plug connector into position A2 of diskette drive control card socket.
4. Replace guide 9 and four screws 10.
5. Adjust LED/PTX (1.85), starting at step 4.

1.92 DISKETTE DRIVE CONTROL CARD PIN ASSIGNMENTS

Name	Color	Control Card	Cable, Drive End
Stepper Motor MC-0 (Phase 0)	Orange	G03	D03
Stepper Motor MC-1 (Phase 1)	Red	J02	B02
Stepper Motor MC-2 (Phase 2)	Yellow	G04	D04
Stepper Motor MC-3 (Phase 3)	Blue	G02	D02
Stepper Common +24V dc	Black	J05	B05
Head Magnet +24V dc	Yellow	J04	B04
-Head Load	Black	G05	D05
LED Return (Diskette 1)	Red	J06*	B06
LED Current (Diskette 1)	Black	J07	B07
PTX Return (Diskette 1)	Yellow	J09*	B09
PTX Current (Diskette 1)	Black	G08*	D08
LED Return (Diskette 2)	Red	G06	D06
LED Current (Diskette 2)	Black	G07	D07
PTX Return (Diskette 2)	Yellow	G11	D11
PTX Current (Diskette 2)	Black	G10	D10
Preamp TP1		J12	B12
Pre		J13	B13

Preamp TP2		J13	B13	Cable End	$\begin{aligned} & 3601-2 / 3 \\ & 3602 \\ & \text { Basic } \\ & \text { Ctri Bd } \end{aligned}$	$\begin{aligned} & 3601-D \\ & \text { Basic } \\ & \text { Ctrl Bd } \end{aligned}$	$\begin{aligned} & 3601 \\ & \text { TBI } \end{aligned}$	3602TB1
Ground	Black	J08	B08					
+ Access 0		B02	D02	D02	H6A04	D6E04		
+ Access 1		B03	D03	D03	H6B04	E6A04		
+ Access 2		B04	D04	D04	H6C04	E6B04		
+ Access 3		B05	D05	D05	H6D04	E6C04		
+ Diskette Data		B07	D07	D07	J6A04	E6E04		
+ Head Engage		B10	D10	D10	J6D04	F6C04		
+ Write Data		D02	B02	B02	H6A02	D6E02		
+ Erase Gate		D04	B04	B04	H6C02	E6B02		
+ Write Gate		D05	B05	B05	H6D02	E6C02		
+ Inner Tracks		D06	B06	B06	H6E02	E6D02		
+ Index		B13	D13	D13	K6B04	G6A04		
+ Erase Current Sense		D09	B09	B09	J6C02	F6B02		
+ Select Head 1		D07	B07	B07	J6A02	E6E02		
+ Two-sided Diskette Sense		B08	D08	D08	J6B04	F6A04		
- Two-sided Drive Sense		B09	D09	D09	J6C04	F6B04		
$+24 \mathrm{~V} \mathrm{dc}$		D 10	B10	B10	J6D02	F6C02		
$+5 \mathrm{Vdc} * *$		D03	B03	\bigcirc	\bigcirc		TB1-1	TB1-6
-5V dc**		D11	B11	,			TB 1-4	TB1-10
Ground		D08	B08	B08	J6B02	F6A02	TB1-10	TB1-3

[^4]
1.93 DISKETTE DRIVE CONTROL CARD REMOVAL AND REPLACEMENT

i. Turn off power.
2. Disconnect head cable 2 from diskette drive control card 3
3. Remove card retainer 1 and card.
4. To replace, reverse above procedure.

1.94 DISKETTE DRIVE CONTROL CARD TEST POINTS

1.94 DISKETTE DRIVE CONTROL CARD TEST POINTS (Cont)

PN 8527124

1.95 INDEX TEST POINT

Check for index pulses every 166.6 ms at the "+ Index" test point on the diskette drive control card (1.51 or 1.94). Pulse width should be $\mathbf{1 . 7}$ to $\mathbf{8 . 0} \mathrm{ms}$.

Index Pulses Every 166 m
Pulse Width in Example: Approximately 5 ms Sync: + Internal

$1 \mathrm{~ms} /$ Division
Index Pulse of Approximately 5 ms
Sync: + Internal

1.96-1.99 Not Used

1.100DISK ENCLOSURE (DE) REMOVAL

The following may eliminate the need for DE replacement; it clears as much of the customer data as possible for his security.

You should advise the customer that some information that was on the disk has been destroyed. You should ask the customer whether he wishes to attempt to salvage the remaining data using the utility programs or his own methods. If the customer does not or can not salvage data, the CE should run utility program routines 1 and 4 as follows:

- Load the diagnostic/utility diskette in the diskette drive and press reset on the controller.
- When the control program has been loaded, BCBO may display; respond with the model number of the 3604 that you are using, followed by enter (EM). BC80 should then display on this 3604 .
- When BC80 is displayed, respond with 000001 EM (enter key); when 0012 is displayed, respond with F and EM (enter key).
- When 0014 is dispiayed, respond with C and EM (enter key).
- When the routine is complete, 0000 is displayed. Then respond with 000004 EM (enter key) to run routine 4.
- When 0045 is displayed, respond with C6 EM (enter key). This should write all sector IDs and zero all data fields. If a message of 0041 ,DDD is displayed, you have a permanent, unrecoverable disk defect, and the DE must be replaced.
- When the routine is complete (nearly 1 hour), there should be a normal completion message of 0044,DDD, where DDD is the decimal count of the sectors with alternates assigned (recoverable surface defects). Respond with C EM (enter key) to terminate.

Running these utilities clears and restores the DE IDs. All the data is now zeros.

Note: See your branch office for correct methods of returning a used DE to ensure security of customer data. Inform the customer of methods available.

CAUTION: Do not turn the motor spindle unless instructed to, and then in a clockwise direction only. See the direction arrow on the duct cover at the rear of the DE.

CAUTION: The DE weighs approximately 37 lb . (12.25 kg .) ; locate a space for it before removal.

1. Disconnect the controller from the ac power source.
2. Turn on the actuator lock 1 .
3. Remove the DE card socket cover.
4. Release the cable straps located at the side of the DE card sockets.
5. Remove the cards and cable ends from the DE card sockets.
6. Remove the drive belt guard 7 by loosening the two holding screws and lifting it off.
7. Lock the spindle by loosening the two screws holding the spindle lock/anti-static brush, and by engaging the spindle locking pin on the spindle pulley 9 . Tighten the two holding screws.
8. Remove the drive belt 5 after removing belt tension by pivoting the drive motor 6 upward.
9. Disconnect the speed-sensing transducer 3 wires from TB1 2 terminals 7 (black wire) and 8 (white wire). Unfasten these wires from the holder 4.
10. If present, disconnect the two wires from TB2 11 terminals 1 (yellow wire) and 2 (black wire).
11. Disconnect DE ground wire from TB1 2 terminal 4.
12. Disconnect DE ground strap 8 at the controller end.
13. Ensure that the DE holding clip at the top of the disk storage subframe is engaged. See Detail A.
14. Remove the three mounting nuts and washers 10. See Detail B.

CAUTION: When lifting away the DE, use care to prevent loose wires from being damaged.
15. Release the DE holding clip, and lift away the DE. Always support the DE on its three mounting screws 10.

1.101 DISK ENCLOSURE (DE) REPLACEMENT

Note: Instructions for packing and unpacking are supplied with each DE; one copy fastened outside the case, another inside the case. If both copies are missing, order PN 7373765.

CAUTION: Do not turn the motor spindle unless instructed to, and then in a clockwise direction only. See the direction arrow on the duct cover at the rear of the DE.

CAUTION: When installing the DE, use care to prevent loose wires from being damaged.

1. Lift the DE onto the disk storage subframe. Push the three mounting screws 10 firmly into the rubber mounts, and ensure that the holding clip, at the top of the disk storage subframe, is engaged. See Detail B.

Note: Alignment marks are provided on the disk storage subframe for positioning the top of the DE.

2. Install the three sets of DE mounting nuts and washers (see Detail C) on the mounting screws 10. Tighten each nut until its two-coiled washer is depressed.
3. Connect the DE ground strap 8 at the controller end.
4. Connect the DE ground wire to TB1 2 terminal 4.
5. Connect the speed-sensing transducer wires to TB1 2 terminals 7 (black wire) and 8 (white wire). Fasten these wires in the holder 4.
6. Measure the space between the speed-sensing transducer 3 and the spindle pulley 9 for $0.006 \pm 0.002-\mathrm{in}$. $(0.1524 \pm 0.0508 \mathrm{~mm})$ gap. See Detail A. Adjust, if, needed, by loosening the clamping screw.
7. If a yellow wire and a black wire are present near TB2 11, connect to terminals 1 (yellow wire) and 2 (black wire).
8. Install the drive belt 5 , smooth side against pulleys, after pivoting the drive motor 6 upward.

CAUTION: Ensure that the drive belt cannot touch the speed-sensing transducer.
9. Unlock the spindle by loosening the two screws holding the spindle lock/anti-static brush, and by disengaging the spindle locking pin on the spindle pulley 9 . Center the anti-static brush on the center pin of the spindle, and tighten the two holding screws.
10. Ensure that the anti-static brush has a pressure of approximately 60 grams on the center pin of the spindle. Adjust, if needed, by forming the brush.
11. Install the drive belt guard 7.
12. Install the cards and cable ends in the DE card sockets. See DE cables (1.112).
13. Fasten the cable straps located at the side of the $D E$ card sockets.
14. Install the DE card socket cover.
15. Turn off the actuator lock 1 .
16. Do the motor brake service check (1.104).

CAUTION: Before turning on power, allow 30 minutes for the DE to reach room temperature.

17. Run utility program routines 1 and 4 as follows to prepare the DE for 3602 use:

- Load the diagnostic/utility diskette in the diskette drive and press reset on the controller.
- When the control program has been loaded, BCBO may display; respond with the model number of the 3604 that you are using, followed by enter (EM). BCBO should then display on this 3604. . :
- When BC80 is displayed, respond with 000001 EM (enter key); when 0012 is displayed, respond with F and EM (enter key).
- When 0014 is displayed, respond with C and EM (enter key).
- When the routine is complete, 0000 is displayed. Then respond with 000004 EM (enter key) to run routine.
- When 0045 is displayed, respond with C6 EM (enter key). This should write all sector IDs' and zero all data fields. If a message of 0041 ,DDD is displayed, you have a permanent, unrecoverable disk defect, and the DE must be replaced.
- When the routine is complete (nearly 1 hour), there should be a normal completion message of 0044,DDD, where DDD is the decimal count of the sectors with alternates assigned (recoverable surface defects). Respond with C EM (enter key) to terminate.

Running these utilities clears and restores the DE IDs. All the data is now zeros.

1.102 DISK MOTOR REMOVAL

CAUTION: Do not turn the motor spindle unless instructed to, and then in a clockwise direction only. See the direction arrow on the duct cover at the rear of the DE.

1. Disconnect the controller from the ac power source.
2. Turn on the actuator lock 1
3. Remove the drive belt guard 5 by loosening the two holding screws and lifting it off.
4. Lock the spindle by loosening the two screws holding the spindle lock/anti-static brush, and by engaging the spindle locking pin on the spindle pulley Tighten the two holding screws.
5. Remove the drive belt $\mathbf{3}$ after removing belt tension by pivoting the drive motor 4 upward.
6. Disconnect the motor wires from TB1 2 , terminal 1, terminal 2, and terminal 3.
7. Disconnect the motor-brake wires from TB1 2. terminals 5 and 6 .
8. Remove the three reusable cable straps that hold these wires (disconnected in steps 6 and 7) to the disk storage subframe.
9. Insert the blade of a large screwdriver through the center of the motor tension spring, and lift the spring from the motor mounting bracket. See Detail A.
10. Remove the locking clip and holding ring from the motor pivot pin.
11. Slide the motor assembly away from the disk storage subframe, and lift upward to clear the pivot pin.
12. Remove the motor from the mounting bracket by removing the three screws at the front of the bracket.
13. If required, remove the brake assembly (1.106).

1.103 DISK MOTOR REPLACEMENT

CAUTION: Do not turn the motor spindle unless

 instructed to, and then in a clockwise direction only. See the direction arrow on the duct cover at the rear of the DE.1. Install the motor on its mounting bracket, ensuring that the motor vents face upward and the motor cable exits at the bottom left. Fasten the motor, using the three mounting screws.
2. Replace the brake assembly if it was removed (1.107).
3. Put a small amount of grease on the pivot points of the motor assembly.
4. Lift the motor assembly into position, and insert the pin on the motor mount into the hole in the disk storage subframe.
5. Lift the brake end of the motor assembly onto the pivot pin.
6. Install the holding ring on the pivot pin. Then install the holding clip on the pivot pin, pushing it into the slot with a screwdriver.
7. Lift the tension spring into its position on the motor mounting bracket. See Detail A.
8. Pivot the drive motor upward to ensure correct seating of the tension sprina.
9. Connect the motor wires to TB1 2 , terminal 1 . terminal 2, and terminal 3
10. Connect the motor-brake wires to TB1 2, terminals 5 and 6, as indicated by wire labels.
11. Install the three reusable cable straps that hold these wires (connected in steps 8 and 9) to the disk storage subframe.
12. Install the drive belt 3 , smooth side against pulleys, after pivoting the drive motor 4 upward.

CAUTION: Ensure that the drive belt cannot touch the speed-sensing transducer.
13. Unlock the spindle by loosening the two screws holding the spindle lock/anti-static brush, and by disengaging the spindle locking pin on the spindle pulley 6 . Center the anti-static brush on the center pin of the spindle, and tighten the two holding screws.
14. Ensure that the spindle anti-static brush has a pressure of approximately $\mathbf{6 0}$ grams on the center pin of the spindle. Adjust, if needed, by forming the brush.
15. Install the drive belt guard 5
16. Turn off the actuator lock 1

1.104 MOTOR BRAKE SERVICE CHECK

1. Disconnect the controller from the ac power source.
2. Disconnect the disk motor power plug at the ac power box.
3. Connect the controller to ac power, and turn on power.
4. The brake is now energized, and the gap 1 between the brake pad 2 and the brake plate 3 should be 0.005 to $0.010-\mathrm{in}$. (0.127 to 0.254 mm) at all three openings in the brake mount.
5. Turn off power.
6. Disconnect the controller from the ac power source.
7. The brake is now de-energized, and the gap 8 between the brake pad 7 and the brake coil 6 should be 0.005 to $0.010-\mathrm{in}$. (0.127 to 0.254 mm) at all three openings in the brake mount.
8. Connect disk motor power plug removed in step 2.

1.105 MOTOR BRAKE ADJUSTMENT

1. Disconnect the controller from the ac power source.
2. Loosen the three brake adjustment locking screws 4.
3. Turn the three adjusting screws 5 slowly for $0 . C 08$-in. (0.203 mm) gap as measured in service check step 7.
4. Tighten the locking screws 4 , and do service check.

BLANK PAGE

1.106 MOTOR BRAKE ASSEMBLY REMOVAL

1. Disconnect the controller from the ac power source.
2. Cut open the cable strap 6 holding the motor and brake cables together, and also the strap 5 holding the brake cable to the brake mount.
3. Remove the brake anti-static brush 3 by removing the screw holding it to the brake mount.
4. Remove the ground wire 2 by removing the brake adjustment locking screw 1 . Replace the locking screw.
5. Remove the three mounting screws 7 holding the brake assembly to the motor; also, remove ground wire 4.
6. Remove the brake assembly, including the brake pad 13 and spring 12.

1.107 MOTOR BRAKE ASSEMBLY REPLACEMENT

1. Loosen the three brake locking screws 8.
2. Turn the brake adjusting studs out until the brake coil 11 touches the brake mount 10.
3. Mount the brake assembly onto the rear of the motor. Ensure that the three slots in the brake pad 13 are aligned with the three pins on the brake coil 11. When viewed from the rear of the motor, the hazard label should be on top and the cables from the motor and brake should run together at the bottom left.
4. Install the three screws 7 holding the brake assembly to the motor, connecting the ground wire 4 under one of the screws.

CAUTION: Ensure that the brake mount 10 touches the motor end on each of the three mounting surfaces. The surfaces must not be pressed together by the screws 7. as this would damage the brake assembly. If the surfaces do not touch using hand pressure, ensure that earlier assembly has been done correctly.
5. Install the anti-static brush 3 and its ground cables 2 and 4 . Ensure that the brush has a pressure of approximately 60 grams on the center of the brake. Adjust, if needed, by forming the brush arm.
6. Install the remaining ground wire 2. under one of the brake adjustment screws 1 .
7. Tie the motor and brake cables with cable straps 5 and 6 .
8. Do the motor brake service check (1.104).

1.108 SPEED-SENSING TRANSDUCER SERVICE CHECK

1. Turn off power.
2. Measure for approximately $\mathbf{3 0 0}$ ohms resistance between points 01A1A5D10 and 01A1A5D11. If measurement is incorrect, replace the transducer 2 and do the adjustment (1.109).
3. Connect a CE Probe to the transducer signal, as follows:

Switch	Position
TECHNOLOGY	MULTI
LATCH	NONE
GATE	OFF

Connect probe signal lead to 01A1A5D11, and probe reference lead to 01A1A5D 10 .
Power leads

+ (red) to any card socket D03 pin (+5V).
- (black) to any card socket D08 pin (Ground).

4. Turn on power.
5. With the disk turning, both probe lights should be on. If not, do the adjustment(1.109). If adjustment was correct, replace transducer.

1.109 SPEED-SENSING TRANSDUCER ADJUSTMENT

CAUTION: Do not turn the spindie 4 during the following procedure.

1. Disconnect the controller from the ac power source.
2. Turn on the actuator lock 1 .
3. Remove the drive belt guard 3 .
4. Measure the space between the transducer 2 and the spindle pulley 4 for 0.006 ± 0.002-in. $(0.1524 \pm 0.0508 \mathrm{~mm})$; see Detail A. Adjust, if needed, by loosening the transducer clamping screw.
5. Install the drive belt guard 3 .
6. Turn off the actuator lock 1 .

1.110 ANTI-STATIC BRUSH SERVICE CHECK

1. Disconnect the controller from ac power.
2. Remove the drive belt guard 3 .
3. Ensure that the anti-static brush for the spindle 4. has a pressure of approximately 60 grams on the center of the spindle. Adjust, if needed, ty forming the brush arm.
4. Ensure that the anti-static brusli for the brake has a pressure of approximately 60 grams on the center of the brake. Adjust, if needed, by forming the brush arm.
5. Install the drive belt guard 3 .

1.111 DISK STORAGE CARD JUMPERS

 (PN 1794401)

Notes: 01-B1 board requires back panel connection from H2B09 to F6C04. 01-A 1 board requires back panel connections defining installed disk storage size:
Model 1A (5.2 Meg.)

W/O Fixed Heads	D3D09 to C4B10 J3D 11 to J3D 10 A3D02 to A3D10
With Fixed Heads	D3D09 to C4B 10 J3D11 to J3D10 M5D13 to M5D08

Model 1B (9.3 Meg.)

W/O Fixed Heads	B5D09 to D2D09 B5D10 to D4D07 J3D10 to J3D08 D4D05 to K3D10 D4D06 to K3B13 M5D11 to M5D08 A3D02 to A3D10
With Fixed Heads	B5D09 to D2D09 J3D10 to D4D07 D4D05 to K3D10 D4D06 to K3B13 M5D11 to M5D08 M5D13 to M5D08

CAUTION: To avoid plugging card in backwards, note the location of the capacitors and plug in the card with the capacitors towards the socket.

1.112 DE CABLES

Cable 1 (Disk Drive Motor)

Disk TB2
(Not present on Mod 1A)

Cable 2 01X-W1A1 to 01A1A5

Cable 3 01X-W1B1 to 01A1A2 (Servo Amp)

W1 Board Plugging Position and Pin Number	O1A1 Board Plugging Position and Pin Number
B1004	A2D04
B1 D05	A2D05

1.112 DE CABLES (Cont)

Cable Connector

Contact Numbers

Cable 6 01X-W 1B2 to 01A1A3

Cable 4 01X-W1B5 to 01A1A4

Cable Connection	
01X-W1B5B11 to	01A1A4B11
B06 to	1 B06
B13 to	B13
B09 to	B09
B08 to	B08
B12 to	B12
D06 to	D06
D05 to	D05
D09 to	D09
B04 to	B04
\downarrow ¢ B03 to	\uparrow - B03
01X-W1B5D 12 to	01A1A4D 12

Cable 5 01X-W1B6 to 01A1Y1

Cable Connection
$01 X-W 1 B 6 D 11$ to 01A1C1C11
01X-W1B6D13 to 01A1C1E11

Note: Relay coil should energize with power on if sensor circuit (C4) indicates brake coil is working.

- Measure 24V at 01ATB1-16
- To test continuity, turn off power and remove cards A1C4 and A1H2.
- Measure between TB1-16 and 01A1C4D02 for approximately 100 ohms.
- Between TB1-16 and 01A1H2J10, an ohmmeter should read approximately 25 ohms in one direction and 250 ohms in the other.
- Ensure that cabling is not shorted to anything else.
- Correct any problem found or, if continuity is good, replace the two cards.

1.114 DISK STORAGE DIAGNOSTIC RUN

Note: The results of this diagnostic are valid only if the complete procedure is followed from power on or reset. The diagnostic expects to start from a reset condition.

1. Power off all terminals other than the 3604 at address 1 on loop 1, to prevent interference.
2. Insert the diagnostic diskette and activate the controller power-on or reset switch.
3. When the control program has been loaded, BCBO may display; respond with the model number of the 3604 that you are using, followed by enter (EM). BC80 should then display on this 3604.
4. Key in 1010 and press enter (EM). This command selects and runs all disk storage tests that do not require manual intervention.*
5. Messages will be displayed defining machine status:
$\left.\begin{array}{rl}1000= & \text { Tests completed successfully. } \\ 1080= & \text { Temporarily unable to do input/ } \\ \text { output. This is normal for short } \\ \text { periods of time during the tests. } \\ & \text { A stop (1 minute or more) at this } \\ \text { point indicates a controller prob- } \\ \text { lem; see MAP2. }\end{array}\right\}$

Note: The diagnostic run can be ended at any time by pressing the free (FR) key on the 3604 (refer to 1.2 for keyboard locations).

CAUTION: Do not use reset to end. This could terminate an incomplete write operation. Use the free (FR) key.

[^5]
1.115 DISK DIAGNOSTIC ERROR CODES

The following error codes are displayed following error message 10EE. These codes direct you to replace the FRUs in the most likely sequence to solve the failure. Return each FRU that does not solve the problem.

CAUTION: Turn power off when changing cards.

The first two digits of the error code are the number of the failing routine. Generally, error code stops on routines that read can be caused by the disk data having been destroyed. Refer to the routine description in 3.12.3 to determine if a routine or utility program should be run to try to correct or eliminate this as a cause of the error code stop. Refer to the example on the following page.

Try to find a completely matching code. Ignore the " X " character if it appears in the list. The " X " has the following meaning per the jumpering in 1.111:

$$
\begin{aligned}
& 0=5 \mathrm{Meg}, \text { no fixed heads. } \\
& 1=10 \mathrm{Meg}, \text { no fixed heads. } \\
& 4=5 \mathrm{Meg}, \text { fixed heads. } \\
& 5=10 \mathrm{Meg}, \text { fixed heads. }
\end{aligned}
$$

If you cannot find a complete match, try to match only the first 4 characters to the codes in the list with the "*". All cards are located on 01A1 board, except B3. A2 and A5, which are located on the DE. Any other exceptions will be noted. If the error code stop changes when you replace a card, consider the following:

1. Any change in the error code stop may mean that the replacement card was defective or there is more than one problem on the machine.
2. A higher error code stop probably indicates that the replacement card was good, but that there is a second problem. The second problem may be another card or the contents of the disk may have been destroyed by the first defective card. You can try to correct the disk data by running a write routine or one of the utility programs as described in Chapter 3.
3. A lower error code stop probably indicates that the replacement card was defective. If you could not find a match, or if card replacement did not correct the problem, return to the MAP step that you came from.
Note: Be sure to check jumpers on cards 01A1G2, J2, and K2 (1.111).

Example:

An example of the sequence of steps that may be required to resolve a customer problem is as follows:
Customer reports problem - probably by an 11007 error log message.
CE runs diagnostic - error stop 421A 00831001×013 02689700

1. The CE determines that the first two digits are 42, which is the failing routine. By referring to 3.12.3, the CE determines that routine 42 is a write-then-read sector ID on the CE cylinder; therefore, the problem is not because of bad data on the disk. Error code list 1.115 directs the CE to replace cards. When the diagnostic is run the second time, there is a 4191 message. By looking at 3.12.3, the CE determines that routine 41 reads the IDs on the CE cylinder; therefore, this error stop can be caused by bad data on the disk.
2. The CE should run only routine 42 as he is trying to correct the original error stop by changing the FRUs listed. In this case the third card corrects the problem.
3. The CE then runs the whole diagnostic again. This time he gets a 4993 error message. Again, by looking at 3.12.3, he could determine that this is a read of the fixed head IDs.
4. The CE should then run routine 50 to write the fixed head IDs.
5. The CE should then run the whole diagnostic again. - This time it runs error free.
6. The CE then returns the system to the customer.
7. The customer may then get another 11007 message indicating disk data is still bad per MAP 11-2.
8. The CE should then advise the customer that some information that was on the disk has been destroyed.
9. The CE should ask if the customer wishes to attempt to salvage the remaining data using the utility programs or his own methods.
10. If the customer does not or can not salvage data, the CE should run utility program routines 1 and 4 as follows:
Load the diagnostic/utility diskette in the diskette drive and press reset on the controller. When the control program has been loaded, BCBO may display; respond with the model number of the 3604 that you are using, followed by enter (EM). When BC80 is displayed, respond with 000001 EM (enter key); when 0012 is displayed, respond with F and EM (enter key). When 0014 is displayed, respond with C and EM (enter key). When the routine is complete, 0000 will display. Then respond with 000004 EM (enter key) to run routine 4. When 0045 is displayed, respond with C6 EM (enter key). This should write all sector IDs and zero all data fields. If a message of 0041, DDD is displayed, you have a permanent, unrecoverable disk defect, and the DE must be replaced. When the routine is complete (nearly 1 hour), there should be a normal completion message of 0044,DDD where DDD is the decimal count of the sectors with alternates assigned (recoverable surface defects). Respond with C EM (enter key) to terminate.
11. Running these utilities clears and restores the DE IDs. All the data is now zeros.

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

(These codes follow the "10EE" message.)

Code	FRUs		
* 0000	F2	L2	
* 0168	F2	G2	H2
	J2		

For Error Code 0181, check that 01A1 has power (Fig. 3-8) and that it is cabled to 01A2 (1.112).

* 0181
* 0183 0183 525C
* 0185 01850210 01850410 01850411 01850810 01851010 01852010 01854010 01858010
* 0187
* 0189 01890011 01890012 01890014 01890017 01890018 01890020 01890030 01890050 01890051 01890080 01890090
* 0191 019100100010 019180140010
* 0193
* 0195
* 0197
* 0199
* 019B
* 019D
* 019F
* 01A0
* 01A1
* 01A2

*	F2	01A	M2				
F2	K2	J2					
F2	J2						
C2	K2	H2	F2	D2	B3	G2	L2
G2	K2						
G2	K2						
G2							
H2	K2						
D2	K2	C2	F2	G2	B3		
G2	K2						
F2	K2						
F2	K2	L2					
G2							
F2	G2	H2	J2	K2	L2		
H2	F2	G2	J2				
F2	J2						
F2	J2						
F2	J2	L2					
F2	J2						
J2	H2						
J2	F2	G2	H2				
G2	H2	J2					
L2	G2	H2					
F2	H2						
K2	J2	H2					
G2	F2	J2	L2	-			
F2	G2	L2	.				
J2	G2						
F2	J2	K2	L2	M2	H2	G2	
F2	J2	K2	L2	M2	H2	G2	
F2	J2	K2	L2	M2	H2	G2	
F2	J2	H2	G2	K2			
F2	J2	K2	L2	M2	H2	G2	
F2	J2	K2	L2	M2	H2	G2	
F2	J2	K2	L2	M2	H2	G2	
F2	J2	K2	L2	M2	H2	G2	.
F2	G2						
F2	J2	K2	L2	M2	H2	G2	

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code			FRUs						
* 0283			J2	K2	L2	F2			
* 0285			F2	J2	K2	L2	M2	H2	G2
* 0287			F2	J2	K2	L2	M2	H2	G2
* 0289			K2	F2	J2				
* 028B			F2	J2	K2	L2	M2	H2	G2
* 028D			F2	J2	K2	L2	M2	H2	G2
* 028F			F2	J2	K2	L2	M2	H2	G2
* 0291			F2	J2	K2	L2	M2	H2	G2
* 0293			M2	J2	F2	K2	L2		
0293	0010	0000	F2	M2	K2	J2	L2		
0293	0010	0070	F2						
0293	0010	0080	F2						
0293	0010	00c3	K2						
0293	0010	00D1	J2						
* 0295			F2	J2	K2	L2	M2	H2	G2
* 0297			F2	J2	K2	L2	M2	H2	G2
* 0299			F2	J2	K2	L2	M2	H2	G2
* 029B			F2	J2	K2	L2	M2	H2	G2
* 029D			M2	J2	F2	D2			
029D	0010	0002	M2	J2	D2				
029D	0010	00FF	J2	K2					
029D	0010	F270	M2	F2					

For error codes beginning with $03 X X$, perform the transducer service checks first (1.108).

* 0391	*	C4	B4	D2	H2	M2		
* 0393	*	C4	F2	L2	M2			
* 0395	*	F2	J2	K2	L2	M2	H2	G2
* 0397		F2	J2	K2	L2	M2	H2	G2
* 0399		C4	H2	B2	D2	M2		
* 039B	*	F2	J2	K2	L2	M2	H2	G2

For error codes beginning with $04 \times \mathrm{X}$, ensure that the actuator lock is off. Run routine 56 first. If it does not isolate the failure, return to this list.

* 0471							L2	M2	G2							
* 0475							L2									
* 0491							D2	G2								
0491	1010	1005	X000	0450			G2									
0491	1010	1005	$\times 000$	0650			G2									
* 0493							D2	C4	M2							
* 0495							D2	B2	B4	C4	C2	F2	G2	H2	M2	J2
0495	0000	1001	X000	0278	0400		D2	M2								
0495	0000	1001	$\times 000$	02E8	0400		C4	D2								
0495	0000	1001	X000	03D8	0400		D2	M2	G2							
0495	0000	1001	$\times 000$	0648	0400		C4	D2	M2							
0495	0000	1001	$\times 000$	0668	0400		D2	C4								
0495	0010	1000	$\times 000$	B050	0410		D2	C2								
0495	0010	1000	$\times 000$	B070	0410		D2	B4								
0495	0010	1000	$\times 000$	F270	0410		F2	G2	H2	J2	L2					
0495	0010	1001	$\times 000$	0050	0410		C4	D2								
0495	0010	1001	$\times 000$	0250	0410		C4	B4								
0495	0010	1001	$\times 000$	0258	0410		C4	D2								
0495	0010	1001	X000	0278	0410	*	B4	D2	B2	C4	M2					

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code						FRU						
0495	0010	1001	$\times 000$	0450	0410	*	D2	B4	B2			
0495	0010	1001	$\times 000$	0650	0410	*	B4	D2				
0495	0010	1001	$\times 000$	1258	0410		D2	M2				
0495	0010	1001	$\times 000$	2A40	0410	,	D2	C4				
0495	0010	1001	$\times 000$	2C50	0410	*	C4	B2	B4	D2	M2	
0495	0010	1001	$\times 000$	2 E 50	0410	*	C4	D2	C2	M2		
0495	0010	1001	$\times 000$	3050	0410		G2	D2	C4	B4		
0495	0010	1001	$\times 000$	3250	0410	*	D2	M2				
0495	0010	1001	$\times 000$	3270	0410	*	B4	B2	C4			
0495	0010	1001	$\times 000$	8A50	0410		D2	B4	G2	M2		
0495	0010	1001	$\times 000$	A270	0410	*	D2	C4	M2	B4		
0495	0010	1001	X000	AA40	0410	*	D2	G2	J2	M2		
0495	0010	1001	$\times 000$	AA50	0410	*	D2	G2	C4			
0495	0010	1001	$\times 000$	AC50	0410		D2	C4	B4	B2	M2	
0495	0010	1001	$\times 000$	AE50	0410	*	C4	D2	M2			
0495	0010	1001	$\times 000$	AE70	0410	*	D2	C4	M2	B4		
0495	0010	1001	$\times 000$	B050	0410	,	D2	B4	B2	C4		
0495	0010	1001	$\times 000$	8250	0410	*	B4	D2	J2	M2		
0495	0010	1001	$\times 000$	B270	0410	*	D2	B4				
0495	0010	1001	X000	B450	0410	*	B2	B4	C4	D2		
0495	0010	1001	X000	EE50	0410	*	B4	C4				
0495	0010	1001	$\times 000$	EE70	0410	,	B4	B2	C4			
0495	0010	1001	$\times 000$	F250	0410	*	B2	B4	D2			
0495	0010	1001	$\times 000$	F270	0410	,	B2	D2	B4	C4	K2	F2
0495	0010	1401	$\times 000$	2C50	0410	*	G2					
0495	0010	1401	X000	3250	0410	*	G2					
* 0497						*	M2					
* 0499						*	M2	F2	D2	G2	J2	
0499	0000	1001	$\times 000$	02F0	0400	*	D2					
0499	0020	9141	$\times 001$	02F8	0420	*	F2					
* 049B						*	D2	C4	F2	G2	J2	
* 1075						F2	L2	J2	K2			
1075	0000	1001	X004	02E8	0380	L2	F2					
1075	0049	1001	X071	02E8	0140	J2	K2					
* 1078						F2	J2	K2	G2	H2	L2	
1078	0000	0000	$\times 000$	02E8		F2	K2	J2				
1078	0000	1001	$\times 000$	02E8		F2	J2	G2	H2	L2		
* 107A						G2						
* 107B						L2	G2	K2	H2	F2		
107B	0020	1041	$\times 008$	02E8		L2						
107B	0020	1141	X000	02E8		G2	H2	K2				
107B	0020	1141	$\times 008$	02E8		L2	F2	G2				
107B	0020	9141	X000	02E8		F2	K2	L2				
* 107C						F2	H2					
* 107F						F2	J2	K2	G2	H2	L2	
* 1081						F2	G2	H2	J2	L2		
1081	0000	0000				F2	J2	G2	H2			
1081	0801	0000				G2	F2	H2	L2			
* 1083						L2	F2	M2	G2	H2	K2	
1083	X000	0000				F2	L2	M2	K2			
1083	X008	0000				L2	F2	G2	H2			

EC 745948

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code		
* 1084		
1084	0011	0000
1084	00F9	0000
1084	1111	0000
1084	8011	0000
* 1086		
1086	X089	
1086	X08C	
1086	X0A8	
1086	X0C8	
1086	X0C9	
* 1087		
1087	9113	0000
1087	9115	0000
1087	9119	0000
1087	9151	0000
1087	9191	0000
* 1088		
* 1091		
1091	$\times 040$	0003
1091	$\times 088$	0003
1091	X089	0003
* 1093		
* 1094		
* 1096		
1096	9110	0005
1096	9111	0005
* 1097		
1097	XFFF	0005
* 1098		
* 1099		
1099	9111	000A
1099	9151	000A
* 1098		
* 109D		
109D	8191	O00E
109D	9110	DOOE
- 109E		
- 10A0		
10AO	1011	0015
* 10A2		
* 10A4		
* 10a6		
* 10 A 7		

FRUs
G2 J2 F2 D2 H2 K2 M2
K2
F2
K2
F2 G2 H2
H2 M2 F2 K2 L2 G2
M2
L2 M2
L2 \quad F2 \quad G2 \quad H2 \quad K2 \quad M2
M2
H2 K2
J2 $\mathrm{H} 2 \quad \mathrm{~K} 2 \quad \mathrm{G} 2$
K2 $\sqrt{2}$
$\begin{array}{llll}\mathrm{K} 2 & \mathrm{~J} 2 & \mathrm{G} 2 & \mathrm{H} 2\end{array}$
H2 J2
H2 J2
H2 J2
H2 J2 C2
H2 J2 K2 M2 G2 F2 L2
H2 G2 J2 K2
M2 F2 L2
M2 K2

L2 M2 H2 J2 K2 F2 G2
H2 G2 F2 K2 L2 J2
H2 K2
H2 G2 F2 L2 J2
$\begin{array}{lllll}\text { L2 } & \mathrm{H} 2 & \mathrm{M} 2 & \mathrm{G} 2 & \mathrm{~K} 2\end{array}$
L2 M2
$\begin{array}{lllllll}\text { L2 } & \text { M2 } & \mathrm{H} 2 & \mathrm{~J} 2 & \mathrm{~K} 2 & \mathrm{~F} 2 & \mathrm{G} 2\end{array}$
H2 J2 G2
H2 G2 J2
$\mathrm{J} 2 \quad \mathrm{H} 2$
$\begin{array}{lllllll}\mathrm{L} 2 & \mathrm{M} 2 & \mathrm{H} 2 & \mathrm{~J} 2 & \mathrm{~K} 2 & \mathrm{~F} 2 & \mathrm{G} 2\end{array}$
J2 K2 H2 F2
J2 H2
H2 J2
$\begin{array}{lllllll}\text { L2 } & \text { M2 } & \mathrm{H} 2 & \mathrm{~J} 2 & \mathrm{~K} 2 & \mathrm{~F} 2 & \mathrm{G} 2\end{array}$
$\begin{array}{lllllll}\mathrm{K} 2 & \mathrm{~J} 2 & \mathrm{H} 2 & \mathrm{G} 2 & \mathrm{~F} 2 & \mathrm{C} 2 & \mathrm{~L} 2\end{array}$
K2 J2 G2
$\begin{array}{lllllll}\text { L2 } & \text { M2 } & \text { H2 } & \text { J2 } & \text { K2 } & \text { F2 } & \text { G2 }\end{array}$
L2 M2 H2 J2 K2 F2 G2
$\begin{array}{lllllll}\mathrm{L} 2 & \mathrm{M} 2 & \mathrm{H} 2 & \mathrm{~J} 2 & \mathrm{~K} 2 & \mathrm{~F} 2 & \mathrm{G} 2\end{array}$
H2 F2

1.115 DISK DIAGNOSTIC ERROR CODES (cont)

Code

* 10bO
* 10 B 2
* 10 B 3 10B3
* 1084
* 1086
* 10B8
* 10BA
* $10 B C$
* 10be
* 10BF
* 10c0
* 10C2

10C2 X044
10C2 $\times 060$
$10 \mathrm{C} 2 \times 040 \quad 0129$ $10 C 2$ XOCA 0129

* 10c3
* 10 C 4
* 10C6
$10 C 6$
$*$
10C7
* 10 CB
* 10c9
* 10ca
* 10CB
* 1000

$10 D 0$	0000	0001	0007
$10 D 0$	0000	0010	0007
$10 D 0$	0000	0030	0007
1000	0000	0080	0007
1000	0000	0200	0007
1000	0000	0400	0007
1000	0000	0800	0007
1000	0000	1000	0007
$10 D 0$	0000	2000	0007
$10 D 0$	0000	4000	0007
1000	0001	0000	0011
1000	C2C3	0000	0072
1000	FFFF	0000	0001
1000	FFFF	0000	0005
1000	FFFF	0000	$000 F$
$10 D 0$	FFFF	0001	0001
$10 D 0$	FFFF	$000 F$	0001
$10 D 0$	FFFF	$00 F F$	0001
$10 D 0$	FFFF	1FFF	0001

FRUs

L2	M2	H2	J2	K2	F2	G2		
L2	M2	H2	J2	K2	F2	G2		
H2	L2							
L2								
L2	M2	H2	J2	K2	F2	G2		
L2	M2	H2	J2	K2	F2	G2		
L2	M2	H2	J 2	K2	F2	G2		
H2	K2	G2	F2					
L2	M2	H2	F2	G2	C2			
L2	M2	H2	J2	K2	F2	G2		
H 2	K2							
H2	G2							
L2	H2	M2	F2	G2				
L2	F2							
L2	M2	F2						
L2	G2	M2						
H2	F2							
L. 2	M2	H2	J2	K2	F2	G2		
L2	M2	H2	J2	K2	F2	G2		
H2	G2	K2						
K2	H2							
L2	F2							
L2	M2	H2	J2	K2	F2	G2		
L2	M2	H2	J2	K2	F2	G2		
L2	M2	H2	J2	K2	F2	G2		
G2	J2	H2						
M2	K2	J2	L2	H2	F2	G2	B3	D2
J2	K2							
K2	M2							
M2	F2							
L2	M2							
K2	M2							
K2	M2							
K2	M2							
K2	M2							
K2	M2							
K2	M2							
K2								
L2								
L2	M2	K2	F2					
L2	M2							
M2	L2							
L2	M2							
L2	M2							
M2	J2	K2						
K2								

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code					FRUs						
10D0	FFFF	2101	0001		L2	M2					
10D0	FFFF	3183	0001		L2						
10D0	FFFF	7FFF	0001		K2	M2					
10D0	FFFF	8CEB	0001		L2	M2					
10D0	FFFF	BFFF	0001		K2	M2					
10 D 0	FFFF	DEDF	0001		L2						
10D0	FFFF	EFFF	0001		K2	M2					
1000	FFFF	FOFF	0001		J2	K2					
10D0	FFFF	F1FF	0001		D2	B3					
10 D 0	FFFF	F7FF	0001		K2	M2					
10 D 0	FFFF	FAFB	0001		L2	F2	H2				
1000	FFFF	FBFF	0001		K2	M2	G2				
1000	FFFF	FDFF	0001		K2	M2	G2				
10D0	FFFF	FEFF	0001		K2	M2					
1000	FFFF	FFFE	0001		M2	L2	H2				
* 10D2					L2	M2	H2	J2	K2	F2	G2
* 10D5					L2	M2	H2	J2	K2	F2	G2
* 1006					L2						
* 10 D 8					L2	M2	H2	J2	K2	F2	G2
* 10DA					L2	M2	H2	J 2	K2	F2	G2
* 10DC					L2	M2	H2	J2	K2	F2	G2
* 117B					G2	F2					
117B	0041	1001	X055	02E8	F2						
* 11A0					B3						
* 11C3					J2	K2	H 2				
* 127B					G2						
* 1281					L2	M2	H2	J2	K2	F2	G2
* 1282					L2	J2	K2	F2	G2	H2	M2
* 1283					L2	F2	G2	H2			
1283	$\times 008$	0000			F2	G2	L2	H2			
* 1284					L2	M2	H2	J2	K2	F2	G2
* 1286					K2	F2					
* 128A					L2	J2	K2	F2	G2	H2	M2
* 128D					L2	J2	K2	F2	G2	H2	M2
* 128E					L2	J2	K2	F2	G2	H2	M2
* 1290					H2						
* 1292					M2	L2					
* 1294					L2	J2	H2				
1294	X060	0003			H2						
* 1296					L2	J2	K2	F2	G2	H2	M2
* 1299					L2						
129A					L2	J2	K2	F2	G2	H2	M2
129B					L2	J2	K2	F2	G2	H2	M2
129C					L2	J2	K2	F2	G2	H2	M2
129D					L2	J2	K2	F2	G2	H2	M2
129D	9115	0001			H2						
129E					L2	J2	K2	F2	G2	H2	M2

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code

* 12AO
* 12A 1
* 12A2
* 12A4
* 12A6
* 12A8
* 12A9
* 12AA
* 12AB
* 12AC
* 12AD

12AD 9111 X0F8 02E8 0016
12AD 9150 X0F8 02E8 0016

* 12AE
* 12AF
* 12D0
* 12D2
* 12D4

12D4 00C9 1011 X022 02E8

* 12D5 12D5 $0001 \quad 1011$ X022 02E8
* 137E
* 1383
* 1385
* 1387
* 1389
* 1388 138B 8211 138B 9111
* 138D
* 1391
* 1393
* 1395 1395
* 1397
* 1399 1399
* 139B 139B 90110002 139B 90110003 139B 94110004
* 139D
* 139E
* 139F 139F 96110007
* 13A1 13A1 90110009 13A1 96110009
* 13A3
* 13 A 5
* 13A7
* 13A9
* 14C7
* 14D5
* 14E1
* 14E2

FRUs

L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
K2	G2						
G2	H2	F2	K2	J2			
G2	K2	H2	J2				
H2	F2						
L2	J2	K2	F2	G2	H2	M2	
H2	F2						
H2							
L2	J2	K2	F2	G2	H2	M2	
L2	F2						
F2							
K2	J2	C2					
K2	C2						
J2	K2						
G2	K2	D2					
D2	G2	C4	M2				
G2	D2						
F2	J2	K2	G2				
G2	K2	F2	D2				
K2	G2	F2	D2				
F2	G2						
J2	G2	F2	K2				
L2	J2	K2	F2	G2	H2	M2	
L2	J2	K2	F2	G2	H2	M2	
G2	J2						
J2	G2						
K2	G2						
G2	J2	F2	H2				
J2	H2	F2					
G2	J2	F2					
J2	G2						
J2	G2	F2					
J2							
G2	J2	K2	H2				
G2	J2	K2	H2				
G2	J2	K2					
G2	K2						
G2	H2	F2	J2	K2			
G2	F2	H2	K2				
J2	G2						
L2	J2	K2	F2	G2	H2	M2	
G2	K2	J2	D2	F2	H2	L2	M2
G2	K2	J2	D2	F2	H2	L2	M2
G2	K2	J2	D2	F2	H2	L2	M2
L2							
L2							
G2	K2	J2	D2	F2	H2	L2	M2'
L2	M2	F2	G2				

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code							FR									
14E2	0008	$\times 008$					L2	F2	G2							
14E2	0041	$\times 020$					M2	L2								
* 14E3							L2	G2	H2							
* 14E4							F2	G2	L2							
* 1503							F2	K2								
* 1582*							D2	G2	C4	F2	J2	M2				
1582	0003						F2	J2								
1582	002A						F2	G2								
* 1606							F2									
* 1801							J2	F2	K2	L2	M2					
* 2003							G2									
* 200F							D2	G2	J2	M2	L2					
200F	0008	0001	0079	02E8	0000		M2	L2								
200F	000B	0001	0077	02E8	0000		M2	L2								
* 2101							C4	D2	B4							
2101	000A	8001	0008	3660			B4	C4								
* 2103							G2									
* 2105							C4	D2								
* 2180							L2									
* 2181							F2	J2	K2	L2	H2					
* 220F							G2	H2	L2	J2	M2	C2	F2			
220F	000A	8141	X0C9				H2									
220F	000A	8181	X0C9				C2	H2	J2							
220F	000B	0001	X007				L2									
220F	000B	0001	X057				L2									
220F	000B	0001	X063	0000			L2	M2								
220F	002A	8141	ХоСВ	0000			F2	G2	H2	L2						
$220 F$	004B	0001	X061	0000			L2									
* 2211							L2	F2	H2	G2	J2	K2	C2			
2211	0023	0001	X057	02E0	0000	0000	K2									
2211	0023	0001	X057	02E0	0000	1FCO	C2	H2								
2211	0023	0001	$\times 057$	02E8	0000		H2									
2211	0043	0001	$\times 057$	02E0	0000	0000	J2	G2	H2							
2211	0043	0001	$\times 057$	02E8	0000		J2	H2	G2							
* 2213							K2	J2	L2	F2	M2					
2213	0003	0001	$\times 057$	02E8	0000	0040	K2	J2	F2	M2						
2213	0003	0001	X057	02E8	0000	FFCO	L2									
* 2281							K2	L2	C2	M2	B3	A5	F2	J2	H2	D2
2281	0003	488C	4886				F2	H2	L2							
2281	0003	E0E1	4888				M2	L2								
2281	0003	E0E1	83FA				F2	L2	M2	H2	D2					
2281	0003	EOE1	8400				H2	F2								
2281	0003	E0E1	8404				L2									
2281	0803	866A	4886				B3	C2	J2	B2	K2	D2				
2281	0803	E0E1	83F8				C2	B3	A5	J2	K2					
2281	0803	E0E1	8400				K2	J2	H2							
* 230F							F2	G2								
* 2311							B3	K2	C2	H2						
2311	0023	0001	X016	02E8	0040	0000	K2									
2311	0023	0001	X016	02E8	0040	0040	B3									
2311	0023	0001	X057	02E8	0040		C2	H2								

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code							FR							
* 2313							K2	F2	B3	H2				
2313	0003	0001	$\times 016$	02E8	0040	0000	K2	F2	H2					
2313	0803	0001	$\times 016$	02E8	0040	0000	B3	K2						
* 2381							G2	K2	J2	D2	F2	H2	L2	M2
* 2481							F2	G2	H2	D2	C2	L2	M2	J2
* 2482							F2	G2	H2	D2	M2			
2482	0803						H2	G2	D2	M2				
* 2483							L2	F2	C2	H2	J2			
2483	0023						C2							
2483	0043						H2	J2						
* 2484							F2	G2	H 2	D2	C2	L2	M2	J2
* 2485							D2	G2	F2	J2	M2			
* 2487							F2	G2	H2	D2	C2	L2	M2	J2
* 2489							D2							
* 2520							J2	K2	D2					
* 2522							J2	G2						
* 2524							J2	F2	D2	K2				
2524	0003	0001	X016	02E8	0001	0000	J2	D2	F2					
2524	0003	0001	X016	02E8	0005	0105	J2	K2						
2524	0003	0001	X016	02E8	0032	1032	J2	K2						
* 2622							J2							
* 3207							D2	G2						
* 3209							G2	D2	K2	C4	J2	M2		
3209	2003	0001	X000	02F8	C001		D2	G2	K2					
3209	2003	1001	X000	0040	00A8		D2							
3209	2003	1001	$\times 000$	0640	0002		G2	F2						
3209	2003	1001	X000	0660	C001		K2							
3209	2003	1001	X000	2E60	0002		C4	D2						
3209	2003	1001	X000	3260	0002		D2	G2	M2					
3209	2003	1001	X000	3260	00A8		J2							
* 3213							G2	J2	K2	D2				
3213	0003	1001	X016	0268	5400	1400	J2							
3213	0003	1801	$\times 016$	0268	0080	0180	G2	K2	D2					
* 3219	0423	1001	X013	0269	5400		J2	H 2	K2					
* 328F							D2	M2						
* 3290							M2	D2	C4	G2				
3290	0268						G2	D2						
3290	1060						M2	C4						
3290	1660						M2	C4						
3290	5260						D2	M2						
* 3292							M2	D2						
* 3293							L2	M2						
* 3294							M2	D2	L2	C4	K2	J2	H2	C2
* 3295							K2	H2	C2	J2				
* 3296							M2	D2	L2	C4	K2	J2	H2	C2
* 32A0							M2	D2	L2	C4	K2	J2	H2	C2

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code		FRUs							
* 3301		G2							
* 3309		G2	D2						
* 3383		G2	D2	K2	M2	C4	J2	F2	L2
* 3384		G2	K2						
* 3385		G2	D2	K2	M2	C4	J2	F2	L2
* 3387		G2	D2	K2	M2	C4	J2	F2	L2
* 3389		M2							
* 338B		G2	D2	K2	M2	C4	J2	F2	L2
* 3393		G2	D2	K2	M2	C4	J2	F2	L2
* 3395		G2	D2	K2	M2	C4	J2	F2	L2
* 3397		G2	D2	K2	M2	C4	J2	F2	L2
* 3399		G2	D2	K2	M2	C4	J2	F2	L2
* 339B		G2	D2	K2	M2	C4	J2	F2	L2
* 3413		C4	D2	B4	C2	B2			
* 3490		G2	D2	K2	M2	C4	J2	F2	L2
* 3492		G2	D2	K2	M2	C4	J2	F2	L2
* 3494		G2	J2						
* 3496	See Note at end of list.	G2	D2	K2	M2	C4	J2	F2	L2
* 3498	See Note at end of list.	G2	D2	K2	M2	C4	J2	F2	L2
* 349A		G2	D2	K2	M2	C4	J2	F2	L2
* 3509		D2	C4						
* 3513		D2							
* 3607		D2	C4						
* 3609		D2							
* 360F		H2	J2	K2	F2	L2	M2	G2	
* 4127		H2	J2	K2					

For error code 4191 , run routine 51 first. The CE Track Data may have been destroyed. If it does not isolate the failure, return to this list.

${ }^{*} 4191$					
${ }^{*} 4193$					
${ }^{*} 4214$					
${ }^{*} 4217$					
${ }^{*} 4219$					
4219	0403	1001	$\times 013$	0269	5400
4219	0423	1001	$\times 013$	0268	5400
4219	0803	1001	$\times 011$	0269	5400
4219	0803	1001	$\times 013$	0269	5400
4219	1013	1001	$\times 011$	0268	5400
4219	1013	1001	$\times 011$	0269	5400
4219	1013	1001	$\times 011$	0269	9700
${ }^{*} 421 A$					
$421 A$	0083	1001	$\times 013$	0268	9700
$421 A$	0083	1001	$\times 013$	0269	9730
${ }^{*} 4225$					
${ }^{*} 4293$					

*	K2	J2	H2	F2	G2			
K2	J2	H2	F2	G2	B3	C2	L2	
B2	F2	G2	C2			l		
H2	L2	F2	J2					
D2	K2	J2	H2	B3	A5	C2	G2	F2
K2	G2							
G2	F2	H2						
H2								
K2	J2							
D2	B3							
D2	B3	A5	C2					
B2	A5	D2						
K2	H2	J2	B3	F2	G2	C2		
D2	F2	G2						
K2	H2	C2	J2					
H2								
K2	J2	H2	F2	G2	B3	C2	L2	

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code				FRUs							
* 433D				H2							
* 4392				K2	J2	H2	F2	G2	B3	C2	L2
4392	0003	9702	-	H2	G2						
* 4393				G2	H2	F2	K2				
* 4395			\pm	K2	J2	H2	F2	G2	B3	C2	L2
* 4397				K2	J2	H2	F2	G2	B3	C2	L2
* 439A				K2	J2	H2	F2	G2	B3	C2	L2
* 439E				G2							
* 439F				G2	F2						
* 43A0				H2							
* 43A6				K2	J2	H2	F2	G2	B3	C2	L2
* 43A9				K2	J2	H2	F2	G2	B3	C2	L2
* 43AA				K2	J2	H2	F2	G2	B3	C2	L2
* 43AB				H2	F2						

For error code 4446, run Routine 51 first. The CE Track Data may have been destroyed. If it does not isolate the failure, return to this list.

* 4446						K2	H2	J2	L2	B3	F2	G2	C 2
* 4601						F2	H2	G2	J2	K2	L2	M2	
* 4628						H2	F2	G2	K2	L2			
4628	002A	X008	0268	5440		F2	G2	H2	K2	L2			
* 4630						G2	F2	H2					
4630	000A	9100	$\times 088$	0268	5440	H2	G2						
4630	000A	9101	$\times 008$	0268	5440	G2	H2						
4630	002A	9141	X008	0268	5440	F2	G2						
* 4633						H2	F2	G2	L2				
* 464B						F2	H2						
* 4689						J2	K2	G2	H2				
* 4783						F2							
* 4784						F2							
* 4785						F2	K2						
* 4787						F2	K2	H2	L2				
* 4788						K2	H2	L2	F2				
* 4789						G2							
* 478A						K2							
* 478B						M2							
* 483B						G2	B4	H2	F2	J2	K2	L2	M2

For error code 4891, run Routine 51 first. The CE Track Data may have been destroyed. If it does not isolate the failure, return to this list.

* 4891
* 4892

*	K2	J2	H2	F2	G2	B3	C2	L2
F2	G2	B3	C2	L2				

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code						FRUs								
* 4989						K2	J2	A2	H2	F2	G2	B3	C2	L2
* 4990						B2	A5	A2						
* 4991	See No	at end	list.			F2	D2	A2	G2	B4	L2	M2	C4	
* 4992	See No	at end	list.			F2	D2	A2	G2	B4	L2	M2	C4	
* 4993						F2	D2	A2	G2	B4	L2	M2	C4	
* 5090						A2	B3	D2	G2					
* 5092						A2	B3	D2	G2					
* 5093						A2	B3	D2	G2					
* 5094						A2	B3	D2	G2					
* 5222						J2	K2							
* 5381						F2	D2		G2	B4	L2	M2	C4	
* 5383						F2	D2		G2	H2	B4	L2	M2	C4
* 5668						F2	L2		M2					
* 5681						F2	D2		G2	H2	B4	L2	M2	C4
* 5682						F2	D2		G2	B4	L2			
5682	0000	0001	X000	02E8		F2	B4		G2					
5682	0010	0010	$\times 000$	0000		F2	L2							
5682	0010	1010	X000	8450		D2								
5682	0010	1011	X000	AC70		D2								
5682	0010	1011	X000	B250		D2								
5682	0010	1011	$\times 000$	B270		D2	M2							
* 5691						D2	C4		G2	J2	M2			
5691	0010	1011	X000	42E8		C4	D2		M2					
* 5693						F2	D2		G2	J2	K2			
5693	0000	0011	X000	F270		F2	K2							
5693	0000	1011	$\times 000$	F270		D2	F2		G2	J2	K2			
* 5695						F2	D2		G2	H2	B4	L2	M2	C4
* 5697						D2	C4		M2					
* 5699						D2	C4		B4	B2	G2	F2	M2	J2
5699	0000	1001	X000	0278	0100	D2	M2							
5699	0000	1001	$\times 000$	02D8	0100	D2	C4		C2	M2	G2			
5699	0010	1000	$\times 000$	AC50	$1 \mathrm{C00}$	D2	C2							
5699	0010	1000	$\times 000$	B070	1 COO	D2	C2							
5699	0010	1001	$\times 000$	0250	AB00	C4	D2		M2					
5699	0010	1001	$\times 000$	0258	0100	C4								
5699	0010	1001	$\times 000$	0270	0100	C4	D2							
5699	0010	1001	$\times 000$	0278	0100	B4	B2		D2	C4				
5699	0010	1001	$\times 000$	0450	BF00	D2	B4							
5699	0010	1001	$\times 000$	0450	B700	D2	B4		M2					
5699	0010	1001	X000	1258	0100	D2	B4		M2					
5699	0010	1001	$\times 000$	2C50	1 D 00	C4	B2		M2					
5699	0010	1001	$\times 000$	3050	1000	B2	C4		B4	D2				
5699	0010	1001	X000	3270	0100	D2	B4		C4	M2	G2			
5699	0010	1001	$\times 000$	3070	0100	C4	D2		M2					
5699	0010	1001	$\times 000$	3250	1 D00	C4								
5699	0010	1001	$\times 000$	3270	1000	B2	B4		C4					
5699	0010	1001	$\times 000$	7270	0100	D2	B2							
5699	0010	1001	$\times 000$	8A50	0000	D2	B4		M2					

1.115 DISK DIAGNOSTIC ERROR CODES (Cont)

Code						FR							
5699	0010	1001	X000	A270	0000	D2	C4	B4	M2				
5699	0010	1001	X000	A850	1000	B2	B4	C4					
5699	0010	1001	$\times 000$	AA50	0000	D2	G2	C4	B4				
5699	0010	1001	$\times 000$	AC70	$1 \mathrm{C00}$	D2	B4						
5699	0010	1001	$\times 000$	AE50	0000	C4	02	M2					
5699	0010	1001	$\times 000$	B074	1 COO	D2	B4						
5699	0010	1001	$\times 000$	B250	0000	B4	D2						
5699	0010	1001	$\times 000$	B270	0000	D2	B4						
5699	0010	1001	$\times 000$	B270	0100	D2	C4	J2	M2				
5699	0010	1001	$\times 000$	EA70	0000	B2	E4						
5699	0010	1001	$\times 000$	EE50	0000	B4							
5699	0010	1001	$\times 000$	F250	0000	D2	B2						
5699	0010	1001	$\times 000$	F270	0000	B2	D2	B4	F2				
5699	0010	1001	$\times 000$	F650	0000	B4.							
5699	0010	1001	$\times 000$	F670	0000	82	B4	C4					
5699	0010	1011	X000	4668	0100	64	C2						
5699	0010	1401	$\times 000$	2C50	1FOC	G2							
5699	0010	1401	$\times 000$	3050	1F00	G2							
569B						F2	D2	G2	H2	B4	L2	M2	C4
569D						D2	C4	F2	G2	J2			
* 5781						F2	D2	G2	H2	B4	L2	M2	C4
* 5791						F2	D2	G2	H2	B4	L2	M2	C4
* 5792						F2	L2	J2	K2	M2			
5792	0010					M2							
* 5793						F2	D2	G2	H2	B4	L2	M2	C4
* 5794						L2	F2						
* 5795						F2	D2	G2	H2	B4	L2	M2	C4
* 5796						M2	L2	C4	F2	D2			
5796	7270					M2	C4	,					
5796	D270					M2	D2						
5796	F250					F2							
5796	F274					L2							

Note: These error codes may be caused by configuration errors on the diagnostic diskette. Check the continuity of the configuration jumpers on 1.111 and ensure that they correctly match the hardware you have. Theri start utility routine 5 by entering 000005 when BC80 is displayed. This should dynamically configure your diskette. When it displays 0055 terminate it by depressing the Free Key, and rerun the diagnostic. This time, follow the FRU replacement listed for these error codes.
1.116-1.119 Not Used

1.120 SUPPLY VOLTAGE TEST POINTS

Logic Board	Card and Pin**	Limits
Basic	H 2 U 03	+4.5 to +5.5
Controller	H 2 S 11	+7.7 to +9.3
and Adapter	H 2 S 06	-4.5 to -5.5

*Ground = any D08, J08, P08, or U08
Note: If the axe circuit forces all supply voltages to 0 volt, all voltages should be looked upon as failing.

1.121 EXTERNAL MODEM WRAP CARD

Line Name	PN 8523344		PN 1747496	
	Modem	Jumper*	Modem	Jumper
Request	600	A to B		
	1200	A to B	All	A to B
to Send	GND 4800	Open		
Data	600	D to E	.	
Signal	1200	C to D		
Rate	GND 4800	Open	1200	D to E
Selector			2400	C to D

*Use jumper, PN 816645.

PN 5864363 5864660

Note: See the chart on the end of the logic gate for card locations.
**Optional EC747541, added capacitor assembly PN 4405002 from B09 and D09 to ground D08 to eliminate noise on Xmit data and Xmit clock.
1.122 EXTERNAL MODEM SIGNAL CABLE

PN 4944498 * (Used with card PN 8523344)

Signal	Y Pin	Connector
Received Data	1	3
Ground	2	7
Tranmitted Data	3	2
Spare	4	Tied back
Clear to Send	5	5
Carrier Detect	6	8
Request to Send	7	4
Data Signal Rate Sel	8	23

PN 4944499 (Used with card PN 1747496) * *

Signal	Y Pin	Connector
Received Data	1	3
Ground	2	7
Transmitted Data	3	2
Spare	4	Tied back
Transmit Clock	5	24^{*}
Data Term. Ready	6	20
Request to Send	7	4
Data Signal Rate Sel	8	23

*15 for some WT modems.

PN 4409768 (Used with card A or B)

Signal	Card Pin	Connector
Received Data	G04	3
Ground	J 08	7
Transmitted Data	G07	2
Spare		Tied back
Transmit Clock	G12	24^{*}
Data Term. Ready	J02	20
Request to Send	G03	4
Data Signal Rate Sel	J06	23

*15 for some WT modems.

1.123 TRANSMIT LEVEL ADJUSTMENT

38LS Modems

The US Domestic version is not adjustable. It is factory set and sealed at 0 db . The World Trade version is adjusted by setting the switches as shown.

*WT only; switches AA-DD are for line equalization (3.9.4).

1200-BPS Integrated Modem

Setting Transmit Level Without a DB Meter (Remote Loop)

Turn the transmit level potentiometer counterclockwise at least 15 turns (for PN 5864365, counterclockwise 15 turns, then clockwise 8 turns) to set the level to approximately -2 db to 0 db . This potentiometer is the topmost on the card when the card is plugged in. (No jumpers on card).

Setting Transmit Level Without a DB Meter (Host Link)

Turn the transmit level potentiometer clockwise at least 15 turns. With the jumper on the transmit card, the level will be approximately 0 db to +2 db ; without the jumper, approximately -2 db to 0 db . This potentiometer is topmost on the card when the card is plugged in.

Transmit Level Adjustment With a DB Meter

This procedure requires DB meter PN453545:

1. Set the $2 W-4 W$ TRANS/REC switch to TRANS.
2. Set the WRAP switch to the down position (not in wrap).
3. Connect the DB meter in one of the following ways:
a. Connect the plug end of the communications cable to the TRANS/REC jack on the cover of the DB meter. Jumper the cover LINE terminals to the DB meter LINE terminals. Set the BRDG/600/324 switch to 600 . See Wiring A.
b. Jumper the transmit lines (B02 and D05 of the modem transmit card) to the LINE terminals of the DB meter. Set the BRDG/600/324 switch to 600 and disconnect the cable to the communication channel. See Wiring B.
c. 4-wire only:

Jumper the transmit lines (B02 and D05 of the modem transmit card) to the LINE terminals of the DB meter. Set the BRDG/600/324 switch to BRDG. See Wiring C.
4. Set the RANGE switch $(0$ to -45$)$ to the value to be added to the meter reading.
5. Set the POWER switch to on.
6. Press the BATT TEST switch. The meter should read in the GOOD range if the batteries are good. Release the BATT TEST switch.
7. Adjust the transmit level potentiometer (at the top of the transmit card when the card is plugged in) until the meter value plus the' RANGE switch value equals the required DB level. (You may have to jumper $\mathrm{JO7}$ to ground to force the modem to transmit.) You may have to install the transmit level jumper on the card to reach Odb level.

EC 745948

1.124 TRANSMIT LEVEL ADJUSTMENT FOR 600-BPS INTEGRATED MODEM

This procedure requires DB meter PN 453545:

1. Set the $2 W-4 W$ TRANS/REC switch to TRANS.
2. Set the WRAP switch to the down position (not in wrap).
3. Connect the DB meter as stated in (a) below if the communication cable of the controller is terminated by a plug, or as stated in (b) below if terminated by other than a plug.
a. Connect the plug end of the communications cable to the TRANS/REC jack on the cover of the DB meter. Jumper the cover LINE terminals to the DB meter Line terminals. Set the BRDG/600/324 switch to 600. See Wiring A.
b. Jumper the transmit lines (B02 and DO5 of the modem transmit card) to the LINE terminals of the DB meter. Set the BRDG/600/324 switch to 600 and disconnect the cable to the communication channel. See Wiring B.
4. Set the RANGE switch (0 to -45) to the value to be added to the meter reading.
5. Set the POWER switch to on.
6. Press the BATT TEST switch. The meter should read .- in the GOOD range if the batteries are good. Release the BATT TEST switch.
7. Read the meter and add it to the value of the RANGE switch.

CAUTION: Turn off power before removing or inserting a card.
8. If transmit level adjustment is required, refer to the adjacent sketch. Two straps are required, one on each side of the dashed line between the two 0 DB pairs of pins. Add the values assigned to the two strapped pairs of pins.

(Procedure 1.123)

1.125 RECEIVE-LEVEL CHECK FOR 1200-BPS AND 600-BPS INTEGRATED MODEMS

To verify that an adequate signal level is being received, you may monitor the receive signal at the controller with the DB meter, as follows:

1. CAUTION: Turn off power.
2. Remove the transmit and receive card, cards.
3. Turn on power.
4. Connect the DB meter LINE terminals as explained in Note 1.
5. Set the BRDG/600/324 switch to 600 .
6. Set the power switch to on.
7. Press the BATT test switch. The meter should read in the good range if the batteries are good. Release the BATT test switch.
8. Set the range switch to obtain a meter reading and add its value to the meter reading. (Two-wire 1200 bps operation requires that the other end be forced to transmit by jumpering J 07 of its transmit card to ground.)
9. In countries that permit transmission at 0 db , the received signal should be about -16 db . In these countries, the signal-to-noise ratio at the receiver should allow normal operation between extreme limits of 0 and -27 db . Usually, lower transmit limits allow the receiver to operate to a lower extreme. The carrier detect threshold can be lowered from -33 db to -43 db by jumpering D11 to D12 on the receive card (2 -card modem).

Note 1:
1200 bps: Connect LINE terminals to G09 and J11 of receiver card.

600 bps: Connect LINE terminals to B02 and D05 of the transmit card.
38LS M/D: Connect LINE terminals to B02 and D05.

1.126 POWER SUPPLY REMOVAL AND REPLACEMENT

DANGER

Be sure to disconnect the controller power cord from the ac outlet.

1. Unplug power input cable from the power supply assembly.
2. Unplug the slip-on connectors from the output of the power supply. Note wire number sequence. Refer to Power Distribution Wiring Diagram, Figure 3-10.
3. Loosen two bottom holding screws.
4. Remove two top holding screws.
5. Lift power supply mounting plate off two lower holding screws.
6. Remove screws holding power supply to mounting plate.

To replace the power supply, reverse the above procedure.

DANGER

Be sure to disconnect controller power cord from ac outlet.

1. Remove diskette access cover.
2. Remove front cover (two screws).
3. Remove side cover and open gate.
4. Remove top cover (four nuts, one in each corner).
5. Remove fan air duct.
6. Loosen bottom 2 screws on power supply mounting plate.
7. Remove top two screws.
8. Lift power supply mounting plate from bottom two screws. Turn power supply 90° to expose cabling through top of machine.

To replace the power supply, reverse the above procedure.

1.127 LOGIC BOARD REMOVAL AND REPLACEMENT

CAUTION: Turn off power.

1. Unplug all cards from board.
2. Unplug all cables from board. Note the location of cables and jumpers.
3. Remove four screws that hold the logic board to the gate.
4. Remove the logic board.

To replace the logic board, reverse the above procedure. Use $\mathbf{1 . 1 3 1}$ for card locations. Be sure to connect jumpers on board, as on the original board. For jumper information, refer to 3.9. 3.11, and 1.111.

1.128 CARD NAMES - BOARDS WHERE USED (ALL CONTROLLERS)

Note: For disk storage cards, see 1.129.

Term	Name	Use	Board Name	Part Number
ALA	Alternative line attachment (to down line equipment from the controller)	ALA	Basic controller, adapter	
CA	Communication Adapter; see CCA and HPCA.			
CCA	Common communication adapter (with clock)	ALA Host	Basic controller, adapter	8526485
	Common communication adapter (without clock)	ALA Host	Basic controller, adapter	8523016
CTRL	Control ,			
CTLR 1	Controller card 1	Basic	Basic controller	2411872
CTLR 2	Controller card 2	Basic	Basic controller	2411851
CTLR 3	Controller card 3	Basic	Basic controller	$\begin{aligned} & 2411869 \\ & 2411893^{*} \end{aligned}$
Diskette Adapter	Diskette adapter	Basic	Basic controller	$\begin{aligned} & 1590652 \\ & 1590648^{*} \\ & 5619736^{*} \end{aligned}$
EIA	Electronic Industries Association (converter for external modem)	Host	Basic controller	8523023
$\begin{aligned} & \text { EIA/ } \\ & \text { PTT } \end{aligned}$	Electronic Industries Association (converter for external modem)/ public telephone, telegraph (with clock)	Remote loop	Basic controller, adapter	$\begin{aligned} & 1747496 \\ & 4409769^{* *} \end{aligned}$
	Electronic Industries Association (converter for external modeml/ public telephone, telegraph (without clock)	Remote loop	Basic controller, adapter	$\begin{aligned} & 8523344 \\ & 4409769^{* *} \end{aligned}$
ESA 1	Extended storage address (card 1)	Basic	Basic controller	$\begin{aligned} & 2411855 \\ & 1588028^{*} \\ & 1588030^{*} \\ & 1588096^{*} \\ & 1588098^{*} \end{aligned}$
		Expanded memory	Basic controller	$\begin{aligned} & 1588075 \\ & 1588090^{*} \end{aligned}$
ESA 2	Extended storage address (card 2) Heavy lands identify D and J connector pins to board.	Basic	Basic controller	8514516
		Expanded memory	Basic controller	2411890

*Indicates this PN has a later EC level than the PN listed above it. To ensure card is available, order the part number on the card being replaced. It is possible that later level cards have been used
** See 1.121 and 1.122.
since the publication of this document. If a card with a part number that is not listed is found in the machine, consult your support structure for more information.

EC 745949

1.128 (cont)

Term	Name	Use	Board Name	Part Number
FSU Type A	Functional storage unit; first and second 8K blocks of Volume 0	Basic	Basic controller	1744832
FSU Type B	Functional storage unit; first, second, third, and fourth 8K blocks of Volume 0	Basic	Basic controller	6815120^{*}

[^6]since the publication of this document. If a card with a part number that is not listed is found in the machine, consult your support structure for more information.
1.128 (cont)

Term	Name	Use	Board Name	Part Number
REDRIVE	Redrive card. Amplifies and redrives signals on the input/output bus to disk storage, loop 7,8 and ALA ports 81,82 , and 83	Disk loop ALA	Adapter	8525771
RESET	Reset	Basic	Basic controller	8524554
$\begin{aligned} & \text { 38LS } \\ & \text { M/D } \end{aligned}$	38-low speed (up to 1200 bps) Modulator/Demodulator	Host	Basic controller	$\begin{aligned} & 1644769 \\ & 1756005^{*} \\ & 8564510^{*} \\ & 1755945 \text { World } \\ & 1756011^{*} \text { Trade } \\ & 8564481^{*} \\ & \hline \end{aligned}$
		ALA	Basic controller, Adapter	
		Remote loop	Adapter	
$\begin{aligned} & 38 L S \\ & \text { EIA } \end{aligned}$	38 low-speed (up to 1200 bps) Compatible Electronic Industries Association (converter for external modem)	Host	Basic controller	$\begin{aligned} & 5864363 \\ & 5864660^{*} \end{aligned}$
		ALA	Basic controller Adapter	

* Indicates this PN hás a later EC level than the PN listed above it. To ensure card is available, order the part number on the card being replaced. It is possible that later level cards have been used since the publication of this document. If a card with a part number that is not listed is found in the machine, consult your support structure for more information.

EC 745949
1.129 CARD NAMES - BOARDS

WHERE USED
(3602 Disk Storage Only)

Term	Name	Use	Board Name	Part Number
Buffer	Disk storage adapter buffer	Disk storage	Disk storage	$\begin{aligned} & 1745550 \\ & 6815150^{*} \end{aligned}$
.Bus Byte 0	Disk storage adapter bus, byte 0	Disk storage	Disk storage	8524620
Bus Byte 1	Disk storage adapter bus, byte 1	Disk storage	Disk storage	8524652
Byte Ctrl	Disk storage adapter byte control	Disk storage	Disk storage	8526006
Coil Drivers	Disk storage control coil drivers, 5.2 meg	Disk storage	Disk storage	$\begin{aligned} & 5861346 \\ & 5861352^{*} \end{aligned}$
	Disk storage control coil drivers, 9.3 meg	Disk storage	Disk storage	5861350
CtrI Disk	Disk storage adapter control	Disk storage	Disk storage	$\begin{aligned} & 8525774 \\ & 8526618^{*} \\ & 8526620^{*} \end{aligned}$
Data Separator	Disk storage adapter data separator	Disk storage	Disk storage	$\begin{aligned} & 8219247 \\ & 8219259^{*} \end{aligned}$
Data AGC	Disk enclosure data and automatic gain control	Disk storage	DE	$\begin{aligned} & 5850850 \\ & 8250197^{*} \\ & 8219258^{*} \dagger \\ & 8219260^{*} \dagger \\ & 8219264^{*} \dagger \end{aligned}$
Decode	Disk storage adapter decode	Disk storage	Disk storage	8524609
Fixed Head	Disk enclosure fixed head	Disk storage	DE	$\begin{aligned} & 5861336 \\ & 8250195^{*} \dagger \end{aligned}$
Interface	Disk storage adapter interface, 5.2 meg	Disk storage	Disk storage	$\begin{aligned} & 8522402 \\ & 8522701^{*} \\ & 8522693^{*} \end{aligned}$
	Disk storage adapter interface, 9.3 meg	Disk storage	Disk storage	$\begin{aligned} & 8522616 \\ & 8522694^{*} \\ & 8522702^{*} \end{aligned}$

Note: For footnotes, refer to the following page.

1.129 (cont)

Term	Name	Use	Board Name	Part Number
Position Detect	Disk storage access arm position detector, 5.2 meg	Disk storage	Disk storage	$\begin{aligned} & 5850867 \\ & 8219249^{*} \\ & 8219265^{*} \end{aligned}$
	Disk storage access arm position detector, 9.3 meg	Disk storage	Disk storage	$\begin{aligned} & 5850973 \\ & 8219251^{*} \\ & 8219266^{*} \end{aligned}$
Preamp	Disk storage data preamplifier	Disk storage	DE	$\begin{aligned} & 8230292 \\ & 8219253^{*} \\ & 8219255^{*} \dagger \end{aligned}$
Seek Ctrl	Disk storage seek control	Disk storage	Disk storage	$\begin{aligned} & 8526496 \\ & 8528055^{*} \end{aligned}$
Velocity Ctrl	Disk storage access arm velocity control 5.2 meg	Disk storage	Disk storage	$\begin{aligned} & 5850875 \\ & \text { 8219257* } \end{aligned}$
	Disk storage access arm velocity control 9.3 meg	Disk storage	Disk storage	5850968

*Indicates this PN has a later EC level than the PN listed above it. To ensure card is available, order the part number on the card being replaced. It is possible that later level cards have been used since the publication of this document. If a card with a part number that is not listed is found in the machine, consult your support structure for more information.
\dagger - Fixed headicard PN 8250195 must be used with a choice of Data AGC cards.PNs 8219258 or 8219260 or 8219264 and preamplifier card 8N 8219255.

- Data AGC cards PNs 8219258 or $\mathbf{8 2 1 9 2 6 0}$ or $\mathbf{8 2 1 9 2 6 4 \text { must }}$ use preamplifier card PN 8219255.
- Preamplifier card PN 8219255 can only be used with Data AGC cards PNs 8219258 or 8219260 or 8219264.
* *Buffer card PN 6815150 and the following wires are prerequisite for this card: K4D08 to L4D13 G4B05 to L5B11 M4B09 to L4B02 L4B13 to G3D02 J3B06 to L3B06 J3B09 to L4B05 L2B06 to J5D04 H3D09 to L3B11
L4B11 to H2D02 L4D05 to D5B10 K3B02 to L3D10

3601 Models 2A, 2B, 3A, 3B Prior to Mid 1978

3601 Models 2A, 2B, 3A, 3B After Mid 1978

3601 Models C, D

3602 Models 1A, 18

1.131 CARD LOCATIONS

Note: Compare Board Locations (1.130) with your
controller to determine your board PN.

Disk Storage Card Side PN 1744816

	Y1			Y2				Y3		Y4			Y5				Y6		
1	Host EIA/Modem				Loop	PTT		Local Loo 1 2		Special Voltages			P	0	R	S	T	U	v
	A	B	c	D	E	F	G	H J	K	L	M	N							
2	M/D Wrap (Host) (15)			$\begin{aligned} & \odot \\ & 5 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	© 	$$			$\overline{ㄴ ㅡ ㄴ ~}$										
3	$\begin{gathered} \text { EIA } \\ \text { (Host) } \\ \text { (15) } \end{gathered}$	$\begin{aligned} & \stackrel{\bar{\varepsilon}}{x} \\ & \stackrel{D}{\Sigma} \end{aligned}$										$\stackrel{\text { O}}{\stackrel{\circ}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{2}}{\stackrel{\rightharpoonup}{2}}$	$\frac{\stackrel{\rightharpoonup}{2}}{2}$	$\stackrel{\stackrel{2}{2}}{\stackrel{1}{2}}$	$\stackrel{\text { ® }}{\stackrel{\circ}{2}}$	$\stackrel{\text { ® }}{\stackrel{\circ}{2}}$	(1)	
4	$\begin{array}{\|c\|} \hline \text { EIA } \\ \text { PTT } \\ \text { (Loop) } \\ 2 \\ \hline 2 \\ \hline \text { EIA } \end{array}$												$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { م } \\ & 0 \\ & 0 \end{aligned}$			$\overline{0}$ $\overline{0}$ 0 0 0 0 2		-	
5	EIA PTT (Loop) (3)	$\begin{aligned} & \stackrel{y}{c} \\ & \dot{\sim} \\ & 0 \\ & \dot{\Sigma} \end{aligned}$																	

6

1.131 (cont)

Basic Controller, Card Slide PN 4944490

1.131 (cont)

Basic Controller Card Set PN 6813046

Basic Controlier Card Side PN 6813048

BLANK PAGE

Chapter 2. Maintenance Approach, Aids, and Special Tools

This chapter introduces the Customer Engineer (CE) to maintenance of the Finance Communication Controllers by outlining:

- Functional parts of the controllers
- Maintenance approach
- Maintenance facilities.
- Special tools.
- Use of the Maintenance Analysis Procedures (MAPs) and the supporting information in this manual.
- Maintenance aids.
2.1 FUNCTIONAL PARTS OF THE CONTROLLERS
The functional parts of the controllers are:

1. The basic controller
2. Functional storag
3. Disk storage (3602
4. Con
. Control of local and remote loops and the terminals connected to the loops. (A terminal may include one or more separately addressable parts. Each address-
Host communication link control.
5. Operator controls (a power switch and a reset switch) For a functional description of the controller, refer to 3.2 in this manual.

2.2 MAINTENANCE APPROACH

Maintenance of the controller and connected terminals is

 based upon:- The availability to the CE of the maintenance information manuals for the controller and each of the connected terminals. Each manual includes Maintenance Analysis Procedures (MAPs) to isolate troubles.
- CE use of the MAPs.
- CE use of the maintenance facilities, outlined in 2.3 to aid in use of the MAPs.
- The availability of replacement Field Replacement Units (FRUs) at the Branch Office.

Customer engineers (CEs) are directed by the customer to the branch experiencing the trouble. (The customer nor mally determines that a branch or particular unit is causing trouble when he tries to recover from an error condition.)
If the CE knows that a particular unit is not functioning ample, the 3694) Otherwise, he will select the controlle 6604, or 3614 manual depending upon the nat of the problem. For example, a local branch problem not yet problem. For example, a local branch problem not yet defined will cause the CE to select the controller manual; a
remote branch problem not yet defined will cause the CE to semote branch problem not yet defined will cause the CE 3604 or 3614). Further, the Error Indication Index in eaan manual directs the CE to a particular MAP.
Replacement FRUs are available at the Branch Office; at the option of the Branch Office, the FRUs may be available o the CE when he makes the call or after the CE has per ormed initial troubleshooting.
Note: When a call has been completed, any good FRUs that were originally removed from a unit while troubleshooting should be returned to the unit.
If the trouble is not found, the CE follows Branch Office procedures to call for aid.

2.3 MAINTENANCE FACILITIES

The facilities for maintenance of the controller and connected terminals are outlined in the following text

2.3.1 Startup (Reset) Diagnostic Messages

A sequence of diagnostic messages is displayed on the 3604 at address 1 on loop 1 at startup (reset). As shown in the Error Indication index (MAP 1), termination of the startup MAP. Also individul controller MAPs refer to the dian MAP. Also, individual controller MAPs refer to these diagnostic messages. These messages are listed under "Startup Errors" in 1.1.2

2.3.2 Keyed Input Command

These commands enable the CE to

1. Examine the controller log
2. Examine the statistic counters.
3. Exercise the components of the controller and the components of terminals connected to the controller.

2.3.3 Controller Log

The controller log is data that is located on the diskette. Into this log, the controller places messages that contain maintenance information and engineering data. (Refer to 3.3.5 for details on the controller log.) The user's programs also have the ability to piace messages in this log. For those messages hay Yequ per mation, the con3604. (Refer to 3.1 for the definition of this 3604) 3604. (Refer to 3.3.1 for the definition of this 3604. .)

Note: The log messages are lost only on a cold start. They are not lost on a warm start. (Refer to "Error-Free Startup" under 3.3.2 to see how the different types of starts are selected.)

2.3.4 Statistic Counters

In addition to recording errors in the log, the controller maintains statistic counters for each of the components of the system listed in 3.3.6. As described in 3.3.6, keyboard commands are available to display or print the contents of statistic, counters.
Note: Statistic counts are located in functional storage and are lost each time there is a startup (reset), regardless of whether it is a warm start or a cold start.

2.3.5 Displayed Messages and Status

To communicate with the $\mathbf{C E}$, the controller displays fivedigit (8 XXXX and 9 XXXX) error messages and informa tional messages on the gas panel of one of the following 3604s: the 3604 at address 1 on loop 1, the control oper ator's 3604 , or the 3604 at which the CE is logged on. Table 3-3 lists the 3604 display the controller uses when it must communicate with the CE.
Some of the displayed error messages are followed by two status bytes, described in 3.3.8.
2.3.6 Starter Diskette

The IBM-controlled starter diskette is used to separate or The iBM-controled starter diskette is used to separate or
identify problems connected with application programs. The procedures given in 3.3.3 must be followed to obtain The procedures given in 3.3 .3 must be followed to obt diskette.

23.7 Diagnostic Diskette (3602 Only)

This diagnostic diskette is used to identify failures in the disk storage. Its use is described in paragraphs 1.114 and 1.115.

2.4 SPECIAL TOOLS

The following tools are required to maintain the diskette drive assembly with one read/write head:

- CE alignment tool, PN 2200698. This tool is used to: (1) align the read/write head by adjusting it to track 0 , and (2) adjust the phototransistor assembly by mechanical alignment. Refer to procedures 1.36 and 1.45 for a sketch of this tool.
- Head-cleaning tools:

> Brush, PN 2200106.
> Isopropyl alcohol, PN 2200200. Cloth, PN 2108930.

CAUTION: If the diskette drive has two read/write heads, do not clean the read/write heads for any reason. The two read/write head assembly contains parts that are easily damaged by solvents, including isopropyl alcohol and IBM cleaning fluid.

To maintain the diskette drive assembly with two read/write heads, use two timing pins (PN 1611189), located inside the diskette drive cover assembly. These pins are used to: (1) align the stepper motor and (2) align the LED assembly. IBM DB meter PN 453545 is required if it becomes neces sary to check the transmit level of a modem.

25 USE OF MAPS

The MAPs have been developed to provide a systematic logical approach to identifying and correcting problems in the 3600 system. They are the primary maintenance tool for the CE. In this controller manual, the MAPs are on $8-1 / 2 \times 11$ pages that should be inserted in the left half of an 11×17 binder. (The maintenance procedures, also on $8-1 / 2 \times 11$ pages, should be inserted in the right half of the binder.)

2.5.1 Entering the MAPs

The starting point for each call is the Error Indication Index, MAP 1. This index directs the CE to MAPs which will isolate the trouble indicated by the error indication. Each MAP contains step-by-step procedures to locate the failing part. Where necessary, the MAPs refer to operating procedures and maintenance procedures located in Chapter 1

When the CE gets to a point in the MAPs that indicates "Call for aid", the error indications should be checked again MAPs poing for aid. If other indications are if error indications are present, MAP 2 should be used. This MAP provides a systematic, approach for finding error indi cations. Additionally, MAP 2 leads to use of the starter diskette in the attempt to identify the problem. (Refer to 3.3.3 for details on starter diskette operation.) Note: As you become familiar with the system, you may choose to enter the MAPs at any point based upon your your experience If, however you do not correct a problem on your first pass through the MAPs, you should use MAP 2 This will make sure that you observe error indications which you may not have observed before, or which you may have observed but believed to be not connected with the problem.

2.5.2 MAP Format

- Each MAP is identified by a number and title, most MAPs being more than one page long.
- MAP pages contain two columns. The left column is the "command" column, which contains step-byThe right column may also be a "command" colum or, when necessary, a "supplemental" column, containing notes, reference material, and figures.
- Statements such as "Replace drive motor (1.64)" are referring you to a procedure in the right-hand group of $8-1 / 2$ by 11 pages.
- Entry and exit points may be used to direct the CE to some other MAP or another part of the same MAP. Example: Go to MAP 12, Entry Point A.
- At the top of Part 1 of each MAP are tables of Entry Points leading to this MAP and Exit Points leaving this MAP.
- At the bottom of each path on a MAP page are statements such as ${ }_{A}^{3}$. This means go to A on page 3 of the MAP and continue on the path.
- At the top of each MAP page, except page 1 , are statements such as ${ }_{1}$. This means that the path is a continuation of the path that left page 1 of that MAP with an A designation.
- Logic cards are called by name; refer to the card list and board layout in Chapter 1, Maintenance Procedure or the board charts located in later machines for locations.
- At the end of most paths you will find a statement "Verify Fix". It is intended that you make sure that the reported problem has been corrected. You may have repaired another problem. The method of verifying the fix will depend on the problem; it may require the customer to perform the operation with which he had a problem.
- If you do not correct the problem, it may have disappeared or you will be instructed to call for aid. Your management will have its own procedures for obtaining aid.
2.5.3 Information That Supports the MAPs

In addition to the introductory information here in Chapter 2, this manual contains the following chapters to support the MAPs:

- Chapter 1, Maintenance Procedures. Contains the following kinds of maintenance help: system operation, check, adjustment, removal, replacement, board layouts, and card part numbers. These procedures are on 8-1/2 $\times 11$ pages that should be inserted in the right half of an 11×17 binder next to the MAPs.
- Chapter 3, Reference Data, on 11×17 pages. This chapter includes tables of information on keyed commands and displayed messages. Also, it includes internal and external cabling information and power distribution wiring diagrams.
- Chapter 4, Component Locations. This chapter describes the designation system for logic boards and cards, and the pins on the logic boards.
- Chapter 5, Parts Catalog.
- Chapter 6, Installation Instructions; self explanatory.

26 MAINTENANCE AIDS

The following service aids are provided as helpful hints

1. Loop cable problems may not fail in a logical manner A check may be performed by powering off all terminals on the suspect loop, powering off the controller, removing the loop card, and measuring for continuity at the logic board cable connectors. Maximum ring-to-ring, tip-to-tip resistance must be less than $\mathbf{4 0}$ ohms per 2000 feet. Refer to Figure 3-7.
2. Intermittent power failures may be identified by causing some vibration in the area of the power supply.
3. Some logic failures have been traced to the clear board coating getting on the card socket pins.
4. When the MAPs direct you to replace a logic card, you may wish to measure the voltages at the card socket first. The voltages are listed in Chapter 3.
5. Problems during installation are quite often caused by improper setting of the terminal address switche or failure to have the speed switches for each jumpering.
6. Before calling for aid, you should always use the connected with application programs.
7. You must follow the procedure in 3.3 .3 to obtain correct operation of the system while using the starter diskette.
8. A more complete wrap test of 4 wire, integrated 1200 -bps modems, both in host links and remote loops, may be performed by removing the wrap card unplugging the communication cable at the communication facility end, and connecting the transmit pair of lines to the receive pair of lines preferably with a 16 -db attenuator jack, PN 1760940 . If a start loop command (040) or a start link command (041) is issued and an error is detected, he controller wi perform wrap tester
controller log.
9. When working on an intermittent problem, try to select the correct MAP by using visual error indications and/or the controller log and error counter data. Refer to MAP 1 for the most probable FRU to repair/replace. Also, you may swap storage volume cards with storage volume 1 cards in an attempt to identify the failure by changing the symptoms. Some of these cards are optional features; check part numbers before swapping cards.
If you are unable to identify the failure, try a systematic adjustment/card replacement, or call for aic
10. Some problems can be caused by shorts that occur when feature jumpers are pushed too far on the back panel pins and cut through the clear insulation.
11. If you know how to add in hexadecimat," following procedure for determining the current host link the procedure, in general, is: (1) enter debug mode.** (2) display location $X^{\prime} 1 C^{\prime}$, and (3) disptay the location at the address equal to $X^{\prime} 15$ ' plus the address found at $X^{\prime} 1 C^{\prime}$. Details of the procedure are as follows:
(1) Keyb

1231
(2) Keyboard entry:
(2) $111 \times 1 \mathrm{C}$
(2) Observe display:
(3) $001 \mathrm{C}-\mathrm{AAAA}$ BBBB CCCC DDDD
(3) On scratch paper:
$X^{\prime} 15^{\prime}+A A A A=Y Y Y Y$
(3) Keyboard entry
(3) 111 XYYYY
(3) Observe display. YMMM - PPMM MMMM MMMM

The meaning of each bit in hexadecimal PP is as follows:
Bit Meaning

1 off
1 off
off switched lin

3 off
3 on
4 off

High-speed line

Contral request to sen
6 on Permanent request to send
7 off Tone generation
7 on Omit tone generation
To determine if a wrappable modem is configured, add $X^{\prime} 35$ ' to the address found at 1 C and display that location. If bit 2 of the first character at that location is on, a wrappable modem is configured. To leave debug mode. enter 00 .

-Refer to Appendix C in the 3600 System FE MIM for the hexadecimat add-subtract table.

- Refer to Chapter 10 in the 3600 System FE MIM.

12. Some additional suggestions for unresotved probiems include:
a. Exchange storage volume 0 cards with volume cards to try to change the trouble symptoms. Some of these cards are optional features; check
part numbers before swapping cards.
b. Test the logic cards from this machine in another k
c. Replace a group of cards at one time to provide for the possibility of two cards failing at one time.
d. Systematically replace each card in the machine.
e. Bypass loop devices by turning them off or
changing the loop cabling
f. Exchange major components (such as boards, power supply, cables, diskette drive assembly) with those of another machine if one is available and the component EC levels are the same.
13. If you are required to transmit disket the host site or the design support center using TDAT, the following information will be helpful. Any oth necessary information should be provided by the requesting group.
\qquad The system must be started using a stater
diskette at EC level 741848 or higher.
b. Communication must be made, either normal host link or TDAT as instructed.
c. Log on and enter command code 888.
d. Respond to the displayed messages as foltows (press EM (enter) after each entry): $00091=$ Mount the diskette containing the data to be transmitted. No entry is required.
$00092=$ Enter a code to define data to be transmitted as follows:
Enter key only = Dump data
0
$=$ Full diskette
From/to track and
X'TTRR' $^{\prime} \mathbf{X}^{\prime} T T R R^{\prime}=$ From/to track and
record (hexadecimal)
$00093=$ Waiting for start:
$0=$ Host will start
$1=$ Controlier start
$00099=$ Transmission complete
e. To interrupt the transmission, press reset on the 3604. 00090 will display. Respond as follows:
$0=$ Continue
$1=$
$1=$ Terminate
14. Actual loop speeds must match the loop speed specified on the diskette, or difficult timing failures may occur. Examples are device timeouts or link timeouts.
15. On some systems, when the 3604 at address 1 o loop 1 is not physically the first terminal on the loop messages may not be displayed correctly. (Normal operation after startup is not affected by this incorrect display and the problem will be corrected in the future.) If it is required that you see these messages, future.) If it is required that you see these messages,
turn off power on the terminals that physically preturn off power
cede the 3604.
16. If you find a feature jumper missing, or if you change feature jumpering, be sure there is no conflict with existing jumpers; i.e., 2 speeds, 2 echo clamp delays, 4 wire and 2 wire, etc.

blank page

Chapter 3. Reference Data:

Contents

Heading	Page
3.1	3600 Finance Communication System 3-2
3.2	Finance Communication Controllers
3.2.1	Basic Controller
3.2.2	Functional Storage
3.2.3	Diskette Storage
3.2.4	Disk Storage . 3-2
3.2.5	Local and Remote Loops
3.2.6	Address and Speed Switches on Terminals
3.2.7	Alternative Line Attachment . 3-2
3.2.8	Host Communication Link . 3-2
3.2.9	Operator Controls
3.3	Communications Between Controller and Control Operator or CE
3.3.1	3604 Keyboard Display Terminals
3.3.2	Operating Diskette
3.3.3	Starter Diskette
3.3.4	Keyed Input Commands
3.3.5	Controller Log . 37
3.3.6	Statistic Counters . 3-7
3.3.7	Displayed Messages
3.3.8	Displayed Status . 3-7
3.4	Disk Storage . 3-8
3.4.1	Locations . 3-8
3.4.2	Component Description
3.5	Diskette Drive Assembly (Single Side)
3.5.1	General Description
3.5.2	Operating Sequence
3.5.3	Read/Write Circuit Principles
3.6	Diskette Drive Assembly (Two-Sided)
3.6.1	General Description
3.6.2	Operating Sequence
3.6.3	Read/Write Circuit Principles
3.7	Diskette.
3.8	Interconnect Diagrams
3.9	Communication Connections
3.9.1	Selection at Controller/Communication Connections
3.9.2	Communication Connections 3601-2A, 2B, 3A, 3B (Single TSR-3 Power Supply)
3.9.3	Comimunication Connections 3601-2A, 2B,
	Supplies)
3.9.4	Communication Connections (3601 C, D)
3.9.5	Communication Connections 3602-1A, 1B (TSR-3 Power Supply, More Than 2 Wires on B1Y4)
3.9.6	Communication Connections 3602-1A, 1B (TSR-3 Power Supply, Only 2 Wires on
3.10	Supply Voltages on Logic Boards and Cards
3.11	Back Panel Connections
3.11 .1	Loop Control Cards
3.11 .2	Modem Compatibility (Internal Modem)
3.11.3	External Modems

Contents

Heading		Page
3.11.4	Communications Link Connections .	$3-46$
3.11 .5	Storage Connections (Basic Controller Board)	3-46
3.12	Disk Storage Diagnostics	$3-47$
3.12 .1	General Description	$3-47$
3.12 .2	Operating Procedure	$3-47$
3.12 .3	Test Routines	3.47
3.12 .4	Procedure Errors .	3-48
3.12 .5	Disk Storage Utility Programs	3-49
List of Figures		
Figure	Title	Page
3.1	3600 Finance Communication System Example	3-3
3-2	3604 Universal Translate Table Keyboard Locations	3-5
3-3	Internal Cable PN 4943638/1741686, Basic Controller Board Connector/Diskette File Control Card	3-17
3.4	Internal Cable PN 4943641/1652549/1747295/4409516/Modem/EIA Connector for	
	Communication Link	3.17
3-5	Internal Modem Cables, Board/Cable Panel	3-18
3-6	Internai Loop Cables, Board/Cable Panel	3-19
3.7	Controller Internal Cable to Operator's Panel	3-20
3-8	Selection of Power Distribution Wiring Diagram and Cable Assemblies	3-21
3-9	Power Distribution, 3601-2A, 2B, 3A, 3B (Single TSR-3 Power Supply), 2 Parts	3-22
3-10	Power Distribution, 3601-2A, 2B, 3A, 3 B (One or Two TSR-2 Power	
	Supplies), 2 Parts	$3-24$
3-11	Power Distribution, 3601 C, D, 2 Parts	326
3-12	Power Distribution, 3602-1A, 1B (TSR-3 Power Supply-More Than 2 Wires on	
	B1Y4), 2 Parts	3-28
3-13	Power Distribution, 3602-1A, 1B (TSR-3 Power Supply, Only 2 Wires on	
	B1Y4), 2 Parts	3-30
3-14	External Cables, Controller/Communication Link	3-32
3-15	External Cables, Controller/Communication Line for a Remote Loop	3-33
3-16	Japanese Connection of External Cables to Communication Line (Loop or Host	
	Link)	3.34
3.17	Adapter Cable PN 1741656	3.34
3-18	Japanese Wrap Test Cable PN 2722052	3-35
List of Tables		
Table	Title	Page
3.1	Terminal Address Switches (Switch Group 1)	3-2
3.2	Terminal Speed Switches (Switch Group 2)	3-2
3-3	Controller/CE Communication	3-4
3-4	Prompt Mode Message Sequence .	3-5
3-5	Starter Diskette Configuration	3-6

3.13600 FINANCE COMMUNICATION SYSTEM The IBM 3600 Finance Communication System brings online system processing, with quick response, to a financial institution's central and branch office locations. In this system, IBM terminals located in branch offices are under he immediate control of a Finance Communication ontroller.
Branch office terminals are connected to a controller in oop-type arrangements. As shown in Figure 3-1, there are ocal loops and remote loops. A controller may have a aximum of eight loops connected to it. One loop must mote. The number of terminals connected to a controller is dependent on the terminal configuration.
Terminals that are within the same location as the con troller will normally be connected to a local loop. Terminals ocated farther away must be connected to a controller by a communication line. In this case, the communication line and the terminals are said to form a remote loop. (It is possible for the terminals in several small branch offices to be part of one remote loop.) A loop of terminals on a remote loop is termed a remote subloop. The maximum terminals, is not more than 2000 feet (610 m).
As indicated on Figure 3-1, features can be ordered that Ab the 3614 Consumer Transaction Facility (Modets 1 and 2) to be connected to the central processing site throu a communication link without going through a controller. These features provide a wider choice of physical locations for these terminals.

3.2 FINANCE COMMUNICATIONS

CONTROLLERS

Normal operation of a controller is online. That is, it communicates with the institution's host computer via com munication lines, and has access to the customer files for formation inquiry and for updating. However, should filure occur in the communication link between branch cation and host computer, the controller can opeate offline.
When the controller is offline, branch operations can continue, but without access to the host computer. Transactions that require information not available in the controlle must wait until communications are restored. However, many routine transactions may be performed by using the controller's diskette for information storage. Offline transaction data can be collected and stored temporarily, so that when communications are reestablished, this data is sent to the host computer and the affected files are updated.

For introduction purposes, the following text briefly describes some functional areas and components of the controller
Note: This introduction gives the number of logic cards required for some functional areas, but does not go into detail. For detailed information on logic boards and logic cards, refer to Chapter 4, Component Locations.
3.2.1 Basic Controller

The basic controller has three logic cards. At startup time the basic controller directs the loading of the configuration image and the customer's application programs into func arage from the diskette storage. After startup, directed by the application program(s), the basic controller

1. Performs the arithmetic and logical operations required to process transactions.
2. Controls the operation of the terminal components attached to the loops.

Note: A terminal component is a separately address able part of a terminal. The component performs an input or output function, but usually not both.
3. Controls the transfer of data between functional storge and the customer's permanent and temporary files located on the diskette.
4. Controls the flow of messages between the host com puter and the branch location.

3.2.2 Functional Storage

The basic functional storage consists of control storage and programmable storage. Additional control storage and programmable storage are available as features. For storage sizes, check the plug chart for your controller

3.2.3 Diskette Storage

The diskette storage is a direct access, read/write data storage device designed to provide low-cost data entry and data storage. It does this by using removable, magnetic diskettes. Each controller has one of two different diskette drive assemblies, one with a single read/write head that uses only diskettes with one magnetic surface, the other with two read write heads that use diskettes with either one or two mag netic surfaces.
Connected with the diskette storage are two logic cards and a diskette drive assembly. One logic card, the diskette drive control card, is located on the diskette drive assembly; the other, the diskette adapter card, is located on the logic board containing the basic controller cards.'
The customer's operating diskette is used for normal oper tion. The IBM-controlled starter and diagnostic (3602 only) diskettes are available to assist in maintenance. Also he starter diskette must be used by the customer in the erating diskettes.
The customer creates (generates) operating diskettes from formatted diskettes. The operating diskettes provide a storage area for

1. The configuration image. (See Glossary.)
2. The application programs that enable the controller and the connected terminals to perform the required transactions.
3. The customer's permanent and temporary files

After the operating diskette has been generated, items 1 and

3.2.4 Disk Storage (3602 Only)

The disk storage is a direct access storage device that store information on a magnetic disk by use of two movable heads nd, if installed, eight fixed heads
He 362 dias approximately 52 million bytes of disk storage, the Model 1 B approximately 9.3 million model to provide an additional 122 K bytes.
Connected with the disk storage are up to 15 logic card wo of the cards (three if fixed heads are installed) are located on the disk enclosure (DE), a sealed assembly containing the recording disk and the movable and fixed heads. The other 12 logic cards are located on the disk storage logic oard 01A1. Refer to section 3.4 for more detailed information on the disk enclosure.

3.2.5 Local and Remote Loops

Some controllers may have up to eight loops, with loop 1 , the basic loop, being local, and the remaining loops being local or remote. Local loops operate at $600 \mathrm{bps}, 1200 \mathrm{bps}$, 2400 bps, and 4800 bps, but only one 4800 -bps local loop is allowed.
Connected with each loop, local or remote, is one loop card. Although all loop cards are identical, the sockets are umpered to select speed and for remote loop operation. Jumpering instruction
Each remote loop requires an integrated modem, an external modem, or a 3603 Terminal Attachment Unit. Integrated modems consist of one logic card.
In the event of a 1200 -bps remote loop problem, the con troller wrap-tests the loop card. If the loop card passes the wrap-test, and an integrated modem is used, the controller wrap-tests the modem. The wrap-test results are entered in the controller log. (Refer to 3.3 .5 for controller log details.)

3.2.6 Address and Speed Switches on Terminals

 Each 3600 terminal has two groups of switches. Group 1 is used to set the terminal address, and Group 2 is used to se he terminal speed. Each group has four individual switche labeled $1,2,3$ and 4 ; and each switch has an $O N$ and an FF position. Tables 3-1 and 3-2 show how to set these switches.When the operating diskette is being used, the address and speed switches on the individual terminals must agree with the configuration information on that diskette. The ustomer will have configuration documentation for reference.
Note: When a loop is functioning correctly, the READY lights on all powered terminals will be on continuously.

Table 3-1. Terminal Address Switches (Switch Group 1)

Terminal Address	Switches				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
	$*$				
		$*$			
	$*$	$*$			
4			$*$		
5	$*$	$*$	$*$		
6	$*$	$*$	$*$		
7	$*$	$*$	$*$	$*$	
8	$*$			$*$	
9	$*$	$*$		$*$	
10	$*$	$*$	$*$	$*$	
11	$*$		$*$	$*$	
12	$*$		$*$	$*$	
13	$*$	$*$	$*$	$*$	
14		$*$	$*$	$*$	
15	$*$				
16					

* $=\mathrm{ON}$
able 3-2. Terminal Speed Switches (Switch Group 2)

Speed bps	Switches			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
600	$*$			
1200		$*$		
2400			$*$	
4800				$*$

* $=$ ON
blank $=\mathrm{OFF}$

3.2.7 Alternative Line Attachment

The Alternative Line Attachment permits the controller to ttach nonloop discipline control units and terminals.

3.2.8 Host Communication Link

For communicating with the host computer, the controlle equires one CA card (communication adapter card) and ne modem. The modem may be a $1200-$ bps integrated modem or an external modem. For an external modem, the controller must have one EIA (Electronic İndustries

Associated) card.

There are two types of CA cards, one with clocking and one without clocking. The 1200 -bps integrated modem requires a CA card with clocking.
The $1200-$ bps integrated modem consists of three cards ransmit, receive, and wrap.

Legend:
\neq Communication lines
$=$ any of 3600 system terminals, including the 3614 Consumer Transaction Facility.
$\mathrm{T} \dagger=a 3604$ Keyboard Display at address 1 on loop 1. This 3604 displays diagnostic messages during startup (reset). This 360 need not be physically the first terminal on the loop, although it is shown as such on this diagram. For other 3604 functions relating to the CE, refer to 3.3.1
$\mathrm{T}^{*}=$ a 3604 Keyboard Display Model 2, 3, or 4, or a 3614 Consumer Transaction Facility Model 1 or 2. If both are on one remote subloop, the 3614 must interface the communication link.
Modem $=$ modulation/demodulation
Work Station = a group of one or more terminals that are recognized by the controller as being grouped. Operators use a work station to perform a set of operations under contro of an application program.
Remote loop = combination of the subloops within remote branch offices and the communicatio lines that connect the subloops to the controller

Notes:
The modem (modulation/demodulation device) for the communication link may be a standalone modem it may be contained within the controller or 3614 (an integrated modem).
2. Remote loops require an integrated modem, an exter nal modem, or a 3603 Terminal Attachment Unit at each site.
3. Some controllers may have up to eight loops. Loop one must be the basic local loop, each remaining loop being local or remote.
4. Each interconnecting cable segment used for wiring local loops or remote subloops is limited in length by he driving or redriving capability of each unit. Each nit that has its power on is capable of driving a maximum of 2000 feet $(610$ meters) of cable. When its power is off, the terminal is automatically bypassed to maintain the loop integrity. However, the result is to connect the two cable segments together. If it is desired to keep the loop operational for other unis local or mote) on the lop, thits with powe ctiol 2000 fet 1010 meters.

Figure 3-1. 3600 Finance Communication System Exampie Using a 3602 Controller

In the event of a host communication link problem, the controller wrap-tests the CA card. If the CA card passes this test, the controller wrap-tests the modem if it is an integrated modem. An external modem may or may not be wraptested by the controiler. Wrap-test results are entered ins.) Note: MAP 6 gives information to help determine whether Note: MAP 6 gives information to help determine wheth
the controller is automatically wrap-testing the external the contro
modem.

3.2.9 Operator Controls

The controller operator controls are two switches: a power on-off switch and a reset switch. Turning on the power witch not only applies power to the controlier, but also uses a system reset (starup). Aciving cuuses a system reset (startup).

Note: A reset (startup) a/ways causes the diskette head carriage assembly to 'access' (move from one track position to the next) 80 times in the direction of track 0 . The diskette has 77 tracks, and the head carriage assembly may be at any track when reset begins. Thus, shortyy after you and hear the head carrioge assembly striking against the and hear the head caid ass striking against the
3.3 COMMUNICATIONS BETWEEN CONTROLLER AND CONTROL OPERATOR OR CE Note: In order to log on, the CE must obtain the identification code that is assigned by the customer and used by ator and the CE have the same capability for communicating with the controller. Hower, the following text in most cases, mentions only the CE as the person communimost cases, mentions only the CE as the person communi-

3.3.1 3604 Keyboard Display Terminals

The controller and the CE communicate through a 3604 Keyboard Display. Functionally, three 3604 s can be identi fied in this person/machine communication process: (1) the 3604 address 1 on loop 1, (2) the control operator's 3604, and (3) the 3604 at which the CE is logged on. (Physically, these functions may be done at one, two, or three 3604s.) The immediately following text defines these
3604s, and Table 3 -3 shows which 3604 is used at the various times that the controller and the CE must communicate. Also shown in Table $3-3$ are the various levels of diskettes as indicated by the EC number displayed to the CE by the 3604 .

Table 3.3. Controller/CE Communication

Diskette EC Levels

Starter		
Diskette	Operational	
PN 1652106	Diskette	Level
EC 741883	EC 741883	4.8
EC 741181	EC 741181	4.9
EC 741846	EC 741847	5.0
EC 741848	EC 741849	5.1
EC 741850	EC 741851	5.2
EC 741852	EC 741853	5.3
EC 741854	EC 741855	5.4
EC 745120	EC 745121	5.5
EC 745122	EC 745123	5.6
EC 745124	EC 745125	5.7

1. The $\mathbf{3 6 0 4}$ at address $\mathbf{1}$ on loop $\mathbf{1}$. This is the $\mathbf{3 6 0 4}$ on loop 1 whose address switches are set to 1 . Physically, loop 1 whose address switches are set to 1 . Physically,
this may or may not be the 3604 that is nearest to the controller.
2. The control operator's 3604 . This is the first 3604 in a table that is set up in the configuration process. If this 3604 is not working at a time when the controller the tabie, from top to bottom, until it finds a 3604 that is operating. With an operating diskette, the control operator's 3604 may be any 3604 on any loop. With a starter diskette, the control operator's 3604 is the 3604 at address 1 on loop 1 .
3. The $\mathbf{3 6 0 4}$ at which the $C E$ is logged on.
a. With an operating diskette, the CE is automatically logged on the control operator's 3604 during startup time to enable the CE to enter the keyboard responses that complete the startup. After startup is complete, the CE may manually log on at any 3604 that is idle.
b. With a starter diskette, the CE is automatical ogged on he 360 at address 1 on loop 1 during startup and after startup is complete. (A sage 92222 is displayed) If desired the CE may manually log off this 3604 and log on another 3604.
At startup time and after the CE is logged on, the specified 3604 keyboard operates with the Universal Translate Table (Figure 3-2). After being logged on, the CE has the option of keying a command that returns the keyboard to the original translate table. (See the 045 X command in the IBM 3600 System FE MIM, SY27-2520.)
Note: After the keying of any command or response has been completed, this information is entered into the controller by pressing the EM key shown on Figure 3-2. To avoid much repetition, this step is usually omitted in the following text.

3.3.2 Operating Diskette

Error-Free Startup (Reset)
The startup sequence is as foilow
The CE activates the power switch or the reset switch on the controller.
2. The $\mathbf{3 6 0 4}$ at address 1 on loop 1 displays a series of messages in the upper left corner of the gas panel to indicate the progress of the startup diagnostic tests. This 3604 may require a power off/on reset). The first message of this series is IDL (initial diagnostic load) and the final message is DTC (diagnostic test complete). Each message is displayed for a number o seconds and is then replaced by the succeeding one.
3. The control operator's 3604 displays a message on the top two lines of the gas panel. (This message indicate that the configuration image and the application programs have been successfully loaded from the diskette, The top line contains seven groups of characters. From left to right, the groups give the following information a. The control code supplemental version ID.
b. Diskette identification (Volume ID).
c. Configuration identification (GEN ID)
d. The EC level of the controller data.
e. Control unit (controller) address (CUA). The

CUA is used by the host to address this controller
f. Relocate count. A count of the diskette records moved to the error track because of diskette surface defects.
g. Session identification. As used here, a session is one or more periods of time that the customer thinks of as one continuous period of time for the purpose or record keeping
The second line of the gas panel contains a five-digit message, 00001 . This message requests the CE to key and enter one digit to specify the type of start wanted. The type of start specified by each valid
digit is as follows:
$0 \mathrm{XX}=$ Load utility, where $70=$ diskette format *
= Cold start
$2=$ Warm start
$2=$ Warm start
$3=$ Diagnostic loop
$3=$ Diagnostic loop
$4=$ Prompt mode
$4=$ Prompt mode
$5=$ Prompt mode for optional operations
$6 \mathrm{X}=$ Describe the 3604 model number, where
$7 \mathrm{XX}=$ Load link
$X X=$ Load link module, where,
$02=$ HPCA TAM
03 = CCA CREDIT LYONNAIS $04=$ HPCA
$8=$ Cold start with no start link issued
$9=$ Warm start with no start link issued
*Starter diskette only.
Note: Use the Universal Translate Table Keyboard locations when enter
Figure 3-2
Special Note: When using an operating diskette, never specify a cold start (digit 1 or digit 8) unless the custome allows you to do so.
4. The CE keys and enters the correct digit. If $1,2,8$, or θ are entered, go to step 5 in this sequence. If 4 is entered, go to step 6. If 5 is entered, go to step 7. If 3 is entered, the controller will loop on the startup diagnostic sequence (IDL to DTC).
5. After entering $1,2,8$, or 9 , the gas panel goes blank and the customer's application program takes control.
6. If the CE requests a prompt mode start by keying and entering 4, the control operator's 3604 displays a sequence of five-digit messages (00002 through 00004) in the position where 00001 was displayed. After each message is displayed, the CE enters a response as shown in Table 3-4, and the next message then appears. After the response to message 00004 has been completed, the screen again displays 00001 . The CE now enters a 1, 2, 3, 4, 5, 8, or 9 to specify the startup, as in step 4
7. If the CE requests a prompt mode start by keying and entering 5 , the control operator's 3604 displays the message 00005 in place of $\mathbf{0 0 0 0 1}$. The CE keys and enters responses to this message as shown in Tab
 pleted, $1,2,4,5,8$ or 9 to specify the startup, as enters 1,2,
a. The CE may describe the 3604 by entering $6 X$, where X is the $\mathbf{3 6 0 4}$ model number.

Startup Errors

1. If the startup diagnostics detect an error, the startup terminates with no message displayed, or one of the foilowing messages displayed on the 3604 at addres 1 on loop 1. (See MAP 1, Error Indication Index.) IDL INS HSH MVV XXX $\begin{array}{llll}\text { IDL } & \text { INS } & \text { HSH } & \text { MV2 XXX } \\ \text { HSH } & \text { MVO XXX LEC } & \text { MV3 XXX }\end{array}$ $\begin{array}{llll}\text { LDI } & \text { ROS } & \text { MV20 } & \text { ESA } \\ \text { IRT PCK } & \text { MV30 } & \text { INV }\end{array}$ HSH LSW MV1 XXX DTC HSH
LDC MV1 XXX DTC
MV2 and MV3 messages will only appear with the ex tended memory. HSH will only appear if there is a diskette read error.
2. If the controller detects an error during the remainder of the startup: 82XXX error messages are displayed on the 3604 at address 1 on loop 1, and 9XXXX error messages are displayed at the control operator's 3604 . (Refer to the IBM 3600 System FE MIM, SY27-2520.)

Manual Logon/Logoff Procedure

1. At an idle 3604 , press the RE (reset) key three times If reset is not marked, ask the customer to identify the reset key.
2. Message 90000 should be displayed. When 90000 is displayed, the layout of the keyboard keys is as
assigned by the Universal Translate Table (UTT). Refer assigned by the Universal Translate Table (UTT). Refer
to Figure $3-2$ for the keyboard layout for the different 3604 keyboards.
Note: If 90000 is not displayed and the CHECK indicator lights, another 3604 is already logged on.
3. Obtain the control operator identification (ID) code from the customer and enter this code at the 3604 using the 3604 UTT keyboard layout.
Note: The control operator ID is not displayed.
4. Message 91111 should be displayed, indicating a successful logon. If 91111 is not displayed, go to step 1.
5. Logoff Procedure: To log off, key in 000 and then press the EM (enter) key.
Table 3-4. Prompt Mode Message Sequence*

Displayed Message	CE Response
00002	Enter a one- or two-character control unit address (CUA) in hex. This CUA replaces the one on the diskette.**
00003	Enter a 1 to request dump option. Enter a 0 to request no dump option.**
	Note: The dump is taken only after a system failure. See 82060.
00004	Enter a 1- to 16-character control operator identification code, supplied by the customer. Valid characters are: $0-9, \mathrm{~A}-\mathrm{F}$, X, and blank.** If 90000 is displayed after entering a new identification (ID) code, the earlier ID code must be entered. If it is not entered correctly, 00004 will again display; if it is entered correctly, the ID code will be changed and 00001 will display.
00005	Enter the ID codes for as many as 16 optional modules of controller data. (Press the EM (enter) key after each ID code of one or two hex characters.) The 00005 message will remain after each entry unless the CE has responded by entering $\mathbf{0 0}$ or FF , or by pressing the EM (enter) key or the RE (reset) key. If 00 is entered, no optional modules will be loaded. If FF is entered, all optional modules will be loaded. For optional module ID codes on starter diskette, see 3.3.3.**
00006	Enter a 5-character XID.**
${ }^{*}$ See 3600 Startup. **If only the and the pressed	stem FE MIM, SY27-2520, for Prompt Mode EM (enter) key is pressed, this input is bypasse ration continues. If the RE (reset) key is e, the prompt mode sequence is terminated.

A. 30-Key Keyboard

B. $\mathbf{4 5}$-Key Keyboard

Legend

BS = backspace
RE $=$ reset
NK $=$ return to normal keyboard $=045$
$\mathrm{SP}=$ space
$\mathrm{A} V=$ advent
SK $=$ space
AV $=$ advance/clear*
FR $=$ free

c. 74-Key Keyboard

D. 77-Key Keyboard

E. 92-Key Keyboard

F. 94-Key Keyboard

G. 99-Key Keyboard

Figure 3-2. 3604 Universal Translate Table Keyboard Locations

3.3.3 Starter Diskette

An IBM-controlled starter diskette is shipped with each controller. All the exerciser tests that can be performed with an operating diskette are available on the starter diskette. (Refer to the IBM System 3600 FE MIM, SY27-2520. for the list of keyboard commands that control these tests.) Aiso, the starter diskette includes the create diskette function (capability) that is not available on the operating diskette. This function is used by the customer to create (generate) operating disk iss. For in IBM Syst 360 FE MI

Preparing to Use the Starter Diskette

The starter diskette supplied to the customer has been configured for one terminal of each type on each of two loops, loops 1 and 2. (Loop 1 contains the control operator's 360 at address 1.) After startup is complete, loops 1 and 2 are both running. Keyboard commands are avaiable to
loop 2, specify another loop to take loop 2's place, and start oop 2 , speciy he other loop.
in Table 3-5. Thus, if a terminal is dis configured as shown its address switches must be set as shown in Table 3-5. For terminals that are on the loop being tested but are not being used in the testing, configuration requirements may be met by turning off their power switches rather than changing the normal setting of their address switches.

There is no need to change the address switches or the power switches of terminals on loops not being tested.

Table 3-5. Starter Diskette Configuration

For starter diskettes at EC 745122 and above, see command code 973 in the IBM 3600 FE MIM, SY27-2520. Only addresses 01,02 , and 03 are valid on these diskettes.

Terminal	Address	Slots Used	Components
3604	01	1,9	Keyboard (magnetic stripe reader), and display.
3618	02	2,10	132 print positions, dual forms feed.
3604	03	3,11	Keyboard (magnetic stripe reader), display, and mag- netic stripe encoder.
3610	04	4,12	Continuous form/cut form.
3611,	05	5,13	Document: Continuous form/cut form. Passbook: 28 lines, centerfold starts on line 14, and ends on line 17.
3612		8,16	Cash issuer.
3614	08	8	

Startup

With the starter diskette, the startup is the same as with the operating diskette. Note that the control operator's 3604 is the 3604 at address 1 on loop 1 .

Logon/Logoff Procedure

As soon as the CE completes the startup by responding to the 00001 message, the gas panel on the operator's 3604 (address 1 on loop 1) goes blank and the message 92222 appears. This message indicates that the CE is automatically logged on that 3604 and may run exerciser tests by using its keyboard. The CE can log off that 3604 by keying 000 and the enter (EM) key; he can then manually log on at anothe 3604 in the same way as with an operating diskette.

Testing a Component

After being logged on, the CE can test a component by using the commands described in the IBM 3600 System FE MIM.

If the component to be tested is on loop 1, it is assigned as the test component with command code 007, just as with an operating diskette.
With the starter diskette, loop 2 is named as having a wrappable modem. If loop 2 actually has a wrappable modem, it is only necessary to use the 007 command to diskette if 100 m has no modem or has a moden that is turab 2 foll not wrappable, the following commands should be given before giving the 007 command
0400020002
0400
If the component to be tested is on a loop other than 1 or 2 , it is necessary to enter the following commands, before using the 007 command:
4000×00 Y
0400
X is set to 2 if there is no wrappable modem on the loop (local loop or World Trade 600 -bps remote loop).
X is set to 3 if there is a wrappable modem ($1200-$ bps remote loop).
Y is set to the loop number of the loop to be tested. This same number is also used to specify the loop when using t
tested.
The first of the above commands ($04000 \times 00 \mathrm{OY}$) stop all loops except loop 1 and specifies the loop to be tested. The 0400 command starts the loop to be tested.

The host link is configured for a nonwrappable modem If your modem is capable of an automatic wrap test, you must set this parameter with the 041 command. See Table 3-6.
Note: You must use a prompt mode startup to specify the component to be tested. (See 3.3.2.) The starter diskette optional module ID codes are.

ID Component
 OA Address Sharing
 OB PIN Keyboard
 5E Optional module required for use of command
 $$
\text { code } 063 \text {. }
$$
 ALA/Host Communication Link Test
 3610, 3618
 3604 magnetic stripe encoder
 3614
 88 3606/3608 keyboard/display
 893608 printer

3.3.4 Keyed Input Commands*

After logging on the system at a 3604 , the CE can use the keyboard at that 3604 to issue commands to the system. These commands enable the CE to perform the following functions:

1. Examine the controller log. For example, see command code 001. Controller log details are Examine the statistic counters. For example, see command code 010. Statistic counter details are in paragraph 3.3.6.
2. Exercise a controller or terminal component.
*Refer to the IBM 3600 FE MIM, SY27-2520.

Note the following points concerning the use of these commands: *

1. As soon as the CE presses the RE (reset) key three times, the Universal Translate Table (Figure 3-2) is in effect. While logged on, the CE can use command code 045 or the NK key to return to the original trans late table.
Note: When the Universal Translate Table is in effect, some of the other keys may still be active.
2. The fields of a command are to be entered in decimal unless the field representation is preceded by X. In that case, the field may be entered in decimal or hex adecimal. If the field is entered in hexadecimal, the first character of the field should be immediately pre-
3. Leading zeros are not required in any input field except for the command codes, and the SS portion of the LSSD field in commands 006 through 010 .
4. Before exercising a component, the CE must assign code 007.
5. The CE has the option of assigning a component as the output printer. (See command code 006.) The ou put printer may be used to provice a hard copy of log messages (command code 046) and statistic counters (command code 012). Also, it may be used for a hard copy record of all keyboard commands and display messages (command code 061).
6. If the controller detects an error while the CE is logged on, it displays a five-digit error message that begins with digit 9 . These five digits are followed by four oxadecimal characters hat are the Wo sta *

3.3.5 Controller Log

The controller log is a file located on the diskette. The sysem monitor places messages in this log that relate to maintethe ability to place messages in this log. The first two digits f any log message are significant. The meanings of these of any log message are significant. The meanings of these digits are as follows:
First digit $=1$: System written log message
First digit $=$ Not 1: User-written log message. User should ot begin the message with a 1 .
Second digit $=1$: The log message requires immediate attention. To alert the CE to the presence of such a message, the controller turns on the CHECK , 1,2 or 3 indicator light of the control operator's 3604 . (Th configuration process at generation time determines which light will be used for this purpose. Usually, it is the CHECK light.) If the control opeator's 3604 is not operating, the controller turns on the corresponding light of the first available 3604 that is operating.
Second digit $=$ Not 1 : This message does not require immediate attention and does not turn on the CHECK light at a 3604.
Note: The controller log is lost through a cold start. It is not lost through a warm start
The CE can examine a display or a printout of the con. Tller log by loging on at any operating 3604, and then iving 001, 002 , or 046 command as described in the IBM 3600 System FE MIM, SY27-2520.

Log Usage Notes

1. When displaying and paging down the log by repeatedly ressing the enter (EM) key after entering the 001 com pressing the enter (EM) key after entering the 001 co displayed if the enter key is pressed after message num ber one has been displayed.
2. If an attempt is made to write a log message while you are logged on and the log area is full, the controller will cause message 900124000 to be displayed MIM, SY27-2520.

3.3.6 Statistic Counters

In addition to recording errors in the system log, the controller maintains statistic counters for each of the following components of the system

Controller Diskette
Controller Loop control (for each loop)
Controller Host communication link
3602 Disk Storage
3604 Keyboard
3604 Display
3604 Encoder
3606 Keyboard/Display
3608 Keyboard/Display
3608 Printer
3612 Document Printer
3612 Passbook Printer
3614 Consumer Transaction Facility
3618 Administrative Line Printer

Alternative line attachment information is contained in Alternative Line Attachment General Information manual GA27-2856.

Note: Statistic counts are located in functional storage and are lost each time there is a startup (warm or cold). In contrast, the controller log is located on the diskette. Thus, this log is lost only on a cold start.

After logging on at a 3604 , the CE can key in either of two commands to obtain statistic counts.

1. 010 LSSD is keyed to display the statistic counters of a specified component.
2. 012 X is keyed to print statistic counters for all components on the assigned output printer. X the number of loops attached to the controller.

Refer to the IBM 3600 System FE MIM, SY27-2520 for details on the 010 and 012 commands and on the format of the printed/displayed statistic counter messages.
Concerning the displayed or printed counts, note that:

1. Each three-digit count represents the decimal count in one counter. The counters are designated as counter 1 , counter 2 , etc., from left to right.
2. If a count reaches 256 , additional counts of that type will cause the count to return to 128 and continue from there. Thus, counts of 128 or over, are not definitive.
3. Counts represent the number of operation failures, not the number of retries per operation.
Tables in the IBM 3600 System FE MIM, SY27-2520, explain the counts for the controller components.

3.3.7 Displayed Messages

The controller communicates with the CE by displaying the me sages described in the IBM 3600 System FE MIM, SY27-2520. Note that:

All 82XXX messages are displayed only on the 3604 address 1 on loop 1

- $\quad 900 \mathrm{NN}$ error messages may be accompanied by four hexadecimal characters (two bytes) that give the status of the terminal component connected with the error. Tables in the IBM 3600 System FE MIM, SY27-2520 describe status information.

3.3.8 Displayed Status

Some of the 900NN messages explained in the IBM 3600 System FE MIM, SY27-2520, are accompanied by two status bytes, displayed as four hexadecimal characters. These bytes and characters are identified, as follows:

Byte 1 has general meaning not specific to any component. The specific information is contained in byte 2. The meaning of the individual bits of byte 1 is given in Table 3-6. Note that more than one bit of a status character can character is the sum of the activated bits. For exampla displayed first status byte of 63 indicates that bits 4 and 2 of the first status character and bits 2 and 1 of the second status character are activated. Similarly, more than one bit of status characters 3 and 4 can be activated simultaneously. The IBM 3600 System FE MIM, SY27-2520 presents a list of status messages that assume no more than one bit activated in each character at any one time. From this you can determine the meaning of status messages that include characters with more than one activated bit.
Alternative line attachment information is contained Alternative Line Attachment General Information Manu al, GA27-2856.

Table 3-6. First Status Byte

	Bit Meaning
First	$8=$ Intervention Required Character (Byte 1)
	= Unit Exception. $2=$ Data Check. $1=$ Status is for prior write operation com- bined with any residual status. The cur- rent write status is lost.
Second Character (Byte 1)	$8=$ Operation terminated by attention (press- ing 3604 reset key twice). $4=$ Command Reject. $2=$ Unit Check. $1=$ Wrong length record.

front view

REAR VIEW

Disk Enclosure

The Disk Enclosure (DE) is a factory-sealed unit that houses the disk, spindle access arm, actuator, and fixed heads (where installed). These components may be visible through the clear cover, but are not accessible by the customer or CE.

The card sockets for data channel, head selection cards, and the connecting cables are mounted on the DE casting they are not enclosed with the sealed cover. Two cards are used on a DE (three, if fixed head is installed).

Fixed Heads (Optional)

The fixed heads are on the servo side of the disk and may not be visible. Because the heads touch the disk surface during power up/down, the data and IDs on the fixed head tracks cannot be guaranteed after the power cycle and must be recreated foilowing power-up.

Disk

The disk is one permanently mounted, 14 -inch, magneticcoated disk. It is driven by an ac motor at a nominal speed of 2964 rpm .

```
Diagrammatic cross-section of disk
LZ : Landing Zon
```

G : Guard Band

Disk Spindle

Data can be recorded on 304 concentric tracks per moving head. The pair of tracks, 0 and 1 , equal one cylinder; this format is used because all of the customer data that is written with the moving heads is on the same side of the
disk. The other side of the disk is prewritten with patterns (corresponding to each data track location) on the outer half of the disk (area A). This is used by the servo head to perform a seek operation.
Note: Two tracks (one available to each movable head) are Note: Two tracks (one available to eachore are reserved for read and write tests. The two tracks at cy linder

Disk Spindle

The disk spindle assembly is mounted in a housing (which contains two bearings) in the back of the DE. The housing is sealed to prevent contamination from being drawn into the $D E$ through the bearings.

The disk spindle has a mounting hub to which the disk is clamped. A pulley is attached to the other end of the spindle; the pulley is belt-driven by an ac induction moto that is mounted on the subframe.

Beit tension is maintained by a spring acting on the pivot mounted motor/brake assembly. The spindle and belt are grounded to the DE casting through an antistatic brush. An electromagnetic transducer, mounted on the $D E$, senses a slot in the spindle pulley to give an indication of speed.

Access Arm Actuator

The actuator arm is pivoted beside the disk and carries the heads across the disk to the track that is specified by the Disk Control. The movable data heads and the servo head are attached to one end of the actuator arm, and a recis locared in atwhed to the end. The coll, which trough it. This causes the heads to be moved in and cross the disk surface. Track crossing information is obtained from the servo tracks to position the heads over the required track. A preamplifier for the servo is mounted on the actuator arm, close to the head element. The actuator has no mechanical detent when it completes a seek, but constantly servos. When the heads are over the landing zones, however, a magnetic catch on the actuator makes sure they do not move in a normal power-off state. During removal, installation, and in transit of the DE, the mechanical actuator and spindle locks must be set.

Motor
The disk is driven by a $1 / 6-\mathrm{Hp}$, ac-induction motor that is mounted on the subframe. The motor has a thermal cutout switch with manual reset to prevent overheating. The motor has a fail-safe brake that is applied immediately following power off. The disk speed during start and stop operations is important because the time the heads. ouch the disk while it is rotating must be kept to a minimum: The fail-safe brake releases a spring-loaded plate that pushes the brake on when controller power turns off.

Data Recording

Data is transferred by heads that fly above the disk when the disk is spinning at 2964 rpm . When the disk is stationary, the heads are in contact with it. To minimize head wear, the stop/start times of the disk are controlled. During a normal start or stop cycle, the data and servo ones are not used for recording. An atur rer zones are not used for recording. An actuator retract re moved over the landing zone if ac power fails.

Servo
The servo head follows prewritten patterns at the cylinder locations to ensure that the moving data heads maintain rack alignment. The servo tracks provide information hat is used by the servo circuitry to dect track crossing A seek error occurs when a read/write head is incorActly positioned over the desired track after a seek oper tion. The disk maintains track alignment through the servo error signal, but cannot detect or recover from a seek error error signal, but cannot detect or recover from a seek error between the data tracks and the landing zone). If the read/write heads do enter the guard band, the servo head detects it and sends a signal to the Disk Control, which ends the seek operation.

3.5 DISKETTE DRIVE ASSEMBLY (SINGLE SIDE)
3.5.1 General Description

3 Diskette Drive Cover

The diskette drive cover permits insertion and removal of the diskette

2 Diskette Collet Assembly
When the diskette driace cover is closed, the springloaded collet centers and clamps the diskette to the diskette drive hub.

1 Head Load Actuator Assembly
The head load actuator assembly consists of a magnet and an armature. During a read or write operation, the head load actuator is energized and allows the pressure pad arm to push the diskette against the read/ write head. At the same time, the head load actuator armature forces the diskette package against the flex ble disk for cleaning. While not reading or writing, the head load actuator is deenergized and holds the pressure pad assembly away from the diskette to reduce diskette and head wear

11 Preload Spring

The preload spring loads the leadscrew to maintain head alignment with the diskette.

The upper limit stop prevents the head from being driven beyond track 77. The lower limit stop prevents the head from being driven lower than track 00 .

9 Read/Write Head

The read/write head provides the read, write, and erase functions.

8 Leadscrew Nut and Spring
The leadscrew nut and spring load the head and carriage assembly to maintain head alignment with the diskette.

Light Emutting Diode (LED) and Phototransistor When the diskette drive cover is closed, the continuous light emitted from the LED is directed toward the phototransistor Once every revolution, the index hole in the diskette allows light from the LED to reach
phototransistor The phototransistor sends index phototransistor The phototransistor sends index
pulses to the diskette adapter card via the diskette drive control card.

5 Diskette Drive Control Card

The diskette drive control card provides drive circuits for the stepper motor, head load actuator, and write and erase heads. It also provides the amplifiers for the phototransistor and read head.
The card is mounted with the components and test pins facing out for service.

The motor turns the diskette at a speed of 360 rpm

7 Stepper Motor Assembly

The stepper motor wheel is permanently mounted on the end of the stepper motor shaft. The stepper moto haft turns in increments of 90 degrees in either dire tion under the control of access pulses. The stepper motor wheel engages the leadscrew wheel. When the stepper motor rotates 90 degrees, it causes the leadscrew to rotate 90 degrees. The head carriage assembly then moves up or down one track on the diskette.

3.5.2 Operating Sequence

1. The controller activates motor power. Diskette can be inserted or removed with power up.
2. Insert diskette and close cover. Closing the cover engages the diskette clamp 9 in the drive hub 8 clamping the diskette in place. With power up, the diskette is now turning.
3. After a 10 -second delay from power on, index pulses

1 every 166.6 ms nominal are read.
4. 'Head engage' line 2 is activated. This causes the pressure pad 11 to push the flexible diskette against the read head 10. After $80-\mathrm{ms}$ settle time 5 , data is valid for the system. Head location is determined by reading track 3 or by returning the read head to track 0 .
5. For each access command, the stepper motor 13 rotates the leadscrew 1290 degrees clockwise or counterclockwise. This moves the read head one trat down on unit, moves the carriage up), Two adjacent signal lines must be energized at the same time when accessing 8 Overlapping must be mo less than 50 m accessing 8. Overlapping must be no less than 50 m 6 . Prior to read or write operations, the two lines
for the selected track must be energized for 150 ms for the selected track must be energized for 150 ms .
6. Full track read occurs 4
6. Pressure pad is lifted as soon as possible after completion of last read, write, or access operation to reduce diskette and head wear 2

Typical Timing Sequence

Write Data

For each transition in the 'write data' line, current is switched in the read/write head causing a flux change on the diskette.

Raw Read Data

- Sine wave signa

125 kHz (all 0's) 250 kHz (all 1's)

- Higher voltage at outer track because of higher diskette speed and lower bit density.
All 0 's pattern gives higher voltage amplitude than all 1's.

Limit Amplifier

- High-gain differential amplifier increases signal so on of amplifier transistors is cut off. Outputs of limite a two out-of-phase squer wave
- Differential rectifier RC network differentiates square waves. Resulting positive- and negative-going pulses (180° out of phase) are input to an OR circuit. Out put is a train of positive pulses. Positive leading edges of output pulses correspond to peaks in read signal delayed by a constant amount.
- Data is a string of 150 -ns pulses (+Diskette Data) which are fed to the VFO in the diskette adapter card.

Erase
The edges of the data track are erased to prevent reading of
adjacent tracks.

Full Track Differential Read Signal at CE Test Points

$10 \mu \mathrm{~s} / \mathrm{cm}$
3.6 DISKETTE DRIVE ASSEMBLY (TWOSIDED)
3.6.1 General Description

Cover Assembly
1 Latch assembly
2. Collet

The diskette drive cover assembly 3 pivots to accept the diskette 5 . The diskette is automatically centered and clamped to the drive hub 18 by the collet.
Two timing pins 4 are stored in a holder located inside the cover assembly.

13 Belt
Belt
Drive motor
Drive motor
Drive pulley
Drive pulley
Idler assembly
Idler spring
These components drive the hub. The motor rotates the diskettes clockwise (viewed from the front) at a speed of 360 rpm with the heads loaded.

Stepper Drive Components

Stepper motor
Stepper motor pulley
Stepper motor pulley clamp
Wiper
Stepper drive band
10 Stepper idler assembly
The stepper motor shaft turns in increments of 1.8° in either direction under control of access pulses. This motion causes the head/carriage assembly to move the heads across th diskette surface a distance equal to one track.

Head/Carrizae Assembly

Trs head/carriage assembly 19 consists of two read/write heads mounted on a common carriage. The assembly moves under control of the stepper motor. The read/write head provide the read, write, and erase functions required to record and retrieve data from either side of the diskette
CAUTION: The head/carriage assembly is a factory-adjusted and tested assembly. Any attempt to adjust, repair, or clean ny part of this iternal component is likely to cause serio damage to the read/write heads or carriage assembly.

Head Load Solenoid/Bail Assembly

The head load solenoid 7 is energized, causing the bail assembly 20 to load the heads. The heads are loaded before read or write operation. The heads are unloaded after no more than one revolution if another read or write operatio
is not to be executed. This reduces wear to the diskette and read/write heads.

LED/PTX Assemblies

The LED (light emitting diode) 17 and PTX (phototransis or) 6 assemblies provide a means of detecting the diskette index and identifying the type of diskette inserted (one sided or two-sided).

Diskette Drive Control Card

The diskette drive control card 12 provides the drive circuits or the stepper motor, head load solenoid, and the write and rase functions. It also provides the amplifiers for the read heads and the LED/PTX circuitry. The diskette drive con rol card is supported by a card retainer 11 located between it and the stepper motor

3.6.2 Operating Sequence

1. The controller activates motor power and the diskette motor starts turning.
2. Insert a one-sided or two-sided diskette. The type of diskette is identified by the diskette sense line. An up diskette
3. Close the cover assembly. This causes the collet to engage the drive hub, clamping the diskette in place. The diskette starts turning.
4. After a 10 -second delay from power on, index pulses 4 are sensed every 166.7 ms (nominal)
5. Head Engage 2 is activated causing the heads to load After $80-\mathrm{ms}$ head settle time 5 . data is valid for the After $80-\mathrm{ms}$ head settle time 5 , data is valid for the
controller, and head location is determined by reading controller, and head lo
6. Access to the desired track is done by sequencing the four access lines to move the head/carriage assembly in (toward the hub) or out (away from the hub). Ene gizing adjacent access lines 7 rotates the stepper motor 1.8°, a distance of one track. The two access lines for the last track accessed remain energized.
eading
7. The heads are lifted after the last read, write, or access operation to reduce diskette and head wear.

Typical Timing Sequence

Write Data

For each transition in the 'write data' line, current is switched in the read/write head, causing a flux change on the diskette surface.

Raw Read Data

- Sine wave signal:

125 kHz (all 0 's)
250 kHz (all 1 's)

- Higher voltage at outer tracks because of higher track speed and lower bit density.
- All 0's pattern gives higher voltage amplitude than all 1's.

Limit Amplifier

- High-gain differential amplifier increases signal so one of amplifier transistors is cut off. Outputs of limiter are two out-of-phase square waves.
- Differential rectifier RC network differentiates square waves. Resulting positive- and negative-going pulses (180° out of phase) are input to an OR circuit. Output is a train of positive pulses. Positive leading edges of output pulses correspond to peaks in read signal delayed by a constant amount
- File data is a string of pulses (+Diskette Data), 150 ns to 500 ns long, which are fed to the VFO in the diskette adapter card.
rase

The edges of the data track are erased to revent reading of adjacent tracks.

Characteristics

Diskette

Handling
CAUTION: Observe the following cautions

- Do not insert damaged diskettes into diskette drive. Diskettes which are physically damaged (torn, creased warped) or contaminated with foreign materials (eraser warped) or contaminated with foreign materials (eraser
dust, fingerprints, cleaning fluid, etc.) may cause operation errors, equipment errors, or head damage.
- Placing heavy objects on diskettes may damage diskette.
- Return diskette to envelope whenever it is not being used. Storage space for diskettes enclosed in envelopes is provided inside front cover of the controller. Whe diskettes are stord outide of the conroler, additional protection is provided by returning the diskettes to their shipeing containers.

- Do not use clips. Never write on diskette with erasable pencil.

- Do not touch or clean the flexible disk surface. Contaminated diskettes must be discarded.

- Keep diskette away from magnetic fields and from ferromagnetic materials which might be magnetized Any diskette exposed to a magnetic field may los information.

Do not expose diskette to excessive heat $\left(125^{\circ} \mathrm{F}\right.$ or $515^{\circ} \mathrm{C}$) or direct sunlight.

Long Term Storage

Place diskettes in their envelopes and store in the following environment:

- Temperature: 50° to $125^{\circ} \mathrm{F}\left(10.0^{\circ}\right.$ to $\left.51.5^{\circ} \mathrm{C}\right)$
- Relative humidity: 8% to 80%
- Maximum wet bulb: $85^{\circ} \mathrm{F}\left(29.4^{\circ} \mathrm{C}\right)$

If a diskette has been exposed to temperatures outside of the machine's environmental rarge, allow five minutes the machine's environmental rarige, allow five minutes acclimation time before use. The diskette should be should be kept in its envelope.

Shipping and Receiving

CAUTION: Ship diskette inside the original shipping container. An ordinary mailing envelope does not provide container. An ordinar
Be sure to label the package: DO NOT EXPOSE TO EXCESSIVE HEAT $\left(125^{\circ} \mathrm{F}\right.$ or $\left.51.5^{\circ} \mathrm{C}\right)$ OR DIRECT SUNLIGHT.
Upon receiving diskettes, check for container and diskette damage. Save the container for storing the diskette and for shipment later.

Insertion

1. Open cover

Press to

2. Remove diskette from envelope. Grasp diskette by upper edge.

3. Lower dis'ette squarely into the file. CAUTION: Do not insert dameged diskettes.
4. Close cover after diskette is fully inserted.

5. Place the empty envelope in a clean sturage area.

Removal

Reverse above procedur
3.8 INTERCONNECT DIAGRAMS

Figures 3-3 through 3-18 illustrate the internal and external cables and power distribution wiring diägrams essential to controller maintenance. For a listing of these diagrams, refer to page 3-1.

Volts	Wire No.	3601 Location	3602 01B1 End	Diskette Drive End
+5*	1	01A/TB-1	TB1.6	B03
	T1	01A/TB1-9	TB1-3	Bus
+24	2	01A/A1Z-B10	Z3B10	B10
	T2	01A/A1Z-BUS	Z3 Bus	Bus
-5^{*}	3	01A/TB1-4	TB1-10	B11
	T3	01A/TB1-10	TB1-3	Bus
Ground	Bus			B08

*This cable wire is not point to point.
Note: Wire numbers prefixed by " T " indicate black wire of twisted pair.

Function	Wire No.	Both Ends
Write	4	B02
Data	T4	Bus
Erase	5	B04
Gate	T5	Bus
Write	6	B05
Gate	T6	Bus
Write I	7	B06
Sel	T7	Bus
Access	8	D02
0	T8	Bus
Access	9	D03
1	T9	Bus
Access	10	D04
2	T10	Bus
Access	11	D05
3	T11	Bus
Diskette	12	D07
Data	T12	Bus
Head	13	D10
Engage	T13	Bus
Index	14	D13
	114	Bus
Head	15	B07
Select	T15	Bus
Two-Sided	16	D08
Diskette Sense	T16	Bus
Two-Sided	17	D09
Drive Sense	T17	Bus

Figure 3-3. Internal Cable PN 4943638/1741686/5645325, Basic Controller Board Connector/Diskette File Control Card

Cable PNs 4943641 or 1652549 or 1747295

Wire No.	Y/Z Connector	EIA Conn. on Panel
1	D02	22
2^{*}	BO2	25
T2 *	B13	14
3	D03	3
4	B04	2
5	D05	5
6^{*}	B05	10
T6	D06	9
7	B06	17
8	B07	11
9	D07	12
10	D08	7
11	B09	8
12	D10	4
13	B10	16
14	D11	18
15	B11	15
16	D12	6
17	B12	23
18	D13	20
19	D09	21
T19	D04	24
20	B03	13

*These wires are used only on internal modems. Remainder are used only for external modems.
Note: Wire numbers prefixed by " T " indicate black wire of twisted pair.

Cable PN 4409516

Wire No.	Y/Z Connector	EIA Conn. on Panel
1	D02	22
2	D03	3
3	B04	2
4	D05	5
5	B06	17
6	B07	11
7	D08	7
8	B09	8
9	D10	4
10	D11	18
11	B11	15
12	D12	6
13	B12	23
14	D13	20

To J (EIA Connector)

Figure 3-4. Internal Cable PN 4943641/1652549/1747295/4409516/Modem/EIA Connector for Communication Link

I/O Panel Connector

CABLE PN 4406670

	Local	Cable Panel			Remote \dagger	
		Color*	Connector	Terminal		
Loop 1	A1H1A11	Black	J2	Ring	Twisted Pair	
	A1H1A13	White	J2	Tip		
	A1H1B11	Black	J3	Ring		
	A1H1B13	White	J3	Tip		
Loop 2	A1H1C11	Black	J4	Ring	A2 A5D02	A2B2B02
	A1H1C13	White	J4	Tip	A2A5B02	A2B2B03
	A1H1D11	Black	J5	Ring	A2A5D03	A2B5D11
	A1H1D13	White	J5	Tip	A2A5B03	A2B5B09
Loop 3	A1H1E11	Black	J6	Ring	A2A5D04	A2C2B02
	AlH1E13	White	J6	Tip	A2A5B04	A2C2B03
	A1J1A11	Black	17	Ring	A2A5D05	A2C5D11
	A1J1A13	White:	J7	Tip	A2 A5B05	A2C5B09
Loop 4	A2 A6D02	Black	J8	Ring	A2A5D06	A2F2802
	A2A6D04	White	J8	Tip	A2A5B06	A2F2B03
	A2A6E02	Black	J9	Ring	A2A5D07	A2F5D11
	A2A6E04	White	J9	Tip	A2A5B07	A2F5809
Loop 5	A2B6A02	Black	J 10	Ring	A2 A5D10	A2E2802
	A2B6A04	White	J 10	Tip	A2 A5B10	A2E2B03
	A2B6B02	Black	J 11	Ring	A2A5D11	A2E5D11
	A2B6B04	White	J11	Tip	A2A5B11	A2E5B09
Loop 6	A2B6C02	Black	$J 12$	Ring	A2A5D12	A2D2802
	A2B6C04	White	$J 12$	Tip.	A2A5B12	A2D2B03
	A2B6D02	Black	J13	Ring	A2A5D13	A2D5D11
	A2B6D04	White	J13	Tip	A2A5B13	A2D5B09

3640

Figure 3-6. Internal Loop Cables, Board/Cable Panel

3601-C/D					
	Local	Cable Panel			
Loop 1	A1D1E11	Black	Connector	Terminal	
	A1D1E13	Ring			
	A1E1A11	White	J2	Tip	
	A1E1A13	White	J3	Ring	

PN 4406670
*Black may be black or white/black; and white may be white or white/red
tREMOTE LOOPS: On later leve! boards (38LS modems), the transmit pair (jack) go directly to the card socket pinsRing J05, Tip GO2; the receive pair (plug), Ring 113 , Tip G09.

3602

LED

Table A

Wire No.	Card Pos	Function
1	B02	+Reset
2	D08	Gnd
3	D02	-Reset
4	D03	+5V
-5	BO4	+5V Spec
6		Not used
7		-LED
8		+LED
9		+5V

(A) 3601 Internal Cable, PN 4943646, 01A1Z/Operator's' Panel

Figure 3-7. Controller Internal Cable to Operator's Panel

Select the controller you have by the model and the power system used. Refer to the figure number indicated for your controller for the correct Power Distribution Wiring Diagram and Cable Assemblies.

Controller Model and Number of Power Supplies	Power Distribution Wiring Diagram	Power Distribution Cable Assemblies
3601-2A, 2B, 3A, 3B (Single TSR-3 power supply)	Figure 3-9, Part 1	Figure 3-9, Part 2
3601-2A, 2B, 3A, 3B (One or two TSR-2 power supplies)	Figure 3-10, Part 1	Figure 3-10, Part 2
3601-C, D	Figure 3-11, Part 1	Figure 3-11, Part 2
3602-1A, 1B (TSR-3 power supply, more than 2 wires on B1Y4)	Figure 3-12, Parts 1, 2	Figure 3-12, Part 2
$3602-1 A, 1 B$ (TSR-3 power supply, only 2 wires on B1Y4)	Figure 3-13, Parts 1, 2	Figure 3-13, Part 2

Figure 3-8. Power Distribution Wiring Diagram and Cable Assembly Selection

Wire No.	$\frac{\text { From }}{\text { TSR-TB }}$	To	
		01A-TB1.	01A1-Y4.
1	1 (+5)	1	-
2	$2(+5)$	2	-
3	$3(+5)$	3	-
4	-4 (Gnd)	13	-
5	5 (Gnd)	10	-
6	6 (Gnd)	11	-
7	7 (Gnd)	12	-
8	8 (-5)	4	-
9	9 (-12)	7	-
10	10 (Gnd)	11	-
11	11 (Gnd)	-	Gnd Bus
12	$12(+12)$	6	-
13	13 (8.5)	8	-
14	14 (Gnd)	12	-
15	15 (+24)	-	D10
16	16 (Gnd)	- -	Gnd Bus
17	- 01 A-T $\overline{1} 1 . \overline{7}$	12) to	D05
18	01A-TB1.13	(Gnd) to	Gnd Bus.
19	01A-TB1-6	12) to	D07

(A) Cable PN 4943637.

Wire No.	From	To
		Board A1 Pwr Conn
	01A/TB1.	
1	12 (Gnd)	B2E14
2	12 (Gnd)	B3E14
3	11 (Gnd)	B4E14
4	8 (8.5)	B2A14
5	8 (8.5)	B3A14
6	9 (8.5)	B4A14
7	4 (-5)	B3E01
8	5 (-5)	B4E01
9	5 (-5)	B5E01
10	$1(+5)$	B3A01
11	$1(+5)$	B4A01
12	$2(+5)$	B5A01
13	$2(+5)$	U3A01
14	$3(+5)$	U4A01
15	$3(+5)$	U5A01
16	11 (Gnd)	U2E14
17	10 (Gnd)	U3E14
18	10 (Gnd)	U4E14

B Cable PN 4943639

Wire No.	From	To
		Board A2 Pwr Conn
	01A/TB1-	
1	10 (Gnd)	U2E14
2	11 (Gnd)	U3E14
3	12 (Gnd)	U4E14
4	8 (8.5)	U2A14
5	8 (8.5)	U3A14
6	8 (8.5)	U4A14
7	4 (-5)	U3E01
8	5 (-5)	U4E01
9	5 (-5)	U5E01
10	$1(+5)$	U3A01
11	$2(+5)$	U4A01
12	$3(+5)$	U5A01
13	$1(+5)$	B3A01
14	$2(+5)$	B4A01
15	$3(+5)$	B5A01
16	10 (Gnd)	B2E14
17	11 (Gnd)	B3E14
18	12 (Gnd)	B4E14

C Cable PN 4943643

[^7]Figure 3-9 (Part 2 of 2). Power Distribution 3601-2A,2B,3A,3B (Single TSR-3 Power Supply)

Wire No.	From	To
	TSR2 Conn	01ATB2
1	1 (8.5)	7
2	2 (8.5)	8
3	3 (Gnd)	2
4	4 (Gnd)	1
5	$5(+5)$	4
6	$6(+5)$	4
7	$7(+5)$	5
8	$8(+5)$	\%
9	9 (Gnd)	2
10	10 (Gnd)	2
11	11 (Gnd)	1
12	12 (Gnd)	3
13	13 (Gnd)	3
14	14 (.5)	9
-15	$15(-5)$	10
-16	01A.TBZ 0:A.TB1	

(Cable PN M406660

Wire	From	To
No.	Resistors	$014-$-FE2
1	R1-A	$4(+5)^{*}$
2	R3-A	$9(-(5)$
3	R6-B	$7+8.5)$
4	R1-B	$1($ Gnd $)$
5	R2-A	$5(+5)^{*}$
6	R5-B	$3($ Gnd $)$

Wire	From	To
No.	01A-TB2-	Board A2 Pwr Conn
1	1 (Gnd)	U2E14
2	1	U3E14
3	2 (Gnd)	U4E14
4	2	B2E14
6	3 (Gnd)	B4E14
7	$4(+5 i$	U3A01
8	4	U4A01
9	$5(+5)$	U5A01
10	5	B3A01
12	$6(+5)$	B5A01
13	7 (8.5)	U2A14
14	7	U3ATS
15	8 (8.5)	U4AY4
16	8	B2A14
18	8	B4A14
19	$9(5)$	U3E01
20	0	Ueten
21	10 (-5)	USE0,
22	10	B3E04
24	10	B5E01
25	01A.TB1-	70 A2U4D07
26	01 A -TB1	to A284007
(1) Cable PN 4406652		

Wire No.	From	To	From	Wire No.	To
	TSR-2B	01A-TB1	01A-TB1.		Board A1 Pwr Conn
1	1 (8.5	9	1 (+5)	29	B3A01
2	2 (Gnd)	10		30	B4A01
3	3 (Gnd)	10	$2(+5)$	16	U4401
4	4 (-12)	6		17	U5A01
5	$5(+24)$	7	$3(+5)$	31	B5A01
6	$6(+5)$	1		32	USA01
7	$7(+5)$	2	4(5)	21	B5E01
8	$8(+5)$	3		33	B3E01
9	$9(+5)$	3	$5(-5)$	20	B4E01
10	10 (Gnd)	11	6 (-12)	39	to A1Y4-D05
11	11 (Gnd)	11	$7(+24)$	40	- to A1Yád 10
12	12 (Gnd)	12	8 (8.5)	24	U2A14
13	13 (Gnd)	12		25	U3A14
14	i4 (Gnd)	13		26	U4A14
15	15 (-5)	5	$918.5)$	22	B3A.14
37	15.7 (Gnd)	2		23	84A14
38	55-2 (+5)	10		27	B2Ai4
			10 (Gnd)	18	1 U3E14
			11 (Gnd)	19	U4E14
			12 (Gnd)	28	U2E14
			13 (Gnd)	34	E2E14
				35	B3E14
				36	B4E14

Wire No.	01A-TB2	Board B1 Pwr Conn
1 (Gnd)	1	B2E14
$2($ Gnd $)$	1	B3E14
$3($ Gnd)	1	B4E14
$4(8.5)$	7	B2A14
$5(8.5)$	7	B3A14
$6(8.5)$	7	B4A14
$7(+5)$	4	B3A01
$8(+5)$	4	B4A01
$9(+5)$	4	B5A01

Cable PN 8269854

Line Name	Connect from	To Loop 2	To Loop 3
	TB1-(+8.5V)	A2B2B11	A2C2B11
	TB1-1+5V)	A2B2D03	A22D03
	TB1-(-12V)	A2B2D07	AC2D07
	TB1-(Gnd)	A2B2D08	A2C2D08
Wrap	A124D03	A2B2B05	
Clock	A1Z4D04	A2B2D09	
Rcv Data	A1Z4B03	A2B2B10	
Send Data	A1Z4B04	A2B2D04	
Wrap	A1Z4D05		A2C2B05
Clock	A124B05		A2C2D09
Rcv Data	A1Z4B06		A2C2B10
Send Data	A1Z4D06		A2C2D04

Cable PN 4409771

C Cable PN 4406661
With 3 or more logic cards on the
expanded storage board, remove.
and tape wire \#1 at TB2-4; with 6
TB2-5 a/so.

B. Cable Assemblies

Figure 3-10 (Part 2 of 2). Pówer Distribution 3601-2A,2B,3A,3B (One or two TSR-2 Power Supplies)

A All Models

B Model 3 or Expanded Storag
C Model 3
(D) Model 3
(E) Expanded Storage

Remote Loop Interface to Externa
Modem (Model 2A only)

Notes:
Wire colors shown in parentheses are apolicable
(2. For World Trade.

ASM 1860276.

A. Wiring Diagram

Figure 3-11 (Part 1 of 2). Power Distribution, 3601 C, D

Wire No.	From	To
	TSR-2	01A-TB1
	1 (8.5)	8
2	2 (Gnd)	11
3	3 (Gnd)	12
4	4 (-12)	
5	5 (+24)	7
6	6 (+5)	1
7	7 (+5)	2
8	8 (+5)	3
9	$9(+5)$	1
10	10 (Gnd)	10
11	11 (Gnd)	11
12	12 (Gnd)	12
13	13 (Gnd)	13
14	14 (Gnd)	10
15	15 (-5)	5
16	J5-1 (Gnd)	2
17	J5-2 (+5)	13

A Cable PN 4406682
B. Cable Assemblies

Figure 3-11 (Part 2 of 2). Power Distribution 3601 C,D

A. Wiring Diagram

Figure 3-12 (Part 1 of 2). Power Distribution, 3602-1A, 1B (TSR-3 Power Supply, more than 2 wires on B1Y4)

Figure 3-12 (Part 2 of 2). Pówer Distribution, 3602-1A, 1B (TSR-3 Power Supply, more than 2 wires on B1Y4)

A. Wiring Diagram

Figure 3-13 (Part 1 of 2). Power Distribution, 3602-1A,1B (TSR-3 Power Supply, only 2 wires on B1Y4)

A. Wiring Diagram (Cont)

Wire No.	01A-TB1	Resistor TB Assembly
$1+8.5$	11	1
2.5	9	3
3 Gnd	2	8

O Cable PN 4406667

Wire No.	TSR 3E	01A-TB1	G-CB1	
1	Gnd	4	1	
2	Gnd	5	2	
3	Gnd	6	3	
4	Gnd	7	4	
5	+5	1	5	
6	+5	2	6	
7	+5	3	7	
8	+8.5	13	11	
9	Gnd	10	1	
10	Gnd	14	3	
11	+24		16	N/O
12	-12	12	13	
13	+24	15	16	
14	Gnd	16	2	
15	+24	15	01 A1A5B02	
T15	Gnd	16	01 A1A5DO8	
16	-5	8		Line
17			9	Laod
18	Gnd		4	N/C

Wire No.	$\begin{aligned} & \text { From } \\ & \text { 01A-TB1 } \end{aligned}$	To Board B2 Pwr Conn
1 +5	5	B3A01
$2+5$	5	B4A01
$3+5$	5	B5A01
$4+5$	7	J3A01
$5+5$	7	J4A01
6 +5	7	J5A01
7 Gnd	1	B2E14
8 Gnd	1	B3E 14
9 Gnd	1	B4E14
10 Gnd	2	J2E14
11 Gnd	2	J3E14
12 Gnd	2	J4E14
$13+8.5$	11	B2A14
$14+8.5$	11	B3A14
$15+8.5$	11	B4A14
$16+8.5$	12	J2A14
$17+8.5$	12	J3A14
$18+8.5$	12	J4A14

	Wire No	01A-A1	01A-TB1	TSR-1	Misc Connection
	-4				Wire No's. 9, 24,25
2	Gnd		4		Wire No. 10
3	-12		13	12	
4	+24	23810	16		
5	+24		16	11	
6	+6	23011		4	
7	Gnd	23 Bus		3	
8	Gnd	z3 Bus		9	
9	-4			1	Wire No. 1
10	Gnd			2	Wire No. 2
11	-24	23 D 13		6	
12	Gnd	23 Bus			O1H-C1-
13	-5	23D10	10		
14	+8.5	z3D01	12		
15	M.C. Ret	23802			O1H-C1+
16	${ }^{+B r k} \mathrm{Flt}$	23D04			01H-K1.2
17	Gnd		2		01H-TB1-4
18	Gnd	Gnd Bus	3		
19	Gnd	Gnd Bus	3		
20	$+5$	${ }^{+5}$ Bus	6		
21	+5	+5 Bus	6		
22	+5	+5 Bus	6		
23	+5	+5 Bus	6		
24	-4	C2B06			Wire No. 1
25	-4	A4B06			Wire No. 1
26	Gnd	Gnd Bus			
27	Gnd	Gnd Bus			
28	$+24 \mathrm{Ctr}$		16		01н-K1-1

Wire No.		01A.TB1	$\begin{array}{\|c\|} \hline \text { Board } \\ \text { Pwr Conn } \\ \hline \end{array}$
1	Gnd	1	A2M2E14
2	Gnd	1	A2M3E14
3	Gnd	1	A2M4E14
4	Gnd		B1B2E 14
5	Gnd		B183E 14
6	Gnd	2	B1B4E14
7	+5	5	A2M3A01
8	+5	5	A2M4A01
9	+5	5	A2m5A01
10	+5	7	B183A01
11	+5	7	B184A01
12	+5	7	B185A01
13	5	9	А2м3E01
14	-5	9	A2M4E01
15	- 5		A2M5E01
16	5	9	B183E01
17	-5	9	B184E01
18	. 5	9.	B185E01
19	+8.5	12	A2M2A14
20	+8.5	12	A2M3A14
21	+8.5	12	A2M4A14
22	+8.5	12	B182A14
23	+8.5	12	B1B3A14
24	+8.5	12	B1B4A14
25	. 12	13	A2U4D07
26	. 12	13	A284D07
27	+24	16	B1Y4D10
28	Gnd	3	A2B2E14
29	Gnd	3	A2B3E14
30	Gnd	3	A2B4E14
31	Gnd	4	B1M2E14
32	Gnd	4	в1M3E14
33	Gnd	4	B1M4E14
34	+5	5	A2b3a01
35	+5	5	A2B4A01
36	+5	5	A2b5A01
37	+5	7	B1m3A01
38	+5	7	B1M4A01
39	+5	7	B1M5A01
40	+8.5	11	A2B2A14
41	+8.5	11	A2B3A14
42	+8.5	11	A2B4A14
43	+8.5	11	B1M2A14
44	+8.5	11	B1M3A14
45	+8.5	11	B1M4A14
46	-12	13	B1Y4D05
47	-5	10	в1м3е01
48	5	10	B1M4E01
49	5	10	B1M5E01
50	5	10	A2B3E01
51	-5	10	A2E4E01
52	5	10	A2B5E01

Figure 3-13 (Part 2 of 2). Power Distribution, 3602-1A, 1B (TSR-3 Power Supply, only 2 wires on B1Y4)

Communication Line End

Communication Line End Male

Controller End (Female)

Communication Line End

Controller End

Comm. Line Terminal Position	Wire Color	Controller Connetor Position	
Red	Runction		
Green	White	10	Transmit
Yellow	Yellow	25	Receive
Black	Black	14	
See sketch above	Shield	1	

Note: For Japanese connection, see Figure 3-16.

$0\left\|\begin{array}{cccccccccccc} 1312 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right\|$	

EIA 25-Pin Receptacle

PN1563204, 4404219 or equivalent
Connector Position Modem End Controller End 2 2 Lead \dagger Number 3 3 1 4 4 2 5 5 4 6 6 5 7 7 6 8 8 7 11 11 8 12 12 9 15 15 10 16 16 11 17 17 12 18 18 13 19 19 14 20 20 15 21 21 16 22 22 17 23 23 18 24 24 19 $*$ $*$ 20

Leads through 19 are numbered and coded in accordance with EIA standards. Lead Number 20 is green
*Lead Number 20 is tied back on cable body inside hood.
B. External Modem

Controller Connector Position	Wire Color	Function
10	Red	Transmit
9	White	
25	Yellow	Receive
14	Black	R
1	Shield	

C. Internal Modem, World Trade Except Japan (PN 1563243) or equivalen
PN 4404219, 4404220, 4404221 or equivalent

Wire No.	Body Color	Conn Pos
1	Black	$5 \cdot 5$
2	Brown	$14-14$
3	Red	$6-6$
4	Orange	$18 \cdot 18$
5	Blue	$23-23$
6	Green	$17 \cdot 17$
7	White	$20-20$
8	Black	$8-8$
9	Brown	$3 \cdot 3$
10	Red	$11-11$
11	Orange	$2 \cdot 2$
12	Blue	$22 \cdot 22$
13	Green	$4-4$
14	White	$15 \cdot 15$
Cond Shlds	Drain Wire	$7 \cdot 7$
Outer Shld	Drain Wire	$1--$

A. Internal Modem, USA, Canada and Japan (PN 1563205) or equivalent

Figure 3-14. External Cables, Controller/Communication Link

Comm Line Terminal Position	Wire Color	Controller Connectors	Function
Red	Red	Plug	Transmit
Green	White	Yen	Receive
Yellow	Yellow	Jack	
Black	Black		
See sketch below	Shield	Plug and Jack	

Note: For Japanese connection, see Figure 3-16

Detail A

B. World Trade Except Japan (PN 1563242) or equivalent

Figure 3-15. External Cables, Controller/Communication Line for a Remote Loop

Solder the skinned ends of cable to PD-1A terminals marked "DS"

Normal Operation: Plug the phone plug of cable 1563205 or 1563206 into the phone jack of cable 5182523.
Wrap Test: Disconnect the above-mentioned plug and jack and connect plug assembly 1864271, 1864272, or jack assembly 1864671 into their respective counterparts. Se位 D1 Service Requirement.

Figure 3-16. Japanese Connection of External Cables to Communication Line (Loop or Host Link)

Figure 3-17. Adapter Cable PN 1741656

Transmitted Data
Received Data

Request to Send

Clear to Send

Data Set Ready

Signal Ground
Received Line Signal Detector
(Reserved ior Data Set Testing)
(Reserved for Data Set Testing)
Unassigned
Sec. Received Line Signal Detector
Sec. Clear to Send
Sec. Transmitted Data
Transmission Signal Element Timing

Sec. Received Data
Receiver Signal Element Timing

Unassigned
Sec. Request to Send
Data Terminal Ready
Signal Ouality Detector
Ring Indicator
Data Signal Rate Selector
Transmit Signal Element Timing

Figure 3-18. Japanese Wrap Test Cable PN 2722052

3.9 COMMUNICATION CONNECTIONS

3.9.1 Selection of Controller/Communication

 ConnectionsFrom the following chart, select the controller you have by model and number of power supplies used; refer to the indicated paragraph number for the correct communication connections for your controller

Controller Model and Number of Power Supplies Used	Communication Connections Paragraph Number
3601-2A, 2B, 3A, 3B (Single TSR-3 power supply)	3.9 .2
3601-2A 2B, 3A, 3B (One or two TSR-2 power supplies)	3.9 .3
$3601-\mathrm{C}, \mathrm{D}$	3.9 .4
3602-1A, 1B (TSR-3 power supply, more than 2 wires on B1Y4)	3.9 .5
3602-1A, 1B (TSR-3 power supply, only 2 wires on B1Y4)	3.9 .6

3.9.2 Communication Connections, 3601-2A, 2B, 3A, 3B (Single TSR-3 Power Supply)

NOTES
If B/M 4941040 or 4941110 is used with B/M $4941942,4941043,4941044$, or 4941045 , then $4941942,4941043,4941044$, or 4941045 , thenIf $B / M 4941016$ or 4941018 is used with B / M 4941112, 4941113, 4941114, or 4941115, then wirewrap PN 811425 from A2K2S13 to A2K2U08
(3) If $B / M 4941042$ or 4941043 is to be installed, then wirewrap PN 811425.

From	To
A1B2B03	A1B5B09
A1B2B02	A1B5D11
A1B4B09	A1B4D04
A1B3B10	A1BBD12
A1B3B08	A1B3B09
A1B3B05	A1B3B07
A1A2B09	A1A2B13
A1A2B04	A1A2D11
Also wire-twisted pair PN 5347623.	
From	To
A1B2B02 (YEL)	A1B1B11 1 YEL

A1A2D02 (BK) A1B1C13 (BK)

4 If $B / M 4941044$ or 4941045 is to be installed, the wirewrap PN 8111425

From	To
A184B09	A1B4D07
A1B3B10	A1B3B12
A1B5B08	A1B5B10
A183805	А183B07
A1A2B09	A1A2B13
A1A2B04	A1A2D11
Also wire-twisted pair PN 5347623.	
From	To
$\overline{\text { A1B2B02 (YEL) }}$	A1B1B11 (YEL)
A1A2D09 (BK)	A1B1C13 (BK)
and	
A1B5B09 (YEL)	A1C1E11 (YEL)
A1B5D11 (BK)	A1A1D11 (BK)

5 If $B / M 4941046$ is to be installed, then wirewrap PN 811425.

From	To
A1C5D12	A1A2B13
A1C5B03	A1A2D10
A1C5D09	A1A2B05
A1C5B02	A1A2D05
A1C5D04	A1A2D09
A1C5B04	A1A2D07
A1C5D11	A1A2B04

A1C5D11 A1A2B04
f $B / M 4941112$ or 4941113 is to be installed
then wirewrap PN 811425

From	To
A2N4D05	A2N3B09
A2N4BO2	A2N3D11
A2N2BO9	A2N2DO4
A2N5B10	A2N5D12
A2N5BO8	A2N5B09
A2N5BO5	A2N5B07

Also wire-twisted pair PN 5347623.
$\frac{\text { From }}{\text { A2N4 }} \frac{\text { To }}{\text { (YOL }}$ $\begin{array}{ll}\text { A2N4B02 (YEL) } & \text { A2F6C04 (YEL } \\ \text { A2N4D05 (BK) } & \text { A2F6B02 (BK) }\end{array}$
If $B / M 4941114$ or 4941115 is to be installed, hen wirewrap PN 811425

From	To
A2N2B09	A2 N2D07
A2N5B10	A2N5B12
A2N3B08	A2N3B10
A2N5B05	A2N5B7
A2N3B02	A2P5B10
A2N3B05	A2P5D05

Also wire-twisted pair PN 5347623.
$\frac{\text { From }}{\text { A2N4B02 (YEL) A2F6C0 }} \frac{\text { To }}{(\mathrm{YEL}}$ A2N4D05 (BK) A2F6B02 (BK) and
A2N3B09 (YEL) A2D6E04 (YEL A2N3D11 (BK) A2G6A04 (BK)
8 If $B / M 1864633$ (Japan only) is requested, then this B / M must be included in addition to USA B/M 4941042,4941044,4941112, or 4941114
If $B / M 1739375$ (PTT wrap - Japan only) is re Gested, then this B / M must be included in ad dition to $B / M 4941046$ or 4941116.
If $B / M 1739373$ (German only) is requested, the his B / M must be included in addition to B / M 4941046 or 4941116
11 If $B / M 4941040,4941041$ or 4403161 is in stalled, then wirewrap PN 811425

From	To
A1G5B10	A1F6B02
A1C3D06	A1C3B05
A1C2B07	A1G3D04
A1C3D07	A1G3D07

If $B / M 4941110$ or 4941111 is installed, then wirewrap PN 811425.

From	To A1G5B10
A114D04	A1C4D05
A1F3B05	A1C3D02
A1C3D06	A1G3D04
A1C2B07	A1G3D07
A1C4B13	A1G4B05
A1C4D11	A1G5D13
If BM 4941110 is installed, then wirewrap PN	

13 If $B / M 4941110$ is installed, then wirewrap PN 811425.
$\frac{\text { From }}{\text { A1C5D06 }} \quad$ A1C5D1 A1C4D12 A1C5D10

14 If $\mathrm{B} / \mathrm{M} 4941016$ or 4941017 is installed, then delete by reaming.

> Test for no continuity between reamed pi and respective pins
Delete by reaming beiow A2K2B03 (Card Side) A2K2D08 A2K3B07 (Card Side) A2M3D06 A2M3D06
A2J3D06 A2K2B12 (Pin Side) A2K2B10 A2K3D09 (Pin Side) A2K3D08 Also wirewrap PN 811425.

From	To
A2M3D06	A2J3D06
A2K3B07	A2K3B05
A2K3D06	A2J3B12
A2K2B07	A2JJD06
A2K3D07	A2J3B05
A2K2B12	A2K2D12

15 If $B / M 4941116$ is installed then wirewrap $P N$ 8111425
From
A215B10

16 If the line discipline is to be in asynchronous mode (i.e., start-stop line control), then wirewrap (PN 811425) between the following loc tion:
From $\frac{\text { To }}{\frac{10}{K 4}}$
$\overline{A K} 4 \overline{\mathrm{~K} 4 \mathrm{D} 08}$
17 If $B / M 4941110$ is used with $B / M 4941046$ then wirewrap PN 811425

From

From	To
A1A3D09	A1A3D08
A1A3D04	A1A3D08

From	To
$\overline{\text { A2L4 }} \mathrm{G} 05$	A2L4N08
A2L4J09	A2D4N08
A2L4J04	A2M4N08
A2L4J13	A2M4N08
A2L4G04	A2L4D08
A2L4G03	A2L4D08

3.9.3 Communication Connections 3601-2A, 2B, 3A, 3B (One or Two TSR-2 Power Supplies)

(A)

	$\begin{array}{\|l\|l\|} \hline \text { Loop } \\ \text { Adapter } \end{array}$	Loop Adapter Card Location	$\begin{aligned} & \text { Loop } \\ & \text { Speed } \end{aligned}$	Speed Select. Install Jumper PN 5492084 From Pin S10 To	Remote Only. Install Jumper PN 5492081 From Pin U08 To	Local Loop Cable PN 4943640	Integrated Modem USA and Canada B/M No.	Integrated Modem WTC B/M No.	Undercover Modem Card Card Location	Remote Loop Cable PN 4406670
B/M No.	no.	15	11		12	[12] 18	13116	[13 1417		
4946036	1	A1D2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \\ & \hline \end{aligned}$	$\begin{aligned} & 311 \\ & 011 \\ & 310 \\ & 009 \end{aligned}$	$\begin{aligned} & \text { Local } \\ & \text { Only } \end{aligned}$	$\begin{aligned} & \text { A1Y3 } \\ & \text { Local Only } \\ & \text { To J2.J3 } \end{aligned}$				
4946051	2	A1E2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & 511 \\ & 0107 \\ & \mathrm{J10} \\ & \mathrm{jo9} \end{aligned}$	U07	$\begin{aligned} & \text { A1Y3 } \\ & \text { To J4-55 } \end{aligned}$	4946061	4946071	1A-A2B2	$\begin{aligned} & \text { A2B3 } \\ & \text { To J4-J5 } \end{aligned}$
4946052	3	A1F2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & 511 \\ & 0107 \\ & 110 \\ & 009 \end{aligned}$	U07	$\begin{aligned} & \text { A1Y3 } \\ & \text { To J6-J7 } \end{aligned}$	4946062	4946062	1A-A2C3	$\begin{aligned} & \text { A2C3 } \\ & \text { To J6.J7 } \end{aligned}$
4946053	4	A2G2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$		U07	$\begin{aligned} & \text { A2Z1. } \\ & \text { To J8-J9 } \end{aligned}$	4946063	4946063	1A-A2B4	$\begin{aligned} & \text { A2B5 } \\ & \text { To J8-J9 } \end{aligned}$
4946054	5	A2H2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & \mathrm{J11} \\ & 0107 \\ & \mathrm{J10} \\ & \mathrm{j} 09 \end{aligned}$	U07	$\begin{array}{\|l} \text { A2Z1 } \\ \text { To J10-J11 } \end{array}$	4946064	4946074	1A-A2C4	$\begin{aligned} & \text { A2C5 } \\ & \text { To J10-J11 } \end{aligned}$
4946055	6	A2J2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & \mathrm{J11} \\ & 107 \\ & 100 \\ & 109 \end{aligned}$	U07	$\begin{array}{\|l\|} \text { A2Z1 } \\ \text { To J12-J13 } \end{array}$	4946065	4946075	1A-A2D4	$\begin{aligned} & \text { A2D5 } \\ & \text { To J12-J13 } \end{aligned}$

Notes:
Ies: If BM 4946042, 4946045 or 4946046 is 10 installed, thenen wire-wrap PN 8111425

If $B / M 4406036$ or 4406037 is to be installed,
then wire-wrap $P N 811425$ then wire-wrap PN 811425
From O1A-A1A2GO9
To O1A-A1A2GO2
OTA A1A2JO5 A/so wire-wrap twisted pair PN 5347623
From O1A-A1B1B11 (YEL) To $01 A-A 1$ O1A-A1B1C13 (BK)
To OIA-A1A2J13
O1A-A-1A2GOS
[3] If $B / M 4406038$ or 4406039 is to obe installed then wire-wrap twisted pair PN 5 5347723
From O1A-A1B1B11 (YEL) To O1A-A1A2GO2
 $\begin{array}{ll}\text { O1A-A1C1E11(BK) } & \text { O1A-A1A2J13 } \\ \text { O1A-A1A1D11 (YEL) } \\ \text { O1A-A1A2G09 }\end{array}$
4 If B / M 4946042, 4946045, or 4946046 is to If B/M 4946042, 4946045, or 4946046 is to
be installed, then wire-wrap PN 811425 From O1A-A1C2JO6 To O1A-A1C2GO5
O1A-A1C2BO7 $\begin{array}{ll}\text { O1A-A1C2B07 } & \text { O1A-A1D2G12 } \\ \text { OOA-A1C207 } & \text { O1A-A1D2G05 }\end{array}$
5 If $B / M 4946045$ is to be installed, then wire wrap PN 811425
From O1A-A1C2N
From O1A-A1C2MO5 To O1A-A1C2PO8
6 If $B / M 4946040$ or 4946041 is to be installed, then wire-wrap PN 811425 From 01A-A1C2J07 To O1A-A1 21605 O1A-A1C2BO7 To O1A-A1C2G05
O1A-A1D2GO5 $\begin{array}{ll}\text { O1A-A1C2BO7 } & \text { O1A-A1D2G05 } \\ 014-A 1 C 2 J O 6 & 01 A-A 12 G 12\end{array}$ $\begin{array}{ll}\text { O1A-A1C2M13 } & \text { O1A-A1G2M05 } \\ \text { OOA-A1C2P11 } & \text { O1A-A1G213 } \\ \text { O1A-A1C2PO5 } & \text { O1A-A1G2510 } \\ \text { O1A }\end{array}$
7
 If $B / M 4946040$ is
wrap $P N 811425$ $\begin{array}{lr}\text { wrap PN } 811425 \\ \text { From O1A-A1C2M05 } \\ \text { O1A-A1C2U11 } & \text { To O1A-A1C2PO8 } \\ \text { O1A-A1C2UO6 }\end{array}$ $\begin{array}{ll}\text { O1A-A1C2U11 } & \text { O1A-A1C2UO6 } \\ 01 A-A 1 C 2 U 10 ~ O 1 A-A 1 C 2 P 12 ~\end{array}$

8] If B/M 4946040 and 4406043 are to be installed, then wire-wrap PN 811425

9 If $B / M 4409500,4409501,4409502$, or 4409503 is to be installed, then wire-wrap PN 811425

344094744409475 If $B / M 4409472,4409473,4409474,4409475$
$4409500,4409501,4409502$, or 4409503 is to be installed, then wire-wrap PN 811425
11 Local loops will be assigned beginning at position 1. Speeds will be assigned in descending order (position 1 will have the highest speed).
Remote loops will be assigned beginning at
Remote
position immediately forllowing begine last local position immed
loop position.
13 Undercover modems applicable to Models O3A
or O3B only.
(14) or $03 B$ only. 186463

If $B / M 1864633$ (Japan on/v) is requested,
then this B / M must be included in addition to
then this $B /$.
$U S A B A$ s.
(15) Loop adapters $1,2,3$ are applicable to Models

O2A, O2B, O3A, $03 B$. Loop adapters 4, 5,
and applicable to Models $03 A, 038$ only.
16 Set rocker switches K and P "ON". All other
17 Set rocker switches! A and K ' A "ON", All other
17 Set rock ser switches I, A and K "ON".
(18) If integrated modem lremotee loop) is also $\begin{aligned} & \text { being installed, do not install local loop cable. }\end{aligned}$
19. Wire wrap PN 811425

A1F5B 12 To A1L6EO4
A1F5B12 To A1M6CO

FFBM No.	Card Location OIA	Adapter Speed BPS	Speed Select Wire Wrap \#811425 From Pin P08 To	Line Adapter FFBM No.	Line Adapter Card Location OIA	Strapping Options Set the Following Rocker Switches ON. All Others Should Be OFF. See A	Notes
4406041				4406043-EIA/CCITT		Remove all jumpers from card. See B	
CCA			M05	4406036-UCM2WUSA		J, N, L	1
	A1B2			4406037-UCM 2WWTC	A1A2	M, J, L, A	1
$\text { Note } 3$		2400	M03	4406038-UCM 4WUSA		K, P	2
				4406039-UCM 4WWTC		I, K, A	2
$\begin{aligned} & \hline 4406042 \\ & \text { CCA } \\ & \text { W/O CLK } \\ & \text { Note } 3 \end{aligned}$	A1B2			4406043-EIA/CCITT	A1A2	Remove all jumpers from card. See B	

Loop Adapter Card Location OIA	Loop Speed	Speed Select Install Jumper P/N 5492084 From Pin S10 To	Plug Loop Cable From
	600	J11	
	1200	J07	01A-A1Y2
	2400	$J 10$	TO
A1D2	4800	J09	01S-J2 \& J3
	600	$\mathrm{J11}$	
	1200	J07	01A-A1Y2
	2400	$\mathrm{J10}$	TO
A1C2	4800	J09	01S-J4 \& J5

Notes:
1 If $B / M 4406037$ or 4406036 is to be installed, then wire-wrap PN 811425 From $\begin{array}{ll}014-A 1 A 2 G 09 \\ 01 A-A 1 A 2 J 13\end{array} \quad$ To $\begin{gathered}\text { 01A-A1A2G02 } \\ 01 A-A 1 A 2 J 05\end{gathered}$ 01A-A1A2J13 A/so wire-wrap twisted pair PN 5347623 01A-A1B1B11(YEL) to 01A-A1A2J13

$$
01 A-A T A Z G O S
$$

PN 5347623 From o1A-A1B1B11(YEL) To 01A-A1A2G02 01A-A1B1C13(BLK) 01A-A1A2J05 And

$$
\begin{array}{ll}
\text { 01A-A1C1E11(BLK) } & \begin{array}{l}
\text { 01A-A1A2J13 } \\
01 A-A 1 A 2 G 09
\end{array} \\
\text { 01A-A1A1D11(YEL) }
\end{array}
$$

3 If $B / M 4406041$ or 4406042 is to be installed, then wire-wrap PN 811425 From 01A-A1A5D07 To O1A-A1H5D05

	U.S. Card	W.T.Card
2.Wire	J on, K off	M on, 1 off.
	Must use board/panel cable PN4406671	
4.Wire	K on, J off	I on, M off
	Must use board/panel cable PN4406672	
Echo Clamp	50-ms delay, L , on 150 -ms delay, L off	50-ms delay, L on 150 -ms delay, L off
Clear to Send	30-ms delay, P on, N off 80 -ms delay, N on, P off 230-ms delay, N off, P off	30-ms delay, K on, J off 80 -ms delay, J on, K off $230-\mathrm{ms}$ delay, J off, K off
Equalizer	W.T. Only	Normal delay, CC on High-Frequency delay, AA on Mid-Frequency delay, DD on Low-Frequency delay, BB on

*To be used by TP specialist only. Requires line distortion information. For transmit level, see 1.123.

Blank Page

3.9.5 Communication Connections 3602-1A, 1 (TSR-3 Power Supply, More Than 2 Wires on B1Y4)

NOTES
1 If $B / M 1652526$ or 4941142 is used with B / M 1745441, 1745442, 1745443 or 1745444 then wire wrap PN 811425 from BIC2S13 to BIC2U08If $B / M 4944360$ is used with $B / M 4941145$,
4941146, 4941147 or 4941148 then wire wrap PN 811425 from A2K2S13 to A2K2U08.If $B / M 1864633$ (Japan only) is requested, then
this B / M must be included in addition to B / M $1745441,1745442,4941146$ or 4941145 .If $B / M 1745442$ or 1745444 is to be installed then wire wrap PN 811425.

From	To
B1 B2B03	B1 B5B09
B1 B2B02	B1 B5D11
B1 B4B09	B1 B4D04
B1 B3B10	B1 B3D12
B1 B3B08	B1 B3B09
B1 B3B05	B1 B3B07
B1 A2B09	B1 A2B13
B1 A2B04	B1 A2D11

Also wire-twisted pair PN 5347623. $\frac{\text { From }}{\text { B1 B2B02 }} \quad \frac{\text { To }}{\text { B1 B1B11 (YEL) }}$ $\begin{array}{ll}\text { B1 B2B02 } & \text { B1 B1B11 (BL) } \\ \text { B1 A2D09 } & \text { B1 B1C13 (BK) }\end{array}$
5 If $B / M 1745441$ or 1745443 is to be installed then wire wrap PN 811425

From	To
B1 B4B09	B1 B4D07
B1 B3B10	B1 B3B12
B1 B5B08	B1 B5B10
B1 B3B05	B1 B3B07
B1 A2B09	B1 A2B13
B1 A2B04	B1 A2D11
Also wire-twisted pair PN 5347623.	

From		To
B1 B2802		B1 B1B11 (YEL)
B1 A2D09		B1 B1C13 (BK)
	and	
B1 85809		B1 C1E11 (YEL)
B1 B5D11		B1 A

From	To
B1 G5B10	B1 F6B02
B1 C3D06	B1 C3B05
B1 C2B07	B1 G3D04
B1 C3D07	B1 G3D07

If $B / M 16$ 811425

From	To
B1 C5D12	B1 A2B13
B1 C5B03	B1 A2D10
B1 C5D09	B1 A2B05
B1 C5B02	B1 A2D05
B1 C5D04	B1 A2D09
B1 C5B04	B1 A2D07
B1 C5D11	B1 A2B04

7 If $B / M 4941146$ or 4941148 is to be installed, then wire wrap PN 811425
From To
$\bar{A} 2$ N4D05 $\overline{\mathrm{A} 2}$ N3B09
A2 N4B02 A2 N3D11
A2 N2B09 A2 N2D04
$\begin{array}{ll}\text { A2 N } 5 \text { N } 108 & \text { A2 } \\ \text { A2 N5BO } & \end{array}$
A2 N5B05 A2 N5B07
Also wire-twisted pair PN 5347623.
$\frac{\text { From }}{\text { A2 } 4 \mathrm{~N} 02} \quad \frac{\text { To }}{\text { A2 }} \mathrm{F} 6 \mathrm{CO} 0$ (YEL)If $B / M 4941145$ or 4941147 is to be installed, then wire wrap PN 811425

From	To
A2 N2B09	A2 N2D07
A2 N5B10	A2 N5B12
A2 N3B08	A2 N3B10
A2 N5B05	A2 N5B07
A2 N3B02	A2 P5B10
A2 N3B05	A2 P5D05
Also wire-twisted pair PN 5347623.	
From	To
F2 N4B02	A2 F6C04 (YEL)
A2 N4D05.	A2 F6B02 (BK)
A2 N3B09	
and	A2 D6E04 (YEL)

B1 G3D07

If $B / M 4941142$ or 4941143 is to be installedthen wire wrap PN 811425 .

From	To
B1 G5B10	B1 C4D05
B1 C4D04	B1 F6B02
B1 C3B05	B1 C3D07
B1 C3D06	B1 G3D04
B1 C2B07	B1 G3D07
B1 C4B13	B1 G4B05
B1 C4D11	B1 G5D13

From	To
B1 C5D06	B1 C5D11
B1 C4D12	B1 C5D10

If $B / M 4944360$ or 4944361 is to be installed, then delete by reaming the following:
Delete
Test for No Continuity
2 K 2 B 03 (cardside)
A2K2D08
A2M3D06
A2J3006
A2K2B12 (pinside) A2K2B10
A2K3D09 (pinside) A2K
Also wire wrap PN 811425

From	To
A2M3D06	A2J3D06
А2к3в07	А2К3B05
A2K3D06	A2J3B12
A2K2807	A2J3D06
A2K3D07	A2J3805
A2K2B12	A2K2D12
If B/M 1739375 (PTT wrap.Japan only) is requested, then this B / M must be included in addition to $B / M 1652528$ or 4941144.	
If $B / M 1739373$ (Germany only) is requested, then this B / M must be included in addition to B / M 1652528 or 4941144.	
If $B / M 494$	alled, then wire wrap PN

If B 1 M
81425.
$\frac{\text { From }}{\text { A2L5B10 }} \quad \frac{\text { To }}{\text { A2E6A02 }}$

16 If the line discipline is to be in an asynchronous mode (i.e., start-stop line control), then wire wra N 811425
From
$\frac{\text { To }}{\text { A2K4D08 }}$If $B / M 4941142$ is used with $B / M 1652528$, then wire wrap PN 811425.
$\frac{\text { From }}{B 1 \text { A3 }}$
11 A3D09
B1 A3D04
$\frac{\text { T0 }}{\text { B1 }}$ A3D08
B1 A3D08

18 If $B / M 4403178$ is installed, then wire wrap $P N$ 811425.

From	To
A2 L4G05	A2 L4JJ08
A2 L4JOO	A2 L4J08
A2 L4JO4	A2 M4J08
A2 L4J13	A2 M4JO8
A2 L4G04	A2 L4D08
A2 L4G03	A2 L4D08

3.9.5 Communication Connections (Cont)

B/M No.		BPS	то		Notes [3] 113	EIA	Receive	Transmit	Wrap
1652526		$\begin{aligned} & 300 \\ & 600 \\ & 1200 \\ & 2400 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { G13 } \\ & \text { M04 } \\ & \text { M05 } \\ & \text { M03 } \\ & \hline \end{aligned}$		EIA 1652528 Note 6	B1A2			
	Note \square	1200	M05	Note 1	M-12 1745442 2-Wire, Note $\left.\begin{array}{l}4 \\ \text { M-12 } 1745444 \\ \text { 2-Wire, Note } \\ \hline\end{array}\right]$ M-12 1745441 M-12 1745443 2-Wire, Note 2-Wire, Note		B1B4	B1B2	B1A2
$\begin{aligned} & 1652527 \\ & \text { CCA } \\ & \text { W/O CIk } \end{aligned}$	B1C2 Note 9				EIA 1652528 Note 6] 17	B1 A2			
4941142	$\mathrm{B} 1 \mathrm{C} 2$	$\begin{aligned} & \hline 600 \\ & 1200 \\ & 2400 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M04 } \\ & \text { M05 } \\ & \text { M03 } \\ & \hline \end{aligned}$		EIA 1652528 Note 617	B1A2			
W/Clk		1200	M05	Note 1	 M-12 1745442 2-Wire, Note M-12 1745444 2-Wire, Note 4 M-12 1745441 4-Wire, Note 5 M-12 1745443		B1B4	B1B2	B1A2
4941143 HPCA W/O Clk	B1C2 Note 10				EIA 1652528 Note 6	B1A2			
4944360 ALA CCA		$\begin{aligned} & \hline 300 \\ & 600 \\ & 1200 \\ & 2400 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { G13 } \\ & \text { M04 } \\ & \text { M05 } \\ & \text { M03 } \end{aligned}$		$\begin{aligned} & \text { EIA } 4941144 \text { Note } \\ & \text { Local } 4403178 \text { Note } \\ & \hline 15 \end{aligned}$	A2L4			
W/Clk ALA	Note 1216	1200	M05	Note 2	M-12 4941146 2-Wire, Note M-12 4941148 2-Wire, Note \square M-12 4941145 4-Wire, Note 8 M-12 4941147 4-Wire, Note		A2N2	A2N4	A2P5
4944361 ALA CCA W/O Clk	A2K2 \square 12				EIA 4941144 Note 15	A2Ld			
$\begin{array}{\|l\|} \hline 4944362 \\ \text { RPQ } \\ \text { S25142 } \end{array}$	Note 9				None				

3.9.6 Communication Connections 3602-1A, 1B (TSR-3 Power Supply; Only 2 Wires on B1Y4)

	FFBM No.	Notes	$\begin{aligned} & \text { Card } \\ & \text { Location } \\ & \text { 01A. } \end{aligned}$	Line Adapter FFBM No.	Adapter Card Location 01A	Optional S Following All Others	ch Settings. tches "ON", FF"	Notes
	4946124 No Host Line	(1) 4	N/A	N/A	N/A			
	4946120 CCA w/Clock	$\begin{array}{\|} \hline 1 \\ \hline 4 \\ \hline 5 \\ \hline \end{array}$	AIC2	4946126. UCM2WUSA	AlA 2	J, N, L	See (A)	2
				4946127- UCM2WWTC		M, J, L, A		2]
				4946128. UCM4WUSA		K, P		3
				4946129 - UCM4WWTC		I, K, A		3
	4946121 CCA W/O Clock	1 4		4946125 - EIA/CCITT		Remove all Jumpers from card. See (3)		
	4946123 HPCA W/O Clock	6						8
	4946122 HPCA W/Clock	$\begin{aligned} & \hline 6 \\ & \hline 7 \end{aligned}$		4946126- UCM2WUSA		J, N, L	See (A)	2
				4946127 - UCM2WWTC		M, J, L, A		2
				4946128. UCM4WUSA-		K, P		3
				4946129 - UCM4WWTC		I, K, A		3
	6814500 ASYNC CCA w/Clock	$\begin{aligned} & 19 \\ & 10 \end{aligned}$	AlB2	6814520 - UCM2WUSA	AIA4	J, N, L	See (A)	
				6814536-UCM2WWTC		M, J,L, A		
				6814528 - UCM2WJAP		M, J, L, A		
				6814524. UCMAWUSA		K, P		
				6814540 - UCM4WWTC		I, K, A		
				6814532 - UCM4WJAP		I, K, A		
				6814516 EIA/CCITT		Remove all Jumpers from card.See B		
	6814508 SYNC CCA W/O Clock			6814512 - EIA/CCITT EMI				
	6814504 SYNC CCA w/Clock	10		6814516 - EIA/CCITT				
				6814520 - UCM2WUSA		J, N, L	See (A)	
				6814536-UCM2WWTC		M, J,L, A		
				6814528. UCM2WJAP		M, J, L, A		
				6814524-UCM4WUSA		K, P		
				6814540- UCM4WWTC				
	6814501 ASYNC CCA W/Clock	$\begin{gathered} 9 \\ 10 \end{gathered}$	A2N2	6814521-UCM2WUSA	A2E2	J, N, L	See (4)	
				6814537 - UCM2WWTG		M, J, L, A		
				6814529-UCM2WJAP		M, J, L, A		
				6814525-UCM4WUSA		K, P		
				6814541-UCM4WWTC		$\frac{1, K, A}{1, K, A}$		
				6814517-EIA/CCITT		Remove all Jumpers from card. See 8		
	6814509 SYNC CCA w/O Clock			6814513-EIA/CCITT EMI				
	SYNC CCA W/Clock	10		6814517 - EIA/CCITT				
				6814521 - UCM2WUSA		J, N, L	$\text { See } \boldsymbol{A}$	
				6814537 - UCM2WWTC.		M, J, L, A		
				6814529-UCM2WJAP.		M, J, L		
				6814541 - UCM4WWTC		$\frac{1, \mathrm{~K}, \mathrm{P}}{}$		
				6814533 . UCM4WJAP		I, K, A		

If If $B / M 4946120,4946121$ or 4946124 is to If $B / M 4946120,4946121$ or 4946124 is to be
installed, then wire-wrap PN 811425
From O1A-B1G2S10 To O1A-B1F6BO2
2. If $B / M 4406126$ or 4406127 is to be installed From O1A-B1A2GO9 To O1A-B1A2GO2

3 If $B / M 4406128$ or 4406129 is to be installed,
From O1A-B1B1B11 (YEL) To 01A-B1A2113 $\begin{array}{cc}\text { From O1A-B1B1B11 (YEL) } & \text { To O1A-B1A2J13 } \\ 01 A-B 1 B 1 C 13 \text { (BK) } \\ 01 A-B 1 A 2 G O 9\end{array}$
 4 If B / M 4946120, 4946121, or 4946124 is to be installed, then wire-wrap PN 811425
From O1A-B1C2JO6 To $14-B 1 C 2605$
 5 If $B / M 4946120$ is to be installed, then wire. From O1A-B1C2MO5 To O1A-B1C2PO8 6 If $B / M 4946122$ or 4946123 is to be installed then wire-wrap PN 811425
from O1A-B1C2107

 $\begin{array}{ll}\text { O1A-B1C2P11 } & \text { O1A-B1G2U13 } \\ 01 A-B 1 C 2 P P 5 & \text { O1A-B1G2S10 }\end{array}$

 8 If $B / M 4946122$ and 84406125 are to be
 (9) If $B / M 6814500,6814501,6814502$, or 6814503 is to be installed, then wire-wrap PN 811425
 68 installed, then wire-wrap PN 811425
Find
11 Local loops will be assigned beginning at posiLion 1. Speeds will be assigned in descending
ther
arder (position 1 will have the inhest sped
Remote loops will ber hig speed
12. Remote loops will be assigned beginning at loop position
13] If $B / M 1864633$ (Japan on/ly is requested,
then this B / M must be included in addition to
USA $B / M \mathrm{~s}$.
14 Set rocker switches K and P "ON". All other
15 Set rocker switches $1, A$ and K "ON".
15 Set rocker switches 1 , A an" K Kee (A). Al ot
switches should be "OFF". See (A)
$16 \begin{aligned} & \text { If integrated modem (remote loop) is also } \\ & \text { being installed, do not instal local loop cable }\end{aligned}$
17) Wire wrap PN 811425
$\begin{array}{cc}{ }_{\text {BiFSEBB12 }} & \text { To B1L6E04 } \\ \text { B1M6CO4 }\end{array}$

	$\begin{aligned} & \text { Loop } \\ & \text { Adapter } \end{aligned}$	Loop Adapter Card Location	$\begin{aligned} & \text { Loop } \\ & \text { Speed } \end{aligned}$	Speed Select. Intall Jumper PN 5492084 From Pin S10 To	Remote Only. Install Jumper PN 5492081 From Pin U08 To	Local Loop Cable PN 1563675 Loops 1-3 PN 1741662 Loops 4-8	Integrated Modem USA and Canada B/M No.	Integrated Modem WTC B/M No.	Undercover Modem Card Location	Remote Loop Cable PN 4406670
B/M No.	No.		11		12	12116	14	(13) 15		
4946110 17	1	B1D2	$\begin{array}{\|l\|l} 600 \\ 1200 \\ 2400 \\ 4800 \end{array}$	$\begin{aligned} & \mathbf{1 1 1} \\ & 107 \\ & 10 \\ & 109 \end{aligned}$	$\begin{aligned} & \text { Local } \\ & \text { Only } \end{aligned}$	B1Y3 Local Only To J2-J3				
4946139	2	B1E2	$\begin{array}{\|l\|l} 600 \\ 1200 \\ 2400 \\ 4800 \end{array}$	$\begin{aligned} & 111 \\ & 107 \\ & 110 \\ & 109 \end{aligned}$	407	$\begin{aligned} & \text { B1Y3 } \\ & \text { To J4-J5 } \end{aligned}$	4946146	4946153	1A-A2B2	$\begin{aligned} & \text { A2B3 } \\ & \text { To J4.-5 } \end{aligned}$
4946140	3	B1F2	$\begin{array}{\|l\|l\|} \hline 600 \\ 1200 \\ 2400 \\ 4800 \end{array}$	$\begin{aligned} & \mathrm{J11} \\ & \mathrm{0} 7 \\ & \mathrm{J10} \\ & \mathrm{JO9} \end{aligned}$	407	$\begin{aligned} & \text { B1Y3 } \\ & \text { To J6-J7 } \end{aligned}$	4946147	4946154	1A-A2C3	$\begin{aligned} & \text { A2C3 } \\ & \text { To J6-37 } \end{aligned}$
4946141	4	A2G2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & \mathrm{J11} \\ & 107 \\ & 110 \\ & \mathrm{NOM} \end{aligned}$	U07	$\begin{aligned} & \text { A2Z1 } \\ & \text { To J8.J9 } \end{aligned}$	4946148	4946155	1A-A2B4	$\begin{aligned} & \text { A2B5 } \\ & \text { To J8-J9 } \end{aligned}$
4946143	5	A2H2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & \mathrm{J11} \\ & \mathrm{0} 07 \\ & \mathrm{J10} \\ & \mathrm{Jo9} \end{aligned}$	U07	$\begin{aligned} & \text { A2Z1 } \\ & \text { To J10-J11 } \end{aligned}$	4946149	4946156	1A-A2C4	$\begin{aligned} & \text { A2C5 } \\ & \text { To J10-J11 } \end{aligned}$
4946143	6	A2J2	$\begin{array}{\|l\|l} \hline 600 \\ 1200 \\ 2400 \\ 4800 \end{array}$	$\begin{aligned} & \mathrm{J11} \\ & 107 \\ & 100 \\ & \mathrm{JO9} \end{aligned}$	407	$\begin{aligned} & \text { A2Z1 } \\ & \text { To J12-J13 } \end{aligned}$	4946150	4946157	1A-A2D4	$\begin{aligned} & \text { A2D5 } \\ & \text { To J12-J13 } \end{aligned}$
4946144	7	A2S2	$\begin{array}{\|l\|l} \hline 600 \\ 1200 \\ 2400 \\ 4800 \end{array}$	$\begin{aligned} & \mathrm{J11} \\ & \mathrm{jo7} \\ & 110 \\ & 109 \end{aligned}$	U07	$\begin{aligned} & \text { A226 } \\ & \text { To J14-J13 } \end{aligned}$	4946151	4946158	1A-A2U2	$\begin{aligned} & \text { A2U3 } \\ & \text { To J14-J15 } \end{aligned}$
4946145	8	A2R2	$\begin{aligned} & 600 \\ & 1200 \\ & 2400 \\ & 4800 \end{aligned}$	$\begin{aligned} & \mathrm{J11} \\ & \mathrm{007} \\ & 10 \\ & \mathrm{~J} 09 \end{aligned}$	007	$\begin{aligned} & \text { A2Z6 } \\ & \text { To J16-J17 } \end{aligned}$	4946152	4946159	1A-A2U4	$\begin{aligned} & \text { A2U3 } \\ & \text { To J16-J17 } \end{aligned}$

3.10 SUPPLY VOLTAGES ON LOGIC BOARDS AND CARDS
Note: Refer to Chapter 1 (right side) to determine the location of a specific card

All card locations on both logic boards are supplied with $+8.5 \mathrm{~V},+5 \mathrm{~V},-5 \mathrm{~V}$, and ground. These voltages are distributed by the internal voltage and ground planes in the board.

+8.5 V	$+5 \mathrm{~V}^{*}$	$-5 \mathrm{~V}^{*}$	Ground
B11	D03	B06	D08
G11	J03	G06	J08
M11	P03	M06	P08
S11	U03	S06	U08

Special voltages ($+12 \mathrm{~V},-12 \mathrm{~V}$ and +24 V) are supplied on the logic boards through surface busing and are distributed only to those card locations requiring them. The +5 V is also wired to the modem cards. The following chart shows the pins to which these special voltages are distributed.

Card	$+\mathbf{1 2 V} *$	$-\mathbf{1 2 V} *$	$+\mathbf{2 4 V} *$	$+5 V^{*}$
1200 -bps modem:				
Receive	B04,G04	D10,J10	--	B13
Transmit	B04,G04	D10,J10	--	B12
Wrap	B04	--	--	--
600 -bps modem:				
Receive	B04,G04	D10,J10	--	B13
Transmit	B04,G04	D10,J10	--	B12
EIA	D11	J06	--	--
Diskette Adapter	--	--	B13	--
Diskette Drive				
Control				
(O1X2W2)	--	--	D10	--
M/D RCVR				
XMIT	B04,G04	D10,J10	--	B12
	M04,J04	P10,U10	--	M13
38LS EIA	--	D07	--	--
Remote Loop EIA		D07		

*Voltage limits
$V d c \quad$ Limit

-5	-4.5 and -5.5
-12	-10.8 and -13.2
+5	+4.5 and +5.5
+8.5	+7.6 and +9.4
+12	+10.8 and +13.2

$\begin{array}{ll}+8.5 & +7.6 \text { and }+9.4 \\ +12 & +10.8\end{array}$
$\begin{array}{ll}+24 & +10.8 \text { and }+13.2 \\ +21.0 \text { and }+27.0\end{array}$
3.11 BACK PANEL CONNECTIONS

Note: Refer to Chapter 1 (right side) to determine the location of a specific card.
3.11.1 Loop Control Cards

Speed Selection

At each loop control card location, connect pin S10 to one of the following:

4800 bps $=\mathrm{J} 09$
$2400 \mathrm{bps}=\mathrm{J} 10$
600 bps $=\downharpoonleft 11$

Remote Loop Operation

If a loop is connected to a modem, connect pin U 07 at the loop control card location to pin $\cup 08$ (ground) at that card location.

3.11.2 Modem Compatibility (Internal Modem M-12)

In order for modems to communicate properly, the Clear to Send delay of the transmit location must be greater than the Echo Clamp at the receiver location. The following options are available to achieve this compatibility.

Clear to Send delay:

(Approximately)
25 ms M/D Xmit Card G10 to G12
90 ms M/D Xmit Card G10 to J12
250 ms M/D Xmit Card G10 to G13

Echo Clamp:

(Approximately)
0 ms M/D Xmit Card G07 to G05
60 ms M/D Xmit Card G08 to G09
G07 to GO
G08 to G09
See communications connections for 38LS M/D options.
3.11.3 External Modems

Modem	Internal Clock	Speed (bps)	Comments
3872	Yes	2400	Has a switched network feature
3874	Yes	4800	Has a switched network feature
$3976-3$	No	1200	World Trade only World Trade only
3978.14	Yes	4800	US and Canada only 4872
Yes	4800	Swedish modem Swedish modem	
GH 2002-013	No	1200	
YAT	Yes	2400	

Grounding of EIA Lines Not Used

When using the EIA card to drive external modems, all lines not used (both inputs and outputs) should be connected to ground at the EIA card location. The following chart show lines that are not used for various external modems and which pin is to be grounded for these not-used lines.

$\begin{aligned} & \text { EIA } \\ & \text { Pin } \\ & \text { No. } \end{aligned}$	EIA Line Name	Ground the following pins at the EIA card if not used
11	Select Standby *	G05
15	Transmit Signal Element Timing	J09
17	Receive Signal Element Timing	J04
18	Test	$J 13$
20	Data Terminal Ready	G12
22	Ring Indicator*	G04
23	Data Signal Rate Selector	G03

*These lines are used only when the switched network feature is present.
3.11.4 Communications Link Connections

Standard EIA Pin	3601	Line Name	Modem
1	x	Protective Frame Gnd	x
2	x	Transmit Data	
3		Received Data	x
4	x	Request to Send	
5		Clear to Send	X
6		Data Set Ready	x
7	x	Signal Gnd	x
8		Received Carrier Det	x
9		*	x
10		*	x
11	x	Select Standby	
12		Sec Received Carrier Det	
13		Sec Clear to Send	
14	x	Sec	
15		Transmit Timing	x
16		Sec Received Data	
17		Receive Timing	X
18	x	Test	
19		Sec Request to Send	
20	x	Data Terminal Ready	
21		Signal Quality Det	
22		Ring Indicator	x
23	x	Data Signal Rate Sel	
24		Sec Transmit Timing	
25	x		

These signals are used with integrated modems. All other signals are for external modems.
3.11.5 Storage Connections (Basic Controtier Board)

Basic Storage

2M07 to M2G13
L2B13 to M2G08
Expanded Storage
L2M07 to V2M12
L2B13 to V2P05
3.12 DISK STORAGE DIAGNOSTICS (3602 Only)
3.12.1 General Description

The disk storage tests are used with the MAPs for trouble-
shooting disk storage.
The tests verify all disk operations and force error conditions to check the error detection logic.
The tests are provided on the diagnostic diskette. After
a test is run, status and error information is displayed on the keyboard/display.

The tests are divided into four major areas. They are
. Basic checkout
2. Diagnostic mode
3. Extended
4. Selectable

Basic Checkout (Routines 01,02,03, and 04)
These routines test the communications between the controller and the storage logic, and test for Disk Ready.

Diagnostic Mode (Routines $\mathbf{1 0 , 1 1 , 1 2 , 1 3 , 1 4 , ~ a n d ~ 1 5) ~}$
These routines test and single-step various operations through the disk storage logic (Read, Write, Seek, and Test controls).

Extended (Routines 21,22,23,24,25,26,31,32,33,34,35,36 41,42,43,44,45,46,47,48, and 49)
These routines test the ability of the entire disk storage logic and the Disk Enclosure (DE) to run in an operational mode.

Selectable (Routines $\mathbf{5 0 , 5 1 , 5 3 , 5 4 , 5 5 , 5 6}$, and 57)
These routines test for a certain status, do format tasks, or other special operations.

3.12.2 Operating Procedure

Results of this diagnostic are valid only if the complete procedure is followed from power on reset.

1. Power off all terminals other than the 3604 at address 1 on loop 1, to prevent interference. Insert the diagnostic diskette, and ac
controller power-on or reset switch.
2. When the control program has been loaded, BCBO may display; respond with the model number of the 3604 that you are using, followed by enter (EM) BC80 should then display on this 3604 .
3. Enter data LASLRR where:

LA $=10$ (Logical Address)
$=$ Test Selection Option
$=$ Test disk storage logic (not DE)
$2=$ Test disk storage and DE with manual intervention
L = Loop Option (Routines 3, 24 and 32 should not be looped. The Free key cannot stop them).
$0=$ No looping
$1=$ Loop; stop on error
$2=$ Leop
$2=$ Loop; do not stop on error
$=$ Specific Routine to Run (otherwise, no entry is required)
5. Messages will be displayed defining machine status: $1000=$ Tests completed successfully.
1080 = Temporarily unable to do input/output. This is normal for short periods of time during the tests. A stop (one minute or more) at this point indicates a controller problem; see MAP 2.
10EE $=$ Machine failure; see Error Codes (1.115): 10FO = Test running.
BCXX = Procedure error; see 3.12.4
Note: The diagnostic run can be ended at any time by pressing the FR (free) key on the 3604 (see Figure 3-2 for keyboard locations).

CAUTION: Do not use reset to end. This could terminate an incomplete write operation. Use the free key.

3.12.3 Test Routines

Routine 01 - Test Basic Operations

Routine 02 - Test Control Data

This routine reads Control Data, and tests for Machine Check and correct status.

Routine 03 - Disk Speed Test (Do not loop)
This routine reads the speed pulses from the speed trans ducer to verify that the disk speed is correct.

Routine 04 - Test for Disk Ready

Routine 10 - Read Diagnostic Step Mode
This routine steps through a Read Data operation and checks for proper completion

Routine 11 - Checks the Ability to Detect a CRC Error

Routine 12 - Write in Diagnostic Mod

This routine steps through a Write Data operation and checks for proper completion.

Routine 13 - Seek in Diagnostic Mode

This routine steps through a Seek operation and checks for proper completion.

Routine 14 - Test Time Out Logic
Routine 15 - Interrupt Logic Test
Routine 21 - Recalibrate and Test for Correct Status
Routine 22-Read Track ID Head 0
Routine 23-Read Track ID Head 1
Routine 24 - Read Track ID 61 Times (Do not loop)
Routine 25 - Read IDs, Sectors 00-59 Track 0
Routine 26 - Read IDs, Sectors 00-59 Track 1

Routine 31 -Initial Seek Testing

Routine 32 - Initial Seek Testing and Verify Seeks (Do not loop)
Routine 33-Seeks. Behind Home
Routine 34 - Single Cylinder Seek
Routine 35 -Seek in 1, 7, and 11 Track Increment
Routine $\mathbf{3 6}$ - Seek in All Seek Increments
Routine 41 - Read IDs on CE Cylinder
Routine 42 - Write/ Read Sector ID on CE Cylinder

Routine 43 - Sector ID Flag Bit Test

Routine 44 - Read/Write Data Transfer Test

Routine 46 - Test Disk Diagnostic Operations

Routine 47 - Status Bit Test

Routine 48 - CE Track Sector ID Write and Compare Test

Routine 49 - Fixed-Head Read ID Test

This routine reads IDs on the fixed-head tracks.
The basic status is for the first fixed-head error encounted.

Count Field Bit Fixed-Head Number

0123	4567	$8 \rightarrow 15$
2345	678	

Routine 50 - Fixed-Head Write ID Test

This routine writes IDs on the fixed-head tracks, then reads the IDs just written.

encounted

Count Field Bit
Fixed-Head Number

0123	4567	$8 \rightarrow 15$
2345	6789	Not Used

Routine 51 - Write CE Cylinder Routine
Routine 53- Write if Read Cannot Be Performed
CAUTION: Do not run this routine without visually making sure the head is at the CE Track. This routine attempts to write on the CE track.

Manual intervention stop:
$10055300=$ Visually observe the access to verify it is at the outer stop indicator (3.6.1). Then press Enter (EM) to start execution of the routine.
Error Data Bits
0 Not Used
1 No Interrupt Head 0
2 Write Bit Check Head 0
3 Data Unsafe Head 0
4 Not Used
5 No Interrupt Head 1
6 Write Bit Check Head 1
8-15 Not Used

3.12.3 Test Routines (Cont)

Routine 54 - Seek Betwoen Selected Cylinders

This routine seeks between two selected cylinders. The selected cylinders must beentered as four right justified hex digits.

Seek Data Format
Bit 0123456789101112131415 \longmapsto Ignored -_ Displacement
To loop routine, enter the loop option at load.
Manual intervention stops:
$10075400=$ Enter selected cylinders.
$10085400=$ Cylinders selected are too large or are equal

Routine 55 - Read Selected Sector

This routine reads a selected sector. The selected cylinde must be entered as four right justified digits.

Read/Write data format - movable hëads.

\longmapsto Track ID——

- Cylinder ID-1 Sector ID Bit 8 Even/Odd Bit $9 \mathrm{In} / \mathrm{Out}$
Manual intervention stops:
$10095500=$ Enter selected ID;
100A $5500=$ Sector or cylinder ID invalid:
Routine 56 - Test for Disk Ready after Power On or Reset This routine must be selected and run before any other routines are run after power on or reset for the sense infor mation to be valid. Should be run for all Not Ready conditions:

Routine 57 - Test for Bus Hangs after PoweriOn Reset

 This routine must be selected and run before any othe routines are run after power on or reset for the sense information to be valid. Should be run for all Not Ready conditions.Error hang will bee 1081 and will probably hang the bus not allowing interrupts from the panel
3.12.4 Procedure Errors

Message	Cause	Action
BC81	RR has been entered without a valid L field (0,1 and 2 are valid).	Correct input.*
BC82	$\mathrm{L}=2$ has been entered without a routine number.	Correct input.*
BC83	No routine (RR) has been entered. S field is invalid (0,1 and 2 are valid), and L field is not 2.	Correct input.*
BC84	No routine (RR) has been entered. L field is invalid (0,1 and 2 are valid), and S field is valid'	Correct input.*
BC85	A request has been made to loop, and \mathbf{R} does not equal 0 .	Correct input.*
BC86	A logical address, other than 10, has been entered.	Correct input.*
BC87	Selected routine is invalid.	Correct input.*
BC88	A failure was detected while using the keyboard/display.	Test basic loop and keyboard/display.
BC89	An invalid interrupt has occurred.	Power off unused terminals.
BC8A	Diskette read error	Try another diskette Test basic machine
BC90	A request has been made to loop, and S does not equal 0 or 1 .	Correct input.*
BC92	Machine check occurred.	Test basic machine.
вC93	Incorrect keyboard input was made at a manual intervention stop.	Correct input. *
BC94	Input message was too long.	Correct input.*
BC96	Program check occurred.	Try another diskette. Test basic machine.
BC97	Machine check occurred.	Test basic machine.

Message	Cause	Action
BC98	Routine requested is not able to loop.	Correct input.*
BC99	Selected routine is invalid.	Correct input.*
BC9A	Program check occurred.	Try another diskette. Test basic machine.
BC98	Program check occurred.	Try another diskette. Test basic machine.
BC9C	Program check occurred.	Try another diskette. Test basic machine.
BC9D	Program check occurred.	Try another diskette. Test basic machine.
BCAO*** thru BCA7	An invalid interrupt has occurred.	Power off unused terminals. Test basic machine

*To correct the input, press the FR (free) key (see Figure $3-2$ for keyboard locations) When BC80 is displayed, enter the correct input. If this fails, reload the diagnostic diskette.
**Except BCBO, which requires entry of the 3604 model number.

3.12.5 Disk Storage Utility Programs

CAUTION: Running programs 1,3, or 4 will destroy disk data.
These programs are provided on the stand-alone diskette used for the disk storage maintenance. The procedure to use any of these programs is as follows:

1. Power off all terminals other than the 3604 at address 1 on loop 1 to prevent any interference from them
2. Insert the diagnostic diskette and activate the controller power on or reset switch.
. When the control program has been loaded, BCBO may display; respond with the model number of the 3604 that you are using, followed by enter (EM)
BC80 should then display on this 3604 .
3. You may then request the routine desired (00000 X and enter, where X is the routine number).
4. OOFO is the system response to valid input.
5. Respond with EM (enter key) to the routine complete message to terminate

1 = Start = This routine zeros the system sectors and the relocate sectors used for defective sector recovery (alternates). Routine 3 or 4 must be run following this routine. $=$ Bad ID $=$ This routine attempts to read every ID field on the disk element. It assigns new ternates for all sectors that had alternates assigned.

CAUTION: This routine uses new Iternates each time it is run. To reclaim ternates again, routine 1 must be run: then run this routine once.
$=$ Write $I D=$ This routine rewrites the IDs on the entire disk, a single sector, or the fixed head area naccordance with the options requested y the CE as described in the detailed description of messages.
5 = Analysis = This routine analyzes the surface of the entire disk, a single sector, or the fixed head area in accordance with the options equested by the CE as described in the detailed description of messages.
Each routine, when loaded, reads the sense information from the hardware jumpers (1.72) that define this 3602 The control program can then determine when the operation indicates an error or expected results. This configuration information remains with the control program through subsequent starts until changed by running a utility with a different configuration.

Message	Meaning	Action
0000	Routine complete and terminated.	Enter another request if desired.
0012	Manual stop to insure that this routine should be run.	F and EM (enter key) to run or free key to terminate.
0014	Routine complete.	C EM (enter key) to terminate.
0031,DDD	Unable to write a displaced ID for this sector, where DDD is the sector ID.	EM (enter key) alone to try again. If this fails, replace the $D E$.
0034,DDD	Routine complete, where DD is the decimal count of bad sectors (alternates assigned).	C EM (enter key) to terminate.
0041,DDD	Unable to write an ID or displaced ID to this sector, where DDD is the sector ID.	EM (enter key) alone to try again. If this fails, replace the $D E$.
0044, DD D	Routine complete, where DDD is the decimal count of bad sectors (alternates assigned).	C EM (enter key) to terminate.
0045	Option request.	Specify the options desired as follows: CX EM (enter key) or AOIDID EM (enter key) or $A=$ unconditionally assign an a!ternate for iDID. FXIDID EM (enter key) where: C $=$ Write IDs on the entire disk F = Write IDs on a single sector, where IDID is the fourdigit sector ID
0046, DDD	Unable to write data to this sector, where DDD is the sector ID.	EM (enter key) alone to try again. If this fails, respond with C EM (enter key) to try to assign an alternate.
0051,DDD	A displaced ID has been read, where DDD is the sector ID.	C EM (enter key) to continue.
0052,DDD	An unreadable ID has been detected, where DDD is the sector ID.	C EM (enter key) to continue.
0053,DDD	Unable to read data, where DDD is the sector ID.	C EM (enter key) to continue.
0054,DDD	Routine complete, where DDD is the decimal count (four digits each) of the number of displaced ID sectors, number of displaced ID sectors with alternates assigned, number of unreadable ID sectors, number of unreadable data sectors, and actual number of alternates used.	C EM (enter key) to terminate.

Utility Program Routine Message (Cont)

Message	Meaning	Action
0055	Option request.	Specify the options desired as follows: CX EM (enter key) or FXIDID EM (enter key) where: $\mathrm{C}=$ Whole disk $\mathrm{F}=$ Single sector where IDID is the four-digit sector ID $X=8=$ Fixed head area $\mathrm{X}=4=$ Stop on displaced ID Combinations of $X=2=$ Stop on unreadable state X are valid $X=1=$ Stop on unreadable ID
0181	Disk storage error.	Use MAPs.
0182	Disk storage error.	Use MAPs.
0183	Diskette error.	Test basic system with starter diskette.
0184	Disk storage error.	Use MAPs.
0381	Unable to read the label record.	Run routine 1. If failure still occurs, replace the DE .
0382, DDD	Unable to initialize the control program.	Run machine diagnostics.
0383	Unable to update configuration.	Run machine diagnostics.
0384	Configuration incorrect.	Run machine diagnostics.
0385	Unable to assign alternate sector.	Replace DE.
0386	Relocate tracks are full.	Run routine 1. If failure still occurs, replace the DE .
0387	Unable to restore label record.	Run routine 1. If failure still occurs, replace the DE.
038A,DDD	Unable to read ID or displaced ID for this sector, where DDD is the sector ID.	EM (enter key) alone to try to write the ID or, if that fails, write a displaced ID to try to recover this sector.
038B	Unable to find the correct track.	Run machine diagnostics.
$\begin{aligned} & 038 \mathrm{C} \\ & \text { IDID } \end{aligned}$	If processing of the track identified in IDID resulted in any of the track's sector(s) being	Replace DE.
XXYY	reformatted, the facility will verify the	
XXYY	readability of the track by reading all of that track's sector IDs. If any sector IDs	
XXYY	are found to be bad during the verification, this message is displayed. IDID is the address of the last reformatted sector of this track. Each XXYY addresses a sector whose ID is bad.	
$\begin{aligned} & \text { 038D } \\ & \text { IDID } \end{aligned}$	This facility was unable to verify that the $\mathrm{read} / \mathrm{write}$ head is positioned over the correct track before rewriting a sector ID. Verify by attempting to read a sector ID containing the expected track number. If this is not possible with any of the 60 sectors, then the head position is not verified.	If the machine diagnostics run without error, enter E to force writing. Then if error repeats, replace the DE.

Message	Meaning	Action
0481	Unable to read the label record.	Run routine 1. If failure still occurs, replace the DE.
0482, DDD	Unable to initialize the control program.	Run machine diagnostics.
0483	Unable to update configuration.	Run machine diagnostics.
0484	Configuration incorrect.	Run machine diagnostics.
0485	Unable to assign alternate sector.	Replace DE.
0486	Relocate tracks are full.	Run routine 1. If failure still occurs, replace the $D E$.
0487	Unable to restore label record.	Run routine 1. If failure still occurs, replace the $D E$.
048B	Unable to find correct track.	Replace the DE.
$\begin{aligned} & \text { O48C } \\ & \text { IDID } \\ & X X Y Y \\ & X X Y Y \end{aligned}$	This sector, IDID, has been successfully formatted; the IDs of sector(s) XXYY (in IDID format) of this same track could not be read.	If FXIDID or AOIDID was used: Use this facility to correct the XXYY sectors.
XXYY	If processing of the track identified in IDID resulted in any of the track's sector(s) being reformatted, the facility will verify the readability of the track by reading all of that track's sector IDs. If any sector IDs are found to be bad during the verification, this message is displayed. IDID is the address of the last reformatted sector of this track. Each XXYY addresses a sector whose ID is bad.	If CX was used: Replace the DE .
$\begin{aligned} & \text { 048D } \\ & \text { TDID } \end{aligned}$	This facility was unable to verify that the read/write head is positioned over the correct track before rewriting a sector ID. Verify by attempting to read a sector ID containing the expected track number. If this is not possible with any of the 60 sectors, then the head position is not verified.	If the machine diagnostics ran without error, enter E to force writing. Then if error repeats, replace the DE.
0581	Unable to read the label record.	Run routine 1. If failure still occurs, replace the DE .
0582,DDD	Unable to initialize the control program.	Run machine diagnostics.
0583	Unable to update configuration.	Run machine diagnostics.
0584	Configuration incorrect.	Run machine diagnostics.
BC80	Control program loaded.	Enter request.
всво	3604 Type request	Enter 3604 model number.

CAUTION: Do not use RESET to end. This could terminate an incomplete write operation. Use the FREE key.

Contents		
Figure	Title	
4-1	Component Locations, 3601 2A, 2B, 3A, 3B (Single TSR	
4-2	Component Locations, 3601 2A, 2B, 3A, 3B One or Two TSR-2 Power Supplie.	4.2
4.3	Component Locations, 3601 Models C and D......	4.3
4-4	Component Locations, 3602 1A, 1 B	4-4
4.5	Logic Boards, Card and Pin Locations.	4.5

3601 Finance Communication Controller, Model 2A, 2B, 3A, 3B, C and D

Figure 4-1. Component Locations 3601-2A, 2B, 3A, 3B (Single TSR-3 Power Supply)

Figure 4-2. Component Locations 3601-2A, 2B, 3A, 3B (One or two TSR-2 Power Supplies)

Reference Only: Use cable label PNs.

IFigure 4-3. Component bocations (3601 Models C, D)

Notes:

1. For multiple-socket cards (such as cards G2, E4, D3, and C 2 in illustration), card location designation is specified by the uppermost row. Example: The location of card G2 (which actually occupies four sockets) is specified by the uppermost row, G2. If this card is located on board A1, its location is identified as A1G2.
. Pin-column letter designations are signified by card size (rather than vertical position of card on board) beginning with DB in the first pin row used. which, when required, specify pin columns in the secon, third, and four sperd row, See examples in the illustration
2. Ground = Any D08, J08, P08, or 008 pin; identified by square surrounding each ground pin. (The square is not shown.) +5 =Any D03, J03, PO3, or U 03 pin not shown.) $+5=$ Any D03, J03, P03, or U03 pin. Figure 4-2 for actual card locations.

Chapter 6. Installation Instructions		
Contents		
Heading		Page
6.1	Preliminary Instructions	
6.1.1	Basic Installation Procedure.	6-1
6.1.2	Manuals Available	6-1
6.1.3	Special Tools Needed.	6-1
6.1.4	Preparing the Location.	6-1
6.1.5	Setting the Loop Speed and the Terminal Address.	6-2
6.1.6	Use of the Starter Diskette	6-2
6.2	Installation: Controller	6-3
6.2.1	Check Controller and Apply Power (3601).	6-3
6.2.2	Check Controller and Apply Power (3602).	6-3
6.2.3	Install Mandatory Local Loop 1.	6-5
6.2.4	Install Additional Local Loops.	6-6
6.2 .5	Install Remote Loops. .	6-6
6.2.6	Complete the Installation	6-6

Figures
Figure
3601 Left Cover Removal . 6
3601 Front Cover Holding Screws 6-3
$6-3$
Controller Voltage Plate
Disk Enclosure .
Shipping Clamps
3604 Switches
$\begin{array}{lll}\text { 6.7 } & 3604 \text { Universal Translate Table Key Locations . } & \text { 6-5 } \\ \text { 6-8 } & \text { World Trade Communication Cable }\end{array}$

Tables

6-1 Address (Group 1) Switch Settings . \quad 6-2
$\begin{array}{lll}\text { 6-1 } & \text { Address (Group 1) } \\ \text { 6-2 } & \text { Loop Speed (Group 2) Switch Settings . }\end{array}$

6.1 PRELIMINARY INSTRUCTIONS

6.1.1 Basic Installation Procedure

A 3600 system is installed in the following sequenc

1. Install the controller and a local 3604 to be used as the control operator terminal for receiving system messages and for starting terminal tests.
2. Connect each local loop, starting with the mandatory loop 1, and test that the loop operates properly.
3. Once a loop has been tested, connect terminals, one at a time, to the loop and run exercisers to test the terminals.
4. After all terminals on all local loops are operational, install any remote loops.
5. Set the address and speed switches on all terminals according to the customer's configuration.
6. Clean up and turn the system over to the customer; INSTALLATION IS NOW COMPLETE.
7. If a conmmunication link to the computer is available the customer should test communications with the computer.
Note: In World Trade countries, if a communication link to the computer is available, this step should be done by the customer before step 6 .
8. When the 3604 at address 1 on loop 1 is not physically the first terminal on the loop, the startup diagnostic messages may not be displayed correctly (Normal operation after startup is not affected by this incorrect display.) If you must see these messages, turn power off on the terminals tha physically precede the 3604 .
Instructions for performing these steps follow.

6.1.2 Manuals Available

- IBM 3604 Keyboard Display Maintenance Information, SY27-2361.
- IBM 3610 Document Printer Maintenance Information SY27-2362.
- IBM 3611 Passbook Printer Maite Information SY27-2408.
- IBM 3612 Passbook and Document Printer Maintenance Information, SY27-2363.
- IBM 3614 Consumer Transaction Facility Maintenance Library Manual.
- IBM 3618 Administrative Line Printer Maintenance Information, SY27-2364.
- Maintenance Information, Installation, and other manuals for IBM modems to be installed with the 3600 System.
- IBM 3600 System, Field Engineering Maintenance Information Manual, SY27-2520.

Also, the following customer's manuals are available for reference:

- IBM 3600 Finance Communication System - System Summary, GC27-0001. This manual introduces the 3600 System.
- IBM 3600 finance Communication System Configurator, GA19-0063 (World Trade) or GA27-2762 (U.S.A. This manual lists the terminals and features that are available for the 3600 System and shows how they can be connected.
- IBM 3600 Finance Communication System Installa tion Manual - Physical Planning, GA27-2766. Thi manual describes: (1) what the customer must do to prepare the location before installation and (2) the cables that are needed.
- Operating Guide for the IBM 3600 Finance Com. munication System, GA27-2776. This manual gives operating instructions and problem-recovery procedures for customer personnel.
- IBM 3614 Consumer Transaction Facility Operator's Guide, GA26-1624. This manual contains procedures for preparing the 3614 for operation and for determining the cause of a failure.

6.1.3 Special Tools Needed

The following special tools are shipped as required

- Passbook printer test form, PN 1842880 (with 361 and 3612).
- Test card, PN 2143816 (MSR machines).
- Magnetic stripe reader/encoder passbook, PN 165225 (MSR machines).

The following branch office tools may be required:

- 453 oscilloscope or equivalent, PN 453047
- 33 FD head alignment tool, PN 2200698.
- DB meter, PN 453545 .
- General logic probe, PN 453212.
- Berg connector extractor tool, PN 453705
- Berg connector screwdriver, PN 460811
- Berg connector probe tip, PN 453718.
- Card caddy - container, PN 963400.
- Chute adjusting tool, PN 1738543.

6.1.4 Preparing the Location

Before installation, the customer should have

- Obtained and installed loop cables.
- Completed all location changes as needed (such as expansion of electrical wiring, installation of communications equipment, and preparing an outside
wall for the 3614 Modei 2).
- Tested all electrical and communications equipnent.

Also, when the equipment comes, the customer must unpack it and place it in the proper location. He should show you: (1) which terminais are on each loop, (2) the address of each terminal, and (3) the proper loop speed for each terminal. The customer should also label loop cables at each end with information that identifies: (1) the loop, (2) the terminal to which that cable end is to be connected, and (3) the terminal to which the other end of the cable is be rence from the 3600 Operating Guide ©427.2776), showing the location of terminals on e, GA27-2776), showing the location of terminals on each loop and their addresses
For the 3614, the customer must also:

- Install and provide any protection for the signal cable
- Obtain, install, and provide any protection for alarm and control cables. These cables are not supplied by IBM.
- Connect and supply dc power for the alarm and control system. (Alarm and control cables and dc power should be ready before the terminal is sent.
- Install the floor fastening stud for the Model 1
- Install the heavy-duty enclosure, bezel, mounting stand, and baseplate for the Model 2.
- Place the $\mathbf{3 6 1 4}$ Model 2 in the heavy-duty enclosure.

If, during installation, you find that the customer has not prepared the location properly, inform the customer your branch office, and the responsible DP branch office.

6.1.5 Setting the Loop Speed and the Terminal Address

Each 3600 terminal has two groups of switches. Group 1 is used to set the terminal address, and group 2 is used to set he terminal to the loop speed. Each group has four witches, labeled 1 to 4 . Table 6-1 shows the seting of the daws the cting of the loop speed switches for hows the setting of the loop speed switches for each loop speed.

Table 6-1. Address (Group 1) Switch Settings

Terminal Address	Switch Settings			
	1	2	3	4
1	On	Off	Off	Off
2	Off	On	Off	Off
3	On	On	Off	Off
4	Off	Off	On	Off
5	On	Off	On	Off
6	Off	On	On	Off
7	On	On	On	Off
8	Off	Off	Off	On
9	On	Off	Off	On
10	Off	On	Off	On
11	On	On	Off	On
12	Off	Off	On	On
13	On	Off	On	On
14	Off	On	On	On
15	On	On	On	On
16	Off	Off	Off	Off

Table 6-2. Loop Speed (Group 2) Switch Setting

Loop Speed in				
Bits per Second (bps)	Switch Settings			
	$\mathbf{1}$	$\mathbf{2}$	3	4
600	On	Off	Off	Off
1200	Off	On	Off	Off
2400	Off	Off	On	Off
4800	Off	Off	Off	On

6.1.6 Use of the Starter Diskette

An IBM-controlled starter diskette is shipped with each controller. During installation, it is recommended that you use the starter diskette instead of the customer's operational diskette. (But, if you use the customer's operational diskette and set the address switches to the customer's address and the diskette The starter diskette is configured for
her type on two lops 1 and contains the control operator's 3604 at address 1 , and loo 2 is named as having a wrappable modem.) After initial loading of the starter diskette is complete, loops 1 and 2 a both running. Keyboard commands are available to stop oop 2, name another loop to take loop 2's place, and start the other loop.

Note: You must use a prompt mode startup to specify the component that is to be tested (section 1.1.1). The starter diskette optional module ID codes are:
$O A=$ ADDRESS SHARING
OB= PIN keyboard
83= 3610,3611,3612
$85=3618$
$86=3604$ magnetic stripe encoder
$87=3614$
6A $=$ ALA/Host Link Test
For all loops, the starter diskette is configured as shown in Table 6-3. Thus, if a terminal is being used in the testing, its address switches must be set as shown in Table 6-3. F terminals that are on the loop being tested but are not
being used in the testing, configuration needs are met by turning off their power switches instead of changing the normal setting of their address switches. There is no need to change the address switches or the power switches of terminals on loops that are not being tested.
The system tries to start loops 1 and 2. If it can, th READY lights on the terminals on loops 1 and 2 will light. Logon on loop 1 is automatic, following initial loading: message 92222 appears on the control operator display (address 1 on loop 1), indicating the CE is automatically logged on that 3604 and may run exerciser tests by using its keyboard.

To test other loops and their terminals, enter the
following to stop all loops except loop 1 .
04000 OXOY
where: X is set to 2 if there is no wrappable modem on the loop (iocal loop or World Trade 600 -bps remote loop).
X is set to 3 if there is a wrappable modem (1200-bps remote loop) or an external loop
is set to the loop number of the loop that is to be tested.
Then enter:
0400 to start the loop that is to be tested
You can then test the terminals on the selected loop.
For more information on the starter diskette and for the Fon enter at the 3604, refer to 3600 System, FE MIM, SY27-2520.

Table 6-3. Starter Diskette Configuration
For starter diskettes at EC 745122 and above, see command code 973 in the IBM 3600 FE MIM, SY27-2520. Only addresses 01,02 , and 03 are valid on these diskettes.

Terminal	Address	Slots Used	Components
3604	01	1,9	Keyboard (magnetic stripe reader) and display.
3618	02	2,10	132 print positions and dual forms feed.
3604	03	3,11	Keyboard (magnetic stripe reader), display, and magnetic stripe encoder.
3610	04	4,12	Cut form - continuous form printer.
3611	05	5,13	Passbook printer: 28 lines, centerfold starts on line 14 and ends on line 17.
3612	05	5,13	Cut form-continuous form printer. Passbook printer: 28 lines, centerfold starts on line 14 and ends on line 17.
3614	08	8,16	Cash issuer.

6.2 INSTALLATION: Controller

These are the step-by-step instructions, in the preferred order, for installing a 3600 system. Controller and system installation instructions are given in detail in this chapter; refer to the appropriate terminal Maintenance Information Manual, Chapter 6, for detailed terminal installation instructions. For your convenience, a box is provided next to each step to allow you to check off completed steps.
The customer must have installed electrical and communications equipment, installed cables, and unpacked and placed terminals. If you observe that any of these steps have not been completed correctly, inform the customer, your branch office, and the responsible DP branch office.
If, during installation, you observe an error indication in a terminal or determine that a terminal is in need of repair or adjustment, refer to the error indication index
or to the repair and adjustment procedures in the terminal Maintenance Information manual For system error indications, refer to Chapter 1 MAPs.
Perform steps in 6.2.1 or 6.2.2 for your controller type.
6.2.1 Check Controller and Apply Power (3601) If the communication link to the computer is to be checked, have the customer tell the compute operator to vary this controller location (online) at this time.
\square 2. Remove the left cover on the 3601 (Figure 6-1). To remove, push the cover up from the bottom tilt out from the top, and lift up.
\square 3. Remove the diskette cover by opening with a key obtained from the customer, rotate it open and disengage
\square 4. Remove the 3601 front cover by unscrewing the two screws that hold it on (Figure 6-2). Go to step 10.
\square 5. Check the controller for damage and loose parts.
6. Check the seating of all cards and internal cable connectors.
\square 7. Remove the shipping block under the diskette assembly (between the diskette assembly and the lower shock mount). On the two-sided diskette drive, remove the plastic shipping clamps from the frame. loose parts.

Figure 6-1. 3601 Left Cover Removal

Figure 6-2. $\mathbf{3 6 0 1}$ Front Cover Holding Screws
\square 9. Using your CE volt-ohmmeter (VOM), check that the ac voltage at the customer's outlet, provided for the controller, equals the voltage hown on the controller voltage plate (Figure 6-3).

CAUTION: Before performing the next step, check that the power ON/OFF switch on the controller is in the OFF position.
$\square \quad$ 10. Insert the controller power plug in the customer's outlet.

dANGER

AC voltage is now present in the controller
$\square \quad$ 11. Go to step 13 of 6.2.3.
6.2.2 Check Controller and Apply Power (3602)

1. If the communication link to the computer is to be checked, have the customer tell the computer operator to vary this controller location (online) at this time.
\square 2. Swing open the front and rear covers by pulling slightly up and out.

Figure 6-3. Controller Voltage Plate
\square 3. Remove the left and right covers by pulling out at the bottom and unhooking the top.
\square 4. Move the three shock mount locking spacers and bolts from the lock position to the upper (storage) position (Figure 6-4).

- 5. Unlock the disk storage spindle, remove the drive motor locking bolt (Figure 6-4), and install the drive belt (smooth side to pulleys).

CAUTION: Observe the arrow by the spindle pully; do not urn the spindle counterclockwise
\square 6. Unlock the disk storage access assembly (Figure 6-4).
7. Check the controller for damage and loose parts.

- 8. Check the seating of all cards and internal cable connectors.
\square 9. Remove the shipping block under the diskette assembly (between the diskette assembly and the lower shock mount). Remove the two plastic shipping clamps (Figure 6-5) from the frame
\square 10. Check the diskette assembly for damage and loose parts.

11. Using your CE volt-ohmmeter (VOM), check that the ac voltage at the customer's outlet, provided for the controller, equals the voltage shown on the controller voltage plate (Figure 6-3).
CAUTION: Before performing the next step, check that the power ON/OFF switch on the controller is in the OFF
position.
12
Insert the contraller power plug in the customer's outlet.

DANGER
AC voltage is now present in the controller.

- Locking bolts are on the other side.

Figure 6-4. Disk Enclosure (DE)

Figure 6-5. Shipping Clamps

The following steps are used: (1) to install and test a small loop that is made up of the controller and the control operator's 3604 and (2) then to install the test other terminals, one at a time, until the mandatory local loop 1 is complete.
\square 13. Check the 3604 to be used as the control operator terminal (address 1 on loop 1 on the starter diskette) for damage.
Note: Remove the protective, transparent tape from the screen, if present.

- 14. Using your CE VOM, check that the ac voltage at the customer's outlet, provided for the 3604 equals the voltage shown on the 3604 voltage plate.

CAUTION: Before performing the next step, check that the power ON/OFF switch on the 3604 is in the OFF position.

- 15. Insert the $\mathbf{3 6 0 4}$ power plug in the customer's outlet.

DANGER

AC voltage is now present in the 3604.
16. Connect the loop cables to the 3604.
17. Set the 3604 address switches to 1 (switch 1 on), and the speed switches to the speed requested by the customer. If the customer is unavailable, set (Figure 6-6 and paragraph 6.1.5).
\square 18. Connect the loop cables for loop 1 to the controller.
\square 19. Refer to the chart on the end of the controller logic gate, and jumper the speed requested by the customer (if the customer is unavailable, leave the speed at the factory setting).

1 (Address Switches)

(Loop Spee

Figure 2-6. 3604 Switches
$\square \quad$ 20. Complete loop 1 by connecting the remaining connectors together. Insert the plug end into the jack end of the two cables that normally connect to each terminal on the loop.
Note: At this point, loop 1 is made up of the controller and the control operator's 3604 . To complete start-up faster using the starter diskette, jumper loop 2 at the controller.
\square 21. Turn power on at the controller. Observe that the diskette drive motor and fans are operating.
$\square \quad$ 22. Turn power on at the 3604 .
\square 23. Insert the starter diskette in the controller, and press the controller RESET key.
\square 24. Observe that a series of three-letter messages appears in the upper left corner of the 3604 display within a short time. The first of these messages is IDL (initial diagnostic load), and the last message is DTC (diagnostic test complete). Each message is displa for maises indicate the part of the start up tests that is operating. If one of these messages remains on the display, a start-up test error occurred. Refer to MAP 1 to resolve the problem.
.
25. If the automatic start-up tests are good, a message similar in format to the following message is displayed in the upper left corner of the 3604 display:
24 STRTR01 03/13/74 D4 00000 00001
The 5 -digit code, 00001, requests a 1 -digi answer to indicate the type of start that is needed.
Note: For step 25, be aware of component test requirements (see 6. 1.6). If there are gaps between the top and bottom of the displayed characters, define the 3604 at this time by entering " $6 X$ " where " X " is the model number of the 3604 which is to be used. Also be aware of the link requirements. See 1.1.1.
26. Enter the start. If the computer link is available, enter 1 for a cold start. If the computer link is enter for a cold star. Ir cold start with no Star Link sent. The display will then go blank.

Note: The location of the keyboard keys is as named by the Universal Translation Table (UTT) Refer to Figure 6-7 for the key locations for the different 3604 keyboards.

RE	BS	SP
7	8	9
4	5	6
1	2	3
0		3
A		
A	B	B
C	D	FR
E	F	$A V$
	00	$E M$

A. $30-\mathrm{Key}$ Keyboard

$\stackrel{\star}{\text { Legend: }}$
$\mathrm{BS}=$ backspace
$\mathrm{RE}=$ reser
$E M=$ end of message
$\begin{array}{ll}\mathrm{NK} & =\text { return to normal keyboard }=045 \\ \text { SP = space }\end{array}$
$\mathrm{SP}=$ space
$\mathrm{AV}=$ advanc
$\mathrm{AV}=$ advan
$\mathrm{FR}=$ free*

* Used only for large disk storage

c. 74-Key Keyboard

D. 77-Key Keyboard

E. 92-Key Keyboard

F. 94-Key Keyboard

G. 99-Key Keyboard

Figure 6-7. 3604 Universal Translation Table Key Locations
\square 27. Logon at the 3604 is automatic at reset with the starter diskette. A good logon is indicated by 92222 on the display. If (1) you are not using the starter diskette, or (2) if you log off this 3604 and wish to \log on this 3604 again, or (3) if you wish to log on any other 3604, proceed as follows:
a. Press
a. Press the RESET (RE) key three times (Figure 6-7).
b. Message 90000 should be displayed

Note: If 90000 is not displayed and the Note: If 90000 is not displayed and the
CHECK indicator lights, try to log on CHECK indicator lights, try to log on
again by pressing the RESET (RE) Key again by pressing the RESE
three times. If the CHECK indicator still lights, make sure that you are not already logged on at a 3604 , and then refer to the error indication index in the 3604 Maintenance Information.
c. Enter the starter diskette identification (ID) code (12345) at the 3604, using the 3604 UTT keyboard locations.
Note: The ID is not displayed.
d. Message 91111 should be displayed, indicating a good logon. If 91111 is not displayed, press the RESET (RE) key, and
enter the correct ID again.

If you want to log off, press the 0 key three times and the ENTER (EM) key once

- 28. If the $\mathbf{3 6 0 4}$ has the magnetic strip reader fea ture or the magnetic stripe encoder feature, test the feature as instructed in the 3604 Mainte nee Information manual

29. Install the remaining terminals on loop 1 , one at a time, using the starter diskette loop con figuration (refer to 6.1.6). (See terminal Maintenance Information manual for terminal installation instructions).
30. (3602 only) Verify the operation of the disk storage by running the diagnostic as described in section 1.114. Refer to Chapter 1 MAPs if any errors occur.

Notes
After testing each remaining terminal, turn its power off.
2. If you observe an error indication in a terminal or determine that a terminal is in need of repair or adjustment, refer to the error indication index or to the repair and adjustment procedures in the termihal Maintenance information manual. For system manual.

6.2.4 Install Additional Local Loops

31. Connect the loop ca on the controller.
32. Refer to the chart on the end of the controller ogic gate and jumper the speed requested by the customer lif the customer is unavailable, leave he speed at the factory setting).
$\square \quad$ 33. Connect the loop cables to one terminal on this loop.
33. Complete the loop by connecting the remaining cable connectors together. Insert the plug end into the jack end of the two cables that would attach to each terminal on the loop.
34. Name the loop and terminal per the instructions in 6.1.6.
35. Perform the installation instructions for the terminal. (See the terminal Maintenance Information manual.)

Note: After testing any terminal, turn its power off
37. Repeat steps 33,35 , and 36 for each terminal on the loop.

- 38. Repeat steps 35-38 for each local loop.

6.2.5 Install Remote Loops

if two locations are on one loop, it is necessary to apply power to all 3604 s or 3614 s with a teleprocessing interface and to connect the loop cables before starting to install the loops within each remote location.
39. Install the cables from the controller to the communications facilities. Normally the transmit level is factory set to 0 db . If the ransmit level must be adjusted, refer to the Chapter 1 procedures.
40. Name the loop and terminal per the procedur in 6.1.6. If the remote loop has a 3604 . log of the loop 13604 by pressing the 0 key three times and the enter (EM) key.
41. Complete the loop at the remote location bv connecting the loop cable connectors together, except the connectors that attach to the 3604 or the 3614 that contains the teleprocessing interface.
Install the 3604 or 3614 that contains the teleprocessing interface (see the 3604 or the 3614 Maintenance Information manual). Log on a 3604 at this location to name tests for the rest of the terminals at this location. See Figure 6-8 or World Trade cable connectors.

Communication Line End
Figure 6-8. World Trade Communication Cable
$\square \quad$ 43. Install the remaining terminals on the remote loop, one at a time

Note: After testing any terminal, turn its power off, except for terminals with a teleprocessing interface.

6.6 Complete the Installation

- 44. Connect the communication link cables. Normally, the transmit level is factory set to 0 db . If the transmit level must be adjusted, refer to the Chapter 1 procedures. For external modems, refer to section 3.11.3 to ground unused lines. Also, verify whether speed jumpering is required (3.9).

45. Perform a wrap test of the controller (issue a start-link command, command 041, and specify a wrappable modem if the modem may be automatically wrapped. An example is the 1200 -bps internal modem). Perform a wrap test of the ALA with command code 92 SY27-2520. SY27-2520.
46. Display the system log to make sure there are no hardware errors.47. Set up the address switches on all installed 6.1.5)
47. Replace all covers.
48. INSTALLATION IS NOW COMPLETE; turn the system over to the customer.
49. If a communication link to the computer is available, the customer should now test communications with the computer.

Note: In World Trade countries, if a communication link to the computer is available, this step should be done by the customer before step 49 .

Appendix A. List of Abbreviations

BCC	block check count	MAP	maintenance analysis procedure
BS	back space	MC	motor current (stepper motor)
		MI	maintenance information
CA	cancel	MVo	memory volume 0
COM	common	MV1	memory volume 1
CRC	cyclic redundancy check	M/D	modem
CUA	control unit address		
		NK	return to normal keyboard translate table
DTC	diagnostic test complete	N/C	normally closed
		N/O	normally open
E!A	Electronic Industries Association		
EM	enter	SCR	silicon controlled rectifier
ESA	extended storage addressing	SDLC	synchronous data link control
		SP	space
FRU	field-replaceable unit		
FSU	functional storage unit	TP	test point
		TSR	transistor switching regulator (power supply)
GEN	generation		
GL probe	General Logic Probe	UTT	Universal Translate Table
10	identification	VOLID	volume identification (diskette)
IDL	initial diagnostic load	Vom	volt-ohmmeter
		VTL	vendor transistor logic
LED	light emitter diode		

blank page

Appendix B. Glossary

Acknowiedgment to the American National Standards Institute
IBM is grateful to the American National Standards Institute (ANSI) for permission to reprint definitions from the American National Standard Vocabulary for Informa tion Processing (Copyright 1970 by American National Standards Institute, inc.), which was prepared by Subcommittee $\times 3 K 5$ on Terminology and Glossary of the glossary, a complete commentary taken from ANSI is identified by an asterisk (*) that appears between the term and the beginning of the commens between the nition taken from ANSI is identified by an asterisk after the item number for that definition.
access: The manner in which files on the disk storage and the diskette storage are referred to by the controller assign a test component: To enter a command at a 3604 keyboard to designate the terminal component that will be tested by subsequent keyboard commands. This assignment CE assigns a different test component, (2) the CE logs off, or (3) the controller is reset. See terminal component (3) assign an output printer: To enter a command at a 3604 keyboard that designates the printer (or display) that will be the output primer. (Addrional commands are entered to ment remains in effect until any of the following accurs: (1) the CE assigns a different output printer, (2) the CE logs off, or (3) the controller is reset.
axe circuit: A circuit that detects out-of-tolerance conditions in a suppiy voltage and turns off the power supply by causing a direct short circuit across the power supply output.
component: (1) In general, a part of a larger unit. (2) In connection with the 3600 system, a shortened name for terminal component. See terminal component.
configuration image: A combination of formatted config uration data with selected modules of controller data which, when loaded into controller storage, determines the operations of the controller. A configuration image is produced by her in 3600 and is later tranted to a controller.
data byte: See parameter data byte
*American National Standard definition
debug *To detect locate, and remove mistakes from a routine or maltunctions from a computer Synony a with troubleshoot
displacement: With reference to addressing a field in a segment of storage, the number of bytes that the first byte of the field is away from byte 1 of the segment.
dump: With reference to the 3600 controller, to copy a part of storage onto a diskette.
flag byte: See parameter flag byte
frame: (1) The basic fixed-format entity that is transmitted under SDLC procedures. Each frame is delimited by a unique sequence ($F L A G$) at its beginning and end. The frame format consists of a station address (8 bits), a control field (8 bits), an information field (variable in length), and block checking information. (2) For transmissions on terminal loops, see loop transmission frame.
hang: With reference to startup (reset) of the controller, a failure of the controller not only to complete the startup, but also a failure to establish any communication with the CE.
inquiry: A request from a terminal for information from storage.
log: In a 3600 controller, a temporary file on the diskette in which hardware error statistics are recorded and in which other operational data can be recorded, such as commands and messages from control operators.
logica' work station: The combination of a section of storage and a controller application program that the controller treats as a unit; terminals may be associated with the unit, and the unit may communicate with the host system. See also user work station.
loop transmission frame: A group of 16 message slots for terminals (plus a frame synchronization slot) transmitted around a loop as an entity.
operating diskette: A diskette containing the configuration image (and other data) relating to the operation of a particular controller. The operating diskette must be in the controller during its operations. A second diskette containing the same configuration image and data is sometimes referred to as a backup operating diskette.
parameter: (1) *A variable that is given a constant value for a specific purpose or process. (2) See parameter flag byte and parameter data byte.
parameter data byte: When setting up or changing the parameters of a terminal component, the data bytes give values to the various parameters. Se ε paraneter flag byte
parameter flag byte When setting up or changing the parameters of a terminal component that can operate with different groups of parameters, the flag byte specifies which group of parameters are being set up or changed by the connected parameter data bytes. See parameter data byte. permanent file (on a controller diskette): An optional file on a diskette that can be used to store data to be retained from one controller startup to another Permanent data might include such things as a customized image for a 3614 Consumer Transaction Facility, day-to-day totals, or checkpoint/restart data.
prompt: To help a terminal user by displaying messages hat request him to enter information necessary to continu an operation.
seat: To plug a logic card into its socket correctly, or to plug two cable connectors together correctly. Contrast with unseat.
seek: To position the read/write head of the disk drive at a specified location.
segment: In a 3600 controner, one of 16 portions into which the programmable storage related to an application program can be divided. The length of each segmen is specified by the user
segment header: In a 3600 controller, an 8 -byte field at the beginning of each segment. The segment header contains four 2-byte fields, as follows: primary field pointer, secondary field pointer, field-length indicator, and segmentlength indicator.
session: With reference to communications between the controller and the host system, the period of time during which a logical connection exists between a controller application program (which is serving terminals) and a host application program; thus, the period of time between the point at which a host application program recognizes a controller application program and agrees to exchange messages with it, and the point at which the host applica tion program breaks its connection with the controller application program
slot: A portion of a transmission frame that is sent around a loop. See loop transmission frame
starter diskette: A diskette used in a 3600 controller to initiate communication with the host computer and to prepare the controller for reception and recording of the configuration image. Just before the configuration image is to be sent to the controller, the starter diskette is removed and replaced by a formatted diskette on which has mage is actually written. After a configuration imag diskette. See also operating diskette
synchronous data IInk control (SDLC) A line-control discipline that allows efficient serial-by-bit synchronous sion link under central control. The data-transmission link may be customerowned, leased, or switched failites link may be customer-owned, leased, or switched facilities in a duplex, half-duplex, or loop configuration
system monitor: The portion of the configuration image in a controller that handles communications with control operators and records error statistics and other operationa
data.
temporary file (on a controller diskette): A file on a diskette that can be overwritten when it is no longer needed. Data in a temporary file is not retained from one controller startup to the next. Contrast with perma nent file.
erminal: A point in a communication network at which data can enter and leave. See also terminal component terminal component: A separately addressable part of a erminal. The component performs an input or an output unction, but usually not both,
rack: (1) *The portion of a moving storage medium, such as drum, tape, or disk, that is accessible to a given reading head position. (2) In the controller, the portion of the diskette that is accessible to a given position of the diskett rive read/write head. (3) In a 3600 system, to display the information entered at a 3604 keyboard on the display screen of the same 3604
transaction: (1) In a 3600 system, generally, an exchange between a terminal and another unit to effect a particular action or result. (2) More specifically, a single communicaion action involving an inquiry from a terminal that prouces a response containing desired information (such as request from a terminal for a customer's account balance or a more complex action in which data records must be changed (such as a request to update a customer's balanice with a new deposit)
unseat: With reference to logic cards on controller board $01 \mathrm{~A} 1,01 \mathrm{~A} 2$, and 01 B 1 , to open both levers (upper and wer) of a logic card holder. This action breaks the elec without without the necessity of removing the card from the socket. user work station: (1) A terminal or group of terminals, usually located near each other in a financial establishment, that are considered by one or two operators to be the ter minal or group of terminals at whicin they are to perform their transactions. (2) Logically related terminals that are associated with the same logical work station insid the controller. (3) See also logical work station
work station: See user work station and logical work

BLANK PAGE

Appendix C. Index

access arm actuator 3-9
address and speed switches on terminals 3.2
adjustments:
$\begin{array}{ll}\text { belt tracking } & 1-15 R \\ \text { drive and } \\ 1-52 R\end{array}$
$\begin{array}{lc} \\ \text { drive band } & 1-52 R \\ \text { drive belt } & 1-46 \mathrm{R}\end{array}$
drive belt $\quad 1-46 \mathrm{R}$
head carriage position 1-36R
head load solenoid/bail assembly 1-40R
lower limit stop 1-22R

motor brake	$1-70 \mathrm{R}$

photoransistor ${ }^{1-26 R}$
pressure pad actuator 1-17R
read/write head $1-20 \mathrm{R}^{2}$
read/Write head
speed sensing transducer $\quad 1.74 \mathrm{R}$
$\begin{array}{ll} \\ \text { stepper motor } & 1-24 \mathrm{R}\end{array}$
track indicator $1-14 \mathrm{R}$
transmit level for $600-\mathrm{bps}$ integrated modem 1-97R
$\begin{array}{ll}\text { transmit level for } 600-\mathrm{bps} \text { integrated modem } & 1-97 \mathrm{R} \\ \text { transmit level for } 1200-\mathrm{bps} \text { integrated modem } & 1-96 \mathrm{R}\end{array}$
upper limit stop $\quad 1-22 \mathrm{R}$
alignment LED/PTX $\quad 1-57 \mathrm{R}$
alternative line attachment 3-2
assigning a component as the output printer $\quad 1-8 \mathrm{R}$
assigning component to be tested $1-9 \mathrm{R}$
$\begin{array}{ll}\text { back panel connections } & 3-46 \\ \text { basic controller } & 3-2\end{array}$
basic installation procedures 6-1
cable and jumper assembly component parts 5-14
cable assembly selection 3-21
check controller and apply power 6-3
check receive level for 1200 -bps and 600 -bps integrated modems 1-100R
leaning head and pressure pad $\quad 1-20 \mathrm{R}$
commands given at keyboard (table) 3-6
ommunications between controller and control operator
or CE 3-4.
$\begin{array}{ll} & 3-36 \\ \\ & \\ \end{array}$
3-48
$\begin{array}{ll}\text { complete installation } & 6-6 \\ 3.9\end{array}$
component locations 3-8,4-1
controller/communication link external cables 3-32
ontroller and system installation instruction 6-1 6-1
controiler log 2-2
create disk function $\quad 3-28$
data recording $3-9$
DE brake assembly
diagnostic diskette 2-2
disk 3-9
disk diagnostic error codes 1-80R, 3-48
disk enclosure 3-9, 6-4
disk motor $3-9$
disk servo $3-9$
disk spindle $\quad 3-9$
disk storage $\quad 3-2,3-8$
disk storage card jumpers $1-76 \mathrm{R}$
$\begin{array}{ll}\text { disk storage diagnostic } & 1-80 \mathrm{R}, \mathrm{3}-47\end{array}$
disk storage locations 3-8
$\begin{array}{ll}\text { disk storage utility programs } & 3-49 \\ \text { disketren } & \\ 3-10 & 3-13,3-16\end{array}$
diskette AC drive
diskette AC drive components $\quad 3-13$
diskette drive assembly 3-10
diskette drive control card $3-10,3-13$
diskette drive control card pin assignment $\quad 1-29 \mathrm{R}, 1$ 1-60R
diskette EC levels 3-4
diskette EC levels 3-4
diskette head load actuator assembly $\quad 3-10$
$\begin{array}{lll}\text { diskette head load actuator assembly } & 3-10 \\ \text { diskette head load solenoid/bail } & 3-13\end{array}$
diskette motor and drive $\quad 3-10,3-13$
diskette stepper motor assembly $\quad 3-10,3-13$
diskette storage $\quad 3-2$
displayed messages $\quad 3-7$
displayed messages and status $\quad 2-2,3-7,3-48,3-49$
displayed status \quad 3-7
display/print controller $\log \quad 1-12 R$
display/print statistic counters 1-11R
entering MAPs 2-2
error-free startup (reset) 3
external modems $\quad 3-48$
external modem signal cable 1-95R
external modem wrap card $\quad 1-95 \mathrm{R}$
finance communications controllers 3-2,4-1 first status byte (Tabions controlle first status byte (Table 3-6)
3ix 3-9
2-1
functional storage 3-2
general description, diskette drive 3-10, 3-13
Glossary (Appendix B) B-1
host communication link 3-2
information that supports MAPs 2-2
install additional local loops 6-6
install mandatory local loop $1 \quad 6-5$
install remote loops 6,
installation 6-1
interconnect diagrams 3-17

Japanese wrap test cable 3-35
keyboard display terminals 3-4
keyed input commands 2-1,3-6
LED/PTX assembly 3-10, 3-13
List of Abbreviations (Appendix A) A-
List of Pages (Appendix D) D-1
local and remote loops 3-2
ogic boards, card and pin locations 4.6
ogic cards and boards 1-101R, 1-102R, 1-107R, 1-108R
procedures for CE 1-7R, 3-5, 3-6
oop control cards 3-46
100 error log message $\quad 1.12 \mathrm{R}$
maintenance aids 2-2
maintenance approach 2-1
manual logon/logoff procedures 3-5
manuals available 6-1
$\begin{array}{ll}\text { man format } & 2-2\end{array}$
modem compatibility $3-46$
motor, disk $\quad 3-9$
perating diskette \quad 1-5R, 3-4
perating sequence \quad 3-12,3-14
operator controls 3-4
parts catalog 5-1
power distribution wiring diagram 3-21
power supply voltages 3-45
preliminary instructions, installation 6-1
preparing the location 6-1
prompt mode message sequence $3-5$
PTX alignment $\quad 1-57 \mathrm{R}$
read/write circuit principles, diskette 3-12, 3-15
moval and replacemen
collet $1.13 \mathrm{R}, 1-33 \mathrm{R}$
cover assembly $1-13 \mathrm{R}, 1-33$
disk enclosure $1-64 \mathrm{R}, 1-66 \mathrm{R}$
disk mive 168
diskette drive assembly 1-12R, 1-32R
iskette drive control card 1-30R, 1-61R
drive band $\quad 1-54 \mathrm{R}$
drive motor $\quad 1-15 \mathrm{R}, 1-46 \mathrm{R}$
drive pulley $\quad 1-16 R, 1-46 R$
head carriage assembly $\quad 1-38 \mathrm{R}$
head load solenoid/bail assembly $1-44 \mathrm{R}$
head load solenoid/bail assemb
$\begin{array}{ll}\text { hub assembly } & 1-16 \mathrm{R} \\ \text { idler assembly } & 1-46 \mathrm{R}\end{array}$
latch assembly 1-13R, 1-33R
leadscrew and head carriage assembly 1-18R leadscrew wheel 1-21R
light emitting diode (LED) 1-28R, 1-58R
logic board 1-101R
motor brake assembly $1-72 \mathrm{R}$
phototransistor 1-26R
$\begin{array}{ll}\text { power supply } \\ \text { PTX } & 1-101 \mathrm{R}\end{array}$
PTX 1-58R
pulley/clamp 1-50R
stepper drive idler assembly $\quad 1-56 \mathrm{R}$
stepper motor $\quad 1.24$
wiper $\quad 1-50 \mathrm{R}$
service check
anti-static brush $\quad 1-74 \mathrm{R}$
$\begin{array}{ll}\text { drive band } & 1-52 \mathrm{R} \\ \text { drive belt } & 1.46 \mathrm{R}\end{array}$
$\begin{array}{lll}\text { drive belt } & 1-46 R \\ \text { head/carriage position } & 1-36 R\end{array}$
head/carriage position
head load solenoid/bail assembly
1.40R $\begin{array}{lcc}\text { head load solenoid/bail assembly } & \text { 1-40R } \\ \text { light emitting diode (LED) } & 1-28 \mathrm{R} & 1-57 \mathrm{R}\end{array}$ light emitting diode (LED)
motor brake $\quad 1-70 \mathrm{R}$ phototransistor $\quad 1-26 \mathrm{R}$
PTX amplifier $\quad 1-57 \mathrm{R}$
speed-sensing transducer 1-74R
servo 3-9
setting loop speed and terminal address 3-2, 6-2
special tools 2-2, 6-1
starter diskette $\quad 1-5,2-2,3-4,3-6$
startup errors 3 -5
startup (reset) 1.5R
startup (reset) diagnostic messages
startup (reset) errors 3-5
startup (reset) sequence 3-4
statistic counters 2-2,
test points
diskette drive control card $\quad 1-30 \mathrm{R}, 1$-61R
index 1-63R
supply voltage 1.95 R
test component $\quad 1-9 \mathrm{R}, 3-6$
universal translate table keyboard layout
$\begin{aligned} & \text { use of starter diskette } \\ & \text { use of MAPs }\end{aligned} 2-2$
3600 Finance Communications System 3-2

Appendix D. List of Pages

Page	EC	REA	Form Number
Title Page Preface MAP 01 $1-1$ $1-2$ $1-3$ MAP $2-1$ $2-2$ $2-3$ $2-4$ $2-5$ $2-6$ $2-7$ $2-8$ $2-9$ $2-10$ $2-11$ MAP 3-1 3-3 MAP 4-1 $4-2$ $4-3$ MAP 5-1 5-2 5-3 MAP 6-1 6-2 6-3 6-4 MAP 7.1 7-3 MAP 8-1 8-3 8-4 MAP 9-1 $9-2$ $9-3$ MAP 10-1 10-2 $10-3$ $10-4$ MAP 11-1			SY27-2519-0 TNL SN31-0864 TNL SN31-0864 SY27-2519-0 SY27-2519-0 TNL SN31-0864 TNL SN31-0864 SY27-2519-0

Page	EC	REA	Form Number
MAP 12-1	745948		SY27-2519-0
12-2	745949		TNL SN31-0864
12.3	745948		SY27-2519-0
12.4			
MAP 13-1			
MAP 14-1			
14-2			
14-3			
MAP 15-1			
MAP 16-1			
16-2			
16-3			
16-4			
MAP 17-1			
17-2			
17.3			
17.4			
1-1R			
1-2R			
1-3R			\downarrow
1-4R	745948		SY27-2519-0
1-5R	745949		TNL SN31-0864
1-6R	745948		SY27-2519-0
1-7R	4		4
1-8R			
1-9R			
1-10R			
1-11R			
1-12R			
1-13R			
1-14R			
1-15R			
1-16R			
1-17R			
1-18R			
1-19R			
1-20R			
1-21R			
1-22R			
1-23R			
1-24R			
1-25R			
1-26R			
1-27R			
1-28R			
1-29R	\downarrow		
1-30R	745948		SY27-2519-0

Page	EC	REA	Form Number
1-31R	$\begin{gathered} 745948 \\ 4 \end{gathered}$		SY27-2519-0 4
1-32R			
1-33R			
1-34R			
1-35R			
1-36R			
1-37R			
1-38R			
1-39R			
1-40R			
1-41R			
1-42R			
1-43R			
1-44R			
1-45R			
1-46R			
1-47R			
1-48R			
1-49R			
1-50R			
1-51R			
1-52R			
1-53R			
1-54R			
1-55R			
1-56R			
1-57R			
1-58R			
1-59R			
1-60R	745948		SY27-2519-0
1-61R	745949		TNL SN31.0864
1-62R	745948		SY27-2519-0
1-63R	4		4
1-64R			\downarrow
1-65R	745948		SY27-2519-0
1-66R	745949		TNL SN31-0864
1-67R	745948		SY27-2519-0
1-68R	$\stackrel{1}{4}$		\uparrow
1-69R			
1-70R			
1-71R			
1-72R			
1.73R			
1-74R			
1-75R	\downarrow		\downarrow
1-76R	745948		SY27-2519-0
1-77R	745949		TNL SN31-0864
1-78R	745948		SY27-2519-0
1-79R	745948		SY27-2519-0

Page	EC	REA	Form Number
1-80R	745948		SY27-2519-0
1-81R	745949		TNL SN31-0864
1-82R	745948		SY27-2519-0
1-83R			
1-84R			
1-85R			
1-86R			
1-87R			
1-88R			
1-89R			
1-90R			
1-91R			
1-92R			
1-93R	\checkmark		-
1-94R	745948		SY27-2519.0
1-95R	745949		TNL SN31-0864
1-96R	745948		SY27-2519-0
1-97R			\uparrow
1-98R			
1-99R			
1-100R	745948		SY27-2519-0
1-101R	745949		TNL SN31-0864
1-102R			4
1-103R			
1-104R			
1-105R			
1-106R	\dagger		\dagger
1-107R	745949		TNL SN31-0864
1-108R	745948		SY27-2519-0
1-109R	745949		TNL SN31-0864
1-110R	745948		SY27-2519-0
1-111R			,
1-112R			
2-1	\downarrow		\downarrow
2-2	745948		SY27-2519-0
2.3	745949		TNL SN31-0864
2.4	745948		SY27-2519-0
3-1	745949		TNL SN31-0864
3-2	745948		SY27-2519-0
3.3	\uparrow		4
3-4			
3-5			
3-6			
3-7			
3-8			
3.9			
3-10			
3-11	\checkmark		-
3-12	745948		SY27-2519-0

Appendix D. List of Pages (Cont)

Page	EC	REA	Form Number
3.13	745948		SY27-2519-0
3.14	\uparrow		4
3-15	\downarrow		\downarrow
3-16	745948		SY27-2519-0
3-17	745949		TNL SN31-0864
3-18	745949		TNL SN31-0864
3-19	745949		TNL SN31-0864
3-20	745948		SY27-2519-0
3-21			4
3-22			.
3-23	745948		SY27-2519-0
3.24	745949		TNL SN31-0864
3.25	745949		TNL SN31-0864
3.26	745949		TNL SN31-0864
3-27	745949		TNL SN31-0864
3-28	745948		SY27-2519-0
3-29	745949		TNL SN31-0864
3.30	745949		TNL SN31-0864
3.31	745949		TNL SN31-0864
3-32	745948		SY27-2519-0
3.33	4		-
3-34			
3-35			
3-36	,		\cdots
3-37	745948		SY27-2519-0
3-38	745949		TNL SN31-0864
3-39	745949		TNL SN31-0864
3-40	745949		TNL SN31-0864
3-41	745948		SY27-2519-0
3-42	745948		SY27-2519-0
3-43	745948		SY27-2519-0
3-44	745949		TNL SN31-0864
$3-45$. 1
3-46			
3-47	1		\downarrow
3-48	745949		TNL SN31-0864
3-49	745948		SY27-2519-0
3-50	\uparrow		4
4.1	\downarrow		7
4-2	745948		SY27-2519-0
4-3	745949		TNL SN31-0864
4.4	745949		TNL SN31-0864
4.5	745949		TNL SN31-0864
4.6	745948		SY27-2519-0
5.1	1	.	4
5-2			
6-1			
6-2			
6-3	745948		SY27-2519-0

G		3602 Power		
PAGE 2 OF 4 010 Go to Step 012, Entry Point D.		PAGE 2 OF 4		
011 *				
Turn off power.				

- Replug all voltage connectors on board 01A1, including 01A1Z3.
- Unplug all voltage connectors on board 01B2.
- Turn on power.

Are all voltages within limits?
$\boldsymbol{Y} N$
012
(Entry Point D)

- Replug all voltage connectors on board 01A1, including 01A1Z3 and/or 01 B2.
- Unplug the voltage connector on power supply TSR 1 (3-8).
- Turn on power.

Are all voltages within limits?
Y^{N}
013

CAUTION

Turn off power.

- Unplug all voltage connectors on boards 01B1, $01 \mathrm{B2}, 01 \mathrm{~A} 1,01 \mathrm{~A} 2$.
- Unplug the special voltage cables at 01B1Y4, 01A1Z3, and 01A2Z3. (Slip-on connectors A2D07, V2D07 on later machines).
- Unplug the cable from 01B1Z3 at the diskette drive control card, including the ground wire.
- Disconnect the ground strap at 01A1TB1 (3-8).
- Measure the resistance between the dc return, various voltage leads, and frame ground. Refer to Figure 3-8.
Are there any short circuits?
$\boldsymbol{Y} N$
014

CAUTION

Turn off power.

- Replace power supply TSR 3.
- Replug all connectors and ground straps.
- Turn on power.

Are all voltages within limits?
$\boldsymbol{Y} \mathbf{N}$
015

- Call for aid.

016

- Verify fix.

- Repair or replace cable, or cause of short. - Verify fix.

018

- Replace power supply TSR 1.
- Verify fix.

019

CAUTION

Turn off power.

- Replug all board 01B2 voltage connectors.
- Unseat all cards on board 01B2.
- Turn on power.

Are all voltages now within limits?
$Y \mathrm{~N}$
020

- Replace board 01B2.
- Verify fix.

021

CAUTION

Turn off power when reseating a card.

- Reseat a few cards at a time on board 01B2 to find problem card.
- Replace problem card and reseat others.
- Verify fix.

022

CAUTION

Turn off power.

- Replug all board 01A1 voltage connectors.
- Unseat all cards on board 01A1.
- Turn on power.

Are all voltages now within limits?
Y N
023

- Replace board 01A1.
- Verify fix.

024
CAUTION
Turn off power when reseating a card.

- Reseat a few cards at a time on board 01A1 to find problem card.
- Replace problem card and reseat others.
- Verify fix.

Chapter 1. Maintenance Analysis Procedures (MAPs)

PAGE 1 OF 1
3600 CONTROLLER
MAINTENANCE ANALYSIS PROCECURES (MAPS)

CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations.

Contents

MAP Title
1 Error Indication Index
2 Check for Error Indications
3 Local Loop Problem
4 1200-bps Remote Loop Problem, Internal Modem

- 5

6 Host Communication Link Problem
7 Alternative Line Attachment
8 Diskette Drive Assembly Not Ready
9 Diskette Drive Assembly Seek Error
10 Diskette Drive Assembly Data Check
11 Disk Storage - System Hang
12 Disk Storage - Operational Faiiure
13 Easic Controlier Problem
14 Minimum Configuration Method of Fault Isolation
15 Power
163601 Power
173602 Fover

Error Indication Index

PAGE 1 OF 3
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

Error Indication	Go to MAP
Controller Log Messages;	
11001 * 900×1 XXXX ${ }^{\text {At }}$	12
11005 Loop X Error Code Y Z	3,4,5
11006	6
11007 XX--XX	12
11008	7
Displayed Messages:	
82000, 82001, 82031-82037, 82070, 82071	2
82074, 82075	2
82080, 82090, 82093, 82094	9
82092	3
90002, 90012, 90014	10
82010, 82020	10
82030	2
90027, 90028	12
Diskette Statistic Counters	
1	8
7	9
2, 3, 4, 5, 6, 8	10
9	No action needed
Miscellaneous:	
Nothing displayed at startup time	2
Diskette not turning	8
Diskette seek error	9
Diskette data check or write error	10
All terminals on one local loop failing,	
READY lights off or flashing	3
All terminals on one remote 1200 bps loop	
failing, READY light off or flashing	4
All terminals on one remote external modem loop failing, READY lights off	
or flashing	
Loop statistic counters	3,4,5
Host communication link problem	
Link statistic counters	6
No reported symptom, or symptom reported does not definitely lead to one MAP	2
Startup error occurs only on 1 or 2 start	2
Power	14

Error Indication Index

PAGE 2 OF 3

| Error Indication | Go to MAP |
| :--- | :--- | :--- |
| Startup diagnostic message sequence stops | |
| At: | |
| MVX XXX | |
| LSW, LDI | |
| INS | |
| IDL, IRT, HSH | |
| LDC, PCK, ESA, INV, ROS, LEC | 2 |
| DTC | |

MAPs and possible FRUs
Suggestion:
For intermittent problems, refer to
the possible FRU list for the indicated MAP.

NOTE: As you become familiar with the system you may choose to enter the MAPs at any point based upon your observation, the customer's description of the trouble, and your experience. If, however, you do not correct a problem on your first pass through the MAPs, you should use MAP 2. This will make sure that you observe error indications which you may not have observed, or which you believed to be not connected with the problem.

Error Indication Index

PAGE 3 OF 3

MAP	FRUS
2	This MAP is for use when problem is not defined. Therefore, it is not reasonable to list possible FRUs
3	Loop CTRL card
4	Loop CTRL card M/D Rcvr/Xmit card
5	Loop CTRL card EIA/PTT card
6	CA card (with or without clocking) M/D Xmit card (Host 15) M/D Revr card (Host 15) M/D Wrap card (Host 15) EIA card (Host 15) 38LS EIA card (Host 15) 38LS M/D card (Host 15)
7	CA card (with or without clocking) M/D Xmit card (ALA XX) M/D Revr card (ALA XX) M/D wrap card (ALA XX) EIA card (ALA XX) 38LS M/D card (ALA XX) 38LS EIA card (ALA XX)
$\begin{aligned} & 8 \\ & 9 \\ & 9 \\ & \text { or } \\ & 10 \end{aligned}$	Diskette drive control card Diskette adapter card Phototransistor Light emitter diode Diskette drive mechanical and electromechanical parts
10	All cards on basic controller board
11-12	DE unit parts
13	CTLR 1 card CTLR 2 card CTLR 3 card FSU 1 Vol. 0 card ESA 1 card ESA 2 card
14	All cards
15-19	Power: Circuit breaker Fuse Power switch Power supplies

Check for Error

Indications

PAGE 1 OF 11

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
1	A	1	001
13	F	5	027

EXIT POINTS

EXIT THIS MAP		T0	
PAGE NUMBER	STEP NUMBER	MAP NUMBER	$\begin{aligned} & \text { ENTRY } \\ & \text { POINT } \end{aligned}$
11	114	10	A
11	109	10	A
9	073	10	A
8	057	10	A
8	048	10	A
9	063	11	A
10	097	12	A
10	096	12	A
10	090	12	A
3	009	14	A
5	026	14	A
9	060	14	A
8	058	14	A
8	055	$\stackrel{1}{1}$	A
8	051	14	
2	004	15	F_{0}
10	104	3	A
7	042	3	A
10	103	4	A
10	102	5	A
11	113	6	A
11	112	7	A
10	094	7	A
11	115	8	A
11	111	8	A
9	075	8	A
6	030	8	A
11	110	9	A
9	074	9	A

001

CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Prosedures or the board charts located in later machines for losations.

(Entry Point A)

- Check for loose cards and cables. Be sure to check all small cards and cable connectors.
- Insure that fan/s are running. (Power distribution diagrams)
- For a failure that occurs when the controller FAESET switch is activated but does not occur when the controller power switch is activated, refer to Power (Step 001 continues)

Check for Error Indications

PAGE 2 OF 11
(Step 001 continued) distribution diagrams.
Is the controller power indicator on?
$Y \mathrm{~N}$
002
Is the controller power cord plugged in and power switch turned on?
\boldsymbol{Y}

003

Plug cord in and/or turn on power.

- Verify fix.

004
Go To Map 15, Entry Point A.
005

- Open the outside front cover.

Is there a diskette rotation problem that you can readily observe?
$Y \mathrm{~N}$
006

- Attempt to \log on (1.2) at a 3604. If unsuccessful, try others.
Is logon successful?
Y
007
Go to Page 4, Step 017, Entry Point D.
008
(Entry Point B)
- If a functioning printer is available, key the command that assigns it to be the output printer.
006 XXXX Y Assign printer XXXX, side Y, as output printer. See procedures (1.4) for more detail.
- Now, key the command to print statistic counters for all components. If no printer is available, key the command to display statistic counters of one component at a time. On your first pass through this MAP, display only those associated with the customer complaint.
012 Y (Print statistic counters for all components, where $Y=$ total number of loops attached to controller.) 010 LSSD (Print statistic counters for component specified by LSSD.) See procedures (1.5) for more detail.
Does the system print or display the statistic counters?
coun
Y^{N}

1
$\begin{array}{ll}3 & 3 \\ B & C\end{array}$

* ${ }^{*}$

Refer to IBM $\mathbf{3 6 0 0}$ System, FE Maintenance Information Manual, SY27-2520 for the meaning of the statistic counters and the log messages. The READY lights of all powered terminals should be on solid. A loop problem is indicated if any of these lights are off or flashing.

- If the data directs you to a Map in this manual go to that MAP.
- If the data indicates that a terminal is failing, go to the Maintenance Information manual for that terminal. - Otherwise return to Entry Point C of this MAP.

$3 \quad$ Check for Error Indications

PAGE 4 OF 11

015

Does the data indicate a disk storage problem? N

016

- If your machine has disk storage, key in the commands to run the disk storage tests (command codes 091,2,3).
Do these tests fail?
$\mathbf{Y} \mathbf{N}$
017
(Entry Point D)
Has backup operating diskette been tried?
$\boldsymbol{Y} N$
018
- Remove original diskette.
- Load backup operating diskette.
- Press controller RESET switch to startup.

Is startup good (1.1.3)?
Y N
019
Go to Step 021, Entry Point E.
020
The original diskette was the problem, or the problem no longer exists.

- Request customer to verify fix.
- Verify fix.

021
(Entry Point E)
Turn off power.

- Remove the diskette that is in the controller.
- Load the Starter Diskette. *B*
- Manually move Read/Write Head upward (away from track 0) by at least four tracks. ${ }^{*}$ C".
- Turn power on (reset).

Is startup good (1.1.3)?
Y N
022

CAUTION

Turn off power.

- Unseat the redrive card, if present.
- Lock the DE access arm, if present (3.4.1).
- Turn on power.

Is startup good (1.1.3)?
$Y \mathbf{N}$

11
0
K
995
0
9
N
B
For starter diskette information, refer to 3.3.3. If the starter diskette does not operate correctly, try the backup starter diskette, if available.

* ${ }^{\text {C }}$

Moving head away from track 0 enables you to see head step from track to track as it seeks track 0 during startup.

CAUTION

Turn off power.

- Reseat the redrive card, if present.
- Unlock the DE access arm, if present (3.4.1).

Did the diagnostic message sequence get started (IDL displayed)?
Y^{N}
024
Did the ready light of the 3604 at address 1 on loop 1 flash on and off during the startup attempt?
$Y \mathrm{~N}$
025
Did the diskette drive seek (head assembly move to track 0 of the diskette)?
Y N
026
Go To Map 14, Entry Point A.
027
(Entry Point F)
The problem appears to be a failure to communicate with the 3604 at address 1 on loop 1. The method of isolating the problem depends on your configuration. The following isolation methods are recommended. They are not necessarily connected with each other, nor are they in any order.

- Check that the 3604 address and speed switches are set correctly.*D*
- Turn off power at other terminals on loop 1. Another terminal may be causing loop to fail.
- Change the cabling, if necessary, so that the 3604 at address 1 on loop 1 is physically the first terminal on the loop. Another terminal may be causing the loop to fail.
- Observe READY indicators at other terminals to determine if failure is in controller or 3604. If any of these indicators flash ON and OFF, problem is in 3604.
- Check the continuity from the controller board to the terminal address card in the 3604."E*
- Check the speed jumper for the loop 1 control card for correct setting and continuity. ${ }^{*} \mathrm{~F}^{*}$
- Change the loop 1 control card in the controller. CAUTION
Turn off power whenever you change a card.
- If the above checks do not result in problem identification, the problem is most likely a 3604 problem. Refer to the 3604 Maintenance Information manual.
D
The address switches are Switch Group 1. For address 1, switch 1 should be ON. Switches 2, 3, and 4 should be OFF.
The speed switches are Switch Group 2. One switch should be turned on, as follows.

should be turned on, as follows Switch	Speed (bps)
-1	600
2	1200
3	2400
4	4800

Refer to Figure 3-6 for internal loop 1 cabling from board to the controller cable panel. Refer to the 3604 Maintenance Information manual for wiring internal to the 3604.
${ }^{*}$ F*
For all loop cards, the speed is selected by jumpering as follows:

X
$\left.\right|_{036}$
Did diagnostic message sequence terminate in HSH?
Y N
037
(Entry Point H)
Did operation terminate with INS, 82000, 82001,
82030-82037, 82070, 82071, 82074, or 82075
displayed?
$Y \mathrm{~N}$
038
Did the startup message sequence terminate
with 82092 displayed?
Y N
039
Were any other $82 \times X X$ or $9 X X X X$ error messages displayed?
$Y \mathrm{~N}$
040
You have reached this point possibly for one of the reasons given below (and possibly under the condition that the startup message sequence terminated in DTC). Check these possibilities now. If problem is not corrected, return to beginning of this map and/or call for aid.

- Check speed jumpers for all loop cards. See chart on end of gate.
- The startup message appeared on a 3604 that you did not observe. Unseat the loop cards in the controller for all loops other than loop 1, if you wish to remove the requirement of looking at 3604 s on other loops.
- If this failure occurs only on a ' 1 ' or a ' 2 ' start (3.3.2), change the HOST CA card.
- Loop 1 is failing. Check speed jumper for loop 1 for continuity, and change the loop 1 control card.
Check continuity of internal cabling for loop 1 (Figure 3-6). Also, check continuity of external cabling for loop 1, or try substitute cabling.
- A diskette signal failed. Change diskette card.
- You may not have followed MAP correctly.
- The problem no longer exists.

```
Z A A A
6
Check for Error Indications
PAGE 7 OF 11
0 4 1
    Refer to the IBM 3600' System, FE Maintenance
    Informatioal Manual, SY27-2520 for meaning of
    the message. Then reenter controller MAPs or go
    to the MAPs for correct terminal.
042
Go To Map 3, Entry Point A.
```

043
These messages are usually caused by a configuration image error or by a storage card not being seated correctly (J. To, identify configuration image errors, use the starter diskette (Ref. 3.3.3).

CAUTION

Turn off power.

- If this failure occurs only on a ' 1 ' or '2' start (3.3.2), change the HOST CA card.
- If this failure occurs only on the customers diskette, use the starter diskette to start any optional loops (command code 040) to determine if there is a loop problem. If yes, refer to the appropriate loop MAP.
- Reseat all memory cards (Some of these cards are optional.)
Turn on power.

Is operation good (1.1.3)? J

CAUTION

Turn off power.

- One at a time, change all of the FSU memory cards and adapter cards (loop, diskette, etc.).
- Remember to returr. the original card each time a card does not correct problem.
Does any card change result in good operation?
$Y N$

(J)

- When the startup diagnostic routine finds an error in functional storage, the displayed diagnostic message sequence terminates with MVX N , where N identifies an 8 K block of memory, if the error is not at the first address on that block.
- When the diagnostic routine finds an error at the first address of an 8 K block, it assumes that card location is not included in this specific storage configuration, and temporarily displays MVX with the card identifier. MVX 0 indicates that there are no cards in this volume.
- Press RESET to startup and view the temporary messages again.
- If there is a card in the location given by a temporary MVX message, then the possible corrective actions are: change the card, check the supply voltages at the card sockets (see 3.10) and inspect socket pins.

Displayed	Displayed Message		OR
Message			

TNL SN31-0864

CAUTION

Turn off power.

- One at a time change the following cards:

ESA 1 Vol. 1.
FSU 1 Vol
ESA 2
CTLR 1
CTLR 2
CTLR 3
FSU 1 Vol. 0
Turn on power after each card change.

- Remember to return original card each time a card change does not correct the problem.
Does any card change result in a good startup(1.1.3)?
Y N
055
Go To Map 14, Entry Point A.
056
- Verify fix.

057
Diskette Data Check,
Go To Map 10, Entry Point A.
058
Go To Map 14, Entry Point A.
059

CAUTION

Turn off power.

- Change the identified storage card/cards.

D'isplayed Message.	Displayed OR Message	8K B lock
MVX H/P	MVX	FSU
MVX G/Q	MVX 2	FSU
MVX F/R	MVX 3	FSU
MVX E/S	MVX 4	FSU
MVX D/T	MVX 5	FSU
MVX C/U	MVX 6	FSU
MVX B/V	MVX 7	FSU
MVX A/W	MVX 8	FSU
MVX MAX	MVX MAX	
**All volume tested ok. NOTE: If there is no card in the identified location, or if all tested good, go to MAP 14 Entry Point A. (Step 059 continues)		

Local Loop Problem

PAGE 1 OF 4

ENTRY POINTS

FROM	ENTER THIS MAP		
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
2	A	1	001

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

(Entry Point A)

NOTE: In your first pass through this MAP, 'bypass' a suspect terminal by turning off its power switch. In your second pass, 'bypass' a suspect terminal by disconnecting its cables and plugging the cable connectors together.
(Entry Point B)
-Verify that the jumper *A* for the loop control card and the speed switches "B* of each terminal on the problem loop are all set for the same speed. The customer will provide you with the information required to locate all the terminals on a loop.

- If only loop 7 or 8 is failing, replace the redrive card first.
- Use the starter diskette to ensure that the loop should be running (Command code 040).
Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations.

Are any READY lights flashing on the problem loop?

 Y N002
No READY lights are flashing.

- Bypass the first terminal on loop.

Is problem corrected,
$Y \mathrm{~N}$
003

CAUTION

Turn off power.

- Change loop control card.
-Turn on power (Reset).
is problem corrected?
$\boldsymbol{Y} \mathrm{N}$
$\begin{array}{llll}2 & 2 & 2 & 2 \\ A & B & C\end{array}$

A

For each loop control card, the speed is selected by jumpering as follows:

B
At each terminal the speed is selected by switches (Switch Group 2) that are labeled 1,2,3, and4. To select a speed, set the appropiate switch to the ON position as follows:

004

CAUTION

Turn off power.

- Return original loop control card.
-Check the cable from the controller to the first terminal on the loop. (If available, try a substitute cable).
Is cable good?
\mathbf{N}
005
External cables are customer responsibility. Inform customer of problem.
- Verify fix.

006

- Check the internal cable between logic board and the cable panel for continuity and no shorts. See figure 3-6
- If working on loop 4 or higher check the cables from the basic controller board Z1 and Z2 to the adapter board Y 4 and Y 5 , for continuity and no shorts. Cables are wired point tc point with B08, B13, D02, and D08 common.

Are cables good?

$\boldsymbol{Y} \mathrm{N}$
007

- Repair or replace the bad cable.
- Verify fix.

008
Is this your first pass through the MAP?
N
009
Go to Page 3, Step 034, Entry Point D.
010
Go to Page 1, Step 001, Entry Point B.
011

- Verity fix.

012
Problem is with a bypassed terminal.

- Gg to the Maintenance Information manual for that terminal.

Also,

Go to Page 3, Step 034, Entry Point D.

A
1

013
Are all READY lights flashing on this loop?
Y N
014
Some, but not all, READY lights are flashing.

- Bypass the last terminal on which the READY light is flashing.
Do the READY lights of the remaining terminals on the loop turn on solid?
Y N
015
- Bypass the first terminal on which the READY light is off.
Do the READY lights of the remaining terminals on the loop turn on solid?
Y N
016
-Check the cable between the last terminal on which the READY light is flashing and the first terminal on which the ready light is off. (if available, try a substitute cable.)
Is cable good?
Y N
017
External cables are customers responsibility. Inform customer of the problem.
- Verify fix.

018
Is this your first pass through this MAP?
Y N
019
Go to Page 3, Step 034, Entry Point D.
020
Go to Page 1, Step 001, Entry Point B.
021
Problem is with bypassed termiras:
-Go to Maintenance Information manusal for that terminal.
Also,
Gc to Page 3, Step 034, Enery Point 0.
022
Problem is with bypassed terminas

- Go to Maintenance Information manuel for that terminal.
Also,
Go to Page 3, Step 034, Entry Point D.

Focal Loop Problem
3
PAGE 4 OF 4
O39
Problem is with the bypassed terminal. Go to the
Maintenance Information manual for that terminal.
Also,
Go to Page 3, Step 034, Entry Point D.

1200 bps Remote Loop Problem

Internal Modem
PAGE 1 OF 3

ENTRY POINTS

FROM	ENTER		THIS MAP
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
2	A	1	001

EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
2	009	15	A
2	019	15	A
3	027	15	A

001

CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

(Entry Point A)

- For the loop in error, verify that it is jumpered for 1200 bps, remote operation, and that its modem cards are 1200 bps cards. See the chart on the end of the gate. *A* If you wish to verify that you are receiving a signal, refer to 1.125 .
- Log on (1.2) if you are not already logged on.
- Key in start loop message, 0400.
- Display/print controller log (1.6) if you have not already done so, and analyze the loop error message (1.7).
- If only loop 7 or $\mathbf{8}$ is failing, replace the redrive card first.
- If the loop is reported failing but there is no error log message, change the loop control card and the M/D Rcvr/Xmit card, one at a time, to try to correct the problem. Also, use the starter diskette to ensure that the loop should be running (command code 040).

Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations. Is code $Y=0$?

002
 Is code $Y=2$ or 4?

$\begin{array}{lll}3 & 2 & 2 \\ A & B & C\end{array}$
A
For transmit level check, refer to 1.123 .
006
Check the cable from the basic controller board $\mathrm{Z4}$ to
the adapter board Y2 for continuity and no shorts.
The cable is wired point to point with B07, B13, D02,
and D08 common.
Is cable good?
Y N
007
- Repair or replace cable.
- Verify fix.
008
(Entry Point B)
- Measure the voltages with reference to ground
(D08) on the M/D Rcvr/Xmit card and the loop
card. See 3.10
Are all supply voltages within limits,
Y N
009
Go To Map 15, Entry Point A.
010
- Call for aid.
011

- Verify fix.
$1 \quad 1200$ bps Remote Loop Problem Internal Modem

PAGE 2 OF 3

Code $Y=1$ (modem check).
CAUTION
Turn off power.

- One at a time, in order indicated, change the following: M/D Rcvr/Xmit card.
Loop control card.
- After each card change: turn on controller power, log on (1.2) and display the controller log (key in 001) to determine if the problem is corrected.
NOTE: Return original card each time a card change does not correct problem.
Does any card change correct problem?

```
Y N
```

Y N
004
004
Is this loop 2 or 3.
Is this loop 2 or 3.
Y N
Y N
005
005
Go to Step 008, Entry Point B.

```
            Go to Step 008, Entry Point B.
```

012
Code $\mathrm{Y}=2$ or 4.

CAUTION

Turn off power.

- Change loop control card.
- Turn on power, log on (1.2), and display the controller \log (key in 001) to determine if problem is corrected.

Is problem corrected?

Y N
013

CAUTION

Turn off power.

- Return the original loop control card.
- Change the M/D Rcvr/Xmit card. "A*
- Turn on power, log on (1.2), and display the controller log (key in 001) to determine if problem is corrected.

Is problem corrected?

$Y \mathrm{~N}$
014
Is this loop \#4 or higher?
Y N
015
Go to Step 018, Entry Point C.
016
Check the cables from the basic controller board Z 1 and Z 2 to the adapter board Y 4 and Y 5 , for continuity and no shorts. Cables are wired point to point with B07, B13, D02, and D08 common.
Are the cables good?
Y N
017

- Repair or replace cable.
- Verify fix.

018
(Entry Point C)
Turn off power.

- Return original M/D Rcvr/Xmit card.

Turn on power.

- On the loop control card and modem card, measure the voltages with reference to ground. See 3.10
Are these voltages within limits,
γ^{N}
019
Go To Map 15, Entry Point A.

ADEF
1222
1200 bps Remote Loop Problem
$\left|\left\lvert\, \begin{array}{l}\text { Internal Modem } \\ \text { PAGE } 3 \text { OF }\end{array}\right.\right.$

- Call for aid.

021

- Verify fix.

022

- Verify fix.

023
Loop error message has reported good wrap tests at controller end of the loop.
Have wrap tests at remote branch(es) on this loop been good,
Y N

024

Trouble is at remote branch that failed wrap test.

- Verify that a CE is at that branch or is being dispatched there.
- Verify fix.

025

- Now use the starter diskette to start this loop with a wrapable modem (command code 040). If this indicates a modem failure, enter this MAP again and inform the customer that his diskette gen should specify this loop as having a wrapable modem.
The good wrap test indicates that the problem is most likely in the communication channel. However, a small possibility exists for a failure in the following IBM equipment. Also, see Maintenance Aid 8 (Ref. 2.6).
- M/D Revr/Xmit card.
- Supply voltages to this card.
- Cable between logic board and the cable panel. See Figure 3-6.
- Cable between the controlier and the communication line termination.
- Teleprocessing equipment at remote branch.

Note: If this is a callback, or if the required cards are available, proceed along this path. Otherwise notify customer that the trouble is external to our equipment.

CAUTION

Turn off power.

- Change the M/D Rcvr/Xmit card. "A"
- Turn on power, log on (1.2), and display the controller \log (key in 001) to determine if problem is corrected.
NOTE: Return original card if it does not correct problem. Does M/D Rcvr/Xmit card change correct the problem?

G H

G H

026

- Measure the voltages with reference to ground (D08) on the M/D Rcvr/Xmit card. See 3.10. Are all voltages within limits? $Y \mathrm{~N}$

027
Go To Map 15, Entry Point A.

028

- Check the internal cable between logic board and the connectors on the cable panel, for continuity and no shorts. See figure 3-6.
Is the cable good?
Y N

029

- Repair or replace cable.
- Verify fix.

030

- Check for continuity and lack of shorts in the external cable between cable panel connectors and the communication channel termination. (See Figure 3-15.)
Is this cable good?
$Y \mathrm{~N}$
031
- Repair or replace cable.
- Verify fix.

032
Indications are that the problem is not the controller. inform the customer that the problem appears to be in the communication channel.

- Verify fix.

033

- Verify fix.

Remote Loop Problem

External Modem

PAGE 1 OF 3

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
2	A	1	001

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

(Entry Point A)

- For the loop in error, verify that the board is jumpered correctly. See the chart at the end of the logic gate. Also verify that the EIA PTT card is jumpered properly (1.121).
- Log on (1.2) if you are not already.
- For loops 2 and 3, verify the cable from Basic Controller board $\mathrm{Z4}$ to the interface cards (small board or Adapter board).
- Display print controller log (1.6) if you have not already done so, and analyze the loop error message (1.7).
- If the loop is failing but there is no error message in the controller log after approximately 2 minutes, you should start up the controller again (power on or reset). Use the starter diskette to ensure that the loop should be runining (Command code 040).
- If only loop 7 or 8 is failing, replace the redrive card.

Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations.
Is code $Y=0$?

$\begin{array}{lll}2 & 2 & 2 \\ A & B & C\end{array}$

EXIT POINTS

EXIT	THIS	MAP	TO
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
2	005	15	A
2	010	15	A
3	017	15	A


```
G H2 Remote Loop Problem
External Modem
    PAGE 3 OF 3
016
- Measure the voltages with reference to ground
(D08) on the EIA PTT card. See 3.10
Are all voltages within limits?
Y N
    017
    Go To Map 15, Entry Point A.
018
- Check the cable between logic board and the
connector for continuity and no shorts (1.122).
Is cable good?
    N
    0 1 9
    - Repair or replace cable.
    - Verify fix.
0 2 0
- Indications are that the problem is not in the
    controller.
- Inform the customer that the problem appears to
        be in the communication channel.
    -Verify fix.
```

021

- Verify fix.

Host Communication Link

Problem

PAGE 1 OF 4

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
2	A	1	001

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.
(Entry Point A)
If Host Link configuration never worked, verify feature jumpering. See 3.9.

- Verify that correct parameters are being used. See command code 041.

Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations. Observe controller log (1.6) for link wrap test messages.

Note: Log messages:

```
110060
0=Good wrap test.
11006 1xxxYYxxxxxxxxxxx.
    l=wrap failure.
    Y=9=CA wrap failure.
    Y=D=modem wrap failure.
110062.
    2=1ink stopped (users request).
```


Are all link wrap tests good?

```
Y
    002
    Does the controller log report a CA wrap test
    failure?
        Y
```



```
A B C
```


EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
2	008	15	A
4	038	15	A
4	029	15	A

Note: Log messages:

```
110060
0=Good wrap test.
11006 IxxxYYxxxxxxxxxxxx.
    1=wrap failure.
    Y=9=CA wrap failure.
    Y=D=modem wrap failure.
11006 2.
    2=1 ink stopped (users request).
```

```
Does controller log report a modem wrap failure?
Y N
    019
    Go to Page 2, Step 005, Entry Point C.
0 2 0
Is extemal modem an IBM MODEM?
Y N
    021
    Go to Page 2, Step 005, Entry Point C.
K

\section*{CAUTION}

Turn off power.
- Change EIA (Host 15) card, or 38LS EIA (Host 15) card.
Turn on power.
Is problem corrected?
\(Y \mathrm{~N}\)
023
Turn off power.
- Return original EIA (Host 15) or 38LS EIA (Host 15) card.
- Use IBM modem manual to repair the modem.
- Verify fix.

024
- Verify fix.

025
Does the controller log report a modem wrap failure?
\(Y \mathrm{~N}\)

\section*{026}

The good wrap test indicates that the problem is most probably in the communication channel. If this is a callback, or if the required cards are available, proceed along this path. Otherwise, inform customer that trouble is external to our equipment. Also see maintenance aid \(8(2.6)\).
Go to Step 027, Entry Point D.
027
(Entry Point D)
CAUTION
Turn off power whenever you change a card.
- Make sure that the transmit level potentiometer is adjusted correctly (1.123).
- One at a time, in the order indicated, change the following cards:
- M/D Rcvr (Host 15).
- M/D Xmit (Host 15).
- M/D wrap (Host 15) (jumper, PN 816645, must be installed on wrap card.).
- On later machines, the modem is one card, 38LS M/D (Host 15).
- CA (Host 15) card.

NOTE: Remember to return the original card if a card change does not correct problem.
Does any card change correct the problem?

\begin{tabular}{ll}
4 \\
\(L\) & 4 \\
\hline
\end{tabular}


\section*{Alternative Line Problem}

PAGE 1 OF 3

\section*{ENTRY POINTS}
\begin{tabular}{l|lll}
\hline FROM & ENTER & THIS MAP \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline \multicolumn{3}{r}{ No entries in this table }
\end{tabular}

\section*{EXIT POINTS}
\begin{tabular}{cc|cc}
\hline EXIT & THIS MAP & TO & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 1 & 004 & 15 & A \\
2 & 011 & 15 & A \\
2 & 020 & 15 & A \\
3 & 025 & 15 & A
\end{tabular}

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

\section*{(Entry Point A)}
- For the alternative line in error, verify that the correct cards are plugged and that the feature jumpering is correct. Refer to Chapter 3 for jumper requirements and chapter 1 plug charts for card locations.
- Load the starter diskette with optional module 6A. (3.3.3).
- Run command code 929 to wrap test the adapter.

Was the adapter wrap test good?
Y \(N\)
002
Turn off power.
- Replace the CA (ALA XX) card.

Turn on power.
Is the problem corrected?
Y N

\section*{003}
- Measure the voltages on the CA (ALA XX) card.

See 3.10.
Are these voltages within limits?
Y N
004
Go To Map 15, Entry Point A.

\section*{005}

Problem appears to be the adapter board.
- Replace board or call for aid.

006
- Verify fix.


\section*{PAGE 3 OF 3}

023
The good wrap test indicates that the problem is most probably in the communication channel. If this is a callback, or if the required cards are available, proceed along this path. Otherwise, inform customer that trouble is external to our equipment.

\section*{CAUTION}

Turn off power whenever you change a card.
- Make sure that the transmit level potentiometer is adjusted correctly. 1.123, 1.124.
- One at a time, in the order indicated, change the following cards:
- M/D Revr (ALA XX) card.
- M/D Xmit (ALA XX) card.
- M/D Wrap (ALA XX) card (Jumper, PN816645, must be installed on wrap card.)
- On later machines the above is one card 38LS M/D (ALA XX) card.
- CA (ALA XX) card.

Note: Remember to return the original card if a card change does not correct problem.
Does any card change correct the problem?
\(Y \mathrm{~N}\)
024
Check the voltages on the cards just changed 3.10.
Are these voltages within limits?
Y N
025
Go To Map 15, Entry Point A.
028
Turn off power.
- Check the following for continuity and no shorts.
- Cable between adapter and the cable panel connector.
- Cable between controller and communication channel.
Are cables good?
Y \(N\)
027
- Repair or replace as required.
- Verify fix.

028
Notify customer that problem appears to be the communication channel or call for aid if this is a call-back.

\section*{Diskette Drive Assembly}

Not Ready
PAGE 1 OF 4

ENTRY POINTS
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 11 & A & 1 & 001 \\
12 & B & 1 & 005 \\
2 & A & 1 & 001 \\
9 & D & 4 & 041
\end{tabular}

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

\section*{(Entry Point A)}
- Check that the diskette is not visibly damaged or bound in the diskette drive assembly.
- Check that the diskette is in the correct operating position and the drive belt is in place.
Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations. Is the drive hub turning?
\(\gamma^{\mathrm{N}} \mathrm{OO2}\)

Is the drive motor turning?
\(Y \mathrm{~N}\)
003
- Measure ac line voltage at motor connector.

Is measured voltage within \(\pm 10 \%\) of line voltage specified on label in controller?
Y N
004
Go To Map 15, Entry Point A.
005
(Entry Point B)
- Unplug motor connector.
- Remove drive belt.
- Replug motor connector.

Note: The motor may require up to 5 minutes to start if the thermal protector has been tripped.
Does the motor start?
\(\boldsymbol{Y}\)
\(\begin{array}{llll}2 & 2 & 2 & 2 \\ A & B & C\end{array}\)

EXIT POINTS
\begin{tabular}{ll|ll}
\hline EXIT & THIS MAP & TO & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 1 & 004 & 15 & A \\
3 & 027 & 15 & A \\
3 & 034 & 15 & A \\
3 & 039 & 9 & A
\end{tabular}


\section*{Diskette Drive Assembly}

Not Ready
PAGE 3 OF 4

\section*{026}
- Measure the following voltages at the test points on the diskette drive control card (1.51 or 1.94).
\[
\begin{array}{ll}
\text { Test Point } & \text { Limits } \\
+5 V \text { dc } & +4.5 \text { and } 5.5 \\
+24 V \mathrm{dc} & +21 \text { and }+27 \\
-5 V \mathrm{dc} & -4.5 \text { and }-5.5
\end{array}
\]

Are the voltages within limits?
Y N
027
Go To Map 15, Entry Point A.
028
- Replace the LED (1.48, or 1.88 and 1.89).
- Verify fix.

029
- Check the two-wire cable from the diskette drive control card to the phototransistor for continuity and no shorts.
Is this cable good?
\(Y \mathrm{~N}\)

\section*{030}
- Repair or replace the cable.
- Verify fix.

031
- Replace and adjust the phototransistor (1.46, or 1.90 and 1.91).
- Verify fix.

032

\section*{CAUTION}

Turn off power.
. Change diskette drive control card (1.50 or 1.93).
Turn on power.
Is the problem corrected?



Turn off power.
- Return the original diskette drive control card.

Turn on power.
- Measure the following voltages at the test points on the diskette drive control card (1.51 or 1.94):
```

Test Point
Limits
+5V dc +4.5 and +5.5
+24V dc +21 and +27
-5V dc -4.5 and -5.5

```

Are the voltages within limits?
Y N

\section*{034}

Go To Map 15, Entry Point A.
035
- Call for aid.

036
- Verify fix.

037
- If an oscilloscope is available check the diskette speed, look for index pulses every 166.6 ms at the '+Index' test point on the diskette drive control card (1.51 or 1.94). Pulse width should be 1.7 to 8.0 ms . (1.95).

Is there a diskette rotation problem that you can readily observe?
Y \(N\)
038

\section*{CAUTION}

Turn off power.
- Change diskette drive control card (1.50 or 1.93).

Turn on power.
Is problem corrected?
\(Y \mathrm{~N}\)
039
CAUTION
Turn off power.
- Return original diskette drive control card.

Go To Map 9, Entry Point A.
040
- Verify fix.
\(\begin{array}{ll}P & \text { Diskette Drive Assembly }\end{array}\)
Not Ready
PAGE 4 OF 4

041
(Entry Point D)
- Check cover latch pivots and collet assembly for defects that are readily observed.
Do these parts appear to be functioning properly?
Y \(N\)
042
Replace as required:
Cover latch(1.21 or 1.61).
Pivots (1.22 or 1.62).
Collet (1.23 or 1.63).
- Verify fix.

043
Does this controller have a one head diskette drive?
N
044
- Check the head load operation.

Is operation correct?
Y N
045
- Repair, adjust, or replace.

End of call.
046
Go to Page 2, Step 014, Entry Point C.
047
Is the pressure pad arm in front of the actuator bail?
\(Y N\)
048
- Place the pressure pad arm in front of the actuator bail.
Go to Step 049, Entry Point E.
049
(Entry Point E)
Is bail adjustment correct?
Y N
050
Adjust pressure pad actuator (1.33) or replace it
(1.32).

End of call.
051
Go to Page 2, Step 014, Entry Point C.

\section*{Diskette Drive Assembly}

\section*{Seek Error}

PAGE 1 OF 3

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 2 & A & 1 & 001 \\
7 & B & 2 & 005 \\
9 & A & 1 & 001
\end{tabular}

001
CAUTION: These MAP's deal with more than one machine type/ferture. Included are questions about items this machine may not have.
(Entry Point A)
- Load starter diskette, if not previously loaded.

Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations.

Note: For starter diskette information, refer to 3.3.3. If starter diskette does not operate properly try backup starter diskette.
NOTE: Intermittent seek problems may be caused by diskette control card.

\section*{CAUTION}

Turn off power.
- Manually move diskette head upwards (away from track 0 by at least four tracks).
- Turn on power (reset).

Does the head carriage assembly go to track 0 ?
Y N
002
- Measure +24 V on diskette drive control card (1.50 or 1.93 ) at ' +24 V dc' test point ( 1.51 or 1.94 ).

\(Y \mathrm{~N}\)
003
Go To Map 15, Entry Point A.
004
- Press controller RESET switch to cause accessing.
- Using GL probe, probe for pulsing lines on diskette drive control card while accessing. Probe test points and access \(0,1,2\), and 3 (1.51 or 1.94).
Are all lines pulsing (UP and DOWN lights on)?

\(\begin{array}{lll}3 & 2 & 2 \\ A & B & C\end{array}\)

\section*{EXIT POINTS}
\begin{tabular}{cc|cc}
\hline EXIT & THIS & MAP & TO \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 3 & 031 & 10 & A \\
1 & 003 & 15 & A
\end{tabular}

```

A D H J K K Seek Error
PAGE 3 OF 3
023
- Replace the preload spring (1.34 and 1.35).
- Verify fix.
0 2 4
- Check for binds in the head carriage,
leadscrew, and bearings.
Are there any binds in these components?
Y N
0 2 5
Is there a bind in the stepper motor itself?
Y N
0 2 6
-Reinstall the same stepper motor and
adjust (1.42 and 1.43).
- Verify fix.
0 2 7
- Install and adjust a new stepper motor
(1.42 and 1.43).
- Verify fix.
028
- As necessary replace or adjust:
- Head carriage (1.34 and 1.35).
- Bearings (1.34 and 1.35).
- Leadscrew and head (1.38 and 1.36).
- Verify fix.
0 2 9

- As required, replace leadscrew wheel (1.38) or
adjust leadscrew wheel per steps }10\mathrm{ through 16
of 1.36.
 - Verify fix.
0 3 0
 - Verify fix.
0 3 1
Go To Map 10, Entry Point A.

```

\section*{Diskette Drive Assembly}

\section*{Data Check}

PAGE 1 OF 4

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & \multicolumn{3}{|l}{ ENTER } \\
\hline THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 2 & A & 1 & 001 \\
8 & A & 1 & 001
\end{tabular}

\section*{EXIT POINTS}
\begin{tabular}{cc|cc}
\hline EXIT THIS MAP & TO & \\
\hline PAGE & STEP & MAP & FNTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 2 & 015 & 13 & A \\
3 & 029 & 14 & A \\
2 & 011 & 15 & A \\
1 & 002 & 8 & A \\
4 & 041 & 8 & D
\end{tabular}

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.
(Entry Point A)
- Load starter diskette if not already loaded.

Logic cards are called by name, refer to the card list and böard layout in Chapter 1, Maintenance Procedures or the board charts located in later machines for locations.

Note: For starter diskette information, refer to 3.3.3. If starter diskette does not operate correctly, try backup starter diskette.

\section*{CAUTION}

Turn off power.
- Manually move diskette head away from track 0 (upwards) by at least four tracks.
- Turn on power (reset).

Does the head carriage assembly go to track 0 ?
Note: For a one head diskette drive assure the pressure pad arm contacts the diskette (1.33). For a two head diskette drive check head load operation (1.67).
\(\boldsymbol{Y} \mathbf{N}\)
002
Go To Map 8, Entry Point A.
003
- If an oscilloscope is available, check the diskette speed, check for index pulses every 166.6 ms at the '+Index' test point on the diskette drive control card (1.51 or 1.94). Pulse width should be 1.7 ms to 8.0 ms . (1.95).

Is there a diskette rotation problem that you can readily observe?


42




\section*{Disk Storage-System Hang}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ENTRY POINTS} \\
\hline FROM & \multicolumn{3}{|l|}{ENTER THIS MAP} \\
\hline MAP NUMBER & \[
\begin{aligned}
& \text { ENTRY } \\
& \text { POINT }
\end{aligned}
\] & PAGE NUMBER & \begin{tabular}{l}
STEP \\
NUMBER
\end{tabular} \\
\hline 2 & A & 1 & 001 \\
\hline
\end{tabular}

\section*{001}
(Entry Point A)
- Turn power off.
- Unseat all logic cards on 01A1 board.
- Lock the DE access arm (3.4.1).
- Turn on power (reset).

Is startup good?
\(\boldsymbol{Y} \mathbf{N}\)
002
- Replace the redrive card.

Is startup good?
\(Y \mathbf{N}\)
003
- Return the original redrive card.
- Check the cables from 01A1Z4 to 01A2V4 and 01A1Z5 to 01A2V5 for continuity and lack of shorts (cables wired point to point, with BO7, B13, D02 and D08 common).
Are cables good?
Y \(N\)
004
- Repair or replace the cable.
- Reseat any unseated cards and cables.
- Unlock the DE access arm (3.4.1).
- Verify fix.

005
- Inspect 01A1 board for bent pins, shorted pins.

Did you find a problem?
Y \(N\)
006
- Replace board 01A1 (1.127).
- Verify fix.

007
- Remove the short.
- Reseat any unseated cards and cables.
- Unlock the DE access arm (3.4.1).
- Verify fix.

A B

008
- Reseat any unseated cards and cables.
- Unlock the DE access arm (3.4.1).
- Verify fix.

009
- Turn off power.
- Reseat one card at a time to locate the failing card (crossovers on cards J2 and K2 may be a cause of failure).
- Replace failing card and reseat the others.
- Unlock the DE access arm (3.4.1).
- Verify fix.

A B

\section*{Disk Storage-Operational Failure}

PAGE 1 OF 4

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 2 & A & 1 & 001
\end{tabular}

\section*{EXIT POINTS}
\begin{tabular}{ll|ll}
\hline EXIT & THIS MAP & TO & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 2 & 013 & 15 & A \\
3 & 030 & 15 & A
\end{tabular}

\section*{001}
(Entry Point A)
- Turn off power.
- Disconnect disk storage power plug (DJ3) at the power box.
- Turn on power.

\section*{CAUTION}

Parts may be hot.
CAUTION
Ensure drive motor has stopped.
CAUTION
Observe the rotation arrow on the DE (3.4.1). Failure to do so may result in DE damage.
- Rotate the brake pulley to test for binds in the drive assembly (1.107).

Note: If your machine has HPCA host communication, a good HPCA card must be installed in order for the disk storage to function.
Does the drive assembly turn freely?
\(\boldsymbol{Y}\)
002
- Remove the drive belt guard.
- Remove the drive belt by pivoting the drive motor upward.
Does the disk spindle turn free?
\(Y \mathrm{~N}\)
003
- Replace the disk enclosure (DE) (1.100, 1.101).
- Verify fix.

004
Does the disk storage relay (H-K1) pick with power on?
\(\boldsymbol{Y}\)
005
- Repair relay wiring (1.113).
- Verify fix.
\(\begin{array}{ll}2 & 2 \\ \text { A }\end{array}\)

```

NO
Disk Storage-Operational Failure
PAGE 3OF 4
(Step 019 continued)
unrecoverable disk defect and the DE must be
replaced. Refer to chapter 3 for the meaning of
the error messages and 1.100/1.101 for DE
removal and replacement.
0 2 0
Return the system to the customer. If the
customer requires assistance, call for aid.
0 2 1
Go to Page 2, Step 018, Entry Point B.
022
Refer to diagnostic error list for corrective action (1.115).
ls problem resolved?
Y N
023

```

\section*{CAUTION}
```

Turn off power when changing cards.

- If you have not already done so, change the following cards on 01A1 board one at a time, in the order indicated:
G2 D2 J2 C4 K2 F2
- After each card change, turn on power and run the diagnostics.
Note: Return the original card each time it does not correct the problem.
Is the problem resolved?
$Y \mathrm{~N}$
024
- Turn off power.
- Replace redrive card.
- Turn on power.
- Run the disk storage diagnostics.
is the problem resolved? \boldsymbol{Y}
025
- Turn off power.
- Return origional redrive card.
CAUTION
Turn off power when changing cards.
- If you have not already done so, change the following cards one at a time in the order indicated:
01A1 board- L2, B2, B4, C2, H2, M2
On the DE- B3, A5, A2
- After each card change, turn on power and run the diagnostic.
(Step 025 continues)
H J K

```

\section*{\({ }_{2}\) \\ Disk Storage-Operational Failure}

037
- Repair or replace as required.
- Verify fix.

Basic Controller Problem

PAGE 1 OF 1

ENTRY POINTS
\begin{tabular}{l|ccl}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 13 & A & 1 & 001 \\
2 & A & 1 & 001
\end{tabular}

\section*{001}

CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.

\section*{(Entry Point A)}

\section*{CAUTTON-}

Turn off power when you change a card.
Logic cards are called by name, refer to the card list and board layout in Chapter 1. Maintenance Procedures or the board charts located in later machines for locations. - One at a time, in the order indicated, change the following cards:
CTLR 2.
CTLR 3.
CTLR 1.
FSU 1 Vol 0.
ESA 1.
RESET.
Loop Ctrl (1).
Diskette Adapter.
FSU 1 Vol 1 , if present.
'ESA2 2, if present.
- After each card change, turn orpower (RESET).
- Check location and continuity of crossovers.

NOTE: Return original card each time a card change does not correct problem.
Does any card change result in a good startup? (1.1.3) (If there is no FSU 1 Vol. 1 card, a display of LSW is as far as startup can \(\bar{g} 0\).

\section*{\(\mathbf{Y}^{\mathrm{N}} \mathrm{OO2}\)}
- Check the special +5 V to the reset card (Fig. 3-8).
- Check that GO2 and J02 on the reset card change "valtage levels when the reset switch is opperated. If no; check the reset switch and its wiring (Fig. 3-8). Did you find the problem?

A. B C
- Call for aid.

It is possible that one of the replacement cards was defective. Also, suspect the basic controller board and voltages to it (3.8).

004
- Turn off power.
- Repair the reset switch or wiring.
- Reseat any unseated cards and cables.
- Unlock the DE access arm (3.4.1) if it was locked.
- Verify fix.

005
- Turn off power.
- Reseat any unseated cards and cables.
- Unlock the DE access arm (3.4.1) if it was locked.
- Verify fix.

\section*{Minimum Configuration Method}

\section*{Of Fault Isolation}

PAGE 1 OF 3

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & \multicolumn{3}{|l}{ ENTER } \\
THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 2 & A & 1 & 001 \\
9 & A & 1 & 001
\end{tabular}

\section*{EXIT POINTS}
\begin{tabular}{ll|lc}
\hline EXIT & THIS & MAP & TO \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 2 & 014 & 13 & A \\
3 & 017 & 13 & A \\
1 & 002 & 15 & A \\
3 & 016 & 2 & F \\
3 & 025 & 8 & A
\end{tabular}

001
CAUTION: These MAP's deal with more than one machine type/feature. Included are questions about items this machine may not have.
(Entry Point A)
If starter diskette is not loaded, load diskette.
Note: For starter diskette information, refer to 3.3.3.
Logic cards are called by name, refer to the card list and board layout in Chapter 1, Maintenance Procedures oi the board charts located in later machines for locations.
- Check the supply voltages for the BASIC CONTROLLER board (3.10).
Are all of these voltages within limits?
Y \(N\)
002
Go To Map 15, Entry Point A.
003
- Open the outside cover and observe the diskette assembly.
Is there any obvious mechanical problem with the diskette drive?
\(Y \mathrm{~N}\)
004
At the 3604 designated by customer to be address 1 on loop 1, are the address switches set correctly (See Chapter 3, Table 3-1)?
\(\mathbf{Y} \mathbf{N}\)

\section*{005}

Set address switches of the designated 3604 to address 1.
Go to Page 2, Step 006, Entry Point B.


\section*{Minimum Configuration Method}

Of Fault Isolation
PAGE 3 OF 3

\section*{016}
- Reseat any unseated cards and cables.
- Unlock the DE access arm (3.4.1.).

Go To Map 2, Entry Point F.
017
Go To Map 13, Entry Point A.
018

\section*{CAUTION}

Turn off power each time you reseat or change a card. - Reseat the cards, one at a time until you identify the card that causes the diagnostic message sequence to fail to reach DTC.
- Change the bad card and reseat any unseated cards and cables.
- Load the operating diskette.
- Unlock the DE access arm, if present (3.4.1).
- Verify fix.

019

\section*{CAUTION}

Turn off power.
- Replug cables Z1, Z2 on the basic controller board.
- Unseat all logic cards on the adapter board.
- Turn on power (reset).

Is startup good?
\(\boldsymbol{N}\)
020
CAUTION
Turn off power.
- Unseat cables Y4, Y5 on the adapter board.
- Turn on power (reset).
is startup good?
Y N
021
- Replace the cable that causes the failure.
- Unlock the DE access arm, if present (3.4.1).
- Verify fix.

022
- Replace the adapter board.
- Unlock the DE access arm (3.4.1).
- Verify fix.

023

\section*{CAUTION}

Turn off power.
- Reseat the cards, one at a time to identify the one causing the failure.
- Replace that card and reseat any unseated cards and cables.
- If reseating the redrive card causes the failure, the problem may be loop control card 7 or 8 or any card on the disk storage adapter board.
- Unlock the DE access arm, if present (3.4.1).
- Verify fix.

024
- Load the operating diskette.

Verify fix.
Note: Verification will include turning on power at all terminals that you may have turned off.

025
Go To Map 8, Entry Point A.

\section*{Power}

\section*{PAGE 1 OF 1}

\section*{ENTRY POINTS}
\begin{tabular}{l|lll}
\hline FROM & ENTER & THIS MAP \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline \multicolumn{4}{r}{ No entries in this table }
\end{tabular}

\section*{001}
(Entry Point A) Is this a 3601?

\section*{002}
- You have a 3602.

Go To Map 17, Entry Point A.
003
Go To Map 16, Entry Point A.

\section*{EXIT POINTS}
\begin{tabular}{cc|cc}
\hline EXIT THIS MAP & \multicolumn{1}{|l}{ TO } & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 1 & 003 & 16 & A \\
1 & 002 & 17 & A
\end{tabular}

\section*{3601 Power}

PAGE 1 OF 4

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 15 & A & 1 & 001
\end{tabular}

001
(Entry Point A)
- With power off, verify that ribbon cables are properly seated on board 01A1, and for a Model 3 machine, 01A2.
- Verify that the controller power cord is plugged into an outlet and that the controller power switch is on.
- Verify that the dc indicator lamp circuit is good (3-8).
- Remove the diskette from the diskette drive assembly.

Is the diskette drive motor turning?
\(\boldsymbol{Y}\)
002
- Measure the ac voltage across the black and white leads at the drive motor connector.
Is the measured voltage within \(\pm 10 \%\) of the voltage specified on label in controller?
Y N
003
- Check the power cord, fuse, and power switch. (Refer to Power Distribution Diagram, Figure 3-8).
Are these parts good?
Y \(N\)
004
- Repair or replace the failing part.
- If the fuse opens, also repair the cause of the fuse opening. Look for shorts/grounds or defective power supply using Power Distribution Diagram, Figure 3-8.
- Verify fix.

005
Customer power input to controller must be incorrect.
- Verify fix.

006
Go To Map 8, Entry Point B.

\section*{EXIT POINTS}
\begin{tabular}{ll|lc}
\hline EXIT & THIS MAP & \multicolumn{1}{l|}{ T0 } & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline \multicolumn{2}{c|}{1} & 006 & 8 \\
\hline
\end{tabular}

PAGE 2 OF 4

\section*{007}
- Verify input power to the supply. If not present, refer to the power distribution diagram for repair.

NOTE: If the power supply is failing to remain on, connect voltmeter to the terminal of any dc voltage and look upon this voltage as the 'failing' voltage.
\[
\begin{array}{ll}
\text { Vdc } & \text { Limits } \\
+5 & +4.5 \text { and }+5.5 \\
+8.5 & +7.7 \text { and }+9.3 \\
+12 & +10.8 \text { and }+13.2 \\
+24 & +21.6 \text { and }+26.4 \\
-5 & -4.5 \text { and }-5.5 \\
-12 & -10.8 \text { and }-13.2
\end{array}
\]
- Do not disconnect leads from the power supply. Insert any suitable probe (paper clip, scribe, probe tip) into the connector to connect this meter lead.
- If your machine has 2 power supplies, the vertical one primarily goes to board A2, the horizontal one to A1. see the power distribution diagram.
- Connect voltmeter to the terminal of the failing voltage at the power supply. If the voltage is correct at the power supply refer to Power Distribution Diagram, (Figure 3-8) and the cabling diagrams to correct the problem. If voltage is not correct at power supply, continue on this path.

CAUTION
Turn off power.
- At the diskette drive control card, unplug the cable that goes to 01A1.
Turn on power.
- Check the power supply output voltages.

\section*{Are all voltages now within limits?}
\(\boldsymbol{Y}^{\mathrm{N}}\)

\section*{CAUTION}

Turn off power.
- Replug the cable to the diskette drive control card.
- Unplug the voltage connectors on board 01A1, including the connector for special voltages at 01A1Y4. (Z3 on model C or D).
Turn on power.
- Check the power supply output voltages.
\begin{tabular}{ll} 
Vdc & Limits \\
+5 & +4.5 and +5.5 \\
+8.5 & +7.7 and +9.3 \\
+12 & +10.8 and +13.2 \\
+24 & +21.6 and +26.4 \\
-5 & -4.5 and -5.5 \\
-12 & -10.8 and -13.2 \\
(Step 008 continues)
\end{tabular}

8
(Step 008 continued)
Are all voltages now within limits?
Y \(N\)
009

\section*{CAUTION}

Turn off power.
- Replug the voltage connectors on board 01A1.
- Unplug the voltage connectors on board 01A2, including 01A2Z3 (Model 3 only). (Slip connectors on A2D07, V2D07 on later machines.).
Turn on power.
Are all voltages now within limits?
Y N
010
Do you have expanded storage (B1 Board)?
\(Y^{N}\)
011
Go to Step 013, Entry Point B.

\section*{012}

Turn off power.
- Unplug the voltage connectors on board 01B1.

Are all voltages now within limits?
\(Y^{N}\)
013
(Entry Point B)

\section*{CAUTION}

Turn off power.
- Unplug the voltage connectors on board 01A1.
- Remove the frame ground strap on the hinge side of the gate, and the ground wire on the diskette cable.
- Measure the resistance of all power supply terminals to frame ground. (Resistance should be infinite.)
Are resistance readings good?
Y N
014
- Repair or replace power distribution cabling. Refer to Figure 3-8, Power Distribution Diagram.
- Verify fix.

015
- Replace the power supply (1.126).
- Verify fix.

3601 Power

\section*{PAGE 3 OF 4 \\ 016}

CAUTION
Turn off power.
- Repiug board 01B1 voltage connectors.
- Unseat all cards on board 01B1.

Turn on power.
Are all voltages still within limits?
\(Y \mathrm{~N}\)
017
- Replace board 01B1.
- Verify fix.

018

\section*{CAUTION}

Turn off power when reseating or changing a card.
- Reseat a few cards at a time on board 01B1 to find the one that causes failure.
- Change the card that causes failure, reseat the others, and replug the connectors on board 01A2.
- Verify fix.

\section*{019}

\section*{CAUTION}

Turn off power.
- Replug board 01A2 voltage connectors, including 01A2Y3. (Slip connectors on A2D07, V2D07 on later machines.).
- Unseat all cards on board 01A2.

Turn on power.
Are all voltages still within limits?
\(Y^{N}\)
020
- Replace board 01A2.
- Verify fix.

021

\section*{CAUTION}

Turn off power when reseating or changing a card.
- Reseat a few cards at a time on board 01A2 to find the one that causes failure.
- Change the card that causes failure, reseat the others.
- Verify fix.
\begin{tabular}{l}
\(B C\) \\
2 \\
\hline
\end{tabular}

022

\section*{CAUTION}

Turn off power.
- Replug voltage connectors on board 01A1.
- If this machine has a TSR 3 power supply, verify that the resistor A1U2D08 to A1T2B06 is on the correct pins.
- Unseat all cards on board 01A1.

Turn on power.
- Check the following power supply output voltages.
\[
\begin{array}{ll}
\text { Vdc } & \text { Limits } \\
+5 & +4.5 \text { and }+5.5 \\
+8.5 & +7.7 \text { and }+9.3 \\
+12 & +10.8 \text { and }+13.2 \\
+24 & +21.6 \text { and }+26.4 \\
-5 & -4.5 \text { and }-5.5 \\
-12 & -10.8 \text { and }-13.2
\end{array}
\]

Are all voltages now within limits? Y N

023
- Replace 01A1 board assembly.
- Verify fix.

024

\section*{CAUTION}

Turn off power each time you reseat or change a card.
- Reseat one card at a time on board 01A1 to find the one that causes failure.
- Change the card that causes failure, reseat the others.
- Verify fix.

025

\section*{CAUTION}

Turn off power.
- Change the diskette drive control card (1.50 or 1.93).
- Replug the cable to diskette drive control card.

Turn on power.
Are all voltages still within limits?
```

F G 3601 Power
3
PAGE 4OF 4
026
CAUTION
Turn off power.

- Return original diskette drive control card.
- Check the wiring in the diskette drive assembly.
Note: Wiring is from the diskette drive control card
connector (1.49,1.92) to:
Stepper motor
Head assembly
Phototransistor
Light emitter diode
Pressure pad actuator magnet
Does this wiring check good?
Y N
027
 - Repair or replace the diskette drive assembly
wiring.
 - Verify fix.
0 2 8
- Call for aid.

```

\section*{029}
```

- Verify fix.

```

PAGE 1 OF 4

\section*{ENTRY POINTS}
\begin{tabular}{l|ccr}
\hline FROM & \multicolumn{3}{|l}{ ENTER } \\
THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 15 & A & 1 & 001
\end{tabular}

\section*{001}

\section*{(Entry Point A)}
- Verify that the controller power cord is plugged into an outlet and that the controller power switch is on.
- Verify that ribbon cables are properly seated on TSR 1 and boards 01A1, 01A2, and 01B1.

CAUTION
- When working on a power problem, lock the DE access arm (3.4.1). Be sure to unlock it at the end of the call.
- Observe the fan and the diskette drive motor (ignore the storage drive motor at this time).
Are both turning?
\(Y^{N}\)
- See Power Distribution Diagram, Figure 3-8, to make repair.
- Verify fix.

003
Is the power indicator on?
Y \(N\)
004
- Measure the dc voltages on 01B1. See Figure 3-8.

Are all voltages within limits?
Y N
005
(Entry Point B)
- Verify input power to the supply. If not present, refer to the power distribution diagram for repair.
- If the power supply is failing to remain on, connect voltmeter to any dc voltage terminal and use this voltage for the 'failing' voltage. If G-CB1 trips, reset it for each power test.
- Use a suitable probe to connect voltmeter to power supply (figure 3-8). Do not remove wires from power supply terminals.
- Connect a voltmeter to the terminal of the failing voltage at the power supply (TSR 3). If the voltage is correct at the supply, see the Power Distribution Diagram, 3-8, to make repair.

\section*{CAUTION}

Turn off power.
(Step 005 continues)
\(\begin{array}{ll}3 & 3 \\ \text { A B }\end{array}\)
(Step 005 continued)
- Unplug cable at 01B1Z3.
- Turn on power.

Are all voltages within limits?
\(Y_{006}^{N}\)

\section*{CAUTION}

Turn off power.
- Replug cable at 01B1Z3.
- Unplug voltage connectors on board 01B1 including \(01 \mathrm{B1Y} 4\).
- Turn on power.

Are all voltages within limits?
\(Y \mathbf{N}\)

\section*{007}

\section*{CAUTION}

Turn off power.
- Replug all voltage connectors on board 01B1.
- Unplug voltage connectors on board O1A2, including 01A2Z3. (Slip-on connectors on A2D07, V2D07 on later machines).
- Turn on power.

Are all voltages within limits?
\(\boldsymbol{Y} N\)
008

\section*{CAUTION}

Turn off power.
- Replug all voltage connectors on board 01A2, including 01A2Z3. (Slip-on connectors on A2D07, V2D07 on later machines).
- Unplug all voltage connectors on board 01A1, including 01A1Z3.
- Turn on power.

Are all voltages within limits?
\(Y \mathrm{~N}\)
009
Do you have expanded memory (B2 Board)?

\(\begin{array}{llllll}3 & 3 & 3 & 2 & 2 & 2 \\ C & D & E & F & G & H\end{array}\)

```

P O
3 6 0 2 ~ P o w e r ~
PAGE 4 OF 4
042

- Repair or replace as required.
- Verify fix.
0 4 3
- Measure the voltages on board 01A1 and the DE, supplied by TSR 1 on Figure 3-8.
Are all voltages within limits?
Y N
044

```

\section*{CAUTION}
```

Turn power off when reseating a card.

- Unseat a few cards on board 01A1 at a time to determine if a card is loading the supply. At each power off, reseat all cards before unseating more.
- Unseat cards in the DE to determine if one is loading the supply.
Is a card causing the problem?
Y N
045
- Measure the voltage at pins 11 and 12 of power supply TSR 1 (3-8).
Is voltage good?
\mathbf{N}
046
Go to Page 1, Step 005, Entry Point B.
047
- Replace TSR 1, or if the problem voltage is from 01A1TB1,
Go to Page 1, Step 001, Entry Point A.
048
- Replace problem card and reseat the others.
- Verify fix.
049
- Measure the dc voltages at each board, supplied by TSR 3 on Figure 3-8.
Are all voltages within limits?
N
050
Go to Page 1, Step 005, Entry Point B.
051
There is no power problem at this time.

```

Trder No. SY27-2519-0
Order No. SY27-2519-0
Your views about this publication may help improve its usefulness; this form will be sent to the author's department for appropriate action. Using this form to request system assistance or additional publications will delay response, ing of such request, please contact y
BM representative or the IBM Branch Office serving your locality.
Possible topics for comment are:
Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? \(\qquad\)
\(\qquad\)
Please indicate if you wish a reply. Yes
If yes: Name \(\qquad\)
Address
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments.)

\section*{Your comments, please . .}

Your comments, together with your answer to the questions on the back of this form will help us produce better publications for your use. Your comments will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and suggestions become the property of IBM

First Class Permit 40 Armon New York

\section*{Business Reply Mail}

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by
International Business Machines Corporation
Department 63T
Neighborhood Road
Kingston, New York 12401

\section*{\(\overline{\overline{\underline{\underline{E}}} \overline{\overline{\underline{E}} \overline{\bar{E}}} \overline{\overline{=}}}\)}

\section*{international Business Machines Corporation}

Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. yceec
IEM Wortd Trade Americas/Far East Corpcration
Tewn of Mount Pleasant, Routs s, North Terrytown, K.Y., U.S.A. 10551
IBM World Trade Europe/Middle East/Africa Corpciation

\section*{Your comments, please . . .}

Your comments, together with your answer to the questions on the back of this form will help us produce better publications for your use. Your comments will be carefully
 comments and suggestions become the property of IBM

Fold

\section*{Business Reply Mail}

No postage stamp necessary if mailed in the U.S.A.
Postage will be paid by:
International Business Machines Corporation Department 63T
Neighborhood Road
Kingston, New York 12401

Fold

\section*{}

International Business Machines Corporation Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604
IBM World Trade Americas/Far East Corporation Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591```


[^0]:    *Refer to the IBM 3600 system FE MIM, SY27-2520.
    **If only the EM (enter) key is pressed, this input is bypassed and the operation continues. If the RE (reset) key is pressed twice, the prompt mode sequence is terminated.

[^1]:    *Titan Tool Supply Co., Inc.
    **Jumper assembly PN 4409828 for low voltage ( 100 - 123.5) or PN 4409829 for high voltage ( 200 - 240 ) may be required in order to use the latest style diskette drive motor.

[^2]:    *Titan Tool Supply Co., Inc.
    **Jumper assembly PN 4409828 for low voltage (100-123.5) or PN 4409829 for high voltage (200-240) may be required in order to use the latest style diskette drive motor.

[^3]:    *Jumper assembly PN 4409828 for low voltage (100-123.5) or PN 4409829 for high voltage (200-240) may be required in order to use the latest style diskette drive motor.

[^4]:    *Tubing.
    **This cable wire is not point to point.

[^5]:    *For more information on command codes and test routines, see Chapter 3, section 3.12.

[^6]:    *Indicates this PN has a later EC level than the PN listed above it.
    To ensure card is available, order the part number on the card being replaced. It is possible that later level cards have been used

[^7]:    B. Cable Assemblies

