
--..- ------ - ------- ~ ---- -- -------------, -

tion Guide

Third Edition (March 1991)

This edition applies to Version 2 Release 1 Modification 2 of the IBM licensed program Customer Information
Control System/Multiple Virtual Storage (CICS/MVS), program number 5665-403, and to all subsequent versions,
releases, and modifications until otherwise indicated in new editions. Consult the latest edition of t.he applicable
IBM system bibliography for current information on this product.

This book is based on the Customizstion Guide for CICS/MVS 2.1, SC33-0507-1. Changes from that edition are
marked by vertical lines to the left of the changes.

Order publications through your IBM representative or the IBM branch office serving your Iclcality. Publications
are not stocked at the addresses given below.

A form ror reader's comments appears at the back of this publication. If the form has been removed, address
, your comments to:

International Business Machines Corporation, Department 6R1 H,
180 Kost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail F'oint 095, Hursley Park, Winchester, Hampshire, England,
S021 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

@ Copyright International Business Machines Corporation 1977, 1990. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights·- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Special notices

The following paragraph does not apply to the United Kingdom or any country
where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this
publication is not intended to state or imply that only IBM's program or other
product may be used. Any functionally equivalent program that does not infringe
any of IBM's intellectual property rights may be used instead of the IBM product.
Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

This book is intended to help you customize your CICS system. It contains
information about user exits and user-replaceable programs. This book
primarily documents Product-Sensitive Programming Interface and Associated
Guidance Information provided by CICS.

Product-Sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates
dependencies on the detailed design or implementation of the IBM software
product. Product-Sensitive interfaces should be used only for these specialized
purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces
may need to be changed in order to run with new product releases or versions,
or as a result of service.

However, this book also documents General-Use Programming Interface and
Associated Guidance Information and Diagnosis, Modification, and Tuning
Information.

© Copyright IBM Corp. 1977, 1990 III

General-Use programming interfaces allow the customer to write programs that
obtain the services of CICS. General-Use programming interface information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-Use Programming Interface

General-Use Programming Interface and Associated Guidance Information

'---______ End of General-Use Programming Interface

This book also documents Diagnosis, Modification, and Tuning Information,
which is provided to help you to customize CICS.

Warning: Do not use this Diagnosis, Modification, and Tuning Information as a
programming interface.

Diagnosis, Modification, and Tuning Information is identified where it occurs,
either by an introductory statement to a chapter or section or by the following
marking:

Diagnosis, Modification, and Tuning Information

Diagnosis, Modification, and Tuning Information ...

'---____ End of Diagnosis, Modification, and Tuning Information ____ -'

The following terms, denoted by an asterisk (*), used in this publication, are
trademarks or service marks of IBM Corporation in the United States or other
countries:

ACF/VTAM, CICS/MVS, CICS OS/2, DB2, IBM, IMS/ESA, MVS, MVS/ESA,
MVS/SP, MVS/XA, SNA, 3270, System/3BO, System/370, VTAM.

Iv CICS/MVS 2.1.2 Custornlzation Guide

Preface

What this book Is about
This book provides the information needed to enhance and extend (or
"customize") a CICS/MVS* 2.1.2 system. Customization includes generating
management modules, coding service routines and exit programs, and using
CICS commands to monitor and modify attributes of your system.

Who should read this book
This book is for those responsible for extending and enhancing a CICS system.

What you need to know to understand this book
To use the information in Part 1 of this book, you should understand the CICS
installation process, which is described in the CICS/MVS Installation Guide. To
use the information in Parts 2 through 6 of this book, you will need to be familiar
with the architecture of CICS and the programming interface to CICS.
Programming information can be found in the CICS/MVS Application
Programmer's Reference manual.

Resource definition information can be found in the CICS/MVS Resource
Definition (Online) manual and CICS/MVS Resource Definition (Macro) manual.
For information on the purpose of specific CICS components, see the CICS/MVS
Diagnosis Reference manual.

How to use this book
The parts and chapters of this book are self-contained. You should use an
individual part or chapter as a guide when performing the task described in it.

Notes on terminology
This publication uses the following terms:

CICS/MVS Customer Information Control System/Multiple Virtual Storage

IMS IMS/VS and IMS/ESA*

VTAM*

TCAM

ACF/VTAM* and the record interface of ACF/TCAM

TCAM and the DCB interface of ACF/TCAM.

* IBM Trademark. For a list of trademarks see page iii.

© Copyright IBM Corp. 1977, 1990 v

Book structure
"Part 1. System generation" on page 1

Contains the syntax of the macros for system generation.

"Part 2. Writing recovery and restart routines" on page 41
Tells you how to write recovery and restart routines.

"Part 3. Journal management" on page 155
Gives you information on the control of journal data sets.

"Part 4. Devices and telecommunication access methods" on page 183
Tells you how to provide support for access methods and various devices.

"Part 5. System enhancements" on page 287
Describes how to write system enhancements.

"Part 6. Flies and data sets" on page 485
Describes the control of files and data sets.

Appendix A, "Program generation summary" on page 503
lists the modules that can be generated using the DFHSG macro.

Appendix B, "Sample TCAM SNA message control programs" on page 515
Contains sample message control programs.

Appendix C, "Macro Instruction format" on page 533
Explains the format used for CICS macro instructions.

Appendix D, "Coding entries in the VTAM LOGON mode table" on page 535
Gives details of VTAM LOGON-mode table entries for automatic installation
of terminals.

Glossary

"Index" on page 569

vi CICS/MVS 2.1.2 Custol11lzation Guide

CICS/MVS 2.1.2 library

General

CICS Library Guide

GC33-03S6-04

Master Index

SC33-OS13-01

User's Handbook

SX33-6061-01

Messages and Codes

SC33-0S14-02
1..--

Service

Problem
Determination Guide

SC33-0S16-01

Diagnosis Handbook

LX33-6062-01

Diagnosis Reference

L Y33-6077 -00

Data Areas

L.Y~-43-6078-00

Eva~uatlon and
planning

r-------
Brochure

GC33-0S03-00

CICS General
Information

GC33-01S5-01

Facilities and Planning
Guide

SC33-0S04-01

Release Guide

GC33-0505-03

Data Tables General
Information

SC33-0684

Programming

CICS Application
Programming Primer

SC33-0674-00

Application
Programmer's
Reference

SC33-0S12-01

Administration

Installation Guide

SC33-0506-01

Customlzatlon Guide

SC33--0507 -02
r-

Resource Definition
(Online)

SC33-0S08-01

Resource Definition
(Macro)

SC33-0S09-02
--

Operations Guide

SC33-0S10-01
--

CICS-Supplied
Transactions

SC33-0S11-01

Version 1 books

CICSNS Application
Programmer's Reference
Manual (Macro Level)
(SC33-0079)

CICS/OSNS IBM 3270 Data
Stream Device Guide
(SC33-0232)

CICS/OSNS IBM
4700/3600/3630 Guide
(SC33-0233)

CICS/OSNS IBM 3650/3680
Guide (SC33-0234)

CICS/OSNS IBM
3767/3770/6670 Guide
(SC33-023S)

CICS/OSNS IBM
3790/3730/8100 Guide
(SC33-0236)

Special topics

Intercommunication
Guide

SC33-0519-02

Recovery and Restart
Guide

SC33-0S20-01

Performance Guide

SC33-0521-01

XRF Guide

SC33-0522-02

CICS Communicating
with CICS OS/2

SC33-0736-1

Data Tables Guide

SC33-0632-01

Preface vII

Related libraries
You may find the following books useful when you customize your CICS/MVS
2.1.2 system.

OS/VS TCAM Application Programmer's Guide, GC30-3036

OS/VS TCAM Installation and Migration Guide, GC30-3039

OS/VS TCAM System Programmer's Guide, GC30-2051

ACFITCAM Installation and Migration Guide, SC30-3121

ACFITCAM System Programmer's Guide, SC30-3117

ACFITCAM Version 3 Application Programming, SC30-3233

ACFIVTAM Planning and Installation Reference, SC27-0584

ACFIVTAM Version 3 Programming, SC23-0115

ACFIVTAM Installation and Resource Definition, SC23-0111

OS/VS2 MVS JCL, GC28-0962

OS/VS2 System Programming Library: Debugging Handbooks, GBOF-3821

OS/VS2 System Programming Library: Debugging Handbook Volume 1 ,
GC28-1047

OS/VS2 System Programming Library: Debugging Handbook Volume 2 ,
GC28-1048

OS/VS2 System Programming Library: Debugging Handbook Volume 3 ,
GC28-1049.

OS/VS2 MVS Programming Library: Job Management, GC28-0627.

IBM ESAI370 Principles of Operation, SA22-7200

IMS/ESA Application Programming: DLII Calls, SC26-4274

MVSIXA Introduction to Extended Recovery Facility (XRF) , GC28-1135.

MVSIXA Debugging Handbook Volume 1, LC28-1164.

MVSIXA Debugging Handbook Volume 2, LC28-1165.

MVSIXA Debugging Handbook Volume 3, LC28-1166.

MVSIXA Debugging Handbook Volume 4, LC28-1167.

MVSIXA Debugging Handbook Volume 5, LC28-1168.

MVSIESA Resource Measurement Facility (RMF), Version 4.1.1 - Monitor I & /I
Reference and User's Guide, LY28-1007

MVSIESA SPL: Application Development Guide, GC28-1852

MVSIESA SPL: Application Development Macro Reference, GC28-1857

MVSIESA SPL: System Management Facilities (SMF) , GC28-1819

RACF Macros and Interfaces, SC28-1345

System Programming Library: Resource Access Control Facility (RACF),
SC28-1343.

vIII CICS/MVS 2.1.2 Customlzatlon Guide

Contents

Special notices ...

Preface
Book structure
CICS/MVS 2.1.2 library

Related libraries

Summary of changes
Changes to structure of book

Questionnaire

Iii

v
vi
vii
viii

xv
xv

xvii

Part 1. System generation ... 1

Introduction
Examples of coding DFHSG macro instructions

Chapter 1.1. DFHSG TYPE = INITIAL macro

Chapter 1.2. DFHSG PROGRAM=xxx .
BFP - built-in functions program
BMS - basic mapping support program
CSA - common system area
CSO - control system operational group
CSS - control system service group
CSU - control system utility group
DBP - dynamic transaction backout program
DCP - dump control program
DIP - batch data interchange program
EIP - exec interface program
EXP - command (EXEC) language translator program
GAP - graphics attention program
HLL - high-level language support group
ICP - interval control program
ISC - intercommunication group
JCP - journal control program
KCP - task control program
KPP - keypoint program
MTP - master terminal program
PCP - program control program
PREGEN - starter system generation
SCP -_. storage control program
SRP - system recovery program
TBP - transaction bac:kolJt program ..
TCP -. terminal control program
TOP - transient data control program
TRP - trace control program

© Copyright IBM Corp. 1977, 1990

3
4

5

13
13
14
15
15
16
16
17
18
18
18
19
20
20
21
21
22
22
22
23
23
23
24
24
24
25
36
36

Ix

TSP - temporarY storage control program 37

Chapter 1.3. DFHSG TYPE = FINAL 39

Part 2. Writing recovery and restart routines 41

Chapter 2.1. Writing a system recovery table recovery routine or program 43
Default system recovery table 43
Creating a recovery routine or program 44

Chapter 2.2. Program level abend exit . 47

Chapter 2.3. Writing a program error program (DFHPEP) 51

Chapter 2.4. Writing dynamic transaction backout exits 53

Chapter 2.5. Writing a transaction restart program (DFHRTY) .. 57

Chapter 2.6. User-written exits for resource backout or recovery at
emergency restart 59

General description 59
The initialization/termination exit, XRCINIT 61
The input exit, XRCINPT 62
The open error exit, XRCOPER 63
The file error exit, XRCFCER .. 64

Chapter 2.7. Writing a user activity keypolnt program 67

Chapter 2.8. User-written utility to scan for unit of work Ids . 69
Format of UOWIO 69
System log processing algorithm 70

Chapter 2.9. The terminal error program
When an abnormal condition occurs
The sample terminal error program
User-written terminal error programs

Chapter 2.10. The node error program
Background to CICS-VTAM error handling
Why use a NEP to supplement CICS default action?
An overview of writing a NEP
When an abnormal condition occurs .
The sample node error program
User-written node error programs
The node error program in an XRF environment .

Chapter 2.11. The extended recovery facility overseer program
Introduction
The sample overseer program
Customizing the sample program ..

X CICS/MVS 2.1.2 Customizatlon Guide

71
71
73
94

109
110
111
112
117
123
133
136

139
,139
139
152

Part 3. Journal management

Chapter 3.1. Use of specialized journal functions
Customization programming
Layout and contents of journal records
Reading journal data sets
User-replaceable modules

Part 4. Devices and telecommunication access methods

Chapter 4.1. ACF/VTAM logical units with CICS
Overview of system programmer requirements
Basic concepts ...
Connection services .
Input services
Output services
Message recovery and emergency restart
CICS terminal control .
Transaction options
Automatic task initiation
User exit routines for CICS ACF/VTAM terminal control
BMS services .. .
Statistics
Message switching

Chapter 4.2. The CICSITCAM Interface
CICS with TCAM SNA
TCAM application program interface
CICS/TCAM interface
TCAM devices
TCAM user exits
CICS/TCAM ABEND/RESTART
CICS/TCAM termination
CICS and TCAM: program interrelationship

Chapter 4.3. Writing a transaction to IPL the IBM System/7
On a start/stop line
Using a BSC line

Chapter 4.4. IBM 3735 Programmable Buffered Terminal
System generation
Terminal control table preparation
Inquiry mode

Chapter 4.5. IBM 3740 Data Entry System
System generation
Sign-on table preparation
Terminal control table preparation
10 verification

Contents

155

157
157
164
174
179

183

185
185
186
188
190
191
192
198
198
199
200
201
202
203

205
206
209
210
219
221
224
224
225

229
229
230

231
231
231
231

233
233
233
233
233

xl

Chapter 4.6. IBM 3600 Finance Communication System In a BSC network . 235
System generation 235
Terminal control table preparation 235
Buffer depletion 236

Chapter 4.7. Modifying the terminal control table
Terminal locate function - DFHTC CTYPE = LOCATE
Changing status - DFHTC CTYPE=STATUS
Test CICS response to CTYPE requests - DFHTC CTYPE = CHECK
Command option for logical units - DFHTC CTYPE = COMMAND

Chapter 4.8. The user program for automatic installation of terminals
Start simply with autoinstall
Implementation checklist
Coding entries in the VTAM LOGON mode table
The user program
The user program at INSTALL ~
The user program at DELETE
Testing and debugging your user program
Example program

Chapter 4.9. Exits for "termlnal-not-known" condition
The terminal-not-known condition
The exits

Part 5. System enhancements

Chapter 5.1. Global user exits ..
List of exits
User exit interface
User exit handler
Using an exit
Enabling and disabling an exit program
Exit descriptions

Chapter 5.2. Exit to allow modification and redirection of CICS messages

Chapter 5.3. File control status exits

237
238
243
246
247

249
249
250
253
253
254
259
260
260

277
277
278

287

289
290
291
292
293
296
304

327

343

Chapter 5.4. Task-related user exits 345
Introduction to the task-related user exit mechanism (the adapter) 345
The stub program 347
The task-related user exit program 348
Adapter administration 360

Chapter 5.5. Writing postlnitialization and termination programs 369

Chapter 5.6. System Initialization overlays

Chapter 5.7. elcs security management
Security modules

xii CICS/MVS 2.1.2 Customizatlon Guide

373

377
377

RACF interface module - DFHXSE
Security identification module - DFHACEE
Transaction security
Resource security
Intercommunication link
Intersystem security ..

Chapter 5.B. CICS monitoring facility
Controlling the monitoring facilities
Collecting CICS monitoring data
Buffer reqUirements for monitoring
Defining event monitoring points in user application programs
Processing output from the CICS monitoring facility
User exits for accessing monitoring data

Chapter 5.9. Examining and modifying resource attributes
CICS-value data-areas
The INQUIRE and SET commands - points to note .
Examples of EXEC CICS INQUIRE/SET
INQUIRE and SET commands
CICS-VALUES used in INQUIRE and SET commands
EIBRCODEs of the INQUIRE and SET commands .

Chapter 5.10. CICS Interface to JES
General introduction
Typical use
EXEC CICS commands

Chapter 5.11. Finding programs that use CICS macros
SummalY report
Detailed report
Restrictions

Chapter 5.12. CEMT programming Interface

Part 6. Flies and data sets

Chapter 6.1. The explicit open/close function
Opening data sets and files - DFHOC TYPE = OPEN
Closing data sets and files - DFHOC TYPE = CLOSE
Switching dump data sets - DFHOC TYPE == SWITCH

·
·
·
·

.

380
382
382
384
384
385

387
388
388
390
391
397
416

423
424
424
427
430
460
463

465
465
468
471

481
481
482
482

483

485

487
488
491
492

Chapter 6.2. Dynamic allocation sample program 493
Table entries 494
Terminal operation 494
Help feature 495
Values 495

Chapter 6.3. Loading and accessing flies that use phonetic codes for keys 499

Contents xIII

Appendixes

Appendix A. Program generation summary
System generation modules listed by module name
System generation modules listed by DFHSG PROG,RAM =

Appendix B. Sample TCAM SNA message control programs

Appendix C. Macro Instruction format ..
Syntax notation

Appendix D. Coding entries In the VTAM LOGON mode table ...
Device definition options and pointers to related LOGMODE data
VT AM MODEENT macro operands
PSERVIC values for LUTYPEO, LUTYPE2, and LUTYPE3 devices ..
Matching models and LOGMODE entries
LOG MODE definitions for CICS-supplied autoinstall models .

Glossary

Index ..

xlv CICS/MVS 2.1.2 Customization Guide

501

503
503
509

515

533
534

535
535
537
541
543
561

563

569

Summary of changes

This edition is based on the CICS/MVS Customization Guide (SC33-0507-1), and
Incorporates updates and revisions as well as enhancements introduced by
CICS/MVS 2.1.1 and CICS/MVS 2.1.2. These enhancements are described in the
CICSIMVS Release Guide.

The opportunity has also been taken to correct errors and incorporate readers'
comments.

All changes that are new in this edition, other than editorial changes, are
marked by revision bars In the left margin, like this paragraph.

Changes to structure of book
As compared with SC33-0507-1, the following structural changes have been
made.

"Chapter 4.10. User-replaceable conversion module for CICS/MVS-CICS
OS/2 link" has been deleted. All material relating to links between CICS
OS/2* and CICS host products is now in the Communicating with CICS OS/2
manual.

Chapters 5.2 through 5.8 have been renumbered to 5.4 through 5.10
respectively.

The following new chapters have been introduced:

"Chapter 5.2. Exit to allow modification and redirection of CICS messages"

"Chapter 5.3. File control status exits"

"Chapter 5.11. Finding programs that use CICS macros"

* IBM Trademark. For a list of trademarks see page "I.
©~Copyrlght IBM Corp. 1977, 1990 xv

Questionnaire

CICS/MVS Version 2 Release 1 Modification 2
Customlzatlon Guide

Publication No. SC33·0507·02

To help us produce books that meet your needs, please fill in this questionnaire. A reader's comment
form is also included at the back of this book should you want to make more detailed comments.
Whichever form you use, your comments will be sent to the author's department for review and
appropriate action.

When you send information to 18M, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

1. Please rate the book on the points shown below

The book is:
accurate 2 3 4 5 inaccurate
readable 2 3 4 5 unreadable

well laid out 2 3 4 5 badly laid out
well organized 2 3 4 5 badly organized

easy to understand 2 3 4 5 incomprehensible
adequately illustrated 2 3 4 5 inadequately illustrated

has enough examples 2 3 4 5 has too few examples

And the book as a whole?
excellent 2 3 4 5 poor

2. Which topics does the book handle well? 3. And which does it handle badly?

4. How could the book be improved?

5. How often do you use this book? Less than once a month? 0 Monthly? 0 Weekly? 0 Daily? 0

6. What sort of work do you use CICS for? ____ _

7. How long have you been using CICS? ___ ~ears/months

8. Have you any othp.r comments to make? _____________ _

Thank you for your time and effort. No postage stamp necessary if mailed in USA. (If you are outside
the USA, please mail this form to your local IBM office or representative who will be happy to forward
your comments or you may mail directly to either address in the Edition Notice on the back of the title
page.) Be sure to print your name and address below if you would like a reply.

Name •••••..••••••••••••..••...••••.••..•.••••••••••••••••.••••••••.•••••. Job Title •••••••.•••••••••..••.••.•••.•••••••

Company •.•.•..••••.•••••••••.••.••...•...•.••.•••.•••• Address ••••••.••...••.••...•••••.•••.•.•.••••.••••.••••.•..•.•.••

..... ..•••.••••••••••••.••••.•••.•••..••..•••••••••••.•••••••••••••.••.• Zip .••..•••..••...•••••.••••.••.••.•••..••••.

Readers' Comments
SC33-0507 -02

Fold and Tape

-----------_.-. '---'

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO.·40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 6R1H
180 KOST ROAD
MECHANICSBURG PA 17055-0786

',1."1 ••• '1' •••• '.',1'.11'111.'11."111,111111,1'1'

Please do not staple'

==-= = Cui = =-= ::..:: Ate
:i:~:51i:®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITEO STATES.

Fold and Tape

Cut 0
Alon~

Part 1. System generation

© Copyright IBM Corp. 1977,1990 1

Introduction

Diagnosis, Modification, and Tuning Information

The CICS system is supplied on a distribution volume, which contains a
pregenerated system library.

The following chapters describe the system generation macro (DFHSG). You can
use this macro in the CICS system generation process to customize some parts
of the pregenerated system provided by ·CICS. In "Chapter 1.2. DFHSG
PROGRAM =xxx" on page 13, the modules of programs that have no options
placed after them are the ones that cannot be generated in a modified form
using DFHSG. You can request extra optional source materials to enable you to
regenerate these modules without options. This process produces modules in
the same form in which they appear in the pregenerated system. Certain other
modules cannot be generated at all using DFHSG.

You should first install the pregenerated system, and only customize individual
modules if your installation's requirements are not met. Some information about
the pregenerated versions is included in the following chapters, but for fuller
information about the pregenerated system, see the CICS/MVS Installation
Guide.

The system generation process consists of three steps:

1. Coding a set of CICS system generation (DFHSG) macro instructions to
specify the programs to be added or modified and to indicate how they
should be tailored to meet your needs.

2. Assembling the macro instructions.

3. Executing the job stream that results from assembly of the macro
instructions.

The process of assembling the macro instructions and executing the resultant
job stream for CICS/MVS 2.1.2 is described in the CICS/MVS Installation Guide.
The CICS/MVS Resource Definition (Macro) manual describes the system
initialization table (SIT), which is also used to choose program options. You
should also consult this book for more information about the different program
versions available in the pregenerated system.

The next three chapters describe the DFHSG operands used to generate CICS
system programs. The macro instructions are described in the following order:

• DFHSG TYPE = INITIAL.
• DFHSG PROGRAM =xxx in alphabetic order of program name
• DFHSG TYPE = FINAL.

In each case, the TYPE or PROGRAM operand appears first. If the instruction
has further operands, they are in alphabetic order. The macro format and syntax
notation are described in "Syntax notation" on page 534.

© Copyright IBM Corp. 1977, 1990 3

The modules generated by each DFHSG command are not listed in Part 1 of this
manual. For ease of reference there are two lists in Appendix A, "Program
generation summary" on page 503. The first list is ordered alphabetically by the
name of the module generated. The second list is ordered by the DFHSG
PROGRAM = keyword. Part 1 contains comments on some of the modules
generated by the individual DFHSG PROGRAM = xxx macros.

Examples of coding DFHSG macro instructions
For examples of how to code the DFHSG macro instructions, see the list of
macro instructions used to define the pregenerated system, which are provided
in member DFHSG04 of CICS212.MACLIB.

4 CICS/MVS 2.1.2 Customization Guide

Chapter 1.1. DFHSG TYPE = INITIAL macro

DFHSG TYPE=INITIAL
[,ASMBLR={IEVgelassembler-name}]
[,CICSSVC={216Inumber}]
[,DEBCHK={YESINO}]
[,{DLIIDLI}={NOIREMOTElstring}]
[,EJECT={YESln}]
[,MTSLIB={YESINO}]
[,MOD=(module,suffix[,module,suffix] ...)]
[,OPSYS=MVS/XA]
[,PREFIX=({CICS212Idprefix},[tprefix])]
[,PRINT=([{LISTINOLIST}]

[,{XREFINOXREFISHORTXREF}]
[,{DSECTINODSECTISOMEDSECT}]
[,DSLIST])]

[,PROCNMS=(DFHASMVS,DFHLNKVS,DFHSMPE!procedure-names)]
[,SMPZONE=({GPREF!globalzone},{TPREF!zonename})]
[,SRBSVC={215!number}]
[,STAGE2~{FORCEISELECTIVE}]
[, STARTER=YES]
[, VTAM={YES! NO}]

Purpose
You should prefix each set of system generation macro instructions with a
DFHSG TYPE = INITIAL macro instruction. You can reuse the procedures you
develop from using this macro instruction for subsequent generations of the
entire system or for parts of the system,

Modules generated
The following modules are generated in response to this macro instruction:

• DFHHPSVC - the service request block (SRB) type 6 supervisor call (SVC)
for the high performance option (HPO)

• DFHCSVC - the bootstrap type 2 SVC

• DFHASV - the page fix/free SVC routine,

Note: Stage 2 jobs will always be produced for DFHHPSVC and DFHCSVC,

Operands
You should use the DFHJOB macro to specify job card information. The DFHJOB
macro will be invoked by Stage 1 for each Stage 2 job produced. You should
edit the DFHJOB macro and customize it to your own requirements. The
CICS/MVS Installation Guide provides details of this operation. Use the DFHJOB
macro to specify accounting information and a jobname prefix.

© Copyright IBM Corp. 1977, 1990 5

TYPE = INITIAL
Indicates that this is the initial macro instruction in a CICS system generation,
run.

ASMBLR = {I EV901 assembler-name}
Code this with the name of the assembler to be used during Stage 2 of
system generation and to produce the proper job control language (JCl).
The default assembler for the MVS/XA* operating system is IEV90.

CICSSVC = {216Inumber}
Code this to specify the type 2 SVC number to be used for the CICS
bootstrap SVC that CICS will provide. This SVC is required if page-fixing is
to be used; that is, if ANTICPG = YES or ANTICPG = number is coded in
DFHPCT TYPE=ENTRY, if RES=FIX is coded in DFHPPT TYPE=ENTRY, or if
FIX=YES is coded in DFHAlT TYPE=ENTRY or DFHNlT TYPE=ENTRY, and
for CICS monitoring facility. The SVC is also required for the multiregion
operation (MRO) facility, the high performance option (HPO), the extended
recovery facility (XRF), Resource Access Control Facility (RACF) support, and
the device end program for the IBM* 7770 Audio Response Unit. The
number may be in the range 200 through 255; the default is 216.

You must also code CICSSVC in DFHSIT. See the CICSIMVS Resource
Definition (Macro) manual.

This operand controls the name given to the SVC routine that is generated
by the DFHSG TYPE = INITIAL macro.

OEBCHK = {YESINO}
Applies only to 7770 devices. DEB checking is required and has a default of
YES. DEBCHK = NO can only be coded if there are no 7770 devices on the
MVS* system.

YES
The DEB validity check facility is supported.

NO
The DEB validity check facility is not supported.

{DL 1IDLI} = {NOIREMOTElstring}
Code this to specify whether the Data language/l (DlII) interface is to be
included in this generation of CICS. The default is DLI = NO. You may code
DLI = NO on any DFHSG invocation to produce non-Dl/l versions of modules
for the group specified.

This parameter is required if IMS is being used.

DLII support is not required.

REMOTE
DlII support is required. All the databases that are to be accessed
reside on remote CICS systems and are to be accessed through
intercommunication support.

* IBM Trademark. For a list of trademarks see page iiI.

6 CICS/MVS 2.1.2 Customlzatlon Guide

OLi = YES must also be coded in OFHSIT or as a startup override when
OLi = REMOTE is used. The BUFPL, DL THREO, DMBPL, ENQPL, PISCHD,
PSB, and PSBPL operands need not be coded in DFHSIT. However, an
empty data management block directory list (ODIR) is required, together
with a program specification block directory list (PDIR) that contains
details of remote PSBs.

string
A string in the form n.n.n (where n is a single digit). The string indicates
the level of IMS/VS or IMS/ESA for which CICS/MVS 2.1.2 support is to
be included. CICS/MVS 2.1.2 supports IMS/VS Versions 1.3, 2.1, and 2.2,
and IMS/ESA 3.1. The string values for these are 1.3.0, 2.1.0, 2.2.0, and
3.1.0 respectively. Information about the IMS release levels required for
specific XRF and IMS functions is supplied in the CICSIMVS Release
Guide and the CICSIMVS XRF Guide.

If you code DLI = string, DLI = NO may be coded in any OFHSG
PROGRAM = group macro instruction to suppress the generation of
OLlI-dependent modules from that group.

EJECT= {YESln}
Code this to specify the effect of page ejects in the assembly listings of the
CICS modules. The default is EJECT = YES.

This operand can save paper by reducing the size of the CICS module
listings depending on the value chosen for "n". This operand has no effect if
you code PRINT = NOLIST.

YES
Normal page ejects wi" occur.

n A number from 2 to 99, controlling the number of spaces to be
substituted for page ejects. A separator line preceded and followed by a
"space x" statement (where x = n-2) wi" replace page ejects.

MTSLIB = {YESINO}
This operand specifies whether the CICS macro temporary storage (MTS)
data set is included in the overrides for the SYSLIB concatenation in the
stage 1 output of the system generation process

The MTS data set includes service that has been applied but not accepted.
Failure to include CICS212.MTS in the SYSLIB concatenation can cause
assembly errors for IMS-related modules.

YES
Overrides for the SYSLIB concatenation include the CICS MTS library.

Assuming the default prefix CICS212 is in effect, the data sets in the
SYSLIB concatenation are:

CICS212.MTS
CICS212.MACLIB
CICS212.S0URCE
IMSVS.OPTIONS (if DLI = string is coded)
IMSVS.GENLIB (if OLi = string is coded)
IMSVS.GENLIBA (if OLI = string is coded)

Chapter 1.1. DF~iSG TYPE=INITIAL macro 7

NO

IMSVS.GENLIBB (if DLI = string is coded)
SYS1.MACLIB
SYS1.AMODGEN.

Overrides punched for the SYSLIB concatenation do not include the CICS
MTS library. Apart from CICS212.MTS, the data sets included in the
SYSLIB concatenation are the same as those shown for MTSLIB = YES.

MOD = (module,sufflx[,module,suffix] ...)
Code this operand if the Stage 1 output produced by DFHSG will consist only
of the jobs for those modules named in this operand. All other Stage 2 jobs
will be suppressed. Stage 2 jobs for a module named in this operand will be
suppressed unless the SUFFIX operand in the appropriate DFHSG
PROGRAM =xxx macro instruction corresponds to the suffix parameter in the
MOD operand. This allows fixes for authorized program analysis reports
(APARs) to be applied to individual versions of the modules produced by
DFHSG PROGRAM =xxx macro instructions.

Note: Only the TCP group of programs and DBP are suffixable.

module
The abbreviated name of a CICS module (for example, ZCY for DFHZCY).
This name refers to the module generated by system generation macros
(see Appendix A, .. Program generation summary" on page 503) and
does not refer to the PROGRAM operand of the DFHSG macro
in stru ction.

The name specified must be that of an individual CICS module, and not
that of a group. To produce output for a program group, all the module
names in that group must be specified.

suffix
The optional suffix appended to the module. If this parameter is omitted,
an unsuffixed version of the module will be searched for in the Stage 1.
If ALL is coded, all Stage 1 versions will be dealt with. Only the TCP
group of programs and DBP are suffixable, but when the suffix parameter
is omitted, a comma must still be coded.

Example:

DFHSG TYPE = INITIAL, MOD = (ALP"KCP"SIA 1 "PCP"DBP, 1$,RLR,A$)
DFHSG PROGRAM = KCP
DFHSG PROGRAM = CSO
DFHSG PROGRAM = PCP
DFHSG PROGRAM = DBP,SUFFIX = 1$
DFHSG PROGRAM = BMS,BMSFUNC = STANDARD
DFHSG TYPE = FINAL

wi" produce Stage 1 jobs for DFHALP, DFHKCP, DFHSIA1, DFHPCP,
DFHDBP1$, and DFHRLRA$ and will suppress Stage 1 jobs for:

• DFHKCSP, DFHSPP, DFHSPZ (that is, other KPP modules)
• A" other CSO modules
• DFHRTY in DBP group
• All other BMS modules.

8 CICS/MVS 2.1.2 Customization Guide

OPSYS = MVS/XA
The OPSYS operand identifies the environment in which CICS is to operate.
MVS/XA is the required value for CICS/MVS 2.1.2, and will be assumed if you
omit the operand. The default assembler for MVS/XA is IEV90. Note that the
OPSYS option MVS/XA allows CICS/MVS 2.1.2 to run under either MVS/XA or
MVS/ESA*.

PREFIX = ({CICS212Idpreflx},[tpreflx])
Code this with the index names for the CICS system data sets. The JCL
generated specifies these data sets as tprefix.LOADLlB, tprefix.LOADLlB1,
tprefix.LOADLlB2, dprefix.MACLlB, dprefix.SOURCE, dprefix.SYSPUNCH, and
dprefix.DLOADLlB, where 'dprefix' (distribution prefix) and 'tprefix' (target
prefix) must conform to the data set naming conventions (maximum 35
characters).

If 'tprefix' is omitted, it will default to the value specified for 'dprefix', which
in turn defaults to CICS212.

PRINT = ([{LiSTI NOLIST }][,{XREFI NOXREFISHORTXREF}]
[,{DSECTINODSECTISOMEDSECT}][,DSLlST])
Code this to specify the printing option for the assembly of the CICS modules
during Stage 2 of system generation.

LIST
The total assembly listing is to be printed.

NOLIST
No assembly listing is produced. NOLlST, if coded, overrides all options
In the XREF and DSECT groups.

XREF
The cross-reference list is to be printed.

NOXREF
No cross-reference list is to be printed.

SHORTXREF
The cross-reference list is to contain only symbols that are referenced.

DSECT
All CICS DSECTs are to be printed for each program.

NODSECT
None of the CICS DSECTs will be printed.

SOMEDSECT
The large DSECTs (CSA, TCA, TCTLE, and TCTTE) are not to be printed.

DSLIST
One listing will be printed of all the DSECTs. DSECTs are suppressed in
each of the generated modules when NODSECT is in force. When
DSLIST is coded, a job to assemble the DSECTs listing (DFHDSCTS) is
generated from the DFHSG TYPE = INITIAL macro instruction.

I * IBM Trademark. For a list of trademarks see page III.

Chapter 1.1. DFHSG TYPE=INITIAL macro 9

PROCNMS = (name1 ,name2,name3)
Code this to specify the names of CICS cataloged procedures:

name1
Assembles CICS programs and user-written assembler language
programs. The default name is DFHASMVS.

name2
Link-edits CICS programs and application programs. The default name
is DFHLNKVS.

name3
Executes the system modification program. The default name Is
DFHSMPE.

SMPZONE=({GPREt:lglobalzone},{TPREFlzonename})
Code this to provide information about the SMP/E database, known as the
SM PCSI or CSI.

The globalzone is the prefix for the VSAM data set containing the SMP/E
global zone (the top level of the CSI) that controls your CICS libraries. The
globalzone identifier must not be more than 38 characters long.

This value will be specified on the GZONE parameter of the DFHSMPE
procedure invoked in stage 2 of system generation. At that time it Is suffixed
with the characters '.CSI' to form the cluster name of the global zone data
set. The default globalzone value is GPREF.

The zonename is the name of the SMP/E target zone that you want to
update. The zonename value must not be more than 7 characters long, and
the default value is TPREF.

This value will be specified on the ZNAME parameter of the DFHSMPE
procedure invoked in stage 2 of system generation. At that time it is used to
generate a SET BDY statement, which directs SMP/E to the target zone on
which subsequent SMP/E processing is to be done. The target zone that you
specify must correspond to the set of target libraries that the stage 2 jobs
will update; that is, to the value of 'tprefix' on the PREFIX operand.

For an explanation of how CICS is installed and serviced under SMP/E see
the CICSIMVS Installation Guide.

SRBSVC = {215Inumber}
Code this with the SRB SVC number to be used for invoking the service
request block (SRB) routine provided by CICS. This routine (DFHHPSVC)
must be link-edited into your MVS nucleus. It is required to obtain access to
the (SRB-dependent function) VTAM authorized-path HPO. The number
coded must be in the range 200 to 255. You must also code SRBSVC and
ZCP= HPO in DFHSIT. See the CICSIMVS Resource Definition (Macro)
manual. If SRBSVC = number is coded, CICSSVC = number is also required.

STAGE2 = {FORCEI~ELECTI~E}
Code this if DFHSG is to produce stage 2 jobs for programs requested. The
option coded In this macro sets the defaults for the STAGE2 operands of
other system generation macros. (Only DFHSG PROGRAM = DBP and
DFHSG PROGRAM =TCP are affected by this operand.) The default for
DFHSG TYPE = INITIAL is SELECTIVE.

10 CICS/MVS 2.1.2 Customlzatlon Guide

The STAGE2 operand is not relevant when STARTER=YES is coded. If you
code STARTER = YES, this implies STAGE2 = FORCE. A DFHSG
TYPE = INITIAL macro with the MOD operand should be used, therefore,
when selectively generating pregenerated system modules.

FORCE
The stage 2 jobs are to be generated for any system generation
programs requested. This must be coded if the IBM-supplied
pregenerated system is not being used.

SELECTIVE
Stage 2 jobs may be selectively suppressed.

ST AGE2 = SELECTIVE causes DFHSG to suppress generation of the stage
2 job for any module supplied in the CICS pregenerated system.
MNOTEs produced during the stage 1 assembly indicate which jobs have
been suppressed and which jobs have been generated.

STARTER = YES
Code this if pregenerated system modules (with $ suffixes) are to be
generated and various MNOTEs are to be suppressed. This operand must
be used when service is to be applied to pregenerated system modules.

VTAM = {YESINO}
Code this to specify whether ACF/VTAM support is required. The default is
YES.

YES
ACF/VTAM support is required.

NO
ACF/VTAM support is not required.

Chapter 1.1. DFHSG TVPE=INITIAL macro 11

Chapter 1.2. DFHSG PROGRAM=xxx

BFP - built-in functions program

DFHSG PROGRAM=BFP

Purpose
DFHSG PROGRAM = BFP generates the built-in functions program, which
provides the following facilities:

• Table search

• Verification of a data field - verify alphabetic or numeric

• Editing of a data field - removing unwanted characters

• Phonetic conversion

• Bit manipulation

• Input formatting

• Weighted retrieval function, which allows the user to search a specified
group of records on a VSAM data set and to select only those records that
satisfy specified criteria.

Notes:

1. The phonetic code conversion program (DFHPHN) is an offline subroutine
which provides the facility to convert a 16-character name to a 4-byte
phonetic code. See the "Built-in function" macro instruction DFHBIF
TYPE = PHONETIC in the CICSIVS Application Programmer's Reference
Manual (Macro Level) for the rules of the conversion.

2. The field-separator and field-name start characters are used for Input
formatting. The field-separator characters are specified by the FLDSEP
operand of the DFHSIT macro instruction. The field-name start character is
specified by the FLDSTRT operand of the DFHSIT macro instruction.

© Copyright IBM Corp. 1977, 1990 13

BMS - basic mapping support program

DFHSG PROGRAM=BMS
[,BMSFUNC={MINIMUMISTANDARDIFULL}]

Purpose
The basic mapping support program, which can be generated by DFHSG
PROGRAM = BMS, provides BMS functions. Code the BMSFUNC operand to
select a level of BMS support, and from that you select the level of support you
want in your system by using the BMS parameter on the system initialization
table (SIT). See the CICSIMVS Resource Definition (Macro) manual. Note that
you cannot select the FULL version on the SIT if you have selected the MINIMUM
or STANDARD version in SYSGEN. If you select the full version of BMS, you will
also require the temporary storage control program (TSP). The pregenerated
version of BMS provides minimum, standard, and full versions, and you use the
SIT to select your level of support in the same way as if you had used SYSGEN.

The modules are allocated as follows:

For the minimum version:

• Mapping control program (DFHMCP).

For the standard version (in addition):

• Page build program (DFHPBP)
• Non-3270 input mapping (DFHIIP)
• IBM 3270 Information Display System mapping (DFHM32)
• Data stream builder (DFHDSB)
• Route list resolution (DFHRLR)
• Terminal page program (DFHTPP)
• Fast path module (DFHMCX)
• LUI printer mapping (DFHMLI)
• Partition handling program (DFHPHP).

For the full version (in addition):

• Terminal page clean-up (DFHTPQ)
• Terminal page retrieval (DFHTPR)
• Terminal page scheduling (DFHTPS).

Operand
BMSFUNC = {MINIMUMISTANDARDIFULL}

This indicates which version of BMS is to be generated. The default is FULL.

MINIMUM
Code this for the minimum version of BMS.

STANDARD
Code this for the standard version of BMS.

14 CICS/MVS 2.1.2 Customlzatlon Guide

FULL
Code for the full version of BMS.

eSA - common system area

DFHSG PROGRAM=CSA

Purpose
The common system area can be generated by DFHSG PROGRAM = CSA.

In addition to generating the CSA, the execution of this macro instruction causes
the assembly of terminal control's TCA, task control's TCA, and a
write-to-operator (WTO) routine.

eso - control system operational group

DFHSG PROGRAM=CSO
[,CAA=appendage-suffix]

Purpose
The control system operational group can be generated by DFHSG
PROGRAM = CSO.

Notes:

1. In non-BTAM systems, MSGIPK097 referring to the BTAM WAIT macro should
be ignored in the Stage 2 assembly of DFHSTP.

2. The modules generated by this command that concern DL/I are only
generated if DLII is specified in the DFHSG TYPE = INITIAL command.

3. The 7770 read/write program is only generated if the CAA operand is coded.

4. The 7770 channel/abnormal end appendage program (IGG019zz where zz is
the value coded for the CAA operand) is only generated if the CICSSVC and
CAA operands are coded.

5. The 7770 device end program (DFHDEB70) Is generated only if the CICSSVC
and CAA operands are coded.

6. To use the message switching program (DFHMSP), basic mapping support
must be generated with BMS = FULL on the SIT. In addition, the temporary
storage control program is required.

7. Ensure that the assemblies for DFHEAI and DFHEAIO are complete before
link-editing DFHRCEX.

Chapter 1.2. DFHSG PROGRAM = xxx 15

8. The DFHCRC, the interregion abnormal exit program, is generated in this
group. DFHCRC includes the CICS SVC number, which must agree with that
installed in the system (for details, refer to the CICS/MVS Installation Guide).

Operands
CAA = appendage-suffix

Code this with the 2-character alphanumeric suffix to be assigned to the 7770
channel end/abnormal end appendage routine provided by CICS when that
routine is link-edited into CICS.LOADLIS by the Stage 2 job. The module is
then known as IGG019xx, where xx is the suffix coded. The suffix coded
must be in the range WA to Z9. This operand is required if the
ACCMETH = STAM and ST AMDEV = 7770 operands are included in DFHSG
PROGRAM = TCP, and if the APPENDG operand is included in DFHTCT
TYPE = SDSCI. For information on adding appendages to the operating
system, see OS/VS2 System Program Library: Data Management, GC26-3830.

Note: IGG019xx must be copied from CICS.LOADLIS into SYS1.LPALIS for
MVS.

CSS - control system service group

OFHSG PROGRAM=CSS

Purpose
The control system service group can be generated by DFHSG PROGRAM = CSS.

CSU - control system utility group

OFHSG PROGRAM=CSU

Purpose
The control system utility group can be generated by DFHSG PROGRAM = CSU.

Support for all device types is generated for DFHDUP, DFHSTUP, and DFHTUP.

16 CICS/MVS 2.1.2 Customlzation Guide

DBP - dynamic transaction backout program

DFHSG PROGRAM=DBP
[, {DLI IDll}=NO]
[,STAGE2={SElECTIVEIFORCE}]
[, SUFFI x=xx]

Purpose
OFHSG PROGRAM = OBP generates the dynamic transaction backout programs.

The function of the dynamic transaction backout program is to back out the
effects of a single in-flight task that terminates abnormally, and to restore
protected resources, that were altered by the task that failed, to the state they
were in at the beginning of the logical unit of work (LUW). This feature operates
while the rest of the CICS system is functioning normally, and not, as in the case
of the transaction backout program, when emergency restart is invoked after
CICS is unable to terminate normally.

There is one pregenerated version: OFHOBP1$, which has no OUI support.
OFHOBP2$, which does have OUI support, is generated as part of the CICS
system generation for full OL/I support.

Operands
{DLIIDL 1} = NO

You can code OLI = NO to remove the OLII support you specified in OFHSG
TYPE = INITIAL. A dynamic transaction backout program without OUI
support is generated in this way.

STAGE2= {SELECTIVEIFORCE}
May be used to override the specification of the default, set by the STAGE2
operand of DFHSG TYPE = INITIAL for producing the stage 2 job stream of
this program.

SELECTIVE
Indicates that the stage 2 job stream for this program will be suppressed
if that version of the program already exists on the pregenerated system.

FORCE
Forces generation of all stage 2 jobs for this program.

SUFFIX=xx
When you code the suffix, only OFHDBP receives it. SIJFFIX=xx provides a
1-or 2-character suffix for the program being generated. If you generate your
own version of DBP, do not use special characters or the reserved
characters NO and DY. Do not use $ or # as the first suffix character.

Chapter 1.2. DFHSG PROGRAM = xxx 17

DCP - dump control program

DFHSG PROGRAM=DCP J
Purpose
The dump control program can be generated by DFHSG PROGRAM = DCP.

DIP - batch data interchange program

I DFHSG PROGRAM=DIP]
Purpose
The batch data interchange program, which can be generated by DFHSG
PROGRAM = DIP, supports data communication between application programs
running under CICS and logical units such as the IBM 6670, 3770, and 3790 Data
Communication Systems.

The batch data interchange program also provides data management functions
used with the 6670, 3790 and 3770 logical units.

The batch data interchange program must also be generated when a batch
logical unit requires BMS features.

----_._-_._-------
EIP exec interface program

~HSG PROGRAM=EIP __ J
Purpose'
The DFHSG PROGRAM =EIP macro generates an EXEC interface program, which
supports the functions that can be accessed by the application programmer's
command interface.

This is needed when the intercommunication facilities or the enhanced master
terminal support (CEMT, CEST, and CEOT transactions) are being used.

18 CICS/MVS 2.1.2 Custornlzatlon Guide

Notes:

1. Generation of PLII shared library support is described in the CICSIMVS
Operations Guide.

2. You must assemble DFHEAI and DFHEAIO before you link-edit the EIP
modules given in the list under EXP below.

EXP - command (EXEC) language translator program

DFHSG PROGRAM=EXP

Purpose
DFHSG PROGRAM = EXP can generate a translator for the command interface to
application programs written in PL/I, COBOL, or assembler. If your application
programs use the command interface to CICS, you will also need the EXEC
interface program. For further details, see the installation manuals for the
appropriate compilers.

Notes:

1. DFHSG PROGRAM =HLL need only be generated if the macro interface to
CICS is being used for PLII and COBOL programs.

2. Translators for all languages are supplied in the pregenerated version of this
program.

3. Generation of PL/I shared library support is described in the CICSIMVS
Operations Guide.

4. DFHEAI and DFHEAIO are generated from this program group even when
support for the assembler HLPI is not requested. This is because EDF
(generated from EIP) requires these assembler stubs at link-edit time.

Ensure that the assemblies for DFHEAI and DFHEAIO are complete before
link-editing the following modules:

• DFHRCEX (in CSO)

• DFHRMSY (in KPP)

• DFHMIR, DFHMXP (in ISC)

• DFHBRCP, DFHECID, DFHECIP, DFHECSP, DFHEDAD, DFHEDAP,
DFHEDFBR,DFHEDFD,DFHEMTA,DFHEMTD,DFHEMTP,DFHEOTP,
DFHESTP (in EIP).

Chapter 1.2. DFHSG PROGRAM = xxx 19

GAP - graphics attention program

DFHSG PROGRAM=GAP

Purpose
The graphics attention program can be provided by the DFHSG
PROGRAM = GAP macro, which must be issued only if support for local IBM 2260
Display Stations is to be generated. This macro is not required under TCAM.

HLL - high-level language support group

DFHSG PROGRAM=HLL

Purpose
The high-level language support group, which can be generated by DFHSG
PROGRAM = HLL, allows the COBOL or PUI application programmer to use the
macro interface to CICS. If application programs use only the command
interface to CICS, the high-level language support group is not required. For
details of the command interface to CICS, see DFHSG PROGRAM =EIP and
DFHSG PROGRAM = EXP earlier in this part.

Notes:

1. The CICS preprocessor program (DFHPRPR) can be used for COBOL, or PUI,
or both.

2. Shared library transfer vector (PLISHRE) interfaces between PLII optimizer
code and its shared library modules.

3. The pregenerated version of this program provides full support for COBOL
and PUI.

4. Generation of PLII shared library support is described in the CICS/MVS
Operations Guide.

20 CICS/MVS 2.1.2 Customization Guide

ICP - interval control program

DFHSG PROGRAM=ICP

Purpose
DFHSG PROGRAM = ICP generates the interval control program.

If interval control requests are used to store data for a future task, the temporary
storage program must be available on the system.

ISC - intercommunication group

DFHSG PROGRAM=ISC

Purpose
The DFHSG PROGRAM = ISC macro instruction provides support for the CICS
intercommunication facilities, where communication takes place between CICS
systems or between CICS regions within a system.

In addition, DFHSG PROGRAM =TCP must be generated with ACCMETH =VTAM
and VTAMDEV = LUTYPE6 when a connection, through ACF/VTAM, is required
either in the same domain or cross-domain. DFHSG PROGRAM =TCP with
ACCMETH = IRC must be coded when a region-remote connection, through the
multiregion operation (MRO) facility, is required for CICS regions within the
same processing unit.

The DFHSG PROGRAM = ISC macro is also required for CICS shared database.

In addition, DFHSG PROGRAM =TCP must contain ACCMETH = IRe.

Notes:

1. The following modules are for use with the DLII shared database facility:

• Batch transformer program (DFHXFQ)
• Dependent region program (DFHDRP)
• Batch region controller modules (DFHDRPA through DFHDRPG).

2. DFHSG macro instructions for PROGRAM = EIP and PROGRAM = EXP must
precede that for PROGRAM = ISC, either as part of the same job or as an
earlier job.

Chapter 1.2. DFHSG PROGRAM = xxx 21

JCP - journal control program

~HSG PROGRAM=JCP

Purpose
The journal control program can be generated by DFHSG PROGRAM = JCP.

Notes:

1. The pregenerated version of this program provides support for:

Automatic journaling
Dynamic transaction backout
NOTE requests.

2. The SIT keyword DTB = AUXI MAIN controls the handling of spilled records
. when the dynamic buffer is overloaded. AUX implies that temporary storage
auxiliary storage is to be used, MAIN that the spilled records are to be held
in virtual storage. If you are using an XA machine, virtual storage is always
used.

KCP - task control program

DFHSG PROGRAM=KCP

Purpose
The task control program can be generated by DFHSG PROGRAM = KCP.

KPP - keypoint program

DFHSG PROGRAM=KPP

Purpose
DFHSG PROGRAM = KPP generates programs associated with recovery.

22 CICS/MVS 2.1.2 Customlzatlon Guide

Notes:

1. A DFHSG macro instruction for PROGRAM = EXP must precede the
instruction for KPP, because DFHEAI and DFHEAIO are required on the
SYSPUNCH data set. You may generate EXP as part of the same job, or you
can generate it earlier.

2. The pregenerated version provides full support for activity keypointlng.

MYP - master terminal program

DFHSG PROGRAM=MTP

Purpose
The DFHSG PROGRAM = MTP generates the master terminal program, which is
used by the master terminal (CSMT), supervisory terminal (CSST), and operator
terminal (CSOT) transactions.

PCP - program control program

DFHSG PROGRAM=PCP

Purpose
DFHSG PROGRAM = PCP generates the program control program.

Note: This macro provides support for assembler, COBOL, and PUI application
programs, including American Wational Standards Institute COBOL V3 and
V4. It also supports HLL trace. The pregenerated version also provides
all this support.

PREGEN - starter system generation

DFHSGPROGRAM=PREGEN

Purpose
DFHSG PROGRAM = PREC3EN is for IBM use, and is not intended for general use.
You may require it when service is being applied to pregenerated system
modules.

Chapter '1.2. DFHSG PROGRAM = xxx 23

SCP - storage control program

DFHSG PROGRAM=SCP

Purpose
The DFHSG PROGRAM = SCP macro instruction generates the storage control
program.

SRP - system recovery program

DFHSG PROGRAM=SRP

Purpose
The system recovery program, generated by DFHSG PROGRAM = SRP, is a
generalized abnormal-termination handler. During CICS initialization, it issues
the ESPIE and ESTAE macro instructions. During execution it is given control by
the operating system if a program interruption or an operating system abend
occurs.

Note: If SRT = NO is coded in the system initialization table or as an operator
override, then SRP will take the required dumps, but will not provide any
recovery action for program checks or for operating system abends.

TBP - transaction backout program

DFHSG PROGRAM=TBP
[, {DLI lOLl }=NO]

Purpose
There are five transaction backout programs, generated by DFHSG
PROGRAM =TBP. They are: DFHUSBP, DFHTSBP, DFHTCBP, DFHFCBP, and
DFHDLBP. They are responsible for backing out changes made to CICS
protected resources by transactions that were in-flight when the system was
interrupted. This program must be generated if the keypoint program is included
in your system.

24 CICS/MVS 2.1.2 Customlzation Guide

The transaction backout programs are required components of emergency
restart, which includes the collection of messages to allow message recovery.
Further information about the backout programs (but not DFHTSBP) may be
found In "Chapter 2.6. User-written exits for resource backout or recovery at
emergency restart" on page 59.

Operand
{DLlIDL1}=NO

You can code DLI = NO to remove the DLII support you specified in DFHSG
TYPE = INITIAL.

If you code DLI = NO, you will not generate DFHDLBP.

TCP - terminal control program

DFHSG PROGRAM=TCP
,ACCMETH=(method [,method], ...)
[,ANSWRBK=(identification[,identification], ...)]
[,AUTOTRN={NOIYES}]
[,BSCODE=([EBCDIC] [,ASCII])]
[,BTAMDEV=(device[,device], ...)]
[,CHNASSY={NOIYES}]
[,CONVTAB=([ABB] [,ABC] [,2741EU] [,2741EM]

[,2741CU] [,2741CM])]
[,DEVICE=(device[,device], .•.)]
[,EODI={E0Ixx}]
[,FEATURE=(feature[,feature], ...)]
[, I NITRL=YES]
[,LOCKF=YES]
[,LOGREC={NOIYES}]
[,PIPELN={NOIYES}]
[,PUNSOL={NOIYES}]
[,STAGE2={SELECTIVEIFORCE}]
[,SUFFIX=xx]
[,TBLFIX={NOIYES}]
[,TCM3270=YES]
[,TWXOFF=xx]
[, TWXON=xx]
[,UCTRAN={NOI([EBCDIC][,ASCII])}]
[,VTAMDEV=(dev;ce[,device], ...)]
[,WRAPLST={NOIYES}]

Chapter 1.2. DFHSG PROGRAM = xxx 25

Purpose
The DFHSG PROGRAM = TCP macro instruction generates the terminal control
program.

Modules generated
The programs generated are as follows:

For all access methods:

• Console activity control (OFHZCNA)
• Console application request (DFHZCNR)
• 3270 print function support (DFHP3270)
• Terminal control (DFHZCP and DFHZCX). *

For ACCMETH = VT AM:

• Good morning message program (DFHGMM)
• 3270 print function support modules:

DFHRKB
DFHCPY
DFHPRK
DFHEXI.

• RPL executor in SRB mode (DFHZHPRX)
• Resend program (DFHZRSP)
• Response logging program (OFHZRLG)
• Terminal control program modules:

DFHZCA
DFHZCB *
DFHZCC *
DFHZCW *
DFHZCY
DFHZCZ. *

• Node abnormal condition program (DFHZNAC)
• Node error program (OFHZNEP). *

For ACCMETH values other than VTAM:

• Terminal control program (DFHTCP). *

Notes:

1. Stage 2 jobs will always be produced for the modules marked "*".

2. If SRBSVC = number is coded in OFHSG TYPE = INITIAL, VTAM authorized
path is used in DFHZCP to give improved performance characteristics.

3. DFHTCP, DFHZCP, DFHZCB, DFHZCX, and DFHZCZ will receive a suffix when
the SUFFIX=xx operand is coded.

4. Four pregenerated versions of TCP are provided:

• A$, covering SAM (all devices), BTAM (local 3270)

• B$, covering SAM (all devices), BTAM (local 3270, remote 3270, IBM 3275
Display Station dial-up)

26 CICS/MVS 2.1.2 Customization Guide

• E$, covering SAM (all devices), VTAM (3270, 3790, IBM 3600 Finance
Communication System), but with no support for LUTYPE6 protocols

• S$, covering all access methods and all devices, and including support
for LUTYPE6.1 and LUTYPE6.2 protocols.

5. In the pregenerated system, 7770 devices are not supported. You must use
SYSGEN options if you use this device.

Operands
ACCMETH = {method[,method], .•. }

Code this to identify the access method(s) to be used in the terminal
environment. One or more of the following keyword parameters must be
coded:

Method Required

TCAM
BTAM BTAMDEV
BSAM DEVICE
SAM DEVICE
BGAM
VTAM VTAMDEV
IRC

SAM and BSAM are functionally synonymous in CICS, and can be used
interchangeably. Only unblocked data sets can be used with SAM or BSAM.
BGAM provides 2260 support.

Notes:

1. Do not code ACCMETH = VTAM if VTAM = NO was coded in DFHSG
TYPE = INITIAL.

2. ACCMETH = VT AM and VTAMDEV = LUTYPE6 must be coded for a
connection, via ACF/VTAM, that is either in the same domain or
cross-domain.

3. ACCMETH = IRC generates control code in the group of DFHZCP modules
for the DLII shared database interregion control module and for
region-remote connections when the multiregion operation (MRO) facility
is being used. If any other ACCMETH value is coded, this control code is
automatically generated, and ACCMETH = IRC can be omitted.

ANSWRBK = {Identification [,Identification], ... }
Code this with the type of terminal identification. This must be used if
FEATURE = AUTOANSW is coded. The parameters of this operand are not
mutually exclusive. This operand is applicable only when ACCMETH = BTAM
is coded.

AUTOMATIC
Automatic terminal identification is to be sent by the terminal. This
option is only valid for BTAMDEV=TWX.

EXIDVER
BT AM expanded identification verification is to be used to identify those
terminals that transmit unique identification sequences.
ANSWRBK = EXIDVER may be coded for all BTAM BSC dial devices

Chapter 1.2. DFHSG PROGRAM = xxx 27

(except for the IBM 2780 Data Transmission Terminal) that require the
expanded 10 verification feature.

TERMINAL
The operator will supply the identification for switched lines.

7770TERM
The operator will supply the terminal identification.

7770NULL
No terminal identification is to be sent by either the terminal or by the
operator; instead, the terminal control program will connect the line to
the next available terminal in the terminal pool. The default is
ANSWRBK = 7770TERM, providing BTAMDEV = 7770 has also been coded.

Note: The ANSWRBK operand must include all keyword parameters for
which the corresponding parameter is to be included in DFHTCT
TYPE=LlNE.

AUTOTRN = {NOIYES}
Code this if the optional automatic transaction Initiation feature is to be
included in CICS. The default is AUTOTRN = NO.

Automatic transaction initiation is not required.

YES
Automatic transaction initiation is required.

BSCODE = ([EBCDIC][,ASCII])
Code this for the types of binary synchronous communication code to be
supported when ACCMETH = BTAM is coded. The default is
BSCOOE = (EBCOIC,ASCII).

EBCDIC
Extended Binary Coded Decimal Interchange Code.

ASCII
American Standard Code for Information Interchange.

BTAMDEV= (devlce[,devlce], ...)
Code this to identify the IBM BTAM device types. This operand must be
coded if ACCMETH = BTAM is coded. The applicable keyword parameters
are:

1050

10500

1053

2260

2265

2740

27400

28 CICS/MVS 2.1.2 Customization Guide

IBM 1050 Data Communication System.

1050 Data Communication System (dial-up).

IBM 1053 Printer on a Local/Remote IBM 2848 Display Control
Unit.

2260 Display Station (Remote).

IBM 2265 Display Station.

IBM 2740 Communication Terminal Model 1.

2740 Communication Terminal Model 1 (dial-up).

2740-2

2741C

2741E

27410C

2741DE

2770

27700

2780

27800

2980/1

2980/2

2980/4

3275

32750

L3270

R3270

3600

3660

37350

3740

37400

3780

37800

7770

SYS/3

SYS/30

SYS/7

SYS/70

S/370

S/3700

2740 Communication Terminal Model 2 (2740 must also be
specified).

IBM 2741 Communication Terminal with correspondence code.

2741 Communication Terminal with PTTCIEBCO code.

2741 Communication Terminal with correspondence code
(dial-up).

2741 Communication Terminal with PTTC/EBCD code (dial-up).

IBM 2770 Data Communication System.

2770 Data Communication System (dial-up).

2780 Data Transmission Terminal.

2780 Data Transmission Terminal (dial-up).

IBM 2980 General Banking Terminal System Model 1.

2980 General Banking Terminal System Model 2.

2980 General Banking Terminal System Model 4.

3275 Display Station (remote).

3275 Display Station (dial-up).

Local support for IBM 3276 Control Unit Display Station, IBM
3277, 3278, and 3279 Display Stations and IBM 3284, 3286, 3287,
3288, and 3289 Printers.

Remote support for 3276, 3277, 3278, and 3279 Display Stations
and 3284, 3286, 3287, 3288, and 3289 Printers.

3600 Finance Communication System.

IBM 3660 Supermarket Scanning System.

IBM 3735 Programmable Buffered Terminal (dial-up).

IBM 3740 Data Entry System.

3740 Data Entry System (dial-up).

IBM 3780 Data Communication Terminal.

3780 Data Communica1ion Terminal (dial-up).

7770 Audio Response ,Unit Model 3.

IBM System/3 Models 6 and 10.

System/3 Models 6 and 10 (dial-up).

IBM System/7.

System/7 (dial-up).

IBM System/370.*

System/370 (dial-up).

* IBM Trademark. For a list of trademarks see page III.

Chapter 1.2. DFHSG PROGRAM = xxx 29

S/7BSCA System/7 with Binary Synchronous Communications Adapter.

S/7BSCAD System/7 with Binary Synchronous Communications Adapter
(dial-up).

TLX Teletypewriter (WTC only). The Autocall feature is not supported
by CICS. (This feature is for World Trade users only.)

TWX IBM CPT Teletypwriter Exchange System (Model 33/35).

Note: In the codes, the prefixes L (for local) and R (for remote) are used
with the four-digit IBM product number of each device in the 3270
family.

Individual device type parameters are provided for the BTAMDEV operand so
that system generation input is self-documenting. If the parameter length for
this operand exceeds the assembler limit of 255 characters for the particular
system being generated, synonymous parameters can be omitted.
Specifying anyone of the parameters from a group produces code for all
devices in the group. These groups are:

SYS/3, S/370, BISYNC, S/7BSCA, SYS/3D, S/3700, S/7BSCAD,
3660, 2260, 2265.

CHNASSY = {NOIVES}
Code this if a complete SNA chain of logically grouped records is to be read
before any of the input data is presented to the application program. This
operand is only to be used when ACCMETH = VTAM is coded. The default is
CHNASSY = NO.

NO

YES

Chain assembly support is not to be generated in the ZCP group of
modules.

Chain assembly support is to be generated in the ZCP group of modules.

CONVTAB = ([ABB][,ABC][,2741EU] [,2741EM][,2741CU][,2741CM])
Code this with the type of conversion to be performed on the data received
from the 7770 Audio Response Unit or the 2'141 terminal.

• If BTAMDEV = 7770, CONVTAB = ABB and/or ABC applies. The default is
CONVT AB = (ABB,ABC).

• If BTAMDEV=2741E and/or 27410E, CONVTAB=2741EU and/or 2741EM
applies. The default is CONVTAB ==2741EU.

• If BTAMDEV=2741C and/or 2741 DC,CONVTAB =2741CU and/or 2741CM
applies. The default is CONVTAB = 2741CU.

ABB
Conversion from ABB transmission code.

ABC
Conversion from ABC transmission code.

30 CICS/MVS 2.1.2 Customlzation Guide

2741EU
Data received from a 2741 EBCDIC terminal will be translated to
uppercase.

2741EM
Data received from a 2741 EBCDIC terminal will be translated to text
mode.

2741CU
Data received from a 2741 correspondence terminal will be translated to
uppercase.

2741CM
Data received from a 2741 correspondence terminal will be translated to
text mode.

Note: The 2741 Autocall feature is not supported by CICS.

DEVICE = (devlce[,devlce], ...)
Code this to identify the direct access or sequential devices that are to be
used in the terminal environment. This operand must be used if
ACCMETH = SAM or ACCMETH = SSAM is coded. The applicable parameters
are: CRLP (card reader, line printer), DASO, and TAPE.

EODI = {EOlxx}
Code this with the end-of-data indicator for sequential input. The characters
xx represent two hexadecimal characters in the range 01 to FF. The default
is EOOI =EO, which is equivalent to the 0-2-8 punch formerly used as an
end-of-data indicator.

FEATURE = (feature[,feature], ...)
Code this with the special features present in the terminal environment. The
applicable keyword parameters are:

AUTOANSW
Automatic answer feature. This enables a control unit to respond
automatically to a call received over a switched line. When BTAM is
used, this feature is required for the 3275 and for all dialed devices.

AUTO POLL
Automatic polling feature. When STAM is used, this feature is required
for multipoint SSC terminals.

BUFFRECV
Buffered receive feature for 2740 Model 2.

PSEUDOBIN
Pseudobinary transmission code for System/7.

RDATT
2741 Read Attention feature.

TRANSPARENCY
Character transparency for the 2770, 2780, 3600 BSC, S/3, S/370, and
S/7BSCA.

Chapter 1.2. DFHSG PROGRAM = xxx 31

WRBRK
2741 Write Break feature.

INITRL=YES
Code this if all reads from other than an application program are with the
keyboard lock option. The FEATURE=KBRDLOCK operand must be included
in DFHTCT TYPE = LINE to have the keyboard lock feature operative for that
line. This operand applies only to the 2260 "family" of devices.

LOCKF=VES
Code this to specify that the optional keyboard lock feature, supporting 2848
models 21 and 22, is to be included in CICS. The FEATURE = KBRDLOCK
operand must be included in DFHTCT TYPE = LINE to make the keyboard lock
feature operative for that line. This operand applies only to 2260 devices.

LOGREC = {NOIVES}
Code this if deblocking input records (so that the application program can
read each logical record) is to take place. The default is LOGREC = NO.
This operand only applies when ACCMETH =VTAM is coded.

NO

YES

Logical record presentation support is not to be generated in the ZCP
group of modules.

Logical record presentation support is to be generated in the ZCP group
of modules.

PIPELN = {NOIVES}
Code this if 3600 or IBM 3650 Retail Store System pipeline session support is
required. The default is NO.

YES

3600 or 3650 pipeline session support is not required.

3600 or 3650 pipeline session support is required. PIPELN =YES is
required for the IBM 3606 Financial Services Terminal, the IBM 3608
Printing Financial Services Terminal, and the IBM 3653 Point of Sale
Terminal pipeline sessions. SESTYPE = PIPELINE must also be indicated
in DFHTCT TYPE = TERMINAL.

PUNSOL = {NOIVES}
Code this with YES to protect the 3270 logical unit from receiving unsolicited
input. The default is PUNSOL = NO.

In normal operation, the 3270 terminal operator is expected to wait until the
keyboard is unlocked by a reply from the application program before
attempting to enter further input. Use of the reset key to allow further input
before the application program replies is not regarded as normal use of the
terminal. Specifying PUNSOL = YES will protect application programs from
receiving such unsolicited input (which may cause a synchronization
problem between the operator and the application program). CICS can
check whether such unsolicited data has been received and can discard it,
without giving any indication that it was received. CICS will not check for
unsolicited data for an LUTYPE2 device (which is handled as a

32 CICS/MVS 2.1.2 Customlzatlon Guide

3270-compatibility-mode logical unit) because the compatibility-mode
controller function protects CICS from unsolicited input.

Protection is not required.

YES
Protection is required.

STAGE2= {SELECTIVE I FORCE}
May be used to override the specification of the default, set by the STAGE2
operand of DFHSG TYPE = INITIAL for producing the stage 2 job stream of
this program.

SELECTIVE
Indicates that the stage 2 job stream for this program will be suppressed
if that version of the program already exists on the pregenerated system.

FORCE
Forces generation of all stage 2 jobs for this program.

SUFFIX=xx
Provides a 1-or 2-character suffix for the program being generated. Do not
use special characters or the reserved suffixes NO and DY. Do not use $ or
character.

TBLFIX = {NOIYES}
Code this if the 2980 translate tables are to be generated. The default is
TBLFIX=NO.

NO

YES

Skeleton translate tables will be generated and used to build the
translate tables dynamically each time input or output is converted. This
is to conserve storage.

A set of preassembled tables will be used for better performance.

TCM3270 = YES
Code this if TCAM support includes the 3270 Information Display System.

TWXOFF=xx
Code this to generate instructions to handle the transmit-off character, which
is specified by the CHAREC = (XOFF ,xx) parameter when the EP/3705 is
generated for a TWX terminal.

Note: The TWXOFF and TWXON operands (see below) need only be coded
when BTAMDEV=TWX is coded.

TWXON=xx
Code this to generate instructions to handle the transmit-on character, which
is specified by the CHAREC = (XON,xx) parameter when the EP/3705 is
generated.

Note: All generated EP/3705 lines used by CICS must have the same value
coded for the CHAREC parameter.

Chapter 1.2. DFHSG PROGRAM = xxx 33

UCTRAN = {NOI([EBCDIC][,ASCII])}
Code this to generate instructions to translate lowercase data to uppercase
in 3270, 3767, and 3770 SDLC input data streams. The default is
UCTRAN=NO.

NO
Uppercase translation is not required.

EBCDIC
EBCDIC support is to be generated, when FEATURE = UCTRAN is coded
in DFHTCT TYPE = TERMINAL for:

• VTAM 3270s
• SDLC 3767s and 3770s
• Non-VTAM 3270s when BSCODE = EBCDIC and/or

CONVT AB = EBCDIC is coded in DFHTCT TYPE = LINE.

BSCODE and CONVTAB do not apply for 3270 or LUTYPE2 logical units,
so UCTRAN = EBCDIC will generate translation support for all 3270s.

ASCII
Code this if support is to be generated for BT AM 3270s. For BSC 3270s,
translation is available by means of NCP translation tables in the
3704/3705. There is no support for ASCII-encoded data received from
3270 compatibility mode logical units.

Uppercase translation for the 3270, 3767, or 3770 SDLC devices is only
performed on input data streams received from those devices for which
FEATURE=UCTRAN is coded in DFHTCT TYPE=TERMINAL, except to satisfy
DFHTC TYPE = TEXT or terminal control ASIS requests. Translation is not
performed on data copied from a display to a printer.

VTAMDEV = (devlce[,devlce], ...)
Code this to identify the logical units. This must be coded if
ACCMETH =VTAM is coded. The applicable keyword parameters are:

3600

3614

3650

3790

3270

BCHLU

3770

3770B

INTLU

3767

3767C

34 CICS/MVS 2.1.2 Customization Guide

3600 Finance Communication System.

IBM 3614 Consumer Transaction Facility.

3650 Retail Store System.

3790 Communication System.

3270 Information Display System. (Does not include support for
3270s running as LUTYPE2, LUTYPE3, or SCSPRT logical units.)

Batch logical unit support.

3770 Data Communication System (batch logical unit).

3770 Data C()mmunication System (batch logical unit).

Interactive Logical Unit (flip-flop mode).

IBM 3767 Communication Terminal operating as INTLU.

3767 Communication Terminal operating as an interactive logical
unit in contention mode.

37671

3770C

3767 Communication Terminal operating as INTLU.

3770 Data Communication System (terminals 3771, 3773, 3774,
3775 only) operating as an Interactive logical unit in contention
mode.

37701

LUTYPE2

LUTYPE3

LUTYPE4

LUTYPE6

SCSPRT

3770 Data Communication System operating as INTLU.

SNA type 2 logical unit (3270-compatible logical unit).

SNA type 3 logical unit (3270 printer logical unit).

SNA type 4 logical unit.

Session Type 6 logical unit for ISC support.

SCS printer logical unit (for example, 3287, 3289).

INTLU generates support for 3767 and 3770 (terminals 3771, 3773,
3774, and 3775 only) interactive logical units in flip-flop mode, and for
VTAMDEV=SCSPRT. 3767,37671, and 37701 may also be specified.

BCHLU (or 3770 or 3770B) also generates support for the 3770 batch
data interchange, LUTYPE4, and 3770 full function logical units.

VTAMDEV = 3790 generates support for LUTYPE2, LUTYPE3, and
SCSPRT logical units.

VTAMDEV=INTlU or VTAMDEV=3767C must be coded when TWX
and TlX devices are to run as logical units under VTAM through the
Network Terminal Option (NTO).

VTAMDEV = lUTYPE6 generates support for both the type 6.1 and
type 6.2 logical units.

WRAPLST = {NOIVES}
Code this if the optional wrap list feature is to be included in CICS. Note that
this option applies only to remote terminals. The list to be constructed is a
wraparound polling list for a nonswitched line. The polling list is to be
constructed in the terminal control table. This operand is for BTAM only.
The default is WRAPLST = NO.

NO
A wrap list will not be used for polling.

YES
A wrap list will be used for polling.

Chapter '1.2. DFHSG PROGRAM = xxx 35

TDP - transient data control program

DFHSG PROGRAM=TDP

Purpose
The transient data control program can be generated by DFHSG
PROGRAM=TDP.

Notes:

1. Only VSAM intrapartition transient data is supported.

2. The pregenerated version provides a full function module, including
extrapartition data set input and output, intrapartition queues, automatic
transaction initiation, and recovery.

TRP - trace control program

[!1FHSG PROGRAM=TRP

Purpose
The trace control program, generated by DFHSG PROGRAM =TRP, is used for
program maintenance and performance tuning. Used in conjunction with the
trace utility program, this feature provides for easy use of CICS trace facilities.

Notes:

1. The pregenerated version provides support for writing trace table entries on
to the auxiliary trace file.

2. A user program that interprets trace data online must execute in 31-bit
addressing mode to address the trace table residing above the 16MB
(megabytes) line.

36 CICS/MVS 2.1.2 Customlzatlon Guide

TSP - temporary storage control program

DFHSG PROGRAM=TSP

Purpose
DFHSG PROGRAM =TSP may be used to generate the temporary storage control
program.

Note: The pregenerated version provides full support for all functions.

Chapter 1.2. DFHSG PROGRAM = xxx 37

Chapter 1.3. DFHSG TYPE = FINAL

[DFHSG TVPE=FINAL

Purpose
Stage 1 is terminated in response to the DFHSG TYPE = FINAL macro instruction.
This macro instruction must be the last statement of the system generation input
stream preceding the assembler END statement. The assembler END statement
does not require an operand.

Operand
TYPE=FINAL

Indicates the end of CICS Stage 1 system generation.

L...--___ End of Diagnosis, Modification, and Tuning Information

© Copyright IBM Corp. 1977, 1990 39

Part 2. Writing recovery and restart routines

This part of the book provides information about the programming interfaces
available to a user wishing to extend the CICS recovery and restart facilities.
More information about recovery and restart is provided in the CICSIMVS
Recovery and Restart Guide.

Table 1 summarizes the information in this part of the book.

Table 1 (Page 1 of 2).

Error Situation

Program check

System abend

Transaction abend

© Copyright I BM Corp. 1977, 1990

CICS Function

Interception and
transaction abend

Interception, system
recovery table,
standard SRT
routine

Program level
abend exit
invocation

Program error
program (DFHPEP)

Dynamic
transaction backout

Transaction restart
(DFHRTY)

Modifications
Available to You

See "Tranaction
abend" below

User-written SRT
recovery code

User-written
program level
abend exit code

User-written
program error
program

User-written OTB
exit code

User-written
OFHRTY

Chapter

"Chapter 2.1.
Writing a
system
recovery table
recovery
routine or
program" on
page 43

"Chapter 2.2.
Program level
abend exit" on
page 47

"Chapter 2.3.
Writing a
program error
program
(DFHPEP)" on
page 51

"Chapter 2.4.
Writing
dynamic
transaction
backout exits"
on page 53

"Chapter 2.5.
Writing a
transaction
restart
program
(OFHRTY)" on
page 57

41

Table 1 (Page 2 of 2).

Error Situation CICS Function Modifications Chapter
Available to You

System failure Emergency restart User-written exits "Chapter 2.6.
with transaction for the transaction User-written
backout backout programs exits for

resource
backout or
recovery at
emergency
restart" on
page 59

User-written activity "Chapter 2.7.
keypoints Writing a user

activity
keypoint
program" on
page 67

Terminal error Sample terminal User-written "Chapter 2.8.
(BTAMITCAM) error program terminal error User-written

program utility to scan
for unit of
work ids" on
page 69

Logical unit error Sample node error User-written note "Chapter 2.9.
(VTAM) program error program The terminal

error
program" on
page 71

Region failure in an Sample overseer User-cutomized or 109
XRF environment program -written overseer

program

42 CICS/MVS 2.1.2 Customlzatlon Guide

Chapter 2.1. Writing a system recovery table recovery routine or
program

The CICS system recovery program (OFHSRP) receives control as a result of a
program check or an operating-system abend. It can:

• Recover from the error and avoid shutdown by terminating the affected task
• Pass control to a user exit
• Take action to isolate the error, and make restart easier.

The program has two functions:

Program check recovery
If the program check was caused by an error in a CICS application-program
task, CICS terminates the task with the code ASRA.

User exits that can be invoked are discussed in "Chapter 2.2. Program level
abend exit" on page 47 through "Chapter 2.5. Writing a transaction restart
program (OFHRTY)" on page 57.

If the program check is more serious, CICS is terminated.

Abend recovery
The action CICS takes for each abend depends on entries in the system
recovery table (OFHSRT) and the routines or programs provided for
processing the abends.

Note: Some functions, such as some RACF calls and some file control calls
made to VSAM, are issued under an operating system subtask which handles its
own abend recovery. System recovery table (SRT) processing is not involved in
such a recovery.

Default system recovery table
The default system recovery table (SRT) provides:

A list of abend codes that CtCS handles
This list is shown with the DFHSRT macro in the CICS/MVS Resourc~'
Definition (Macro) manual.

An exit routine for these abends (DFHSRTRR)
The default routine tries to isolate the problem to a single CICS task and
abnormally terminates that task with CICS abend code ASRB. If it cannot,
CICS is terminated.

The default SRT is adequate for most users. However, you can add extra abend
codes to be handled by the default routine or by your own routine or program.
You extend the list of abend codes in the SRT by coding an additional entry.

For example:

DFHSRT TYPE=USER,ABCODE=999,ROUTINE=DFHSRTRR

This adds the user code 999 to the codes that the default routine handles.

© Copyright '8M Corp. 1977, 1990 43

Creating a recovery routine or progranl
The routine or program invoked as a result of an abend can be in one of two
formats:

• An assembler-language routine coded inline with the SRT after
TYPE = FINAL, or link-edited with the SRT.

• An assembler-language program with an entry in the CSO file or in the
processing program table (PPT).

Notes:

1. The recovery routine is driven only if CICS is able to continue. If a recursive
abend occurs (OFH0612), or if a system task is executing when an abend
occurs (OFH0613), then the recovery routine is not driven.

2. The recommended method of coding is to use a routine rather than a
separately assembled program, as any error within that program could
cause CICS to terminate abnormally.

Adding entries to the system recovery table
To relate a routine or program to an abend, use a OFHSRT macro to add an
entry to the SRT.

For a routine coded In line or link-edited with the SRT, use the ROUTINE operand
of the OFHSRT macro.

For example:

DFHSRT TYPE=USER,ABCODE=997,ROUTINE=ABND997

This causes the routine ABN0997 to be invoked if an abend 997 occurs.

The routine is entered via a BALR R14,R15 instruction.

For a separately assembled program, use the PROGRAM operand of the DFHSRT
macro. Write the program to the CICS macro level interface in assembler
language, and make an entry for it in the PPT, or in the CSO file. The program is
entered via a DFHPC TYPE = LINK macro.

Coding considerations (ROUTINE and PROGRAM)
• OSECT generation

For a separately assembled routine or program, you will need to provide
COPY statements for the appropriate CICS control blocks, such as
OFHCSAOS and DFHTCAOS.

If you are assembling your routine inline with the OFHSRT macro, you must
not have COPY statements for OFHCSAOS, DFHTCAOS, DFHFCTDS,
DFHFWADS, or DFHDCTDS, because these are defined in the SRT itself. If
you do include COPY statements for one or more of these DSECTs,
assembler errors will result.

44 CICS/MVS 2.1.2 Customlzatlon Guide

• Register equates

For inline assembly with the SRT, you must not redefine registers
SRTRRBAR, FWACBAR, FCTDSBAR, DCTCBAR, or WORKREG. If you do,
you will receive assembler errors.

• Register save area

If you are coding your routine inline with, or link-editing it with the SRT, you
will probably need to provide a save area to save the caller's registers.

For example:

ABND997 DS 0H
USING *,15
STM 14, 11,SAVEAREA ENTRY

SAVEAREA

LM
BR
DS

• Input parameters

14,1l,SAVEAREA
14
14F

For both routines and programs:

EXIT

Register 12 points to the TCA of the transaction that was in control when
the abend occurred.

Register 13 points to the CSA.

Register 14 contains the return address.

Register 15 contains the entry point.

Register 1 points to a copy of the system diagnostic work area (SDWA).

The SDWA Is passed by MVS to ESTAE exit routines and contains
information about the abend condition. For a description of the SDWA,
see the relevant MVS/ XA Debugging Handbook.

To allow a program to work in more than one operating system
environment, the program logic should test the field SDWACTL2 in the
SDWA addressed by register 1. If the PSW in the field SDWACTL2 is 0,
then MVS was unable to acquire an SDWA, and only the abend code in
SDWAABCC is valid.

Operating system abend code.

In all situations, the operating system abend code is stored in the
abnormally terminating task's TCA at TCAATAC and can be interrogated
by the recovery logic.

Its format is OOxxxyyy, where xxx is the OS/VS system abend code and
yyy is the hexadecimal representation of the user abend code.

For example:

00B37000 is an OSjVS B37 abend
000001F5 is a user 501 (=X'lF5') abend

Chapter 2.1. Writing a system recovery table recovery routine or program 45

• Program logic

You should make sure that the code that is included in your user program
does not cause another abend condition, because this will force CICS to
terminate abnormally.

The flag byte, TCAPCARO, can be tested, and can be modified to pass return
information to the calling routine.

The following characters can be set in TCAPCARO:

"C"

"P"

Cancel any "program level abend exits" that are
associated with this task.

Allow the task to be abended "ASRB".

Keep CICS up and running.

Do not cancel any "program level abend exits," but allow
them to proceed.

Allow the task to be abended "ASRB".

Keep CICS up and running.

"any other value" Allows CICS to be terminated abnormally.

• Returning control.

To exit from a routine, you must restore the registers from your save area
before returning via a BR R14 instruction.

To exit from a program, you must exit using a DFHPC TYPE = RETURN macro
instruction.

• Addressing mode

The routine or program must be assembled with AMODE 24.

46 CICS/MVS 2.1.2 Customlzatlon Guide

Chapter 2.2. Program level abend exit

General-Use Programming Interface

An exit routine established by a OFHPC TYPE = SETXIT macro instruction, or by
an EXEC CICS HANDLE ABEND command will be executed if a program abend is
requested while the task is at the level at which the SETXIT was issued, or at a
lower level. If the task continues to abend, the program error program (DFHPEP)
will be entered, if previously defined, after return from the highest level.

If an abend occurs while a transaction is being processed by the task-related
user exit interface module OFHERM (for example, EXEC DLI commands and OS2*
transactions), CICS takes a transaction dump even if an application-level
HANDLE ABEND is in effect. If you want to suppress the dump, you can use the
global user exit XPCABND (see page 313).

A transaction abend can occur because of:

• A user request by, for example:

EXEC CICS ABEND ABCODE(•••)

or

DFHPC TYPE=ABEND,ABCODE= •.•

• A CICS request as a result of an invalid user request, for example, an invalid
FREEMAIN request, which gives error code II ASCF".

• A program check, in which case DFHSRP is driven, and the task Is abended
with code "ASRA". For full details, see the CICSIMVS Problem
Determination Guide.

• An operating system abend, in which case DFHSRP is driven, and the task is
abended with code "ASRS" (unless "c" was placed in TCAPCARO as
described on page 46). For full details, see the CICSIMVS Problem
Determination Guide.

The CICS processing described below is the same regardless of where the
abend request originated. The program level abend exit or exits are executed,
followed by DFHPEP. However, it should be pointed out that as each succeeding
exit is entered, the logic is further away from the cause of the abend, and the
available information and corrective action possible are reduced.

Program level abend exits will not be driven if a task is abnormally terminated
with any of the following abend codes: ACMF, AKCP, ALFA, ASPE, ASPL, ASP1,
ASP2, ASP3, ASPS, ASP6, ASP7, ASP8, or ASP9.

* IBM Trademark. For a list of trademarks see page III.

© Copyright IBM Corp. 1977, 1990 47

Creating a program abend exit
The DFHPC TYPE = SETXIT macro instruction and the HANDLE ABEND command
allow the application programmer to specify the name of a program or a routine
to be given control when a task ends abnormally. Exit programs can be coded in
any supported language, but exit routines must be coded in the same language
as the program of which they are a part. On entry to the abend routine, the
addressing mode is that in effect when the exit was invoked.

For information on the transaction abend codes for abnormal terminations that
are initiated by CICS, their meanings, and your responses, see the CICS/MVS
Messages and Codes manual.

Upon entry to an exit program, no addressability can be assumed other than that
normally assumed for any application program coded in that language. If the
exit logic is in the form of a routine (DFHPC TYPE = SETXIT,ROUTINE = ...), the
amount of addressability varies depending on the source language (for the
macro interface) as follows:

• Assembler

Reg 12
13
14
15-11

• COBOL

Reg 12
13
14
15-11

TCA address
CSA address
Entry address for routine
Varies depending on cause and location of abend.

PGT address
TGT address
Entry address for routine
Contents at time of last CICS service request.

For a routine, the register values in the command interface (HANDLE ABEND
LABEL (... » are:

• Assembler

Reg 15
0-14

• COBOL

Abend label
Contents at the time of the last CICS service request, or at the
time the last "call" was invoked.

Control returns to the HANDLE ABEND command with the
registers restored; a COBOL GO TO is then executed.

Other information that is available to the exit routine or program includes:

• The current abnormal completion code at TCACRABC (macro level interface
only).

• The original abnormal completion code at TCAORABC (macro level interface
only).

• Any user-defined information that is placed in the TWA.

• If the abnormal completion code is ASRA (that is, as a result of a program
check), the PSW at the time of program Interrupt is stored in field
TCAPCPSW. (Macro level interface only.)

48 CICS/MVS 2.1.2 Customlzation Guide

There are three means of terminating processing in an exit routine or program:

• DFHPC TYPE = RETURN or the RETURN command indicate that the task is to
continue running with control passed to the program on the next higher
logical level. If no such program exists, the task is terminated normally.

• DFHPC TYPE=ABEND and the ABEND command indicate that the task is to
be abnormally terminated with control passed either to an exit specified for a
program on a higher logical level or, if there is not one, to the abnormal
condition program (DFHACP) for abnormal termination processing.

• A branch to retry an operation. When you are using this method of retrying
an operation, and you wish to reenter the original exit routine or program if a
second failure occurs, the exit routine or program should issue either the
DFHPC TYPE = RESETXIT macro, or the HANDLE ABEND RESET command
before branching. This is because CICS will have disabled the routine or
program to prevent it reentering the exit. It is your responsibility to establish
registers and code for the use of the exit logic.

Note: If an abend occurs during the invocation of a CICS service, you should
be aware that issuing a further request for the same service may cause
unpredictable results, because the reinitialization of pointers and work areas,
and the freeing of storage areas in the exit routine, may not have been
completed.

End of General-Use Programming Interface ______ --'

Chapter 2.2. Program level abend exit 49

Chapter 2.3. Writing a program error program (DFHPEP)

The distributed version of the program error program (DFHPEP) contains code to
establish a base register, to establish addressability to the sYBtem portion of the
task control area (TCA) , and to return control to DFHACP through a DFHPC
TYPE = RETURN operation. DFHACP will not allow transactions beginning with
'C' to be disabled; you should not, therefore, attempt to disable CICS-supplied
transactions.

Note that DFHPEP cannot influence the taking of a transaction dump.

You can modify the source of DFHPEP to include your own logic if you want. The
DFHPEP module is a dummy module. If you want to customize DFHPEP, you
have to code all the source yourself. To help you, we provide a listing of
DFHPEP in Figure 1 on page 52. When you have written your program error
program, assemble it, and use it to replace the supplied dummy program.

See the guidance on the preparation of application programs in the CICSIMVS
Operations Guide for the job control statements necessary to assemble and
link-edit these components.

Information available to DFHPEP includes:

• The current abend code at TCACRABC.

• The original abend code at TCAORABC.

• The program status word (PSW) at the time of program interrupt at
TCAPCPSW (for abend code ASRA only).

• The program control table (PCT) entry address at TCATCPC.

• Any other data placed in the TWA by the application program or SETXIT
routines.

• Register 1 points to a list of addresses:

First address is that of the 4-byte abend code
- Second address is that of the PCT entry
- Third address is that of the return value for PCT disabling (TCAPECOM).

If the return value is X '01', the transaction is disabled (provided it does not
begin with 'C').

If the PCT entry is to be disabled, a hexadecimal 01 should be placed in field
TCAPECOM at the system portion of the TCA. For example:

MVI TCAPECOM,TCAPEDIS SHOW PCT TO BE DISABLED

Note: TCAPEDIS has been equated to X '01' in the TCA dummy section.

@ Copyright IBM Corp. 1977, 1990 51

*
* REGISTER DEFINITION
*
PCTCBAR EQU 8
TCASBAR EQU 9
PEPBAR EQU 10

DFHEJECT

*
* DUMMY SECTIONS
*

DFHPRINT DSCT=START
COPY DFHCSADS
DFHTCA CICSYST=YES
COPY DFHTERID
COpy DFHPCTDS
DFHEJECT
DFHPRINT DSCT=END

*
* PROGRAM ERROR PROGRAM
*
DFHPEP CSECT

DFHVt~

ENTRY
DFHPEPNA OS

BALR
USING
L
USING

*

PEP
DFHPEPNA
0H
PEPBAR,0
*,PEPBAR
TCASBAR,TCASYAA
DFHSYTCA,TCASBAR

* Insert your own code here
*

DFHPC
LTORG

DFHPEPEA OS
DFHEND

TYPE=RETURN
*
0H
DFHPEPNA

PCT BASE REGISTER
TCA SYSTEM AREA REGISTER
PEP BASE REGISTER

PROGRAM ERROR PROGRAM CSECT
GENERATE HEADING CONSTANT
ESTABLISH ENTRY POINT
ENTRY POINT
ESTABLISH ADDRESSABILITY
... AND BASE REGISTER
LOAD TCA SYSTEM AREA ADDRESS

ISSUE CICS RETURN MACRO

MODULE END ADDRESS
ASSEMBLY END

Figure 1. Source code of program error program (DFHPEP)

52 CICS/MVS 2.1.2 Customlzatlon Guide

Chapter 2.4. Writing dynamic transaction backout exits

The dynamic transaction backout program (DFHDBP) has four user exits that you
can code if the default action does not suit your requirements. The method
available for making use of user exits is described in "Chapter 5.1. Global user
exits" on page 289. If an exit is not used, the default action corresponds to a
return code of O.

The four exits are:

1. XDBINIT This exit is given control on entry to DFHDBP. Valid return codes
are:

o to continue dynamic transaction backout
4 to suppress DLII backout
8 to suppress all backout.

Note: For return codes 4 and 8, any databases updated by DLII will be
closed by backout failure processing. For details, see the CICS/MVS
Operations Guide.

2. XDBIN This exit is given control when each log record (other than one from
DLII) is obtained. Register 3 points to the record read from the dynamic log.
This record is mapped by DFHDBRDS DSECT. Valid return codes are:

o to continue processing the record
4 to ignore the record (not applicable. to the record corresponding

to the input message).

3. XDBFERR This exit is given control when an error condition has been
returned from the file control program during the backout processing or if an
error has been detected by DFHDBP itself.

Register 3 points to the record read from the dynamic log. The record
should be referenced using DFHDBRDS DSECT. Valid return codes are:

o to accept error and continue
4 to ignore error and continue
8 to reapply the FWA version of the record.

The byte DBRERRCD in the log record is set for different types of error as
follows:

DBFEGU

(t) Copyright IBM Corp. 1977,1990

Means that an error response has been returned from the file control
program (FCP) while servicing a GET-UPDATE-request. DFHDBP has
attempted to retrieve the existing copy of the record prior to backing it
out. The file control CHECK macro in combination with the type of record
pointed to by DBRREG ("read-for-update" or "write-add") can be used In
the exit to determine the specific problem.

53

DBFElE
Means that the file work area (FWA) acquired from the FCP is not large
enough to receive the before-copy data picked up from the dynamic log
to perform the backout. The symbolic register FWACBAR points to the
FWA on entry to the exit. The file control CHECK macro is not applicable
to this error.

DBFEPU
Means that an error response has been returned from the FCP while
servicing a PUT-UPDATe-request. DFHDBP has attempted to replace the
existing copy of the record on the file with the "before-copy" pointed to
by DBRREG. The file control CHECK macro can be issued in the exit to
determine which error occurred.

DBFEPN
Means that an error response has been returned from FCP while
servicing a PUT-NeW-request. DFHDBP has attempted to add the
"before-copy" of a deleted VSAM KSDS record. The file control CHECK
macro can be issued in the exit to determine the specific error.

DBFEWA
If the record read from the dynamic log is a WRITE-ADD, and the file
accessed is a VSAM ESDS or a BDAM data set.

Note: (This condition also applies to an AIX path defined over a VSAM
ESDS base.)

The dynamic transaction backout program (DFHDBP) reads the record
from the file using a GET-UPDATE, but recognizes that no delete function
exists for BDAM and VSAM entry-sequenced data sets (including a
VSAM ESDS accessed by an AIX path). You are given the opportunity to
II mark" the existing record on the file as deleted according to
application-dependent logic. The FWA version of the record should be
marked. If you want the FWA version to be reapplied, a return code of 8
should be specified.

Register 6 points to the FWA containing the existing record on the file.
The file control CHECK macro is not applicable to the error.

DBFEVD
Means that an error response was returned from the FCP while servicing
a VSAM-DELETE request. DFHDBP has attempted to delete a new record
added to a VSAM key-sequenced data set. The file control CHECK
macro can be issued in the exit to determine the specific error.

4. XDBDERR When the DLII backout routine detects an error, its error message
is routed to CSMT and this exit is then given control. Register 3 points at the
corresponding dynamic log record. The information in the TCA fields
TCADLII and TCADLIPA is also available. Valid return codes are:

o to suppress further DLII backout
4 as for return code o.

Note: To preserve database integrity, any databases updated by DLII will be
closed by backout failure processing. For guidance see the CICSIMVS
Operations Guide.

54 CICS/MVS 2.1.2 Customlzatlon Guide

User-written dynamic transaction backout exits must be quasi-reentrant.

Recoverable resources may be modified in user exits but the following should be
noted:

• Your exit code must not contain EXEC CICS ABEND requests, because these
will cause CICS to terminate.

• Changes to recoverable transient data and temporary storage should be
avoided in the XDBINIT exit because they will be backed out immediately.

• File control GET for updates should be properly released, either Implicitly or
explicitly, or else backout may be locked out.

• The current DLII program specification block (PSB) should be left scheduled;
it should not be terminated.

Register usage
The exit program should save and restore all registers it modifies, using the
save area addressed by register 13.

Chapter 2.4. Writing dynamic transaction backout exits 55

Chapter 2.5. Writing a transaction restart program (DFHRTY)

The conditions under which CICS automatically restarts a transaction after
dynamic transaction backout are described in the CICS/MVS Recovery and
Restart Guide. If you wish to modify the conditions under which a transaction is
restarted, you can edit the transaction restart program (DFHRTY); this program
provides a framework for the user's assembler code.

See the guidance on the preparation of application programs in the CICS/MVS
Operations Guide for the job control statements necessary to assemble and
link-edit these components.

The distributed version of the program DFHRTY contains code to:

• Establish a base register
• Establish addressability to the system portion of the TCA
• Send a message to CSMT if restart is about to be attempted
• Return control toDFHDBP through a program control RETURN operation.

Information available to DFHRTY includes:

• Byte TCAZLUWT (status of the LUW) contains flags:

TCAZRRD (read since last syncpoint)
TCAZRWRT (write done since last syncpoint)
TCAIOSK (syncpoint taken).

Any of these flags set would normally prevent transaction restart.

• Byte TCADBRTS contains flags:

TCADBTRD (task has previously been restarted).

TCADBTRP (restart to proceed - can be set by user logic in DFHRTY
after default setting has been performed by DFHDBP).

• TCAORABC (original abend code).

• TCACRABC (current abend code).

These two values can be different if, for example, a task was restarted after
program isolation deadlock, and encountered a program check after restart.

• Byte TCADBRTC contains a count of previous restarts on this task. User
code may require you to test the count of restarts to ensure that recursive
abends are not caused by restarting tasks that DFHDBP would not normally
allow to proceed.

© Copyright IBM Corp. 1977, 1990 57

Dynamic transaction backout will suppress restart (when the abend code is other
than that for program isolation or a syncpoint, or if terminal traffic after initial
input has occurred) unless user-written exit code (DFHRTY) tells it to proceed by
setting TCADBTRP. Otherwise, when transaction restart is used, all messages
from dynamic transaction backout will be suppressed, and the task will be
restarted from the beginning, with the following Information available to It:

• The initial input TIOA (if any)

• The contents of the TCTUA and the command-level communications area, as
at the start of the task

• The TCADBTRD flag (via ASSIGN RESTART command).

58 CICS/MVS 2.1.2 Customlzatlon Guide

Chapter 2.6. User-written exits for resource backout or recovery at
emergency restart

General description
User exits written for use during the backout of resources at recovery are global
user exits. For more general information about global user exits, see "Chapter
5.1. Global user exits" on page 289.

At recovery, it is necessary to back out updates that were not committed when
the system failed. There are six programs that perform this backout, and they
run in parallel under their own CICS tasks. (The transient data and temporary
storage backout programs are not included in this chapter because user exits
are not involved.) This chapter describes exits in the following programs:

DFHFCBP
File control backout

DFHUSBP
User recovery, to back out user system log entries

DFHTCBP
Message and ISC state recovery

DFHDLBP
DLII backout.

There are four exits that apply at backout. The initialization/termination exit is
driven twice by all four programs. The input exit is not driven by DFHDLBP. The
open error and file error exits apply only to DFHFCBP. See Figure 2 on page 60.

© Copyright I BM Corp. 1917, 1990 59

DFHFCBP DFHUSBP DFHTCBP DFHDLBP

I I I I
44------Init i al i zat i on/------....

termination
exit

4*11--------Input--...

I exit

Open error
exit

I
File error

exit

I
4*11------Initialization/------·.

1 1 ter:!~~tion 1 1
Figure 2. User exits for backout at recovery

The figure shows the four programs running in parallel. The
initialization/termination exit is a single exit, which can be invoked from four
different programs. The different invocations for the initialization/termination exit
are distinguished by the value passed in register 2, as described below. Note
that the same exit serves at initialization and termination. Whether the exit has
been called at initialization or termination is also identified by the contents of
register 2.

The input exit is a single exit invoked by three programs. CICS212.MACLIB
provides two copybooks that you should include in your exit program:

DFHJCRDS containing a DSECT that describes log records, and

DFHFMIDS containing useful equates.

To determine which program has invoked the exit, see the log record addressed
by register 10. The JCRSTRID field (defined in DFHJCRDS) is a 2-byte field. You
can check the JCRSTRID + 1 byte against the following fields defined by equates
in DFHFMIDS:

MODIDFC log record written by file control
MODIDTC log record written by CICS terminal control
MODIDUSR log record written by the user.

DFHFCBP will process file control records, DFHTCBP will process terminal
control records, and DFHUSBP will process user log records.

The open error and file error exits can only be invoked by file control backout.

60 CICS/MVS 2.1.2 Customlzation Guide

Before the description of the exits, there are some other pOints to keep In mind.
You have access to all other CICS services, except terminal control services,
during exit execution. But the use of temporary storage, transient data, file
control, or OUI Is not recommended, because these resources may also be in a
state of recovery and therefore "not open for business". Access to these
services will therefore at best cause serialization of the recovery tasks and at
worst cause a deadlock. In addition:

• An exit must not release, or cause to be released, any file control area
(pointed to by Register 7) as a result of OFHFCBP processing.

• No exit should reset either the .. absent" or "no action" indicators set by
CICS in the backout tables.

• Only the initialization/termination exit can set the "no action" indicators in
the file, message, or DLII backout table entries.

• An exit must not attempt to make any file control requests to a VSAM data
set with a string number of 1, unless 'no action' has been specified for that
data set during the user initialization

C

exit.

The initialization/termination exit, XRCINIT
The initialization/termination exit is Invoked once at the beginning and once at
the end of each of the backout programs. Its interface is:

• For initialization of user recovery:

Register 2 contains XIOOI.

Register 7 addresses the transaction backout table (TBO), if any.
Otherwise, register 7 = O. The TBO is described by the COpy book,
DFHTBODS.

• For termination of user recovery:

Register 2 contains X 180 I.

Register 7 addresses the TBO, if any. Otherwise, register 7 = O.

• For initialization of file recovery:

Register 2 contains X1011.

Register 7 addresses the file backout table (FBO), if any. Otherwise,
register 7 = O.

The FBO is described by the COPY book, DFHFBODS. The entries in the
FBO have been verified against the loaded file control table and marked
as "absent" and "no action" if unmatched.

The exit may scan the FBO and mark additional files for "no action".

Before giving control to the exit, DFHFCBP has listed the "absent" file
IDs to the console operator.

• For termination of file recovery:

Register 2 contains X 1811.

Register 7 addresses the FBO, If any. Otherwise, register 7 = O.

Chapter 2.6. User-written exits for backout at emergency restart 61

• For initialization of DLII recovery:

Register 2 contains X '02'.

Register 7 addresses the" DUI backout table (DBO), if any. Otherwise,
register 7 = O.

The DBO is described by the COpy book, DFHDBODS. The entries in the
DBO have been verified against the loaded DL/I DMB and PSB
directories and marked as "absent" and "no action" if unmatched.

Before giving control to the exit, DFHDLBP has listed the missing or
unschedulable PSB and DMB names to the console operator.

• For termination of DL/I recovery:

Register 2 contains X'82'.

Register 7 addresses the DBO, if any. Otherwise, register 7 = O.

• For initialization of message recovery:

Register 2 contains X '03'.

Register 7 addresses the message backout table (MBO), if any.
Otherwise, register 7 = O.

The MBO is described by the COPY book, DFHMBODS. The entries in
the MBO have been verified against the loaded terminal control table
and marked as "absent" and "no action" if unmatched.

The exit may scan the MBO and mark additional entries for" no action".

• For termination of message recovery:

Register 2 contains X '83'.

Register 7 addresses the MBO, if any. Otherwise, register 7 = O.

The input exit, XRCINPT
This exit applies to DFHFCBP, DFHUSBP, and DFHTCBP. The interface is as
follows:

• Register 10 addresses the current log record, which is described by the
DSECT DFHJCRDS.

• Register 7 addresses the FBO table entry for a file control record, and the
MBO table entry for a terminal control record. Otherwise, register 7 is
undefined.

• To determine which program has invoked the exit, see the log record
addressed by register 10. In the log record, field JCRSTRID is a 2-byte field,
and JCRSTRID + 1 will contain one of the following equates (defined in
DFHFMIDS):

MODIDFC log record written by file control
MODIDTC log record written by CICS terminal control
MODIDUSR log record written by the user.

DFHFCBP will process file control records, DFHTCBP will process terminal
control records, and DFHUSBP will process user log records.

62 CICS/MVS 2.1.2 Customlzatlon Guide

• On return, register 15 should contain a return code of 0 or 4.

The input exit is given control each time a record (other than a OUI record) has
been read from the restart data set. At that time, register 10 points to the record
that should be referenced by using DSECT DFHJCRDS. The type of record can
be determined by testing field JCRSTRID with the symbolic codes provided by
"DSECT" DFHFMIDS.

If you want the default action upon return from the input exit, the return should
have a return code of o. If you want no action, a return code of 4 should be
used, in which case the record area will be freed immediately and a new record
will be read. The default actions are:

User journaled records

Automatically journaled records

Logged records applying to files
or terminals flagged for "no
action"

Logged "read-updates"

Logged "write-add"

Logged temporary storage
"PUT(Q)-REPLACE"

Logged terminal messages

The open error exit, XRCOPER

No action.

No action, unless the record is also a logged record
(see below).

No action.

Reapply "before-copy" of the record to the file.

The user's file error exit (see below) is given control
after the file record has been read for update for
BDAM and VSAM ESDS files. For VSAM KSDS files,
the default action is to delete the record.

Reapply the "before-copy" of the record to
temporary storage.

Save the records in the temporary storage "resend
slot" and/or "message cache", as appropriate.

This exit is for program DFHFCBP only, to assist in file control backout. The
interface is as follows:

• Register 7 addresses the FBO entry corresponding to the entry.

• Register 2 is undefined.

The exit is given control if an error occurs while opening a file control data set.
A message has been written to CSMT and to the console operator with a "GO"
or "CANCEL" option. The exit is only given control if the operator selects "GO".
Upon return from the exit, OFHFCBP marks the file backout table entry" no
action" .

Chapter 2.6. User-written exits for backout at emergency restart 63

The file error exit, XRCFCER
This exit applies only to DFHFCBP. The interface is as follows:

• Register 2, as defined below
• Register 7 addresses the FBO entry
• Register 9 addresses the file work area (FWA), if applicable
• Register 10 addresses a copy of the log record
• Register 11 addresses the FCT entry, where indicated.

The file error exit is given control when an error condition has been returned
from the file control program during the backout processing, or if an error has
been detected by DFHFCBP itself.

Register 10 points to the record read from the restart data set, and should be
referenced using DSECT DFHJCRDS. Register 7 points to the corresponding
DFHFBO entry. Except as indicated below, the file error exit has no processing
options, and the return code is ignored. Register 2 is primed for different types
of errors, with the following symbolic values, the actual values of which are
defined in DFHFBODS:

TBFEGU
If an error response is returned from the file control program while servicing
a GET-UPDATE-request. DFHFCBP has attempted to retrieve the existing
copy of the record before backing it out. The file control CHECK macro in
combination with the type of record pointed to by register 10 ("before-copy"
of a read-for-update record, or "new-copy" of a "write-add" to be deleted)
can be used in the exit to determine the specific problem.

TBFELE
If the FWA acquired from the FCP is not big enough to receive the
before-copy data from the restart data set to perform the backout. Register 9
points to the FWA on entry to the exit. The file control CHECK macro is not
applicable to this error.

TBFEPU
If an error response is returned from the FCP while servicing a
PUT-UPDATE-request. DFHFCBP has attempted to replace the existing copy
of the record on the file with the "before-copy" pointed to by register 10. The
file control CHECK macro can be issued in the exit to determine the specific
error.

TBFEPN
If an error response is returned from the FCP while servicing a
PUT-NEW-request. DFHFCBP has attempted to add the "before-copy" of a
deleted VSAM KSDS record. The file control CHECK macro can be issued in
the exit to determine the specific error.

TBFEWA
If the record read from the restart data set is a WRITE-ADD, and the file
accessed is a VSAM ESOS or a BDAM data set.

Note: (This condition also applies to an AIX path defined over a VSAM ESDS
base.)

64 CICS/MVS 2.1.2 Customization Guide

The file control backout program (DFHFCBP) reads the record from the file
using a GET-UPDATE, but recognizes that no delete function exists for BDAM
and VSAM entry-sequenced data sets (including a VSAM ESDS accessed by
an AIX path). You are given the opportunity to "mark" the existing record on
the file as deleted according to application-dependent logic. You should
mark the FWA-version of the record. If you want the FWA version to be
reapplied, register 15 should contain a return code of O. If you do not want
this, but would rather bypass the operation, use a return code of 4.

Register 11 points to the file control table (FCT).

Register 9 points to the FWA containing the existing record on the file. The
file control CHECK macro is not applicable to the error.

TBFEVD
If an error response is returned from the FCP while it is servicing a
VSAM-DELETE request. The backout program has attempted to delete a new
record added to a VSAM-key-sequenced data set. The file control CHECK
macro can be issued in the exit to determine the specific error.

Chapter 2.6. User-written exits for backout at emergency restart 65

Chapter 2.7. Writing a user activity keypoint program

An activity keypoint is taken at the start of each system log volume or data set,
and periodically after that. It records on the system log the information
necessary:

• To restore recoverable resources during emergency restart

• To determine which tasks were in-flight at the time of the system failure.

Activity keypointing is done by attaching the CICS activity keypoint transaction
(CSKP) at a predefined frequency. You can define this frequency at system
initialization time with the AKPFREQ override or operand of DFHSIT. You can
also alter this frequency during execution with the CEMT SET AKP command.

The frequency of the activity keypoint and the amount of logging performed by
in-flight transactions determine the amount of log data to be processed at restart
time, and thus the duration of the recovery process.

You can include your own keypoint records in the activity keypoint sequence.
You do this by providing a user program DFHUAKP. This program should be
used to record a limited amount of selected user data (that is, tables to be
restored following an emergency restart). It should be written to avoid
suspension of the keypoint task (that is, program and work areas should be
resident). This program should issue only CICS journal control functions. Note
that the first use of an activity keypoint should not rely on the results of any
program in the PL T. In order to perform efficiently, the journal control requests
should be asynchronous (that is, WRITE without WAIT) and with STARTIO = NO.
This method will force synchronization by writing a synchronous end of keypoint
record upon return from the user program. To make these records accessible to
the DFHUSBP exits during emergency restart, you should assign your own
identification to them. You can do this by means of the JTYPEID operand, with
the high-order bit set on.

Note: Do not code DFHUAKP in either VS COBOL II or VS PUI, because it can
be invoked before these languages have been initialized.

© Copyright IBM Corp. 1977, 1990 67

Chapter 2.8. User-written utility to scan for unit of work ids

If a system failure in an interconnected system occurs during the syncpointing
process, for a certain interval neither system knows if the other has committed
the updates and whether it should commit its own. This period of time is called
the Indoubt window.

A unit of work (UOW) is the period between two syncpoints; each UOW is
identified by a UOW identifier. This UOWIO is written to the system log by each
task when the task makes its first change to a recoverable resource. It is also
included in any messages generated during an indoubt window failure.

You can therefore write a log-scanning utility to read the system log records for
the UOW in the affected.CICS region, to determine what action is needed to
synchronize the databases.

Format of UOWID
The system log contains a UOWIO record for each unit of work, denoting its start.
This record has the following format:

System header System prefix Journalled data

~--------~----------~----.--------

System header: The record can be recognized as of type UOWIO if the
JCRSTRIO has the value FIDLEUOWIIMODIDSPP.

System prefix: The field .JCSPTASK contains the task number associated with
the current UOW.

Journa/ed data: This field contains the UOWID related to the current task in the
format defined by TCAUOWOS.

© Copyright IBM Corp. 1977, 1990 69

System log processing algorithm
The UOWID is displayed in the CICS messages DFH2101/2/3/4, using the
ISMUOWID format (see DFHIMSDS in the Data Areas). You should convert this
UOWID to the TCAUOWDS format (see DFHTCA in the Data Areas) using the
following algorithm.

TCAUOWL = ISMUWLEN
- (L' ISMUWC1

+ L' ISMUWTKN
+ L I ISMUWC2
+ L' ISMUWSEQ)

+(L'TCAUCLK
+ L'TCAUNUM)

TCAULUNL = ISMUWLEN
- (L I ISMUWC1

+ L'ISMUWTKN
+ L' ISMUWC2
+ L' ISMUWSEQ)

TCAULUN = ISMUWLUN

total length
- length of fixed part ISM format

+ length of fixed part TCA format

total length
- length of fixed part ISM format

Logical unit name - maximum 17 chars

TC~UCLK = HexCharToBinary(ISMUWTKN) Hex characters to packed

TCAUNUM = CharToBinary(ISMUWSEQ) Dec characters to binary

Figure 3. System log processing algorithm

Note: Take great care - TCAULUN is a variable length data element that
affects the addresses of TCAUCLK and TCAUNUM.

You should then process the system log in chronological order, looking for each
UOWID record that contains a UOWID that matches the converted UOWID.

Make a note of the task number (JCSPTASK) in the system prefix. You need to
locate all of the records that follow with the same task number. This search
terminates on a Physical/Logical End of task record, identified by a JCRSTRID
field of FIDPETKIIMODIDSPP (X'F359 1

) or FIDLETKIIMODIDSPP (X'F259').

These records form the total recovered journaled data; they then need further
processing to effect a recovery for, a particular UOWID.

70 CICS/MVS 2.1.2 Custornlzation Guide

Chapter 2.9. The terminal error program

This chapter contains information on the CICS terminal error program (DFHTEP)
that handles error conditions for devices that operate in a non-VTAM
environment. The CICS-supplied sample terminal error program and the
user-written versions of this program are discussed, as well as topics related to
error conditions for specific device types.

CICS terminal error-handling is based on the assumption that most users want to
modify certain CICS operations in response to various terminal errors. Because
CICS cannot anticipate all possible courses of action, the error-handling facilities
have been designed to allow maximum freedom for users to create unique
solutions for errors that occur within a terminal network.

The following CICS components are involved in the detection BTAM and/or
TCAM terminals are used:

• Terminal error program (DFHTEP)
• Terminal control program (DFHTCP)
• Terminal abnormal condition program (DFHTACP).

The corresponding CICS components for logical units are discussed in "Chapter
2.10. The node error program" on page 109.

Note: Node error programs, not terminal error programs, must be used for
VTAM-supported devices.

When an abnormal condition occurs
When an abnormal condition associated with a particular terminal or line occurs,
the terminal control program puts the terminal out of service and passes control
to the terminal abnormal condition program (DFHTACP) that, in turn, passes
control to a version of the terminal error program (DFHTEP, either CICS-supplied
or user-written), so that it can take the appropriate action.

Terminal control program
When the terminal from which the error was detected has been put out of
service, the terminal control program creates a terminal abnormal condition line
entry (TACLE), which is chained off the real entry, the terminal control table line
entry (TCTLE) for the line on which the error occurred. The TACLE contains all
the error information necessary for correct evaluation of the error, plus special
action flags that can be manipulated to alter the error correction procedure.

Terminal abnormal condition program
After the TACLE has been established, a task that executes DFHTACP is
attached by the terminal control program and is provided with a pointer to the
real line entry (TCTLE) on which the error occurred. After performing basic error
analysis and establishing the default actions to be taken, DFHTACP gives control
to DFHTEP by issuing a program control LINK request. DFHTACP passes the

© Copyright IBM Corp. 1977, 1990 71

address of the TACLE so that DFHTEP can examine the error and provide an
alternative course of action.

After DFHTEP has performed the desired function, it returns control to DFHTACP
by issuing a program control RETURN request. DFHTACP then performs the
actions dictated by the action nags within the TACLE, and the error-handling task
terminates.

Notes:

1. You should consider prevention of data security violation. For example, if a
terminal is put out of service for some time or until the cause of the failure is
removed, the original operator may no longer be present, although the
signon information will still be in the TCTTE when the terminal is put back
into service. (See also the bulleted list on page 100.)

2. If DFHTACP has more than eight errors on a line before action can be taken,
the line will be put out of service to avoid system degradation.

Terminal error program
The terminal error program analyzes the cause of the terminal or line error that
has been detected by the terminal control program. The CICS-supplied version
(the sample terminal error program, DFHXTEP) is deSigned to attempt basic and
generalized recovery actions. A user-written version of this program can be
provided to handle specific application-dependent recovery actions. The
user-written terminal error program is linked-to in the same way as the
CICS-supplied version by the terminal abnormal condition program. Equally,
information relating to the error is carried in the terminal abnormal condition line
entry (TACLE).

The macros and operands that are provided for generating the sample terminal
error program are described in the sections that follow. The main steps are
generating the sample DFHTEP module and tables by means of the DFHTEPM
and DFHTEPT macros, respectively. You can select the appropriate options in
this sample program, and you can base your own version on it.

There is a description of the CICS-supplied sample terminal error program
(DFHXTEP), and advice on how to generate a user-written version later in this
chapter.

Terminal abnormal condition line entry (TACLE)
The terminal abnormal condition line entry (TACLE) is the basic interface used
by the sample DFHTEP and should be used by a user-written DFHTEP to
determine the nature of the error that occurred and to indicate what course of
action should be taken.

Before giving control to DFHTEP, DFHTACP establishes which default actions
should be taken, depending upon the particular error condition that has been
detected. The default actions are indicated by appropriate bit settings in the
1-byte fields of the TACLE labeled TCTLEECB + 1 and TCTLEECB + 2. The default
actions and bit settings are listed in the CICSIMVS Problem Determination Guide.

72 CICS/MVS 2.1.2 Customlzatlon Guide

Note: For a detailed discussion of these action bits, and the dummy terminal
indicator, see the discussion under "User-written terminal error programs" on
page 94. The write-abend bit (X '01' in TCTLEECB + 1) is always set with the
abend-task bit (X'04') as part of action 3, but both bits are suppressed if
"dummy terminal" is indicated.

The code indicating the particular error condition detected is passed to DFHTEP
in the 1-byte field of the TACLE labeled TCTLEPFL. These DFHTACP message
codes, error codes, conditions, and DFHTACP default actions are also listed in
the CICSIMVS Problem Determination Guide.

A format description of the terminal abnormal condition line entry (TACLE)
DSECT is provided under "User-written terminal error programs" on page 94.

The sample terminal error program

Components

CICS provides a sample terminal error program that can be used as a
generalized program structure for handling terminal errors.

The source code form of the sample TEP is DFHXTEP. After DFHXTEP has been
assembled, it is then link-edited as DFHTEP.

You can generate and use the sample terminal error program with the default
options provided, or you can customize the terminal error support to the needs
of the operating environment by selecting the appropriate generation options
and variables. Because each error condition is processed by a separate routine,
you can replace a CICS-provided routine with a user-written one when the
sample TEP is generated.

The sample terminal error program consists of the terminal error program itself
and two terminal error program tables:

• The TEP error table
• The TEP default table.

Both tables contain "threshold" limits defined for the various error conditions to
be controlled and accounted for by the sample DFHTEP. A "threshold" limit may
be thought of as the number of error occurrences that are permitted for a given
type of error on a given terminal before the sample DFHTEP accepts the
DFHTACP default actions. Optionally, the number of occurrences can be
controlled and accounted for over prescribed time intervals (for example, if more
than three of a given type of error occur in an hour, the terminal will be put out
of service).

TEP error table
The TEP error table maintains information about errors that have occurred on a
terminal. The table consists of two parts (depicted in Figure 4 on page 74):

• TEP error table header (TETH) - contains addresses and constants related
to the location and si2e of the TEP error table components.

Chapter 2.9. The terminal error program 73

• Terminal error blocks (TEBs) - these can be either:

Permanent (P-TEBs), each associated with a particular terminal;

or

Reusable (R-TEBs), not permanently associated with any particular
terminal.

TEP Error Table Header (TETH)

Terminal Error Blocks (P-TEBs and R-TEBs)

Figure 4. TEP error table

TEBs maintain error information associated with terminals. You must specify the
total number of TEBs to be generated. The maximum number needed is one per
terminal. In this case the TEBs are permanent.

You can reduce the total amount of storage used for TEBs by allocating a pool of
reusable TEBs, that are not permanently associated with a particular terminal.
Reusable TEBs are assigned dynamically upon the first occurrence of an error
associated with a terminal, and are released for reuse when the appropriate
error processor places the terminal out of service.

Note: It is your responsibility to ensure that the pool is large enough to
accommodate the maximum number of terminals for which errors are expected
to be outstanding at any particular time. If the pool limit is exceeded, handling
of terminal errors may become intermittent. No warning Is given of this
condition.

You should permanently assign TEBs for terminals that are critical to the
network. For the remainder of the network, you can generate a pool of reusable
TEBs.

Each TEB currently in use or permanently reserved contains the symbolic
terminal identification assigned to the terminal and one or more error status
elements (ESEs) as shown in Figure 5.

SYMBOLIC TERMINAL 10

ERROR STATUS ELEMENT

/ /

IL. ___ /I _____ _ __ ~OMMON ERROR BUCKET .

Figure 5. Terminal error block (TEB)

74 CICS/MVS 2.1.2 customlzatlon Guide

An ESE records the occurrence of a particular type of error associated with the
terminal. The contents of an error status element are described in the TEPCD
DSECT (generated by the DFHTEPM TYPE = INITIAL macro) under the comment
"ERROR STATUS ELEMENT FORMAT". The number of ESEs per TEB remains
constant for all TEBs. You specify the number when the TEP tables are
generated. If less than the maximum number of error types (26) recognized by
DFHTACP is specified, one additional ESE, referred to as the common error
bucket, is generated for each TEB.

You can permanently reserve ESE space in each TEB for specific error types.
Those not permanently reserved are considered reusable, and are assigned
dynamically upon the first occurrence of a particular error type associated with
the terminal. If an error type occurs that is not currently represented by an ESE,
and if all reusable ESEs are assigned to other error types, the occurrence of this
error is recorded in the common error bucket. DFHTACP can recognize far more
error types than can occur in a typical terminal network. By specifying less than
the maximum and allowing the sample DFHTEP to assign ESEs dynamically, you
can minimize the table size, and still control and account for the types of errors
relevant to the network.

Terminal error program default table
The terminal error program (TEP) default table contains the threshold limits for
each type of error to be controlled and accounted for. An index array at the
beginning of the default table serves a dual function. If the value in the index is
positive, the error code has a permanently defined ESE in each TEB and the
index value is the displacement to the reserved ESE. If the index value is
negative, an ESE must be assigned dynamically from a reusable ESE if one has
not already been created by a prior occurrence. The complement of the
negative index value is the displacement to the threshold limits for the error type
retained in the TEP default table.

Description of the sample terminal error program
The structure of the sample terminal error program (DFHXTEP) can be broken
into six major areas as follows:

• Entry and initialization
• Terminal identification and error-code lookup
• Error processor selection
• Error processing execution
• Exit
• Common subroutines.

These areas are described in detail in the sections that follow.

Figure 6 on page 78 gives an overview of the structure of the sample terminal
error program.

Chapter 2.9. The terminal error program 75

Entry and Initialization
Upon entry, the sample TEP establishes base registers and addressability to the
various control blocks needed to process the error (TACLE, TCTTE, TEP tables).
If time support has been generated, an interval control request is issued to
time-stamp the error for subsequent processing. The first entry into the sample
TEP after the system was initialized causes the TEP tables to be initialized.

Terminal Identification and error-code lookup
After the general entry processing, the TEP error table is scanned for a terminal
error block (TEB) entry for the terminal associated with the error. If no matching
entry is found, a new TEB is created. If all TEBs are currently in use (if no
reusable TEBs are available), the processing is terminated and a DFHPC
RETURN request is issued giving control back to DFHTACP, where default
actions are taken. After the terminal's TEB has been located or created, a
similar scan is made of the error status elements (ESEs) in the TEB to determine
whether the type of error currently being processed has occurred before, or if it
has permanently reserved ESE space. If an associated ESE is not found, an ESE
is assigned for the error type from a reusable ESE. If a reusable ESE does not
exist, the error is accounted for in the terminal's common error bucket. The
addresses of the appropriate control areas (TEB and ESE) are placed in registers
for use by the appropriate error processor.

Error processor selection
User-specified message options are selected and the messages are written to a
specified transient data destination. The type of error code is used as an index
into a table to determine the· address of an error processor to handle this type of
error. If the error code is invalid or the sample TEP was not generated to
process this type of error, the address points to a routine that optionally
generates an error message and returns control to DFHTACP, where default
actions are taken. If an address of a valid error processor is obtained from the
table, control is passed to that routine.

Error processing execution
The function of each error processor is to determine whether the default actions
established by DFHTACP for a given error, or the actions established by the
error processor, are to be performed. The common error bucket is processed by
the specific error processor. However, the threshold limits of the common error
bucket are used in determining whether the limit has been reached. Subroutines
are provided in the sample TEP to maintain count and time threshold totals for
each error associated with a particular terminal to assist the error processor to
make its decision. Also available are subroutines for logging the status of the
error and any recovery action taken by the error processor.

You can replace any of the error processors supplied in the sample TEP with
user-written ones. Register linkage conventions, error conditions, DFHTACP
default actions, and sample TEP error processor actions are described in
comments given in the sample DFHXTEP source listing. However, sample
DFHXTEP actions, in many cases, can be altered by changing the threshold limits
when generating the TEP tables.

76 CICS/MVS 2.1.2 Customization Guide

Exit
Control Is passed to this routine from each error processor. This routine
determines whether the terminal is to remain in service. If the terminal is to be
put out of service, the terminal error block and all error status elements for that
terminal will be deleted from the TEP error table unless the terminal was defined
as a permanent entry. When the terminal is placed back in service, a new
terminal error block will be assigned should a subsequent error occur.

Common subroutines
A number of subroutines is provided in the sample DFHTEP for use by the error
processors. Each subroutine entry has a label of the form "TEPxxxxx" where
"xxxxx" is the subroutine name. All labels within a subroutine start with TEPx
where "x" is the first character of the subroutine name. All subroutines are
arranged within the module in alphabetical order in the subroutine section.
Register conventions and use of the subroutine are given as comments at the
beginning of each subroutine in the source listing. The following subroutines are
available if you want to write your own error processors:

TEPACT
Used to output the names of the action bits set by DFHTACP and the sample
DFHTEP in the fields TCTLEECB + 1 and TCTLEECB + 2 of the TACLE if
appropriate PRINT options are selected when the program is generated.

TEPDEL
Used to delete the terminal error block and error status elements for a
terminal from the TEP error table on exit from an error processor.

TEPHEXCN (Used by TEPPUTTD)
Used to convert a 4-bit hexadecimal value to its 8-bit printable equivalent.

TEPINCR
Used to update and test the count/time threshold totals maintained in the
terminal's error status element.

TEPLOC
Used to locate or assign terminal error blocks and error status elements for
a terminal identification.

TEPPUTTD
Used to output character or hexadecimal data to a user-defined transient
data destination.

TEPTMCHK (Used by TEPINCR)
Used to determine if the time threshold limit has expired.

TEPWGHT
Used to update the weight/time threshold values maintained in the terminal's
error status elements.

Chapter 2.9. The terminal error program 77

Error
processor

Error
processor

Figure 6. Sample DFHTEP overview

78 CICS/MVS 2.1.2 Customlzation Guide

DFHTACP

Entry and
initialization

Terrninal I D
and error
code lookup

Error
processing
selection

•••

General
exit

DFHTACP

Error
processor

Error
processor

+
I ,

Common
sulxoutines

Sample terminal error program messages
The messages logged to the transient data destination CSMT (or, optionally, to
the destination specified in the OPTIONS operand of DFHTEPM TYPE = INITIAL)
are of six types, each identified by a unique message prefix. You can control the
selection of each type of message using the appropriate parameters specified in
the PRINT operand of DFHTEPM TYPE = INITIAL.

These messages are:

DFHTEP, ERROR - error text
During DFHTEP module generation, the PRINT parameter specified ERRORS.
This message may be suppressed by using the NOERRORS option. The
error text will be one of the following:

Unsupported error code, "xx"
The error code presented to DFHTEP by DFHTACP is unknown by
DFHTEP.

"DFHTEPT" not defined In system.
The DFHTEP table could not be loaded into storage.

Unknown error status message, "xxxx"
The error status message presented from a remote 3270 type device
could not be decoded.

None of these errors should occur.

DFHTEP, ACTION - action flag names
During DFHTEP module generation, the PRINT parameter specified
TACPACTION or TEPACTION or both. If both are specified, this message is
logged twice each time DFHTEP is called. The first message indicates the
action flags as set by DFHTACP on entry to DFHTEP. The second message
indicates the action flags as returned to DFHTACP by DFHTEP after error
processing. These messages may be suppressed by using the
NOTACPACTION and NOTEPACTION options.

The action flag names and descriptions are listed below. For a better
understanding of the actions taken by DFHTACP, see the discussion of the
TCTTEECB + 1 and TCTTEECB + 2 fields contained in the TACLE DSECT
description in "User-written terminal error programs" on page 94.

Flag Name
L1NEOS
NO PURGE
SW LINE DISCON
DISCON SW LINE
TERMOS
ABEND
NO POLL
ABORTWR
REL TCAM TIOA

Description
Line out of service
Notpurgeable task exists on terminal
Switched line disconnected
Disconnect switched line
Terminal out of service
Abend transaction
Take control unit off polling list
Abend write request on task abend
Release TeAM TIOA

Chapter 2.9. The terminal error program 79

80

OFHTEP, TID - tid
During the DFHTEP module generation, the PRINT parameter specified TID.
This message contains the symbolic terminal identification of the device
associated with the error. This message may be suppressed by using the
NOTID option .

. OFHTEP, OECB - OECB Information
During the DFHTEP module generation, the PRINT parameter specified DECB.
This two line message contains the DECB (printed in hexadecimal) of the
terminal causing the error. The DECB is contained in the TACLE
(displacement + 16 [decimal]). See the TACLE DSECT described in
"User-written terminal error programs" on page 94. This message may be
suppressed by using the NODECB option.

OFHTEP, TACLE - TACLE Information
During the DFHTEP module generation, the PRINT parameter specified
TACLE. This message (printed in hexadecimal) will contain the first 16 bytes
of the TACLE passed to DFHTEP by DFHTACP. See the TACLE DSECT
described in "User-written terminal error programs" on page 94. This
message may be suppressed by using the NOTACLE option.

OFHTEP, ESE - ESE information
During the DFHTEP module generation, the PRINT parameter specified ESE.
This message contains the error status element. The message may be
suppressed by using the NOESE option.

An ESE will be either 6 bytes or 12 bytes long, depending on whether the TI,ME
option was specified when generating the TEP tables. The formats are as
follows:

NOTIME

Display Length
(bytes)

0 2 Error threshold counter or weight

value in binary.

2 2 Current error count or weight value
in binary.

4 Error code.

5 Not used.

TIME

Display Length
(bytes)

0 5 Same as described in NOTIME
above.

5 3 Timed threshold value in hundredths
of a second.

8 4 Time of fi rst occurrence of thi s error.
Time given as binary integer in
hundredths of a second.

CICS/MVS 2.1.2 Custclmlzatlon Guide

Generating the sample terminal error program
The sample terminal error program and the sample terminal error table are
generated by coding the DFHSG PROGRAM = CSO macro instruction in CICS
system generation. The sample program and tables will provide you with default
error processing for terminal errors. If you want to replace the supplied error
processors with user-written error processors, you must use the DFHTEPM and
DFHTEPT macro instructions to generate a sample error program and tables that
include your user-written routines. Some of the parameters specified in the
DFHTEPM and DFHTEPT macro instructions are related and care must be taken
to ensure compatibility. The parameters concerned are identified in the
descriptions of the macros later in this chapter.

If you use the sample terminal error program (DFHXTEP), you can generate the
entries required in the PCT and PPT as follows:

Using CEOA
Use the CEDA INSTALL GROUP(DFHSTAND) command to obtain the PCT and
PPT entries for the CSD. These entries are described below in "Using
Macros".

Using Macros

1. Code the STANDARD function group in the PCT (DFHPCT TYPE = GROUP,
FN = STANDARD) to get the PCT entries for the terminal error task
(transaction CSTE). The TWASIZE for this transaction includes the 20
fullwords (80 bytes) required by DFHTEP in addition to the storage
required by DFHTACP.

2. Code the STANDARD function group in the PPT (DFHPPT TYPE = GROUP,
FN = STANDARD) to get the PPT entries for the program DFHTACP, the
program DFHTEP, and the table DFHTEPT.

Job control for generating the sample terminal error program
The generation of the sample terminal error program consists of two separate
assembly and link-edit steps, one to create the sample TEP module itself, and
the other to create the TEP tables. See the information on the preparation of
application programs in the CICS/MVS Operations Guide for the job control
statements necessary to assemble and link-edit these components. The names
under which the components must be link-edited are:

DFHTEP Sample TEP module, assembled from DFHXTEP
DFHTEPT Sample TEPT table, assembled from DFHXTEPT.

Generate the sample DFHTEP module - DFHTEPM macro
The sample DFHTEP module is generated by the following macro instructions:

• DFHTEPM TYPE = INITIAL - to control the printing of CICS DSECTs, provide
optional routines, and indicate the type of information to be logged when
errors occur.

• DFHTEPM TYPE = ERRPROC - to allow you to replace the error processors
supplied with the sample terminal error program with user-written versions.

• DFHTEPM TYPE = ENTRY - to code a user "ENTRY" exit.

Chapter 2.9. The terminal error program 81

• DFHTEPM TYPE=EXIT - to code a user "EXIT" exit.

• DFHTEPM TYPE = FINAL - to indicate the end of the sample DFHTEP
module.

DFHTEPM TVPE=INITIAL
[,DSECTPR={YESINO}]
[,OPTIONS=([TDI(TD,destid)INOTD]

[,3270RI,N03270R]
[, 7770 I , N07770]
[,EXITSI,NOEXITS]
[, TIME I , NOTIME]
[,TCAMI,NOTCAM])]

[,PRINT=([ERRORSINOERRORS]
[,TACPACTIONI,NOTACPACTION]
[,TEPACTIONI,NOTEPACTION]
[, TIDI , NOTID]
[, DECB I , NODECB]
[, TACLE I , NOT ACLE]
[,ESEI,NOESE])]

TYPE = INITIAL
Establishes the beginning of the generation of the sample DFHTEP module
itself.

DSECTPR = {YESINO}
Is used to control the printing of CICS DSECTs on the sample DFHTEP
assembly listing. Its purpose is to reduce the size of the listing. The default
is DSECTPR=YES.

YES

NO

Means that printing of the DSECTs will be allowed.

Means that printing of selected CICS DSECTs will be suppressed. This
parameter should not be used under Assembler F.

OPTIONS = optional-routines
Is used to include or exclude optional routines in the DFHTEP module. The
parentheses are required even when only one option is specified. If this
operand is omitted, all default options are generated. Valid options are:

TD or (TD, destld) or NOTD
Is used to specify whether information regarding the errors is to be
written to a transient data destination.

TD Means the transient data output routine is to be generated. The
implied transient data destination is CSMT.

(TD, destld)
Means the transient data output routine is to be generated. The
messages are sent to the destination specified by "destid," which
must be defined in the destination control table.

82 CICS/MVS 2.1.2 Customlzation Guide

NOTD
Means no messages are to be written to a transient data destination.

3270R or N03270R
Is used to specify whether optional remote 3270 support is to be
included.

3270R
Means remote 3270 errors are to be supported. More specifically,
error codes 89 and 90 are supported. If you wish to supply your own
error processor routines for these codes, you must specify 3270R, or
make it the default.

N03270R
Means no remote 3270 support is to be generated.

7770 or N07770
Is used to specify whether optional 7770 support is to be included.

7770
Means 7770 errors are to be supported. More specifically error code
8A is supported. If you wish to supply your own error processor
routine for this code, you must specify 7770, or make it the default.

N07770
Means no 7770 support is to be generated.

EXITS or NOEXITS
Is used to specify whether "ENTRY" and "EXIT" user exit support is to be
included.

EXITS
Means that branches will be taken to ENTRY and EXIT exit routines
before and after error processing. Dummy exits are provided if user
exits are not used.

NOEXITS
Indicates that no branches will be taken to user exit routines.

TIME or NOTIME
Is used to specify whether threshold limit tests are to be controlled over
prescribed time intervals. An example might be putting a terminal out of
service if more than three instances of a given type of error occur in one
hour. The parameter must be the same as the OPTIONS operand in the
OFHTEPT TYPE = INITIAL macro instruction.

TIME
Means this type of "threshold" testing is to be supported.

NOTIME
Means this type of "threshold" testing is not to be generated.

Chapter 2.9. The terminal error program 83

TCAM or NOTCAM
Is used to specify whether optional TCAM support is to be included.

TCAM
Indicates that TCAM error code '9F' is to be supported.

NOTCAM
Indicates that TCAM error code '9F' is not supported.

PRINT = print-Information
Is used to specify which types of information are to be logged to the transient
data destination each time an error occurs. If NOTD is specified on the
OPTIONS operand, all PRINT parameters default to NO. All PRINT
parameters require the transient data output routine. The parentheses are
required even when only one parameter is specified.

ERRORS or NOERRORS
Is used to specify whether unprocessable conditions detected by the
sample DFHTEP are to be recorded on the transient data destination.

ERRORS
Means error messages are to be logged.

NOERRORS
Means no error messages are to be logged.

TACPACTION or NOTACPACTION
Is used to specify whether DFHTACP default actions are to be recorded
on the transient data destination.

TACPACTION
Means the default actions are to be logged.

NOTACPACTION
Means no default actions are to be logged.

TEPACTION or NOTEPACTION
Is used to specify whether the actions selected as a result of sample
DFHTEP processing are to be recorded on the transient data destination.

TEPACTION
Means the final actions are to be logged.

NOTE PACTION
Means no final actions are to be logged.

TID or NOTID
Is used to specify whether the symbolic terminal identification of the
terminal associated with an error is to be recorded on the transient data
destination.

Means the terminal identification is to be logged. This is the default
parameter.

NOTID
Means no terminal identifications are to be logged.

84 CICS/MVS 2.1.2 Custornization Guide

DECB or NODECB
Is used to specify whether the DECB of the line associated with error is
to be recorded on the transient data destination.

DECB
Means the DECB is to be logged. The hexadecimal representation of
the DECB is logged as two 24-byte messages. This is the default
parameter.

NODECB
Means no DECB logging is to occur.

TACLE or NOTACLE
Is used to specify whether the TACLE prefix is to be recorded on the
transient data destination.

TACLE
Means the 16-byte T ACLE prefix as received from DFHT ACP is to be
logged. This is the default parameter.

NOTACLE
Means no TACLE prefix logging is to occur.

ESE or NOESE
Is used to specify whether the ESE associated with the error is to be
recorded on the transient data destination.

Means the ESE, after being updated, and before being deleted (if the
action puts the terminal out of service) is to be logged. This is the
default parameter.

NOESE
Means no ESE logging is to occur.

Error processor source
The sample DFHTEP provides guidance on how to prepare error processor
routines, particularly with regard to register and subroutine linkage conventions.
The routines must also observe the following restrictions:

• The error processor must be coded in assembler language.

• The first executable statement in the routine must be labeled TEPCDxx,
where "xx" is the error code specified in the DFHTEPM
TYPE = ERRPROC,CODE = errcode macro instruction, which follows.

• In addition to the register usage conventions and restrictions stated in the
sample DFHTEP source, the contents of registers 12 and 13 (TCA and CSA
base registers) must not be changed. The sample DFHTEP executes as a
group of non-terminal-dependent tasks under CICS, and each has its own
TCA during the processing of each terminal error.

• The error processor must exit to the sample DFHTEP symbolic label TEPRET.

Chapter 2.9. The terminal error program 85

The macro instruction required for a user IIENTRY" exit is:

I OFHTEPM TYPE=ENTRV

This macro must be immediately followed by user "ENTRY" exit code, starting
with the label "TEPENTRY" and ending with a BR 14 instruction.

The macro instruction required for a user "EXIT" exit is:

I OFHTEPM TVPE=EXIT

This macro must be immediately followed by user "EXIT" exit code, starting with
the label "TEPEXIT" and ending with a BR 14 instruction.

Replace error processors - DFHTEPM TYPE = ERRPROC
The macro instruction necessary to replace error processors supplied with the
sample DFHTEP with user-written error processors is as follows:

..--------------
DFHTEPM TYPE=ERRPROC

,CODE=errcode
(followed by the appropriate error
processor source statements)

TYPE=ERRPROC
Indicates that a CICS-supplied error processor routine is to be replaced with
the user-written error processor that immediately follows the macro
Instruction. This macro instruction is optional; if used, the macro must follow
the DFHTEPM TYPE = INITIAL macro. One DFHTEPM TYPE = ERRPROC
macro must precede each user-written error processor source routine.

CODE = errcode
Is used to identify the error code assigned to the appropriate error condition.
These codes are listed In the section headed "Format description of TACLE
DSECT" on page 97. For example, the 7770 timeout error condition would be
entered as CODE = SA.

End of sample DFHTEP module - DFHTEPM TYPE=FINAL
The macro instruction to terminate the sample DFHTEP module is:

I OFHTEPM TYPE=FINAL

This is fonowed by an END DFHTEPNA statement.

86 CICS/MVS 2.1.2 Customlzatlon Guide

DFHTEPM macro examples
1. The following is an example of the minimum number of statements required

to generate a sample DFHTEP module:

DFHTEPM TYPE=INITIAL
DFHTEPM TVPE=FINAL
END DFHTEPNA

This example generates a sample DFHTEP module with CICS-supplled error
processors and all default options. This is equivalent to the sample terminal
error program obtained by coding the DFHSG PROGRAM = csa macro
Instruction in CICS system generation.

2. The following is an example of a more tailored sample DFHTEP module:

* MODULE SPECIFICATIONS

DFHTEPM TVPE=INITIAL, *
OPTIONS=((TD,TEPQ) ,N07770,EXITS) , *
PRINT=(NOTEPACTION,NOTACPACTION) , *
DSECTPR=NO

* USER-SUPPLIED ERROR PROCESSORS

DFIHEPM TVPE=ERRPROC,CODE=81

TEPCD81 OS 0H

error processor "81" source statements

B TEPRET

DFHTEPM TYPE~ERRPROC,CODE=9C

TEPCD9C OS 0H

error processor "9C" source statements

B TEPRET

* USER "EXIT" EXIT CODE

DFHTEPM TYPE=EXIT

TEPEXIT OS 0H

Additional user source statements to be executed after
error processing:

Chapter 2.9. The terminal error program 87

BR R14

* CONCLUDE MODULE GENERATION

DFHTEPM TYPE=FINAL
END DFHTEPNA

In this example no 7770 support is generated, but remote 3270 support and time
interval "threshold" testing support are provided. All default types of information
except for TACP and TEP actions are to be logged to the TEPQ transient data
destination. The CICS DSECTs will not be printed on the sample DFHTEp·
assembler listing. You have supplied two error processor routines (codes 81
and 9C respectively).

Generate the sample DFHTEP tables - DFHTEPT
The following macro instructions are required to generate the terminal error
program tables:

• DFHTEPT TYPE = INITIAL - to establish the control section.

• DFHTEPT TYPE = PERMTID - to define permanently reserved terminal error
blocks (TESs) for specific terminals.

• DFHTEPT TYPE = PERMCODEIERRCODE - to define permanently reserved
error status elements (ESEs).

• DFHTEPT TYPE = BUCKET - to account for specific error conditions to be
accounted for in the common error bucket.

• DFHTEPT TYPE = FINAL - to end the set of DFHTEPT macros.

Control section - DFHTEPT TYPE = INITIAL
The DFHTEPT TYPE = INITIAL macro instruction necessary to establish the
control section for the TEP tables is:

DFHTEPT TYPE=INITIAL
,MAXTIDS=number
[,MAXERRS={26I number}]
[,OPTIONS={TIMEINOTIME}]

TYPE = INITIAL
Establishes the beginnintJ of the generation of the TEP tables.

MAXTIDS = number
Is used to specify the total number of permanent and reusable terminal error
blocks to be generated in the TEP error table. Permanent entries are
defined by the DFHTEPT TYPE = PERMTID macro instruction described later
in this section. Any entries not defined as permanent will be reused when
the terminal is taken out of service, or wi" be deleted at the request of an
error processor. If an error occurs, and no TES space Is available, the error
is not processed, and DFHTACP default actions are taken. The minimum
number of blocks is 1. A maximum number is not checked for but should be
no greater than the number of terminals in your network. This parameter Is
required.

88 CICS/MVS 2.1.2 Customlzation Guide

MAXERRS = 261 number
Is used to specify the number of errors to be recorded for each terminal.
This value determines the number of permanent and reusable error status
elements in each TEB. The maximum number that may be specified Is 26.
(These is also the default value.) If more are requested, only the maximum
will be generated. If fewer are requested, one extra ESE will be generated
for each TEB. The extra ESE is the common error bucket. Permanently
reserved ESEs are defined by the DFHTEPT TYPE = PERMCODE macro
instruction described later in this section. Any ESEs not defined as
permanent will be dynamically assigned upon the first occurrence of a
non-permanent error type associated with the terminal. By defining a
number less than the maximum, and allowing the sample DFHTEP to
dynamically assign ESEs, you can minimize the size of the table and still
control and account for the error types relevant to the network. The
minimum number that can be specified is zero. In this case only a common
error bucket will be generated.

OPTIONS = {TIMEINOTIME}
Is used to specify whether time threshold space is to be reserved in support
of the TIME option specified in the DFHTEPM TYPE = INITIAL macro
instruction. The default is OPTIONS =TIME.

TIME
Means time threshold space will be reserved.

NOTIME
Means time threshold space will not be reserved.

Define terminal error blocks - DFHTEPT TYPE = PERMTID
The DFHTEPT TYPE = PERMTID macro instruction to define permanently reserved
terminal error blocks for specific terminals is as follows:

I DFHTEPT TYPE=PERMTID
, TRMIDNT=name

TYPE = PERMTID

Defines permanently reserved terminal error blocks for specific terminals.
Permanent TEBs are defined for terminals that are critical to system
operation to ensure that error processors will always be executed in the
event of errors associated with that terminal. If no permanent TEBs are to
be defined this macro instruction is not required. A separate macro
instruction must be issued for each permanently reserved TEB. The
maximum number of permanent TEBs is the number specified in the
MAXTIDS operand of the DFHTEPT TYPE = INITIAL macro instruction.

TRMIDNT=name
Is used to provide the 1-to 4-character symbolic terminal identification for a
permanently defined TEB. Only one terminal may be specified in each
macro.

Chapter 2.9. The terminal error program 89

Define error status elements - DFHTEPT
TYPE = PERMCODEIERRCODE
The DFHTEPT TYPE = PERMCODEIERRCODE macro instruction is used to change
the default threshold constants of the sample DFHTEP, and to define permanently
reserved error status elements:

DFHTEPT TVPE={PERMCODEIERRCODE}
,CODE={errcodeIBUCKET}
[,COUNT=number]
[,TIME=(number{,SECI,MINI,HRS})]

TYPE = {PERMCODEIERRCODE}
Identifies whether the error code specified in the macro instruction is to have
a permanently reserved or a dynamically assigned ESE. These macros are
required only if permanently reserved ESEs are to be defined, or if the
sample DFHTEP default threshold constants are to be overridden. These are
listed in Figure 7 on page 92.

PERMCODE
Identifies the error code specified as having a permanently reserved
ESE. Each permanently reserved ESE must be Identified by a separate
DFHTEPT TYPE = PERMCODE macro instruction. All DFHTEPT
TYPE = PERMCODE macros must precede all DFHTEPT TYPE =ERRCODE
macros.

ERRCODE
Indicates that the error code specified does not require a permanently
reserved ESE, but that the sample DFHTEP default threshold constants
are to be changed. Each error code requiring a threshold constant
change, other than those defined as permanently reserved, must be
identified by a separate DFHTEPT TYPE = ERRCODE instruction. All
DFHTEPT TYPE = ERRCODE macros must follow all DFHTEPT
TYPE = PERMCODE macros.

CODE = {errcodeIBUCKET}
Identifies the error code referred to by the TYPE = PERMCODEIERRCODE
parameter. These codes are listed in the section headed "Format
description of TACLE DSECT" on page 97. For example, the 7770 time-out
error condition would be entered as CODE = SA. CODE = BUCKET is only
applicable to the DFHTEPT TYPE = ERRCODE macro instruction. It is used to
override the default threshold constants established for the common error
bucket.

COUNT= number
May be used in either the DFHTEPT TYPE = PERMCODE or TYPE = ERRCODE
macro instruction to override the sample DFHTEP default threshold count
limits (see Figure 7 on page 92). When the number of occurrences of the
error type specified reaches the threshold limit, an error processor will
normally take a logic path that causes DFHTACP default actions to be taken.
If the number of occurrences is less than the threshold limit, the error
processor will normally take a logic path that overrides the DFHT ACP default
actions. The updating and testing of the current threshold counts are

90 CICS/MVS 2.1.2 Customlzatlon Guide

normally performed by a DFHTEP subroutine that sets a condition code that
the error processor can test to determine whether the limit has been
reached. If you specify 0 as the number in the COUNT operand, you will not
be told when the threshold limit Is reached.

TIME =tlme options
May be used in either the DFHTEPT TYPE = PERMCODE or TYPE = ERRCODE
macro instructions to override the sample DFHTEP default threshold time
limits (see Figure 7 on page 92). This parameter is only applicable when
the OPTIONS =TIME parameter is specified in both the DFHTEPM and
DFHTEPT TYPE = INITIAL macro instructions. When the number of
occurrences reaches the threshold limit specified in the COUNT = parameter
(above) within the interval specified in this parameter, an error processor
would normally take a logic path that would cause DFHTACP default actions
to be taken. If the number of occurrences within the interval is less than the
threshold limit, the error processor normally takes a logic path that overrides
the DFHTACP default actions. If the time interval has expired, the sample
DFHTEP subroutine that normally updates and tests the current threshold
count resets the occurrence counts, and establishes a new expiration time.
In this case, the condition code set by the subroutine indicates that the
threshold limits had not been reached. Time control in the sample DFHTEP
starts with the first occurrence of an error type. Subsequent occurrences of
the same error type do not establish new starting times, but are merely
accounted for as having occurred within the interval started by the first
occurrence. This continues until an error count reaches the threshold limit
within the interval started by the first occurrence, or until the interval has
expired. In the latter case, the error being processed becomes a first
occurrence, and a new interval is started. A time interval of 0 means that
the number of occurrences is to be accounted for and controlled without
regard to a time interval. Zero is the implied time interval if the
COUNT = parameter is 0 or 1. It is also the implied time interval if the time
options are not generated.

The time interval may be expressed in anyone of four units; hours, minutes,
seconds, or hundredths of a second. This allows you to express fractional
parts of a unit as whole units at a lower level. As an example, 1-1/2 minutes
could be expressed as 90 seconds, or even 9000 hundredths of a second.
The maximum interval must be the equivalent of less than 24 hours. While
the smallest interval that can be expressed is 1 hundredth of a second, a
practical minimum would be 1 to 2 minutes. This allows for access method
retries and the time required to create the task required to service each
error. The four methods of expressing the threshold time interval are:

number
Expresses the interval in 1/10Oth-second units. Parentheses are not
required if this method is used. The maximum number must be less
than 8 640 000 (24 hours).

(number,SEC)
Expresses the interval in whole seconds and must be enclosed in
parentheses. The maximum number must be less than 86 400 (24 hours).

Chapter 2.9. The terminal error program 91

(number,MIN)
Expresses the interval in whole minutes, and must be enclosed in
parentheses. The maximum number must be less than 1440 (24 hours).

(number,HRS)
Is used to express the interval in whole hours, and must be enclosed in
parentheses. The maximum number must be less than 24 hours.

The following table illustrates the sample terminal error program default
threshold count limits referred to in the TYPE, COUNT, and TIME operands of the
DFHTEPT TYPE = PERMCODEIERRCODE macro instruction.

CODE= COUNT= TIME= CODE= COUNT= TIME=

81 3 (7,MIN) 91 0 0
84 1 0 94 7 (10,MIN)
85 1 0 95** 0 0
86 1 0 96 2 (l,MIN)
87*** 50* 0 97** 0 0
88 1 0 98 5 (5,MIN)
89 100* (7,MIN) 99 1 0
8A 2 (2,MIN) 9B 1 0
8B** 0 0 9C 5 0
8C 1 e 90 0 (5,MIN)

9E 0 0
80 1 0 9F** 0 0
8E 1 0 A0** 0 0
8F 1 0 Al** 5 0
90 0 0 BUCKET 5 (5,MIN)

Figure 7. Sample DFHTEP threshold default limits

*

**

Error processor uses a threshold "weight" instead of a threshold count (see
sample DFHTEP source listing on page 102).

Error processor maintains error count only. DFHTACP default actions are
always taken regardless of the threshold limits.

*** For TCAM conditions without TACP defaults, TEP retries five times and
releases TIOA. Otherwise the default TACP actions are taken.

Note: Threshold values are ignored for unit checks on local terminals (error
code X ' 94 1

), and on switched lines (error codes X ' 94 1 and X '96 1
) when

they have been physically disconnected by STAM.

'Account for specific error conditions - DFHTEPT TYPE = BUCKET
The macro instruction is used to ensure that specific error conditions are always
accounted for in the common error bucket:

OFHTEPT TYPE=BUCKET
,CODE=errcode

92 CICS/MVS 2.1.2 Customization Guide

TYPE = BUCKET
Generates the macro to account for specific error conditions. If
MAXERR = 26 is specified in the DFHTEPT TYPE = INITIAL macro instruction,
this macro instruction is invalid. This macro is only required if no error
codes are to be specifically accounted for in the common error bucket. Each
error code must be specifically identified by a separate DFHTEPT
TYPE = BUCKET macro Instruction.

CODE = errcode
Identifies the error code to be specifically accounted for in the common error
bucket. The error code must not be specified in the DFHTEPT
TYPE = PERMCODE or TYPE =ERRCODE macro instruction.

Terminate DFHTEPT macro - DFHTEPT TYPE = FINAL
The DFHTEPT TYPE = FINAL macro instruction terminates the generation of the
DFHTEP tables.

~HTEPT TYPE=FINAL

DFHTEPT macro examples
1. The following is an example of the minimum number of statements required

to generate the TEP tables:

DFHTEPT TYPE=INITIAL,MAXTIDS=10
DFHTEPT TYPE=FINAL
END

This example generates 10 reusable terminal error blocks, each capable of
accounting for the maximum number of error types. Time threshold control
is supported, and all threshold values are the defaults supported by the
sample DFHTEP. This is equivalent to the sample terminal error program
table obtained by coding the DFHSG PROGRAM = CSO macro instruction in
CICS system generation.

2. The following is an example of a customized TEP table (continuation
character omitted):

Chapter 2.9. The terminal error program 93

* TABLE SPECIFICATIONS

DFHTEPT TYPE=INITIAL,MAXTIDS=10,
MAXERRS=5

* PERMANENT TERMINAL DEFINITIONS

DFHTEPT TYPE=PERMTID,TRMIDNT=TM02

* PERMANENT ERROR CODE DEFINITIONS

DFHTEPT
DFHTEPT

TYPE=PERMCODE,CODE=81
TYPE=PERMCODE,CODE=87,
COUNT=2,TIME=(l,MIN)

* OTHER THRESHOLD OVERRIDES

DFHTEPT TYPE=ERRCODE,CODE=BUCKET,
COUNT=3,TIME=(3,MIN)

* CONCLUDE TABLE GENERATION

DFHTEPT
END

TYPE=FINAL

This example generates 10 terminal error blocks, one of which is reserved
for the terminal whose symbolic identification is TM02, and the other nine
being reusable. Each TEB has space for five error status elements plus a
common error bucket. Of the five ESEs, two are reserved for error codes 81
and 87; the remaining ESEs are available to be assigned dynamically. The
threshold limits for error code 87 and the common error bucket are being
changed. No specific error code is to be accounted for in the common error
bucket.

User-written terminal error programs
A user-written terminal error program may be generated. The user-written
DFHTEP then replaces the sample TEP provided with the DFHSG
PROGRAM = CSO macro. The user-written DFHTEP will receive control as
described at the start of this chapter, and therefore should use the TACLE as its
basic interface with DFHTACP.

The·re are some situations in which CICS may attempt to send a message to an
input-only terminal; for example, an invalid transaction identification message, or
a message erroneously sent by an application program. You should provide a
terminal error program to reroute these messages to a system destination such
as CSMT or CSTL or other destinations by means of transient data or interval
control facilities.

A similar situation can exist when a message is sent to a 3735 terminal
operating as an input batch device. An attempt to write to the 3735 before the
receipt of the end of transmission (EaT) gives control to DFHTACP. If no DFHTEP
is provided, the current transaction will abend and the line will be disconnected.

94 CICS/MVS 2.1.2 Customlzatlon Guide

Addressing the contents of the TACLE
When DFHTEP receives control from DFHTACP, the TCA facility control address
(TCAFCAAA) contains the address of a TACLE. The TACLE is created by the
terminal control program when the error occurs, and contains all the I/O error
information provided by BTAM or TCAM.

To address the contents of the TACLE, the user-written terminal error program
should contain the statements "COPY DFHTACLE" and "COpy DFHTCTLE" in
that order. These define the complete DFHTCTLE DSECT. The symbolic names
in this DSECT are used to address fields in both the TACLE and the real line
entry associated with the error.

The TACLE consists of a 16-byte prefix (defined by "COpy DFHTACLE") and a
further 48-byte section, which is a modified copy of the DECB of the real line
entry at the time the TACLE was created.

To address the TACLE, the user-written terminal error program should contain
the statements:

COpy DFHTACLE
COPY DFHTCTLE

L TCTLEAR,TCAFCAAA
USING DFHTCTLE,TCTLEAR

POINT TO TACLE

Note that fields normally part of the real line entry DECB have offsets increased
by 16 in the TACLE.

The following fields in the DECB copy in the TACLE do not represent data copies
from the real line entry:

TCTLEDCB (Offset 24 in TACLE,
8 in rea 1 TCTLE)

This field in the TACLE pOints to the real line entry, whereas in the real line
entry it points to the BTAM DCB for the line group.

TCTLEECB+1 (Offsets 17, 18 in TACLE,
TCTLEECB+2 1,2 in real TCTLE)

These fields in the T ACLE are used as interface bytes for the terminal abnormal
condition program.

TCTLECB+3 (Offset 19 in TACLE,
3 in real TCTLE)

This is used in the TACLE for BTAM return code for rejected 1/0 requests.

TCTLECSW (Offsets 46, 48 in TACLE,
TCTLEALP 30, 32 in real TCTLE)

These are used in the TACLE for SAM error information, apart from their normal
use for BT AM lines.

Chapter 2.9. The terminal error program 95

Given addressability to the TACLE, you can also address t~e real line entry (for
example, to inspect data not in the OECB copy) by coding:

L TCTLEAR,TCTLEDCD

USING DFHTCTLE + TCTLEECB,TCTLEAR

Note: The real line entry storage definition starts at TCTLEECB, 16 bytes after
TCTLEPSA, and continues beyond the DECB end (TCTLESI).

To revert to addressing the TACLE, you should recode:

L TCTLEAR,TCAFCAAA POINT TO TACLE
USING DFHTCTLE,TCTLEAR ADDRESS TACLE

You should take particular care that the correct addressabiJity is established
when referencing fields in the DFHTCTLE DSECT.

Note: In programs that do not require a reference to the TACLE, the following
statements give direct addressability to the real line entry:

COPY DFHTCTLE
COPY DFHTCTTE

L TCTTEAR, TCAFCAAA
L TCTLEAR,TCTTELEA
USING DFHTCTLE,TCTLEAR

POINT TO TCTTE
POINT TO TCTLE
ADDRESS TCTLE

In this case the TACLE prefix is not mentioned, and DSECT DFHTCTLE begins
with field TCTLEECB.

After you have carried out the required functions and, optionally, altered the
default actions scheduled by DFHTACP, the user-written DFHTEP must return
control to DFHTACP by issuing the program control RETURN request. DFHTACP
then performs the actions specified In the T ACLE and causes the error
processing task to terminate.

96 CICS/MVS 2.1.2 Customlzatlon Guide

Format description of TACLE DSECT

TERMINAL ABNORMAL CONDITION LINE ENTRY

Dec Hex • 4 BYTES ..
o 0 t--0

TCTLEPSA

STORAGE ACCOUNTING AREA
4 4

TCTLEPCH

ADDRESS OF TRANSIENT DATA OUTPUT AREA
8 8

TCTLEPFL TCTLEPF2
NOT USED

ERROR FLAGS SPECIAL IND
12 C

TCTLEPTE

TCTTE ADDRESS
16 10

TCTLEECB BTAM/TCAM
BEGINNING ACTION RESERVED RETURN

OF DECB FLAGS FOR DFHTACP CODE
20 14

24 18
TCTLEDCB

ACTUAL LINE ENTRY ADDRESS

28 1C

44 2C
______ 0

TCTLECSW
NOT USED

BSAM STATUS
48 30

TCTLEALP
BSAM

SENSE
60 3C

TCTLEOA

-- o. --

Chapter 2.9. The terminal error program 97

Displacement

Dec Hex Code

0 0

4 4

8 8
81

83

84
85
86
87
88
89
8A
88
8C
80
8E
8F
94
95
96
97
98
99
98
9C
90
9E

9F
A0
Al

9 9
01

98 CICS/MVS 2.1.2 Customlzatlon Guide

Bytes Label Meaning

4 TCTLEPSA Storage accounting

4 TCTLEPCH Pointer to l00 bytes of user storage
that can be used to write to
transient data (first 8 bytes
reserved for storage accounting).
This storage must not be freed
by OFHTEP, as OFHTACP may reuse it.

1 TCTLEPFL Error flags
Message too long

TCEMCAAR 2740-2 auto output request (used by
OFHTACP, not passed to OFHTEP)
TCT search error
I nva 1 i d write
Polling list error
Unsolicited input
Input event rejected
Status message received
7770 32-second timeout
Hardware buffer exceeded
Output event rejected
Output length of zero
No output area
Output area exceeded
Unit check
Unit check (should not occur)
Unit exception
Unit exception (should not occur)
Negative response
Undetermined I/O error
Copy error (3270)
Invalid message block
Incomplete message
No printer available for 3270
print request
Invalid destination (TCAM)
Invalid read
Invalid disconnect

(All codes not listed are reserved)

1 TCTLEPF2 Special indicator dummy terminal
dummy terminal

Displacement

Dec Hex Code Bytes label Meaning

12 C 4 TCTLEPTE Address of terminal entry for
terminal in error

16 Ie TCTLEECB DECB/copy of line when error
occurred

6e 3C 4 TCTLEOA For TCAM lines only.
Address of the line I/O area
containing the input or output
message, or zero if none available.

TACLE action and information bits
The following definition of the OECB area includes TCTLEECB + 1 which contains
the action bits (0, 3, 4, 5, 6, and 7) and information bits (1 and 2). This is the only
portion of the copy of the OECB that can be altered. These bits are located at
label TCTLEECB + 1.

Displacement

Dec Hex

17 11

Bit e

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bytes label Meaning

1 TCTLEECB+1 Interface byte

e .. .
1 .. .

.e ..

. 1 ..

.. e.

.. 1.

... e

... 1
e .. .
1 .. .
.e ..
.1 ..
.. e.

.. 1.

••• 0

Place line in service
Place line out of service

Information bit
Not used
Notpurgeable task exists on
terminal

Information bit
Not used
Switched line has been disconnected
by BTAM
Do not disconnect line
Disconnect line
Place terminal in service
Place terminal out of service
Do not abend task
Abend task
Leave terminal's associated
control unit on poll list
Take terminal's associated
control unit off poll list
Do not abend WRITE or free
terminal storage on task abend,
or no task present on terminal

......• 1 Abend terminal WRITE requests and
free terminal storage on task
abend or no task present on terminal

Chapter 2.9. The terminal error program 99

18 12 1 TCTlEECB+2 Interface byte 2
Bit e 1 Release TCAM incoming message
Bits 1-7 Reserved

19 13 1 TCTlEECB+3 BTAM return code
24 18 4 TCTlEDCB Actual line entry address
46 2E 2 TCTlECSW BSAM status
48 30 1 TCTlEAlP BSAM sense

The following factors should be considered when altering the action bits in the
TACLE:

• For TCAM unsolicited input errors with either the terminal out of service or in
receive-only state, a loop will occur if the default action of purging the
incoming message does not occur and the status of the terminal is not
altered.

• The dummy terminal indicator at TCTLEPF2 is set on errors such as: (1)
BTAM return on input, (2) binary synchronous outputs performed for TCP
where no terminal is indicated, and (3) other errors from which no specific
terminal is indicated. Therefore, if a dummy terminal is indicated, task
abend and write abend are not set (see below). The dummy terminal is only
used to identify the line.

• The switched-line disconnected bit (X '20' at TCTLEECB + 1) is used by
DFHTACP upon return from DFHTEP to logically disconnect (by issuing a
WRITE BREAK) the switched line that has been physically disconnected by
BTAM. If DFHTEP determines that the line has not been physically
disconnected, DFHTEP may reset this bit. DFHTCP can communicate this
disconnect condition for BISYNC lines to DFHTACP by setting the bit
TCBSWB in the field TCTLEDI in the real line entry. DFHTCP will do this
when a READ INITIAL or READ CONNECT completes with an I/O error or
when a mandatory disconnect sequence (DLE-EOT) is received from the
remote terminal. OS/VS BTAM may DISABLE a switched line and convey
this fact by setting the bit X'08' in the field TCTLEES. This flag may be
tested in the TACLE.

• The disconnect switched-line bit (X'10' at TCTLEECB + 1) is used by DFHTEP
to request that DFHTACP actually makes the disconnection (by means of a
WRITE DISCONNECT).

• If the switched-line disconnected bit or the disconnect switched-line bit is on,
upon return from DFHTEP, the task abend bit should also be set to purge the
task from the disconnected terminal. If this is the case and if the task is not
purgeable from the terminal, DFHTACP writes an INTERCEPT REQUIRED
message to destination CSMT and places the terminal out of service.

• The abend transaction bit (X' 04' in TCTlEECB + 1) is always associated with
two other bits as part of TACP action 3. These other bits are notpurgeable
task and write abend (X '40.' and X '01' respectively, both in TCTLEECB + 1).

• Write abend is always set on at the same time as abend transaction. It has
the effect of clearing the TCTTE of the original write request indicators, if the
error being processed occurred on a Te WRITE.

• Notpurgeable task is set to on if a transaction is currently associated with
the terminal, but if this transaction 10 was specified with TPURGE = NO.

100 CICS/MVS 2.1.2 Customization Guide

• None of the abend task, write abend, or notpurgeable task bits will be set If
the dummy terminal indicator is on, even if DFHTACP would normally set
default action 3 (abend transaction) for the error being processed. So, the
following remarks apply only to errors related to a real terminal.

• Abend task has no effect if no transaction is associated with the terminal,
except in the case where a pseudoconversational task has been associated
with this terminal. In this case, the next transid (TCTTETC) will be cleared.
Otherwise, if notpurgeable task is indicated, the transaction remains
attached to the terminal (normally in SUSPEND state) and DFHTACP writes
the DFH2522 INTERCEPT REQUIRED message to CSMT; if the transaction is
not marked notpurgeable, it is abended with code ATAI, or rarely, ATAD.

• Write abend has no effect if the TCTTE was associated with a READ request.
In this case the normal result will be that, if the line and terminal remain in
service, the read will be retried.

Example of a user-written terminal error program
The following is an example of the logic steps necessary to design a portion of
the terminal error program, called the "DFHTEP recursive retry routine." In this
example, 10 retries are provided for each terminal; however, the logic could be
used for any number of retries. The following assumptions are made:

USER FIELD A
(PCISAVE)

Represents a 6-byte field in the process control information (PCI) area of the
TCTTE (see the TCT macro definition of the TCTUAL operand). This field is
used to preserve the count of input and output from the TCTTE when the first
error occurs. These counts are contained in 3-byte fields located at TCTTENI
and TCTTENO within the TCTTE.

USER FIELD B
(PCICNT)

Represents a user~defined field used to accumUlate the count of recursive
errors. It should be in the process control information (PCI) area of the
TCTTE.

SYSTEM COUNT
(TCTTENI)

Represents the 6-byte field in the TCTTE that contains the terminal input and
output counts (TCTTENI + TCTTENO). In the example, these two adjacent
fields are considered as one 6-byte field.

Because this example requires access to the TCT terminal entry (TCTTE) to
examine the SYSTEM COUNT and to locate the process control information (PCI)
area, the DFHTCTTE symbolic storage definition is included so that fields may be
symbolically referenced.

Chapter 2.9. The terminal error program 101

DFHTEP recursive retry routine

**
*
*
*

DFHTEP RECURSIVE RETRY ROUTINE
*
*
*

**
TEPBAR EQU 2
TCTTEAR EQU 9
PCIBAR EQU 8

DFHTCA
COPY DFHTCTTE
EJECT
COpy DFHTACLE
COpy DFHTCTLE
EJECT

PCIAREA DSECT
PCISAVE DS 6X
PCICNT OS PL2

EJECT
DFHTEP CSECT

*

*
*

*
*
RESET
*

BALR TEPBAR,0
USING *,TEPBAR
L TCTLEAR, TCAFCAAA
L TCTTEAR,TCTLEPTE

L PCIBAR,TCTTECIA
USING PCIAREA,PCIBAR
TM PCICNT+l,X '0C'

BO CKCOUNT

MVC PCICNT,=PL2 1+0 1

TEP PROGRAM BASE
BASE REGISTER FOR TCTTE
BASE FOR PCI
TASK CONTROL AREA
COpy TCTTE DEFINITION

COpy TACLE SYMBOLIC DEFINITIONS
COpy DECB DEFINITION

USER FIELD A
USER FIELD B

ESTABLISH PROGRAM ADDRESSABILITY

LOAD TACLE ADDRESS
LOAD TCTTE BASE WITH
TCTTE ADDRESS
LOAD PCI AREA ADDRESS
ESTABLISH ADDRESSABILITY
HAS USER FIELD B EVER BEEN
INITIALIZED TO A PACKED
DECIMAL NUMBER?
•. YES, SO COMPARE THE
SYSTEM COUNT WITH THE
EXISTING COUNT IN FIELD B;
.. NO, SO INITIALIZE FIELD
B TO A PACKED DECIMAL 0.

PCISAVE OS XL6 SAVE THE CURRENT SYSTEM
MVC PCISAVE(L'PCISAVE),TCTTENI

*
THIS IS A NEW
*
INCR AP PCICNT,=P'l'
*
*
(RECURSIVE COUNT)

CP PCICNT,=P ' 10 1

*
BNE RETRY

*

COUNTS.

ERROR, OR FIRST TIME THROUGH
INCREMENT THE NUMBER OF
TIMES THIS SAME ERROR HAS
OCCURRED.

HAS THE MAXIMUM RECURSIVE
ERROR LIMIT BEEN REACHED?
.. NO, SET ACTION
INDICATORS FOR RETRY ATTEMPT

ZAP PCICNT,=P '01 * CLEAR AND RESET USER FIELDS
PCISAVE OS XL6 * FOR NEXT ERROR SET
MVC PCISAVE(L'PCISAVE),TCTTENI
B NORETRY ACTION INDICATORS FOR NO-RETRY.

CKCOUNT PCISAVE OS XL6 HAS SYSTEM COUNT CHANGED SINCE

102 CICS/MVS 2.1.2.Customlzatlon Guide

CLC PCISAVE(L'PCISAVE),TCTTENI
*

*
*
*

*
*
*
RETRY

BNE

B

DS

NORETRY DS

LTORG
END

RESET

INCR

0H

0H

LAST ENTRY TO TEP?
.. YES; THAT MEANS THIS IS
A NEW ERROR SINCE SOME I/O
ACTIVITY HAS OCCURRED ON
TERMINAL
.. NO; THAT MEANS THIS IS A
RECURSIVE ERROR, SO
INCREMENT THE RECURSIVE COUNT
AND CHECK FOR RETRY.
THE USER WOULD INCLUDE HERE
THE CODE NECESSARY TO ALTER
THE FLAGS IN THE TACLE SO
THAT A RETRY CAN BE PERFORMED
ON THE TERMINAL.
THE USER WOULD INCLUDE HERE
THE CODE NECESSARY TO ALLOW
DFHTACP TO TAKE FINAL ACTION
ON THE TERMINAL (I.E., ABEND
TASK, PUT LINE OUT OF SERVICE,
ETC.)

The above example is intended only to serve as an illustration of a recursive
error handling te(;hnique and of the steps necessary to establish addressability
to the applicable control blocks.

Note: You will probably wish to prevent data security violation. This may
happen, for example, when a terminal has been put out of service and the
operator leaves it. The master terminal may put that terminal back into service,
and another operator may use it with the original operator's security key. You
can provide automatic sign-off by including the following code in the DFHTEP (for
example, after the label "NORETRY", which appears in the example above):

LR R3,Rl
L R4,TCAFCAAA
ST TCTTEAR,TCAFCAAA
L Rl,TCTTELEA
DFHPC TYPE=LINK,PROGRAM=DFHSFP
LR Rl,R3
ST R4,TCAFCAAA

After providing addressability to every terminal entry, similar actions may be
performed for every terminal on a line that is taken out of service.

User-written actions for particular cases
This section provides guidance on how to write your own terminal error program
to handle error conditions from several devices. The following topics are
discussed:

• Switched sse temporary text delay (TTO)
• 7770 32-second timeout
• 2740 Model 2

Chapter 2.9. The terminal error program 103

• Teletypewriter (countries outside the US only)
• 3270 unavailable printer
• 3600 SSC
• 3275 dialed timeouts
• 3270 locked buffer.

Switched BSC tenlporary text delay (TTD)
When a temporary text delay indication is received, STAM, after retrying the
operation up to seven times, will turn on TCTLESF7 (TCTLESF=X '01 1

) and return
control to CICS indicating that an error has occurred. CICS will then invoke
DFHTEP for error analysis.

STAM may also turn on TCTLESF7 when a data record ending with ENQ is
received (the terminal detected a parity or transparency error). Therefore,
DFHTEP should also examine the 1/0 area pOinted to by TCTLEIOA to determine
if it contains STX ETX (TTD) or EOT ... data ... ENQ.

7770 32-second timeout
If a terminal connected to the 7770 Audio Response Unit goes on hook while no
1/0 operation is outstanding, the 7770 does not present the unit exception to the
channel. This situation can occur when the terminal operator makes an inquiry
and hangs up before receiving a response. After this occurs, all writes to the
line appear to complete normally. All reads complete normally at the end of the
32-second timeout with a zero data length.

When a 32-second timeout occurs, either the terminal operator has not entered
anything for 32 seconds, or the terminal operator has hung up and the 7770 did
not inform CICS. CICS cannot distinguish between these two conditions;
therefore, CICS handles every 32-second timeout as an error condition.
DFHTACP goes to DFHTEP with defaults of DISCONNECT SWITCHED LINE and
ABEND THE TRANSACTION. If DFHTEP does not disconnect the switched line,
CICS writes the" ready" message and initiates another read.

2740 model 2
When DFHTACP detects a negative response from a 2740 Model 2, the write
operation will be retried after a 10-second time delay if the user-written TEP has
been coded to retry the write. This delay allows for operator reaction time, and
other factors. If the delay time factor is to be changed, this may be done by
storing the new time delay factor at TCTTEBC. The value is a positive binary
number representing hundredths of a second (10 seconds would have a value of
F'1000' or X '000003E8 1

), which is calculated by adding the delay value to the
value contained in CSACSCC. The cause of the negative response may be
determined by examining the field TCTLERSP. The contents of TCTLERSP and
the meaning of each follow:

X '04 1 Terminal in bid mode
X' 02 1 Terminal in communicate mode
X ' 20 ' Terminal in communicate mode with document device down
X 110 1 Terminal In local mode
X' 13 1 Terminal in communicate mode but out of paper
XI 08 1 Contents of buffer are being printed.

104 CICS/MVS 2.1.2 Customization Guide

Caution: If you do not set a long enough time delay, this may cause a loop at
the terminal, and the reset key will not be recognized if it is pressed.

Teletypewriter (countries outside the US only)
There are no default actions provided by OFHTEP for the teletypewriter
(countries outside the US only). You have to handle all exceptional conditions.
In the case of an 10 error or a severe transmission error, you may want to abend
the task and disconnect the line so that the computer can accept a new
connection. Under these circumstances, it is recommended that, after entry to
OFHTEP, the interface byte for the status of the task, line, and terminal, (that is,
TCTLEECB + 1) be set to the following values before returning to OFHTACP:

Bits 0 1 2 3 4 5 6 7
Values 0

*
o

1
o

1

*
*

3270 unavailable printer

Line in service
Unchanged
Switched-line disconnect request "off"
Disconnect line
Terminal in service
Abend task
Unchanged
Unchanged

This condition arises when a print request is made through the 3270 print
request facility and there are no printers on the control unit, or the printer(s) is
in one of the following conditions:

• Out of service
• A task is currently attached
• Currently busy on a previous operation
• Intervention required.

The terminal control program recognizes this condition and issues a READ
BUFFER operation to collect the data into a line I/O area (LlOA). The LlOA is of
the same format as a terminal I/O area (TIOA) would be if an application
program had issued a terminal control read buffer request. Thus, the TIOA
DSECT may be used to reference the LlOA.

The TCP then obtains a TACLE. and attaches DFHTACP with the error code
X I 9E I (TCEMCUP). The TACLE fields relevant to this situation are:

TCTLEIOA
TCTLETLA-1

Pointer to the LlOA
Pointer to first printer on control unit or zero (no printers).

DFHTACP writes the DFH2508 UNAVAILABLE PRINTER message to the CSMT
destination and LINKs to DFHTEP with no default actions set.

On return from DFHTEP, DFHTACP will perform the following actions, based on
the field TCTLETLA in the TACLE:

Chapter 2.9. The terminal error program 105

1. If TCTLETLA-1 is all FFs (-1 set by DFHTEP) DFHTACP assumes that
DFHTEP has disposed of the data to be printed and requires the keyboard of
the originating terminal to be restored.

2. If TCTLETLA-1 is 0 (zero) DFHTACP will assume that no printer is available,
and the keyboard of the originating terminal will not be restored.

3. If TCTLETLA-1 is neither 0 (zero) nor -1 (all FFs) DFHTACP assumes that
TCTLETLA-1 is the address of a printer. An interval control PUT command
will be performed to the provided terminal. The transaction to be initiated is
CSPP (print program), and the time interval will be zero. If CSSP is to be
scheduled, AUTOTRN = YES must be specified in DFHSG PROGRAM = TCP to
include the AVAIL logic.

a. If an error occurs on the interval control PUT, DFHTACP will write the
DFH2531 IC FAILURE message to the destination CSTL (DFHTACP error
code X 1911). DFHTACP will then link to TEP again with the high order bit
(X I 80 1) set in the TACLE field, TCTLETLA-1, and the IC error value from
the TCA field TCAICTR will be placed into the TACLE field, TCTLEECB + 3.
This is done in order for TEP to have a last chance to dispose of the
data. On the second RETURN from TEP to DFHTACP, DFHTACP will
reexamine TCTLETLA-1. If TCTLETLA-1 is -1 (all FFs), DFHTACP will
restore the originating terminal's keyboard. Otherwise, the keyboard will
remain locked.

b. If no error occurred on the interval control PUT command, DFHTACP will
check for the following printer conditions:

1) Out of service
2) Intervention required
3) Other than RECEIVE or TRANSCEIVE status.

If one of these conditions is true, DFHTACP will issue the DFH2532 PRINT
QUEUED message to the destination CSMT (DFHTACP error code X 190 I).

4. DFHT ACP will then terminate any PRINT requests on the originating terminal,
free the LlOA, and perform normal action flag processing on the originating
terminal.

Note that all scheduling and error handling for 3270 printers operating under
TCAM is provided by the message handler.

3600 BSC
There is no special default processing provided in DFHTEP for BTAM-supported
3600 BSC terminals.

3275 dialed tlmeouts
CICS will always disconnect a 3275 switched line if there is no activity on the line
for two minutes.

In some countries, the local laws prohibit a switched line from remaining
connected for more than 30 seconds if no line activity is taking place. This
action is initiated by the modem (for example, model 3976-3 for countries other
than the U.S.A.) dropping out of its ready state and going on hook. In this
situation, CICS will disconnect the line, and manual intervention may be required
to reestablish the connection.

106 CICS/MVS 2.1.2 Customlzatlon Guide

3270 locked buffer
To prevent data displayed on a 3270-system display unit from being copied to a
3270-system printer, the display unit buffer can be locked by placing a protected
alphanumeric attribute byte (BIT2 = 1, BIT3 =0) in address O. This will cause any
attempt to use the copy command to end with sense status X I C4C1 1

• For further
information, see the appropriate 3270 Information Display System manual.

Chapter 2.9. The terminal error program 107

Chapter 2.10. The node error program

As with the terminal error program for non-VTAM devices, the node error
program (NEP) for VTAM-attached terminals is available in three forms:

• The dummy node error program
• The CICS-supplied sample node error program
• User-written versions.

All three types are discussed in the following sections.

Notes:

1. Node error programs, not terminal error programs, must be used for
terminals and logical units supported via the ACF/VTAM interface.

2. In this chapter, "VTAM 3270" refers to the non-SNA 3270 connected through
VTAM, and "3270 compatibility mode" refers to an SNA 3270* connected
through VTAM.

3. If you code an EXEC CICS HANDLE CONDITION TERMERR command In your
application program, it is sometimes possible for the application program to
handle exceptional cases, rather than using a node error program. The
TERMERR condition is driven if DFHZNAC actions an ABTASK(ATNI abend).
Note that TERMERR is application-related, and is not an alternative to the
node error program, which must be used for session-related problems.
Dealing with errors in the application program is particularly useful in an
intersystem communication (ISC) environment.

This chapter has two reading sequences. The first is a general overview of the
use of the node error program. It begins at "Background to CICS-VTAM error
handling" on page 110. The second, which begins at "When an abnormal
condition occurs" on page 117, goes into more detail about:

• CICS components involved in an abnormal condition
• Logging
• The sample NEP

Components
Routing
Options
Macros for its generation.

• User-written NEPs
Multiple NEPs

- Macros for generation
- Error processors.

• 3270 unavailable printer
• Session failures.

* IBM Trademark. For a list of trademarks see page III.

@ CopyrIght IBM Corp. 1977, 1990 109

If you are new to the node error program, you should read the first sequence
before you look at the more detailed sections that follow. If you are familiar with
NEPs, you will often be able to go straight to the second sequence and look at
the sections that particularly interest you.

Background to CICS-VTAM error handling
• In general, errors detected in CICS-VTAM terminal control are queued for

handling by a special task, the CICS node error handler (transid 'CSNE'). In
addition, CICS finds it convenient to use the same technique for certain
housekeeping work, such as sending "good-morning" messages, and logging
session starts and ends, which are not "errors" at all.

• In a few cases, exceptions signalled to CICS by VTAM are not treated as
errors, and are not passed to the node error handler. For example, CICS
often sends an SNA BID command as part of automatic transaction initiation.
Rejection of the BID with exception code 0813 (wait) is a standard response,
and CICS handles the retry in terminal control without calling this an "error".

For the rest of this description, only the errors are considered.

• The CSNE task runs as a "background" task. "Background" means that it is
not associated with anyone CICS terminal. At any time, there will be at
most one such task, working on the single node error queue.

All node errors on the queue are analyzed in turn by a table-driven,
CICS-supplied program called DFHZNAC (node abnormal condition program).
It is not intended that you should ever modify this. However, it is sometimes
helpful to understand thE) internal logic of DFHZNAC. (For example, when
DFHZNAC does not call DFHZNEP.)

• DFHZNAC will LINK to a module called DFHZNEP (if present in the CICS
system) when processing most node errors. The interface for this LINK is
described in "When an abnormal condition occurs" on page 117.

This formal ZNAC/ZNEP interface gives you the opportunity to supply your
own code to analyze error conditions, change default actions, and take
additional actions specific to your applications.

• The key features of the DFHZNAC-DFHZNEP interface are as follows:

DFHZNEP must be written as an assembler program.

It is LINKed-to separately for each error on the queue.

Communication between the two modules Is through fields in the
transaction work area (TWA) for the CSNE task.

On each DFHZNEP invocation, one such field contains a 1-byte internal error
code, assigned by DFHZNAC, which identifies the type of error. Other fields
identify the CICS TCTTE (LU) associated with the error, and any SNA sense
codes. There are also fields for ZNEP to pass back user messages for
subsequent logging by ZNAC.

110 CICS/MVS 2.1.2 Customlzatlon Guide

Further fields contain "action flags". Each flag represents an action that
DFHZNAC may take when DFHZNEP returns control to DFHZNAC. These
"actions" are of different types:

Reporting (error messages, dumps of control blocks, actions taken)

Status changes (for example, of TCTTE)

Clean-up work (cancel any associated transaction, end the VTAM
session).

Some of these flags are for information only. One informs you that the VTAM
session either has just failed or will be terminated unconditionally. But most
of the flags can be reset by the DFHZNEP program to modify the actions
taken on return to DFHZNAC. However, DFHZNAC sometimes overrules the
changed flags and acts on the original flag settings. For an example of this,
see Figure 8 on page 120, which shows two flags as "not resettable". If
those flags have been unset, DFHZNAC disregards the change.

The detailed internal error codes used by DFHZNAC, with its default actions
and messages for each case, are described in the CICSIMVS Problem
Determination Guide.

• CICS supplies a pregenerated "dummy" DFHZNEP, which simply returns
control when DFHZNAC LINKs to it. Because it leaves all action flags
unchanged, the DFHZNAC default actions are not affected.

Why use a NEP to supplement CICS default action?
The following list gives some of the reasons why you might want to write your
own node error programs to add to the default actions provided by CICS and
VTAM.

• Not all "errors" represent communication system failures. Some errors (like
trying to write zero-length data) may reflect special situations in applications,
needing special action.

• There might be duplication of diagnostic information between CICS and
VTAM (if a session, or, worse, the whole network control program goes
down). So you might want to suppress the messages from DFHZNAC. Or,
you might wish to use another technique to notify errors (DFHZNAC only
writes its messages to the transient data queues CSMT and CSTE).

• In other cases, you might want to change the amount of diagnostic
information produced by CICS - the default varies with the error type. For
example, the VTAM RPL associated with an error may be printed when you
do not want it, or not printed when you do.

• There could be application-related activity to be done when a node error
occurs. For example, if a message fails to be delivered to a terminal, it may
need redirecting to another. With messages sent with exception-response
only, CICS may not have the data available to resend it, but the requesting
application might be able to recreate it. For example, if an error were
signalled during the sending of a document to a printer, it might be able to
restart from the beginning, or the specific page, of a document.

Chapter 2.10. The node error program 111

• Some devices, such as the 3650 Retail Store System, return application-type
data in "User Sense Data" fields. This can only be retrieved in a NEP. The
NEP has to catch and save data for further application programs.

• If CLSDSTP = NOTIFY has been specified on DFHSIT, the NEP will be
informed of both successful and unsuccessful VTAM CLSDST PASS requests.
A user-written NEP can reestablish the Interrupted session with CICS when a
CLSDST PASS request fails. For more information, see" Application routing
failure" on page 122.

An overview of writing a NEP

The dummy NEP

The sample NEP

The only restriction on your DFHZNEP module is conformity to the defined
interface: a LiNKed-to assembler program that uses the defined TWA fields to
analyze an error and then returns to DFHZNAC. The tools provided for writing
node error programs are macro level, and NEPs are normally written In
macro-level. The source code of the "dummy" NEP provided by CICS may be
used as a skeleton on which to build a single NEP.

CICS also provides a variety of macros to help you generate more complex,
"sample" NEPs. These are merely to help you develop your own NEPs - you
do not have to use any of them.

Your node error handling logic may be written as a number of modules, but the
one that receives control from DFHZNAC must be called DFHZNEP. Note that
some of the macros described later give the option of using different names.

DFHZNEP code can use standard CICS functions (LINK, XCTL) to invoke other
user modules. Each module thus requested must, of course, be defined in the
CICS PPT. PPT entries are also needed for DFHZNAC and DFHZNEP
themselves. These are automatically generated by the CEDA command:

CEDA INSTALL GROUP(DFHVTAM)

or by the standard PPT macro:

DFHPPT TYPE=GROUP,FN=VTAM

The dummy NEP, DFHZNEP, is supplied with CICS. It is not the same as the
sample node error program. The dummy NEP prints the dummy TCTTE when
the threshold of temporary VTAM storage problems has been reached.
DFHZNEP then returns control to DFHZNAC. It performs no other processing.

The CICS sample node errot' program Is a generalized program structure for
handling errors detected from logical units. None of its components is generated
as part of the standard CICS generation process, but instead may be optionally
generated as described in this section and in "The sample node error program"
on page 123.

112 CICS/MVS 2.1.2 Customlzatlon Guide

The "sample" NEPs that CICS provides are designed with two main features:

• The samples assume you will want to invoke separate routines (ERRor
PROCedures, or ERRPROCs) to handle different "groups" of error types.
You specify which of the DFHZNAC internal error codes are to be regarded
as a "group" for processing by anyone routine, and then supply the code for
that routine. CICS has some standard cases to help you. More information
is given about them below.

• The samples may work in association with a separately generated module
called a node error table. This can be used to build up statistics for each
error group that the NEP will process. This table is analogous to the
terminal error table, DFHTEPT, used by the equivalent CICS-BTAM sample
error program.

Some of the CICS-supplied error processors use the node error table - the
3270 GROUP = 1 is an example. (See "User-supplied error processors -
DFHSNEP TYPE=ERRPROC" on page 130.) Other processors do not use a
NET.

The node error table
It is easier to understand the sample NEP if you first look at the node error table
structure in more detail.

Node error table is often abbreviated to NET. This can be confused with "net" as
in "network", and also with NETNAME, which here means the name of a node
error table, and has nothing to do with NETNAME as used in the CICS TCT.

You can generate a node error table using the CICS macro DFHSNET. See
"Node error table" on page 125 and "Generating the sample node error table
- DFHSNET" on page 129. You choose how sophisticated this table is to be.

The node error table must be defined in the PPT as a RESIDENT program. This
makes it easy for the NEP to find it (using a CICS LOAD request), but ensures
that any counters are not reset by reloading. You can give the table any name
you like. The default is DFHNET.

Basically, the table comprises sets of error recording areas. Each set is called a
node error block (NEB) and is used to count node errors for one LU at one time.
You may dedicate certain NEBs for use with certain specific LUs throughout a
CICS run; and you can leave other, reusable NEBs for general use. If you expect
that you might be accumulating error statistics about 10 LUs concurrently, you
would need 10-12 NEBs.

Each NEB may contain multiple recording areas, one being used for each group
of errors you want to distinguish. The error "groups" correspond to those in the
NEP. That is, they are groups of error types requiring separate processing logic.

Each recording area is known as an error status block (ESB). You specify the
space reserved for each ESB, and it typically includes space to count the errors,
or record when the first of the present series occurred. Note that in anyone
NEB the counting is for one LU only.

Chapter 2.10. The node error program 113

Finally, you can specify a threshold and a time limit in the table. These are
simply constants, which can be used by code in the NEP to test an ESB, to see if
a given type of error has occurred more than the threshold number of times in
the stated interval. The time limit also affects the interval between using a
general NEB for one LU and then reusing it for another.

A minimal NET would simply consist of a handful of NEBs, each with just one
ESB, a" types of error that are of interest being grouped together.

Coding the sample NEP
The sample NEP is coded using the macro DFHSNEP. The basic form is as

, follows:

DFHSNEP TYPE=INITIAL
Specific error handling code (more details below)

Example: DFHSNEP TYPE=DEF3276
DFHSNEP TYPE=FINAL
END DFHNEPNA

By default, this generates a module called DFHZNEP, which works with a node
error table called DFHNET. If you want to use another table, you could code
NETNAME = MYTABLE after TYPE = INITIAL. Details of the DFHSNEP macro are
given in "Generating the sample node error program" on page 126.

The best way to understand the sample code is to generate a standard NEP (try
the one with TYPE = DEF3270 shown in "3270 error processors - DFHSNEP
TYPE = DEF3270" on page 128 and look at the resultant assembler listing. Here
is a description of the code.

The INITIAL and FINAL macros generate the basic skeleton of the NEP. This
comprises some initialization code, and some common routines. A" the code is
built round the assumption that you have a node error table as previously
described.

The initial code will first test the internal error code passed from DFHZNAC to
see if it belongs to a group the NEP needs to handle. The groups are identified
by the code you sandwich between the DFHSNEP INITIAL and FINAL macros.
This is described in "Generating the sample node error program" on page 126.
If the particular error code is not of interest to NEP, control is returned at once to
DFHZNAC, to take default actions.

Otherwise, the relevant node error table is located by a CICS LOAD request. (As
previously explained, this table should be resident in virtual storage.) The NEP
code will then locate the correct ESB within a selected NEB. This may either be
an NEB permanently dedicated to the LU In error (named NEB), or one taken
from the general pool.

The initial code will then invoke the appropriate user logic for that error group.
On entry, this code will then have set up any necessary pointers to the CSA,
TCA, TWA, the TCTTE for the LU in error, the NEB, and the ESB. For details, see
"Generating the sample node error program" on page 126.

The common routines in the NEP provide common services for your own logic.
They count and time~stamp errors in the ESB, or test whether error thresholds

114 CICS/MVS 2.1.2 Customizatlon Guide

have been exceeded. They are not documented outside the sample listings.
You can generate a NEP without them if you wish.

Your own code is inserted between the DFHSNEP TYPE = INITIAL and
TYPE = FINAL macros. Each section of user logic, intended to handle a particular
"group" of error types, is headed by a macro of the type:

DFHSNEP TYPE=ERRPROC.CODE=(ab,cd, ...).GROUP=n

where X' ab I, X' cd' are the ZNAC internal error codes you want to process,
and n is the number of the error "group", and therefore also of the
corresponding ESB, within an NEB, in the node error table. Successive
ERRPROCs should use groups 1, 2, 3,

The TYPE = ERRPROC macros serve several purposes. They:

• Inform the NEP generation how many error groups there are
• Show which error types are to be included in each group
• Introduce the code for each group.

Note that anyone OFHZNAC error code should only figure in one error group,
and that any code not mentioned will simply be ignored by the NEP. You follow
each ERRPROC macro with your own logic. This should begin with standard
code to save registers, or set up addressability, which is best copied from
sample NEP listings.

To help you, CICS provides certain standard ERRPROCs to handle specific errors
on two different types of LU. These are for a non-SNA 3270 (SSC 3270 attached
to CICS-VTAM), and for interactive SNA logical units like a 3767. Further
information is given in the second sequence of this chapter.

The code for non-SNA 3270 can be generated by coding

DFHSNEP TYPE=DEF3270

where you would otherwise code an ERRPROC macro plus following logic of
your own. In effect, TYPE = OEF3270 defines two error groups,. each an
ERRPROC. The first group comprises the three ZNAC error codes XI 09 1

, '~C',

and '~O' that are associated with receipt of 3270 status codes. The second
group only contains error code, X ' 42', corresponding to the "unavailable
printer" condition, a specific CICS exception condition signalled when it cannot
allocate a printer in response to a "PRTREQ" screen-copy request.

The 3270 sample code provides error handling, under VTAM, for non-SNA 3270,
which is compatible with that previously provided by CICS-BT AM in the sample
TEP. This sample code is not intended to cover all error conditions. Note that
the code is not enough for SNA 3270 (LU session type 2). Error conditions
presented for these have different ZNAC error codes and may require different
handling.

You may find that the CICS-supplied code is not sufficient for other
application-related reasons. Perhaps you want to try to reacquire lost sessions
after a time-interval. The code supplied for the 3767 covers only one error group
with one ZNAC error code, X 1 DC I, which may occur under contention protocol.

Chapter 2.10. The node error program 115

Multiple NEPs

You can use these CICS-supplied ERRPROCs to generate a valid DFHZNEP
listing, for tutorial ~urposes, without having to write any user code.

You should be aware of the following limitations of this NEP design:

• Any error types you have not allowed for are ignored by the NEP, not
accumulated into "error buckets".

• You may want to handle a particular situation whenever it arises, even
though ZNAC may assign it different error codes in different situations. For
example, on SNA 3270, switching in and out of TEST state, generates
X '0828' status (presentation-space integrity lost). This might result In any of
several ZNAC error codes.

In the sample NEP structure, you would either need to test for this last case in
separate ERRPROCs, or group all the ZNAC error codes together. If you wrote
your own NEP code from scratch, you would simply test the TWA field containing
the status, on entry to your NEP.

CICS allows you to define a "NEP class" for each transaction 10 in the PCT and
TCT (NEPCLASS option of the CEDA DEFINE PROFILE and CEDA DEFINE
TYPETERM commands or NEPCLAS operand of OFHPCT TYPE=ENTRY and
DFHTCT TYPE = TERMINAL macros). This is a 1-byte binary value from 1 to 255,
the default being zero. The purpose of NEPCLASS is that, while a transaction is
running on the LU, you can obtain a special version of node error handling,
suitable for that NEPCLASS (sometimes this is called a "transaction-class error
routine").

The OFHZNEP that/gets control from DFHZNAC must test the NEPCLASS in effect
at that time for the LU associated with the error. Then it either transfers control
to a suitable module (the actual "NEP"), or branches to a specific bit of code
within itself.

CICS provides a sample with the DFHZNEPI macro. See "DFHZNEPI macros" on
page 133. DFHZNEPI macros generate a DFHZNEP module that is purely a
routing module. This inspects the NEPCLASS in effect for the node error passed
by DFHZNAC, and transfers control (LINKs) to another module, the real NEP,
according to a NEPCLASS/name routing table built up by the macros.

If no NEPCLASS is in effect (equivalent to CEOA DEFINE PROFILE NEPCLASS(O)
or DFHPCT TYPE=ENTRY NEPCLAS=O), or the NEPCLASS is not in the routing
table, a default module is invoked. You must specify the name of this in the
DFHZNEPI TYPE = INITIAL macro. (See "Default transaction-class routine -
DFHZNEPI TYPE =INITIAL" on page 133.) If you do not specify the name, no
module is invoked.

You now have to provide the sub-NEPs for the various NEPCLASSes, including,
of course, one for the default NEPCLASS(O). Each of these sub-NEPs needs a
separate PPT entry. You have the same choice in coding each sub-NEP as you
had when there was just one - you can code your own, or use the CICS sample
macro DFHSNEP. If you use DFHSNEP, note that there's another operand on the
TYPE = INITIAL macro, NAME =, which means that the generated module can be

116 CICS/MVS 2.1.2 Customization Guide

given any name you wish (to match the DFHZNEPI routing). You can use a
different node error table with each sub-NEP.

Before you start using NEP routing, consider the following:

• The association of an LU (TCTTE) with a transaction NEPCLASS is only valid
for about the time that the CICS task exists. Errors detected after a CICS
task has ended (for example, because of a problem with a delayed output
message) may not be associated with the NEPCLASS of the creating
transaction.

Another problem can occur when CICS is about to start a new task for the
LU as a result of an internal request from another CICS task (by an EXEC
CICS START request, for example). This is usually called automatic
transaction initiation. Before the task is started, CICS may have to open a
fresh session If none exists, by issuing a VTAM SIMLOGON request, and
then, as mentioned earlier, it may have to send a BID command. The
intended task will not be attached until all this completes successfully. The
NEPCLASS Is not picked up from the PCT until then. This means that any
errors arising In the ATI process (perhaps an error on BIND or BID) will
occur before the NEPCLASS is correctly set, so they may get routed to the
default NEP and not the one for the NEPCLASS. This complicates the total
node error handling for the application.

As an example, consider an application that contacts unattended
programmable controllers overnight in order to read in the day's input.
Recovery design in such an application is fundamental, and has to allow for
errors both in ATI and in file transmission. To separate these into two NEPs
could be an unnecessary complication.

• The extra development effort for a NEP split on a NEPCLASS basis might not
be Justified. Generally, if logic is to be split, it is on an LU basis
(programmable controllers may be running applications other than 3270).

To conclude this overview, remember that the CICS sample NEPs are a good
source of ideas for you to write your own NEPs, but they might not be the ideal
framework for your particular need. It is probably a good idea for you to write
straightforward NEPs at first.

When an abnormal condition occurs
The following CICS components are involved when an abnormal condition is
detected from a logical unit:

• The terminal control program VTAM section - DFHZCA, DFHZCB, DFHZCC,
DFHZCP, DFHZCQ, DFHZCW, DFHZCX, DFHZCY, and DFHZCZ.

• The node abnormal condition program - DFHZNAC.

• The CICS-supplied sample node error program, or your own version(s) of
that program (DFHZNEP).

For logical units, all information concerning the processing state of the terminal
is contained in the TeTTE and the request parameter list (RPL). No
'accompanying line entry exists for a logical unit, as is the case for a

Chapter 2.10. The node error program 117

BTAM-supported terminal. Consequently, when a"terminal error must be
handled for a logical unit, the TCTTE itself is placed onto the system error queue.

The action flags, set by DFHZNAC to assist the node error program, are in
TWAOPTL, which is in DFHZNAC's transaction work area (TWA).

If you want to modify DFHZNAC's actions following an abnormal situation,
DFHZNEP can interrogate TWAOPTL and modify the bit settings. If you agree
with DFHZNAC's proposed actions, TWAOPTL is left unaltered.

In most cases, DFHZNEP can modify DFHZNAC's proposed actions. The only
time that DFHZNAC overrides the routine's modification of TWAOPTL is when a
logical unit is to be disconnected from CICS; that is, when DFHZNAC determines
that the abnormal situation requires that CICS issue the ACF/VTAM CLSDST
macro instruction for a logical unit. In such a case, DFHZNAC will disconnect
the terminal and abnormally terminate the task even if DFHZNEP tries to block
such actions.

Resetting of the task termination flag by the node error program is also ignored
if a negative response has been sent to a logical unit, or if DFHZEMW is to write
an error message to the logical unit.

When control is returned to DFHZNAC from DFHZNEP, DFHZNAC performs the
actions specified in TWAOPTL (except when disconnecting logical units, as noted
above), issuing messages and setting error codes, as necessary.

DFHZNAC assumes that system sense codes are available upon receipt of an
exception response from the logical unit. Thus, analysis is performed to
determine the reason for the response. Decisions, such as which action flags to
set and which requests are needed, are made based upon the system sense
codes received. If sense information is not available, default action flags are set,
and DFHZEMW is scheduled to send a negative response, if a response is
outstanding, with an error message to the terminal.

The CICSIMVS Problem Determination Guide lists the actions taken by DFHZNAC
upon receipt of inbound system sense codes.

Before executing the specified mandatory executive routines, DFHZNAC links to
DFHZNEP, where you can define the criteria upon which action can be
undertaken.

You need to code a node error program only if you wish to perform additional
error processing beyond that performed by DFHZNAC. DFHZNAC gives control
to DFHZNEP by issuing a DFHPC LINK request. DFHZNAC also passes the
address of the TCTTE concerned, so that you can specify further recovery actions
based on the processing state of the logical unit. When the node error program
has performed its functions, control is returned to DFHZNAC by issuing a DFHPC
RETURN request.

118 CICS/MVS 2.1.2 Customlzatlon Guide

Upon entry to DFHZNEP, the following fields are available to you:

• The error code generated by DFHZNAC. The error codes are discussed In
this chapter and in the CICSIMVS Problem Determination Guide. The error
code is located at TWAEC.

• The action flags set by DFHZNAC. These flags are shown in Figure 8 on
page 120. They are defined in the CICSIMVS Problem Determination Guide.
The collective field name for these flags is TWAOPTL.

• The address (TWATCTA) of the TCTTE.

• The terminal name, at TWANID.

• The sense codes received by DFHZNAC:

- TWASR1 and TWASR2, system sense codes
- TWAUR1 and TWAUR2, user sense codes.

• The flag TWAPFLG. A setting of TWAPIP indicates that a VTAM CLSDST
PASS request is in progress. For more information about the use of TWAPIPj

see "Application routing failure" on page 122.

Linkage to DFHZNEP is provided by CICS. Fields in the TWA are defined in the
copy section DFHVTWA, which provides a DSECT of the node abnormal condition
program's TWA.

Chapter 2.10. The: node error program 119

Byte Action Flag Options

Action-Flag Description
Label

TWAOPTI TWAOAF Print action flags (X '80 ')
TWAORPL Print RPL (X'40')
TWAOTCTE Print TCTTE (X'20')
TWAOTIOA Pri nt TIOA (X' 10')
TWAOBIND Print bind area (X'08')

TWAOPT2 TWAOAS Abandon deferred SEND (X'80')
TWAOAR Abandon VTAM RECEIVE (X '40 ')
TWAOAT ABEND task (X '20')
TWAOCT CANCEL task (X' 10')
TWAOASM SIMLOGON required (X'02')
TWAOGMM Good morning

message required (X'eS')

TWAOPT3 TWAOINT CREATE may be set (X '80 ')
TWAONINT NOCREATE may be set (X'40')
TWAONCN Close session (not

resettable by NEP) (X '10')
TWAOSCN Close session (user

reset allowed) (X'0S')
TWAONEGR SEND Negative response (X '04 ')

from TWASSI
TWAOOS Keep node out of

service (X'02')
TWAOCN Cancel session

(abnormally) (X'01 ')
(not resettable by NEP)

TWAOPT4 TWANOMGl No INITIAL ERROR message (X'01')
TWANOMG2 No sense-code message (X '02 ')
n~ANOMG3 No VTAM 3270 message (X '04')
TWANOMG4 No security message (X 'e8 ')
TWANOMG5 No action message (X '10')

Figure B. DFHZNAC action-code bytes and available options

Explanation of the flags follows:

The first five labels (TWAOAF, TWAORPL, TWAOTCTE, TWAOTIOA, and
TWAOBIND) are principally debugging aids. DFHZNAC writes the desired
information to the CSMT log if its accompanying bit is set.

The next six labels (TWAOAS, TWAOAR, TWAOAT, TWAOCT, TWAOASM, and
TWAOGMM) are task-related.

The NEP can abend the task by setting TWAOAT, or cancel it by setting
TWAOCT. The difference between 'abend the task' and 'cancel the task' is that
the former does not take effect until the task requests or completes a terminal

120 CICS/MVS 2.1.2 Customlzatlon Guide

control operation. The latter, however, takes effect as soon as system and data
integrity can be maintained. Setting TWA OAT to 'a bend the task' is normally
sufficient, except where the task performs lengthy processing (such as a data
base browse) between terminal requests. If both TWAOAT and TWAOCT are set,
TWA OCT (cancel task) takes priority.

If the task is to be abnormally terminated, sends and receives are purged. If
TWAOGMM is set, the next transid is cleared and any COMMAREA associated
with the terminal is released - except in the case of permanent transids
(specified on the terminal definition as TRANSACTION(name)). If the TYPETERM
for the terminal indicates that GMM is supported (LOGONMSG(YES)) and
TWAONINT is off, and the terminal is not in a SMS paging session, the
good-morning message transaction is initiated (transaction specified by the
GMTRAN SIT parameter).

The flags in byte TWAOPT3 are node-related. If TWAOCN is set, the task is
abnormally terminated and communication with the node is lost.

TWAONINT forces TWAOCN.
TWAOOS forces TWAOCN.
TWAOCN forces TWAOAR, TWAOAS, and TWAOAT.
TWAONEGR forces TWAOAR and TWAOAT.
TWAOGMM is ignored if TWAONINT is set.

Notes:

1. If a definite response SEND has been performed, CICS has to issue a
RECEIVE in order to obtain the response. If the response is negative,
DFHZNAC will be entered and will set flags TWAOAS (abandon the SEND)
and TWAOAR (abandon the RECEIVE). TWAOAR must be left on to ensure
that the RECEIVE for the response is abandoned.

2. If the request is to be retried, and the break connection action flag is off (that
is, if TWAOCN is off), then TWAOAS and/or TWAOAR and/or TWAONEGR
must be off as well as TWAOAT.

3. The abend code returned as a result of setting TWA OCT is unpredictable.

4. TWAOGMM forces TWAOAT only if set on by the node error program.

TWAOOS or TWAONINT for an intersystem communication session causes the
system entry to be put out of service if, as a result of that action, there are no
allocatable sessions left.

Setting TWAOOS indicates no further processing is to be done for this node. The
node is logically out of service.

Setting TWAOSCN provides the same function as TWAONCN, but you can reset it
yourself if the session is not to be closed.

The flags in byte TWAOPT4 are message-related. You can set them yourself to
prevent the messages indicated being issued.

Chapter 2.10. The node error program 121

If you schedule DFHZNAC because of the receipt of an exception response, the
sense information in the TCTTE is available to DFHZNAC and DFHZNEP to
determine any necessary actions.

If you schedule DFHZNAC because of loss of the connection between CICS and a
logical unit, DFHZNAC abnormally terminates any transaction in progress at the
time of the failure. DFHZNEP and transaction~class error routine analysis and
processing ~re permitted, but you should not attempt to retry the message.

However, if the application program handles the TERMERR condition, the
transaction will not be abended. Control is returned to the program. In this
circumstance, no further use may be made of the failed session.

The DFHZNAC error message is sent to the master-terminal log after linking to
DFHZNEP, so that you can control the printing of messages. You may also send
user-written messages to the log using the transient data facility. To write your
own messages, you must code the DFHTD TYPE = PUT macro instruction directly
into the node error program.

The CICS terminal control macro (DFHTC CTYPE = COMMAND) enables you to
issue ACF/VTAM indicators in the node error program. The functions available
are explained in "Chapter 4.7. Modifying the terminal control table" on
page 237.

DFHZNAC logging facility
You can use the logging facility available in DFHZNAC to aid in retrieving related
information (that is TIOA, CSA, TCA) about a problem in a real-time environment.

For example, if a logical unit sends an exception response to data sent from the
host during the processing day, you can examine the TIOA to locate the problem.

DFHZNEP can pass the address of the TIOA plus a desired length (not exceeding
220 bytes) in DFHZNAC's TWA. On return to DFHZNAC, the data is logged to the
CSMT or CSTL transient data log for future inspection.

TWA fields are:

Name Length Content·

TWANLD 4 bytes Address of data to be logged or zeros

TWANLDL 2 bytes Desired length of data to be logged

Note: No data in excess of 220 bytes is logged.

Application routing failure
The EXEC CICS ISSUE PASS command, which is described in the CICSIMVS
Application Programmer's Reference manual, passes control from CICS to
another named VTAM application. The EXEC CICS ISSUE PASS command
invokes the VTAM macro CLSDST with the value OPTCD = PASS. If
CLSDSTP = NOTIFY has been specified in DFHSIT, the EXEC CICS ISSUE PASS
command also passes the value PARMS = (THRDPTY = NOTIFY). CICS is then
notified of the outcome of any CLSDST PASS request.

122 CICS/MVS 2.1.2 Customizatlon Guide

This notification results in an informative message being issued, and causes
DFHZNAC to invoke your NEP, whether the ClSDST request has failed or
succeeded. The NEP can discover that a ClSDST PASS request is in progress
by examining field TWAPFlG for the pass-in-progress indicator, TWAPIP. The
success or failure of the ClSDST PASS request can be determined by examining
the error code at TWAEC.

If the pass operation fails, DFHZNAC sets up a default set of recovery actions
that can be modified by your NEP. A possible recovery, when, for example, the
target application program is not active, would be to reestablish the session with
the initial application using a SIMlOGON request and for CICS to send its "good
morning" message to the terminal. The default action is to leave the session
disconnected and to make it NOCREATE.

The sample node error program
The sample node error program provides a general environment for the
execution of error processing routines (error processors), each of which is
specific to certain error codes generated by the node abnormal condition
program. Sufficient optional error processors for normal operation of VTAM 3270
or interactive logical unit networks are provided; these can be easily
supplemented or replaced by user-supplied processors.

Three types of error may occur in a VTAM network:

• Errors in the host system
• Communication errors, such as session failures
• Abnormal conditions at the terminal, such as intervention required and

invalid requests.

A sample node error program is supplied with CICS, and may be used as the
basis of each subsequent node error program that you write. This provides you
with:

• A general environment within which your error processing programs may be
added

• Fundamental error recovery actions for a VTAM 3270 network that are
consistent with those provided in the sample terminal error program for a
BT AM 3270 network

• The default node error program in a system that has several node error
programs.

The CICS-supplied sample node error program is described in greater detail
below.

Compatibility with the sample terminal error program
The default error processors for VTAM 3270s in the sample node error program
provide facilities for error handling similar to those for BTAM 3270s that are
processed by the sample terminal error program.

Chapter 2.10. The node error program 123

Components

Receipt of sense/status codes corresponds to error codes X I 09 1, X I DC I, and
X I DO I. Weighted counts of these messages are maintained against numeric and
time thresholds. If the numeric threshold is exceeded, default actions are taken.
If the time threshold is reached, the count is reset. This is equivalent to the
function in the sample TEP, except that sense/status arising out of the "from"
device on a COPY command is now presented to the node error program as an
error on the "to" device, thus exceeding the threshold, which causes the request
to be terminated, although the terminal remains in service. Some of the weights
for errors that occur on the 3270 display have been revised, otherwise the weight
and threshold values are the same as the defaults used in the sample TEP.
Time threshold maintenance is mandatory and not optional as in the sample
TEP.

For further information on time and threshold count limits, see the information on
the sample terminal error program in "Chapter 2.9. The terminal error program"
on page 71.

The 3270 message" unavailable printer" corresponds to error code X 1421
(interval control PUT request has failed). The algorithm used for printer
selection differs in VTAM support. The retry algorithm in the sample node error
program is similar to this new selection algorithm.

The sample node error program comprises the following components:

• The routing mechanism.

• The node error table.

• Optional common subroutines.

• Optional error processors for 3270 or optional error processor for interactive
logical units. A node error program cannot be generated with both 3270 and
interactive logical unit error processors.

The components are described below.

Routing mechanism
The routing mechanism invokes the appropriate error processor depending on
the error code provided by the node abnormal condition program.

Groups of one or more error codes are defined in the DFHSNEP. Each group is
associated with an index (in the range X 1011 through X I FF I) and an error
processor. A translate table is generated and the group index is placed at the
appropriate offset for each error code. Error codes not defined in groups have a
zero value in the table. An error processor vector table (EPVT) contains the
addresses of the error group processors, positioned according to their indexes.
The vector table extends up to the maximum index defined; undefined
intermediate values are represented by zero addresses.

On entry to the sample node error program, initialization establishes
addressability to the node error table (NET) and, if included, the common
subroutine vector table (CSVT). The error code is translated to obtain the error
group index. A zero value causes the node error program to take no further

124 CICS/MVS 2.1.2 Customization Guide

action, otherwise the Index Is used to obtain the address of the appropriate error
processor from the EPVT. A zero address causes the node error program to
take no further action. Otherwise a call is made to the error processor. This is
entered with direct addressability to the following areas: NET, TCTTE, TCA, CSA,
and CSVT. When the error processor has executed, the node error program
returns control to the node abnormal condition program.

Node error table
The node error program may use a node error table (NET) that comprises the
node error blocks (NEBs) that are used to maintain error status information for
individual nodes (see Figure 9). Some or all of the NEBs may be permanently
reserved for specific nodes, others are dynamically assigned to nodes when
errors occur. The latter are used exclusively for the nodes to which they are
assigned until they are explicitly released. All the NEBs have an identical
structure of error status blocks (ESBs). Each ESB is reserved for one error
processor and associated with it by means of the appropriate error group index.
The ESB length and format may be customized to the particular error processor
that it serves.

Node Error Table

NODE ERROR
TABLE HEADER

NODE ERROR
BLOCK

PERMANENTLY
ASSIGNED
NEBs

DYNAMICALLY
ASSIGNED
NEBs

Node Error Block

NODE ERROR
BLOCK HEADER

ERROR STATUS
BLOCK

ESBs

Figure 9. Format of node error table and node error block

Optional common subroutines
The common subroutines are addressed via the CSVT and provide error
processors with the following functions:

1. Locate or assign NEBs and ESBs on the basis of node identification and
error group index.

2. Time-stamp an error, update an error count, and test an error count against
numeric and time threshold values.

Chapter 2.10. The node error program 125

3. Release a dynamically assigned NEB from a particular node.

Optional error processors for 3270 logical units
Two error processors are supplied as follows:

• Group index 1, error codes X'D9', X'DC', and X'DO'.

These error codes correspond to the receipt of sense/status bytes In the
user sense fields of the RPl. The error processor locates an ESB of the
standard format and updates a weighted error count. The weight, threshold,
and timer values are based on those used by the sample terminal error
program for a BTAM 3270 except as noted in the previous section. If the
threshold is not exceeded, the abend send, abend receive, abend transaction
bits, and all the print action flags are turned off. Otherwise the default
actions are taken and the NEB is released if it is reusable.

• Group index 2, error code X '42' .

This code means that no 3270 printer was available to satisfy a PRINT
request made at a 3270 screen. The error processor examines the printers
defined for this screen to determine why they were unavailable. If either is
busy on a previous PRINT or COpy request (that is, a task is attached with
transaction identification of CSPP or CSCY) or is no longer unavailable, that
printer address is returned to the node abnormal condition program which
will retry the PRINT request with an IC PUT command. Otherwise the default
actions are taken. (For more details, see the section "3270 unavailable
printer" on page 134.)

Optional error processor for Interactive logical units
• Group index 1, error codes X' DC'.

This error code, in combination with a user sense value of X '081 B',
indicates a "receiver in transmit mode" condition. The action flags are
manipulated in order to allow the failing SEND request to be retried.

Generating the sample node error program
The routing mechanism, common subroutines, IBM-supplied error processors,
and user-supplied error processors are generated by means of DFHSNEP
macros.

The sample node error program and table need to be assembled and link-edited.
See the chapter on the preparation of application programs in the CICS/MVS
Operations Guide for the job control statements required. When using the
sample node error program, the CSNE TWA size supplied by CICS will be
adequate.

Note that an extra 24 bytes are required for the common subroutines register
save area, and further space is required for the error processor save area. The
CICS sample processors use 4 bytes of this area.

126 CICS/MVS 2.1.2 Customlzation Guide

The DFHSNEP macro to generate the sample node error program has five types,
as follows:

TYPE = INITIAL
to generate the routing mechanism and, optionally, the common subroutines.

TYPE = DEF3270
to generate the default IBM-supplied error processors for 3270 devices.

TYPE = DEFILU
To generate the default IBM-supplied error processor for interactive logical
units operating in contention mode.

TYPE = ERRPROC
To Indicate the start of a user-supplied error processor.

TYPE=FINAL
To indicate the end of the sample node error program.

The order of these macro instructions is constrained so that one TYPE = INITIAL
macro instruction appears first, and one TYPE = FINAL macro instruction appears
last.

Routing mechanism - DFHSNEP TYPE = INITIAL
The following operands can be used on the DFHSNEP TYPE = INITIAL macro
instruction:

DFHSNEP TYPE=INITIAL
[,CS=NO]
[, NAME=name]
[,NETNAME=netname]

TYPE = INITIAL
Indicates the start of the sample node error program and causes the routing
mechanism to be generated.

CS=NO
Specifies that the generation of the common subroutines is to be
suppressed. This operand should not be specified if TYPE = DEF3270 is
included.

NAME=name
Specifies the name of the node error pro~Jram module identifier. The name
must be a string of one through eight characters. This operand is optional,
and the default is DFHZNEP. If the interface module DFHZNEP (generated by
the DFHZNEPI macro) is used, this operand must be specified (with a name
other than DFHZNEP).

NETNAME = netname
Specifies the name of the node error table to be loaded at initialization. The
name must be a strinn of 1 through 8 characters. This operand is optional,
and the default is DFHNET.

Chapter 2.10. The node error program 127

3270 error processors -DFHSNEP TYPE = DEF3270
The DFHSNEP TYPE = DEF3270 macro has the folrowing format:

DFHSNEP TYPE=DEF3270

TYPE = DEF3270
Specifies that the IBM-supplied error processors for 3270 logical units are to
be included in the node error program. This macro causes the following
source code to be generated:

DFHSNEP TYPE = ERRPROC,GROUP = 1 ,CODE = (D9,DC,DD)
Sense/status error processor code

DFHSNEP TYPE = ERRPROC,GROUP = 2,CODE = 42
Unavailable printer error processor code.

Error processors for INTLU - DFHSNEP TYPE = DEFILU
The DFHSNEP TYPE = DEFILU macro has the following format:

DFHSNEP TYPE=DEFILU

TYPE = DEFILU
Specifies that the IBM-supplied error processor for interactive logical units is
to be included in the node error program. This macro causes the following
source code to be generated:

DFHSNEP TYPE~ERRPROCtGROUP=l,CODE=DC
(receiver in transmit mode error processor code)

Terminating DFHSNEP entries - DFHSNEP TYPE = FINAL
The DFHSNEP TYPE = FINAL macro has the following format:

~HSNEP TVPE=FINAL

TYPE = FINAL
Indicates the end of the node error program and causes the error processor
vector table (EPVT) to be generated.

128 CICS/MVS 2.1.2 Custornizatlon Guide

Generating the sample node error table - DFHSNET
The DFHSNET macro is used to generate a node error table. An entry for each
sample node error table generated must be incl.uded in the PPT with RES = YES
specified.

DFHSNET [NAME=name]
[,COUNT=threshold]
[,ESBS=(index,length, ...)]
[,NEBNAME=(name, ..•)] .
[,NEBS=number]
[,TIME=(interval,units)]

NAME=name
Specifies the identifier to be included in the NET header. It must be a string
of one through eight characters. This operand is optional, and the default is
DFHNET.

COUNT = threshold
Specifies the error count threshold that is to be stored in the NET header for
use by the common subroutines to update standard ESBs. If the threshold is
exceeded, the error processor that invoked the subroutine is informed by a
return code. The maximum value is 32767. This operand is optional, and the
default is 100.

ESBS = (index,length, ...)
Specifies the ESB structure for each NEB. This operand is coded as a
sublist. Each element of the sublist comprises two values; "index" specifies
an error group index for which an ESB is to be included in the NEB; "length"
specifies the status area length, in bytes, for that ESB. The parentheses may
be omitted for a single element. Index must be specified as a 2-character
representation of a 1-byte hexadecimat number in the range 01 through FF (a
leading 0 can be omitted). "length" is constrained only by the fact that an
8-byte NEB header plus a 4-byte header for each ESB must be contained
within the maximum NEB length of 32767 bytes. If a null value is specified, a
standard ESB with a status area length of 6 bytes is assumed. This is
suitable for use by the common subroutines in maintaining a time-stamped
error count. This operand is optional and defaults to 1. This causes each
NEB to be generated with one ESB for error group 1 with a status area
length of 6 bytes.

NEBNAME =(name, ...)
Specifies the names of nodes that are to have a permanently assigned NEB.
The names specified are assigned, in the order specified, to the set of NEBs
requested by the NEBS operand. Any remaining NEBs are available for
dynamic allocation to other nodes as errors occur. The name must be a
string of 1 through 4 characters. The parentheses can be omitted for a
single name. This operand is optional and has no default.

NEBS = number
Specifies the number of NEBs required in the NET. The maximum valid
number is 32767; the default is 10.

Chapter 2.10. The node error program 129

TIME = (Interval,unlts)
Specifies the time Interval that is to be stored in the NET header for use by
the common subroutines to maintain error counts in standard ESBs. If the
threshold specified in the COUNT operand is not exceeded before this time
interval elapses, the error count is reset to O. Specify "units" as SEC, MIN,
or HRS. The maximum values for "interval" are as follows: (86400,SEC),
(1440,MIN), or (24,HRS). This operand is optional, and the default is to
(7,MIN).

Note: You can use the sample node error program above (with a name other
than DFHZNEP) as a transaction-class routine for the interface module,
DFHZNEPI.

User-supplied error processors - DFHSNEP TYPE = ERRPROC
The DFHSNEP TYPE = ERRPROC macro is used to indicate the start of a
user-supplied error processor. The actual error processor code should
immediately follow this macro. The assembly should be terminated by the
statement: END DFHNEPNA.

The following operands can be used on the DFHSNEP TYPE = ERRPROC macro
instruction:

DFHSNEP TVPE=ERRPROC
,CODE=(error-code, ...)
,GROUP=error-group-index

TYPE = ERRPROC
Indicates the start of a user-supplied error processor.

CODE = (error-code, ...)
Specifies the error codes that make up the error group, and which are
therefore handled by the error processor supplied. The operand is coded as
a sublist of 2-character representations of 1-byte hexadecimal codes. (The
parentheses may be omitted for a single code.) For each code specified, the
error group index is placed at the equivalent offset in the translate table.
Thus when this code occurs, the appropriate error processor can be
identified.

GROUP = error-group-Index
Specifies an error group index for the error processor. This index is used to
name the error processor, locate its address from the error processor vector
table (EPVT), and optionally associate it with an ESB in each NEB. The index
specified must be a 2-character representation of a 1··byte hexadecimal
number in the range 01 through FF (a leading zero can be omitted). The
error processor name has the form NEPROCxx, where "xx" is the error
group index. A CSECT statement of this name is generated, which causes
the error processor code to be assembled at the end of the node error
program module and to have its own addressabiJity.

130 CICS/MVS 2.1.2 Customizatlon Guide

If you intend to add your own error processors to the sample node error
program, you should be aware of the following conventions used by the sample
node error program:

Register Assignment

Register Use
---------------------------------------o Work register

1 NET base register

2 NEB base register

3 ES B base regi ster

4 Error count increment, also work register

5 Work register

6 Work register

7 Work register

8 Work register

9 Work register

10 TCrrE base register

11 Sample node error program base register

12 TeA base register

13 CSA base register

14 CSVT base and error processor link register Common subroutine link
register

15 Error processor branch register Common subroutine branch register

Notes:

1. Registers 12 and 13 must be preserved at all times.

2. Register 14 must be saved for return from error processors. The CSVT is
coded after the BALR to the error processor and so this register is also the
CSVT base.

3. Registers 1, 10, 12, 13, 14, and 15 are set up on entry to error processors.

4. Registers 14-11 may be saved by error processors in an area reserved in the
TWA at label TWAEPRS. Registers 15-11 do not need to be restored before
return from error processors.

~

5. Registers 4-9 may be saved by common subroutines in an area reserved in
the TWA at label TWACSRS. They must be restored before return from the
subroutines.

DSECTs
The following DSECTs are provided:

Node error table header: This contains the table name and common information
relevant for all the node error blocks (NEBs) in the table.

Chapter 2.10. The node error program 131

OFHNETH OSECT
NETHNAM OS CLa Table name
NETHNBN OS H Number of NEBs in table
NETHNBL OS H Length of NEBs in table
NETHTIM OS BL4 Error count time interval
NETHECT OS H Error count threshold
NETHFLG OS X Flag byte
NETHINI EQU X 1011 Table initialized

OS X Reserved
NETHFNB OS 0F First NEB

Node error block: The table contains node error blocks that are used for
recording error information for individual nodes. These may be permanently
assigned to specific nodes or dynamically assigned at the request of error
processors.

OFHNETB OSECT
NEBNAM OS CL4 Node name
NEBFLG OS X Flag byte
NEBPERM EQU X'01 1 Permanently assigned NEB

OS XL3 Reserved
NEBFESB OS 0X First NEB

Error status block: The NEBs may contain error status blocks. These are
reserved for specific error processors and are identified by the corresponding
error group index. An ESB may have a format defined by you, or may have a
standard format suitable for counting errors over a fixed time interval.

OFHNETE OSECT
ESBEGI OS X Error group index
ESBFLG OS X Flag byte
ESBST~N EQU X'01 1 Standard format ESB
ESBTTE EQU X'02 1 Time threshold exceeded
ESBCTE EQU XI 04 1 Count threshold exceeded
ESBSLEN OS XL2 Status area length
ESBHLEN EQU *-OFHNETE ESB header length
ESBSTAT OS 0X Status area

The following fields apply to the standard format:

ESBTIM OS BL4 Time stamp
ESBEC OS XL2 Error count

Common subroutine vector table: The CSVT provides error processors with
addressability to the common subroutines. The error processor link register
gives addressability to the CSVT and so the first section of the DSECT overlays
the code required to branch around the actual table.

OFHNEPC OSECT
OS F Load instruction
OS F Branch instruction

CSVTNEP OS A Node error program base address
CSVTESBL OS A NEPESBL - ESB locate routine
CSVTNEBO OS A NEPNEBO - NEB delete routine
CSVTECUP DS A NEPECUP - error count update routine

132 CICS/MVS 2.1.2 Customization Guide

User-written node error programs
You can write several node error programs, as described in "Multiple NEPs" on
page 116. When an error occurs, the node abnormal condition program passes
control to an interface module, DFHZNEPI, which determines the transaction
class and passes control to the appropriate node error program.

If only one node error program is used, the Interface module (DFHZNEPI) is not
required. If the node error program is named DFHZNEP, the node abnormal
condition program will branch directly to that. If more than one node error
program is used, the interface module (DFHZNEPI) is required. In this case, the
node error programs must be given names other than DFHZNEP. Every node
error program generated must be defined in the processing program table (PPT)
by means of a DFHPPT TYPE = ENTRY macro instruction, or in the CSD file.

DFHZNEPI macros
The following macros are required to generate the node error program interface
module (DFHZNEPI):

• DFHZNEPI TYPE = INITIAL - to specify the name of the default
transaction-class routine.

• DFHZNEPI TYPE = ENTRY - to associate the transaction-class WIth your
transaction-class error handling routine.

• DFHZNEPI TYPE = FINAL -' to end the DFHZNEPI macro instructions.

The DFHZNEPI interface module must be generated when you require the node
abnormal condition program to pass control to the appropriate user-written node
error program for resolution of the error.

Default transaction-class routine - DFHZNEPI TYPE = INITIAL
The DFHZNEPI TYPE = INITIAL macro instruction specifies the name of the default
transaction-class routine to be used for the DFNZNEPI module.

DFHZNEPI TYPE=INITIAL
[,DEFAULT=name]

DEFAUL T= name
Specifies the name of the default transaction-class routine to be used. A link
will be made to this default routine under anyone of three conditions:

• Specification of DFHPCT TYPE =ENTRY,NEPCLAS =0 (default).

• Specification of DFHPCT TYPE = ENTRY,NEPCLAS = value > 255.

• No transaction-class routine has been specified via the DFHZNEPI
TYPE = ENTRY macro for the transaction-class value identified by the
DFHPCT TYPE = ENTRY,NEPCLAS = integer specification.

If anyone of these conditions is true, and a DEFAULT= name operand has
not been specified, then no routine is invoked.

Chapter 2.10. The node error program 133

The DFHZNEPI TYPE = INITIAL instruction must always be specified, and must be
placed before any other forms of the DFHZNEPI macro Instructions. Only one
TYPE = INITIAL macro may be specified.

Transaction-class error-handling routine - DFHZNEPI
TYPE=ENTRY
You use the DFHZNEPI TYPE = ENTRY macro instruction to associate the
transaction-class, specified in the NEPCLAS = Integer operand of the DFHPCT
TYPE =ENTRY instruction, with your transaction-class error handling routine.
The format of this macro instruction is as follows:

DFHZNEPI TYPE=ENTRY
,NEPCLAS=integer
,NEPNAME=name

NEPCLAS = Integer
Specifies the transaction-class, and must be in the range 1 through 255. No
value should be specified that has been specified in a previous DFHZNEPI
TYPE = ENTRY instruction.

NEPNAME = name
Specifies a name for the transaction-class routine to be associated with the
specified transaction-class. An error condition will result if the name is
specified either as DFHZNEP, or is greater than 8 characters.

Both the TYPE = ENTRY operands must be specified.

Terminate entries - DFHZNEPI TYPE = FINAL

~ZNEPI TYPE=FINAL

TYPE=FINAL
Completes the definition of module DFHZNEP and must be specified last.
The assembly should be terminated by an END statement with no entry name
specified, or by the statement: END DFHZNENA.

3270 unavailable printer
This condition arises when a print request is made using the 3270 print request
facility, and there are no printers on the control unit, or when the printer(s) is
(are) in one of the following conditions:

• Out of service
• Not in transceive or receive status for automatic transaction initiation
• A task is presently attached
• Busy on a previous operation
• Intervention required.

134 CICS/MVS 2.1.2 Customizatlon Guide

The procedure is applicable to 3270 logical units or the 3270 compatibility mode
logical unit when using the PR/NTTO and AL TPRT operands of the DFHTCT
TYPE=TERM/NAL macro.

The terminal con1rol program recognizes this condition, and issues a READ
BUFFER operation to collect the data into a terminal I/O area. The T/OA is of the
same format as it is when an application program has issued a terminal control
read buffer request.

The terminal control program VTAM section (DFHZCP) then queues the TCTTE to
the node abnormal condition program with the error code X'42' (TCZCUNPRT).
The fields relevant to this situation are:

TCTTEDA Data address area

TWAPRNT Field for node error program to return information to the node
abnormal condition program. Set to 0 on initial entry to node error
program.

The node abnormal condition program writes the DFH2497 'UNAVAILABLE
PRINTER' or the DFH3493 'INVALID DEVICE TYPE FOR A PRINT REQUEST'
message to the CSMT destination and links to the node error program with no
default actions set.

On return from node error program, the node abnormal condition program will
perform the following actions, based upon the TWAPRNT field in the TWA:

1. If TWAPRNT is all FFs (-1), the node abnormal condition program assumes
that node error program has disposed of the data to be printed.

2. If TWAPRNT is zero, the node abnormal condition program assumes that no
printer is available.

3. If TWAPRNT is neither -1 or zero, the node abnormal condition program
assumes that TWAPRNT is the address of the printer. An interval control
PUT will be performed to the provided terminal. The transaction to be
initiated is CSPP (print program), and the time interval will be zero.

a. If an error occurs on the interval control PUT, the node abnormal
condition program will write the DFH2496 IC FAILURE message to the
destination CSMT. The node abnormal condition program will then link
to the node error program again with the TWAPRNT field set to - 2. This
is done in order for the node error program to have a last chance to
dispose of the data. Upon the second return from node error program to
the node abnormal condition program, the node abnormal condition
program will reexamine TWAPRNT. If TWAPRNT is -1, this indicates
that the node error program has disposed of the data.

b. If no error occurred on the interval control PUT, the node abnormal
condition program will check for the following printer conditions:

Out of service
Intervention required
Any condition other than RECEIVE or TRANSCEIVE status.

Chapter 2.10. The node error program 135

Session failures

If one of these conditions is true, the node abnormal condition program
will issue the DFH2495 PRINTER OUTSERV/IR/INELIGIBLE-REQ QUEUED
message to the destination CSMT.

4. The node abnormal condition program will then terminate any PRINT
requests on the originating terminal and will perform normal action flag
processing on that terminal.

Following certain categories of error associated with logical unit or path failures,
the session between CICS and the logical unit may be lost. The default action
taken by DFHZNAC may be to put the TCTTE out of service.

A method of automatically reacquiring the session is for your node error
program to alter the default DFHZNAC actions and to keep the TCTTE in service.
The node error program can then issue an interval control PUT or INITIATE
macro against that TCTTE (through the TRMIDNT) with a transaction written in a
similar manner to the CICS good morning signon message (CSGM). When the
transaction is initiated using automatic task initiation (ATI), CICS will try to
reacquire the session. If the session fails again, DFHZNAC will be reinvoked and
the process will be repeated.

The time specified in the interval control PUT or INITIATE macro instruction
would be determined by installation-dependent expected-mean-time-to values for
that installation.

If used in this waYi the initiated transaction can write an appropriate signon
message when the session has been acquired. Note, however, that If
GMMSG =YES is specified in DFHTCT TYPE =TERMINAL, the CICS good morning
message will also be initiated at session open time.

The node error program In an XRF environment
If you are using the extended recovery facility (XRF), a VTAM failure In your
active CICS system may cause a takeover by the alternate CICS system. Each
terminal from the failing system that is switched to the alternate system will be
passed to DFHZNAC for 'conversation restart' processing. This is similar to
'session opened' processing for a normal session start.

One of the steps of the 'conversation restart' process is to LINK to the node
error program with the error code X'3F'. You can write your own error
processor to handle error code X '3F I if you want to be able to change any of the
recovery notification options (the recovery notification, the recovery message
and the recovery transaction) for some of the switched terminals. The following
parameters are passed to the node error program in the transaction work area
(TWA) of DFHZNAC.

136 CICS/MVS 2.1.2 Customlzatlon Guide

Tl1AXRNOT OS X
TWAXRNON EQU X'80 1

TWAXRMSG EQU X' 40 1

TWAXRTRN EQU X' 20 1

*
TWAXMSTN OS CL8
TWAXMAPN OS CL8
*
TWAXTRAN OS CL4

Changing the recovery notification

Recovery Notification Options
Recov Notification = None
Recov Notification = Message
Recov Notification = Transaction

Recovery Mapset Name
Recovery Map Name

Recovery Transaction 10

The method of recovery notification for a terminal is defined using the
RECOVNOTIFY option of the TYPETERM definition, which is described in the
CICSIMVS Resource Definition (Online) manual. This is the most efficient way to
specify the recovery notification method for the whole network, because CICS
initiates the notification procedure during the early stages of takeover. However,
you may want to change the recovery notification method for some of the
switched terminals, and you can use the node error program to make this
change. For example, you may want most terminals of a particular type to
receive the recovery message at takeover, and the rest to get no notification that
service has been restored. You would code RECOVNOTIFY(MESSAGE) in the
TYPETERM definition, and then use the node error program to change the
recovery notification to NONE for the few terminals that are not to be notified.

Changing the recovery message
If you define a terminal with RECOVNOTIFY(MESSAGE) in its TYPETERM, a
recovery message will be sent to the terminal after takeover. There is a
CICS-supplied message in 8MS map DFHXREC of map set DFHXMSG. Its text is:

CICS/MVS has recovered after a system failure
Execute recovery procedures.

You can specify your own map set in the node error program if you wish to
change the recovery message for some of the switched terminals. This could be
useful, for example, if signon security is in force and you want to tell terminal
users to sign on again. The map set that you specify must have a PPT entry. If
you wish to change the recovery message for all terminals, it would be more
efficient to replace the CICS-supplied map with your own.

Changing the recovery transaction
The recovery transaction that is to be started at a terminal after takeover is
specified using the RMTRAN operand of the DFHSIT macro. This is the most
efficient way of specifying a recovery transaction for the network. You can
specify a different transaction for some of the switched terminals by overwriting
the TWAXTRAN value in the transaction work area of DFHZNAC. The transaction
that you specify must have a PCT entry, and the terminal must be defined with
the option A TI(YES).

Chapter 2.10. The node error program 137

-
Chapter 2.11. The extended recovery facility overseer program

Introduction

Note: The information in this chapter is of interest only to users of the extended
recovery facility (XRF). An overview of XRF is provided in the CICSIMVS XRF
Guide.

The extended recovery facility overseer program has two major functions, which
are:

• To display current status information of active and alternate CICS regions

• To restart failed CICS regions in place without operator intervention.

There is a CICS-supplied sample overseer program which performs these two
functions and which you may find adequate for your installation. The sample
program is described below, and the following are provided:

• A description of the main functions performed by the sample code

• A description of the sample program's interface to CICS

• Instructions for telling the overseer program which active and alternate pairs
to monitor.

You can customize the sample program if you want to change parts of the code
or to extend the range of functions performed by the overseer, and this process
is described beginning on page 152.

The sample overseer program
The CICS-supplied sample overseer is an assembler-language batch program
that runs in its own address space. The source of the sample program is in
member OFH$AXRO of CICS212.SAMPLlB, and its associated OSECTs are
supplied in member OFH$XROS of the same library. An assembled version of
OFH$AXRO is supplied in CICS212.LOAOLIB. The program acts on four
commands entered by the console operator. These are:

D to display the current status of all active and alternate pairs being monitored
by the overseer program

R to enable or disable the restart-in-place function of the overseer program

S to take a snap dump of the sample program

E to terminate the sample program.

The full format of the operator command entered at the MVS console is:

MODIFY OVERSEER,command identifier

where 'command identifier' is 0, R, S, or E. The '0' command and the 'R'
command control the two major functions of the sample overseer program
(display and restart-in-place), and descriptions of these follow.

© Copyright IBM Corp. 1977, 1990 139

The display function
When the operator enters the '0' command at the MVS console, the sample
overseer program issues a multiline write-to-operator command (MLWTO)
showing the last known state of each of the active and alternate pairs that it is
monitoring. The overseer retrieves this information from the control and
message data sets, in which the CICS availability manager (CAVM) has been
recording state and surveillance information. The display includes a title line
and one line of status information for each active and alternate pair. The title
line is as follows:

GEN-APP ACT-JOB ACT-APP ACPU A-ST BKP-JOB BKP-APP BCPU B-ST

Each line of status information provides the following:

• The generic applid of the active and alternate pair (GEN-APP)

• The CICS jobname of the active (ACT -JOB) and of the alternate (BKP-JOB)

• The specific applid of the active (ACT -APP) and of the alternate (BKP-APP)

• The SMF IDs of the CPUs on which the active and the alternate were last
known to be executing (ACPU and BCPU)

• The last known status of the active (A-ST) and of the alternate (B-ST).

The status value can be one of the following:

ACT

BKP

SOFN

SOFA

TKOV

INCA

Active signed on normally and running the active CICS workload

Alternate signed on and running normally

Signed off normally

Signed off abnormally

Taking over (alternate only)

Incipient active, meaning that an alternate CICS is taking over from
an active CICS. The active job has signed off abnormally, and the
incipient active is waiting for the active job to terminate.

An example of the status display is shown in the run-time example on page 144.

Note: An 'X' following any of these status values indicates that the associated
job is currently executing. However, because JES services are used to discover
the execution state of a job, only those jobs that are running on the same JES as
the overseer program, or on another JES spool member, will have the correct
execution state. Any job that is on a different JES shared spool will appear not
to be executing.

The restart-in-place function
The overseer program can restart failed CICS regions in place automatically,
provided that they are on the same CEC as the overseer. The alternatives to
automatic restart are operator-initiated restart, automatic takeover to the
alternate, and operator-initiated takeover.

140 CICS/MVS 2.1.2 Customlzatlon Guide

The usefulness to you of automatic restart in place will depend on the
configuration of your system. If you are operating a two-CEC single region
system, or several independent regions, you can allow the overseer to restart an
active region in place automatically when it fails, you can choose automatic
takeover by the alternate, or you can leave the operator to decide what to do.
The operator could decide to restart the failing region in place or to initiate a
takeover by the alternate, and this decision is likely to depend on which part of
your system has failed.

If you are operating a single-CEC MRO system, the failure of an active region
can be handled by a takeover by the alternate, without causing all the related
regions to be taken over, because the new active region can continue
communication with the other active regions. Takeover is therefore likely to be
your preferred course of action.

Automatic restart in place of failed regions is most useful In the two-CEC MRO
environment. Because related regions must operate on the same CEC, a
takeover of one region means that all related regions must also be taken over by
their alternates. A region may not be important enough for you to want every
failure to cause a takeover to the alternate CEC. This could disrupt users who
would not otherwise have been affected by the failure. Automatic restart in
place of the failed region is therefore likely to be preferred to takeover in these
circumstances.

Enabling and disabling restart In place
The restart-in-place function of the overseer program can be enabled and
disabled using the 'R' command. When you enter this command, restart
processing is enabled or disabled for all generic applids that the overseer is
monitoring. You can also specify that particular active and alternate pairs are
not to be automatically restarted in place, regardless of whether restart
processing is enabled or disabled. This is described in "How to tell the sample
overseer which actives and alternates to monitor" on page 143.

The 'R' command works like an ON/OFF switch. Restart in place is enabled
when the sample program is initialized. When the 'R' command is first entered,
restart in place is disabled. If you issue the command again, restart will be
enabled again, and so on. If a region fails while restart in place is disabled, no
attempt to restart it will be made, even if restart in place is enabled again.

Rules that control restart In place
The sample overseer program concludes that a region has failed if

1. the region is not executing now, and was known to have been executing
during the previous examination of the relevant CAVM data sets by the
overseer and,

2. the region did not sign off normally from the CICS availability manager
(CAVM).

Chapter 2.11. The extended recovery facility overseer program 141

The overseer program can restart a failed active region in place, provided that
the following conditions are met:

• Restart in place is enabled for this overseer.

• Restart in place is enabled for this active and alternate pair.

• There is no corresponding executing alternate region, or the alternate region
is currently defined with TAKEOVER = COMMAND. If the alternate region is
defined with TAKEOVER = AUTO or TAKEOVER = MANUAL, the overseer
assumes that the alternate will initiate a takeover or that the console
operator will decide what action to take.

• The failing region was running on the same CEC as the overseer.

• An attempt to restart the region in place is not already in progress.

• If the failing region belongs to a group of related regions (an MRO
environment, for example), a takeover to another CEC, perhaps initiated by
another region, is not under way.

When a failed active region is restarted in place, whether by the operator or by
the overseer, the corresponding alternate region cannot continue to support the
new active region, and must be restarted. The overseer program will restart the
alternate region automatically in these circumstances, provided that restart
processing is enabled for both the failing region and the overseer. This rule
applies generally to the restarting of failed regions.

If you want to be able to restart regions in place on both CECs in a two-CEC
environment, an overseer program must execute on each CEC.

If the failed region was started originally as a started task, the overseer program
restarts it as a started task, and if the failed region was started as a job, the
overseer restarts it as a job. For more information about how the sample
overseer program restarts failed regions in place, see the CICSIMVS Operations
Guide.

How the sample overseer program interfaces with CICS
The overseer service is made up of a CICS overseer module (name DFHWOS),
which you cannot customize, and a CICS-supplied sample overseer program
(module name DFH$AXRO), which you can customize or replace with your own
overseer program. DFHWOS loads the overseer program. DFHWOS and
DFH$AXRO are supplied in CICS212.LOADLIB.

The CICS overseer module DFHWOS provides a stable interface to the CAVM
datasets and to certain MVS-authorized services that the overseer program
requires. The overseer program invokes those services by means of a
CICS-supplied group of macros called the DFHWOSM macros, which are
described beginning on page 145.

DFHWOS therefore invokes the sample program, and is subsequently invoked by
the sample program whenever the sample issues a DFHWOSM macro. The
DFHWOSM macros do not interact directly with either the active or the alternate
CICS address spaces.

142 CICS/MVS 2.1.2 Customlzatlon Guide

How to tell the sample overseer which actives and alternates to monitor
The sample overseer program is written to handle 20 active and alternate pairs
and 20 related system names. You can increase or decrease these numbers by
changing the values of the variables GENSIZE (active and alternate pairs) and
RL TSIZE (related system names) in DFH$AXRO. The maximum number of active
and alternate pairs that can be monitored by the overseer is 50.

A 'related system name' identifies those regions or systems that cannot be
considered in isolation by the overseer. The most common example of this is an
MRO environment, where the overseer needs to be able to identify related
regions when deciding whether to restart a failed region in place. Those regions
or systems that are identified with a common related system name must execute
on the same CEC.

The sample program discovers which active and alternate pairs it is monitoring
from a VSAM key-sequenced data set called DFHOSD, which contains a single
entry for each active and alternate pair. You create this data set and initialize it
with information about active and alternate pairs before you use the overseer for
the first time. You will also have to redefine the DFHOSD data set whenever you
want to change the information that it holds .. A sample job stream is provided
which you can use to:

• Delete and define the DFHOSD data set

• Initialize the DFHOSD data set with information about sample active and
alternate pairs

• Execute the overseer code and the sample overseer program.

The sample job stream is called DFHIVXRO and is in CICS220.lNSTLlB. It is
described in the CICSIMVS Operations Guide.

The sample overseer program reads the DFHOSD records in key sequence and
builds a table of entries, stopping when the first 20 entries have been read.

Each active and alternate pair is known by its generic applid on this data set.
Every entry on the data set contains the following information:

• A 12-byte key field, containing the 4-byte value 'GNbb' followed by the 8-byte
generic applid of the active and alternate pair.

• The DDNAMEs of the Control Data Set and the Message Data Set associated
with this generiC applid. Each of these is an 8-byte value.

• An optional 8-by1e RELATEID, to identify related systems.

• A restart-in-place indicator to show whether a region can be restarted in
place. The only value that will prevent an attempt to restart in place is 'N'.

The data structure of the DFHOSD data set entries is provided in member
DFH$XRDS of CICS212.SAMPLIB.

Chapter 2.11. The extended recovery facility overseer program 143

A run-time example
During its execution, the overseer program keeps the operator informed of its
operations and of any errors by issuing messages to the MVS console. The first
line ofevery message from the overseer begins with the characters +OVERSEER:.
A complete list of these messages, with an explanation of each, is provided in
the prolog of the source code listing of the sample overseer program. The
jobname (in this example, JOB 6840) uniquely identifies the overseer. To give
you some idea of the overseer's output, here is a run-time example.

18.00.49 JOB 6840 IEF403I OVERSEER - STARTED - TIME=18.00.49
18.00.49 JOB 6840 +OVERSEER: ENTERING INITIALIZATION
18.00.50 JOB 6840 +OVERSEER: DFHOSD DATASET OPENED

18.01.12 JOB 6840 +OVERSEER: DFHOSD DATASET CLOSED
18.01.12 JOB 6840 +OVERSEER: INITIALIZATION COMPLETE
MODIFY OVERSEER,R
18.01.29 JOB 6840 +OVERSEER: RESTART IN PLACE IS NOW DISABLED
MODIFY OVERSEER,R
18.01.36 JOB 6840 +OVERSEER: RESTART IN PLACE IS NOW ENABLED
MODIFY OVERSEER,D
18.01.41 JOB 6840 +OVERSEER: CPU CEC5 DISPLAY

MODIFY OVERSEER,S

+GEN-APP ACT-JOB ACT-APP ACPU A-ST BKP-JOB BKP-APP
BCPU B-ST DBDCCICS DBCICSJ1 DBDCCIC1 CEC5 ACT X DBCICSJ2
DBDCCIC2 CEC4 SOFN

18.02.19 JOB 6840 $HASP375 OVERSEER ESTIMATED LINES EXCEEDED
18.02.23 JOB 6840 +OVERSEER: SNAP DUMP TAKEN

Job DBCICSJ1 fails and no alternate is available:

18.03.04 JOB 6840 +OVERSEER: JOB IS BEING RESTARTED
18.03.04 JOB 6840 START DFHCRST,CJOB=DBCICSJ1,CSTART=AUTO (BY IOP)1
18.03.04 JOB 6840 START DFHCRST,CJOB=DBCICSJ1,CSTART=AUTO
MODIFY OVERSEER,E
18.03.38 JOB 6840 +OVERSEER: TERMINATION COMPLETE
18.03.39 JOB 6840 lEF404I OVERSEER - ENDED - TIME=18.03.39

Figure 10. The overseer run-time example

1 If the job were being resubmitted as a started task, rather than as a job, the
restart messages would be as follows:

18.03.04 STC 6840 START DBCICSJ1,CSTART=AUTO (BY lOP)
18.03.04 STC 6840 START DBCICSJl,CSTART=AUTO

The message (BY lOP) tells you that restart has been initiated by the Installation
Overseer Program (lOP).

144 CICS/MVS 2.1.2 Customizatlon Guide

The DFHWOSM macros
The DFHWOSM macros invoke the CICS module DFHWOS to provide services to
the overseer program. The macros are the supported interface to the CAVM
data sets, and are supplied to perform the following functions:

• Initialize access to the CAVM data sets for a named generic applid
(DFHWOSM FUNC = OPEN)

• Terminate access to the CAVM data sets for a named generic applid
(DFHWOSM FUNC=CLOSE)

• Retrieve status information for a named generic applid from the CAVM data
sets (DFHWOSM FUNC = READ)

• Issue MVS commands (DFHWOSM FUNC = OSCMD)

• Discover current JES JOB status (DFHWOSM FUNC=JJSIQJJS)

• Issue a JES cancel for a named job (DFHWOSM FUNC = JJC).

Two additional macros (DFHWOSM FUNC=BUILD and DFHWOSM FUNC=TERM)
are supplied to open and close communication with DFHWOS. The macros are
described in detail beginning on page 146. For all the DFHWOSM macros, the
following rules apply:

• The 'label' field is optional.

• If the macro has an input parameter list, the address of that parameter list
must be supplied as the value of the PARM option. The address itself may
be specified as a register number or as a label. Register 1 is the default
value.

• If the macro has to supply either a BUILD TOKEN or an OPEN TOKEN to
DFHWOS (as described in "The DFHWOSM tokens" below), the token must
be provided in the register specified in the TOKEN option. Register 14 is the
default register.

The DFHWOSM tokens
When DFHWOS first invokes the overseer program it passes a value in register 1
which is known as the ENTRY token. The ENTRY token value is stored by the
overseer program on entry and is passed back to DFHWOS as input to the
BUILD, OSCMD, JJS and JJC macros.

The DFHWOSM FUNC = BUILD macro must be the first macro issued by the
overseer program and must complete successfully. The register 1 output from
this macro is a second token called the BUILD token. The BUILD token value is
stored by the overseer program and passed back to DFHWOS as input to the
OPEN, CLOSE, READ, QJJS and TERM macros.

Chapter 2.11. The extended recovery facility overseer program 145

DFHWOSM FUNC=BUILD macro
This macro must be Issued by the overseer program to initialize its
communication with DFHWOS. No other macro can be issued by the overseer
program until DFHWOS FUNC=BUILD has completed successfully.

label DFHWOSM FUNC=BUILD
[,TOKEN={token registerI14}]

Input
The TOKEN value is the ENTRY token that was passed to the sample
overseer program when it was first Invoked by DFHWOS.

Output

Register 1

Register 15

Contains the BUILD token value, which must be returned as
an input value by the overseer program on certain
subsequent requests. This value will be returned to register
1 only if register 15 has a return code of O.

Contains one of the following completion codes:

o Communication successfully initialized between
the overseer program and DFHWOS

4 Incorrect TOKEN value supplied

8 Insufficient storage.

DFHWOSM FUNC=OPEN macro
The OFHWOSM FUNC=OPEN macro initializes access to the CAVM data sets for a
named generic applid.

label DFHWOSM FUNC=OPEN

Input

[,PARM={parm address I!}]
[,TOKEN={token registerI14}]

The PARM value Is a pointer to three further addresses, and these are:

1. the address of the generic applld
2. the address of the ddname of the control data set
3. the address of the ddname of the message data set.

The TOKEN value Is the BUILD token.

Output

Regllter 15 Contains one of the following completion codes:

o Access Initialized, active and alternate signed on

1 Access Initialized, active signed on

148 CICS/MVS 2.1.2 Customlzatlon Guide

2 Access initialized, alternate signed on

3 Access initialized, nothing signed on

4 Same SMF MVS name; IPL time of active earlier
than MVS IPL time

5 Same SMF MVS name; IPL time of alternate
earlier than MVS IPL time

6 Insufficient storage

7 Generic applid is not associated with the named
CAVM data sets

8 Access already initialized for this generic applid or
for this ddname

C Data set open failure

10 SHOWCB failure.

A register 15 return code value of 0 - 5 indicates that a DFHWOSM FUNC=READ
macro can now be issued. A return code value of 6 or above indicates that the
OPEN has failed and that the overseer program will not be able to access the
CAVM data sets.

DFHWOSM FUNC=CLOSE macro
This macro terminates access to the CAVM data sets for a named generic
applid.

label DFHWOSM FUNC=CLOSE

Input

[,PARM={parm addressll}]
[,TOKEN={token registerI14}]

The PARM value Is a pointer to the address of the generic applid whose
associated CAVM data sets are no longer to be accessed by the overseer
program.

The TOKEN value Is the BUILD token.

Output

Register 15 Completion codes:

o CLOSE request was successful and the CAVM data
sets associated with this generic applld can no
longer be accessed by the overseer program

4 Incorrect TOKEN value supplied

8 Access to CAVM data sets for the named generic
applld had not been Initialized.

Chapter 2.11. The extended recovery facility overseer program 147

DFHWOSM FUNC = READ macro
This macro returns information about a named generic applid from its associated
CAVM data sets.

label DFHWOSM FUNC=READ

Input

[,PARM={parm address\l}]
[,TOKEN={token register\14}]

The PARM value is ~~ pointer to a parameter list that contains the addresses
of the generic applid and the dbllist. The ,dbllist is a list of one or more
doublewords.

In the first two bytes of the second word of each of these doublewords you
supply the 'OBLlO' of the information you require. Each piece of information
that you can request is identified by a OBLlD, and a list of these is provided
in Figure 12 on page 149.

The first word of each doubleword is an output area to contain the address of
the requested information, and the last two bytes of the second word of each
doubleword will contain the length of the information. The end of the dbllist
is signalled by setting the high order bit of the last doubleword to one.
Figure 11 illustrates the input to the READ macro.

The TOKEN value is the BUILD token.

Parameter list pointer

..-----------
Generic Applid

Address

DBLLIST Address

, OUTPUT

Item 1 address

Item 2 address

Item n address
'--._--

~ I . Generic Applid

INPUT OUTPUT

DBLID 1 I tern 1 1 ength

DBLID 2 Item 2 length
-

DBLID n Item n length

Figure 1,. Input to the DFHWOSM FUNC III: READ macro

148 CICS/MVS 2.1.2 Customizatlon Guide

DBLIDs for the active:

DBLID1 EQU X '0001' JOBNAME
DBLID2 EQU X'0002' JES JOBID
DBLID3 EQU X'0003' JOB SUBMISSION TIME (STIME)
DBLID4 EQU X'0004' JOB STEP TASK ATTACH TIME (ATIME)
DBLID5 EQU X'0005' CANCEL NAME
DBLID6 EQU X'0006' JES SSNAME
DBLID7 EQU X'0007' MVS SMF NAME
DBLID8 EQU X'0008' MVS IPL TIME
DBLID9 EQU X'0009' SPECIFIC APPL NAME
DBLID10 EQU X'000A' ADDRESS SPACE IDENTIFIER (ASID)
DBLIDll EQU X'000B' TO X'001F' SPARE FOR STATE CTL ITEMS.
DBLID32 EQU X'0020' HEARTBEAT INTERVAL
DBLID33 EQU X '0021' HEARTBEAT COUNTER
DBLID34 EQU X'0022' MSG FILE CURSOR
DBLID35 EQU X'0023' STATUS VALUE (STATE)
DBLID36 EQU X'0024' INQUIRE HEALTHDATA

DBLIDs for the alternate:

DBLID257 EQU X'0101' JOBNAME
DBLID258 EQU X'0102' JES JOBID
DBLID259 EQU X'0103' JOB SUBMISSION TIME (STIME)
DBLID260 EQU X '0104' JOB STEP TASK ATTACH TIME (ATIME)
OBLID261 EQU X'0105' CANCEL NAME
DBLID262 EQU X'0106' JES SSNAME
DBLID263 EQU X'0107' MVS SMF NAME
DBLID264 EQU X'0108' MVS IPL TIME
DBLID265 EQU X'0109' SPECIFIC APPL NAME
DBLID266 EQU X'010A' ADDRESS SPACE IDENTIFIER (ASID)
DBLID267 EQU X'010B' TO X'011F' SPARE FOR STATE CTL ITEMS
DBLI D288 EQU X'0120' HEARTBEAT INTERVAL
DBLID289 EQU X'0121' HEARTBEAT COUNTER
DBLID290 EQU X'0122' MSG FILE CURSOR
DBLID291 EQU X'0123' STATUS VALUE (STATE)
DBLID292 EQU X'0124' INQUIRE HEALTHDATA
Figure 12. DBLlDs for the DFHWOSM FUNC=READ macro

Note: The data structures of the status information pointed to by items X '0024'
and X '0124' are provided in DSECT DFHXRHDS of CICS212.MACLIB.

Output

Register 15 Contains one of the following completion codes:

o Read successful, active and alternate signed on

1 Read successful, active signed on

2 Read successful, alternate signed on

3 Read successful, nothing signed on

4 Same SMF MVS name; IPL time of active earlier
than MVS IPL time

Chapter 2.11. The extended recovery facility overseer program 149

5 Same SMF MVS name; IPL time of alternate
earlier than MVS IPL time

8 CAVM data set access not initialized

10C DBLID not known

1xx Read subtask problem.

If a completion code of 0 - 5 is returned to register 15, each doubleword of the
DBLLlST will contain the address (4 bytes) and the length (2 bytes) of the output
from this read. A completion code of 8, 10C or 1xx indicates a READ failure.

DFHWOSM FUNC=TERM macro
This macro terminates communication between the overseer program and
DFHWOS, and releases any associated storage. It must be issued before the
overseer program completes to ensure an orderly termination.

label DFHWOSM FUNC~TERM
[,TOKEN={token registerI14}]

Input
The TOKEN value is the BUILD token.

Output

Register 15 Contains the following completion codes:

o Communication terminated successfully

Nonzero Request failed.

DFHWOSM FUNC=OSCMD macro
The OSCMD macro is used to issue MVS commands. (The overseer program
performs restart in place of a failed region by issuing an OSCMD macro.) The
text of the required MVS command is provided as input to the macro, and the
OSCMD service issues an SVC 34 specifying this command text. In addition, the
OSCMD service issues an MVS WTO request so that a copy of the command text
appears on the MVS console to keep the operator informed of what is about to
happen. This copy has the comment '(BY lOP), appended to show that the
command is going to be issued by an overseer program. A second copy of the
command text is sent to the console when the MVS command i~ issued. The
run-time example on page 144 includes an example of this.

Label DFHWOSM FUNC~OSCMD
[,PARM~{parm address I!}]
[,TOKEN~{token reg;sterI14}]

Input
The PARM value is a single address that points to a 'command area'. The
command area is made up of a 4-byte length field followed by the command

150 CICS/MVS 2.1.2 Customlzatlon Guide

data. The length field contains the length of the whole command area. The
command data must be in WTO command format.

The TOKEN value is the ENTRY token.

Output

Register 0 Completion code set by 8VC 34 as a response to the MV8
command that was issued by the 08CMD macro.

Register 15 Response to the 08CMD itself. A return code of 16 indicates
that the 08CMD has failed.

DFHWOSM FUNC=[JJSIQJJS] macro
Given a JOBNAME and JE8 job identifier, both versions of this macro return the
current JE8 job status into a copy of the JE8 subsystem options block (880B).

The FUNC = JJS macro returns control when the JES call has completed
successfully or unsuccessfully. The FUNC = QJJ8 macro returns control
immediately and posts an event control block (ECB) once the JE8 request has
completed.

label DFHWOSM FUNC=[JJSIQJJS]

Input

[,PARM={parm addressll}]
[,TOKEN={token registerI14}]

For FUNC=JJS, the PARM value is a pointer to the addresses of the following:

An 8-byte jobname
An a-byte JE8 job id
A 256-byte 880B return area.

The TOKEN value is the ENTRY token.

For FUNC=QJJS, the PARM value is a pointer to the addresses of the following:

An 8-byte jobname
An 8-byte JE8 job id
A 256-byte 880B return area
A doubleword area to hold two ECBs.

The QJJ8 macro requires 2 ECBs: the first is posted when the JE8 call
completes, the second is posted if a timeout occurs before JE8 returns.

The TOKEN value is the BUILD token.

Output

Register 15 Contains the following completion codes:

o JES status returned as requested in the 880B
return area

Nonzero Return code from JE8.

Chapter 2.11. The extended recovery facility overseer program 151

DFHWOSM FUNC = JJC macro
This macro issues a JE8 cancel for a named job with a JE8 job identifier. Note
that this macro will not cancel a started task.

Input

DFHWOSM FUNC=JJC
[,PARM={parm address/I}]
[,TOKEN={token register/14}]

The PARM value is a pointer to the addresses of the following:

An 8-byte jobname
An 8-byte JE8 job id
A 256-byte 880B return area.

The TOKEN value is the ENTRY token.

Output

Register 15 Contains the following completion codes:

o JES cancel completed. S80B and status array
returned from JE8.

Nonzero Return code from JE8.

DFHWOSM FUNC = DSECT macro
This macro generates a number of D8ECTs, the most useful of which is the
DSECT of the DBLID definitions.

DFHWOSM FUNC=DSECT

" Customizing the sample program
The sample overseer program is written as a main body of code with two main
subroutines, each written as a separate CSECT. One of these subroutines Is
called to perform the display of status information (CSECT DFH$AD8P). and one
is called to perform restart in place (CSECT DFH$ARES). The associated
DSECTs are provided in member DFH$XRDS of CICS212.SAMPLIB. There are a
number of ways in which you can change the supplied code if you want to make
the overseer program more suitable for your installation.

If you do change the overseer code in any way, you should note that the libraries
SYS1.MACLIB and SYS1.AMODGEN are required for the assembly, and that the
link-edit jobstep requires an entry name of the form ENTRY DFHXRONA. The
supplied sample can be linked with the reentrant option (RENT).

152 CICS/MVS 2.1.2 Customlzation Guide

Here are some customization suggestions:

• If the supplied display of status information (DSECT DSPDS) is not suitable,
you can change the layout for your installation.

• The CSECT DFH$ADSP can be customized so that, for example, status
information is displayed automatically at regular intervals, or whenever a
region is in trouble, as well as when the console operator enters the '0'
command. This would require interpretation of the status information by the
overseer.

• Any of the messages to the system console, which are listed in the prolog of
the source module DFH$AXRO, can be changed.

• You can change the format or the content of the DFHOSD data set (DSECT
OSDDS) if, for example, you want it to contain more information.

• You can change the restart function so that, for example, a failed region will
be restarted only during periods of heavy use, while at other times a
takeover to the alternate will be initiated by the operator.

• When an active region fails and is taken over to the alternate, the old active
region must be restarted as the new alternate. In those cases where the
cause of the takeover was not a CEC failure, restart of the old active as an
alternate region could be automated in the overseer program.

• If you want to extend the function of the overseer program, you can
incorporate the CEBT command, which is normally issued by the console
operator to control the alternate. The CEBT command is described in the
CICSIMVS CICS-Supplied Transactions manual.

A" of the CEBT functions are available for use in the overseer program,
though it is unlikely that you will find it helpful to automate all of them, and
there would, in some cases, be difficulties in handling the responses from
the INQUIRE-type commands. However, it can be helpful for you to be able
to automate the takeover process in some circumstances. Here are two
examples of situations in which you could use the CEBT command to
influence or to initiate takeover from the overseer program.

1. The active CICS may place error information in the CAVM data sets
when a VTAM failure occurs, depending on whether you have coded an
exit program at the global user exit point XRRST AT, and how you have
coded it. (An exit program at this point can be used to decide whether
or not VTAM failure data is recorded in the CAVM data sets.) If such
data is placed in the CAVM data sets, information about the last eight
failures detected by the active elcs region is available to the overseer.
The overseer can evaluate this information and, if necessary, initiate a
takeover by issuing the following CEBT command:

MODIFY nnnn,CEBT PERFORM TAKEOVER

where nnnn is a region name. In this case, you should ensure that the
actions taken by the global user exit program at exit point XXRSTAT do
not conflict with or duplicate those taken by the overseer program. For
example, it would be possible for the global user exit program to request
a CICS abend, and thereby initiate a takeover, and for the overseer
program to issue the PERFORM TAKEOVER command while acting on
the same information.

Chapter 2.11. The extended recovery facility overseer program 153

2. At certain times of the day, perhaps when fewer operational staff are
. available than at other times, you may find it convenient to change the
TAKEOVER setting for some, or all, of your regions. For example, you
can change the TAKEOVER value for a region from COMMAND or
MANUAL to AUTO, without shutting down the alternate, so that takeover
will be automatic until the setting is next changed. The CEBT command
is as follows:

MODIFY region_name, CEBT SET TAKEOVER AUTO

In both of these examples, you would include takeover commands in the
command list tables (CL Ts) of these regions to ensure that their related
regions are also switched when appropriate.

There is one optional section of coCie in the overseer program, which is
described below.

Loop or wait detection
The sample overseer program includes some code that you can use to detect
possible loops or waits in the active CICS region. The sample program monitors
the CICS TCB (task control block) time stamp. If this remains the same for a
period defined by the variable LOOPTM, a message is sent to the console
warning of a possible loop or wait. The value of LOOPTM is the number of
seconds (wait time) before a loop is suspected, and may need to be changed to
suit your requirements and to avoid the detection of 'false' loops. It should be
set to a value greater than the largest runaway task time interval (as specified
on the DFHSIT operand ICVR) to avoid detection of user transaction loops. To
include this LOOP WARNING code, set the variable &LOOPWARN to '1' and
reassemble the sample.

154 CICS/MVS 2.1.2 Customizatlon Guide

Part 3. Journal management

© Copyright IBM Corp. 1977, 1990 155

Chapter 3.1. Use of specialized Journal functions

A journal consists of a series of tape volumes or disk data sets used
sequentially. Each tape volume comprises one data set.

This chapter contains information on the use of specialized journal functions with
particular reference to user journals. The following topics are discussed:

• Customization programming within the journaling process; for example,
opening, closing and reading journals.

• The layout and contents of journal records.

• Methods of reading journal data sets. The options are:

Offline:

- Forward
- Backward.

During execution:

- Forward
- Backward.

• User replaceable modules.

The information in this chapter should be read in conjunction with the discussion
on journaling in the CICSIMVS Application Programmer's Reference manual and
CICSIVS Application Programmer's Reference Manual (Macro Level). An
overview of journal records is provided in the CICSIMVS Recovery and Restart
Guide.

Customization programming
Journal records are written either directly from a user application program using
the journal control commands or macros, or from a CICS management program
on behalf of a user application. Processing these journal records is the user's
responsibility. Typically, the system programmer writes the programs that open,
close and read the journal data sets.

This section describes the following variants of the journal control macro
instruction:

• DFHJC TYPE = OPEN, which opens a data set.

• DFHJC TYPE = CLOSE, which closes a journal data set.

• DFHJC TYPE = GETB or TYPE = GETF, which reads records backward or
forward from a journal data set.

The program that issues these macro instructions must include a COPY
DFHJCADS statement and the symbol JCABAR as a base register, to define and
address the journal control area (JCA).

® Copyright IBM Corp. 1977, 1990 157

The JCA and the DFHJC macro instructions used to place records in a journal
data set are described in the CICSIVS Application Programmer's Reference
Manual (Macro Level). The JOURNAL command is described in the CICSIMVS
Application Programmer's Reference manual.

Opening a journal volume or data set - DFHJC TYPE = OPEN
The general format of the DFHJC macro instruction to open journal data sets is
as follows:

DFHJC TYPE=(OPEN[,{INPUTIOUTPUT}])
[,IDERROR=symbolic-address]
[,INVREQ=symbolic-address]
[,IOERROR=symbolic-address]
[,JFILEID={SYSTEMlnnIYES}]
[,NORESP=symbolic-address]
[,SIVOL=YES]
[,STATERR=symbolic-address]
[,VOLERR=symbolic-address]
[,VOLUME={NEXTIPREVIOUSICURRENTIFIRST}]

TYPE = (OPEN[,{INPUTIOUTPUT}])
Indicates that a data set of the specified journal is to be opened.

OPEN,INPUT
Indicates that the journal volume is to be opened for input. Before the
volume is opened for input, the task must have obtained exclusive
control of the journal by previously closing it.

OPEN,OUTPUT
Indicates that the journal volume is to be opened for output. Exclusive
control of the journal, if obtained by a previous close operation, is
relinquished.

OPEN
Is used as the first request for OPEN = DEFERRED journals. See the
CICSIMVS Recovery and Restart Guide for further details.

If a journal is defined as OPEN = DEFERRED in DFHJCT TYPE = ENTRY, it
must first be opened for output. Before issuing any open for input, the file is
closed to get exclusive control.

IDERROR = symbolic-address
Specifies the address to which control is passed if the specified journal does
not exist in the journal control table (JCT).

INVREQ = symbolic-address
Specifies the address to which control is passed if the TYPE of request is
invalid. Note that journals to be opened for input must be specified with
JOUROPT = INPUT in the JCT.

IOERROR = symbolic-address
Specifies the' address to which control' is passed if the operating system
open fails.

158' f,lCS/MVS2.1.2 Customlzatlon Guide

JFILEID = {SYSTEMlnnIYES}
Identifies the journal to be opened. The default is JFILEID = SYSTEM.

SYSTEM
Indicates that the journal is the system log ..

nn Is a decimal value from 2 through 99, which identifies the journal.

YES
Indicates that the journal identification has been previously loaded in the
journal control area field JCAJFID.

NORESP = symbolic-address
Specifies the address to which control is passed if the requested operation is
successful.

SIVOL = YES Tape Journals only
Indicates, for TYPE = (OPEN,INPUT) requests, that a specific volume is
required. The VOLUME keyword must also be present to specify positioning;
however, VOLUME = CURRENT is invalid because SIVOL identifies a specific
volume.

Note: SIVOL = YES is an invalid request for disk journals because all CICS
disk journal data sets must be permanently mounted.

You must identify the tape being used. For unlabeled tapes, use JCARST,
JCAVCD, and JCAVSN. For labeled tapes, use JCAVOLlD, JCAFLG, and
JCAPRTNO. For full details, refer to the section on reading journal data sets
in the CICSIMVS Operations Guide.

The data to be placed in these fields must be obtained in advance by issuing
a DFHJC TYPE = NOTE request. See "Reading journal data sets - DFHJC
TYPE = GET" on page 162.

STATERR = symbolic-address
Specifies the address to which control is passed if the current status of the
journal prevents the requested operation. For example, the request is to
OPEN a journal that is already open. A status error code is also returned if
the request attempts to open a journal already under exclusive control of a
different task.

VOLERR = symbolic-address
Specifies the address to Which control is passed if a volume error occurs.
Possible errors include:

• Volume does not exist
• Volume cannot be located
• Volume no longer contains the required part of the journal.

VOLUME = {NEXTIPREVIOUSICURRENTIFIRST}
Specifies which volume of the journal is required, and how that volume is to
be positioned when opened. The default is VOLUME = NEXT. NEXT and
PREVIOUS refer to the time sequence in which the volumes are written. For
journals using standard-labeled tape volumes, journal control will request
that the appropriate volume is mounted. For journals using unlabeled tape
volumes, it is the operator's responsibility to ensure that tape journal
volumes are I<ept and mounted in sequence. Disk journal volumes are

Chapter 3.1. Use of specialized journal functions 159

permanently mounted, and journal control performs any necessary volume
switching or positioning.

NEXT
Indicates, for TYPE = (OPEN,OUTPUT) requests, that journal output is to
be continued from the start of the next reel or data set. For tape, a reel
that is ready to be overwritten must be mounted.

For disk, a data set will be reused. However, if the journal was
previously in input mode, VOLUME = NEXT will be ignored and
VOLUME =CURRENT will be forced.

For TYPE = (OPEN,INPUT) requests, the next volume in chronological
sequence is to be mounted, if necessary, opened for input, and
positioned at the start of the data set.

PREVIOUS
Indicates, for TYPE = (OPEN,INPUT) requests, that the previous volume in
chronological sequence is to be mounted, if necessary, opened for input
and positioned at the end of the data set.

CURRENT
Indicates, for TYPE = (OPEN,INPUT) requests, that the current output
volume (that is, the tape reel or disk data set that most recently received
output) is to be opened for input and positioned at the end of data on the
volume.

Note: If the current tape output reel was closed with LEAVE = YES, no
remounting or repositioning delay should occur.

For TYPE = (OPEN,OUTPUT) requests, the current output volume is to be
opened for output. For tape journals, this request is treated the same as
VOLUME = NEXT, that is, a new output volume is begun. For disk, the
journal is repositioned so that output continues after the last record
previously written.

FIRST
Can only be used if OPEN = DEFERRED is specified in DFHJCT
TYPE=ENTRY. VOLUME=FIRST has the same effect as
VOLUME =CURRENT, except that the sequence number for this first
volume of the run is initialized at 001. VOLUME = FIRST is only
supported for output, except for the system log in a CICS with DLII
environment.

Note: During system initialization, all journals included in the journal control
table are opened with TYPE = (OPEN,OUTPUT), VOLUME = FIRST (unless
OPEN = DEFERRED was specified).

Note: VOLERR, STATERR, IDERROR, INVREQ, IOERROR and NORESP may be
specified in a separate DFHJC TYPE = CHECK macro.

160 CICS/MVS 2.1.2 Customization Guide

Closing a journal data set - DFHJC TYPE = CLOSE
The general format of the DFHJC macro instruction used to close a journal data
set is described below.

DFHJC TYPE=CLOSE
[,IDERROR=symbolic-address]
[,IOERROR=symbolic-address]
[,JFILEID={SYSTEMlnnIYES}]
[,LEAVE={NOIYES}]
[,NORESP=symbol;c-address]
[,STATERR=symbolic-address]

TYPE=CLOSE
Indicates that the open volume in the specified journal is to be closed.
Exclusive control of the journal is given to the requesting task. Hence, only
the task that has issued the close request can reopen the journal.

To avoid tasks waiting on journal control writes and the possibility of a
deadlock occurring, monitoring should be terminated before the journal is
closed.

IDERROR = symbolic-address
Specifies the address to which control is to be passed if an entry for the
specified journal does not exist in the journal control table.

IOERROR = symbolic address
Specifies the address to which control is to be passed if an 1/0 error occurs.

JFILEID = {SYSTEMlnnIYES}
Identifies the journal to be closed. The default is JFILEID = SYSTEM.

SYSTEM
Indicates that the journal is the system log.

nn Is a decimal value from 2 through 99, which identifies the journal.

VES
Indicates that the journal identification has been previously loaded in the
journal control area field JCAJFID.

LEAVE = {NOIVES}
Indicates the positioning for tape journal files. The default is LEAVE = NO.
The LEAVE keyword is ignored for disk files.

YES

Indicates that the reel is to be rewound and unloaded.

Indicates that the reel is to remain ready and mounted, positioned at the
end of the file.

NOR ESP = symbolic-address
Specifies the address to which control is to be passed if the requested
operation is successful.

Chapter 3.1. Use of specialized Journal functions 161

STATERR = symbolic-address
Specifies the address to which control is passed if the current status of the
journal prevents the requested operation; for example, if the request is to
CLOSE a journal which includes no open volumes. A status error code is
also returned if the request attempts to close a journal already under
exclusive control of a different task.

Reading journal data sets - DFHJC TYPE = GET
The general format of the OFHJC macro instruction used for finding the position
in and reading from journal records is as follows:

DFHJC TYPE={GETBIGETFINOTEIPOINT}
[,EOFADDR=symbolic-address]
[,IDERROR=symbolic-address]
[,INVREQ=symbolic-address]
[,IOERROR=symbolic-address]
[,JFILEID={SYSTEMlnnIYES}]
[,NORESP=symbblic-address]
[,NOTOPEN=symbolic-address]
[,STATERR=symbolic-address]
[,VOLERR=symbolic-address]

The system acquires an input area into which the journal record is moved. The
address of this area is returned in the field JCAADATA. You must use this
address to establish addressability to the area, which is defined by the
OFHJCROS OSECT. See "Layout and contents of journal records" on page 164.

TYPE = {GETBIGETFINOTEIPOINT}
Indicates the journal operation required.

GETB
Retrieves the journal record preceding the current position.

GETF
Retrieves the next journal record.

For TYPE = GETB and TYPE = GETF requests, the address of the journal
record is returned in the journal control area at JCAAOATA. The journal
record is in CICS transaction storage chained off the TCA of the calling
program.

Note: If a direction change occurs, for example, if a GETF follows a
GETB, the same journal record will be retrieved.

NOTE
Obtains positioning information for the currently open volume of the
specified journal. Positioning data is returned in the journal control area
field JCANOTE, and identifies a logical record within a block within a
volume. Positioning data includes the volume identification needed for
DFHJC TYPE=(OPEN,INPUT) requests that specify SIVOL=YES. The
fields used for volume identification of labeled volumes are JCAVOLlO,
JCAFLG and JCAPRTNO. For unlabeled tape volumes, they are JCARST,
JCAVCO, and JCAVSN.

162 CICS/MVS 2.1.2 Customizatlon Guide

Notes:

1. Positioning data for a journal open for input is returned for DFHJC
TYPE = NOTE requests; at least one successful GETB or GETF request
must precede the NOTE request.

2. Positioning data for a journal open for output can be obtained by
including the NOTE keyword in the output request: for example,
DFHJC TYPE=(PUT,NOTE).

POINT
Repositions the currently open input volume to a specified logical record.
Before issuing this request, you must load the journal control area field
JCANOTE with positioning data returned by a previous NOTE request.
Following a successful POINT request, you can retrieve the logical
journal record in question with a GETF request.

Note: The correct volume of the journal must be currently open for
input, and at least one successful GETB or GETF request issued to it,
preceding the POINT request.

EOFADDR = symbolic-address
Indicates the address to which control is to be passed if the journal reaches
end-of-file for GETF, GETB or (tape only) POINT requests.

Note: After end-of-file is passed for a tape journal in the forward direction
(GETF request), further attempts to retrieve from or reposition the volume
will lead to unpredictable results and I/O errors.

IDERROR = symbolic-address
Indicates the address to which control is to be passed if the specified journal
does not exist in the journal control table.

INVREQ = symbolic-address
Indicates the address to which control is to be passed if the TYPE of
operation is invalid or specifies POINT or NOTE before any reads (GETF or
GET B) from the current input volume.

IOERROR = symbolic-address
Indicates the address to which control is to be passed if an I/O error occurs.

JFILEID = {SYSTEMlnnIYES}
Identifies the journal referenced in this operation. The default is
JFILEID = SYSTEM.

SYSTEM
Specifies the system log.

nn Is a decimal value from 2 through 99, which identifies the journal.

YES
Indicates that the journal identification has been loaded into the JCAJFID
field in the journal control area prior to issuing the request.

NORESP = symbolic-address
Indicates the address to which control is to be passed if the requested
operation is successful.

Chapter 3.1. Use of specialized journal functions 163

NOTOPEN = symbolic-address
Indicates the address to which control is to be passed if the journal is not
open.

STATERR = symbolic-address
Indicates the address to which control is to be passed if the journal is open
for output, or that the requesting task is not the one with exclusive control.

VOLERR = symbolic-address
Indicates the address to which control is to be passed if a POINT request
specifies a volume other than the one currently open for input.

Note: EOFADDR, STATERR, NOTOPEN, VOLERR, IDERROR, INVREQ, IOERROR,
and NORESP keywords may be specified in separate DFHJC TYPE =CHECK
macros or HANDLE CONDITION requests.

Layout and contents of journal records
Journal data sets are usually created as containing undefined records
(RECFM = U). They are then formatted by the journal control program to be
compatible with variable-length blocked records (RECFM =V8). When reading a
journal, you can defined it as RECFM =V8, and the access method will do the
unblocking.

Each block and each record within the block begins with an LLbb length field.
Each block contains at least two logical records, because journal control creates
a label record as the first record in every block.

SMF formatted journal blocks have a different structure. For Information about
SMF formatted journal blocks, see "Standard system management facilities block
header" on page 400.

LL bb LL ~b I Journal Control Label Record (18045 I)

LL bb Journal Record 1 I LL bb I
-

Journal Record 2

~ LL bb 1 Journal Record 3

Figure 13. CICS journal format

Each block contains the following logical records:

1. One journal control label record.

Each block on a journal data set starts with this record. It indicates global
CICS information such as the block number, CICS run start time, and journal
identification.

2. One or more journal records.

These records follow the journal control label record, and contain all the
information that has been written for the different CICS tasks. These records

164 CICS/MVS 2.1.2 Customization Guide

are variable·length. The number in a particular block will depend on the
length of data to be logged, on the size of the journal buffer (as specified in
the journal control table), and on the frequency of writes. Writes occur
because they have been explicitly forced, or because the buffer is full, or
because the "shift-up" value has been passed. The "shift-up" value is a
notional record size that is adjusted dynamically to maintain performance.

When retrieved directly from a journal by OFH,IC TYPE = GETB or GETF requests,
journal records are returned in a CICS transaction storage area pointed to by
field JCAAOATA and are mapped by the OFHJCROS OSECT.

The system header (the first 10 bytes) of every journal record, including label
records, but excluding OLII records, consists of these fields:

Field Name
In
DFHJCRDS
DSECT

JCRBA

JCRLL

JCRBB

JCRSTRID

JCRUTRID

JCRLRN

Field
Size In
Bytes

EQU

2

2

2

2

2

Format

Halfword binary

Binary zeros

Hexadecim.al

Hexadecimal

Packed decimal

Contents

Label for start of
journal records

Length of record

Not used

System type-I 0

User type-ID

Record number
within block

The system and user type .. ID fields, JCRSTRID and JCRUTRID, are the means of
distinguishing journal records output by CICS, by such features as automatic
journaling, from those issued by direct user requests.

For CICS Journal requests, the user type-ID is 0, and the system type-IO consists
of a 1-byte function code followed by a 1-byte module code. Valid settings of
these codes are contained in the member DFHFMIOS of the CICS
assembler-language macro library as shown in Figure 14.

For user Journal requests, the system type-IO field always contains binary zeros;
the user type-IO field contains the 2-byte hexadecimal code specified by the
JTYPEIO keyword of the output request.

Chapter 3.1. Use of specialized journal functions 165

DFH88818
DFH88828

*** DFH88838
*** DFH88848
* * * * * * DFH88859
* * * FUNCTION AND MODULE IDENTIFIERS * * * DFH88868
* * * (SEE FOLLOWING DSECTS: DFHDWEDS,DFHJCADS,DFHJCR) * * * DFH88878
* * * * * * DFH888S8
*** DFH88898
* * FUN C T ION IDE N T I FIE R S * * DFH88188
*** DFH88118
* * DFH88128
* X'81' THRU X'7F' ARE RESERVED FOR DL/I * DFH88138
* X'28' PLUS X'S-' ... USE FOR AUTOMATIC JOURNALING * DFH88148
* X'48' PLUS X'B-' •.• USE FOR AUTOMATIC LOGGING * DFH881S8
* X'E8' thru X'FF' are reserved for Sync-Point logging * DFH88168
* (MUST BE PRESENT IN 'LOGGABLE' OWE'S) * DFH88178
* * DFH881B8
*** DFH88198
* * JOURNAL CONTROL * * DFH88288
*** DFH88218
FIDJCLAB EQU X'S8' .•• JOURNAL CONTROL LABEL @ DFH88228
* RECORD (DFHJCR) DFH88238
FIDJCLOK EQU X'81' 'NESTED' LOCK OWE @BM89813 DFH88248
*** DFH88258
* * DYNAMIC BACKOUT FUNCTION IDENTIFIERS:- * * DFH88268
*** DFH88278
FIDDBOFL EQU X'88' OVERFLOW DYNAMIC LOG RECORD @BD96830 DFH88288
FIDDBCHN EQU X'81' CHAIN DYNAMIC LOG RECORD @BD96830 DFH88298
*** DFH88388
* * FILE CONTROL * * DFH88318
*** DFH88328
FIDALOG EQU X'48' ... AUTOMATICALLY LOGGED @ DFH88338
FIDAJRN EQU X'28' ..• AUTOMATICALLY JOURNALLED @ DFH88348
* PLUS ONE OF... DFH88358
FIDFCRO EQU X'8S' ..• FILE CONTROL READ-ONLY @ DFH8S368
FIDFCRU EQU X'81' ... FILE CONTROL READ-UPDATE @ DFH88378
FIDFCWU EQU X'S2' ... FILE CONTROL WRITE-UPDATE @ DFH88388
FIDFCWA EQU X'83' •.. FILE CONTROL WRITE-ADO @ DFH88398
FIOFCDSN EQU X'8F' ... NEW OSNAME @DIA DFH88488
* OFH88418
* NOTE THAT FID* VALUES (AS ABOVE) ARE OFTEN USEO BOTH TO DFH88428
* IDENTIFY THE FUNCTION OF THE OWE AND THE FUNCTION OF THE DFH88438
* LOG RECORD. IN THE CASE OF THE FIDFC* EQU'S ABOVE, THEY DFH88448
* ARE USED FOR LOG RECORDS ONLY. THOSE BELOW APPLY ONLY DFH88458
* TO OWE'S DFH88468
* DFH88478
FIDFCVWA EQU X'8S' THIS OWE ADDRESSES A VSWA. @LBC DFH88488
FIDFCRVY EQU X'48' THIS OWE IS ASSOCIATED WITH A *DFH88498

•. RECOVERABLE CHANGE. @LBC DFH88588
*** DFH8S518
* TRANSIENT DATA FUNCTION IDENTIFIERS:- * DFH88528
FIDTDIT EQU X'Fl' TO DESTINATION'S INPUT TASK @ DFHS8S3S
FIDTDOT EQU X'F2' TO DESTINATION'S OUTPUT @ DFH88S49
* TASK DFH88558
FIDTDPT EQU X'F3' TO DESTINATION'S PURGE TASK @BM18372 DFH8856S
*FIDTODB EQU X'8S' ..• DYNAMIC BACKOUT MASK @BI81e88 DFHee578

Figure 14 (Part 1 of 5). Journal function and module identifications

166 CICS/MVS 2.1.2 Customlzatlon Guide

DFH885Se
DFH88598

FIDTDPLP EQU
FIDTDPGT EQU
FIDTDPRL EQU
*
FIDTDPLG EQU
FIDTDPQZ EQU
*

X'81'
X'82'
X'83'

X'84'
X'85'

TO PHYSICAL 'FIRST PUT' LOG
TO PHYSICAL 'GET' LOG
TO PHYSICAL QUEUE ZERO LOG

- REUSE=YES
TO PHYSICAL 'PURGE' LOG
TO PHYSICAL QUEUE ZERO LOG

- REUSE=NO

DFH00600
DFH00610

@ DFH00620
@ DFH00630
@ DFHS0640

@LCA DFHS0650
@ DFHS0660

@LCA DFH00670
@LCA DFH08688

*** DFH00690
* TEMPORARY STORAGE FUNCTION IDENTIFIERS * DFH00780
FIDTSAL EQU X'48' AUTOMATIC LOGGING MASK @BD5623D DFH08718
*FIDTSDB EQU X'S8' ... DYNAMIC BACKOUT MASK @BI01S0S DFH80728
FIDTSUPD EQU X'8S' .• TEMPORARY STORAGE UPDATE @BD5623D DFHS0738
FIDTSPRI EQU X'F2' .. TEMPORARY STORAGE @BD5623D DFH80748
* PURGE/RELEASE DFH08758
FIDTSPUT EQU X'F4' .• TEMPORARY STORAGE @BD5623D DFH08760
* PUT/PUTQ DFH80770
FIDTSCLN EQU X'01' .. TEMPORARY STORAGE CLEAN @BA21192 DFH80788
* UP OWE @BA21192 DFH00790
*** DFH00800
* SPECIAL FEATURES FUNCTION IDENTIFIERS * DFH00810
FIDPSOPC EQU X'88' CONTINOUS LOGICAL SPOOLOPEN FDFH80820

@E9700T @L5A DFH80838
FIDPSWRC EQU X'81' CONTINOUS LOGICAL SPOOLWRITE FDFH88848

@E9788T @L5A DFH888S8
FIDPSCLC EQU X'82' CONTINOUS LOGICAL SPOOLCLOSE FDFH80868

@E9708T @LSA DFHS0878
FIDPSOPS EQU X'83' STANDARD SPOOLOPEN @E9700T @LSA DFH80880
*** DFH00890
* INTERVAL CONTROL FUNCTION IDENTIFIERS * DFH00900
FIDICPDF EQU X'50' INTERVAL CONTROL PUT,DEFER @BM10372 DFH80910
FIDICRGT EQU X'80' RESTART GET. @BBDI800 DFH00920
*FIDICDB EQU X'08' BACKOUT MASK @BI01000 DFH00930
*** DFH08948
* PROGRAM CONTROL FUNCTION IDENTIFIERS * DFH889S0
FIDPCPPT EQU X'88' PC REPLACE PPT DEFINITION @L9A DFH08968
*** DFH88978
* TASK CONTROL FUNCTION IDENTIFIERS * DFH08980
FIDKCPCT EQU X'8S' KC REPLACE PCT DEFINITION @L9A DFH88990
FIDKCPFT EQU X'81' KC REPLACE PFT DEFINITION @L9A DFH81880
*** DFH81818
* ACTIVITY KEYPOINT FUNCTION IDENTIFIERS:- * DFH01020
FIDAKS EQU X'88' ACTIVITY KEYPOINT: START. @ DFH81830
FIDAKE EQU X'81' ACTIVITY KEYPOINT: END. @ DFH81848
* EQU X'82' RESERVED - WAS FIDKPTCA DFH018S8
* EQU X'83' RESERVED - WAS FIDKPDCT DFH81068
* EQU X'84' RESERVED - WAS FIDKPTCR DFH81870
* EQU X'85' RESERVED - WAS FIDKPTST DFH81088
FIDAKM EQU X'86' ACTIVITY KEYPOINT: MIDDLE. @L7A DFH81090
*** DFH01108

SPACE 1 @ECBID @LIC DFH01118

Figure 14 (Part 2 of 5). Journal function and module identifications

DFH01120
DFH01130

Chapter 3.1. Use of specialized journal functions 167

DFH91149
DFH91159

*** DFH91169
* SYNC POINT FUNCTION IDENTIFIERS:- * DFH91179
FIDSPUOW EQU X'EF' Start-UOWid log record @02A DFH91189
FIDSPLUC EQU X'F9' LUC RELATED FUNCTION @EIA5D @L4A DFH91199
FIDLSOSP EQU X'Fl' LOGICAL START OF SYNC POINT. @ DFH91299
FIDLEOTK EQU X'F2' LOGICAL END OF TASK. @ DFH91219
FIDPEOTK EQU X'F3' PHYSICAL END OF TASK. @ DFH91229
FIDBEOTK EQU X'F4' BAD END OF TASK LOG RECORD @BM19372 DFH91239
FIDSPR EQU X'F5' SPR LOG RECORD @BM19372 DFH91249
FIDBEOSP EQU X'F6' BAD END OF SYNC POINT LOG @BM19372 DFH91259
* RECORD @BBECBID DFH91269
FIDRSQ EQU X'F7' REMOTE SESSION QUALIFIER @BBDIS9D DFH91279
FIDSPRMI EQU X'FS' RMI OWE. (ALSQ USED AS A TEST MASK .• *DFH912S9

FIDSPPTC EQU
FIDSPPTB EQU
FIDSPRSC EQU
FIDSPRSB EQU
FIDSPFGT EQU
FIDSPLTC EQU
FIDSPNID EQU

X'F9'
X'FA'
X'FB'
X'FC'
X'FD'
X'FE'
X'FF'

.. FOR THE FOLLOWING RMI CODES. *DFH91299

R~lI PREPARE
RMI ABOUT TO BACKOUT
RMI RESYNC COMt~ITTED

RMI RESYNC BACKED OUT
RMI FORGET
RMI 'LOST TO COLD START'
RMI 'NOT IN DOUBT'

@ECBID @LIC DFH91389
@ECBID @LIC DFH91319
@ECBID @LIC DFH91329
@ECBID @LIC DFH91339
@ECBID @LIC DFH91349
@ECBID @LIC DFH91359
@ECBID @LIC DFH91369
@ECBID @LIC DFH81379

*** DFH9l389
SPACE 1 @ECBID @L9P DFH91399

*** DFH91499
* RECOVERY CONTROL FUNCTION IDENTIFIERS:- * DFH9l419
FIDRCFWD EQU X'F9' FORWARD RECOVERY RECORD @L9A DFH91429
FIDRCBWD EQU X'e8' BACKOUT RECORD @L9A DFH91439
*** DFH8l448

SPACE 1 DFH91458
*** DFH81469
* BMS FUNCTION IDENTIFIERS:- @BD5A91J DFH91479
FIDBMPM EQU X'Sl' .•• BMS - PARTIAL MESSAGE ON @BD5A9lJ DFH8l4S9
* TEMPORARY STORAGE DFH91499
FIDBMODS EQU X'82' .•• BMS - OPEN DATA SET ON @BD85DIL DFH91599
* BATCH LU DFH9l518
*** DFH91529
* TERMINAL CONTROL FUNCTION IDENTIFIERS * DFH9l539
* @BD5921J DFH91549
FIDTCML EQU X'F9' SYNC POINT - LOG SEQUENCE @BDS921J DFH91559
* NUMBERS DFH91569
* .•. THE ABOVE PLUS ANY OF FOLLOW'G 3 •• @BMl3599 DFH9l579
FIDTCDWL EQU X'9l' ••• DEFERRED WRITE DATA @BD5921J DFH9l5e8
FIDTCFMH EQU X'82J ..• f FUNCTION MANAGEMENT @BD5821J DFH9l599
* HEADER DFH9l688
FIDTCDIP EQU X'84' ... f DIP REQUEST @BD9969V DFH9l6l9
* @BD5921J DFH8l628

Figure 14 (Part 3 of 5). Journal function and module identifications

168 CICS/MVS 2.1.2 Customlzatlon Guide

DFH8l639
DFH91648

DFH9I6S9
DFH9I66e

*FIDTCDB EQU X'9S' ..• DYNAMIC BACKOUT MASK @BD96S30 DFH9I670
FIDTCAL EQU X'40' AUTOMATIC LOGGING MASK .•. @BDS92IJ DFH9I6S9
FIDTCAJ EQU X'29' AUTOMATIC JOURNALING MASK •• @BM13S99 DFH9I699
* .•. THE ABOVE 2 PLUS I OF FOLLOW'G SET @BM10372 DFH9I799
FIDTCTL EQU X'S0' •.• SEQUENCE NUMBER ONLY @BDS02IJ DFH9I719
* (LOG ONLY) DFH9I720
FIDTCIM EQU X'Sl' .•• INPUT MESSAGE (LOG AND @BDS02IJ DFH0I739
* JOURNAL) DFH9I740
FIDTCOM EQU X'S2' .•• OUTPUT MESSAGE (JOURNAL @BDS92IJ DFH0I750
* ONLY) DFH91769
FIDTCWP EQU X'S3' .•. WRITE WAS PURGED (LOG @BDS92IJ DFH0I779
* ONLY) DFH017S0
FIDTCPRR EQU X'S4' ..• POSITIVE RESPONSE @BDS021J DFH01790
* RECEIVED (LOG ONLY) DFH9I889
FIDTCIMF EQU X'S5' ••• INPUT MESSAGE (W/FMH, @BD8SDIV DFH018I0
* LOG AND JOURNAL) DFH01829
FIDTCOMN EQU X'S6' ... OUTPUT MESSAGE, (W/O @BD8SDIV DFH9IS30
* FMH, JOURNAL ONLY) DFH9I849
FIDTCON EQU X'87' .•• OUTPUT MESSAGE, FMH, @BD8SDIV DFH918S8
* CCOMPL=NO DFH91869
FIDTCONN EQU X'S8' ••. OUTPUT MESSAGE, WIO FMH, @BD8SDIV*DFH0I879

.•• CCOMPL=NO @BD8SDIV DFH9I889
FIDTCUA EQU X'89' .•. INITIAL TCT USER AREA @BM19372 DFH91899
FIDTCEIB EQU X'SA' •.• INITIAL EXEC COMM AREA @BM10372 DFH0I900
*** DFH0I9I0
* TABLE BUILDER SERVICES FUNCTION IDENTIFIERS DFH01920

@LAA DFH0I930
@LAA DFH9I940

FIDBSDOP EQU X'S9' TBS OWE IS 'OPEN'
FIDBSDCL EQU X'8I' TBS OWE IS 'CLOSED'
*** DFH0I950
* GENERAL PURPOSE SUBTASK IDENTIFIERS DFH0I960
FIDSKDF EQU X'S9' ... SK - DEFAULT @L6A DFH0I979
*** DFH9I989
* * MOD U LEI DEN T I FIE R S * * DFH9I999
*** DFH92999
* @BDSA9IJ DFH929I9
* (MAY BE X'9I '-->X'FF'.) DFH92929
* DFH92838
MODIDKC EQU X'93' ••• TASK CONTROL @ DFH92840
~10DIDPC EQU X '94' ..• PROGRAM CONTROL @ DFH028S0
MODIDSC EQU X'05' •.• STORAGE CONTROL @ DFH02860
MODIDDC EQU X'S7' ..• DUMP CONTROL @ DFH02078
MODIDIC EQU X'9S' ... INTERVAL CONTROL @ DFH02980
MODIDTC EQU X'19' ..• TERMINAL CONTROL @BDS92IJ DFH02890
MODIDFC EQU X'II' ..• FILE CONTROL @ DFH92I80
MODIDTD EQU X'12' ..• TRANSIENT DATA @ DFH921I9
MODIDTS EQU X'13' ••. TEMPORARY STORAGE @ DFH92I29
MODIDIRC EQU X'37' ... IRC INTERFACE @E2I1Q @MIA DFH92I39
MODIDDL EQU X'39' ••• DL/I INTERFACE @ DFH92I40

MODIDBN
MODIDJC
MODIDDB
~10DIDVC

MODIDPS

EQU
EQU
EQU
EQU
EQU

X'49'
X'45'
X'46'
X'47'
X'S3'

DFH92IS9
DFH92169
DFH92I79
DFH02180

••• BASIC MAPPING @ DFH02I90
••• JOURNAL CONTROL @ DFH92299
.•. DYNAMIC BACKOUT PROGRAM @BD96B30 DFH922I9
•.. VOLUME CNTROL PROGRAM @E211Q @L2C DFH92229
••• SPECIAL FEATURES FDFH02239

@LSA DFH02240

Figure 14 (Part 4 of 5). Journal function and module identifications

Chapter 3.1. Use of specialized Journal functions 169

MODIDKPP EQU
MODIDBI EQU
MODIDAKP EQU
MODIDSPP EQU
MODIDEIP EQU
MODIDTMP EQU
MODIDSKP EQU
MODIDRCP EQU
MODIDTBS EQU
MODIDTOR EQU
MODIDUSR EQU
*

X'541
X'55 1

X'5B'
X'59 1

X'5A'
X'5B'
X'5C '
X'CE'
X'E3 1

X'EF'
X'FF'

.•• KEYPOINT PROGRAM @ DFH82258
••• BUILT-IN FUNCTIONS @ DFH82268
••• ACTIVITY KEYPOINT PROG @BM13588 DFH82278
•.• SYNC POINT PROGRAM @ DFH822B8
.•. EXEC INTERFACE PROGRAM @BI81182 DFH82298
••• TABLE MANAGER @EU71T @L3C DFH82388
••• SUBTASK MANAGER @L6A DFH82310
..• RECOVERY CONTROL PROGRAM @L9A DFH82320
•.. TABLE BUILDER SERVICES. @LAA DFH82338
.•• TERMINAL OBJECT RESOLUTION @LBA DFH82348
RESERVED FOR USER SYNC @BD5821J DFH82358
POINT SUPPORT DFH82368

*** DFH82378
DFH823S8
DFH82398

Figure 14 (Part 5 of 5). Journal function and module identifications

After the common fields (shown on page 165) journal records may be in one of
two formats, as follows:

Journal label records
This format applies only to the first record of every block. These are journal
management's label records, as follows:

Field Name
in Field
DFHJCRDS Size in
DSECT Bytes

JCLRJFIO 1

JCLRBLKN 3

JCLRVCO 4

JCLRVSN 2

JCLRLBW 4

JCLRTBAL 2

JCLRTIME 4

JCLRRST 4

JCLRDATE 4

170 CICS/MVS 2.1.2 Customlzatlon Guide

Format

Binary

Packed decimal

Packed decimal

Packed decimal

Binary (disk)

Binary (disk)

Packed decimal

Packed decimal

Packed decimal

Contents

Journal 10 (1-99)

Block number (1-n) in
this data set

Volume creation date
(OOyyddd+)

Volume sequence
number within run
(nnn +) (only 1 or 2
for disk journals)

Relative TTRO of
previous block

Track-balance from
previous block (disk
Journals)

Time block written
(hhmmsss+)

Run start time
(hhmmsss+)

Date block written
(OOyyddd+)

Other journal records
All other journal records, which are created in response to external requests
(DFHJC macro instructions), are continued with from one to three variable-length
segments, in this order following the system header:

• System prefix
• User prefix (if any)
• Journaled data.

System Syst~ser Journaled
~_h_e_a_de_r ____ ~ ___ p_r_e~_~_r_ef_i_X ____ ~d_a_ta _______ ~

Figure 15. CICS journal record format

System prefix: Every journal record includes a system prefix that is variable in
length. The system prefix identifies the origin of the record and contains at least
the following data:

~--
Field Name
in Field
DFHJCRDS Size In
DSECT Bytes

JCSPBA 0

JCSPLL 2

JCSPFS 3

JCSPTASK 3

JCSPTIME 4

JCSPTRAN 4

JCSPTERM 4

JCSPREA

Format

Halfword binary

Binary

Packed decimal

Packed decimal

Characters

Characters

EQU •

Contents

Label for system
prefix begin address

Length of system
prefix

Flags (see note at
end of table)

Task number as in
TCAKCTTA

Ti me of request
(hhmmsss+)

Transaction
identification

Terminal
Identifl.catlon (or
binary zeros)

Label for end of
system prefix
common root

~--~

Notes on JCSPFS: The first two bytes are reserved for future expansion. The
third byte Is field JCSPF1, containing flags that have the meanings given below.
Each EQUATE field shown can be used with JCSPF1 to test the corresponding
flag.

Chapter 3.1. Use of specialized Journal functions 171

JCSPUP EQU X'01' User prefix present in record

JCSPSOTK EQU X'02' Physical start-of-task

JCSPLSTK EQU X'04' Logical start-of-task

JCSPRRIF· EQU X'08' DFHRUP record in-flight flag

JCSPMIDT EQU X'10' Output message in doubt

System prefix additional data: For some CICS journal requests, additional data is
included in the system prefix to further identify the originator of the request.
This additional data follows the common fields and is usually variable in length;
hence the need for the length-field JCSPLL at the start of the system prefix. For
journal records created by the CICS file control program's automatic journaling
or automatic logging features for file data accesses, the additional data in the
system prefix is:

Field Name
in Field
DFHJCRDS Size In
DSECT Bytes Format Contents

JCSPFCFI 8 Character File identification

JCSPFCRB 4 Character File control base
RBA (ESDS via path
only)

JCSPFCRI 1 to 255 Record identification

For records journaled to reflect the current data set allocation
(JCRSTRID = X I AF I), the system prefix contains the file identification as above,
but no record identification. The data following the system prefix is formatted as
follows:

JCSPFCOL OS
JCSPFCON OS

x
ec

1-byte OSNAME length
1- to 44-byte OSNAME

Note that, in the case of a file name corresponding to a path, the data set name
is that of the base cluster.

For journal records created by the CICS terminal control program's automatic
journaling or automatic logging features, the additional data in the system prefix
is:

Name Bytes

JCSPTCVS 4

JCSPTCL

172 CICS/MVS 2.1.2 Customlzatlon Guide

Format

2 halfwords

EQU •

Contents

VTAM's sequence
numbers (2 bytes
inbound followed by
2 bytes outbound)

Label for end of
terminal control's
prefix

For journal records created by the syncpoint program during intercommunication
syncpoint processing, the additional data in the system prefix is:

Name Bytes Format Contents

ORG JCASPREA

JCAISSQI 2 1 halfword Sequence number of
last inbound
syncpoint request

JCAISSQO 2 1 halfword Sequence number of
last outbound
syncpoint request

JCAISFL 1 byte Flag

JCAINOT EQU X'80' "In-doubt"

JCASSPR EQU X'40' Sync point request
sent

JCAISAB EQU X'20' Successful abort

JCANOTB EQU X'10' No OTB if "in-doubt"

JCAIFAIL EQU X'08' Session failed

JCAISOP OS CL3 Operator
identification

JCAISTM OS CL4 Intersystem terminal
identification

JCAISSPL EQU *-JCASPBA Intersystem
communication
system prefix length

User-prefix: The user prefix is optional, and is placed in a journal output record
next to the system prefix, in response to the PFXADDR and PFXLGTH keywords
of the journal control output request. As with the system prefix, the user prefix
always begins with a halfword binary length field; the data indicated by the
PFXADDR keyword follows the halfword. For journal records that include a user
prefix, the flag byte JCSPF1 of the system prefix has the indicator bit JCSPUP set
to one.

Journaled data: The final segment of a journal record is the data, as specified by
keywords JCDADDR and JCDLGTH of the journal control output request. The
length of the data portion of a journal record can be computed l?y subtracting
from the length of the journal record (JCRLL) the length of the record prefix (10
bytes) and the length of the system prefix (JCSPLL) and the length of the user
prefix (in the field, if any, defined by yourself).

Chapter 3.1. Use of specialized Journal functions 173

Journal records for DL/I
For records written to the GIGS journal on behalf of DL/I, the records will contain
the following data:

Field Name
In Field
OFHJCROS Size In
OSECT Bytes Format Contents

JCRLL 2 Halfword binary Length of record

JCRBB 2 Binary zeros not used

JCRDLIRC V Data Variable length of
DUI record

Reading journal data sets
GIGS can read journals online and in its ofnine utilities.

This section describes each of these methods.

Note: When disk journal data sets are opened at system initialization, the
pointers are positioned so that the output will continue immediately after
the last record written to the journal. When reading the journals, you
must be aware that data may be present for more than one GIGS
execution. If this is not required, the journal data sets must be formatted
before being used for output. Asan alternative, with the data set offline,
you can force an EOF into the block number 1 position. However, for
system log and DLII, or if you are using DFHJ01X, this may not be true.
For more information about these combinations, see the CICSIMVS
Recovery and Restart Guide.

Reading journal data sets during CICS execution
Journals are designed to be heavily used, shared output files, and are normally
opened for output at system initialization.

Provision is made for reading journals online; the data can be read either
forward or backward. To read a journal, a task must first close the journal, at
which time that task Is given exclusive control of the journal, which means that
access by other tasks will not be permitted. Exclusive control is released when
the same task reopens the journal for output. If the task that owns the journal
requests a write, control will be returned with an invalid-request condition. If
any other task requests a write to the journal, that task will be put in a wait state
until the journal is available for output. Other tasks will not be allowed to read
the journal.

It is your responsibility to release exclusive control of a journal by opening it for
output. To ensure that this is done in case of abnormal termination of the
controlling task, you should establish an abend exit routine for the task using the
DFHPG TYPE =SETXIT macro instruction or a HANDLE ABEND command. The
exit routine should restore the journal to output status.

174 CICS/MVS 2.1.2 Customizatlon Guide

Before Initiating a task that is expected to retain exclusive control of a journal for
more than a few seconds, you should plan to disable any other transactions that
might issue requests to that journal. Transactions can be disabled and enabled
using the EXEC CICS SET TRANSACTION command (see page 459) or CICS
master terminal facilities (see the CICSIMVS CICS-Supplied Transactions
manual).

Because the format of journal tapes is compatible with that of extrapartition data
sets, it is possible to read journal volumes using the transient data facility,
provided that the necessary entries have been added to the destination control
table.

Reading a Journal backward
Certain functions may require access to a few journal records that were written
in the preceding minutes of operation. The purpose of this action is usually
corrective, such as backing out updates to the database by a task that
subsequently terminated abnormally. The records to be retrieved would
probably be the before-image of database records that were written to the
system journal by the automatic journal feature. Since this type of operation is
likely to retain exclusive control of a journal for only a few seconds, it is unlikely
that you would want to disable other transactions that issue requests to that
journal. The sequence of events for this application might be as follows:

1. A DFHJC TYPE = GET JCA macro instruction is issued to acquire a journal
control area for the input records.

2. A DFHJC TYPE = CLOSE,JFILEID = SYSTEM macro instruction is issued to
close the journal and give exclusive control to the requesting task. If the
journal is on tape, LEAVE = YES is also specified so that the file will remain
correctly positioned after the last output block.

3. A DFHJC TYPE = (OPEN,INPUT),VOLUME = CURRENT,JFILEID = SYSTEM
macro instruction is used to open the journal for input, using the current tape
volume or disk data set. This also implies that the journal is to be read
backward beginning with the last output block.

4. DFHJC TYPE = GETB,JFILEID = SYSTEM,EOFADDR = address macro
instructions are issued to read the journal records in reverse chronological
order. Note that an attempt by this task to update the database at this time
could initiate a request for automatic journaling that, in turn, would return an
invalid request condition because the system journal is closed for output.
Instead, journal records to be used for later updating can be retained on the
transaction's storage chain. Other journal records are discarded by issuing
a DFHSC TYPE = FREEMAIN macro instruction.

When the beginning of a tape reel or a disk data set is encountered while
reading backward, an end-of-file condition is indicated. Your end-of-file
routine should switch to the preceding volume or data set by issuing the
following macro instructions:

DFHJC TYPE=CLOSE,JFILEID=SYSTEM
DFHJC TYPE~(OPEN,INPU!),VOLUME=PREVIOUS,JFILEID=SYSTEM

The positioning is again after the last output block on the volume or data set.
If there is no previous volume, a VOLERR condition code Is returned.

Chapter 3.1. Use of specialized journal functions 175

Note: For disk journals, the one or two data sets specified are periodically
reused .. An attempt to read backward so far that logical wraparound occurs
will usually result in an 1/0 error. The unlikely case that an 1/0 error does
not occur can be detected by a sequence break in the time-and-date stamp
in the journal record prefix.

5. A DFHJC TYPE = CLOSE,JFILEID = SYSTEM macro instruction is issued to
close the system journal for input after all desired records have been read.

6. A DFHJC TYPE = (OPEN,OUTPUT), VOLUME = CURRENT,JFILEID = SYSTEM
macro instruction is issued to release exclusive control of the system journal
and make it available for output. If the journal is on disk, the data set is
positioned after the last record written. If it is on tape, the
VOLUME = CURRENT is ignored and output resumes with a new reel.

The task can now process the records retained in step 4.

Reading a Journal forward
Some application programs need to read large numbers of journal records.
These application programs would typically take more than a few seconds to
execute, and would therefore only be practical if the journal is on tape and is not
being accessed by any other task. The tape volumes being read would probably
have been written and closed previously.

The appropriate means for fulfilling such a need differ somewhat, depending on
how the journal was defined. In any case, the system programmer should make
sure that, when the journal is being written, journal control NOTEs are taken at
suitable times and kept for use in reading the journal. The format of a NOTE
depends on the labeling of the journal, but the offsets of significant fields are
always the same.

Where unlabeled tapes are used, it may be convenient to define a separate
journal entry for use by the application program that reads them. Where the
journal specifies standard labeled tapes, CICS will control the selection of tape
volumes to be mounted, in accordance with its stored volume descriptors .. Thus,
the introduction of such an "alias" journal control table entry will not work, and it
will not be possible to read and write simultaneously on one journal, even
though the volumes are known to be distinct.

For example, assume that an application program is to read previously written
reels of a journal that is defined as JFILEID = 13. The sequence of events
considered here for this application program might be as follows:

1. A DFHJC TYPE = GET JCA macro instruction is issued to acquire a journal
control area for the input records.

2. A DFHJC TYPE = CLOSE,LEAVE = NO,JFILEID = 13 macro instruction is issued
to close the journal; the task is also given exclusive control of the journal.
LEAVE = NO causes the current output reel to be rewound and unloaded.
Note that this journal, as all other journals, is opened for output at system
Initialization, unless OPEN = DEFERRED has been specified in the journal
control table.

176 CICS/MVS 2.1.2 Customization Guide

3. The application fills in the NOTE field in the JCA. A DFHJC
TYPE = (OPEN,INPUT),VOLUME = NEXT,SIVOL =YES,JFILEID = 13 macro
instruction is issued. VOLUME = NEXT causes the volume to be positioned to
read forward, beginning with the first block. SIVOL =YES uses the NOTE
fields to decide which volume to open.

DFHJC TYPE = POINT can be used to position the current volume to the
record previously NOTEd.

4. DFHJC TYPE = GET,EOFADDR = addr,JFILEID = 13 macro instructions are
issued to read the journal forward. Each request retrieves the next logical
record. If an end-of-file is encountered and more records are to be read by
the task, the following macro instructions are issued in the end-of-file
routine:

DFHJC TYPE=CLOSE,JFILEID=13
DFHJC TYPE=(OPEN,INPUT),VOLUME=NEXT,JFILEID=13

5. When all desired records have been read, a DFHJC
TYPE = CLOSE,JFILEID = 13 macro instruction is issued to close the journal
for input.

6. A DFHJC TYPE=(OPEN,OUTPUT),VOLUME=CURRENT,JFILEID=13 macro
instruction is issued to release exclusive control of the journal and make it
available for processing by other tasks, or for the system to close it at
system termination. This action will open a new tape volume and will write a
label on it.

All journals entered in the journal control table are normally opened for output
during system initialization. You can defer the opening of selected journals by
specifying OPEN = DEFERRED in the journal control table. This can be used to
allow a user program to open a journal for input to read the records written
during a previous execution of CICS. You may want to execute this program
during postinitialization processing by entering it in the appropriate program list
table (PLT). When the deferred open option is used, the program that first opens
the journal must issue a special form of the DFHJC macro in place of the normal
DFHJC TYPE = GET JCA. It is:

DFHJC TYPE=(GETJCA,OPEN),VOLUME=FIRST,
JFILEID=nn,NORESP=symbol

This macro gives the requesting task exclusive control of the journal, acquires a
journal control area, and collects the current data set pointer information if a
disk file is referenced. You can then issue a DFHJC TYPE = OPEN macro
instruction for input or output, current or previous volume according to the
conventions described in "Opening a journal volume or data set - DFHJC
TYPE = OPEN" on page 158.

Reading journal data sets offline
The information in this section is presented in terms of:

• How to write an offline program to read the journal data sets
• Using the offline program.

Chapter 3.1. Use of specialized journal functions 177

Writing the offline program
Journal data sets can be read by user-written offline programs. Although written
as operating-system undefined (U-format) records by CICS journal management,
the blocks are compatible with records of the variable length blocked (VB)
format. Each block begins with a 4-byte block-length field ('LLbb'), and each
logical record within a block begins with a 4-byte record-length field ('LLbb').
The data set label information will indicate U-format, but this can be overridden
to VB (by a DD statement), so that data management will deblock records, and
will provide them to the offline program.

When using standard labeled tapes, a user standard header and trailer record
will be written at the start and end respectively of each volume. (These will be
bypassed, depending upon the JCL options, when the journal is opened or
closed.) However, you can read these labels by using the standard exit routines
on open or close.

The layout of these aD-byte records is shown below and is available in the
DSECT DFHTULOS.

Name

TULHDR

TULSERS

TULPART

TULDATE

TULTIME

TULCND

TUL.SUCKN

TULCHAIN

Size

4

8

8

5

7

1

6

Reserved 34

TULIDENT 6

Format

Character

Character

Zoned decimal

Zoned decimal

Zoned decimal

Character

Character

Character

Character

Contents
----------------------~

Identifier of label (UHL1 or UTL1)

Name of series

Part number within series

Date (YVDDD)

Time (HHMMSSS) when label was
written

Condition of volume

Validity of successor

Blank or next/previous volume
identifier

Identifier of this volume

In the header label, TULCHAIN always correctly names the previous volume,
except that when TULPART is "1", there is no previous volume.

If, in the trailer label, TULSUCKN is "T", the successor volume has been
selected, but not yet opened. So a failure after the label was written could cause
its TULCHAIN value to be wrong. If TULSUCKN is "0", the next volume has been
used. That is, the next volume is that named in TULCHAIN.

You should be aware that unless a journal volume was successfully closed when
last written during CICS execution, or had a tapemark written by the DFHTEOF
program, there will be no end-of-file indicator on the volume, and data may run

178 CICS/MVS 2.1.2 Customlzatlon Guide

into old records and wrongly formatted blocks. This is shown in the following
table:

Close of Journal

Normal

Abnormal

Abnormal and repaired by TEOF

State

UTL 1 present

No UTL1, possibly bad records

No UTL1

Offline user-written programs can map journal records by issuing the DFHJCR
CICSYST = YES statement, which results in the DFHJCRDS DSECT being included
in the program from the CICS assembler-language macro library. The DSECT
thus generated is identical to that obtained for CICS programs by the COPY
DFHJCRDS statement, except that the fields are not preceded by a CICS storage
accounting area. The DSECT is intended to map journal records directly in the
block, rather than in a CICS storage area (see "Reading journal data sets during
CICS execution" on page 174).

Using the offline program
The offline program can be executed against a DISK or TAPE journal device.
The following points should be considered when reading journals while CICS is
still active.

• For a DISK journal, two data sets should be allocated. The appropriate JCT
option (JOUROPT = PAUSE) and JCL statement (DISP = SHR) must be
specified. The JCL for the offline batch program must also be written. You
are responsible for ensuring that journal volumes are read in the required
sequence, by concatenating DO statements in the correct order.

• For a TAPE journal, the journal volume can be removed and read whenever
you want. Another tape volume can be mounted to record data while the
first volume is being processed. The advantages of a tape journal over a
journal on a disk device are that the job to read the tape journal can run for
a relatively long time and is usually easier to process clerically because
there is no need to alternate between the information on the two separate
data sets.

Printing Journal flies
You can use the CICS provided utility, DFHJUP, to print journal files.

User-replaceable modules
The user replaceable DFHXJCO and DFHXJCC modules are called when a disk
journal is opened for output and when It is subsequently closed after output.
DFHXJCO is called on opening, and DFHXJCC on closing. You can write your
own modules to replace the CICS-provided ones. You can then carry out
whatever processing you want to do at journal open or close time. DFHXJCO
and DFJXJCC can be invoked during initialization before CICS resources are
available and before high-level language initialization is complete. For these
reasons, they must be Assembler macro-level programs and should only
perform simple functions.

Chapter 3.1. Use of specialized journal functions 179

Some possible uses are:

• Control procedures to ensure that journal data sets have been archived
before they are made available for reuse.

• Automatic submission of journal archiving jobs through an internal reader,
rather than using manual procedures. This is particularly valuable in an XRF
environment, where the need to minimize operator involvement in the
recovery procedure may be an important factor.

• Dynamic allocation of journal data sets to avoid the need to archive them
immediately before they may be reused.

DFHXJCO is invoked for OPEN,OUTPUT calls. It receives control just before the
open request is passed to the journal subtask.

DFHXJCC is only invoked if the journal is in output mode. It receives control just
after the close request has been completed by the subtask, whether the request
was successful or not. If DBRC is operating, the module receives control before
the call to DBRC that indicates the closing of the log data set.

The versions of DFHXJCO and DFHXJCC that are supplied merely return to their
callers. If you modify the modules so that they can carry out your own
processing, note the following points:

• Do not use interval control requests within DFHXJCO or DFHXJCC, because
this may cause any tasks that require journaling services to wait.

• You must not alter registers 12 and 13, which point to the TCA and CSA on
entry.

• You cannot influence the journal flow with return codes from these modules.

• Apart from registers 12 and 13, no parameters are passed to these modules.

• Because these modules may be invoked during initialization, the same
considerations regarding CICS resources apply as for system initialization
overlays. For the same reason,you must code in Assembler, because
high-level languages may not have been initialized before these modules are
invoked.

You may need to consider using the fields CSAXST and CSASSI2 to verify
initialization processing.

• The module can discover the journal which is being processed by looking in
the JCA. Not all fields in the JCA are guaranteed from release to release, so
the module should only check those fields that are needed for the
identification of the journal. This includes field JCAJCTTE which provides the
JCTTE address. Using this address, confirm that JCAJFID matches the
journal number in the JCTTE.

• During emergency restart, when data set DFHJ01X is to be used, the most
recently used data set of DFHJ01A/DFHJ018 is opened and closed to ensure
that it has an end of file marker. This is achieved by using OPEN
VOL = FIRST, followed by a close, before the OPEN VOL = EMEREXT that
opens DFHJ01X for output. These two opens and the close call DFHXJCC
and DFHXJCO in the normal way. You should be aware that the OPEN is

180 CICS/MVS 2.1.2 Customlzatlon Guide

done only to allow the CLOSE. Your code should take account of this special
case.

• During restart, if the journal is within 3 tracks of end-of-volume, CICS does
not open the journal, does not call DFHXJCC, but does call DFHXJCO. In this
case, archiving functions in DFHXJCO are carried out, but functions in
DFHXJCC are omitted.

Chapter 3.1. Use of specialized Journal functions 181

Part 4. Devices and telecommunication access methods

This part describes your role in providing support for terminals and access
methods, such as the use of VTAM with logical units, and the TCAM interface
(both SNA and non-SNA) to CICS/MVS 2.1.2. It also describes how to initial
program load (IPL) the System/7.

"Chapter 4.1. ACF/VTAM logical units with CICS" on page 185 describes the
functions you can use to implement and maintain CICS features for logical units.

"Chapter 4.2. The CICS/TCAM interface" on page 205 gives information on
implementing the TCAM interface to CICS, allowing CICS to run as an application
program under TCAM.

"Chapter 4.3. Writing a transaction to IPL the IBM System/7" on page 229
provides information on how to write a transaction to IPL the System/7 on
startlstop and BSC lines.

"Chapter 4.4. IBM 3735 Programmable Buffered Terminal" on page 231
contains information on the system generation and table preparation
specifications required to generate support for the 3735 Programmable Buffered
Terminal.

"Chapter 4.5. IBM 3740 Data Entry System" on page 233 gives similar
information on the 3740 data entry system.

"Chapter 4.6. IBM 3600 Finance Communication System in a BSC network" on
page 235 gives similar information on 3600 BSC devices.

"Chapter 4.7. Modifying the terminal control table" on page 237 provides
reference information on the macro and operands of the terminal control macro
instruction interface (DFHTC CTYPE macros).

"Chapter 4.8. The user program for automatic installation of terminals" on
page 249 describes how to control and monitor terminals logging on to CICS.

"Chapter 4.9. Exits for "terminal-not-known" condition" on page 277 describes
two exits that enable a solution to the terminal-not-known condition, which can
occur when intercommunicating regions use both SHIPPABLE terminals and
automatic transaction initiation (ATI).

© Copyright IBM Corp. 1977, 1990 183

Chapter 4.1. ACF/VTAM logical units with CICS

In a systems network architecture (SNA) teleprocessing network, the remote
work station is not always simply a terminal. More often, it is one of several
terminals attached to a terminal controller. Furthermore, the terminal controller
may contain one or more user-written programs. In SNA terminology, however,
the remote entity with which the CICS application program communicates is
always a logical unit. This chapter provides a general description of functions
available for implementing and maintaining CICS features for logical units.

See the appropriate CICS subsystem guide for a full discussion of the logical unit
being used. These guides are:

• CICS/OS/VS IBM 3270 Data Stream Device Guide
• CICS/OS/VS IBM 47001360013630 Guide
• CICS/OS/VS IBM 365013680 Guide
• CICS/OS/VS IBM 37671377016670 Guide
• CICS/OS/VS IBM 379013730/8100 Guide.

Users of the extended recovery facility should read the CICS/MVS XRF Guide for
a description of the special considerations that apply to ACF/VTAM logical unit
support in an XRF environment.

Overview of system programmer requirements
The system programmer responsible for logical units in a CICS environment has
four main divisions of responsibility:

• Generating an advanced communications function network control
program/virtual storage (ACF/NCPIVS) to control the transfer of data
between the host processor and the nodes of the logical unit teleprocessing
network. The ACF/NCP/VS resides in a communications controller. Because
CICS does not interface directly with the ACF/NCP/VS, this chapter contains
no information concerning ACF/NCP/VS generation. See the NCP and SSP
Generation and Load Guide, SC33-3348.

• Defining an ACF/VTAM system that supports telecommunications within the
CICS subsystems. A brief discussion of the ACF/VTAM definition procedure
related to system programming functions is presented in this chapter. A
general description of the ACF/VTAM definition procedure is given in
Network Program Products Planning, SC23-0110.

• Defining a CICS system that supports the subsystem hardware configuration
and desired programming configuration. This chapter discusses this
requirement, but it describes only the modifications and additions to CICS
system programming functions that relate to CICS subsystem support.

• Correctly configuring the Synchronous Data Link Control (SDLC) terminal
controller and writing the necessary programs to control the terminals that
are attached to it, and that are to communicate with CICS.

© Copyright IBM Corp. 1977, 1990 185

Basic concepts

When planning for CICS support of logical units under ACF/VTAM, you have to
bear in mind the requirements of:

• ACF/VTAM support for the logical units.

• Connection, input, and output services.

• Basic mapping support (BMS) services for the appropriate devices.

• The node abnormal condition program (DFHZNAC), the function of which is to
handle abnormal situations involving a logical unit and to allow you to
generate the node error program (NEP) to perform error handling.

• Message option groups (to be referenced by the program control table (PCT)
entry for a task) that permit certain processing and logging characteristics to
be associated with particular transactions.

• A terminal control macro interface that provides additional system
programming capabilities.

• The option to code user exit-routines to be activated during processing of a
request by the terminal control management module (DFHZCP).

• Collecting statistics that can be used for system tuning.

• Message switching facilities for certain logical units.

The explanations of these facilities and of related concepts involving CICS
system programming responsibilities in an ACF/VTAM network are discussed
below.

"Chapter 4.2. The CICS/TCAM interface" on page 205 provides information on
system programming responsibilities in a TCAM SNA network. You can also
consult "Chapter 4.8. The user program for automatic installation of terminals"
on page 249. For details of the commands used for automatic installation of
terminals, see the CICSIMVS Resource Definition (Online) manual. For macro
information, see the CICSIMVS Resource Definition (Macro) manual.

You should understand several concepts and facilities that are basic to your
involvement in generating and maintaining CICS support of logical units. They
are:

• An additional terminal control program module (DFHZCP) to support
ACF/VTAM services

• ACF/VTAM indicators (SNA commands) and responses

• Communication with logical units.

186 CICS/MVS 2.1.2 Customization Guide

Terminal control program dual module generation
ACF/VTAM is the required access method interface between CICS and logical
units. The non-ACF/VTAM terminal control program (DFHTCP) does not provide
the required support for ACF/VTAM capabilities; ACF/VTAM support is available
only through the CICS ACF/VTAM terminal control programs.

DFHTCP and the ZCP group of programs are two separate collections of
modules, generated when DFHSG PROGRAM =TCP is specified. They are
always assembled separately and loaded separately. The ZCP group of
programs should always be generated, even for a non-ACF/VTAM system,
because it contains some internal routines that are necessary for the successful
operation of DFHTCP. ACF/VTAM support within the ZCP group is generated by
specifying ACCMETH=VTAM in the DFHSG PROGRAM=TCP macro instruction;
the VTAMDEV operand of this macro instruction controls any device-dependent
code that must be generated within the ZCP group for the ACF/VTAM-supported
logical units under CICS. The ACCMETH and VTAMDEV operands must be
specified to provide support for CICS logical units under ACF/VTAM.

The TCP and ZCP operands of the DFHSIT TYPE = CSECT macro instruction
specify the suffixes of DFHTCP and the ZCP group, respectively, to be loaded by
the system initialization program (DFHSIP). If TCP = NO is specified, no DFHTCP
load is performed. In contrast, there is no ZCP = NO option to suppress the ZCP
group. This is because, as explained earlier, the ZCP group is always generated
with DFHTCP, whether or not ACF/VTAM support is subsequently generated.

ACF/VTAM indicators
The ACF/VTAM Indicators that are available for your use are described under
DFHTC CTYPE =COMMAND in "Chapter 4.7. Modifying the terminal control
table" on page 237.

A CICS interface with terminal control allows you to write routines that request
the sending of SNA data flow control commands from CICS to the application
program of certain logical units. For example, a function provided by an
ACF/VTAM indicator may be needed in the installation's error recovery routine
(DFHZNEP). In the case of certain logical units, you should use the indicator
interface (DFHTC CTYPE = COMMAND macro) to request an ACF/VTAM function,
rather than directly altering bits in the TCTTE. Any direct changing of bits leads
to unpredictable results if any future changes are made in the TeTTE internal
structure.

ACF/VTAM indicators are always sent by CICS with definite
function-management-end (FME/DR1) response requested, whether they are sent
on behalf of your request or a CICS management module request. CICS
DFHZCP calls the appropriate routine and returns control to the requester when
the response is received.

ACF/VTAM indicators are also used by CICS management modules. You should
thoroughly understand each indicator before using it. You should also
understand how and when they are used by CICS, because the misuse of any of
them can lead to unpredictable results.

Chapter 4.1. ACFNTAM logical units with CICS 187

Connection services
Before any communication between CICS and the logical unit can occur, CICS
must first be connected to ACF/VTAM. The CICS system initialization program
(DFHSIP), which comes in a pregenerated version, or which you can generate
using the DFHSG PROGRAM =CSO macro instruction, issues the appropriate
ACF/VTAM macro instruction to open the CICS access method control block
(ACB) to make the connection. This identifies CICS to ACF/VTAM as one of its
application programs. Only then can ACF/VTAM carry out a request to connect
a logical unit to CICS and thus allow communication between these two nodes.
A logical unit that is connected to CICS is said to be owned by CICS for the
duration of the connection.

The CICS APPLID operand provides the name that DFHSIP uses when opening
(and closing) its ACB to define itself to ACF/VTAM during CICS system
initialization, or by using the master terminal dynamic open facility for the ACB.
You specify the APPLID operand in the DFHSIT macro instruction. Only one
APPLID chosen in this manner is used by CICS per initialization. Any name}
coded with the APPLID operand must have been defined during ACF/VTAM
definition using ACF/VTAM's APPL statement.

In addition. the dynamic close of the ACF/VTAM ACB facility allows CICS to
continue, even though ACF/VTAM may not be operational at the time.

To build the access·method-dependent portions of the TCT for ACF/VTAM
support, you must specify ACCMETH=VTAM with the DFHTCT TYPE=INITIAL
macro instruction. Resource definition online (CEDA) is only used for VTAM
terminals, so there is no need for this option in CEDA. If ACCMETH is omitted
from your macro, the default value is NONVTAM. The former default value of
BTAM is, however, still valid. Specifying either NONVTAM or BTAM permits
existing TCTs to be assembled without change. You may turn off run-time use of
VTAM by coding VT AM = NO in the SIT.

You control the connection services available for a particular logical unit using
the CEOA DEFINE TERMINAl. or the CEDA DEFINE TYPETERM commands or
using the DFHTCT TYPE =TERMINAL macro instruction. ACCMETH =VTAM must
be specified to create the necessary ACF/VTAM TCTTE for each logical unit. For
each TCTTE, CICS automatically creates an accompanying node initialization
block (NIB) by issuing the ACF/VTAM NIB macro instruction. The NIB is used to
convey several operating parameters that apply to the connection being
established.

The NIBs are used to process OPNDST requests, and are not involved during
normal logical unit 1/0 processing. The ACF/VTAM OPNDST request causes
ACF/VTAM to establish the connection between CICS and the logical unit. This
connection is called an SNA session, and is completed when the logical unit
sends a positive response to the SNA BIND command sent by ACF/VTAM as the
result of the OPNDST request.

188 CICS/MVS 2.1.2 Customization Guide

Logon

This works in the following way:

1. The BIND sets out the protocol used between CICS and the logical unit.

2. The BIND offers this protocol, in the form of a set of parameters, to CICS.

3. CICS can accept or alter these parameters.

4. Then the logical unit can accept or reject them in the form in which CICS left
them.

5. If the parameters are accepted by the logical unit, the connection is
complete.

In some cases, the logical unit also has the chance to alter the parameters.
Then CICS has to approve the parameters in a second pass. In this case, it is
more likely that the connection will not be made because both sides have to
approve the other's alterations.

The NETNAME operand of the CEDA DEFINE TERMINAL command or the DFHTCT
TYPE =TERMINAL macro instruction provides the symbolic name for the logical
unit by which it is known throughout the network. This is the name that CICS
specifies to identify the logical unit that is represented by this TCTTE in CICS.
The same symbolic name must also be defined to ACF/VTAM during ACF/VTAM
system definition using the logical unit macro instruction and to the ACF/NCP/VS
during ACF/NCP/VS generation. The NETNAME must be unique for each
terminal defined to CICS.

After CICS has been connected to ACF/VTAM, any logon requests for CICS are
passed to CICS (unless the MACRF = LOGON operand of the ACB macro
instruction was specified during ACF/VTAM definition, in which case ACF/VTAM
is not allowed to queue any logon requests for CICS). In general, the CICS logon
exit is scheduled by ACF/VTAM in response to a request initiated either by CICS,
or by a logical unit.

To specify that a simulated logon is to be performed for a particular logical unit,
you must specify the AUTOCONNECT option of the CEDA DEFINE TYPETERM
command or the CONNECT operand of the DFHTCT TYPE = TERMINAL macro
instruction. When CICS issues the ACF/VTAM SIMLOGON macro instruction in
response to an AUTOCONNECT or CONNECT specification, it also supplies the
address of the particular request parameter list (RPL) that contains the address
of the NIB whose NAME field identifies the logical unit for which the simulated
logon request is to be performed. This drives the logon exit logic in DFHZCP to
establish connection with the logical unit. If you do not specify AUTOCONNECT
or CONNECT, or if you code the INSERVICE(NO) option of the CEDA DEFINE
TERMINAL command or TRMSTAT = 'OUT OF SERVICE' then the logical unit is
not connected to CICS at system initialization, but awaits either a
master-terminal operator connection request, a logical unit logon initiated by the
ACF/VT AM network operator, or a terminal operator logon from a logical unit.

CICS logical unit support provides a RELREQ exit-routine so that any other
ACF/VTAM applications wishing to use a logical unit currently owned by CICS
can indicate their needs. When no more work is available for the requested

Chapter 4.1. ACFIVT AM logical units with CICS 189

Input services

logical unit, CICS checks whether it is permitted to release it. (The RELREQ a,nd
DISCREQ options of the CEOA DEFINE TYPETERM command or the RELREQ
operand of the DFHTCT TYPE =TERMINAL macro instruction defines whether or
not a logical unit can be released by CICS.) If it can be released, the eXisting
connection is broken.

Conversely, CICS can also request the use of a logical unit currently owned by
another ACF/VTAM application program. For example, a SIMLOGON is always
performed with the RELREQ and RPL options so that CICS can indicate its need
of the logical unit to any ACF/VTAM application program that currently owns it.

Input services handle both data from the logical units and asynchronous input
such as ACF/VTAM indicators. This section describes CICS data input in
general. More specific information on ACF/VTAM indicators was provided under
the heading "Basic concepts" on page 186.

CICS receives user data into the system at two different times. The first is when
data is entered to create a new user transaction. The other is in response to a
CICS application program request for data from a logical unit. To satisfy these
two different situations, CICS uses two distinct kinds of ACF/VTAM RECEIVE
macro instructions.

To obtain transaction-originating data, CICS puts all logical units that have no
tasks attached into the ACF/VTAM continue-any state. The ACF/VTAM RECEIVE
macro instructions with the OPTCD = ANY operand are then issued by CICS to
allow any data entered by the logical unit to be received. You control the
number of receive-any macro Instructions issued by specifying the number of
RPLs to be generated. The RAPOOL operand of the OFHSIT macro instruction is
used to specify the fixed number of RPLs that are generated in the TCT prefix.

CICS issues a receive-any macro instruction for each RPL not currently in use,
except when the short-on-storage condition is present. In this case, the
receive-any buffers are temporarily released and no receive-any requests are
issued.

The number of RPLs required is dependent on the expected activity of the
system, the average transaction lifetime, and the maximum-task value specified.
To aid you in choosing a size for the RPL pool, CICS keeps a count of the
maximum number of RPLs that were satisfied at anyone dispatch scan, plus
how many times this maximum was reached. (See "Statistics" on page 202.)

Associated with each receive-any RPL is an 110 area, the size of which is
specified by the RAMAX operand of the DFHSIT macro instruction. If you are
using LU6.2 communications, the minimum RAMAX value is 256. If the input
length exceeds the size of this I/O area, ACF/VTAM gives CICS only as much of
the data as fits into the CICS 110 area, and tells CICS how much was received in
total. CICS then handles the data in one of two ways:

• If chain assembly was not requested, CICS obtains, through its storage
control program, an area large enough to accommodate the data, and then

190 CICS/MVS 2.1.2 Customlzation Guide

Output services

receives the rest of the input data that was kept by ACF/VTAM, because all
of it did not fit into the CICS 110 area.

• If chain assembly was requested, and the total data length exceeds the
second operand of thE! 10AREALENITIOAL parameter, an exception response
is sent by the node abnormal condition program (DFHZNAC) to the terminal.

The first value in the 10AREALEN option of the CEDA DEFINE TYPETERM
command, or in the TIDAL. operand of the DFHTCT TYPE =TERMINAL macro
instruction, is provided so that you can specify the minimum size of a TIOA for a
particular TCTTE. If you are using LUB.2 communications, the minimum TIOA
size is 256. If IOAREALEN or TIOAL is not specified, there are no minimum size
requirements, and the input data is sent in a TIOA, suitably rounded up to equal
the length of the data, to the CICS application program. Therefore, if
IOAREALEN/TIOAL is greater than the length of the input data, the length
specified in IOAREALEN/TIOAL is passed to the application program regardless
of the actual length of the input data.

To obtain data in response to a read requested by a CICS application program,
DFHZCP issues an ACF/VTAM RECEIVE macro instruction with the
OPTCD = SPEC operand to allow data from a specific logical unit to be received.
The data is received directly into the user TIOA; no separate receive-specific I/O
area is provided.

Each input message is called a chain. If its length exceeds the maximum output
buffer size for the terminal (RECEIVESIZE option of the CEDA DEFINE TYPETERM
command or the RUSIZE operand in DFHTCT TYPE = TERMINAL), the message
will be broken up into a series of links (or request units) that do not exceed this
buffer size. The ACF/VTAM RECEIVE macro obtains only one request unit at a
time. You can control whether a CICS application program input request is to be
satisfied by a single request unit or by the assembled chain of request units.
This control is provided by the BUILDCHAIN option of the CEDA DEFINE
TYPETERM command or the CHNASSY operand of the DFHTCT
TYPE =TERMINAL macro.

Output services handle both data sent to the logical units and asynchronous
output such as ACF/VTAM indicators and commands. This section describes
CICS support of data output in general. More specific information on ACF/VT AM
indicators was provided under the heading "Basic concepts" on page 186.

When generating support for the available output services, you have the
following main areas of responsibility:

• Determining the maximum data length that each logical unit can receive.
This value is specified by the SENDSIZE option of the CEDA DEFINE
TYPETERM command or the BUFFER operand of the DFHTCT
TYPE = TERMINAL macro instruction, except for 3270 logical units, which use
segmenting with 1:he BUFFER size set to zero. If a message longer than this
value is to be sent, it is broken into as many links (request units) as
necessary. Each link has a maximum size equal to the BUFFER value. The
first link may contain the SNA function management header (FMH), but the

Chapter 4.1. ACFIVT AM logical units with CICS 191

total length of this first link (Including the FMH) does not exceed the value of
BUFFER. The default value is zero, which specifies that the data should not
be chained, but should be sent just as it is presented to DFHZCP by the CICS
application program.

The value specified in the BUFFER operand must not exceed the logical-unit
buffer size minus the buffer prefix size, as specified to ACF/NCP/VS. For
information on specifying the buffer prefix size, see the IBM 3704 and 3705
Communications Controller Network Control Program Generation and Utilities
Guide and Reference Manual (for OSIVS and VSE ACFIVTAM) Users,
GC30-300B.

Specifying the response level to be used by CICS when transmitting user data.
You can specify either:

• Function management end (FME), also known as definite response type 1
(DR1), or:

• Reached recovery node (RRN), also known as definite response type 2 (DR2).

This is specified in the RESP operand of the DFHTCT TYPE = INITIAL macro
instruction, and applies to 3600 logical units. This level is used for both normal
and exception response requests. The default value is FME. All other logical
units use DR1 only, except LU6.1 and LU6.2 which use DR2 for synchronization
purposes.

Message recovery and emergency restart
There are two types of failure that require message recovery:

• Catastrophic failures
• Noncatastrophic failures.

A catastrophic failure is one in which either CICS abnormally terminates, or
some other failure (such as power loss or machine check) causes host
processing to be abnormally terminated.

A noncatastrophic failure is one in which a particular connection is interrupted
because of some malfunction in the network. Both CICS and the logical unit
remain operational, but cannot communicate with each other because of the
failure. In this case, the CICS node abnormal condition program (DFHZNAC) is
invoked to terminate the task.

The primary objective of the message recovery procedure is to see if a message
that was in-flight when a failure occurred was delivered to its destination.

Following a catastrophic system failure, any of the following CICS facilities and
techniques may be used for message recovery:

• The protected task and the deferred write, which govern the logging and
response activities during normal transaction processing

• The system log, which enables CICS to reconstruct the environment for any
connection (represented by a TCTTE) that had a terminal message in-flight at
the time of a failure

192 C'C~:i/MVS 2.1.2 Customlzatlon Guide

• The temporary storage message cache, which contains information related
to the failing task.

These facilities and techniques are discussed in the following paragraphs. See
the CICSIMVS Recovery and Restart Guide for further information about
recovery, restart, and emergency restart.

Catastrophic failures
During a catastrophic failure, CICS does not have an opportunity to record any
information concerning messages that are in-flight at the time of the failure.
Therefore, selected parts of the message traffic must be recorded on the CICS
system log during normal operation, so that message recovery can be performed
during emergency restart. They are:

• Outbound messages that precede a synchronization point or the detachment
of a task

• The initial input for a task

• Any input that follows a synchronization point.

Information concerning a message is recorded on the system log only for
messages associated with a task that is protected.

Before describing the recovery techniques employed by CICS, you s'hould
understand the concept of the protected task. This concept is relevant to your
decisions concerning the message option group that you must specify if you
want to achieve a controlled and predictable situation for the message traffic.
The message option group described below is a program control table (PCT)
function that allows you to specify the CICS support necessary for message
protection.

Protected tasks
If a system failure occurs and CICS emergency restart is necessary, message'
recovery is possible only if the task in-night at the time of the failure was
protected. CICS keeps a system log' of messages preceding a synchronization
point or task detach only for tasks that are declared as protected. During
recovery, output messages will not be retransmitted for certain logical units, if
those logical units do not support the set and test sequence number (STSN)
command. You can retransmit messages using information in the temporary
storage message cache (OFHM "termid").

The process of logging information for protection against a catastrophic system
failure imposes an additional overhead on tasks running under CICS. Therefore,
you are allowed to specify which transactions are protected and which are not.
Recovery of messages after a catastrophic failure requires CICS journaling and
the system log.

Nonprotected tasks should include:

• Tasks that do no more than inquire about a database

• Tasks that, when they reenter the system after a failure, are not adversely
affected by double processing, if it occurs.

Chapter 4.1. ACFIVTAM logical units with CICS 193

Double processing may OCClir when a task completes before the failure, but is
unable to issue a completion message to the logical unit. If a task performs only
an inquiry of some database record, reentering the request to recreate the reply
after a system failure does not lead to Invalid results. If, however, a task
performs some update to a database record, and the operator does not know
whether processing was complete at the time of failure, reentering the original
request may mean that the database record is update twice, thus leading to
erroneous results. This would not happen if the task were specified as
protected.

Message option groups
To control the message protection processing for a task executing on an
ACF/VTAM-supported TCTTE, you may generate message option groups, which
specify the manner in which CICS DFHZCP is to treat the logical unit 110
requests for protection and recovery purposes.

You can use CEDA or DFHPCT instructions. There is no OPTGRP option in
CEDA. The other options are similar to those for DFHPCT.

Using CEOA
You can use the following CEDA command to set up message protection:

CEDA DEFINE PROFILE(aaaa) GROUP(bbbb) MSGINTEG(YES)
PROTECT(YES) ONEWTE(YES)

Then you must define your transaction:

CEDA DEFINE TRANSACTION(cccc) GROUP(bbbb) PROFILE(aaaa)

and install the group:

CEDA INSTALL GROUP(bbbb)

• Use the MSGINTEG(YES) option if a definite response is to be requested
with an output request to a logical unit. Do not use it for a pipeline
tra n saction.

• Use theONEWTE(YES) option if the transaction is only permitted one
write operation or one EXEC CICS SEND during its execution. You must
also use the CEDA DEFINE TYPETERM BRACKET(YES) command or the
BRACKET=YES operand of the DFHTCT TYPE=TERMINAL macro for
logical units. You must use ONEWTE(YES) for pipeline transactions.

• The PROTECT(YES) option performs the same function as the macro
PROTECT option described below.

You will find full information about this command in the CICSIMVS Resource
Definition (Online) manual.

Using DFHPCT TYPE = OPTGRP
The message option group definitions should immediately follow the DFHPCT
TYPE = INITIAL macro instruction. The message option group name specified
by the OPTGRP operand determines which option group is to be used for the
task whose PCT entry references this group. This name also must appear as
a symbol prefixed to the DFHPCT TYPE =OPTGRP macro instruction, whose
operands MSGPOPT and MSGPREQ specify the desired characteristics.

194 CICS/MVS 2.1.2 Customlzatlon Guide

You specify any of the available operands as either required or optional.
The MSGPREQ operand defines the processing options and characteristics
that are required for the task. All of the parameters specified with
MSGPREQ must be supported by the TCTTE on which the task executes.
Otherwise, the task initiation request is rejected. Alternatively, the
MSGPOPT operand defines the processing options that the task uses only if
the TCTTE on which it is running supports the function. If the function is not
supported by the TCTTE, the task initiation request is not rejected, because
the functions are optional by definition. There is no default value for either
MSGPREQ or MSGPOPT. If neither is specified, no options are generated for
the task.

The following message group options can be specified using either the
MSGPREQ operand or the MSGPOPT operand. You will find full details in
the CICSIMVS Resource Definition (Macro) manual.

• PROTECT specifies that the task is protected, and impliCitly speCifies the
MSGINTEG parameter. CICS also logs messages for protected tasks.
PROTECT causes any write operation to a logical unit performed by a
transaction to be deferred either until the CICS application program
issues a terminal wait request, or until the task goes through a syncpoint
or detaches. It ensures that the last message from a transaction (which
confirms to the terminal operator that processing completed) is not
delivered until the task has passed the commit point and cannot be
backed out if a system failure occurs.

• MSGINTEG specifies that any output sent by CICS to a logical unit on
behalf of a task is sent with definite response protocol specified.

• ONEWTE specifies that the transaction can perform only one write during
its execution. DFHZCP sets an end bracket (EB) indicator on the first
write processed for the task. Any subsequent write from the task is
treated as an error by DFHZCP (because it would violate the bracket
protocol), and the task is abnormally terminated. This parameter
shortens the response time for simple, one-write transactions that run on
TCTTEs that support the bracket protocol.

Any of the above parameters can be specified singly or with other
parameters.

• CCONTRL specifies that the application program may control the
outbound chaining of request units. If you specify this option, you must
not specify the MSGPREQ/MSGPOPT option PROTECT. If you specify
CCONTR=YES, ONEWTE means one chain (a chain is defined as the
smallest recoverable unit), and not one DFHTC TYPE =WRITE.

You can specify optional and required task options when generating the program
control table (PCT). At attach time, those options that are specified as optional
execute if the logical unit permits them; however, if the logical unit does not
permit an optional function, the task is attached, but that option is not performed.
Those options that are specified as required execute if the logical unit permits
them; however, if the logical unit does not permit a required function, the task is
not attached.

Chapter 4.1. ACFIVT AM logical units with CICS 195

Emergency restart and message logging
Normally, the first entry on the log for a given protected task consists of a
start-of-task indicator, the data sent by the originator of the task, and the inbound
and outbound sequence numbers. If any change has been made to a protected
resource (for example, a database record), the original copy is also logged.

After the task-originating data and start-of-task indicator have been logged, the
task is considered in-night. Any tasks in-night at the time of failure are backed
out by CICS during emergency restart. Backing out means that all effects of the
task are removed from the system, removal being based on the records written
to the system log. Naturally, messages already received or transmitted cannot
be backed out, but operations (such as updates on protected system resources)
that occurred during the course of the transaction can be backed out.

The end of a protected task causes CICS to write the response message, the
most recent inbound and outbound sequence numbers, and the end-of-task
indicator to the system log. As soon as the end-of-task indicator has been
logged, the task is no longer considered in-night; it is now considered committed
and cannot be backed out.

At this point, the deferred write becomes important. If the reply to the input
message had been sent as soon as it was requested (that is, before the
information was logged), a period of uncertainty would exist during which the
task could still be backed out, because, as mentioned previously, a task is not
immune from backout until the end of the task has been logged. Because
ACF/VTAM and the ACF/NCP/VS are able to operate asynchronously from CICS,
the message could conceivably be delivered while CICS is abnormally
terminating. In this case, the task is backed out when emergency restart is
performed, yet the terminal operator has already received a message confirming
that the task completed. Because backing out the task removes the effects of
the task from the system, the message sent to the terminal would be
inconsistent with the status of the databases.

To guard against the above situation, the deferred write is employed. This
ensures that any message created by a transaction that does not specify a wait
is not physically transmitted to ACF/VTAM either until a terminal control wait is
explicitly specified or until the task goes through syncpoint processing. It also
ensures that all messages sent to the terminal are consistent with the status of
the databases.

Emergency restart
During an emergency restart of CICS, the information presented to CICS
concerning the system activity at the time of the failure comprises the records
that appear on the system log.

Any failure that occurs prior to the logging procedure is not detected, and CICS
assumes that the task-originating data was never received. This is the same as
if the failure had occurred while the task-originating data was being sent from
the logical unit to CICS, and was lost in the network because of the failure.

From the data recorded on the system log, CICS reconstructs the environment
for any TCTTE that had either committed output pending, or a message in-night

196 CICS/MVS 2.1.2 Customization Guide

for a protected task at the time of failure. (The system log contains information
about the terminal messages of protected tasks.) The environment
reconstruction includes placing transaction-related information into the
temporary storage message cache.

The message cache is an area In temporary storage with the name DFHMxxxx,
where xxxx is the 4-character logical-unit identification. For a task failing
in-flight, the message cache contains the data from the task-originating
message, plus the transaction code, task number, and message sequence
number. A flag byte indicates whether the data is for an inbound or an outbound
message, and if it was logged with or without an FMH. If the failure occurred
after the task had passed the commit point, the message cache contains the
output message rather than the input message. If neither of these two
conditions is present, the message cache is not created by emergency restart.

You may wish to write an application program to investigate the contents of the
message cache following a system failure. If so, you should understand the
format of the contents of the message cache. A discussion of the message
cache is given in the CICSIMVS Recovery and Restart Guide.

Noncatastrophic failures
Environment reconstruction is not necessary following a noncatastrophic failure,
because CICS and the logical unit remain operational. Message recovery is
performed immediately after the failure is rectified by the node abnormal
condition program (DFHZNAC) and, optionally, by the installation's node error
program (NEP). Thus, DFHZNAC does not use the CICS system log.

The protected task and message Integrity concepts are important because
DFHZNAC uses the task's TIOA (which contains the data) in its recovery
procedures. When errors are detected for tasks with message Integrity, the
TIOA is guaranteed to be available. For tasks without message integrity, the
TIOA may have been released before the error was reported for proceSSing.
The actions taken by DFHZNAC for failing messages depend on the nature of the
error and its causes; however, reliable information about a failing task is
guaranteed only if the task has message integrity.

Logical unit 110 error handling (DFHZNAC/DFHZNEP)
The node abnormal condition program (DFHZNAC) is a system program
responsible for processing all abnormal situations associated with a logical unit.
This is analogous to the situation under BTAM support in which the terminal
abnormal condition program (DFHTACP) is scheduled to resolve terminal errors.
However, there is a difference between the DFHTACP/DFHTEP interface under
BTAM and the functions of the ACF/VTAM equivalents, DFHZNAC and DFHZNEP.

The implementation of terminal error proceSSing for BTAM-supported terminals
is such that any error is normally routed to the terminal abnormal condition
program (DFHTACP). Depending on the type of error, DFHTACP issues
messages, sets error flags, and hands over control to the user-written terminal
error program, DFHTEP, a dummy version of which is supplied by CICS. After
any necessary action by DFHTEP, control is handed back to DFHTACP via a
DFHPC RETURN request. The interface between the node abnormal condition

Chapter 4.1. ACFNTAM logical units with CICS 197

program (DFHZNAC) and node error program (DFHZNEP) is basically the same
as that between DFHTACP and DFHTEP. You can provide, in table form, an
interface module and a separate error routine for each specified transaction
class. The function of the in'lerface module, DFHZNEP, is to allow a particular
transaction to have its own error processing procedure, and to determine which
class of transaction is attached to the terminal, and to link from DFHZNAC to the
appropriate transaction-class error routine, which is identified by a macro used
in assembling DFHZNEP. On completion of the action in the transaction-class
error routine, control will be returned to DFHZNAC via DFHZNEP, using the
normal DFHPC RETURN request.

Note that for BTAM support, a new TACP task is created for each TACLE to be
processed, whereas, for ACF/VTAM support, only one ZNAC task is created,
which processes many TCTTEs.

You specify the transaction class to DFHZNEP by the NEPCLASS option of the
CEDA DEFINE PROFILE command or the NEPCLAS operand of the DFHPCT
TYPE = ENTRY macro. The identifier is placed in the program control table for
reference by the DFHZNEPI TYPE = ENTRY macro that associates the transaction
class with a named user-written transaction-class error routine. For full details
on the generation and function of DFHZNEP, see the section headed
"User-written node error programs" on page 133.

CICS terminal control
The terminal control macro instruction provides capabilities for CICS
management modules and for customers. You can:

• Scan the terminal control table (CTYPE = LOCATE)
• Change the status of a logical unit (CTYPE = STATUS)
• Issue a ACF/VTAM indicator (CTYPE = COMMAND)
• Check the outcome of any of the above operations (CTYPE = CHECK).

For details of these facilities, see "Chapter 4.7. Modifying the terminal control
table" on page 237.

EXEC ,commands provide equivalent function (see see "Chapter 5.9. Examining
and modifying resource attributes" on page 423). For upwards compatability,
use EXEC commands rather than the macro equivalent.

Transaction options
When defining profiles used by transactions (using the CEDA DEFINE command)
or transactions (using the DFHPCT TYPE = ENTRY macro instruction), you may:

• Restrict certain transactions to run only for logical units or for
BTAM-supported terminals.

• Specify transaction options related to message journaling.

• Specify I/O processing options.

• Control message protection options.

198 CICS/MVS 2.1.2 Customization Guide

The DVSUPRT operand specifies that certain transactions are permitted to
execute only for a terminal or for a logical unit. The ACF/VTAM parameter of
this operand allows the transaction to execute only on an ACF/VTAM TCTTE.
The NONV parameter allows the transaction to execute only on a non-ACF/VTAM
TCTTE (for example, a STAM, SSAM, or a GAM TCTTE). The ALL parameter
specifies that the transaction may execute on any TCTTE. ALL is the default
value for the DVSUPRT operand.

The MSGJRNL operand specifies whether or not automatic journaling of
messages is to be performed by the terminal control program for particular
transactions. Message jOlJrnaling may be requested for either input or output
messages, or both.

If you specify the MSGJRNL operand, you must also specify the LIFILEID operand
in order to indicate where the automatic journaling information is to be recorded.
The SYSTEM option indicates that the Information for messages associated with
logical units is to be recorded on the system log. To record the information on a
particular installation journal data set instead of on the system log, specify the
journal identification which can be any value in the range 2 through 99, inclusive.
If you specify NO, message journaling is not performed. NO is the default value
for this operand.

If you select the automatic journaling option, you must ensure that you specify
the relevant journal control program and journal control table parameters to
support the DFHTCP automatic journaling requests.

The 1/0 processing options (DELAY and IMMED) are discussed in "Output
services" on page 191.

The message option groups specify the kind of protection and recovery that CICS
DFHZCP will provide for the logical unit I/O messages. Message option groups
were discussed under "Message option groups" on page 194.

Automatic task initiation
Before CICS attempts automatic task initiation (ATI) for a logical unit, it checks
whether ATI is allowed for the particular logical unit. To permit ATI, the TCTTE
that represents the logical unit must be in either the TRANSCEIVE or RECEIVE
state, and must also be in service. These states are specified in the ATI(YES)
option of the CEDA DEFINE TYPETERM command or the TRMSTAT operand in
DFHTCT, TYPE =TERMINAL.

If a logical unit TCTTE is in service but not connected when ATI is to be
performed, and the CEDA option CREATESESS(YES) or TRMSTAT = INTLOG is
specified, CICS requests an ACF/VTAM simulated logon to establish connection.
If the CEDA option CREATESESS(NO) or TRMSTAT = NOINTLOG is specified, the
ATI request is ignored until the connection is established by the other node, or
the status is changed.

You must ensure that the TCTTE for which ATI is requested is either in
transceive or receive state, and is in service. These parameters may be
specified when the terminal control table is generated (through the DFHTCT

Chapter 4.1. ACFNTAM Ic'gical units with CICS 199

macro instruction). They may also be specified by the ATISTATUS option of the
EXEC CICS SET TERMINAL command, or by the DFHTC CTYPE = STATUS macro
instruction of the terminal control interface, to enable dynamic status changes.
See "SET for terminals" on page 444 and "Chapter 4.7. Modifying the terminal
control table" on page 237 for further details. Where possible, use the command
interface, which provides upward compatibility.

User exit routines for CICS ACF/VTAM terminal control
CICS ACF/VTAM logical unit support gives you the option of coding global user
exit routines that are to be given control at defined points during the processing
of a request by CICS ACF/VTAM terminal control. For more information about
global user exits, see "Chapter 5.1. Global user exits" on page 289.

Because the exit routines are executed as an extension of a CICS management
module, the designer of the exit routine must be fully aware of the conventions
and restrictions that apply in such an environment. The exit routine must be
coded in assembler language and be at least serially reusable. Requests for
CICS services are forbidden in the exit routine. Issuing a wait within a
management module, that is servicing a request executing under a non-user
TCA can seriously degrade system performance. Furthermore, unexpected task
switches from within management modules may lead to unpredictable system
damage.

Control is given to the specified exit routine at each of the following four points
every time a request referring to an ACF/VTAM-supported TCTTE is serviced:

Exit Module Processing State

XZCATT DFHZCP Before a task attach.

XZCOUT DFHZCB Before issuing the logical message in the
DFHZCP send subroutine; no chaining
requirements have yet been determined.

XZCOUT1 DFHZCB Before the message is broken into
request units (RUs).

XZCIN DFHZCB After the entire logical message is
received by CICS.

Note: XZCATT is the only exit available for LU6.2 sessions.

For XZCATT, register 8 points to the TIOA containing the transaction-originating
data, and register 2 addresses a parameter list which is described in "Chapter
5.1. Global user exits" on page 289. If LU6.2 is in use, the LU6.2 transaction
program name (TPN) may be accessed via the parameter list; if LU6.1 is in use,
the process name (DPN) may be accessed. For all LUs, this list also contains
the TRANSID of the task that CICS is about to attach. The exit can be used to
specify a different TRANSID if required.

For XZCIN, if the message is too large to fit into the CICS 1/0 area, CICS will
issue an additional receive-specific to obtain the remainder of the message from
ACF/VTAM, (see "Input services" on page 190, earlier in this chapter, for further

200 CICS/MVS 2.1.2 Customlzatlon Guide

BMS services

information), but control is given to the user exit routine only after the complete
message has been received by CICS from ACF/VTAM.

XZCOUT is driven every time a VTAM SEND request is issued by CICS. To
transmit a large message, you code a single CICS SEND command. From this,
CICS can generate many VTAM SENDs. This means that an exit routine driven
by XZCOUT can be invoked many times for a single message.

Alternatively, you can use XZCOUT1 to gain access to the whole message so
that you can edit it before it is broken into RUs. XZCOUT1 is particularly useful
when sending a large amount of data in a single message. For example, if you
need to translate the data to uppercase before sending it, you need to invoke the
translation routine once only, rather than once for each RU. Similarly, if your
exit routine compresses VTAM data before transmission, the exit allows it to
compress all of the data at once. As well as improving efficiency by calling the
exit routine once only, this reduces the amount of data to be packed into the
message chain, and can reduce the number of RUs in the chain.

The level of BMS support required is specified using the BMSFUNC keyword of
the DFHSG PROGRAM = BMS macro instruction, or the BMS ~eyword of the
DFHSIT macro. Three pregenerated versions of BMS are provided. MINIMUM
provides support for 3270 devices and SCS printers. STANDARD or FULL are
required if you need support for any other devices. For more information on
BMS support, see "BMS .. - basic mapping support program" on page 14.

The batch data interchange program (DFHSG PROGRAM = DIP) must be
generated if BMS routines are required for batch logical units.

Mapping Individual records and entire chains
In order to map each card or line of a request unit (RU) separately, you should
specify logical record presentation for the transaction (in the LOGREC operand of
CEDA DEFINE PROFILE, and of DFHPCT TYPE = ENTRY) logical' units for which
logical record presentation and chain assembly apply. Otherwise, all records
after the first in the RU will be bypassed.

In order to map an entire chain, which may consist of more than one RU, you
should specify the BUILDCHAIN option of the CEDA DEFINE TYPETERM command
or the CHNASSYoperand in the DFHTCT TYPE = TERMINAL macro for the logical
unit.

Chapter 4.1. ACFNTAM logical units with CICS 201

Statistics
Existing statistics are maintained for each logical unit. The following statistics
are increased by one whenever the indicated condition occurs:

Statistic

Write count

Read count

Error count

Error count

Condition

ACFIVTAM SEND is accepted by a logical unit on behalf of a
terminal for part of a chained output data message.

ACF/VTAM RECEIVE is completed for an input data request
sent by a logical unit on behalf of a terminal. If more than one
RECEIVE was necessary for CICS to obtain the complete
request unit from ACF/VTAM, the read count is still increased
only by one.

ACF/VTAM SEND is rejected by a logical unit on behalf of a
terminal for any part of an output data message.

An exception response of any kind is received by CICS.

Statistics are kept for evaluating the size of the receive-any RPL pool. (See
"Input services" on page 190, earlier in this chapter, for information about the
RPL pool.) Every time DFHZCP is dispatched, it scans the pool of RPLs and
counts the number of RPLs that were posted complete. DFHZCP records the
maximum value of this count and increases a second counter each time this
maximum is reached; every time a new maximum is recorded, the second
counter is reset to one. This statistic is printed with any request that produces
the existing terminal statistics; it gives the maximum value achieved and the
number of times it was reached.

In a system in which the maximum value is less than the size of the RPL pool
during a normal day, the number of RPLs specified for the pool could be reduced
to the maximum value with no effect on system performance. Conversely, if the
maximum value reaches the size of the RPL pool many times during the day,
this may indicate a constraint in the system that might be causing unnecessary
use of the pageable buffer area by ACF/VTAM. This situation could be improved
by increasing the RPL pool size.

A good trial value for the size of the RPL pool is the maximum task value that is
specified by the MXT operand of the DFHSIT TYPE = CSECT macro instruction.
The value should then be reduced in accordance with the statistics recorded for
peak activity. Too high a value may result in unnecessary page faulting within
the RPL pool.

Another statistic keeps a count of the number of times that ACF/VTAM
temporarily rejects a CICS request because there is a short-an-storage condition
in ACF/VTAM. This helps you to monitor any system restraint that may arise
because insufficient buffer space was allocated during ACF/VTAM definition.

202 CICS/MVS 2.1.2 Customization Guide

Message switching
When a terminal list table is built for use with message switching, each entry in
the table contains logical unit identifications. The TRMIDNT operand of the
DFHTL T TYPE = ENTRY macro instruction is used to specify the identification of
the logical unit to be used to direct the message.

Chapter 4.1. ACFNTAM logical units with CICS 203

Chapter 4.2. The CICS/TCAM interface

This chapter describes the use of TCAM under CICS/MVS 2.1.2. The following
topics are discussed:

• The use of TCAM in an SNA network, with reference to protocol
management, FMH processing, and error processing.

• The TCAM application program interface, including information on the
process control block and the TPROCESS control block.

• The interface between TCAM and CICS, including information on terminal
entries (TCTTEs) and line entries (TCTLEs) data flow, logic flow, the terminal
error program, message routing, pooling, and segment processing.

• Device considerations, dealing with message formats for devices (in
particular, the 3270-system devices) being used on a TCAM line.

• User exits, giving information on the three TCAM exits that may be specified
in the terminal control program.

• The processes of starting up, restarting after an abend, and terminating
TCAM under CICS.

• The TCAM message control program (MCP) and its relationship to the
application program (in this case, CICS).

In addition, two sample TCAM message control programs for use in an SNA
network are described in Appendix B. "Sample TCAM SNA message control
programs" on page 515.

The majority of independent teleprocessing applications require a dedicated
network. The telecommunications access method (TCAM) permits multiple
applications to share a single network, resulting in more efficient use of
terminals and lines. The CICS/TCAM interface enables CICS to run as an
application program under TCAM.

TCAM is an access method that may be used alone or in combination with other
access methods (BTAM, BSAM, ACF/VTAM, and BGAM).

One practical use of the CICS/TCAM interface is to run a production CICS
system in one region and a test CICS system in another. If they run in separate
regions, the applications are protected from one another. Operating under
TCAM, terminals and lines can be shared by the two CICS applications. Other
TCAM applications, such as the time sharing option (TSO), can also run
concurrently.

CICS user tasks that run under BTAM can, in general. run under TCAM without
modification to the task code. This assumes that you have correctly designed
and coded the TCAM message control program. However. in order to obtain the
benefits of TCAM SNA and to maintain an acceptable operator interface, it is
usually necessary to change the CICS application programs to use DFHTC
CONVERSE and WRITE, LAST facilities so that the MCP is provided with sufficient
information about the transaction to maintain the optimum SNA message flows.

tID Copyright I BM Corp. 1977. 1990 205

There are basic differences between TCAM and BTAM design methods. CICS
was designed to operate in the BTAM environment. The CICS/TCAM interface,
although resolving most of the differences, must impose some restrictions when
CICS is run in a TCAM environment. These restrictions as well as some of the
consequences of selecting various user options are described in this section.
Also described are the user facilities available and how you implement and
operate the system using the interface.

CICS with TCAM SNA
TCAM can be used to provide an SNA network without the use of ACF/VTAM.
The CICS/TCAM interface has an enhanced data stream support that enables an
appropriate TCAM message control program (MCP) to control the SNA session.
The TCAMFET = SNA operand in DFHTCT TYPE = LINE allows TCTTEs to be
specified for SNA devices. You must be prepared to write an appropriate TCAM
SNA message control program to complement the CICS support and the SNA
devices attached to the system. In order to obtain a good operator interface, the
CICS application programs should be designed to inform the MCP of their
intentions. Thus, it is beUer to design the MCP and the application programs
together.

Sample TCAM SNA MCPs are provided in Appendix a, "Sample TCAM SNA
message control programs" on page 515. The second sample MCP (DFHSPTM2)
uses the information passed in the cca to optimize the message flows to the
actual logical unit. This represents transaction-oriented processing.

TCAM provides data stream support for SNA devices running under CICS. Both
the SNA character string (SCS) and the 3270 data streams are supported.

In order to understand how CICS works with TCAM in an SNA environment, it is
important to understand the TCAM SNA structure. The device message handler
(DMH) is the logical unit in SNA terms. All data flow control (DFC), session
startup and takedown, and response handling are provided in the DMH. There is
no CICS control of these SNA functions, so the application programmer need not
be concerned with them. For a more detailed discussion of the TCAM SNA
functions provided, see the OS/VS TeAM System Programmer's Guide.

Protocol management
There may be many different protocols in an SNA network. The various
protocols are established on a session basis using the bind image. You decide
which protocols to use with which SNA session, and you should understand the
requirements of the installation's application programs before deciding on a
specific protocol.

. Some of the more common of these SNA protocols are: bracket, half-duplex
flip-flop (HDX-FF), and half-duplex contention (HDX-CON). The enforcement of
these protocols is a function of the device message handler (DMH).

There are two methods of protocol management in a CICS/TCAM system:

• Device message handler control
• Transaction control.

206 CICS/MVS 2.1.2 Customizatlon Guide

These methods are discussed below.

Device message handler control
The device message handler method of protocol management is used when the
transaction does not need to know which device it is communicating with.
Although the communication control bytes are passed between CICS and TCAM,
they are not used to control the SNA session. All the protocol control is
provided in the DMH. You (the message handler writer, not the application
programmer) choose the appearance at the outboard LU.

Transaction control
In the transaction control method of protocol management, the transaction
controls the protocol. The SNA session should be bound with a protocol of
HDX-FF with brackets when running this type of management. The second
sample MCP provided in Appendix C is an example of a transaction controlled
message handler (MH).

When using transaction control, the communication control byte (CCB) is used to
relay information from the transaction to the DMH. For example:

• DFHTC TYPE =WRITE,LAST should be used to end a transaction. Issuing this
macro causes an indicator to be set in the CCB requesting that the DMH
send an end-of-bracket (EB) character.

• DFHTC TYPE = CONVERSE should be used when terminal input is required
after a WRITE request. This macro causes an indicator to be set in the CCB
requesting that the DMH send the CHANGE DIRECTION indicator to the
device.

• DFHTC TYPE = DISCONNECT should be used to end the logical unit session.
This macro causes an indicator to be set in the CCB requesting that the DMH
terminate the LU-LU session (that is, issue the IEDHAL T macro).

Function management header processing
The function managemen1 header (FMH) enables function management
information to be directed to particular components within the logical unit. The
FMH also provides a mechanism in which control information relating to the
operation of those components may be passed. FMH processing is a bind time
option (that is, a bind parameter is available to indicate whether an FMH mayor
may not appear in the LU··LU session).

CICS/TCAM SNA provides support for the logical device code (LDC), which is
transmitted in the FMH to the logical unit. The LDC provides for the
communication of the logical disposition of output to the logical unit. It can
represent any meaning that is useful to the installation.

There are two ways that FMH handling can be provided. The first is for the
transaction to provide the FMH as part of the data passed to TCAM by issuing a
DFHTC TYPE = WRITE,FMH = YES macro. An indicator is set in the CCB so that
the DMH can set the FMH included indicator in the request handler (RH) by using
the IEDRH macro. On input, the DMH should interrogate the RH (using the
IEDRH macro) to determine whether an FMH is included in the data. If the FMH

Chapter 4.2. The CICS/TCAM Interface 207

indicator is set in the RH, the DMH should set the FMH indicator in the CCB
relating to the transaction in which the input data contains an FMH.

A second method of FMHhandling is to provide the entire function in the DMH.
The DMH should remove the FMH before passing the input data to the
transaction and insert the necessary FMH into the output data. In order for the
OMH to build the correct FMH for output, some form of private interface must be
established between you and the application programmer. For example, the first
byte of data following the CCB can contain unique values that request specific
FMH functions such as begin data set, erase record, and so on.

It is recommended that if FMH processing is required, the transaction (or
preferably BMS) be used to provide the appropriate FMH.

Batch processing
When running a batch logical unit, you may want to consider is how to get the
transaction identification to CICS on the begin data set condition. The alternative
methods are discussed below.

The first method is for the OMH to recognize the begin data set condition by
interrogating the FMH and by editing the transaction 10 into the input data. This
method is demonstrated in the sample MCPs provided in Appendix B, "Sample
TCAM SNA message control programs" on page 515.

The second method of providing the transaction 10 is for the OMH to concatenate
the begin data set chain with the first chain of the data set, using the SETEOM
macro. When you are using this method, the first chain of the data set must
contain the transaction 10. Alternatively, the transaction 10 could be set with the
TCTTE beforehand by means of a permanent TRANSIO or by using OFHPC
TYPE = RETURN,TRANSIO = xxx.

Error processing for batch logical units

Error processing

During batch processing with a logical unit, there are certain logical errors from
which the OMH cannot recover (for example, data set overflow or incorrect data
set name). A transaction can be provided to handle these error conditions. If
the transaction builds the data set on the TCAM queue and ends before the data
set is transmitted, an error transaction should be created. The OMH should
generate the appropriate error message or pass the SNA sense bytes to this
error transaction, which then handles the error condition. If the transaction that
builds the data set remains active throughout the transmission of that data set to
the device, the transaction could be coded to recognize the error indicators
passed to it from the OMH, rather than creating a separate error transaction.

All error conditions, other than logical errors, are handled by the OMH. The
OS/VS TeAM System Programmer's Guide, contains a discussion on the handling
of the various sense codes returned by SNA devices. The transaction is not
involved in error processing and recovery.

208 CICS/MVS 2.1.2 Customlzatlon Guide

TeAM application program interface
The TCAM application program interface is a portion of the TCAM message
control program (MCP). It consists of two types of control blocks, the process
control block (PCB) and the TPROCESS block.

The PCB defines the application program interface of a region in the system
using TCAM. Its purpose is to control communication and storage protection
across region boundaries. It also defines the user-written message handler
(MH) responsible for processing messages to and from the application program.
Because a PCB is required for each application program running with the MCP,
one PCB is also required to define the CICS application program.

The TPROCESS control block controls communication to and from the application
program. A separate block is required for both input and output to the
application program. A TPROCESS block is required for each input queue to
CICS, and for each output queue from CICS. In CICS, there are corresponding
terminal control table line entries (TCTLEs) for each input queue, and for each
output queue (that is, for each TPROCESS block).

DO cards (such as those shown in Figure 16) are used to correlate the TCAM
control blocks with the CICS control blocks. The CICS terminal control table
contains the DCB. The DDNAME specified in the terminal control table macro
instruction (DFHTCT TYPE = SDSCI,DDNAME = name) names the DO card. In the
DO card, the QNAME field names the TCAM TPROCESS block.

YOll do not need to make any exceptions for CICS to the TCAM application
program interface described above. For additional information, see the OSIVS
TeAM Application Programmer's Guide.

MCP creAM) MPP (CICS)

/\pplication
rnessafJe Iland I er

ST/\RTMH

Application
program interfaoe

TPnOCESS
fJCB=

~--------------~

TCTLE)
DDt-JAME=

TPROCESS
PCB=

--------/~-. ----------")
TCTLE
DDNAME=

...... '"'------_ /'

Figure 16. DD card correlation of TeAM and CICS control blocks

Chapter 4.2. The CICS/TCAM Interface 209

CICS/TCAM interface

Data format

CICS treats a TCAM input process queue as a "line." For each input process
queue there isa CICS terminal control table line entry (TCTLE). Note that TCAM
requires the application program (CICS) to have a DCB for each TPROCESS
block; separate TPROCESS blocks are required for input to and output from the
application program. Therefore, each TCAM output process queue is also
treated as a line and has a corresponding CICS TCTLE. Each TCTLE references
its own DCB, which is generated by the DFHTCT TYPE = SDSCI macro instruction
in CICS.

The CICS terminal control table terminal entries (TCTTEs) define the terminals
associated with a particular line entry (TCTLE). For each physical terminal
communicating with CICS through TCAM, a corresponding TCTTE containing the
terminal identification must be associated with a TCTLE. Duplicating .Individual
TCTTEs for both the input TCTLE and the output TCTLE is avoided by attaching a
single, special TCTTE to the input TCTLE and attaching all the individual TCTTEs
to the output TCTLE. Although attached to the output TCTLE, they are used for
both input and output processing.

Each input record from TCAM must contain the source terminal identification.
Using this identification as a search argument, the corresponding TCTTE can be
located by CICS by comparing against the NETNAME value for each TCTTE.

Note: The usual way of ensuring that the input records contain the source
terminal identification is to specify OPTCD = W in the CICS DFHTCT
TYPE = SDSCI macro. If this specification is omitted, the TCAM user is
responsible for ensuring that the record contains a suitable source terminal
identification.

Using the POOL = YES operand of the DFHTCT TYPE = LINE macro instruction,
you can establish a pool of common TCTTEs on the output TCTLE that do not
contain terminal identifiers. As required, terminal identifiers are assigned to the
TCTTEs or removed from association with the TCTTEs. POOL = YES necessarily
imposes a number of restrictions and should be thoroughly understood before
being Implemented. For additional information, see the discussion of the POOL
operand in the section headed II Line pool specifications" on page 215.

When TCAM is specified, CICS assumes that the user transaction data passed to
it from the TCAM queue is in the proper format to be passed directly to the user
task. Except for the removal of the source terminal identification and the 2-byte
CCB (if on a TCAM SNA line), CICS does not alter the data it receives. It is your
responsibility (using your message control program (MCP)) to prepare the data,
for example, by translating to EBCDIC, removing function management headers
(FMHs), stripping line control characters, and deblocking. You may optionally
bypass the CICS routine thal removes the source terminal identification by
returning from the user-written input exit (XTCTIN) in TCP with a displacement of
o bytes.

210 CICS/MVS 2.1.2 Customlzatlon Guide

Logic flow

TeAM input
process queue

"

Similarly, CICS assumes that the user transaction data passed to it for TCAM
has been properly formatted and can be placed directly on the TCAM output
process queue. Except for the insertion of the destination identification, the CCB,
and the data stream control characters, CICS does not alter the data it receives.
It is your responsibility (using your MCP) to prepare the data for the destination
terminal, for example, by translating and inserting line control characters.

Optionally, BMS can be used with TCAM to prepare the input data for the user
task, and the output data for the specific terminal type. When BMS is required
with TCAM, the TRMTYPE operand in DFHTCT TYPE = LINE or in DFHTCT
TYPE = TERMINAL must indicate the specific terminal type for 3270 data streams.
TRMTYPE = TCAM can be used to obtain EBCDIC data stream support. For BMS
support within SNA, the TCAMFET = SNA and SESTYPE operands must also be
specified in DFHTCT TYPE = LINE, and in DFHTCT TYPE = TERMINAL,
respectively.

This section gives a generalized description of the sequence of events that
occurs in CICS when interfacing with TCAM. The description is in two parts, for
the READ flow (input actions) and the WRITE flow (output actions) respectively.

Logic flow - READ
Figure 17 show the relationship of the fields discussed

Input
TCTLE

'------I~

Figure 17. CICS issues a TCAM read

Special
TerrE

~--..:I '--___ ----'
TIU.r\

Chapter 4.2. The CICS/TCAM Interface 211

INPUT STEP ACTION

A TCAM notifies CICS that it has data for a particular input TCTLE by
posting its ECB.

B CICS gets a TIOA and attaches it to the special input TCTTE in the
TCTLE.

C CICS issues a READ to TCAM that results in TCAM passing the data
over the region boundaries to the CICS TIOA. CICS then indicates
that it has data to process. (See Figure 17 on page 211.)

D The input TCTLE points to the corresponding output TCTLE in
response to the aUTO specification of the DFHTCT TYPE = LINE macro
instruction.

E The individual TCTTEs on the output TCTLE are searched for a
matching source terminal netname. If POOL =YES has been
specified, a free TCTTE is assigned to this source terminal
identification. (See Figure 18 on page 213.)

F If an input user exit (XTCTIN) has been specified, CICS links to the
user exit routine where you may edit input data before passing it to a
task. (See "Input user exit (XTCTIN)" on page 222.) If no exit has
been specified, CICS removes the 8-byte source terminal identification
field inserted by TCAM. For SNA devices, the input communication
control byte (CCB) is removed. No other editing of the data is
performed.

G A check is made to determine whether a task is attached to the
individual TCTTE. If there is no task attached, see Step H. If a task is
attached, a check is made to see if the task has issued a READ. If a
READ request exists, see Step ,J. If not, CICS halts the processing of
data in the queue until the TCTTE is available or the attached task
issues a READ.

H CICS attaches the appropriate task. A user exit is available prior to
the actual attach. (See "Task attach user exit (XTCATT)" on
page 221.) If the task could not be attached (for example, if a "short
on storage" or "maximum tasks" condition exists), CICS records that
it has data to process, and exits from DFHTCP.

After a task is attached, CICS stores the TCAM segment identifier in
the TCTTE (if segrnent processing was specified by including the C
parameter in the OPTCD operand of the DFHTCT TYPE = SDSCI macro
instruction).

J CICS passes control to the attached task.

212 CICS/MVS 2.1.2 Customizatlon Guide

Logic flow - WR ITE
Figure 18 show the relationship of the fields discussed in the list of actions that
follows.

TeAM input
process queue

~
Input
TCTLE

QUTO= '"

L-----.f--' "

Output
rCTLE

Special
TCTTE

I

1...-1 (A_B_C) ___ J
TIOA ~

I Terminal ABC

-Individual
TeTTEs -

-

Figure 18. After TCAM read, CICS attaches TIOA to the corresponding TCTTE

OUTPUT STEP ACTION

A You issue a WRITE request in your application program.

S The TCP terminal scan recognizes the WRITE request.

C CICS checks whether an output user exit (XTCTOUT) has been
specified. If it has, CICS links to the user exit routine, where you
may edit your output data before passing it to TCAM. (See the
discussion of XTCTOUT under "TCAM user exits" on page 221.)

Chapter 4.2. The CICS/TCAM Interface 213

D

E

F

G

CICS checks the four-byte TCTTE field TCTTEDES for a
destination saved as a result of DEST = NAME or DEST = YES
having been specified in the DFHTC TYPE =WRITE macro
instruction. If it is present, CICS inserts it in the 8-byte
destination field and left-justifies the field, padding blanks to the
right. Otherwise, CICS moves the source terminal netname from
the TCTTE to the destination field.

CICS moves the communication control byte (or bytes in TCAM
SNA) into the 9th byte (9th and 10th bytes in TCAM SNA) of the
TCAM work area. (See "TCAM devices" on page 219.)

CICS issues a TCAM WRITE to transfer the data to TCAM.

After checking for successful completion of the WRITE to TCAM,
CICS flags the user task "dispatchable" if a task is still attached
to the TCTTE. Otherwise, CICS frees the TCTTE for a new task.

Terminal error program

Message routing

The CICS/TCAM interface implementation has resulted in the expansion of the
CICS terminal error program (DFHTEP) error codes and conditions. The
following errors and actions are unique to TCAM, and should be considered in
DFHTEP:

Error Code

X '87' (TCEMUI)

X'9F'(TCEMIDR)

where:

Condition

Unsolicited input

Terminal "receive only"

Terminal "out of service"

Task has not issued a read

No available TCTTE from pool

TCAM has issued an invalid destination
return code to CICS.

a = Release TCAM TIOA (X' 80' at TCTLEECB + 2)
b = Terminal out of service (X '08' at TCTLEECB + 1)
c = Abend transaction (X'04' at TCTLEECB+1).

Action

a

a,b

No default

No default

c

The DEST operand of the DFHTC TYPE = WRITE macro instruction can be used to
route an output message to a destination that you defined in the TeAM MCP.
This operand can be used to send a message to a destination other than the
source terminal (such as to another terminal, a list of terminals, or another
application program).

If DEST = name is specified, the name is stored in the four-byte field TCTTEDES.
If DEST = YES is specified, it is your responsibility to place the destination name
in TCTTEDES before issuing the WRITE macro instruction.

214 CICS/MVS 2.1.2 Customization Guide

CICS moves the data from TCTTEDES into the destination identification field
before placing the data on the TCAM output process queue. You may bypass
the CICS routine that inserts the destination field by taking the XTCMOUT user
exit and returning to CICS from the exit with a displacement of O. In this case,
you must ensure that the TCAM header is correctly formatted for output.

If the DEST operand is omitted, CICS inserts the source terminal NETNAME from
the TCTTE into the destination identification field.

Segment processing
The CICS/TCAM Interface supports TCAM segment processing, except when
BMS is used. It permits segments of a message to be forwarded to CICS rather
than waiting for the entire message to be received. If you specify segment
processing (by including the parameter "C" in the OPTCD operand of the
DFHTCT TYPE = SDSCI macro instruction), CICS passes the segment to you, and
places the position field control byte in the TCTTE field labeled TCTTETCM.

Similarly, on output, you must supply the control byte in TCTTETCM for CICS to
pass to TCAM. If multiple terminals have been defined for one output line (that
is, multiple terminals related to one TPROCESS queue), you must ensure that an
entire message is passed to TCAM for a specific destination before putting the
first segment for another destination on the queue. In other words, an error is
returned to you if a PUT first segment to destination A is followed by a PUT first
segment to destination B. For additional information on segment processing, see
the discussion of the OPTCD operand of the application input and output DCB in
the OSIVS TeAM Application Programmer's Guide.

Line pool specifications
When generating the TCAM message control program, you define each physical
terminal and logical unit to TCAM by means of a TCAM TERMINAL macro
instruction. Because CICS also requires terminal definitions, you must prepare a
terminal control table terminal entry (TCTTE) for each terminal, or logical unit, In
a DFHTCT TYPE =TERMINAL macro instruction. As a result, there is a
one-to-one correlation between terminal definitions In TCAM and in CICS.

In a highly restricted environment, this duplication of terminal definitions can be
reduced by using the POOL feature (DFHTCT TYPE = LlNE,POOL = YES), and by
specifying LASTTRM = POOL in DFHTCT TYPE =TERMINAL on the last TCTTE.
Instead of a one-to-one relationship, a "pool" of generalized TCTTEs is defined
for a TCAM process queue (line). When a transaction is received over the TCAM
line, a search is made for an available TCTTE in the pool. When one is found, it
is assigned a source terminal identification and netname for the duration of the
task. When the task has completed, the TCTTE can be reassigned. If there are
no available TCTTEs to handle the next transaction from the line, the line
remains locked until a TcrTE becomes available because the task has ended.
The number of TCTTEs in the pool influences the degree of multitasking.

You should consider providing enough terminal entries in the pool to avoid an
"unsolicited input" condition (see "TCAM queues" on page 217), because there
is no available entry in the pool. When DFHTCAM scans for a free entry, it will

Chapter 4.2. The CICS/TeAM interface 215

Line locking

not scan the entire table because it carries a pseudo end-of-table value.
Therefore, unused entries at the end of the table will never be referred to.

Line pool restrictions
You must be aware of the following line pool restrictions:

1. Because of certain device dependencies within CICS, only one terminal type
is permitted for each TCAM line (process queue).

2. Automatic task initiation (ATI), transaction routing, and BMS message routing
are not applicable in the pool environment. If ATI is required for certain
functions and you still want to use pooling, you should consider using a
special queue of nonpooled entries suitable for ATI. For example, 3270
displays could be put on a pooled entry, and 3270 printers on a nonpooled
queue to cause ATI to the printers.

3. Statistics are accumulated for each TCTTE in the pool; however, the statistics
cannot be correlated to the physical terminals or specific logical units.

4. Only one signon can exist for all terminal entries in a given line pool at any
one time. The first signon received by CICS is communicated to a"
terminals in the pool. Any subsequent signon is rejected. A sign-off clears
the signon data from a" terminal entries in the pool; a subsequent signon is
then accepted. .

5. Terminal, line, and control unit requests issued by the master terminal are
invalid for pooled terminals.

6. Pseudoconversational line pool implemented with an invalid RETURN
transaction identification.

Two types of line locking can occur:

1. A temporary lock that resolves itself in time, and

2. A permanent lock that remains permanent unless you take action in the
terminal error program.

A temporary line lock occurs when no TeTTEs are available in the pool and a
new transaction appears on the input queue. CICS locks the queue until an
existing task completes execution, thus freeing a TCTTE. In this case, the
completion of existing tasks is not dependent upon additional input from the
queue.

A permanent line lock can occur when multiple reads are required to complete a
task. For example, assume that there are two TeTTEs in the pool, that a task is
attached to each, and that the messages in the input queue are in the following
order:

1. Message 1 for a third transaction
2. Subsequent messages for the two active tasks.

Because no TCTTE is available in the pool for the third transaction, it must wait
for a task to complete for a TCTTE to become available. Because the TCAM
input queue is processed sequentially, tasks 1 and 2 are unable to receive their

216 CICS/MVS ~.1.2 Customizatlon Guide

TeAM queues

subsequent messages. Hence, they cannot complete, and the queue remains
permanently locked.

Because a queue is a sequential data set, the second message on the queue
cannot be retrieved until the first message has been processed. To keep
messages flowing smoothly through, the queue, it is essential that each message
be processed as soon as it arrives. In the CICS/TCAM interface, "processing the
message" means detaching the message from the special input TCTTE and
attaching it to the individual TCTTE correlated to the actual physical terminal or
logical unit. Each individual TCTTE may be considered to be a "destination" for
the purpose of this discussion.

If a particular destination (TCTTE) is not ready to accept the current message on
the queue, the queue locks until the destinatiot:1 can accept the message. Queue
locks are only a problem when a queue is serving more than one destination. In
this case, if a queue locks, any new transaction on the queue, or messages
queued for existing tasks, are not processed until the required destination has
accepted the current message.

Because queue locks can adversely affect system performance, it is important
that you understand their cause and effect, as described below. Proper
configuration of the TCAM process queue and CICS terminal control tables
reduces the occurrence and duration of queue locks to a minimum.

The maximum number of terminals that can be attached to one queue is
governed by the amount of activity expected, and by the response time required
from the system. For high activity and low response times, you should not
exceed 25 terminals. It should be noted that only a real performance test can
verify whether this figure is acceptable.

Because TCAM can read ahead from the terminals, it is possible for TCAM to
present to CICS a new transaction message destined for a TCTTE that is already
processing a task. Also, TCAM can present a message for an existing task
before that task issues a READ request. In either case, CICS cannot process the
message (as described above) until the TCTTE is ready to accept the new TIOA.
Such input is called "unsolicited Input."

Five conditions can produce unsolicited input:

1. The CICS TCTTE for which the data is destined is out of service.

2. The CICS special input TCTTE for the associated input queue is out of
service.

3. The CICS TCTTE for which the data is destined is in RECEIVE status.

4. The CICS TCTTE for which the data is destined has an associated task that
has not issued a READ, and for which the period of time indicated by the
NPDELAY specification has expired.

5. A terminal in a pool has entered data and is unable to find an available
TCTTE.

Chapter 4.2. The CICS/TCAM Interface 217

In all cases, the action taken by the CICS/TCAM Interface is to place the input
line out of service, and attach DFHTACP to process the error condition.

The default action taken by DFHT ACP (which can be altered by a user-written
DFHTEP) for conditions 1, 2, and 3 is to discard the data and place the input line
in service. No default action Is taken by DFHTACP for condition 4 or 5; therefore,
the input line is placed in service, but with the same message still to be
processed, thereby preventing CICS from reading any subsequent messages
from the input queue.

To allow processing of input to continue, DFHTEP may take either of the
following steps:

• If the input line is placed in service by DFHTEP, the CICS/TCAM interface
retries the operation. In this case, a count mechanism is recommended in
DFHTEP to prevent a loop occurring if the task never issues a READ, or a
TeTTE never becomes available, or:

• Perhaps when a count limit is reached, DFHTEP might abend the task,
dispose of the data, and place the line in service.

For further information concerning DFHTEP, see "Terminal error program" on
page 72.

The problem of unsolicited input caused by condition 5 can be eliminated
entirely by having a separate TCAM input process queue for each CICS terminal
(TCTTE). However, as the number of terminals increases, this solution may
quickly use up too much main storage.

You should analyze the type of traffic that you anticipate over the queues. If a
2770 Data Communication System, or a 2780 Data Transmission Terminal, is to
read in volumes of cards, you should consider having separate queues for these
devices. However, devices can share queues if traffic is conversational with
short-lived tasks. The same TCAM output process queue can be specified for
multiple input process queues. (See the discussion of the DFHTCT
TYPE = LlNE,OUTQ = symbolic name specification in the CICSIMVS Resource
Definition (Macro) manual.)

You need not be concerned with locking of the TCAM output process queue,
because TCAM requeues the data according to its final destination once it
arrives over the output queue.

It is possible for the TCAM output process queue to become congested because
of lack of queuing space. In this case, CICS has a WRITE to the queue
outstanding until TCAM accepts the data.

If the length of a message passed to a TCAM queue exceeds the queue's block
size (specified In the DCB), DFHTCAM will cause DFHTACP to be attached with
"output area exceeded" (error code X'8F').

218 CICS/MVS 2.1.2 Customlzation Guide

TCAM devices
In a non-TCAM environment, the CICS terminal control program is responsible
for polling and addressing terminals, code translation, transaction Initiation, task
and line synchronization, and the line control necessary to read from or write to .
a terminal. When TCAM is specified, terminal control relinquishes responsibility
to the TCAM MCP for polling and addressing terminals, code translation, and
line control. To take advantage of TCAM facilities, code in the MCP message
handler functions, such as code translation, which were previously handled by
the CICS terminal control program.

For some terminal services, it is necessary for CICS to pass the user request on
to the TCAM MCP message handler. A communication control byte (2 bytes in
TCAM SNA) in the TCAM work area has been established for this purpose. It is
passed to TCAM along with the 8-byte destination name field. You must execute
the appropriate MCP message-handler macro instructions according to the
contents of the communication byte.

The terminal services parameters that do not set bits in the communication
control byte are WRITE, WAIT, and SAVE. Bits in the communication control byte
are set for the DISCONNECT, FMH, and CONVERSE parameters, and for the
LAST parameter on the WRITE macro.

The CICS/TCAM interface does not support the RESET parameter or the 3270
parameters READS and COPY.

All messages to TeAM from CICS are prefixed with the standard CICS/TCAM
communication area. This Is one byte for the non-SNA TCAM interface, and two
for the TCAM SNA interface (that is, when TCAMFET = SNA is specified in
DFHTCT TYPE = LINE). This area is used to convey to TCAM special requests
and options that cannot be used within CICS.

The format of the communication area is:

First byte

FMH present in stream
Extended CCB (2-byte CCB)
DISCONNECT request
READL (read keyboard)
WRITEL (write keyboard)

X'01'
X'04'
X'0S'
X'10'
X'20'

Second byte (present if extended CCB ;s on)

Last output from transaction
READ requested after this WRITE

X'01' (WRITE,LAST)
X'02' (WRITE,READ request

or CONVERSE)

All other flags are reserved and are set to 0.

Chapter 4.2. The CICS/TCAM Interface 219

Generalized TCAM message format
Messages passed to CICS from TCAM and vice versa have the following format:

Destination CCB

8 bytes 2 bytes
(optional)
(SNA only)

Destination

CCB

Device-dependent FMH Message
data

x bytes y bytes
(device- (SNA only)
dependent)

Destination name (8 bytes) taken from TCTTE's netname
parameter or from DEST specification on output.

Communication control byte(s) This determines the
options specified for the message (for example, whether
an FMH is present or not). The length of the CCB varies,
and can be:

o bytes (input message non-SNA)
1 byte (output message non-SNA)
2 bytes (input/output messages - SNA).

Device-dependent data Dependent on the device - 3270, or other. See the
following sections on the relevant devices.

FMH

Message

TCAM with 3270 devices

Function management header.

SNA only = length in first byte
non-SNA = not applicable.

User data.

The CCB and device-dependent data for an input message from TCAM to CICS
have the following format:

CCBl CCB2 Attention CURSOR
1 byte 1 byte identifier 2 bytes

SNA only SNA only 1 byte

The CCB is present for TCAM SNA lines only.

220 CICS/MVS 2.1.2 Customization Guide

TeAM user exits

The CCB and device-dependent data for 3270 output messages from CICS to
TCAM have the following format:

CCB1 CCB2 1 2 3
1 byte 1 byte 1 byte 1 byte 1 byte

(2 bytes - SNA) device-dependent data (1 byte - non-SNA)

1 Escape character 2 Command 3 WCC (write
control character)

All SOHO/o status messages input to CICS are passed to OFHTACP or OFHTEP.

Terminal control copy and read buffer requests are not supported by the
CICS/TCAM interface.

In addition to normal read/write functions, the ERASEAUP, CTLCHAR, and
UCTRAN operands are also valid for the 3270.

All 3270 printer scheduling and error handling is provided by the TCAM message
handler.

The user data stream for 3270 data stream devices contains user data and
control characters.

Note: For 3270 SOLC devices, the escape character must be removed by the
message handler.

There are three TCAM user exits. How to use global user exits is described in
"Chapter 5.1. Global user exits" on page 289.

The three user exits are XTCATT, XTCTIN, and XTCTOUT. Whereas XTCATT is
shared by other users, XTCTIN and XTCTOUT are available only to TCAM users,
and are in place of the XTCIN and XTCOUT exits used by others.

Task attach user exit (XTCATT)
The XTCATT exit is invoked prior to issuing a task control ATTACH for a
transaction identification received in response to polling. In the CICS/TCAM
interface, this information is received over the TCAM input process queue.

Chapter 4.2. The CICS/TCAM Interface 221

Input user exit ()(TCTIN)
The XTCTIN exit is invoked following the completion of any input event, (that is,
after the individual TCTTE has been located, but just before CICS checks to see if
a task is attached to the TCTTE). At this time, the LlOA contains the 12-byte
storage accounting field and the work area from TCAM. The work area contains
an 8-byte source terminal identification header, the CCSs (if TCAM SNA), and the
work unit (user data). TIOASAR (register 4) points to the line I/O area containing
the origin field and user transaction data. TCTTEAR (register 2) points to the
corresponding TeTTE for this message, and the TCTTEDA field within the TCTTE
pOints to the TIOA that is to be used to contain the edited message.

You have two options when returning from the user exit. If a return code of 0 is
issued, CICS removes the 8-byte source terminal Identification field and the
CCSs (if TCAM SNA input). Upon completion, the TIOA contains the 12-byte
CICS storage accounting field and the work unit. (See Figure 19 on page 223.)

If you return from the exit with a return code of 4, CICS does not alter the data in
the TIOA. It is then your responsibility to handle the TCAM header.

For a discussion of TCAM work areas and work units, see the OS/VS TeAM
Application Programmer's Guide.

Output user exit (XTCTOUT)
The XTCTOUT exit is invoked for output events before placinn data on the TCAM
output process queue.

You have two options when returning from the exit. If you return from the exit
with a return code of 0, CICS inserts in the TIOA, between the 12-byte CICS
storage accounting field and the work unit, a TCAM header consisting of an
8-byte destination field and the communication control byte, or bytes, required
for TCAM. If you return from the exit with a return code of 0, CICS obtains an
LlOA if necessary, inserts a TCAM header consisting of an 8-byte destination
name, communication control area, and any device dependent data, and copies
user data from the TIOA. The LlOA is then used to transmit the data to the
TCAM queue. If you return from the exit with a return code of 4, CICS bypasses
this insertion routine. It is then your responsibility to ensure that the TCAM
header is properly formatted.

222 CICS/MVS 2.1.2 Customizatlon Guide

TeAM work area
from the input
process queue

Data flow
Figure 19 shows the composition of the TCAM work area, and the CICS line and
terminal input/output areas (UOA and TlOA) at the various stages of operation.

,.---- 8 bytes --.,.--------11-,
Origin
field

Start of &\ Start of A\

worf~ area \ work unit \\

:FMH
I (optional)

: User transaction data
I
I

2 LlO/\ after input
event completion

'\\ \
,.------ 12 bytes ---.\~~'04--------8 bytes---:':'\~\ ... --------- .. ,

, ,
storage
accounting

Origin
field

: FMf~ : User transaction data
I (optional) I

A\
LlOA'\ //

f

:3 TIOA after
CIC8 editing

I.\. LlOA before output
event completion
after CICS
irlsertion routine:

A
LlOA

\,\\

\, \ .. --------.. ---- 12 byt~

TIOA

Storage
accounting

Storag(;1
acoounting

/

-------~\-.. \ .. /.:- x tJYtes ----.. \ , ,
, f

FMH
(optional)

User transaction data

1

Destination
field

ecn: FMH
I (optional)

: User transaction data
I

End of A
wor!" area

HIe work area is placed on the
TeAM output process queue

Figure 19. Stages of TeAM work area and CICS input/output areas

On input 1, note the information available from the TCAM input process queue.
At 2, the CICS/TCAM interface has obtained a line 1/0 area, and has received the
TCAM message into that area. This is the state when input event completion
has just taken place. If default editing is then performed, a TIOA (as at 3) is
obtained and the relevant data is copied from the UOA in 2 to this TIOA (that is,
the origin field, CCB (if any), and device dependent data are removed). This
TIOA is then given to you. On output, a TIOA (as at 3) is provided by the user.
The CICS/TCAM interface obtains an LlOA (at 4) if necessary, and inserts a
destination name, a CCB, and device dependent data before copying the user
transaction data. This information, beginning at the start of the work area, is
placed in the TCAM output process queue.

The TCAM origin field contains the source terminal network name (netname).

The TCAM destination field contains the destination identification so that TCAM
can route the data correctly.

Chapter 4.2. The CICS/TCAM interface 223

If you specify the output user exit and return from the exit with a return code of
4, CICS does not alter the TIOA work area. You must provide the data length at
TIOATDL and prepare the work area for TCAM, which includes the 8-byte
destination field and the communication control byte (bytes if TCAM SNA).

CICS/TCAM startup
The TCAM MCP must be in operation before completing CICS system
initialization. When you bring up CICS with the CICS/TCAM interface, CICS
checks for the presence of a TCAM region and issues the operator message:

DFH1500 - CICS CHECKING FOR TCAM MCP.

If CICS discovers the MCP is not operational, the following messages are issued:

DFH1520 - TCAM MCP IS NOT CURRENTLY AVAILABLE
DFH1520 - REPLY RETRY OR CANCEL OR CONTINUE.

The operator must then respond:

RETRY

when the TCAM region becomes active; or

CANCEL to terminate CICS; or

CONTINUE

to continue initialization of CICS in the absence of the TCAM region.

If the operator responds CONTINUE, all DO cards that refer to a TCAM queue
must have been previously removed from the startup deck to avoid an abnormal
termination of CICS. The CONTINUE response is applicable to a mixed
BTAM/TCAM mode of operation when TCAM lines are not being used during
execution of CICS.

CICS/TCAM ABEND/RESTART
If the TCAM message control program (MCP) terminates abnormally, any TCAM
application programs currently active are automatically terminated abnormally,
providing there is at least one open line group in the MCP. This also applies to
the CICS application program. For further information, see the relevant sections
in the OSIVS TCAM System Programmer's Guide and in the OSIVS TCAM
Application Programmer's Guide. CICS does not provide RESTART capability.

--_._---------_._--------_._----
CICS/TCAM termination

CICS is terminated in the normal manner. No modifications to termination
procedures are required to support the CICS/TCAM interface. If both CICS and
TCAM are being terminated, CICS should be terminated first to avoid an
abnormal termination of CICS.

224 CICS/MVS 2.1.2 Customizatlon Guide

CICS and TCAM: program interrelationship

3270 (Remote)

PG3270
DeB

~)26(t; (Local)

~ tv
L()2260
DeB

Figure 20 illustrates the interrelationship between the TCAM message control
program (MCP) and the TCAM application program. CICS is regarded as an
application program by TCAM.

TeAM Mep

T32C
3271

MH3270
message
tlandler

TOTCAM
message
handler

To CICS
message
handler

OPROC
PCB

R701
TPROCESS

R700
TPROCESS

nlSl
TPROCESS

elcs Application program

i

SDSCI(DCB)

TCTLE J
DDNAME=
Fn270lN
OUTO=

TCnE
"DMMX"

SDSCI(DCB)

TCTLE J I S75A
DDNAME=

IS70B R32700Ul
Write 870A

1-

l,A
TCnE 1-

SDSCI(DCB)

TCTLE J
ODt~AME=
OlN1

Read' OUTO=
TeTTE
"DMMY"

DD Cards WIS1
TPROCE88 ... WI it!? I TRM2]

DDLG3;270

DDLG2260

DD UNIT=xxx

DD UNIT=(a, b)

Figure 20. TeAM message control and application program

DD Cards

//QIN1 DO
//OOUT1 DO
//n3270IN DD
/ /R32700UT DO

lf~M1
lCTTE

O~JAM E == Ii I G 1
O~~AME=WIS1
ONAME=li701
ONAMF.=R700

Chapter 4.2. The CICS/TCAM Interface 225

The following is an example of a TCAM message control program. This MCP
shows the relationship between the MCP definition and the CICS terminal control
table generation. It should not be construed as a typical or usable MCP for
CICS. For further information on MCP definition for a variety of devices, see the
OSIVS TCAM Installation and Migration Guide. An example of a CICS terminal
control table for TCAM is given in the CICSIMVS Resource Definition (Macro)
manual.

TeAM message control program (non-SNA)
MCPCICS CSECT
TCAMINIT INTRO DISK=NO,

PROGID=TCAM/CICS,
LUNITS=40,
r4SUN ITS=20,
KEYLEN=132,
CROSSRF=4,
DLQ=TRM1,
STARTUP=CY,
TRACE=10,
LI NETYP=BOTH,
OLTEST==0

LTR 15,15
BZ OPENLINE

NOEXEC ABEND 123,DUMP
OPENLINE OPEN (PG3270,(INOUT»

TM PG3270+4B,DCBOFLGS
BNO NOEXEC
WTO 'TIME TO START APPLICATION PROGRAM'
READY

FINISH CLOSE (,PG3270)
L 13,4(13)
RETURN (14,12)

PG3270 DCB DSORG=TX,MACRV=(G,P),CPRI=S,DDNAME=DDPG3270,
r~H=MH3270, PC 1= (N, N) , BUFS I ZE=464,
INVLIST=(POLL70R, ,) ,TRANS=EBCD

QPROC PCB MH=TOCICS,
BUFSIZE=464,
RESERVE=(20)

TTABLE LAST=TRM2
RISI TPROCESS PCB=QPROC,QUEUES=MO
WISI TPROCESS PCB=QPROC
R70I TPROCESS PCB=QPROC,QUEUES=MO
R700 TPROCESS PCB=QPROC
l32C TER~lINAL QBY=T ,DCB=LG3270R,RLN~1, TERM==327C,QUEUES=MO
S70A TERMINAL QBY=T ,DCB=PG3270,RLN=I, TERr~==327R,QUEUES=MO,

ADDR=616140402D,NTBLKSl=1856,SECTERM=YES
S70B TERMINAL QBY=T,DCB=PG3270,RLN=I,TERM=327R,QUEUES=MO,

ADDR=6161CICI2D,NTBLKSZ=185G,SECTERM=YES
S75A TERMINAL QBY=T,DCB=PG3270,RLN=1,TERM=327R,QUEUES=MO,

ADDR=E2E240402D,NTBLKSl=1856
POLLSTI INVLIST ORDER=(TRMl+02)
POLLST2 INVLIST ORDER =(TRM2+02)

226 C:ICS/MVS 2.1.2 Customlzatlon Guide

*
*
*
*
*
*
*
*
*
*

*
*

*
*

*

*

*

*

POLL70R INVlIST ORDER =(T32C-C1C17F7F2D,S70A+C1C140402D, *

*
TOTCAM

*

S70B+C1C1C1C12D, *
S75A+C2C27F7F2D, S75A+C2C240402D),
EOT=37

*

STARTMH LC=OUT
INHDR
CODE
FORWARD DEST=C'RIS1'
INMSG
INEND
OUTHDR
OUT END

2260 MH
PROCESS INCOMING MSG HEADER

PROCESS INCOMING COMPLETE MSG
END OF INCOMING SECTION
PROCESS OUTGOING MSG HEADER
END OF OUTGOING SECTION

MH3270 STARTMH LC=OUT,CONV=YES,STOP=YES 3270 MH
INHDR, PROCESS INCOMING MSG HEADER
MSGTYPE X'6C' IS IT A STATUS MESSAGE
B SOH IF SO, BRANCH ROUND
MSGTYPE ALL OTHER MSGS TO HERE
MSGEDIT ((R,CONTRACT,SCAN,(2))),BLANK=NO REMOVE CUDV BYTES

SOH EQU * or OS 0H
CODE
FORWARD DEST=C'R70I'
INBUF INCOMING MSG SEGMENT SECTION
INMSG SECTION FOR COMPLETE MSGS
INEND END INCOMING SECTION
OUTHDR
SETSCAN 1
MSGEDIT ((R"SCAN)) REMOVE CCB
MSGFORM SETS IN LINE CONTROL CHARS
CODE
OUTBUF,
OUTMSG
OUTEND END OUTPUT SECTION

TOCICS STARTMH LC=OUT MH FOR APPLICATION
INHDR
CODE TRANSLATE TO EBCDIC
FORWARD DEST=PUT WRITE TO CICS
INEND
OUTHDR
OUT END

DCBOFLGS EQU X'l0'
END

Chapter 4.2. The CICS/TCAM Interface 227

Chapter 4.3. Writing a transaction to IPL the IBM System/7

Diagnosis, Modification, and Tuning Information

The IBM Systeml7 may be used under two line protocols In a CICS environment.
The chapter provides information on writing a transaction to initial program load
(IPL) the System/7 on start/stop and on BSC lines.

----- ----------_.-----------
On a star1/stop line

To IPL the System!7 from CICS, you must write a transaction that issues an
automatic transaction initiation request to either interval control or transient data
control. This transaction is usually initiated from the master terminal or from a
sequential terminal. The initiated transaction is started on the System!7; it then
writes the IPL records to the System!7.

You prepare the IPL records, which must consist of:

• UZERO, a utility module
• UTIPL, a utility module
• System!7 storage load.

UZERO and UTIPL are provided in object deck form on the MSP/7 distribution
tape under member names CAAUZERO and CAAUTIPL, respectively. If
link-edited into the user-written application program, UZERO and UTIPL become
available for transmission in a suitably translated format.

The first two bytes of each of these modules contain a count of the number of
characters in the remainder of the module. These two bytes must be placed In
your TIOA at TIOATDL by the application program. The remainder of the module
is moved to TIOADBA. UZERO and UTIPL may then be transmitted to the
System!7 by issuing terminal output requests with the WAIT option in the
application program.

The System!7 storage load is generated by the formatting utility (FORMAT!7) by
specifying "PARM =TCOM" in the execute card of the formatting job step. The
storage load is comprised of aD-character records that may be read using the
transient data or file control facilities of CICS and transmitted to the System!7 by
issuing a series of terminal output operations with the WAIT option. If a DFHPC
RETURN request is used to allow the System!7 to begin execution, you must
ensure that no automatically initiated transaction is scheduled to begin on the
System!7 until at least 10 seconds have elapsed following execution of the
DFHPC RETURN request.

© Copyright IBM Corp. 1977, 1990 229

For more information concerning the preparation of IPL records for the System/7,
see the publication IBM System/7 MSP/7 Host Program Preparation Facilities /I
on System/360* or System/370: Assembler, Source Preparation Program and
Formatting Utility, GC34-0018.

Using a sse line
CICS supports the IPL of a System/7 with the binary synchronous
communications adapter (BSCA) using a multipoint line only. This feature
requires that a terminal entry (TCTTE) be generated which includes the following
parameters:

TRMTYPE = S/7BSCA,
TRMSTAT=IPL,
TRMADDR = label,
FEATURE = TRANSPARENCY, ...

The DFTRMlST pointed to by the TRMADDR parameter must specify an address
in the form (SEl SEL DC1 DC1 ENQ), where SEl is the System/7 selection
address. This logical terminal is used exclusively for the IPl of the System/7.
One additional TCTTE is required for each logical terminal in the System/7. The
number of logical terminals that reside in a System/7 is limited by the
application program running in the System/7.

No entry should be made in the polling Itst for the System/7 IPL logical terminal.

To IPL the System/7 from CICS, you must write a transaction that issues an
automatic transaction initiation request to either interval control or transient data
control. This transaction is usually initiated from the master terminal or from a
sequential terminal. The initiated transaction is started on the System/7; it then
writes the IPl records to the System/7.

You prepare the IPL records, which consist of the following:

• $UBIPl (the bootstrap loader)
• System/7 storage load.

$UBIPL is supplied with MSP/7. You write and assemble the System/7 storage
load. You must specify CARD format for the execution of FORMAT/7, the MSP/7
formatting utility. The user-written CICS transaction that transmits the $UBIPL
and the storage load records to the System/7 uses the foltowing macro:

DFHTC TYPE = (WRITE,WAIT,TRANSPARENT)

For further information, see MSP/7 Macro Library/Relocatable: Coding the
Input/Output Macros, GC34-0020.

* IBM Trademark. For a list of trademarks see page III.

230 CICS/MVS 2.1.2 Customization Guide

Chapter 4.4. IBM 3735 Programmable Buffered Terminal

This chapter provides a summary of the specific options that must be included in
the CICS system generation and table preparation macro instructions to provide
support for the IBM 3735 Programmable Buffered Terminal in a switched line
network. The 3735 inquiry mode feature is also discussed.

System generation
BTAMOEV = 37350 and ANSWRBK = EXIOVER must be included in the OFHSG
PROGRAM =TCP macro instruction during system generation.

Terminal control table preparation

Inquiry mode

FEATURE = AUTOANSR must be specified in the OFHTCT TYPE = LINE macro
instruction for all terminals on switched-line networks. To support the 3735
Programmable Buffered Terminal, the following must also be specified:

• OFHTCT TYPE = LlNE,ANSWRBK = EXIOVER.

• BTAM OFTRMlST macro instruction of the form SWlST,AN. The user portion
of each 3735 DFTRMLST entry must point to the corresponding TCTTE.

• DFHTCT TYPE = TERMINAL,TRMTYPE = 3735.

If FEATURE = AUTOCAll is specified in the OFHTCT TYPE = LINE macro
instruction, the following must also be specified:

• BTAM DFTRMLST macro instruction of the form SWlST,AO.

• DFHTCT TYPE = TERMINAL,TRMADDR = parameter.

The TRANSID operand is required for batch input in the form TRANSID = xxxx
where xxxx is the transaction identification of the user-written batch processor.

CICS deletes the inquiry header on input and inserts it on output. Therefore;
inquiry applications require that:

• Only one output record is transmitted.

• The output block does not exceed 233 bytes (plus a three-byte inquiry
header).

• The output data stream does not contain characters that are invalid for a
3735. (See the IBM 3735 Programmer's Guide, GC30-3001.)

If multiple inquiries are required In a single connection on a switched line, you
must make provision in the DFHTEP program to keep the line open. To·
accomplish this, you may check for the IOERROR - TIMEOUT condition, a
WRITE TR or READ TQ instruction, and the contents of TCTTEMCI for the value
TCTTEMIQ, which is a hexadecimal blank character (X '40').

@ Copyright '8M Corp. 1977, 1990 231

Chapter 4.5. IBM 3740 Data Entry System

This chapter contains information on the macros and operands that must be
specified during the CICS system generation and table preparation process that
provides support for the IBM 3740 Data Entry System in a switched line network.
The 3740 expanded ID verification feature is also discussed.

System generation
BTAMDEV=3740D must be included in the DFHSG PROGRAM=TCP macro
instruction during system generation.

Sign-on table preparation
For each operator identification card that is used to sign on using the 3741, the
following parameters must be specified in DFHSNT TYPE = ENTRY:

• OPIDENT=ccc
• OPNAME=dd ... d
• NAMFORM = DEC

---_._---------
Terminal control table preparation

ID verification

FEATURE = AUTOANSR must be specified in the OFHTCT TYPE = LINE macro
instruction for all terminals on switched-line networks. To support the 3740 Data
Entry System, the following must be specified:

• STAM DFTRMLST macro instruction of the form SWLST,AN. The user portion
of each 3740 DFTRMLST entry must point to the corresponding TCTTE.

• OFHTCT TYPE = TERMINAL,TRMTYPE = 3740.

If FEATURE = AUTOCALL is specified in the OFHTCT TYPE = LINE macro
instruction, the following must also be specified:

• STAM DFTRMLST macro instruction of the form SWLST,AD.

• DFHTCT TYPE = TERMINAL,TRMADDR = parameter.

If the 3740 does not have ·the expanded 10 verification feature (specified in the
ANSWRSK = EXIOVER operand of DFHTCT TYPE = LINE macro), the first record
(block) from the 3740 must contain only the terminal identification; any other data
in the first block will be disregarded. Data must begin in byte 1 of the second
block.

© Copyright IBM Corp. 1977, 1990 233

Chapter 4.6. IBM 3600 Finance Communication System in a BSC
network

This chapter contains information on the CICS system generation and resource
definition options needed to support the IBM 3600 Finance Communication
System in a BSC network. It also describes the 3600 buffer depletion feature.

System generation
BTAMDEV = 3600 must be specified in DFHSG PROGRAM = TCP to generate 3600
BSC support. Other terminal control program parameters apply as follows:

• FEATURE=TRANSPARENCY must be specified if CICS and 3601 application
programs are to communicate in transparent mode.

DUAlADR = YES must be specified for all logical work stations attached to a
controller which performs dual address character insertion in response to a
general po".

• BSCODE = EBCDIC is required for 3600 BSC support.

• FEATURE = AUTOPOll is required.

• WRAPlST = YES should only be specified if the wrap list feature is to be
included in CIGS.

Terminal control table preparation
The following must be specified in DFHTCT TYPE = SDSCI for 3600 BSC devices:

• DEVICE = 3600 if all terminals in the line group are 3600s or
DEVICE = BSCMDMPT for mixed binary synchronous multipoint devices
present in the line group.

• BSCODE = EBCDIC.

The po" list generated by the DFTRMLST macro must conform to the general
poll requirements described for BAM in IBM 3600 Finance Communication
System: Customer Feature Description for BSC3 Communication, GC22-9026.
cles support requires that a 1-character component address be specified in the
3601 CPGEN as the po" address. If necessary, the 3600 entries must be padded
with leading SYN characters if the line to which the 3600 devices are attached
also contains other device types, because the po" list entries must a" be of the
same length.

The following must be specified In the DFHTCT TYPE = LINE macro:

• TRMTYPE = 3600. If a remote 3270 and a 3600 BSC device are both on one
line, TRMTYPE must specify the remote 3270.

• GENPOLL=YES. This Is the default when TRMTYPE=3600, 3270, or 2980.

• BSCODE = EBCDIC. This is the default.

C> Copyright I BM Corp. 1977, 1990 235

Buffer depletion

• INAREAL must accommodate the maximum input length, including data link
control characters, from any device on the line. If a remote 3270 is attached
to the line, the length must not be less than 254. For 3600 control units
sending unblocked data, the length must not be less than the largest
message segment written ·to the host by any single work station. For 3600
control units sending blocked data, the length must accommodate the
maximum allowable transmission, as specified in the 3600 CPGEN.

The following relate to the DFHTCT TYPE = TERMINAL macro:

• TRMTYPE = 3600 indicates a 3600 SSC device when the SDSCI and LINE
macros have also been specified thus. Otherwise, ACF/VTAM 3600 support
will be generated.

• FEATURE =TRANSPARENCY must be specified if the CICS and 3601
application programs issue transparent writes.

If BUFFER =0 is specified or defaulted, CICS sends output to the 3601 in one
transmission without segmenting it. Thus, both the 3601 host input buffers and
the receiving work station's host input segment must be large enough to
accommodate any CICS application program or system message that can be
sent to the work station.

SMS parameters must not be specified, as BMS does not support 3600 SSC
devices.

Buffer depletion occurs when the CICS terminal control program attempts to
send a message segment to a 3600 controller and receives an indication that the
3600 has no buffers currently available to receive data from the host. Each data
transmission from CICS occupies a 3600 controller buffer until a work station
reads the data into its work area. Thus, buffer depletion may occur when 3600
work stations are not reading data sent by the host. If the CICS terminal control
program detects a buffer depletion condition, it waits 1.5 seconds and then
retransmits the segment. This sequence is repeated until the 3601 has a buffer
available to receive the segment, or until some other error occurs.

End of Diagnosis, Modification, and Tuning Information ____ --'

236 CICS/MVS 2.1.2 Customlzation Guide

Chapter 4.7. Modifying the terminal control table

Impo~ant ~---~

There are two ways to modify the terminal control table (TCT) dynamically:

Using the macros described in this chapter

Using the commands described in "Chapter 5.9. Examining and
modifying resource attributes" on page 423.

The use of commands is recommended because this provides upwards
compatibility with later CICS releases and because commands can be issued
from all supported languages.

This chapter provides reference information on the macro and operands of the
terminal control macro instruction interface (DFHTC CTYPE macros). The
functions and relevant macro instructions of this interface are:

• Scanning the terminal control table (DFHTC CTYPE = LOCATE)
• Changing the status of a logical unit (DFHTC CTYPE = STATUS)
• Checking the outcome of any of the above operations (DFHTC

CTYPE = CHECK)
• Issuing an ACF/VTAM indicator (DFHTC CTYPE = COMMAND).

If an address is returned after a DFHTC CTYPE request, it should be assumed to
be valid only until the next CICS request is issued. CICS reserves the right to
reposition internal control blocks during the execution of a transaction.
Therefore, after each CICS request that causes a CICS wait, a new DFHTC
CTYPE request should be issued to readdress the control block.

You should use the OFHTC CTYPE macros only when writing user-specific
routines to handle recovery and error correction conditions.

These macros are only available for use with the macro-level application
programming interface, and only with assembler language.

There is a description of the OFHTC CTYPE macros and operands below.

Notes:

1. You must specify DFHTCTZE CICSYST=YES and DFHTCA CICSYST=YES in
order to generate the system portions of the TCTTE and TCA DSECTs, which
are required for any program that uses the OFHTC CTYPE requests and
commands.

2. Field TCATPTA may be an input and an output field. A value placed in
TCATPTA will be overwritten by the answer, for example, if you are using the
TERM = 10 operand.

3. At the command level, EXEC CICS INQUIRE and SET commands may be used
to perform similar functions to those described in this chapter. You should
look at "Chapter 5.9. Examining and modifying resource attributes" on
page 423 to see if you can use command level rather than macro level.

@ Copyright I BM Corp. 1977, 1990 237

Terminal locate function - DFHTC CTYPE = LOCATE
You may use the DFHTC CTYPE = LOCATE macro instruction to:

• Find the TCTTE for a local or remote terminal, or a session.
• Find the TCTSE (system entry) for a route to a CICS region in the network.
• Retrieve LDC information associated with a TCTTE.
• Scan the TCT from top to bottom.

The locate function allows you to perform any of the above operations without
being concerned with the structure of the terminal control table. For example,
you can use the function to keep track of the availability of certain printers to
schedule output to them, instead of implementing table-dependent application
programs to do so.

DFHTC CTYPE=LOCATE
[,DOMAIN={LOCALIREMOTEIALL

ISYSTEMISESSIONS}]
[,ERROR=symbolic-address]
[,INVADDR=symbolic-address]
[,INVID=symbolic-address]
[,LASTTRM=symbolic-address]
[,LDC={DEFAULTIYES}]
[,NETNAME={FIRSTINEXTIID}]
[,NORESP=symbolic-address]
[,SELECT=([INTLOG] [,NOINTLOG] [,INSRV]

[, OUTSRV] [, VTAM]
[,PRIMARY] [,SECONDARY]
[,RELEASED] [,ACQUIRED])]

[,STATUS=([INTLOG] [,NOINTLOG] [,INSRV]
[,OUTSRV] [,VTAM]
[,PRIMARY] [,SECONDARY]
[,RELEASED) [,ACQUIRED])]

[,TERM={ADRIFIRSTIIDINEXTILOCALIUNIQUE}]
[,TRMADDR=([regl] [,reg2])]
[,XLATEID=UNIQUE]

CTYPE = LOCATE
Requests the address of a terminal entry or a system entry in the TCT and
optionally, either the address of an LDC entry in the system LDC table, or the
unique compound name that identifies the object in the whole network.

DOMAIN = {LOCALIREMOTEIALLISYSTEMISESSIONS}
Specifies the scope of the search to be carried out and implies the type of
object to be found. The default is DOMAIN = LOCAL.

LOCAL
Locates a full TCTTE describing either a terminal belonging to this CICS
region or a session connecting this region to another. The address of
the TCTTE is returned in field TCATPTA. (Alternatively, a system entry
(TCTSE) may be found, see TERM = 10 on page 242.

238 CICS/MVS 2.1.2 Customlzatlon Guide

REMOTE
Locates a model TCTTE describing a terminal belonging to another CICS
region. The address of the TCTTE is returned in field TCATPTA. This
TeTTE contains all the known attributes of the remote terminal and the
field TCTTESKA in the model points to the skeleton terminal entry, a
small control block identifying the remote terminal to the home region.

ALL
Locates either a full (belonging to the home region) or a model
(describing a remotely owned terminal) TCTTE. The address of the full
or model TCTTE is returned in field TCATPTA, and you must determine
which type of TCTTE it is by testing its internal flags.

SYSTEM
Locates a TCTSE (system entry) that identifies one named route to a
CICS region in the network, in this or another processor. There is
always a local system entry that names the home region, and there may
be indirect system entries that own terminals, but imply routing of all
messages via an intermediate region. The address of the TCTSE is
returned in field TCATPT A.

SESSIONS
Locates a TCTTE related to a session with an identified remote region.
The address of the TCTTE is returned in field TCATPTA. Only the
TERM = FIRST and TERM = NEXT formats are supported.

ERROR = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if an error occurs. Errors passed to this exit routine are those not
handled by INVADDR, INVID, INVREQ, or INVLDC.

INVADDR = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the address specified in TCATPTA is not within the appropriate part
of the terminal control table, not properly aligned, or zero for a
DOMAIN = SESSIONS request. This operand is only applicable when an
address is required in TCATPTA.

INVID = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the identifier specified cannot be located in the appropriate table.
This operand is applicable with TERM = 10, TERM = UNIQUE, and
NETNAME = ID.

LASTTRM = symbolic-address
Specifies the entry label of the user-written routine. Control is to be passed
to it if the address that was preset in TCATPTA was:

• That of the last entry in the specified domain of the terminal control table
with TERM = NEXT or NETNAME = NEXT; or,

• If the domain is empty, with TERM = FIRST or NETNAME = FIRST.

Chapter 4.7. Modifying the terminal control table 239

LDC = {DEFAULTIYES}
Requests LDC information (the mnemonic, the numeric value, and/or the
entry in the system LDC table or the extended local LDC list) associated with
a specified TCTTE. If the LDC mnemonic is found, CICS returns (in
TCATPLDA) the address of the LDC entry and (in TCATPLDC), the LDC
numeric value. The LDC operand causes CICS to search the local LDC. table
for the LDC mnemonic. If the LDC mnemonic is found in the local table, the
LDC numeric value is supplied from the local table. If the local table does
not have the numeric value, the LDC value is taken from the system table.
TCATPT A can be preloaded with the address of the TCTTE to be used; if
TCATPTA is preloaded, the TERM operand must be given a value of ADR, or
allowed to default.

Notes:

1. The LDC operand does not apply to 3614 logical units.

2. If an extended local LDC list exists for the terminal specified In the LDC
operand, TCATPLDA is set to point to the extended local LDC list entry.

DEFAULT

YES

Indicates that the default LDC is to be determined for the specified
TCTTE. The default is the first LDC in the LDC list associated with the
TCTTE. The default LDC mnemonic Is returned in TCATPLDM, the
numeric value In TCATPLDC, and the address of the LDC entry in the
system LDC table or the extended local LDC list in TCATPLOA. If the
default cannot be located, TCATPLDM is set to blanks, and TCATPLDC
and TCATPLDA are set to binary zeros.

Indicates that the two-character LDC mnemonic to be used has been
preloaded in TCATPLDM. If TCATPLDM is set to blanks, the default LDC
(as explained in DEFAULT below) is used; the mnemonic of the default is
returned in TCATPLDM along with the other LDC information located. If
the LDC cannot be located, TCATPLDC and TCATPLDA are set to binary
zeros.

NETNAME = {FIRSTINEXTIID}
Specifies that a TCTTE is to be found in the local region, by reference to its
node initialization block (NIB) description. The DOMAIN operand must have
a value of LOCAL or be allowed to default, and if the TERM operand Is
specifies it will be ignored. The values that can be specified for NETNAME
are:

FIRST
Returns the address of the TCTTE associated with the first NIB descriptor
in field TCATPT A.

NEXT
Returns the address of the TCTTE associated with the next NIB
descriptor in field TCATPTA. Note that, on invocation, the field TCATPTA
must contain the address of a TCTTE that has an NIB.

240 CICS/MVS 2.1.2 Customizatlon Guide

10 On invocation, the field TCATPTA must contain the address of an
eight-byte field containing the VTAM netname of a terminal or session.
The address of the first TCTTE will be returned in field TCATPTA.

NOR ESP = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the required operation was performed successfully. The address of
the located entry is returned in TCATPTA. NORESP signifies normal
response.

SELECT= parameter list
Is used when attempting to locate the address of a terminal or session entry
in the TCT if TERM = FIRST or TERM = NEXT is specified. The SELECT option
is ignored if you specify any other TERM value, or if you use it when locating
other types of entry, for example, a system entry. This keyword enables the
user to specify a set of conditional states, at least one of which must be
satisfied for the locate to be successful. The conditions must apply at the
time the locate call is made, and CICS will carry out the tests necessary to
determine whether the terminal or session entry reflects the state required.
For example, if you code a "locate next" with a set of conditions specified by
the SELECT keyword, you are asking CICS to find the next terminal or
session which satisfies one of those conditions. This use of SELECT reduces
substantially the path length of a search for a terminal or session of certain
characteristics compared with a series of locates and individual tests in
physical sequence.

In the list that follows, one or more of the options may be specified. Note
that certain values, for example INSRV and OUTSRV, are mutually exclusive.
If both are coded, CICS will ignore the value coded second.

Note that a similar facility is provided at command level by the EXEC CICS
INQUIRE command, described in "Chapter 5.9. Examining and modifying
resource attributes" on page 423.

INTLOG
Allows CICS to generate a request to create a session to the ACF/VTAM
terminal.

NOINTLOG
Prevents CICS from creating a session to the ACF/VTAM terminal.

INSRV
A terminal or session that Is in service. This means that CICS can
receive input, including binds, from the terminal or session.

OUTSRV
Out of service prevents the terminal from either receiving messages (or
binds) or transmitting input.

VTAM
Only terminals/sessions supporting VTAM are required.

PRIMARY
Sessions marked as primary normally receive before sending.

Chapter 4.7. Modifying the terminal control table 241

SECONDARY
Sessions marked as secondary normally send before receiving.

RELEASED
A session is not, or Is no longer, bound.

ACQUIRED
The session is currently bound.

STATUS = parameter list
See SELECT keyword above for the values that you can specify for STATUS.
The description of the SELECT keyword is also valid for STATUS, but when
you use the STATUS keyword all of the conditions must be satisfied for a
successful locate.

This operand is ignored in either of the following cases:

• It is coded when locating other types of entry; for example, a system
entry.

• TERM = 10 is coded (see the TERM operand of this macro).

TERM = {ADRIFIRSTIIDINEXTILOCALIUNIQUE}
Specifies the format of the data by which the entry is to be located. If the
NETNAME operand is specified, the TERM operand will be ignored. The
default is TERM = ADR.

ADR
Indicates that no searching will be done. The address in field TCATPTA
on invocation will be validated according to the value specified for the
DOMAIN operand. TERM = ADR must be specified or allowed to default if
the LDC operand is specified. TERM = ADR is valid with a DOMAIN value
of LOCAL, REMOTE, or ALL.

FIRST
Finds the first entry according to the value specified for the DOMAIN
operand as follows:

NEXT

• For DOMAIN = LOCAL, REMOTE, or ALL, it finds the first terminal or
session entry in the specified domain.

• For DOMAIN = SYSTEM, it finds the first system entry.

• For DOMAIN = SESSIONS, it finds the first session in the TCTSE
whose address is specified in field TCATPTA on invocation.

Given an entry address in field TCATPTA, finds the next entry of the
same type in that domain. If the domain is local, either all system
entries, or all the local region TCTTEs will be scanned according to the
type of the entry provided. If DOMAIN has a value of ALL, the local
region TCTTEs will be scanned before any model (remote) TCTTEs. If
DOMAIN has a value of SESSIONS, only sessions under the same system
entry as that supplied in TCATPTA are returned.

If field TCA TPT A is set to zero, the effect will be the same as specifying
TERM = FIRST.

242 CICS/MVS 2.1.2 Customlzatlon Guide

10 Finds the entry containing the four-byte identifier of a terminal, session,
or system that has been specified in field TCATPTA. The answer is
returned in field TCATPTA. Only DOMAIN values of LOCAL, REMOTE,
ALL, or SYSTEM are valid with this operand.

LOCAL
Finds the local system entry (TCTSE) that names the home region. The
only DOMAIN value that may be specified with TERM = LOCAL is
SYSTEM.

UNIQUE
Finds the full or model TCTTE corresponding to the two-part identifier
specified. On invocation, field TCATPAPL must contain the eight-byte
netname of a CICS region, and field TCATPTA must contain the terminal
identifier of the terminal in that region. This two-part identification
uniquely identifies any terminal in the network of CICS regions. The
address of the TCTTE will be returned in field TCATPTA. Only DOMAIN
values of REMOTE or ALL are valid with this operand.

TRMAOOR = ([reg1][,reg2])
Use of the keyword TRMADDR enables the caller to avoid both saving the
current TCTTE address into, and restoring the located address from,
TCATPTA.

Registers 1 and 2 are general purpose registers.

1. "Reg1" contains the entry name or holds the address of the current
entry.

If "reg1" is omitted, you must save the details into TCATPTA yourself.

2. "Reg2" will be set on exit to hold the address of the located entry, or
zero.

If "reg2" is omitted, its value will default to the value specified as "reg1".
If "reg1" is also omitted, you must obtain the located entry address from
TCA TPT A yourself.

XLATEIO=UNIQUE
On successful location of a TCTTE, the unique identification of the terminal is
returned as we" as the address of the TCTTE. Field TCATPTA will contain
the netname of the CICS region, and field TCATPRMT will contain the
identifier of the terminal in its own region. If the locate operation finds a
system entry, no unique identification is returned.

Changing status - DFHTC CTVPE=STATUS
The DFHTC CTYPE = STATUS macro instruction should be used to perform any
change of status, instead of directly altering bits in the TCTTE. You should be
aware that, when CICS emergency restart procedures are invoked following a
catastrophic system failure, the status of each logical unit is set to the
specification given in the original terminal control table. This is because none of
the dynamic changes are retained after the failure.

Chapter 4.7. Modifying the terminal control table 243

Oon't use OFHTC CTYPE =5TATU5 against a surrogate TCTTE. This may cause
status logic errors to occur.

DFHTC CTVPE=STATUS
[,ERROR=symbolic-address]

[,INVADDR=symbolic-address]
[,INVID=symbolic-address]
[,INVLDC=symbolic-address]
[,INVREQ=symbolic-address]
[,LASTTRM=symbolic-address]
[,NORESP=symbolic-address]
[,LDC=YES]
[,STATUS=([INSRVIOUTSRV]

[,TRANSCEIVEITRANSACTIONIRECEIVEI
I NPUT I NOPOLL]

[, PAGE I AUTOPAGE]
[,ACQUIREIRELEASE]
[,COLD])]

[,TERM={FIRSTINEXTIID}]

CTYPE = STATUS
Specifies that the status of a logical unit or an LOC is to be changed andlor
the terminal entry is to be located.

ERROR, INVADDR, INVID, INVLDC, INVREQ, LASTTRM, and
NORESP = symbolic-address
Are used to test the CICS response to the request for 5T ATUS. These
operands can be specified in this macro instruction or in a DFHTC
CTYPE = CHECK macro instruction. These operands are defined in the
description of the OFHTC CTYPE = CHECK macro instruction. See "Test CICS
response to CTYPE requests - OFHTC CTYPE = CHECK" on page 246.

LDC=YES
Requests the status change of an LOC represented by the specified LOC
mnemonic in the system LOC table, or in the extended local LOC list. You
should specify LOC = YES and TERM = to change the status of an entry in the
extended local LOC list; otherwise the system LOC list will be searched. You
specify the LOC mnemonic in TCATPLOV before issuing this request.

The LOC operand can only be specified with PAGEl AUTOPAGE status
change requests. This operand does not apply to 3614 logical units.

Note: If you specify LOC = YES and TERM =, the INVLOC condition will be raised
if the extended local LOC list does not exist, or if the LOC specified does not
exist in that list. The system LOC table is not searched if you specify TERM =.

STATUS = logical-unit-status
Requests that the status of a logical unit or an LOC be changed.

The following parameters indicate the status changes for the specified
logical units or the LOC: INSRV, OUTSRV, TRANSCEIVE, TRANSACTION,
RECEIVE, INPUT, NOPOLL, PAGE, AUTOPAGE, ACQUIRE, RELEASE, COLD.

244 CICS/MVS 2.1.2 Customlzatlon Guide

The meanings of these status changes are as follows:

An INSRV (in"service) logical unit is one that can transmit and/or receive
data with CICS.

An OUTSRV (out of service) logical unit is one that can neither transmit to
nor receive data from CICS.

A logical unit in TRANSCEIVE status is a TRANSACTION terminal to which
messages are sent automatically by the user. The automatic transaction
initiation, which is created by a transient data destination reaching a trigger
level or by a time interval (such as message switching), sets a condition in
an appropriate terminal control table terminal entry (TCTTE). If the terminal
status is TRANSCEIVE and if there is no transaction at the terminal, terminal
control initiates the user-defined task. The function of this task Is to send
messages to the terminal.

A logical unit In TRANSACTION status is used in the processing of
transactions such as inquiries or order entries, but cannot receive automatic
output.

A logical unit In RECEIVE status is one to which messages can be sent, but
from which no Input Is allowed.

A logical unit In INPUT status is one which can send messages to CICS but
cannot receive messages from CICS. Note that system messages may be
routed to an input logical unit under certain conditions, for example, when an
Invalid transaction 10 has been entered. This causes OFHZNAC to be
scheduled. You should code a node error program to perform any
user-required action.

NOPOLL indicates that CICS is no longer to attempt to read from the logical
unit.

PAGE indicates that all requests to process data from the paging supervisor
are to be paged, unless specified otherwise in the OFHBMS macro or
command. When paging, the first page from the paging supervisor Is written
when the logical unit becomes available. All subsequent pages In a page
series are written on request of the logical unit (from the operator, If so
designed) using paging commands.

AUTOPAGE Indicates that all requests to process data from the page
supervisor are to be automatically paged unless specified otherwise in the
OFHBMS macro or command. When autopaging, the page supervisor writes
all pages in a page series automatically. Requests to write data directly to
the logical unit are not controlled by the PAGE or AUTOPAGE parameters,
because the page supervisor is not used for direct output.

Note: PAGE and AUTOPAGE only apply to LOC = YES or to TERM =.
ACQUIRE indicates that the specified logical unit is to be acquired from
ACF/VTAM.

RELEASE indicates that the specified logical unit is to be released to
ACF/VTAM.

Chapter 4.7. Modifying the terminal control table 245

ACQUIRE,COLO indicates that the specified logical unit is to be acquired
from ACF/VTAM but that message resynchronization is not to be attempted
with the logical unit. This specification is enforced in the case of a
3270-system terminal, the interactive logical unit (3767, 3770), and the batch
logical unit (3770).

TERM = {FIRSTINEXTIIO}
Indicates that a terminal entry is to be located and its status changed. If
LOC = YES is specified with TERM =, the extended local LOC list for that
terminal (if located) is changed, not the terminal entry. The address is
returned in the TCATPTA. If both the TERM and LOC operands are omitted,
TCATPTA is assumed to contain the address of the terminal entry for which
the STATUS request is being made.

FIRST
Indicates that the first terminal entry in the terminal control table is to be
located.

NEXT
Indicates that the terminal entry following that specified in TCATPTA is to
be located. If TCATPTA is preset with binary zeros, the first terminal
entry is located.

10 Indicates that the terminal entry with a specified terminal 10 is to be
located. TCATPT A must be preset with the terminal 10 (left-justified) and
padded with blanks (X' 40') to fill the four-character field.

If this operand is omitted, it is assumed that TCATPTA has been preset with
the address of the terminal entry to be changed.

Test CICS response to CTYPE requests - DFHTC CTYPE = CHECK
The general format of the OFHTC macro instruction to test the CICS response to
a preceding OFHTC request for LOCATE or STATUS is:

DFHTC CTVPE=CHECK
[,ERROR=symbolic-address]
[,INVADDR=symbolic-address]
[,INVID=symbolic-address]
[,INVLDC=symbolic-address]
[,INVREQ=symbolic-address]
[,LASTTRM=symbolic-address]
[,NORESP=symbolic-address]

CTYPE = CHECK
Indicates that the CICS n~sponse to a DFHTC CTYPE = LOCATE or DFHTC
CTYPE = 8T ATUS request is to be checked.

ERROR = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if an error occurs. Errors passed to this exit routine are those not
handled by INVAODR, INVID, INVREQ, or INVLDC.

246 CICS/MVS 2.1.2 Customization Guide

INVADDR = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the address specified in TCATPTA is not within the limits of the
terminal control table, properly aligned on a fullword boundary, or zero for a
TERM = NEXT form. This operand Is only applicable when an address is
required in TCATPTA.

INVID = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the terminal 10 specified in TCATPTA is not located in the TCT.
This operand is only applicable to TERM = 10.

INVLDC = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the LOC mnemonic is not found in the system LOC table or in the
extended local LOC list. This operand is only applicable to paging status
requests for LOCs.

INVREQ = symbolic-address
Specifies the entry label of the user-written routine to which control is
passed if an erroneous bit setting is deleted during execution of the macro
instruction.

LASTTRM = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the address that was preset in TCATPTA was that of the last
terminal entry in the table. This operand is only applicable to TERM = NEXT.

NOR ESP = symbolic-address
Specifies the entry label of the user-written routine to which control is to be
passed if the required operation was performed successfully. NORESP
signifies normal response.

Command option for logical units - DFHTC CTYPE = COMMAND
You can use the OFHTC CTYPE = COMMAND macro instruction to transmit
indicators from CICS to the logical unit application program. You should use the
indicator interface to request an ACF/VTAM function, rather than directly altering
bits in the TCTTE, which could lead to unpredictable results if any changes are
made in the TCTTE internal structure in the future.

CTYPE=(COMMAND [,WAIT])
[,COMMAND=indicator]

Note: This macro instruction is not valid for ACF/VTAM-supported 3270s. and
will cause an abend if so used. The macro may, however, be used for logical
units in 3270-compatibility mode.

CTYPE = (COMMAND[,WAIT])
Specifies that an ACF/VTAM indicator is to be transmitted. The indicator is
specified in the COMMAND operand.

Chapter 4.7. Modifying the terminal control table 241

COMMAND = indicator
Specifies the type of Indicator to be sent. The following SNA data flow
control and session control commands can be specified:

BID
Requests permission to start a bracket for a particular TCTTE. CICS
uses the BIO command as part of the ATI process for a" logical units that
use bracket protocol.

CANCEL
Requests the receiver to ignore the chained message it is currently
receiving.

CHASE
Forces any pending responses to be returned to CICS.

CLEAR

QC

Resets all sequence numbers to zero, and puts the connection in the
data flow reset state. No data may be sent to, or received from, the
logical unit until the series definition table (SOT) command has been
sent. Only session control commands (STSN and SOT) may be sent
when the connection is in data traffic reset state.

Quiesce-complete is used by a node to respond to a QEC request to
indicate that it is now in quiesce state.

QEC

RQ

Quiesce-at-end-of-chain requests that a logical unit that is either out of
service or in receive-only mode be quiesced (but not released from CICS
control) after the message currently being transmitted from it is received.

Release-quiesce is used by the node that issued the QEC request, and
removes that node from the quiesce state.

SDT
Start-data-traffic removes the specified connection from the data flow
reset state so that the data and data-flow indicators may be sent.

SHUTD
Shutdown indicates that an end-of-day condition has been reached.
CICS sends this command during termination.

SIGNAL
Causes an expedited signal to be sent to the terminal.

STSN
Set-and-test sequence number is used during recovery from a failure to
determine whether any in-flight messages were lost.

CICS always sends ACF/VTAM indicators with definite FME/OR1 response
protocol requested. DFHZCP calls the appropriate routine and returns
control to the requester when the response is received.

248 CICS/MVS 2.1.2 Customization Guide

Chapter 4.8. The user program for automatic installation of terminals

You can use the CEDA DEFINE command to define VTAM-connected resources to
your CICS system. This transaction puts your definitions onto the CICS system
definition file which sets up entries in the terminal control table (TCT). This
method is described in the CICSIMVS Resource Definition (Online) manual. As
an alternative, you can allow CICS to create entries in the TCT whenever VTAM
resources request connection to CICS. The automatic installation (autoinstall)
user program can control this process. A particular advantage of autoinstall is
that the resource occupies storage in the TCT only while it is connected to CICS.
This chapter tells you how to use the CICS-supplied autoinstall program and how
to extend it to suit your own purposes. Before you read this chapter, you should
have read the sections in the CICSIMVS Resource Definition (Online) manual that
describe the CEDA commands that create the environment in which your user
program can work.

If you choose automatic installation for some or all of your terminals, you must:

• Define your terminals in VTAM so that they match the autoinstall model
definitions in CICS.

• Use the default sample program or write your own user program, using the
sample in this chapter as a basis if you want to. (You can write a new
program if the sample does not meet your needs, but it might be a good idea
to try a sample-based program first.)

• Enable the CICS AUTOINSTALL function by using OFHSIT or CEMT.

• Enable your user program using DFHSIT or CEMT.

• Define some AUTOINSTALL models.

Start simply with autoinstall
The autoinstall user program is a command level program. You could execute
the sample prog ram with CEDF by writing a simple program to build a
COMMAREA and EXEC CICS LINK to one of the sample autoinstall programs.
You could then change the parameters dynamically to familiarize yourself with
the program execution and the contents of the various DSECT data fields before
writing your version. After you have determined which devices are to be
autoinstalled, defined the models (TYPETERM and TERMINAL), and installed
them in the CSO, be sure to remove any DFHTCT macro definitions for these
devices.

A useful starting technique
The following technique has proved useful in dealing with the complexities of a
network with multiple types of terminal device. The box contains background
information needed to understand the technique.

© Copyright IBM Corp. 1977, 1990 249

VTAM bind requests ---

The VT AM LOGMOOE table consists of entries called MODEENTs. Each
MODEENT defines a set of characteristics that can be used to bind a session.
With each bind request (CINIT) that CICS receives, VT AM sends MODEENT
data in a request unit (RU). The RU is pointed to by fullword 5 in the
parameter list passed to the user autoinstall prqgram (see page 255) and is
described in the IBM SNA Reference Summary, GA27-3136. The RU data
includes the SNA logical unit (LU) type of the requester.

On receipt of the bind request, the CICS transaction CQRY (invoking module
DFHQRY) queries the requested terminal and determines the terminal
attributes.

Given that the CINIT RU contains the LU type and that the response to CQRY can
provide many of the terminal attributes, within your autoinstall user program, do
the following:

1. Look at the 13th byte of the BIND image in the CINIT RU. This will contain
the LU type (BIND image begins 12 bytes into CINIT RU).

2. Choose a model TYPETERM according to the LU type found in the RU. For
each LU type, there is a CICS-supplied model TYPETERM defined with
QUERY(ALL), which means that all attributes are acquired from the terminal
by CQRY. The model TYPETERMs are listed in Appendix B of the CICS/MVS
Resource Definition (Online) manual. For example, if the device is an LU2
device, set the model name field to DFHLU2 (where QUERY(YES) is defined
in the DFHLU2 TYPETERM) and the query structured field takes care of the
rest.

For devices that do not support query by the CQRY transaction, the program
must make a decision based on the terminal types in the installation. For
example, it might be decided to support these as model 2 devices only.

Implementation checklist

You may need to get a VTAM specialist to help you plan for, and implement,
autoinstall.

If you are installing CICS for the first time, you should read the CICS/MVS
Resource Definition (Online) manual for help in getting ROO started and the first
terminal autoinstalled.

If you have an established CICS system:

1. Decide whether to implement autoinstall. Read this chapter, and the
information in the CICS/I\t1VS Resource Definition (Online) manual. Evaluate
the benerits and the costs for your system.

2. Decide which devices to autoinstall. Read this chapter and analyze the
requirements of your network. Consider the current use of ATI,
AUTOCONNECT, TCTUAs, TL Ts, MRO and IBe.

250 CICS/MVS 2.1.2 Customizatlon Guide

3. If you have not yet started to use ROO for terminals:

• Read about ROO in the CICSIMVS Resource Definition (Online) manual,
and plan your migration using the chapter on "Migrating the TCT to the
CSO".

• Migrate your OFHTCT macros to the CSD, and study the resulting
definitions.

4. Assess the suitability of the definitions listed in the "IBM-Supplied Resource
Definitions, Groups, Lists" appendix in the CICSIMVS Resource Definition
(Online) manual.

5. Create the autoinstall models and TYPETERMs that you will need, trying to
minimize the number, so that the autoinstall program can be as Simple as
possible.

6. Read about the QUERY function in the CICSIMVS Resource Definition
(Online) manual.

7. Ensure that your VTAM LOGMODE table entries are correct.

8. Consider your TERMINAL naming conventions, and decide whether constant,
predictable names are important for your terminals.

9. Design and write an autoinstall program.

10. Test that it will autoinstall terminals you want it to allow, and that it will not
autoinstall any terminals you want it to prevent from logging on to the CICS
system. (Unless explicitly prevented by the program, any terminal that has
no TCT entry is allowed.)

11. If CICS can find no models compatible with the VTAM information describing
the resource, you can create a test autoinstall program that forces the model
name (AUTINSTNAME) you want. With a VTAM buffer trace running, try to
log the device on to CICS. If CICS does not attempt to send a BIND, check
the following:

• Does the model TERMINAL refer to the correct TYPETERM? (Or,
alternatively, is the TYPETERM in question referred to by the correct
TERMINAL definition?)

• Is the TERMINAL definition AUTINSTMOOEL(YES or ONLY)?

• Have you installed the groups containing the autoinstall models
(TERMINAL and TYPETERM definitions)?

If CICS attempts to BIND, compare the device's CINIT RU to the CICS BIND,
and make corrections accordingly.

It is very important that you ensure that the VTAM LOGMODE table entries
for your terminals are correct, rather than define new autoinstall models to
fit incorrectly coded entries. Bear in mind, while you are testing, that CICS
autoinstall will not work if a LOGMODE entry is incorrectly coded.

Note that you cannot force device attributes by specifying them in the
TYPETERM definition. For autoinstall, the attributes defined in the LOGMOOE
entry must match those defined in the model; otherwise the model will not be
selected. You cannot define a terminal one way to VTAM and another way
to CICS.

Chapter 4.8. The user program for a'utomatic Im:tallatlon of terminals 251

12. If it appears that TCT entries are being autoinstalled successfully, ensure that
you are not actually installing them by any other method:

• Check that the groups included in the list named in the GRPLIST operand
of DFHSIT do not include explicit TERMINAL definitions for the terminals

• Check that MIGRATE=COMPLETE is coded in the DFHTCT
TYPE = INITIAL macro.

Using the query facility with autoinstall
The QUERY attribute of the CEDA DEFINE TYPETERM transaction allows you to
leave some features of your terminals undefined until they are connected, when
information about these features can be obtained from the device.

The transaction name is CQRY (module name DFHQRY). It is invoked prior to
the "good morning" message to issue the SNA query structured field command.
This acquires the attributes of the terminal device that has just been connected
to CICS.

When QUERY(ALLICOLD) is used in the CEDA DEFINE TYPETERM transaction,
the query process resets all of the flags that can be set by specific definitions in
the the CEDA DEFINE TERMINAL transaction. These include:

• Extended data stream support
• Color
• PSS (program symbol sets)
• Highlight
• Field validation
• Partitions
• MSR control field
• The following Kanji functions:

Outlining
Mixed fields
Background transparency.

If the query fails, these fields will remain set, and the screen size page size,
AL TSCREEN size, and AL TPAGE size will remain unchanged. If the query
completes without error, these fields will be updated.

However, you can use the CEDA DEFINE TERMINAL transaction to specify
attributes supported by the device, and code QUERY(NO) in the associated
TYPETERM.

Within a CICS trace, there are special trace entries produced to show how these
fields were set after the query. See the CICSIMVS Problem Determination Guide
for a detailed layout of these special trace entries. They are FA (BMS) traces
with a REQD of 81 or 82.

Additional information on this capability may be found in the "Communication
Resources" chapter in the CICSIMVS Resource Definition (Online) manual.

252 CICS/MVS "2.1.2 Customization Guide

Only devices that are ablE! to respond to the Write Structured Field Query, an
extended data stream command, may be defined with the QUERY attribute. In
addition, when using facilities such as protocol converters or the older versions
of VM/CMS PASSTHRU, the use of extended data stream commands may not be
supported.

Coding entries in the VTAM LOGON mode table
Appendix D, "Coding entries In the VTAM LOGON mode table" on page 535
shows you what you must code In your VTAM logmode table for a terminal that
you want to be able to Install automatically.

CICS uses the logmode data in the VTAM logmode table when processing an
autoinstall request. For successful automatic installation, this information must
be correct because CICS conforms to VT AM standards.

The tables in Appendix. D, "Coding entries in the VTAM LOGON mode table" on
page 535 show what you must code in the VTAM MODEENT macros if you want
to use autoinstall. Between them they show the values that must be specified
for each of the operands of the MODEENT macro.

Some of the examples in the appendix correspond exactly to entries in the
IBM-supplied logon mode table called ISTINCLM. Where this is so, the table
gives the name of the entry in ISTINCLM.

The figures showing PSERVIC settings indicate fields called aaaaaaaa,
bbbbbbbb, and so on. The contents of these vary according to certain
specifications of attributes of LUTYPE2 and LUTYPE3 terminals.

The user program
As well as managing your resource definition, your user program can perform
any other processes you want to carry out at this time. Its access to the
command-level interface is that of a normal, nonterminal user task. Some
possible uses are listed on page 260.

The user program receives control when:

• An autoinstall INSTALL request is being processed
• An autoinstall INSTALL has failed
• An autoinstall DELETE request is being processed.

On each invocation of the user program, a parameter list is passed (using the
COMMAREA mechanism of the EXEC CICS LINK command), describing the
function being performed (INSTALL or DELETE), and providing data relevant to
the particular event.

The two events are now described in detail.

Chapter 4.8. The user program for automatic Installation of terminals 253

The user program at INSTALL
You enable and disable the autoinstall option, and change the name of the user
program if you want to, by using:

• The AUTINST operand of DFHSIT

OR

• The CEMT INQUIRE I SET AUTOINSTALL command.

(See the CICSIMVS Resource Definition (Macro) manual for information about
DFHSIT and the CICSIMVS CICS-Supplied Transactions manual for information
about CEMT.)

If autoinstall is operative, the user program receives control at INSTALL when:

1. A VTAM logon request has been received from a resource eligible for
automatic Installation whose NETNAME is not in the TCT,

AND

2. Autoinstall processing has completed to a point where information (a
terminal identifier and autoinstall model name) from the user program is
required in order to proceed.

In this event, the user program is passed a pointer (through DFHEICAP) to a
parameter list that consists of five contiguous fullwords. Figure 21 on page 255
illustrates these fields.

254 CICS/MVS 2.1.2 Customlzation Guide

'FO'

I--_FU_I_lw_o_rd_2_". _____ ---11-------..... 1 LL I LL I Netnam!3

Fullword 3

Fullword 4 nn I nn I
Fullword 5 Autinstnarne _ 1

I\utinstname - n

L.L I LL I CiniLRU ~

Autinstrlarne

Terrninr:ll

PI intm

Altprintm

St.atus byte

Figure 21. User program at INSTALL parameter list

The fullwords in Figure 21 have the following meanings: Fullword number:

1. Function field. Byte 1 indicates the request type. (This is character '0' for
INSTALL.) The remaining three bytes are reserved.

2. Pointer to identifier field. The identifier field consists of a two-byte length
field, followed by the NETNAME of the resource requesting LOGON.

3. Pointer to an array of names of eligible autoinstall models. The array is
preceded by a two-byte field describing the number of eight-byte name
elements in the array. If there are no elements in the array, the number field
is set to zero. This list of names is further described under" Processing."

4. Pointer to return information field. This 21-byte field is set to blanks on input.
It is storage where you may place information for return to the calling
program. The setting of values in this field is discussed later.

5. Pointer to VTAM LOGON data (the CINIT request unit). The data is preceded
by a two-byte length field, indicating the length of the CINIT request unit, and
includes the three-character NS header. The format of the CINIT request unit
is described in the IBM SNA Reference Summary (GA27-3136).

Chapter 4.8. The user program for automatic installation of terminals 255

Processing
At the INSTALL event, the user program is responsible for allowing or denying
the connection of a new terminal resource to the CICS system. This decision
may be based on a number of installation-dependent factors, such as security, or
the total number of connected terminals. CICS takes no part in any such
checking. You decide whether any such checking takes place, and how it is
done. The user program provides you with the means of implementing your
design.

If the user program decides that the autoinstall request is to proceed, then the
values it must return to CICS are:

• The name of an autoinstall model (AUTINSTNAME)

• An associated terminal Identifier (TERMINAL).

These values are both used as input to the INSTALL request. In addition, the
user program must indicate in the status byte if the event is to proceed.

How the model name Is selected
For a device logging on, the model name to be used is normally selected from
the array that is passed in the parameter list (as described in point 3 above).
The autoinstall models in the array are selected by CICS from the complete list
of terminal models because of their compatibility with the VTAM information
describing the resource. The complete list of autoinstall models available to
CICS at any time will comprise a" the definitions with AUTINSTMODEL(YES) and
AUTINSTMODEL(ONLY) that have been installed, both by the GRPLIST on CICS
cold start, and by INSTALL GROUP commands issued by CEDA. The CICSIMVS
Resource Definition (Online) manual describes the definition of models.

Figure 45 on page 535 gives you the information to work out which model types
could be included in a subset of models passed to the user program when a
particular terminal attempts to install. The subset is determined by the VTAM
characteristics of the device attempting to log on. The number in the right-hand
column of the figure indicates the selection of the subset from the full list. When
a terminal with a given combination of DEVICE, SESSIONTYPE and TERMMODEL
attempts to log on, the subset of matching models passed to the user program
includes all the models with DEVICE, SESSIONTYPE and TERMMODEL values
that have a corresponding VTAM category number in the right-hand column of
the table.

For example, if a 3270 printer attempts to autoinstall, the subset of matching
models includes all the types in VTAM category 2 that you have defined as
models. This subset could include any of the following:

DEVICE(3270) TERMMODEL(2)
DEVICE(3270) TERMMODEL(l)
DEVICE(3i70P) TERMMODEL(2)
DEVICE(3270P) TERMMODEL(l)
DEVICE(3275) TERMMODEL(2)
DEVICE(3275) TERMMODEL(l)

256 CICS/MVS 2.1.2 Custornization Guide

Then the user program selects one model that is suitable for the device logging
on. This model is used to build the TCT table entry, and determines the CICS
attributes of the automatically installed terminal. (The IBM-supplied version of
DFHZATDX is coded to select the first one in the subset.)

If CICS can find no models compatible with the VTAM information describing the
resource, word 3 of the parameter list points to an empty array (the initial
half-byte is set to zero). If this occurs, the error message DFH59871 contains a
'BEST FAILURE' model name as a diagnostic aid.

If the user program returns a model name that is not in the subset passed to the
user program, CICS cannot guarantee what will happen when fur1her processing
takes place. It is the user's responsibility to determine the effect of associating
any particular logon request with a particular model name, no interface being
provided to the in-storage "model" objects.

If CICS finds no suitable subset of models, an empty list, pOinted at by fullword 3
of the parameter list (see Figure 21 on page 255), is passed to the user
program. If the user program returns a nonzero status value in these
circumstances, the resulting error message DFH59871 will still contain a 'best
failure' model name, but this is provided for diagnostic purposes only. More
information about the DFH59871 error message is provided on page 258.

In addition to the required information, the user may also supply PRINTER, and
AL TPRINTER values, to be used as additional information on the INSTALL
request.

If the program decides that the autoinstall request is to be rejected, it should not
return any information in the return information fields pointed to by fullword 4 of
the parameter list (see Figure 21 on page 255).

Returning information
The format of the information returned in the fields listed below is defined in the
CICS/MVS Resource Definition (Online) manual.

The fields are:

• AUTINSTNAME - 8 bytes
• TERMINAL - 4 bytes
• PRINTER - 4 bytes
• AL TPRINTER .-. 4 bytes
• status byte -- 1 byte.

To return information, the user program sets the required values into the return
information field (format described above). The status field must be set to binary
zeros.

Having completed processing, the user. program must return to CICS by issuing
an EXEC CICS RETURN command.

Chapter 4.8. The user program for automatic Installation of terminals 257

CICS action on return
When CICS receives control back from the user program, it examines the return
information status field. If this is zero, and if the other required information
supplied is satisfactory, CICS will schedule the new resource for OPNDST in
order to complete the logon request. If VTAM refuses to set up the session, the
user program will be driven again, as though a DELETE had occurred. (See "The
user program at DELETE" on page 259 for details.) This is to allow the user to
free any allocations made on the assumption that this INSTALL request would
succeed - terminal identifiers, for example.

If the return information status field is not zero (or if it was, and the request
failed for some reason), CICS rejects the connection request in the same way as
it rejects an attempt by an unknown terminal to LOGON to CICS when autoinstall
is not enabled.

For all autoinstall activity, messages are written to the transient data destination
CADL. If an INSTALL fails, a message is sent to CADL, with a reason code. You
can therefore check the output from CADL to find out why an autoinstall request
failed.

Details of the best failing match between a model and the BIND-image are
written to the CADL transient data destination if an autoinstall attempt fails for
lack of an exact match.

The message takes the following form:

DFH5987I BEST FAILURE FOR NETNAME: nnnnnnnn,
WAS MODEL_NAME: mmmmmmmm,
MISMATCH BITS: xxxxxxxx •••

where

• 'nnnnnnnn' is the netname of the LU which failed to logon.

• 'mmmmmmmm' is the name of model that gave the best failure (that is, the
one that had the fewest bits different from the BIND-image supplied by
VTAM).

• 'xxxxxxxx ... ' is a string of hexadecimal digits, where 'xx' represents one byte,
and each byte position represents the corresponding byte position in the
BIND-image. A bit set to '1' indicates a mismatch in that position between
the BIND-image from VTAM and the BIND-image associated with the model.

A suggested course of action for the system programmer responsible is as
follows:

1. Determine whether a model such as 'mmmmmmmm' is suitable. If there are
several models which have identical BIND-images, differing only in end-user
options, sllch as OPERSEC, then only the first such model is named in the
above message. It will be up to the user-program to make the choice, when
the logmode table entry is corrected.

2. Identify the entry in the \tTAM logmode tables that is being used.

3. Check that this log mode table entry is not successfully in use with other
applications, so that to change it might cause this other lise of it to fail.

258 CICS/MVS 2.1.2 Customization Guide

4. Amend the logmode table entry by switching the bits corresponding to '1'
bits In the mismatch string. That is, if the bit in the VTAM bind image
corresponding to the bit position set to '1' in 'xxxxxxxx .. .' above is '1', set it
to '0'; if it is '0', set it to '1'.

More information about the meaning of the various bits in a BIND-image, and
some more references, may be found in ACFIVTAM Programming, SC27-0611,
Appendix N. Details of the preparation of VTAM logmode table entries are given
In ACFIVTAM Customization, SC27-0613.

The user program at DELETE
In order to provide symmetry of user control over the autoinstall process, the
user program also receives control at DELETE. That is, when:

• A session with a previously automatically installed resource ends;

OR

• An autoinstall request is accepted by the user program, but the subsequent
INSTALL process fails for some reason.

To make it easier for you to write the user program, these two events may be
considered identical. (There is no difference in the environment that exists, or in
the actions that may need to be performed.)

Invoking the user program at DELETE enables the user to reverse the processes
carried out at INSTALL. (For example, if the user program at INSTALL
increments a count of the total number of automatically installed resources, the
user program at DELETE should decrement that count.)

The user program is passed a pointer, by DFHEICAP, to a parameter list that
consists of two contiguous fullwords. The fullwords have the following meanings:

1. Function field. Byte 1 indicates the request type (this is character '1' for
DELETE). The remaining three bytes are reserved.

2. The terminal identifier of the deleted resource.

1st 2nd 3rd 4th
byte byte byte byte

First Fullword 'Fl'

Second Fullword T e r m n a 1

Figure 22. User program at DELETE parameter list

Note that the named resource has been deleted by the time the user program is
invoked, and will not therefore be found by any TC LOCATE type functions.

Chapter 4.8. The user program for automatic Installation of terminals 259

Processing a rejection for a duplicate TERMID
The autoillstall user program is invoked as for a DELETE. To distinguish this
invocation from a legitimate delete you can issue an EXEC CICS INQUIRE
TERMINAL command. If a terminal entry still exists for the TERMID provided, the
invocation represents a duplicate TERMID error. If the terminal entry no longer
exists, the invocation is for a legitimate DELETE.

Testing and debugging your user program
To help you test the operation of your user program, you can run the program as
a normal terminal-related application. Define your program and initiate it from a
terminal. The parameter list passed to the program is described in "The user
program at INSTALL" on page 254. You can construct a dummy parameter list
in your test program, upon which operations can be performed. Running your
program on a terminal before you use it properly means that you can use the
EDF transaction to help debug your program. You may also make the program
interactive, sending and receiving data from the terminal.

Example program
The example user program (name DFHZATDX), coded in assembler, is listed
below. Programs that perform the same functions are then listed in COBOL and
PLlI, followed by examples of how you could customize the user program.
These sample programs are provided in source form in the CICS212.SAMPLIB
library.

The example user program (assembler version) is supplied in the
CICS212.S0URCE library. The module generated from this source is part of the
pregenerated library shipped in CICS212.LOADLIB. This may be used
unmodified, or it may be used as a base, to which user-dependent processing
may be added. If you choose to alter the code in the example module, take a
copy of the example and modify it. After modification, use DFHEITAL to
translate, assemble and link-edit your module. Then put the load module into a
user library that is concatenated before CICS212.LOADLIB in the DFHRPL
statement. (This procedure applies to completely new modules as well as
modified example modules.) For moreinformalion about this procedure, see the
CICSIMVS Operations Guide. Do not overwrite the example with your
customized module, because subsequent service may overwrite your module.

The default action of the example program, on INSTALL, is to select the first
model in the list, and derive the terminal identifier from the last four nonblank
characters of the NETNAME, set the status byte, and return to CICS. If there are
no models in the list, it returns to CICS with no action.

The default action, on DELETE, is to address the passed parameter list, and
return to CICS with no action.

You can customize the user program to carry out any processing that suits your
installation. Examples of customization are given on page 272, after the example
programs. Here are some customization suggestions.

260 CICS/MVS 2.1.2 Customization Guide

Your user program could:

1. Count and limit the total number of logged-on terminals.

2. Count and limit the number of automatically installed terminals.

3. Keep utilization information about the terminal.

4. Map TERMINAL name and NETNAME.

5. Carry out general logging.

6. Handle special cases (for example, always allow certain terminals or users
to logon).

7. Send messages to the operator.

8. Exercise network-wide control over autoinstall. A network-wide, global
autoinstall user program may reside on one CICS system. When an
autolnstall request Is received by a user program on a remote CICS system,
this global user program may be involved and data may be transferred from
one user program to another.

Assembler example program

*
* MODULE NAME = DFHZATDX

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
* DESCRIPTIVE NAME = C.I.C.S. (VTAM) Autoinstall User Program
*
*
*
* FUNCTION = Provide user input to Autoinsta11 processing
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This module is a component of ZCP.

It is the default Autoinstall user program(i.e. if the
'user does not wish to provide his own). It may be
used as a framework for the user to include his own
processing requirements.

It ;s called via an EXEC CICS LINK command, from
DFHZATD(the Autoinsta11 program).

Input to the module ;s a parameter list addressed by
DFHEICAP.

The program is invoked when:
1) An autoinsta11 INSTALL is in progress
2) An autoinstal1 DELETE has just completed

*
*
*
*
*
*
*
*
*

The function to be performed is indicated via the passed *
parameter list. This is evaluated during common initial- *
ization processing, and control passed to the appropriate*
rout i nee *

Chapter 4.8. The user program for automatic Im:tallatlon of terminals 261

*
* Function 1 - autoinstall INSTALL

*
*
*
*
*
*
*
*
*
*
*
*
*

* --------------------------------
*
*
*
*
*
*
*
*
*
*
* ..
*
*
*
*
*
*
*
*
*
*
* ..
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Parameter list:

Fullword 1 = Function field
Byte 1 Request type(X'F0' for INSTALL)
Byte 2 Reserved
Byte 3 Reserved
Byte 4 Reserved

Fullword 2 ==> Netname
Fullword 3 ==> Model name list
Fullword 4 ==> Return field
Fullword 5 ==> CINIT RU

The format of the data is as follows:

Netname - IxlNetnamel
(where 'x' is 2 byte length of Netname)

Model name list - lyIModellIMode121 ... IModelnl
(where 'y' is a 2 byte number of names in the list; each name
element is 8 bytes in length; y may be zero, in which case no
1 is t f 0 11 ows) .

..
*
*
*
* ..
..
*

.*

*
*
*
*

Return field - IModel_nameITRMIDNTIPRINTTOIALTPRT IStatusl *
18 bytes 14 bytesl4 bytesl4 bytesll byte I *

(A 21 byte field to return selected items and status information)*

CINIT_RU - IzICINIT_RUI
(where 'z' is 2 byte length of CINIT_RU)

*
*
*
*

The purpose of this function is to select a model name, and *
corresponding terminal id to be used as input for an autoinstall *
resource 'builder' request. *
Optionally, Printer and Altprinter values may be supplied. *

*
The default action of this program on this event is a follows: *
Model_name = the first name in the supplied list *
Terminal= the last 4 non-blank characters of the supplied NETNAME*
Printer = not supplied
Altprinter = not supplied

*
*
*

These values are placed in the return field, and the status byte *
set to zero to indicate that a selection has been made. *

*
Return is then made to the calling program. *

*
If the list contains no elements, then no action is taken. *

*
EXIT-NORMAL = *

Exit is via an EXEC CICS RETURN command. *
Status is set to zero if all processing completes normally. *

262 CICS/MVS 2.1.2 Customlzatlon Guide

*
*
*
*
*
*
*

EXIT -ERROR =
Exit is via an EXEC CICS RETURN command.
Status is non-zero on entry to this module, and is left
untouched if any error occurs, hence, a non-zero return
code is passed back to the calling program.

* Function 2 - autoinstall DELETE
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Parameter list:

Fullword 1 =
Byte 1
Byte 2
Byte 3
Byte 4

Fullword 2 =

Function field
Request type(X'Fl' for DELETE)
Reserved
Reserved
Reserved

Terminal id of deleted terminal

This function gives the user the opportunity to perform
processing when an autoinstalled terminal has been deleted.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

The default action of this program is to establish addressability*
to the parameter list, and RETURN. *

*
*
*
*

EXIT -NORMAL =
Exit is via an EXEC CICS RETURN command.

*
*
*
*

*
* ENTRY POINT = DFHZATDX
*
*
*
*
*
*
*

PURPOSE = All Functions

The request type is analyzed, and control passed to the
appropriate routine.

*
*
*
*
*
*
*
*
*

*
* EXTERNAL REFERENCES = None
*
*
*
*
*
*
*
*

ROUTINES =
EXEC CICS RETURN - return to calling program

CONTROL BLOCKS =
See FUNCTION section for description of input parameters

*
*
*
*
*
*
*
*
*
*

-----------------.--
*
* DESCRI PTION
*
* A check is made to ensure the presence of the input parameters
* (passed via COMMAREA). If these do not exist, then return is made
* to the calling program.

*
*
*
*
*
*

Chapter 4.8. The user program for automatic Installation of terminals 263

*
* The type of request(INSTALLloELETE) is then determined, and a
* branch taken to the appropriate function routine(see 'FUNCTION'
* above for details).
*

*
*
*
*
*

oFHEISTG oSECT t

*
INPARMDS oSECT ,
I NPARM0 OS F

ORG INPARM0
INRQTYPE OS XLI
INPARM02 OS XLI
INPARM03 OS XLI
INPARM04 OS XLI

INPARMl
INPARM2
INPARM3
INPARM4
*

ORG
OS
OS
OS
OS

,
A
A
A
A

DLPARMoS oSECT ,
oLPARM0 OS F

ORG DLPARM0
DLRQTYPE OS XLI
oLPARM02 OS XLI
oLPARM03 OS XLI
DLPARM04 OS XLI

ORG ,
oLTERMID OS CL4
*
MOoLSToS oSECT ,
MODLNUM OS XL2
MOoLNAME OS CL8
*
OUTPRMDS oSECT ,
MODNMSEL OS ,CL(L'MODLNAME)
TRMIDSEL OS CL4
PRTTOSEL OS CL4
ALTPTSEL OS CL4
INSTATUS OS CLI
*
NETNAMDS DSECT ,
NETNAMLN OS XL2
NET NAME OS ex
*

DFHEJECT
DFHZATDX CSECT ,

DEFINE INSTALL PARAMETER LIST
FUNCTION FIELD

DEFINE FUNCTION FIELD
- INSTALL REQUEST TYPE
- RESERVED
- RESERVED
- RESERVED

POINTER TO NETNAME
POINTER TO MODEL NAME LIST
POINTER TO RETURN FIELD
POINTER TO CINIT_RU

DEFINE DELETE PARAMETER LIST
FUNCTION FIELD

DEFINE FUNCTION FIELD
- DELETE REQUEST TYPE
- RESERVED
- RESERVED
- RESERVED

TERMID BEING PROCESSED

DEFINE MODEL NAME ENTRY
NUMBER OF ENTRIES IN LIST
FIRST ENTRY IN LIST

DEFINE OUTPUT PARAMETERS
MODEL NAME SELECTED
TERMINAL 10 SELECTED
PRINTTO SELECTED
ALTPRT SELECTED
STATUS INFORMATION

DEFINE NETNAME FIELD
LENGTH OF NETNAME
START OF NETNAME

* *
* *
* *

I NIT I A LIZ A T ION * *
* *
* *

DFHREGS ,
OC EIBCALEN,EIBCALEN
BZ RETURN

264 CICS/MVS 2.1.2 Customlzatlon Guide

EQUATE REGISTERS
ANY COMMAREA?
••• NO, GET OUT

~ R2,DFHEICAP
USING INPARMDS,R2
CLI INRQTYPE,C'0'
BNE DELPROCl
DFHEJECT

ADDRESS INPUT PARAMETER LIST
BASE DSECT'
INSTALL REQUEST?
... NO, CHECK DELETE

* *
* *
* *

INS TAL L PRO C E S SIN G * *
* *
* *

L R4, I NPARM2
USI~G MODLSTDS,R4
OC MODLNUM,MODLNUM
BZ RETURN
L R5,INPARM3
USING OUTPRMDS,R5
L R2,INPARMl
USING NETNAMDS,R2

*

ADDRESS MODEL NAME LIST
BASE DSECT
ANY MODEL NAMES?
... NO, GET OUT
ADDRESS OUTPUT PARAMETER LIST
BASE DSECT
ADDRESS NETNAME INPUT FIELD
BASE DSECT

* SELECT MODEL
*

MVC MODNMSEL,MODLNAME CHOOSE FIRST MODEL NAME
*
* DERIVE TERMID FROM NETNAME
*

L.A R8, NET NAME
LH R5,NETNAMLN
LA R7,4
CR R5,R7
BNH NETNAMSL

ADDRESS NET NAME FIELD
PICK UP NET NAME LENGTH
SET LENGTH FOR COMPARE
NETNAME LONGER THAN 4 CHARS?
... NO, TAKE FIRST N CHARS

NETSCANl OS 0H
* SCAN TO FIND LAST 4 NON-BLANK CHARS

BCTR R5,R0 DECREMENT FOR NEXT CHAR
LA R7,0(R5,R8) ADDRESS NEXT CHAR
CLI 0(R7),C" IS IT BLANK?
BE NETSCANl ... YES, TRY NEXT CHARACTER
LA R7,3 SET LENGTH FOR SUBTRACT
AR R8,R5 ADDRESS END OF NETNAME
SR R8,R7 ADDRESS LAST 4 NON-BLANK CHARS
LA R5,4 SET LENGTH DF 4 FOR MOVE

NETNAMSL OS 0H
* MOVE DERIVED TERMID TO RETURN FIELD. R8==>START ADDR, R5=LENGTH

BCTR R5,R0 SET LENGTH FOR EXECUTE
EX R5,TERMIDMV SELECT TERMID

*
* SELECTIONS COMPLETE, RETURN
*

MVI
B

*
TERMID~'V MVC
*

DROP
DROP
DROP

*

INSTATUS,X'00'
RETURN

TRMIDSEL(0),0(R8)

R2
R4
R5

INDICATE ALL OK
EXIT PROGRAt~

EXECUTED MOVE FOR TERMID SELECTION

Chapter 4.8. The user program for automatic Installation of terminals 265

DFHEJECT
**********~**

* *
* *
* *

DEL E T E PRO C E S SIN G * *
* *
* *

DELPROCI DS 0H

USING DLPARMDS,R2
CLI DLRQTYPE,C'l'
BNE RETURN

* ==> PUT DELETE CODE HERE
B RETURN

*
DFHEJECT

RETURN DS 0H
EXEC CICS RETURN ,
END DFHZATDX

COBOL version of the example program

BASE DSECT
DELETE REQUEST?
••. NO, ERROR, EXIT

EXIT PROGRAM

The prolog of this program has been omitted. It is based on the assembler
prolog.

*

IDENTIFICATION DIVISION.
PROGRAM-ID. DFHZCTDX.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

* CODES SUPPLIED BY COMMAREA:
*

*

77 INSTALL-CODE PIC X(l) VALUE IS '0'.
77 DELETE-CODE PIC X(l) VALUE IS 'I'.

* STRUCTURE TO ALLOW THE LAST FOUR CHARACTERS TO BE USED AS
* THE NETNAME.
*

*

01 NETNAME-BITS.
02 FIRST -HALF.

03 CHR-1 PIC X(l).
03 CHR-2 PIC X(l).
03 CHR-3 PIC X(l).
03 CHR-4 PIC X(1).

02 SECOND-HALF.
03 CHR-5 PIC X(l).
03 CHR-6 PIC X(l).
03 CHR-7 PIC X(l).
03 CHR-8 PIC X(l).

* TERMINAL IDENTIFIER IS BUILT HERE BEFORE BEING PLACED IN THE
* RETURN FI ELD.
*

01 TERM-IDNT.
02 TERM-CHRI PIC X(l).

266 CICS/MVS 2.1.2 Customlzatlon Guide

*

02 TERM-CHR2 PIC XCI).
02 TERM-CHR3 PIC X(l).
02 TERM-CHR4 PIC XCI).

LINKAGE SECTION.

* COMMAREA FORMAT:
* FULLWORD 1 - FUNCTION FIELD
* BYTE 1 - REQUEST TYPE
* BYTE 2 - RESERVED
* BYTE 3 - RESERVED
* BYTE 4 - RESERVED.
* FULLWORD 2 - POINTER TO NETNAME.
* FULLWORD 3 - POINTER TO MODEL NAME LIST.
* FULLWORD 4 - POINTER TO RETURN FIELD.
* FULLWORD 5 - POINTER TO CINIT_RU.
*

01 DFHCot~MAREA.

*

02 FUNCTION-FIELD.
03 REQUEST-TYPE PIC X(1).
03 REST PIC X(3).

02 NET-PTR PIC S9(8) COMPo
02 MOD-PTR PIC S9(8) COMPo
02 RET-FLD-PTR PIC S9(8) COMPo
02 CINRU-PTR PIC S9(8) COMPo

* PARMLIST ENABLES THE DATA AREAS POINTED TO BY THE COMMAREA
* TO BE ACCESSED
*

01 PARMLIST.
02 FILLER PIC S9(8) COMPo
02 NETNAME-PTR PIC S9(8) COMPo
02 MODENAME-PTR PIC S9(8) COMPo
02 RETFLD-PTR PIC S9(8) COMPo
02 CINITRU-PTR PIC S9(8) COMPo

*
*
*

01 NETNAME.
02 NETNAME-LENGTH PIC S9(2) COMPo
02 NETNAME-NAME PIC X(8).

*
* t10DELNAME IS NOT USED IN THIS PROGRAM AS THE IB'~ SUPPLIED
* AUTOINSTALL MODELS ARE NOT BEING USED. MODELNAME IS A LIST
* OF AUTOINSTALL MODELS SO IF MORE THAN THE FIRST MODEL IS TO
* BE USED A LONGER DEFINITION WILL BE REQUIRED:
*
* 01
*
*
*
*
*
*
*

MODELNAME.
02 MODELNAME-LENGTH PIC X(2).
02 MODELNAME-NAMEI PIC X(8).
02 MODELNAME-NAME2 PIC X(8).
02 MODELNAME-NAME3 PIC X(8).
02 MODELNAME-NAME4 PIC X(8).

.•• ETC.

Chapter 4.8. The user program for automatic Installation of terminals 267

*

81 MODELNAt4E.
82 NO-MODELS PIC S9(2) COMPo
82 MODELNAME-NAME PIC X(8).

* RETURN-FIELD WILL CONTAIN THE DATA TO BE RETURNED TO CICS
*

*

81 RETURN-FIELD.
82 MOD-NAME PIC X(8).
02 INSTANCE-NAME PIC X(4).
82 PRINTTO PIC X(4).
82 ALTPRT PIC X(4).
82 RET-STATUS PIC XC!).

81 CINIT -AREA.
02 CINITRU-LENGTH PIC S9(4).
82 CINITRU PIC X(256).

PROCEDURE DIVISION.

* SET UP ADDRESSABILITY TO THE PARMLIST.
*

SERVICE RELOAD PARMLIST.
*
* CHECK THAT WE HAVE A COMMAREA AND SOME MODELS TO USE, IF NOT
* THEN EXIT
*

*

IF EIBCALEN EQUAL 8 THEN PERFORM RETURN-LINE.
IF NO-MODELS EQUAL 8 THEN PERFORM RETURN-LINE.

* SET UP ADDRESSABILITY TO THE COMMAREA - MOVE POINTERS AND
* THEN RELOAD THE DATA.
*

*

*

*

*

MOVE NET-PTR TO NETNAME-PTR.
SERVICE RELOAD NETNAME.

MOVE MOD-PTR TO MODENAME-PTR.
SERVICE RELOAD MODELNAME.

MOVE RET-FLD-PTR TO RETFLD-PTR.
SERVICE RELOAD RETURN-FIELD.

MOVE CINRU-PTR TO CINITRU-PTR.
SERVICE RELOAD CINIT-AREA.

* EXECUTE THE APPROPRIATE PARAGRAPH FOR INSTALL OR DELETE:
*

*

IF REQUEST-TYPE EQUAL INSTALL-CODE THEN
PERFORM INSTALL-PARAGRAPH.

* IF THE REQUEST WAS AN INSTALL REQUEST THEN THE NEXT TEST
* WILL FAIL ANYWAY, IE. FANCY LOGIC NOT REQUIRED!
*

*

IF REQUEST-TYPE EQUAL DELETE-CODE THEN
PERFORM DELETE-PARAGRAPH.

* RETURN TO CICS.
*

RETURN-LINE.

268 CICS/MVS 2.1.2 Customizatlon Guide

*
*

*

, EXEC CICS RETURN END-EXEC.

INSTALL-PARAGRAPH.

* MOVE THE NETNAME SO THAT IT CAN BE DEALT WITH ON A CHARACTER TO
* CHARACTER BASIS.
*

MOVE NETNAME-NAME TO NETNAME-BITS.
*
* RESET NETNAME LENGTH IF THERE ARE TRAILING SPACES.
*

*

IF NET NAME-LENGTH = 8 AND CHR-8 = I I THEN
MOVE 7 TO NETNAME-LENGTH.

IF NET NAME-LENGTH = 7 AND CHR-7 = I I THEN
MOVE 6 TO NETNAME-LENGTH.

IF NETNAME-LENGTH = 6 AND CHR-6 = I I THEN
MOVE 5 TO NETNAME-LENGTH.

IF NET NAME-LENGTH = 5 AND CHR-5 = I I THEN
MOVE 4 TO NETNAME-LENGTH.

* MAKE UP TERMINAL IDENTIFIER FROM NETNAME.
*

*

IF NETNAME-LENGTH < 5 THEN MOVE FIRST-HALF TO TERM-IDNT.
IF NET NAME-LENGTH = 5 THEN

MOVE CHR-2 TO TERM-CHRl
MOVE CHR-3 TO TERM-CHR2
MOVE CHR-4 TO TERM-CHR3
MOVE CHR-5 TO TERM-CHR4.

IF NETNAME-LENGTH = 6 THEN
MOVE CHR-3 TO TERM-CHRl
MOVE CHR-4 TO TERM-CHR2
MOVE CHR-5 TO TERM-CHR3
MOVE CHR-6 TO TERM-CHR4.

IF NETNAME-LENGTH = 7 THEN
MOVE CHR-4 TO TERM-CHRl
MOVE CHR-5 TO TERM-CHR2
MOVE CHR-6 TO TERM-CHR3
MOVE CHR-7 TO TERM-CHR4.

IF NETNAME-LENGTH = 8 THEN MOVE SECOND-HALF TO TERM-IONT.

* PLACE TERM-IDNT IN RETURN FIELD
*

MOVE TERM-IDNT TO INSTANCE-NAME.
*
* SELECT THE MODEL FROM THE LIST SUPPLIED (THE FIRST MODEL IS
* SELECTED).
*
*

*
MOVE MODELNAME-NAME TO MOO-NAME.

* PUT RETURN CODE e INTO THE STATUS BYTE.
*

*
*

MOVE LOW-VALUES TO RET-STATUS.

Chapter 4.6. The user program for automatic Installation of terminals 269

DELETE-PARAGRAPH.
*
* DELETE CODE IS PLACED HERE.
*
* RETURN TO CICS
*

EXEC CICS RETURN END-EXEC.
* END

STOP RUN.

PL/I version of the example program
The prolog of this program has been omitted. It is based on the assembler
prolog.

DFHZPTDX: PROC (DFHCOM)
OPTIONS(MAIN,REENTRANT) REORDER;

DCl DFHCOM POINTER;
DCl 1 COMM 1 BASED (DFHCOM),

2 DFHFUNC CHAR(l),
/* '0' FOR INSTAll
/* 'I' FOR DELETE

2 FIll CHAR(3) ,
2 DFHNET POINTER,

/* ADDRESS OF NETNAME AREA
2 DFHMDl POINTER,

/* ADDRESS OF MODElS(S) AREA
2 DFHRET POINTER,

/* ADDRESS OF RETURNED DATA AREA
2 DFHCINIT POINTER;

/* ADDRESS OF VTAM CINIT RU
DCl 1 NET BASED(COMM_1.DFHNET),

2 NETNAME CHAR(8) VARYING;
/* NETNAME OF TERMINAL TRYING CONNECTION

DCl 1 MODEL BASED (COMM_1.DFHMDl),
2 NO_MODELS FIXED BIN(15),

/* NUMBER OF MODELS IN lIST
2 MODEl_NAMES(lN REFER (NO_MODELS)) CHAR(8);

/* MODEL NAMES RETURNED BY CICS
DCl 1 RETURN BASED(COMM_l.DFHRET),

2 AUTO_NAME CHAR(8) ,
/* MODEL NAME RETURNED BY EXIT TO CICS

2 NEW_TERMID CHAR(4) ,
/* TERMINAL NAME YOU HAVE DECIDED ON

2 NEW_PRINTER CHAR(4) ,
2 AlT_PRINTER CHAR(4) ,

/* PRINTER NAt~ES YOU HAVE DECIDED ON
·2 AUTO_STAT CHAR(l);

/* SET TO X'00' TO AllOW lOGON
DCl 1 COMM 2 BASED (DFHCOM),

2DFHFUNC CHAR(l),
2 FIll CHAR(3),
2 OlD_TERMID CHAR(4);

/* SET TO TERMID TO DELETE
DCl 1 CINlT BASED(COMM_l.DFHCINIT),

FIXED BIN(15), 2 CINIT LEN

270 CICS/MVS 2.1.2 Customlzatlon Guide

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

lit lENGTH OF CINIT RU */
2 CINIT_RU CHAR(256);

/* CINIT RU ITSELF */
DCl SAVE_NET CHAR(8);

/* TEMP SAVE AREA FOR NETNAME */
DCl (lOW,SUBSTR,CSTG) BUILTIN;
DCl I FIXED BIN(15) INIT (e);
/* THREE MAIN AREAS OF PROCESSING

1 = INSTAll A TERMINAL
2 = DELETE A TERMINAL
3 = PRODUCE INFORMATIONAL MESSAGES

FOR AN INSTALL REQUEST A COMMAREA IS PASSED (AS FOLLOWS)
FULlWORD 1 - FUNCTION FIELD

BYTE 1 = CHARACTER Ie'
BYTES 2-4 RESERVED

FUllWORD 2 ==> NET NAME AREA
BYTES 1-2 LENGTH IN BINARY OF NETNAME
BYTES 3-* NETNAME ITSELF

FULlWORD 3 ==> MODEL NAME lIST
BYTES 1-2 NUMBER OF MODELS IN liST
BYTES 3-*EIGHT BYTE MODEL NAMES

FULlWORD 4 ==> RETURNED DATA TO CICS
BYTES 1-8 AUTO INSTALL MODEL NAME TO USE
BYTES 9-12 NEW TERMINAL IDENTITY (UNIQUE)
BYTES 13-16 RELATED PRINTER IDENTITY
BYTES 17-2e ALTERNATE PRINTER IDENTITY
BYTE 21 RETURN CODE

FUllWORD 5 ==> VTAM CINIT RU
BYTES 1-2 BINARY lENGTH OF CINIT RU
BYTES 3-* CINIT RU ITSELF

THIS EXIT WIll ATTEMPT TO MAKE A TERMID FROM THE NETNAME
AND TAKE THE FIRST MODEL FROM THE SET OF MODELS DEFINED
(FROM THE CSD) , SET UP THE PRINTER
DETAILS AND SET A STATUS CODE OF xee,
ANY STATUS CODE OTHER THAN xee CAUSES CICS TO REJECT THE
AUTOINSTAll ATTEMPT.

FOR A DELETE REQUEST A COMMAREA IS AGAIN PASSED BUT WITH
THE FOLLOWING FORMAT

FULlWORD 1 FUNCTION REQUEST
BYTE 1 CHARACTER 'I'
BYTES 2-4 RESERVED

FUllWORD 2 CHARACTER 4 IDENTITY OF DELETED TERMINAL

EXIT:

IF EIBCAlEN = e
THEN DO;

EXEC CICS RETURN;
END;

SELECT (COMM_l.DFHFUNC);
WHEN ('e') CAll INSTAll;
WHEN ('I') CAll DELETE;
OTHERWISE CALL DUMP;

END;

*/
/* I F NO COM~1AREA * /

/*THEN IGNORE */
/* GENERAL EXIT POINT */

/* CHECK WHAT FUNCTION IS REQUESTED */
/* AND CALL THE APPROPRIATE ROUTINE */

Chapter 4.8. The user program for autc)nlatlc Imitallatlon of terminals 271

INSTALL: PROC REORDER;

IF NO MODELS = 0
THEN GO TO EXIT;

/* INSTALL PROCESS */
/* CHECK IF ANY MODELS PRESENTED BY CICS */

/* IF NO MODELS */
/* THEN EXIT */

AUTO_NAME = MODEL_NAMES{l);
/* MOVE THE NETNAME TO AN 8 BYTE AREA TO WORK ON */

SAVE_NET = NETNAME;
DO I = 8 TO 1 BY -1; /* FIND LAST FOUR NON BLANK */

IF SUBSTR(SAVE_NET,I,I) ~= , ,
THEN LEAVE;

END; /* IF LENGTH LESS THAN 4 USE */
/* NETNAME, OTHERWISE USE */
/* LAST FOUR NON BLANK */

IF I < 4 THEN NEW_TERMID = NETNAME;
ELSE NEW_TERMID = SUBSTR(SAVE_NET,I-3,4);

NEW_PRINTER, ALT_PRINTER = , I;

AUTO_STAT = LOW(I);

GO TO EXIT;
END INSTALL;

/*NOT INTERESTED IN PRINTERS */

/* SET STAT FIELD TO X'00' TO ALLOW
LOGON TO BE PROCESSED */

/* FOR A DELETE REQUEST THERE IS VERY LITTLE TO DO */
DELETE: PROC REORDER;

EXEC CICS RETURN;
END DELETE;

/* ADD DELETE CODE HERE */

DUMP: PROC REORDER; /* PRODUCE A DUMP IF INVALID REQUEST */
EXEC CICS DUMP TASK DUMPCODE('AUTO');
EXEC CICS RETURN;

END DUMP;
END DFHZPTDX;

Customizing the example program
Here are three pieces of code that customize the example user program.

Assembler
This example, in assembler, limits logon to netnames L77 A and L77B. The
model names utilized are known In advance. A logon request from any other
terminal, or a request for a model which cannot be found, will be rejected.

* REGISTER CONVENTIONS = *
* R0 used by DFHEICAL expansion *
* Rl -------"-------"------"---- *
* R2 Base for Input parameters *
* R3 Base for code addressability *
* R4 Base for model name list *
* R5 Base for output parameter l1st *
* R6 Work register *
* R7 -----"------- *
* R8 -----"------- *
* R9 free *
* Rl0 Internal subroutine 1 i nkage return *
* Rll Base for EIB *
* R12 free *

272 CICS/MVS 2.1.2 Customlzatlon Guide

* Rl3 Base for dynamic storage
* Rl4 used by DFHEICAL expansion
* Rl5 -------"-------"------"----

* SELECT MODEL
*

LH R6,TABLEN NUMBER OF VALID NET NAMES
LA R7,TABLE ADDRESS THE TABLE

*
LOOPl CLC NETNAME(4),0(R7) IS THIS NETNAME IN TABLE

BE VAllOT
*

LA R7,l6(R7) NEXT TABLE ENTRY
BCT R6,LOOPl

*
* NOW \I}E KNOW ITS NOT A VALID NETNAME
* SIMPLY RETURN AND THE LOGON IS REJECTED
*

B RETURN
*
* R7 NOW POINTS TO MOOELNAME
VAllOT LH R6,MODLNUM REQUIRED, NOW SEE IF IT WAS

LA R8,MODLNAME PRESENTED TO THE EXIT
*
LOOP2 CLC 8(8,R7) ,0(R8) IS THIS MODELNAME HERE

BE VAll OM
*

LA R8,L'MODLNAME(R8) NEXT MODLNAME
BCT R6,LOOP2

*
*
*
*

NOW WE KNOW THE REQUIRED MODELNAME WAS NOT PRESENTED
TO THIS EXIT BY CICS, A RETURN REJECTS THE LOGON

B RETURN
*
* AT THIS POINT THE MODELNAME WAS FOUND IN THOSE PRESENTED
* IT IS GIVEN TO CICS AND THE NEW TERMID WILL BE
* THE NET NAME
*
VALIOM MVC MODNMSEL,0(R8)

MVC TRMIDSEL,NETNAME
*
*
* SELECTIONS COMPLETE, RETURN
*

MVI INSTATUS,X'00'
B RETURN

*

R8 ~JAS LEFT PO I NT I NG AT MODELNAME
USE NETNAME FOR TERMID(4 CHARS)

INDICATE ALL OK
EXIT PROGRAM

'I: TABLE OF NETNAMES ALLOWED TO LOGON AND THE MODEL NAME
* NECESSARY FOR THE LOGON TO BE SUCCESSFUL
*
* FORMAT OF TABLE :
* BYTES 1 TO 8 NETNAME ALLOWED TO LOGON

*
*
*
*

Chapter 4.8. The user program for automatic Installation of terminals 273

* 9 TO 16 MODEL REQUIRED FOR NETNAME
*

OS
TABLE DC

DC
TABLEN DC

00
CL8'L77A',CL8'3270064'
CL8'L77B',CL8'3270065'
Y((*-TABLE)/16)

*

COBOL
The second example, In COBOL, redefines the NETNAME, so that the last four
characters are used to select a more suitable model than that selected in the
example user program.

*
* Redefine the NETNAME so that the last 4 characters (of 7)
* can be used to select the AUTOINSTAll model to be used.
*
* The netnames to be supplied are known to be of the form:
*
* HVMXNNN
*
* HVM is the prefix
* X is the system name
* NNN is the address of the terminal
*

*

01 NETNAME-BITS.
02 FIRST-CHRS PIC X(3).
02 NEXT-CHRS.

03 NODE-LETTER PIC X(l).
03 NODE-ADDRESS PIC X(3).

02 LAST-CHR PIC X(l).

PROCEDURE DIVISION.

* Select the AUTOINSTALL model to be used according to the
* NODE LETTER (see above). The models to be used are user
* defined.
*
* (It is assumed that the NETNAME supplied in the COMMAREA by CICS
* has been MOVEd to NETNAME-BITS).
*
* If the node letter is C then use model AUT02
* If the terminal NETNAME is HVMC289 (6 special case) then use
* model AUTOL
* Otherwise (node letters A,B,D •••) use model AUT03.
*

274 CICS/MVS 2.1.2 Customlzatlon Guide

PLII

IF NODE-LETTER = ICI THEN MOVE IAUT02 1 TO MOD-NAME.
IF NEXT-CHRS = IC2S9 1 THEN MOVE IAUTOll TO MOD-NAME.
IF NODE-LETTER = IAI THEN MOVE IAUT03 1 TO MOD-NAME.
IF NODE-LETTER = IBI THEN MOVE IAUT03' TO MOD-NAME.
IF NODE-LETTER = 10

1 THEN MOVE IAUT03 1 TO MOD-NAME.

The third example, in PUI, extracts information from the VTAM CINIT RU, which
carries the bind image. Part of this information is the screen presentation
services information, such as the default screen size and alternate screen size.
The alternate screen size is used to determine the model of terminal that is
requesting logon. The presented models are searched for a match, and if there
is no match the first model from those presented is used.

DCL SAVE_CINIT CHAR(256);

DCl 1 SCRNSZ
2 SPARE

2 DHGT

2 DWID

2 AHGT

2 A~JID

/* TEMP SAVE AREA FOR CINIT RU */

BASED(ADDR(SAVE_CINIT)),
CHAR(3l),

/* BYPASS FIRST PART OF CINIT AND REACH */
/* INTO BIND IMAGE CARRIED IN CINIT */

BIT(S),
/* SCREEN DEFAULT HEIGHT IN BIND PS AREA */

BIT (S) ,
/* SCREEN DEFAULT WIDTH IN BIND PS AREA */

BIT(S),
/* SCREEN ALTERNATE HEIGHT IN BIND PS AREA */

BIT(S);
/* SCREEN ALTERNATE WIDTH IN BIND PS AREA */

DCL NAME CHAR(2);
/* USED TO WORK UP A SCREEN MODEL TYPE */

DCl TERMID PIC I9999 1 INIT(l) STATIC;
/* USED TO WORK UP A UNIQUE TERMID */

DCl ENQ CHAR(S) INIT(IAUTOPRGI);
/* USED TO PREVENT MULTIPLE ACCESS TO TERMID */

/* CLEAR THE CINIT SAVE AREA AND MOVE IN THE VTAM CINIT RU */
/* THIS IS USEFUL IF YOU FAIL TO RECOGNIZE THE MODEL */
/* OF TERMINAL, PROVIDE A DUMP AND ANALYSE THIS DATA */

SAVE_CINIT = LOW(256);
SUBSTR(SAVE_CINIT,l,CINIT_LEN) = SUBSTR(CINIT_RU,l,CINIT_LEN);

/* NOW ACCESS THE SCREEN PS AREA IN THE PORTION OF THE BIND
IMAGE PRESENTED IN THE CINIT RU */

/* USING THE SCREEN ALTERNATE HEIGHT AS A GUIDE TO THE MODEL
OF TERMINAL ATTEMPTING LOGON, IF THIS CANNOT BE DETERMINED
THEN DEFAULT TO THE FIRST MODEL IN THE TABLE */

SELECT (AHGT); /* NOW GET SCRN ALTERNATE HEIGHT *

Chapter 4.8. The user program for automatic Installation of terminals 275

WHEN (12) NAME = 'M1';
WHEN (32) NAME = 'M3';
WHEN (43) NAME = 'M4';
WHEN (27) NAME = 'MS';

OTHERWISE NAME = 'M2';

END;

/* MODEL 1 */
/* 3 */
/* 4 */
/* S */

/* 2 */

/* SEARCH THE MODEL ENTRIES FOR A MATCHING ENTRY */
/* THE CRITERION HERE IS THAT A MODEL DEFINITION SHOULD*/
/* CONTAIN THE CHARS M2 FOR A MODEL 2 ETC */
/* E.G. L327eM2, L327eMS */
/* TERMM2, TERMMS * /

DO I = 1 TO NO_MODELS;
IF INDEX(MODEL_NAMES(I),NAME)
THEN GO TO FOUND_MODEL;

END;

NO_MODEL: /* MATCHING ENTRY WAS NOT FOUND, DEFAULT TO FIRST MODEL*/
AUTO_NAME = MODEL_NAMES(l);
GO TO MODEL._EXIT;

FOUND_MODEL: /* MOVE THE SELECTED MODEL NAME TO THE RETURN AREA */
AUTO_NAME = MODEL ... NAMES (I) ;

MODEL_EXIT: /* ENQ TO STOP MULTIPLE UPDATES OF COUNTER */
/* A SIMPLE COUNTER IS USED TO GENERATE UNIQUE */
/* TERMINAL IDENTITIES, SO CONCURRENT ACCESS IS */
/* DENIED TO THIS COUNTER TO ENSURE NO TWO GET */
/* THE SAME IDENTITY OR UPDATE THE COUNTER */

/* TO USE THIS METHOD THE PROGRAM MUST BE DEFINED AS RESIDENT */

EXEC CICS ENQ RESOURCE(ENQ);

NE~J_TERMID = TERMID; /* SET NEW_TERMID TO COUNT VALUE */
TERMID = TERMID + 1; /* INCREASE THE COUNT VALUE BY 1 */
IF TERMID = 9999 THEN TERMID = 1; /* RESET IF TOO LARGE*/

EXEC CICS DEQ RESOURCE(ENQ);

NAME_EXIT: .
NE~'-.PRIN1ER, ALT_PRINTER = LOW(4);

AUTO_STAT = LOW(l);

GO TO EXIT;
END INSTALL;

276 CICS/MVS 2.1.2 Customlzatlon Guide

/*NOT INTERESTED IN PRINTERS */

/* SET STAT FIELD TO X"ee" TO ALLOW
LOGON TO BE PROCESSED */

Chapter 4.9. Exits for "terminal-nat-known" condition

This chapter starts with a brief summary of the circumstances that give rise to
the "terminal-not-known" condition. The body of the chapter describes the exits
that are provided to help you to deal with the condition. The chapter concludes
with a listing of the supplied sample exit program.

The terminal-not-known condition

The terminal-not-known condition can occur when intercommunicating CICS
regions use both SHIPPABLE terminal definitions and automatic transaction
initiation (ATI). The condition is especially likely to arise if autoinstall is used.

SHIPPABLE attribute
Terminals defined with the SHIPPABLE attribute In a terminal-owning region
(TOR) do not need a definition in a connected application-owning region
(AOR). If necessary to support transaction routing, CICS ships a copy of the
definition from the TOR to the AOR. For full information, see the CICSIMVS
Resource Definition (Online) manual.

Automatic transaction Initiation (ATI)
ATI occurs when an internally generated request leads to the initiation of a
transaction. For, example:

An application issues an EXEC CICS START command 1, or
The transient data trigger level is reached.

Two CICS modules handle ATI requests:

The Interval control program processes a START command, checks that the
terminal is known in the local system, and (when any START time
interval elapses) calls the terminal allocation program.

The terminal allocation program is called by the interval control program or
by the transient data triggering mechanism, and checks that the
terminal is known In the local system. If the requested terminal Is
remote, the terminal allocation program ships an ATI request to
the remote system, which initiates transaction routing back to the
local system.

For full information on ATI, see the CICSIMVS Intercommunication Guide.

Termlnal-not-known condition
The termlnal .. not-known condition arises when an ATI request is made for a
terminal not known in the region. An ATI request can occur in the AOR for a
SHIPPABLE terminal before any transaction routing has taken place for the
terminal, and so before the definition of the terminal can have been shipped
from the TOR to the AOR.

1 In this chapter, all statements about START commands apply equally to DFHIC TYPE=INITIATE
and DFHIC TYPE= PUT macros, except that the macros cannot be function shipped.

© Copyright IBM Corp. 1977, 1990 277

The exits

If the terminal-not-known condition occurs, both the interval control program
and the terminal allocation program reject the transaction-initiation request
as TERMIDERR.

--------_ .. '--

To deal with the terminal-not-known condition, CICS provides global user exits in
the interval control and terminal allocation programs.

The exits are XICTENF in the interval control program and XALTENF in the
terminal allocation program

CICS drives the XICTENF exit only when the terminal-not-known condition occurs.
CICS drives the XAL TENF exit only when the terminal-not-knqwn condition occurs
and the terminal allocation program has been invoked by the transient data
trigger level or the interval control program.

The exit program must Indicate whether the terminal exists on another system
and, if so, which one. CICS passes data to the exit program to help it make its
decision. You can use the same exit program at both exit points. CICS supplies
a sample exit program, DFHXTENF (see Figure 23 on page 282), that can be
used at both exits and that can deal unchanged with some typical situations. To
define the exit program to CICS, use the CEDA DEFINE PROGRAM transaction.

The exits are designed to deal with terminal-nat-known conditions that occur in
CICS systems other than the TOR. For a TORI AOR pair, enable the exits in the
the AOR. The exits cannot deal with a terminal-nat-known condition In the TOR
and should not normally be enabled there. If more than one TOR exists, you
may need to enable the exits in each TOR to deal with requests for terminals
owned by other TORs. In this case, the exit program must recognize terminals
that should be owned by this system and reject the request (return. code 0).
Although the exit provides as much data as possible, the logic of your program
depends entirely on your system design. A simple solution to the most complex
case would be to make the name of each terminal reflect the NETNAME or SYSID
of its owning region.

Note: If a CICS APPLID is used simultaneously by two connections (for example,
LU62 and MRO connections exist at the same time between two CICS systems),
both connections have the same NETNAME. If the exit program returns a
NETNAME in this case, CICS may locate the wrong connection, with resulting
failure of transaction initiation. If more than one connection can use the APPLlD,
the exit program should return the SYSID, which uniquely identifies the
connection.

Data passed to exit
For both exits, the address of a parameter list is In the register 1 field (offset =
24 bytes) in the register save area addressed by UEPHMSA. Table 2 on
page 279 shows the contents of the parameter list. The supplied sample exit
program (Figure 23) contains a DSECT, XTEPARMS, which describes the
parameter list.

278 CICS/MVS 2.1.2 Customlzatlon Guide

Data returned by exit
The exit program must set a return code in register 15 as follows:

o terminal does not exist
4 NETNAME returned
8 SYSID returned.

For return codes 4 and 8, the program must place the NETNAME or SYSID in the
fields at offsets 28 and 36 respectively of the parameter list (see Table 2).

Condition arising during initialization

Parameter list

The terminal-not-known condition can arise during restart when the terminal
allocation program is processing transient data queues and expired ICEs. This
is before post-initialization processing, the earliest time that exits can be
enabled by user code. To cover this situation, the SIT operand and override
parameter, ALEXIT, names a program that is enabled for the XAL TENF exit
during initialization. The ALEXIT specification enables the program for
initialization only - you must use an ENABLE command to enable a program for
the XAL TENF exit for subsequent CICS processing (see "Enabling and disabling
an exit program" on page 296).

Table 2 (Page 1 of 3). Parameter list for the XAL TENF and XICTENF exits

OFFSET LENGTH CONTENTS

0 2 On entry to exit program

Type of request.

C'SO' START command with data.
C'S' START command without data.
C'QO' Transient data trigger level reached. _. __ .

2 1 On entry to exit program

Indication for a START command whether the task
issuing the command was started by transaction
routing.

C'Y' A START command was being processed and
the task was being transaction routed.
C'N' A START command was not being processed or
the task was not being transaction routed.

--
3 1 On entry to exit program

Indication for a START command whether the
command was function shipped.

e"Y' A START command was being processed and
the START was function shipped.
C'N' A START command was not being processed or
a START was being processed but it was not function
shipped.

-

Chapter 4.9. Exits for "terminal-not-known" condition 279

Table 2 (Page 2 of 3). Parameter list for the XALTENF and XICTENF exits

OFFSET LENGTH CONTENTS
-

4 4 On entry to exit program

Name of transaction to be run.

8 4 On entry to exit program

Name of terminal the transaction should run on.

(If a transient data trigger level was reached and the
OCT entry specified o ESTFAC - (SYSTEM,sysidnt),
this would contain a SYSID.)

-
12 4 On entry to exit program

For START commands, the name of the current
terminal if the command was transaction routed, or
the name of the session if the command was function
shipped.

For other START commands and for transient data
trigger events, bl anks.

r--.--------
16 8 On entry to exit program

For function-shipped START commands - the
netname of the I ast system the request came from.

For START commands issued in this system by a
task being Transaction Routed to, the netname of the
last system from which the task was routed.

For other START command situations and for
transient data trigger level events, blanks.

-
24 4 On entry to exit program

If the field at offset 16 contains a netname, the
corresponding SYSID.

If the field at offset 16 does not contain a netname,
blanks.

28 8 On entry to exit program

The contents of the field at offset 16.

On exit from exit program if setting a return code
of 4.

Output
field The netname of the system the ATI request should

be sent to.
-'------~- --

280 CICS/MVS 2.1.2 Custornizatlon Guide

Table 2 (Page 3 of 3). Parameter list for the XALTENF and XICTENF exits

OFFSET LENGTH CONTENTS

36 4 On entry to exit program

The contents of the field at offset 24.

On exit from exit program if setting a return code of
8.

Output
field The sysid of the system the ATI request should be

sent to.

Chapter 4.9. Exits for "terminal-nat-known" condition 281

Sample program
One program can be used for both exits or a separate program can be written
for each. Figure 23 shows the supplied sample program DFHXTENF, which can
be used for both exits. DFHXTENF rejects transient data requests, because the
action in this case is very much installation-dependent.

TITLE 'CUSTOMER INFORMATION CONTROL - SAMPLE XICTENF/XALTENF *
GLOBAL USER EXIT PROGRAt4'

DFHXTENF CSECT

* MODULE NAME = DFHXTENF
* DESCRIPTIVE NAME = C.I.C.S./VS Sample XICTENF/XALTENF global exit.
* STATUS = 2.1.0
* FUNCTION =
* DFHXTENF acts as an exit program for the XALTENF and
* XICTENF exits which deal with 'terminal not known'
* conditions. Its purpose is to tell CICS whether the
* terminal exists on another system and, if so, which one.
* It is called by the User Exit Handler but only if required
* and only if the user has enabled it as an exit program
* for the XALTENF exit in DFHALP or XICTENF exit in DFHICP.
*
*
*
*
*
*
*
*
*
*
*
*
*
*

When a START command involving a terminal is issued,
DFHICP checks that the terminal exists. If the locate
fails to find it, DFHICP drives the XICTENF exit.
When DFHALP is asked by DFHICP or Transient Data to
start an ATI task on a given terminal, it checks that
the terminal exists. If the locate fails to find it,
DFHALP drives the XALTENF exit.
DFHALP and DFHICP pass a common set of parameters to their
respective exits to help the exit program make its
decision. The parameter list address is at offset decimal
24 from the location addressed by UEPHMSA. The parameter
list contents are described by the XTEPARMS DSECT below.

DFHXTENF does the following:-

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* *

*
*
*

It decides whether it is dealing with a START request *

*
*
*
*
*
*
*

or a Transient Data request. *
For START requests with a netname passed in, it returns *

the same netname and a return code of 4 (terminal known). *
For START requests with no netname, it constructs a netname *
by taking the first character of the terminal name and *
appending it to the characters 'CICS'. *

For Transient Data requests it rejects the request. *
*
*

1--_. ____ . ____________ _

----------------------------~
Figure 23 (Part 1 of 5). Sample program for XALTENF and XICTENF exits

282 CICS/MVS 2.1.2 Customlzatlon Guide

* NOTES :
* DEPENDENCIES = S/3]0
* DFHXTENF must be defined as a PPT program.
* RESTRICTIONS = None
* REGISTER CONVENTIONS = See the code
* MODULE TYPE = Executable
* PROCESSOR = Assembler
* ATTRIBUTES = Read only, Re-entrant
* ENTRY POINT = DFHXTENA
*
* PURPOSE = see above
*
*
*
*
."

*
*
."

*
*
."

*
*
*
*
."

*
*
*
*
*
*
*

LINKAGE = Called by the User Exit Handler

INPUT =
On entry register 1 addresses a parameter list described
by the DFHUEPAR DSECT. This in turn contains the address
of a parameter list generated by DFHALP or DFHICP. The
contents of the second parameter list are described in
Table 2 on page 279

OUTPUT =
A return code is placed in register 15. If the return
is 4 ('terminal exists'), a netname is passed back in the
second parameter list. If the return code is 8 ('terminal
exists'), a sysid is passed back in the second parameter
1 ist.

EXIT -NORMAL =
DFHXTENF returns to the address that was in register 14
when it was called. Possible return codes in register 15
are:-

o - terminal does not exist
4 - terminal exists, netname returned in parameter list
8 - terminal exists, sysid returned in parameter list

* EXIT-ERROR = none
*
*------------- .. -- *
*
* EXTERNAL REFERENCES = none
*
*-- *
*
* DESCRIPTION - see above
*
*-- *

DFHEJECT

Figure 23 (Part 2 of 5). Sample program for XAL.TENF and XICTENF exits

*
*
."

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

ChaptElr 4.9. Exits for "termlnal-not·known" condition 283

* Parameters passed to the XALTENF and XICTENF exits *

XTEPARMS DSECT
XTEEVENT OS CL2
*
*
*
XTETR
*
*
*
XTEFS
*
*
*

OS CLI

OS CLl

XTETRAN OS CL4
XTEREQTR OS CL4
XTECURTR OS CL4
*
*
*
*
*
XTENETIN OS

XTESVSIN OS

XTENETOT OS

XTESVSOT OS

CLB

CL4

CLB

CL4

exit parameter list @D2A
reason for exit being driven
C'QD'= Transient Data trigger level
CIS ' = START command without data
C'SD' = START command with data
Transaction Routing indicator, START
commands only. C'V' if START issued
by Transaction Routed task.
Otherwise 'N'. IN' for TO
Function Shipping indicator, START
commands only. C'V' if START request
was Function Shipped. Otherwise 'N'.
'N' for TO requests.
transaction id on request @D2A
terminal id on request @D2A
For START commands, the name of the
current terminal if the command was
transaction routed, or the session
10 if the command was function
shipped.
Otherwise blanks.
netname of sysid t if there is
a sysid, or blanks
sysid t if any, passed to exit
or blanks
netname returned by exit for
return code 4.
sysid returned by the exit for
return code B.

@D2A

@D2C

@D2C

* REGISTER DEFINITIONS *

R0 EQU 0 not used
Rl EQU 1 base for parameter list built

by DFHUEH
R2 EQU 2 base for parameter list built

by module calling the exit
R3 EQU 3 not used
R4 EQU 4 not used
R5 EQU 5 not used
R6 EQU 6 not used
R7 EQU 7 not used
R8 EQU 8 not used
Rll EQU 11 base register

Figure 23 (Part 3 of 5). Sample program for XAL TENF and XICTENF exits

284 CICS/MVS 2.1.2 Customization Guide

*

*

*

*

*

*

R12
R13
R14
R15

EQU 12
EQU 13
EQU 14
EQU 15
DFHEJECT
DFHUEXIT TYPE=EP
DFHEJECT

TCA base
standard save area base
return address
entry point address

DFHXTENF CSECT
DFHVM XTENF
ENTRY DFHXTENA

DFHXTENA OS 8H

*

*

*
*
*
*
*

*
*
*

*

*

STM R14,R12,12(R13)
BALR Rll ,8
USING * ,Rll
USING DFHUEPAR,Rl

L
L

R2,UEPHMSA
R2,24(R2)

save registers
set up base register

DFHUEH parameter list

calling module's register save area
calling module's register 1

USING XTEPARMS,R2 calling module's parameter list
Could check the terminal id at this point. In this
program we assume it is valid. We also choose to accept
START requests and reject Transient Data trigger level
events.

ClI XTEEVENT,START
BNE NOTSTART

START command?
no, must be Transient Data

Accept the default netname if we are Function Shipping.
Otherwise build a netname.
CLI XTEFS,YES Function Shipping?
BNE BLDNETNM no, build a netname

LH
B

R15,OKNETNM
EXIT

accept the default netname

BLDNETNM OS 8H
*
*
*
*

*

Build a netname by taking the first character of the
terminal id and appending it to the characters 'CICS'.

MVC XTENETOT,=C'CICS
MVC XTENETOT+4(1),XTEREQTR
LH R15,OKNETNM
B EXIT

Figure 23 (Part 4 of 5). Sample program (or XAL TENF and XICTENF exits

Chapter 4.9. Exits for "terminal-not-known" condition 285

NOTSTART os eH
LH R15,BAD reject Transient Data trigger *

level events
*
EXIT OS eH

L R14,12(R13) restore registers except 15
LM Re,R12.2e(R13) which contains the return code
BR R14

*

* Local equates and constants

BLANKS DC CI for sysid check
BAD DC H'e ' 'terminal does not exist'
OKNETNM DC H'41 'terminal exists ' , netname returned
OKSVSID DC H'8

1 'terminal exists ' , sysid returned
YES EQU CIVI
START EQU CIS'
*

DFHEND DFHXTENF

Figure 23 (Part 5 o(5). Sample program (or XALTENF and XICTENF exits

286 CICS/MVS 2.1.2 Customlzation Guide

Part 5. System enhancements

This part describes how you can enhance CICS code with user-written
enhancements or variations, such as user exit routines or initialization overlays.

"Chapter 5.1. Global user exits" on page 289 describes the CICS user exit
interface and the rnethod~i of incorporating user-written exit routines into CICS
management programs.

"Chapt.er 5.2. Exit to allow modification and redirection of CICS messages" on
page 327 describes an exit that allows the reformatting and redirection of CICS
messages sent to transient data queues.

"Chapter 5.3. File control status exits" on page 343 describes the exits that are
invoked when ENABLE, DISABLE, OPEN, and CLOSE commands are issued
against a file.

"Chapter 5.4. Task-related user exits" on page 345 describes a way of
communicating with non-CICS managers of recoverable system resources.

"Chapter 5.5. Writing postinitialization and termination programs" on page 369
provides guidance on writing programs to be executed during postinitialization
and during system shutdown.

"Chapter 5.6. System initialization overlays" on page 373 describes the
user-written overlays that may be added to the system initialization program.

"Chapter 5.7. CICS security management" on page 377 provides information on
modules DFHXSP, DFHXSE, and DFHACEE, should you wish to create your own
versions of them.

"Chapter 5.8. CICS monitoring facility" on page 38Tdescribes CICS facilities for
collecting information on system performance, system usage, and exceptional
conditions.

"Chapter 5.9. Examining and modifying resource attributes" on page 423
describes how to provide application programs with command-level access to
information about CICS resources.

"Chapter 5.10. CICS interface to JES" on page 465 describes the interface
between the JES spooling capability and a CICS application.

"Chapter 5.11. Finding programs that use CICS macros" on page 481 describes
a CICS-supplied program that helps you to identify application programs that use
CICS macros. This is useful if you want to convert all programs to command
level.

"Chapter 5.12. CEMT programming interface" on·page 483 describes how to u~e
the master terminal transaction, CEMT, from within an application program.

© Copyright IBM Corp. 1977, 1990 287

Chapter 5.1. Global user exits

Global user exits

CICS is designed to fulfil most needs of a database and data-communication
system. Nevertheless, an installation can have special requirements that cannot
be met by the standard system. User exits make it possible to modify the
system without changing its standard user interfaces. You can customize CICS
by using exit programs. These are programs that are executed at various
strategic places within GIGS. In these exits you can modify the subsequent
execution of GICS. CICS supplies two types of exits - global user exits and
task-related user exits.

The aim of exits is to isolate your own special code from the CICS supplied code,
so providing enhanced function with no loss of integrity.

Global user exits are located within GICS management modules. You can code
Assembler programs that are run at these points to modify subsequent CICS
execution. In general, the exits are located at the entry and exit points of
management modules, or before and after significant actions within CICS
modules. "List of exits" on page 290 lists the global user exits. "Exit
descriptions" on page 304 gives detailed descriptions of the exits.

The exit programs are dynamically enabled and disabled by ENABLE and
DISABLE commands. See "Enabling an exit program" on page 296 and
"Disabling an exit program" on page 300.

For an example of a global user exit, see "Chapter 5.2. Exit to allow modification
and redirection of CICS messages" on page 327.

Most global user exit programs cannot contain CICS requests (the exceptions
are programs for exits located in DFHDBP and in transaction backout programs).

Task-related user exits
You can write a CICS user exit program that acts as an interface between
application programs and non-GIGS recoverable system resources. Such an
interface is invoked explicitly by application programs. It becomes part of the
task that invoked it, and can use CICS services. This kind of exit is described in
"Chapter 5.4. Task-related user exits" on page 345.

© Copyright IBM Corp. 1977, 1990 289

List of exits

r--'

Table 3 (Page 1 of 2). CICS eKits

Exit name Location Description

XALTENF DFHALP When a terminal-not-known condition arises

XDBDERR DFHDBP When an error is returned from OLII processing
-

XDBFERR DFHDBP When an error is returned from file control processing

XDBIN DFHDBP After each record is received
------ - -

XDBINIT DFHDBP On module entry
-

XFCIN DFHFCP Before an input event

XFCINC DFHFCP After an input event
-

XFCOUT DFHFCP Before an output event --
XFCOUTC DFHFCP After an output event

XFCREQ DFHFCP Before entry analysis

XFCSREQ DFHFCP Before file request analysis

XFCSREQC DFHFCP After file request analysis
-- --

XGMTEXT DFHGMM Before sending a 'Good morning' message

XICEXP DFHICP After a time interval has expired _._----
XICREQ DFHICP Before request analysis

XICTENF DFHICP When a terminal-not-known condition arises

XISLCLQ DFHISP After a failure to establish a link to a remote system (decision for local
queuing)

-
XJCWR DFHJCP After a journal record has been built in the buffer

XKCAWT DFHKCP After an operating system wait has ended ----_.
XKCBWT DFHKCP Before an operating system wait is to be taken

-
XKCDISP DFHKCP Before a task dispatch

--
XKCREQ DFHKCP Before request analysis

XPCABND DFHPCP Before a dump is taken
r' -

XPCFTCH DFHPCP Before control passes to an application program
----.-- - --

XRCFCER DFHFCBP When CICS file control returns an error during recovery
--------- -- r--'

XRCINIT DFHFCBP, Backout program initialization and termination
DHFUSBP,
DFHTCBP,
DFHDLBP

XRCINPT DFHFCBP, After a backout record has been read

DFHUSBP,
DFHTCBP

-- r--'
XRCOPER DFHFCBP After an error in opening a file during recovery -_._----- ._-- -
XSCREQ DFHSCP Before request analysis ----_._------ ---
XTCATT DFHTCP Before a task is attached -----_.-f-._--
XTCIN DFHTCP After an input event .. ___ 1...--._--

290 CICS/MVS 2.1.2 Customizatlon Guide

Table 3 (Page 2 of 2). CICS exits

Exit name Location Description

XTCOUT DFHTCP Before an output event

XTCRDAT DFHTCP After a 2741 read attention has occurred

XTCTIN DFHTCP After a TCAM input event

XTCTOUT DFHTCP Before a TCAM output event

XTDCOUT DFHTDP Before a write to a CICS system queue

XTDIN DFHTDP Before an input event

XTDOUT DFHTDP Before an output event

XTDREQ DFHTDP Before request analysis

XTSIN DFHTSP After an input event

XTSOUT DFHTSP Before an output event
-

XTSREQ DFHTSP Before request analysis
--

XXRSTAT DFHXRA Before status information is written to the CAVM dataset
-- -

XZCATT DFHZCP Before a task is attached
t--. --

XZCIN DFHZCB After a VTAM input event --
XZCOUT DFHZCB Before a VTAM output event

XZCOUT1 DFHZCB Before a VTAM message is broken up into RUs
i....-. ---_._----

User exit interface
The user exit interface has the following characteristics:

• The use of global user exits requires that the CICS system is initialized with
the SIT operands EXEC = YES and EXITS = YES, for command-level support
and user-exit support, respectively.

For the transaction backout exits, you must also specify the DFHSIT operand
(or override) TBEXITS=(n1,n2,n3,n4), in which n1,n2,n3, and n4 are the
names of your user programs for XRCINIT, XRCINPT, XRCFCER, and
XRCOPER.

To enable the terminal-not-found exit XAL TENF during CICS initialization, you
must specify the DFHSIT operand (or override) ALEXIT. See the CICSIMVS
Operations Guide.

• The exit program is c()mpiled and linked as if it were a normal macro-level
Assembler program - but it cannot contain any calls to CICS services. The
program must reside below the 16MB line, and must be defined in the CSO
or the PPT. If you attempt to enable an exit program that resides above the
16MB line, the INVEXITREQ exceptional condition is raised, as for any error
in the ENABLE command (see "Error responses" on page 302).

• Two or more exit programs can be invoked at a single exit (see "Use of
multiple programs at one exit" on page 293), or, conversely, a single exit
program can be assoc:iated with two or more exits.

Chapter 5.1. Global user exits 291

User exit handler

• Some of the exit programs can provide a return code. For details of exit
processing and the parameters passed by CICS, see "Exit descriptions" on
page 304.

• The use of an EXIT is controlled by EXEC CICS ENABLE and EXEC CICS
DISABLE commands, which can be placed in any type of command-level
program, or run using the CECI transaction.

When enabling an exit program, you can ask CICS to provide a global work
area for use by the exit program. An exit program can have its own global
work area, or two or more exit programs can share a work area. It is
recommended that the global work area is shared only by the user exits
associated with the same management module. The address and length of
the work area are passed as parameters to the exit programs that use it. A
work area is freed when all exit programs that use it are disabled. The way
you do this is described in "Enabling an exit program" on page 296 and
"Disabling an exit program" on page 300.

• If the transaction issues EXEC CICS ENABLE or DISABLE commands and
then abends, any change of exit status is not backed out. Similarly, the
status of an exit is not keypointed. Therefore, exit status is not maintained
over any type of CICS restart.

• When the CICS system is being used in several regions, exit activity is
independent for each region even if the management module is shared.
Therefore, exit programs must be enabled in each region in which t.hey are
to be used.

If there is an exit program associated with an exit point, the code at the exit
point invokes the user exit handler (DFHUEH). DFHUEH saves the calling
module's registers in part of the task's own storage. It then checks if the exit
program is ready to be started. If it is not ready, DFHUEH returns control at
once. If the exit program is ready, this must also mean that it is already resident
in virtual storage and its entry address is known. (If the program is not defined
as resident, it will have been loaded and made "temporarily resident" by the exit
ENABLE process.) See "Enabling an exit program" on page 296. Before
invoking the program, DFHUEH builds a standard parameter list DFHUEPAR (see
page 295), which is passed to the exit via R1. (The management module
registers are addressed by UEPHMSA in this parameter list).

If global user exit tracing is active, 'before exit' trace records are written before
invoking the exit program and 'after trace' records are written when control
returns from to the exit program.

This process is then repeated for any other active routines for the exit (see "Use
of multiple programs at one exit" on page 293). When all the exit programs
have been run, DFHUEH restores the registers and returns to the exit point in the
CICS management module.

292 CICS/MVS 2.1.2 Customization Guide

Use of multiple programs at one exit
You may want to use more than one program at an exit. You can have two or
more application packages that both supply programs to utilize the same CICS
exit. Although such programs can function independently (for example, they can
be activated and started without reference to each other), you should note the
following about activation and the use of return codes.

Although each program will only be called at an exit if it has been enabled, the
order of invocation, once multiple programs have been started, is the order of
activation. Full details about ENABLE are given in "Enabling an exit program"
on page 296. Where programs work on the same data area, the precise order of
invocation must be considered. For example, in a terminal control output exit,
multiple programs might be manipulating the same messags in different ways,
depending upon the wayan earlier exit program acted.

Return code management is more complicated than it is for single programs.
For single programs, a return code other than zero is passed back in register 15,
provided that the value is a positive multiple of 4 within the range defined by the
exit point. Any program subsequently called at the same exit can access the
"current return code" provided by the last program. The new program's user
parameter list includes the address of the "current" value in field UEPCRCA.

The following rules apply to return codes if a second user exit program sets a
different return code from that selected by the previous program.

• If the new program sets the same return code in register 15 as the
currently-established return code (UEPCRCA-addressed), then CICS acts on
that value.

• If the new program sets a value in register 15 different from the current value
in UEPCRCA, CICS ignores both values and resets the "current return code"
to the default (zero).

• If the new program sets an eligible value in register 15 and changes the
"current value" field to match (as addressed by UEPCRCA), then the new
value will be adopted and passed on to the next program (if any) or back to
the CICS calling module.

--_._--------- -----,----
Using an exit

Global user exit programs are reentrant Assembler language programs residing
below the 16MB line. In general, these programs are effectively part of the CICS
nucleus code, and they cannot use CICS services. Therefore, you code and link
your exit as if it were a non-CICS module (that is, you treat it as a macro-level
Assembler program which does not issue any CICS calls). However, exits in the
backout programs are effectively within application code, so macro-level
services are available.

You can issue MVS system requests within the exit, but beware that
ill-considered use of MVS function may seriously effect the efficient running of
CICS.

Chapter 5.1. Global user exits 293

Information is passed to the exit by means of registers, and a return code may
be provided to affect subsequent CICS operation. You can use multiple exit
programs at the same exit point; if you do, you must know how return codes are
handled in this case (see "Use of multiple programs at one exit!! on page 293).

An exit program is not used by CICS until it is activated by an EXEC ENABLE
command. The re-entrant requirement is met by the provision of a work area,
the length of which is specified when the exit is enabled. Serious errors are
likely to occur if the work area length is incorrectly specified. The obtained work
areas are maintained across exit invocations.

Global user exits are release-dependent. No guarantee is given that either the
exit point itself, or its function wiff be unchanged between releases of CICS. You
should ensure that you always check the exit documentation and regenerate all
your exits when migrating to a new release of CICS.

Exit program conventions

[

-- Terminology note

In this section, and for the rest of the chapter, the notation Rn is used to
represent register n. For example, R5 represents register 5.

This section describes the programming interface for the global user exits. Your
exit program must conform to the standards in this section.

1. Upon entry to the exit routine, the following registers have defined values:

Register Value

R1 The address of the exit parameter list (mapped by DFHUEXIT
TYPE=EP)

R12 The address of the user TCA of the invoking task

R13 The address of a standard MVS save area. It does not point to
the eSA

R14 The return address for your exit routine

R15 The entry address of the exit routine.

The other registers are undefined. However, the individual exits may provide
additional information in these registers.

2. The first thing the exit routine must do is save the registers in the save area
addressed by R13.

294 CICS/MVS 2.1.2 Customlzatlon Guide

3. R1 pOints to the exit parameter area which is mapped by the DFHUEXIT
TYPE = EP macro. You should not alter this parameter list.

DFHUEPAR DSECT
UEPEXN DS A ADDRESS OF EXIT NUMBER

ADDRESS OF GLOBAL AREA UEPGAA DS A
* (ZERO = NO WORK AREA)
UEPGAL DS
UEPCRCA DS
UEPTCA DS
UEPCSA DS
UEPEPSA DS

A
A
A
A
A

ADDRESS OF GLOBAL AREA LENGTH
ADDRESS OF CURRENT RETURN-CODE
ADDRESS OF TCA
ADDRESS OF CSA
ADDRESS OF REGISTER SAVE AREA

FOR USE BY EXIT PROGRAM
ADDRESS OF SAVE AREA USED FOR

HOST MODULE'S REGISTERS

*
UEPHMSA DS A

*
UEPEXN points to a XL 1 field that identifies the global user exit which

has been taken. Although user names should not change
across releases, identification numbers do. Consequently, you
must not assume that a named exit will always have the same
identification number. The DFHUEXIT TYPE = EP macro call
defines the identification numbers which you must use for this
purpose.

UEPGAA and UEPGAL
point to the global work area and its halfword length,
respectively. These are set when the exit is enabled. You must
ensure that the length of the workarea is sufficient or serious
errors will occur. The workarea can be shared between all the
exit routines within an exit program, or each routine can have
its own copy. See "Enabling an exit program" on page 296 for
details.

UEPCRCA points to a halfword that contains the return code from the exit
program. This is set to zero for the first exit program that is
invoked at a user exit. If there is more than one program called
at a user exit, this field contains the current return code for
reference by the next program. See also "Use of multiple
programs at one exit" on page 293.

UEPTCA and UEPCSA
contain the address of the current user TCA and the CSA,
respectively. Remember that R13 in the exit does NOT point to
the CSA. The values of R12/13 within UEPHMSA also point to
the TCA & CSA.

UEPEPSA paints to a save area, for the user's exit program to use, to
preserve registers at entry. When the exit program is entered,
register 13 is also pointing to this area. The convention is to
save registers 14, 15,0 ... 12 at offset 12 (decimal) onward.

UEPHMSA pOints to the "host module save area" that DFHUEH first used
when called by the CICS management module. Values for
registers 14, 15,0 ... 13 are stored in this order from offset 12
(decimal) in this area.

Chapter 5.1. Global user exits 295

Apart from register 15, which contains the return code, the
values in this save area are used to reload the registers when
returning from DFHUEH to the calling CICS module. They
should not be corrupted.

4. If you wish your exit routine to issue MVS service calls, you must set R13 to
point to a new MVS-format savearea, call the service, and reset R13 on
return. The suggested location of this savearea is within the exit's workarea.
Remember that use of MVS services can have an considerable impact on the
efficiency of CICS processing.

5. To end the exit routines processing, you must restore all registers apart from
R15 from the R13 save area. If the exit permits the setting of a return code,
this should be placed in R15. Then branch to R14 to return to CICS.

6. If the exit permits the setting of a return code, R15 is checked for validity - if
it is invalid, a default is taken. UEPCRCA is provided for use when more
than one program is invoked at the exit. See "Use of multiple programs at
one exit" on page 293 for details.

Enabling and disabling an exit program
You can dynamically control exit activity by ENABLE and DISABLE commands in
a CICS command level program written in COBOL, PLII or assembler language.
The mechanism for enabling and disabling exits has a number of optional
facilities that make the commands flexible enough to meet the needs of different
application packages.

The commands listed in this chapter are intended to be used only by the system
programmer, and not by the application programmer.

The general rules about the use of commands in CICS application programs are
given in the CICSIMVS Application Programmer's Reference manual.

Note: The enabling and disabling of an exit program has no effect on the enable
or disable status for the program in the CSD file or in the PPT entry.

Enabling an exit program
An exit program is enabled in three stages, as follows:

• Establish - to load the exit program or specify its entry address, and obtain
a global work area for use by the exit program, if requested.

• Activate _ .. to associate the exit program with an exit.

• Start - to make the exit program available for execution.

These three stages can be performed in a single ENABLE command, or can be
split across two or more commands. You can specify only one exit in a single
ENABLE command. Therefore, if an exit program is to be activated for two or
more exits, delayed use of the START option allows execution of the exit
program to be suppressed until all the ENABLE commands are completed.
Examples are given after the syntax and options.

296 CICS/MVS 2.1.2 Customizatlon Guide

ENABLE command

EXEC crcs ENABLE
PROGRAM (name)
[EXIT(name)]
[START]
[ENTRYNAME(name)]
[ENTRY(pointer-value)]
[GALENGTH(data-value) I GAENTRYNAME(name)]

EXEC CICS ENABLE
Specifies that all or part of the establish-activate-start sequence is to be
performed for an exit program.

PROGRAM(name)
Specifies the name of the load module of the exit program. You must use
this option with every ENABLE command. The first time you specify
PROGRAM, CICS will enable the code associated with the program name.
The name can be any character string up to eight bytes, and it must be the
name of a program in the CSD fife or in the PPT.

EXIT(name)
Specifies the exitid of the exit for which the exit program is to be activated
(see" List of exits" on page 290). CICS does not check that the management
program containing this exit is present in the CICS system. If the
management program is not present, the ENABLE command can complete
normally but the exit can never be used. .

START
Specifies that the exit program is to be made available for execution. Where
several exits are associated with an exit program, omission of this operand
allows exit program execution to be suppressed until sufficient exits have
been associated with the exit program for it to execute correctly. After you
have STARTed the code for an exit or number of exits, you can continue to
activate the code for further exits.

ENTRYNAME(name)
Specifies the name of this entry to the exit program. So you can have a
logical name for a piece of user exit code that is different from the physical
load module name. This name need not be defined in the CSD or PPT. It
must be unique among the enabled entry names. If omitted, the name will
be taken from the mandatory PROGRAM operand. Its presence does not
require the ENTRY keyword to be specified. The same combination of
ENTRYNAME/PROGRAM that is specified on the initial ENABLE must be used
on subsequent ENABLE, DISABLE, and EXTRACT EXIT commands directed to
the named entry.

ENTRY(polnter-value)
Specifies the entry address of the exit program. If this operand is specified,
CICS assumes that the exit program is already loaded and will not attempt to
load it, nor will it attempt to delete it when the exit program is disabled.
ENTRY is only valid for the first ENABLE of a program. You must still specify

Chapter 5.1. Global user exits 297

PROGRAM, and the program must be defined in the CSD or the PPT. The
specified address must be within the virtual storage range occupied by the
exit program. When using this option, the program must be permanently
resident, or must be already loaded and remain resident while it is being
used in an exit. If this operand is not specified, the exit program is loaded
by CICS, the entry address returned from the load is used, and CICS will
delete the exit program when it is disabled.

GALENGTH(data-value)
Specifies the length, in bytes, of the global work area that is to be provided
by CICS for this exit program. If a data variable is specified, it must
represent a halfword binary data item. Valid lengths are 1 through 32767.
The work area will be initialized to binary zeros.

GAENTRYNAME(name)
Specifies the name of a currently-enabled entry whose global work area is
also to be used by the entry being enabled. The name is normally a
program name, but, if ENTRYNAME was specified for the code that is now
going to share its global work area, you use the entryname instead. The
entry specified must own the work area (that is, GALENGTH must have been
specified when the entry was enabled). If a work area is shared by two or
more entries, it is not released until all these entries are disabled. However,
after the owning entry is disabled, no new entry can share the work area.

Note that the use of GAENTRYNAME makes disabling exits more complex.
For example, even if the first exit code is DISABLEd with EXITALL, CICS has
to keep its global area as long as a second piece of code needs it. In such
situations it may be good practice to code STOP even on a DISABLE with
EXITALL, as a precaution against restarting.

GALENGTH and GAENTRYNAME are mutually exclusive. If both operands
are omitted, no work area is provided.

Note: On the second and subsequent ENABLE commands for a particular exit
program, ENTRY, GAENTRYNAME, and GALENGTH must not be specified and
either EXIT or START, or both, must be specified.

Examples: The establish-activate-start sequence for an exit program can be
done in a single ENABLE command, or in two or more ENABLE commands, as
follows:

1. In one command:

EXEC CICS ENABLE PROGRAM('EP1') EXIT('XFCOUT') START

The above command loads exit program EP1, activates it for exit XFCOUT,
and starts the exit program. No work area is obtained.

EXEC CICS ENABLE PROGRAM('EP2 1) EXIT('XKCDISP')
START ENTRY(EADDR) GALENGTH(500)

The above command assumes that exit program EP2 is already loaded, with
its entry address in EADDR. It activates EP2 for exit XKCDISP and starts the
exit program. A work area of 500 bytes is obtained.

298 CICS/MV5 2.1.2 Customlzatlon Guide

2. In two or more commands:

EXEC CICS ENABLE PROGRAM('EP3') EXIT('XTDOUT')
GAENTRYNAME('EP2')

EXEC CICS ENABLE PROGRAM('EP3') EXIT('XTDIN')

EXEC CICS ENABLE PROGRAM('EP3') EXIT('XTDREQ') START

The first command above loads exit program EP3 and activates it for exit
XTDOUT; EP3 will be able to use the work area obtained for EP2. The
second command activates EP3 for exit XTDIN. The third command activates
EP3 for exit XTDREQ and starts the exit program.

3. The above examples are straightforward demonstrations of the use of the
ENABLE command. This example shows you how to have one load module
which contains a number of sections of code, each operating at various exit
points, and each of which can have its own global work area.

You can "enable" the same load module more than once, if you use a
different ENTRYNAME each time. You thus associate a different section of
user code with each ENTRYNAME, enable the module with appropriate
ENTRY point and GALENGTH, and activate it, under the right ENTRYNAME,
for those exits appropriate to the code.

Module EP4 contains two separate sections of code, one to be used at the
XFCIN exit, and one for XFCOUT. The entry point addresses for the two
sections are held in two successive fullwords, either just before, or just after,
the "entry point" of the module EP4. EP4 is defined in the CSD or PPT. For
simplicity in the example, EP4 is permanently resident in virtual storage.

At run time, the enabling program brings up the exits in the following way,
finding the module entry point first:

EXEC CICS LOAD PROGRAM('EP4') ENTRY(modaddr)

where modaddr is a suitable work area. Then it locates the address
constants for the two code sections, and copies them into two work fields,
INADDR and OUTADDR. Then the two exits are brought up:

EXEC CICS ENABLE PROGRAM('EP4') GALENGTH(lengthl)
ENTRYNAt1E('FCIN') ENTRY(INADDR) EXIT('XFCIN') START

and

EXEC CICS ENABLE PROGRAM('EP4') GALENGTH(length2)
ENTRYNAME('FCOUT') ENTRY(OUTADDR) EXIT('XFCOUT') START

Note that there are two independent "enables" of EP4, each associated with
a different exit. So the three processes of ENABLE (enable, activate, start)
are combined, for each exit.

If you do not want separate global work areas, then coding
GAENTRYNAME('FCIN') instead of GALENGTH on the second ENABLE makes
the two sections share one area.

Chapter 5.1. Global user exits 299

Disabling an exit program
An exit program is disabled in three stages, as follows:

• Stop - to make the exit program unavailable for execution. It can no longer
be invoked by an exit point.

• Deactivate - to dissociate the exit program from an exit, one exit at a time,
or all at once.

• Release - to delete the exit program (if it had been loaded to serve as an
exit) and release a global work area, if appropriate.

As for ENABLE, these three stages can be performed in a single DISABLE
command, or can be split across two or more commands.

DISABLE command

EXEC eICS DISABLE
PROGRAM (name)
[ENTRYNAME{name)]
[EXIT{name) I EXITALL]
[STOP]

EXEe eles DISABLE
Specifies that all or part of the stop-deactivate-release sequence is to be
performed for an exit program.

PROGRAM(name)
Specifies the name of the exit program. You must code this option with
every DISABLE command.

ENTRYNAME(name)
Specifies an enabled entry name. Its default is taken from the PROGRAM
operand. For successful execution of the DISABLE command, it is necessary
that the same combination of ENTRYNAME/PROGRAM be specified as was
specified in the original ENABLE.

EXIT(name)
Specifies the exitid of an exit for which the exit program is to be deactivated
(see "Exit descriptions" on page 304). The exit program will not be disabled.

EXITALL
Specifies that the exit program is to be deactivated for all exits for which it is
active. The exit program will then be disabled. EXITALL implies STOP.
After using EXITALL, you are back in the situation that existed before you
enabled the exit, unless you are sharing global work areas using the
GAENTRYNAME option. This situation is described under the
GAENTRYNAME option of ENABLE.

300 CICS/MVS 2.1;2 Customizatlon Guide

STOP
Specifies that the exit program is to be stopped before any deactivations are
done. Where several exits are associated with an exit program, this operand
allows exit program execution to be suppressed while sufficient exits are
associated with the exit 'program for it to execute correctly. You can reverse
the effect of DISABLE STOP by an ENABLE START command.

At least one of the operands EXIT, EXITALL, and STOP must be specified. EXIT
and EXIT ALL are mutually exclusive; if both are omitted, no deactivations are
performed.

Examples: The stop-deactivate-release sequence is usually performed in a
single DISABLE command. However, it is possible to use the command to stop
or deactivate an exit program without disabling it. Here are some examples:

1.

2.

3.

EXEC CICS DISABLE PROGRAM('EP2') STOP

This command simply stops exit program EP2. It can be restarted later by
issuing ENABLE PROGRAM('EP2') START.

EXEC CICS DISABLE PROGRAM('EP3') EXIT('XTDREQ')

This command deactivates exit program EP3 for exit XTDREQ. Any other
exits associated with EP3 will be unaffected. Subsequently, to fully disable
EP3, you must Issue:

EXEC CICS DISABLE PROGRAM('EP3') EXITALL

This command stops exit program EP3, deactivates all Its exits, and then deletes
the exit program.

Locating the exit work area
The address of the workarea is passed to the exit in UEPGAA. No distinction is
made between an area unique to the exit and an area shared between the exit
and a program.

Command-level application programs can obtain the address of this area. If an
application program updates the work area, it must ensure that an exit is not
currently using the area.

Accessing a work area
Application programs can obtain the address and length of the global work area
that is owned or shared by a specific exit program by means of the EXTRACT
EXIT command.

Chapter 5.1. Global user exits 301

Error responses

EXTRACT EXIT command

EXEC CICS EXTRACT
EXIT
PROGRAM (name)
[ENTRYNAME(name)]
GASET(pointer-ref)
GALENGTH(data-area)

EXEC CICS EXTRACT
Specifies that information is to be extracted from a CICS control block.

EXIT
Specifies the type of control block.

PROGRAM(name)
Specifies the name of an exit program. The address and length of this exit
program's global work area is to be extracted from the control block. The
exit program can either own or share the work area.

ENTRYNAME(name)
Specifies the name of an enabled entry. By default it takes the value
specified by the PROGRAM operand. The same combination of
ENTRYNAME/PROGRAM must be specified as on the original ENABLE
command.

GAS ET(polnter-ref)
Specifies the variable that is to be set to the address of the global work area
used by the exit program.

GALENGTH(data-area)
Specifies the variable that is to be set to the length of the global work area
used by the exit program. It must be a halfword binary data item.

Example:

EXEC CICS EXTRACT EXIT PROGRAM('EP2 1
) GASET(WORKA) GALENGTH(WORKL)

This command puts the address of the work area used by exit program EP2 in
the pointer referenced by WORKA, and puts the length of the work area in the
data item referenced by WORKL.

~
Check the EIBRCODE - -

If an INVEXITREQ condition occurs, check EIBRCODE. The source of the error
may be outside the command; for example, an EIBRESP of X'8000' is
generated if the exit program is defined to reside above the 16MB line
- ------ ._..-

For details of how to code tests for exceptional conditions using DFHRESP, see
the C/CS/MVS Application Programmer's Reference manual.

302 CICS/MVS 2.1.2 Customlzatlon Guide

All errors generated by the EXEC CICS ENABLE, EXEC CICS DISABLE, and EXEC
CICS EXTRACT EXIT commands are translated into the INVEXITREQ condition.
The default action for INVEXITREQ is to terminate the transaction with abend
code AEYO.

If you are handling INVEXITREQ, or using RESP processing, EIBRCODE byte 0
will be X '80' if an error occurred. EIBRCODE bytes 1-2 contain the error cause
as follows:

EIBRCOOE Command Meaning
bytes 1·2

X'8000' ENABLE A CICS program management request implicit
in the ENABLE command has raised the
PGMIDERR condition. This means that the
program specified in PROGRAM is not in the
PPT, or is not in the load library, or its PPT entry
has been disabled. PGMIDERR also occurs in
an MVS/XA system if an application program
executing in 24-bit mode issues an ENABLE
command for a program residing at an address
above the 16MB line.

--
X'4000' ENABLE Exitid is invalid.

f-o---- -
DISABLE Exitid is invalid.

X'2000' ENABLE Program specified in ENTRYNAME (or defaulted
to PROGRAM argument) is already enabled.

X'1000' ENABLE Program specified in ENTRYNAME (or defaulted
to PROGRAM argument) is already active for
the exitid specified in EXIT.

X'0800' ENABLE Program specified in GAENTRYNAME is not
enabled.

X'0400' ENABLE Program specified in GAENTRYNAME does not
own a work area.

EXTRACT EXIT Program has no work area.

X'0200' DISABLE Program is not enabled.

EXTRACT EXIT Program is not enabled.

X'0100' DISABLE Program has not been activated for exitid
specified in EXIT.

X'OO80' DISABLE Program is currently invoked by another task
(see note).

X'OO40' All three User exit interface was not initialized.
-

Note: The INVEXITREQ condition with X'0080' in bytes 1 and 2 can occur only if
a task switch has occurred in the exit program due to a request for a CICS
service. The normal action for this condition is to retry the DISABLE request.
However. if such an exit program terminates abnormally. its use count will
remain greater than zero and it cannot be disabled or deactivated, but it can be
stopped.

Chapter 5.1. Global user exits 303

Exit descri ptions
The following is a list of the global user exits. (Additional exits are available to
users of the data tables feature. These are described in the CICSIMVS Data
Tables Guide).

r-- XALTENF --------------------------,

Location DFHALP
Description When a "terminal-not-known" condition arises

Exit specific registers
None

~---------------------.--------------- -----.---------------------_.-
Valid return codes

Value Action
o Terminal does not exist
4 NETNAME returned
8 SYSID returned

Processing Information:

1. This exit is fully described in "Chapter 4.9. Exits for "terminal-not-known"
condition" on page 277.

2. UEPHMSA's R1 points to an exit specific parameter list.

304 CICS/MVS 2.1.2 Customization Guide

-- XDBDERR ----- -------------,

Location DFHDBP
Description When an error is returned from DLl1 processing

Exit specific registers

Register
R3

Addresses
Dynamic log record

Valid return codes

Value
o
4

Action
Suppress further DLl1 backout
Suppress further DLl1 backout

-_._----_._--------------

Processing Information:

-------- ._----

1. This exit is fully described in "Chapter 2.4. Writing dynamic transaction
backout exits" on page 53.

2. UEPHMSA's R1 points to a FCT entry (if any).
-----------------------------------'

-- XDBFERR ----------------------------.-------------,

Location DFHDBP
Description When an error is returned from File Control processing

Exit specific registers

Register
R3
R6

Addresses
Dynamic log record
The FWA (if any)

Valid return codes

Value
o
4
8

Action
Accept the error and continue
Ignore the error and continue
Retry

.. ------._------------------------------------\

Processing Information:

This exit is fully described in "Chapter 2.4. Writing dynamic transaction
backout exits" on page 53.

------------_._---------------'

Chapter 5.1. Global user exits 305

XDBIN ---~

Location DFHDBP
Description After each record is received

Exit specific registers

Addresses Register
R3 Dynamic log record (except for Dl/1)

Valid return codes

Value Action
o Continue processing
4 Ignore the record

~--------------------------

Processing Information:

This exit is fully described in "Chapter 2.4. Writing dynamic transaction
backout exits" on page 53.

XDBINIT ----------

Location DFHDBP
Description On module entry

Exit specific registers
None

Valid return codes

Value Action
o Continue with backout
4 Suppress Dl/1 backout
8 Suppress ALL backout

Processing Information:

---------------------------~

This exit is fully described in "Chapter 2.4. Writing dynamic transaction
backout exits" on page 53.

306 CICS/MVS 2.1.2 Customizatlon Guide

--- XFCIN --- --,
Location DFHFCP
Description Before an input event

Exit specific registers

Register
R9

Addresses
FeT entry

--
Valid return codes
None

~ XFCINC ------------------------------,

Location DFHFCP
Description After an input event

Exit specific registers

Register
R9
Rii

Addresses
FeT entry
VSWA or the FIOA

Valid return codes
None

-.--~

XFCOUT -----------

Location DFHFCP
Description Before an output event

Exit specific registers

Register
R9
RiO

Addresses
FeT entry
VSWA or FIOA

Valid return codes
None

Chapter 5.1. Global user exits 307

- XFCOUTC -----------------------

Location DFHFCP
Description After an output event

Exit specific registers

Register
R9
R11

Addresses
FCT entry
VSWA or FIOA

Valid return codes
None
._----_._--------------------

- XFCREQ ---

location DFHFCP
Description Before entry analysis

Exit specific registers
None

Valid return codes
None

Processing Information:

----------_._-

The entry information is in the FC overlay in the TCA.

308 CICS/MVS 2.1.2 Customlzatlon Guide

I
I ~

I
I

XFCSREQ -,---------

Location DFHFCS
Description Before file-request analysis

Exit specific registers

Register
R6
R11

Addresses
Request byte
FCr entry

Valid return codes

Value
o
4

Action
Continue with Request
Suppress the Request

Processing Information:

See "Chapter 5.3. File control status exits" on page 343 for details of this
exit.

--- XFCSREQC --~

Location DFHFCS
Description After file-request analysis

Exit specific registers

Register
R6
R7
R11

Addresses
Request byte
Response byte
FCr entry

Valid return codes
None

Processing Information:

See "Chapter 5.3. File control status exits" on page 343 for details of this
exit.

'----. --

Chapter 5.1. Global user exIts 309

- XGMTEXT -------

Location DFHGMM
Description Before sending a "Good Morning" message

~------------------------------

Exit specific registers

Register Addresses
R3 TIOA
R11 TCTTE

Valid return codes
None

'--_0 ___________ 0

- XICEXP -----------

Location DFHICP
Description After a time interval has expired

---______ 0-

Exit specific registers

Addresses Register
R8 ICE that has just expired

-----_0_--______ 0 _--,--___ 0
Valid return codes
None

-- XICREQ -----------

Location DFHICP
Description Before request analysis

Exit specific registers
None

----______ 0 ___ -

Valid return codes
None

Processing Information:

The entry information is in the IC overlay in the TCA.
_____ 0 _________ _

310 CICS/MVS 2.1.2 Customlzatlon Guide

- XICTENF ---------

Location DFHICP
Description When a "terminal-not-known" condition arises

Exit specific registers
None

Valid return codes

Value
o
4
8

Action
Terminal does not exist
NETNAME returned
SYSID returned

--------.---------

Processing Information:

1. This exit is fully described in "Chapter 4.9. Exits for "terminal-not-known"
condition" on page 277.

2. UEPHMSA's R1 points to an exit-specific parameter list.
------_._------- --------------------------~

-.- XISlClQ -----. ----------------------------,

Location DFH/SP
Description After a failure to establish a link to a remote system fails

(decision for local queuing)

Exit-specific registers
None

Valid return codes

Value
o
4
8

Action
Act according to the PCT LOCALQ setting
Locally queue this request
Return SYSIDER to the initiator of the request

.------.------------------ -------------------1

Processing Information

UEPHMSA's R1 addresses this parameter list:

Offset (Hex)
o
4
8

Is an AL4 which addresses
TCTSE for the link
PCT entry for the transaction (may be 0)
Request parameter list(may be above the 16MB line)

--------_._-----------_._------------------------'

Chapter 5.1. Global user exits 311

r-- XJCWR ------'-----------------------,

Location DFHJCP
Description After a journal record has been built in the buffer

Exit-specific registers

Register
R7
R11

Addresses
Journal record just built
JCT entry

Valid return codes
None

XKCAWT---------------------

Location DFHKCP
Description After an MVS wait has ended

t-------,--- ---.-------------------1
Exit-specific registers

Register
R6

Addresses
Return code from the MVS SYSEVENT macro for the MVS WAIT
issued before the exit was taken

Valid return codes

Value Action
o Continue
8 Issue a MVS SYSEVENT macro to suppress address-space

swapping

Processing Information:

RC(8) may interfere with CICS processing. Issue it with care.
------------ ---,

312 CICS/MVS 2.1.2 Customization Guide

- XKCBWT -----------.

Location DFHKCP
Description Before an MVS wait is to be taken

Exit-specific registers
None

~--~
Valid return codes

Value
o

Action
Continue

4 Issue a MVS SYSEVENT macro to allow address-space
swapping

Processing Information:

RC(4) may interfere with CICS processing. Issue it with care.
._--_. __ .-----

-- XKCDISP --

Location DFHK CP
Description Before a task dispatch

Exlt .. specific registers

Register
R3

Addresses
DCA to be dispatched

Valid return codes
None

-- XKCREQ --,

Location DFHKCP
Description Before request analysis

Exit-specific registers
None

------_._--_._---------_ ... _---------._----------------
Valid return codes
None

Processing Information:

The entry information is in the I\C overlay in the TeA.
-----_ .. _-----------------------

Chapter 5.1. Global user exits 313

XPCABND
Location DFHPCP
Description Before a dump is taken

Exit-specific registers
None

Valid return codes

Value Action
o Take the dump
4 Suppress the dump

Processing Information:

The entry information is In the DC overlay in the TCA.

XPCFTCH ------.

Location DFHPCP
Description Before control passes to an application program

-.-------.---.------
Exit-specific registers

Register
R8

314 CICS/MVS 2.1.2 Customizatlon Guide

Addresses
PPT entry for the program

.-_._--------'

- XRCFCER -------------------------,

Location DFHFCBP
Description When File Control returns an error during recovery

Exit-specific registers

Register Addresses
R2 Not used for addressing. but contains an error code - see

"Chapter 2.6. User-written exits for resource backout or
recovery at emergency restart" on page 59

R7 FBO entry
R9 FWA (if any)
R10 A copy of the log record
R11 FCT entry (where applicable)

Valid return codes
None

Processing Information:

This exit is fully described in "Chapter 2.6. User-written exits for resource
backout or recovery at emergency restart" on page 59.

~--~

- XRCINIT ----------

Location DFHDLBP, DFHFCBP, DFHTCBP, DFHUSBP
Description Backout program initialization and termination

Exit-specific registers

Addresses Register
R2 Not used for addressing. but contains an invocation code - see

"Chapter 2.6. User-written exits for resource backout or
recovery at emergency restart" on page 59.

R7 Backout Table (if any)

Valid return codes
None

Processing Information:

----_ .. _-----

This exit is fully described in "Chapter 2.6. User-written exits for resource
backout or recovery at emergency restart" on page 59.
------_._._----------_._-------------------

Chapter 5.1. Global user exits 315

- XRCINPT ------- ------------------------,

Location DFHFCBP. DFHTCBP. DFHUSBP
Description After a backout record has been read

Exit-specific registers

Addresses Register
R7
R10

Backout table entry (if any)
Current log record

Valid return codes

Value Action
o Take the default action - see "Chapter 2.6. User-written exits

for resource backout or recovery at emergency restart" on
page 59

4 Ig nore the log record

Processing Information:

This exit is fully described in "Chapter 2.6. User-written exits for resource
backout or recovery at emergency restart" on page 59.

_. __ ._---------._------------._------------

XRCOPER ----------------------------.,

Location DFHFCBP
Description After an error in opening a File during recovery

Exit-specific registers

Register Addresses
R7 FBO entry

Valid return codes
None

.... -------,-----,-----

Processing information:

----_ .. _----------------1

1. This exit is fully described in "Chapter 2.6. User-written exits for
resource backout or recovery at emergency restart" on page 59.

2. This exit is only given control if the operator replies "GO" to message
DFH5708.

3. After return from this exit, the FBO entry is marked "No Action."
'-------_.-------._----_._---------------

316 CICS/MVS 2.1.2 Customization Guide

XSCREQ --~
Location DFHSCP
Description Before request analysis

Exit-specific registers
None

~----------.----------------------~

Valid return codes
None

~---~

Processing Information:

1. The entry information is in the SC part of the TCA

2. This exit is not taken for LIFO storage requests.

- XTCAlT ----,--------

Location DFHTCP
Description Before a task is attached

------ --------------------~

Exit-specific registers

Register
R2
R4

Addresses
TCTTE
TIOA

~---... ------
Valid return codes
None

----- ---------------------1

----------_._---------------------------1

Processing Information:

1. UEPHMSA's R1 points to the TCTLE (as does TCTTELEA).

2. This exit is also driven by TCAM, see "Chapter 4.2. The CICS/TCAM
interface" on page 205.

Chapter 5.1. Global user exits 317

- XTCIN --------.--------.-------------,

Location DFHTCP
Description After an input event

Exit-specific registers

Register Addresses
R2 TCTTE
R4 TIOA

~~---
Valid return codes
None

Processing Information:

UEPHMSA's R1 points to the TCTLE (as does TCTTELEA).

XTCOUT ---.-------.

Location DFHTCP
Description Before an output event

Exit-specific registers

Register
R2
R4

Addresses
TCTTE
TIOA

------,------------f

--- .-----------------i
Valid return codes
None

-----_ .. _------------

Processing Information:

UEPHMSA's R1 points to the TCTLE (as does TCTTELEA).

------ ----------_.

318 CICS/MVS 2.1.2 Custornization Guide

- XTCRDAT --

location DFHTCP
Description After a 2741 Read Attention has occurred

,-------_._---------------
Exlt .. speclflc registers

Register
R2
R4

Addresses
TCTTE
TIOA

~----.----------------.

Valid return codes
None

.-----.--------

- XTCTIN --------------.-.---------------.-----,-.-------.. -----

Location DFHTCP
Description After a TCAM input event

Exit-specific registers

Register
R2
R4

Addresses
TCTTE
TIOA

-----------_._---
Valid return codes

Value Action
o CICS will format the TCAM header
4 CICS will not format the TCAM header

----.--------------- --------------,----

Processing Information:

1. UEPHMSA's R1 points to the TCTLE (as does TCTTEl.EA).

2. See "Chapter 4.2. The CICS/TCAM interface" on page 205 for operation
of this exit.

-------_._-

Chapter 5.1. Global user exits 319

- XTCTOUT--

Location DFHTCP
Description Before a TCAM output event

Exit-specific registers

Register
R2
R4

Addresses
TCTTE
TIOA

Valid return codes

Value Action
o CICS will format the TCAM header
4 CICS will not format the TCAM header

Processing Information:

1. UEPHMSA's R1 points to the TCTLE (as does TCTTELEA).

2. See "Chapter 4.2. The CICS/TCAM interface" on page 205 for operation
of this exit.

XTDCOUT -------,----------

Location DFHTDP
Description Before a write to a CICS system queue

~-------------------------.------~

Exit-specific registers
None

Valid return codes

Value Action

---,_._------

o Write the Message to the specified queue (XTDOUT is invoked if
required)

4 Do not write the message

----------------,---

Processing Information:

1. UEPHMSA's R1 addresses this parameter list:

Offset (Hex) Contains
o Queue name (CL4)
4 Address of data to be written (AL4)
8 Length of data to be written (F)

2. See "Chapter 5.2. Exit to allow modification and redirection of CICS
messages" on page 327 for details of this exit.

320 CICS/MVS 2.1.2 Customlzatlon Guide

XTDIN ----------------

Location DFHTDP
Description After an input event

Exit-specific registers

Register
R3

Addresses
OCT entry

._------------_.-
Valid return codf!s
None

Processing Information:

This exit is not taken for extrapartition queues.

XTDOUT

Location DFHTDP
Description Before an output event

Exit-specific registers

Register
R3

Addresses
OCT entry

Valid return codes
None

------------------1

Processing Information:

This exit is not taken for extrapartition queues.

Chapter 5.1. Global user exits 32'1

r-- XTDREQ ---------.--------------------,

Location DFHTDP
Description Before request analysis

Exit-specific registers

Register
R3

Addresses
OCT entry

Valid return codes
None

--------------------.-------------------------.-----------------
Processing information:

The entry information is in the TO overlay in the TCA.

-.--.--~

- XTSIN --------

Location DFHTSP
Description After an input event

Exit-specific registers

Addresses Register
R4
R8

TSIOA (after the SAA)
TSGIO

--~
. Valid return codes
None

- XTSOUT --_._--

Location DFHTSP

Description Before an output event

Exit-specific registers

Register
R4
R8

Addresses
TSIOA (after the SAA)
First TSGIO

-------- ---
Valid return codes
None
-----------------_ .. _-_.

322 CICS/MVS 2.1.2 CUstomlzatlon Guide

XTSREQ --------------------,

Location DFHTSP
Description Before request analysis

Exit-specific registers

Register
R4

Addresses
TSIOA (after the SAA) (if present)

Valid return codes
None

-----------_._--------,

Processing Information:

The entry information is in the TS overlay i,n the TCA.

XXRSTAT ----------- ,------------------
Location DFHXRA
Description Before status information is written to the CAVM dataset

Exit-specific registers
None

Valid return codes

Value Action
o Update the status information

,------------

4 Do not update the status information
8 Display message DFH0606, and abend CICS U0208 without a

dump
12 Display message DFH0606, and abend CICS U0208 with a dump

Processing Information:

1. UEPHMSA's R1 addresses this parameter list:

Offset (Hex) Contains
o Generic APPLID (CL8)
8 Specific APPLID (CL8)
10 VTAM domain 10 (CL4)
14 Error 10 (CL4).

2. If VTAM has failed, the VTAM domain 10 will be 'ZCbb' and the error Id
will be either '2307' (failure notified via RPL Completion) or 13443' (failure
notified via TPENO).

3. See CICSIMVS XRF Guide for details of this exit.
_. __ .. _--- ----------------'

Chapter 5.1. Global user exits 323

- XZCATT ---.-------------------------,

Location DFHZCP
Description Before a task is Attached

Exit-specific registers

Register
R2

Addresses
Following parameter list:
Offset (Hex) Contains
o Address of the LU6.1 DPN or LU6.2 TPN (may

be 0) (AL4)
4 Length of the LU6.1 DPN or LU6.2 TPN (may be

0) (XL7)
5 TRANSID about to be attached (CL4)

R8
RiO

TIOA (may be 0)
TCTTE

-------------------------------~

Valid return codes
None

---------------_._-

Processing Information:

1. You may change R2's TRANSID to attach a different transaction than the
one CICS has decided to run (other R2 parameter list values must not be
changed).

2. See "Chapter 4.1. ACF/VTAM logical units with CICS" on page 185 for
operation of this exit.

XZCIN

Location DFHZCB
Description After a VTAM input event

Exit-specific registers

Register
R8
RiO

Addresses
TIOA (may be 0)
TCTTE

------_._------_._--
Valid return codes
None

.--------------------1

---------------------_.--_._-----_.

Processing Information:

1. This exit is not taken for LUB.2 operations

2. See "Chapter 4.1. ACFIVTAM logical units with elcs" on page 185 for
operation of this exit.

-_ ... _-------_ ... _- ------------

324 CICS/MVS 2.1.2 Customizatlon Guide

- XZCOUT ----------------------------,

Location DFHZCB
Description Before a VT AM output event

Exit-specific registers

Register Addresses
R9 VTAM RPL
R10 TCTTE

Valid return codes
None

Processing Information:

1. This exit is not taken for LU6.2 operations

2. See "Chapter 4.1. ACF/VTAM logical units with CICS" on page 185 for
operation of this exit.

- XZCOUT1 --------

Location DFHZCB
Description Before a VTAM message is broken up into RUs

t----------------------------------
Exit-specific registers

Register
R8
R9
R10

Addresses
TIOA (may be 0)
VTAM RPL
TCTTE

Valid return codes
None

1---------------------------------

Processing information:

1. This exit is not taken for LU6.2 operations

2. See "Chapter 4.1. ACF/VTAM logical units with CICS" on page 185 for
operation of this exit.

-----_._-----------------------------'

Chapter 5.1. Global user exits 325

•
Chapter 5.2. Exit to allow modification and redirection of CICS
messages

In an Installation with many CICS systems, having automated responses to a
limited number of frequently occurring messages can greatly increase efficiency.
This is feasible if each message contains the applid of the originating system
and if all messages are routed to a single point of control. However, in a typical
large installation, messages go to a variety of transient data destinations, and
many messages do not contain the applid of the originating system. In
CICS/MVS 2.1.2, the XTOCOUT global user exit provides a solution to these
problems.

The XTDCOUT global user exit
The XTOCOUT global user exit makes automated operation more practicable.
The XTOCOUT exit is in the CICS transient data program OFHTDP, and allows a
user program to modify and redirect messages before they are written to a CICS
system queue.

An XTOCOUT exit program can:

• Redirect a message to the console

• Modify the text of a redirected message, for example, by adding the applid of
the sending CICS system

• Add to a redirected message the applid of the sending CICS system

• Suppress a message.

Note: If you modify a message, never modify the original. Always copy the
message before modifying it. If a message is not suppressed, the original,
unmodified, version is written to the transient data queue.

Parameter list
On entry to the exit, the address of the following parameter list is in the register
1 field (offset 24 bytes) of the register save area addressed by field UEPHMSA.

------------------_.
Table 4. Parameter list for the XTDCOUT exit

tID Copyright IBM Corp. 1977, 1990 327

Notes:

1. The queue name is the real name of the queue. For a destination defined
with OFHTCT TYPE = INDIRECT, the name is the INOEST name.

2. For a record with a variable length record prefix, the address is the address
of the data, and the length does not include the length of the prefix.

3. Do not modify the data; if a redirected message is to be modified, apply the
modification to a copy of the original message.

Return codes
The XTOCOUT exit can return two codes, 0 and 4. If any other value is returned,
o is assumed. The effects of the codes are as follows:

Table 5. Return codes for the XTDCOUT exit

RETURN
CODE

MEANING

--,----,---~----------
o OFHTOP continues processing the message.

When the message is for an intrapartition transient data destination,
the XTOOUT exit is invoked if it is enabled.
CICS writes the message to the specified queue.

--.-------~--------
4 DFHTDP returns control to the caller.

No message is written to the queue.

Sample XTDCOUT exit program, DFHUXSP1
A sample XTOCOUT exit program OFHUXSP1 (see Figure 25 on page 331) is
shipped with CICS. Briefly, OFHUXSP1:

1. Checks the message against the II Message Number/TO Queue action list,"
lines 17400·20400 (this determines if the message is to be suppressed or
rerouted).

2. For a message to be rerouted, inserts the applid if necessary, writes the
message to the console, and sets return code 4.

3. For a message to be suppressed, sets return code 4.

4. For a message not in thE~ "Message Number/TO Queue action list," sets
return code O.

Customizing DFHUXSP1
DFHUXSP1 is designed to be used with minimum alteration, and is copiously
commented to help you understand it.

The routine that you must tailor to your requirements is the "Message
Number/TO Queue action list," lines 17400-20400. In the sample, the actions are:

• Suppress message number 5935 and all messages for the CSMT queue

• Redirect message number 3501 and all messages for the CSML queue.

The sample assumes the most likely case - that you do not want further
processing by OFHTDP of a message that you have rerouted. If this is not what
you want, change the return code setting accordingly.

328 CICS/MVS 2.1.2 Customlzatlon Guide

The sample does not change the message text of a redirected message. If you
wish to do this, the best place is in the applid-insertion routine.

- Indirect queue names

If the destination of a message is defined in the OCT as an indirect queue
name, CICS passes the indirect queue name to the exit program for use in
selecting messages for rerouting or suppression. If necessary, modify your
OCT entries to obtain the results you want.

L--. _________ • ________ _

Logical flow of DFHUXSP1
Figure 24 on page 330 shows the logical flow of processing in OFHUXSP1. The
following notes refer to the numbers in Figure 24.

1. Check that the queue is a CICS system queue, that is, the queuename starts
with C.

2. Check that the message is a CICS message, that is, the message number
starts with OFH.

3. Check whether the message is one that you want to reroute or suppress.
The term "message-action list" is an abbreviation of "Message Number/TO
Queue action list" and refers to the list of messages and queues for which
you wish to take action.

4. The applid of your CICS system can be blank, in which case no applid can be
inserted in the message.

5. Check if the message already contains the applid, in which case insertion is
unnecessary.

6. Inserting the applid can make the message length exceed the maximum of
120 characters. If this occurs, truncate the message.

7. The exit program has taken no action for this message. With return code 0,
the program signals DFHTOP to process the message normally, invoking exit
XTDOUT (if enabled) and writing data to the system queue.

8. The exit program has suppressed or rerouted this message. With return
code 4, the program signals DFHTDP to return control to the caller without
invoking exit XTDOUT or writing data to the system queue.

Chapter 5.2. Exit to allow modification and redirection of CICS messages 329

,----------_ .. _------------,

~
-----------~1

no Does TDQname
~ s~art with Ie'?

yes
,--------1.,-----,2

no Dop.s message no.
I---...... I---~start with 'DFH'?

not

found

yes

Get numeric part
of message number

-p Check message- route to
action list for -
message number console
and queue name

suppress ~-the APPLID J-4~-,APPLID
~. blank

APPLID tnon-blank

APPllO j~ mess.g:J~e=

r-------'-----...., 6
Truncate message
if length> 120

,---------1..-,-----, 7
code ~8 Set

1---

F;gure 24. Log;cal flow of sample program for XrDCOUr exit

330 CICS/MVS 2.1.2 Customization Guide

Listing of DFHUXSP1

r-------- -------------.------

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This Sample is enabled by the CECI c:ommand:-
CECI EXEC CICS ENABLE EXIT(XTDCOUT) PROGRAM(DFHUXSP1) START
This Sample is disabled by the CECI command:-
CECI EXEC CICS DISABLE EXIT(XTDCOUT) PROGRAM(DFHUXSP1) STOP

The inputs to the sample are:-
1. The User Exit parameter list;

DFHUEPAR
2. The CSA parameters;

DFHCSADS
3. The SIT dataset;

OFHSIT

The outputs from the sample are:-
1. Return Code Zero;-

This instructs TO to continue processing this message.
2. Return Code Four;-

This instructs TO stop further processing of this
message.

* 00002000
* 00002100
* 00003700
* 00003800
* 00003900
* 00004000
* 00004100
* 00004200
* 00004300
* 00004400
* 00004500
* 00004600
* 00004700
* 00004800
* 00004900
* 00005000
* 00005100
* 00005200
* 00005300
* 00005400

*** 00016800
* OFHUXSPI Sample User Exit for 2.1.2 * 00016900
*** 00017000
* Standard Equates * 00017100
*** 00017200
R00 EQU 0 Not Used 00017300
R01 EQU 1 Address of Exit Parameter List 00017400
R02 EQU 2 Copy of Exit Parameter List. we are 00017500
* using this register 00017600
R0J EQU 3 Anchor register/scanning register 00017700
R04 EQU 4 APPLIO 00017800
R05 EQU 5 Work register for holding things 00017900
R06 EQU 6 Work register to AOOR Exit Plist 00018000
R07 EQU 7 Used for counting in search loops 00018100
R08 EQU 8 Work register for APPLID/CSA 00018200
R09 EQU 9 Work register for Message Text 00018300
R10 EQU 10 Work register for Message Length 00018400
Rll EQU 11 Used for base registers 00018500
R12 EQU 12 Address of the TCA of invoking task 00018600
R13 EQU 13 Address of the standard register 00018700
* save area 00018800
R14 EQU 14 Return Address to OFHUEH for 00018900
* branching back to calling module 00019000
R15 EQU 15 Entry Address into the exit Program 00019100
*** 00019200
* Equates for this Program * 00019300
*** 00019400
MSG_ADDR EQU R09
APPLIO EQU R04
MSG_LEN EQU R10

Address of the Message Text
Address of the APPLIO
Address of the Message Text Length

Figure 25 (Part 1 of 11). Sample program for XTDCOUT exit

00919500
00019550
00019600

Chapter 5.2. Exit to allow modification and redirection of CICS messages 331

*** 00019a00
COPY DFHCSADS Look at the CSA Parameters 00019900
DFHSIT TYPE=DSECT Look at the SIT 00020000
DFHUEXIT TYPE=EP Provide DFHUEPAR parameter List File 00020100

* File Control Program and List of 00020200
* of EXITID equates 00020300
*** 00020400
DFHUXSPI CSECT , 00020500
DFHUXSPI AMODE 31 Execut ion is in 31-BIT Mode 00020600
* Address i ng 00020700
*** 00020a00

SAVE (14,12) Save calling Program's registers 00020900
*** 00021000

LR Rll,R15 Set up User Exit Program's Base 00021109
USING DFHUXSP1,Rll register 00021200

*** 00021300
LR R02,R01 Set up Addressing for User Exit 00021400
USING DFHUEPAR,R02 Parameter List 00021500

*** 00021700
* DFHUXSPI Main Routine. * 00021a00
*** 00021900
* 1. Check to see if the TD queue is a CICS queue. * 00022000
* If the Queue name begins with a 'C', then carryon * 00022100
* processing. If not, then set the return code to Zero * 00022200
* before Ending. * 00022300
* 2. Check to see if the Message data begins with DFH. * 00022400
* If the Message Data begins with 'OFH', then carryon * 00022500
* processing. If not, then set the return code to Zero * 00022600
* before Ending. * 00022700
* 3. Get the Message number from the Message data and * 00022a00
* put it into MSGSNO. * 00022900
* 4. CALL the MSG_TDQS routine to see what needs to be done. * 00023000
*** 00023100
* Start the Sample Program Main Routine here. * 00023200
*** 00023300
MAINPROG DS 0H 00023400

L R07,UEPHMSA Address of registers passed 00023500
* from CICS 00023600

L R06,24(R07) Address of parameter list 00023700
*** 00023a00
CSA ADDR OS 0H 00023900

L R0a,UEPCSA Set up the Addressing for 00024000
L R03,CSASITBA-DFHCSADS(R0a) Address CSA SIT parameters 00024100
LA APPLID,SITSAPLD-DFHSITDS(R03) Get the specific APPLID 00024200
SR R03,R03 00024300

-----------------------_._---_._-'
Figure 25 (Part 2 of 11). Sample program for XTDCOUT exit

332 CICS/MVS 2.1.2 Customizatlon Guide

.. _----------
*** 00024500
* Check to see if this is a CICS TO Message. * 00024600
*** 00024700
FINDCICS OS 0H 00024800

*
*

*
*
*

CLI 0(R06),C'C' Check to see if the first .. 00024900

BNE RCNORMAL

character of the Queue Name 00025000
is 'C' 00025100
If no, then set the return 00e252ee
code to Zero before Ending e0025300
When the return code is set 00025400
to Zero, CICS will continue 0002550e

* to process the Message. 0ee2560e
*** ee02570e
* Check to see if Message TEXT begins with DFH. * 0ee258ee
*** eee25gee
FIND DFH OS eH eee26eee

*

*

L MSG_ADDR,4(Re6) Get the Message Addr'ess eee261ee

CLC e(3,MSG_.ADDR) ,=CIDFHI
from the Parameter list eee262ee
If the first 3 characters eee263ee
of the Message Data are ..• eee264ee

BNE RCNORMAL .•. not 'DFH' then End with eee265ee
* Return Code Zero. eee266ee
*** eee267ee
* Here we ar'e trying to find where the Message Number starts. * eee268ee
* We do this by scanning the first nine characters of the * eee26gee
* Message Text until we find the first numeric character. We * eee27eee
* do this by checking to see if each character in turn is * eee2710e
* outside the range 'A' to 'Z'. If not then we know it is an * eee272ee
* Alphabetic character. * eee273ee
* We do this because we know that the Message Number has the * eee274ee
* for'mat 'DFHyyxxxx' or 'DFHxxxx', where 'yy' is the Domai n-i d * eee275ee
* and IXXXX' is the Message Number. * 0ee276ee
*** eee277ee
FINDMSGN OS eH eee278ee

CLI 3(MSG_ADDR),C'e' Check if less than Ie' eee27gee
BL RCNORMAL I f yes, then it is not a eee28eee

* message number eee281ee
CLI 3 (t4SG _ADDR) , C '9' Check if grea ter than '9' eee282ee
BH RCNORMAL J f yes, then it is not a eee283ee

* message number eee284ee
~************************ eee285ee
* save message number * eee286ee
~************************ 0ee287ee
------------------_._-----------_.

Figure 25 (Part 3 of 11). Sample program for XTDCOUT exit

Chapter 5.2. Exit to allow modification and redirection of CICS messages 333

*** 0002S900
* MSG_TDQS * 00029000
*** 00029100
* ««« Start Of Section To Be Modified By User »»» * 00029200
* ««« Start Of Section To Be Modified By User »»» * 00029300
* ««« Start Of Section To Be Modified By User »»» * 00029400
*** 00029500
* Check each Message Number/TD Queue Name, and Suppress using * 00029600
* RCBYPASS or Re-Route. If Re-Route then Call the CHECK ID * 00029700
* routine before Ending with RCBYPASS. If its neither Suppress * 00029S00
* or Re-Route then Call RCNORMAL before Ending. * 00029900
*** 00030000
* MESSAGE NUMBER LIST. * 00030100
*** 00030200
MSG_TDQS DS 0H 00030300

CLC 3(4,MSG_ADDR),=C I 5935 1 Is MSGSNO equal to '3501' 00030400
BE RCBYPASS If yes, then branch to... 00030500

* ... RCBYPASS then End. 00030600
*** 00030700

CLC 0(4,R06),=C'CSMT' Is TDQNAME equal to 'CSMT' 00030800
BE RCBYPASS If yes, then branch to... 00030900

* ... RCBYPASS then End. 00031000
*** 00031100

CLC 3(4,MSG_ADDR),=C I 3501' Is MSGSNO equal to '3501' 00031200
BE GET APPL If yes,then branch to the •• 00031300

* ... GET APPL routine. 00031400
*** 00031500

CLC 0(4,R06),=C'CSML' Is TDQNAME equal to 'CSML' 00031600
BE GET APPL If yes,then branch to the •. 00031700

* ... GET APPL routine. 00031800
B RCNORMAL If no,MSGSNO/TDQNAME not in 00031900

* the action list, therefore 00032000
* branch to RCNORMAL then End 00032100
***********************************~*********************************** 00032200
* ««« End Of Section To Be Modified By User »»» * 00032300
.* ««« End Of Section To Be Modified By User »»» * 00032400
* ««« End Of Section To Be Modified By User »»» * 00032500
*** 00032600
*** 00032800
* Get the APPLID to start with. * 00032900
*** 00033000
GET APPL DS 0H 00033100

LA R07,0 Set Counter to zero 00033200
LR R03,APPLID Set R03 as scanning REG. 00033300

* register 4 is used to step 00033400
* the R07. 00033500

LA R05,S Put S into register 5 00033600
* register 5 is used as the 00033700
* R07 limit. 00033800

Figure 25 (Part 4 of 11). Sample program for XTDCOUT exit

334 CICS/MVS 2.1.2 Customization Guide

.. _---------------
~.************************ 00033900
* Check to see if there is an APPLID to be inserted. * 00034000
*** 00034100
NO APPL OS OH 00034200

CLC 0(8,R03),=C' If the APPLIO is blank, 00034300
* then there is no APPLIO 00034400
* present to be inserted, so 00034500
* we can send the Message 0003460e

BE SENOSMSG us i ng a basic WTO Oee34700
*** eee348ee
* Get the length of the APPLIO. * eee34gee
*** eee35eee
FINOAPPL OS

CLI
BE

*
*
*

LA
LA

*
*

*
*
*

CR
*
*

BNH
*

OH 00e3510e
0(Re3),C' • Check APPLIO for a blank Oe035200
CHECK 10 If yes, then we have found eOe353ee

R07,1(,R07)
R03,1(,R03)

R07,Res

FINOAPPL

the length of the APPLIO eOe354ee
so now we can check the eOe35500
Message text for the APPLIO e00356ee
Add 1 to the R07 eee3570e
Add 1 to register 3 eOe358ee
By adding 1 to the scanning Oee3590e
register we are moving eOe36eee
along the Message Text so eOe3610e
we can scan the next eOe362ee
character. eee3630e
We check register 5 to see eee364ee
if we have reached the eoe365ee
maximum length of APPLIO. eee366ee
If no, then we must try the e003670e
next character. ee0368eO

*** ee037eOO
* CHECK 10 * ee0371ee
*** eee3720e
* Check to see if there is an APPLIO in the Message Text. * eee373ee
*** ee0374ee
* In this routine we are checking to see if the Message Text * Oee3750e
* already contains the APPLIO. We do this by scanning starting * 00037600
* at the first character of the Message Text for a length * Oe0377eO
* which is equal to the length of the APPLIO. * 0003780e
* Having done the first check, we move to the next character * oe037900
* and repeat the check. * oe038eeo
* We continue this checking until we find the APPLID or we * 00038100
* Reach the maximum length of the Message Text. The length of * e0038200
* the Message Text is held in MSG LEN. * 00038300
* If the APPLIO is found we can just send the Message using * 00038400
* the SENOSMSG routine. The SENOSMSG routine does a basic WTO * 00038S00
* before setting the return code to Four then Ending the * Oe038600
* Sample. * Oe038700

.------_._--.
Figure 25 (Part 5 of 11). Sample program for XTDCOUT exit

Chapter 5.2. Exit to allow modification and redirection of CICS messages 335

----_._--
*** 00038800
CHECK ID DS 0H 00038900
*** 00039000
* Get the length of the Message Text. * 00039100
*** 00039200

L MSG_LEN,8(R06) Get the Message Length 00039300
* from the Parameter list 00039400
*** 00039500
* Set up the loop for searching the Message Text. * 00039600
*** 00039700
START LP OS

LR
*

LA
LR

*
*
* SR
*
* LA
*

0H
R05,R07

R07,0
R03,MSG_AOOR

MSG_LEN,R05

R08,APPl.IO

00039800
Put the length of the 00039900
APPLID into R05 00040000
Set the counter to Zero 00040100
Set R03 as scanning reg. 00040200
register 4 is used to step 00040300
the R07. 00040400
SUBTRACT THE APPLID LENGTH 00040500
from the Message length 00040600
Save the address of the 00040700
APPLID. 00040800

*** 00041000
* The Message Text search loop starts here. * 00041100
*** 00041200
APPLFINO OS

BCTR
EX

*
LA

*
*
*

BE
*
*

LA
LA

*
*
*
*
*

CR
*

BNH
*
*
*
*
*
*
*

0H 00041300
R05,0 Reduce R05 before EXecute 00041400
R05,CHK_APPL EXecute instruction used 00041500

R05,1(,R05)

SENOSMSG

R07,1(,R07)
R03,1(,R03)

APPLFINO

to help find the APPLID 00041600
Increase R05 by one after 00041700
EXecute(this will not alter 00041800
the condition code from the 00041900
EXecute instruction). 00042000
If the APPLID is present in 00042100
the Message text we can now 00042200
send the Message. I 00042300
Add 1 to the R07 00042400
Add 1 to register 3 00042500
By adding 1 to the scanning 00042600
register we are moving 00042700
along the Message Text so 00042800
we can scan the next 00042900
character. 00043000
Have we reached the Maximum 00043100
Length of the Message Text 00043200
If no, then check the next 00043300
character. 00043400
If yes, then the APPLID is 00043500
not present in the Message 00043600
Text, so we have to insert 00043700
the APPLID into the Message 00043800
Text using the INSERTID 00043900
routine. 00044000

-----------------------------'
Figure 25 (Part 6 of 11). Sample program for XrDCOUr exit

336 CICS/MVS 2.1.2 Customlzatlon Guide

----._--------------_.-_ .. _---
*** 00044200
* INSERTID * 00044300
*****k***********k*** 00044400
* Insert the APPLID in between the Message Number and the rest * 00044500
* of the Message Text. * 00044600
*** 00044700
* Set up the loop for searching the Message Text to find the first * 00044800
* Blank after the Message Number. * 00044900
*** 00045000
INSERTID DS 0H 00045100

*
*

LA R07,0 Set the counter to Zero 00045200
LR R03,MSG_ADDR Set R03 as scanning reg. 00045300

register 4 is used to step 00045400
the R07. 00045500

L MSG_LEN,8(R06) Get the Message Length 00045600
* from the Parameter list 00045700
*** 00045800
* The Message Text search loop starts here. * 00045900
*** 00046000
FIND BNK OS

CLI
*
*
*
*
*
*

BE
*
*

LA
LA

*
*
*
*
*

CR
*

BNH
*

B
*
*
*
*
*
*
*
*

0H 00046100
0(R03),C' I Check Message Text for a 00046200

INS APPL

R07, 1 (, R07)
R03,1(,R03)

FIND BNK

RCNORMAL

Blank(this cannot be the 00046300
first character as we have 00046400
already checked the first 00046500
of the Message text in the 00046600
FIND DFH routine at the 00046700
start of the Sample). 00046800
The Blank has been found so 00046900
R07 will now hold its 00047000
offset 00047100
Add 1 to the R07 00047200
Add 1 to register 3 00047300
By adding 1 to the scanning 00047400
register we are moving 00047500
along the Message Text so 00047600
we can scan the next 00047700
character. 00047800
Have we reached the Maximum 00047900
Length of the r~essage Text 00048000
If no, then check the next 00048100
character. 00048200
If yes, then no Blank could 00048300
be found in the Message 00048400
Text, therefore the Message 00048500
Text must be in error, so 00048600
End the Sample with a 00048700
return code of Zero. This 00048800
will have the effect that 00048900
the Message will be passed 00049000
unchanged. 00049100

Figure 25 (Part 7 of 11). Sample program for XrDCOUr exit

Chapter 5.2. Exit to allow modification and redirecti()n of CICS messages 337

*** 00049300
* Now insert the APPLID after the Message Number * 00049400
*** 00049500
INS APPL DS 0H 00049600

LR R03,MSG_ADDR Set R03 as Message Text 00049700
* work register 00049800

LA R06,MOD_TEXT Set R06 to Address the 00049900
* output area. 00050000

BCTR R07,0 Reduce R07 before the 00050100
* EXecute instruction. 00050200
* (R07 will always be 00050300
* greater than Zero because 00050400
* the first blank in the 00050500
* Message Text appears after 00050600
* Message Number. see the 00050700
* FIND_BNK routine) 00050800

EX R07,MOVE_NUM Use the EXecute instruction 00050900
* to move the Message Number 00051000
* into the output area (the 00051100
* Message Number has the form 00051200
* DFHyyyy, where yyyy is the 00051300
* MSG Number). 00051400

LA R07, 1 (, R07) Increase R07 by one 00051500
* after EXecute 00051600

ALP R06,R07 Add to R06 the length of 00051700
* Message Number. 00051800

LA R06,l(,R06) Add 1 to R06 to increase 00051900
* the offset in readiness for 00052000
* APPLID move. 00052100

BCTR R05,0 Reduce R05 before EXecute 00052200
* (R05 contains the true 00052300
* length of the APPLID). 00052400

EX R05,MOVE_APL Use the EXecute instruction 00052500
* to move the APPLID into the 00052600
* output area. 00052700

LA R05,l(,R05) Increase R05 by one after 00052800
* EXecute. 00052900

ALR R06,R05 Add the length of the 00053000
* APPLID to R06(R06 contains 00053100
* the address of the output 00053200
* area). 00053300

ALR R03,R07 Increase the offset in R03 00053400
* by the length of the 00053500
* Message Number. 00053600

LA ~'SG _LEN, 1 (,MSG _LEN) Add one to the message text 00053700
* length to allow for the 00053800
* blank that will be INSERTED 00053900
* into the output message 00054000
* text(after the APPLID). 00054100

Figure 25 (Part 8 of 11). Sample program for XTDCOUT exit

338 CICS/MVS 2.1.2 Customlzatton Gutde

*
*
*

*

*
*
*

ALR MSG_LEN,R05

BCTR MSG_LEN,0

EX

Add the length of the 00054200
APPLIO in R05 to the Max 00054300
length of the output 00054400
message text. 00054500
Reduce MSG LEN before the 00054600
EXecute. 00054700
Use the EXecute instruction 00054800
to move the rest of the 00054900
message text into the 00055000
output dec 1 ared by ~100 _TEXT 00055 le0

LA MSG_LEN,1(,MSG_LEN) Increase MSG_LEN by one 00055200
* after EXecute. 00055300
*** 00055500
* CHECKLEN * 00055600
*** 00055700
* Check to see if the length of the Outputted Message Text will* 00055800
* be greater than 120, if it will be than reduce the Message * 00055900
* Text length by that amount. * 00056000
*** 00056100
CHECKLEN OS 0H 00056200

CH MSG_LEN,CONST120 Check to see if the output 00056300
* message text length is 00056400
* greater than the maximum 00056500
* allowed length of 120. 00056600

BNH SENOSMSG 1 f the output length is 00056700
* less than 120, then send 00056800
* the message. 00056900
*** 00057100
* TRUC LEN * 00057200
*** 00057300
* Truncate the Length of the Output Message Text to 120. * 00057400
*** 00057500
TRUN LEN OS 0H If the Output Message Text 00057600
* length is greater than 120, 00057700
* we will have to reduce the 00057800
* Message Text length by how 00057900
* much the Output Message 00058000
* Text length exceeds 120. 00058100

*
*
*

LH MSG_LEN,CONST120 If the output message 00058200
length is greater than 00058300
120, then set the length to 00058400
120. 00058500

Figure 25 (Part 9 of 11). Sample program for XTDCOUT exit

Chapter 5.2. Exit to allow modification and redirection of CICS messages 339

I
I
I

--_._---------_._._------
.* eee586ee
* SENDSMSG * eee587ee
*** ee0588ee
* 00 a basic WTO to the Console, branch to RCBYPASS before * 0ee58gee
* Ending. * e0059000
*** eee591e0
SENDSMSG DS eH 0e059200

LA Re6,TEXT WTO Address the output area ee0593e0
LA MSG_LEN,4(,MSG_LEN) Add 1 to the Message Length ee0594e0
STH MSG_LEN,0(e,Re6) Store the Length in the e00595e0

* first two Bytes. eee59550
WTO MF=(E,(R06)) 000596ee
B RCBYPASS e00597e0

*** e00598e0
* RCNORMAL will set the return code to Zero, which tells TD to * eee59ge0
* continue processing. * e0e6eee0
*** 000601e0
RCNORMAL DS 0H 0006e200

LA R15,0 Set the Return Code to Zero 00060300
B END MAIN e0e6e400

~************************** 00060500
* RCBYPASS will set the return code to Four, which tells TD to * 0006e600
* stop TD processing. * e006070e
*** 00060800
RCBYPASS DS 0H 0006090e

LA R15,4 Set the Return Code to Four ee0610ee
B END MAIN 00061100

*** 00061200
* END_MAIN will end the sample and pass back to the caller the * 00061300
* return code. * 0ee61400
*** 000615e0
END MAIN DS 0H e0e616ee

L R13,UEPEPSA 0e061700
RETURN (14,12),RC=(15) 00e6180e

*** 0e062ee0
* Declarations * 00062100
*** 0ee6220e
CONST120 DC H'120' This is the constant for 0ee624e0
* the maximum length of the 0ee6250e
* Output Message. ee0626e0
TEXT WTO WTO Xeee627ee

MO()_TEXT EQU
, ,MF=L

TEXT ~JTO+4

Xeee6280e
Max text length 120 Chars. eee62ge0
Text work area 0ee63e0e

Figure 25 (Part 10 of 11). Sample program for XrDCOUr exit

340 CICS/MVS 2.1.2 Customizatlon Guide

---_ _--------------
*** 00063200
* Execute Instructions * 00063300
*** 00063400

os 0H To a1 i gn for the EXecute 00063500
*

0(0, R03) ,0 (R04)
*
*

os 0H
*
MOVE NUM MVC 0(0,R06) ,0(R03)
*

os 0H
*
MOVE APL MVC 0(0,R06),0(APPLID)
*

os 0H
*
MOVEREST MVC 0(0,R06),0(R03)
*

LTORG ,
END DFHUXSPI

instruction 00063600
Used with EXECUTE instruct- 00063700
-ion/for finding the APPLID 00063S00
in the Message Text 00063900
To align for the EXecute 00064000
instruction 00064100
Moving Message Number to 00064200
work area. 00064300
To align for the EXecute 00064400
instruction 00064500
Moving APPLID into the 00064600
work area 00064700
To align for the EXecute 00064S00
instruction 00064900
Moving the rest of the 00065000
Text to work area 00065100

00065200
00065300

--_._---_. __ .•. _--
Figure 25 (Part 11 of 11). Sample program for XTDCOUT exit

Chapter 5.2. Exit to allow modification and redirection of CICS messages 341

Chapter 5.3. File control status exits

Request byte

Response byte

Exits XFCSREQ and XFCSREQC are driven respectively before and after the
status of a file is changed (by CEMT or by EXEC SET FILE). The R6 request byte
Is provided in both exits, but the R7 response byte is only available for
XFCSREQC.

The exits can be driven more than once for each file. This is because there can
be multiple users of a file. For example, if a CEMT SET FILE CLOSE is executed,
the exits are driven for the CEMT and for the last task using the file.

The request byte can be mapped via the User Exit macro. Here are the settings:

R6 addresses XL 1 Operation
UEPFSCLS CLOSE the file
UEPFSDIS DISABLE the file
UEPFSENB ENABLE the file
UEPFSOPN OPEN the file.

Rejecting the request
XFCSREQ can reject the request, by returning 4 in R15. This leaves the status of
the file unchanged, except for the an OPEN request on a file that is
CLOSED,ENABLED. In this case, the file status is changed to
CLOSED,UNENABLED. This caters for the possibility that an implicit open is
being run, and ensures that an application program receives a NOTOPEN response
to a subsequent request. If the request is rejected, then DFH0996 is issued, and
XFCSREQC is driven with a Failed Response.

The Response byte can be mapped via the User Exit macro.
settings:

Here are the

R7 addresses XL 1
UEFSFAIL
UEFSNORM
UEFSPEND
UEFSWARN

What happened
The request failed
The request completed normally
The request generated a PENDING response
The request completed OK, but a Warning message was
issued.

© Copyright IBM Corp. 1977, 1990 343

PENDING response
The PENDING response is generated by a CLOSE operation, if active tasks are still
using the file.

Consider these two CLOSE requests, with multiple tasks using the file:

1. A CLOSE NOWAIT is issued. The request completes, but invokes XFCSREQC
with a PENDING response, as tasks are still using the file. When all these
tasks complete, the last task closes the file and drives XFCSREQ and
XFCSREQC.

2. A CLOSE WAIT is issued. The requesting task drives XFCSREQ and enters a
WAIT state. One by one, the other tasks using the file terminate, the last
task driving the XFCSREQ and XFCSREQC exits as it closes the file. The
waiting task now resumes execution, and drives XFCSREQC without a
PENDING response, because the file is now closed.

344 CICS/MVS 2.1.2 Customlzation Guide

Chapter 5.4. Task-related user exits

General-Use Programming Interface

This chapter describes a special kind of user exit called a task-related user exit.
A task-related user exit allows you to write your own program to access a
recoverable resource, such as a database, that would not otherwise be available
to your CICS system. Such a resource is known as a non-CICS resource. The
exit is said to be task-related because it becomes part of the task that invoked it
and because, unlike a global user exit, it is not associated with an exit point.
Three CICS management services (syncpoint manager, monitoring and task
manager) may invoke a task-related user exit.

Introduction to the task-related user exit mechanism (the adapter)
The task-related user exit mechanism is known as an 'adapter' because it
provides the connection between an application program that needs to access a
non-CICS resource and the manager of that resource. Figure 26 on page 346
illustrates the adapter concept.

The adapter is made up of three or more locally-written programs. These are a
'stub', a task-related user exit program, and one or more administration routines
or programs.

The stub intercepts a request (for example. to access a non-CICS resource) that
is issued by the calling application program. The stub can be used to resolve a
locally-defined high-level language command into a task-related user exit macro
call, DFHRMCAL, which then causes CICS to pass control to the task-related
user exit program.

The task-related user exit program changes commands for accessing a non-CICS
resource into a form acceptable to the resource manager. The program is
written in assembler language. It is executed in response to a specific
application program request, for example, to access a resource. It may be
passed application data, such as a search argument for a required record.
Responses from the resource manager are passed back to the calling program
by the task-related user exit program.

© Copyright IBM Corp. 1977, 1990 345

Application f--

Program
I+-I--

~

Stub I+-
Program

Task-
"- Related

User Resource Non-CICS
Exit +--+ Manager Resource

Administ- Program
ration

Routine(s)

THE ADAPTER

-

Figure 26. The adapter concept

The task-related user exit program is provided with a parameter list by the CICS
management module that handles task-related user exits. This parameter list
(DFHUEPAR) gives the exit program access to information such as the addresses
and sizes of its own work areas.

The task-related user exit program may be invoked by the CICS task manager,
the CICS syncpoint manager and/or CICS monitoring, as well as by an
application program. The parameter list serves to distinguish among these
various callers. It also gives access to a register save area containing the
caller's registers.

The administration routlne(s) contain the EXEC CICS ENABLE and DISABLE
commands that you use to install and withdraw the task~related user exit
program. The administration routines may also contain commands to retrieve
information about one of the exit program's work areas (the EXEC CICS
EXTRACT EXIT command), and to resolve any inconsistency between CICS and a
non-CICS resource manager after a system failure (the EXEC CICS RESYNC
command).

The remainder of this chapter discusses each of these parts of the adapter in
turn. For a description of how CICS handles task-related user exits, see the
CICS/MVS Diagnosis Reference manual.

346 CICS/MVS 2.1.2 Customlzation Guide

The stub program
The purpose of the stub program Is to shield your application programmers from
the mechanics of non-CICS resource managers. It is written in assembler
language. After assembly, the stub Is link-edited to each application program
that wants to use it, and it has the following format:

ENTRY statname

statname DFHRMCAL TO=ename

END

statname is a label that can be referenced externally. It should conform to the
requirements of an assembler-language ENTRY statement, and
typically resolves a V-type address constant, or the target of a
high-level language CALL. A single stub may contain several such
labels.

ename is the entry name (specified on the EXEC CICS ENABLE command) of
the task-related user exit program that you want to handle resource
manager requests. This entry name must have been enabled and
started before it is called for the first time.

You can define high-level language commands that your programmers will use
when they want to access a non-CICS resource. You will need a translator to
convert a locally-defined high-level language command into a conventional CALL
to the required entry point of the stub program. Alternatively, the application
program can issue a CALL naming the stub entry pOint. For example, your
application programmer wishes to read a record from a non-CICS resource. He
issues the COBOL command

CALL 'XYZ' USING PARMI PARM2 .••

XYZ is an entry point (the statname) in your stub program. The stub converts
the command into a macro call (DFHRMCAL) to the task-related user exit
program, specified in the TO = operand, that handles resource manager
requests. Return from the task-related user exit program is to the calling
application program, not to the stub program.

A macro-level assembler program must place the address of a register save
area in register 13 before invoking the stub. The program must restore the CSA
address in register 13 on return from the stUb. This is done automatically for
macro-level COBOL and PUI programs if a high-level language call is used to
invoke the stUb. For command-level programs, it is not necessary to save and
restore register 13.

Returning control to the application program: If you specify RTNABND = YES in
the DFHRMCAL macro, control returns to the application program when the
task-related user exit is not available (because, for example, it is not enabled).

Chapter 5.4. Task~related user exits 347

If you do not specify RTNABND = YES and the task-related user exit is not
available, the application program terminates abnormally with the abend code
AEY9.

Note for assembler language programs: A negative value in register 15 signals
to the application program that control has returned because the exit is not
available. The task·related user exit program can use positive values (including
zero) in register 15 to pass resource manager response codes to the application
program.

Task-related user exits and EDF: You can use the command-level execution
diagnostic facility (EDF) to debug an application program that contains
locally-defined high-level language commands. You can also use EDF to debug
most task-related user exit programs that contain command-level statements.
However, you cannot use EDF to debug exit programs that are invoked by CICS
Monitoring, and these should be compiled with the NOEDF option.

If you define a high-level language for application programming, your translator
generates, for each task-related user exit request in the application program, a
call that is satisfied by the (DFHRMCAL) stub. The EDF message will refer to the
name specified by the TO = operand of the generated DFHRMCAL macro. EDF
will not be able to interpret the high-level statement for which it was generated.

For EDF to be able to display the parameter list, the calling program's register 1
must point to a list of addresses, and the high order bit must be set on to
indicate the last address.

The task-related user exit program
The main function of the task-related user exit program is to change the calling
program's parameters into a form acceptable to your non-CICS resource
manager, and then to pass control to the resource manager. You will therefore
need to be familiar with your resource manager's syntax requirements. The
calling program's parameters are described beginning on page 351.

This section describes the user exit parameter lists, the schedule flag word,
which is used by the exit program to register "its need to be invoked by CICS
management services, and register-handling in the task-related user exit
program. This section also discusses the use of the CICS syncpoint manager
and of the CICS task manager. Some notes about inappropriate actions are
included.

User exit parameter lists
When a task-related user exit program is invoked, the CICS management module
that handles task-related user exits provides the exit program with a parameter
list that gives access to the following information:

• The identity of the calling program

• Addresses and sizes of any work areas that are available to the task-related
user exit program

• The address of the register save area of the calling program

348 CICS/MVS 2.1.2 Customization Guide

• The address of an EXEC Interface block (EIB) that is for use by the
task-related user exit program during this invocation

• The address of the identifier of the current unit of recovery

• The address of the schedule flag word.

To enable your exit program to access this parameter list you must Include in It
the macro instruction:

DFHUEXIT TYPE=RM

The DFHUEXIT TYPE = RM macro instruction causes the assembler to create the
storage definitions (DSECTs) DFHUEPAR and DFHUERTR. The format and the
purpose of these definitions are described below. The DSECTs are summ'arlzed
in Figure 27 on page 353.

DFHUEPAR
DFHUEPAR gives you the following symbolic names for address parameters:

UEPEXN Address of the function definition, which tells the task-related user
exit program why it Is being called. See "DFHUERTR (the function
definition)" on page 350 for more details.

UEPGAA Address of the global work area requested in the EXEC CICS
ENABLE command. The global work area is described on pag~ 357.
CICS initializes this work area to X '00' when the task-related user
exit program is enabled.

UEPGAL Address of a halfword containing the length (binary value) of the
global work area.

UEPTCA Address of the TCA.

UEPCSA Address of the CSA.

UEPHMSA Address of the,regi,ster save area (RSA) of the program containing
the original calt: (This is typically an application program, but can
be the syncpoint manager, the CICS task manager or CICS
monitoring.) It Is an 18-word save area, with the contents of
registers 14 through 12 stored in the fourth and subsequent words.
Its fifth word, representing the calling program's register 15, is
cleared by CICS before the task-related user exit program is
invoked so that it can be used to convey response codes from the
resource manager to the calling program. For this reason you
cannot use register 15 to send data to the task-related user exit
program. The seventh word of the save area contains the caller's
register 1, which addresses the caller's parameter list when the
caller Is the CICS task manager, the CICS syncpoint manager, or
CICS monitoring. When the caller is an application program, the
contents of register 1 are determined by the linkage conventions of
the adapter's language interface.

UEPTAA Address of tile local work area requested In the EXEC CICS
ENABLE command. The local work area is described on page 357.
CICS initializes the work area to X '00' throughout on first acquiring
the area; that is, when the task first invokes the task-related user
exit program.

Chapter 5.4. Task-related user exits 349

UEPTAL Address of a halfword containing the binary

UEPEIB Address of the EXEC Interface block (EIB) created by CICS for the
task~related user exit program. The EIB exists only for the duration
of the call and It allows the task~related user exit program to
request CICS services through the command-level interface. Be
aware that this is not the EIB that Is available to the calling
program, so you cannot access the calling program's environment
other than by UEPHMSA (see above) which provides the address of
the calling program's register save area (RSA).

UEPURID Address of CICS unit of recovery identifier. This is an eight-byte
field that identifies the current logical unit of work.

UEPFLAGS Address of the schedule nag word. This Is a fullword that the
task-related user exit program uses to register its need for CICS
management programs' services. For more Information, see "The
schedule nag word" on page 354.

DFHUERTR (the function definition)
The function definition identifies the caller of the task-related user exit program.
The DSECT contains two symbolic definitions (fields).

UERTFGP This Is a single byte that is set to X '00'. The zero setting shows that
this is a task-related user exit invocation and that the parameter list
therefore includes the fields UEPTAA, UEPTAL, UEPEIB, UEPURID and
UEPFLAGS.

UERTFID This Is. a single-byte identifier that shows whether this call has been
made by an application program, the CICS syncpoint manager, CICS
monitoring or the CICS task manager. It can have one of the
following four settings:

UERTAPPL (X '02') indicates that the calling program Is an
application program

UERTSYNC

UERTMONI

UERTTASK

(X '04') indicates that the calling program is the
syncpoint manager

(X'06') indicates that the calling program Is CICS
monitoring (see "User exits for accessing monitoring
data" on page 416)

(X '08 ') indicates that the calling program is the CICS
task manager.

It is important to know which type of program has made the call because it
affects how the calling program's parameter list is interpreted by the task-related
user exit program.

350 CICS/MVS 2.1.2 Customization Guide

Caller parameter lists
In addition to the DSECTs DFHUERTR and DFHUEPAR, the inclusion of DFHUEXIT
TYPE = RM in the task-related user exit program provides some field definitions
that are specific to the program invoking the task-related user exit. The calling
program's parameter list is normally addressed by R1 in the calling program's
RSA, which is addressed by the field UEPHMSA of DFHUEPAR.

Application program parameters: If the caller is an application program, the
format and addressing of its parameter list will be decided locally.

CICS syncpolnt manager parameters: The first (and possibly the only) entry of
the CICS syncpoint manager's parameter list is a pointer to a one-byte operation
code. The code can be any valid combination of the following bit settings, each
of which represents a syncpoint event.

UERTPREP

UERTCOMM

UERTBACK

UERTDGCS

UERTDGNK

UERTLAST

(X'80') Prepare to Commit.

(X'40') Commit Unconditionally.

(X'20') 8ackout.

(X'10') Unit of recovery is lost to CICS cold start.

(X '08 ') Adapter should not be in doubt about this unit of
recovery.

(X'01 ') There will be no further units of recovery associated with
this task. Note that when this bit is NOT set, there mayor may
not be further units of recovery. For this reason, it is not
recommended that you rely on this bit to signal end-of-task. You
should instead schedule the CICS task mahager to drive you at
end-of-task by setting the task manager bit in the schedule flag
word. If you do use UERTLAST to signal end-of-task, and if at
that stage you can complete your clean-up process, you can set
the task manager bit off in the schedule flag word when the
clean-up process is finished to avoid an unnecessary invocation
by the CICS task manager.

The only valid bit combinations are the four produced by combining one of
UERTCOMM, UERTBACK, UERTDGCS, and UERTDGNK, with UERTLAST.
UERTPREP is not combined with any other setting.

If the operation code contains the bit settings UERTCOMM or UERTBACK, the
parameter list may contain further entries. The additional parameters exist if the
CICS syncpoint manager call is prompted by the issue of an EXEC CICS RESYNC
command after a session or system failure. The EXEC CICS RESYNC command
and the completion of the syncpointing procedure following a system failure are
described ill the section "Restart resynchronization" on page 365.

Chapter 5.4. Task-related user exits 351

The additional parameters identify the task, the transaction that started the task,
the terminal from which it was initiated, the identity of the terminal operator, and
the date and time of the failing syncpoint. The last address in the parameter list
is indicated by having its high-order bit set on. Typically, you would use these
values to create meaningful messages for resource recovery. They are
presented explicitly because, after a system failure, the task driving the exit is
not the task that originally scheduled the recoverable work. These additional
parameters describe the original task's environment and are accessed directly.
Their format is given below.

2nd Task
3rd Tran
4th Term
5th Opid
6th Date
7th Time

PL4
CL4
CL4
CL4
PL4
PL4

-

(00yyddd+)
(0hhmmss+)

C/CS task manager parameters: There is only one entry In the CICS task
manager's parameter list. It addresses a single byte with bit definitions
Indicating the reason for the call.

UERTSOTR (X' 40') Start of CICS task

UERTEOTR (X '80 ') End of CICS task

The schedule flag word should be set during the start-of-task call if you want
your task-related user exit program to be invoked unconditionally by CICS
monitoring or the CICS syncpoint manager.

C/CS monitoring parameters: These are described in "User exits for accessing
monitoring data" on page 416.

352 CICS/MVS 2.1.2 Customization Guide

-_._---------

Application
program call

DFHUEPAR

UEPEXN
UEPGAA
UEPGAL
UEPTCA
UEPCSA
UEPH~'SA
UEPTAA
UEPTAL
UEPEIB
UEPURID
UEPFLAGS

DFHUERTR +-

UERTFGP
(X I 00 1

)

UERlFID
(X 102 I)

RSA (Rl)

~
Resource
Manager
Dependent
Parameter
Li st

Sync point
manager call

DFHUEPAR

UEPEXN
UEPGAA
UEPGAL
UEPTCA
UEPCSA
UEPHMSA
UEPTAA
UEPTAL
UEPEIB
UEPURID
UEPFLAGS

DFHUERTR

UERTFGP
(X 100')
UERTFID
(X I 041)

RSA (Rl)

!
Operation

Code

UERTPREP
UERTCOMM
UERTBACK
UERTDGCS
UERTDGNK
UERTLAST

Figure 27. User exit parameter lists

Task manager
call

DFHUEPAR

UEPEXN
UEPGAA
UEPGAL
UEPTCA
UEPCSA
UEPHMSA
UEPTAA
UEPTAL
llEPEIB
UEPURID
UEPFLAGS

DFHUERTR

UERTFGP
(X 100 I)
UERTFID
(X 108 I)

RSA (Rl)

~
[

UERTSOTR
lJERTEOTR

CICS monitor-
ing call

DFHUEPAR

UEPEXN
UEPGAA
UEPGAL
UEPTCA
UEPCSA
UEPHMSA
UEPTAA
UEPTAL
UEPEIB
UEPURID
UEPFLAGS

DFHUERTR ..

UERTFGP
(X 100')
UERTFID
(X 1(6 1)

RSA (Rl)

Note: The CICS monitoring parameter list is described in IIUser exits for
accessing monitoring datH" on page 416.

Chapter 5.4. Task-related user exits 353

The schedule flag word
The schedule flag word is a fullword indicator that the task-related user exit
program uses to control its own Invocation by the three available CICS
management services. It is also used by CICS to schedule the first invocation of
a task-related user exit program. The schedule flag word is accessed by the
address parameter UEPFLAGS of DFHUEPAR. There is a unique schedule nag
word for each association between a CICS task and the ENTRYNAME specified
when a task-related user exit program Is enabled. The format of the schedule
nag word is shown in Figure 28.

Byte Setting Comments
-.

0 Reserved

1 Reserved
-- -

2

UEFDTASK UEFMTASK (X'ElI') Bit mask for task
manager exi t.

--
3

UEFPMONI UEFMMONI (X' 40') Bit mask for monitoring
exi t.

UEFDSYNC UEFMSYNC (X' 10') Bit mask for syncpoint
manager exit.

UEFDAPPL UEFMAPPL (X'04') Bit mask for API exit.

Figure 28. Format of the schedule flag word

The bit settings of the schedule nag word show which programs will invoke your
task-related user exit program. For example, if an exit program is to be invoked
by the CICS task manager, CICS monitoring, the CICS syncpoint manager and an
application program, the last two bytes of the schedule nag word will be set to
X'0154'. If an exit program is to be called by the CICS task manager and an
application program only, the last two bytes of the nag word will be set to
X '0104'. Before the exit program is first called by a task, CICS sets on the API
flag bit. If you set the task manager bit on, either by specifying TASKSTART on
the EXEC CICS ENABLE command, or by setting it from within the exit program,
your exit program will be called at the start and finish of every task.

Before returning from the first call, or any subsequent call, the exit program can
change the bit settings of the nag word to register its need to be invoked by a
different CICS management service, or to register lack of interest in a service by
setting the relevant nag bit to zero.

354 CICS/MVS 2.1.2 Customizatlon Guide

For example, an exit program may be called by an application program that
needs to access a non-CICS recoverable resource. When the exit program is
first called, the API bit is set on by CICS. If the calling program then issues a
request to update a record, the exit program sets the syncpoint manager bit on
in the schedule flag word. When the calling application program subsequently
issues a syncpoint command, or when end-of-task is reached, the CICS
syncpoint manager calls the exit program.

Note: CICS sets the syncpoint manager bit off after every call to the syncpoint
manager. This is to avoid the CICS syncpoint manager invoking the task-related
user exit program for a unit of recovery during which the exit program did no
recoverable work. The syncpoint manager bit must therefore be set on
whenever the exit program performs any recoverable work.

Register-handling in the task-related user exit program
In this section two sets of registers are discussed:

• The first set is the registers belonging to the CICS management module that
handles task-related user exits. These are referred to as the CICS registers.

• The second set is the registers belonging to the calling program, which may
be an application program, the CICS syncpoint manager, the CICS task
manager or CICS monitoring. These are referred to as the calling program's
registers.

Saving CICS registers
Your task-related user exit program should begin by saving the contents of the
CICS registers. Register 13 addresses an 18-word area into whose 4th and
subsequent words your exit program should store registers 14 through 12. Three
of the saved values have significance, as follows:

• The saved contents of register 14 contain the address within CICS to which
the user exit program returns control.

• The saved contents of register 15 contain the address at which the user exit
program has just been entered.

• The saved contents of register 1 address the parameter list (DFHUEPAR) that
is provided by CICS for the task-related user exit program. Example:

USING *,15
STM 14,12,12(13)

USING OFHUEPAR,1
l 2,UEPEXN
USING OFHUERTR,2
ell UERTFGP,X '00 1

BNE NOTTRUE

Chapter 5.4. Task-related user exits 355

This example saves the CICS registers and then maps the CICS-provided
parameter list (addressed in register 1) onto the structure DFHUEPAR. It can
then load the contents of UEPEXN into register 2. This gives access to
DFHUERTR, the function definition. The code then tests UERTFGP within the
function definition to see if it is zero. A zero setting of UERTFGP indicates
that this is a task-related user exit call. If it is not zero, the code branches to
an error routine.

A macro-level assembler application program must place the address of a
register save area in register 13 before invoking the stub. The application
program must restore the CSA address in register 13 on return from a call to
the stub. This is done automatically for macro-level COBOL and PLII
programs, and for all command-level programs.

Note: As a general rule, if you fail to understand the origin or the purpose of
a call, you should:

1. Restore any registers that you have used to the state they were in on
entry to your code.

2. Return to the address contained in CICS register 14.

The calling program's registers
The calling program's registers are stored at the address specified by UEPHMSA
of DFHUEPAR. Where the calling program is a CICS management program, for
example the syncpoint manager, the only caller registers that have significance
are registers 1 and 15. Register 1 addresses the calling program's parameter
list. CICS sets the calling program's register 15 to zero before the task-related
user exit program is invoked. The calling program's register 15 is subsequently
used to pass responses back to the calling program from the task-related user
exit program. If the calling program is a CICS management program, and the
register is still zero on return, CICS assumes that its call was not understood. If
the calling program is an application program, the significance of register
settings on return will either be described in your resource manager's
documentation, or be defined locally.

Using CICS commands in your task-related user exit program
You may find some CICS commands useful in your exit program. These can be
invoked using CICS command-level or macro-level statements. However, you
should take note of the following:

1. If your exit program entry point is immediately followed by an occurrence of
a DFHEIENT macro, inserted either implicitly by CICS or explicitly in the
program, then the expansion of the DFHEIENT macro stores incorrect values
at DFHEIBP and DFHEICAP. Your code can subsequently correct this by
copying UEPEIB into DFHEIBP, reloading the EIB base register (DFHEIBR)
from UEPEIB, and setting DFHEICAP to X '80000000'. For example,

TESTPROG DFHEIENT CODEREG=2,EIBREG=11,DATAREG=10
USING DFHUEPAR,l
MVC DFHEIBP,UEPEIB
l DFHEIBR,UEPEIB
MVC DFHEICAP,=X'800000000'

356 CICS/MVS 2.1.2 Customization Guide

Get correct EIB address
Reload EIB base register

Work areas

Note that the entry point of a program does not have to be at the start of the
program and may be positioned after the DFHEIENT macro.

2. The DFHEIENT macro allocates dynamic storage to be mapped by the
DFHEISTG DSECT. In this case, you must return to CICS by means of the
DFHEIRET macro, which frees the dynamic storage.

3. Command-level calls use registers 0, 1, 14, and 15.

4. If your user exit program contains macro-level calls, you must set up
registers 12 and 13 to address the TCA and CSA, using the fields UEPTCA
and UEPCSA in the user exit parameter list, before you issue the macro-level
call.

5. The response to an EXEC CICS RETURN or EXEC CICS ABEND within your
exit program is unpredictable. Rather than issue these commands, your exit
program should send a bad return code to the calling program in the calling
program's register 15.

6. On each invocation of a task-related user exit program, a new EXEC
environment is created, even when the program is being invoked from the
same task. This means that CICS operations, such as a browse of a
resource definition table, cannot be continued from one invocation of the exit
program to the next.

When you use the EXEC CICS ENABLE command to identify a task-related user
exit program to CICS, you may specify that the program must have access to
one local and/or one global work area. The EXEC CICS ENABLE command
allows you to specify the size, in bytes, of the work areas to be acquired for your
task-related user exit program. CICS acquires storage for the areas and
initializes pointers to them. The user exit parameter list, DFHUEPAR, gives you
access to the pointers. For more information, see the description of DFHUEPAR
under "User exit parameter lists" on page 348.

The global work area
A global work area is associated with an exit program. Whenever the exit
program is invoked, it has access to the area through the parameter UEPGAA of
DFHUEPAR. The global work area may be shared by a number of exit programs.
The area can be thought of as a logical extension to the common work area
(CWA, CSAWABA) that is exclusively for the exit program's use. You must have
specified the size of the global work area using the GALENGTH parameter or the
GAENTRYNAME parameter of the EXEC CICS ENABLE command.

The local work area
A local work area is associated with a single task and lasts only for the duration
of the task. It is for the use of a single task-related user exit program. It can be
thought of as a logical extension to the transaction work area (TWA, TWACOBA)
that is exclusively for the exit program's use. It is specified using the TALENGTH
option of the EXEC CICS ENABLE command and is accessed using the UEPTAA
parameter of DFHUEPAR.

Chapter 5.4. Task-related user exits 357

Using the CICS syncpoint manager with your task-related user exit program
All task-related user exit programs can be invoked by the CICS syncpolnt
manager. An exit program must 'schedule' the syncpolnt manager by setting the
syncpoint manager bit in the schedule nag word. The flag word must be set
after every piece of recoverable work In order to ensure that the CICS syncpoint
manager calls the exit program. The identification of each unit of recovery (or
logical unit of work) is addressed by the eight-byte field UEPURID. This is
available on all invocations of your exit program in which recoverable actions
are possible, for example, application calls, and subsequent syncpoint manager
calls.

Note: Be sure not to request a syncpoint from within an exit that was itself
invoked by the CICS syncpoint manager. This would cause a recursion into the
CICS syncpoint manager that cannot be supported. You should always avoid
recursive requests.

What Is expected of your resource manager
If the protocols implicit in the syncpoint manager commands are observed (that
is, if every request from the syncpoint manager prompts a meaningful response
from the resource manager), CICS ensures that changes to recoverable
resources (such as databases) can be synchronized. That Is, either all the
changes will take effect or all will be backed out, even across system failures.
The CICS syncpoint manager parameters are described on page 351.

On receiving 'Prepare to Commit', the resource manager is expected to get into
a state where recoverable changes made since the last syncpoint can be either
committed or backed out on demand, even if there is an intervening system
failure. For example, buffer contents must be moved to nonvolatile storage. If
the resource manager is unable to get into this state, the exit program should
use a register 15 return code UERFBACK to request backout. Normally it should
set register 15 to indicate a 'Yes-vote' (UERFPREP). Note that "register 15" in
this section refers to the syncpoint manager's register 15, the fifth word of the
area addressed by UEPHMSA.

On receiving 'Commit Unconditionally' or '8ackout', your resource manager
should take the corresponding irreversible step, and have the exit program send
the syncpoint manager a return code; either UERFDONE, meaning 'Done - the
commit or abend process is complete', or UERFHOLD, meaning 'Not done -
please remember the commit or abend for later resolution'. These return code
constants are available 10 you when you code the macro instruction DFHUEXIT
TYPE = RM in your exit program.

If a resource manager cannot understand a call, it should not change the
contents of the caller's register 15 before returning to the caller, because it
cannot anticipate how the caller will interpret the change.

358 CICS/MVS 2.1.2 Customization Guide

Resynchronlzatlon after failure
Should a failure occur between returning from the 'Prepare to Commit' exit and
the subsequent 'Commit Unconditionally' or 'Backout', the resource manager
must be ready, on restart, to discover the state of the unit of recovery, and to act
accordingly. Restart resynchronization is described on page 365.

CICS initialization and keypoint management routines recover from the system
log all information associating resource managers with outstanding units of
recovery. They keep the information until the outstanding units of recovery are
resolved.

Using the CICS task manager with your task-related user exit program
If the task manager bit is set in the schedule nag word, your exit program will be
invoked at start- and end-of-task. To determine whether a particular invocation
is at start-or end-of-task, you can examine the CICS task manager parameters
described in "CICS task manager parameters" on page 352. Typically, your
program would show interest in task manager events if it needed to save
task-related information, such as performance or accounting data, before the
task ended. If you use such an exit, you should respond by passing a return
code (for example, UERFEOTR "call was understood") to task management in
register 15. Return code constants, such as UERFEOTR, are available to you
when you code the macro instruction DFHUEXIT TYPE = RM in your exit program.

If your exit program is invoked at end-of-task, you must be alert to possible
limitations on exit program activity at task-detach. For example:

• Do not update a recoverable CICS resource during a task-detach exit call
because the CICS syncpoint manager will not be invoked again for that task.
Note also that all resources (terminals, and so on) except task-storage have
been released by end-of-task.

• It is possible to schedule a new CICS task from your exit program using the
EXEC CICS START command (or its macro-level equivalent), and to pass
data to a new task. However, you should note that EXEC CICS START uses a
temporary storage queue to pass data to the new transaction. If this queue
is recoverable (DFHTST TYPE = RECOVERY), it will be locked to the
detaching task. It will never be unlocked, because when the task-detach exit
call is made, the resources of the detaching task have already been freed.
Use of the PROTECT option would cause a different problem: the new task
could not be scheduled until the next syncpoint of the detaching task, but
there will be no such syncpoint.

We recommend that you do not access remote resources using a task-related
user exit program. However, if you do so, you must understand fully the
circumstances in which the function-shipping conversation may be terminated.

Chapter 5.4. Task-related user exits 359

.-_._--
Adapter administration

Careful use of task-related user exits can allow your application programmers to
be unaffected by the invocation of non-CICS resource managers from CICS
application programs. Enabling and disabling task-related user exit programs for
an installation should be the responsibility of one or more supervisory or master
terminal operators. This section lists what you must do before you can use the
adapter, and describes the commands used by the supervisor to administer
task-related user exit programs.

The general rules about the use of commands in CICS application programs are
given in the CICSIMVS Application Programmer's Reference manual.

What you must do before using the adapter
1. Ensure that your CICS system was Initialized with EXITS = YES in DFHSIT.

2. A task-related user exit program must be defined to the system. To do this
you may either use the CEDA transaction, or create a PPT entry using
macro-level instructions.

3. If you want to use CICS syncpoint management in task-related user exits,
your CICS system must contain the supplied module DFHDBP.

4. To enable the task-related user exit program and to define its working
storage needs you must use the EXEC CICS ENABLE command. A
task-related user exit program must be both ENABLEd and STARTed before
it is available for execution. The commands are documented in this section,
starting on page 361.

Tracing a task-related user exit program
CICS will output a trace entry just before control is passed to the task-related
user exit and just after returning from the exit. These trace entries may be
controlled by using the EI option of the EXEC CICS TRACE ON and OFF
command. They may also be controlled by specifying the EI option on the STYPE
operand of the DFHTR macro in macro-level application programs.

Installing and withdrawing exit programs
You use the EXEC CICS ENABLE and DISABLE commands to install and withdraw
task-related user exit programs. The commands are similar to those used for
global user exits.

You should prepare procedures for enabling and disabling your task-related user
exit programs, and for resynchronlzing between sessions or after a system
failure. For an explanation of resynchronization, see "Restart resynchronization"
on page 365.

Often you will want an exit program to be enabled at the start of a CICS run.
You can code a program containing an EXEC CICS ENABLE command, followed
by a RESYNC command to ensure that no in-doubts (that is, incomplete units of
recovery) remain from the previous session. You can define a transaction to
invoke the program, and restrict its use to particular operators.

360 CICS/MVS 2.1.2 Customlzatlon Guide

If you want to enable a particular task-related user exit program at the start of
every CICS run (that is, the resource manager is always part of your system),
you can create an entry for this enabling program in a program list table invoked
during CICS postinitialization.

Note: The enabling and disabling of an exit program overrides, but does not
alter, the enable or disable status for the program in the processing program
table (PPT) entry or in the CICS system definition file.

One load-module can contain several task-related user exit programs. If a
load-module contains more than one exit program, each program has one entry
point that must be named using the ENTRYNAME parameter of the EXEC CICS
ENABLE command. If you do not specify an ENTRYNAME, the default value will
be taken from the name specified 011 the PROGRAM parameter, which is the
name of the load-module itself.

Enabling an exit program
A task-related user exit program is enabled in two stages, as follows:

1. Load the task-related user exit program and obtain work areas.

2. Make the task-related user exit program available for execution.

The two stages are performed by using two EXEC CICS ENABLE commands, as
illustrated on page 363.

The EXEC CICS ENABLE command
This command identifies a named task-related user exit program to CICS.

EXEC CICS ENABLE PROGRAM(name)

PROGRAM(name)

[START]
[ENTRY(pointer-value)]
[ENTRYNAME(name)]
[GALENGTH(data-value)I

GAENTRYNAME(name)]
[TALENGTH(data-value)]
[TASKSTART]

Specifies the name of the load module of the exit program. The name can
be any character string up to eight bytes, and it must be the name of a
program in the PPT or in the CICS system definition file.

START
Specifies that the task-related user exit program is to be made available for
execution.

ENTRY(polnter-value)
Specifies the entry address of the task-related user exit program. If this
operand is specified, CICS assumes that the exit program is already loaded
and will not attempt to load it, nor will it attempt to delete it when the exit
program is disabled, even if the EXITALL option is specified on the EXEC
CICS DISABLE command. The specified address must be within the virtual

Chapter 5.4. Task-related user exits 361

storage range occupied by the exit program. If this operand is not specified,
the exit program is loaded by CICS, the entry address returned from the load
is used, and CICS will delete the exit program when it is disabled.

ENTRYNAME(name)
Specifies the name of this entry to the task-related user exit program. This
name need not be defined in the CSD or PPT. It must be unique among
enabled entry names. If omitted, the value will be taken from the mandatory
PROGRAM argument. Its presence does not require the ENTRY keyword to
be specified.

Note: The same combination of ENTRYNAME/PROGRAM that is specified on
the initial EXEC CICS ENABLE command must be used on subsequent EXEC
CICS ENABLE, DISABLE, and EXTRACT EXIT commands directed to the
named entry.

GALENGTH(data-value)
Specifies the length, in bytes, of the global work area that is to be provided
by CICS for this exit program. If a data variable is specified, it must
represent a halfword binary data item. Valid lengths are 1 through 32767.
The work area will be initialized to binary zeros .

.GAENTRYNAME(name)
Specifies the name of a currently enabled task-related user exit program
whose global work area is also to be used by the exit program being
enabled. The exit program specified must own the work area (that is,
GALENGTH must have been specified when the named exit program was
enabled). If a work area is shared by two or more exit programs, it is not
released until all these exit programs are disabled. However, after the
owning exit program is disabled, no new exit program can share the work
area.

GALENGTH and GAENTRYNAME are mutually exclusive. If both operands
are omitted, no global work area is provided.

TALENGTH(data-value)
Specifies the length, in bytes, of the local (task-related) work area that is to
be provided by CICS for this task's invocation of the exit program. This work
area is released at the end of the task for which it was created.
"Data-value" can identify a variable, which in turn represents the length.
Valid lengths are 1 through 32767. CICS initializes the work area to binary
zeros before first giving control to the task-related user exit program. If you
do not specify TALENGTH, CICS does not create a local work area.

TASKSTART
Enables your task-related user exit program to be invoked automatically at
the start and end of every task. (There is an exception to this rule that
arises when logging off an autoinstalled terminal in an MRO environment.
The module that processes the 'remote delete' does not return control to the
CICS module that handles task-related user exits, and therefore the
TASKSTART invocation cannot be made.) If you specify TASKSTART,
application programs can still invoke the exit program. This option is
independent of the START option above, but you should also specify START,
unless a previous EXEC CICS ENABLE command (which specified START but
not TASKSTART) has already made the exit program available for execution.

362 CICS/MVS 2.1.2 Customizatlon Guide

See "User exits for accessing monitoring data" on page 416 for a typical
use of this option.

On the second and subsequent EXEC CICS ENABLE commands for a particular
exit program, ENTRY, GAENTRYNAME, GALENGTH, and TALENGTH must not be
specified and either START, or TASKSTART, or both must be specified.

Examples: The enable-start sequence for an exit program can be done using
two EXEC CICS ENABLE commands.

1.

EXEC CICS ENABLE PROGRAM('EP9')
TALENGTH(750) ENTRYNAME('RMl') GALENGTH(200)

2.

EXEC CICS ENABLE PROGRAM('EP9')
ENTRYNAME('RM1') START

The first command loads the task-related user exit program EP91\ and causes a
200-byte work area to be obtained and associated with the name RM1. It also
schedules the allocation of a further 750-byte work area for each task that
subsequently invokes RM1. The second command starts the exit program, that
is, it makes its entry point capable of being invoked.

Disabling an exit program
You use the EXEC CICS DISABLE command to disconnect a task-related user
exit program from CICS. When the program has been disabled, CICS will not
route application program requests to the resource manager.

Generally, an exit should be disabled using the EXEC CICS DISABLE command
with the EXITALL option. This causes CICS to delete the exit program, and
release all work areas associated with it. Should it be necessary, you can make
the exit program unavailable for execution without deleting either the program or
its global work areas. To do this, you code EXEC elcs DISABLE with the STOP
option (not EXIT ALL).

The EXEC CICS DISABLE command
This command disables a named user exit program, thus preventing cles from
handling calls to the exit program. The format of the command is:

EXEC CICS DISABLE PROGRAM(name)
[ENTRYNAME(name)]
[EXITALL]
[STOP]
[TASKSTART]

'-------------------

PROGRAM(name)
Specifies the name of the load-module of the task-related user exit program.

Chapter 5.4. Task-related user exits 363

ENTRYNAME(name)
Specifies an enabled entry name. Its default is taken from the PROGRAM
argument. For successful execution of the EXEC CICS DISABLE command,
the same combination of ENTRYNAME/PROGRAM must be used as was
specified in the original EXEC CICS ENABLE.

EXITALL
Specifies that the exit program is to be deleted from main storage. You
should avoid requesting this function when applications that have used the
task-related user exit are still running (if you do, the results are
unpredictable). EXITALL implies STOP.

STOP
Has the reverse effect of the START option on the EXEC CICS ENABLE
command. It specifies that the task-related user exit program is to be made
unavailable to calling programs, though it is to remain in main storage. This
function can better be performed by your exit program responding to calls
from your API or from the syncpoint manager, for example, on a task-by-task
basis. You are therefore advised not to use the STOP option. The EXITALL
option should serve your purposes.

TASKSTART
Allows you to dissociate your exit program from the start-of-task exit without
fully disabling the exit program.

At least one of the operands TASKSTART, EXITALL, and STOP must be specified.
TASKSTART and EXITALL are mutually exclusive. If both are omitted, the exit
program remains in virtual storage.

Examples: The stop-disable sequence will usually be performed in a single
EXEC CICS DISABLE command. The following command deallocates and
conditionally deletes the exit program RM1.

EXEC CIeS DISABLE PROGRAM('EP9') ENTRYNAME('RM1') EXITALL

CICS does not prevent this type of DISABLE when control is in a task-related
user exit. Tasks connected to the task-related user exit will abend when they
next communicate with it.

An INVEXITREQ condition with EIBRCODE bytes 2 and 3 equal to X '0080 ' is
possible for a task-related user exit, but only during a brief period just before its
entry-point is invoked.

The EXTRACT EXIT command
You use this command to obtain information about the global work area of an
enabled and started task-related user exit program.

EXEC CICS EXTRACT EXIT PROGRAM(name)
[ENTRYNAME(name)]
GASET(pointer-ref)
GALENGTH(data-area)

364 CICS/MVS 2.1.2 Customlzatlon Guide

EXIT
Specifies the type of control block.

PROGRAM(name)
Specifies the name of the load-module of the task-related user exit program.

ENTRYNAME(name)
Specifies the name of an enabled entry. The address and length of the
global work area associated with this entry name are to be extracted from
the control block. The exit program can either own or share the work area.
By default it takes the value specified by the PROGRAM argument. The
same combination of ENTRYNAME/PROGRAM must be specified as on the
original EXEC CICS ENABLE command.

GASET(polnter-ref)
Specifies the variable that Is to be set to the address of the global work area
used by the task-related user exit program.

GALENGTH(data-area)
Specifies the variable that is to be set to the length of the global work area
used by the task-related user exit program. It must be a halfword binary
data item.

Restan resynchronization
The RESYNC command prompts the CICS syncpoint manager to diagnose any
inconsistency on restart between CICS and a non-CICS resource manager.

You should issue this command from an administration routine (or from the
task-related user exit program) to identify any 'in-doubts' (that is, any logical
units of work,or LUWs, which may not have been committed or backed out
during the previous session), and to allow CICS to purge obsolete storage of
LUWs that prove not to be in doubt. This should be done after issuing an EXEC
CICS ENABLE command.

If there are actual In-doubts, the RESYNC command will complete the
syncpointing procedure that was interrupted for each LUW. That is, there will be
one RESYNC task for each in-doubt. Your task-related user exit program does
not need to include special routines for resynchronization. The RESYNC
mechanism looks like any other syncpoint call to your exit program.

A description of the parameter values that the CICS syncpoint manager provides
after the Issue of an EXEC CICS RESYNC command Is given on page 351.

It is recommended that you issue the ENABLE-with-START command before
issuing a RESYNC command. If you delay the ENABLE-with-START command
until after the RESYNC command, ensure that you do not lose control between
the RESYNC command and the ENABLE-with-START command. If you do lose
control, the RESYNC-task may encounter your not-yet-started exit program and
will treat this as a failing situation, making provision for another RESYNC attempt
in the future.

Chapter 5.4. Task-related user exits 365

The format of the command is:

I EXEC CICS RESYNC E~TRYNAM~(ename)
[IDLIST(data-area)]
[IDLISTLENGTH(data-area)]

._-----------------

The options have the following meanings:

ENTRYNAME
Specifies the name of the entry point of the task-related user exit program. It
should be the same as the name specified both in the TO operand of
DFHRMCAL, and in the EXEC CICS ENABLE and DISABLE commands.

IDLIST
Specifies an address-list provided by the resource manager, the last address
of which is identified by a X '80' bit in its high-order position. The addresses
in the list locate CICS unit of recovery identifiers.

Each identifier represents an in-doubt unit of recovery, and will have been
presented originally to the exit program (during a previous lifetime) as the
argument of the UEPURID parameter of the user exit parameter list.

IDLISTLENGTH
Specifies a halfword containing the length (in bytes, counting four bytes per
in-doubt) of the address-list. The IDLISTLENGTH parameter must be coded if
the IDLIST parameter is specified.

Note: If your adapter is designed to resynchronize following system failures, you
are recommended always to issue the RESYNC command, even during a start-up
in which your resource manager has no in-doubts. This allows CICS to avoid
accumulating storage of possible in-doubts. This is achieved either by use of a
RESYNC command without the IDLIST and IDLISTLENGTH parameters, or by
having IDLISTLENGTH specify a halfword of binary zero.

EIB function codes
The following are the function codes of the task-related user exit commands.

EIBFN Code

2202

2204

2206

1604

Exceptional conditions

Command

EXEC CICS ENABLE

EXEC CICS DISABLE

EXEC CICS EXTRACT EXIT

EXEC CICS RESYNC

All errors in the ENABLE, DISABLE, and EXTRACT EXIT commands are grouped
under the single INVEXITREQ exceptional condition. The default system action
for the INVEXITREQ exceptional condition is to terminate the transaction with
abend code AEYO. There are no exceptional conditions associated with the
RESYNC command.

366 CICS/MVS 2.1.2 Customlzatlon Guide

For details of how to code tests for the INVEXITREQ condition using DFHRESP,
see the CICSIMVS Application Programmer's Reference manual.

If byte 0 of EIBRCODE is X ' 80 ' , an error has occurred. The exact cause of the
error can be determined by examining bytes 1 and 2 of EIBRCODE, which can
have the following hexadecimal values:

EIBRCODE
bytes 1-2

X'8000'

X'2000'

X'0800'

X'0400'

X'0040'

X'8000'

X'0200'

X'0080'

X'0040'

X'8000'

X'0400'

X'0200'

X'0040'

Command

ENABLE

ENABLE

ENABLE

ENABLE

ENABLE

DISABLE

DISABLE

DISABLE

DISABLE

EXTRACT EXIT

EXTRACT EXIT

EXTRACT EXIT

EXTRACT EXIT

Meaning

The load module named in the PROGRAM
option is AMODE 31, or is not in the PPT or
the load library, or its PPT entry has been
disabled.

Program specified in ENTRYNAME option (or
defaulted to PROGRAM argument) is
already enabled.

Exit program specified in GAENTRYNAME
option is not enabled.

Exit program specified in GAENTRYNAME
option does not own a work area.

CICS system was not initialized with
EXITS == YES in DFHSIT.

The load-module named in the PROGRAM
option is not in the PPT, or is not in the load
library, or its PPT entry has been disabled.

Program is not enabled.

Program is currently invoked by another
task (see note).

CICS system was not initialized with
EXITS == YES in DFHSIT.

The load-module named in the PROGRAM
option is not in the PPT, or is not in the load
library, or its PPT entry has been disabled.

Program has no work area.

Program is not enabled.

CICS system was not initialized with
EXITS == YES in DFHSIT.

Note: The INVEXITREQ condition with X '0080' in bytes 1 and 2 can occur only if
a task switch has occurred in the exit program due to a request for a CICS
service. The normal action for this condition is to retry the DISABLE request.
However, if such an exit program terminates abnormally, its use count remains
greater than zero and it cannot be deleted, but it can be stopped.

End of General-Use Programming Interface ______ .--J

Chapter 5.4. Task-related user exits 367

Chapter 5.5. Writing postinitialization and termination programs

Postinitialization programs
When writing programs to be executed during the postinitialization phase, you
should consider the following factors:

• All CICS facilities except direct communication with terminals are available
to PL TPI (program list table post-initialization) programs. Because
interregion communication (IRC) and intersystem communication (ISC) have
pseudoterminal entries associated with their function, you cannot run any
IRC or ISC functions during PL T processing at system initialization time.
This includes performing inquiries on these IRC/ISC functions.

• User programs to be executed during postinitialization must be listed by
name in a PL T, and the suffix of that PL T must be specified in the PL TPI
system initialization parameter. Programs that are initiated from the PL TPI
list have no access to a TWA.

• PL TPI programs must not request any service that could logically suspend or
abend the task. Suspending or abending the TCA of the terminal control
program will cause the system to be terminated abnormally. PL TPI
programs must not depend on transactions being initiated by interval control,
because no interval control initiations occur until the postinitialization phase
has completed.

• A PL TPI program must not explicitly issue an abend. Also, you must be
aware of implied abends that may be issued on your behalf if a HANDLE
CONDITION has not been coded.

• A PL TPI program must not issue a dump request.

• A PL TPI program must never change the priority of the task executing the
PL TPI program, because the task is the TCP and it must remain as the
highest priority task.

• Although other tasks can be attached during PL TPI processing, they must not
access a protected resource that is also being accessed by the TCP task that
is executing PL T programs.

You can use task control ENQ/DEQ facilities in the PL T programs executed
by the TCP task and in other programs executed by the attached programs
to ensure single threading of the use of protected resources. However, it is
your responsibility to ensure that the TCP task always enqueues first. (If
TCP attempts an ENQ and fails to gain control of the resource, it wi" be
suspended, and will cause CICS to abend.)

Because concurrent accessing of protected resources is difficult to control, it
is recommended that the access be serialized, and that no task is attached
to access the resource until the TCP task executing the PL TPI programs has
comple1ed its processing.

• Because standard CICS services are available to PL TPI programs, it is
important to understand and consider the effect of these services when they
involve accessing protected resources as defined to CICS.

© Copyright IBM Corp. 1977, 1990 369

When a protected resource is accessed, CICS normally enqueues on the
resource to ensure exclusive ownership, during the task's use of the
resource. The dequeuing of a protected resource is deferred until the task
terminates or voluntarily declares itself to be at a sync point (through the
EXEC CICS SYNCPOINT command). However, the use of a syncpoint rollback
should be avoided in a PL T program.

PLTPI programs that are involved in rebuilding a protected file will cause an
enqueue to occur for each logical record they access. Because the
dequeues are deferred, it is advisable for you to declare syncpoints
throughout the recovery process to allow dequeues to occur. If this
procedure is not followed, dynamic storage can become filled with CICS
control blocks used to control the enqueue/dequeue facility.

In addition, no other task should be attached that could also access records
in the database until after the PL TPI program has completed its entire
rebuilding operation. Enqueuing on the database by both tasks will not keep
the attached task from gaining control of the database when the PL T
processing task declares a syncpoint. This is because of the implicit
dequeulng that occurs at that time.

• PLTPI programs that Invoke the use of the programmable interfaces
(DFHEMT A, DFHEMTP) to use the CEMT functions can cause the table
management function to be invoked. Table management enqueues on
resources by establishing lock blocks to ensure exclusive ownership for the
duration of the task, in this case TCP's task. These blocks will normally only
be released at the end of the task.

Shutdown (PL TSD) programs
When writing programs to be executed during system shutdown, remember that
the PLTSD programs run either in the first quiesce stage, or in the second
quiesce stage:

• Terminals are still available during the first quiesce stage, but tasks started
by terminal input will be rejected (with a few exceptions) unless they are
named in a shutdown transaction list table (XL T). The exceptions are the
CICS service transactions (CSMT, CEMT, CSAC, CSIR, CSTE, CSNE, and
CSSF), which are always accepted. are named in an XL T. Tasks started by
other means, for example, automatic transaction initiation (ATI), will be
allowed to proceed.

The first quiesce stage is considered to be complete when first-stage PLT
programs have been executed, and when there are no user tasks in the
system.

• The second quiesce stage begins at the point. in the PL TSD table defined by
DFHPLT TYPE = ENTRY,PROGRAM = DFHDELIM. Termination activity waits
until all first-quiesce-stage system activity stops. Termination then continues
with the TCP and task control ATTACH disabled; when all PL TSD programs
defined to be executed in the second quiesce stage have been completed,
CICS stops.

370 CICS/MVS 2.1.2 Customlzatlon Guide

Note that programs specified for the second quiesce stage are not allowed to
use any terminal control services or task control ATTACH requests. No
automatically initiated transaction can be initiated during the second quiesce
stage.

• If your PL TSD program abends, syncpoint rollback will occur.

• If a transaction abend occurs while the PL TSD program is running, CICS is
left in a permanent WAIT. To avoid this happening, ensure that your PL TSD
program handles all abend conditions.

• PL TSD programs will not be executed during an XRF takeover by the
alternate.

Chapter 5.5. Writing postlnltlallzatlon and termination programs 371

Chapter 5.6. System initialization overlays

This chapter contains information on the conventions and general rules that
must be observed when writing CICS system initialization overlays. Before
attempting to add an overlay to system initialization processing, you should have
a thorough knowledge of CICS internals, be proficient in assembler-language
coding, and have a reasonable knowledge of the operating system you are
using.

User-written overlays may be added to the system initialization program;
however. you are warned that the interface to user-written overlays Is subject to
change in later releases of CICS.

Overlays must conform to CICS naming conventions. All system initialization
overlays are seven-character names in the format DFHSlxy where "X" is a letter
from A to Z and "y" is a number from 1 to 9. IBM reserves suffixes that end in 1
(for example. A1, B1 Z1). User overlays may use any other two-character
suffix.

Overlay processing in system initialization is driven from the system initialization
table SIMODS parameter. User-written overlays may be inserted at any point in
system initialization processing. but the sequence of CICS overlays must not be
disturbed.

Because of the complexity of CICS. various operating system considerations. and
your needs. it is impossible to describe here all the considerations for coding
user overlays. CICS is responsible for common subroutine and overlay linkage
(assuming these routines are not modified). and normal system initialization
functions.

General rules for overlay coding
Here are some general rules for overlay coding.

• All overlays must be coded in assembler language.

• All overlays must include the DFHSICOM macro (system initialization
common area); this provides all system initialization register definitions.
commonly used equates. and DSECTs, for the system initialization
communications area, DFHSIPDS, the system initialization table. DFHSIT. the
processing program table, DFHPPT. and the common system area. Other
DSECTs must be included as required.

Note that in some cases the registers are used to pass information between
CICS system initialization modules. This information might be lost if the
user-written system initialization module makes use of these registers for
other purposes. Therefore, you must take care when using the registers.
otherwise unpredictable abends might occur.

• All overlays must contain the following two USING statements immediately
prior to the first executable instruction.

USING *,SIPBAR2[,SIPBAR3] Establish program addressability
USING SIPCOM,SIPBARI For common area addressability

© Copyright IBM Corp. 1977, 1990 373

• All overlays must exit through the system initialization overlay supervisor.

• Overlays must not exceed 8,192 bytes.

• User-written system initialization overlays must communicate with each
other using shared storage rather than task-local storage.

System initialization subroutines
Here is a list of system initialization subroutines and conventions for calling
them:

1. SIPCORE - common storage allocation subroutine for overlays executed
before DFHSIB1.

Calling sequence:

L SICORA,=F'500'
L SILINKR,SIPCORE
BALR SILINKR,SILINKR

Return sequence:

Load storage required
Get allocation routine address
Go get storage

Symbolic register SICORA contains the address of acquired storage. All
other registers are unchanged.

Note: This routine is not available between DFHSIB1 and DFHSIH1, and so
you should use GETMAIN.

After DFHSII1, DFHSC TYPE = GETMAIN should be used.

2. SIPBLDL .- common BLDL subroutine

Calling sequence:

MVI SIPFLAG,SIPBLNUC BLOL for nucleus module
MVC SILISTIO,=CL8'routine name' Move name
L SILINKR,SIPBLOL Get routine address
BALR SILINKR,SILINKR Go to routine

Return sequence:

SIPARMP3 Contains storage required for load module

SILISTTR Contains TTRK for load module

All registers except register 15 are unchanged.

3. SIPLDER - system initialization program loader

Calling sequence:

Symbolic register SICORA contains storage address to load program.

SILISTTR - Contains TTRK of load module

MVI SIPFLAG,SIPBLNUC Load for nucleus module
L SICORA,~A(load point) Point at place to load
MVC SILISTTR,ttrk Move TTRK
L SILINKR,SIPLDER Get loader address
BALR SILINKR,SILINKR Go load module

Return sequence:

Symbolic register SICORA points at load point of program. All other
registers are unchanged.

374 CtCS/MVS 2.1.2 Customization Guide

4. SIPOSUP - system Initialization overlay supervisor

Calling sequence:

L SILINKR,SIPOSUP
BALR SILINKR,SILINKR

Return sequence:

Get overlay supervisor
Go exit

None. Transfer is given to the next overlay of SIP.

Addresses and fields
The following areas are always addressable to system Initialization overlays at
entry, and must be addressable at exit.

• CSA -- Common system area
• SIT - System Initialization table
• SIPCOM -- System Initialization common area
• System initialization common routines.

After DFHSII1, register 12 addresses the user part of the TCA of the system
initialization task and must not be corrupted.

The following fields are supplied as parameter-passing fields between user
overlays of system initialization. These fields are not to be used by CICS
overlays.

SIPARMP6
SIPARMP7

FULUJORD
FULLWORD

The DFHWTO macro instruction is provided for use within system initialization for
conditional write-to-operator (WTO) functions. If the MSGLVL in the system
initialization table is 1, all messages are written; if the MSGLVL is 0, none are
written. Any messages not to be suppressed should be written by means of the
WTO macro instructions. The format for DFHWTO is:

DFHWTO 'MESSAGE UP TO 132 CHAR'

Chapter 5.6. System Initialization overlays 375

Chapter 5.7. CICS security management

Security modules

CICS provides an interface to an external security manager that may be
user-written or may be the Resource Access Control Facility (RACF) program
product.

To use your own security manager, you may need to replace the supplied
DFHXSP with your own version of the module.

You can replace the RACF interface module by one of your own, using the
system modification program (SMP). Put your own version in place of the
version of DFHXSE supplied in CICS. LOADLIB.

If you replace DFHXSP or DFHXSE, be aware that you are replacing part of the
CICS nucleus. The following restrictions apply:

• You must use the CICS macro-level interface (do not use any EXEC CICS
commands).

• You should save any control block data that you need and restore it when
your replacement modules have finished. This is because CICS macros can
change the contents of CICS control block fields.

This part of CICS performs all security checks and signon verification. It consists
of two modules: DFHXSP and DFHXSE.

• DFHXSE is used to pass requests to an ESM (external security manager).

• DFHXSP is the main module. It performs the CICS security checking and the
search of the signon table.

Under MVS the RACF macros are invoked through the CICS SVC and the SVC
phase DFHXSS. DFHXSS uses register 1 to pass the address of a parameter list,
which is the common interface between DFHXSP, DFHXSS and DFHXSE. You
can address this parameter list using the DFHSEC TYPE = DSECT macro
instruction (see Figure 29 on page 379).

Note: This parameter area has been modified from that specified in earlier
releases. The SNTTE now contains all the terminal related security data. If a
check call is passed the address of the TeTTE, then the SNTTE may be found
from the field TCTTESNT.

The module DFHXSP is called at transaction attach, initialization, signon, sign-off,
and to perform minor functions such as time-out. The possible request codes in
the second byte of the parameter area (see Figure 29 on page 379) identify the
type of call, as follows:

The Initialization call (DFHSII1) request code 0
Is made once in order to attach a CICS task that will prime the resource
class blocks (descriptors of the resource), and for RACF to build the resource
profiles. You can use the field CSASECBL to access the class blocks. The
DSECT XSPSCBDS describes the order of the class blocks.

© Copyright IBM Corp. 1977, 1990 377

The slgnon with password call (DFHSNP) request code 4
Is made in order to compare the userid and password entered with those
held in the CICS signon table, or to request RACF to verify the userid. The
SECFMT3 indicator shows whether the SECUID field contains a pointer to a
20-character operator name or an eight-character userid. The security
values from the signon table entry and the pointer to the RACF control block,
ACEE, are stored in a pseudo signon table entry, SNTTE. The address of the
SNTTE is returned in register O. Note that DFHSNP stores the address of the
SNTTE in the TCTTE (TCTTESNT).

The slgnon without password call (DFHZNAC) request code 8
Is made to establish authority for links in IRCIISC connections and to build
the SNTTE.

The resource check call (DFHZSUP ,DFHEIP) request code 12
Is made to determine whether the signed·on user may access the specified
CICS resource, or is made to attach a transaction. The SNTlE contains the
security related data. The address of the CICS resource (PPT, for example)
is passed at offset 8 (SECRSNM) in the parameter list. The properties of the
resource are defined In the resource class block.

The sign-off call (DFHSFP) request code 16
Is made to free the SNTTE block and to sign off the user from RACF.

The sign-off call after timeout (DFHCSSC) request code 20
Will free the SNTTE block and sign off the user from RACF, provided that
SIGNOFF =YES has been coded in the TCT.

The return USERID call (DFHEEI) request code 24
Is made to pass back in register 0 a pointer to the length of the USERID
followed by its value in the SNTTE that was built at signon time.

The walt for Initialization call (OFHSII1) request code 28
Is made to synchronize the initialization tasks for the various management
functions.

The return minimum time-out call (DFHCSSC) request code 32
Is made to return in register 0 the minimum time·out value from the signon
table (SNT).

The build pseudo-SNTTE call (RDO) request code 36
Is made when installing a TCT entry with preset security.

The delete pseudo .. SNITE call (ROO) request code 40
Is made by ROO when removing a TeT entry with preset security.

The rebuild call (CEMT) request code 44
Is made to refresh the RACF resource profiles.

The tnternallnltlallzatlon call (DFHXSP) request code 48
Is made by DFHXSP in response to an initialization call and is par1 of the
CICS initialize security task process.

378 CICS/MVS 2.1.2 Customizatlon Guide

o

4

8

C

10

14

18

IC

20

24

Access flags I Request code I Format I Reserved

Address of userid

Address of resource block / address of RSlKEY

Address of old password / address of OPIDENT

Address of new password / address of SCTYKEY

Address of operator identification card text
/ address of OPPRTY

Address of TCTTE
~- -

Address of resource class block
/ address of operator class

~.

Address of pointer to pseudo SNTTE
r--

Reserved

Figure 29. Parameter area (DSECT DFHSECDS) for DFHXSP

In Figure 30, X indicates that the corresponding field may be passed in the
DFHXSP/DFHXSE parameter list. The SNTTE block should be referenced to
access any security data on a check call. Not all the indicated fields are
necessarily passed.

DFHXSP
paramete
fields

SECUID
SECRSNM
SECOPSW
SECNPSN
SECOPID
SECTCTTE
SECCLASS
SECSNTTE
SECRSLKY
SECOPIDT
SECSCTY
SECOPPRY
SECOPCLS

-,...-

r r--
0 4

X

X
X
X
X

8 12 16

X
X

X X X
X
X X

Request code
-

20 24 28 32 36 40 44

X X X X

X X
X
X
X
X
X

---- ---'----- --_ .. - --- "---------
Figure 30. DFHXSPIDFHXSE parameter list

Offset in
parameter

48 area
-
4
8
C

10
14
18
Ie
20
8
C

10
14
lC

Note: If both TCTTE and SNTTE are passed, the SNTTE should be referenced
from the TCTTE.

~-

Chapter 5.7. CICS security management 379

All character strings addressed by the parameter list, except the user
identification name when connecting systems, and the OPIDENT field, consist of
a one-byte length field followed by the text string. The format of the resource
class block is shown in Figure 31 on page 380.

o
Flag byte Offset to Offset to eres Maximum

name in eres RSL byte in length of
resource eIes resource resource
block block name

4

8 - class name

--
Figure 31. Format of the resource class block. See the CICSIMVS Data Areas manual for
the DSECT (XSPSCBDS).

On return, DFHXSP should place one of the following codes in register 15:

o Successful execution
4 New password required
8 Operator identification card required
C Reserved

10 Invalid signon attempt
14 Invalid access to a protected resource
18 External security failure or invalid parameter list.
1C No signon table found
20 Reserved
24 Invalid sign-off attempt.

In addition, register 0 may contain a user code in the range 0 to 99. If the
external security manager is RACF, this code will be the RACF return code. If an
error occurs, this code will be inserted in the error message. If RACF is used as
the security manager, the userid must not be more than eight characters.

If the X '80' bit is set in register 15, there is an error in the RACF router, and the
return code from the router is in the rightmost seven bits of register 15 (that is.
ignoring the X '80 I bit).

-----_._ .. _-----_. __ ._---_._--_.------------_._._._-.. ------_ .. _----
RACF interface module - DFHXSE

This module is branched to from DFHXSP and is used to interface to RACF. You
call this module for resource checking, for signon by an ESM, and so on. The
resource name may be prefi)(ed with the security name in the CSA optional
features list (CSAXSNM), if you have specified EXTSEC = (,PREFIX). You set this
value from the keyword USER = xxx on the MVS job card. See the CICS1MVS
Operations Guide for sample RACF definitions and for the RACF resource class
names. You can also use this module for signon, sign-off, and at initialization.
When you use RACF, the CICS SVC is invoked from within DFHXSE to perform
these functions.

380 CICS/MVS 2.1.2 Customizatlon Guide

If any CICS services are required by DFHXSE, the programmer must protect the
TCA fields. The supplied save area could be used for this and, if more save
area is required, a GETMAIN must be issued.

The CICS-provided interface to RACF at signon time validates that the specified
operator is authorized to use the terminal and the CICS system. SMF logging of
successful slgnons requires the appropriate level of RACF.

The additional RACF APPL validation is performed using the value of the APPLID
parameter on the DFHSIT TYPE = INITIAL macro or the override of this value
given at the CICS bringup. If neither of these is specified explicitly, the default
APPLID of 'DBDCCICS' is used.

The terminal name that CICS will use when calling RACF for signon validation
(RACINIT) may be either of the following:

• For VT AM terminals (non-surrogate TCTTE only) the value Is the
eight-character NETNAME from the DFHTCT TYPE = TERMINAL macro.

• For all other terminals the value is the four-character TRMIDNT from the
DFHTCT TYPE == TERMINAL macro, padded with four blanks.

The RACF tables must be updated to use these names if terminal or CICS
system usage is to be restricted in your installation.

If DFHXSE only is to be replaced, it must analyze the value of the request code in
the parameter list to determine the type of request. The values and their
meanings, which are the same as for DFHXSP, are as follows:

o Initial call
4 Sign-on with password
8 Sign-on without password
12 Resource check
16 Sign-off.
20 Sign-off after time-out.

In order to Invoke external security from DFHXSP the following bits must be set
on in the associated part of the security class block (XSPSCBDS):

XSPSCEXR EQU (X'02') EXTERNAL SECURITY CHECKING REQUIRED
XSPSCEXA EQU (X'01') EXTERNAL SECURITY PROFILE BUILT

DFHXSE is a separate module called by DFHXSP. It must establish its own
addressability and addressability to any areas it requires. It must save registers
3 to 13. On entry to DFHXSE, register 1 points to the parameter list (described in
Figure 29 on page 379) and register 2 addresses an 18-word save area followed
by a 96-byte work area. Register 12 points to the TCA and register 13 to the
CSA. Register 15 contains the entry point address, and register 14 contains the
return address within DFHXSP to which control must be returned. Appropriate
return codes, as described for DFHXSP, should be set in registers 0 and 15, and
the module should finish by branching to the contents of register 14. Note that
this is a new interface for ESM calls.

Chapter 5.7. CICS security management 381

Security Identification module - DFHACEE
At initialization, and within module DFHIRP for MRO connections, the module
DFHACEE is invoked. Its purpose Is to return the security name of the system
which Is then stored In the CSA optional features list for use in building the
resource names for security checking. At MRO-connection time, the security
name is passed to the other system for comparison with the value specified for
the XSNAME parameter in the TCT SYSTEM entry and It Is used to build a
security block for the link. If the values are the same, the connection is allowed;
if there Is no value for the XSNAME parameter, however, any connection is
allowed. If the security names of the two systems are the same, requests
transmitted to the second system will not have security checks made against
them. Foran ISC connection, If you do not specify an XSNAME, any check for a
remotely accessed resource wifl fail. For an IRC connection, if module DFHACEE
returns a value of 0, the security name of the system is said to be unknown, and
any security checks will fall. The CICS version of module DFHACEE returns
either a name of 0 or the USER name from the job card ..

You can, therefore, control the degree of security of connections by writing your
own version of DFHACEE, using the system modification program (SMP). You
will find DFHACEE in library CICS212.S0URCE.

On entry to DFHACEE, only register 14 is set with the return address. Registers
0, 1, 14, and 15 may be used, and no other registers should be corrupted. The
security name should be loaded into registers 0 and 15, and return should be
made using register 14.

Transaction security
The security value against which a transaction is checked when it is attached to
a TeTTE is established either:

• From the OPERSECURITY option of the CEDA DEFINE TERMINAL command
or from the OPERSEC operand of DFHTCT.

OR

• By running the transactions CESN or CSSN. This transaction copies the
signan table security-values for the associated USERID into a pseudo signon
table (SNTTE) entry. The TCTTE (TCTTESNT) paints to this entry.

You may create the security values in the SNTTE from one source only. Use the
TCT definition, or run the signon transaction.

The following table shows a summary of the information about transaction-attach
security and resource security.

382 CICS/MVS 2.1.2 Customlzatlon GUIde

When is it
active?

Transaction
attach security

Always

Resource security

When RSLC=YES is
specified for the
transact.ion

r-.------- ---------r--- ---.------.-._-----r-----I
User
authorizations
(keys)

OPERSECURITY up
OPERSEC to

64

OPERRSL
SCTYKEY

liP
to
24

t--------··---------+--i·------------
Security
values
(locks)

TRANSEC

Figure 32. CICS security summary

1 RSL 1

Figure 33 shows the relation between DFHTCT operands, resource definition
online options, DFHSNT (signon table) operands, and the SNTTE DSECT.

--'--- ----.. ---_.- _._-------
L.ength DFHTCT RDO DFHSNT SNTTE DSECT
in Bytes of Macro Options Macro
SNTTE Entry Operands Operands

-_._--- .- ----.-
3 OPERID OPERID OPIDENT SNNTID
1 OPERPRI OPERPRIORITY OPPRTY SNNTOP
3 OPERRSL OPERRSL RSLKEY SNNTASK
8 OPERSEC OPERSECURITY SCTYKEY SNNTSK

(3 bytes)
SNNTSKE

(5 bytes)
8 USERID USERID USERID SNNTUSID
3 OPCLASS SNNTOC
------ -------- --.-----.. ---.. ----... ---.--

Figure 33. Security keywords

Notes:

1. For more information about the entries in this table, see the CICSIMVS
Resource Definition (Macro) manual and CICSIMVS Resource Definition
(Online) manual, and CICSIMVS Data Areas manual.

2. The default security for transactions is CICS security checking and all
transacti<?ns will run with a security key of 1.

Chapter 5.7. CICS security management 383

Resource security
Once a command-level programming transaction is attached, it may need
resource security-level checking. You specify this with the RSLC(YES) option of
the CEDA DEFINE TRANSACTION or CEDA ALTER TRANSACTION commands, or
the RSLC=YES operand of the DFHPCT TYPE=ENTRY macro. The CEDA
transaction is described in the CICS/MVS Resource Definition (Online) manual,
and the DFHPCT macro is described in the CICS/MVS Resource Definition
(Macro) manual. You should use this only for transactions which do not have
their resources hard-coded within them and, for example, may accept the names
of files as operator input. The CICS transactions CEBR, CEDF, CECI, CSMI,
CSM1, CSM2, CSM3, and CSM5 are supplied with PCT definitions requiring
resource checking. For more information on the CEBR, CEDF and CECI
transactions, see the CICS/MVS CICS-Supplied Transactions manual. More
information on the mirror transactions (CSMI, CSM1, CSM2, CSM3, and CSM5) is
supplied in the CICSIMVS Intercommunication Guide.

The DFHEIP module makes a resource check against the resource-level key
(SNNTASK) and the RSL value coded on the resource. This key is either
acquired by signon or coded on the TCT definition. For information about coding
RSL values for resources, you should read the CICS/MVSResource Definition
(Online) manual and CICSIMVS Resource Definition (Macro) manual.

All resources have a default value of O. This implies no access, if RSLC=YES is
specified. In particular, access to the resources of a remote system is denied.

Note: If your installation does not require stringent security checking, then you
should not specify resource-level security checking for your transactions, and
you should supply your own definitions of the CICS transactions CEBR, CEDF,
CECI, CSMI, CSM1, CSM2, CSM3, and CSM5.

For information about security for EXEC CICS SET commands, you should read
"Chapter 5.9. Examining and modifying resource attributes" on page 423.

Intercommunication link
When you establish an intercommunication LINK, a signon is performed. For an
ISC connection, the name used for the signon is that specified by
XSNAME = keyword on the DFHTCT TYPE = SYSTEM entry that is used to define
the TCTTE for the intersystem LINK.

For an MRO or shared DB connection, the RACF name specified by
USER = keyword in the job card is passed to the opposite system by the CICS
SVC. If the SYSTEM entry does not specify XSNAME, then any connection will be
accepted, and a RACF signon will be performed with the passed USER name. If
the SYSTEM entry specifies an XSNAME, then only a connecting system with that
USER name will be accepted.

In either case, a RACF signon is performed with the passed USER name or
XSNAME value, and RACF will verify that this name is permitted to the CICS
APPLID.

384 CICS/MVS 2.1.2 Customizatlon Guide

Intersystem security

Function shipping
The mirror transactions, CSMI and CVMI, execute in the remote system against
this LINK TCTTE to honor the HLPI requests shipped from the local system.
Resource-level checking is therefore made against the LINK TCTTE.

Note: If the mirror transaction is marked as requiring RACF checking, then you
must PERMIT the USER name to access it and the resources on that system.

Transaction routing
The local PPT contains the program name OFHCRP. When the transaction is
attached on the local system and passes the normal local security checks, this
program will establish a link to the remote system. The remote transaction
attach will be checked against the authority established in the LINK TCTTE at
system-connect time. A pseudo TCTTE (surrogate TCTTE) will then be built and
the transaction will run against this TCTTE. The surrogate TCTTE has no
security. Therefore, any transaction that specifies RSLC(YES) wi" fail if used in
transaction routing. However, see CIOLfi program specification block," for PSB
checking.

eRTE: terminal sharing
Using CRTE, the CICS-supplied routing transaction, on the local system
establishes a link to the remote system and builds a surrogate TCTTE against
which subsequent transactions will run. Security checks will be made against
both the surrogate and LINK TCTTE. See "OLII program specification block."
You would normally sign on after issuing CRTE, so that the surrogate TCTTE
would acquire some authority. Note that the signon runs in the remote system.

Asynchronous processing (START/RETRIEVE)
Use a START command to schedule a transaction on a remote system. If you
specify a TERMID, then the TCTTE must have sufficient access authority to
execute the transaction. The START command must be executed by the mirror
transaction, and so the authority of the LINK TCTTE, as determined by the
passed USER name or the XSNAME value, must be adequate.

For information about security in more than one system, see the CICS/MVS
Intercommunication Guide.

DI .. /I program specification block
Since the PSB is not a CICS resource, RSL checking cannot be applied simply.
A keyword PSBCHI< on the SIT determines whether the RSLC keyword on the
PCT for the transaction is to be honored for a surrogate TCTTE. PSBCHK = Y
requests that the RSLC value be honored and PSBCHK = N that no check be
performed. There is always a check against the LINK TCTTE. For nonterminal
transactions and receive-only terminals, there is no security check.

Chapter 5.7. CICS security management 385

Chapter 5.8. CICS monitoring facility

This chapter gives a brief overview of the CICS monitoring facility, then gives
information on the following topics:

• Controlling the monitoring facilities
• Collecting the CICS monitoring data
• Defining event monitoring points for the collection of additional data
• Processing the output from the CICS monitoring facility
• User exits for accessing CICS monitoring data
• Collecting task-throughput data by means of RMF and SMF.

The CICS monitoring facility enables you to collect performance-related data
during online processing for later offline analysis. The data is collected in three
monitoring classes:

• Accounting class data. This is high-level information, such as the number of
transactions for each combination of transaction identification and type,
terminal Identification, and user identification. This data can be used for
installation accounting purposes.

• Performance class data. This is more detailed task-level information, such
as the processor and elapsed time for a transaction, or the time spent
waiting for I/O. This data can be used for performance monitoring and
capacity planning. As well as data for each transaction, global performance
data is collected, which provides information on the entire CICS system.

• Exception class data. This is information on exceptional conditions raised by
a transaction, such as queuing for VSAM strings, or waiting for temporary
storage. This data highlights possible problems in system operation.

Each class of monitoring can be active alone or jointly with other classes, and
the information provided by the class data is described in the CICSIMVS
Performance Guide.

Standard CICS monitoring data is collected at predefined event monitoring points
(EMPs) in the CICS code. You can specify which classes of data are to be
collected at these EMPs, but you have no control over the actual data collected.
Timing information in the standard CICS monitoring data can be invalidated by
transactions that terminate abnormally.

As well as the standard CICS monitoring data, user application programs can
contribute data to user fields in the transaction-level accounting and
performance class records but not the exception class records. In accounting
class records, one field (a counter), is reserved for your use. In performance
class records, one optional character-string field, and a variable number of fields
for counters and time periods, can be used.

The monitoring data is collected in separate buffers for each monitoring class.
The way in which these buffers are written to CICS user journals is controlled by
the monitoring control table (MeT). It is possible to merge any two, or all three,
classes of data onto one journal.

© Copyright IBM Corp. 1977, 1990 387

The monitoring data recorded in the CICS journal data sets can be analyzed
later, either by using an IBM-supplied analysis program such as the Service
Level Reporter (program number 5740-DC3), or by using a user-written analysis
program. The CICS sample program DFH$MOLS, which lists the journal data
set, can be used as a model for reading the data.

Controlling the monitoring facilities
The monitoring facilities are controlled by entries in the monitoring control table
(MCT), the journal control table (JCT), the system initialization table (SIT), and by
the CSTT transaction. Entries are also required in the CICS system definition
(CSD) file if you are using resource definition online, or in the processing
program table (PPT) and the program control table (PCT). You should read the
information in the CICS/MVS Operations Guide, CICS/MVS Resource Definition
(Online) manual, and CICS/MVS Resource Definition (Macro) manual for
guidance on setting up and controlling the CICS monitoring facility.

Collecting CICS monitoring data
Most CICS monitoring facility data is initially collected on a transaction basis; a
task monitoring area is reserved for this in the same dynamic storage block as
the TCA, following the TWA, and preceding the TCA LIFO area. Storage for the
monitoring area is allocated for monitoring classes that are active when the task
starts.

CICS collects monitoring data only if monitoring and at least one of the
appropriate monitoring classes are active wIlen the task starts. You can activate
monitoring and monitoring classes during a CICS session, but no monitoring
data is collected for a task that has already started. For long-running tasks, like
conversational or printer transactions, it is advisable to activate the required
monitoring classes at startup.

You can deactivate monitoring and monitoring classes during a CICS session or
you can leave CICS to deactivate monitoring. It does this during the first quiesce
stage of system shutdown. No monitoring data is collected for tasks that start
after that.

Monitoring data is then transferred to the buffers as appropriate to the class,
usually at transaction end. For each class of CICS monitoring facility output, the
MAXBUF operand of the MCT TYPE = RECORD macro specifies the size of CICS
monitoring facility buffer to be reserved. This is allocated when that class of
monitoring is activated either at startup (by an appropriately coded MONITOR
operand in the SIT), or by the appropriate CSTT MONITOR transaction.

Monitoring data is accumulated in the buffers for each monitoring class, as
described in the sections that follow.

388 CICS/MVS 2.1.2 Customlzatlon Guide

Accounting class data
Accounting class data is accumulated for each separate combination of
transaction identification, terminal Identification, and eight-byte user
identification (as established by CICS signon). As each transaction ends, its data
is either added to an existing transaction-terminal-operator combination, or used
to start another entry for a new combination.

One binary fullword, a counter field, is always reserved for user data. It is
included in the accounting class records whether you modify it or not, and has a
default value of zero.

Because the accounting records are so small, a MAXBUF of 2 or 4KB (kilobytes)
is usually sufficient.

Performance class data
Performance class data is accumulated separately for each transaction and
transferred to the buffer when the transaction ends. Two options of the DFHMCT
TYPE = RECORD macro instruction control the collection of performance class
data. The CONY = YES option specifies that the data for conversational
transactions should be split up for each message pair. The CPU option specifies
whether CPU usage and paging activity should be accumulated by transaction.

Each transaction performance record can be from 160 to 350 bytes long. The
exact length depends on what user data is collected, and may be over 4000
bytes.

The following user fields will be reserved in the transaction-level performance
class records if their existence is implied by DFHMCT TYPE = EMP macros coded
in the MCT. For each distinct EMP qualifier:

• One or more fullword binary counts like the one in accounting class records.
A maximum of 256 counts can be used.

• One or more clock fields. Each clock field consists of a fullword accumulator
(an unsigned 32-bit counter) for periods of time in units of 16 microseconds,
plus a separate binary fullword count of the number of separate time periods
contributing to the total. A maximum of 256 clock fields can be used.

Users familiar with the STCK doubleword TOO format will note that the unit
of time in these clocks corresponds to the central four bytes of the STCK
doubleword. The accumulator is a 32-bit unsigned counter, and thus has a
maximum capacity of some 18 hours.

• One, and only one, byte-string field. You can, if you wish, regard this as a
series of independent subfields. The maximum length of this field is 256
bytes.

Notes:

1. All the counts and clocks are initialized to binary zero. The byte-string field
is initialized to nulls (X '00'), not blanks.

2. The value of the clock field for a clock that has been started .and not stopped
may be unexpected. CICS stops any running clocks before reporting them,
and resets and restarts them immediately afterwards.

Chapter 5.8. CICS monitoring facility 389

Exception class data
Exception class data is accumulated only for the transactions that encounter
exception conditions; again, it is accumulated separately for each transaction,
and is transferred to the buffer when the exception condition ends.

If a transaction encounters more than one type of exception, multiple exception
records may be produced. If performance monitoring Is also active, the
corresponding transaction performance record will have a count of the number
of exception records produced; all these records will have the task number in
common.

Only one exception condition at one time can be reported for one task.

Notes:

1. Exception records for program compression are not output until one of the
following occurs:

• Task detach
• A terminal conversation ends (CONV = YES)
• Another exception record is output.

This may result in more than one exception condition being reported in the
same record. If multiple program compressions occur, only one record is
produced, but the time-period count and exception-record count fields in the
performance-class record are incremented for each occurrence of the
exception.

2. An exception record for a suspend after a storage request may not be output
until task-detach. If a task suffers this type of suspend more than once, the
time-period (field SCWTETIM) may be accumulated because only one
exception condition at a time can be reported for a task.

Global performance record
A single global performance record is maintained while the performance class is
active. This record is written to the journal each time the performance class
buffer for transactions is emptied due to the interval specified by the FREQ
option on the DFHMCT TYPE = RECORD macro having expired, or due to the
performance class being deactivated.

A user application program can add data to the accounting class records, and
transaction-level performance class monitoring records, but not to the global
performance class records or the exception class records.

-------_._------_._------------------_._--_._---------.-._._ ..• _-------------------_._--_.
Buffer requirements for monitoring

The monitoring data is sent to the CICS journal in separate sets of records, each
set consisting of ono of the following:

• One accounting class record.

• One performance class record.

390 CICS/MVS 2.1.2 Customizatlon Guide

• A group of exception class records, one for each exception condition
recorded.

• One global performance class record.

Before each set is sent to the CICS journal buffer, it is prefixed with a section
header and section descriptor. The length of the header-descriptor prefix is 38
bytes. In addition, the prefix has a string of field connectors. Because the
number of the latter varies with the data class, the total length of the prefix
ranges from 58 bytes for the accounting data to 140 bytes or more for transaction
performance data.

In the journal buffer, space is reserved at the beginning of the block for the
insertion of a block header just before the block is written out to the CICS
journal. This block header contains a block sequence number, time written out,
and so on. In an ordinary journal, the header would be a CICS journal label
record. Tile total length is 58 bytes.

The format of the header and of the CICS data section are given later in this
chapter.

All CICS data sections are journaled asynchronously, using DFHJC TYPE =WRITE
requests without WAIT. They are then accumulated into blocks in the journal
buffer, and are written out when that buffer is full, or when the buffer shift-up
value (DFHJCT TYPE=ENTRY BUFSUV) is reached.

How large you need to make the CICS monitoring facility buffers depends on the
emptying frequency chosen. If FREQ is low (but not zero), the buffers will be
emptied frequently, and they can be kept small, although the journal buffers
themselves should stay fairly large. This will even up the journal I/0s. Avoid
making the CICS monitoring facility buffers too small, because you will use too
much processing unit time when journaling the CICS monitoring facility data, and
the proportion of CICS sedion header to actual data will become excessive.

When you decide on the sizes of journal buffers, do not forget that dictionaries,
rather than monitoring data, might be the limiting factor. Values assigned to
labels of the form MCTxx by the assembly of your MCT will show the buffer
requirements for dictionary records.

------_.
Defining event monitoring points in user application programs

Occasionally, you may wish to gather additional information to that provided by
the CICS monitoring facility. You can gather this information by specifying event
monitoring points (EMPs) in your own programs. You can start and stop
user-defined clocks, and update user counts at these points.

CICS provides additional user-defined counter and clock fields, to enable you to
count the number of times a certain event occurs within an application, or within
the total CICS system, and to enable you to time the interval between two events
within an application, or within theCICS system.

To make use of these counters and clocks, the programmer defines EMPs where
the CICS monitoring program is to collect additional information, in the

Chapter 5.8. CICS monitoring facility 391

application program or within program products that work in conjunction with
your CICS system.

Trace (EXEC CICS ENTER) commands are used to define EMPs in CICS
command-level application programs. OFHEMP macro instructions are used to
define EMPs in CICS macro-level application programs.

Each EMP has an identification number. A user EMP in -an application program
will have no effect unless there is a corresponding entry for its identification
number in the MCT and the appropriate monitoring classes are active.

The CICS monitoring facility does not provide user fields in either exception
records or global system performance records. Application EMPs can therefore
only record accounting and transaction-level performance data.

Command-level application programs
To code an EMP, you insert into your program the command·level request 'EXEC
CICS ENTER TRACEIO(...) MONITOR'. You specify an 10 from 1 to 199. The
MONITOR option indicates this is a monitoring EMP, not a normal user trace call.
In addition, you have to specify either or both of the options ACCOUNT and
PERFORM. ACCOUNT implies you will want to update user accounting data,
PERFORM implies you will want to update performance data. Exactly what
updates will be done depends on the matching TYPE = EMP entry in your MCT; if
no such entry exists, the request will be ignored.

If you specify ACCOUNT or PERFORM without MONITOR, you cause a user trace
entry as well as calling the CICS monitoring facility.

This EXEC CICS request also has an option 'FROM(...)', which enables you to
pass data to the update process. 'FROM' should refer to eight bytes of
contiguous storage. which will be regarded as two successive fullwords, DATA 1
and OATA2. If you omit 'FROM(...)', fullwords consisting of binary zeros are
passed instead.

IDs higher than 199 are reserved. In normal trace entries, IDs in the range
200-255 would be reserved for system trace calls; in monitoring they are
reserved for use by other program products like OLlt. Thus the CICS-OLII
interface reserves 200-208.

The keyword 'ENTRYNAME(...)' may be used to qualify an 10. Thus TRACEID(3),
for example, may be used both unqualified and qualified, by, for example,
'ENTRYNAME('UNIQUE')'. It becomes, effectively, two separate EMPs each
managing its own set of clocks.

For details of the EXEC CICS ENTER command, see the CICSIMVS Application
Programmer's Reference manual.

392 CICS/MVS 2.1.2 Customlzatlon Guide

Macro-level application programs
User EMPs can be coded in assembler-language macro-level application
programs using the macro DFHEMP TYPE =ENTRY with the CLASS operand.
The syntax of the macro follows:

OFHEMP [TYPE=ENTRY]
,IO=numberl (PP,number) lentryname.number
[,CLASS:([ACCOUNT] [,PERFORM] [,MONITOR])]
[,OATA1={symbol I (symbol)]
[,OATA2={symboll(symbol)]
[,ROATA1={registerl(register)]
[,ROATA2={register l(register)]

,-------, ----_.--------------

CLASS = ([ACCOUNT][,PERFORM][,MONITOR])
Specifies that a user event monitoring point is to be defined.

ACCOUNT
Specifies that accounting class user data is to be collected at this user
EMP if it is defined in the monitoring control table. ACCOUNT can be
abbreviated to ACC.

PERFORM
Specifies that performance class user data is to be collected at this user
EMP if it is defined in the monitoring control table. PERFORM can be
abbreviated to PER.

MONITOR
Specifies that only a user EMP is to be defined at this point. MONITOR
can be abbreviated to MON.

DATA1=
Specifies the address of the data to be placed in the first data field (bytes 8
to 11) of the trace table entry.

symbol
Is the symbolic address of the data to be placed in the first data field of
the table entry.

(symbol)
Is the symbolic address of an area that contains the address of the data
to be placed in the first data f'ield.

OATA2=
Is similar to DATA 1 except that it is used for the second data field (bytes 12
to 15) of the trace table entry.

10 = numberl(PP ,number)lentryname.number
Specifies the identification number of the event monitoring point. There may
be an EMP-definition in the MCT that has the same 10 =operand.

number
A decimal integer in the rangE~ 1 through 255.

Chapter 5.8. CICS monitoring facility 393

(PP ,number)
This form is used by some IBM program-products to generate IDs in the
range 200 through 254 by specifying (PP,1) through (PP,55) respectively.

entryname.number
Allows multiple users of any number from 1 through 199. Thus,
'UNIQUE.3', 'DSN.3', and '3' would be three different EMP-identifiers. Any
clocks, counts, or byte-offsets referred to by one of them will be different
objects from those referred to by any other(s). If one of the forms
'number' or '(PP,number)' is coded without an entryname, a default
entryname 'USER' is provided.

RDATA1=
Specifies the register whose contents are to be placed in the first data field
of the trace table entry.

register
The number of the register whose contents are to be placed in the first
data field.

(register)
The number of the register whose contents are the address of the data to
be placed in the first data field.

RDATA2=
Is similar to RDATA 1, except that it is used for the second data field of the
trace table entry.

For monitoring, the fields DATA1 and DATA2 identify optional binary fullwords
that can represent a number, a mask for logical operations, or an address. The
way in which DATA1 and DATA2 are interpreted will depend on the update

. actions requested in the monitoring control table.

If both the ACCOUNT and PERFORM options are specified in the application
program, the corresponding MCT entry can specify recording of either
accounting or performance data, or both. If only one option is specified at the
user EMP, only that class of recording is possible. Thus, greater flexibility is
obtained by specifying both options for the user EMP, and controlling run-time
activity by a suitably coded MCT.

Specifying event monitoring point processing in the MeT
Throughout this section, refer to the chapter on the DFHMCT macro instruction In
the CICSIMVS Resource Definition (Macro) manual.

DFHMCT TYPE = EMP
The DFHMCT TYPE = EMP macro instruction describes what action is to be taken
at each user-defined event monitoring point (EMP). The actions that can be
specified include manipulating the user count field in the accounting class and
performance (transaction) class records, and the user clock field and user byte
field in the performance (transaction) class records. One DFHMCT TYPE = EMP
macro instruction must be coded for each EMP to be used.

394 CICS/MVS 2.1.2 Customlzation Guide

Class (CLASS) fields
CLASS = ACCOUNTI PERFORM specifies which of the monitor classes are to be
manipulated for this EMP. ACCOUNT specifies that accounting class data is to
be changed; PERFORM specifies that performance class data is to be changed.
One or both values must be specified.

If CLASS = ACCOUNT is coded, the ACCOUNT = operand (described under
"ACCOUNT and PERFORM fields ") is used to define the specific actions to be
taken to adjust the accounting class user count field.

If CLASS = PERFORM is coded, the PERFORM = operand (described under
"ACCOUNT and PERFORM fields") is used to define the specific actions to be
taken to adjust the performance class user count, user clock, and user byte
fields.

ID (EMP Identifier) field
10 = numberI(PP,number)lentryname.number specifies the identification number
of the EMP for which this TYPE =EMP macro instruction applies.

For EMPs within a user application program, you should specify the 10 as a
number from 1 through 199. Identification numbers between 200 and 255 are
reserved for EMPs within program products, and these are coded as 10 = (PP,n),
which is equivalent to 10 = 199 + n. The CICS-OLII interface, for example, uses
10 = (PP, 1) up to 10 = (PP,9). If relevant EMPs have been defined in the code of a
program product, the EMP identifiers will be given in the documentation for that
product.

The "entryname.number" form is described under the OFHEMP macro in the
preceding section.

ACCOUNT and PERFORM fields
If you have coded CLASS == ACCOUNT, code ACCOUNT = (option) to define the
actions to be taken against the user count field in the accounting class data
record for this EMP. See the CICSIMVS Resource Definition (Macro) manual for
the options available for this operand.

If you have coded CLASS = PERFORM, code PERFORM = (option) to define the
actions to be taken against the user count, user clock, and user byte fields in the
performance class data record for this EMP. See the CICSIMVS Resource
Definition (Macro) manual for the options available for this operand.

The user fields consist of:

1. Up to 256 counters;

2. Up to 256 clocks, each made up of a four-byte accumulator and four-byte
count; and

3. A byte string of up to 256 bytes.

When you are selecting the user clock and user count fields for use with your
EMPs, use the lowest-numbered fields that are available. When it is activated,
the CICS monitoring facility acquires from dynamic storage a buffer large enough
to hold the largest possible monitor record. The internal calculations for the size

Chapter 5.8. CICS monitoring facility 395

of this buffer are based on the field number. More storage will (perhaps
unnecessarily) be allocated for a higher-numbered field than for a
lower-numbered field, on the assumption that all lower-numbered fields are
already in use.

Clock (SCLOCK and PCLOCK) fields (performance data only)
SCLOCK(number)

The clock specified by number is to be started. The value of the four-byte
count in the user clock field will be incremented by 1, and flagged to indicate
"running" .

PCLOCK(number)
The clock specified by number is to be stopped. The value of the four-byte
count in the user clock field will have its flag reset. The accumulator is reset
to the sum of its contents before the previous SCLOCK and the elapsed
period between that SCLOCK and this PCLOCK.

An EMP causes a clock to be started if the corresponding MCT entry specifies
SCLOCK. At this point, the actual clock contents in the transaction performance
record are set to the start TOO in units of 16 microseconds, backdated by the
total time accumulated so far, and the count of periods accumulated so far is
flagged, to indicate that the clock is running.

When, at another EMP, the corresponding PC LOCK option is executed, the clock
contents are subtracted from the stop TOO to give the total accumulated time.
At the same time, the halfword count of contributing periods has its flag reset (to
indicate that the clock is stopped).

In some circumstances, a transaction may end with an outstanding SCLOCK
request (for example, because of abend). In such cases, the clock contents will
be misleading, but the fact will be highlighted by the period count associated
with the clock being flagged (high-order bit set to 1). If this is undesirable, users
can code a suitable OFHPEP abend exit to test for this in vital clocks and, if
necessary, to close off the last period, as if PCLOCK had been issued at task
end.

Starting and stopping clocks does not refer to the data passed as OATA1 and
OATA2 from the EMP, so clocks can be controlled at the same time as counts
are updated.

At some cost in collecting the data, you can use clocks to accumulate the time
that the elcs main task TCB has been running (CPU-time) rather than total
elapsed time. You do this by using the options SCPUCLK and PCPUCLK instead
of SCLOCK and PCLOCK respectively.

Sample DFHMCT TYPE = EMP entries for DLII
The following sample MCT entries make use of the nine event monitoring points
in the PERFORM class used by the CICS-OLII interface modules:

396 CICS/MVS 2.1.2 Customization Guide

DFHMCT TYPE=EMP,ID=(PP,1),CLASS=PERFORM,PERFORM=SCLOCK(3)
DFHMCT TYPE=EMP,ID=(PP,2),CLASS=PERFORM,PERFORM=PCLOCK(3)
DFHMCT TYPE=EMP,ID=(PP,3),CLASS=PERFORM,PERFORM=SCLOCK(1)
DFHMCT TYPE=EMP,ID=(PP,4),CLASS=PERFORM,PERFORM=(PCLOCK(1)

,SCLOCK(2))
DFHMCT TYPE=EMP,ID=(PP,5),CLASS=PERFORM,PERFORM=(PCLOCK(2)

,MLTCNT(1,9))
DFHMCT TYPE=EMP,ID=(PP,6),CLASS=PERFORM,PERFORM=SCLOCK(4)
DFHMCT TYPE=EMP,ID=(PP,7),CLASS=PERFORM,PERFORM=PCLOCK(4)
DFHMCT TYPE=EMP,ID=(PP,B),CLASS=PERFORM,PERFORM=(PCLOCK(I)

,PCLOCK(2),PCLOCK(3)
,PCLOCK(4))

DFHMCT TYPE=EMP,ID=(PP,9),CLASS=PERFORM,PERFORM=PCLOCK(I)

In the 10 parameter, the following specifications are used:

(PP,I) - Start of database call
(PP,2) - End of database call
(PP,3) - Start of PSB schedule
(PP,4) - End of schedule call
(PP,5) - Terminate PSB
(PP,6) - Start of I/O wait
(PP,7) - End of I/O wait
(PP,B) - Stop all clocks after task abend in DFHDLQ.
(PP,9) - Stop clock 1 after schedule failure

Processing output from the CICS monitoring facility
Output from the CICS monitoring facility can be processed in the following ways:

You can code your own output-processing and analysis program. The
information in the sections, "CICS monitoring data formats" on page 399,
"Data records produced by CICS monitoring" on page 406, and "User exits
for accessing monitoring data" on page 416 will help you to do this.

You can use the sample program DFH$MOLS, described below. This
program generates a basic listing of the CICS monitoring facility output. You
may wish to use DFH$MOLS to check that the monitoring facility has been
correctly specified, or you may wish to modify it to provide your own analysis
programs. If you reassemble DFH$MOLS using a COpy statement, you will
need to include the END DFH$MONA statement in your assembly JCL.

Release 2 of the OS/VS program product Service Level Reporter (program
number 5740-DC3) runs under MVS, and can be used to process CICS
monitoring output, combining it with other performance information from, for
example, system management facilities (SMF), and producing joint reports.
CICS users with SLR may, therefore, wish to use the DFHJCT JTYPE = SMF
option, combining CICS monitoring facility output with other SMF Information
on standard SMF data sets, rather than sending CICS monitoring facility
output to a separate CICS journal.

Chapter 5.6. CICS monitoring facility 397

The DFH$MOLS program
The sample program DFH$MOLS lists the journal data sets produced by the
CICS monitoring facilities. It does not analyze the data. Information on how to
run the sample program is given in the source of the program, which should be
listed from the appropriate system source library.

The output from the sample program is a list of fields and field values from the'
journal data set. For each block of data on the journal, field values are listed
from the SMF header and product section. For each CICS data section, section
header and descriptor field values are listed, followed by the field description
and value for each data field present in the first data record. The field
descriptions and values are then repeated for the remaining data records in the
data section.

Function
The DFH$MOLS program reads, formats, and prints the monitoring data set, that
is, the system SMF data set or the CICS journal. It is intended as a sample
program that you can use as a skeleton if you need to write your own program
to analyze the data set.

This program can also be read with the monitoring documentation to enable you
to understand the "wrapping" that encloses the raw monitoring data. After the
"wrapping" has been removed, the individual data fields are moved to the print
area. If you wish to analyze the data, this would be the point that the link to the
user exit would be made.

Monitoring manipulates counters, clocks, and fields. Clocks may be four-byte
elapsed time or eight-byte time-of-day (TOO). The program converts the TOO
clock to yy/mm/dd format.

The program needs to find a dictionary. DFHCMON constructs the dictionary
automatically, in each journal, when monitoring is started. If the data set does
not contain a dictionary, the program does not analyze any records but simply
abends.

This program produces about a page of output for each task if all classes of
monitoring are active.

The monitoring data set on disks should be closed before the DFH$MOLS
program is run. This ensures that an EOF marker is written and avoids
processing information written previously.

The monitoring data set is expected to be in the following format:

<SMF header>,<product section>,<CICS section>,<CICS section>

There can be many occurrences of the CICS section. The format of the < CICS
section> is:

<function header>,<section descriptor>«section data>l<section dict»

This program requires the section dictionary to occur before any section data.

398 CICS/MVS 2.1.2 Customlzatlon Guide

It is the user's responsibility to close the journal data sets.

Operation
The program reads the monitor data set until the dictionary records are located.
It then builds in-core dictionaries, and processes the following data records
against them. If more dictionary records are found, the current in-core ones are
released and new ones built.

Selectivity and sample JCL
An optional selection argument, specified in the PARM-field of the execution JCl,
is interpreted by the program as a concatenation of transaction-and
terminal-identifiers. When correctly specified, the program will suppress the
printing of dictionary information, of record headers, and of all data not
associated with the specified combination of transaction and terminal.

The example JCL Is as follows:

I I,ll JOB
1151 EXEC PGM=DFH$MOLS[,PARM= •..]
IIINPUT DO (input tape or diSk)
/IOUTPUT DD SYSOUT=A

CICS monitoring data formats
This section gives details of the formats of CICS monitoring-facility records.
However, you should be aware that these formats may change due to
maintenance or development activity of CICS. look in the OS/VS2 MVS
Supervisor Services and Macro Instructions, GC28-0683, for the format of the
records written to, SMF data sets.

When output data from the CICS monitoring facility is processed, the first block
for any class that an analysis program encounters is a dictionary record.
Dictionary formats are described under "Dictionary section" on page 405.

The output of the CICS monitoring facilities is in standard System Management
Facilities (SMF) format (record type '110').

Each physical block is composed of a standard block header (SMF header and
product section), and then one or more CICS data sections; each CICS section
comprises a section header and descriptor, and then one or more CICS
monitoring-facility data records. Within each section, all the CICS
monitoring-facility data records have the same format. Figure 34 on page 400
shows the format of a block of monitoring data.

The dictionary information for each monitoring class is contained in CICS
dictionary sections.

Chapter 5.8. CICS monitoring facility 399

SMF SMF
Headl3r Product

Boction

SectIon Section
Header Descriptor

-
"

CiCS Data CICS Data
section Soction

..

---------------~--.-------~
CIGS Data
Sootion

- _____________ .""-____ --.J

.....................
'- "- ..

Field Da.ta
Connectors Record 1

, ...

-------------------- .. -.
Dab\
Reoord 2

-

-----------------~~
Data
F1900rd II

- - - - - -. - - - "'--___ -oJ

Figure 34. Format of a block of monitoring data

Standard system management facilities block header
The standard system management facilities (SMF) block header consists of three
parts: a four-byte "LLbb" block length field, an SMF header, and a product
section. The SMF header describes the system creating the output; the product
section describes where the output originated, that is, the subsystem producing
the output (CICS region), the log 10, and so on. Many of the fields are
unimportant for CICS monitoring-facility output to user journals; but in MVS,
where the CICS monitoring-facility data may be directed to SMF data sets and
merged with other SMF data, it must be possible to distinguish the types of data
during procesRing by standard SMF-based programs.

The total length of the containing physical block is specified in the initial LLbb
field. The remaining fields are as described below. The names listed on the left
can be generated within a U!~er-defined DSECT, by coding the macro OFHJCSMF
TYPE =(PREFIX,SMF). For an example, see "Example of SMF block mapping" on
page 404. The offsets shown must be increased by 4 when reckoned from the
LLbb field at the start of the block.

400 CICS/MVS 2.1.2 Customizatlon Guide

SMF header
The SMF header describes the system creating the output and has the following
format:

Field
DSECT Offset Length
Name (Hex) (Bytes) Description

SMFFLG 0 Operating system indicator X I 82 I

(SMFFLVS2)

SMFRlY 1 SMF record type - always X '6E ' for CICS

SMFTME 2 4 Time when block written (binary time-of-day
clock in 0.01-second units)

SMFDTE 6 4 Day-of-year date when block written -
packed decimal OOVYDDD +

SMFSID A 4 System identification

SMFSSS E 4 Subsystem identification

12 2 Reserved

SMFAPS 14 4 Offset of start of product section
(SMFPSSlY) from block LLbb prefix

SMFLPS 18 2 Length of product section

SMFNPS 1A 2 Number of product sections

SMF product section
The product section identifies the sUbsystem producing the output, which, in this
case, is the CICS region. It has the following format (offsets are from the start of
the SMF header):

Field
DSECT Offset
Name (Hex)

SMFPSSlY 1C

SMFPSRVR 1E

SMFPSPRN 20

SMFPSRSN 28

SMFPSJID 2C

SMFPSBKN 20

SMFPSLBW 30

SMFPSBAL 34

Length
(Bytes)

2

2

8

4

3

4

2

Description

Product subtype - always H'1' for monitoring

Record version - C'03'

Recording product name - APPLID known to
VTAM

Block sequence number in this journal -
seven-digit packed decimal

Journal identification - user journal 10 for
monitoring

Record number within data set

Last record address (relative track and record
TIR)

Track balance in bytes

Chapter 5.8. ercs monitoring facility 401

CICS data section
Each CICS data section consists of a section header, a section descriptor, a
string of field connectors, and one or more data records of identical format
relating to one monitoring class.

The four different types of CICS data section are distinguished by the values of
two fields: the class field (MNSEGCL) in the section header and the record type
(MCTSSDID) in the section descriptor.

After the section descriptor, and before the section data records, is a string of
binary field connectors that indicate, in order, the fields present in each data
record. Each connector corresponds to a specific field-entry in the associated
dictionary (described under "Dictionary section" on page 405), which supplies
the field length, format, and name. Thus, the string of field connectors, coupled
with the dictionary, can be used by reporting programs t.o analyze each data
section. In fact, this is the only way a reporting program can interpret the data
sections with some independence from changes introduced by maintenance or
new releases.

In records of transaction data, the successive records can be regarded as rows
in a table, each column corresponding to one type of field within the records.
Each field connector then describes the contents of one column. This view of the
data is helpful when designing tabular reports, which are often arranged in just
this way.

Section header
Each section header begins with a four-byte "LLbb" length field, which defines
the overall length of the entire CICS section, including this prefix, the section
header, the section descriptor, the field connectors, and the data. This is
followed by a halfword containing the length of the section header (including this
halfword but excluding the preceding LLbb).

The remaining fields in the section header are as described below. The names
listed on the left can be generated within a user-defined DSECT by coding the
DFHCMPRC TYPE = (PREFIX,MNS) macro. For an example, see "Example of SMF
block mapping" on page 404. The offsets shown should be increased by 6 when
reckoned from the LLbb at the start of the section header.

Field
DSEeT
Name

Offset Length
(Hex) (Bytes)

-------------- -----
MNSEGCL o 2

MNSEGSYS 2 8

MNSEGIO A 4

MNSEGREG E 2

402 CICS/MVS 2.1.2 Customlzatlon Guide

Description

Class of data captured

H'2' - accounting data
H'3' - performance data
H'4' - exception data

Subsystem 10
-. APPLID known to VTAM

Machine on which data was produced -
always CICS

Reserved

Section descriptor
The format of the section descriptor follows. The field names can be generated
in a user-defined DSECT using the macro DFHMCTSS TYPE = (PREFIX,MCT). For
an example, see "Example of SMF block mapping" on page 404.

Field
DSECT Offset Length
Name (Hex) (Bytes) Description

MCTSSDL 0 2 Total length of section descriptor and section
data

MCTSSDID 2 2 Type of record within class

H'O' - dictionary data
H'1' - transaction data
H'2' - global data (performance only)

MCTSSDCA 4 2 Offset from MCTSSDL to start of field
connectors

MCTSSDCL 6 2 Length of each field connector

MCTSSDCN 8 2 Number of connectors

MCTSSDRA A 2 Offset from MCTSSDL to start of first data
record

MCTSSDRL C 2 Length of each data record

MCTSSDRN E 2 Number of data records

Field connectors and data records
The section descriptor is followed by the string of field connectors, and then by
the successive data records. The connector value is equal to the value of the
CMODCONN field (that is, the assigned connector value) in the corresponding
dictionary entry. Each field connector in the string preceding the data records
corresponds with one field in each record; the first field connector with the first
field, the second with the second, and so on.

There is one dictionary section for all records in a monitoring class. In the case
of the performance class, one set of field connectors serves for both transaction
and global performance records. The string of connectors associated with each
type of record is a subset of the complete range.

In the case of the user clocks, one connector is used to designate the entire
eight bytes that contain the time accumulator and the period count.

Chapter 5.8. CICS monitoring faCility 403

Example of SMF block mapping
The following code shows how an SMF block can be mapped using the macros
mentioned in the descriptions of the SMF block header and the CICS data
section. This example takes care of the offset-adjustments referred to in those
descriptions. A" labels beginning 'XXX' may be replaced by your own labels.
Your replacement label must have three characters. If it does not, the assembly
will be in error. If the prefix is omitted, the default is given.

JCSMFDS OSECT, Must use the name JCSMFDS
XXXBlK OS Hl2 length of block (lL)

OS Hl2 Fi 11 er (BB)
OFHJCSMF TYPE=(PREFIX,SMF)

* Defines remainder of SMF-header
*
XXXSEG
XXXSEC

*
*

*

*
*

and product-section
OSECT ,
OS Hl2 length of crcs data-section (LL)
OS Xl2 Fi 11 er (BB)
OS HL2 Length of section header
(Note that halfword definitions in the following
structures may become unaligned at execution-time).
OFHCMPRC TYPE=(PREFIX,MNS)

Defines CICS section-header
OFHMCTSS TYPE=(PREFIX,MCT)

Defines CICS section-detail

XXX REG EQU 3
XXXCSECT CSECT

(Choose your own register)

*
*

*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*

Assuming that XXXREG already addresses the block, ...
USING JCSMFDS,XXXREG Tell Assembler

Retrieve what you need from the SMF-header (especially the
b10cklength from XXXBLK), and from the
product-section then •..

lA XXXREG,SMFEND Address 1st CICS data-section
USING XXXSEG,XXXREG Tell Assembler

(Addressabi1ity to SMF-header is now lost, since
this example uses just the one register - XXXREG).

Now MNSEGCL through MNSEGREG show the origin of the data,
and ~1CTSSDL through MCTSSDRN defi ne its format. Process i ng
here probably consists of iterations, controlled by the
value of MCTSSDRN, interpreting each data-record accord
ing to the field-lOs defined by MCTSSDCA/l/N.

AH XXXREG,XXXSEC Address next CICS data-section
(This 1s where to test for end-of-block by reference

to the value derived from the blocklength field).

404 CICS/MVS 2.1.2 Customizatlon Guide

Dictionary section
Each of the three classes of monitoring data has a dictionary section to describe
the data format and length of each field within the class records, and to provide
each field with a descriptive title.

Each dictionary section consists of a section header and section descriptor
followed by dictionary data records.

You can use the DFHCMPDR DIR,,[ACCI PERI EXC] macro to list the dictionary
contents for each monitoring class.

Dictionary section descriptor
The format of a dictionary section descriptor follows.

Field
DSECT Offset Length
Name (Hex) (Bytes) Description ---------------
MCTSSDL 0 2 Total length of section descriptor and

dictionary data

MCTSSDID 2 2 Type of record within class H'O' - dictionary
data

MCTSSDCA 4 2 Undefined for dictionary data

MCTSSDCL 6 2 Undefined for dictionary data

MCTSSDCN 8 2 H'O' - dictionary data

MCTSSDRA A 2 Offset from MCTSSDL to start of dictionary
data

MCTSSDRL C 2 Length of each dictionary entry

MCTSSDRN E 2 Number of dictionary entries

Dictionary sections do not have the string of field connectors that are included in
data sections. Instead, they describe the format and size of the field associated
with each connector, by repeating an "entry", the contents of which can be
mapped by the macro DFHCMPDR TYPE = (PREFIX,CMO). If you wish to replace
CMO with your own label, you must supply a three-character label. If you do
not, you will receive the default.

Chapter S.B. CICS monitoring facility 405

Offset Length
(Hex) (Bytes) Name Description

0 CL8 CMODNAME Owner of the field

8 CL1 CMODTYPE Data type:

"S' Clock
'T' Time-stamp
'A' Count
'C' Byte-string
'P' Packed decimal

9 CL3 CMODIDNT Numeric name

C HL2 CMODLENG Length of data

E HL2 CMODCONN Assigned connector

10 CL8 CMODHEAD Informal field name

Figure 35 shows the format of a block of dictionary data.

-
Section Section Dictionary Dictionary
Header Descriptor Data Data

Dictionary
Data

--------,'"------_

Field Data Field Field Field
Owner Type Identifier Lengtrl CClrmector

Figure 35. Format of a block of dictionary data for monitoring

.....

Fiel
Tit I tJ

The field DSECT names in the section header and section descriptor are the
same as for a CICS data section and can be generated using the DFHMCTSS
and DFHCMPRC macro instructions. However, when no string of field
connectors is present, some fields in the section descriptor have fixed values.
For example, MCTSSDCN=X'OOOO'.

Data records produced by CICS monitoring
All the data fields that are available in monitoring data records for all the
monitoring classes are shown below. Each field is associated with a field
connector that links it to its dictionary entry. The dictionary entry for each field
defines the length and format of the data for that field, and contains a descriptive
title.

406 CICS/MVS 2.1.2 CustomlzatlonGulde

The definitive descriptor associated with any field connector is that contained in
the dictionary. The dictionary produced when the monitoring data is journaled
defines the data it accompanies.

This description divides the monitoring data into three classes of record as
indicated by MNSEGCL in the CICS section header. For each class, the various
fields are described briefly in order of their field connectors. Note that this order
is not the same as their physical order when journaled.

In the descriptions that follow, the term clock is distinguished from time stamp.
A clock comprises a 32-blt value, expressed in units of 16 microseconds,
accumulated during one or more measurement periods, followed by eight
reserved bits, in turn followed by a 24-bit value indicating the number of such
periods. A time stamp, on the other hand, is an eight-byte copy of the output of
a store clock (STCK) instruction.

Neither the 32-bit timer component of a clock, nor its 24-bit period count are
protected against wraparound. The timer capacity is about 18 hours, and the
period count runs modulo-16777216. The "reserved bits" have the following
significance:

Bits 0 and 1
are used for online control of the clock when it is running, and should always
be zeros on output.

Bits 2 and 3, 4 and 7
are not used.

Bits 5 and 6
when set to 1, indicate that the clock has suffered at least one out-of-phase
start (bit 5) and/or stop (bit 6).

Note that the phrase waiting for ... 110, which occurs in the record descriptions,
includes not only that time during which an I/O operation is actually taking place,
but also the time in which the access method is completing the outstanding
event control block and subsequently until the waiting CICS task is redispatched.

Monitoring-field definitions
These definitions are each presented as a basic field name followed by a
definition of the contents. The name has the format shown in this example:

Chapter 5.8. CICS monitoring facility· 407

001 DFHTASK (TYPE-C, 'TRAN' , 4 BYTES.)
I I

I
I
I
I
I
I
I

I
I
I
I

Length of the field (as represented by
CMODLENG in the relevant dictionary entry).

Informal name for the field, as used, perhaps, in
column headings when the monitoring output is
post-processed. (CMODHEAD of the dictionary entry).

(This is CMODTYPE of the dictionary entry).
The following types are defined:
A - a 32-bit count
C - a byte-string
P - a packed decimal value
S - a clock comprising a 32-bit accumulation of 16-microsecond

units followed by a 32-bit count (modulo-16,777,216) of
the number of int~rvals included in the accumulation.

T - a time stamp derived directly from the output of a
store clock (STCK) instruction.

Group name by which multiple fields may be EXCLUDEd or INCLUDEd
during MCT preparation.
(Field CMODNAME of the relevant dictionary entry).

Fleld identifier (unique within class) by which the field may
be individually EXCLUDEd or INCLUDEd during MCT preparation.
(Field CMODIDNT of the relevant dictionary entry).

Accounting class
001 DFHTASK (TYPE-C, 'TRAN', 4 BYTES.)

Transaction identification.

002 DFHTERM (TYPE·C, 'TERM', 4 BYTES.)
Terminal identification.

004 DFHTASK (TYPE-C, 'T', 4 BYTES.)
Transaction type:

A Attached by automatic transaction initiation (ATI)
D Attached by transient-data trigger-level
S System internal task
T Attached from a terminal (but see "Z' below)
Z Second or subsequent part of a pseudoconversation.

005 DFHTASK (TYPE-A, 'OCCURS', 4 BYTES.)
Number of tasks identified by fields 1, 2, 11, 4.

006 DFHTASK (TYPE-A, 'ABENDS', 4 BYTES.)
Number of tasks that abended.

007 DFHTERM (TYPE.A, 'MSGIN', 4 BYTES.)
Total number of input messages.

008 DFHCICS (TYPE-A, 'UCOUNT', 4 BYTES.)
User count field.

408 CICS/MVS 2.1.2 Customlzatlon Guide

009 DFHCICS (TYPE-T, 'START', 8 BYTES.)
Earliest task-start time.

010 DFHCICS (TYPE-T, 'STOP', 8 BYTES.)
Most recent task-detach time.

011 DFHCICS (TYPE-C, 'USERID', 8 BYTES.)
User identification.

Performance class
In the performance class, a user-task (lifetime of a TCA) may be represented by
one or more monitoring records, according to whether the MCT option DELIVER
and/or the MCT parameter CONV=YES have been selected. In the descriptions
that follow, the term "user-task" can usually be interpreted to mean "that part or
whole (of a TCA-lifetime) that is represented by a performance class record",
unless the description specifies otherwise.

The phrase "during the measurement interval" normally identifies a field as
being part of the global performance record. Note that a few fields are common
to global and task-level records.

001 DFHTASK (TYPE-C, 'TRAN', 4 BYTES.)
Transaction identification.

002 DFHTERM (TYPE·C, 'TERM', 4 BYTES.)
Terminal identification.

003 DFHCICS (TYPE-C, 'OPR', 4 BYTES.)
User identification.

004 DFHTASK (TYPE-C, 'T', 4 BYTES.)
Transaction type:

A Attached by automatic transaction initiation (ATI)
C Second or subsequent part of a conversational task
D Attached by transient-data trigger-level
S System internal task
T Attached from a terminal (but see 'l' below)
Z Second or subsequent part of a pseudoconversation.

005 DFHCICS (TYPE-T, 'START', 8 BYTES.)
Start-time of measurement interval. For global records, this is time at which
the interval began, as determined by the FREQ = parameter in the
performance class RECORD entry of the MCT. For task-level records, this is
either the time at which the user-task was attached, or the time at which
data-recording was most recently reset in support of CONV = YES or of
DELIVER.

006 DFHCICS (TYPE-T, 'STOP', 8 BYTES.)
Finish-time of measurement interval. For global records, this is time at
which the interval ended, as determined by the FREQ = parameter in the
performance class RECORD entry of the MCT. For task-level records, this is
either the time at which the user-task was detached, or the time at which
data-recording was completed in support of CONV = YES or of DELIVER.

Chapter 5.8. CICS monitoring facility 409

007 DFHTASK (TYPE-S, 'USRDISPT', 8 BYTES.)
Elapsed time for which the user-task was dispatched.

008 DFHTASK (TYPE-S, 'USRCPUT', 8 BYTES.)
Processor-time for which the user-task was dispatched.

009 DFHTERM (TYPE·S, 'TCIOWTT', 8 BYTES.)
Elapsed time for which the user-task waited for terminal 110.

010 DFHJOUR (TYPE-S, 'JCIOWTT', 8 BYTES.)
Elapsed time for which the user-task waited for journal 110.

011 DFHTEMP (TYPE-S, 'TSIOWTT', 8 BYTES.)
Elapsed time for which the user-task waited for temporary-storage 1/0.

014 DFHTASK (TYPE-S, 'SUSPTIME', 8 BYTES.)
Elapsed time for which the user-task was on the suspend-chain.

015 DFHTERM (TYPE-S, 'TCDISPT', 8 BYTES.)
Elapsed time for which the terminal manager was dispatched during the
measurement interval.

016 DFHTERM (TYPE .. S, 'TCCPUT', 8 BYTES.)
Processor-time for which the terminal manager was dispatched during the
measurement interval.

018 DFHJOUR (TYPE-S, 'JCDISPT', 8 BYTES.)
Elapsed time for which the Journal manager was dispatched during the
measurement interval.

019 DFHJOUR (TYPE-S, 'JCCPUT', 8 BYTES.)
Processor-time for which the journal manager was dispatched during the
measurement interval.

021 DFHTASK (TYPE-S, 'USRDISPT', 8 BYTES.)
Elapsed time for which any user-task was dispatched during the
measurement interval.

022 DFHTASK (TYPE·S, 'USRCPUT', 8 BYTES.)
Processor-time for which any user-task was dispatched during the
measurement interval.

024 DFHTASK (TYPE·S, 'KCDISPT', 8 BYTES.)
Elapsed time for which CICS's task-manager was dispatched during the
measurement interval.

026 DFHSTOR (TYPEnA, 'DSAHWM', 4 BYTES.)
Maximum amount (high-water mark) in pages of the dynamic storage area
used during the measurement interval.

027 DFHTASK (TYPE-S, 'OSWTELAT', 8 BYTES.)
Elapsed time spent by the CICS main task in operating system WAIT(s)
during the measurement interval.

028 DFHTASK (TYPE-S, 'SRB'TlME', 8 BYTES.)
Time spent by CICS in SRB-mode during the measurement interval. Instead
of the actual number of times SRB-mode was entered, the entry-count

410 CICS/MVS 2.1.2 Customlzation Guide

portion of this clock always contains a value of 1. This Is because, in order
to reduce overhead, the operating system SRB"timer for the address-space
is interrogated only at the end of the interval.

029 DFHSTOR (TYPE-A, 'PAGINCT', 4 BYTES.)
Page-in count duri.ng the measurement interval.

030 DFHSTOR (TYPE-A, 'PAGOUCT', 4 BYTES.)
Page-out count during the measurement interval.

031 DFHTASK (TYPE-P, 'TASKNO', 4 BYTES.)
Sequence number of the TCA (TCAKCTTA).

032 DFHCICS (TYPE-A, 'MNEXCCT', 4 BYTES.)
Number of exception records generated by the user-task.

033 DFHSTOR (TYPE-A, 'SCUSRHWM', 4 BYTES.)
Maximum amount (high-water mark) of storage allocated to the user-task. In
an MVS/XA system, this value includes storage obtained above 16MB.

034 DFHTERM (TYPE.A, 'TCMSGIN1', 4 BYTES.)
Number of messages received from the principal terminal facility by the
user-task. (Not applicable to ISC LUTYPE6.2 transactions.)

035 DFHTERM (TYPE-A, 'TCMSGOU1', 4 BYTES.)
Number of messages sent to the principal terminal facility by the user-task.
(Not applicable to ISC LUTYPE6.2 transactions.)

036 DFHFllE (TYPE-A, 'FCGETCT', 4 BYTES.)
Number of file GETs issued by the user-task.

037 DFHFllE (TYPE-A, 'FCPUTCT', 4 BYTES.)
Number of file PUTs issued by the user-task.

038 DFHFllE (TYPE-A, 'FCBRWCT', 4 BYTES.)
Number of file BROWSEs issued by the user-task.

039 DFHFllE (TYPE-A, 'FCADDCT', 4 BYTES.)
Number of file ADDs issued by the user-task.

040 DFHFllE (TYPE-A, 'FCDElCT', 4 BYTES.)
Number of file DELETEs issued by the user-task.

041 DFHDEST (TYPE-A, 'TDGETCT', 4 BYTES.)
Number of transient-data GETs issued by the user-task.

042 DFHDEST (TYPE-A, 'TDPUTCT', 4 BYTES.)
Number of transient-data PUTs issued by the user-task.

043 DFHDEST (TYPE-A, 'TDPURCT', 4 BYTES.)
Number of transient-data PURGEs issued by the user-task.

044 DFHTEMP (TYPE-A, 'TSGETCT', 4 BYTES.)
Number of temporary-storage GETs issued by the user-task.

046 DFHTEMP (TYPE-A, 'TSPUTACT', 4 BYTES.)
Number of PUTs to auxiliary temporary-storage issued by the user-task.

Chapter 5.8. CICS monitoring facility 411

047 DFHTEMP (TYPE-A, 'TSPUTMCT', 4 BYTES.)
Number of PUTs to main temporary-storage issued by the user-task.

050 DFHMAPP (TYPE-A, 'BMSMAPCT', 4 BYTES.)
Number of BMS MAP requests issued by the user-task.

051 DFHMAPP (TYPE-A, 'BMSINCT', 4 BYTES.)
Number of BMS IN requests issued by the user-task.

052 DFHMAPP (TYPE-A, 'BMSOUTCT', 4 BYTES.)
Number of BMS OUT requests issued by the user-task.

054 DFHSTOR (TYPE-A, 'SCUGETCT', 4 BYTES.)
Number of user-storage GETMAINs during the user-task.

055 DFHPROG (TYPE-A, 'PCLlNKCT', 4 BYTES.)
Number of program LINKs during the user-task.

056 DFHPROG (TYPE-A, 'PCXCTLCT', 4 BYTES.)
Number of program XCTLs during the user-task.

057 DFHPROG (TYPE-A, 'PCLOADCT', 4 BYTES.)
Number of program LOADs during the user-task.

058 DFHJOUR (TYPE-A, 'JCPUWRCT', 4 BYTES.)
Number of journal output requests during the user-task.

059 DFHTASK (TYPE-A, 'ICPUINCT', 4 BYTES.)
Number of interval-control START or INITATE requests during the user-task.

060 DFHSYNC (TYPE-A, 'SPSYNCCT', 4 BYTES.)
Number of SYNCPOINT requests during the uaer-task.

061 DFHSTOR (TYPE-A, 'PAGINCT', 4 BYTES.)
Number of page-in operations while the user-task was dispatched.

063 DFHFILE (TYPE·S, 'FCIOWTT', 8 BYTES.)
Elapsed time for which the user-task waited for file 110.

064 DFHTASK (TYPE-A, 'TASKFLAG', 4 BYTES.)
"Task-error-flags", a string of 31 bits used for signalling unusual conditions
occurring during the user-task:

Bit 0

Bit 1

Bits 2-4

Bit 5

Bits 6-21

Bit 22

Bit 23

Bits 24-31

412 CICS/MVS 2.1.2 Customlzatlon Guide

Reserved.

Detected an attempt either to start a clock that was already running, or to
stop one that was not running.

Reserved.

Detected a corrupted storage accounting area (SAA).

Reserved.

Detected a maximum task (CSAMXTON) condition.

Detected a short-on-storage (CSASOSON) condition.

Reserved.

067 DFHTERM (TYPE·A, 'TCMSGIN2', 4 BYTES.)
Number of messages received from the alternate terminal facility by the
user-task. (Not applicable to ISC LUTYPE6.2 transactions.)

068 DFHTERM (TYPE·A, 'TCMSGOU2', 4 BYTES.)
Number of messages sent to the alternate terminal facility by the user-task.
(Not applicable to ISC LUTYPE6.2 transactions.)

069 DFHTERM (TYPE.A, 'TCALLOCT', 4 BYTES.)
Number of TCTTE ALLOCATE requests issued by the user-task.

070 DFHFILE (TYPE·A, 'FCAMCT', 4 BYTES.)
Number of times the user-task invoked access-method interfaces to transfer
data.

071 DFHPROG (TYPE-C, 'PGMNAME', 8 BYTES.)
The name of the first program invoked at attach-time.

074 DFHTASK (TYPE.A, 'ICV', 4 BYTES.)
ICV-value in units of 1/300 of a second at the end of the measurement
interval (CSASBTI).

076 DFHINIT (TYPE-C, 'SIT', 4 BYTES.)
Suffix of the system initialization table.

077 DFHTASK (TYPE-P, 'MXT', 4 BYTES.)
MXT-value at the end of the measurement Interval (CSAKCMT).

078 DFHTASK (TYPE·A, 'AMXT', 4 BYTES.)
AMXT-value at the end of the measurement interval (CSAMAXT).

079 DFHTASK (TYPE·A, 'ICVTSD', 4 BYTES.)
Terminal scan delay value in units of 1/300 of a second at the end of the
measurement interval (CSATSDTI).

080 DFHTASK (TYPE·P, 'TASKCT', 4 BYTES.)
Number of tasks currently in the system at the end of the measurement
interval (CSAKCCT).

081 DFHTASK (TYPE-S, 'KCCPUT', 8 BYTES.)
CPU-time for which CICS task-manager was dispatched during the .
measurement interval.

083 DFHTERM (TYPE-A, 'TCCHRIN1', 4 BYTES.)
Number of characters received from the principal terminal facility by the
user-task. (Not applicable to ISC LUTYPE6.2 transactions.)

084 DFHTERM (TYPE-A, 'TCCHROU1', 4 BYTES.)
Number of characters sent to the principal terminal facility by the user-task.
(Not applicable to ISC LUTYPE6.2 transactions,)

085 DFHTERM (TYPE .. A, 'TCCHRIN2', 4 BYTES.)
Number of chara.cters received from the alternate terminal facility by the
user-task. (Not applicable to ISC LUTYPE6.2 transactions.)

Chapter 5.8. CICS monitoring facility 413

086 DFHTERM (TYPE-A, 'TCCHROU2', 4 BYTES.)
Number of characters sent to the alternate terminal facility by the user-task.
(Not applicable to ISC LUTYPE6.2 transactions.)

087 DFHSTOR (TYPE·A, 'PCSTGHWM', 4 BYTES.)
Maximum amount (high-water mark) of program storage in use by the
user-task. The level of program storage in use is incremented, at LlNK/XCTL
events, by the size in bytes of the referenced program, and decremented at
RETURN events.

088 DFHSTOR (TYPE-A, 'PCCOMPRS', 4 BYTES.)
Total number of bytes of program storage that was released by FREEMAIN
during the measurement interval.

089 DFHCICS (TYPE.C, 'USERIO', 8 BYTES.)
User identification.

090 OFHMAPP (TYPE-A, 'BMSTOTCT', 4 BYTES.)
Total number of 8MS requests issued by the user-task.

091 OFHOEST (TYPE·A, 'TOTOTCT', 4 BYTES.)
Total number of transi-ent data requests issued by the user-task.

092 DFHTEMP (TYPE-A, 'TSTOTCT', 4 BYTES.)
Total number of temporary storage requests issued by the user-task.

093 OFHFILE (TYPE-A, 'FCTOTCT', 4 BYTES.)
Total number of file requests issued by the user-task.

094 OFHSTOR (TYPE-S, 'PCCMPRTM', 8 BYTES.)
Elapsed time which the user-task has spent in program compression.

095 OFHSTOR (TYPE-A, 'SCUSRSTG', 8 BYTES.)
Storage "occupancy" of the user-task. This measures the area under the
curve of storage-in-use against elapsed-time. The unit of measure is the
"byte-unit", where the "unit" is equal to 1024 microseconds. A user
occupying, for example, 256 bytes for 125 milliseconds (122 "units") incurs
31232 byte-units of this statistic.

096 OFHTASK (TYPE-S, 'AOSPTIME', 8 BYTES.)
CPU-time spent in the CICS address-space during the measurement interval.
Instead of the actual number of times the address-space was entered, the
entry-count portion of this clock always contains a value of 1. This is
because, in order to reduce overhead, the operating system timer for the
address-space is interro~Jated only the end of the measurement interval.

097 OFHTASK (TYPE-C, 'NETNAME', 20 BYTES.)
Fully qualified name by which the originating system is known to the VTAM
network (network.app/id). This name is assigned at attach-time using either
the net-name derived from the TCT (when the task is attached to a local
terminal). or the net-name passed as part of an ISC LUTYPE6.2 or IRC
attach-header. At least three padding bytes (X1001) will be present at the
right end of the name. When the originator is communicating over a OUI
batch session, the name is a concatenation of 'jobname.stepname.procname'
derived from the originating system. Characters in excess of 17 will cause
truncation at the left.

414 CICS/MVS 2.1.2 Customizatlon Guide

This field will be blank for entry-point attached system tasks (CSSY, CSLG,
and CSNE).

098 DFHTASK (TYPE-C, 'UOWID', 8 BYTES.)
Name by which the unit-of-work is known within the originating system. This
name is assigned at attach-time using either a STCK-derived token (when
the task Is attached to a local terminal), or the UOW-ID passed as part of an
ISC LUTYPE6.2 or IRC attach-header. The first six bytes of this field are
either:

1. A binary value derived from the clock of the originating system and
wrapping round at intervals of several months,

OR

2. A character-value of the form 'hhmmss', which wraps round daily. This
case applies when the originating system is communicating through a
DLII batch session.

The last two bytes of this field may change during the life of the TCA as a
result of syncpoint activity.

When using MRO or ISC, the UOWIO field must be combined with 'NETNAME'
(field 097) to identify a task uniquely, because 'UOWID' is unique only to the
originating CICS system.

099 DFHPROG (TYPE·C, 'ABCODE', 8 BYTES.)
Up to two abend-codes experienced by the user-task. If the field is empty
(8X'00'), then there was no abend. Otherwise, the first abend-code is
recorded, and, later on, the most recent abend-code that is different from the
first.

100 DFHTERM (TYPE-S, 'IRIOWTT', 8 BYTES.)
Elapsed time for which the user task waited for a response on an IRC link
during the measurement interval.

Exception class
001 DFHTEMP (TYPE·A, 'TSWTSTG', 4 BYTES.)

Amount (in bytes) of temporary storage that was acquired for a PUT request
only after waiting.

003 DFHSTOR (TYPE-A, 'SCWTSTG', 4 BYTES.)
Amount (in bytes) of main storage that was acquired by GETMAIN only after
waiting.

005 DFHFILE (TYPE-C, 'FCVSSWNM', 8 BYTES.)
Name of a file that incurred a wait for a VSAM string.

009 DFHTASK (TYPE·P, 'TASKNO', 4 BYTES.)
User-task sequence number.

010 DFHCICS (TYPE.A, 'MNEXCNO', 4 BYTES.)
Sequence number of this exception within the user-task.

011 DFHTASK (TYPE-C, 'TRAN', 4 BYTES.)
Transaction identification.

Chapter 5.8. CICS monitoring facility 415

012 DFHTERM (TYPE·C, 'TERM', 4 BYTES.)
Terminal identification. .

013 DFHCICS (TYPE·C, 'OPR', 4 BYTES.)
Operator identification.

014 DFHTASK (TYPE.C, 'T', 4 BYTES.)
Transaction type:

A Attached by automatic transaction initiation (ATI)
C Second or subsequent part of a conversational task
D Attached by transient-data trigger-level
S System internal task
T Attached from a terminal (but see 'Z' below)
Z Second or subsequent part of a pseudoconversation.

015 DFHCICS (TYPE.T, 'START', 8 BYTES.)
Start-time of exception condition.

016 DFHCICS (TYPE.T, 'STOP', 8 BYTES.)
Finish-time of exception condition.

017 DFHCICS (TYPE.C, 'USERID', 8 BYTES.)
User identification.

018 DFHSTOR (TYPE·S, 'PCOMPRTM', 8 BYTES.)
CPU-time used by a single operation of the program compression
mechanism (but see the note to "Exception class data" on page 390).

019 DFHFILE (TYPE-C, 'FCVSBWNM', 8 BYTES.)
Name of a file that incurred a wait for a VSAM buffer.

020 DFHSTOR (TYPE·S, 'SCWTETIM', 8 BYTES.)
The elapsed time used during a suspend because an unconditional storage
request could not be satisfied. (See also the notes about exception class
data on page 390.)

User exits for accessing monitoring data
Two task-related user exits in the CICS monitoring facility enable you to access
monitoring data records that are complete. Exit processing cannot change the
record that will appear in the monitoring data set.

When you initialize your CICS system, you can specify, in your DFHSIT macro
definition, whether you want monitoring facilities. Alternatively, you can request
such facilities dynamically, using the CSTT MONITOR transaction, or by
initialization overrides.

Exits in the CICS monitoring program, DFHCMP, give you access to transaction
records of all three classes, and to global performance records.

Note: Do not use EDF for task-related user exits within monitoring. Programs
for task-related user exits within monitoring should be compiled with the NOEDF
option.

416 CICS/MVS 2.1.2 Customizatlon Guide

Transaction records
CICS builds monitoring records for each monitoring class that is active. When a
record is completed, CICS transfers it to a buffer. The user exit gives you
access to each record after it has completed, but before it has been copied to
the buffer.

This means that the monitoring facility passes control to an exit program you
have written, at the following times for each class:

Accounting Class Just before the end of the task

Performance Class

• Just before the end of each task.

• If CONY = YES is specified on the DFHMCT TYPE = RECORD macro, each
time a CONVERSE command (or a SEND and RECEIVE pair) is issued.

• If the DELIVER option is specified in an MCT user-EMP, each time that
option is invoked.

Exception Class At the end of each exceptional condition.

The exit program is invoked separately for each record.

Global records
The monitoring control table (MCT) contains a time interval specified in the FREQ
operand of the DFHMCT TYPE = RECORD, CLASS = PERFORM resource definition
macro. DFHCMP passes control to its exit whenever it completes a global
performance record, which it does each time the MCT interval expires, and when
the performance class is being deactivated.

Parameter lists
On entry to the exit program, register 1 points to a saved parameter list. You
can use the DSECT DFHUEPAR to address this list (see "User exit parameter
lists" on page 348). The following description should be read in conjunction with
Figure 36 on page 418.

UEPEXN
Gives the address of the function identifier, a fullword that identifies the
source of the call. In this exit, this field should always contain X '0006',
denoting a task-related user exit call from the monitoring program.

UEPHMSA
Gives the address of the monitoring program's register save area. Register
1, saved at offset X '18' of this area, gives the address of the monitoring exit
parameter list. The first fullword of this list is the address of the exit
identifier, a one-byte field containing:

X'80'
X'40'

For transaction records
For global records.

Figure 37 on page 419 illustrates the parameter list for the transaction record
exit. Note that only one of the three dictionary header addresses is valid - you
can determine which by the value of the record type field as shown in the figure.

Chapter 5.S. CICS monitoring facility 417

Standard
Parameter
list
(OFHUEPAR)

R1--..' UEPEXN

I
I
I
I
I

~ UEPHMSA

Figure 38 on page 420 illustrates the parameter list for the global performance
record exit.

(Offset
X'18')

Funotlon
Definition
(OFHUERTR)

Register
Save Area

(R1)

Monitoring
User-Exit
Parameter
list

(address)

Exit
Identifier

~--II"""" (CL 1)

Exit Identifiers

X'80' .. DFHCMP
exit for tasi<;
reiate(j records
X'40' - DFHCMP
exit for global
performance
records

Figure 36. Parameter lists for CICS monitoring exits

Note: The form of the monitoring user-exit parameter list depends on the
reason the exit was invoked:

1. If the exit was invoked for gathering transaction-related data, the
parameter list is as shown in Figure 37 on page 419.

2. If the exit was invoked for gathering global performance data, the
parameter list is as shown in Figure 38 on page 420.

418 CICS/MVS 2.U! Customlzatlon Guide

r-------.---------.-----------.---------------~----__,

Monitoring
Usar-Exlt
Parameter
list for
Transaction
Record Exit Dictionary

Fullword
Exit Headers

address

Fullword
address

Fullword
addr~

Fullword
adlirss'S

Fullword
atidrass

Fullword
adrjress

Fullword
8(jdress

f-ullword
::HjdrB~~

Record TypBS

:X:'OI' .- Accounting

...
p

... -

... -

.
p

... -

...
--
.... -
.
p

eL1

Dictionary header
(accounting)

Dictionary rleader
(perforrrmnce)

Dictionary header
(exception)

id~llli!;"' r
(X~

r-----------..,
I Monitoring record I '--___________ I

CL1

Fuliwofcl

Record type
(see below)

Record lei Igth

r------------..,
I Exit monitoring aJea I
'-------______ 1

:X:'02' - Performance (end of task)
><'03' - Performance (other than 8nd of tash)
X'04' - Exception

Use the record type fielrj to find
which dictionary beader to use.

Figure 37. Parameter lists (or transaction user exit

'.AC'
Cl.2 'PC'

'EX'

Halfwoni

Fullword
addre~s

Fullword
ac1dre~5

Halfword

Halfworcj

Accounting
pel formance
exception

Number of
entries in
dictionary

Acldress of
dictionary

Address of
field connector
list

Number of
field conneotors

Lengttl In bytes
of eactl field
connector

For the layout of the Exit monitoring area, see Figure 39 on page 421.

Chapter 5.8. CICS monitoring facility 419

Monitoring
User-Exit
Parameter
List for
Globa.l
Record Exit

Fullword
address

Fullword
address

Fullword
address

Fullword
addmss

Fullword
a.ddress

"

... -

--~
--
..
~

I I Exit
CL1 identifier

(X'40')

r-----------...,
I Monitoring record I '-___________ J

I I Record type
eLI (X'05' global

performance)

I rullword I Rncord lengtll

Dictionary
Headers

CL.2
II-

Halfword

Fullworej
a(idress

Fullworcl
ad(1ress

Halfword

Halfworc.i

'PE'
(performance)

I ,lumber of
mltries in
clictionary

A(j\'ir~.>S of
(1ictionary

AclcJrefJS of
fiel(j oonnector
list

(,lumber of
field connectors

Length in bytes
of mch field
connector

Figure 38. Parameter lists for global performance user exit

How to install and use a monitoring exit program
When you have written the exit program to handle the monitoring records, you
must perform the following steps before you can use it: '

1. Assemble your program and store it in the load library. You must specify
the translator option NOEDF, because the command-level execution
diagnostic facility (EDF) cannot be used with exit programs invoked by CICS
Monitoring.

2. Create a processing program table (PPT) entry using the online resource
definition transaction (CEDA) or the DFHPPT macro instruction. (See the
CICS/MVS Resource Definition (Macro) manual.)

3. Code a DFHMCT TYPE = RECORD macro instruction, specifying EXIT = YES,
for each class of monitoring you want to use.

4. Bring up your CICS systE~m. If you want monitoring facilities from the time of
initialization, you should code the MONITOR operand of DFHSIT for each
monitoring class you need. Otherwise, you can wait until CICS is running,
and use the CSTT MON request to activate certain monitoring classes.
Whichever method you choose will start CICS collecting relevant monitoring
data.

5. Enable the exit program. You can do this by executing a transaction to
invoke a program that contains a statement of the form:

EXEC CICS ENABLE PROGRAM (name) START TASKS1ART

420 CICS/MVS 2.1.2 Customization Guide

Note: If you specifY the START and TASKSTART options in separate
ENABLE commands, the START option should occur on the command that is
executed first. Otherwise, transaction abend ASPT will occur, because the
syncpoint manager will diagnose damage in the adapter which was not
started. No damage may exist, but the sync point manager must react as if
it does and must "fail safe". If you want monitoring exits active from
initialization, however, you should code a program list table (DFHPL T) entry
naming the program that contains the above command.

Monitoring during the exit
Be aware that to maintain consistency between the monitoring information
accessed online and that written to the journal, CICS will not include in the
monitoring records presented to the exit any activity subsequently performed by
the exit program itself. In effect, monitoring presents to the exit a record in an
output bufrer, while it continues to collect data in its own areas. For transaction
exits only, the address of these is passed to the exit program. The exit program
can access them as the "exit monitoring area" referred to in Figure 37 on
page 419 and described as follows.

Each class of monitoring data occupies a different part of the exit monitoring
area. You locate the area for a particular class by reading its offset from a
halfword field at the start of the exit monitoring area. The halfword fields for the
three classes are in the following ofrsets from the start of area.

MONITORING CLASS OFFSET FROM START OF AREA
OF HALFWORD FIELD

._---------- ---------
ACCOUNTING 2

PERFORMANCE 4

EXCEPTION 6

Figure 39. Monitoring exit area - location of address fields

You can map the area for each class by using the dictionary presented
elsewhere in the exit interface. The accounting area will be the same as that
presented as the monitoring record. The exception area will be cleared initially,
and will remain cleared unless the exit program itself incurs an exception.

Collecting task-throughput data using RMF and SMF
If you code EVENT = YES on the DFHMCT TYPE = INITIAL macro, CICS will use
the MVS SYSEVENT macro to pass each task's timing information to the
resource measurement facility.

RMF must be active in the MVS region. RMF can provide reports or write
records to the SMF data sets.

For more information, see OS/VS2 MVS Resource Measurement Facility, Version
2 - Reference and Users Guide, SC28-0922, and OS/VS2 ~1VS System
Programming Library: System Management Facilities (SMJ=) , GC28-1030.

Chapter 5.S. CICS monitoring facility 421

Chapter 5.9. Examining and modifying resource attributes

General-Use Programming Interface

The CICS command-level interface provides commands that enable application
programs to examine and modify attributes of the following resources:

• Files
• Terminals
• System entries (connections) in the terminal control table
• Mode names for a particular system connection
• The system
• Programs
• Transactions.

Although the commands have functions that will be used in application
programs, they are mainly for system programming purposes.

They are of particular benefit to developers of products that run on CICS
together with customer applications that perform operational or system
programming functions. They allow more products to run above the 16MB line in
an XA environment, by relieving the dependency on CICS macros that are
restricted to 24-bit execution.

Compared with the macro equivalents, these functions have the advantages and
characteristics of the CICS command-level programming interface, and are
supported by the command interpreter, the translator, and by EDF. They
improve security, integrity, Installation and usability.

The following are summaries of the functions:

• INQUIRE functions

These functions provide application programs with controlled access through
the CICS command-level programming interface to information concerning
CICS files, terminals, system connections, modenames, system attributes,
transactions, and programs.

• SET functions

The application program can alter the value or status of many attributes of
the facilities listed under INQUIRE.

• ASSIGN and ADDRESS functions.

Note: For full information about the use of EXEC CICS commands and about the
ASSIGN and ADDRESS commands, see the CICSIMVS Application Programmer's
Reference manual.

© Copyright I BM Corp. 1977 I 1990 423

.-_ .••. _-------
CICS .. value data .. areas

You will see the term "cvda" used in the syntax boxes describing the INQUIRE
and SET functions. (In the text "cvda" is capitalized - CVDA.)

The notation CVDA (CICS-value data-area) indicates a fullword binary user-field,
which may have assigned into it one of a set of CICS-defined values
corresponding to various attributes and states. The option list associated with a
syntax box indicates the possible values for each CVDA. It Is used by, and in
connection with, INQUIRE and SET commands. With INQUIRE commands CICS
will assign values Into your CVDAs. YOll may test them symbolically using the
symbolic name DFHVALUE. With SET commands you may assign these values
symbolically using the same symbolic name, and CICS will act on them.

These symbolic names will be translated il1to binary values by the CICS
translator. In PUI and COBOL, the translator will replace DFHVALUE(...) with
EBCDIC characters representing the CVDA's binary number, n. In assembler
applications, it will be replaced by the literal construct = Fin'.

Under CEOF and CECi, the screen will not display the symbolic names, but only
the corresponding binary numbers.

The values used are given in "CICS-VALUES used in INQUIRE and SET
commands" on page 461.

The INQUIRE and SET commands - points to note
This section has three lists dealing with the interface in general, the INQUIRE
command, and the SET command, respectively.

The INQUIRE/SET interface
• To complement this function, additions are provided in the ASSIGN

command. For information about this command, see the CICS/MVS
Application Programmer's Reference manual.

• The INQUIRE/SET function is not suppor1ed across ISC or MRO.

• There is no exclusive control maintained by CICS on the information
requested. and it may therefore change at any time subsequent to the
request (for example, as the result of CICS or other user activity).

• Like all other EXEC CICS commands, these commands have NOHANDLE,
NOEDF and RESP options. They are not shown in the syntax in this chapter.
For more information about them, see the CICS/MVS Application
Programmer's Reference manual.

• As well as the RESP option, these commands have a RESP2 option. The
overall response to the execution of a command is shown by setting a value
in the RESP(xxx) and RESP2(yyy) user-fields, or by raising a HANDLEable
condition.

424 CICS/MVS 2.1.2 Customlzatlon (3ulde

The occurrence of an exceptional condition may be detected by testing the
value in the RESP field. The RESP and RESP2 values that could arise are
listed after the details of each command. A CICS built-in function is provided
to facilitate RESP testing. In PL/I this test might be:

IF xxx~=DFHRESP(NORMAL) THEN

Then testing may be performed for any particular suspected condition:

IF xxx=DFHRESP(FILENOTFOUND) THEN

In assembler this test might be:

C xxx,DFHRESP(FILENOTFOUND)
BE label

RESP2 contains a fullword binary value, and you test this value, not a
symbolic name.

RESP and RESP2 may be viewed in the following ways:

RESP - on the CEOF command execution complete screen,
RESP and RESP2 - CEOF program initialization,
RESP - CECI execution, complete screen,
RESP and RESP2 - CECI, using PF4 (or equivalent), following command
execution.

EXEC CICS INQUIRE command
• Any INQUIRE requesting attributes that the facility does not possess, or

which for some reason cannot be determined, will result in a "null" setting
for the user variable specified to receive the attribute. These values are
designed to make' it possible to distinguish "non-applicable" values from real
returned values and are defined as follows:

Character fields are blanks
Binary fields are -1
Pointer fields are X I FFOOOOOO I
CVDA fields are DFHVALUE(NOTAPPLlC), which has a value of 1.

• If a condition occurs in any INQUIRE command, all the specified user
variables will have undefined values on return.

• The END condition Is raised on all INQUIRE NEXT commands when there are
no more entries of the required resource type.

EXEC CICS SET command
• The SET commands enable application programs to modify CICS resources.

In general, the items that can be modified are a subset of those that can be
retrieved by the INQUIRE command.

• In general, the effect of a particular operation specified on an EXEC CICS
SET command is the same as when it is specified through CEMT.

• If a SET command includes "null" argument values, the corresponding option
will be ignored. This allows the possibility of coding general SET commands
in which some attributes may be left as they are, without having to issue an
INQUIRE command first to establish what the current values are. For CVDAs,

Chapter 5.9. Examining and modifying resource attributes 425

the null value may be called DFHVALUE(IGNORE), which has a value of 1.
The SET command can also be coded like this:

EXEC CICS SET FILE(FILENAME) READABLE DELETE(l)
ADDABLE END-EXEC

You can then read and add to the file, but the delete status is the same as it
was before the SET command, because 1 is the actual value of IGNORE.

• There are two ways of using SET commands with CVDAs.

Flexible form
You may assign a CVDA value to a variable:

xxxx = DFHVALUE(DELETABLE)

That variable may then be used in the place ora CVDA value, and in this
case the file will be DELETABLE:

EXEC CICS SET FILE(name of file)
DELETE(xxxx)

Thus, the delete status of the file may be set on or off depending upon
branches in the code before the EXEC CICS command.

If you want to leave the delete status unchanged, without knowing what it
is, you can code:

xxxx=DFHVALUE(IGNORE)

Short form
If the CVDA value is always the same for a particular command, you can
declare the value directly:

EXEC CICS SET FILE(name of file) DELETABLE

If you want to leave the delete status unchanged, without knowing what it
is, you can simply omit the DELETE option from the SET command.

• If a condition occurs in any SET command, as few as possible of the
requested changes will have been made on return. See under individual
SET commands for details.

• A SET command issued against an individual resource will result in a
resource-level security check, if RSLC = YES has been specified for the
transaction issuing the command.

• The NOTAUTH condition is raised on all SET requests where the application
is not authorized to view or alter the resource.

• Toprevent misuse of the EXEC CICS SET commands, the CICS modules that
implement them have been made subject to security checking. To
implement security checking for EXEC CICS SET commands, you should:

1. Make individual PPT entries for the DFHEIQxx modules, rather than use
the Group entry INQUIRESET.

2. Specify RSLC=YES (or external security) on each entry.

3. Give those system programmers who need to use the EXEC CICS SET
commands an RSLKEY that matches this protection value, or the
equivalent external security level.

426 CICS/MVS 2.1.2 Customlzatlon Guide

4. Ensure that the CECI transaction retains the RSLC value YES, which is its
default, or that external security is specified for it.

With this protection installed, any unauthorized attempt to execute a SET
command will be prevented, and the NOT AUTH exceptional condition will be
raised.

Examples of EXEC CICS INQUIRE/SET
Here are three examples, in assembler, PLII and COBOL, showing INQUIRE and
SET commands on a file. using DFHVALUE as a symbolic reference to the CVDA
value. Between the two EXEC CICS commands are operations upon those
values. After each example. there follows the translation of the central portion of
that code, showing the translation of the symbol into a value.

Assembler version

DFHEISTG

UOPST OS F
*USER DEFINED VARIABLES FOR:
*OPEN STATUS

UENST OS
UREAD OS
UUPD OS
INFILE OS

SYNTAXD CSECT

F
F
F
CLa

*ENABLE STATUS
*READ STATUS
*UPDATE STATUS
*FILE NAME

MVC INFILE(B),=C'PAYROLLb '
EXEC CICS INQUIRE FILE(INFILE)

OPENSTATUS(UOPST)
ENABLESTATUS(UENST)

*
*- - - - - Translated section (see below) - - - - - -
*

*

*

CLC UOPST,DFHVALUE(OPEN)
BE OPENLAB

MVC UREAD,DFHVALUE(READABLE)
MVC UUPO,DFHVALUE(NOTUPDATABLE)

*- - - - - End of translated section -
*

*

EXEC CICS SET FILE(INFILE)
REAO(UREAD)
UPDATE (UUPD)
NOTADDABLE
NOTOELETABLE

OPENLAB OS 0H
*

*IS FILE OPEN?
*YES, BYPASS SETTING SERVREQS

Chapter 5.9. Examining and modifying resource attributes 427

The central section translates as follows:

*

*
*

*

*

CLC UOPST,DFHVALUE(OPEN)
CLC UOPST,=F'18'
BE OPENLAB

MVC UREAD,DFHVALUE(READABLE)
MVC UREAD,=F'35'
MVC UUPD,DFHVALUE(NOTUPDATABLE)
MVC UUPD,=F ' 38 1

PLII version

DCL

/*USER DEFINED VARIABLES FOR: */
(UOPST, /*OPEN STATUS */
UENST, /*ENABLE STATUS */
UREAD, /*READ STATUS */
UUPD)FIXED BIN(31), /*UPDATE STATUS */
INFILE CHAR(8); /*FILE NAME */

/**/

INFILE='PAYROLLb ' ;
EXEC CICS INQUIRE FILE(INFILE)

OPENSTATUS(UOPST)
ENABLESTATUS(UENST);

/**/- - - Translated section (see below) - - - - - -
/**/

/**/

IF UOPST = DFHVALUE(CLOSED) THEN
DO;

UREAO= OFHVALUE(REAOABLE);
UUPD = DFHVALUE(NOTUPDATABLE);

/**/- - - End of translated section - - - - - - - - -
/**/

/**/

EXEC CICS SET FILE(INFILE)
READ (UREAD)
UPDATE(UUPO)
NOTAOOABLE
NOTDELET J\BLE;

END;

The central section translates as follows:

/**/
IF UOPST = 19 THEN
DO;

UREAD= 35
UUPD = 38

/**/

428 CICS/MVS 2.1.2 Customization Guide

COBOL versIon

*

DATA DIVISION.
WORKING-STORAGE SECTION.
01 MESSAGES.

*
*
*
*
01
01
01
01
01

UOPST
UENST
UREAD
UUPD
INFILE

USER DEFINED VARIABLES FOR
OPEN STATUS, ENABLE STATUS,
READ STATUS, UPDATE STATUS,
AND FI lE NAME
PIC S9(8) COMPo
PIC S9(8) COMPo
PIC 59(8) COMPo
PIC S9(8) CO~1P.
PIC X(8)

CICS-REQUESTS.
MOVE 'PAVROllb' TO INFIlE.
EXEC CICS INQUIRE FILE(INFILE)

OPENSTATUS(UOPST)
ENABLESTATUS(UENST)
END-EXEC.

*- - - - - Translated section (see below) .. - - - .. -
*

*

*

IF UOPST NOT = DFHVALUE(ClOSED)
THEN GOBACK.

MOVE DFHVAlUE(REAOABLE) TO UREAD.
MOVE DFHVAlUE(NOTUPOATABlE) TO UUPD.

*- - - End of translated section .. - - - .. -
*

*

EXEC CICS SET FIlE(INFIlE)
READ (UREAD)
UPOATE(UUPD)
NOTADOABlE
NOTDElETABlE
END-EXEC.

The central section translates as follows:

*

*

IF UOPST NOT =
THEN GOBACK.

MOVE
MOVE

35
38

19

TO UREAO.
TO UUPO.

Chapter 5.9. Examining and modifying resource attributes 429

-------------_._--
INQUIRE and SET commands

INQUIRE for files

The specific information you can request is indicated in the syntax outlined
below, and is roughly equivalent to the information available through CEMT, but
considerably less than can be specified through CEDA. Keywords are used to
specify the information required for particular resources.

A program can scan through all files, terminals, system connections,
modenames, programs or transactions defined to the CICS system.

The INQUIRE command for CICS files returns named items of information about
any file defined in the file control table. The function is supported for VSAM,
BDAM, and remote files, but not for DLII data sets. An INQUIRE for a file
requesting attributes that the file may not possess results in a special null
setting (see page 425) for the user variable specified to receive the attribute.

----------.------------------------
EXEC CICS INQUIRE

FILE(8-character data-value)
[ACCESSMETHOD(cvda)]
[TYPE(cvda)]
[OBJECT(cvda)]
[DSNAME(44-character data-area)]
[BASEDSNAME(44-character data-area)]
[REMOTESYSTEM(4-character data-area)]
[REMOTENAME(8-character data-area)]
[RECORDFORMAT(cvda)]
[BLOCKFORMAT(cvda)]
[KEYLENGTH(fullword binary data-area)]
[KEYPOSITION(fullword binary data-area)]
[RECORDSIZE(fullword binary data-area)]
[BLOCKSIZE(fullword binary data-area)]
[STRINGS(fullword binary data-area)]
[LSRPOOLID(fullword binary data-area)]
[OPENSTATUS(cvda)]
[ENABLESTATUS(cvda)]
[DISPOSITION(cvda)]
[RECOVSTATUS(cvda)]
[EMPTYSTATUS(cvda)]
[READ(cvda)]
[UPDATE(cvda)]
[BROWSE(cvda)]
[ADD(cvda)]
[DELETE(cvda)]
[RELTYPE(cvda)]
[EXCLUSIVE(cvda)]
[BLOCKKEYLEN(fullword binary data-area)]

'----------------_.

You should make sure that you issue the INQUIf~E command at the appropriate
time, taking into account the state of the file, because most of the options, at
some time or another, are not appropriate for a particular file. For many of the
options, if the file is closed at the time of inquiry, the information you receive

430 CICS/MVS 2.1.2 Customizatlon Guide

tells you what the state of the file will bE! when it is next opened. If the file has
never been opened, for some of the options you will receive default values,
which could change when the file is opened. You should consider whether
DFHFCT has defined values for a file. Also, you should issue commands for the
correct type of file. For example, REL TYPE is inappropriate when the file has an
ACCESSMETHOD of VSAM. In such cases, a null value will be returned in the
user variable. This means NOTAPPLIC for CVDA fields.

Options
Fuller details of these options are given under their equivalent names in the
DFHFCT section of the CICSIMVS Resource Definition (Macro) manual.

ACCESSMETHOD
Possible CVDA values are BDAM, VSAM, or REMOTE, indicating the global
access method as recorded in the FCT.

BASEDSNAME (VSAM only)
The name of the VSAM base data set if the object is defined to CICS as a
path. The name is the same as that in DSNAME if the file is a base.
BASENAME is accepted in place of the keyword BASEDSNAME.

BLOCKFORMAT
Possible CVDA options are BLOCKED and UNBLOCKED, as given in the
RECFORM option in the DFHFCT macro.

BLOCKKEYLEN (BDAM only)
Current value as recorded in the FCT.

BLOCKSIZE (BDAM only)
Current value as recorded in the FCT.

DISPOSITION
Possible CVDA values are OLD and SHARE, which indicate how the JCL has
specified the data set to be treated when a file that references it is next
opened.

DSNAME
The data set name as defined to the access method and operating system. If
no JCL statement exists for this file when it is opened, the open will be
preceded by a dynamic allocation of the file using this data set name. If
there is a JCL statement, it will take precedence over this data set name.
OBJECTNAME is accepted in place of the keyword DSNAME.

EMPTYSTATUS
Possible CVDA values are EMPTYREQ and NOEMPTYREQ. EMPTYREQ
means the data set will be made empty when a file that references it is next
opened. NOT APPLIC means the data set has not been defined as reusable.

ENABLESTATUS
Possible CVDA options are ENABLED, DISABLED, UNENABl.ED, or
DISABLING. A file m8Y be: .

ENABLED
The file is available for access by application programs.

Chapter 5.9. Examining and modifying resource attributes 431

DISABLED
The file is unavailable for access by application programs. The file can
be re-enab/ed by SET ENABLED.

UNENABLED
This is the same as DISABLED, except that it occurred implicitly when
SET CLOSED was requested. However, in this case, the file will be
enabled implicitly by a SET OPEN.

DISABLING
The file is still being accessed by application programs after a SET
DISABLED (or CLOSED) command has been received. No new
application programs will be allowed to access the file. Current
applications will be allowed to complete their use of it.

EXCLUSIVE (BDAM only)
Possible CVDA values are EXCTL and NOEXCTL. Records are normally
subject to exclusive control.

FILE (sender)
The file name as defined in the FCT. The keyword DATASET is accepted in
place of FILE. FILE is the preferred term.

KEYLENGTH
Current value as recorded in the FCT.

KEYPOSITION
Current value as recorded in the FCT.

LSRPOOLID (VSAM only)
If the file may use a shared buffer pool, this is its number. If the file is not
VSAM, this value will be -1. If the file is not to share buffers; this value will
be O.

OBJECT (VSAM only)
Possible CVDA values are BASE, PATH, or NOTAPPLlC, which indicate
whether this file is related to a base data set, or is defined as a path. A path
may simply be an alias for a base data set, or may refer to a data set
accessed by means of an alternate index. An alternate index structure
(path) opened as a data set (which is known to CICS only as a base) returns
the value BASE.

OPENSTATUS
Possible CVDA values are OPEN, CLOSED, OPENING, CLOSING, and
CLOSE REQUEST. This attribute describes the state of the file as it appears
to the operating system, and does not determine whether the file is available
for access by application programs. A file may be:

OPEN
The file has been opened explicitly (by EXEC C/CS SET OPEN or by
CEMT) or implicitly on first access by an application program.

CLOSED
The file has not yet been opened, or has been closed explicitly.

432 CICS/MVS 2.1.2 Customlzatlon Guide

OPENING
The file is in the process of being opened. Note that this may involve
other activity, such as the building of a shared resources buffer pool.

CLOSING
The file is in the process of being closed. Note that this may involve
other activity, such as dynamic deallocation or the deletion of shared
resources.

CLOSEREQUEST
The file is open and in use by application program(s), and an EXEC CICS
SET CLOSED or CEMT request has been received. The file has entered
the DISABLING state. When this state changes to DISABLED, the file is
closed.

READ
Possible CVDA values are READABLE and NOTREADABLE.

UPDATE
Possible CVDA values are UPDATABLE and NOTUPDATABLE.

BROWSE
Possible CVDA values are BROWSABLE and NOTBROWSABLE.

ADD
Possible CVDA values are ADDABLE and NOTADDABLE.

DELETE
Possible CVDA values are DELETABLE and NOTDELETABLE.

The above five options indicate whether applications are allowed to perform
the particular type of operation on the file. UPDATABLE means the
READ-REWRITE or the READ-DELETE sequence. DELETABLE covers both the
DELETE and the READ-DELETE sequence. ADDABLE means that new
records can be added to the file. Note that READ is always available with
UPDATE and BROWSE.

RECORDFORMAT
Possible CVDA values are FIXED, VARIABLE, and UNDEFINED, as given in
the RECFORM option in the DFHFCT macro. The UNDEFINED value refers to
BDAM only.

RECORDSIZE
Current value as recorded in the FCT. When the RECORDFORMAT is
VARIABLE, the value of RECORDSIZE is the maximum record length.

RECOVSTATUS
Possible CVDA values are RECOVERABLE and NOTRECOVABLE. A data set
is RECOVERABLE when LOG = YES has been coded in the DFHFCT macro. It
is NOTRECOVABLE if LOG = NO or SERVREQ = REUSE has been coded.

REL TYPE (BDAM only)
The possible CVDA values are HEX, DEC, and BLK, which further define the
type of file, as recorded in the FCT.

Chapter 5.9. Examining and modifying resource attributes 433

REMOTENAME
The name that this file has in the remote system.

REMOTESYSTEM
If the file is remote. the name of the remote CICS system.

STRINGS (VSAM only)
The number of concurrent operations that may be performed on this file.

TYPE
A CVDA value of ESDS. KSDS. RRDS (for VSAM) or KEYED. NOTKEYED (for
BDAM) further defines the type of data set that corresponds to this file. For
VSAM. this information is obtained from the VSAM catalog when the file is
opened.

Exceptional conditions
The following conditions might occur:

FILENOTFOUND

NOTAUTH

The named file cannot be located. The exceptional condition
DSIDERR is equivalent to FILENOTFOUND.

The invoker is not authorized to access the file.

Browse operations for flies
You may use the INQUIRE command to browse through all file definitions that
you are authorized to access. To do this. you use the following three commands:

EXEC CICS INQUIRE FILE START

EXEC CICS INQUIRE FILE(8-character data-area) NEXT
(other options as in
the above option list)

EXEC CICS INQUIRE FILE END

When the application needs to terminate the browsing. the command INQUIRE
FILE END may be coded. This will free any resources the function Is using. If
the INQUIRE FILE END is not issued. the browse operation is terminated by the
end of the transaction; it is not terminated by syncpoints.

INQUIRE FILE START command . Initializes the FCT scan for a series of INQUIRE
NEXT commands. Note that the FILE option does not have an operand. The first
file is returned in response to the first INQUIRE FILE NEXT command. This
simplifies user programming.

The following condition might occur:

ILLOGIC A browse is already in progress.

INQUIRE FILE NEXT command puts the next file name in the FeT into the area
specified by the FILE keyword. A pointer to the current browse position is
maintained at transaction level. This is not reset across LINK or XCTL.

434 CICS/MVS 2.1.2 Customlzatlon Guide

SET for files

Note that no facility is provided for selective browsing, that is, for returning
entries only if they meet certain conditions.

The following conditions can occur:

ILLOGIC An INQUIRE START has not been issued.

END All of the authorized entries in the FCT have been returned in the
browse operation. No file is returned.

The order of the file names browsed during a browse operation is not
necessarily the collating sequence. However, continued browsing does
guarantee to return all files in the FCT. Only one file browse operation is
allowed at anyone time within one transaction.

INQUIRE FILE END command ends the browsing operation and frees any
resources held.

The following condition can occur:

ILLOGIC An INQUIRE START has not been issued.

You can use the EXEC CICS SET FI LE command to set or modify attributes of a
particular named VSAM or BDAM file. The five forms of the command are given
below. Options that are different from those for INQUIRE for files are given after
the five syntax boxes.

EXEC CICS SET
FILE(8-character data-value)
[DSNAME(44-character data-area)]
[STRINGS(fullword binary data-area)]
[LSRPOOLID(fullword binary data-area)]
[EMPTYSTATUS(cvda)]
[DISPOSITION(cvda)]
[READ(cvda)]
[UPDATE(cvda)]
[BRO~ISE (cvda)]
[ADD(cvda)]
[DELETE(cvda)]

Any combination of the above att,'ibutes that is appropriate to the type of file
(VSAM or BDAM) may be set in one command. All require that the file be in a
CLOSED, DISABLED state.

Exceptional conditions
The following conditions can occur:

FILENOTFOUND

NOTAUTH

The SET command could not locate the named file. The
exceptional condition DSIDERR is equivalent to FILENOTFOUND.

The invoker is not authorized to access the file.

Chapter 5.9. Examining and modifying resource attributes 435

INVREQ

Value

1

2

3

4

5

7

8

9

10

11

12

13

14

An attempt was made to set an invalid CVDA value, or the file is
not in a valid state to allow the requested changes.

The RESP2 field contains further information:

Meaning

File is remote

File is not closed

File is not disabled

ADD problem: invalid CVDA value

BROWSE problem: invalid CVDA value

DELETE problem: invalid CVDA value

DISPOSITION problem: invalid CVDA value

EMPTYSTATUS problem: invalid CVDA value

LSRPOOLID problem: not a VSAM data set

LSRPOOLID problem: value outot range (1 through 8), or corresponding
buffer not defined

READ problem: invalid CVDA value

STRINGS problem: value out of range, or not a VSAM data set

UPDATE problem: invalid CVDA value, or, if the attempted operation tail ed
in VSAM, the VSAM return code.

The following four commands must be set explicitly in the short form.

SET ENABLED

EXEC CICS SET
FILE(8-character data-value)
ENABLED

Exceptional conditions
The following conditions can occur:

FILENOTFOUND

NOTAUTH

INVREQ

436 CICS/MVS 2.1.2 Customlzatlon Guide

The SET command could not locate the named file. The
exceptional condition DSIDERR is equivalent to FILENOTFOUND.

The invoker is not authorized to access the file.

The attempted operation failed. Either the file is currently
disabling, or the ENABLE command was halted by a user exit
program running at exit point XFCSREQ. If an exit program
running at this exit point instructed CICS not to execute the
ENABLE command, the RESP2 value is 28. Otherwise the RESP2
value is zero.

SET DISABLED

EXEC CICS SET
FILE(8-character data-value)
DISABLED
(WAITINOWAITIFORCE)

If WAITINOWAITIFORCE is not specified, WAIT is assumed.

Exceptional conditions
The following conditions can occur:

FILENOTFOUND
The SET command could not locate the named file. The exceptional
condition DSIDERR is equivalent to FILENOTFOUND.

NOTAUTH
The invoker is not authorized to access the file.

INVREQ The attempted operation failed. Either a DISABLED WAIT or
DISABLED FORCE command has been issued and the caller is itself a
user of the file, or the DISABLED command was halted by an exit
program running at exit point XCFSREQ. If an exit program running at
this exit point instructed CICS not to execute the DISABLED
command, the RESP2 value is 28. Otherwise the RESP2 value is zero.

SET OPEN

EXEC CICS SET
FILE(8-character data-value)
OPEN
(EMPTY)

Exceptional conditions
The following conditions can occur:

FILENOTFOUND
The SET command could not locate the named file. The exceptional
condition DSIDERR is equivalent to FILENOTFOUND.

NOTAUTH The invoker is not authorized to access the file.

INVREQ An exit program running at exit point XFCSREQ instructed CICS not
to execute the OPEN command. RESP2 is set to a value of 28.

IOERR The OPEN failed, perhaps because the data set has not been defined
as REUSE. The VSAM return code, if any, is set in RESP2.

Chapter 5.9. Examining and modifying resource attributes 437

SET CLOSED

EXEC CICS SET
FILE(B-character data-value)
CLOSED
(EMPTY)
(WAIT/NOWAIT/FORCE)

Exceptional conditions
The following conditions can occur:

FILENOTFOUND

NOTAUTH

INVREQ

IOERR

Options

The SET command could not locate the named file. The
exceptional condition DSIDERR Is equivalent to FILENOTFOUND.

The invoker is not authorized to access the file.

The CLOSE was not attempted. Either the caller was using the file
or an exit program running at exit point XFCSREQ halted the
CLOSE command. If an exit program running at this exit point
Instructed CICS not to execute the CLOSE command, RESP2 is 28.
Otherwise RESP2 is zero.

The CLOSE failed. Any VSAM return code is set in RESP2,
otherwise this field is set to zero. .

See under "INQUIRE for files" on page 430 for meanings of options not listed
below.

EMPTY
If used when opening a file, this results in an empty data set. If used when
closing a file, it sets a request that states that the data is no longer required.
So, when that file is reopened, it will be emptied. You can only use EMPTY if
the data set has been specified to VSAM AMS as REUSE. If REUSE has not
been specified, the OPEN fails.

LSRPOOLID
To prevent a file sharing buffers, set this value to O.

WAITINOWAITIFORCE
If you do not specify one of these, WAIT is assumed.

WAIT
CICS will wait until all activity of the file has quiesced, and will then
perform the action before returning control to the application.

NOWAIT
CICS will wait until aU activity of the file. has quiesced before performing
the action, but will return control to the application as soon as the
request has been queued.

438 CICS/MVS 2.1.2 Customlzatlon Guide

FORCE

Notes:

This option will abend any tasks currently using the file, will perform the
action immediately, and then return.

1. Any option with a null value will be ignored.

2. SET may be used at any time with or without an INQUIRE having been issued
previously.

3. The INQUIRE and SET commands do not operate on 01/1 databases. If you
want to operate on DLlI, use the CEMT command. For details, see the
CICSIMVS CICS-Supp/ied Transactions manual.

4. Some of the SET commands do not take effect until the file is opened. To be
certain of the file attributes, you must open the file and INQUIRE on it.

INQUIRE for terminals
The INQUIRE TERMINAL command for CICS terminal resources returns named
items of information about a particular terminal. See also "Chapter 4.7.
Modifying the terminal control table" on page 237, which describes the terminal
control macro instruction interface (DFHTC CTYPE macros).

For a remote terminal, EXEC CICS INQUIRE TERMINAL obtains Information from
the definition of the terminal as a remote terminal. It does not obtain information
from the remote system, and in this way differs from the EXEC CICS ASSIGN and
EXEC CICS ADDRESS commands.

Chapter 5.9. Examining and modifying resource attributes 439

EXEC CICS INQUIRE
{TERMINAL(4-character data-value) I
NETNAME(8-character data-value)}

[NETNAME(B-character data-area) I
TERMINAL(4-character data-area)]

[REMOTESYSTEM(4-character data-area)]
[MODENAME(8~character data-area)]
[TRANSACTION(4-character data-area)]
[TERMPRIORITY (full word bi nary data-area)]
[USERAREA(31-bit pointer)]
[USERAREALEN(halfword binary data-area)]
[OPERID(3-character data-area)]
[USERIO(8-character data-area)]
[DEVICE(cvda)]
[TERMMODEL(halfword binary data-area)]
[ACCESSMETHOD(cvda)]
[CREATESESS(cvda)]
[ACQSTATUS(cvda)]
[SERVSTATUS(cvda)]
[ATISTATUS(cvda)]
[TTISTATUS(cvda)]
[PAGESTATUS(cvda)]
[SCREENHEIGHT(halfword binary data-area)]
[SCREENWIDTH(halfword binary data-area)]
[GCHARS(halfword binary data-area)]
[GCODES(halfword binary data-area)]

L--. _______ _

Options
Fuller details of these options are given under their equivalent names in the
DFHTCT section of the CICS/MVS Resource Definition (Macro) manual.

ACCESSMETHOD
Possible CVDA values are VTAM, BSAM, BTAM, BGAM, TCAM, TCAMSNA,
CONSOLE, or NOTAPPLIC. The access method may be VTAM, or, if
associated with a LINE, may be BSAM, STAM, SGAM, TeAM or TCAMSNA.
It may also be CONSOLE.

ACQSTATUS (VTAM only)
Possible CVDA values are ACQUIRED, RELEASED, NOTAPPLlC, or
ACQUIRING. They indicate whether CICS is in session with the logical unit
represented by the terminal.

ATISTATUS
Possible CVDA value!) are ATI and NOATI, which indicate whether the
terminal is available for use by transactions which are automatically initiated
from within CICS or, if the terminal is an ISC session, by transactions that
are using this session as an alternate facility to communicate with another
system.

A terminal cannot have both NOATI and NOTTI in its status.

440 CICS/MVS 2.1.2 Customization Guide

CREATESESS (VTAM only)
CVDA values CREATE, NOCREATE or NOTAPPLIC indicate whether the
terminal can be acquired automatically by ATI transactions.

DEVICE
Identifies the terminal or session type as recorded In the TCTTE. It Is a
CVDA field, and can be tested using the built-In function provided.

GCHARS
The graphic character set global identifier (GCSGIO) which is a registered
number from 1 through 65534 representing the set of graphic characters
which can be input or output at the terminal.

GCODES
The code page global identifier (CGPID) which is a registered number
between 1 and 65534 representing the EBCDIC code page defining the code
points for the characters which can be input or output at the terminal.

The term "coded graphic character set identifier" is commonly used when
referring to both the above registered numbers taken as a pair.

MODENAME (LU6.2 only)
The name of a group of parallel sessions (of which that named in the
TERMINAL field is one), which have similar characteristics.

NETNAME
The Ilame of the terminal or session, as known to VTAM. This will be blanks
if the access method is not VT AM.

Either TERMINAL or NETNAME must be the first option used as a sender
field. The value given is used as the search argument.

Whichever is specified first, the other may be optionally specified as the
second option. This will always be a receiver field.

For parallel sessions the NETNAME will not be unique; in these cases the
TERMINAL field will contain the name of the first session found.

OPERID
The operator identification code to be used when signing on to this terminal.

PAGESTATUS
Possible CVDA values PAGEABLE and AUTOPAGEABLE indicate whether
pages after the first in a series will be written to the terminal either upon
request from the operator, or automatically.

REMOTESYSTEM
If the subject of the inquiry is a session, REMOTESYSTEM returns the name
of the associated remote system. If the subject of the inquiry is a remote
terminal, REMOTESYSTEM returns the name of the link to the
terminal-owning system. If the subject of the inquiry is a local terminal,
REMOTESYSTEM is returned as blanks.

SCREENHEIGHT
The height of the current 3270 screen.

The value returned depends on the terminal's mode (DEFAULT or
ALTERNATE) at the time the INQUIRE command is processed.

Chapter 5.9. Examining and modifying resource attributes 441

SCREENWIDTH
The width of the current 3270 screen.

The value returned depends on the terminal's mode (DEFAULT or
ALTERNATE) at the time the INQUIRE command is processed.

SERVSTATUS
CVOA value INSERVICE or OUTSERVICE indicates whether the terminal Is
available for use. For LUB.2, INSERVICE means it Is valid to attempt to
acquire the terminal.

TERMINAL
The terminal name as defined in the TCT. Th,is includes all terminals and
sessions defined in the TCT, but not LOCs, surrogate TCTTEs, mode groups,
or system entries.

TERMMODEL
Gives the terminal model number.

TERMPRIORITY
Priority of the terminal relative to other terminals, in a range from 0 to 255.

TRANSACTION
The name of the transaction currently executing with the named terminal as
its principal facility.

TTl STATUS
CVDA value TTl or NOTTI indicates whether the terminal is available for use
by transactions that are initiated from this terminal.

A terminal cannot have both NOATI and NOTTI In its status.

USERAREA
Points to the TCTUA, which contains the process control information (PCI) for
this terminal.

USERAREALEN
Contains the length of the user area.

USERID
A security code identifying the person signed on, defined in the signon table.

Exceptional condition
The following condition can occur:

TERMIDERR
The named terminal or netname could not be located.

442 CICS/MVS 2.1.2 Customlzatlon Guide

Browse operations for terminals
The following commands enable the application program to broWse through the
terminal definitions in the TCT:

EXEC CICS INQUIRE TERMINAL START

EXEC CICS INQUIRE TERMINAL(4-character data-area) NEXT
(other options as in
above option list)

EXEC CICS INQUIRE TERMINAL END

Browsing is not terminated by user syncpoints.

INQUIRE TERMINAL START command sets an internal CICS pointer to the first
terminal in the TCT. Subsequent invocations of INQUIRE TERMINAL NEXT
commands can be used to scan all known terminals.

The following condition can occur:

ILLOGIC A browse is already In progress.

INQUIRE TERMINAL NEXT command returns the next terminal or session name
in the area addressed by the TERMINAL keyword.

On input all specified operands are Ignored; they are all set on output.

The order of browsing is (:ontrolled by a CICS-internal cursor. In particular it
does not guarantee collating sequence. However, continued browsing does
guarantee to return all terminal and session entries in the TCT.

Only one TERMINAL browse operation is allowed at anyone time in a given
task.

Note that no facility is provided for selective browsing; that is, for returning
entries only if they meet certain conditions.

The following conditions can occur:

END The INQUIRE command has located ~II of the terminals in the system.

ILLOGIC An INQUIRE TERMINAL START has not been issued.

The INQUIRE TERMINAL END command ends the browsing operation and frees
any resources held.

The following condition can occur:

ILLOGIC An INQUIRE START has not been issued.

Chapter 5.9. Examining and modifying resource attributes 443

SET for terminals
The SET command for CICS terminal resources modifies. specified attributes of a
particular terminal. See also "Chapter 4.7. Modifying the terminal control table"
on page 237, which describes the terminal control macro Instruction interface
(DFHTC CTYPE macros).

The SET TERMINAL command does not apply to LUB.2 sessions.

------------_. __ ._-----
EXEC CICS SET

TERMINAL(4-character data-value)
[SERVSTATUS(cvda)]
[ACQSTATUS(cvda)]
[CREATESESS(cvda)]
[ATISTATUS(cvda)]
[TTISTATUS(cvda)]
[PAGESTATUS(cvda)]
[TERMPRIORITY(fullword binary data-area)]
[PURGE [FORCE]]

Options
The functions that may be SET are defined as follows:

ACQSTATUS
Possible CVDA values are ACQUIRED, RELEASED, and COLDACQ. Setting a
terminal to RELEASED will cause the session to be terminated, immediately
if PURGE is also specified, or otherwise when the current active transaction
has finished.

COLDACQ is a special form of ACQUIRED to be used where no
resynchronization is required.

PURGE
PURGE FORCE causes any transaction running with the terminal to be
terminated abnormally. With PURGE termination will only occur if system
and/or data integrity can be maintained.

SERVSTATUS
Possible CVDA values are INSERVICE and OUTSERVICE. Setting a terminal
to OUTSERVICE means that the terminal can no longer be used by
transactions. If PURGE or FORCEPURGE is not specified, the transaction will
be allowed to terminate normally, but no further transactions will be allowed
to use the terminal. However, if you are using EDF on the specified terminal,
EDF will stop immediately, because it is a sequence of separate transactions,
while the transaction being tested will complete.

For VTAM, setting a terminal to OUTSERVICE will also cause it to be
released and the operator signed off, either immediately or when the current
transaction has terminated. It is therefore invalid to try to set the terminal
associated with the executing transaction to OUTSERVICE, unless it is a
printer.

444 CICS/MVS 2.1.2 Custornization Guide

For the keywords below, see the definitions under "INQUIRE for terminals" on
page 439:

• ATISTATUS
• CREATESESS
• PAGESTATUS
• TERM PRIORITY
• TTISTATUS.

Exceptional conditions
The following conditions can occur:

ERROR Internal CICS error In terminal control.

TERMIDERR
The SET command could not locate the named terminal.

INVREQ An attempt was made to set an invalid CVDA value, or the terminal Is
not In a valid state to allow the requested changes.

The RESP2 field contains further information:

Value Meaning

1 ACQSTATUS specified for a connection that is not LU6.2

2 ACQUIRED specified for a terminal in OUTSERVICE state (LU6.2 conflict
only)

3 NOTPENDING specified for a connection that is not LU6.2

4 ATISTATUS problem: invalid CVDA value ---5 ATISTATUS problem: would result In NOATI or NOTTI

6 CREATESESS problem: LU6.2, or IRC, or not VTAM

7 CREATESESS problem: invalid CVDA value

8 PAGESTATUS problem: LU6.2 or IRC

9 PAGESTATUS problem: invalid CVDA value --
10 SERVSTATUS problem: LU6.2, or IRC, or OUTSERVICE

11 SERVSTATUS problem: trying to put this terminal OUTSERVICE (if it Is
not a printer)

_.

12 SERVSTATUS problem: trying to put this CSNL terminal OUTSERVICE

13 SERVSTATUS problem: invalid CVDA value

14 TERM PRIORITY problem: LUS.2

15 TERMPRIORITY problem: invalid value

16 TTISTATUS problem: LU6.2 or IRC
-

17 TTISTATUS problem: trying to make this terminal NOTTI

18 TTISTATUS problem: invalid CVDA value
-

19 PU RGE or FORCE problem: LU6.2 or not VTAM
:-------

20 PURGE or FORCE problem: trying to purge or force task on this terminal
-

Chapter 5.9. Examining and modifying resource attributes 445

INQUIRE for system entries (CONNECTIONS)
The INQUIRE command for CICS system entries returns named items of
information about connections. to a particular system.

EXEC CICS INQUIRE
CONNECTION(4-character data-value)
[NETNAME(8-character data-area)]
[ACCESSMETHOD(cvda)]
[PROTOCOl(cvda)]
[ACQSTATUS(cvda)ICONNSTATUS(cvda)]
[SERVSTATUS(cvda)]
[PENDSTATUS(cvda)]
[XlNSTATUS(cvda)]

Options
Fuller details of these options are given under their equivalent names in the
DFHTCT section of the CICSIMVS Resource Definition (Macro) manual.

ACCESS METHOD
Possible CVDA values are VTAM, IRC, INDIRECT, and XM, which indicate
that either VTAM, CICS IRC, INDIRECT or cross-memory communication is in
use for this connection.

ACQSTATUS.(VTAM only)
CVDA values ACQUIRED or RELEASED indicate whether CICS is in session
with the logical unit represented by this connection. CONNSTATUS provides
more information about the connection. It cannot be used with ACQSTATUS.

CONNECTION (sender)
The four-character system name (as defined in a DFHTCT TYPE = SYSTEM
macro) or connection name (as defined using CEDA) for ISC or IRC.

CONNSTATUS (LU6.2 only)
CVDA values ACQUIRED, RELEASED, OBTAINING, FREEING, or AVAILABLE
indicate the state of the session, where:

ACQUIRED

RELEASED
OBTAINING
FREEING
AVAILABLE

The connection is ACQUIRED, which means that:
• The partner LU has been contacted, and
• Initial CNOS exchange has been done.

The connection is released.
The connection is being acquired. INQUIRE only.
The connection is being released. INQUIRE only.
The connection is acquired but there are no bound sessions as
they have all been unbound because of limited resource.
INQUIRE only.

CONNSTATUS cannot be used with ACQSTATUS.

NETNAME
The name by which the remote system is known to the VTAM network.

446 CICS/MVS 2.1.2·Customlzation Guide

PENDSTATUS (LU6.2 only)
CVDA value PENDING or NOTPENDING indicates whether there are pending
units of work.

PROTOCOL
CVDA values APPC, LUB1, and NOTAPPLIC indicate whether LUB.1, APPC
(LUB.2) or something else is the SNA protocol used for this connection.

SERVSTATUS
CVDA value INSERVICE or OUTSERVICE indicates whether the system is
available for use. For LUB.2, INSERVICE means the system can be acquired.

XLNSTATUS (LU6.2 only)
CVDA values XOK, XNOTDONE or NOTAPPLIC indicate. the status of the
exchange lognames (XLN) process, as follows:

XNOTDONE (LU6.2 only)
The exchange lognames (XLN) flow for the LUB.2 connection has
not completed successfully; the CSMT log may contain
information relating to this state. XNOTDONE means that
synclevel(2) conversations are not allowed on the connection (but
synclevel(O) and synclevel(1) are still allowed).

XOK (LU6.2 only)
The exchange lognames (XLN) process for the LUB.2 connection
has completed successfully.

NOTAPPLIC
One of the following conditions exists:

• The connection is released.
• The connection is MRO, LUB.1, or single session LUB.2.
• The connection does not support synclevel 2 conversations.

Exceptional condition
The following condition can occur:

SYSIDERR The named system entry could not be located.

Browse for system entries (CONNECTION)
The following commands enable the application program to browse through the
CONNECTION entries (system entries) in the TeT:

-----_._----_._--_.
EXEC CICS INQUIRE CONNECTION START

EXEC CICS INQUIRE CONNECTION(4-character data-area) NEXT
(other options as in option list above)

EXEC CICS INQUIRE CONNECTION END
L ___________ . ___ .• _____ . ___ . ___________ _

Browsing is not terminated by syncpoints.

INQUIRE CONNECTION START command results in an internal pointer being set
to the first CONNECTION entry in the TCT.

Chapter 5.9. Examln!ng and modifying resource attributes 447

The following condition may occur:

ILLOGIC A browse is already in progress.

INQUIRE CONNECTION NEXT command returns the next CONNECTION entry
name in the area addressed by the CONNECTION keyword. On input all
specified operands are ignored; they are all set on output.

Browsing does not necessarily follow collating sequence. However, continued
browsing does return all CONNECTION entries in the TCT. Only one
CONNECTION browse operation is allowed at anyone time in a given task.

Note that there is no facility for selective browsing; that is, for returning entries
only if they meet certain conditions.

The following conditions can occur:

END The INQUIRE command has located all of the SYSTEM/CONNECTION
entries in the TCT.

ILLOGIC An INQUIRE CONNECTION START has not been issued.

INQUIRE CONNECTION END command ends the browsing operation and free any
resources held.

The following condition can occur:

ILLOGIC An INQUIRE START has not been issued.

SET for system entries (CONNECTION)
The SET function allows certain attributes of the SYSTEM/CONNECTION entry to
be modified. Note that control returns to the issuing program when the required
operation has been started, not necessarily when it has completed.

CICS uses a temporary storage queue with the default data Identifier (dataid)
prefix OF when acquiring and releasing LU6.2 sessions. If temporary storage
dataids with the prefix OF are defined as recoverable in your installation, you
must follow the SET CONNECTION command by a SYNCPOINT command to end
the log/cal unit of work and allow the SET CONNECTION command to complete.

EXEC CICS SET

CONNECTION(4-character data-value)
[ACQSTATUS(cvda) ICONNSTATUS(cvda)] 1

[SERVSTATUS(cvda)]
[NOTPENDING]
[PURGE [FORCE]]

10nly the ACQUIRED and HELEASED CVDA values are available with
CONNSTATUS

448 CICS/MVS 2.1.2 Customizatlon Guide

Options
See the option list under "INQUIRE for system entries (CONNECTIONS)" on
page 446 for the meanings of these options. For PURGE, see "SET for
terminals" on page 444.

Exceptional conditions
The following conditions can occur:

INVREQ An attempt was made to set an invalid CVDA value, or the connection
is not in a valid state for the requested changes.

The RESP2 field contains further information:

Value Meaning

1 ACQSTATUS or CONNSTATUS was specified for a connection that is
neither LUS.2 nor VTAM

2 ACQUIRED conflicts with OUTSERVICE (LUS.2 conflict only)
1--.

3 ACQSTATUS or CONNSTATUS has an invalid CVDA value

4 SERVSTATUS has an invalid CVDA value
f--.

5 NOTPENDING was specified for a connection that is not LUS.2

S PURGE was specified for a connection that is not VTAM
'----.

SYSIDERR The named SYSTEM/CONNECTION entry could not be located.

INQUIRE for modenames
The INQUIRE command for a CICS modename returns named items of
information about a mode group defined for a particular system connection.

EXEC CICS INQUIRE
MODENAME(8-character data-value)
CONNECTION(4-character data-area)
[MAXIMUM(halfword binary data-area)]
[AVAILABLE(halfword binary data-area)]
[ACTIVE(halfword binary data-area)]

Note that both MODENAME and CONNECTION are required in this command.

Options
Fuller details of these options are given under their equivalent names in the
DFHTCT section of the CICS/MVS Resource Definition (Macro) manual.

ACTIVE

--

The number of sessions within the group which are actually bound (that is, in
use). This may vary between 0 and the number available. !

AVAILABLE
The number of sessions within the group that may be concurrently allocated
for use. During a CICS run you may dynamically chm~ge this value, between
o and the maximum.

Chapter 5.9. Examining and modifying resource attributes 449

CONNECTION (sender)
The four-character remote system name in which the speci.fied modename is
defined.

MAXIMUM
The ma'ximum number of concurrent sessions supported within the mode
group.

MODENAME (sender)
The eight-character name of a group of sessions defined for a particular
system connection. These names are unique within the connection, but need
not be unique within the whole of CICS.

Exceptional condition
The following condition can occur:

SYSIDERR The named connection could not be located, or the modename within
the connection could not be located.

Browse for modenames
Browse operations are allowed for MODENAME information.

The following commands enable the application program to browse through the
MODENAME entries in the TCT:

EXEC CICS INQU1RE MODENAME START

EXEC CICS INQUIRE MODENAME(8-character data-area) NEXT
CONNECTION(4-character data-value)
(other options as in
option list above)

EXEC CICS INQUIRE MODENAME END

Browsing is not terminated by user syncpoints.

INQUIRE MODENAME START command will result in internal pointers being set
to the first MODENAME entry in the first CONNECTION defined in the TCT.

The following condition may occur:

ILLOGIC A browse is already in progress.

INQUIRE MODENAME NEXT command requires the CONNECTION to be specified
as a sender field. It may be null.

The INQUIRE NEXT command returns:

The next modename within this connection, if the CONNECTION is the same
as on the previous INQUIRE NEXT. Or, if there are no more. It returns the
first modename in the next connection which has modenames.

The first modenarne within this connection. if the CONNECTION is different
from the previous one.

450 CICS/MVS 2.1.2 Customlzatlon Guide

On Input all the other operands are ignored; they are all returned on output.

The order of browsing does not guarantee collating sequence. However
continued browsing does guarantee to return all MODENAME entries within all
CONNECTIONs in the TCT. Only one MODENAME browse operation is allowed at
anyone time in a given task.

The following conditions can occur:

END The INQUIRE command has located all of the modename entries in
the TeT.

ILLOGIC An INQUIRE MODENAME START has not been issued.

SYSIDERR The named CONNECTION could not be located within the TCT.

INQUIRE MODENAME END command ends the browsing operation and frees any
resources held.

The following condition can occur:

ILLOGIC An INQUIRE START has not been issued.

SET for modenames
The SET function allows the number of available sessions associated with this
modename to be changed.

If the number is decreased, the excess number of sessions will be unbound.

,----_._---_ .. _----
EXEC CICS SET

MODENAME(8 charactE!r data-val ue)
CONNECTION(4-character data-value)
[AVAILABLE(halfword binary data-area)]
[ACQUIRED]

Options
For AVAILABLE and CONNECTION, see also options under "INQUIRE for
modenames" on page 449.

ACQUIRED
If the number of available sessions is increased, this option causes the extra
sessions to be bound.

CONNECTION (sender)
CONNECTION must bE~ specified to qualif~' the modename.

Chapter 5.9. Examining and modif\/ing resource attributes 451

Exceptional conditions
The following conditions can occur:

SYSIDERR The RESP2 field contains this information:

Value Meaning

The named connection could not be located.
----t--
2 The modename within the connection could not be located.

INVREQ The RESP2 field contains this information:

Value Meaning
r-.----+--

3 The modename 'SNASVCMG' was specified.This is a reserved name and
may not be set.

---_. -------------_._-------- --------------
4 The specified AVAILABLE value is not in the range 0 to MAXIMUM

5 The specified connection is not in session.
-.-----~~----------,--~

INQUIRE for system attributes
INQUIRE support is provided to give access to system information.

EXEC CICS INQUIRE SYSTEM

Options
AKP

[RELEASE(4-character data-area)]
[OPSYS(l-character data-area)]
[OPREL(halfword binary data-area)]
[~~AXTASKS (full word bi nary data-area)]
[AMAXTASKS(fullword binary data-area)]
[AKP(fullword binary data-area)]
[CUSHION(fullword binary d~ta-area)]
[TIME(fullword binary data-area)]
[RUNAWAY(fullword binary data-area)]
[STALL(fullword binary data-area)]

The activity keypoint trigger value. It is the number of system logging
operations between the taking of keypoints. This value cannot be changed if
AKPFREQ =0 was specified at CICS initialization.

AMAXTASKS
The maximum number of concurrent active tasks. The journal and terminal
control tasks are outside the scope of this limit, and should not be allowed
for in assigning the value.

CUSHION
The level of unassigned storage which defines the "storage cushion". On
setting, the given value is rounded up to the next page size (2048 or 4096).

452 CICS/MVS 2.1.2 Custornization Guide

MAXTASKS
The maximum number of concurrent tasks allowed to run in the CICS
system, Including both active and suspended tasks.

OPSYS
Identifies the type of operating system currently running. It returns the
1-character value 'X', meaning 'XA'.

OPREL
Indicates the release number of the operating system currently running. It Is
a halfword binary Integer equal to 10 times the formal release number.

RELEASE
Identifies the level of the CICS system. The value returned is a
four-character string in the form vvrm, where vv Is the version number, r is
the release number, and m is the modification number. For example, the
value "0210" represents CICS/MVS 2.1.0, "0211" represents CICS/MVS 2.1.1,
and "0212" represents CICS/MVS 2.1.2.

RUNAWAY
The maximum length of time for which a task can have control before it is
assumed to be in a runaway condition (logical loop). After this interval a
task is abnormally terminated. This is task-time only, not real time.

STALL
The value of the stall time-interval. If no active CICS tasks have been able to
proceed during a period equal to the stall time-interval, the system is
considered to have stalled. Purgeable tasks will then be abended to reduce
the load on-the system.

TIME
The maximum Interval in milliseconds after which CICS will relinquish
control to the operating system if no transactions are ready to resume
execution. This is known as the region exit time interval.

SET for system attributes

EXEC CICS SET SYSTEM
[MAXTASKS(fullword binary data-value) I
AMAXTASKS(fullword binar'y data-value) I
AKP(fullword binary data-value) I
CUSHION(fullword binary data-value) I
TIME(fullword binary data-value) I
RUNAWAY(fullword binary data-value) I
STALL(fullword binary data-value)]

Chapter 5.9. Examining and modifying resource attributes 453

Options
For meanings of these options, see option list under IIINQUIRE for system
attributes" on page 452.

Only one value may be changed in one SET command, to avoid the complicated
and order-dependent checking and error-handling that would otherwise be
necessary.

When you set RUNAWAY, STALL or TIME, the value is rounded down to the
nearest 10. The values that you can set for each option must be within the limits
given under the INVREQ exceptional condition.

The recording of each system value takes place immediately, but its effect is
only seen when the relevant resource manager accesses the particular value.

Exceptional condition
After a SET SYSTEM command, the following condition can occur:

INVREQ An attempt was made to do one of the following:

• SET MAXTASKS to < 2 or < AMAXTASKS or > 999 or < = the
largest CMAXTASK value.

• SET AMAXT ASKS to < 1 or > 999 or > MAXT ASKS.

• SET AKP to < 200 or > 65,535 or to anything if AKPFREQ = o.
• SET CUSHION < 0 or > 524,288.

• SET TIME < 100 or > 327,670.

• SET RUNAWAY < 500 or > 2,700,000.

• SET STALL < TIME or > 327,670.

INQUIRE for programs
This command enables you to INQUIRE about the attributes of programs, maps,
and partition sets, using the following command:

-----... ----
EXEC CICS INQUIRE

PROGRAM(8-character data-value)
[LANGUAGE(cvda)]
[PROGTYPE(cvda)]
[STATUS(cvda)]
[LENGTH(fullword-binary data-area)]
[RESCOUNT(fullword-binary data-area)]
[USECOUNT(fullword-binary ~ata-area)]

-_._-----.-._------------_ ... _----- ---

454 CICS/MVS 2.1.2 Customizatlon Guide

Options
LANGUAGE

Possible CVDA values of COBOL, PLI or PL 1, or ASSEMBLER indicate the
language in which the program was written.

LENGTH
The length of the program in bytes. A value of 0 is returned if the program
has not been used in the current CICS session.

PROGRAM (sender)
The name of the program, map, or partition set as defined in the PPT.

PROGTYPE
Possible CVDA values are PROGRAM, MAP, or PARTITIONSET. Maps,
partition sets, and programs are listed in the PPT. This field indicates the
type of entry in the PPT.

RESCOUNT
The number of times the program is currently being used.

STATUS
CVDA values of ENABLED and DISABLED indicate whether the program is
available for use.

USECOUNT
The number of times the program has been used in the current CICS
session.

Exceptional conditions
The following conditions can occur:

PGMIDERR The named program could not be located.

NOTAUTH The invoker is not authorized to access the program.

Browse for programs
You can use browse operations to access information about programs, maps,
and partition sets. You can only examine information about- programs that you
are authorized to access. The commands are as follows:

EXEC CICS INQUIRE PROGRAM START

EXEC CICS INQUIRE PROGRAM(8-character data-area) NEXT
(other options as in
option list above)

EXEC CICS INQUIRE PROGRAM END
---_ .. _-------_ ... -

Browsing is not terminated by syncpoints.

INQUIRE PROGRAM START command will result in an Internal pointer being set
to the first PROGRAM entry in the PPT.

Chapter 5.9. Examining and modifying resource attributes 455

IllOGIC A browse is already in progress.

INQUIRE PROGRAM NEXT command returns information about the next PPT
entry in the specified area.

On input all specified operands are ignored; they are all set on output.

The order of browsing is strictly undefined and in particular does not guarantee
collating sequence. However, continued browsing does guarantee to return all
authorized entries in the PPT. Only one PROGRAM browse operation is allowed
at anyone time in a given task.

Note that no facility is provided for selective browsing; that is, for returning
entries only if they meet certain conditions.

The following conditions can occur:

END The INQUIRE command has located all of the authorized entries in the
PPT.

ILLOGIC An INQUIRE PROGRAM START has not been issuod.

INQUIRE PROGRAM END command ends the browsing operation and frees any
resources held.

The following condition can occur:

IllOGIC An INQUIRE START has not been issued.

SET for programs
The SET command enables you to alter some of the attributes of program entries
in the PPT. The command is as follows:

r------------.. -------------

EXEC CICS SET

Options
NEWCOPY

PROGRAM(8-character data-value)
[STATUS(cvda)]
[NEWCOPY]

--_.-------

marks the program as nonresident. NEWCOPY can therefore be used to
obtain a newly link-edited version of the program, or to rostore a program
that has been overwritten. If NEWCOPY is specified for a program that is
currently executing, the INVREQ condition will be raised.

STATUS
Possible CVDA values are ENABLED and DISABLED. Programs beginning
with "DFH" cannot be disabled.

456 CICS/MVS 2.1.2 Customizatlon Guide

Exceptional conditions
The following conditions can occur:

PGMIDERR The named program could not be located.

NOTAUTH The invoker is not authorized to access the program.

INVRE'Q The RESP2 field contains this information:

Value

1

2

3 _.

Meanin 9 -
Trying t o disable a DFH ... program

STATUS problem: invalid CVDA problem

py problem: program is executing NEWCO

ERROR This is a NEWCOPY problem. The load failed either because it was
being loaded already, or because no new copy was available.

INQUIRE for transactions
This command enables you to INQUIRE on transaction attributes.

EXEC CICS INQUIRE

Options
PRIORITY

TRANSACTION(4-character data-value)
[REMOTESYSTEM(4-character data-area)]
[PROGRAM(8-character data-area)]
[STATUS(cvda)]
[PRIORITY(fullword binary data-area)]

The priority of this transaction relative to other transactions, in a range from
o through 255.

PROGRAM
The name of the program to be executed first when this transaction is
started.

REMOTESYSTEM
The name of the remote system on which the transaction is defined. If
LOCAL, this value will be blanks.

STATUS
A CVDA value of ENABLED or DISABLED indicates whether the transaction is
available for use.

TRANSACTION (sender)
The transaction name defined in the PCT.

Chapter 5.9. Examining and modifying resource attributes 457

Exceptional conditions
The following conditions can occur:

TRANSIDERR The named transaction could not be located.

NOTAUTH The named transaction is not authorized to the user.

Browse for transactions
This browse facility only returns information about transactions if the invoking
program is authorized to access that transaction. You use the following
commands:

EXEC CICS INQUIRE TRANSACTION START

EXEC CICS INQUIRE TRANSACTION(4-character data-area) NEXT
(other options as in
option list above)

EXEC CICS INQUIRE TRANSACTION END

Browsing is not terminated by syncpoints.

INQUIRE TRANSACTION START command will result in an internal pointer being
set to the first TRANSACTION entry in the PCT.

The following condition can occur:

ILLOGIC A browse is already in progress.

INQUIRE TRANSACTION NEXT command accesses the information about
transactions listed in the PCT.

On input all specified operands are ignored; they are all set on output.

The order of browsing is strictly undefined and, in particular, does not guarantee
collating sequence. However, continued browsing does guarantee to return all
authorized entries in the PCT. Only one TRANSACTION browse operation is
allowed at anyone time in a given task.

Note that no facility is provided for selective browsing; that is, for returning
entries only if they meet certain conditions.

The following conditions can occur:

END The INQUIRE command has returned all the authorized entries in the
PCT.

ILLOGIC An INQUIRE TRANSACTION START has not been issued.

INQUIRE TRANSACTION END command ends the browsing operation and frees
any resources held.

458 CICS/MVS 2.1.2 CustomlzatlonGulde

The following condition can occur:

ILLOGIC
An INQUIRE START has not been issued.

SET for transactions
This command gives the ability to SET enabled and priority status of
transactions, as defined in the PCT.

EXEC CICS SET

Options

TRANSACTION(4-character data-value)
[STATUS(cvda)]
[PRIORITY(fullword binary data-area)]
[PURGEABILITY(cvda)]

See options under "INQUIRE for transactions" on page 457 for PRIORITY option.

PURGEABILITY
Possible CVDA values of PURGEABLE and NOTPURGEABLE override the
SPURGE value held in the PCT. This option causes the transaction to be
marked "purgeable" or "notpurgeable" for reference in system stall
conditions.

STATUS
A CVDA value of ENABLED or DISABLED indicates whether the transaction is
available for use. Transactions beginning with "c" cannot be disabled.

Exceptional conditions
The following conditions can occur:

TRANSIDERR The named transaction could not be located.

INVREQ The RESP2 field contains this information:

r-. --
Value Meaning

1 PRIORITY problem: value out of range

2 PURGEABILITY problem: invalid CVDA value

3 STATUS problem: invalid CVDA value -_ ..
4 Transactions beginning with "e" cannot be disabled.

NOTAUTH The named transaction is not authorized to the user.

Chapter 5.9. Examining and modifying resource attributes 459

CICS-VALUES used in INQUIRE and SET commands
The CICS-values in CVDAs returned by the INQUIRE command or sent by the
SET command are listed here under two headings:

• CICS-values for conditions, attributes, and languages
• CICS-values for device types.

See page 424 for a more detailed explanation of CICS-value data-areas and the
DFHVALUE function.

CICS-values for conditions, attributes, and languages
Figure 40 on page 461 lists the CICS-values for conditions, attributes, and
languages.

460 CICS/MVS 2.1.2 Customizatlon Guide

NOTAPPLIC EQU 1 IGNORE EQU 1
BDAM EQU 2 VSAM EQU 3
REMOTE EQU 4 ESDS EQU 5
KSDS EQU 6 RRDS EQU 7
KEYED EQU 8 NOT KEYED EQU 9
BASE EQU 10 PATH EQU 11
FIXED EQU 12 VARIABLE EQU 13
UNDEFINED EQU 14 BLOCKED EQU 16
UNBLOCKED EQU 17 OPEN EQU 18
CLOSED EQU 19 OPENING EQU 20
CLOSING EQU 21 CLOSEREQUEST EQU 22
ENABLED EQU 23 DISABLED EQU 24
DISABLING EQU 25 OLD EQU 26
SHARE EQU 27 NEW EQU 28
RECOVERABLE EQU 29 NOTRECOVABLE EQU 30
EMPTYREQ EQU 31 NOEMPTYREQ EQU 32
UNENABLED EQU 33 UNENABLING EQU 34
READABLE EQU 35 NOTREADABLE EQU 36
UPDATABLE EQU 37 NOTUPDATABLE EQU 38
BROWSABLE EQU 39 NOTBROWSABLE EQU 40
ADDABLE EQU 41 NOTADDABLE EQU 42
DELETABLE EQU 43 NOTDELETABLE EQU 44
HEX EQU 45 DEC EQU 46
BLK EQU 47 EXCTL EQU 48
NOEXCTL EQU 49 VTAM EQU 60
BSAM EQU 61 BTAM EQU 62
BGAM EQU 63 TCAM EQU 64
TCAMSNA EQU 65 CONSOLE EQU 66
CREATE EQU 67 NOCREATE EQU 68
ACQUIRED EQU 69 RELEASED EQU 70
ACQUIRING EQU 71 COLDACQ EQU 72
INSERVICE EQU 73 OUTSERVICE EQU 74
AT! EQU 75 NOATI EQU 76
TT! EQU 77 NOTTI EQU 78
PAGEABLE EQU 79 AUTOPAGEABLE EQU 80
FREEING EQU 94 AVAILABLE EQU 95
OBTAINING EQU 96 IRC EQU 121
INDIRECT EQU 122 XM EQU 123
APPC EQU 124 LU61 EQU 125
PENDING EQU 126 NOTPENDING EQU 127
XOK EQU 143 XNOTDONE EQU 144
ASSEMBLER EQU 150 COBOL EQU 151
PLI EQU 152 PL1 EQU 152
PROGRAM EQU 154 MAP EQU 155
PARTITIONSET EQU 156 PURGEABLE EQU 160
NOTPURGEABLE EQU 161

Figure 40. CICS-values for conditions, attributes, and languages

Chapter 5.9. Examining and modifying resource attributes 461

CICS-values used for device types
Figure 41 lists the CICS-values used for device types.

T7770
TCONSOLE
MAGTAPE
HARDCOPY
TELETYPE
T2740
T2741BCD
T2260L
T1053
TTCAM
T2770
T3780
T3735
T3600Bl
T3275R
T3286R
T3284L
BIPROG
SYS370
SDLC
T3614
T3790UP
T3650PIPE
T3650ATT
CONTNLU
BATCHLU
LUTYPE4
ISCMMCONV
LUCSESS

EQU 1
EQU 8
EQU 20
EQU 32
EQU 34
EQU 40
EQU 43
EQU 65
EQU 74
EQU 80
EQU 130
EQU 133
EQU 136
EQU 138
EQU 146
EQU 148
EQU 155
EQU 160
EQU 164
EQU 176
EQU 178
EQU 181
EQU 184
EQU 186
EQU 189
EQU 191
EQU 193
EQU 209
EQU 211

SYSTEM7
SEQDISK
CDRDLPRT
TWX33/35
T1050
T2741COR
VIDEOTERM
T2260R
T2265
BISYNCH
T2780
T2980
T3740
T3277R
T3284R
T3277L
T3286L
SYSTEM3
SYS7BSCA '
T3601
T3790
T3790SCSP
T3653HOST
T3650USER
INTACTLU
LUTYPE6
RESSYS
LUCMODGRP

FigtJre 41. CICS-values used for device types

462 CICS/MVS 2.1.2 Customlzatlon Guide

EQU 2
EQU 18
EQU 24
EQU 33
EQU 36
EQU 42
EQU 64
EQU 72
EQU 76
EQU 128
EQU 132
EQU 134
EQU 137
EQU 145
EQU 147
EQU 153
EQU 156
EQU 161
EQU 166
EQU 177
EQU 180
EQU 182
EQU 185
EQU 187
EQU 190
EQU 192
EQU 208
EQU 210

EIBRCODEs of the INQUIRE and SET commands
The following are the return codes of the INQUIRE and SET commands.

EIBFN (Byte 0)

Byte (of EIBRCODE)

rEIBRCODE Value

rCondi t ion

4C 3 0C FI LENOTFOUND
4C 3 10 INVREQ
4C 3 11 IOERR
4C 3 15 ILLOGIC
4C 3 46 NOTAUTH
4C 3 53 END
4E 3 01 ERROR
4E 3 10 INVREQ
4E 3 15 ILLOGIC
4E 3 1B PGMIDERR
4E 3 46 NOTAUTH
4E 3 53 END
50 3 10 INVREQ
50 3 15 ILLOGIC
50 3 1C TRANSIDERR
50 3 46 NOTAUTH
50 3 53 END
52 3 01 ERROR
52 3 0B TERMIDERR
52 3 10 INVREQ
52 3 15 ILLOGIC
52 3 53 END
54 3 10 INVREQ
58 3 10 INVREQ
58 3 15 ILLOGIC
58 3 35 SYSIDERR
58 3 53 END
5A 3 10 INVREQ
5A 3 15 ILLOGIC
5A 3 35 SYSIDERR
5A 3 53 END

Chapter 5.9. Examining and modifying resource attributes 463

Chapter 5.10. CICS interface to JES

.. _--_._-------_._------
General introduction

The CICS interface to JES (the Job Entry Subsystem component of MVS) provides
specialist system programmer EXEC commands for accessing the system spool
files maintained by JES2 and JES3. You can support the requirements of other
products to exchange files with other systems connected through a JES RSCS
(remote spooling communications subsystem) network. The term JES is used to
refer to both JES2 and JES3.

The CICS interface to JES enables you to:

1. Retrieve data for a specific user from the local JES spool. See Figure 42 on
page 467.

2. Create a file and write records directly to the local JES spool. See Figure 43
on page 468.

3. Send a JES spool file to a specific remote destination. See Figure 44 on
page 468.

There are certain internal limits in JES2 and JES3 that you should consider when
you are designing applications to use this interface. Some of these internal
limits may depend on which release of ,JES you are using. You should therefore
read the following in conjunction with the appropriate JES documentation.

JES2

. © Copyright IBM Corp. 1977, 1990

• Number of SYSOUT data sets

There is an upper limit to the number of data sets that can be
created by a single job. If this limit is exceeded during a CICS
run, subsequent SPOOLOPEN OUTPUT requests will return the
ALLOCERR exceptional condition.

• Output queue and job queue sizes

The number of Job Output Elements and Job Queue Elements
may need to be increased to accommodate the additional output
processing. Timely processinu of the datasets created using this
interface will minimize this requirement.

• Spool space

Although the spool space for a data set created using this
interface is reused after it has been processed, some control
informatior is retained for the life of the job. You may have to
increase the spool file allocation to allow for this.

465

Input

JES3

• Job queue size

The number of Job Queue Elements may need to be increased to
accommodate the additional output processing. Also, more JSAM
buffers may be required. Timely processing of the data sets
created using this interface will minimize this requirement.

• Spool space

Although the spool space for a data set created using this
interface is reused after it has been processed, some control
information is retained for the life of the job. You may have to
increase the spool file allocation to allow for this.

For both JES2 and JES3, some performance degradation may be experienced if a
backlog of CICS-created data sets is allowed to accumulate. You should ensure
that procedures exist to detect and remedy such situations.

A remote application must route any files intended for a CICS transaction to a
specific user name at the system where CICS resides. See Figure 42 on
page 467 for an example of a CP command used by a VM system to do this.
The figure also shows the EXEC CICS SPOOL commands you use to retrieve the
data.

The CICS transaction issues the SPOOlOPEN command, specifying that writer
name on the USERID parameter and optionally the class of output within the
writer name. The normal response is:

1. No input for this external writer.

2. The single-thread is busy (see below).

3. The file is allocated to you for retrieval, and is identified by the "token"
returned by CICS. The token must be included on every SPOOL command
for retrieving the data set.

(See "Exceptional conditions and RESP2 values" on page 476 for a full list of
responses.)

In cases (1) and (2) the transaction should retry the SPOOLOPEN after a suitable
interval, by restarting itself.

In case (3) the transaction should then retrieve the file with SPOOlREAD
commands, and proceed to SPOOlClOSE as rapidly as possible to release the
path for other users. This is especially important for Input from JES because the
input path is single-thread. When there is more than one transaction using the
interface, their files may be differentiated by using different writer names or
different classes within a single writer name. Furthermore, you should ensure
that the transactions either terminate or WAIT for a short period between
SPOOlCLOSE and a subsequent SPOOlOPEN. If you do not do this, one
transaction may prevent others from using the interface.

466 CICS/MVS2.1.2 Customization Guide

Output

JES exits
Both JES2 and JES3 provide a way of screening incoming files. For JES2, the
TSO/E Interactive Data Transmission Facility Screening and Notification exit is
used. The JES3 equivalent is the Validate Incoming Netdata File exit.

You should review any use your installation makes of these exits to ensure that
files that are to be read using the CICS interface to JES are correctly processed.

The transaction program issues SPOOLOPEN to cause allocation of an output
data set, specifying a remote NODE and USERID. SPOOLOPEN returns a unique
token to the transaction, which must be used in all subsequent SPOOLWRITE
and SPOOLCLOSE commands to identify the file being written to. Finally, the
transaction issues SPOOLCLOSE to close and deallocate the report, and permit
its immediate printing or onward routing by the system spooler. The normal
response received from the SPOOLOPEN OUTPUT command is:

The file is allocated to you and identified by the token returned by CICS.
Data may now be written to it.

If the node is a remote MVS system, then the data set will be queued on the JES
spool against the external writername. The id of this writername was specified
on the SPOOLOPEN OUTPUT USERID parameter. If the node is a remote VM
system, then the data is queued in the VM RDR queue for the id that was
specified on the same USE RID parameter.

MVS
SPOOLOPEN r t,IPUT

I---~---r--.-Y----I USERI D('S),S'1 cres')

CICS JES

SPOOLREAD TOI<E~~

I~ECORD

+---
SPOOLREAD 'I O~:U·J

"-__________ ~_-"'8POOLCLOSE TCWFI\J

Figure 42. Retrieve data (rom the JES spool

VM1

RSCS

Chapter 5.10. elcs Interface to JES 467

MVS

SF'OOLOPEN OUT PUT

CICS JES USERI DC.') NODE=('I')

lOKEN

SPOOLWRITE TOIc'f:JJ

SPOOLWRITE TOI<E~J

SPOOLWRITE TOI<Er,)

SF'OOLCLOSE TOKEN

Figure 43. Create a file and write directly to the JES spool. See also Figure 44.

MVS VM1

- RSCS
CICS JES JES SPOOL

SPOOLOPEr.,) ~ .,/
..... ' OUTPUT

USERID ('USER1')
NODE ('VM1 ')

Figure 44. Send the written file to a remote destination

--_._-------------
Typical use

The following example is a demonstration of the EXEC CICS SPOOL commands:

1. The spool file is opened. If there is no data, or the single-thread input path
is busy, the program sends an error message and restarts in five seconds.

2. If there is data and the input file is available, the program opens the output
file. Then it reads and writes the logical records back to the output file.

3. At the comment PROCESS DATA, a report could be generated. For clarity,
only comments have been inserted here.

4. The input and output files are closed.

468 CICS/MVS 2.1.2 Customlzatlon Guide

DFHEISTG DSECT
CICSAMPL CSECT
OPENIN EQU *
* OBTAIN AND CLEAR GETMAIN AREA

EXEC CICS GETMAIN SET(PTR) LENGTH(500) INITIMG(BLANK)
USING RENTAREA,PTR

* OPEN INPUT SPOOLFILE
EXEC CICS SPOOLOPEN INPUT USERID(XWTRNAME)

TOKEN(INTOKEN)
RESP(RESPFLD) RESP2(RESP2FLD)

CLC RESPFLD,DFHRESP(NORMAL) OPEN OK?
BE OPENOUT YES
CLC RESPFLD,DFHRESP(SPOLBUSY) NO, IS SPOOL IN USE?
BE RESTART YES, TRY AGAIN LATER
CLC RESPFLD,DFHRESP(NOTFND) NO, IS ANY DATA ON SPOOL?
BE RESTART NO, TRY AGAIN LATER

OPENERR EQU * ERROR TERMINATE TRANSACTION AND RETURN MESSAGE
MVC MSGAREA(L'ERRMSGl),ERRMSGl
B SAMPLEOJ

RESTART EQU * SPOOL BUSY OR NO DATA. TRY AGAIN LATER.
EXEC CICS START TRANSID('LADM') INTERVAL(000005)

TERMID('BLA3') NOCHECK PROTECT
MVC MSGAREA(L'OKMSG02),OKMSG02
B SA~1PLEOJ

OPENOUT EQU * EVERYTHING OK. DATA ON INPUT FILE. OPEN OUTPUT.
EXEC CICS SPOOLOPEN OUTPUT NODE(VM1) USERID(USERl)

TOKEN(OUTTOKEN) NOCC
RESP(RESPFLD) RESP2(RESP2FLD)

CLC RESPFLD,DFHRESP(NORMAL) OPEN OK?
BE CONTINU0 YES
MVC MSGAREA('ERRMSG2),ERRMSG2 NO! GIVE ERROR MSG
B SAMPLEOJ

CONTINU0 EQU * READ INPUT DATA AND PROCESS
EXEC CICS SPOOLREAD INTO(INREC)

TOKEN(INTOKEN)
TOFLENGTH(L80) MAXFLENGTH(L132)
RESP(RESPFLD) RESP2(RESP2FLD)

CLC RESPFLD,DFHRESP(NORMAL) READ OK?
BE CONTINUl YES
CLC RESPFLD,DFHRESP(ENOFILE) ANY MORE DATA?
BE ENDATA NO
MVC MSGAREA(L'ERRMSG3),ERRMSG3 MOVE IN ERROR MSG
B SAMPLEOJ

CONTINUl EQU * YES, PROCESS DATA
* PROCESS DATA. CREATE REPORT AND PREPARE TO OUTPUT REPORT
* TO SPOOLER OUTPUT FILE.

MVI CTLCHAR,C"
MVC OUTDATA,CTLCHAR
MVC OUTDATA,INREC
EXEC CICS SPOOLWRITE FROM(OUTREC)

TOKEN (OUTTOKEN)
FLENGTH(L80)
RESP(RESPFLD) RESP2(RESP2FLD)

CLC RESPFLD,DFHRESP(NORMAL) WRITE OK?
BE CONTI NU2 YES
MVC MSGAREA('ERRMSG4),ERRMSG4 NO MOVE ERROR MSG

*
*

*

*

*

*

*
*
*

Chapter 5.10. CICS Interface to JES 469

B SA~~PLEOJ

CONTINU2 EQU *
B CONTINU0 READ NEXT INPUT RECORD FROM SPOOL FILE

ENDATA EQU *
* CREATE TOTAL SALE PAGE AND OUTPUT TO SPOOLER FILE.
* CLOSE INPUT AND OUTPUT SPOOL FILES.
CLOSEIN EQU *

EXEC CICS SPOOLCLOSE TOKEN(INTOKEN)
RESP(RESPFLD) RESP2(RESP2FLD) DELETE

CLC RESPFLD,DFHRESP(NORMAL) CLOSE INPUT OK?
BE CLOSEOUT YES
MVC MSGAREA(L'ERRMSG5A),ERRMSG5A NO MOVE ERROR MSG
MVC MSGAREA+23(L'ERRMSG5B),ERRMSG5B
MVC MSGAREA+36(L'ERRMSG5D),ERRMSG5D

CLOSEOUT EQU *
EXEC CICS SPOOLCLOSE TOKEN(OUTTOKEN)

RESP(RESPFLD) RESP2(RESP2FLD) KEEP
CLC RESPFLD,DFHRESP{NORMAL) CLOSE OUTPUT OK?
BE SAMPLEOJ YES
MVC MSGAREA(L'ERRMSG5A),ERRMSG5A NO MOVE ERROR MSG
MVC MSGAREA+28(L'ERRMSG5C),ERRMSG5C
MVC MSGAREA+36(l'ERRMSG5D),ERRMSG5D

SAMPLEOJ EQU *
MVC MSGAREA+50(L ' OKMSG0l),OKMSG01 MOVE EOJ MESSAGE
EXEC CICS SEND TEXT FROM(MSGAREA) LENGTH(80)
EXEC CICS RETURN

Rl EQlI 1 REGISTER 1
PTR EQU 5 REGISTER 5
OKMSG0l DC Cl20' TRAN lADM EOJ.
OKMSG02 DC CL45 1 TRAN lADM RESTARTED, NO DATA OR SPOOL BUSY. I

ERRMSGl DC CL45 1 TRAN lADM TERMINATED. SPOOlOPEN INPUT ERROR. I

ERRMSG2 DC CL46 1 TRAN LADM TERMINATED. SPOOLOPEN OUTPUT ERROR. I

ERRMSG3 DC Cl39 1 TRAN lADM TERMINATED. SPOOLREAD ERROR. I

ERRMSG4 DC CL40 1 TRAN lADM TERMINATED. SPOOLWRITE ERROR. I

ERRMSG5A DC Cl23 1 TRAN LADM, SPOOlClOSE I

ERRMSG5B DC Cl5 I INPUT'
ERRMSG5C DC Cl7 1 OUTPUT'
ERRMSG5D DC Cl6 I ERROR. I

L80 DC F'80 1

Ll32 DC F' l32 1

BLANK DC X'00 1

XWTRNAME DC Cl8 I CICSAMPL'
USERl DC CL8 1 USERl
VMl DC Cl8 1 VMl
RENTAREA OSECT
INTOKEN DS CL8
OUTTOKEN DS Cl8
RESPFLD DS Cl4
RESP2FlD OS Cl4
INREC DS Cl80
OUTREC OS eCll33
CTlCHAR DS ell
OUTDATA OS CLl32
MSGAREA DC CL8e'

END

470 CICS/MVS 2.1.2 Customlzatlon Guide

*

*

EXEC CICS commands

OPEN for input

The EXEC CICS commands listed in this section give access to the system
spooler. They are intended for system programmer use only.

To use the CICS interface to JES you must code DFHSIT SPOOL=YES.

You must specify RESP or NOHANDLE on these commands. RESP bears a
one-to-one correspondence with HANDLE CONDITION. If you do not code RESP
your program will abend. You can also code the RESP2 option. NOHANDLE,
RESP and RESP2 are not shown in the syntax boxes or in the option lists. See
page 424 for information about the use of RESP and RESP2. At the end of that
chapter is a list of RESP values and the RESP2 values that are CICS-specific to
the CICS-JES interface.

Transactions that process SYSOUT data sets larger than 1000 records, either for
INPUT or OUTPUT, are likely to have a performance impact on the rest of CICS.
When you cannot avoid such a transaction, you should carefully evaluate general
system performance. You should introduce a pacing mechanism if the effects on
the rest of CICS are unacceptable.

See "Options" on page 473 for descriptions of all the options that apply to these
EXEC CICS commands.

All access to a JES spool file must be completed within one logical unit of work.
Issuing an EXEC CICS SYNCPOINT command will implicitly SPOOLCLOSE any
open report.

EXEe eIes SPOOLOPEN
INPUT
USERID(ext_writer_name)
TOKEN(token)
[CLASS(class)]

--------------------------------~
This command opens a spool report for input from the system spooler to CICS.

It prepares to get (read) an existing spool data set directly using
external_writer _name (USERID) and specified class.

Another task may have allocated a spool file for Input. In this case, the user
should retry after a suitable time interval.

When this command has been successfully executed, users should read the
report and proceed to CLOSE as soon as possible, in order to permit other users
to use the JES single thread. If SPOOLCLOSE is not issued before transaction
end or SYNCPOINT, CICS performs an implicit SPOOLCLOSE KEEP, and writes a
message to CSMT to alert the system programmer to the possible unnecessary
retention of resources. You should not SPOOLOPEN a data set lIsing this
command until you are prepared to process it completely.

Chapter 5.10. CICS Interface to JES 471

OPEN for output

READ record

This command, if successful, will return a token, which is used later to identify
the report in SPOOLREAD and SPOOLCLOSE commands.

EXEC CICS SPOOLOPEN
OUTPUT
NODE(node_id)
USERID (useri d)
[CLASS (c 1 ass)]
TOKEN(tok.en)
[NOCCIASAIMCC]
[PRINT I PUNCH]
[OUTDESCR(address)]

This command opens a spool report for output from CICS to the system spooler
and defines its characteristics.

It results in a dynamic allocation of the output file using the nodeJd to specify
the remote destination and the user Jd to specify the remote user. As this is a
multithread output request, requestors of this service could interleave. This
SPOOLOPEN enables users 1:0 acquire the token for a report that it expects to
create (write). This token is used to identify the report in later SPOOLWRITE and
SPOOLCLOSEcommands.

When printing on a local device, use the NOCCIASAIMCC parameters to control
output formatting. If you do not specify a format, the default value of NOCC is
used. NODE('*') and USERID('·') may be used to write the data set directly to the
local spool file. For example:

EXEC CICS SPOOLOPEN OUTPUT NODE('*') USERID('*') CLASS('A') ASA

If you do not issue SPOOLCLOSE before the end of the transaction, CICS
performs an implicit SPOOLCLOSE DELETE and writes a message to CSMT to
alert you to the possible unnecessary retention of resources.

Note: If you retrieve a formatted data set, the system spooler may have
changed the data set format. For example, the system spooler may have
converted an MCC format data set to ASA format during data set creation. This
does not affect the the final printed output.

--_._-------------_._-_._-------
EXEC CICS SPOOLREAD

TOKEN(tok.en)
INTO(ioarea)
[TOFLENGTH(length)]
[MAXFLENGTH(length)]

This command obtains the next record from the system spooler.

472 CICS/MVS 2.1.2 Customizatlon Guide

WRITE record

CI.OSE a report

Options

------------_ .. _----_._----------_._._--_._---------,
EXEC CICS SPOOLWRITE

TOKEN(token)
FRQt.1 (i 0_ area)
[FLENGTH(length)]
[l-llt~ I PAGE]

-----------_._---------.. _--------_._--... _----

This command writes data to a spool report.

EXEC CIeS SPOOLCLOSE
TOKEN(token)
[KEEPIDELETEJ

----_._---

This command closes a spool report and optionally changes its retention
characteristics. If more than one transaction is trying to read reports from JES,
fhen SPOOLCLOSE should not be immediately followed by SPOOLOPEN. It
should be followed by a WAIT, so that other transactions may use the interface.

All options below, other than pure keywords, refer to data areas. Receivers,
senders, and optional or alternative fields are identified.

ASA
This specifies that the report about to be created will have each record
prefixed with an ASA carriage-control character, and that this character must
be used by the operating system to control formatting when the report is
printed.

CLASS(class)
is the class designation. This assigns a class to the output data set, and
may be used as a selection parameter for the input report. CLASS is a
one-character sender field. CLASS is optional. If it is omitted on input then
the first report for the specifiHd writer will be obtained, regardless of its
class. If it is omitted on output then class A is assumed.

FLENGTH(length)
Specifies the length of data transferred as a fullword binary number. This is
set by the user on output. It is optional, and if it is omitted CICS will use the
length of the data area.

t=ROM(loarea)
Specifies the data area from which variable length data will be transferred.
The data itself is not altered in any way by CICS. FROM is a sender field.

INPUT
Indicates that the report is to be read by CICS.

Chapter 5.10. CICS interface to JES 473

INTO(loarea)
Specifies the data area into which variable-length data will be transferred. It
is a receiver field.

KEEPIDELETE
Specifies the disposition code.

If an INPUT report is closed with disposition KEEP, it will be read again when
SPOOLOPEN INPUT is next issued. Closing it with DELETE will result in the
next report being read on the subsequent OPEN INPUT. KEEP is the default
if the user fails to close the report. However if the SPOOLCLOSE command
is issued without a KEEP or DELETE option, then DELETE is assumed for
input reports.

For an OUTPUT report, the KEEP option is ignored. The DELETE option
purges a report. When neither option is specified, the report goes to its
destination node.

LlNEIPAGE
PAGE means that you are writing page-mode data, and wi" cause the CPOS
indicator to be set in the ACB for the write request. If you do not want the
CPOS indicator to .be set, you should allow this value to default to LINE.

MAXFLENGTH(length)
Specifies the maximum length of data to be read as a fu"word binary
number. This is an optional value, and if it is omitted CICS will use the
length of the data area. If you do provide a MAXFLENGTH value, CICS
acquires a buffer of the size that you specify. The MAXFLENGTH value must
not be more than 32KB minus 8 bytes.

MCC
This specifies that the report about to be created will have each record
prefixed with an IBM machine command code carriage-control character,
and that this character must be used by the operating system to control
formatting when the report is printed.

NOCC
This specifies that the report about to be created wi" have no internal
formatting controls. When the report is printed, the operating system will
prefix each record with a carriage-control character that will cause page
skipping according to the default operating-system lines-per-page value.

NODE(nodeJd) and USERID(userld)
NodeJd is the eight-character 10 of a destination node which the system
spooler will use to route the file. It is a sender field.

Userid is the identifier of the eventual writer program or user who will
process the report. The report will carry this identifier and it will be used to
select the repor1 at its destination. It is a sender field. For an INPUT report,
the userid must begin with the same four characters as the CICS APPLlD, so
that CICS can check that the user is not attempting to access data sets not
intended for his CICS system.

474 CICS/MVS 2.1.2 Customization Guide

Code NODE('*') and USERID('*') to specify the local spool file and to enable
the OUTDESCR operand to override the NODE and USERID operands. If the
NODE and USERID operands specify explicit identifiers, the OUTDESCR
operand cannot override them.

OUTDESCR(address) (MVS/SP*-JES2 Version 3 only)
The address points to a field that contains the address of a string consisting
of parameters to the OUTPUT statement of MVS JCl. The user must set up
the pointer, the address field, and the string. The format of the string is:

Offset Length Contents
e 4 Length (n) of following text string
4 n OUTPUT statement parameters

The parameters use the same keywords and values as the OUTPUT
statement but the syntax varies slightly. The following is the format of the
OUTOESCR parameter string:

keywordl(valuel) [keyword2(value2)] [keyword3(value3,value4)] •..

This corresponds to the following OUTPUT statement parameter string:

keywordl=valuel [keyword2=value2] [keyword3=(value3,value4)] ...

For details of valid keywords and values, see MVS/ESA Job Control
Language Reference, GC28-1829-0.

The OUTOESCR operand:

• Can override the NODE and USERIO operands only if they are specified
as NODE('*') and USERID('*') respectively.

• Cannot override the CLASS operand, even if it is omitted and defaults to
class A.

Use this operand to set additional attributes for the spool data set. For
example, to associate a forms 10 with the spoolfile for a local JES2-managed
printer, you could code:

EXEC CICS SPOOLOPEN NODE('*') USERID('*') CLASS('A') OUTDESCR(PARMS)

PARMS is a Bll cell (OS/VS COBOL) or a pointer (VS COBOL II, PllI). For
Assembler, PARMS is a register containing the address of an address
constant. If the required OUTDESCR parameter is 'FORMS(WIDE)" PARMS
points to an address field (of similar type) that points to a 15-byte area
containing the value 11 in bytes 1-4, and the string 'FORMS(WIOE), in bytes
5-15.

VS COBOL II users who wish to use the linkage section for this purpose must
issue EXEC CICS GETMAIN for storage to hold the keyword structure, and
then set addressability to it using the VS COBOL II SET command.

OUTPUT
Indicates that the report is to be written by CICS.

* IBM Trademark. For a list of trademarks see page ill.

Chapter 5.10. CICS interface to JES 475

PRINT
Is included for compatibility with the spool support provided with
CICS/DOS/VS, and to allow large records to be written to the spool. PRINT
is the default setting for the SPOOLOPEN OUTPUT command, and it has no
effect on the SPOOLOPEN INPUT command.

PUNCH
Is included for compatibility with the spool support provided with
CICS/DOS/VS. You must specify this parameter if the CLASS parameter for
the output data set implies punch, and the data set is destined for a
VM/RSCS node. This ensures that the record length indicator is set to 80,
which is a requirement of VM/RSCS for punch files. The PUNCH parameter
has no effect on the SPOOLOPEN INPUT command.

TOFlENGTH(length)
Specifies the length of data transferred as a fullword binary number. This is
set by CICS on input. It is optional, and if it is omitted the user will not be
notified of the actual length of the data received.

TOKEN(token)
This is the CICS-allocated token used to identify a report. It is an eight-byte
value aligned on a fullword boundary. It is a receiver on SPOOLOPEN and a
sender on all other commands.

Exceptional conditions and RESP2 values
Here is a list of exceptional conditions that can occur in response to the spool
commands listed above. Under some of the exceptional conditions are listed
RESP2 values that are specific to the CICS commands for the interface to JES.
(You may encounter RESP2 values other than those documented here for use by
the CICS interface. These are provided by JES-MVS or VSAM for other
purposes.)

AlLOCERR
MVS dynamic allocation has rejected a request to allocate an input data set.

RESP2 gives the dynamic allocation response code that denotes this error.
The first two characters are the information reason code (S99INFO), and the
second two are the error reason code (S99ERROR), as defined in OSIVS2
MVS Programming Library: Job Management.

ENDFILE
Indicates that all data for the current spool file being SPOOLREAD has been
retrieved. You should proceed to issue a SPOOLCLOSE command as soon
as possible, to release the lock on the ~JES single thread, and to terminate
current SYSOUT data set processing.

ILLOGIC
You have specified an invalid parameter.

RESP2 value Meaning of RESP2 value

3 Invalid CLASS parameter specified

INVREQ
Invalid request.

476 CICS/MVS 2.1.2 Customization Guide

RESP2 value

4

Meaning of RESP2 value

Unsupported language

Unsupported function 8

12

16

20

24

28

32

36

40

44

48

52

Read attempt after end of file

USERI.D missing

NODE missing

INTO missing

FROM missing

KEEPIDELETE OUTPUT specified

INPUTIOUTPUT missing

CICS SSI already enabled

Bad OUTDESCR string

OUTDESCR specified but function not available (wrong level of
MVS or JES)

OUTDESCR specified, but bad pointer found in keyword or in
OUTDESCR list

Note: Errors 1024 and over are internal, and should not occur. If one of
these error codes is returned, contact your IBM support center.

LENGERR
For a SPOOLREAD command, this conditions results from one of the
following (if the buffer space is too small, as much data as possible will be
read):

• You requested insufficient buffer space to SPOOLREAD your record
• You requested more than the maximum allowable (32KB-8 bytes).

For a SPOOLWRITE command, this conditions results from one of the
following:

• The value specified in the FLENGTH parameter command was zero.
• The value specified in the FLENGTH parameter command was negative
• The value specified in the FLENGTH parameter command was greater

than the maximum record length value that was used when the spool
was opened for output.

RESP2 indicates the amount of data truncated, the difference between the
FLENGTH value and the maximum length value at SPOOLOPEN for output
time, or shows zero if the MAXFLENGTH field is greater than 32KB minus 8
bytes or if the FLENGTH field contains a zero or a negative value.

NODEIDERR
JES cannot identify the USER/NODE combination specified on SPOOLOPEN
OUTPUT.

RESP2 gives the dynamic allocation response code that denotes this error.
The first two characters are the information reason code, (S991NFO), and the
second two are the error reason code, (S99ERROR), as defined in OS/VS2
MVS Programming Library: Job Management.

Chapter 5.10. CICS Interface to JES 477

NOSPOOL
The JES interface is not available.

RESP2 value

4

8

12

NOSTG

Meaning of RESP2 value

No subsystem present

Interface being disabled; CICS is quiescing

Interface has been stopped

An OS GETMAIN has failed within the JES interface subtask (DFHPSPSS).

RESP2 gives the GETMAIN register 15 return code.

NOTAUTH
Indicates that an application has issued a SPOOLOPEN INPUT command with
an unauthorized USERID. For the USERID to be authorized, its first four
characters must match the first four characters of the current CICS system
id.

NOTFND
Indicates that either data, or specific internal control block signals, could not
be located.

RESP2 value

4

1024

NOTOPEN

Meaning of RESP2 value

No data sets could be located for retrieval for the specified
external writer name

Input or output function has been corrupted, and SPOOLCLOSE
could not complete

Indicates an input/output error. Failure of attempt to SPOOLREAD from, or
SPOOLWRITE to, or SPOOLCLOSE an unopened (SPOOLOPEN) data set.

RESP2 value

8

12

16

1024

OPENERR

Meaning of RESP2 value

Data set has not been opened, or a task that did not issue the
SPOOLOPEN for a spool data set has attempted to access it

Attempt to read an output file

Attempt to write an input file

Subtask OPEN macro failure

An internal error occurred during SPOOLOPEN processing that has forced
the request to fall.

RESP2 value

4

478 CICS/MVS 2.1.2 Customlzatlon Guide

Meaning of RESP2 value

A VSAM SHOWCB macro failed to return the lengths of the VSAM
control blocks used to access the JES spool file

OUTDESCRERR
The MVS macro, OUTADD or OUTDEL (invoked as a result of the OUTDESCR
specification) failed.

RESP2 gives the reason code from the OUTADD or OUTDEL macro.

SPOLBUSY
Non-availability of the JESlinput single thread within the JES interface.

RESP2 value Meaning of RESP2 value

4

8

Interface already in use by another task

Interface already In use by current task

SPOLERR
The MVS subsystem interface macro (IEFSSREQ) has failed. No input data
set name was selected.

RESP2 gives the IEFSSREQ response code.

STRELERR
An OS FREEMAIN has failed within the JES interface subtask (DFHPSPSS).

RESP2 gives the FREEMAIN register 15 return code.

EIBRCODEs' of the system spooler commands
The following are the return codes of the system spooler commands. The EIBFN
(Byte 0) value is the first byte of the associated EIBFN code.

EIBFN (Byte 0)

Byte (of EIBRCOOE)

rEIBRCODE Value

rCondition

56 3 00 NOTFNO
56 3 10 INVREQ
56 3 13 NOTOPEN
56 3 14 ENOFILE
56 3 16 LENGERR
56 3 2A NOSTG
56 3 46 NOTAUTH
56 3 50 NOSPOOL
56 3 55 ALLOCERR
56 3 56 STRELERR
56 3 57 OPENERR
56 3 58 SPOLBUSY
56 3 59 SPOLERR
56 3 5A NOOEIOERR

L __ End of General-Use Programming Interface ________ ~

Chapter 5.10. CICS interface to JES 479

Chapter 5.11. Finding programs that use CICS macros

Summary report

If you are a large installation and you want to convert your CICS applications to
command-level, you must first convert all your CICS macro-level programs. To
help in this task, CICS/MVS 2.1.2 provides an DFHMSCAN program that scans a
load module library and identifies programs that use CICS macros.

You should investigate any program that DFHMSCAN identifies as having CICS
macro-level requests. The program's language is identified from the last macro
call analyzed. Therefore, if PLII or COBOL programs contain assembler routines
with CICS macro-level calls (for example, if a COBOL or PLII program has library
modules link-edited to it, and these-contain CICS macro-level calls), the program
as a whole may be flagged as assembler.

This is the JCL you need:

IISCANJOB JOB ACCOUNTING INFO,CLASS=A
IISCAN EXEC PGM=DFHMSCAN,PARM='pppppppp'
!/STEPLIB DO DSN=CICS212.LOADLIB,DISP=SHR
IIINPUT DD DSN=xxxxxxx.LOADLIB,DISP=SHR
IIOUTPUT DD SYSOUT=A
IISlIMMARY DO SYSOUT=A
II
xxxxxxx. LOADLIB is the load module library to be scanned.
pppppppp, the PARM in the EXEC statement has two possible values to specify the
processing and report required:

PARM = '$SUMMARY'
DFHMSCAN scans every module in the load library, and produces an overall
report. This is the default action if PARM is not coded. See "Summary
report. "

PARM = 'NAME1,NAME2, ... '
DFHMSCAN scans the named modules and produces a detailed report for
each one. See "Detailed report."

--------_. __ ._--------------- ----------

If you specify PARM::' $SlIMMARY', DFHMSCAN:

1. Scans each module in the load library for BALR 14,14 and BALR 14,15
instructions.

2. Analyzes the instructions preceding identified BALR instructions, to see if
they match sequences used by CICS macro requests or EXEC CICS
commands.

3. Prints, for each module in the scanned library, its name, size, language (if
determined), the number of CICS macro-level statements, the number of
CICS command-level statements, and the number of unrecognized BALR
instructions.

4. Prints the total number of modules in the library and the number of.
macro-level programs of each type (assembler, COBOL and PLlI).

© Copyriqht IBM Corp. 1977, 1990 481

Detailed report

Restrictions

If you specify PARM=INAMEl,NAME2, ••• I, DFHMSCAN scans the named modules and
for each module:

1. Prints a line for each BALR found, giving its offset from the start of the
module, some of the code that precedes it and what it appears to be.

2. For macro-level statements, attempts to identify the macro type.

• DFHMSCAN does not scan CICS modules and tables in the load library, or
any modules that are loaded above the 16 MB line. (DFHMSCAN is
linkedited with AMODE(24)).

• DFHMSCAN does not separately identify CHECK macros.

• DFHMSCAN cannot identify certain forms of the DFHBIF macro that do not
produce a BALR, or that produce code fndistinguishable from that generated
by EXEC CICS commands.

• For COBOL and PLII, because the code depends so much on the compiler,
DFHMSCAN cannot find all EXEC CICS commands. The mafn purpose of
DFHMSCAN is to find macro-level programs.

• DFHMSCAN can only find code patterns that are similar to those generated
by CICS macros. A module can contain such code without having a· CICS
macro in its source.

482 CICS/MVS 2.1.2 Customizatlon Guide

Chapter 5.12. CEMT programming interface

Compatibility note ----------------------...,

The format of CEMT commands can change between releases, and as a
result of maintenance (APARs). Upwards compatibility is not guaranteed for
programs using the interface described in this chapter. If the function you
require is available through EXEC CICS INQUIRE and SET commands, it is
recommended that you use those commands.

This chapter describes the programmable interface to the master terminal
transaction, CEMT. The functions provided by the master terminal transaction
can be invoked from application programs, by a command such as:

EXEC CICS LINK PROGRAM('DFHEMTA')
COMMAREA(CEMTPARM)

where DFHEMTA is the name of the entry point in the master terminal program,
and CEMTPARM is a user-defined name of a parameter list consisting of five
24-bit addresses (each contained in a fullword) as follows:

1. Address of a field containing the master terminal command in source form.

2. Address of a halfword binary field specifying the length of the command.
The maximum length of the input command is 1022 bytes.

3. Address of a one-byte indicator field defined as follows:

X '80' -- display output at terminal instead of returning it to caller.

4. Address of a field in which output is to be placed by DFHEMTA.

5. Address of a halfword binary field specifying the maximum length of output
that the application can handle.

If the indicator in address 3 is X '80', output is displayed at the terminal. In this
case, you can enter any number of CEMT commands at the terminal in the usual
way. Control is returned to the program when you press PF3.

If the indicator is X 'DO I (that is, output is not to be displayed at the terminal)
DFHEMTA returns control to your application program immediately after
processing the master terminal command specified in the first address. At the
same time, DFHEMTA returns the output as one or two concatenated, structured
fields. Each field has the format:

• Binary halfword containing inclusive length of field.

• Binary halfword containing:

For the translation stage - number of messages produced.

_.. For the execution stage - number of resources.

@ Copyright IBM Corp. 1977, 1990 483

• Binary halfword containing:

For the translation stage - highest message-severity, 0, 4, and 8 will
continue to execution, 12 will not continue to execution.

For the execution stage - code for last response that was not normal.
See EIERM001 and so on in DFHEIMDS for the meanings of each code.

• Variable-length data containing:

For the translation stage - diagnostic messages if there are any.

For the execution stage - one line of data for each resource. Each line
begins with a new line (NL) character, but otherwise consists of blanks
and uppercase alphanumerics.

The format of this data is not guaranteed from release to release, but is the
same as displayed by CEMT. Note that the response of 'Normal/Error' displayed
by CEMT is not included in this data. (Analysis of this data should not normally
be necessary if commands referring to more than one resource are avoided.)

The output from a single request comprises one field for the translation stage
and one or none for the execution stage. If the total output is longer than the
maximum length specified by the user, it will be truncated.

Note: An attempt to start CEMT from an application program by either an EXEC
CICS START command or a DFHIC TYPE = INITIATE macro will fail. This is
because CEMT's first action is to request input from its associated terminal,
whereas an automatically initiated transaction must first send data to the
terminal.

An attempt to start CEMT under CECI by an EXEC CICS START command will fail
for similar reasons. A PERFORM SHUTDOWN should not be issued using the
programmable interface because a terminal is required for successful
completion.

484 CICS/MVS 2.1.2 Customization Guide

Part 6. Files and data sets

This part of the book contains reference information on certain operations that
you may perform on files and data sets.

"Chapter 6.1. The explicit open/close function" on page 487 provides
information on the DFHOC macro instruction, which you can use to open and
close files and data sets during the execution of CICS.

"Chapter 6.2. Dynamic allocation sample program" on page 493 describes the
terminal operation procedures for using the sample program, and discusses the
keyword values and spellings.

"Chapter 6.3. Loading and accessing files that use phonetic codes for keys" on
page 499 describes the function that allows misspelled names to be used as
keys to access data sets.

Note: The INQUIRE/SET commands for files are included in "Chapter 5.9.
Examining and modifying resource attributes," starting on page 430.

© Copyright IBM Corp. 1977, 1990 485

Chapter 6.1. The explicit open/close function

Before looking at the rest of this chapter, read the following notes. CICS
provides other commands that perform the same function as DFHOC, as well as
an automatic open at first reference.

Notes:

1. The DFHOC macro instruction, described below, is intended for use by
system programmers for system control. It should not be used by
application programmers to open or close files or data sets.

2 .. The DFHOC macro is available only to macro-level programs. At command
level, you can use the EXEC CICS SET FILE command to open and close
those files managed by file control. The SET FILE command has all the
advantages of the command-level programming interface, and it allows you
to enable and disable your files. See "SET for files" on page 435 in
"Chapter 5.9. Examining and modifying resource attributes."

3. You can also use the the CEMT SET FILE command to perform the same
functions as the DFHOC OPENICLOSE macro. See the CICS/MVS
CICS-Supplied Transactions manual.

4. A closed enabled file (VSAM or BDAM) is opened automatically at first
reference, by both macro-and command-level programs. The automatic
open should be the normal way of opening files.

5. Before a file is opened by any of the above methods, it may need to be
dynamically allocated If it was not allocated at CICS startup. The dynamic
allocation happens automatically if the data set name and disposition
Information have been set in the file control table at the time of the open.
You can set this information as part of the FCT assembly, by CEMT SET FILE
or by EXEC CICS SET FILE.

This chapter contains reference information on the DFHOC TYPE = OPEN, CLOSE,
and SWITCH macro instructions of the dynamic open/close function.

The CICS dynamic open/close function allows you to open or close flies or data
sets dynamically during the execution of a CICS macro-level application
program. The types of file or data set that may be opened or closed using this
function are those that are managed by file control (files), dump management
(dump data sets), and transient data management (extrapartltion data sets).

The open/close macro Instruction (DFHOC) is used to request any of the
following services:

• Open or close files
• Open, close, or switch dump data sets
• Open or close transient data extrapartition data sets.

© Copyright IBM Corp. 1977, 1990 487

Opening data sets and files - DFHOC TYPE = OPEN
You can open one or more data sets or files by issuing the DFHOC TYPE = OPEN
macro instruction.

DFHOC TYPE=OPEN
,DATASET={TRANSDATAI DATABASE I DUMP}
[,CHECK=symbolic-address]
[,DSETID=(name[,(xx)], ..•)]
[,LISTADR={YESI (register) I

(symbolic-register)}]
[,SYMBADR=symbolic-address]

TYPE=OPEN
Specifies the open function. If the resource being opened is a file managed
by CICS file control, its initial state and final state is as shown in the table
below:

Initial state ---_ .. _------
closed, enabled
closed, disabled
closed, unenabled

Final state

open, enabled
open, disabled
open, enabled

DATASET = {TRANSDATAIDATABASEIDUMP}
Specifies the type of resource (file or data set) to be opened.

TRANSDATA
Indicates a transient data extrapartition data set.

DATABASE
Indicates a file managed by file control.

DUMP
Indicates a dump data set.

CHECK = symbolic-address
Specifies the symbolic address of a user-written routine to which control is
passed if any error is detected during the OPEN operation. The user-written
routine is given control whenever TCAOCTR in the TCA contains a nonzero
return code. It is your responsibility to examine the return code in the TCA
and, if necessary, examine the individual error codes in the list that was built
either by you or as a result of the expansion of the DFHOC macro instruction.
The error code appears in the first byte of the third word of each entry in the
parameter list.

Upon return from the dynamic open/close program, TCAOCTR may contain
one of the following hexadecimal codes:

00 - No error
FF - Invalid request

or, if TCAOCTR contains neither of these codes, it will contain one or more of
the following hexadecimal codes:

488 CICS/MVS 2.1.2 Customizatlon Guide

80 Open error

40 Close error

20 No space available for OPEN

10 Invalid control block name.

While performing the requested service on the list of files, the individual
error bytes in the list entry are filled either with a hexadecimal 00 or with the
appropriate error code each time an error is encountered. If more than one
error is encountered while processing the parameter list, TCAOCTR reflects
all the errors and perhaps a bit configuration different from those shown
above. For example, there are six files to be opened; if four are successfully
opened, one has an invalid control block identification, and the other one has
an open error, the TCAOCTR field contains hex 90.

When there is insufficient storage available to open any files, TCAOCTR
contains hex 20, and all the entries contain a fullword (four bytes) of zeros in
the third word.

DSETID = name
Specifies the file names or destination identifications to be used in
constructing a parameter list. If a suffix is specified, it must be separated
from the name or destination identification by a comma, and it must be
enclosed in parentheses. This operand is not applicable if DATASET = DUMP
is coded, or if LlSTADR or SYMBADR is used.

If DATASET = DATABASE is coded, as many as 255 files can be specified with
a single use of the DSETID operand. If DATASET = TRANSDAT A is coded, up
to 255 transient data destination identifications can be specified with a single
use of the DSETID operand.

If TYPE =OPEN is coded, and if the destinations are nonresident, "xx, It a
two-character suffix of the data set control block (DCB) must be provided
with each destination identification; if the destination is resident, the "xx"
suffix is ignored.

If "xx" consists of more than two characters, it is assumed to be the
symbolic address of a list of options and parameters to be moved into the
DCB. For the format of this list, see the discussion of the LlSTADR operand
in this section.

LlSTADR = {YESI reglsterl symbolic-register}
Specifies the address of the open/close parameter list that you built.

YES
Indicates that the address of the parameter list has been placed in the
TCA at TCAOCLA.

register
Indicates the register containing the address of the parameter list.

symbolic register
Indicates the symbolic register name containing the address of the
parameter list.

Chapter 6.1. The explicit open/close function 489

WORD 1

WORD 2

WORD 3

This operand is not applicable if you coded DATASET = DUMP. If the
LIST ADR and SYMBADR operands are omitted, execution of the DFHOC
macro instruction causes the list to be built for you starting with the first
byte of the TWA. In this case, it is your responsibility to make sure that
the required space is available in the TWA. The space can be calculated
using the formula:

space = (n x 12) + 4

where "n" is the decimal number of 12-byte entries in the open/close
parameter list, and "4" represents four bytes of hexadecimal Fs to signify
the end of the parameter list.

The symbolic storage definition (DFHOCLDS) of a parameter list entry is
provided by CICS. The format of the 12-byte entry in the open/close
parameter list is:

TRANSDATA

DATABASE

Four-byte destination identification.

Four bytes of the form /"b/"bxx, where /"b/" is two bytes of
blanks and xx is a two-byte suffix of the data set control block
created by the OCT assembly.

Error byte plus three-byte address of OCT entry
(aftercompletion).

WORDS 1 and 2

WORD 3

File name (left justified, padded with blanks).

Error byte plus three-byte address of FCT entry
(aftercompletion).

Byte 1

Byte 2

Byte 3

Byte 4

Note: The parameter list must be terminated by hex 'FF'.

You can optionally specify, in WORD 2 of a TRANSDATA entry, the
parameter list address pointing to a storage area. This storage area
contains information to be placed into a dummy DCB before opening it.
If an address is placed in this field, the first byte must be set to hex 'FF'.
The symbolic storage definition (DFHOCODS) of this parameter list is
provided by CICS. The format of the parameter fist is as follows:

Open options byte

BUFNO byte

RECFM byte

ERROPT byte

Bytes 5,6 lRECl.

Bytes 7,8 BLKSIZE

Bytes 9-16 DDNAME

490 CICS/MVS 2.1.2 Customization Guide

I
r
I

The first eight bytes must contain the correct hexadecimal codes for the
desired parameters, because the 16 bytes of the open/close parameter
list are moved into the DCB.

SYMBADR = symbolic-address
indicates the symbolic address of an open/close parameter list that you built.
If the SYMBADR and LlSTADR operands are omitted, execution of the
DFHOC macro instruction causes the parameter list to be built for you,
starting with the first byte of the TWA. For a discussion of the parameter list,
see the discussion of the LlSTADR operand in this section. This operand is
not applicable if DATASET = DUMP is specified.

Closing data sets and files - DFHOC TYPE = CLOSE
You can close one or more files or data sets by issuing the DFHOC
TYPE=CLOSE macro instruction. The DATASET, CHECK, LlSTADR, and
SYMBADR operands have the same significance as in DFHOC TYPE = OPEN. If a
recoverable data set is to be closed, the task should commit any prior changes to
the data set. Otherwise file control rejects the request wit/J TCAFCTR = X 120 I.

DFHOC TYPE=CLOSE
,DATASET={TRANSDATAIDATABASEIDUMP}
[,CHECK=symbolic-address]
[,DSETID=(name, ...)]
[,LISTADR={YESI(register) I

(symbolic-register)}]
[,SYMBADR=symbolic-address]

TYPE=CLOSE
specifies the close function. If the resource being closed is a file managed
by CICS file control, the macro closes the file and unenables it to prevent
access by new transactions. The initial state and final state of the file is as
shown in the table below:

Initial state

open, enabled
open, disabled

DSETID = name

Final state

closed, unenabled
closed, disabled

specifies the names of the files or data sets to be closed. No suffix is
required. As many as 255 names can be specified with a single use of this
operand.

Chapter 6.1. The explicit open/close function 491

Switching dump data sets - DFHOC TVPE=SWITCH
You can switch from the dump data set currently being used to the alternate
dump data set by issuing the DFHOC TYPE = SWITCH macro instruction. This
macro instruction causes the current dump data set, if open, to be closed, and
the alternate dump data set to be opened. A TYPE =CLOSE,DATASET= DUMP
macro instruction does not cause a switch, but only closes the current dump
data set.

] DFHOC TVPE=SWITCH
,DATASET=DUMP

TYPE = SWITCH
specifies the switch function.

DATASET = DUMP
specifies that the dump data set is to be switched.

492 CICS/MVS 2.1.2 Customization Guide

Chapter 6.2. Dynamic allocation sample program

The dynamic allocation (DYNALLOC) sample application program makes
available to the CICS terminal operator the majority of functions of DYNALLOC
(SVC 99). These functions are described fully in the OS/VS2 MVS System
Programming Library: Job Management manual. Functions that require
authorized program facility (APF) authorization are not supported.

The application consists of one command-level assembler language program,
DFH99. The source code is provided in CICS212.SAMPLIB.

Using DYNALLOC functions, the terminal operator can dynamically allocate or
deallocate any data set that CICS can open and close. With suitable operating
discipline and CEMT commands, these can include:

• Extrapartition transient data sets

• Journals

• Dump, trace, and statistics data sets

• DLII databases. If you have IMS/VS Version 2.2 or IMS/ESA Version 3.1 or
later, you can use its dynamic allocation and deallocation support for OLlI.

The dynamic allocation program can also allocate and deallocate data sets that
are to be associated with files managed by file control. But you will not normally
need this program for files. You can use the dynamic allocation and deallocation
facility which is part of CICS. If a file has not been allocated as part of CICS
startup, dynamic allocation occurs as a result of, and immediately before, the file
is opened, if sufficient information is in the file control table. The information
needed is the data set name and disposition of the file. This information is set
by the CEMT SET FILE master terminal transaction, described in the CICS/MVS
CICS-Supplied Transactions manual, or the EXEC CICS INQUIRE and SET
commands, which provide additional inquiry and control facilities, described in
"Chapter 5.9. Examining and modifying resource attributes," starting on page
430.

In order to use the dynamic attocation sample program effectively, the terminal
operator should:

• Have an understa~ding of MVS job control language, or TSO ALLOCATE and
FREE commands.

• Have read the relevant sections of the OS/VS2 MVS System Programming
Library: Job Management manual and have that manual avaitable for
reference while using the sample program, in particular, for looking up error
and reason codes returned by DYNALlOC.

The application uses a 3270 display, and adjusts its formatting to suit the screen
size. 8MS is no1 required. The program is designed so that the instattation may
easily modify the functions supported to suit instattation standards.

© Copyright IBM Corp. 1977, 1990 493

Table entries
Transaction and program definitions for the dynamic allocation sample are
provided in the sample utilities group DFH$UTIL on the CSD. These .definitions
are installed using the CEDA command:

CEDA INSTALL GROUP(DFH$UTIL)

Alternatively, if you define PCT and PPT entries with the resource definition
macros, you can use the table entries provided in the sample tables DFHPCT1$
and DFHPPT1$.

For transaction ADYN:

DFHPCT TYPE=ENTRY,TRANSID=ADYN,PROGRAM=DFH99

For program DFH99:

DFHPPT TYPE=ENTRY,PROGRAM=DFH99

Note: If you make any changes to the sample program, you must run the
DFH99SLD procedure before using the ADYN transaction.

-~------.-------.

Terminal operation
When transaction ADYN is entered at a terminal, the operator is presented with
a formatted display. The top part of the display is for entering commands, the
bottom part for receiving messages from the program.

The operator types a command in TSO-like syntax, for example,

verb {keyword[(value •.•)]} ...

and presses the ENTER key. The program checks the command for correct
syntax, builds a DYNALLOC parameter list, and if no serious errors are detected,
issues a DYNALLOC SVC. Messages are then displayed to diagnose syntax
errors, give the DYNALLOC return codes, and show any values returned by
DYNALLOC information retrieval features. The command remains/on the
display, and the editing features of the terminal may be used to correct it for
reentry, or to enter a different command. (If there are too many messages to fit
into the message area of the screen, messages that cannot be displayed are
queued, and the messages already on the screen are displayed with a brighter
intensity to indicate that there are more messages to come. The operator can
correct those errors that are being displayed, and reenter the command for
further checking, when the queued messages, if any, will be regenerated.

The program is terminated by entering a null command, which consists of
pressing the ERASE INPUT key, followed by the ENTER key. PA keys 1 and 2 are
ignored by the program. If you press the CLEAR key, you redisplay the last.
command entered. Pressing a program function key is equivalent to pressing
ENTER.

494 CICS/MVS 2.1.2 Customizatlon Guide

Help feature

Values

--

The program includes a limited "help" feature, driven by the program's keyword
table.

In response to "?", the verb keywords are displayed. In response to "verb?", all
the operand keywords of that verb are displayed. For "verb operand(?)" a short
description of the value expected for that operand is displayed. When a
command containing "?" is entered, no OYNALLOC SVC is issued. "?" is only
recognized in the positions specified above; the rest of the command is ignored.

Values are classified as follows:

Keyword value
Keyword values must be specified for some keywords. For example, the
STATUS keyword may have a keyword value of SHR, NEW, MOD or OLD
(which can be abbreviated).

String of key letters
The value can be a string of letters in any order. The program does not
check that the combination of letters provided is meaningful. For example,
for the RECFM keyword, the value can be a string of letters from ABO F G
MRS T U and V.

Returned values
No value should be provided by the terminal operator, because this keyword
requests a value to be returned by the DYNALLOC information retrieval
features. The further description refers to Ihe kind of value that will be
returned. This is usually in the form in which the operator would enter ii,
although in a few cases the value is specified as a hexadecimal string.

Not allowed
Certain keywords do not require a value, and you may not provide one.

Required
A value must be provided if the keyword coded is designated as requiring a
value.

Optional
Specification of a value is optional for some keywords.

Single
Only one value may be provided for some keywords.

Multiple
For some keywords, more than one value is permitted. (In some cases,
DYNALLOC requires more than one value, although the dynamic allocation
sample program does not enforce Ihis).

Chapter 6.2. Dynamic allocation sample program 495

Character string
Any characters are permitted in this type of value, although in most cases
there will be additional rules to follow, for example, for the DSNAME
keyword.

Numeric string
Only numeric characters are allowed for this type of value, for example, for
the EXPDT keyword.

Maximum and minimum lengths
For character and numeric values, the maximum and minimum lengths of the
value are checked by the program. For a fixed length string, these values
are the same. The value will still be passed to DYNALLOC as specified.

Convertible to n byte binary
A numeric value is required, of a magnitude representable in binary in the
specified number of bytes. Values that are too large are truncated to the
maximum possible for the width.

The dynamic allocation sample program does not support negative numbers.
It does not cross-check operand keywords; errors of this type will usually
cause DYNALLOC to return error codes of the form 03xx.

Abbreviation rules for keywords
Keywords may be abbreviated. A word in the command matches a keyword if:

1. The spelling is the same, or

2. The first letter is the same, and the remaining letters in the word appear in
the same order as they do in the keyword.

If an ambiguity occurs, the program diagnoses the ambiguity, and lists the
possible keywords.

System programming considerations
Keyword spellings are defined in the program's table, DFH99T, which is
link-edited with the program. Where possible, these are the same as the
corresponding job control or TSO keywords. Comments in the source code for
DFH99T explain how the system programmer may:

• Change the spelling of keywords
• Define alternative spelling for keywords
• Divide the functions of a verb into subsets
• Add new verbs with subset function
• Add new operands as they become available in the SVC.

Member DFH99BLD in CICS212.JCLLlB is the job stream used to build the
program. If part of the program has been modified, reassemble that part and
link-edit the program again.

496 CICS/MVS 2.1.2 Customization Guide

The macro instructions IEFZB4DO (DYNAllOC parameter list structure) and
IEFZB4D2 (symbolic key equates), provided by MVS, are used in the dynamic
allocation program and its keyword table. The meaning of each keyword in the
table is defined in terms of a symbolic name, defined by one of the macros
IEFZB4DO or IEFZB4D2. These symbolic names are also documented in OS/VS2
MVS System Programming Library: Job Management manual. The definitions of
command keywords given in that manual should be regarded in preference to
those in any other source. To obtain a list of command keywords and their
symbolic values, for use as a cross-reference to the MVS manual, assemble
DFH99T with option SYSPARM(lIST), and print the resulting object code. If the
table is changed, repeat the assembly to obtain a new list.

Chapter 6.2. Dynamic: allocation sample program 497

-
Chapter 6.3. Loading and accessing files that use phonetic codes for
keys

General-Use Programming Interface ------1

This chapter explains how the DFHPHN macro instruction is used, and should be
read in conjunction with the section on built-in functions in the CICS/VS
Application Programmer's Reference Manual (Macro Level).

The major use of phonetic codes is for keys to data sets. In this way, records
can be accessed even if a key is misspelled. The phonetic code conversion
subroutine (DFH PHN) is provided to assist you in loading and accessing such
data sets offline. DFHPHN is generated by specifying the built-in functions
program DFHSG PROGRAM = BFP.

This offline subroutine enables you to convert a 16-character name to a four-byte
phonetic code. See the built-in function macro instruction (DFHBIF
TYPE = PHONETIC) in the CICS/VS Application Programmer's Reference Manual
(Macro Level) for the rules of the conversion.

This function can be invoked by a program running under any of the operating
systems under which CICS can be run. The calling format is:

CALL
CALL
CALL

where:

lang

DFHPHN,(lang,name,phon)
DFHPHN (lang,name,phon)
'DFHPHN' USING lang name phon

assembler
PL/I
COBOL

is the symbolic address of a field that contains a one-byte language
indicator.

If an error occurs during processing of this request, X '50' is returned in this
location. If no error occurs, XIOOI is returned and the location must be reset
to indicate the programming language before the location can be reused.

X'FO' indicates assembler or COBOL
X' F11 indicates PUI

name
is the symbolic address of a field that contains the 16-character name.

phon
is the symbolic address of a field in which the four-byte phonetic code is
returned. If the first character of the" name" field is not alphabetic, the
"lang" field will be set to X I 50 I.

© Copyright IBM Corp. 1977, 1990 499

The steps in loading such a data set would typically be:

1. Create the keys.

a. Read a record from the source data set
b. Generate the code using a call to the DFHPHN subroutine
c. Write the record on a temporary sequential data set.

2. Sort the temporary data set on phonetic code.

3. Load the key-sequenced VSAM data set

a. Read the sorted temporary data set
b. Write to the keyed data set.

__ End of General-Use Programming Interface _______ ~

500 CICS/MVS 2.1.2 Customlzatlon Guide

Appendixes

© Copyright IBM Corp. 1977, 1990 501

Appendix A. Program generation summary

Diagnosis. Modification and Tuning Information

This appendix contains two lists of the modules that you can generate using
DFHSG TYPE=INITIAl and DFHSG PROGRAM = xxx macros. The lists are in
alphabetic order. The first list is ordered on the names of the modules
generated. and the second on the DFHSG program group names.

The superscript numbers refer to the footnotes at the end of the lists. There are
notes about some of the modules generated under the descriptions of individual
commands in "Chapter 1.2. DFHSG PROGRAM = xxx" on page 13.

-------------,----
System generation modules listed by module name

MODULE
NAME

OFHACEE
OFHACP
OFHAKP
OFHALP
OFHAMP
OFHASV
DFHBFp1

OFHBRCP
OFHCAA702

DFHCAP
OFHCCMF
DFHCICS
DFHCMON
DFHCMP'
OFHCPY
OFHCRC
OFHCRNP
DFHCRP
DFHCRQ
DFHCRR
DFHCRS
DFHCRSP
OFHCSA
DFHCSOUP
DFHCSVC3

OFHCUROI
DFHCUS1B
OFHCU17S
DFHCU17T
OFHCU170
DFHCwrO
OFHDBMS
DFHOBP
OFHOCP
DFHOEB70

® Copyright IBM Corp. 1977. 1990

MODULE DESCRIPTION

Security 10 program
Abnormal condition
Activity key point
Allocation program (terminal resources)
ROO allocation manager program
Page fix/free SVC routine
BUilt-in function
CBRC transaction
7770 channel appendage program
Utility command analyzer program
Periodic monitoring program
Service level indicator
Start/stop monitoring program
Monitoring program
VTAM 3270 print function support
IRC CICS STAE exit
Interregion connection manager
Relay program
ATI purge program
Interregion recovery
Remote scheduler
Interregion control initialization module
Common systems area
ROO offline utility program
Bootstrap type 2 SVC
Standard definitions for CSO initialize
CSO service utility program
Sample definitions for eso initialize
Resource definition list for CSO
Standard definitions for CSO upgrade
Console-write-to-operator
Temporary storage browse mapset
Dynamic transaction backout
Dump control
7770 device end program

DFHSG
PROGRAM =

CSS
CSO
KPP
KCP
CSO
INITIAL
BFP
EIP
CSO
CSO
eso
CSA
CSO
CSO
TCP
CSO
ISC
ISC
ISC
ISC
ISC
ISC
CSA
CSU
INITIAL
CSU
CSU
CSU
CSU
CSU
CSO
EIP
OBP
DCP
CSO

503

MODULE ·DFHSG
NAME MODULE DESCRIPTION PROGRAM =

DFHDES Data encryption standard Tep
OFHOlp1 Batch data interchange program DIP
OFHOLBP OUI backout program TBP
OFHOLG OLII global command processor eso
OFHOLP OUI interface eso
DFHOLIAI OUI application interface stub EIP
OFHDLQ "IMSNS" quasi-application program eso
OFHOLR IMSNS simulated routines eso
DFHOLRP OUI restart program eso
DFHOLS OUI status processor eso
OFHOLX IMSNS internal routines CSO
OFHOMP ROO elcs system definition file (CSO) manager CSO
OFHORP OUI shared database bootstrap program ISC
OFHORP(A-G) OLII shared database batch modules ISC
OFHOSB Data stream builder BMS
DFHDUP Dump utility esu
DFHEAI Assembler EXEC link-edit stub EXP
DFHEAIO Assembler EXEC link-edit stub EXP
DFHEAP1$ Assembler EXEC interface translator EXP
DFHEBF EXEC BFP module EIP
DFHEBRCT Table for CBRC transaction EIP
DFHEBU Ise (FMH building) EIP
DFHECI COBOL EXEC interface link-edit stub EXP
DFHECID Command interpreter EIP
DFHECIP CECI initialization EIP
DFHECP1$ COBOL EXEC interface translator EXP
DFHECSP CECS initialization EIP
DFHEDAD CEDA module EIP
DFHEDAP CEDA initialization EIP
DFHEDC EXEC DCP module EIP
DFHEDFBR Temporary storage browse program EIP
DFHEDFD EDF display program EIP
DFHEDFM EDF map set EIP
DFHEDFP EDF control program EIP
DFHEDFR EDF response table EIP
DFHEDFX EDF task switch program EIP
DFHEDI EXEC DIP module EIP
DFHEDP EXEC DUI processor CSO
DFHEEI EXEC EIP module EIP
DFHEEX ISC (FMH extraction) EIP
DFHEFC EXEC FCP module EIP
DFHEGL EXEC LUS.2 EIP
DFHEIC EXEC ICP module EIP
DFHEIDLI EXEC DUI translator module EXP
DFHEIGDS EXEC GDS table module EXP
DFHEIGDX EXEC GDS transl ator module EXP
DFHEIP EXEC interface program EIP
DFHEITAB Translator table EIP
DFHEITCU RDO offline utility language table CSU
DFHEITMT CEMT language table EIP
DFHEITOT CEaT language table EIP
DFHEITSP CEOA language table EIP
DFHEITST CESTlanguagetaWe EIP
DFHEJC EXEC JCP module EIP
DFHEKC EXEC KCP module EIP

504 CtCS/MVS 2.1.2 Customlzatlon Guide

MODULE DFHSG
NAME MODULE DESCRIPTION PROGRAM =

DFHELR EXEC local/remote module ISC
DFHEMA Master terminal program EIP
DFHEMB Master terminal program EIP
DFHEMC Master terminal program EIP
DFHEMD Master terminal program EIP
DFHEME Master terminal program EIP
DFHEMF Master terminal program EIP
DFHEMG Master terminal program EIP
DFHEMH Master terminal program EIP
DFHEMI Master terminal program EIP
DFHEMS EXEC BMS module EIP
DFHEMTA Master terminal control module EIP
DFHEMTD Enhanced master terminal module EIP
DFHEMTP CEMT initialization EIP
DFHEOTP CEOT initialization EIP
DFHEPC EXEC PCP module EIP
DFHEPI PLII EXEC interface link-edit stub EXP
DFHEPP1$ PLII EXEC interface translator EXP
DFHERM Resource manager interface module EIP
DFHESC EXEC SCP module EIP
DFHESP EXEC SPP module EIP
DFHESTP CEST initialization EIP
DFHETC EXEC TCP/ZCP module EIP
DFHETD EXEC TDP module EIP
DFHETL EXEC LUS.2 EIP
DFHETR EXEC TRP module EIP
DFHETS EXEC TSP module EIP
DFHEXI VTAM 3270 print function support TCP
DFHFCBP File control backout program TBP
DFHFCRP File control recovery program CSO
DFHFCU File control utility CSO
DFHFDP Formatted dump program CSO
DFHFEP FE terminal test program CSS
DFHFTAP Format tape program KPP
DFHGAP Graphics attention program GAP
DFHGMM VTAM Good Morning message program TCP
DFHHPSVC Service request block type S supervisor INITIAL
DFHICP Interval control program ICP
DFHIIP Non-3270 input mapping BMS
DFHIRP Interregion control program ISC
DFHISP Intercommunication program ISC
DFHJCBSP Journal tasks bootstrap program JCP
DFHJCC Journal control close JCP
DFHJCEOV Journal control EOV JCP
DFHJCI Journal control input JCP
DFHJCIOE Journal control I/O error program JCP
DFHJCJFP Journal control format program JCP
DFHJCKOJ JOllrnal control kickoff program JCP
DFHJCO Journal control open JCP
DFHJCOCP JOllrnal control open/close program JCP
DFHJCP' Journal control JCP
DFHJCSDJ Journal control shutdown JCP
DFHKCP Task control KCP
DFHKCRP Task control restart program CSO
DFHKCSP SRB service program KCP

Appendix A. Program generation summary 505

MODULE
NAME

DFHLFO
DFHLUP
DFHMCP
DFHMCX
DFHMGP
DFHMGT
DFHMIR
DFHML1
DFHMSP
DFHMTPA
DFHMTPB
DFHMTPC
DFHMTPD
DFHMTPE
DFHMTPF
DFHMTPG
DFHMXP
DFHM32
DFHPBP
DFHPCP
DFHPCRP
DFHPEP
DFHPHN .
DFHPHP
DFHPRK
DFHPRPR
DFHPUP
DFHPXR
DFHP3270
DFHRCEX
DFHRCRP
DFHRKB
DFHRLR
DFHRMSY
DFHRTE
DFHRTY
DFHRUP
DFHRWP70
DFHSCP
DFHSCR
DFHSFP
DFHSIA1
DFHSIB1
DFHSIC1
DFHSIDI
DFHSIE1
DFHSIF1
DFHSIG1
DFHSIH1
DFHSII1
DFHSIJ1
DFHSIP
DFHSNP
DFHSPP
DFHSPZ

506 CICS/MVS 2.1.2 Customizatlon Guide

MODULE DESCRIPTION

LIFO storage program
LU services manager program
Mapping control
Fast path module
Error message program
Error message table
ISC mirror program
LU1 printer mapping
Message switching program
Master terminal program module A
Master terminal program module B
Master terminal program module C
Master terminal program module 0
Master terminal program module E
Master terminal program module F
Master terminal program module G
Local queuing shipper program
BMS 3270 mapping
BMS page build program
Program control
Program control restart program
Program error dummy program
Phonetic code conversion program
Partition handling program
VTAM 3270 print function support
H LL preprocessor
ROO parameter utility program
Subtask post exit routine
3270 print function support
Recovery control enable exits
Recovery control restart program
VTAM 3270 print function support
BMS route list resolution
Resource manager
Transaction routing program
CICS-supplied transaction restart module
Recovery utility program
7770 read/write
Storage control
Storage control recovery
Sign-off program
System initialization - module A 1
System initialization - module B 1
System initialization - module C1
Sysh;,m initialization - module 01
System initialization - module E1
System initialization - module F1
System initialization - module G1
System initialization - module H1
System initialization - module 11
System initialization - module J1
System initialization
Sign-on program
Sync point program
ISC syncpoint protocol program

DFHSC
PROGRAM =

CSO
ISC
BMS
BMS
CSO
CSO
ISC
BMS
eso
MTP
MTP
MTP
MTP
MTP
MTP
MTP
ISC
BMS
BMS
PCP
eso
cso
BFP
BMS
TCP
HLL
cso
cso
TCP
CSO
CSO
TCP
BMS
KPP
ISC
DBP
KPP
cso
SCP
SCP
ess
cso
cso
CSO
CSO
CSO
cso
CSO
CSO
cso
CSO
cso
CSS
KCP
KCP

MODULE
NAME

DFHSRP
DFHSTKC
DFHSTLK
DFHSTP
DFHSTPD
DFHSTSP
DFHSTTD
DFHSTTR
DFHSTUP
DFHTACP
DFHTAJP
DFHTCP
DFHTCBP
DFHTDP
DFHTDRP
DFHTEOF
DFHTEP
DFHTEPT
DFHTMP
DFHTPP
DFHTPQ
DFHTPR
DFHTPS
DFHTRAP
DFHTRP
DFHTSBP
DFHTSP
DFHTSRP
DFHTUP
DFHUEH
DFHUEM
DFHUSBP
DFHVAP
DFHVCP'
DFHVSP
DFHWKP
DFHXFP
DFHXFQ
DFHXFX

DFHXMP
DFHXSP
DFHXSS
DFHXTP
DFHZCA
DFHZCB
DFHZCC
DFHZCP
DFHZCW
DFHZCX
DFHZCY
DFHZCZ
DFHZHPRX
DFHZNAC
DFHZNEP

MODULE DESCRIPTION

System recovery
Supervisor statistics
ISC link statistics program
System termination
Program and dump statistics
Auto. statistics summarization control
Data management statistics
File and terminal statistics
Auto. statistics summarization utility
Terminal abnormal condition
Time of day adjustment
Terminal control program
Terminal control backout program
Transient data program
Transient data recovery program
Tape end of file program
Sample terminal error program
Sample terminal error table
Table management program
BMS terminal page program
BMS terminal page clean-up
BMS terminal page retrieval
BMS delayed message delivery
FE global trap exit program
Trace program
Temporary storage backout program
Temporary storage program
Temporary storage recovery program
Trace utility program
User exit handler
User exit manager
User backout program
VSAM subtask monitor program
Volume control manager
VSAM subtask program
Warm keypoint program
ISC transformer program
DLII shared database transformer program
Fast-path transformer program for MRO
function shipping
Interregion switch routine
Security program
SVC link module to RACF
Transaction routing transformer
VTAM terminal control program module
VTAM terminal control program module
VTAM terminal control program module
Comm()n terminal control program module
VTAM terminal control program module
Comm()n terminal control program module
VTAM terminal control program module
VTAM terminal control program module
RPL executor in SRB Mode
Node abnormal condition program
Node error program interface program

DFHSG
PROGRAM =

SRP
CSO
CSO
CSO
CSO
CSO
CSO
CSO
CSU
CSO
CSO
TCP
TBP
TOP
KPP
KPP
CSO
CSO
CSO
BMS
BMS
BMS
BMS
CSS
TRP
TBP
TSP
KPP
CSU
CSO
CSO
TBP
CSO
JCP
CSO
CSO
ISC
ISC
ISC

ISC
CSS
CSS
ISC
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

Appendix A. Program generation summary . 507

MODULE
NAME

DFHZRLG
DFHZRSP

508 CICS/MVS 2.1.2 Customization Guide

MODULE DESCRIPTION

Response logging program
Resend program

DFHSG
PROGRAM =

TCP
TCP

System generation modules listed by DFHSG PROGRAM =
DFHSG
PROGRAM =

INITIAL

BFP

BMS

eSA

eso

MODULE
NAME

DFHASV
DFHCSVC3
DFHHPSVC
DFHBFP'
DFHPHN
DFHDSB
DFHIIP
DFHMCP
DFHMCX
DFHML1
DFHM32
DFHPBP
DFHPHP
DFHRLR
DFHTPP
DFHTPQ
DFHTPR
DFHTPS
DFHCICS
DFHCSA
DFHACP
DFHAMP
DFHCAA702

DFHCAP
DFHCCMF
DFHCMON
DFHCMP'
DFHCRC
DFHCWTO
DFHOEB70
DFHDLG
OFHDU'
DFHDLQ
DFHDLR
OFHOLRP
DFHOLS
DFHDLX
DFHOMP

OFHEOP
DFHFCRP
DFHFCU
DFHFDP
DFHKCRP
DFHLFO
DFHMGP
DFHMGT
DFHMSP
DFHPCRP
DFHPEP
DFHPUP
DFHPXR
DFHRCEX

MODULE DESCRIPTION

Page fix/free SVC routine
Bootstrap type 2 SVC
Service request block type 6 supervisor
Built-in function
Phonetic code conversion program
Data stream builder
Non-3270 input mapping
Mapping control
Fast path module
LU1 printer mapping
BMS 3270 mapping
B MS page build program
Partition handling program
BMS route list resolution
BMS terminal page program
BMS terminal page clean-up
BMS terminal page retrieval
BMS Delayed Message delivery
Service level indicator
Common systems area
Abnormal condition
ROO allocation manager program
7770 channel appendage program
Utility command analyzer program
Periodic monitoring program
Start/stop monitoring program
Monitoring program
IRC &cics. STAE exit
Console-write-to-operator
7770 device end program
DUI global command processor
DLII Interface
"IMS/VS" quasi-application program
IMSNS simulated routines
OUI restart program
OUI status processor
IMS/VS internal routines
ROO CICS system definition file (CSO)
manager
EXEC OUI processor
File control recovery program
File control utility
Formatted dump program
Task control restart program
LIFO storage program
Error message program
Error message table
Message switching program
Program control restart program
Program error dummy program
RDO parameter utility program
Subtask post exit routine
Recovery control enable exits

Appendix A. Program generation summary 509

DFHSG MODULE MODULE DESCRIPTION
PROGRAM = NAME

OFHRCRP Recovery control restart program
OFHRWP70 7770 read/write
OFHSIA1 System initialization - module A 1
OFHSIB1 System initialization -- module B1
OFHSIC1 System initialization - module C1
OFHSI01 System initialization - module 01
DFHSIE1 System initialization -- module E1
DFHSIF1 System initialization - module F1
OFHSIG1 System initialization - module G1
OFHSIH1 System initialization - module H1
DFHSII1 System initialization - module 11
DFHSIJ1 System initialization - module J1
DFHSIP System initialization
DFHSTKC Supervisor statistics
DFHSTLK ISC link statistics program
DFHSTP System termination
OFHSTPO Program and dump statistics
DFHSTSP Auto. statistics summarization control
DFHSTTD Data management statistics
DFHSTTR File and terminal statistics
DFHTACP Terminal abnormal condition
DFHTAJP Time of day adjustment
DFHTEP Sample terminal error program
DFHTEPT Sample terminal error table
DFHTMP Table management program
DFHUEH User exit handler
DFHUEM User exit manager
DFHVAP VSAM subtask monitor program
DFHVSP VSAM subtask program
DFHWKP Warm keypoint program

CSS DFHACEE Security 10 program
DFHFEP FE terminal test program
DFHSFP Sign-off program
DFHSNP Sign-on program
DFHTRAP FE global trap exit program
DFHXSP Security program
DFHXSS SVC link module to RACF

CSU DFHCSDUP ROO offline utility program
OFHCURDI Standard definitions for CSO initialize
DFHCUS1B CSD service utility program
DFHCU17S Sample definitions for CSO initialize
DFHCU17T Resoun:e definition list for CSD
DFHCU170 Standard definitions for CSO upgrade
DFHOUP Dump utility
OFHEITCU ROO offline utility language table
DFHSTUP Auto. statistics summarization utility
DFHTUP Trace utility program

DBP DFHDBP Dynamic transaction backout
DFHRTY CICS-supplied transaction restart module

DCP DFHDCP Dump control
DIP OFHOIP' Batch data interchange program
EIP OFHBRCP CBRC transaction

OFHOBMS Temporary storage browse mapset
OFHOLIAI DUI application interface stub
DFHEBF EXEC BFP module

510 CICS/MVS 2.1.2 Customlzatlon Guide

DFHSG MODULE MODULE DESCRIPTION
PROGRAM = NAME

DFHEBRCT Table for CBRC transaction
DFHEBU ISC (FMH building)
DFHECID Command interpreter
DFHECIP CECI initialization
DFHECSP CECS initialization
DFHEDAD CEDA module
DFHEDAP CEDA initialization
DFHEDC EXEC DCP module
DFHEDFBR Temporary storage browse program
DFHEDFD EDF display program
DFHEDFM EDF map set
DFHEDFP EDF control program
DFHEDFR EDF response table
DFHEDFX EDF task switch program
DFHEDI EXEC DIP module
DFHEEI EXEC EIP module
DFHEEX ISC (FMH extraction)
DFHEFC EXEC FCP module
DFHEGL EXEC LUS.2
DFHEIC EXEC ICP module
DFHEIP EXEC interface program
DFHEITAB Translator table
DFHEITMT CEMT language table
DFHEITOT CEOT language table
DFHEITSP CEDAlanguage~~e

DFHEITST CEST language table
DFHEJC EXEC JCP module
DFHEKC EXEC KCP module
DFHEMA Master terminal program
DFHEMB Master terminal program
DFHEMC Master terminal program
DFHEMD Master terminal program
DFHEME Master terminal program
DFHEMF Master terminal program
DFHEMG Master terminal program
DFHEMH Master terminal program
DFHEMI Master terminal program
DFHEMS EXEC BMS module
DFHEMTA Master terminal control module
DFHEMTD Enhanced master terminal module
DFHEMTP CEMT initialization
DFHEOTP CEOT initialization
DFHEPC EXEC PCP module
DFHERM Resource manager interface module
DFHESC EXEC SCP module
DFHESP EXEC SPP module
DFHESTP CEST initialization
DFHETC EXEC TCP/ZCP module
DFHETD EXEC TDP module
DFHETL EXEC LUS.2
DFHETR EXEC TRP module
DFHETS EXEC TSP module

EXP DFHEAI Assembler EXEC link-edit stub
DFHEAIO Assembler EXEC link-edit stub
DFHEAP1$ Assembler EXEC Interface Translator

Appendix A. Program generation summary 511

DFHSG MODULE MODULE DESCRIPTION
PROGRAM = NAME

OFHECI COBOL EXEC interface link-edit stub
OFHECP1$ COBOL EXEC interface translator
OFHEIOLt EXEC OUI translator module
OFHEIGOS EXEC GOS table module
OFHEIGDX EXEC GOS translator module
OFHEPI PUI EXEC interface link-edit stub
OFHEPP1$ PUI EXEC interface translator

GAP DFHGAP Graphics attention program
HLL OFHPRPR H LL preprocessor
ICP OFHICP Interval control program
ISC OFHCRNP Interregion connection manager

OFHCRP Relay program
DFHCRQ ATI purge program
OFHCRR Interregion recovery
DFHCRS Remote scheduler
OFHCRSP Interregion control initialization module
OFHORP OUI shared database bootstrap program
OFHORP(A-G} OUI shared database batch modules
OFHELR EXEC local/remote module
OFHIRP Interregion control program
DFHISP Intercommunication program
OFHLUP LU services manager program
OFHMIR ISC mirror program
OFHMXP Local queuing shipper program
OFHRTE Transaction routing program
DFHXFP ISC transformer program
OFHXFQ OUI shared database transformer program
DFHXFX Fast-path transformer program for MRO

function shipping
DFHXMP Interregion switch routine
DFHXTP Transaction routing transformer

JCP DFHJCBSP Journal tasks bootstrap program
DFHJCC Journal control close
DFHJCEOV Journal control EOV
DFHJCI Journal control input
DFHJCIOE Journal control 1/0 error program
DFHJCJFP Journal control format program
OFHJCKOJ Journal control kickoff program
OFHJCO Journal control open
OFHJCOCP Journal control openlclose program
DFHJCp1 Journal control
DFHJCSOJ Journal control shutdown
OFHVCp1 Volume control manager

KCP DFHALP Allocation program (terminal resources)
DFHKCP Task control
DFHKCSP SRB service program
DFHSPP Sync point program
DFHSPZ ISC syncpoint protocol program

KPP DFHAKP Activity key point
DFHFTAP Format tape program
DFHRMSY Resouree manager
DFHRUP Recovery utility program
DFHTDRP Transient data recovery program
OFHTEOF Tape End of file program
DFHTSRP Temporary storage recovery program

512 CICS/MVS 2.1.2 Customlzatlon Guide

DFHSG
PROGRAM =

MODULE
NAME

MODULE DESCRIPTION

MTP DFHMTPA
DFHMTPB
DFHMTPC
DFHMTPD
DFHMTPE
DFHMTPF
DFHMTPG
DFHPCP
DFHSCP
DFHSCR
DFHSRP
DFHDLBP
DFHFCBP
DFHTCBP
DFHTSBP
DFHUSBP
DFHCPY
DFHDES
DFHEXI
DFHGMM
DFHPRK
DFHP3270
DFHRKB
DFHTCP
DFHZCA
DFHZCB
DFHZCC
DFHZCP
DFHZCW
DFHZCX
DFHZCY
DFHZCZ
DFHZHPRX
DFHZNAC
DFHZNEP
DFHZRLG
DFHZRSP
DFHTDP
DFHTRP
DFHTSP

Master terminal program module A
Master terminal program module B
Master terminal program module C
Master terminal program module D
Master terminal program module E
Master terminal program module F
Master terminal program module G
Program control PCP

SCP

SRP
TBP

TCP

TDP
TRP
TSP

Storage control
Storage control recovery
System recovery
DUI backout program
File control backout program
Terminal control backout program
Temporary storage backout program
User backout program
VTAM 3270 print function support
Data encryption standard
VTAM 3270 print function support
VTAM Good Morning message program
VTAM 3270 print function support
3270 print function support
VTAM 3270 print function support
Terminal control program
VTAM terminal control program module
VTAM terminal control program module
VTAM terminal control program module
Common terminal control program module
VTAM terminal control program module
Common terminal control program module
VTAM terminal control program module
VTAM terminal control program module
RPL executor in SRB Mode
Node abnormal condition program
Node error program interface program
Response logging program
Resend program
Transient data program
Trace program
Temporary storage program

1 The corresponding dummy program is supplied without the need for
SYSGEN.

2 Link edited as IGG019xx, where xx is the appendage suffix specified in the
CAA operand of the DFHSG PROGRAM == CSO macro.

3 Link edited into nucleus as IGCxxx, where xxx is the value given to
CICSSVC.

Appendix A. Program generation summary 513

Appendix B. Sample TeAM SNA message control programs

This appendix contains two sample TCAM SNA message control programs
(MCPs). The MCPs given have the following functions:

Sample 1 Control of the SNA sessions independently of the CICS
application programs

Sample 2 Controls the SNA sessions according to the requirements of the
CICS application programs.

Further information on TCAM devices in a TCAM SNA environment and on MCPs
for TCAM SNA devices is given in "Chapter 4.2. The CICS/TCAM interface" on
page 205 under "CICS with TCAM SNA."

The statements listed are those of the sample programs supplied with the
current release of CICS. Sample programs shipped with subsequent PTFs may
differ from these listings.

SAMPLE 1: DFHSPTM1 - SAMPLE TCAM MCP FOR TCAM DIRECT

*************************'k***
*
*
*
* NAME - CICS SAMPLE TCAr~ MESSAGE CONTROL PROGRAt~ AND MESSAGE HANDLERS
* (INDEPENDENT CONTROL)
*
* PURPOSE - THE PURPOSE OF THIS SAMPLE IS TO DEMONSTRATE TO THE CICS
* USER WHAT IS REQUIRED FOR THE CREATION OF A SIMPLE CICS SNA
* NETWORK USING TCAM.
THE SAMPLE DEMONSTRATES HALF-DUPLEX
* FLIP/FLOP MODE WITH BRACKETS.
*
*
* FUNCTIONS - THE FUNCTIONS ARE AS FOLLOWS:
*
*
*
*
*
*
*

INTRODUCTION - DEFINE THE OVERALL SYSTEM PARAMETERS, INITIALIZE
THE SYSTEM, AND START MESSAGE TRAFFIC.

DEFINITION - DESCRIBE THE SPECIFICS OF THE NETWORK, THE MESSAGE
QUEUES, AND THE NECESSARY CONTROL BLOCKS.

* DEVICE ~·1ESSAGE HANDLER - INSERT THE CO~1MUNICATIONS CONTROL BYTES
* AND ROUTE THE MESSAGE FOR INPUT, REMOVE THE CCB AND ROUTE
* THE MESSAGE TO ITS PROPER DESTINATION ON OUTPUT.
THE DMH IS
*
1:

*
*
*
*
*

@ Copyright IBM Corp. 1977, 1990

NAMED 'CICS' SO THAT AN LU CAN LOGON TO 'CICS'.
THIS MH SUPPORTS LU TYPEe, TYPEl, AND TYPE2. THE SUPPORT IS
DESIGNED TO ALLOW THE DEVICE ~rn TO CONTROL THE LU.
LU TYPE 1 SUPPORT:
THE LU MUST BE BOUND TO ALLOW IT TO SEND END BRACKET. THE HOST
WILL BEGIN AND END A BRACKET ON EVERY CHAIN EXCEPT WHEN A
DATASET IS BEING SENT.

IN THIS CASE THE BRACKET WILL NOT BE
* ENDED UNTIL THE END OF DATASET. OTHER METHODS OF OPERATION
* ARE POSSIBLE BY USING DIFFERENT MH OPTIONS.
THE LU TYPE 1
* BATCH SUPPORT ASSUMES A SINGLE TRANSACTION WILL HANDLE THE
* BATCH INPUT.
THE MH WILL EDIT THE TRANSACTION NAME INTO
* THE FIRST CHAIN OF THE DATASET.
THEREFORE IT IS NOT NECESSARY
* TO PLACE A TRANSACTION NAME INTO THE DATASET.
* LU TYPE 2 SUPPORT:
* LU TYPE 2 IS THE 3270 DATA STREAM EMULATOR.
* THE SUPPORT IS DESIGNED TO ALLOW THE TRANSACTION TO OPERATE
* INDEPENDENTLY FROM THE OUTBOARD LU.
THEREFORE THE KEYBOARD
* IS UNLOCKED AFTER EVERY INPUT.
SINCE AN LU TYPE 2 CANNOT BE
* BOUND TO SEND END BRACKET A MSGGEN IS USED TO UNLOCK IT.
* ALSO THE HOST WILL BEGIN AND END A BRACKET ON EVERY CHAIN.
* THIS WILL CAUSE THE KEYBOARD TO UNLOCK AFTER EVERY OUTPUT
* MESSAGE..
IF A DIFFERENT METHOD OF OPERATION IS DESIRED
* LOGIC COULD BE ADDED TO ONLY END THE BRACKET WHEN THE KEYBOARD
* UNLOCK SEQUENCE IS SENT.
*
*
*
*
*
*

APPLICATION MESSAGE HANDLER - ROUTE MESSAGES FROM THE INPUT QUEUE
TO CICS AND FROM CICS TO THE APPROPRIATE OUTPUT QUEUE.

* THE SSCP MESSAGE HANDLER - UTILIZES THE IBM-SUPPLIED MH TO
* PERFORM THE NECESSARY ROUTING AND ANALYSIS FUNCTIONS.
COMPLEX
* USER SYSTEMS MAY REQUIRE THIS TO BE MODIFIED BY THE USER.
*
*
* NOTES-
*
* CONVENTIONS -
*
* REGISTER 2 IS USED AS THE DCB REGISTER
*
* REGISTER 3 USED AS INTERNAL LINKAGE REGISTER
*
* REGISTER 4 USED AS INTERNAL WORK REGISTER
*
* REGISTER 5 USED AS INTERNAL WORK REGISTER
*
* REGISTER 6 USED AS THE SCAN POINTER REGISTER
*
* DEFAULTS -
*
* MACRO DEFAULTS ARE USED WHEREVER REASONABLE
*

516 CICS/MVS 2.1.2 Customization Guide

*
* EXITS -
*
* NORMAL -
*
* RETURN TO THE MVS SUPERVISOR WHEN SHUTDOWN IS COMPLETE
*
* ERROR -
*
* X'FFF' - ABEND ON INTRO FAILURE
*
* X'FFE' - ABEND ON MESSAGE QUEUE DCB OPEN FAILURE
*
* X'FFD' - ABEND ON 3705 DCB OPEN FAILURE
*
*
*
*

CICSTCAM CSECT
RDCB EQU 2 DCB REGISTER
LINKREG EQU 3 INTERNAL LINKAGE REGISTER
RWORK EQU 4 INTERNAL WORK REGISTER
RSCANSVE EQU 5 SAVED SCAN POINTER REGISTER
RSCAN EQU 6 SCAN POINTER REGISTER
RRETURN EQU 15
OPEN EQU X'10' DCB OPEN FLAG
DCBOFLGS EQU X'30' OPEN FLAGS OFFSETF
WORD EQU 4 OFFSET

SPACE 2
* CCB BYTE 0

SPACE
CCBFMH EQU X '01' FORMATTED HEADER
CCBDISC EQU X'08' DISCONNECT

SPACE 2
* CCB BYTE 1

SPACE
CCBEB EQU X '01' WRITE LAST SPECIFIED
CCBCD EQU X'40' WRITE WITH READ SPECIFIED

SPACE 2
n~HLEN EQU 0 BYTE 0 OF FMH
n~HTYPE EQU 1 BYTE 1 OF FMH
FMHSEL EQU 2 BYTE 2 OF FMH
FMHSTCK EQU 3 BYTE 3 OF F~1H

FMHPROP EQU 4 BYTE 4 OF FMH
FMHTYPI EQU X '01' TYPE 1 H1H
FMHBDS EQU X'40' BEGIN DATASET FMH
Fr~HEDS EQU X'20' END DATASET FMH
PRFSTAT1 EQU X'14' STA1US BYTE OFFSET
PRFNLSTN EQU X'02' NOT LAST INDICATOR
ZERO EQU 0
ONE EQU 1
HJO EQU 2
FOUR EQU 4
****************k*k*********************************** ***************
* SNACTL OPTION FIELD USAGE

Appendix B. Sample TeAM SNA messnge control programs 517

SNARCD EQU X'01' REMEMBER TO SET CD
SNASCD EQU X'02' CD HAS BEEN SENT TCAM CANNOT
* SEND ANY DATA
SNASDS EQU X'04' SEND DATASET STATE
SNARDS EQU X'0S' RECEIVE DATASET STATE
SNALUT2 EQU X'S0' TYPE 2 LU THE 3270 DSE

EJECT
INTRO PROGID=CICSTCAM, X

UNITSZ=160, BUFFER UNIT SIZE X
LNUNITS=100, SEE TCAM SYSTEM PGMER'S GUIDE X
BRACKET=YES, INCLUDE BRACKET STATE MANAGER X
BTRACE=500, PIU TRACE ENTRIES X
CIB=5, MAX 5 ACTIVE OPERATOR COMMANDS X
COMWRTE=YES, INCLUDE SERVICE AID WRITER X
CONTROL=OPCTL, ALLOW COMMANDS FROM OTHERS X
CPB=20, ACTIVE DISK CHANNEL PROGRAMS X
DISK=YES, DISK MESSAGE QUEUES X
DLQ=0, NO DEAD LETTER QUEUE X
DTRACE=500, DISPATCHER TRACE ENTRIES X
FEATURE=(NODIAL,N02741",ONLY3705,ONLYSNA) , X
MSUNITS=100, BUFFER UNITS FOR CORE QUEUE X
MAXSUBA=3, OBTAIN FROM NCP GENERATION X
PLCBNO=20, PSEUDO LCBS NEEDED FOR I/O X
PRIMARY=SYSCON, OPERATOR CONTROL CONSOLE X
SIBCNT=25, MAXIMUM SNA SESSIONS PERMITTED X
SUBAREA=1 OBTAIN FROM NCP GENERATION

LTR RRETURN,RRETURN WAS INTRO SUCCESSFUL
BZ OKINTRO I F SO, CARRY ON
STH RRETURN,DEBUG MAKE RETURN CODE VISIBLE
ABEND 4095,DUMP OTHERWISE, PUNT WITH X'FFF'

OKINTRO OPEN (MSGQUEUE,(INOUT)) OPEN MESSAGE QUEUES DATA SET
LA RDCB,MSGQUEUE POINT TO DCB
TM DCBOFLGS(RDCB) ,OPEN WAS OPEN SUCCESSFUL
BO OKOPENQS I F SO, CARRY ON
ABEND 4094,DUMP OTHERWISE, PUNT WITH X'FFE'

OKOPENQS OPEN (NCPIDCB,(INOUT)) OPEN 3705 FOR COMMUNICATIONS
LA RDCB,NCP1DCB POINT TO 3705 DCB
TM DCBOFLGS(RDCB),OPEN WAS OPEN SUCCESSFUL
BO OKOPEN05 I F SO, CARRY ON
ABEND 4093,DUMP OTHERWISE, PUNT WITH X'FFD'

OKOPEN05 READY LET TCM4 START TRAFFIC
CLOSE (NCPIDCB"MSGQUEUE,)
RETURN (14,12) RELINQUISH CONTROL
EJECT

*
* DEFINE THE CONFIGURATION OF THE NETWORK - PHYSICAL AND LOGICAL
*
******************~**

SPACE 2
OS 00
DC C' RETURN CODE = ,

DEBUG :DS H
DC C'

MSGQUEUE DCB DSORG=TQ,

518 CICS/MVS 2.1.2 Customization Guide

TRIGGER FOR DUMP SCANNING
TO CONTAIN INTRO RETURN CODE
SPACING AROUND MESSAGE
MESSAGE QUEUE DATA SET X

DDNAME=MSGQUEUE,
MACRF=(G,P),
OPTCD=R

NCPIDCB DCB DSORG=TR,
DDNAME=DDNCPI,
MACRF=(G,P)

CICSPCB PCB MH=AMH,BUFSIZE=2000
ITABLE LAST=SSCP

SNACTL OPTION XLI

REUSABLE DISK QUEUES

x
x

3705 COMMUNICATIONS CONTROLLER X
X

APPLI CA TI ON PROGRAM MI·I
TERMINAL TABLE START AND END

NCPI TERMINAL DCB=NCPIDCB, POINT TO PROPER 3705 X
TERM=LNCP, IPLTXID=NCPITXT

GRPI GROUP MH=CICS,BUFSIZE=288, POINT TO DEVICE MESSAGE HANDLERX

Ll

PUI
P1TI

P1T2

PIT3

P1T4

PU2
P2Tl

P2T2

L2
PU3
P3TI

PU4
P4Tl

OPACING=2 DEFINE HOST PACING
TERMINAL TERM=LINE, DEFINE FIRST SOLe LINE

GROUP=GRPI, POINT TO PROPER GROUP
RLN=I, FIRST LINE
ACTIVE=YES ACTIVATE LINE AUTOMATICALLY

TERMINAL TERM=PUNT 3790 PHYSICAL UNIT -
TERMINAL GROUP=GRPI,QBY=T,QUEUES=MR,RLN=I,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(80)
TERMINAL GROUP=GRPI,QBY=T,QUEUES=MR,RLN=I,TERM=LUNT,

TCMSESN~LUINIT,OPDATA=(80)
TERMINAL GROUP=GRPl,QBY=T,QUEUES=MR,RLN=l,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(80)
TERMINAL GROUP=GRPl,QBY=T ,QUEUES=MR,RLN=l, TERt~=LUNT,

TCMSESN=LUINIT,OPDATA=(00)
SPACE 2
TERMINAL TERM=PUNT SECOND 3790 ON THE SAME LINE
TERMINAL GROUP=GRPI,QBY=T,QUEUES=MR,RLN=l,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(80)
TERMINAL GROUP=GRPI,QBY=T ,QUEUES=MR,RLN=I, TERr1=LUNT,

TCMSESN=LUINIT,OPDATA=(00)
TERMINAL TERM=LINE,GROUP=GRPl,RLN=2
TERMINAL TERM=PUNT FIRST 3767
TERMINAL TERM=LUNT,GROUP=GRPI,QBY=T,QUEUES=MR,RLN=2,

TCMSESN=LUINIT,OPDATA=(00)
TERMINAL TERM=PUNT,ACTIVE=YES FIRST 3770
TERMINAL TERM=LUNT,GROUP=GRPl,QBY=T,QUEUES=MR,RLN=2,

TCMSESN=LUINIT,OPDATA=(00)

X
X
X

X

x

x

x

x

x

x

x

CLNE TPROCESS PCB=CICSPCB, POINT TO PROCESS CONTROL BLOCK *

TLNE
SSCP

ALTDEST=CLNE, REROUTE BACK AT QUEUE CLEAN-UP *
QUEUES=MR

TPROCESS PCB=CICSPCB
TERMINAL TERM=SSCP
EJECT

*
* SYSTEM SERVICES CONTROL POINT r~ESSAGE HANDLER
*

IEDMHGEN SSCP=YES, TOTE=NO
EJECT

INVOKE IBM-SUPPLIED SSCP MH

Appendix 8. Sample TeAM SNA message control programs 519

*
* DEVICE MESSAGE HANDLER
*

CICS STARTMH LC=OUT ,DFC:::FULL, LU=YES

SPACE 3
***************************,~***

*
* INPUT MESSAGE HANDLER
*

INHDR
SETSCAN 0 RETURN ADDRESS OF DATA
LTR RRETURN,RRETURN ZERO LENGTH BUFFER
B~1 INMSG BRANCH IF YES
LA RSCAN,ONE(RRETURN) SET SCAN POINTER
IEDRH RHIND=(+DFC) GET RH
LTR RRETURN,RRETURN DFC COMMAND
BNZ NOTDFC BRANCH I F NO
IEDRH RHIND=(+EXR) GET RH
LTR RRETURN,RRETURN EXCEPTION REQUEST
BNZ NOTEXRl BRANCH IF NO
SETSCAN 4 PO I NT TO COM~1AND BYTE
LA RSCAN,FOUR(RSCAN) UPDATE SCAN POINTER

NOTEXRl EQU *
MSGTYPE X'C9 1 SIGNAL COMMAND
I EDRELS START OUTPUT
IEDRH BSTATE=YES GET THE BRACKET STATE
N RRETURN,RTRMASK TURN OFF RTR STATE
CLM RRETURN,4,PBETB PENDING BETB
BE NOHOLD BRANCH I F YES
CLM RRETURN,4,BETB BETB
BE NOHOLD BRANCH IF YES
LOCOPT SNACTL GET OPTION FIELD
TM ZERO(RRETURN),SNASCD CD ALREADY SENT
BO NOHOLD BRANCH I F YES
01 ZERO(RRETURN),SNASCD SET CD SENT
TERRSET SET USER ERROR BIT
HOLD PREVENT OUTPUT

NOHOLD EQU *
MSGTYPE X'04 1 LUSTAT COMMAND
I EDRELS S TART OUTPUT
CLC ONE(TWO,RSCAN),SENSl COMPONENT AVAILABLE
BE NOHAL T BRANCH I F YES
CLC ONE(TWO,RSCAN),SENS2 NO DATA TO XMIT
BE NOHALT BRANCH IF YES
LOCOPT SNACfL GET OPTION FIELD
NI ZERO(RRETURN),255-(SNASCD+SNASDS)

* RESET STATES
IEDHALT

520 CICS/MVS 2.1.2 Customlzatlon Guide

NOHALT EQU *
MSGTYPE X'Cl' SHUTDOWN COMPLETE COMMAND
HOLD STOP OUTPUT
MSGTYPE , ALL OTHER DFC
B INBUF . NO PROCESSING TO DO
EJECT

NOTDFC EQU *
IEDRH BSTATE=YES GET BRACKET STATE
N RRETURN,RTRMASK TURN OFF RTR STATE
CLM RRETURN,4,BETB BETWEEN BRACKETS
BE NOTINB BRANCH IF YES
CLM RRETURN,4,PBETB PENDING BETWEEN BRACKETS
BE NOTINB BRANCH IF YES
LOCOPT SNACTL GET OPTION FIELD
01 ZERO(RRETURN),SNASCD SET CHANGE DIRECTION STATE

NOTINB EQU *
IEDRH RHIND~(+EXR) GET RH
LTR RRETURN,RRETURN EXCEPTION REQUEST
BZ I NMSG BRANCH I F YES
CLI ZERO(RSCAN),ZERO NULL RU
BE INBUF BRANCH IF YES
LR RSCANSVE,RSCAN SAVE THE SCAN POINTER
MSGEDIT ((I,XL2'0000')) INSERT NO FMH CCB
LA RSCAN,TWO(RSCAN) POINT TO START OF FMH
IEDRH RHIND=(+FMH) GET RH
LTR RRETURN,RRETURN FMH PRESENT
BNZ NOTFMH BRANCH IF NO
TM FMHTYPE(RSCAN),FMHTYPI TYPE 1 FMH
BZ NOTBDS BRANCH IF NO
TM FMHSEL(RSCAN),FMHBDS BEGIN OF DATASET
BZ NOTBDS BRANCH IF NO
IC RWORK,FMHLEN(RSCAN) GET FMH LENGTH
STC RWORK,SCANSET+7 SET AMOUNT FOR SETSCAN

SCANSET SETSCAN 1,BLANK=NO SCAN PAST FMH
MSGEDIT ((I,C'BTCH')) EDIT IN BATCH TRANSACTION NAME

NOTBDS EQU *
01 ZERO(RSCANSVE),CCBFMH INDICATE FMH PRESENT

NOTFMH EQU *
FORWARD DEST=C'CLNE' SEND MESSAGE TO CICS

INBUF INBUF
IEDRH RHIND~(+CHNGDIR,+EB) GET RH
CLM RRETURN,1,RETCD8 CD OR EB PRESENT
BE NOTCD BRANCH IF NO
LOCOPT SNACTL GET OPTION FIELD
NI ZERO(RRETURN),255-SNASCD RESET CD SENT
TM ZERO(RRETURN),SNALUT2 LU TYPE 2
BZ JUSTREL BRANCH IF NO
TERRSET SEND UNLOCK MSGGEN

JUSTREL EQU *
IEDRELS START OUTPUT

NOTCD EQU *
INMSG INMSG PATH=(SNACTL,X'80') LU TYPE 2 INMSG

CANCELMG X'00060577FF' CANCEL ON AN ERROR
IEDHALT X'00060577FF' END THE SESSION
MSGGEN X'0000080000',LUT2MSG,RH=X'038040'

Appendix B. Sample TeAM SNA message control programs 521

I NMSG 1 I NMSG ALL OTHER LU I NMSG
CANCELMG X'00060577FF' CANCEL ON AN ERROR
IEDHALT X'00060577FF' END THE SESSION
MSGGEN X'0000080e00',RH=X'038020'
INEND
EJECT

*
* OUTPUT MH
*

SPACE 3
OUTHDR
SETSCAN 0 TEST FOR DATA IN BUFFER
LTR RRETURN,RRETURN ZERO LENGTH BUFFER
BP NOTZERO BRANCH IF NO
IEDSENSE AREA=(4) GET THE SNA SENSE
CLM RWORK,8,TEMPERR RECOVERABLE ERROR
BE OUTMSG BRANCH IF YES
lOCOPT SNACTL GET OPTION FIELD
NI ZERO(RRETURN),255-(SNASDS+SNASCD)

* RESET STATES
B OUTMSG BRANCH

NOTZERO EQU *
LA RSCAN,ONE(RRETURN) SET SCAN REG
TM ZERO(RSCAN),CCBFMH FMH IN DATA
BZ NOFMH BRANCH I F NO
IEDRH RHIND=(+FMH) SET FMH PRESENT
LOCOPT SNACTL GET OPTION FIELD
TM FMHTYPE(RSCAN),FMHTYPl TYPE 1 FMH
BZ NOFMH BRANCH I F NO
TM FMHSEL(RSCAN),FMHBDS BEGIN OF DATASET
BZ NOTBDSl BRANCH IF NO
01 ZERO(RRETURN),SNASDS SET IN DATA SET

NOTBDSl EQU *
TM FMHSEL(RSCAN),FMHEDS END OF DATASET
BZ NOFMH BRANCH I F NO
NI ZERO(RRETURN),255-SNASDS TURN OFF IN DATASET STATE

NOFMH EQU *
IEDRH BSTATE=YES GET BRACKET STATE
N RRETURN,RTRMASK TURN OFF RTRSTATE
ClM RRETURN,4,BETB BETWEEN BRACKETS
BNE CHKEB BRANCH IF NO
IEDRH RHIND=(+BB) SET BEGIN BRACKET

CHKEB EQU *
LOCOPT SNACTL GET OPTION FIELD
TM ZERO(RRETURN),SNASDS IN DATASET STATE
BO REMCCB BRANCH I F YES
NI ZERO(RRETURN),255-(SNASCD+SNASDS)

* RESET STATES
IEDRH RHIND~(+EB) SET END OF BRACKET

REMCCB EQU *
MSGEDIT ((R"SCAN,(2») REMOVE CCB
OUTBUF PATH=(SNACTL,X'01') EXECUTE IF CD REQUIRED
IEDRH RHIND=(*CHNGOIR) INSERT CD IN LAST OF CHAIN
L RWORK,IEDADBIJF GET CURRENT BUFFER

522 CICS/MVS 2.1.2 Customization Guide

TM PRFSTAT1(RWORK),PRFNLSTN LAST BUFFER IN MESSAGE
BO OUTMSG BRANCH I F NO
LOCOPT SNACTL GET OPTION FIELD
NI ZERO(RRETURN),255-SNARCD RESET OPTION SWITCH
01 ZERO(RRETURN),SNASCD SET CD SENT

OUTMSG OUTMSG
HOLD X' eee4E)(~eee2' , RELEASE TEMP ERROR WAIT FOR LUS TAT
HOLD X'eee4eeee12',RELEASE TEMP ERROR WAIT FOR LUSTAT
HOLD X'eee4eeee13',RELEASE BRACKET CONTENTION WAIT FOR EB
HOLD x'eeeeee6eee',INTVL=le RETRY AFTER WAIT
IEDHALT x'eeeeele6ee' END THE SESSION ON NON

* RECOVERABLE ERRORS
MSGGEN x'eeeee4eee8',MSG2,RH=X'eB8e4e'

* ABORT THE DATASET ON ERROR
MSGGEN x'eeeee4eee8',C'FMH ERROR OS ABORTED',

RH=X'e38eCe'

OUTEND
EJECT

INFORM THE OPERATOR

~************************

*
* MESSAGE HANDLER FOR CICS APPLICATION PROGRAM
*
~************************

AMH

LUT2MSG
LUTIMSG

RTRMASK
BETB
PBETB
SENSI
SENS2
TEMPERR
RETCD8
~1SGl

MSG2

STARn~H

INHDft
FORWARD DEST=PUT
INEND
OUHiDR
OUT END
EJECT
DC X'e2FIC3'
DC X 'ellS'
OS eF
DC X'FFEFFFFF'
DC x'ee'
DC X'2e'
DC X'eeel'
DC X'eee2'
DC X'e8'
DC x'es'
DC x'eeeeee'
DC x 'e6e6eleeeeAeee ,
EJECT
END

RESET THE KEY BOARD
RETURN THE CARRIAGE
FORCE ALIGNMENT
MASK TO AND OFF RTR STATE
COMPARE FOR BETB
COMPARE FOR PENDING BETB
COMPONENT AVAILABLE
NO DATA TO XMIT
REQUEST REJECT ERRORB

~1SG AREA
ABORT DATASET FMH

Appendix B. Sample TeAM SNA message control programs 523

SAMPLE 2: DFHSPTM2 - SAMPLE TeAM MCP FOR TCAM DIRECT

*
*

*
* NAME - CICS SAMPLE TCAM MESSAGE CONTROL PROGRAM AND MESSAGE HANDLERS
* (CONTROLLED BY APPLICATION PROGRAMS)
*
* PURPOSE - THE PURPOSE OF THIS SAMPLE IS TO DEMONSTRATE TO THE CICS
* USER WHAT IS REQUIRED FOR THE CREATION OF A SIMPLE CICS SNA
* NETWORK USING TCAM.
THE SAMPLE DEMONSTRATES HALF-DUPLEX
* FLIP/FLOP MODE WITH BRACKETS.
*
*
* FUNCTIONS - THE FUNCTIONS ARE AS FOLLOWS:
*
*
*
*
*
*
*

INTRODUCTION - DEFINE THE OVERALL SYSTEM PARAMETERS, INITIALIZE
THE SYSTEM, AND START MESSAGE TRAFFIC.

DEFINITION - DESCRIBE THE SPECIFICS OF THE NETWORK, THE MESSAGE
QUEUES, AND THE NECESSARY CONTROL BLOCKS.

* DEVICE r~ESSAGE HANDLER - INSERT THE COM~1UNICATIONS CONTROL BYTES
* AND ROUTE THE MESSAGE FOR INPUT, REMOVE THE CCB AND ROUTE
* THE MESSAGE TO ITS PROPER DESTINATION ON OUTPUT.
THE DMH IS
* NAMED 'CICS' SO THAT AN LU CAN LOGON TO 'CICS'.
* THIS MH SUPPORTS LU TYPE0, TYPEl, AND TYPE2. LU TYPE2 IS THE
* 3270 DATA STREAM EMULATOR. THE SUPPORT IS DESIGNED TO ALLOW
* THE TRANSACTION TO CONTROL THE LU.
OTHER MODES OF OPERATION
* ARE POSSIBLE BY USING DIFFERENT MH OPTIONS.
THE LU TYPEl
* BATCH SUPPORT ASSUMES A SINGLE TRANSACTION WILL HANDLE THE
* BATCH INPUT.
THE MH WILL EDIT THE TRANSACTION NAME INTO
* THE FIRST CHAIN OF THE DATASET.
THEREFORE IT IS NOT NECESSARY
* TO PLACE A TRANSACTION NAME INTO THE DATASET.
* THIS MH ASSUMES THAT THE TERMINAL WILL BE LOGICALLY TIED
* TO A TRANSACTION FOR THE DURATION OF A BRACKET.
ADDITIONAL
* FLOW CONTROL WOULD HAVE TO BE ADDED TO HANDLE MESSAGE
* SWITCHING OR HOST INIlIAlED BRACKETS.
*
*
*
*
*
*

APPLICATION MESSAGE HANDLER - ROUTE MESSAGES FROM THE INPUT QUEUE
TO CICS AND FROM CICS TO THE APPROPRIATE OUTPUT QUEUE.

* THE SSCP MESSAGE HANDLER - UTILIZES THE IBM-SUPPLIED MH TO
* PERFORM THE NECESSARY ROUTING AND ANALYSIS FUNCTIONS.

524 CICS/MVS 2.1.2 Customization Guide

CDr4PLEX
* USER SYSTEMS MAY REQUIRE THIS TO BE MODIFIED BY THE USER.

*
*
* NOTES-
*
* CONVENTIONS
*
* REGISTER 2 IS USED AS THE DCB REGISTER
*
* REGISTER 3 USED AS INTERNAL LINKAGE REGISTER
*
* REGISTER 4 USED AS INTERNAL WORK REGISTER
*
* REGISTER 5 USED AS INTERNAL WORK REGISTER
*
* REGISTER 6 USED AS THE SCAN REGISTER
*
* DEFAULTS -
*
* MACRO DEFAULTS ARE USED WHEREVER REASONABLE
*
*
* EXITS -
*
* NORMAL
*
* RETURN TO THE MVS SUPERVISOR WHEN SHUTDOWN IS COMPLETE
*
* ERROR -
*
* X'FFF' - ABEND ON INTRO FAILURE
*
*
*

X'FFE' - ABEND ON MESSAGE QUEUE DCB OPEN FAILURE

* X'FFD' - ABEND ON 3705 DCB OPEN FAILURE
*
*
*
*

CICSTCM1 CSECT
RDCB EQU 2
LINKREG EQU 3
RWORK EQU 4
RSCANSVE EQU 5
RSCAN EQU 6
RRETURN EQU 15
OPEN EQU X'10'
DCBOFLGS EQU X'30'
WORD EQU 4

SPACE 2
* CCB BYTE 0

DCB REGISTER
INTERNAL LINKAGE REGISTER
INTERNAL WORK REGISTER
SAVED SCAN POINTER REGISTER
SCAN POINTER REGISTER

DCB OPEN FLAG
OPEN FLAGS OFFSETF
OFFSET

Appendix B. Sample TeAM SNA message control programs 525

SPACE
CCBFMH EQU X'al' FORMATTED HEADER
CCBDISC EQU x'as' DISCONNECT

SPACE 2
* CCB BYTE I
CCBEB EQU x'al' WRITE LAST SPECIFIED
CCBCD EQU x'a2' WRITE WITH READ SPECIFIED

SPACE 2
FMHLEN EQU a BYTE a OF FMH
FMHTYPE EQU I BYTE 1 OF FMH
FMHSEL EQU 2 BYTE 2 OF FMH
FMHSTCK EQU 3 BYTE 3 OF FMH
FMHPROP EQU 4 BYTE 4 OF FMH
FMHTYPl EQU x'al' TYPE I Ft4H
FMHBDS EQU X'4a' BEGIN DATASET FMH
PRFS T A T1 EQU X'14' STATUS BYTE OFFSET
PRFNLSTN EQU x'a2' NOT LAST INDICATOR
ZERO EQU a
ONE EQlI I
TWO EQU 2
FOUR EQU 4

* SNACTL OPTION FIELD USAGE
SNARCD EQU x'al' REMEMBER TO SET CD
SNASCO EQU x'a2' CD HAS BEEN SENT, TCAM CAN'T

SEND ANY DATA *
SNALUT2 EQU x'sa' TYPE 2 LU A 327a DSE
***************************,***

EJECT
INTRO PROGID=CICSTCAM, x

UNITSZ=16a, BUFFER UNIT SIZE X
LNUNITS=laa, SEE TCAt~ SYSTEM PGMER'S GUIDE X
BRACKET=YES, INCLUDE BRACKET STATE MANAGER X
BTRACE=5aa, PIU TRACE ENTRIES X
CIB=5, MAX 5 ACTIVE OPERATOR COMMANDS X
COMWRTE=YES, INCLUDE SERVICE AID WRITER X
CONTROL=OPCTL, ALLOW COMMANDS FROM OTHERS X
CPB=20, ACTIVE DISK CHANNEL PROGRAMS X
DISK=YES, DISK MESSAGE QUEUES X
DLQ=a, NO DEAD LETTER QUEUE X
DTRACE=5aa, DISPATCHER TRACE ENTRIES X
FEATURE=(NODIAL,N02741",ONLY3705,ONLYSNA), X
MSUNITS=laa, BUFFER UNITS FOR CORE QUEUE X
MAXSUBA=3, OBTAIN FROM NCP GENERATION X
PLCBNO=2a, PSEUDO LCBS NEEDED FOR I/O X
PRIMARY=SYSCON, OPERATOR CONTROL CONSOLE X
SIBCNT=25, MAXIMur·, SNA SESSIONS PERtHTTED X
SUBAREA=l OBTAIN FROM NCP GENERATION

LTR RRETURN,RRETIJRN WAS INTRO SUCCESSFUL
BZ OKINTRO IF SO, CARRY ON
STH RRETURN,DEBUG MAKE RETURN CODE VISIBLE
ABEND 4a95,DUMP OTHERWISE, PUNT WITH X'FFF'

OKINTRO OPEN (MSGQUEUE,(INOUT)) OPEN MESSAGE QUEUES DATA SET
LA RDCB , MSGQUEUE PO I NT TO DCB
TM DCBOFLGS(RDCB),OPEN WAS OPEN SUCCESSFUL
BO OKOPENQS IF SO, CARRY ON

526 CICS/MVS 2.1.2 Customization Guide

ABEND 4094,DUMP
OKOPENQS OPEN (NCPlDCB,(INOUT»

LA RDCB,NCPIDCB
TM DCBOFLGS(RDCB),OPEN
BO OKOPEN05
ABEND 4093,DUMP

OKOPEN05 READY
CLOSE (NCPIDCB"MSGQUEUE,)
RETURN (14,12)
EJECT

OTHERWISE, PUNT WITH X'FFE'
OPEN 3705 FOR COMMUNICATIONS
POINT TO 3705 DCB
WAS OPEN SUCCESSFUL
IF SO, CARRY ON
OTHERWISE, PUNT WITH X'FFD'
LET TCAM START TRAFFIC

RELINQUISH CONTROL

*
* DEFINE THE CONFIGURATION OF THE NETWORK - PHYSICAL AND LOGICAL
*

SPACE 2
DS 00
DC C' RETURN CODE = ,

DEBUG DS H
DC C'

MSGQUEUE DCB DSORG=TQ,
DDNAME==MSGQUEUE,
~1ACRF= (G, P) ,
OPTCD=R

TRIGGER FOR DUMP SCANNING
TO CONTAIN INTRO RETURN CODE
SPACING AROUND MESSAGE
MESSAGE QUEUE DATA SET

REUSABLE DISK QUEUES

X
X
X

NCPIDCB DCB DSORG=-TR,
DDNAME=DDNCP1,
MACRF=(G,P)

3705 COMMUNICATIONS CONTROLLER X
X

CICSPCB PCB MH=AMH,BUFSIZE=2000
TTABLE LAST=SSCP

SNACTL OPTION XLI

APPLICATION PROGRAM MH
TERMINAL TABLE START AND END

NCPl TERMINAL DCB=NCPlDCB, POINT TO PROPER 3705
TERM=LNCP,IPLTXID=NCPITXT

X

GRPI GROUP MH~CICS,BUFSIZE=2aa, POINT TO DEVICE MESSAGE HANDLERX

Ll

PUl
PHI

PH2

PH3

P1T4

PU2
P2Tl

P2T2

1.2
PU3
P3TI

OPACING=2 DEFINE HOST PACING
TERMINAL TERM=LINE, DEFINE FIRST SDLC LINE

GROUP=GRPl, POI NT TO PROPER GROUP
RLN=l, FIRST LINE
ACTIVE=YES ACTIVATE LINE AUTOMATICALLY

TERMINAL TERM=PUNT 3790 PHYSICAL UNIT -
TERMINAL GROUP=GRPl,QBY=T,QUEUES=MR,RlN=I,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(a0)
TERMINAL GROUP=GRPl,QBY=T,QUEUES=MR,RLN=l,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(a0)
TERMINAL GROUP=GRPl,QBY=T,QUEUES~MR,RLN=l,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(a0)
TERMINAL GROUP=GRPl,QBY=T ,QUEUES=t4R,RLN=1, TERt1=LUNT,

TCMSESN=LU[NIT,OPDATA=(00)
SPACE 2
TERMINAL TERt1=PUNT SECOND 3790 ON THE SM1E LINE
TERMINAL GROUP=GRPl,QBY=T,QUEUES=MR,RLN=l,TERM=LUNT,

TCMSESN=LUINIT,OPDATA=(a0)
TERMINAL GROUP::GRPl,QBY=T ,QlIElIES=MR,RLN=l, TERt1=LUNT,

TCMSESN=LlIINIT,OPDATA=(00)
TERMINAL TERM=LINE,GROUP=GRP1,RLN=2
TERMINAL TERM=PUNT FIRST 3767
TERMINAL TERM=LUNT,GROUP=GRP1,QBY=T,QUEUES=MR,RLN=2,

X
X
X

X

X

X

X

X

X

X

Appendix B. Sample TeAM SNA message control programs 527

TCMSESN=LUINIT,OPDATA=(00)
PU4 TERMINAL TERM=PUNT,ACTIVE=YES FIRST 3770
P4Tl TERMINAL TERM=LUNT,GROUP=GRPl,QBY=T,QUEUES=MR,RLN=2, X

TCMSESN=LUINIT,OPDATA=(00)
CLNE TPROCESS PCB=CICSPCB, POINT TO PROCESS CONTROL BLOCK *

ALTDEST=CLNE, REROUTE BACK AT QUEUE CLEAN-UP *
QUEUES=MR

TLNE TPROCESS PCB=CICSPCB
SSCP TERMINAL TERM=SSCP

EJECT

*
* SYSTEM SERVICES CONTROL POINT MESSAGE HANDLER
*

IEDMHGEN SSCP=YES,TOTE=NO
EJECT

INVOKE IBM-SUPPLIED SSCP MH

*
* DEVICE MESSAGE HANDLER
*

CICS STARTMH LC=OUT,DFC=FULL,LU=YES

SPACE 3

*
* INPUT MESSAGE HANDLER
*
***************************,~***

INHDR

SETSCAN 0
LTR RRETURN,RRETURN
BM INMSG
LA RSCAN,ONE(RRETURN)
IEDRH RHIND=(+DFC)
LTR RRETURN,RRETURN
BNZ NOTDFC
IEDRH RHIND=(+EXR)
LTR RRETURN,RRETURN
BNZ NOTEXRl
SETSCAN 4
LA RSCAN,FOUR(RSCAN)

NOTEXRl EQU *
MSGTYPE X'C9'
IEDRH BSTATE=YES
N RRETURN,RTRMASK
CLM RRETURN,4,PBETB
BE NOHOLD
CLM RRETURN,4,BE1B
BE NOHOLD
LOCOPT SNACTL
TM ZERO(RRETURN),SNASCD
BO NOHOLD
TM ZERO(RRETURN),SNALUT2
BZ LUTYPl

528 CICS/MVS 2.1.2 Customizatlon Guide

RETURN ADDRESS OF DATA
ZERO LENGTH BUFFER
BRANCH IF YES
SET SCAN POINTER
GET RH
DFC COMMAND
BRANCH IF NO
GET RH
EXCEPTION REQUEST
BRANCH IF NO
POINT TO COMMAND BYTE
UPDATE SCAN POINTER

SIGNAL COMMAND
GET THE BRACKET STATE
TURN OFr RTR STATE
PENDING BETB
BRANCH IF YES
BETB
BRANCH IF YES
GET OPTION FIELD
CO ALREADY SENT
BRANCH IF YES
TYPE 2 LU
BRANCH IF NO

tWC MSGl(L'LUT2MSG),LUT2MSG SET LU TYPE 2 MESSAGE
B SET ERR BRANCH

LlJTYPl EQU *
MVC MSGl(L'LUTlMSG),LUTlMSG SET LU TYPE 1 MESSAGE

SET ERR EQU *
01 ZERO(RRETURN),SNASCD SET CD SENT
TERRSET SET USER ERROR BIT
HOLD PREVENT OUTPUT

NOHOLD EQU *
MSGTYPE X'04' LUSTAT COMMAND
IEDRELS START OUTPUT
CLC ONE(TWO,RSCAN),SENSI COMPONET AVAILABLE
BE NOHALT BRANCH IF YES
CLC ONE(TWO,RSCAN),SENS2 NO DATA TO XMIT
BE NOHALT BRANCH IF YES
IEDHALT

NOHALT EQU *
MSGTYPE X'Cl' SHUTDOWN COMPLETE COMMAND
HOLD STOP OUTPUT
t,1SGTYPE , ALL OTHER DFC
B INBUF NO PROCESSING TO DO
EJECT

NOTDFC EQU *
IEDRH RHIND=(+EXR) GET RH
LTR RRETURN,RRETURN EXCEPTION REQUEST
BZ INMSG BRANCH IF YES
CLI ZERO(RSCAN) ,ZERO NULL RU
BE INBUF BRANCH IF YES
LR RSCANSVE,RSCAN SAVE THE SCAN POINTER
MSGEDIT ((I,XL2'00e0')) INSERT NO FMH CCB
LA RSCAN,TWO(RSCAN) POINT TO START OF FMH
IEDRH RHIND=(+FMH) GET RH
LTR RRETURN,RRETURN FMH PRESENT
BNZ NOTFMH BRANCH IF NO
TM FMHTYPE(RSCAN),FMHTYPl TYPE 1 H1H
BZ NOTBDS BRANCH IF NO
Tt4 FMHSEL(RSCAN),FMHBDS BEGIN OF DATASET
BZ NOTBDS BRANCH IF NO
IC RWORK,FMHLEN(RSCAN) GET FMH LENGTH
STC RWORK,SCANSET+7 SET AMOUNT FOR SETSCAN

SCANSET SETSCAN 1,BLANK=NO SCAN PAST FMH
MSGEDIT ((I,C'BTCH')) EDIT IN BATCH TRANSACTION NAME

NOTBDS EQU *
01 ZERO(RSCANSVE),CCBFMH INDICATE FMH PRESENT

NOTFMH EQU *
FORWARD DEST=C'CLNE' SEND MESSAGE TO CICS

INBUF INBUF
IEDRH RHIND~(+CHNGDIR) GET RH
LTR RRETURN,RRETURN CD PRESENT
BNZ NOTCD BRANCH IF NO
LOCOPT SNACTL GET OPTION FIELD
NI ZERO(RRETURN),255-SNASCO RESET CD SENT
IEDREl.S START OUTPUT

NOTCD EQU *

Appendix B. Sample TeAM SNA message control programs 529

INMSG INMSG
CANCELMG x'eeeee577FF' CANCEL ON AN ERROR
IEDHALT x'eeaee577FF' END THE SESSION
MSGGEN x'eaaeasaaaa',MSG1,RH-X'a3sa2a'
INEND
EJECT

***************************w***
*
• OUTPUT MH

*.************************************.****.***.***.*****************
SPACE 3
OUTHDR
SETSCAN a
LTR . RRETURN,RRETURN
BM OUTMSG
LA RSCAN,ONE(RRETURN)
TM ZERO(RSCAN),CCBDISC
BZ NOTDISC
CANCELMG
B OUTMSG

NOTDISC EQU *

TEST FOR DATA IN BUFFER
ZERO LENGTH BUFFER
BRANCH IF YES
SET SCAN REG
SESSION END REQUESTED
BRANCH IF NO

STOP THE MESSAGE, END THE
SESSION AND QUIT PROCESSING

TM ZERO(RSCAN),CCBFMH FMH IN DATA
BZ NOFMH BRANCH I F NO
IEDRH RHIND-(+FMH) SET FMH PRESENT

NOFMH EQU *
IEDRH BSTATE-YES GET BRACKET STATE
N RRETURN,RTRMASK TURN OFF RTR STATE
CLM RRETURN,4,BETB BETWEEN BRACKETS
BNE CHKEB BRANCH I F NO
IEDRH RHIND-(+BB) SET BEGIN BRACKET

CHKEB EQU *
TM ONE(RSCAN),CCBEB END OF TRANSACTION
BZ CHKCO BRANCH I F NO
IEORH RHINO-(+EB) SET END OF BRACKET
LOCOPT SNACTL GET OPTION FIELD
NI ZERO(RRETURN),255-SNASCD RESET CD SENT
B REMCCB GO REMOVE CCB

CHKCD EQU *
TM ONE(RSCAN) ,CCBCD INPUT FRO~1 TERMINAL WANTED
BZ REMCCB BRANCH IF NO
HOLD STOP FURTHER OUTPUT
LOCOPT SNACTL GET OPTION FIELD
01 ZERO(RRETURN),SNARCD SET PATH SWITCH TO SET CD

REMCCB EQU *
MSGEDIT ((R"SCAN,(2))) REMOVE CCB
OUTBUF PATHlII(SNACTL,X1al l) EXECUTE IF CD REQUIRED
IEDRH RHINO-(*CHNGOIR) INSERT CD IN LAST OF CHAIN
L RWORK,IEDADBUF GET CURRENT BUFFER
TM PRFSTAT1(RWORK),PRFNLSTN LAST BUFFER IN MESSAGE
BO OUTMSG BRANCH IF NO
LOCOPT SNACTL GET OPTION FIELD
NI ZERO(RRETURN),255-SNARCD RESET OPTION SWITCH
01 ZERO(RRETURN),SNASCD SET CO SENT

530 CICS/MVS 2.1.2 Customlzatlon Guide

OUTMSG OUTMSG
HOLD X'eee4eeeee2'.RELEASE TEMP ERROR WAIT FOR LUSTAT
HOLD X'eee4eeee12'.RELEASE TEMP ERROR WAIT FOR LUSTAT
HOLD x'eeeeeeeeee'.INTVL-le RETRY AFTER WAIT
IEDHALT x'eeeeeegeee'.CONNECT~AND

* END THE SESSION IF REQUESTED
IEDHALT x'eeeeese6ee' END THE SESSION ON NON

• RECOVERABLE ERRORS
OUTEND
EJECT

*************************~*************.*******************************

*
* MESSAGE HANDLER FOR CICS APPLICATION PROGRAM
*

AMH

LUT2MSG
LlIT1MSG

RTRMASK
BETB
PBETB
SENSl

STARTMH
INHDR
FORWARD OEST-PUT
INEND
OUTHDR
OUTEND
EJECT
DC x'e2FIC3'
DC x'eU5'
OS SF
DC X'FFEFFFFF'
DC x'ee'
DC X'2e'
DC X 'eeel'

RESET THE KEY BOARD
RETURN THE CARRIAGE
FORCE ALI GNMENT
MASK TO AND OFF RlR STATE
COMPARE FOR BETB
COMPARE FOR PENDING BETB
COMPONENT AVAILABLE

L _____ . End of Diagnosis, Modlflcatlon and Tuning Inrorm~tlon ____ -1

Appendix B. Sample TeAM SNA meSSAge control programs 531

Appendix C. Macro instruction format

General-Use Programming Interface

The CICS macro instructions are written in assembler language in the following
format:

Name

blank or
symbol by commas

Operation jOperand

DFHxxxxx 0. ne or more operands separated

'---------'--------- --_._-------------'

Comment. J
Use the operand field to specify the services and options to be generated.
Operands are always in a keyword format. Specify any parameters according to
the following general rules:

• If the parameter associated with the operand is written in all capital letters
(for example, TYPE = INITIAL), specify the operand and parameter exactly as
shown.

• If the parameter associated with the operand is written in lowercase letters,
specify the operand exactly as shown and substitute the indicated value,
address, or name for the lowercase letters (for example, FILE = name).

• Code commas and parentheses exactly as shown, but omit a comma
following the last operand. The use of commas and parentheses is indicated
by brackets and braces, exactly as for operands. You may omit the
parentheses when only one parameter of a particular operand is used.

• Because a blank character indicates the end of the operand field, the
operand field must not contain blanks except within quotes, after a comma
on a continued line, or after the last operand of the macro instruction. Start
the first operand on a continuation line in column 16.

• When you write a CICS macro instruction on more than one line, each line
containing part of the macro instruction (except the last line) must contain a
character (for example, an asterisk) in column 72, indicating that the macro
instruction is continued on the next line.

~ Copyright IBM Corp. 1977,1990 533

Syntax notation
The symbols []. { }. I and are used in this publication to help define the
macro instructions. Do not code these symbols; they act only to indicate how a
macro instruction can be written; their definitions are given below:

[] indicates optional operands. You may code the operand enclosed in
the brackets (for example, [FB]) or not. depending on whether you
require the associated option. If more than one item is enclosed
within brackets (for example. [BLOCKEDIUNBLOCKED]), you can
code one or none of the items. Any default value available is
indicated by an underscore and will be taken if you do not code an
option from the group.

{ } indicates that you must make a choice. You can code one of the
operands from the list within braces separated by a I symbol (for
example, {YESINO», depending on which of the associated services
you require. Any default value is indicated by an underscore.

,,,.

indicates that you must choose between the operands that are
separated by this symbol.

indicates that you can code more than one set of operands in the
same macro instruction.

To simplify the syntax notation in the case where you can code one or more
operands, the notation:

PARM=([A][,B][,C][,O])

indicates that you can code any number or none of A,B.C. or D. Do not code any
leading comma. If you code only one operand, you need not code the enclosing
parentheses.

For example:

PARM=A
PARM=(A,B)
PARM=(B,O)
PARM=(C)

are all valid interpretations of the above notation.

The lowercase character ecb" is used in some places to indicate a blank
character.

L ______ . __ End of General-Use Programming Interface

534 CICS/MVS 2.1.2 Customizatlon Guide

Appendix D. Coding entries in the VTAM LOGON mode table

--_ .. _-_.

This appendix shows you what you must have coded in your VTAM logmode
table for a terminal for which you want to use automatic installation.

CICS uses the logmode data when processing an automatic installation request,
and automatic installation will only function properly if the information is correct.
CICS conforms to VTAM standards.

Two sections at the end of this Appendix show examples of matching entries.

The following tables show, for a variety of possible terminal models, what you
must have coded in the MODEENT macros that define your logmode table if you
want to use automatic installation. Between them they show the values that
must be specified for each of the operands of the MODEENT macro. Where all
bit settings of an operand's value have significance for CICS, the data is shown
in hexadecimal form. If some of an operand's bit settings are not significant to
CICS, its data bytes are shown as bit patterns. The bit settings that have
significance for CICS are shown set to the values CICS expects. Those bits that
have no significance to CICS are shown as periods. Thus, for example:

01. .0CHl

shows that six bits in the subject byte must be given specific values; the
remaining two have no significance.

Some of the examples shown here correspond exactly to entries in the
IBM-supplied logon mode table called ISTINCLM. Where this is so, the table
gives the name of the entry in ISTINCLM.

The PSERVIC setting shows fields called aaaaaaaa, bbbbbbbb, and so on. The
contents of these vary according to certain specifications of attributes of
LUTYPE2 and LUTYPE3 terminals. You can work out the values you need by
looking at "PSERVIC values for LUTYPEO, LUTYPE2, and LUTYPE3 devices" on
page 541.

Device definition options and pointers to related LOGMODE data
Search the list given in Figure 45 for the combination of options that represents
the typetenn you want to use for an automatic installation model. When you find
the right one, use the number to its right to locate, in Table 6 on page 537, what
has to be coded in the VTAM MODEENT macros.

DEVICE(APPC) •••••••••••••••••••••••••••••••••.••••••••••• 24
DEVICE(BCHLU} •• 17
DEVICE(BCHLU) SESSIONTYPE(BATCHDI} ••••••••••••••••••••••• 15

Figure 45 (Part 1 of 2). TYPETERMs with cross~references to VTAM mode entry
specifications

© Copyright '18M Corp. 1977, 1990 535

DEVICE(BCHLU) SESSIONTYPE(USERPROG) •••••••••••••••••••••• 16
DEVICE(CONTLU) •••••••••••••••••••••••••••••.••••••••••••• 19
DEVICE(INTLU) •••••••• ~ ••••••••••••••••••••••••••••••••••• 11
DEVICE(LUTYPE9) ••••••••••••••••••••••••••••..••.••••••••• 25
DEVICE(LUTYPE2) •••••••••••••••••••••••••.••••• ~ •••••••••• 18
DEVICE(LUTYPE3) •••••••••••••••••••••••••• ~ ••••••••••••••• 19
DEVICE(LUTYPE4) •• 12
DEVICE(SCSPRINT) ••••••••••••••.•••••••••••••••••••••••• 11,13
DEVICE(TLX) •••••••••••••••••.•.•.••••.••••••••••••••••••• 8
DEVICE(TLX) SESSIONTYPE(CONTLU) .•••••••••••.••••••.•••••• 8
DEVICE(TLX) SESSIONTYPE(INTLU) ...••••.••• ~ ••••••.••••.•.• 9
DEVICE(TWX) .••••••••••••••••••••••••••.•••••..•••..•••••• 8
DEVICE(TWX) SESSIONTYPE(CONTLU) ••••••.••.••••.••••••••••• 8
DEVICE(TWX) SESSIONTYPE(INTLU) .•••••••••••.••••••••••.•.• 9
DEVICE(3279) ••••••••••.•••••....••••.•..•.•...•••••••••.. 2
DEVICE(3279) BRACKET(NO) •• ~ •...•••••••.••••..•..••••••••• 1
DEVICE (3279P) •..•••.••••••..•••.•••••.•••••.•.••..••.•.•• 2
DEVICE(3279P) BRACKET(NO) •••••.••••••.....•..•...•••••.•• 1
DEVICE(3275) .••••••••••••••....••.•...•..••..•••••••••••• 2
DEVICE(3275) BRACKET(NO) ••••....••.•••••.••.••••••••••.•• 1
DEVICE(3699)•••••..•••••.....••....••••••....•••••••• 22
DEVICE(3699) •••.•••••.••••.•••.••••.•..•••••••••.••••..•. 23
DEVICE(3699) SESSIONTYPE(PIPELINE) ••.•••.••.•....•••..••. 21
DEVICE(3699) SESSIONTYPE(PIPELN) ••...••••...•.••.•••.•••• 21
DEVICE(3614) ...••••.••.•••••...•••.••••..••••....•.•.•..• 3
DEVICE(3659) SESSIONTYPE(PIPELINE) •••••••••••••..•••••••• 21
DEVICE(3659) SESSIONTYPE(PIPELN) ••••••••••.•••••.• ~ •.•••. 21
DEVICE(3658) SESSIONTYPE(USERPROG) BRACKET(YES) ...••••••• 6
DEVICE(3650) SESSrONTYPE(USERPROG) BRACKET(NO) ••.•••••.•• 7
DEVICE(3659) SESSIONTYPE(3279) •••••.•••••.••••.•••••.•• ~. 5
DEVICE(3658) SESSIONTYPE(3279) BRACKET (NO) ••••••.•••••••• 4
DEVICE(3658) SESSIONTYPE(3653) ••••.•••••..•••..•••••.•••. 5
DEVICE(3659) SESSIONTYPE(3653) BRACKET(NO) •.•••..•••••••• 4
DEVICE(3767) ••••••••••••••••.•••••••••••••..••.•••••••••• 11
DEVICE (3767C) •••.•••••••••••.••••••••••••••.••••••••••••• 19
DEVICE(3767I) ••..••.•••.•.•..•••.•.••••••••.••••.•••••••• 11
DEVICE(3778) ••••.••••••••••..•••••..•••..••.•••.••••••••• 17
DEVICE(3779) SESSIONTYPE(BATCHDI)••.....•••..•.•.•.• 15
DEVICE(3779) SESSIONTYPE(USERPROG) ...•••.....•••••••••••• 16
DEVICE(3778B) .••..•••.••••••...•..••.••..••.••••..••••.•• 17
DEVICE(3778B) SESSIONTYPE(BATCHDI) ••••••.••.•••..•••••••• 15
DEVICE(3779S) SESSIONTYPE(USERPROG) .•••••...••••••••••••• 16
DEVICE(3779C) .•••••.•••..•••.••••••..••••.••.•...••.••••• 19
DEVICE(377SI) ..•..•. ; ...•.••...••....•••....•••..•••••••• 11
DEVICE(3799) ..•.•.••••••..•...••.•.•.....••.••.••.•...••• 28
DEVICE(3798) SESSIONTYPE(BATCHDI) ...••••.....•.•....••.•. 14 .
DEVICE(3798) SESSIONTYPE(SCSPRT) ••••..•.•....•.•..•.••••. 13
DEVICE(379S) SESSIONTYPE(SCSPRINT) ...•••..•..•......•.••• 13
DEVICE(3799) SESSIONTYPE(USERPROG)••.....•...•.•.••.• 16
DEVICE(3799) SESSIONTYPE(3277CM) ••..•••.••..•.••••..••.•• 18
DEVICE(3798) SESSIONTYPE(3284CM)•............•.••••. 19
DEVICE(3798) SfSSIONTYPE(3286CM)••.....••....•.•••• 19

Figure 45 (Part 2 of 2). TYPETERMs with cross·references to VTAM mode entry
specifications

536 CICS/MVS 2.1.2 Customization Guide

VTAM MODEENT macro operands
Table 6 shows the nature of the logmode table entry for each TYPETERM you
might define. You should have reached this table by looking up the TYPETERM
attributes in Figure 45 on page 535.

Look down the left side of the table for the reference number (RN) that brought
you here from Figure 45 on page 535. When you find it, look across to the
middle column. This shows the macro operands that affect the way CICS
handles automatic installation. Your MODEENT macro entries for devices to be
installed must match what is specified there. Any MODEENT macro entries not
shown in the table, such as RUSIZES or PSERVIC for some reference numbers,
are not tested by CICS. Any bit settings that do not matter to CICS during bind
analysis for autoinstalled terminals appear as periods (.). In particular, under
RN 18 and RN 19, PSERVIC byte 2 bit 0 is not checked during bind analysis.
However, it should be set on if you require extended data stream support.

Note: Some fields in the PSERVIC data for LUTYPE2 and LUTYPE3 devices have
values that depend on the AL TSCREEN and DEFSCREEN characteristics of
the device. For this reason, you have to consult "PSERVIC values for
LUTYPEO, LUTYPE2, and LUTYPE3 devices" on page 541 to find out the
values you need to specify instead of aaaaaaaa, bbbbbbbb, cccccccc,
dddddddd, and eeeeeeee.

The right hand column in the table names entries in the IBM-supplied logon
mode table that could meet your needs. The IBM-supplied table is called
ISTINCLM. For further VTAM information, see ACF VTAM Planning and·
Instal/ation Reference, SC27-0584.

Table 6 (P age 1 of 5). Logon Mode Table and ISTINCLM Entries

RN Log on mode table (MODEENT) macro entries that are
nee ded for related lYPETERM definitions

ROF=X'02' FMP
TSP
PRIP
SEC
COM

ROF=X'02'
ROT=X'70'
PROT=X'40'
PROT = 8'0000.000 00000.00'

2 FMP ROF=X'02'
ROF=X'02' TSP

PRIP
SEC
COM

ROT=X'71,
PROT=··X'40'
PROT= 8'0010.00000000.00'

---------------_._._----
3 FMP ROF=X'04'

ROF=X'04' TSP
PRIP
SEC
COM

ROT=X'BO'
PROT=X'80'
PROT = 8'0000.00000000.00'

-

Suitable
supplied entries

OSILGMOO
04832781
04832782
04B32783
04832784
04832785
NSX32702
S3270

Appendix D. Coding entries In the VTAM LOGON mode table 537

Tlble 6 (Plge 2 01 5), Logon Mode Tlble Ind IST/NeLM En'r/e.

RN Logon modi tlbll (MODIINT) micro Intrll' thlt Ire lultlble
nlldld for relltld TVPITIRM dlflnltlon. .uppilid Intrll'

4 FMPROF-X'04'
TSPROF-X'04'
PRIPROT-X'BO'
SECPROT-X '80'
COMPROT- 1'0100.00000000.00'

----------------------~----------.~ 5 FMPROF-X'04'
TSPROF-X'04'
PRIPROT-X'11'
SECPROT - X '80 '
COMPROT- 1'0110.00000000.00'

~--1~-----------------------------------~----------~ 8 FMPROF-X'04'
TSPROF-X'04'
PRIPROT-X'31,
SECPROT -X '30'
COMPROT- B'0110.000 00000.00'

INTRUSER

~.--~-------------------------------------~----------~ 7 FMPROF-X'04'
TSPROF-X'04'
PRIPROT - X' 30'
SECPROT - X' 30 '
COMPROT- B'0100.000 00000.00'

-'--f---------------,-,----------.-f----------1
8 FMPROF-X'03'

TSPROF-X'03'
PRIPROT-X'B1 '

, SECPROT-X'90'
COMPROT- B'0011.000 01000.00'
PSERVIC - B'00000001 00000000 00000000 0000000.

. 00000000 00000000 00000000
00000000 00000000 00000000'

~----~---------------.. ,-------------~----------------------+---------------~
9 FMPROF-X'03'

TSPROF-X'03'
PRIPROT-X'B1'
SECPROT .. X '90 '
COMPROT-B'0011.000 10000.00'
PSERVIC - B'00000001 0000000000000000 0000000.

. 00000000 00000000' 00000000 .
00000000 00000000 00000000'

SCS

- -------------4------------~
10 FMPROF-X'03'

TSPROF-X'03'
PRIPROT X'B1 '
SECPROT-X'90'
COMPROT- B'0011.000 01000.00'
PSERVIC - X'01'

~--t-------------.--.---" .. ,----.-,-----___ ~------_f
11 FMPROF-X'03'

TSPROF-X'03'
PRIPROT-X'B1'
SECPROT - X '90'
COMPROT- 8'0011.000 10000.00'
PSERVIC-X'01'

See note 2

. '-0.. __________________ ._., ____________ .1...-_______ -'

538 CICS/MVS 2.1.2 Customlzatlon Guide

~------.---.-----------------.--~ Tlb!. 6 (Pag. 3 of 6). Logon Mode Tab!e lind IS T!NCLM Entrl ••

RN Logon mod. tlbll (MODEENT) micro antrla. thlt Ir.
n •• d.d for r.lated TVPETERM deflnltlonl

Sultlbl.
luppU.d .ntrl ••

~----~- ---.----------~.------------~
12 FMPROF-X'07'

13

14

15

TSPROF-X'07'
PRIPROT-X'B1'
SEC PROT .. X' BO'
COMPROT- B'0101.000 10000.01'
PSERVIC-B'00000100 1010100001000000 10100000

· 1010100001000000 10100000
00000000 00001100 00000000'

FMPROF-X'03'
TSPROF-X'03'
PRIPROT-X' B1'
SECPROT .. X' BO'
COMPROT- B'0011.000 10000.00'
PSERVIC-X'01 '

FMPROF-X'03'
TSPROF-X'04'
PRIPROT-X'B1 '
SECPROT - X' 80 '
COMPROT'" B'011.1.000 10000.00'
PSERVIC - B '0000000 1 00110001 00011000 0100000.

· 00000000 10010010 00000000
00000000 0000000001010000'

FMPROF-X'03'
TSPROF-X'03'
PRIPROT-X'B1 '
SEC PROT - X' 80 '
COMPR01· .. 8'0111.000 10000.00'
PSERVIC 8'00000001 00110001 00001100 0111000.

· 00000000 11010010 00000000
00000000 00000000 11010000' -_. -------------_._-_.-

16 FMPROF-X'04'
TSPROF-X'04'
PRIPROT-X'B1'
SECPROT - X' BO '
COMPROT- B'0111.000 10000.00' ---.... ._-------

17 FMPROF-X'03'
TSPROF X'03 '
PRIPROT-X'B1 '
SECPROT-X'90'
COMPROT- B'0111.000 10000.00'
PSERVIC",. 8'00000001 0010000000000000 0000000.

· 00000000 11000010 00000000
00000000 00000000 11000000'

-__ ._0 ______ -_ .. _---------_ .. ------_ ... -

SCS3790
See note 2

--

--

- --

Appendix D. Coding entries In the VTAM LOGON mode table 539

-
Table 6 (Page 4 of 5). Logon Mode Table and ISTINeLM Entries

RN Logon mode table (MODEENT) macro entries that are Suitable
needed for related TVPETERM definitions supplied entries

18 FMPROF==X'03' 0329001
TSPROF==X'03' 04A32771
PRIPROT-X'B1' 04A32772
SECPROT- 8'10 .. 0000' 04A32781
COMPROT=B'0011.000 10000.00' 04A32782
PSERVIC == B'0000001 0 .0000000 00000000 00000000 04A32783

0000000000000000 aaaaaaaa bbbbbbbb 04A32784
ecce ecce dddddddd eeeeeeee' 04A32785

04C32771
04C32772
04C32781
04C32782
04C32783
04C32784
04C32785
06327801
06327802
06327803
06327804
06327805
EMUOPCX
EMU3790
SNX32701
SNX32702
SNX32703
SNX32704
SNX32705
See note 1

.-
19 FMPROF==X'03' BLK3790

TSPROF """ X '03' OSC2K
PR/PROT-X'Bl' OSC4K
SECPROT== B'10 .. 0000' 06328902
COMPROT== B'0011.000 10000.00' 06328904
PSERV/C = B'00000011 .0000000 00000000 00000000

0000000000000000 aaaaaaaa bbbbbbbb
cccccccc dddddddd eeeeeeee' See note 1

20 FMPROF=X'04'
TSPROF=X'03'
PRIPROT==X'31,
SECPROT = X' BO '
COMPROT== 8'0111.000'

-.--~----------

21 FMPROF == X' 04'
TSPROF=X'03'
PR/PROT = X '50'
SECPROT=X'10'
COMPROT= B'OOOO.OOO 00000.00'

.-----~-~---,----p----

22 FMPROF=X'04' IBMS3650
TSPROF == X '04 '
PRIPROT=X'BO'
SECPROT == X' BO '
COMPROT= B'0100.000 00000.00'

---- .---.---------------.-"-.--~-----

540 CICS/MVS 2.1.2 Customization Guide

Table 6 (Page 5 of 5). Logon Mode Table and ISTINCLM Entries

RN Logon mode table (MODEENT) macro entries that are Suitable
needed for related TYPETERM definitions supplied entries

23 FMPROF-X'04'
TSPROF-X'04'
PRIPROT-X'81 '
SEC PROT = X' 80 '
COMPROT== 8'0111.00000000.00'

24 TYPE-X'OO'
FMPROF=X'13'
TSPROF-X'07'
PRIPROT == X' 80'
SECPROT == X' 80 '
COM PROT = 8'0101.000 10110.01'
PSERVIC == X' 060200000000000000002COO '

- .,._-

25 FMPROF-X'02' 04832782
TSPROF-X'02' 04832783
PRIPROT-X'71, 04832784
SECPROT = X '40' 04832785
COMPROT= 8'0010.000 00000.00' NSX32702
PSERVIC= 8'00000000 .00000000000000000000000 NSX32703

00000000 00000000 aaaaaaaa bbbbbbbb NSX32704
ecce ecce dddddddd eeeeeeee' NSX32705

-

Notes:

1. PSERVIC (RN 18 and 19): BYTE 2 BIT 0 is not checked for bind analysis.
However, this bit should be set on where extended data stream (EXTDS)
support is required.

2. RN 11 or 13 is used to determine the MODEENT macro operands for device
SCSPRINT. However, if you have specified any of the attributes
EXTENDEDDS, COLOR, PROGSYMBOLS, HILIGHT, SOSI, OUTLINE,
QUERY(COLD), or QUERY{ALL) for the TYPETERM, then the COM PROT
parameter of RN 11113 should be modified to read COMPROT=B'0111.000
10000.00'.

PSERVIC values for LUTYPEO, LUTYPE2, and LUTYPE3 devices
Table 7 shows you what to specify in the PSERVIC operand of the MODEENT
macro for LUTYPE2, LUTYPE3, and local non-SNA 3270 devices.

The PSERVIC value should be compatible with what you specify as DEFSCREEN
and AL TSCREEN on your autoinstall model's TYPETERM definition. Where no
value is specified, CICS does not test the value. If you don't specify anything for
a byte, CICS looks for 00000001 if the device is a Model 1, and 00000010 if the
device is a Model 2. For comparison purposes, note that, in Table 6 on
page 537, PSERVIC bytes 20-24 are represented as aaaaaaaa, bbbbbbbb,
cccccccc, dddddddd, and eeeeeeee respectively. For a full definition of PSERVIC
values, see SNA - Sessions between Logical Units, GC20-1868.

Appendix D. Coding entries In the VTAM LOGON mode table 541

Table 7. PSERVIC summary for LUTYPE2, LUTYPE3, and local non-SNA 3270 devices

Device DEFSCREEN ALTSCREEN QUERY PSERVIC
model Bind bytes 20-24

0,2,3 00,00 ? ? Invalid

0,2,3 12,40 Blanks ? 0000000001

0,2,3 12,40 00,00 ? OC2S00007E

0,2,3 12,40 YY,YY ? OC2SYYYY7F

0,2,3 12,40 Blanks NO 0000000002

3,4,5 24,SO Blanks COLDIALL 0000000002
-

0,2 24,80 Blanks COLDIALL 0000000003

0,2,3,4,5 24,80 00,00 ? 185000007E

0,2,3,4,5 24,80 YY,YY ? 1850YYVV7F

0,2,3,4,5 XX,XX Blanks ? XXXXOOO07E

0,2,3,4,5 XX,XX 00,00 ? XXXXOOO07E

0,2,3,4,5 XX,XX YY,VV ? XXXXYYYY7F
--

Notes:

1. 0 indicates a local non-SNA 3270 device, 2 indicates an LUTYPE2 device, and
3 indicates an LUTYPE3 device.

2. XX,XX indicates a screen size that is not 12,40 or 24,80.

3. YY,YY indicates a screen size that is not 00,00 or blanks.

4. ? indicates that the entry for AL TSCREEN may be any size, and the entry for
QUERY may be ALL, COLD, or NO.

Table 8 shows the bind settings of autoinstall models against the CEOA
parameters used to create them.

Table 8. PSERVIC summary for LUTYPEO, LUTYPE2, and LUTYPE3

LUTYPE DEFSCREEN ALTSCREEN QUERY PSERVIC
Bind bytes 20·24

0,2,3 00,00 00,00 ? 0000000000
-

0,2,3 12,40 00,00 NO 0000000001

0,2,3 24,80 00,00 NO 0000000002, or
185000007E _.

3 24,80 00,00 COLDIALL 0000000002
~.-----------------.--

0,2 24,80 00,00 COLDIALL 0000000003, or
185000007E
(see note 4)

f-.----.----.----------.-----.--
0,2,3 MM,MM 00,00 ? MMMMOOO07E

r--'-- ---_."'--------_ .. __ .
0,2,3 NN,NN PP,PP ? NNNNPPPP7F ----------_._-.. ----

542 CICS/MVS 2.1.2 Customizatlon Guide

Notes:

1. MM,MM is any pair of values other than 00,00 12,40 or 24,80

2. NN,NN or PP,PP is any pair of values other than 00,00

3. ? means that any QUERY value is allowed. However, if QUERY = COLD or
QUERY = ALL is coded and a query is sent to a device that does not support
it, the result is unpredictable.

4. The value 185000007E applies only if the query bit is on in PSERVIC byte 15.

Matching models and LOGMODE entries
This section contains a set of VTAM LOGMODE definitions, and their matching
CICS Autoinstall model definitions. Each entry consists of a VT AM LOGMODE
definition, the matching CICS TYPETERM/TERMINAL autoinstall model definition,
and (for information) the BIND which CICS will send based on the specified
model definition.

Note that the CICS-specific attributes are purely arbitrary. Only device attributes
affect the matching algorithm. It is the responsibility of the autoinstall user
program to distinguish between matching models.

**
1) LOCAL NON-SNA 3277 / 3278 / 3279 (without special features)
**

MT32772 MODEENT LOGMODE=MT32772, 3277/8 MODEL 2

OR

TYPE=1,
FMPROF=X' 02' ,
TSPROF=X'02',
PRIPROT=X'71',
SECPROT==X'40',
COMPROT=X'2000',
PSERVIC=X 'e00000000000000000000200'

PSERVIC=X'e0000000000018502B507F00' Others
PSERVIC=X'00000000000018502B507E00' Model 2, no Altscreen

TERMINAL definition

==> M3278A
==> ONLY
==> PDATD
::::=> T3278
==> YES

AUTINSTNAME
AUTINSTMODEL
GROUP
TYPETERM
INSERVICE
OPERSEC ==> 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18

Appendix D. Coding entries In the VTAM LOGON mode table 543

TYPETERM definition

TYPETERM
GROUP
DEVICE
TERMMODEL
LIGHTPEN
AUDIBLEALARM
UCTRAN
IOAREALEN
ERRLASTLI NE
ERRINTENSIFY
USERAREALEN
ATI
TTl
AUTOCONNECT
LOGONMSG

==> T3278
==> PDATD
==> 3270
==> 2
==> YES
=",::> YES
==> YES
==> 2000,2000
==> YES
==> YES
==> 32
==> YES
==> YES
==> NO
==> YES

BIND SENT BY CICS : 01020271 40200000 00000080 00000000
00000000 00000002 00009300 00300000

OR

BIND SENT BY CICS 01020271 40200000 00000080 00000000
00000018 502B507F 00009300 00300000

OR

. Real Model 2
BIND SENT BY CICS 01020271 40200000 00000080 00000000

00000018 502B507E 00009300 00300000

**
2) LOCAL SNA 3277/78/79 (without special features) LUTYPE2
~*****************

S32782 MODEENT LOGMODE=S32782, SNA LUTYPE2 3270
TYPE=l,
FMPROF=X '03' t

TSPROF=X'03',
PRIPROT=X'B1',
SECPROT=X' B0' ,
COMPROT=X'3080' ,
RUSIZES=X'8585',
PSERVIC=X'028000000000185018507F00'

TERMINAL definition

AUTINSTNAME
AUTINSTMODEL
GROUP
TYPETERM
INSERVICE

544 CICS/MVS 2.1.2 Customlzation Guide

==> M32782
==> ONLY
==> PDATD
==> T32782
==> YES

TYPETERM definition

TYPETERM
GROUP
DEVICE
TERMMODEL
LlGHTPEN
AUDIBLEALARM
UCTRAN
IOAREALEN
ERR LAS TLl NE
ERRINTENSIFY
USERAREALEN
ATl
TTl
LOGONMSG
DISCREQ
RECEIVESIZE
BUILDCHAIN

::="> T32782
==> PDATD
==> LUTYPE2
==> 2
==> YES
=:::> YES
==> YES
==> 256,256
:::::> YES
==> YES
==> 32
==> YES
==> YES
==> YES
==> YES
==> 256
==> YES

BIND SENT BY CICS : 010303B1 B0308000 0085C780 0002a000
00000018 5018507F 00000000 e0000000

**
3) 3770 BATCH LU (3777)
**

BATCH MODEENT LOGMODE=BATCH, 3770 BATCH
TYPE=l,
FMPROF=X 103 I,
TSPROF=X '03 1,
PRIPROT=X'Bl',
SECPROT=X'B0',
CO~1PROT=X' 70a0' ,
PSERVIC=X'01310C70E10e02000eE100D0I

TERMINAL definition

AUTINSTNAME ==> M3770
AUTINSTMODEL ==> ONLY
GROUP ==> PDATD
TYPETERM =:::> T3770
INSERVICE ==> YES

Appendix D. Coding entries In the VTAM LOGON mode table 545

TYPETERM definition
•••••••••••••••••••••••••

TYPETERM
GROUP
DEVICE
SESSIONTYPE
PAGESIZE
DISCREQ
AUTOPAGE
RECEIVESIZE
SENDSIZE
IOAREALEN
BUILDCHAIN
BRACKET
ATI
TTl
AUTOCONNECT
HORIZFORM
VERT FORM
LDCLIST

•• > T3770
•• > PDATD
•• > 3770
•• > BATCHDI
•• > 12,80
ft .. > YES
... > YES
•• > 255
•• > 255
•• > 255,2048
... > YES
lin> YES
II.> YES
==> YES
nil> NO
==> YES
==> YES
=e:> LDC2

Needs LDe declaration in TCT

LDC2 DFHTCT TYPE=LDC,LOCAI..=INITIAL
DFHTCT TYPE=LDC,LDC=BCHLU
DFHTCT TYPE=LDC,LOCAL=FINAL

BIND SENT BY CICS : e1e3e3B1 Be7eSeee eeeeeese eee131eC
7eEleeD2 eeeeElee Deeeeeee eaeeeeee

**
4) 667e LUTYPE4
**

S667e MODEENT LOGMODE=S667e. 667e LUTYPE4
TYPE-1,
FMPROF=X'e7',
TSPROrIlX'e7',
RUSIZES=X'S5S5',
PRIPROT=X'Bl',
SECPROT=X'Be',
COMPROT=X'5e81, ,
PSERVIC=X'e4A849AeeeA84eAeeeeeecee'

TERMINAL definition

AIJTINSTNAME
AIJTINSTMODEL
GROUP
TYPETERM
INSERVICE

. 546 CICS/MVS 2.1.2 Customlzatlon Guide

=::> t~667e
==> ONLY
==> PDATD
==> T667e
mn> YES

TYPETERM definitfon

TYPETERM
GROUP
DEVICE
BUILDCHAIN
DISCREQ
RECEIVESIZE
UCTRAN
IOAREALEN
FORMFEED
HORIZFORM
VERTFORM
ATl

•• > T6670
•• > PDATD
.n> LUTYPE4
.n> YES
•• > YES
•• > 256
.n> YES
•• > 256,4096
--> YES
•• > YES
•• > YES
•• > YES

TTl
PAGESIZE
AUTOPAGE
LOGONMSG
LOCLIST

.a> YES

._> 50,ae
=-> YES
Im=> NO
IIID> LOCl

Needs LOC declaration in TCT :

LOCS OFHTCT TYPE=LDC,LDC=SYSTEM
LDC! OFHTCT TYPE=LDC,LOCAL=INITIAL

DFHTCT TYPE=LDC,DVC=(BLUCON,el),PROFILE=DEFAULT,LDC=PC,
PGESIZE=(5e,ae),PGESTATr.AUTOPAGE

DFHTCT TYPE=LDC,DVC=(BLUPRT,e2),PROFILE=BASE,LDC=PP,
PGESIZE=(5e,ae),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(BLUPRT,eS),PROFILE=BASE,LDC=pa,
PGESIZE=(5e,ae),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(BLUPRT,e8),PROFILE=DEFAULT,LDC=DP,
PGESIZE=(5e,ae),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(BLUPCH,03),PROFILE=JOB,LDC=PM,
PGESIZE=(5e,ae),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(BLUPCH,83),PROFILE=DEFAULT,LDC=DM,
PGESIZE=(58,ae),PGESTAT=AUTOPAGE

OFHTCT TYPE=LDC,DVC=(WPMEDl,e4),PROFILE=WPRAW,LDC=Pl,
PGESIZE=(5e,ae),PGESTAT""AUTOPAGE

DFHTCT TYPE=LDC,DVC=(WPMEDl,84),PROFILE=DEFAULT,LDC=Dl,
PGESIZE=(50,a0),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(WPMED2,85),PROFILE=OIIl,LDC=P2,
PGESIZE=(58,8e),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(WPMED2,85),PROFILE=DEFAULT,LDC=D2,
PGESIZE=(50,a0),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(WPMED3,86),PROFILE=OII2,LDC=P3,
PGESIZE=(58,a8),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,DVC=(WPMED4,87),PROFILE=OII3,L.DC=P4,
PGESIZE=(50,80),PGESTAT=AUTOPAGE

DFHTCT TYPE=LDC,LOCAL=FINAL
BIND SENT BY CICS : 010707B1 B0508100 00858580 0004A840

A8e8Aa40A00e808C 8e000888 00880000

Appendix D. Coding entries In the VTAM LOGON mode table 547

**
5) 3790 FULL FUNCTIO~ LU
**

S3790A MODEENT LOGMODE=S3790A, 3790 FULL FUNCTION LU
TYPE=].,
FMPROF=X' 04' ,
TSPROF=X'04',
PRIPROT=X'Bl',
SEC PROT =X' B0' ,
RUSIZES=X'8585',
COMPROT=X'7080'

TERMINAL definition

AUTINSTNAME
AUTINSTMODEL
GROUP
TYPETERM
INSERVICE

==> M3790A
==> ONLY
==> PDATD
==> T3790A
==> YES

TYPETERM definition

TYPETERM
GROUP
DEVICE
SENDSIZE
RECEIVESIZE
SESSIONTYPE
BRACKET
IOAREALEN
AT!
TTl

==> T3790A
==> PDATD
==> 3790
==> 256
==> 256
==> USERPROG
==> YES
==> 256
==> YES
==> YES

BIND SENT BY CICS : 010404B1 B0708000 00858580 00000000
**
6) 3790 BATCH DATA INTERCHANGE
**

S3790B MODEENT LOGMODE=S3790B, 3790 BATCH
TYPE=l,

548 CICS/MVS 2.1.2 Customizatlon Guide

FMPROF=X'03',
TSPROF=X'04',
PRIPROT=X'Bl',
SECPROT=X'B0',
COMPROT=X'70a0' ,
RUSIZES=X'8585',
PSERVIC=X'013118400000920000E10050'

TERMINAL definition

AUTINSTNAME
AUTI NS TMOOEL
GROUP
TYPETERM
INSERVICE
TERMPRIORITY

==> M3790B
==> ONLY
==> POATO
==> T3790B
==> YES
==> 50

TYPETERM definition

TYPETERM
GROUP
DEVICE
SESSIONTYPE
AUTOPAGE
BUILOCHAIN
OBOPERIO
IOAREALEN
RELREQ
SENOSIZE
RECEIVESIZE
ATl
TTl
LOCLIST

==> T3790B
==> POATO
==> 3790
==> BATCHOI
==> YES
==> YES
==> YES
==> 256,2048
==> YES
==> 256
=~> 256
==>. YES
==> YES
==> LOC2

Needs LOC declaration in TCT

LOC2 OFHTCT TYPE=LOC,LOCAL=INITIAL
OFHTCT TVPE=LOC,LDC=BCHLU
DFHTCT TVPE=LDCtLOCAL=FINAL

BIND SENT BY CICS : 010304B1 B0708000 00858580 00013118
40000092 OOOOEIOO 50000000 00000000

**
7) 3790 SCSPRT
**

S3790C MODEENT LOGMODE=S3790C, 3790 WITH SCS
TYPE=l,
FMPROF=X '03 I ,

TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X'BO',
CO~1PROT =X' 3080' ,
RUSIZES=X'8585' ,
PSERVIC=X'OlOOOOOOOOOOOOOOOOOOOOOO'

Appendix D. COding entries In the VTAM LOGON mode table 549

TERMINAL definition

AUTINSTNAME
AUTINSTMODEL
GROUP
TYPETERM
INSERVICE

==> M3790C
==> ONLY
==> PDATD
==> T3790C
==> YES

TYPETERM definftion

TYPETERM
GROUP
DEVICE
SESSIONTYPE
BRACKET
SENDSIZE
RECEIVESIZE
ATI
TTl

==> T3790C
==> PDATD
==> 3790
==> SCSPRT
==> YES
==> 255
==> 256
==> YES
==> YES

BIND SENT BY CICS :

Note that CEDA changes DEVICE=3790,
SESSIONTYPE=SCSPRT to DEVICE=SCSPRINT,
SESSIONTYPE=blanks, PRINTERTYPE=3284.

010303B1 B0308000 00858580 00010000

**
8) 3757 INTERACTIVE (FLIP-FLOP) LU
**

S3767 MODEENT LOGMODE=S3757, 3757 INTERACTIVE
TYPE=1,
FMPROF=X' 03' ,
TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X'90',
COMPROT=X'3080',
PSERVIC=X'010000000000000000000000!

TERMINAL definition

AUTI NSTNAME
AUTINSH10DEL
GROUP
TERMPRIORITY
TYPETERM
INSERVICE

550 CICS/MVS 2.1.2 Customizatlon Guide

==> M3757
==> ONLY
=:=> PDATD
:0::=> 50
=:=> T3767
==> YES

TYPETERM de fi II it i on

TYPETERM
GROUP
DEVICE
VERTFORM
HORIZFORM
RELREQ
DISCREQ
IOAREALEN
AUTO PAGE
PAGESIZE
AT!
TTl
BRACKET
RECEIVESIZE
SENDSIZE

===> T3767
==> PDATD
==> 3767
==> YES
==>. YES
==> YES
==> YES
==> 256
==> NO
==> 12,S0
==> YES
==> YES
==> YES
==> 256
==> 256

BIND SENT BY CICS : 010303B1 9030S000 000000a0 e0010000

**
9) 3650 INTERPRETER LU

(SESTYPE = USERPROG BRACKET = YES)
************************************t**~**************************

S3650A MOOEENT LOGMODE=S3650A,
TYPE=1,
FMPROF=X'04',
TSPROF=X'04',
PRIPROT=X'31',
SECPROT=X'30',
COMPROT=X'6000'

TERMINAL definition

AUTINSTNAME
AUTINSTMODEL
GROUP
TYPETERM
INSERVICE

==> M3650A
==> ONLY
==> PDATD
==> T3650A
==> YES

3650 SESTYPE=USERPROG
BRACKET=YES

Appendix D. Coding entries In the VTAM LOGON mode table 551

TYPETERM definition

TYPETERM
GROUP
DEVICE
SESSIONTYPE
ROUTEDMSGS
FMHPARM
RELREQ
DISCREQ
BRACKET
RECEIVESIZE
IOAREALEN
ATI
TTl
AUTOCONNECT

==> T3650A
==> PDATD
==> 3650
==> USERPROG
==> SPECIFIC
==> YES
:::=> YES
==> YES
==> YES
==> 256
==> 256,256
==> YES
==> YES
==> NO

BIND SENT BY CICS : 01040431 30600000 00000080 00000000

**
10) 3650 HOST CONVERSATIONAL (3270) LU
**

S3650B MODEENT LOGMODE=S3650S,
TYPE=I,
FMPROF=X' 04' ,
TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X'90',
COMPROT=X'6000'

TERMINAL definition

AUTINSTNAME
AUTINSTMODEL
GROUP
TYPETERM
INSERVICE

==> M3650Bl
==> ONLY
==> PDATD
==> T3650Bl
==> YES

TYPETERM definition

TYPETERM ==> T3650Bl
GROUP ==> PDATD
DEVICE ==> 3650
OBFORMAT ==> YES
SESSIONTYPE ==> 3270
RELREQ ==> YES
DISCREQ ==> YES
IOAREALEN ==> 256
BRACKET ==> YES
RECEIVESIZE ==> 240
ATI ==> NO
TTl ==> YES

3650 SESTYPE=3270
AND SESTYPE=3653

BIND SENT BY CICS : 01040381 90600000 00000080 00000000

552 CICS/MVS 2.1.2 Customlzatlon Guide

~***********

11) 3650 HOST CONVERSATIONAL (3653) LU
(N.B. LOGMODE SAME AS HC (3270) LU)

**

53650B MODEENT LOGMODE=S3650B,
TYPE=I,
FMPROF=X' 04' ,
TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X'90',
COMPROT=X'6000'

TERMINAL definition

AUTINSTNA~1E

AUTINSTMODEL
GROUP
TYPETERM
INSERVICE

==> M3650B2
==> ONLY
===> PDATD
==> T3650B2
:::=> YES

TYPETERM definition

TYPETERM ==> T365082
GROUP :::=> PDATD
DEVICE ===> 3650
5ESSIONTYPE ==> 3653
RELREQ ==> YES
DISCREQ ==> NO
BRACKET ==> YES
IOAREALEN ==> 256
RECEIVESIZE ==> 240
ROUTEDMSGS ==> NONE
AT! ==> NO
TTl ==> YES

3650 SESTYPE=3270
AND SESTYPE=3653

BIND SENT BY CICS : 01040381 90600000 00000080 00000000
**
12) 3650 HOST COMMAND PROCESSOR LU

(SESTYPE :: USERPROG BRACKET = NO)
**

S3650C MODEENT LOGMODE=S3650C,
TYPE=1,
FMPROF=X '04' ,
TSPROF=X'04',
PRIPROT=X'30',
SECPROT=X'30',
COMPROT=X'4000'

3650 SESTYPE=USERPROG
BRACKET=NO

Appendix D. Coding entries In the VTAM LOGON mode table 553

TERMINAL definit10n
**************.**.*******

AUTI NSTNAME
AliTINSTMODEL
GROUP
TVPETERM
INSERVICE

III.,> M365ac
111111> ONLY
l1li111> PDATD
.111> "365ac
III.> YES

TYPETERM definition

TVPETERM
GROUP
DEVICE
SESSIONTYPE
BRACKET
RELREQ
DISCREQ
RECEIVESIZE
IOAREALEN
An
TTI

IIIIM> T3650C
111'111> PDATD
nrrt> 3650
II.> USERPROG
811> NO
.111> NO
1111> NO
=-> 256
.111> 256
NIII> YES
11111> YES

BIND SENT BY eleS : a1a4043a 3a4eaeae aaeeeeee e0eeaeea
*************.********************.**************************.****
13) 8815 SCANMASTER (LU6.2 SINGLE SESSION)
****.* •••• ***** •• **********~****************.******.**************

SlN62 MODEENT LOGMODE-SIN62, e815 SCANMASTER.
TYPEIIII0.
FMPROF-X' 13' t

TSPROF-X'a7',
PRIPROT-X'Ba',
SECPROTIII!X'B0',
COMPROTIIIX' 5081'.
PSNDPAC-X'aa',
SRCVPAC·X'0a',
SSNDPAC-X'aa'.
RUSIZES.,X'8585',
PSERVIC-X'ae02ae0eaaa0aaa0ae002Cea'

TERMINAL definition
*****************.*******

AUTINSTNAME ro_> MLU62
AUTINSTMODEL .n> ONLY
GROUP mill> PDATD
TYPETERM .. => SINLU62
INSERVICE .=> YES

554 CICS/MVS 2.1.2 Customlzatlon Guide

TYPETERM definition

TVPETERM nm> SINLU62
GROUP .m> PDATD
DEVICE .n> APPC
RECEIVESIZE •• > 2e48
SENDSIZE •• > 2e48
ATI --> YES
TTl ._> YES
Note: There is no ROO keyword equivalent of the MACRO
keyword 'FEATURE-SINGLE', because this is assumed with
ROO DEFINE TYPETERM when DEVICE-APPC.
BIND SENT BY CICS : aa13a7Be Ba5aB1ae ea85858e eee6e2ae

eeeeeeee eeeeee2C eeeee8ee eeeeeeee
aaaeaal0 eae9a240 4e4e4e4e 4a4e4aa9
a3aa6765 71098A6C 3ae7e4C3 C9C3E2E6
Fleeaaae eaeeeeee aeeaaaae aeeaeaea

**
14) 32ge (SOLC)
**

532ge MOOEENT LOGMODE-S329a, 3299 SOLe
TVPE-l,
FMPROF-x'e3',
TSPROF-x'a3'.
PRI PROT-X 'Bl' •
SECPROT-X'ge'.
COMPROT"X'3a8e',
RUSIZES·X'8787'.
PSERVIC.X'a28aeeaaeeae18593EAa7FeeI

TERMINAL definition

AUTI NSTNAME
AUTINSTMODEL
GRO~P
TYPETERM
INSERVICE

•• > M329a
_.> ONLY
•• > PDATD
._> T32ge
•• > YES

Appendl:< D. coding entries In the VTAM LOGON mode table 555

TYPETERM definition

TYPETERM ==> T3290
GROUP ==> PDATD
DEVICE ==> LUTYPE2
TERMMODEL ==> 2
ALTSCREEN ==> 62,160
DEFSCREEN ==> 24,80
AUDIBLEALARM ==> YES
UCTRAN ==> YES
IOAREALEN ==> 2000,2000
ERRLASTLINE ==> YES
ERRINTENSIFY ==> YES
USERAREALEN ==> 32
ATI ==> YES
TTl ==> YES
LOGONMSG ==> YES
ERRHILIGHT ==> BLINK
RECEIVESIZE ==> 1024

BIND SENT BY CICS : 010303B1 90308000 00878780 00028000
00000018 503EA07F 00000000 00000000

**
15) 3601 WITH A 3604 ATTACHED
**

S3600 MODEENT LOGMODE=S3600,
TYPE=1,
FMPROF=X 104 1,
TSPROF=X ' 04 1,
PRIPROT=X'B1 1,
SECPROT=X'B0 1,
COMPROT=X ' 7000 1,
RUSIZES=X ' 0000 1

TERMINAL definition

AUTINSTNAME
AUTINSTMODEL
GROUP
TERMPRIORITY
TYPETERM
INSERVICE

556 CICS/MVS 2.1.2 Customization Guide

==> M3600
==> ONL.Y
==> PDATD
::=> 50
==> T3600
=:=> YES

3601

TYPETERM definition

TYPETERM
GROUP
DEVICE
AUTOPAGE
PAGESIZE
RELREQ
DISCREQ
IOAREALEN
SENDSIZE
RECEIVESIZE
USERAREALEN
ATI
TTl

,..=> T3600
==> PDATD
==> 3600
==> NO
==> 6,40
==> YES
==> NO
==> 256
==> 224
==> 256
==> l00
==> NO
==> YES
==> YES BRACKET

LDCLIST ==> BMSLLDC1

Needs LDC declaration in TCT

BMSLLDC1 DFHTCT TYPE=LDCLIST,
LDC=(DS,JP,PB=5,LP,MS)

DFHTCT TYPE=LDC,
LDC=(DS=1),
DVC=3604,
PGESIZE=(6,40),
PGESTAT=PAGE

DFHTCT TYPE=LDC,LDC=SYSTEM

BIND SENT BY CICS : 01040491 90700000 00000080 00000000

Appendix O. Goding entries In the VTAM LOGON mode table 557

**
16) LUTYPE 2- Model 2 - X'7EI in last byte of PSERVIC
**
SP32772 MODEENT LOGMODE=SPECLU2, (NO QUERY)

TYPE=I, Only Type Recognized
FMPROF=X I03 1

, SNA
TSPROF=X'03', Non-SNA
PRIPROT=X'Bl', Primary Protocol
SECPROT=X'B0', Secondary Protocol
COMPROT=X'3080', Common Protocol
RUSIZES='85C7',
PSERVIC=X'020000000000185000007E00'

TERMINAL Definition

AUTINSTNAME ==> SPLU20
AUTINSTMODEL ==> ONLY
GROUP ==> SPDATD
TYPETERM ==> SPLU2

TYPETERM Definition

TYPETERM
GROUP
DEVICE
DEFSCREEN
ALTSCREEN
TERMMODEL
EXTENDEDDS
QUERY
RECEIVESIZE
SENDSIZE

::::=> SPLU2
==> SPDATD
==> LUTYPE2
==> (0,0)
==> (0,0)
==> 2
==> NO
==> NO
==> 256
==> 1536

BIND Built by CICS 010303Bl B0308000 0085C780 00020000
00000018 5000007E 00009300 00300000

BIND SENT BY CICS : 010404Bl B0700000 00000080 00000000

558 CICS/MVS 2.1.2 Customlzatlon Guide

Using the X'7E' PSERVIC value for LUTYPE2 devices
The technique shown in the figure below is valid only when AL TSCREEN(O,O) and
QUERY(NO) are also specified.

LUTYPE 2

VTAM CICS
._-,---_._- --+---- .-.-----. -----

MODEL DEFSCREEN ALTSCREEN MODEL DEFSCREEN ALTSCREEN
._-.--t---

X'00' X'0C28' X'0000'

X'1850 1 X'0000'

X'7E' X'0C28' X'0000'

X'01' IMPLIED
12 BY 40

X '02' IMPLIED
24 BY 80

0,0

0,0

-+------
X'01' IMPLIED O,0

12 BY 40
.----f-------t-----;---------t----

X'1850' X'0000' X'02' IMPLIED 0,0
24 BY 80

-----+-----+---jf-------f------i

X'NNNN' X'0000' X'00' X'NNNN' 0,0

. ____ --'-__ • __ . ______ . ______ ---L.

Figure 46. Using the X7E' PSERVIC value for LUTYPE2 devices. The two X'NNNN's in
this figure must be equal.

Appendl;< D. Coding entries In the VTAM LOGON mode table 559

Relationship between TERMINAL, TYPETERM, and MODEENT values

1-----1
modename MODEENT LOGMODE==modename,

TYPE=l,
FMPROF=X' .. ' ,
TSPROF=X' .. ' ,
PRIPROT=X I .. I,
SECPROT=X' .. I,
COMPROT=X' "
RUSIZES=X '85C7', l I

These values are
selected from
Figure 45 on page 535
based on device type

PSERVIC=X'02800000000018502B507E00I

TERMINAL definition

AUTI NSTNAME
GROUP
TYPETERM

==> name
==> PDATD
=:=> T3278

TYPETERM definition

==> 13278
===> PDATD
==> LUTYPE2

IL L~ -~ _ ~

-.- Known to user autoi ns ta 11 pgm

]
_________ ...1

TYPETERr~

GROUP
DEVICE
QUERY
EXTENDEDDS
DEFSCREEN
ALTSCREEN
RECEIVESIZE
SENDSIZE

:==> YES I COLD ---
=::> YES

560 CICS/MVS 2.1.2 Customization Guide

==> 24,80
==> 43,80
==> 256
==> 1536

-----_._._----------
LOGMODE definitions for CICS-supplied autoinstall models

This section contains LOGMODE definitions which match the supplied model
TYPETERM/TERMINAL autoinstall definitions. The name of the LOGMODE entry
is that of the matching TYPETERM definition.

DFHLU3 MODEENT LOGMODE=DFHLU3, LU TYPE 3 PRINTER.
TYPE=l,
FMPROF=X '03',
TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X' B0' ,
COMPROT=X'3080',
RUSIZES=X'8585',
PSERVIC=X '038000000000000000000200 ,

OFHSCSP MODEENT LOGMODE=DFHSCSP, LU TYPE 1 SCS PRINTER
TYPE=l,
FMPROF=X '0.3',
TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X'B0',
COMPROT=X'7080',
RUSIZES=X'8585',
PSERVIC=X'010000010000000000000000'

UFHLU62T MODEENT LOGMODE=DFHLU62T, LU6.2 SINGLE-SESSION
TYPE=0,
FMPROF=X '13' ,
TSPROF=X'07',
PRIPROT=X'B0',
SECPROT=X'B0',
COMPROT=X'50B1' ,
RUSIZES=X'8888',
PSERVIC=X'060200000000000000002C00'

DFH3270 MODEENT LOGMODE=DFH3270, 3270
TYPE=1,
FMPROF=X'02',
TSPROF=X'02',
PRIPROT=X'71',
SECPROT=X'40',
COMPROT=X'2000',
RUSIZES=X'F700'

DFH3270P MODEENT LOGMODE=OFH3270P, 3284/3286 BISYNC 3270P (QUERY)
TYPE=1,
FMPROF=X'02',
TSPROF=X'02',
PRIPROT=X'71',
SECPROT=X'40',
COMPROT=X'2000',
RUSIZES=X'F700'

Appendix D. Coding entries In the VTAM LOGON mode table 561

DFHLU2 MODEENT LOGMODE=DFHLU2, SNA LUTYPE2 3270
TYPE=!,

562 CICS/MVS 2.1.2 Customlzatlon Guide

FMPROF=X'03',
TSPROF=X'03',
PRIPROT=X'Bl',
SECPROT=X'B0' ,
COMPROT=X'30a0',
RUSIZES=X'85C7',
PSERVIC=X'02Se0000ee0e0e0eeeee0300'

Glossary

This glossary includes definitions developed by the
American National Standards Institute (ANSI). This
material is reproduced from the American National
Dictionary for Information Processing, copyright 1977
by the Computer and Business Equipment
Manufacturers Association, copies of which may be
purchased from the American National Standards
Institute, 1430 Broadway, New York, New York 10018.
ANSI definitions are preceded by an asterisk (*).

This glossary is also intended to give definitions of
the most frequently used abbreviations. The
CICSIMVS Problem Determination Guide (which gives
descriptions; in alphabetic order, of eles storage
areas) may also be useful to the reader seeking
explanations of abbreviated names.

No attempt is made here to define the abbreviations
used in elcs commands and macros.

abend. Abnormal end of task.

ACB. Access method control block (vrAM and
VSAM).

ACF. Advanced communication facility.

ACP. Abnormal condition program.

ACT. Application control table (DUI).

AFCB. Authorization facility control block.

AID. Automatic initiate descriptor (CICS) or attention
identifier.

ALT. Application load table.

ANS. American National Standard.

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

APF. Authorized program facility.

* ASCII. (American National Standard Code for
Information Interchange) The standard code, using a
coded character set consisting of 7-bit coded
characters (8 bits including parity check), used for
information interchange among data processing
systems, data communication systems, and
associated equipment. The ASCII set consists of
control characters and graphic characters.

ATI. Automatic task initiation.

© Copyright IBM Corp. 1977, 1990

BDAM. Basic direct access method.

BFP. Built-in functions program.

BGAM. Basic graphics access method

BLL. Base locator linkage (COBOL).

BMP. Batch message processing program (IMS).

BMS. Basic mapping support.

BSAM. Basic sequential access method.

BSC. Binary synchronous communication.

BTAM. Basic telecommunications access method.

CAVM. CICS availability manager, the program that
coordinates the processing of the active and alternate
systems in an XRF environment.

CCB. Command control block.

CCE. Console control element.

COBOL. Common business-oriented language. A
business data processing language.

command. In CICS, an instruction similar in format to
a high-level programming language statement.
Contrast with!lli!£[Q. CICS commands invariably
include the verb EXECUTE (or EXEC).

CRH. Channel reconfiguration hardware.

CSA. Common storage area.

CSD. CICS system definition file.

CSKP. CICS activity keypoint program (DFHAKP).

CSMT. CICS-supplied transaction provided by the
master terminal.

CSO. Control system operational group.

CSS. Control system service group.

CSTE. Destination used by the terminal abnormal
condition group (DFHTACP).

CU. Operand of the terminal control table specifying
the control unit attached to the channel.

DAM. Direct access method.

563

DASD. Direct access storage device.

DBD. Database definition.

DBfDC. Database/data communication.

DBP. Dynamic backoutprogram.

DBR. Dynamic backout record.

DCA. Dispatch control area.

DCB. Data control block (operating system).

DCP. Dump control program.

OCT. Destination control table.

DEB. Data extent block.

DECB. Data event control block (operating system).

DFC. Data flow control.

DIP. Data interchange program.

DLII. Data languagell.

DMB. Data management block (DUI).

DMH. Device message handler.

DSA. Dynamic storage area.

DSECT. Dummy section defining a CICS data area.

DTB. Dynamic transaction backout.

DTP. Distributed transaction processing.

OWE. Deferred work element.

• EBCDIC. Extended binary-coded decimal
interchange code. A coded character set consisting
of 8-bit coded characters.

ECB. Event control block (operating system).

EDF. Execution (command level) diagnostic facility.

EIB. EXEC interface block.

EIP. EXEC interface program.

EIS. EXEC interface storage.

EMP. Event monitoring point.

EOT. End of transmission.

EREP. Error recording, editing, and printing.

564 CICS/MVS 2.1.2 Customizatlon Guide

ESDS. Entry-sequenced data set (VSAM).

ESE. Error status element.

ESTAE. Extended specify task asynchronous exit.

ETX. End-of-text character.

EXEC. EXECUTE (as used in a CICS command).

EXP. Command (EXEC) language translator program.

FAQE. Free area queue element.

FBA. Fixed block architecture.

FBWA. File browse work area.

FCP. File control program.

FCT. File control table.

FIOA. File input/output area.

FME. Function management end.

FMH. Function management header (SNA).

FWA. File work area.

GAM. Graphics access method.

GAP. Graphics attention program.

GTF. Generalized trace facility.

HLL. High-level language.

HLPI. High-level programming interface (CICS
command-level interface).

HPO. High-performance option.

ICE. Interval control element.

ICP. Interval control program.

ICR. Independent component release.

10. Identity.

IMS. Information Management System.

Intercommunication facilities. A generic term
covering ISC and M RD.

110. Input/output (primarily from and to terminals).

IRC. (1) Interregion communicator. (2) Interregion
communication access method for DUI shared

database support and for region remote connections
with MRO.

IRS. Interchange record separator.

ISA. Initial storage area (PUI).

ISB. Interface scheduling block (OUI).

ISC. Intersystem communication - communication
between separate systems by means of SNA
networking facilities.

JC. Journal control.

JCA. Journal control area.

JCL. Job control language.

JCP. Journal control program.

JCR. Journal control record.

JCT. Journal control table.

JCTIE. Journal control table table entry.

journal. A set of one or more data sets to which
records are written in chronological sequence during
a elcs run, including the system log

KB. Kilobyte. 1024 bytes.

KCP. Task control program.

keypolnt. A point at which the system status is
recorded.

KP. Keypoint.

KSOS. Key-sequenced data set.

LOC. Logical device code.

LEeB. Line event control block.

LERAO. Logical error address.

LIFO. Last-in/first-out (storage).

L10A. Line input/output area.

LLA. Load list area.

LUW. Logical unit of work.

macro~ In CICS, an instruCtion (similar in format to
an assembler language instruction) that causes CICS
to process a predefined set of statements called a
macro definition. (Contrast with command.)

map. In CICS, a format established for a page or a
portion of a page.

master terminal operator. Any CICS operator whose
security key(s) allow use of the master terminal
functions transaction.

MB. Megabyte. 1 048 576 bytes.

MCB. Message control block.

MCP. Message control program.

MCR. Message control record.

MCT. Monitoring control table.

MH. Message handler.

MRO. Multiregion operation. Communication
between CICS systems in the same processor without
the use of SNA networking facilities.

MSG. Message.

MTP. Master terminal program.

multlreglon operation. Communication between CICS
systems in the same processor without the use of
SNA networking facilities.

NACP. Node abnormal condition program.

NCP. Network control program.

NEB. Node error block.

NET. Node error table.

NIB. Node initialization block (VTAM).

NL. New line.

NL T. Nucleus load table.

OL TEP. Online Test Executive Program.

OSPWA. Output services processor work area.

OS. Operating System.

PAM. Page allocation map.

part. With reference to journals, the set of records
contained in one data set of the journal, and covering
a determinable interval of time.

PCB. OUI-CICS program communication block.

Glossary 565

PCLOCK. Operand of the monitoring control table,
specifying that the clock specified by number is to be
stopped,

PCT. Program control table. The table defines the
transactions known to the system.

PEP. Program error program (usually user-written).

PGT. Program global table (COBOL).

PGM. Program.

PIE. Program interrupt element (operating system).

11 PL/I. A programming language designed for use in
a wide range of commercial and scientific
applications.

PL T. Program list table.

PPT. Program processing table. Defines all the
application programs and maps in the system, and
also various CICS modules and tables.

processor. Host processing unit.

PSB. Program specification block (DUI).

PSW. Program status word.

PTF. Program temporary fix.

QEA. Queue element area.

RACF. The Resource Access Control Facility
program product.

region. A section of the dynamic area that is
allocated to a job step or system task. In this manual,
the term is used to cover address spaces as well as
regions.

RH. Request/response header.

RLN. Relative line number.

RMSR. Recovery management support recording
(BTAM).

.. rollback. A programmed return to a prior
checkpoint.

RPL. Request parameter list.

RRN. Reached recovery node.

RSA. Register save area.

566 CICS/MVS 2;1.2 Customlzation Guide

RU. Request unit.

SAA. Storage accounting area.

SAM. Sequenti at access method.

SCLOCK. Operand of the monitoring control table,
specifying that the clock specified by number is to be
started.

SCPo Storage control program.

SCS. SNA character stream.

SOLC. Synchronous data link control.

SOT. Series definition table.

Service Level Reporter II. A data reduction and
analysis program product (program number
5740-DC3). Useful for analyzing cles operating
statistics.

SIT. System initialization table.

SLR. Service Level Reporter.

SMF. System management facilities.

SMI. Standard message indicator~

SNA. Systems network architecture.

SNT. Sign-on table.

SOS. Short on storage.

SPIE. Specify program interrupt element.

SRB. Service request block (MVS);

SRP. System recovery program.

SRT. System recovery table.

STAE. Specify task asynchronous exit.

starter system. A set of pregenerated programs
provided as part of the eles program product.

supervisory terminal operator. Any eles operator
whose security key(s) allow use of the supervisory
terminal functions .

SVC. Supervisor call.

TACS. Transaction abend control block.

TACLE. Terminal abnormal condition line entry.

task. (1) A unit of work for the processor; therefore
the basic multiprogramming unit under the control
program. (CICS runs as a task under MVS.) (2)
Under CICS, the execution of a transaction for a
particular user. Contrast with transaction.

TBP. Transaction backout program.

Te. Terminal control.

TeA. Task control area.

TeAM. Telecommunications access method.

TCB. Task control block.

Tep. Terminal control program.

TCT. Terminal control table.

TCTLE. Terminal control table line entry.

TeTSE. Terminal control table system entry.

TCTTE. Terminal control table terminal entry.

TCU. Terminal control unit.

TOP. CICS transient data program.

TEB. Terminal error block.

TEP. Terminal error program.

TGT. Task global table (COBOL).

TIOA. Terminal input/output area.

TMA. Task monitoring area.

TP. Teleprocessing (subpool).

TR. Transaction restart.

transaction. A transaction may be regarded as a unit
of processing (consisting of one or more application
programs) initiated by a single request, often from a
terminal. A transaction may require the initiation of

one or more tasks for its execution. Contrast with
task.

transaction Identification code. Synonym for
transaction identifier. For example, a group of up to
four characters entered by an operator when
selecting a transaction.

transaction Identifier. Synonymous with transaction
identification code.

TRP. elcs trace control program.

TS. Temporary storage.

TSP. elcs temporary storage program.

TST. Temporary storage table.

TSUT. Temporary storage unit table.

TTR. Track/record (disk address).

TWA. Transaction work area.

UEI. User exit interface.

UIB. User interface block (OLII).

URL. User route list.

VS. Virtual storage.

VSAM. Virtual storage access method.

VSWA. VSAM work area.

VTAM. Virtual telecommunications access method.

WRE. Write request element.

WTO. Write-to-operator.

XA. Extended architecture

XL T. Transaction list table.

XRF. Extended recovery facility.

Glossary 567

Index

A
abend

abend/restart, TCAM 224
codes 43
exit creation 43
transaction bit 100

abnormal conditions
in terminal error programs 94
sample node error program 123
sample terminal error program 73
user-written node error programs 133

abnormal termination 43
ACB (VTAM) 188
access method control block (VTAM) 188
ACCESSMETHOD option

for files 431
for system entries 446
for terminals 440

ACCMETH operand 27, 187
ACCMETH=VTAM operand

DFHTCT TYPE= INITIAL 188
ACF/VTAM

access method control block (ACB) 188
action flags set by DFHZNAC

descriptions 119
application routing failure 122
APPLI 0 operand 188
ATI option 199
AUTOCONNECT 189
automatic installation 249
BMS 201
BUILDCHAIN option 191
CHNASSYoperand 191
CINIT request. unit 255
CLSDST PASS function 122
CONNECT 189
DFHPCT TVPE=OPTGRP 194
DFHTC CTYPE=COMMAND 187
DFHTC CTVPE=STATUS 199
DFHTCP, DFHZCP 187
DFHZNAC logging facility 122
dummy DFHZNEP 111
DVSUPRT operand 198
emergency restart 196
entries in LOGON mode table 535
error-handling 110

DFHZNAC/OFHZNEP interface 110
DFHZNAC/DFHZNEP interface action flags 111

ISTINCLM values 537
I/O error handling

DFHZNAC/DFHZNEP 197

© Copyright IBM Corp. 1977, 1990

ACFIVTAM (continued)
JFILEID operand 199
logical record presentation 201
logical units with CICS 185

system programmer requirements 185
mapping individual records and entire chains 201
message cache 197
message logging 193
message option groups 194
message protection processing 194
message recovery

during a catastrophic failure 193
message recovery and emergency restart 192
message switching 203
MSGJRNL operand 199
MSGPREQ operand 194
node abnormal condition program (DFHNACP) 197
node error program (DFHZNEP) 123
node initialization block (NIB) 188
noncatastrophic failures 197
non protected tasks 193
protected tasks 193
PSERVIC values 541
RAMAX operand 190, 191
RAPOOL operand 190
RECEIVE macro 190
RECEIVESIZE option 191
RELREQ exit-routine 189
RPL pool size 202
RPLs 190
RUSIZE operand 191
session failures

user-written NEPs 136
SNA commands 187
SNA commands (indicators) 247
SNA session 189
statistics 202

error count 202
read count 202
short-on-storage condition count 202
write count 202

terminal control, DFHTC macros 198
transaction class 198
transaction options 198
tr ansaction-c1 ass error-handling routine 118
TRMIDNT operand 203
TRMSTAT operand 199
user exit routines 200
XZCA IT exit 200
XZCIN exit 200
XZCOUT exit 200

569

ACFNTAM (continued)
XZCOUT1 exit 200

ACQSTATUS option
for system entries 446
for terminals . 440, 444

action bits, TACLE 99
action flag names, DFHTEP 79
action flags set by DFHZNAC

descriptions 119
ACTIVE option

for modenames 449
adapter (see task-related user exits)
ADD option

for files 433
ADDRESS command 423
addressing the user task-related user exit program

parameter list
DFHUEXIT TYPE = RM macro 348

administration of task-related user exits 346, 360
ADYN transaction 494
AKP option

for system attributes 452
ALEXIT, SIT operand and override parameter 279
ALTSCREEN 252
AMAXTASKS option

for system attributes 452
ANSWRBK operand 27
application program invocation of CEMT 483
application program parameters in task-related user

exits 351
APPLID operand

ACF/VTAM 188
ASA option for system spooler 473
ASMBLR operand 6
ASSIGN command 423,424
asynchronous processing

security aspects 385
ATloption

ACF/VTAM 199
ATISTATUS option

for terminals 440
AUTINST operand

for DFHSIT 254
AUTOCONNECT option 189
autoinstall 249
AUTOINSTALL operand

for CEMT INQUIREISET 254
automated operation

exit to assist 327
automatic

task initiation ACF/VTAM (ATI) 199
automatic installation of terminals 249
automatic installation of terminals (autoinstall)

assembler example 261
AUTINST operand for DFHSIT 254

570 CICS/MVS 2.1.2 Customization Guide

automatic installation of terminals (autolnstall)
(continued)

AUTOINSTALL operand for CEMT
INQUIREISET 254

COBOL example· 266
customizing the example 272
example programs 260
parameter list at logon 255
PUI example 270
suggestions for use 260
user program 249

action at delete 259
action on return 258
information returned to CICS 257
parameter list at INSTALL 254
processing 256
testing and debugging 260

AUTOTRN operand 28
AVAILABLE option

for modenames 449

B
backout, dynamic transaction backout 53
BASEDSNAME option

for files 431
basic mapping support (BMS) program 14
batch data interchange program (DIP) 18
batch processing, TeAM SNA 208
BFP, built-In functions program 13
binary synchronous communication (BSC) 230
BLOCKFORMAT option

for files 431
BLOCKKEYLEN option

for files 431
BLOCKSIZE option

for files 431
BMS logical units 201
BMSFUNC operand 14
BMS, basic mapping support program 14
browse

for CONNECTION 447
for files 434
for modenames 450
for programs 455
for system entries 447
for terminals 443
for transactions 458

BROWSE option
for files 433

esc (binary synchronous communication) 230
BSCODE operand 28
BTAM

terminal errors
terminal abnormal condition program 71
terminal control program 71

BTAM (continued)
terminal errors (continued)

terminal error program 71
BTAMDEV operand 28
buffer

BUFFER operand 191
depletion, 3600 BSC 236
SENDSIZE option 191

BUILDCHAIN option
of CEDA DEFINE tyPETERM 191

built-in functions (BFP) program 13

C
CAA operand 16
calling program's registers 355
CEBT function in the overseer program 153
CEDA (see under separate options)
CEMT

EXEC CICS LINK to DFHEMTA (see also INQUIRE
and SET) 483

programmable interface to 483
CEMT INQUIREISET

AUTOINSTALL operand 254
chain assembly

CHNASSYoperand 30
CHECK operand 488
CHNASSYoperand 30

logical units 191
CICS monitoring parameters in task-related user

exits 352
CICS-value data-areas 424

for INQUIRE and SET commands 424, 461
CICSSVC operand 6
CINIT request unit 255
CINIT, VTAM 251

DFHSIT GRPLIST operand 252
class 471
CLASS operand

DFHEMP TYPE = ENTRY macro 393
CLASS option for system spooler 473
clock fields (performance data only) 396

PCLOCK 396
SCLOCK 396

clock, definition
for monitoring 407

CLOSED option
for files 438

closing data sets and files, DFHOC
TYPE = CLOSE 491

closing journal data sets, DFHJC TYPE = CLOSE 161
CLSDST PASS 122
CMP (monitoring control program)

data formats 399
data records produced 406

CMP (monitoring control program) (continued)
task-related user exits 416

CODE operand
DFHSNEP TYPE= ERRPROC 130
DFHTEPM TYPE = ERRPROC 86
DFHTEPT TYPE = BUCKET 93
DFHTEPT TYPE == PERMCODE/ERRCODE 90

COMMAND operand 248
command option (logical units), DFHTC

CTYPE==COMMAND 247
command (EXEC) language translator program

(EXP) 19
common subroutine vector table 124, 132
common system area (CSA) 15
communication control byte(s) 207, 219
CONNECT operand 189
connection attributes

access using command level programming
interface 446

browsing 447
CON N ECTION option

for modenames 450
for system entries 446

CONNSTATUS option
for system entries 446

control system operational (CSO) group 15
control system service (CSS) group 16
control system utility (CSU) group 16
CONVTAB operand 30
count

fields 395
limits, default threshold for TEP 90

COUNT operand
DFHSNET macro 129
DFHTEPT TYPE = PERMCODE/ERRCODE 90

CQRY 252
CREATE (setting in NEP) 120
CREATESESS option

for terminals 441
CRTE 385
CSA, common system area 15
CSNE transaction 110
CSO, control system operational group 15
CSS, control system service group 16
CSU, control system utility group 16
CS = NO operand

DFHSNEP TYPE = INITIAL 127
CTYPE=CHECK operand, DFHTC 246
CTVPE=COMMAND operand, DFHTC 247
CTYPE = LOCATE operand, DFHTC 238
CTYPE = STATUS operand, DFHTC 244
CUSHION option

for system attributes 452
customizing the overseer program 152

Index 511

CVDA
for INQUIRE and SET commands 424, 461

D
data collection, by user

organizing 394
specifying processing at EMPs 394

data format
accounting class 408
exception class 415
monitoring facilities 399
performance class 409
TCAM 210

data sets
phonetic codes and keys 499

DATASET operand
DFHOC TYPE..,. CLOSE 491
DFHOC TYPE == OPEN 488

DATASET- DUMP operand 492
DATAl operand

DFHEMP TYPE- ENTRY macro 393
DATA2 operand

DFHEMP TYPE- ENTRY macro 393
DBLID values 149
DBP, dynamic transaction backout program 17
DCP, dump control program 18
DO card correlation TCAM 209
DEBCHK operand 6
DECB, terminal error program

information 80
operand 80

default
actions taken by DFHTACP

TeAM 218
threshold count limits 90
transaction-class routine 133

DEFAULT operand
DFHZNEPI TYPE = INITIAL 133

deferred write 196
define terminal error blocks, OFHTEPT

TYPE = PERMTID 89
DEFINE=TYPETERM

using CEDA 189
definite response type 1 192
definite response type 2 192
DELETE option

for files 433
DELETE option for system spooler 474
destination identification

DSETID, DFHOC 489, 491
device message handler 206
DEVICE operand 31
DEVICE option

for terminals 441

572 CICS/MVS 2.1.2 Customizatlon Guide

DFHACEE - security identification module 382
DFHBIF TYPE == PHONETIC 499
DFHCMP (see CMP)
DFHDBP

dynamic transaction backout program 53
DFHDLBP

DL/I backout program 59
DFHEMP TYPE == ENTRY 393
DFHEMP TYPE == ENTRY macro

CLASS operand 393
DATAl operand 393
DATA2 operand 393
10 operand 393
RDATAl operand 394
RDATA2 operand 394

DFHEMTA 483
DFHFCBP

file control backout program 59
DFHJC TYPE = CLOSE 161

IDERROR operand 161
IOERROR operand 161
JFILEID operand 161
LEAVE operand 161
NORESP operand 161
STATERR operand 162
TYPE=CLOSE operand 161

DFHJC TYPE=GET 162
EOFADDR operand 163
IDERROR operand 163
INVREQ operand 163
IOERROR operand 163
JFILEID operand 163
NORESP operand 163
NOTOPEN operand 164
STATERR operand 164
TYPE == G ETB/G ETF !NOTE/POI NT operand 162
VOLERR operand 164

DFHJC TYPE == OPEN 158
IDERROR operand 158
INVREQ operand 158
IOERROR operand 158
JFILEID operand 159
NOR ESP operand 159
SIVOL =: YES operand 159
STATERR operand 159
TYPE = OPEN operand 158
VOLERR operand 159
volume error 159
VOLUME operand 159

DFHJCRDS DSECT
field names 170

DFHMCT TYPE = EMP macro 394
DFHMSCAN 481
DFHNET

default node error table name 127, 129

DFHNET (continued)
DSECTs 131

DFHOC TYPE =- CLOSE 491
DATASET operand 491
DSETID operand 491
TYPE=CLOSE operand 491

DFHOC TYPE == OPEN 487
CHECK operand 488
DATASET operand 488
destination identification 489
DSETID operand 489
LlSTADR operand 489
SYMBADR operand 491
TYPE = OPEN operand 488

DFHOC TYPE SWITCH
DATASET = DUMP operand 492
TYPE = SWITCH operand 492

DFHOSD data set 143
DFHPC TYPE-SETXIT macro 47
DFHPEP (program error program)

source code 52
writing 51

DFHQRY 252
DFHRTY (transaction restart program) 57
DFHSG TYPE=FINAL 39
DFHSG TYPE= INITIAL 5
DFHSG TYPE PROGRAM 13
DFHSG (system generation) macro instruction

basic mapping support (BMS) program 14
batch data interchange program (DIP) 18
built-in functions (BFP) program 13
command (EXEC) language translator program

(EXP) 19
common system area (CSA) 15
control system operational (CSO) group 15
control system service (CSS) group 16
control system utility (CSU) group 16 .
dump control program (DCP) 18
dynamic transaction backout (DBP) program 17
exec interface program (EIP) 18
graphics attention program (GAP) 20
high-level language support (HLL) group 20
initialization 5
intercommunication (ISC) group 21
interval control program (ICP) 21
journal control program (JCP) 22
keypoint program (KPP) 22
master terminal program (MTP) 23
pregenerated system generation (PREGEN) 23
program control program (PCP) 23
storage control program (SCP) 24
system recovery program (SRP) 24
task control program (KCP) 22
temporary storage control program (TSP) 37
terminal control program (TCP) 25, 187

DFHSG (system generation) macro instruction
(continued)

termination 39
trace control program (TRP) 36
transaction backout program (TBP) 24
transient data control program (TOP) 36

DFHSICOM macro 373
DFHSIP 187
DFHSIT

AUTINST operand 254
EXITS::: YES 360
TYPE =0 CSECT 187

DFHSIT macro
GRPLIST operand 252

DFHSNEP TYPE = DEFILU
TYPE- DEFILU operand 128

DFHSNEP TYPE = DEF3270
TYPE = DEF3270 operand 128

DFHSNEP TYPE- ERRPROC 130
CODE operand 130
GROUP operand 130
TYPE = ERRPROC operand 130

DFHSNEP TYPE = FINAL 128
DFHSNEP TYPE-INITIAL 114,127

CS = NO operand 127
NAM E operand 127
NETNAME operand 127
TYPE=: INITIAL operand 127

DFHSNEP (sample node error program) 126
DFHSNET macro 129

COUNT operand 129
ESB structure 129
ESBS operand 129
NAME operand 129
NEBNAME operand 129
NEBS operand 129
TIME operand 130

DFHSNT
3741 signon 233

DFHTACP (terminal abnormal condition program) 71
default actions (TCAM) 218
terminal error-handling 71

DFHTC CTYPE=CHECK 246
CTYPE=CHECK operand 246
ERROR operand 246
INVADDR operand 247
INVID operand 247
INVLDC operand 247
INVREQ operand 247
LASTTRM operand 247
NOR ESP operand 247

DFHTC CTYPE=COMMAND 247
ACFNTAM indicators 187
COMMAND operand 248
CTYPE = COMMAND operand 247

Index 513

DFHTC CTYPE-LOCATE 238
CTYPE == LOCATE operand 238
DOMAI N operand 238
ERROR operand 239
find TCTTE 238
INVADDR operand 239
INVID operand 239
LASTTRM operand 239
LDC operand 240
NETNAME operand 240
NORESP operand 241
retrieve LDC information 238

. scan TCT 238
SELECT operand 241
STATUS operand 242
TERM operand 242
TRMADDR operand 243
XLATEID operand 243

DFHTC CTYPE-STATUS 243
CTYPE=STATUS operand 244
ERROR operand 244
INVADDR operand 244
INVID operand 244
INVLDC operand 244
INVREQ operand 244
LASTTRM operand 244
LDC:= YES operand 244
logical units 199
NORESP operand 244
STATUS operand 244
TERM operand 246

DFHTC macros 237
DFHTCBP

message and ISC state recovery 59
DFHTCP, DFHZCP 187
DFHTCT TYPE-TERMINAL 189
DFHTDP, XTOCOUT exit in 327
DFHTEP (see TEP)
DFHTEPM macro examples 87
DFHTEPM TYPE == ENTRY 86
DFHTEPM TYPE - ERRPROC 86

CODE operand 86
TYPE = ERRPROC operand 86

DFHTEPM TYPE == EXIT 86
DFHTEPM TYPE = FINAL 86
DFHTEPM TYPE == INITIAL.

OS ECTPR operand 82
OPTIONS operand 82
PRINT operand 84
TYPE= INITIAL operand 82

DFHTEPT macro examples 93
DFHTEPT TYPE == BUCKET 92

CODE operand 93
TYPE = BUCKET operand 93

574 CICS/MVS 2.1;2 Customlzatlon Guide

DFHTEPT TYPE == FINAL 93
DFHTEPT TYPE == INITIAL 88

MAXERRS operand 89
MAXTIDS operand 88
OPTIONS operand 89
TYPE == INITIAL operand 88

DFHTEPT TYPE - PERMCODE/ERRCODE 90
CODE operand 90
COUNT operand 90
TIME operand 91

DFHTEPT TYPE = PERMTID 89
l'RMIDNT operand 89
lYPE- PERMTID operand 89

DFHTULDS
user standard header and trailer record

layout 178
DFHUAKP (user activity keypoint program) 67
DFHUEPAR (see task-related user exits)
DFHUERTR (see task-related user exits) 350
DFHUEXIT TYPE = RM macro 348
DFHUSBP

user recovery backout program 59
DFHVALUE 424
DFHWOSM macros 145

FUNC = BUILD 146
FUNC=CLOSE 147
FUNC= DSECT 152
FUNC=JJC 152
FUNC=JJS 151
FUNC=OPEN 146
FUNC=OSCMD 150
FUNC==QJJS 151
FUNC - READ 148, 149

DeLiDs 148, 149
FUNC-TERM 150
token values 145

DFHWOS, the overseer module 142
DFHXJCC 179
DFHXJCO 179
DFHXSE - RACF interface module 380
DFHXSP, external security interrace module 377

parameter area 378
requests, list 377
resource class block 380

DFHZATDX example user program 260
assembler listing 261
COBOL listing 266
PUI listing 270
suggestions for use 260

DFHZCB
user exit routines 200

DFHZCP
user exit routines 200

DFHZNAC (node abnormal condition program) 110
action flags set 119

DFHZNAC (node abnormal condition program)
(continued)

execution after XRF takeover 136
logging facility 122
terminal error-handling 117

DFHZNEP (see NEP)
DFHZNEPI macros

DFHZNEPI TYPE ENTRY 134
DFHZNEPI TYPE- FINAL 134
DFHZNEPI TYPE-INITIAl 133

DFHZNEPI TYPE- ENTRY /34
NEPCLAS operand .134
NEPNAME operand 131

transaction-class error-tum ling routine 134
DFHZNEPI TYPE == INITIAL

DEFAULT operand 133
DFH$AXRO, the sample overseer program 142
DFH$MOLS program 398

function 398
operation 399
options 399

dictionary section
monitoring facilities 405

DIP (batch data interchange pmgram) 18
DISABLE command

for global user exits 300
for task-related user exits 363

DISABLED option
for files 437

disconnect switched-line bit 100
display function of the overseer program 140
DISPOSITION option

for files 431
DLI operand

dynamic transaction backout program (DBP) 17
initialization of DFHSG macro 6
transaction backout program (TBP) 25

DLII
.iournal records for 174
sample DFHMCT TYPE = EM P entries 396

DLII error-exit
in DFHDBP 53

DMH (device message handler) 206
DOMAIN operand

DFHTC CTYPE = LOCATE 238
DR1 (definite response type 1) 192
DR2 (definite response type 2) 192
DSECTPR operand 82
DSETID operand 489, 491
DSNAME option

for files 431
dummy node error program (see NEP)
dummy terminal indicator 100
dump control program (DCP) 18

DVSUPRT operand
ACFNTAM 198

DYNALLOC (dynamic allocation sample
program) 493

help feature 495
keywords, abbreviation rules 496
system programming considerations 496
terminal operation 494
values 495

dynamic allocation 472
table entries 494

dynamic allocation of files 487
dynamic allocation sample program (see DYNALLOC)
dynamic close of ACFIVTAM ACB 188
dynamic open/close

closing data sets and files, DFHOC
TYPE = CLOSE 491

DFHOC macros 487
opening data sets and files, DFHOC

TYPE = OPEN 488
switching dump data sets, DFHOC

TYPE = SWITCH 492
dynamic transaction backout

transaction restart 57
user exit program

register usage 55
writing exits 53

dynamic transaction backout (DBP) program 17

E
EDF for task-related user exits 348
EIB function codes

for task-related user exit commands 366
EIB return codes

of INQUIRE and SET commands 464
of system spooler commands 479

EIP (exec interface program) 18
EJECT operand 7
emergency restart

ACFIVTAM 196
deferred write 196
message logging (ACFIVTAM) 196

EMPs
defining

command-level method 392
macro-level method 393

specifying processing at 394
EM PTY option

for files 437
EMPTYSTATUS option

for files 431
ENABLE command

for global user exits 296
for task-related user exits 361

Index 575

ENABLED option
for files 436

ENABLESTATUS option
for files 431

enabling user exits at the start of every CICS
run 360

ENTRY parameter, EXEC CICS ENABLE
command 297, 361

ENTRYNAM E parameter
EXEC CICS DISABLE command 300, 364
EXEC CICS ENABLE command 297,362
EXEC CICS EXTRACT command 302, 365
EXEC CICS RESYNC command 366

EODloperand 31
EOFADDR operand

DFHJC TYPE-GET 163
ERROR operand

DFHTC CTYPE==CHECK 246
DFHTC CTYPE== LOCATE 239
DFHTC CTYPE-STATUS 244

error processing by TEP (see TEP)
error processing in NEP (see NEP)
error status elements (ESEs) 74, 80

DFHTEPT TYPE == PERMCODE/ERRCODE 90
ESB structure 129
ESBS operand

DFHSNET macro 129
ESEs (error status elements) 74, 80

DFHTEPT TYPE = PERMCODE/ERRCODE 90
event 'monitoring points (EMPs) 391
examining resources 423
exceptional conditions

I NVEXITREQ condition 366
task-related user exit commands 366

EXCLUSIVE option
for files 432

EXEC CICS ADDRESS command 423
EXEC CICS ASSIGN command 423
EXEC CICS DISABLE command

ENTRYNAME parameter 300,364
examples 301, 364
EXIT parameter 300
EXITALLparameter 300,364
PROGRAM parameter 300, 363
STOP parameter 301, 364
TASKSTART parameter 364

EXEC CICS ENABLE command
ENTRY parameter 297,361
ENTRYNAME parameter 297,362
examples 298, 363
EXIT parameter 297
GAENTRYNAME parameter 298, 362
GALENGTH parameter 298,362
PROGRAM parameter 297,361
START parameter 297,361

576 CICS/MVS 2.1.2 Customlza.tlon Guide

EXEC CICS ENABLE command (continued)
TALENGTH parameter 362
TASKSTART parameter 362

EXEC CICS EXTRACT command
ENTRYNAME parameter 302,365
EXIT parameter 302, 365
GALENGTH parameter 302, 365
GASET parameter 302,365
PROGRAM parameter 302, 365

EXEC CICS HANDLE CONDITION TERMERR
command 109

EXEC CICS INQUIRE command
for browsing CONNECTION 447
for browsing files 434
for browsing modenames 450
for browsing programs 455
for browsing system entries 447
for browsing terminals 443
for browsing transactions 458
for CON N ECTIONS 446
for files 430
for modenames 449
for programs 454
for system attributes 452
for system entries 446
for terminals 439
for transactions 457

EXEC CICS LINK command 483
EXEC CICS RESYNC command

ENTRYNAME parameter 366
IDLIST parameter 366
IDLISTLENGTH parameter 366

EXEC CICS SET command
for CONNECTION 448
for files 435
for modenames 451
for programs 457
for system attributes 453
for system entries 448
for terminals 444
for transactions 459

EXEC CICS SPOOLCLOSE command 473
EXEC CICS SPOOLOPEN INPUT command 471
EXEC CICS SPOOLOPEN OUTPUT command 472
EXEC CICS SPOOLREAD command 472
EXEC CICS SPOOLWRITE command 473
exec interface program (EIP) 18
EXIT parameter

EXEC CICS DISABLE command 300
EXEC CICS ENABLE command 297
EXEC CICS EXTRACT command 302, 365

exit program
for monitoring records 420

EXITALL parameter, EXEC CICS DISABLE
command 300, 364

exits (see user exits)
EXP, command (EXEC) language translator

program 19
extended recovery facility (XRF)

node error program 136
overseer program 139

EXTENDEDDS 252
external security interface 377

interface module DFHXSE 377
interface module DFHXSP 377

parameter area 378
requests, list 377
resource class block 380

RACF interface module DFHXSE 380
security identification module DFHACEE 382

EXTRACT command
for global user exits 301
for task-related user exits 364

F
FEATURE operand 31
field names, DFHJCRDS DSECT 170
file attributes

access using command level programming
interface 430

file error exit
in DFHDBP 53
in DFHFCBP 64

FI LE option 432
files

browsing 434
dynamic· open/close function 487

FLENGTH option for system spooler 473
FME (function management end) 192
FMH processing 207
FORCE option

for files 437
format of UOWID 69
formatting messages

TD message formatting and redirection 327
FROM option for system spooler 473
function management end 192
function shipping

security 385

G
GAENTRYNAME parameter

EXEC CICS ENABLE command 298, 362
GALENGTH parameter

EXEC CICS ENABLE command 298, 362
EXEC CICS EXTRACT command 302, 365

GAP (graphics attention program) 20

GASET parameter, EXEC CICS EXTRACT
command 302,365

GCHARS option
for terminals 441

GCODES option
for terminals 441

generalized message format, TCAM 220
global performance record 390
global user exits 289-325

accessing the exit work area 301
definition 289
DFHDBP 305-306
DFHDLBP 315
DFHFCBP 315-316
DFHFCP 307-308
DFHFCS 309
DFHGMM 310
DFHICP 310-311
DFHISP 311
DFHJCP 312
DFHKCP 312-313
DFHPCP 314
DFHSCP 317
DFHTCBP 315-316
DFHTCP 317-320
DFHTDP 320-322
DFHTSP 322-323
DFHUSBP 315-316
DFHXRA 323
DFHZCB 324-325
DFHZCP 324
DISABLE command 300
ENABLE command 296
enabling and disabling 296-301
error responses 302
exit descriptions 304
exit program conventions 294
EXTRACT EXIT command 301
in DFHALP 304
list of exits 290
locating the exit work area 301
multiple programs in one exit 293
use of multiple programs at one exit 293
user exit handler 292
user exit interface 291
using an exit 293

global user exit, XTDCOUT 327
graphics attention program (GAP) 20
GROUP operand

DFHSNEP TYPE = ERRPROC 130
GRPLIST operand, DFHSIT 252

Index 577

H
HANDLE ABEND command 47
high-level language support (HLL) group 20
HLL (high-level language support group) 20

ICP (interval control program) 21
10 operand

OFHEMP TYPE- ENTRY macro 393
10 verification, 3740

ANSWRBK =- EXIDVER 233
lOERROR operand

DFHJC TYPE-CLOSE 161
OFHJC TYPE == GET 163
DFHJC TYPE == OPEN 158

IDUST parameter
EXEC CICS RESYNC command 366

IDUSTLENGTH parameter
EXEC CICS RESYNC command 366

IEORH macro 207
implicit SPOOLCLOSE 471
I ndoubt wi ndow 69
initialization of OFHSG macro 5
INITRL operand 32
INPUT option for system spooler 473
input user exit TCAM (XTCTIN) 222
INQUIRE and SET commands

conside,·ations 424
examples

assembler 427
COBOL 429
PUI 428

INQUIRE command
for browsing CONNECTION 447
for browsing files 434
for browsing modenames 450
for browsing programs 455
for browsing system entries 447
for browsing terminals 443
for browsing transactions 458
for CONNECTIONS 446
for files 430
for modenames 449
for programs 454
for system attributes 452
for system entries 446
for terminals 439
for transactions 457
general information 423

inquiry mode, 3735 231
interactive logical unit error processor 126
intercommunication facilities

journal records 173

578 CIC~31MVS 2.1.2 Customlzatlon Guide

intercommunication (ISC) group 21
interface to CEMT 483
interface to JES 465
interval control program (ICP) 21
INTLU error processor 126·
INTO option for system spooler 474
INVADDR operand

DFHTC CTYPE-CHECK 247
DFHTC CTYPE=LOCATE 239
DFHTC CTYPE=STATUS 244

INVEXITREQ condition
for task-related user exit commands 366

INVIO operand
OFHTC CTYPE == CHECK 247
OFHTC CTYPE"", LOCATE 239
DFHTC CTYPE = STATUS 244

INVLOC operand
OFHTC CTYPE=CHECK 247
DFHTC CTYPE=STATUS 244

invoke CEMT, from application program 483
INVREQ operand

DFHJC TYPE == GET 163
DFHJC TYPE = OPEN 158
DFHTC CTYPE=CHECK 247
DFHTC CTYPE=STATUS 244

IOAREALEN option
of CEOA DEFINE TYPETERM 191

IOERROR operand
DFHJC TYPE == CLOSE 161
DFHJC TYPE""" GET 163
OFHJC TYPE = OPEN 158

IPL system/7
esc lines 229
start/stop lines 229
write transaction 229

ISC, intercommunication group 21
issue ACFIVTAM indicator 237
ISSUE PASS 122
ISTINCLM entries for automatic installation 537

J
JCP (journal control program) 22
JES

elcs interface to 465
exits 467
input 466
internal limits 465
options on commands 473
output 467
RESP and RESP2 options 471
retrieve data from JES spool 467
send file to destination 468
spooler commands 471
typical use 468

JES (continued)
write directly to JES spool 468

JFILEID operand
OFHJC TYPE=CLOSE 161
OFHJC TYPE GET 163
OFHJC TYPE = OPEN 159
logical units 199

job control for sample OFHTEP generation 81
journal control program (JCP) 22
journal data sets

closing journal data sets 161
opening journal data sets 158
reading backward 175
reading during CICS execution 174
reading forward 176
reading journal data sets 162
reading offline 177
using a program to read offline 179
writing a program to read offline 178

journal function and module identifications 170
journal management 157

customization programming 157
layout and contents of journal records 164
user repl aceable modules 179

journal records
for OUI 174
function and module identifications 170
I ayout and content

system prefix 172
I ayout and contents 164, 165, 170, 171, 173, 174

journaled data 173, 174
system header 165
system prefix 171
user prefix 173

journaled data, journal records 173

K
KCP (task control program) 22
KEEP option for system spooler 474
KEYLENGTH option

for files 432
keypoint program (KPP) 22
KEYPOSITION option

for files 432
KPP (keypoint program) 22

L
LANGUAGE option

for programs 455
LASTIRM operand

OFHTC CTYPE = CHECK 247
OFHTC CTYPE= LOCATE 239
OFHTC CTYPE = STATUS 244

LOC operand
OFHTC CTYPE = LOCATE 240

LEAVE operand 161
LENGTH option

for programs 455
line

locking, TCAM 216
permanent lock, TCAM 216
temporary lock, TeAM 216

LINE option for system spooler 474
line pool specifications (TCAM)

POOL feature 215
restrictions 216

L1STAOR operand 489
LOCKF operand 32
logic flow, TCAM 211
logical unit 110 error handling

(OFHZNAC/OFHZNEP) 197
logical units

node error program 117, 197
LOGON mode table (VTAM) 535
logon, simulated 189
LOGREC operand 32
LSRPOOLIO option

for files 432

M
macro instruction

format 533
syntax notation 534

macro-level programs 481
map attributes

access using command level programming
interface 454

mapping individual records and entire chains 201
master terminal program (MTP) 23
master terminal transaction CEMT

EXEC CICS LINK to DFHEMTA (see also INQUIRE
and SET) 483

programmable interface to 483
MAXERRS operand

DFHTEPT TYPE = INITIAL 89
MAXFLENGTH option for system spooler 474
MAXIMUM option

for modenames 450
MAXTASKS option

for system attributes 453
MAXTIDS operand

DFHTEPT TYPE = INITIAL 88
MCC option for system spooler 474
MCT entries for OUI

sample 396
message

cache 197

Index 579

message (continued)
control programs, examples 515
control program, TCAM 219, 226
DEST operand 214
format, TCAM 220
handler, TCAM 209
logging 193
MCP (TCAM message control program) 226
option groups 194
protection processing 194
recovery 193
recovery and emergency restart

message cache 192
node abnormal condition program

(OFHNACP) 192
system log 192

routing, TCAM 214
switching 203

messages
TO message formatting and redirection 327

MOD operand 8
MODEENT 249

tasks necessary for implementation 250
modename attributes

access using command level programming
interface 449

browsing 450
MODENAME option

for modenames 450
for terminals 441

modifying resources 423
modifying terminal control table

changing status of logical unit DFHTC
CTYPE = STATUS 237

checking outcome of operation 237
command option (logical units), DFHTC

CTYPE=COMMAND 247
issue ACFNrAM indicator 237
scanning the terminal control table 237
terminal I.ocate function, DFHTC

CTYPE = LOCATE 238
module identifications and journal function 170
modules generated by system generation

macros 503
monitoring control program (see CMP)
monitoring facilities

accounting class 388
block of dictionary data, format 406

descriptor, format 406
buffers 390
command level application programs 392
control commands 388
data

records sent to CICS journal 390
data collection 388

global performance record 390

580 CICS/MVS 2.1.2 Customizatlon Guide

monitoring facifities (continued)
data formats 399
data record fields

accounting class 408
exception class 415
format 407
performance class 409

data records 406
data section 402

data records 403
field connectors 403

data section descriptor
format 403

data section header
format 402

DFHMCT entries for DUI 396
DFH$MOLS program 398
dictionary section 405

descriptor, format 405
EMP (event monitoring point)

DFHMCT TYPE= EMP macro 394
event monitoring points (EMPs) 391
exception class 388
exit program

exit monitoring areas 421
global records 417
installing 420
parameter lists 417
transaction records 417

macro level application programs 393
overview 387
performance cl ass 388
processing output from 397
SMF block header 400

format 401
SMF block mapping

example 404
SMF product section

format 401
user exit for accessing monitoring data 416

MSGINTEG option
of CEOA DEFINE PROFILE 194

MSGJRNL operand
ACFNrAM 199

MSGPREQ operand
ACFNTAM 194

MTP, master terminal program 23
MTSLIB operand 7

N
NAME operand

OFHSNEP TYPE = INITIAL 127
DFHSNET macro 129

NEB (node error block) 132
NEBNAME operand

OFHSNET macro 129
NEBS operand

OFHSNET macro 129
NEP (node error program) 109

ACFIVTAM error handling
background 110

action flags set by OFHZNAC 119
application routing failure 122
common subroutine vector table 132
conventions for registers 131
default transaction~class routine 133
OFHNET OSECT 131
OFHSNET . 129
OFHZNAC 117
OFHZNAC logging facility 122
OFHZNAC/OFHZNEP interface 110
OFHZNEP 111, 117
OFHZNEPI interface module 133
OFHZNEPI macros 133
OFHZNEPI TYPE- INITIAL 133
OS ECTs 131
dummy node error program 112
error status blocks 132
error table header 131
in an XRF environment 136, 137.

changing the recovery message 137
changing the recovery notification 137
changing the recovery transaction 137
parameters passed to N EP 136

multiple NEPs 116
NEPCLASS 1'16
NET generation 113

node abnormal condition program 117
node error blocks 132
node error block, format 125
node error table 125

format 125
generation 113

reasons for writing your own 111
routing considerations 117
sample 112, 123

coding description 114
common subroutine vector table 124
compatibility with sample TEP 123
components 124
conditions 116
DFHSNEP TYPE = INITIAL 127
error processing routines 123
error processor vector table (EPVf) 128
error processor vector table (EPVT) macro (see

below). 124
error processors for INTLU, OFHSNEP

TYPE=DEFILU 128
error processors, DFHSNEP

TYPE = OEF3270 128

NEP (node error program) (continued)
sample (continued)

error status information 125
generating by DFHSNEP 126
node error table 125
optional common subroutines 125
optional error processor for INTLU 126
optional error processors for 3270 126
routing mechanism (ACF/VTAM) 124

session failures 136
TERMERR condition 109
terminal control program (ACFIVTAM section) 117
user~supplied error processors, DFHSNEP

TYPE = ERRPROC 130
user~written error processors 130
when abnormal condition occurs 117
writing overview 112
3270 unavailable printer 134

NEPCLAS operand
DFHZNEPI TYPE= ENTRY 134

NEPCLASS option
of CEDA DEFINE PROFILE 198

NEPCLAS(S)
for CEOA, DFHPCT and DFHTCT 116

NEPNAME operand
OFHZ N EPI TYPE = ENTRY 134

NET (see NEP)
NETNAME operand

CEOA DEFINE TERMINAL 189
DFHS N EP TYPE = INITIAL 127
DFHTC CTYPE == LOCATE 240

NETNAME option
for system entries 446
for terminals 441

N EWCOPY option
for programs 457

NOCC option for system spooler 474
node abnormal condition program (DFHNACP)

ACFIVTAM message recovery 192
logical unit 110 error handling 197

node abnormal condition program (OFHZNAC)
node error program 117

node error block 132
node error handler (CSNE transaction) 110
node error program (see NEP)
node error table (see NEP)
node initialization block (NIB) 188
NODE option for system spooler 474
node Jd for system spooler 474
noncatastrophic failures (ACF/VTAM) 197
nonprotected tasks (ACF/VTAM) 193
NORESP operand

DFHJC TYPE = CLOSE 161
DFHJC TYPE = GET 163
DFHJC TYPE = OPEN 159

Index 581

NORESP operahd (continued)
DFHTC CTYPE == CHECK 247
DFHTC CTYPE- LOCATE 241
DFHTC CTYPE-STATUS 244

NOTOPEN operand 164
notpurgeable task 100
NOWAIT option

for files 437

o
OBJECT option

for files 432
ON EWTE option

of CEDA DEFINE PROFILE 194
OPEN option

for files 437
opening data sets and files, DFHOC

TYPE = OPEN 488
opening journal data sets, DFHJC TYPE = OPEN 158
OPENSTATUS option

for files 432
operating system abend code 45
OPERID option

for terminals 441
OPERSEC operand 382
OPERSECURITY option 382
OPSYS operand 9

. OPSYS option
for system attributes 453

OPTCD operand 215
OPTCD = SPEC operand

of ACFNTAM RECEIVE macro 191
OPTIONS operand

DFHTEPM TYPE- INITIAL 82
DFHTEPT TYPE-INITIAL 89

OUTDESCR option for system spooler 475
OUTPUT option for system spooler 475
output lIser exit TCAM (XTCTOUT) 222
overseer program

customizing the sample program 152
including the CEBT command 153
loop or wait detection in the active 154

DFHOSD data set 143
DFHWOSM macros 145

FUNC = BUILD 146
FUNC-CLOSE 147
FUNC=DSECT 152
FUNC=JJC 152
FUNC=JJS 151
FUNC=OPEN 146
FUNC=OSCMD 150
FUNC=QJJS 151
FUNC=READ 148
FUNC=TERM 150

582 CICS/MVS 2.1.2 Customlzatlon Guide

overseer program (continued)
DFH$AXRO 142

P

display function 140
interface with CICS 142
module DFHWOS 142
restart-in-place function 140

enabling and disabling restart in place 141
rules of restart in place 141

sample output from the overseer 144

PAGE option for system spooler 474
PAGESTATUS option

for terminals 441
partition set attributes

access using command level programming
interface 454

PCLOCK
monitoring performance data 396

PCP (program control program) 23
PENDSTATUS option

for system entries 447
PEP (program error program) 51
permanent line lock (TCAM) 216
phonetic codes and keys

DFHBIF TYPE = PHONETIC 499
DFHPHN 499
DFHSG PROGRAM == BFP 499

PIPELN operand 32
PL TPI programs 369
PL TSD programs 370
poll list, 3600 BSC 235
POOL feature, TCAM 215
pool of common TCTIEs 210
postiniti alization (PL TPI) programs

considerations when writing 369
PPT entries for task-related user exits 360
PREFIX operand 9
PREGEN (pregenerated system generation) 23
pregenerated system library 3
PRINT operand 9

DFHTEPM TYPE = INITIAL 84
PRINT option for system spooler 476
PRIORITY option

for transactions 458
processing output from CICS monitoring facility 397

DFH$MOLS program 398
PROCNMS operand 10
program attributes

access using command level programming
interface 454

program check 47
program control program (PCP) 23

program error program (see DFHPEP)
program generation summary

modules generated by system generation
macros 503

program level abend exit 48
program logic in recovery routine 46
PROGRAM option

for transactions 458
PROGRAM parameter

EXEC CICS DISABLE command 300, 363
EXEC CICS ENABLE command 297.361
EXEC CICS EXTRACT command 302, 365

program specification block
security 385

programmable interface to master terminal
functions 483

programs that use CICS macros 481
PROGTYPE option

fe . orograms 455
PROTt:CT option

of CEDA DEFINE PROFILE 194
protected tasks, ACFIVTAM 193
protocol management, TCAM 206
PROTOCOL option

for system entries 447
PSERVIC values for automatic installation 541
PU NCH option for system spooler 476
PUNSOL operand 32
PURGE option

for terminals 444
PURGEABILITY option

for transactions 459

Q
Query 252
queue considerations, TCAM 217
queue locks, TCAM 217

R
RACF interface module DFHXSE 380
RAMAX operand 191

of DFHSIT 190
RAPOOL operand

of DFHSIT 190
RDATA1 operand

DFHEMP TYPE = ENTRY macro 394
RDATA2 operand

DFHEMP TYPE == ENTRY macro 394
reached recovery node 192
read journal data sets 174

backward 175
during CICS execution 174
forward 176

read journal data sets (continued)
offline 177

READ option
for files 433

RECEIVESIZE option
of CEDA DEFINE TYPETERM 191

RECORDFORMAT option
for files 433

RECORDSIZE option
for files 433

recovery and restart
default system recovery table 43
dynamic transaction backout exits 53
journal management 157
node error program (DFHZNEP) 109
program error program 51
program level abend exit 47
resource backout exits 59
routing mechanism (ACFIVTAM) 124
SRT recovery routine or program 43
summary of information 41
system abend 43
terminal error program 71
transaction abend 47
transaction restart program 57
user activity keypoint program 67

recovery driven emergency restart
user-written exits 59

recovery program/routine 41-46
addressing mode (AMODE) 46
coding considerations 44
creating a 44
DSECT generation 44
input parameters 45

operating system abend code 45
program logic 46
register equates 44
register save area 45
returning from 46

RECOVSTATUS option
for files 433

recursive retry routine, in DFHTEP
example 102

register save area 45
rejection processing of duplicate TERMIDs 260
RELEASE option

for system attributes 453
RELREQ exit-routine 189
REL TYPE option

for files 433
REMOTENAME option

for files 434
REMOTESYSTEM option

for files 434
for terminals 441

Index 583

REMOTESYSTEM option (continued)
for transactions 458

RESCOUNT option
for programs 455

resource attributes
examining and modifying 423
INQUIRE and SET commands

considerations 424
resource backout

user"written exits 59
resource security 384
RESP and RESP2 options

for INQUIRE and SET commands 424
for interface to JES 471

RESP and RESP2 values
for JES 476

RESP operand
of DFHTCT TYPE = INITIAL 192

restart (see recovery and· restart)
restart"in-place function of the overseer

program 140
RESYNC command

for task-related user exits 366
retrieve LOC information 238
RMF

collecting task throughput data 421
routing mechanism (ACF/VTAM) 124
RPL pool size 202
RPLs (request parameter lists) 190
RRN (reached recovery node) 192
RSL value 384
RS LC option/operand 384
RUNAWAY option

for system attributes 453
RUSIZE operand

logical units 191

S
sample applications

dynamic allocation program 493
sample exit program for terminal-not-known

condition 282
sample JCL for OFH$MOLS 399
sample MCT entries for DLII 396
sample node error program (see NEP)
sample TCAM SNA message control programs 515
sample terminal error program (see TEP)
scanning the terminal control table 237
schedule flag word 354
SCLOCK

monitoring performance data 396
SCP (storage control program) 24
SCREENHEIGHT option

for terminals 441

584 CICS/MVS 2.1.2 Customizatlon Guide

SCREENWIDTH option
for terminals 442

SCS (SNA character string) 206
security

asynchronous processing 385
CRTE 385
DFHXSE 377,380
DFHXSP 377

requests, list 377
for transactions 382
function shipping 385
intercommunication 384
interface to external manager 377
intersystem 385
keywords 383
of resources 384
program specification block 385
security identification module OFHACEE 382
terminal sharing 385
transaction routing 385

segment processing, TCAM 215
SELECT operand

DFHTC CTYPE = LOCATE 241
SENDSIZE option

of CEOA DEFINE TYPETERM 191
sequence of events, TCAM 211
SERVSTATUS option

for system entries 447
for terminals 442, 444

session failures, user actions 136
SET command

for CON N ECTION 448
for files 435
for modenames 451
for programs 457
for system attributes 453
for system entries 448
for terminals 444
for transactions 459
general information 423

SETEOM macro 208
shutdown (PLTSO) programs

considerations when writing 370
SIMODS parameter

specifying system initialization overlays 373
single thread used with JES 471
SIT

ALEXIT operand and override parameter 279
SIVOL=YES operand 159
SMF

block header 400
block mapping 404
collecting task throughput data 421

SMPZONE operand 10

SNA character string 206
specifying processing at EMPs

clock fields (performance data only) 396
count fields 395
sample MCT entries for DLII 396

SPOOLCLOSE command 473
spooler (see JES)
SPOOLOPEN INPUT command 471
SPOOLOPEN OUTPUT command 472
SPOOLREAD command 472
SPOOLWRITE command 473
SRBSVC operand 10
SRP (system recovery program) 24
SRT (system recovery table) 43
STAGE2 operand

for dynamic transaction backout program
(DBP) 17

for terminal control program (TCP) 33
initialization of DFHSG macro 10

STALL option
for system attributes 453

START parameter, EXEC CICS ENABLE
command 297, 361

STARTER operand 11
startup, TCAM 224
STATERR operand

DFHJC TYPE-CLOSE 162
DFHJC TYPE == GET 164
DFHJC TYPE == OPEN 159

STATUS operand 244
DFHTC CTYPE = LOCATE 242

STATUS option
for programs 455
for transactions 458, 460

STOP parameter, EXEC CICS DISABLE
command 301, 364

storage control program (SCP) 24
STRINGS option

for files 434
stub program 345, 346
SUFFIX operand

for dynamic transaction backout program
(DBP) 17

for terminal control program (TCP) 33
switched BSC-temporary text delay (ITO) 104
switched-line disconnected bit 100
switching dump data sets, DFHOC

TYPE = SWITCH 492
SYMBADR operand 491
syncpoint management

module DFHDBP 360
syncpoint manager parameters in task-related user

exits 351
syntax notation for macro instructions 534

SYSGEN (see system generation)
system abend 43
system attributes

access using command level programming
interface 452

system entry attributes
access using command level programming

interface 446
browsing 447

system entry (TCTSE)
locate a particular entry 238

system generation 1
modules generated 503
process 3

system header
journal record 165

system initialization overlays 373
addressable areas 375
coding 373
DFHSICOM macro 373
parameter-passing fields 375
SIMODS parameter 373
system initialization program 373
system initialization subroutines, list 374

system initialization program
for terminal control 187

system initialization table
ALEXIT operand and override parameter 279

system log processing algorithm 70
system management facility (see SMF)
system prefix, journal records 171, 172
system recovery program (SRP) 24
system recovery table (SRT) 43
systeml7

transaction to IPL 229

T
table entries

dynamic allocation 494
TACLE (terminal abnormal condition line entry)

action and information bits 99
address contents 95
DSECT, format description 97
terminal error program 72

TALENGTH parameter
EXEC CICS ENABLE command 362

task attach user exit TCAM (XTCATT) 221
task control program (KCP) 22
task manager parameters in task-related user

exits 352
task-related user exits 345,416

accessing a work area, EXEC CICS EXTRACT
command 364

adapter
responses to the caller 356

Index 585

task~related user exits (continued)
adapter (continued)

structure and components 345
adapter administration

installing and withdrawing 360
addressability of the parameter list 348
administration 346, 360
application program parameters 351
backing out changes 358
caller parameter lists 351
CEDA 360
CICS monitoring parameters 352
committing changes 358
DFHEIENT macros 356
DFHUEPAR 348
DFHUERTR, function definition 350
DFHUEXIT TYPE = RM macro 348
DISABLE command 363
disabling, EXEC CICS DISABLE command 363
EDF 348
ENABLE command 361
enabling, EXEC CICS ENABLE command 361
entry point name 362
examples of DISABLE 364
examples of ENABLE 363
exceptional conditions 366
exit in CMP 416
EXTRACT command 364
global work area 357, 362, 364
local· work area 357, 362
making part of your CICS system 360
parameter lists 348
PPT entries 360
recovery considerations 358
schedule flag word 354
stub program 345, 346

ename 347
statname 347

syncpoint manager parameters 351
more than one entry in parameter list 351

table entries 360
task manager parameters 352
lJ EPCSA, address of the CSA 349
UEPEIB, address of EIB 350
UEPEXN, address of function definition 349
UEPFLAGS, address of schedule flag word 350
UEPGAA, address of global work area 349
UEPGAL, length of global work area 349
UEPHMSA, address of register save area 349
UEPTAA, address of local work area 349
UEPTAL, length of local work area length of the

local work area. 350
UEPTCA, address of the TCA 349
UEPURID, address of unit of recovery

identifier 350

586 CICS/MVS 2.1.2 Customization Guide

task-related user exits (continued)
UERTFGP, function group indicator 350
UERTFID, caller identifier 350
using CICS commands 356
using the syncpoint manager 358, 359, 365

restart resynchronization 359, 365
using the task manager 359
work areas 357

TASKSTART parameter 362
EXEC CICS DISABLE command 364
EXEC CICS ENABLE command 362

TBLFIX operand 33
TBP (transaction backout program) 24
TCAM 205

abend/restart 224
application program 225
application program interface 209
attach TIOA 213, 214
communication control byte(s) 219
data format 210
DO card correlation 209
default actions taken by DFHTACP 218
devices 219
generalized message format 220
input event 222
input process queue 210
input user exit (XTCTIN) 222
line input/output area (LlOA) 222
line locking 216
line pool restrictions 216
line pool specifications 215
logic flow 211
message control program (MCP) 209,.226
message handler 209
message routing 214
OPTCD operand 215
output event 222
output user exit (XTCTOUT) 222
permanent line lock 216
POOL feature 215
pool of common TCTTEs 210
queue considerations 217
queue locks 217
segment processing 215
sequence of events 211
startup 224
task attach user exit (XTCATT) 221
temporary line lock 216
terminal entries 210
terminal error program 214
terminal errors

terminal abnormal condition program 71
terminal control program 71
terminal error program 71

termination 224

TCAM (continued)
TPROCESS block 209
under CICS/MVS 2.1.2 205
unsolicited input 217
user exits 221
work area 222
write 213
3270 220

TCAM SNA 206
batch processing 208
communication control byte(s) 207
device message handler (DMH) 206
error processing 208

batch logical units 208
FMH processing 207
IEDRH macro 207
MCP examples 515
protocol management 206
SETEOM macro 208
SNA character string (SCS) 206
TCAMFET==SNA operand 206
transaction control 207
with CICS 206

TCM3270 operand 33
rcp (terminal control program) 25

abnormal conditions
TACLE (terminal abnormal condition line

entry) 71
TCTSE (system entry)

locate a particular entry 238
TCTTE

locate a particular entry 238
TCT, modifying (see modifying terminal control table)
TO message formatting and redirection 327-341
TOP (transient data control program) 36
TEBs (terminal error blocks) 74
teletypewriter (countries outside the US only)

error conditions 105
temporary line lock 216
temporary storage

message cache 192 I

temporary storage control program (TSP) 37
TEP (terminal error program)

abnormal conditions 71
CICS components and correction of errors that

occur when 71
default table 75
default threshold count limits 90
define terminal error blocks

tables, DFHTEPT TYPE = PERMTID 89
DFHTEP recursive retry routine 101

example 102
system count (TCTTENI) 101
user field a (PCISAVE) 101
user field b (PCICNT) 101

TEP (terminal error program) (continued)
DFHTEP tables 88
DFHTEPM TYPE = ENTRY 86
DFHTEPM TYPE = EXIT 86
DFHTEPT TYPE = PERMCODE/ERRCODE 90
error processor source 85
error table 73
errors and actions unique to TCAM 214
generating 81
job control for sample DFHTEP generation 81
replace error processors, DFHTEPM

TYPE = ERRPROC 86
sample

action flag names 79
common subroutines 77
components 73
DECB information 80
DECB operand 80
DFHTEPM TYPE = INITIAL 81
entry and initialization 76
error processing execution 76
error status elements (ESEs) 74
error-processor selection 76
ESE information 80
exit 77
generate sample module 81
messages 79
overview 76
TACLE information 80
terminal error blocks (TEBs) 74
terminal identification and error-code

lookup 76
switched BSC-temporary text delay (TTD) 104
tables

default threshold count limits 92
DFHTEPT macro examples 93
DFHTEPT TYPE = BUCKET 92
DFHTEPT TYPE= INITIAL 88

TCAM 214
teletypewriter (countries outside the US only) 105
terminal abnormal condition line entry (TACLE) 72
TYPE = PERMCODE/ERRCODE operand 90
user-written program

abend transaction bit 100
abnormal conditions 94
address contents of TACLE 95
disconnect switched-line bit 100
dummy terminal indicator 100
example 101
format description of TACLE DSECT 97
notpurgeable task 100
switched-line disconnected bit 100
TACLE, action and information bits 99
write abend bit 100

2740 model 2 104

Index 587

TEP (terminal error program) (continued)
3270 locked buffer 107
32n) unavailable printer 105
3275 dialed 30-second timeout 106
3600 BSC 106
7770 32~second timeout 104

TERM operand
DFHTC CTYPE= LOCATE 242

TERM ERR condition 109
terminal abnormal condition line entry (see TACLE)
terminal abnormal condition program 71
terminal attributes

access using command level programming
interface 439

browsing 443
terminal control program (TCP) 25

(ACFIVTAM section) 117
terminal control table, modifying (see modifying

terminal control table)
terminal control, DFHTC macros 198
terminal entries, TCAM 210
terminal error blocks (TE.Bs) 74
terminal error program (see TEP)
terminal identification and error-code lookup 76
terminal locate function, DFHTC

CTYPE = LOCATE 238
TERMINAL option

for terminals 442
terminal sharing 385
terminal-not-known condition, exits for 277-286

condition arising during initialization 279
condition defined 277
data passed to and returned by exit 278
parameter list 279
sample exit program 282
the exits described 278

terminals
automatic installation 249

termination of DFHSG macro 39
termination, TCAM 224
TERMMODEL option

for terminals 442
TERMPRIORITY option

for terminals 442
test response to CTYPE requests, DFHTC

CTYPE=CHECK 246
TIME operand

DFHSNET macro 130
of DFHTEPT TYPE = PERMCODE/ERRCODE

macro 91
TIME option

for system attributes 453
time stamp. definition

for monitoring 407

588 CICS/MVS 2.1.2 Customlzatlon Guide

TIOAL operand
of DFHTCT TYPE=TERMINAL 191

TOFLENGTH option for system spooler 476
TOKEN option for system spooler 476
TPROCESS block 209
trace control program (TRP) 36
trace table for MVS/XA 36
transaction

automatic initiation ACF/VTAM (ATI) 199
class, logical units 198
control, TCAM SNA 207
options ACF/VTAM 198
restart facility 57

transaction abend 47
creating program abend exit 48
DFHPC TYPE = SETXIT macro 47
HANDLE ABEND command 47
program error program (DFHPEP) 51
restart facility 57
terminating program abend exit 49
transaction backout 53
user exits in DFHDBP 53

transaction attributes
access using command level programming

interface 457
browsi ng 458

transaction backout
file error exit 64
initialization/termination exit 61
input exit 62
open error exit 63

transaction backout program (TBP) 24
TRANSACTION option

for terminals 442
for transactions 458

transaction restart program 57
transaction routing

security 385
transaction security 382

keywords 383
transaction~class error-handling routine 118, 134
transient data control program (TDP) 36
TRMADDR operand

DFHTC CTYPE = LOCATE 243
TRMIDNT operand

ACFIVTAM 203
DFHTEPT TYPE = PERMTID 89

TRMSTAT operand
ACFIVTAM 199

TRP (trace control program) 36
TSP (temporary storage control program) 37
TIISTATUS option

for terminals 442
TWA options

for DFHZNAC 120

TWAPFLG 122
TWAPIP 122
TWXOFF operand 33
TWXON operand 33
TYPE option

for files 434
TYPE == BUCKET operand, DFHTEPT 93
TYPE = CLOSE operand

DFHJC 161
DFHOC 491

TYPE= DEFILU operand, DFHSNEP 128
TYPE = DEF3270 operand, DFHSNEP 128
TYPE = ERRPROC operand, DFHSNEP 130
TYPE = ERRPROC operand, DFHTEPM 86
TYPE = GETB/GETF/NOTE/POINT operand, DFHJC 162
TYPE = INITIAL operand

DFHSNEP 127
DFHTEPM 82
DFHTEPT 88

TYPE = OPEN operand
DFHJC 158
DFHOC 488

TYPE == PERMCODE/ERRCODE operand, DFHTEPT 90
TYPE= PERMTID operand, DFHTEPT 89
TYPE ~ SWITCH operand, DFHOC 492

U
UCTRAN operand 34
UEI (see user exits)
unit of work (UOW) 69
unsolicited input

TeAM 217
UPDATE option

for files 433
USECOUNT option

for programs 455
user 471
lISE,r activity keypoint program (see DFHUAKP) 67
user data collection

organizing 394
user exits

See also global user exits
See also task-related user exits
accessing monitoring data 416
CICS ACFIVTAM terminal control 200
disabling, EXEC CICS DISABLE command 300
dynamic transaction backout 53
enabling, EXEC CICS ENABLE command 296
external security interface 377
recovery during emergency restart 59
resource backout 59
task-related 345
TCAM 221
terminal-not··known condition 277-286

user prefix, journal records 173
user-supplied error processors, DFHSNEP

TYPE = ERRPROC 130
user-written node error programs (see NEP)
user-written terminal error programs (see TEP) 94
USERAREA option

for terminals 442
USERAREALEN option

for terminals 442
USERID option

for terminals 442

V
VOLERR operand 159, 164
VOLUME operand 159
VTAM 249
VTAM operand 11
VTAM (see ACF/VTAM)
VTAMDEVoperand 34, 187

W
WAIT option

for files 437
work areas in task-related user exits 357
WRAPLST operand 35
write abend bit 100

x
XA

MVS/XA trace table 36
XDBDERR exit of DFHDBP 54
XDBFERR exit of DFHDBP 53
XDBIN exit of DFHDBP 53
XDBINIT exit of DFHDBP 53
XLATEID operand

DFHTC CTYPE= LOCATE 243
XLNSTATUS option

for system entries 447
XRCFCER exit for transaction backout 64
XRCINIT exit for transaction backout· 61
XRCINPT exit for transaction backout 62
XRCOPER exit for transaction backout 63
XRF

See extended recovery facility (XRF)
XSNAME parameter

of TeT SYSTEM entry 382
XTCATI exit, TCAM 221
XTCTIN exit, TCAM 222
XTCTOUT exit, TCAM 222
XTDCOUT global user exit 327-341

parameter list 327
return codes 328

Index 589

XTDCOUT global user exit (continued)
sample program 328

XZCATT exit, ACFIVTAM 200
XZCIN exit, ACFIVTAM 200
XZCOUT exit, ACF/VfAM 200
XZCOUT1 exit, ACF/VfAM 200

Numerics
2740 communication terminal

model 2, 10-second delay 104
3270 information display system

error processors (optional) 126
locked buffer, DFHTEP 107
TCAM 220
unavailable printer

DFHTEP 105
DFHZNEP 134

3275 dialed 30-second timeout, DFHTEP 106
3600 finance communication system

SSC
buffer depletion 236
poll list 235
system generation 235
terminal control table preparation 235

3735 programmable buffered terminal
inquiry mode 231
system generation 231
terminal control table preparation 231

3740 data entry system
10 verification 233
system generation 233
terminal control table preparation 233
3741 signon 233

7770 audio response unit
32-second timeout 104

590 CICS/MVS 2.1.2 Customlzatlon Guide

Readers' Comments

CICS/MVS
Customlzatlon Guide
Version 2 Release 1 Modification 2

Publication No. SC33-0507-02

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

----_._- ---------------

Readers' Comments
SC33-0507 -02

Fold and Tape Please do lIot staple

--..- ------ ----- -----
:§:~:i~§:®

Fold and Tape ····r···r ····~ii~ii~i:T:E·····

Fold and Tape

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 6R1 H
180 I<OST ROAD
MECHANICSBURG PA 17055-0786

'11.11',1.,11,".'.' •• 1.1111".'".,,"1 •• 111111.111

Please do not staple

UNITED STATES

Fold and Tape

C
Ai

et
All

5C33-0507-02

II 11111111111

