
-~------- -------- -. ---- -- ------------,-

ustomer
formation
ntrol

stem
IMVS

Third Edition (March 1991)

This edition applies to V.~rsion 2 Release 1 Modification 2 of the IBM licensed program Customer Information
Control System/Multiple Virtual Storage (CICS/MVS), program number 5665-403, and to all subsequent versions,
releases, and modifications until otherwise indicated in new editions. Consult the latest edition of the applicable
IBM system bibliography for current information on this product.

This book is based on the Intercommunication Guide for CICS/MVS 2.1, SC33-0S19. Changes from that edition are
marked ~y vertical lines to the left of the changes.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the addresses given helow.

A form for reader's comments appears at the back of this publication. If the form has been removed, address
your comments to:

International Business Machines Corporation, Department 6R1 H,
180 I<ost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, En!~land, S021 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Cc>pyrlght International Business Machines Corporation 1977, 1991. All rights reserved.
Note to U.S. Government Users _. Documentation related to restricted rights ,-- Use, duplication or disclosure is
subject to restrictions set forth in GSA ,A.DP Sc:hedule Contract with IBM Corp.

-
Special notices

The following paragraph does not apply to the United Kingdom or any country
where such provisions are Inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore this statement may not apply to you.

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this
publication is not intended to state or imply that only IBM's program or other
product may be used. Any functionally equivalent program that does not infringe
any of IBM's intellectual property rights may be used instead of the IBM product.
Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

This book is intended to help you to understand how to get CICS systems to
communicate with other systems. It contains guidance about
intercom m u n ication.

The following terms, denoted by an asterisk (*), used in this publication, are
trademarks or service marks of IBM Corporation in the United States or other
countries:

ACF/VTAM, CICS/ESA, CICS/MVS, CICS OSI2, CICS/VM, CICS/VSE
Displaywriter, IBM, MVS/XA, IMS/ESA, System/360, VTAM.

© Copyright IBM Corp. 1977, 1991 Iii

Preface

What this book Is about
This book is about:

• Multiregion operation: communication between CICS/MVS* systems running
in different address spaces of the same processor.

• Intersystem communication: communication between a CICS/MVS system
and other systems or terminals in a data communication network that
support the logical unit type 6.1 or logical unit type 6.2 protocols of IBM*
systemg network architecture (SNA).

Logical unit type 6.2 protocols are also known as advanced
program-to-program communication (APPC).

Who should read this book
This book is for anyone who is involved in the planning and implementation of
CICS intersystem communication (ISC) or multiregion operation (MRO).

What you need to know to understand this book
It is assumed throughout this book that you have experience with single CICS
systems. The information it contains applies specifically to multiple-system
environments, and the concepts and facilities of single CICS systems are, in
general, taken for granted.

How to use this book
Initially, you should read part 1 of this book to familiarize yourself with the
concepts of CICS multiregion operation and intersystem communication.

Thereafter, you can use the appropriate parts of the book as guidance and
reference material for your particular task. The structure of the book is shown
overleaf.

* IBM Trademark. For a list of trademarks, see page iii.

© Copyright IBM Corp. 1977, 1991 v

Book structure
Concepts and facilities ... 1 - 75

contains an introduction to CICS intercommunication and describes the
facilities that are available. It is intended for evaluation and planning
purposes.

Installation ... 77 - 88
describes those aspects of CICS installation that apply particularly to
intercommunication. It also contains some notes on IMS system definition.
This part is intended to be used in conjunction with the CICSIMVS
Installation Guide.

Resource definition ... 89 -158
provides guidance for resource definition. It tells you how to define links to
remote regions, how to define remote resources, and how to define the local
resources that are required in an intercommunication environment. It is
intended to be used in conjunction with the CICSIMVS Resource Definition
(Online) manual and the CICSIMVS Resource Definition (Macro) manual.

Application programming ... 159 - 285
describes how to write application programs that use the CICS
intercommunication facilities.

Recovery and restart ... 287 - 308
describes those aspects of recoyery and restart that apply particularly in the
intercommunication environment. It is intended to be used in conjunction
with the CICSIMVS Recovery and Restart Guide.

Link services ... 309 - 336
deals with supplementary aspects of installation and control.

Appendixes ... 339 - 442

Glossary ... 443 - 447

Index ... 449

vi CICS/MVS 2.1.2 Intercommunication Guide

---------------------.. _---------_ .. -_._--------_._------.--_ .. _-----------_._._---_._---_ .. _-----.-
CICS/MVS 2.1.2 library

General

CICS Library Guide

GC33-03S6-04

Master Index

SC33-0S13-01
----,------~

User's Handbook

SX33-6061-01
------------1

Messages and Codes

SC33-0S14-02

Service

Problem
Determination Guide

SC33-0S16-01

Diagnosis Handbook

LX33-6062-01
----------------1

Diagnosis Reference

L Y33-6077 -00

Data Areas

LY33-6078-00
~----------------

Evaluation and
planning

Brochure

GC33-0S03-00

CICS General
Information

GC33-015S-01

Facilities and Planning
Guide

SC33-0S04-01

Release Guide

GC33-0S0S-03

Data Tables General
Information

SC33-0684

Programming

CICS Application
Programming Primer

SC33-0674-00

Application
Programmer's
Reference

SC33-0S12-01
~---.--------~

Administration

Installation Guide

SC33-0S06-01
--

Customlzation Guide

SC33-0S07 -02
-

Resource Definition
(Online)

SC33-0S08-01

Resource Definition
(Macro)

SC33-0S09-02

Operations Guide

SC33-0S10-01

CICS-Supplied
Transactions

SC33-0S11-01

Version 1 books

CICS/vS Application
Programmer's Reference
Manual (Macro Level)
(SC33-0079)

CICS/OSIVS IBM 3270 Data
Stream Device Guide
(SC33-0232)

CICS/OSIVS IBM
4700/3600/3630 Guide
(SC33-0233)

CICS/OSIVS IBM 36S0/3680
Guide (SC33-0234)

CICS/OSIVS IBM
3767/3770/6670 Guide
(SC33-023S)

CICS/OSIVS IBM
3790/3730/8100 Guide
(SC33-0236)

Special topics

Intercommunication
Guide

SC33-0S19-02
--

Recovery and Restart
Guide

SC33-0S20-01
1---

Performance Guide

SC33-0S21-01

XRF Guide

SC33-0S22-02

CICS Communicating
with CICS OS/2

SC33-0736-1

Data Tables Guide

SC33-0632-01

Preface vII

Books from related libraries

Systems network architecture (SNA)
• concepts and Products, GC30-3072
• Technical Overview, GC30-3073
• Sessions Between Logical Units, GC20-1868
• Formats, GA27-3136
• Network Product Formats, L Y 43-0081
• Format and Protocol Reference Manual: Arcllitecture Logic, SC30-3112
• Format and Protocol Reference Manual: Architecture Logic for LV Type 6.2,

SC30-3269
• Format and Protocol Reference Manual: Distribution Services, SC30-3098
• Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084.
• LU6.2 Reference: Peer Protocols, SC30-6808
• Transaction Processing Concepts and Facilities, GC33-0754

VTAM
• VTAM Programming for LU6.2, SC31-6410
• VTAM Resource Definition Reference, SC31-6412

IBM system center publications
• CICS Advanced Program-to-Program Communication Support, G320-0579
• Advanced Communications Function Products Installation Guide, GG24-1557.
• SNA APPC in a Peer CICS/VS Environment, GG24-1656
• An Introduction to Advanced Program-to-Program Communication (APPC) ,

GG24-1584
• IBM Systeml36 APPC Implementation Guide, GG24-1693.

IMS
• CICS/VS to IMSIVS Intersystem Communication Primer, SH19-6247 through

SH19-6254
• IMS/VS Version 2 Programming Guide for Remote SNA Systems, SC26-4186.

CICS/VM
• CICS/VM General Information, GC33-0571
• CICS/VM System Support and Administration, SC33-0573.

CICS OS/2
• CICS OS/2 System and Application Guide SC33-0616.

vIII CICS/MVS 2.1.2 Intercommunication Guide

Contents

Special notices

Preface
Book structure
CICS/MVS 2.1.2 library

Books from related libraries

Summary of changes

Questionnaire

iii

v
vi

vii
viii

. xv

xvii

Part 1. Concepts and facilities 1

Chapter 1.1. Introduction to CICS Intercommunication
Applications of CICS intercommunication

Chapter 1.2. Multlreglon operation ..
Applications of multiregion operation
Conversion from single region system
Batching of work in an MRO region

Chapter 1.3. Intersystem communication
Connections between systems
Intersystem sessions
Establishing intersystem sessions

Chapter 1.4. CICS function shipping
Design considerations
The mirror transaction and transformer program
Function shipping - examples

Chapter 1.5. Asynchronous processing
Asynchronous processing methods
Asynchronous processing using START/RETRIEVE commands
System programming considerations
Asynchronous processing - examples

Chapter 1.6. CICS transaction routing
Automatic transaction initiation
Basic mapping support
The routing transaction (CRTE)
System programming considerations

Chapter 1.7.. Distributed transaction processing
Why function shipping and transaction routing are not enough
Why distributed transaction processing?
What is a conversation and what makes it necessary?

© Copyright 'BM Corp. 1977, 1991

3
6

9
10
11
12

13
13
14
19

21
22
24
28

33
34
35
40
40

45
46
52
53
54

55
55
57
57

Ix

MRO or LUTYPE6.2?
LUTYPE6.2 mapped or basic?
Availability of DTP facilities
Design concepts

Part 2. Installation

Chapter 2.1. Installation considerations for multireglon operation
Installing the CICS type 2 SVC routine
Adding CICS as an MVS subsystem
Modules required for MRO
MRO modules in the link pack area
Logging on to the IRC access method .

Chapter 2.2. Installation considerations for Intersystem communication
Modules required for ISC
Operating system requirements
ACF/VTAM definition for CICS .
Considerations for IMS

Part 3. Resource definition and master terminal operation

Chapter 3.1. Defining links to remote systems .
Naming the local CICS system
Identifying remote systems
Defining links for multiregion operation
Defining logical unit type 6.1 links
Defining CICS-to-CICS LUTYPE6.1 links
Defining CICS-to-IMS LUTYPE6.1 links
Defining logical unit type 6.2 links
Indirect links for transaction routing

Chapter 3.2. Defining remote resources
Local and remote names for resources
CICS function shipping
Asynchronous processing
CICS transaction routing
Distributed transaction processing

Chapter 3.3. Defining local resources
Defining communication profiles
Architected processes
Selecting the required PCT and PPT entries
Intrapartition transient data queues and remote transactions ..

X CICS/MVS 2.1.2 Intercommunication Guide

62
63
64
64

77

79
79
79
79
80
80

81
81
82
82
84

89

91
92
93
94

102
102
108
116
126

133
133
134
138
139
150

151
151
153
155
157

Part 4. Application programming

Chapter 4.1. Application programming overview
Programming languages
Terminology

Chapter 4.2. Application programming for CICS function shipping
File control
OL/I
Temporary storage
Transient data
Function shipping exceptional conditions

Chapter 4.3. Application programming for asynchronous processing
Starting a transaction on a remote system
Retrieving data associated with a remotely-issued start request ..

Chapter 4.4. Application programming for CICS transaction routing

Chapter 4.5. CICS applications for logical unit type 6.2 mapped
conversations

Application design
Considerations for the front-end transaction
Considerations for the back-end transaction
The conversation
Sending and receiving error indications
Synchronization points
Sending and receiving signals
Freeing the session
The EXEC interface block (EIB)
Command sequences on LUTYPE6.2 mapped conversations
State diagrams
Migration of LUTYPE6.1 applications to LUTYPE6.2 links
LUTYPE6.2 release considerations

Chapter 4.6. CICS applications for logical unit type 6.2 unmapped
conversations

CICS commands for unmapped LUTYPE6.2 conversations
Session data and return and error codes
EXEC CICS GOS commands
Comparisons between LUTYPE6.2 mapped and unmapped conversations
The unmapped conversation
Command sequences on LUTYPE6.2 unmapped conversations .
State diagrams

Chapter 4.7. CICS-to-CICS distributed transaction processing for MRO and
LUTYPE6.1

Application design
Considerations for the front-end transaction
Considerations for the back-end transaction '.
The conversation

Contents

159

161
161
161

163
163
164
164
164
165

167
167
168

169

171
171
173
177
178
181
183
200
200
201
203
204
217
219

221
221
222
225
231
231
233
234

245
245
246
249
251

xl

Freeing the session
The EXEC interface block (EIB)
Command sequences for CICS-to-CICS sessions
State diagrams ;
Restrictions for multiregion operation

Chapter 4.8. CICS-to-IMS applications
The design of CICS-to-IMS ISC applications
Asynchronous processing
Distributed transaction processing

254
254
256
257
261

263
263
265
271

Part 5. Recovery and restart 287

Chapter 5.1. Recovery and restart In Interconnected systems
Syncpoint exchanges
Action foJ/owing failure during the indoubt period
Recovery for LUTYPE6.2 connections
Intersystem communication and emergency restart ..
Error handling programs for intercommunication
Database interlock
Problem determination
Recovery and restart with non-CICS systems

Chapter 5.2. Intercommunication and XRF

I Part 6. Link services

289
290
295
299
302
303
303
304
305

307

309

Chapter 6.1. Security In the Intercommunication environment 311
Planning for intercommunication security .. 313
Implementing intercommunication security 314
Bind-time security 315
Link security 319
User security 320
Securing transactions and resources 324
CICS function shipping security .. , 325
Transaction routing security 326
Use of MVS cross-memory services 327

Chapter 6.2. Master terminal operations for LUTYPE6.2 connections 329
Acquiring a connection 329
Control/ing sessions with the SET MODENAME commands 332
Releasing the connection 333
Summary 336

xII CICS/MVS 2.1.2 Intercommunication Guide

Appendix A! Rules and restrictions checklist

Appendix B. Sample application programs .
Sample 1 - temporary storage queue transfer
Sample 2 - remote file browse
Sample 3 - remote record retrieval
Sample 4 - CICS to CICS or IMS conversation
Sample 5 - CICS to IMS conversation
Sample 6 - CICS to IMS (demand paged output)

Appendix C. CICS mapping to the LUTYPE6.2 architecture
Supported option sets
Command-mapping for basic conversations
Command-mapping for mapped conversations
CICS Implementation of control operator verbs
CICS deviations from LUTYPE6.2 architecture
Effects of CICS deviations on the transaction programmer

Glossary

Index ..

339

343
345
358
376
389
395
401

413
413
414
423
431
440
441

443

449

Contents xIII

Summary of changes

This edition Is based on the CICSIMVS Intercommunication Guide (SC33-0519-1),
and incorporates updates and revisions as well as enhancements introduced by
CICS/MVS 2.1.1 and CICS/MVS 2.1.2. These enhancements are described in the
CICSIMVS Release Guide.

The opportunity has also been taken to correct errors and incorporate readers'
comments.

All changes that are new in this edition, other than editorial changes, are
marked by revision bars in the left margin, like this paragraph.

The "Intercommunication and XRF" chapter has been added to Part 5, Recovery
and Restart.

A new Part 6, called "Link services", has been created. This incorporates the
Security in the intercommunication environment chapter and the expanded
material headed Master terminal operations for LUTYPE6.2 connections, which
originally formed part of chapter 3.4.

(ID Copyright IBM Corp. 1977, 1991 xv

Questionnaire

CICS/MVS Version 2 Release 1 Modification 2
Intercommunication Guide

Publication No. SC33-0S19-02'

To help us produce books that meet your needs, please fill in this questionnaire. A reader's comment
form is also included at the back of this book should you want to make more detailed comments.
Whichever form you use, your comments will be sent to the author's department for review and
appropriate action.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

1. Please rate the book on the pofnts shown be10w

The book is:
accurate 1 2 3 4 5 inaccurate
readable 1 2 3 4 5 unreadable

well laid out 1 2 3 4 5 badly laid out
we 11 organized 1 2 3 4 5 badly organized

easy to understand 1 2 3 4 5 incomprehensible
adequately illustrated 1 2 3 4 5 inadequately illustrated

has enough examples 1 2 3 4 5 has too few examples

And the book as a whole?
exce 11 ent 2 3 4 5 poor

2. Which topics does the book handle well? 3. And which does it handle badly?

5. How often do you use this book? Less than once a month? (] Monthly? (] Weekly? (] Daily? (]

6. What sort of work do you use CICS for?~~~~~~~~~~~~~~~~~~~~~~~~~~~~

7. How long have you been using CICS? __________ years/months

8. Have you any other co~ents to make?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Thank you for your time and effort. No postage stamp necessary if mailed in USA. (If you are outside
the USA, please mail this form to your local IBM office or representative who will be happy to forward
your comments or you may mail directly to either address in the Edition Notice on the back of the title
page.) Be sure to print your name and address below if you would like a reply.

Name•...••••..••...•.....•••.•....•.....•....•.......•............ Job Title •......•............................

Company ••••••••••••••••••••.•••••..•••••••••••••••.••• Address ••

•• t ••• •••••••••••••••••••••••••••• Zip ...••.•.••••...••..••..•.....••.•.•.•..•..

Readers' Comments
SC33-0519-02

Fold and Tape

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 6R1 H
180 KOST ROAD
MECHANICSBURG PA 17055-0'786

111111'11111'1111'.1 •• 111.1111111111'111111111111111

Please do not staple

-~- ------ - ----- --~ - -. _ ... -
====~=®

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut a
Alon~

Cut or
Along I

Part 1. Concepts and facilities

This part of the manual describes the basic concepts of CICS
intercommunication and the various facilities that are provided.

"Chapter 1.1. Introduction to CICS intercommunication" on page 3 defines CICS
Intercommunication, and introduces the two types of intercommunication:
multlreglon operation and Intersystem communication. It then describes the
intercommunication facilities that CICS provides. These are:

• CICS Function Request Shipping

• Asynchronous Processing

• CICS Transaction Routing

• Distributed Transaction Processing (DTP).

"Chapter 1.2. Multiregion operation" on page 9 through "Chapter 1.7.
Distributed transaction processing" on page 55 then describe each of these
topics in more detail, as follows:

"Chapter 1.2. Multiregion operation" on page 9

"Chapter 1.3. Intersystem communication" on page 13

"Chapter 1.4. CICS function shipping" on page 21

"Chapter 1.5. Asynchronous processing" on page 33

"Chapter 1.6. CICS transaction routing" on page 45

"Chapter 1.7. Distributed transaction processing" on page 55.
v'

© Copyright IBM Corp. 1.977, 1991 1

Chapter 1.1. Introduction to CICS intercommunication

In this book, it is assumed that you are familiar with the use of CICS as a
stand-alone system, with associated data resources and a network of terminals.
Instead, we are concerned with the role of CICS in a multiple-system
environment, in which CICS can communicate with other systems that have
similar communication facilities. We have called this sort of communication
CICS Intercommunication.

CICS intercommunication is, then, communication between a local CICS system
and a remote system, which mayor may not be another CICS system.

Intercommunication methods
There are two ways in which CICS can communicate with other systems:
Intersystem communication and multlreglon operation.

Intersystem communication
For communication between systems that are in different hosts, you require an
SNA access method, such as ACF/VTAM*, to provide the necessary
communication protocols. Communication between systems via SNA is called
Intersystem communication (ISC).

Note: This form of communication can also be used between systems in the
same host processor, via the application-to-application facilities of ACF/VTAM.

The SNA protocols that CICS uses for intersystem communication are Logical
Unit Type 6.1 (otherwise known as LUTYPE 6.1) and Logical Unit Type 6.2
(otherwise known as LUTYPE 6.2 or Advanced Program-to-Program
Communication (APPC)). Additional information on this topic is given in
"Chapter 1.3. Intersystem communication" on page 13.

CICS/MVS Version 2 Release 1 Modification 2 can use ISC to communicate with
the following systems:

• Any CICS/MVS Version 2 system
• CICS/ESA*
• CICS/OS/VS Version 1 Release 7
• CICS/OOS/VS Version 1 Release 7
• CICS/VSE* Version 2 Release 1
• CICS/VM*
• CICS OS/2*
• IMS/VS Version 2 Release 1
• IMS/VS Version 2 Release 2
• IMS/ESA* Version 3 Release 1

* IBM Trademark. For a list of trademarks, see page III.

C Copyright IBM Corp. 1977, 1991 3

• Any system that supports LUTYPE6.2 (APPC) protocols. This includes
LUTYPE6.2 single session terminals, such as:

Displaywriter*
Scanmaster
System/36
System/3B.

Multlreglon operation
For CICS-to-CICS communication in the same MVS image, CICS provides an
Interreglon communication facility that is independent of the SNA access method.
This form of communication is called multlreglon operation (MRO).

CICS/MVS Version 2 Release 1 Modification 2 can communicate via MRO with
other CICS/MVS Version 2 systems, with CICS/ESA systems, and with
CICS/OS/VS release 1.7.

Intercommunication facilities
In the multiple-system environment, each participating system can have its own,
local, terminals and databases, and can run its local application programs
independently of other systems in the network. In addition, it can establish links
to other systems, and thereby gain access to remote resources. This
mechanism enables resources to be distributed among and shared by the
participating systems.

CICS intercommunication provides four basic types of facility:

• CICS Function Request Shipping
• Asynchronous Processing
• CICS Transaction Routing
• Distributed Transaction Processing (DTP).

These facilities are not universally available for all forms of intercommunication.
The circumstances under which they can be used are shown in Table 1.

Table 1. Availability of intercommunication facilities

Facility LUTYPE6.2 LUTYPE6.2 LUTYPE8.1 LUTYPE6.1 MRO
(CICS) (non.CICS) (CICS) (IMS) _.

Function Request Shipping Yes No Yes No Yes
-

Asynchronous Processing Yes No Yes Yes Yes

Transaction Routing Yes No No No Yes

Distributed Transaction Yes Yes Yes Yes Yes
Processing

4 CICS/MVS 2;1.2 Intercommunication Guide

CICS function request shipping
This facility enables an application program to access a resource owned by
another CICS system. Both read and write access are permitted, and facilities
for exclusive control and recovery/restart are provided.

The remote resource can be:

• A file or a DLII database
• A transient data queue
• A temporary storage queue.

Remote transactions are also considered to be resources, and can be initiated
by requests from a local application program. This form of request shipping is
called asynchronous processing in this book.

Application programs that access remote resources can be designed and coded
as if the resources were owned by the system in which the transaction is to run.
During execution, CICS ships the request to the appropriate system.

Asynchronous processing
This facility enables a CICS transaction to initiate a transaction in a remote
system and to pass data to it. The data can include the name of a local
transaction that is to be initiated by the remote system to receive the reply. The
reply is not necessarily returned to the task that initiated the remote transaction,
and no direct correlation between requests and replies (other than that provided
by user-defined fields in the data) is possible; therefore the process is
asynchronous.

From the CICS point of view, asynchronous processing Is a form of function
shipping, in which interval control START requests are shipped to and received
from remote systems. Functionally, it Is similar to distributed transaction
processing (see below) in that it allows processing to be distributed between
systems.

CICS transaction routing
This facility enables a terminal that is owned by one CICS system to run a
transaction that is owned by another CICS system. Similarly, a transaction that
is started by automatic transaction initiation (ATI) can acquire a terminal that is
owned by another CICS system.

Transaction routing is available between CICS systems connected either by
interregion links (MRO) or by LUTYPE6.2 (APPC) links.

Distributed transaction processing (DTP)
This facility enables a CICS transaction to communicate with a transaction
running in another system. The transactions are designed and coded explicitly
to communicate with each other, and thereby to utilize the intersystem link with
maximum efficiency.

The communication in distributed transaction processing is, from the CICS point
of view, synchronous, which means that It occurs during a single invocation of
the CICS transaction and that requests and replies between two transactions can

Chapter 1.1. Introduction to CICS Intercommunication 5

be directly correlated. This contrasts with the asynchronous processing
described previously.

Applications of CICS intercommunication
The CICS intercommunication facilities enable you to implement many different
types of distributed data processing. This section describes a few typical
applications. The list is by no means exhaustive, and further examples are
presented in the other chapters of this part.

Multiregion operation enables two CICS regions to share selected system
resources, and to present a "single-system" view to terminal operators. At the
same time, each region can run independently of the other, and can be protected
against other-region errors. Various possible applications of MRO are described
in "Chapter 1.2. Multlregion operation" on page 9.

CICS intersystem communication, together with an SNA access method
(ACF/VTAM) and a network control program (ACF/NCP/VS), enables resources to
be distributed among and shared by different systems, which can be in the same
or different physical locations.

Figure 1 on page 7 shows some typical possibilities.

Connecting regional centers
Many users have computer operations set up in each of the major geographical
areas in which they operate.· Each system has a database organized towards
the activities of that area, and its own network of terminals able to inquire or
update the regional database. When requests from one region require data from
another, without intersystem communication, manual procedures have to be
used to handle such requests. The intersystem communication facilities allow
these "out-of-town" requests to be automatically handled by providing file
access to the database of the appropriate region.

Using CICS function shipping, application programs can be written to be
independent of the actual location of the data, and able to run in any of the
regional centers. An example of this type of application is the validation of
credit against customer accounts.

Connecting divisions within an organization
Some users are organized divisionally, with separate systems, terminals, and
databases for each division: for example, Engineering, Production, and
Warehouse divisions. Connecting these divisions to each other and to the
headquarters location Improves access to programs and data, and thus can
improve the coordination of the enterprise.

The applications and data can be hierarchically organized, with summary and
central data at the headquarters site and detail data at plant sites. Alternatively,
the applications and data can be distributed across the divisional locations, with
planning and financial data and applications at the headquarters site,
manufacturing data and applications at the plant site, and inventory data and
applications at the distribution site .. In either case applications at any site can

6 CICS/MVS 2.1.2 Intercommunication Guide

access data from any other site, as necessary, or request applications to be run
at a remote site (containing the appropriate data) with the replies routed back to
the requesting site when ready.

Connecting reglona I centers

Connecting divisions: distributed applications and data

Headquarters

Warehouse

Figure 1 (Part 1 of 2). Examples of distributed resources

Plant

• Data l:Jase partitioned
by area

• Same applications run
in eacti center

• All terminal users can
access applications or
data in all systetTls

• Terminal operator and
applications unaware of
location of data

• Out-of-town requests
routed to the
appropr iate systern

• Data base partitioned
by function

• Applications partitioned
by function

• All t(?rrninal user8 and
appl ications can access
data in all systerns

• Requests for nonlocal
data routed to the
appropriate system

Chapter 1.1. Introduction to CICS Intercommunication 7

Hierarchical division of data base

n
Sumrnaries----------4
Planning

L)

Plant A

Head Office

~
,
Production
Stat.us Report

Plant B

= c:J
Order and
Schedules

Plant C

Connecting division: hlerarohloal distribution of data and application

High priority
applications
and data

High priority
applications
and data

1-----------'

Figure 1 (Part 2 of 2). Examples of distributed resources

8 CICS/MVS 2.1.2 Intercommunication Guide

~-c:J

• Summaries and
central data at
HO, detail data
at plant
location

• Order processing
at HO: orders
and sctiedules
transmitted to
plants of
production
status

• Plants and
sumrnaries of
production
status to HO
(for example,
overnight)

• Access to data
from HQ or
Plant possible
if required

• Improved
response tt,rough
distributed
processing

Chapter 1.2. Multiregion operation

CICS Multiregion Operation (MRO) enables CICS systems that are running in
different address spaces of the same MVS image to communicate with each
other. MRO does not support communication between a CICS system and a
non-CICS system such as IMS.

ACF/VTAM and SNA networking facilities are not required for MRO. The data
transfers between address spaces are made either by a CICS-supplied
interregion program running in supervisor state, or by means of MVS
cross-memory services.

The support within CICS that accomplishes region to region communication is
called Interreglon Communication (IRC). IRC is implemented through support in
CICS terminal control management modules and by use of a CICS-supplied
interregion program (DFHIRP) loaded in the link pack area (LPA) of MVS.
DFHIRP is invoked by a type 2 supervisory call (SVC).

MVS cross-memory services can be selected as an alternative to the CICS type 2
SVC mechanism. In this case, DFHIRP is used only to open and close the
interregion links.

The CICS IRC support utilizes a Service Request Block (SRB) routine.

Note: IRC is also used by CICS/MVS for support of IMS DB batch regions
accessing DLII databases controlled by CICS through CICS's Shared Database
facility and for support of the Data Dictionary program product.

The intercommunication facilities available via MRO are:

• Function request shipping
• Transaction routing
• Asynchronous processing
• Distributed transaction processing.

There are some restrictions for distributed transaction processing under MRO
that do not apply under ISC.

Installation of CICS multiregion operation is described in "Chapter 2.1.
Installation considerations for multireglon operation" on page 79.

tID Copyright IBM Corp. 1977, 1991 9

Applications of multiregion operation
This section describes a number of typical applications of multiregion operation.

Extended recovery facility (XRF)
The CICS/MVS XRF Guide provides examples of the various types of XRF
configuration that are possible using MRO.

Program development

Time-sharing

The testing of newly-written programs can be isolated from production work by
running a separate CICS region for testing. This enables the reliability and
availability of the production system to be maintained during the development of
new applications, because the production system remains up even if the test
system terminates abnormally.

By using function request shipping, the test transactions can access resources of
the production system, such as files or transient data queues. By using
transaction routing, terminals connected to the production system can be used to
run test transactions.

The test system can be brought up and taken down as required, without
interrupting production work. During the cutover into production of the new
programs, terminal operators can run transactions in the test system from their
regular production terminals, and the new programs can access the full
resources of the production system.

If one CICS system is used for compute-bound work, such as APL or ICCF, as
well as regular DB/DC work, the response time for the DB/DC user can be
unduly long. It can be improved by running the compute-bound applications in a
lower priority address space and the DB/DC applications in another.
Transaction routing allows any terminal to access either CICS system without the
operator being aware that there are two different systems.

Reliable database access
In your installation, it may be possible to divide your applications into two sets;
one containing applications that are known to be completely reliable, and one
containing applications that can possibly bring the CICS system down.

With MRO, you can define two CICS regions, one of which owns the unreliable
applications, and the other the reliable applications and also the database. The
fewer applications that run in the database-owning region, the more reliable this
region will be. On the other hand, the cross-region traffic wtll be greater, so
performance can be degraded. You must balance performance against
reliability.

10 CICS/MVS 2.1.2 I ntercommunlcatlon Guide

You can take this application of MRO to its limit by having no user applications
at all in the database-owning region. The online performance degradation may
be a worthwhile trade-off against the elapsed time necessary to restart a CICS
region that owns a very large database.

Departmental separation
MRO allows various departments of an organization to have their own CICS
systems. Each can bring up and take down its own system as it requires. At the
same time, each can have access to other departments' data, with access being
controlled by the system programmer. A department can run a transaction on
another department's system, again subject to the control of the system
programmer. Terminals need not be allocated to departments, since, with
transaction routing, any terminal could run a transaction on any system.

Multiprocessor performance
With MRO, using several CICS systems, the user can take advantage of a
multiprocessor, and allow any terminal to access the transactions and data
resources of any of the systems. Transaction routing presents the terminal
operator with a single system image; the operator need not be aware that there
is more than one CICS system.

The system programmer can assign transactions and data resources to any of
the connected systems so as to balance the load and achieve optimum
performance.

Virtual storage constraint relief
In some large CICS systems, the amount of virtual storage available can become
a limiting factor. In these cases, it is often possible to relieve the virtual storage
problem by splitting the system into two or more separate systems with shared
resources. A" the facilities of MRO can be used to help maintain a
single-system image for end users.

Note: If you are using OUI databases, and wish to split your system to obtain
virtual storage constraint relief, you should consider using IMS data sharing,
rather than CICS function shipping, to share the databases between your CICS
address spaces.

Conversion from single region system
Existing single-region CICS systems can generally be converted to multlregion
CICS systems with little or no reprogramming.

CICS function request shipping will allow an existing command-level application
to continue accessing existing data resources after either the application or the
resource has been transferred to another CICS region. Applications that use
function request shipping must conform to the rules given in "Chapter 4.2.
Application programming for CICS function shipping" on page 163, which may
necessitate program modification in some cases.

Chapter 1.2. Multlreglon operation 11

CICS transaction routing will allow an existing command-level or macro-level
application to be run from an existing terminal after either the application or the
terminal has been transferred to another CICS region. The restrictions that
apply in this case are given in "Chapter 4.4. 'Application programming for CICS
transaction routing" on page 169.

In all cases it will be necessary to define an MRO link between the two regions
and to provide local and remote definitions of the shared resources. These
operations are described in "Part 3. Resource definition and master terminal
operation" on page 89.

Batching of work in an MRO region
In some MRO configurations, a CICS region may frequently enter the wait state
because it has no incoming MRO requests to handle and no other work to do.
The next incoming MRO request will then carry the overhead involved in getting
CICS out of the wait state, and possibly of returning it to the wait state when the
request has been dealt with.

This overhead can often be reduced by delaying the posting of a region until
several incoming MRO requests are outstanding. The region can then be posted
and can handle all the outstanding requests before it returns to the wait state.

You can specify the number of MRO requests that are to be batched in this
manner by means of the MROBTCH operand of the system initialization table
(SIT). The number can have a value in the range from 1 to 255. The default is 1,
meaning that no batching is to occur.

The maximum time that a region is allowed to remain in the wait state is
specified in the ICV operand of the SIT. If you use MRO batching, you should
choose an ICV value to ensure that MRO requests are not unduly delayed in a
tightly-loaded system.

12 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 1.3. Intersystem communication

The data formats and communication protocols required for communication
between systems in a multiple-system environment are embodied in IBM
Systems Network Architecture (SNA). The CICS implementation of intersystem
communication is effectively an implementation of this architecture.

It is assumed that you are familiar with the general concepts and terminology of
SNA. Some books on this subject are listed under "Books from related
libraries" on page viii.

Connections between systems
This section presents a brief overview of the ways in which systems can be
connected together for the purposes of intersystem communication. There are
three basic forms to be considered:

1. ISC within a single processor
2. ISC between physically adjacent processors
3. ISC between physically remote processors.

A possible configuration is shown in Figure 2.

Any APPC ACF/NCP ACF/NCP
(LU6.2)
System 3745 3745

I
I I

ACF/VTAM ACF/VTAM ACF/VTAM

CICS/MVS CICS/MVS CICSjMVS

CICSjMVS IMS CICSjMVS

MVS/XA* MVS/XA MVS/XA

Figure 2. A possible configuration

* IBM Trademark. For a list of trademarks, see page III.

© Copyright IBM Corp. 1977, 1991 13

Single processors
ISC within a single processor (intrahost ISC) is possible through the
application-to-application facilities of ACF/VTAM or ACF/TCAM.

In an MVS system, you can use intrahost ISC for communication between two or
more CICS/MVS systems or between, for example, a CICS/MVS system and an
IMS system.

From the CICS point of view, intrahost ISC is indistinguishable from ISC between
systems in different VTAM* domains.

Physically adjacent processors
An IBM 3725 or 3745 communications controller can be configured with a
multiple-channel adapter which enables you to connect two VTAM or TCAM
domains via a single ACF/NCP/VS. This configuration may be useful for
communication between:

1. A production machine and a local but separate test machine
2. Two production machines with differing characteristics or requirements.

Direct channel-to-channel communication is available between systems that
have ACF/VTAM Version 2 Release 1 (or a later release) installed.

Remote processors
This is the most typical configuration for intersystem communication. Each
participating system can be appropriately configured for its particular location,
using MVS or Virtual Storage Extended/Advanced Functions (VSE/AF), CICS or
IMS, and one of the ACF access methods such as ACF/VTAM.

Intersystem sessions

CICS uses ACF/VTAM to establish, or bind, logical-unit-to-Iogical-unit (LU-LU)
sessions with remote systems. Being a logical connection, an LU-LU session is
independent of the actual physical route between the two systems, and a single
intersystem link can carry multiple independent sessions. Such sessions are
called parallel sessions.

The formats and protocols used for intersystem sessions are those of Logical
Unit (LU) Type 6, and the sessions are known as LUTYPE6 sessions. Each
session partner is also called an LU Type 6. LUTYPE6 links support parallel
sessions and negotiable binds, and use specific types of function management
headers (FMH).

CICS supports two types of LUTYPE6 session, both of which are defined by IBM
Systems Network Architecture:

• LUTYPE6.1 sessions
• LUTYPE6.2 sessions.

* IBM Trademark. For a list of trademarks, see page IiI.

14 CICS/MVS 2.1.2 Intercommunication Guide

LUTYPE6.1

The general term chosen for the LUTYPE6.2 protocol is Advanced
Program-to-Program Communication (APPC).

LUTYPE6.1 is the term used to refer to the logical unit that was formerly called
LUTYPE6. The ".1" is used to distinguish it from LUTYPE6.2.

The keyword LUTYPE6 has been retained in some CICS system generation and
resource definition macros to preserve compatibility with earlier releases. In
contexts where it Is necessary to distinguish between LUTYPE6.1 and LUTYPE6.2,
the keyword LUTYPE6 refers to LUTYPE6.1. In other contexts, it refers generically
to both LU types.

The characteristics of LUTYPE6 sessions, and the formats of the associated
function management headers, are described in Systems Network Architecture
publication Sessions Between Logical Units. Details of the CICS implementation
of LUTYPE6 are given in the CICS/MVS Diagnosis Reference manual.

Currently, LUTYPE6.1 sessions are supported by CICS and by IMS, and can be
used for CICS-to-CICS and CICS-to-IMS communication.

LUTYPE6.2 (APPC)
Like LUTYPE6.1 sessions, LUTYPE6.2 sessions can be used for data
communication between transaction processing systems. However, LUTYPE6.2
provides an architecture within which not only host- or system-level products,
but also device-level products, can communicate.

At the interhost communication level, it offers facilities over and above those
provided by the LUTYPE6.1 architecture. At the same time, it provides defined
subsets which enable device-level products (LUTYPE6.2 terminals) to
communicate with host level products (and also with each other). LUTYPE6.2
therefore represents both an upwards and downwards extension of the
LUTYPE6.1 facilities.

LUTYPE6.2 sessions can be used for CICS-to-CICS communication, and for
communication between CICS and other LUTYPE6.2 systems or terminals.

The following paragraphs provide an overview of some of the principal
characteristics of the LUTYPE6.2 architecture.

Data stream
The data stream employed for LUTYPE6.2 communication is the SNA generalized
data stream (GOS). In GDS, data is preceded by a header field (LLlD) that
specifies the overall length of the data (LL) and an identification of the data type
(10). The data type for user application data is X '12FF'.

Chapter 1.3. Intersystem communication 15

Application programming Interface
LUTYPEB.2 is the first SNA LU type to have a defined application programming
language in which conversations can be coded. Details of this SNA-defined
language are given in the Systems Network Architecture publication Transaction
Programmer's Reference Manual for LU Type 6.2.

As a CICS user, you do not need to use this language directly; CICS provides a
command-level language to enable you to write application programs that hold
LUTYPEB.2 conversations.

Two types of LUTYPEB.2 conversation are defined:

1. Mapped conversations

In mapped conversations, the data passed to and received from the
LUTYPEB.2 API is simply user data. The user has no knowledge of the GDS
headers, and is not responsible for building or interpreting them.

2. Unmapped conversations

In unmapped conversations (also known as basic conversations) the data
passed to and received from the LUTYPEB.2 API contains GDS headers. The
user is responsible for building and interpreting the LL and 10 fields.'
Unmapped conversations are used principally for communication with
device-level products that ~o not support mapped conversations, and which
possibly do not have an application programming interface open to the user.

In CICS, unmapped conversations are written using EXEC CICS GDScommands.
Details of these commands and the way in which they are used are given in
"Chapter 4.B. CICS applications for logical unit type B.2 unmapped
conversations II on page 221.

Mapped conversations are written using normal EXEC CICS commands. Details
of these commands and the way in which they are used are given in "Chapter
4.5. CICS applications for logical unit type B.2 mapped conversations" on
page 171.

The CICS commands provided for mapped and unmapped conversations are
basically implementations of the LUTYPEB.2 verbs described in the architecture.
The mappings between CICS commands and LUTYPEB.2 verbs are given in
Appendix C, "CICS mapping to the LUTYPEB.2 architecture" on page 413.

Synchronization levels
LUTYPEB.2 provides for three different levels of synchronization:

Level 0 (none)
This level is for use when communicating with systems or devices that do
not support synchronization points, or when no synchronization is required.

Level 1 (confirm)
This level allows conversing transactions to exchange private
synchronization requests.

The commands involved are SEND CONFIRM, which is used by one
transaction to inform the other that it requires a response, and ISSUE

16 CICS/MVS 2.1.2 Intercommunication Guide

I
I
r

CONFIRMATION, which is sent in reply to SEND CONFIRM. (Either ISSUE
ERROR or ISSUE ABEND can be used as a negative response to the SEND
CONFIRM command.)

Apart from the transmission of these commands, no architected or
CICS-provided function is involved.

Level 2 (syncpolnt)
This level is the equivalent of full CICS syncpointing, including rollback.

The commands involved are usual CICS syncpointlng commands SYNCPOINT
and SYNCPOINT ROLLBACK. Level 1 synchronization requests can also be
used.

For complex syncpointing situations, where many Intersystem sessions are
involved, the ISSUE PREPARE command can be used to prepare all the
session partners for the syncpoint before syncpointing starts. This technique
is described in "The ISSUE PREPARE command" on page 196.

The maximum synchronization level that can be used on an LUTYPE6.2 session
is governed by the level supported by the more restrictive of the two logical
units. With this constraint, the actual synchronization level that will be used can
be specified by the transaction that initiates the conversation. If the second
transaction does not expect to operate at the same level, the conversation
cannot be held.

LU services manager
Multi-session LUTYPE6.2 connections use the LU services manager. This is the
software component responsible for negotiating session binds, session activation
and deactivation, resynchronization, and error handling. It requires two special
sessions with the remote LU called the SNASVCMG sessions. When these are
bound, the two sides of the LU-LU connection can communicate with each other,
even If the connection is out-of-service for users.

A single-session LUTYPE6.2 connection has no SNASVCMG sessions. For this
reason, its function is limited. It cannot, for example, support synchronization
level 2.

Process Initialization parameter data
When a transaction initiates a remote transaction on an LUTYPE6.2 session, it
can pass data in the form of process initialization parameter (PIP) subfields. PIP
subfields are formatted as follows:

where Ln is a halfword binary integer specifying the length of the subfield.

The length includes the length field and the two reserved bytes; that is,
Ln = length of PI Pn + 4.

Chapter 1.3. Intersystem communication 17

Class of service

PIP data is of concern only to the two transactions involved. It is not used for
CICS-to-CICS communication, but it may be needed for communication with
some other APPC systems. The meaning assigned to PIP data is defined by the
APPC system concerned.

CICS provides facilities to enable a transaction to send PIP data to or receive
PIP data from a remote transaction. These are described in Part 4.

The CICS implementation of LUTYPE6.2 includes support for "class of service"
selection.

Class of service (COS) is an ACF/VTAM facility that allows sessions between a
pair of logical units to have different characteristics. This provides a user with
the following function:

1. Alternate Routing - Virtual Routes for a given COS can be aSSigned to
different physical paths (Explicit Routes).

2. Mixed Traffic - different kinds of traffic can be assigned to the same Virtual
Route and, by selecting appropriate transmission priorities, undue session
interference can be prevented.

3. Trunking - Explicit Routes can use parallel links between certain nodes.

In particular, sessions can take different Virtual Routes, and thus use different
physical links; or the sessions can be of high or low priority to suit the traffic
carried on them.

In CICS, LUTYPE6.2 sessions are specified in groups called modesets, each of
which is assigned a modename. The modename must be the name of a VTAM
LOGMODE entry (also called a "modegroup"), which can specify the class of
service required for the session group. (See" ACF/VTAM LOGMODE table
entries for CICS" on page 83.)

Limited resources
For efficient use of some network resources (for example, switched lines), SNA
allows for such resources to be defined in the network as limited resources.
Whenever a session is bound, VTAM indicates to CICS whether the bind is over
a limited resource. When a I:ask using a session across a limited resource frees
the session, CICS unbinds that session if no other task wants to use it.

Both single and parallel sessions may use limited resources. For a
parallel-session connection, CICS does not unbind LU service-manager sessions
until all modegroups in the connection have performed initial CNOS exchange.

The use of limited resources is effective only if the systems at both ends of the
connection support this function. This is because a CICS system without support
for limited resource does not recognize the available connection state. That is
the connection state in which there are no bound sessions and all are unbound
because they were over limited resources.

18 CICS/MVS 2.1.2 Intercommunication Guide

Establishing intersystem sessions
Before traffic can flow on an intersystem session, the session must be
established, or bound. CICS can be either the primary (BIND sender) or
secondary (BIND receiver) in an intersystem session, and can be either the
contention winner or the contention loser. The 'contention winner in an LU-LU
session is the LU that is permitted to begin a bracket at any time. The
contention loser is the LU that must use an SNA BID command (LUTYPE6.1) or
LUSTATUS command (LUTYPE6.2) to request permission to begin a bracket.

The number of contention-winning and contention-losing sessions required on a
link to a particular remote system can be specified by the system programmer.

For LUTYPE6.1 sessions, CICS always binds as a contention loser.

For LUTYPE6.2 links, the number of contention-winning sessions is specified
when the link is defined (see "Defining logical unit type 6.2 links" on page 116).
The contention-winning sessions are normally bound by CICS, but CICS will also
accept bind requests from the remote system for these sessions.

Normally, the contention-losing sessions are bound by the remote system.
However, CICS can also bind contention-losing sessions if the remote system is
incapable of sending bind requests.

Single sessions to LUTYPE6.2 terminals are normally defined as contention
winners, and are bound by CICS. In this case, CICS will accept a negotiated
bind in which it is changed to the contention loser.

Session initiation can be performed in one of the following ways:

1. By CICS during CICS initialization for sessions for which
AUTOCONNECT{YES) or AUTOCONNECT{ALL) has been specified (see
"Chapter 3.1. Defining links to remote systems" on page 91).

2. By a request from the CICS master terminal operator.

3. By the remote system with which CICS will communicate.

4. By CICS when an application expliCitly or implicitly requests the use of an
intersystem session and the request can be satisfied only by binding a
previously unbound session.

Chapter 1.3. Intersystem communication 19

Chapter 1.4. CICS function shipping

CICS function shipping allows CICS command-level application programs to:

• Access files and OUI databases managed by other CICS systems by
shipping requests for file control or OUI functions.

• Transfer data to or from transient data and temporary storage queues in
other CICS systems by shipping requests for transient data and temporary
storage functions.

• Initiate transactions in other CICS systems, or other non-CICS systems that
implement SNA LU Type 6 protocols, such as IMS, by shipping interval
control START requests. This form of communication is described in
"Chapter 1.5. Asynchronous processing" on page 33.

Applications can be written without regard for the location of the requested
resources; they simply use file control commands, temporary storage
commands, and so on, in the normal way. Entries in the CICS resource
definition tables allow the system programmer to specify that the named
resource is not on the local (or requesting) system but on a remote (or owning)
system.

An illustration of a shipped file control request is given in Figure 3 on page 22.
In this figure, a transaction running in CICSA issues a file control READ
command against a file called NAMES. From the file control table, CICS
discovers that this file is owned by a remote CICS system call~d CICSB. CICS
turns the READ request into a suitable transmission format, and then ships it to
CICSB for execution.

In CICSB, the request is passed to a special transaction known as the mirror
transaction. The mirror transaction recreates the original request, issues it on
CICSB, and passes the acquired data back to CICSA.

The CICS recovery and restart facilities allow resources in remote systems to be
updated and attempt to ensure that when the requesting application program
reaches a synchronization point, any mirror transactions that are updating
protected resources also take a synchronization point, so that changes to
protected resources In remote and local systems are consistent. The CICS
master terminal operator is notified of any failures in this process, so that
suitable corrective action can be taken. This can be a manual process, or be
effected by user-written code.

© Copyright IBM Corp. 1977, 1991 21

TERMINAL

CICSA
DFHFCT
TVPE=REMOTE
SYSIDNT=CICB
FILE=NAMES

EXEC CICS READ
FILE(NAMES) r-- ISC or M
INTO(XXXX) j-,-----<-->

sessio

Figure 3. Function shipping

RO

n

CICSB
DFHFCT
TYPE=FILE
FILE=NAMES

CICS MIRROR
transaction -
(issues READ
command and
passes data
back)

Design considerations

File control

User application programs can run in a CICS Intercommunication environment
and make use of the intercommunication facilities without being aware of the
location of the file or other resource being accessed. The location of the
resource is defined by the system programmer in the appropriate CICS table
(details are given in "Chapter 3.2. Defining remote resources" on page 133).

The resource definition can also specify the name of the resource as it is known
on the remote system, if it is different from the name by which it is known
locally. When the resource is requested by its local name, CICS substitutes the
remote name before sending the request. This facility is useful when a
particular resource exists with the same name on more than one system but
contains data peculiar to the system on which it is located.

Application programs can also name remote systems explicitly on commands
that can be function-shipped, by using the SYSID option. If this option is
specified, the request is routed directly to the named system, and the resource
definition tables on the local system are not used. The local system can be
specified in the SYSID option, so that the decision whether to access a local
resource or a remote one can be taken at execution time.

Intercommunication allows access to BDAM or VSAM files located on a remote
CICS system. OPEN and CLOSE are not supported. Both inquiry and update
requests are allowed, and the files can be defined as protected in the system on
which they reside. Updates to remote protected files will not be committed until
the application program issues a syncpoint request or terminates successfully.
Linked updates of local and remote files can be performed within the same
logical unit of work, even if the remote files are located on more than one
connected CICS system.

22 CICS/MVS 2.1.2 IntercommunIcation Guide

DL/I

Caution is needed when designing systems where remote file requests using
physical record identifier values are employed, such as BDAM, VSAM RBA, or
files with keys not embedded in the record, because of the need to ensure that
all application programs in remote systems have access to the correct values
following addition of records or reorganization of these types of file.

You can improve data access time by using the optional CICS data tables
feature. CICS supports both user-maintained and CICS-maintained remote data
tables under MRO. However, CICS does not support creation of a local data
table from a remote source data set. To simulate this, you will have to load
local user-maintained data tables from a remote file by having an empty dummy
VSAM data set as the source data set. You can then, for example, load the data
table with its data by using a transaction that browses the remote file and writes
the records to the local table.

For further information on data tables, see the CICSIMVS Data Tables Guide.

Function shipping allows a CICS transaction to access IMS DB databases
associated with a remote CICS/ESA, CICS/MVS, or CICS/OS/VS system, or DUI
DOS/VS databases associated with a remote CICS/VSE or CICS/DOS/VS system.
(See "Chapter 1.1. Introduction to CICS intercommunication" on page 3 for a list
of systems with which CICS/MVS 2.1.2 can communicate.)

As with File Control, updates to remote DUI databases are not committed until
the application reaches a syncpoint. With IMS DB, it is not possible to schedule
more than one PSB per logical unit of work, even when both PSBs are defined to
be on remote systems. Hence linked DLII updates on different systems cannot
be made in a single logical unit of work.

The PSB directory list (PDIR or DLZACT) is used to define a PSB as being on a
remote system. The remote system owns the database and the associated PCB
definitions. When DUI access requests are made to another processor system
by a CICS/MVS system but no local requests are made, it is not necessary to
install IMS DB on the requesting system.

Temporary storage

Transient data

Intercommunication enables application programs to send data to, or retrieve
data from, temporary storage queues located on remote systems. A temporary
storage queue is specified as being remote by means of an entry in the local
TST. If the queue is to be protected, its queue name (or remote name) must also
be defined as recoverable in the TST of the remote system.

An application program can access intrapartition or extrapartition transient data
queues on remote systems. The Destination Control Table (OCT) in the
requesting system defines the named queue as being on the remote system.
The OCT entry for the queue in the remote system specifies whether the queue
is protected, and whether it has a trigger level and associated terminal.

Chapter 1.4. CICS function shipping 23

Extrapar11tion queues can be defined (in the owning system) as having fixed,
variable, or undefined length records.

Many of the uses currently made of transient data and temporary storage
queues in a stand-alone CICS system can be extended to an interconnected
CICS system environment. For example, a queue of records can be created in a
system for processing overnight. Queues also provide another means of
handling requests from other systems while freeing the terminal for other
requests. The reply can be returned to the terminal as soon as it is ready, and
delivered to the operator when there is a lull in entering transactions.

If a transient data destination has an associated transaction, the named
transaction must be defined to execute in the system owning the queue; it can
not be defined as remote. If there is a terminal associated with the transaction,
it can be connected to another CICS system and used via the transaction routing
facility of CICS.

The remote naming capability enables a program to send data to the CICS
service destinations, such as CSMT, in both local and remote systems.

The mirror transaction and transformer program
CICS supplies a number of mirror transactions, each of which corresponds to a
particular "process" name. Their transaction identifiers are CSM1, CSM2, CSM3,
CSM5, and CSMf1. All these transaction identifiers map to a single mirror
program DFHMIR.

Details of the individual mirror transactions are given In "Chapter 3.3. Defining
local resources" on page 151. In the rest of this book, they are referred to
generally as the mirror transaction, and given the transaction identifier CSM*.

The following description of the mirror transaction and the transformer program
is generally applicable to both ISC and MRO function shipping. There are,
however, a number of differences in the way that the mirror transaction works
under MRO, and a different transformer program is used. These differences are
described in "MRO function shipping" on page 26.

The mirror transaction executes as a normal CICS transaction and uses the CICS
terminal control program facilities to communicate with the requesting system.

1 If you are using MRO, lUS.1 or lUS.2 Synclevel(2) para"el sessions, CICS runs transaction CSMI with program OFHMIR. If
. you are using an lUS.2 single-session connection, or an lUS.2 parallel-session connection that supports only synchronizatIon
level 1, CICS runs transaction CVMI with program DFHMIRVM. The difference Is In the way syncpolntlng Is handled. Unless
otherwise stated, all references to CSMIIDFHMIR also refer to CVMIIOFHMIRVM.

24 CICS/MVS 2.1.2 Intercommunication Guide

In the requesting system, the command level EXEC interface program (for all
except DLII requests) determines that the requested resource is on another
system, calls the function-shipping transformer program DFHXFP to transform
the request into a form suitable for transmission, and calls on the
intercommunication component to send the request to the appropriate connected
system. For DL/I requests, part of this function is handled by CICS DLII interface
modules.

The Intercommunication component uses CICS terminal control program
facilities to send the request to the mirror transaction. The first request to a
particular remote system on behalf of a transaction will cause the
communication component in the local system to precede the formatted request
with the appropriate mirror transaction identifier, in order to attach this
transaction in the remote system. Thereafter it keeps track of whether or not the
mirror transaction terminates, and reinvokes it as required.

The mirror transaction uses the function-shipping transformer program DFHXFP
to decode the formatted request and executes the corresponding command. At
completion of the command the mirror transaction uses the transformer program
to construct a formatted reply, and returns this to the requesting system. On
that system the reply is decoded, again using the transformer program, and used
to complete the original command level request made by the application
program.

If the mirror transaction is not required to update any protected resources, and
no previous request updated a protected resource in its system, the mirror
transaction will terminate after sending its reply. However, if the request causes
the mirror transaction to change or update a protected resource, or the request
is for any DLII PSB, It will not terminate until the requesting application program
issues a synchronization point request or terminates successfully. When the
application program issues a synchronization point request, or terminates
successfully, the intercommunication component sends a message to the mirror
transaction which causes it also to issue a synchronization point request and
terminate. The successful synchronization pOint by the mirror transaction is
indicated in a response sent back to the requesting system, which then
completes its synchronization point processing, so committing changes to any
protected resources. If DLII requests have been received from another system,
CICS issues a DLII TERM call as a part of the processing resulting from a
synchronization pOint request made by the application program and executed by
the mirror transaction.

The application program is not constrained in the order in which it accesses
protected or unprotected resources, nor is it affected by the location of protected
resources (they could all be in remote systems, for example). When the
application program accesses resources in more than one remote system, the
intercommunication component invokes a mirror transaction in each system to
execute requests on behalf of the application program. Each mirror transaction
follows the above rules for termination, and when the application program
reaches a synchronization point, the intercommunication component exchanges
synchronization pOint messages with those mirror transactions that have not yet
terminated (if any). This is referred to as the multiple-mirror situation.

Chapter 1.4. CICS function shipping 25

The mirror transaction uses the CICS command level interface to execute CICS
requests and the DLII CALL interface to execute DLII requests. The request is
thus processed as for any other transaction and the requested resource is
located in the appropriate resource table. If its entry defines the resource as
being remote, the mirror transaction's request is 'formatted for transmission and
sent to yet another mirror transaction in the specified system. This situation is
referred to as "chained-mirror." It is strongly recommended that the system
designer avoids defining a connected system in which chained mirror requests
will occur, except when the requests involved do not access protected
resources, or are inquiry-only requests.

MRO function shipping
For MRO function shipping, the operation of the mirror transaction is slightly
different from that described in the previous section.

Reusable mirror tasks
For ISC function shipping, mirror tasks are terminated when they have no further
work to do, and each new invocation of the mirror transaction requires a new
mirror task to be attached. For MRO, however, the mirror task is detached from
the interregion link when it has no further work to do, but is suspended rather
than terminated.

The "suspend" command issued by the mirror transaction carries a fixed timeout
value of 2 seconds, so that the task is detached if it has not been reused when
this time expires. This mechanism allows the number of reusable mirror tasks
to vary dynamically according to the current interregion traffic. The trade-off in
overheads associated with attaching and detaching mirror tasks and maintaining
suspended tasks is thus optimized.

The timeout value specified on the suspend command is fixed by the
implementation, and cannot be altered,.

Suspended mirror tasks are eligible to service any function shipping request on
an interregion link. A mirror task attach is thus necessary only when a
suspended mirror task is not available.

Long-running mirror tasks
Mirror tasks are normally terminated (or suspended) as soon as possible, to
keep the number of active tasks to a minimum and to avoid holding on to the
session for long periods.

However, for some applications, it is more efficient to retain both the mirror task
and the session until the next synchronization point, even though this is not
required for data integrity. For example, a transaction that Issues a large
number of READ FILE requests to a remote system may be better served by a
single mirror task, rather than by a separate mirror task for each request. In this
way, the overheads of allocating sessions on the sending side and attaching
mirror tasks on the receiving side can be reduced.

26 CICS/MVS 2.1.2 Intercommunication Guide

Mirror tasks that wait for the next syncpoint, even though they logically do not
need to do so, are called long-running mirrors. They are applicable to MRO
links only, and are specified, on the system on which the mirror will run, by
coding MROLRM = YES in the system initialization table. A long-running mirror
is terminated by the next syncpoint (or RETURN) on the sending side.

Figures 5 and 6 show the action of the mirror for MROLRM = NO and
MROLRM = YES respectively.

Suspension and resumption of mirror tasks
A mirror task is required to service any incoming request that specifies the CICS
mirror transaction CSMI or one of the architected processes CSM1, CSM2,
CSM3, or CSM5. A mirror task can be obtained in one of two ways:

1. By resuming a suspended mirror task, if one is available.

2. By attaching a new mirror task in the normal way.

When a mirror task has no further work to do, it issues a syncpoint if necessary,
and calls the monitoring program just as if it were terminating. It is then
disconnected from the interregion link and, normally, suspended with a 2-second
timeout value.

The maximum number of mirror tasks that can ever be created In a CICS region
is equal to the number of receive sessions that are defined to other CICS
regions, although this number is unlikely to be approached in practice.

The number of suspended mirror tasks peaks whenever a large number of
mirror tasks finish within the 2-second timeout period. For example, to reach 100
suspended mirror tasks would require sufficient function shipping requests to
attach 100 mirror tasks, and for all these tasks to finish and be suspended within
a two-second period, with no additional requests to cause resumption of a
suspended task.

You can limit the number of suspended mirror tasks in your system by means of
the MAXSMIR operand of the system initialization table. If the suspension of a
mirror task would cause the MAXSMIR value (default 999) to be exceeded, the
mirror task is terminated instead.

Other conditions that can cause a mirror task to be terminated rather than
suspended are:

• CICS is "short-on-storage".
• The maximum task count has been reached.
• Interregion communication is being closed (CEMT SET IRC CLOSED).

In this case, all suspended mirror tasks are resumed and allowed to
terminate.

Suspended mirror tasks contribute towards the maximum task count.

Chapter 1.4. CICS function shipping 27

The short-path transformer
eles use a special transformer program for function shipping over MRO links.
This transformer program is designed to optimize the path length involve~ in the
construction of the terminal input/output areas (TIOA) that are sent on an MRO
session for function shipping. It does this by using a private eles format for the
transformed request, rather than the architected format defined by SNA.

eles uses the short-path transformer to ship file control, transient data,
temporary storage, and interval control (asynchronous processing) requests.
The short-path transformer is not used for DLII requests. The shipped request
always specifies the eles mirror transaction eSMI; architected process names
are not used.

Function shipping - examples

System A

This section gives some examples to i.llustrate the life time of the mirror
transaction and the information Howing between the application and its mirror
(eSM*). The examples contrast the action of the mirror transaction when
accessing protected and non-protected resources on behalf of the application
program, over MRO or Ise links, with and without MRO long-running mirror
tasks. Further details can be found in the CICS/MVS Diagnosis Reference
manual.

Note: In the following examples, references to the suspension and resumption
of the mirror apply only to MRO function shipping (see "Reusable mirror tasks"
on page 26).

Transmitted Information System B

Application Transaction

EXEC CICS READ
FI LE (, RF I LE ')

Free session. Reply is
passed back to the
application, which
continues processing.

Attach CSM*,
'READ' request
----------> Attach mirror transaction

Perform READ request

'READ' ReplY,Last
<-------------- Free session. Terminate

mi rror.

Figure 4. ISC function shipping - simple enquiry. Here no resource is being changed; the session is freed and
the mirror task is terminated immediately.

28 CICS/MVS 2.1.2 IntercommunIcation GuIde

Application Transaction

EXEC CICS READ
FILE (, RF I LE ')

Free session. Reply is
passed back to the
application, which
continues processing.

Transmitted Information

Attach CSM*,
'READ' request

System B

{DFHSIT MROLRM=NO}

----------> Attach (or resume) mirror
transaction.

'READ' Reply,Last
<------------------

Perform READ request

Free session. Terminate
mirror.

Figure 5. MRO function shipping - simple enquiry. Here no resource is being changed. Because long·running
mirror tasks are not specified, the session is freed by system B and the mirror task is terminated immediately.

System A

Application Transaction

EXEC CICS READ,
FILE('RFILE')

Hold session. Reply is
passed back to the
application, which
continues processing.

Transmitted Information

Attach CSM*,
'READ' request

System B

{DFHSIT MROLRM=YES}

-------------> Attach (or resume) mi rror
transaction.

'READ' Reply
<------------

Perform READ request

Hold session. Mirror task
waits for next request.

Figure 6. MRO function shipping - simple enquiry. Here no resource is being changed. However, because
long·running mirror tasks are specified, the session is held by system B and the mirror task waits for the next
request.

Chapter 1.4. CICS function shipping 29

System A

Application Transaction

EXEC CICS READ UPDATE
FILE(' RFILE')

Reply passed to application

EXEC CICS REWRITE
FILE(' RFILE')

Transmitted Information

Attach CSM*,
'READ UPDATE' request
---------:> Attach (or resume) mirror

transaction
'READ UPDATE' reply

<--------------- Perform READ UPDATE

Mirror waits
'REWRITE' request
----------> Mi rror performs REWRITE

'REWRITE' reply
Reply passed to application <------.-----

EXEC CICS SYNCPOINT

Syncpoint completed
Application continues

'SYNCPOINT' request,last
-----------:>

+ve response
<--------------

Mirror waits, still holding the
enqueue on the updated record

Mirror takes syncpoint, releases
the enqueue, frees the session,
and terminates.

Figure 7. Function shipping - update. Because the mirror must wait for the REWRITE, it becomes long-running
and does not terminate until SYNCPOINT is received. Note that the enqueue on the updated record would not be
held beyond the REWRITE command if the file was not recoverable.

30 CICS/MVS 2.1.2 Intercommunication Guide

System A

Application Transaction

EXEC CICS READ UPDATE
FILE('RFILE')

Transmitted Information System B

Attach CSM*,
'READ UPDATE' request
---------> Attach (or resume) mirror

transaction.

'READ UPDATE' reply Perform READ UPDATE
Reply passed to application <.------~--

EXEC CICS REWRITE
FILE('RFILE')

Mi rror waits

'REWRITE' request
---------> Mi rror performs RB~RITE

'REWRITE' reply
Rep 1 y passed to app 1 i cat ion <:---------

EXEC CICS SYNCPOINT

Application is abended and backs
out.
Message routed to CSMT

Mirror waits

'SYNCPOINT' request,last
---------> Mi rror attempts syncpol nt but

abends (logging error, for

-ve response
<-----------

Abend message
<-------~------

example). Mirror backs out and
terminates.

Session freed

Figure 8. Function shipping - update with ABEND. This is similar to the previous example, except that an abend
occurs during syncpoint processing.

Chapter 1.4. CICS function shipping 31

Chapter 1.5. Asynchronous processing

Asynchronous processing provides a means of distributing the processing that is
required by an application between systems in an intercommunication
environment. Unlike distributed transaction processing, however, the processing
is asynchronous.

In distributed transaction processing, a session is held by two transactions for
the period of a "conversation" between them, and requests and replies can be
directly correlated.

In asynchronous processing, the processing is independent of the sessions on
which requests are sent and replies are received. No direct correlation can be
made between a request and a reply, and no assumptions can be made about
the timing of the reply. These differences are illustrated in Figure 9.

System A System B

TRANl <-->- TRAN2

'- TRAN4

-

Synchronous Process;ng (DTP)

TRANl and TRAN2 hold synchronous
conversation on session.

Asynchronous Processing

TRAN3 initiates TRAN4 and sends
request. At a later time, TRAN4
initiates TRAN5 and sends reply.
No direct correlation between
executions of TRAN3 and TRAN5.

Figure 9. Synchronous and asynchronous processing compared

A typical application area for asynchronous processing is online inquiry on
remote databases; for example, a credit rating check application. A terminal
operator can use a local transaction to enter a succession of inquiries without
waiting for a reply to each individual inquiry. For each inquiry, the local
transaction initiates a remote transaction to process the request, so that many
copies of the remote transaction can be executing concurrently. The remote
transactions send their replies by initiating a local transaction (possibly the
same transaction) to deliver the output to the operator terminal. The replies
may not arrive in the same order as the inquiries were issued; correlation
between the inquiries and the replies must be made by means of fields in the
user data.

© Copyright I BM Corp. 1977, 1991 33

In general, asynchronous processing is applicable to any situation in which it is
. not necessary or desirable to tie-up local resources while a remote request is
being processed.

Asynchronous processing is not suitable for applications that involve
synchronized changes to local and remote resources; for example, it cannot be
used to carry out simultaneous linked updates to data split between two
systems.

Asynchronous processing methods
In CICS, asynchronous processing can be done in either of two ways:

1. By using the interval control commands START and RETRIEVE.

You can use the START command to schedule a transaction in a remote
system in much the same way as you would in a single CICS system. This
type of asynchronous processing is essentially a form of CICS function
shipping, and as such, it is transparent to the application. The systems
programmer determines whether the attached transaction is local or remote.

If you use the START command for asynchronous processing, you can
communicate only with systems that support the special protocol needed for
function shipping; that is, CICS itself and IMS.

A CICS transaction that is initiated by a remotely-issued start request can
use the RETRIEVE command to retrieve any data associated with the
request. A task that is not associated with a terminal can access only the
single data record associated with the original start request. A task
associated with a terminal can retrieve many data records. Each data
record comes from a START command, specifying the same transaction and
terminal.

2. By using distributed transaction processing (DTP).

This is essentially a cross-system method and has no single-system
equivalent. You can use it to initiate a transaction in a remote system that
supports one of the DTP protocols.

When you use DTP to attach a remote transaction, you also allocate a
session and start a conversation. This permits you to send data directly and,
if you want, to receive data from the remote transaction. Your transaction
design determines the format and volume of the data you exchange. For
example, you can use repeated SEND commands to pass multi-record files.

When you have exchanged data, you can terminate the conversation and quit
the local transaction, leaving the remote transaction to run on Independently.

The procedure to be followed by the two transactions during the time that
they are working together is det.ermined by the application programming
interface (API) for the protocol you are using. LUTYPE6.2 is the preferred
one, although you must use LUTYPE6.1 if you want to communicate with IMS.
You may want to take advantage of the flexible data exchange facilities by
employing this method across MRO links too.

Whatever protocol you decide to use, you must observe the rules it imposes.
However short the conversation, during the time it is in progress, the

34 CICS/MV5 2.1.2 Intercommunication Guide

processing is synchronous. In terms of command sequencing, error
recovery and syncpointing, the normal DTP rules apply.

Note: If the remote transaction has been defined with RSLC(YES) or
RSLC(EXTERNAL), it cannot access any resources after it has freed the
session that is its principal facility.

In both forms of asynchronous processing (and also in synchronous processing),
a CICS transaction can use the CICS ASSIGN command, plus possibly an
examination of the EIB, to determine how it was initiated.

CICS-to-IMS communication includes a special case of the DTP method
described above. Because it restricts data communication to one SEND LAST
command answered by a single RECEIVE, this book refers to it elsewhere as the
SEND/RECEIVE interface. The circumstances under which it is used are
described in "Chapter 4.8. CICS-to-IMS applications" on page 263.

The remainder of this chapter is devoted to asynchronous processing using
START and RETRIEVE commands. Distributed transaction processing is
described in "Chapter 1.7. Distributed transaction processing" on page 55.

Asynchronous processing using START/RETRIEVE commands
CICS interval control is described in the CICS/MVS Application Programmer's
Reference manual. The interval control commands that can be used for
asynchronous processing are:

• START
• CANCEL
• RETRIEVE.

Starting and canceling remote transactions
The interval control START command is used to schedule transactions
asynchronously in remote CICS and IMS systems. The command causes an
"attach" FMH and a concatenated "scheduler" FMH to be sent with the data to
the remote system; that Is, the command is effectively "function shipped". If the
remote system is CICS, the mirror transaction is invoked in the remote system to
issue the START command on that system. The FMH DSECTs are defined in the
CICSIMVS Data Areas manual.

For CICS-to-CICS cOfllmunication, you can include time-control information on
the shipped START command in the normal way, by means of the INTERVAL or
TIME option. A TIME specification is converted by CICS to a time interval,
relative to the local clock, before the command is shipped. Because each end of
an intersystem link may be in a different time zone, it is usually better to think in
terms of time intervals, rather than absolute times, for intersystem
communication.·

Note particularly that the time interval specified on a START command specifies
the time at which the remote transaction is to be initiated, not the time at which
the request is to be shipped to the remote system.

Chapter 1.5. Asynchronous processing 35

A START command shipped to a remote CICS system can be canceled at any
time up to its expiration time by shipping a CANCEL command to the same
system. The particular START command is uniquely identified by an identifier
(REQIO) which you can specify on the START command and on the associated
CANCEL command. The CANCEL command can be issued by any task that
"knows" the identifier.

Time control cannot be specified for START commands sent to IMS systems;
INTERVAL(O) must be specified or allowed to default. Consequently, start
requests for IMS transactions cannot be canceled after they have been issued.

Passing information with the START command
The START command has a number of options that enable information to be
made available to the remote transaction when it is started. If the remote
transaction is in a CICS system, the information is acquired by means of a
RETRIEVE command. The information that can be specified is summarized in the
following list:

• User data - specified in the FROM option.

This is the principal way in which data can be passed to the remote
transaction.

For CICS-to-CICS communication, additional data can be made available in a
transient data or temporary storage queue named in the QUEUE option. The
queue can be on any CICS system that is accessible to the system on which
the remote transaction is executed.

The QUEUE option cannot be used for CICS-to-IMS communication.

• A "terminal" name - specified in the TERMID option.

For CICS-to-CICS communication, this is the name of a terminal that is to be
associated with the remote transaction when it is initiated. The terminal
might be defined on the region that owns the remote transaction and not be
owned by that region. If so, it is acquired by the automatic transaction
initiation (AT I) facility of transaction routing (see" Automatic transaction
initiation" on page 46).

The global user exits XICTENF and XAL TENF can be coded to cover the case
where the terminal Is shippable but not yet defined in the region that owns
the remote transaction. See "Shipping terminals for automatic transaction
initiation" on page 48.

For CICS-to·IMS communication, it is a transaction code or an L TERM name.

• A transaction name and an associated terminal name - specified in the
RTRANSID and RTERMID options.

These options provide the means for the remote transaction to pass a reply
to the local system, by specifying a transaction that is to be invoked and a
terminal that is to be associated with it.

The use of any of these options is optional.

36 CICS/MVS 2.1.2 Intercommunication Guide

Passing an APPLID with the START command
If you have a transaction that can be started from several different systems, and
is required to issue a start command to the system that initiated it, you can
arrange for all of the Invoking transactions to send their '",cal system APPLID as
part of the user data in the START command. A transa(. .. ·.In can obtain its local
APPLID by means of an ASSIGN APPLID command. (Note that this command
returns the generic name of the applid.)

The transaction that is started can then find its own, local, SYSID for the passed
APPLID by means of an EXTRACT TCT command, and name that SYSID in the
START command that it issues in reply. This approach cannot be used for MRO
connections, because the EXTRACT TCT command Is not supported.

Improving performance of intersystem START requests
In many enquiry-only applications, sophisticated error-checking and recovery
procedures are not justified. Where the transactions make enquiries only, the
terminal operator can retry an operation if no reply is received within a certain
time. In such a situation, the number of messages to and from the remote
system can be substantially reduced by means of the NOCHECK option of the
START command. Where the connection between the two systems is via VTAM,
this can result in considerably improved performance. The price paid for better
performance is the inability of CICS to detect certain types of error in the START
command.

A typical use for the START NOCHECK command is In the remote enquiry
application described at the beginning of this chapter on page 33.

The transaction attached as a result of the terminal operator's enquiry issues an
appropriate START command with the NOCHECK option, which causes a single
message to be sent to the appropriate remote system to start, asynchronously, a
transaction that makes the enquiry. The command should specify the operator's
terminal identifier. The transaction attached to the operator's terminal can now
terminate, leaving the terminal available for either receiving the answer or
initiating another request.

The remote system performs the requested enquiry on Its local database, then
issues a start request for the originating system. This command passes back
the requested data, together with the operator's terminal Identifier. Again, only
one message passes between the two systems. The transaction that is then
started in the originating system must format the data and display it at the
operator's terminal.

If a system or session fails, the terminal operator must reenter his enquiry, and
be prepared to receive duplicate replies. To aid him, either a correlation field
must be shipped with each request, or all replies must be self-describing.

An example of intercommunication using the NOCHECK option is given at the
end of this chapter in Figure 11 on page 42.

The NOCHECK option Is always required when shipping of the START command
is queued pending the establishment of links with the remote system (see "Local
queuing" on page 38), or if the request is being shipped to IMS.

Chapter 1.5. Asynchronous processing 37

Including start request delivery in a logical unit of work
The delivery of a start request to a remote system can be made part of a logical
unit of work by specifying the PROTECT option on the START command. The
PROTECT option indicates that the remote transaction must not be scheduled
until the local one has successfully completed a synchronization point. (It can
take the synchronization point either by issuing a SYNCPOINT command or by
terminating.)

Successful completion of the syncpoint guarantees that the start request has
been delivered to the remote system. It does not guarantee that the remote
transaction has completed, or even that it will be initiated.

If the remote system is IMS, no message must cross the link between the START
command and the synchronization point. Both PROTECT and NOCHECK must be
specified for all IMS recoverable transactions.

Deferred sending of START requests

Local queuing

For START commands with the NOCHECK option, whether or not PROTECT is
specified, CICS defers transmission of the request to the remote system until one
of the following events occurs:

• The transaction issues a further START command (or any function shipping
request) for the same system

• The transaction issues a SYNCPOINT command
• The transaction terminates (implicit syncpoint).

The first, or only, start request transmitted from a transaction to a remote system
carries the begin-bracket indicator; the last, or only, request carries the
end-bracket indicator. Also, if any of the start requests issued by the transaction
specifies PROTECT, the last request carries the syncpoint-request indicator.
Deferred sending allows the indicators to be added to the deferred data, and
thus reduces the number of transmissions required.

The sequence of requests is transmitted within a single SNA bracket and, if the
remote system is CICS, all the requests are handled by the same mirror task.

For IMS, as stated in the previous section, no message must,cross the link
between a START request and the following syncpoint. Therefore, you cannot
send multiple START NOCHECK PROTECT requests to IMS. Each request must
be followed by a SYNCPOINT command, or by termination of the transaction.

When a local transaction is ready to ship a START request, the intersystem
facilities may be unavailable, either because the remote system is not active or
because a connection cannot be established. The normal CICS action in these
circumstances is to raise the SYSIDERR condition. This can be avoided by
arranging for the request to be queued locally, and forwarded when the required
link is in service. The storing and forwarding can be carried out by user-written
transactions, or by the CICS local queuing facility.

38 CICS/MVS 2.1.2 Intercommunication Guide

CICS can provide local queuing for START commands intended to initiate
transactions on remote systems. The commands must include the NOCHECK
option, and local queuing must be specified by means of either a user exit
invoked from the CICS routine DFHISP, or t,he LOCALQ operand in the local
definition of the remote transaction. The user exit can specify local queuing for
all requests from the local system; the LOCALQ operand can specify local
queuing for all requests from the local system for a particular remote
transaction.

Local queuing is ineffective for START requests that specify the SYSID option.

Data retrieval by a started transaction
A CICS transaction that is started by a start request can acquire the user data
and other information associated with the request by means of the RETRIEVE
command.

In accordance with the normal rules for CICS interval control, a start request for
a particular transaction that carries both user data and a terminal identifier will
be queued if the transaction is already active and associated with the same
terminal. During the waiting period, the data associated with the queued request

, can be accessed by the active transaction by means of a further RETRIEVE
command. This has the effect of canceling the queued start request.

It is thus possible to design transactions that can handle the data associated
with multiple start requests. Typically, a long-running transaction could be
designed to accept multiple enquiries from a terminal and ship start requests to
a remote system. From time to time, the transaction would issue RETRIEVE
commands to receive the replies, the absence of further replies being indicated
by the ENDDATA condition.

The WAIT option of the RETRIEVE command can be used to put the transaction
into a WAIT state pending the arrival of the next start request from the remote
system. Suitable precautions must be made to ensure that the transaction does
not get into a permanent wait state in the absence of further start requests.

Terminal acquisition by a remotely-initiated CICS transaction
When a CICS transaction is started by a start request that names a terminal
(TERMID), CICS makes the terminal available to the transaction as its principal
facility. Its makes no difference whether the start request was issued by a
user-transaction in the local CICS system or was received from a remote system
and issued by the mirror transaction.

Starting transactions with ISC or MRO sessions
You can name a system, rather than a terminal, in the TERMID option of the
START command.

Chapter 1.5. Asynchronous processing 39

If CICS finds that the "terminal" named in a locally- or remotely-issued start
request is a system, it selects an available session to that system and makes it
the principal facility (see "Terminology" on page 161) of the started transaction.
If no session is available, the request is queued until there is one.

If the link to the system is an LUTYPE6.2 link, CICS uses the modename
associated with the transaction definition to select a class-of-service for the
session.

System programming considerations
This section discusses the CICS resources that must be defined for
asynchronous processing. Information on how to define the resources is given
in .. Part 3. Resource definition and master terminal operation" on page 89.

• A link to remote system must be defined.

• Remote transactions that are to be initiated by start requests must be
defined as remote resources to the local CICS system. This is not
necessary, however, for transactions that are initiated only by START
commands that name the remote system explicitly in the SYSID option.

• If the QUEUE option is used, the named queue must be defined on the
system to which the start request is shipped. The queue can be either a
local or a remote resource on that system.

• If a START request names a "reply" transaction, that transaction must be
defined on the system to which the start request is shipped.

Asynchronous processing - examples
Note: In the following examples, references to the suspension and resumption
of the mirror apply only to CICS systems using MRO (see "Reusable mirror
tasks" on page 26).

40 CICS/MVS 2.1.2 Intercommunication Guide

System A

{DFHSIT MROLRM=YES}

Transaction TRX
initiated by terminal T1

EXEC CICS START
TRANSID (' TRY')
RTRANSID('TRZ')
RTERMID('T1')
FROM(area)
LENGTH(length)

Transmitted Information

Attach CSM*
'SCHEDULE' request for
transaction

System B

---------:> Attach (or resume) mirror
transaction. Perform START
request for transaction TRY.

'SCHEDULE' Reply,last
Free session. Pass return code <--------
to application program. Continue
processing. Session available for

Attach (or resume) mirror
transaction.

(continued)

remote Y'equests from
other transactions in
system A or B.

Attach CSM*
'SCHEDULE' request for
transaction
<----------

Free session. Terminate (or
suspend) mirror. Transaction TRY
is dispatched and starts
processing.

EXEC CICS RETRIEVE
INTO (area)
LENGTH(length)
RTRANSID(TR)
RTERMID (T)

(TR has value 'TRZ',
T has value 'T11)

Processing based on data
acquired. Results put into TS
queue named RQUE.

EXEC CICS START
TRANSID (TR)
TERMID(T)
QUEUE ('RQUE ')

(TR has value 'TRZ',
T has value 'T1')

Figure 10 (Part 1 of 2). Asynchronous processing - remote transaction initiation

Chapter 1.5. Asynchronous processing 41

Perform START request with
TRANSID value of 'TRZ' and TERMID
value of 'Tl'.

mirror waits for SYNCPOINT.

Free session. Terminate (or
suspend) mirror.

Transaction TRZ is dispatched
on terminal Tl and starts
processing.

EXEC CICS RETRIEVE
INTO(area)
LENGTH(length)
QUEUE(Q)

Q has value 'RQUE'

Transaction now uses function
shipping to read and then to
delete the remote queue.

Transmitted Information System B

'SCHEDULE' Reply
------------------>

RETURN (implicit syncpoint)
'SYNCPOINT' request,last
<------------------

+ve response
------------------:>

Figure 10 (Part 2 of 2). Asynchronous processing - remote transaction initiation. This example shows an MRO
connection with long-running mirrors (MROLRM) specified for system A but not for system B. Note the different
action of the mirror transaction on the two systems.

System A

Transaction TRX
initiated by terminal Tl

EXEC CICS START
TRANSID (I TRY I)
RTRANSID (I TRZ I)
RTERMID('Tl')
FROM(area)
LENGTH(length)
NOCHECK

(continued)

Transmitted Information System B

Figure 11 (Part 1 of 2). Asynchronous processing - remote transaction initiation using NOCHECK

42 CICS/MVS 2.1.2 Intercommunication Guide

System A

Termi nate, and free termi na 1 T 1.
T1 could now initiate another
transaction, but TRZ could not
start until T1 became free again.

Attach (or resume)
mirror transaction

Perform START request with
TRANSID value of 'TRZ' and TERMID
value of 'T1'. Free session.

Terminate (or suspend) mirror.

Transaction TRZ is dispatched on
terminal T1 and starts processing.

Transmitted Information

Attach CSM*
'SCHEDULE' request for
trans, last (no reply)

System B

---------> Attach (or resume) mirror.
Perform START request for
transaction TRY. Free session.

session available Terminate (or suspend) mirror.

Attach CSM*
'SCHEDULE' request for

_trans, last (no reply)
<-----------------

session available

Transaction TRY is dispatched
and starts processing.
EXEC CICS RETRIEVE

INTO (area)
LENGTH(length)
RTRANSID(TR)
RTERMID (T)

(TR has value 'TRZ',
T has value 'T1')

Processing based on data acquired.
Reply put in data area REP.

EXEC CICS START
TRANSID(TR)
FROM(REP)
LENGTH(length)
TERMID(T)
NOCHECK

(TR has value 'TRZ',
T has value 'T1')

TRY terminates

Figure 11 (Part 2 of 2). Asynchronous processing _. remote transaction initiation using NOCHECK. This
example shows an ISC connection, or an MRO connection without long-running mirrors.

Chapter 1.5. Asynchronous processing 43

Chapter 1.6. CICS transaction routing

CICS transaction routing allows terminals connected to one CICS system to run
with transactions In another, connected, CICS system. The two systems can be
connected either by MRO links or by LUTYPE6.2 (APPC) Ise links. Transaction
routing across LUTYPE6.1 links is not supported.

A terminal operator at a terminal connected to one CICS system (the
terminal-owning region or TOR) can enter a transaction code for a transaction
without being aware of the location of the transaction. If the transaction is
"remote", CICS will route the request to the application-owning region or AOR,
and the transaction will run exactly as if the terminal were attached to the
application-owning region.

Similarly, a transaction that Is started by automatic transaction initiation (ATI)
can acquire a terminal that is owned by a different, connected, system.

CICS handles all routing of requests and replies between the two systems, and
transactions can usually be designed and coded without regard to the fact that
the terminal is connected to another CICS system.

To communicate with the terminal, the application program can use the terminal
control, 8MS, or batch data interchange facilities of CICS. Mapping and data
Interchange functions are performed in the application-owning region. 8MS
paging operations are performed on the terminal-owning region. See "Basic
mapping support" on page 52 for more information on 8MS operations.

80th conversational and pseudoconversational transactions are supported. The
various transactions that make up a pseudoconversational transaction can run
on different systems.

Applications written for single CICS systems can use transaction routing without,
in most cases, any reprogramming. System errors associated with cross-system
traffic will cause the application to abend.

The relay program
When a terminal operator enters a transaction code for a transaction which is in
a remote system, the transaction that is attached executes a CICS-supplied
program (DFHCRP) known as the relay program. This program, which always
executes in the terminal-owning region, provides the communication mechanism
between the terminal and the remote transaction.

The transaction that is attached in the terminal-owning region is a user-defined
transaction with user-defined attributes; usually those of the "real" transaction in
the remote region. However, because it executes the relay program, it is often
called the relay transaction.

When the relay transaction is attached, it acquires an interregion or intersystem
session and sends a request to the remote system to cause the "real" user
transaction to be started. In the application-owning region, the terminal is

<ID Copyright IBM Corp. 1977, 1991 45

represented by a control block known as the surrogate TCTTE. This TCTTE
becomes the transaction's principal facility, and is indistinguishable by the
transaction from a "real" terminal entry. However, if the transaction issues a
request to its principal facility, the request is intercepted by the CICS terminal
control program and shipped back to the relay transaction over the interregion
or intersystem session. The relay transaction then issues the request or output
to the terminal. In a similar way, terminal status and input are shipped by the
relay transaction to the user transaction.

Automatic transaction initiation is handled in a similar way. If a transaction that
is initiated by ATI requires a terminal that is connected to another system, a
request to start the relay transaction is sent to the terminal-owning region.
When the terminal is free, the relay transaction is connected to it.

The relay transaction remains in existence for the life of the user transaction and
has exclusive use of the session to the remote system during this period. When
the user's transaction terminates, an indication is sent to the relay transaction,
which then also terminates and frees the terminal.

If the user application takes a synchronization point, and if it was defined as a
protected task requiring committed output messages, an indication is sent to the
relay transaction, which then takes its own synchronization point. Each of the
two CICS systems maintains its own system log. Committed output messages
are logged on the terminal-owning region.

Combined transaction routing and function shipping
A user's transaction can be in session with only one relay transaction at a time
(because a transaction can converse with only one principal facility). But it can
be in session with several mirror transactions and a relay transaction (it may
have several function shipping requests outstanding). A mirror transaction can
be in the same CICS system as the relay or a different one; in the former case,
the user's transaction will be using two simultaneous sessions between the two
systems.

Automatic transaction initiation
Automatic transaction initiation (ATI) is the process whereby a transaction
request made internally within a CICS system or systems network leads to the
scheduling of the transaction. .

CICS transaction routing allows an ATI request for a transaction owned by a
particular CICS system to name a terminal that is owned by another, connected
system.

Although the original ATI request occurs in the application-owning region. it is
sent by CICS to the terminal-owning region for execution. Here it causes the
relay program to be initiated, with the specified terminal. The "real" transaction
is then accessed in the manner described for terminal-originated transaction
routing.

46 CICS/MVS 2.1.2 Intercommunication Guide

TERMINAL
(CAl)

Notes:

ATI requests are queued in the application-owning region if the link to the
terminal-owning region is not available, and subsequently In the terminal-owning
region if the terminal is already in use.

The overall effect is to create a "single-system" view of ATI as far as the
application-owning region Is concerned; the fact that the terminal is remote does
not affect the way in which ATI appears to operate.

In the application-owning region, the normal rules for ATI apply. The transaction
can be initiated from a transient data queue, when the trigger level is reached,
or on expiry of an interval control "start" request. Note particularly that, for
transient data initiation, the transient data queue must be in the same system as
the transaction. Transaction routing does not enable transient data queue
entries to initiate remote transactions.

In Figure 12, transaction yyyy in system CICS can be initiated by an ATI request
that names the remote terminal CA 1. The ATI request is sent to system CICA,
which owns terminal CA 1. Here the terminal is acquired, and the initiation of
transaction yyyy, which is defined as remote in system CICA, causes the relay

Terminal-Owning Region
(TOR) CICA

Application-Owning Region
(AOR) CICB

DEFINE
TERMI NAL (CAl)

DEFINE
TRANSACTION (yyyy)
REMOTESYSTEM(CICB)

CICS relay
program
executing as
transaction
yyyy

MRO
or

LUTYPE6.2
--<_.>

session

DEFINE
TERMINAL(CA1)
REMOTESYSTEM(CICA)

DEFINE
TRANSACTION (yyyy)

User-written
transaction

- yyyy

I

1. You can use macro-level definition or resource definition online (RDO) to define the terminal,
the transaction, and the intersystem or interregion session. See" Part 3. Resource definition
and master terminal operation" on page 89.

2. The terminal need not be defined in the application-owning region if ROO is used to define the
terminal as "shippable" in the terminal-owning region. See "Shipping terminal definitions" on
page 141.

Figure 12. Transaction routing

Chapter 1.6. CICS transaction routing 47

program to be Initiated. The relay program initiates transaction yyyy in system
CICB by means of the normal transaction routing facility.

Figure 12 shows how the transaction and the terminal are defined in both
systems for straightforward ATI operation. However, if you are using shippable
terminals, CICS allows you to determine the terminal location at ATI scheduling
time.

Shipping terminals for automatic transaction initiation
System CICA can cause an ATI request to be executed in System CICB in three
ways:

1. CICA function-ships a START request to CICB.

2. CICA function-ships WRITEQ requests for a transient data queue owned by
CICB, which eventually triggers.

3. CICA instigates routing to a transaction in CICB, which then issues a START
or writes to a transient data queue.

If the ATI request has a terminal associated with it, CICB searches its resources
for a definition for that terminal. If it finds that the terminal is remote, it sends
the A TI request to the system that is specified on the REMOTESYTEM option of
the terminal definition. Remember that an ATI request is executed ultimately in
the TOR.

Termlnal-not-known condition
To ensure correct functioning of cross-region ATI, you could define your
terminals to all the systems on the network that need to use them. However,
you cannot do this, if you are using autoinstall (see the CICSIMVS Resource
Definition (Online) manual for information on the autoinsta"ation of terminals).
Autoinsta"ed terminals are unknown to the system until they log on, and you rely
on CICS to ship terminal definitions to a" the systems where they are needed
(see "Shipping terminal definitions" on page 141). This works fine when routing
from a terminal to a remote system, but there are cases where a system is
unable to process an ATI request, because it has not been told the location of
the associated terminal.

The example shown in Figure 13 on page 49 should make this clear:

• The operator at terminal T1 selects the menu transaction M1 on CICA.

• The menu transaction M1 runs and the operator selects a function that is
implemented by transaction X1 in CICB.

• Transaction M1 issues the command:

EXEC CICS START
TRANSID(Xl)
TERMID(Tl)

and exits.

• CICA function ships the START command to CICB.

• CICB now processes the START command and, in doing so, tries to discover
which region owns T1, because this is the region that has to execute the ATI
request resulting from the START command.

48 CICS/MVS 2.1.2 Intercommunication Guide

CICA CICB

DEFINE TRANSACTION(M1) IDEFINE TRANSACTION(Xl) I
DEFINE TRANSACTION(X1)

REMOTESYSTEM(CICB)

CEDA-installed or
autoinstalled terminal
definition for T1

TRANSACTION
Ml

Ino terminals defined

Function-shipped CICS Inter
----------1. val Control

EXEC CICS START
TRANSID(Xl)
TERMID (T1)

Pgm. raises
~ERMIDERR

Figure 13. Failure of an ATI request in a system where the termid is unknown

• Only if a definition of T1, resulting from an earlier routed transaction, is
present will CICB know where to send the ATI request. Assuming no such
definition exists, the Interval Control Program rejects the START request with
termiderr.

The global user exits XICTENF and XAL TENF
You, as user of the system, know how this routing problem could be solved, and
CICS gives you a way of communicating your solution to the system. The two
global user exits XICTENF and XAL TENF have been provided. XICTENF is driven
when the Interval Control Program (DFHICP) processes a START command and
discovers the associated termid is not known to the system. XALTENF is driven
from the Terminal Allocation Program also when the termid is not known.

The Terminal Allocation Program schedules requests resulting both from the
eventual execution of a START command and from the transient data queue
trigger mechanism. This means that a START command could result in an
invocation of both exits.

The program you provide to service one or both of these global user exits has
access to a parameter list containing the following information:

• Whether the ATI request resulted from: a START command with data, a
START command without data, or a transient data queue trigger.

• Whether or not the START command was issued by a transaction which had
been the subject of transaction routing.

Chapter 1.6. CICS transaction routing 49

• Whether or not the START command was function shipped from another
region.

• The identifier of the transaction to be run.

• The identifier of the terminal the transaction should run with.

• The identifier of the terminal associated with the transaction that issued the
START command, if this was a routed transaction, or the identifier of the
session, if the command was function shipped. Otherwise blanks are
returned.

• The netname of the last system the START request was shipped from or, if
the START was issued locally, the netname of the system last
transaction-routed from. Blanks are returned if no remote system was
involved.

• The sysid corresponding to the previous parameter.

When it returns from the global user exit, your program tells CICS whether the
terminal exists and, If it does, you supply either the netname or the sysid of the
TOR. CICS sends the ATI request to the region you specify. As a result, the
terminal definition is sh~pped from the TOR to the AOR, and transaction routing
proceeds normally.

There is now a solution to the problem of Figure 13 on page 49. It is only
necessary to write a small exit program that returns the CICS-supplied
parameters unchanged and sets the return code for netname returned.

The events that follow are shown graphically in Figure 14 on page 51:

1. The interval control program accepts the START command and signals
acceptance to the issuing system if this is required. It then processes the
start request and finds no terminal defined, and so takes the XICTENF exit,
which supplies the required netname.

2. After the specified interval has expired, or immediately if no interval was
specified, the terminal allocation program tries to schedule the ATI request.
It finds no terminal defined and takes the exit XALTENF, which again supplies
the required netname.

3. The ATI request is shipped to CICA. CICA allocates a relay transaction,
establishes a transaction routing link to transaction X1 in CICB, and ships a
copy of the terminal definition for T1 to CICB.

The terminal not known condition can arise in DFHALP during restart; that is,
before the user has had a chance to enable any global user exits. If you want to
intervene here too, you specify the name of the exit program on the SIT
parameter ALEXIT. This facility applies to both warm start and emergency start.

Of course, the example above shows only one of many possible configurations.
More complex situations can arise in multi-region networks, but if you have
understood the basic solution to the problem, it should be possible for you to
apply it generally.

50 CICS/MVS 2.1.2 Intercommunication Guide

CICA

DEFINE TRANSACTION(M1)

DEFINE TRANSACTION(X1)
REMOTESYSTEM(CICB)

CEDA-installed or
autoinstalled termin'al
definition for T1

Function-shipped

CICB

DEFINE TRANSACTION(X1)

Ino terminals defined

CICS Inter- Exit program TRANSACTION
M1 ---------~~ val Control --+ returns

EXEC CICS START
TRANSID(X1)
TERMID(T1)

CICS ATI request
initiates ~

transaction shipped to CICA
routing

Pgm. drives ~ netname
XICTENF exit "CICA"

CICS Termnl. Exit program
Allocation --+ returns
Pgm. drives ~ netname
XALTENF exit "CICA"

CICS relay Transaction routing TRANSACTION
...... ~ transactaon ~ ~ Xl

link established
between T1 and Xl,
and terminal
definition for T1
shipped over

Figure 14. Resolving a terminal-not-known condition on a STAR'T request

copy definition for
terminal T1

Chapter 1.6. CICS transaction routing 51

Resource definition
You do not have to be using autoinstalled terminals to make use of the exits
XICTENF and XALTENF. The technique also works with CEDA-installed terminals,
if they are defined with SHIPPABLE(YES) specified.

It is important to remember that, although there is no need to have all terminal
definitions in place before you operate your network, other definitions are
essential. All links between systems must be fully defined, and remote
transactions must be known to the systems that want to use them.

The AOR must have a direct link to the TOR. In other words, the sysid or
netname that you pass back to CICS from the exit program must not be for an
indirectly connected system.

The exit program for the XICTENF and XAL TENF exits
How your exit program identifies the TOR from the parameters supplied by CICS
can only be decided by reference to your syste'm design. In the simplest case,
you would hand back to CICS the netname of the system that originated the
START request. In a more complex situation, you may decide to give each
terminal a name that reflects the system on which it resides.

The CICSIMVS Customization Guide has details on how to code the exit
program. A sample program is also available.

Basic mapping support
The mapping operations of BMS are performed in the system on which the
user's transaction is running. The mapped information is routed between the
terminal and this transaction via the relay transaction, as for terminal control
operations.

For 8MS page building and routing requests, the pages are built and stored in
the user transaction's system. When the logical message is complete the pages
are shipped to the terminal-owning region (or possibly regions if they were
generated by a routing request) and deleted from the user transaction region.
Page retrieval requests are processed by a BMS program running in the system
to which the terminal is connected.

BMS message routing to remote terminals and operators
You can use the BMS ROUTE command (see the CICSIMVS Application
Programmer's Reference manual for details of the 8MS ROUTE command) to
route messages to remote terminals. You cannot, however, route a message to
a se-Iected remote operator or operator class unless you also specify the
terminal at which the message is to be delivered.

52 CICS/MVS 2.1.2 Intercommunication Guide

Table 2. BMS message routing to remote terminals and operators

LIST Entry OPCLASS Result
-

None specified Not specified The message is routed to
all the remote terminals
defined in the originating
system

Entries specifying a Not specified The message is routed to
terminal but not an the specified remote
operator terminal

Entries specifying a Specified The message is delivered
terminal but not an to the specified remote
operator terminal when an operator

with the specified
OPCLASS is signed on

None specified Specified The message is not
delivered to any remote
operator

Entries specifying an (Ignored) The message is not
operator but not a delivered to the remote
terminal operator

Entries specifying both a (Ignored) The message is delivered
terminal and an operator to the specified remote

terminal when the
specified operator is
signed on.

Table 2 shows how the possible combinations of route list entries and OPClASS
operands govern the delivery of routed messages to remote terminals. In all
cases, the remote terminal must be defined in the system that issues the ROUTE
command (or a shipped terminal definition must already be available; see
"Shipping terminal definitions" on page 141). Note that the facility described in
"Shipping terminals for automatic transaction initiation" on page 48 does not
apply to terminals addressed by the ROUTE command.

The routing transaction (eRTE)
The routing transaction (CRTE) is a CICS-provided transaction that enables a
terminal operator to invoke transactions that are owned by a connected CICS
system. It differs from normal transaction routing in that the remote transactions
do not have to be defined in the local system. However, the terminal through
which CRTE is invoked must be defined on the remote system (or defined as
"shippable" in the local system), and an entry for the terminal operator is
usually required in the remote systems signon table. CRTE can be used from
any 3270 display device.

To use CRTE, the terminal operator enters:

CRTE SYSID =xxxx[.TRPROF = {DFHCICSSlprofile-name}]

where xxx x is the name of'the remote system, as specified in the CONNECTION
operand of the DEFINE CONNECTION command (or the SYSIDNT operand of the

Chapter 1.6. CICS transaction routing 53

DFHTCT TYPE = SYSTEM macro), and profile-name is the name of the profile to
be used for the session with the remote system (see ICDefining communication
profiles" on page 151). The transaction then indicates that a routing session has
been· established, and the user enters input of the form:

yyyyzzzzzz ...

where yyyy is the name by which the required remote transaction is known on
the remote system, and zzzzzz ... is the initial input to that transaction.
Subsequently, the remote transaction can be used as if it had been defined
locally and invoked in the ordinary way. All further input is directed to the
remote system until the operator terminates the routing session by entering
CANCEL.

In secure systems, operators are normally required to sign on before they can
invoke transactions. The first transaction that is invoked in a routing session is
therefore usually the signon transaction CSSN; that is, the operator signs on to
the remote system.

Although the routing transaction is implemented as a pseudoconversational
transaction, the terminal from which it is invoked is held by CICS until the
routing session is terminated. Any ATI requests that name the terminal are
therefore queued until the CANCEL command is issued.

The CRTE faciliJy is particularly useful for invoking a master terminal transaction
(CSMT or CEMT) on a particular remote system. It avoids the necessity of
defining the remote CSMT or CEMT in the local PCT with a different name. CRTE
is also useful for testing remote transactions before final installation.

System programming considerations
You will have to perform the following operations to implement transaction
routing in your installation:

1. Install MRO or ISC support, or both, as described in IC Part 2. Installation" on
page 77.

2. Define MRO or ISC links between the systems that are to be connected, as
described in ICChapter 3.1. Defining links to remote systems" on page 91.

3. Define the terminals and transactions that will participate in transaction
routing, as described in "Chapter 3.2. Defining remote resources" on
page 133.

4. If you want to route to shippable terminals from regions where those
terminals might be not known, code and enable the global user exits
XICTENF and XAL TENF as described in the CICSIMVS Customization Guide.

5. Ensure that the required communication profiles, transactions, and programs
are included in the program control table and the processing program table,
as described in "Chapter 3.3. Defining local resources" on page 151.

54 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 1.7. Distributed transaction processing

Like asynchronous processing, which is described in "Chapter 1.5.
Asynchronous processing" on page 33, distributed transaction processing (DTP)
provides a means of distributing the processing required by an application
between two or more systems in an intercommunication environment.

In contrast with asynchronous processing, however, DTP provides synchronous
communication. In CICS intercommunication, this means that a session is
acquired and held by two transactions for the period of a "conversation"
between them. Because the transactions have exclusive use of the session,
messages that pass between them as part of the conversation can be directly
correlated, and each transaction can carry out processing that depends directly
on the results 9f a previous stage of processing performed by the other.

Synchronous communication also enables actions taken by the conversing
transaCtions to be made part of the same logical unit of work. Synchronization
points taken by one transaction can force corresponding synchronization points
in the other, so that changes made to local and remote resources can be
coordinated.

DTP is the most powerful, flexible, and complex of the CICS intercommunication
facilities. This chapter introduces the concepts of DTP, "Chapter 4.5. CICS
applications for logical unit type 6.2 mapped conversations" on page 171 through
"Chapter 4.8. CICS-to-IMS applications" on page 263 give detailed descriptions
of DTP programming.

I Why function shipping and transaction routing are not enough

I
I
I
I
I
I
I

Function shipping gives you access to remote resources and transaction routing
lets a terminal communicate with remote transactions. At first sight, these two
facilities may appear sufficient for all your intercommunication needs. Certainly,
from a functional point of view, they are probably all you do need. In the real
world, however, there are always design criteria that go beyond pure function.
Machine loading, response time, continuity of service, and economic use of
resources are just some of the factors that affect transaction design.

Consider the following example:

A hypermarket chain has many branches, which are served by several
distribution centers, each stocking a different range of goods. Local stock
records at the branches are updated online from point-of-sale terminals.
Sales information has also to be sorted for the separate distribution
centers, and transmitted to them to enable reordering and distribution.

@ Copyright IBM Corp. 1977, 1991 55

I
I
I
I
I

Without thinking too much about it, an analyst might decide to use function
shipping to write reorder records to a remote file, at the appropriate distribution
center, at the same time that the local stock records are updated by the
point-of-sale terminals. This method has the virtue of simplicity, but must be
rejected for several reasons:

1. Data is transmitted to the remote systems irregularly in small packets. This
means inefficient use of the links.

2. The transactions associated with the point-of-sale devices are competing for
sessions to the remote distribution centers. This could mean unacceptable
delays at point-of-sale.

3. Failure of a link results in a catastrophic suspension of operations at a
branch.

4. Intensive intercommunications activity, for example at peak periods, causes
reduction in performance at the terminals.

Now consider the solution where each sales transaction writes its reorder
records to a transient data queue. Here the data is quickly disposed of, leaving
the transaction to carry on its conversation with the terminal.

It is seldom that restocking requests have any urgency, so that it may be
possible to delay the sorting and sending of the data until an off-peak period.
Alternatively, the transient data queue could be set up to trigger off the sender
transaction when a predefined data level is reached. Either way, the sender
transaction has the same job to do.

Again, one might be tempted to use function shipping to transmit the reorder
records. After the sort process, each record could be written to a remote file in
the relevant remote system. However, this method is not ideal here either. The
sender transaction would have to wait after writing each record to make sure
that it got the right response. Apart from using the link inefficiently, waiting
between records would make the whole process impossibly slow. This chapter
tells you how to solve this problem, and others, using distributed transaction
processing.

The flexibility of DTP can, in some circumstances, be used to achieve improved
performance over function shipping. Consider an example in which you are
browsing a remote file to select a record that satisfies some criteria. If you use
function shipping, CICS ships the GETNEXT request across the link, and lets the
mirror perform the operation and ship the record back to the requestor.

This involves two flows, and a significant amount of data, on what may be a very
busy network. If the browse is on a large file, the overhead can be unacceptably
high. One alternative is to write a DTP conversation that ships the selection
criteria, and returns only the keys and relevant fields from the selected records.
This reduces both the number of flows and the amount of data sent over the link,
thus reducing the overhead as compared to the function-shipping case.

56 CICS/MVS 2.1.2 Intercommunication Guide

Why distributed transaction processing?
In a multisystem environment, data transfers between systems are necessary
because end users need access to remote resources. In managing these
resources, network resources are used. But performance suffers if the network
is used excessively. There is therefore a performance gain if application design
is oriented toward doing the processing associated with a resource in the
resource-owning region.

DTP lets you process data at the point where it arises, instead of overworking
network resources by assembling it at a central processing point.

There are, of course, other reasons for using DTP. Here are some of them:

• It allows some measure of parallel processing to shorten response times.

• It provides a common interface to a transaction that is to be attached by
several different transactions.

• It enables communication with applications running on other systems,
particularly on non-CICS systems.

• It provides a buffer between a security-sensitive file or database and an
applic.ation, so that no application need know the format of the file records.

• It enables batching of nonurgent data destined for a remote system.

What is a conversation and what makes it necessary?
In OTP, transactions pass data to each other directly. While one sends, the other
receives. The exchange of data between two transactions is called a
conversation. Although several transactions can be involved in a single
distributed process, communication between them breaks down into a number of
self-contained conversations between pairs. Each such conversation uses a
CICS resource known as a session.

Conversation initiation and transaction hierarchy
A transaction starts a conversation by requesting the use of a session to a
remote system. Having obtained the session, it causes an attach request to be
sent to the other system to activate the transaction that is to be the conversation
partner.

A transaction can initiate any number of other transactions, and hence,
conversations; In a complex process, a distinct hierarchy emerges, with the
transaction that was started by the terminal at the tip of the pyramid. Figure 15
on page 58 shows a possible configuration. Transaction AAAA is att.ached over
the terminal session. Transaction AAAA attaches transaction BBBB, which, in
turn, attaches transactions CCCC and DODD. Both these transactions attach the
same transaction, SUBR, in system CICSE. This gives rise to two different tasks
of SUBR.

Chapter 1.7. Distributed transaction processing 57

I----~ Transact ion AAAA

CICSB ~
Trans~~

CICSC ~
Transactio~

CICSD ~
Tra:::cti~

CICSE

Transaction SUBR Transaction SUBR

Figure 15. bTP in a multisystem configuration

The structure of a distributed process Is determined dynamically by program; it
cannot be predefined. Notice that, for every transaction, there is only one
inbound attach request, but that there can be any number of outbound attach
requests. The session that activates a transaction is called its principal facility.
A session that is allocated by a transaction to activate another transaction is
called its alternate facility. Therefore, a transaction can have only one principal
facility, but any number of alternate facilities.

When a transaction initiates a conversation, It is the front end on that
conversation. Its conversation partner is the back end on the same
conversation. It is normally the front end that dominates, and determines the
way the conversation goes. You can arrange for the back end to take over if you
want, but in a complex process, this can cause unnecessary complications. This
is further explained in the discussion on synchronization later in this chapter.

58 CICS/MVS 2.1.2 Intercommunication Guide

Dialog
A conversation transfers data from one transaction to another. For this to
function properly, each transaction must "know" what the other intends. It is
therefore necessary to design, code, and test front end and back end as one
software unit. The same applies when there are several conversations and
several transaction programs. Each new conversation adds to the complexity of
the overall design.

In the example on page 55, the DTP solution is to transmit the contents of the
transient data queue from the front end to the back end.' The front end issues a
SEND command for each record that it takes off the queue. The back end issues
RECEIVE commands until it receives an indication that the transmission has
ended.

In practice, most conversations simply transfer a file of data from one
transaction to another. The next stage of complexity is to cause the back end to
return data to the front end, perhaps the result of some processing. Here the
front end is programmed to request conversation turnaround at the appropriate
point.

Control flows and brackets
During a conversation, data passes over the link in both directions. A single
transmission is called a flow. Issuing a SEND command does not always cause
a flow. This is because the transmission of user data can be deferred; that is,
held in a buffer until some event takes place. The LUTYPE6.2 architecture
defines data formats and packaging. CICS handles these things for you, and
they concern you only if you need to trace flows for debugging purposes.

The LUTYPE6.2 architecture defines a data header for each transmission, which
holds information about the purpose and structure of the data following. The
header also contains bit indicators to convey control information tothe other
side. For example, if one side wants to tell the other that it can start sending,
CICS sets a bit in the header that signals a change of direction in the
conversation.

To keep flows to a minimum, nonurgent control indicators are accumulated until
it is necessary to send user data, when they are added to the header.

Chapter 1.7. Distributed transaction processing 59

The LUTYPE6.2 architecture defines acronyms for all control indicators. Here are
the ones you will meet in this book:

Table 3. LUTYPE6.Z control indicators - sample

Acronym Name Meaning

BB BEGI N_BRACKET Start a conversation.

BIND BIND_SESSION Request session bind negotiation.

CD CHANGE_DIRECTION Receiver can noW send.

CEB CONDITIONAl_END_BRACKET End conversation.

CNOS CHANGE_NUMBER_OF _SESSIONS Renegotiate change to number
and character of available
sessions.

CTD COMMITTED Recoverable resources have been
committed.

FGT FORGET Syncpointing activity on this
transaction is complete.

PTC PREPARE_ TO_COMMIT Start of syncpointlng activity.

RB ROll_BACK A transaction within the
distributed process wants to
return recoverable resources to
the state they were in at the last
actual or implied syncpoint.

RC REQUEST_COMMIT This transaction is ready to
commit its recoverable resources.

In complex procedures, such as establishing syncpoints, it is often necessary to
send control, indicators when there is no user data available to send. This is
called a control flow.

BEGIN_BRACKET marks the start of a conversation; that is, when a transaction is
attached. CONDITIONAL_END_BRACKET ends a conversation. End bracket is
conditional because the conversation can be reopened under some
circumstances. A conversation is In bracket when it is still active.

For OTP, MRO is not unlike LUTYPE6.2 in its internal organization. In fact, it is
based on LUTYPE6.1, which is also a SNA-defined architecture.

Conversation state and error detection
As a conversation progresses, it moves from one state to another within both
conversing transactions. The conversation state determines the commands that
may be issued. For example, it is no use trying to send or receive data if there
is no session linking the front end to the back end. Similarly, if the back end
signals end of conversation and the front end has seen the end bracket, the front
end cannot be in a state to receive more data.

Either end of the conversation can cause a change of state, usually by issuing a
particular command from a particular state. CICS tracks these changes, and
stops transactions from Issuing the wrong command in the wrong state.

60 CICS/MVS 2.1.2 Intercommunication Guide

Synchronization
. There are many things that can go wrong during the running of a transaction.
The conversation protocol helps you to recover from errors and ensures that the
two sides remain in step with each other. This use of the protocol is called
synchronization.

Synchronization allows you to protect resources such as transient data queues
and files. Whatever goes wrong during the running of a transaction should not
leave the associated resources in an incorrect state.

Examples of use
Suppose, for example, that a transaction is transmitting a queue of data to
another system to be written to a DASD file. Suppose also that for some reason,
not necessarily connected with the intercommunications activity, the receiving
transaction is abended. Even if a further abend can be prevented, there is the
problem of how to continue the process without loss of data. It is uncertain how
many queue items have been received and how many have been correctly
written to the DASD file. The only safe way of continuing is to go back to a point
where you know that the contents of the queue are consistent with the contents
of the file. However, you then have the problem of restoring the queue entries
on the one side, and of deleting the corresponding entries in the DASD file on
the other side.

The cancelation by an application program of all changes to recoverable
resources since the last known consistent state is called rollback. The physical
process of recovering resources is called backout. The condition that exists as
long as there is no loss of consistency between distributed resources is called
data Integrity.

There are cases where you may want to recover resources, even though there
are no error conditions. Consider an order entry system. While entering an
order for a customer, an operator is told by the system that the customer's credit
limit would be exceeded If the order went through. Because there is no use
continuing until the customer is consulted, the operator presses a PF key to
abandon the order. The transaction is programmed to respond by returning the
data resources to the state they were in at the start of the order.

Taking syncpolnts
If you were to log your own data movements, it would be possible for you to
arrange backout of your files and queues. However, it would involve some very
complex programming, which you would have to repeat for every similar
application. To save you the trouble, CICS arranges resource recovery for you.
Logical unit management works together with resource management in ensuring
that resources can be restored.

The points in the process where resources are declared to be in a known
consistent state are called synchronization pOints, often shortened to syncpolnts.
Synchronization points are implied at the beginning and end of a transaction. A
transaction can define other syncpoints by program command. All processing
between two syncpoints belongs to a logical unit of work (LUW).

Chapter 1.7. Distributed transaction processing 61

Taking a syncpoint commits all recoverable resources. This means that all
systems involved in a distributed process erase all the information they have
been keeping about data movements on recoverable resources. Now backout is
no longer possible, and all changes to the resources since the last
synchronization point are made irreversible.

Although CICS commits and backs out resources for you, the service must be
paid for in performance. You might have transactions that do not need such
sophistication, and it would be wasteful to employ it. If the recovery of resources
is not a problem, you can use simpler methods of synchronization.

The three synchronization levels
The LUTYPE6.2 architecture defines three levels of synchronization:

• Level 0 - NONE
• Level 1 - CONFIRM
• Level 2 - SYNCPOINT

At sync level 0, there is no system support for synchronization. It is
nevertheless possible to achieve some degree of synchronization through the
interchange of data, using the SEND and RECEIVE commands.

If you select sync level 1, you can use special commands, for communication
between the two conversation partners. One transaction can confirm the
continued presence and readiness of the other. The user is responsible for
preserving the data integrity of recoverable resources.

The level of synchronization described earlier in this section corresponds to sync
level 2. Here system support is available for maintaining the data integrity of
recoverable resources.

CICS implies a syncpoint when it starts a transaction; that is, it Initiates logging
of changes to recoverable resources, but no control flows take place. CICS
takes a full syncpoint when a transaction is normally terminated. The abending
of a transaction causes rollback. The transactions themselves can initiate
syncpoint or rollback requests. However, a syncpoint or rollback request is
propagated to another transaction only when the originating transaction Is in
conversation with the other transaction, and sync level 2 has been selected for
the session between them.

Remember that syncpoint and rollback are not peculiar to anyone conversation
within a transaction. They are propagated on every conversation that is
currently in bracket.

MRO or LUTYPE6.2?
You can program DTP applications for both MRO and LUTYPE6.2 links. The two
conversation protocols are not identical. Although you seldom have the choice
for a particular application, an awareness of the differences and similarities will
help you to make decisions about compatibility and migration.

62 CICS/MVS 2.1.2 Intercommunication Guide

You must use LUTYPE6.2 for communication between systems in different MVS
images. If you want to set up a link between two CICS systems in the same MVS
image, you can use MRO, LUTYPE6.2, or both. However, MRO always has a
performance advantage over LUTYPE6.2.

Table 4 pOints out the main differences between the two protocols.

Table 4. MRO compared with LUTYPE6.2

MRO LUTYPE6.2
-

Function realized within CICS. Depends on VTAM or similar.

Non-standard architecture SNA architecture
-

CICS to CICS links only Links to non-CICS systems possible

Runs within single MVS Image. Communicates across multiple MVS
images.

--
Sync level 2 forced for the Sync level 0, 1, or 2 can be selected.
conversation.

PIP data not supported. PIP data supported.

Data transmission not deferred. Deferred data transmission.

Partner transaction identified in Partner transaction defined by
data. CONNECT PROCESS command.

RECEIVE can only be issued in RECEIVE causes conversation
receive state. turnaround when issued in send

state on mapped conversations.

No expedited flow possible. ISSUE SIGNAL command enables
expedited flow.

WAIT command has no function. WAIT command causes transmission

of deferred data.

LUTYPE6.2 mapped or basic?
APPC conversations can either be mapped or basic. If you are interested in
CICS-to-CICS applications, you need only use mapped conversations. Basic
conversations (also referred to as "unmapped") are useful only when
communicating with systems that do not support mapped conversations. These
include some APPC devices.

The two protocols are similar. The main difference lies in the way user data is
formatted for transmission to the other side. In mapped conversations, you
merely send the data you want your partner to receive. In basic conversations,
you have to add a few control bytes to convert the data into an SNA-defined
format called a generalized data stream (GDS). You also have to include the
keyword GOS on EXEC CICS commands for basic conversations.

Chapter ·'.7. Distributed transaction processing 63

Table 5 summarizes the differences between mapped and basic conversations.

Table 5. LUTYPE6.2 conversations - mapped compared with basic
-

Mapped Basic

The conversation partners only Both partners must package the
exchange data that is relevant to the user data before sending and
application. unpackage it on receipt.

-
All conversations for a transaction Each conversation has its own area
share the same EXEC Interface for state information.
Block for status reporting.

--
The transaction can handle The transaction must test for
exceptional conditions or let them exceptional conditions in a data
default. area set aside for the purpose.

--
A RECEIVE command issued in send A RECEIVE command is illegal in
state causes conversation send state.
turnaround.

1----

Transactions can be written in any of Transactions can be written only in
the supported languages. Assembler language.

--

Availability of DTP facilities

Design concepts

CICS DTP facilities are provided through the command-level interface of the
CICS Terminal Control program. No special DTP facilities are provided at the
macro level. Application programs can be written in COBOL, PLlI, or assembler
language.

For CICS-CICS communication, DTP can be used between any CICS systems
coupled by MRO, LUTYPE6.1, or LUTYPE6.2 links.

For CICS-IMS communication, DTP can be used between CICS and some types
of IMS transaction (for example, RESPONSE MODE transactions), but only when
CICS is the front end. When IMS is the front end, it always uses asynchronous
processing to initiate CICS transactions. Communication between CICS and IMS
is possible only on LUTYPE6.1 links.

Overview of the application programming interface
This section provides an overview of the application programming facilities
provided for distributed transaction processing, and of some of the basic
protocols associated with DTP conversations. Fuller information is given in
"Part 4. Application programming" on page 159.

64 CICS/MVS 2.1.2 Intercommunication Guide

Acquiring a session to the remote system
A front-end transaction acquires a session to a remote system by executing an
ALLOCATE command. Normally, only the name of the remote system is
specified on the command, and CICS selects an available session for the
transaction. The name of the session, or conversation, is then made available to
the transaction.

Specific sessions can also be named for communication on LUTYPE6.1 links, but
this is not normally necessary. System names, rather than session names, must
be used for session allocation on MRO or LUTYPE6.2 links.

Facilities exist for the transaction to specify what action is required if a session
is not available; either to wait until a session is available or to continue
processing.

The PROFILE option can be used on the ALLOCATE command to specify a set of
terminal control processing options. Profiles are generated by the system
programmer in the Program Control Table. They determine such factors as
whether an FMH received from the other system is to be included in the
application program's input data area, and whether automatic journaling is to be
used. For LUTYPE6.2 links, they can also specify the modeset name of a group
of LUTYPE6.2 sessions, thereby enabling a particular class of service to be
selected for the session.

Depending upon the circumstances, CICS sometimes ignores profile
specifications. For example, INBFMH is always used for MRO sessions. Also,
LUTYPE6.2 FMHs are never passed to application programs, regardless of the
profile specification. Further information on profiles is given in "Defining
communication profiles" on page 151.

Initiating the back-end transaction
After the session has been allocated, the front-end transaction can initiate the
back-end transaction.

For CICS-CICS communication on MRO or LUTYPE6.1 links, this is done by the
first SEND or CONVERSE command issued by the front-end transaction. The
name of the back-end transaction is sent either as the first four bytes of the first
message to the remote system, or as part of an SNA-defined field, called an
"attach" function management header (FMH), thatis transmitted with the first
message. A BUIl.D ATTACH command exists to enable the transaction to build
an LUTYPE6.1 attach FMH.

Because IMS does not use the convention of a transaction name in the first four
bytes of data, an attach FMH must always be built to initiate CICS-IMS DTP.

For LUTYPE6.2 sessions, CICS provides a special command, CONNECT
PROCESS, which is used before the first SEND or CONVERSE command, and
which builds an LUTYPE6.2 FMH to initiate the back-end transaction. All
LUTYPE6.2 FMHs are handled by CICS; a CICS transaction never has to build
them, nor can it receive them.

Chapter 1.7. Distributed transaction processing 65

To assist in migrating DTP applications from LUTYPE6.1 to LUTYPE6.2 links, CICS
will accept a transaction name in the first four bytes of data and build a suitable
LUTYPE6.2 attach header. CONNECT PROCESS should, however, always be
used for new applications.

The conversation
The front-end and back-end transactions communicate by executing SEND,
RECEIVE, or CONVERSE commands. The front-end transaction must always
specify the name of the session on these commands. This is not necessary for
the back~end transaction, because it is communicating with its principal facility.

The MRO or ISC session between the transactions follows the SNA half-duplex
flip-nop protocol. This means that at no time can both transactions attempt to
send messages together. One transaction must be in send state while the other
is in receive state.

The front-end transaction is always in send state when it acquires the session,
and the back-end transaction is always in receive state when it is initiated.

A change of state is usually initiated by the transaction currently in send state. It
can do so by executing a CONVERSE or a SEND INVITE command. Both of these
commands invite the transaction that is in receive state tesend. (In an
LUTYPE6.2 conversation, a partner in receive state can initiate a change of state
with an ISSUE ERROR command, as explained below).

On ISC sessions, a transaction in receive state can request the one in send state
to reverse the states by executing an ISSUE SIGNAL command. This causes
CICS to transmit an SNA SIGNAL command, which carries an SNA code that
means "request change-direction", to the other transaction. CICS indicates
receipt of the command by raising the SIGNAL condition In the send-state
transaction. A transaction can change to receive state (by issuing a SEND
INVITE command) following receipt of the signal command, though it is not an
error not to do so. ISSUE SIGNAL is not supported on MRO sessions.

For LUTYPE6.2 sessions, there are two additional commands that enable either
transaction to inform the other that an error has occurred, irrespective of
whether they are in send or receive state. They are ISSUE ERROR and ISSUE
ABEND.

ISSUE ERROR causes EIBERR to be set in the transaction that receives it. If this
command is issued by a transaction that is in receive state, the send/receive
states of the two transaction are reversed. This enables the issuing transaction
to send additional information about the error.

On mapped conversations, ISSUE ABEND causes the conversation to abend. A
CICS transaction that issues abend can free the session and continue normally.
A CICS transaction that receives a conversation abend can also continue
normally provided that it is designed to handle the TERMERR condition. The
default action for TERMERR is to abend the transaction.

66 CICS/MVS 2.1.2 Intercommunication Guide

Synchronization points
On MRO or LUTYPE6.1 sessions, either transaction can initiate a synchronization
point when it is in send state, by issuing a SYNCPOINT command. This causes
an indication to be sent to the other transaction to specify that it too must take a
syncpoint.

On LUTYPE6.2 sessions, the way in which a synchronization point can be taken
is governed by the synchronization level that is established for the conversation.

For level 0 conversations, no synchronization is possible.

For level 1 conversations, the commands SEND CONFIRM and ISSUE
CONFIRMATION (together with ISSUE ERROR or ISSUE ABEND) are available to
enable the transactions to exchange private synchronization protocols. CICS
syncpointing mechanisms are not involved in these exchanges. This is the
maximum synchronization level permitted for LUTYPE6.2 single-session links.

For level 2 conversations, full CICS syncpointing is available, including
SYNCPOINT ROLLBACK. The level 1 commands SEND CONFIRM and ISSUE
CONFIRMATION can also be used on level 2 conversations.

The maximum synchronization level available on an LUTYPE6.2 session is
dependent on the capabilities of the communication system, which is determined
when the session is bound. All sessions to any particular system are therefore
bound at the same maximum synchronization level. The synchronization level
for a specific conversation (which cannot exceed the maximum allowed for the
session) must be specified on the CONNECT PROCESS command.

CICS always uses synchronization level 2 for transactions that have been
migrated from LUTYPE6.1 but have not been modified to include a CONNECT
PROCESS command. For this reason, it is not possible to run these applications
over an LUTYPE6.2 single-session link.

Freeing the session
A session is explicitly freed by a FREE command that specifies the session
name. The transaction that is in send state must issue the command; an
indication is then sent to the other transaction to specify that it should now free
the session.

A session is implicitly freed when one of the transactions ends, provided that it
is valid for the transaction to free the session at that time.

SNA considerations
The information given in "Part 4. Application programming" on page 159 will
enable you to construct valid command sequences for DTP applications.
However, an understanding of the SNA protocols and corresponding data flow
control indicators used by CICS for DTP, and their relationship with CICS
commands and command options, will enable you to understand why the rules
are necessary, and can help you to design efficient and error-free applications.

Although MRO sessions do not use the services of an SNA access method, they
do, at the user level, employ SNA formats and protocols. With some exceptions,

Chapter 1.7. Distributed transaction processing 87

which are pointed out In the text, the following sections apply equally to MRO
sessions.

With the exception· of certain commands that can cause messages to be
transmitted "against the flow" (such as ISSUE SIGNAL) the session and
transaction states in DTP are dictated by indicators sent by whichever
transaction is currently In send state. In the receiving transaction, the arrival of
a particular indicator causes an appropriate field to be set in the EIB.

The SNA indicators of direct concern are:

end .. bracket
The beginning and the end of a conversation between two transactions are
indicated by begin-bracket and end-bracket indicators. A conversation is, in
other words, an SNA bracket.

Only end-bracket need be considered. The bracket is begun automatically
when the back-end transaction is initiated by one of the methods described
previously.

change .. dlrectlon
In SNA half-duplex flip-flop protocol, the change-direction indicator is sent by
the send-state transaction to reverse the direction of flow on the session. It
causes the send-state transaction to switch to receive state and the
receive-state transaction to switch to send state.

syncpolnt-request
A syncpoint-request indicator is sent on the session to indicate that the
send-state transaction is taking a syncpoint and that the receive-state
transaction must also take a syncpoint.

To understand the flows of these indicators on the session, you must consider
two aspects of the CICS Implementation of DTP:

1. Under what circumstances the indicators are generated ready for sending

2. Under what circumstances the indicators are actually transmitted.

How SNA Indicators are generated
The change-direction, syncpoint-request, and end-bracket indicators can be
generated:

• Explicitly as a result of a CICS command or command option
• Automatically by CICS because it detects that one is needed.

The change direction indicator changes the issuing transaction from send state
to receive state, and the other transaction from receive state to send state. It is
generated explicitly by one of the following:

A SEND command with the INVITE option
A CONVERSE command.

On ISC sessions, CICS will supply the missing change direction indicator if you
use a SEND command (without INVITE) followed by a RECEIVE command. On
MRO sessions, however, you must use either CONVERSE or SEND INVITE.

68 CICS/MVS 2.1.2 Intercommunication Guide

o

(/'i)

'~;)

A syncpoint-request indicator is generated explicitly by a CICS SYNCPOINT
command, or automatically at task termination, provided that the session is stili
in bracket-state. The session is in bracket state if the end-bracket indicator has
not been transmitted, even if it has already been generated.

An end-bracket indicator is generated by one of the following:

A SEND command with the LAST option

A SEND command followed by a FREE command

A SEND command followed by termination of the task

A RECEIVE command which causes EIBRECV to be turned off (X100I)
followed by a FREE command or by termination of the task.

When SNA Indicators are transmitted
To optimize the use of ISC sessions, CICS implements deferred output
processing for SEND commands. This means that a command is not sent across
the link until either an internal buffer becomes full, or CICS knows that the
conversation Is turning around. A consequence of this is that application
programs must not make any assumptions about the physical data flows between
the partners in a conversation. If such assumptions are made, the transaction
does not work correctly when environmental conditions alter the pattern of
physical data flows.

Deferred output often enables CICS to add SNA indicators to waiting data before
it is transmitted, and the number of transmissions required on the session is
thereby reduced. The addition of indicators to deferred output is sometimes
called piggy-backing.

For LUTYPE6.2 sessions, further optimization is achieved by accumulating as
much data as possible in an internal CICS buffer before actually transmitting it
across the link. Thus the data from a series of SEND commands is transmitted
only when the buffer becomes full or when the transmission must be forced (for

. example, if SEND WAIT is encountered). This additional optimization does not
affect the number of flows that are "seen" at the application programming
interface; LUTYPE6.1 and LUTYPE6.2 are equivalent in this respect.

Deferred output is not implemented for MRO sessions. This can lead to a
difference between'the number of transmissions required on an ISC link and the
number required on an MRO link when the same command sequence is
executed. This in turn leads to a difference in the number of RECEIVE
commands that the receiving transaction must issue to receive both the data and
the indicators.

Important ---,

You must not make any assumptions as to the state of a DTP conversation.
You must always test the EIB flags after each command to determine the
current state, and act accordingly.

Chapter 1.7. Distributed transaction processing 69

A further difference between ISC and MRO links caused by deferred output is
that some command sequences that are valid for ISC sessions are invalid for
MRO sessions.

As an example, consider the following command sequence:

EXEC CICS SEND FROM(data-area) INVITE
EXEC CICS SYNCPOINT
EXEC CICS RECEIVE INTO(data-area)

On ISC links, the INVITE option generates the change-direction indicator, but the
sending of the message is deferred. The transaction is therefore still in send
state, and the following SYNCPOINT command is valid. CICS adds the
syncpoint-indicator to the deferred output. The output data, the change-direction
indicator, and the syncpoint-request are sent in a single transmission.

On MRO links, because there is no deferred output, the output data and the
change-direction indicator are sent immediately. The transaction changes to
receive state, and the following SYNCPOINT command is invalid.

Output is not deferred if the SEND command has the WAIT option; the message
is transmitted immediately. Use of the WAIT option therefore removes one of the
implementation differences between ISC and MRO distributed transaction
processing. However, on ISC links, it can lower efficiency by increasing the
number of nows that are required.

The WAIT option can sometimes be used to allow input and output on the
session to be overlapped with processing in the transaction. The following
sequence shows how this can be done:

EXEC CICS SEND FROM(data-area) INVITE WAIT

(Non-CICS programming statements)

EXEC CICS RECEIVE INTO(data-area)

Because of the WAIT option, execution of the non-CICS programming statements
will not begin until execution of the SEND is complete. However, transmission of
the input data from the remote system can overlap the processing of these
statements. Without the WAIT option, execution of the SEND would not start until
processing reached the RECEIVE statement, so no overlapping would be
possible.

The WAIT option can also be used to force end-bracket to now on the session,
and so prevent the session from being involved in syncpointing activity. In the
command sequence:

EXEC eICS SEND FROM(data-area) LAST WAIT
EXEC eICS RETURN

the LAST option causes end··bracket to be generated and the WAIT option
causes it to be transmitted. The session is therefore not Involved in the implicit
syncpoint caused by the RETURN statement.

70 CICS/MVS 2.1.2 Intercommunication Guide

Design hints
The two transactions Involved in a DTP conversation should, if possible, be
designed as a requester or main routine and a server or subroutine. In general,
the front-end transaction will be the requester, and the back-end transaction the
server.

The logic should be contained as far as possible in the requester. This
transaction should pass requests to the server only as necessary. The server
should return its response to the requester, and then wait for another request.
Attempts to distribute the logic between the two transactions, thus making them
into peers, are likely to lead to complex design problems. If the roles of the two
systems need to be reversed, it is generally preferable for an independent
second pair of transactions to be invoked, rather than for the requester and
server roles of a single pair of transactions to be reversed.

Programming example
As an example of distributed program design, consider the LUTYPE6.2 mapped
conversation shown in Figure 16.

Front-End Transaction

EXEC CICS ALLOCATE

EXEC CICS CONNECT
PROCESS SYNCLEVEL(2)

EXEC CICS CONVERSE

EXEC CICS FREE

(transaction abends
because syncpoint
request is ignored)

Back-End Transaction

----> EXEC crcs RECEIVE

<:---- EXEC CIeS SEND LAST

EXEC CICS RETURN

Figure 16. An incorrect LUTYPE6.2 mapped conversation

In this figure, the front-end transaction:

1. Allocates a session.

2. Uses a CONNECT PROCESS command to initiate the back-end transaction at
synchronization-level 2.

3. Uses a CONVERSE command to:

a. Send a message to the back-end transaction.

b. Receive a reply.

4. Frees the session.

This apparently simple conversation fails because the back-end transaction's
SEND LAST command does not flow until the RETURN statement is executed.

Chapter 1.7. Distributed transaction processing 71

The RETURN statement causes an implicit syncpoint, which goes with the
end-bracket Indicator. The front-end transaction ignores the syncpoint request,
and abends.

You can correct this conversation in a number of ways:

1. By coding SEND LAST WAIT instead of SEND LAST in the back-end
transaction. This forces LAST to flow, so that no syncpointing takes place on
the session.

2. By understanding that syncpoint-request will be received, and coding EXEC
CICS SYNC POINT before the FREE command in the front-end transaction.
This approach is not recommended.

3. By e)(amining the EIB values and taking the appropriate action. This method
allows all the possibilities to be catered for, and does not rely on a detailed
knowledge of the ways in which the flows are generated.

The previous e)(ample can be modified to include EIB testing as shown in
Figure 17 on page 73.

More, or fewer, EIB tests than those shown may be needed, depending on the
type of session that is being used and possibly on what the other transaction is
designed to-send. To determine what tests are required, refer to the appropriate
chapter in "Part 4. Application programming" on page 159.

72 CICS/MVS 2.1.2 Intercommunication Guide

--------------.--------------------.----------------.-----,
Front-End Transaction

EXEC CICS ALLOCATE

EXEC CICS CONNECT
PROCESS SYNCLEVEL(2)

EXEC CICS CONVERSE

Save the EIB values.

Test EIBSYNC - it's
X'FF' in this
example. so we must:

EXEC CICS SYNCPOINT

Test the saved
EIBFREE - it's
X'FF' in this
example. so we must:

EXEC CICS FREE
(or terminate)

Back-End Transaction

----> EXEC CICS RECEIVE

< Save the EIB values.

Test EIBSYNC - it's
X'00' in this
example. so
SYNCPOINT is not
required.

Test EIBFREE - it's
X'00' in this
example. so FREE
is not required.

Test EIBRECV - it's
X'00' in this
example. so we can
send:

EXEC CICS SEND LAST

<-- EXEC CICS RETURN
L-___ ~

Figure 17. The corrected LUTYPE6.2 mapped conversation

Multiple LU type 6 sessions
A transaction may initiate several transactions in other systems. The design of
applications using such transactions is likely to be very complex unless it is
highly structured. The least complicated design will probably be a
requester/server tree, in which each transaction acts as the requester for all
transactions for which it is the originating node, and the first transaction to be
initiated is the requester for the whole tree.

The requester/server concept is particularly important in relation to
synchronization points in a tree of transactions. Unless these are originated by
the transaction that is the requester for the whole tree, they are unlikely to be
successful. They are originated at the top of the tree, then propagated down the
whole tree.

Any transaction issuing a synchronization request must be in send state with
respect to all its LU Type 6 sessions, except those for which either a
synchronization point has been requested (EIBSYNC set) or which have been
freed by the transaction at the other end of the session (EIBFREE set). If an

Chapter 1.7. Distributed transaction processing 73

attempt is made to take a synchronization point when these conditions do not
hold, the transaction making the attempt will be abended, which will lead to all
transactions in the tree being abended.

Advanced program-to-program communication (APPC) supports both the
requester/server and peer/peer application models. Each model requires its
own design to handle data flows and syncpointing. Individual transaction design
should take account of the overall network design. If each program tests the EIB
flags, and always reacts correctly to the current state of the conversation, results
should be accurate.

Queue transfer
The following special considerations apply to transactions intended to transfer
queues of data between systems.

• The sending transaction should be designed as the requester and the
receiving transaction as the server.

• For simplicity of design, a separate pair of transactions should be used for
each queue to be transferred.

• The requester transaction should not send large numbers of records without
first obtaining confirmation from the server transaction that it is attached and
is processing the records successfully (perhaps by using the CONFIRM
option for LUTYPE6.2 conversations).

• For large queues, take synchronization points at regular intervals, unless
performance is a crucial consideration.

• For large queues, use the pacing facilities of VTAM to avoid flooding the
network. Alternatively, use frequent synchronization points, which have a
similar effect to pacing.

• It will probably be advisable for the receiving transaction to store the
incoming data on either a transient data or a temporary ~torage queue,
rather than to update permanent storage as the records are received. The
design will be simpler, because the updating will be a separate operation
and because error recovery wilt be easier.

• Consider how transmission should be restarted if an error occurs when the
queue has been partly transmitted. There is a basic choice to be made
between continuing from the point at which the error occurred and
retransmitting the whole queue.

CICS to non-CICS systems
CICS can communicate with transactions running in other types of system,
provided they implement a suitable subset of the SNA LU Type 6 protocols. This
includes IMS. It is necessary, however, for the designer of such applications to
understand in detail the SNA data flow control commands and protocols
generated by the other system.

In some cases CICS transactions converse with the remote system, rather than
with user written transactions running in that system. CICS transactions
converse with the DC component of IMS, for example, so the protocols and data
formats of that component must be understood and complied with.

74 CICS/MVS 2.1.2 Intercommunication Guide

Other systems may allow direct communication with their transactions. It is then
necessary to know the protocols generated by user-written code in the
transactions. In particular, it is necessary to know how BB (begin bracket), EB
(end bracket) and CD (change direction) indicators are generated and responded
to.

In any case, the following problems will need attention during the design of the
application.

• How the required transaction is to be attached in the remote system. It may
be necessary to send an attach header, in which case the remote transaction
could have a name up to 8 characters long.

• The structure of the messages passing between the local and remote
transactions, and how any mapping component of the remote system is to be
used.

• The possible replies to each type of request, together with the SNA
indicators that may need to be present on the request and replies.

• Ensuring that the SNA indicators are followed precisely by the transactions
at both ends of a session.

• Which transaction or transactions may end a conversation.

• Whether synchronization points are to be used, and if so, whether they are to
be on single or multiple sessions. The remote system may support only
single session synchronization points.

Chapter 1.7. Distributed transaction processing 75

Part 2. Installation

This part of the intercommunication guide discusses the installation
requirements for a CICS system that is to participate in intersystem
communication or multiregion operation. You should be familiar with the
general requirements for CICS installation, which are described in the CICSIMVS
Installation Guide. You may also have to refer to the CICSIMVS Resource
Definition (Macro) manual for information on coding the CICS system
initialization table (SIT) and to the CICSIMVS Customization Guide for
information on coding CICS system generation macros.

"Chapter 2.1. Installation considerations for rnllltiregion operation" on page 79
describes the CICS installation requirements for mllitiregion operation.

"Chapter 2.2. Installation considerations for intersystem communication" on
page 81 describes the CICS installation requirements for CICS intersystem
communication. It also contains notes on the installation requirements of
ACF/VTAM and IMS when these products are to be used with CICS in an
intersystem communication environment.

© Copyright IBM Corp. 1977, 1991 77

Chapter 2.1. Installation considerations for multiregion operation

This chapter discusses those aspects of installation that apply particularly to
CICS multiregion operation.

To use CICS MRO, you must:

1. Install the CICS Type 2 SVC

2. Define CICS as an MVS subsystem

3. Ensure that the required CICS modules are included in your CICS system

4. Place some modules in the LPA.

Installing the CICS type 2 SVC routine
Multiregion operation requires the CICS interregion communication modules to
run in supervisor state to transfer data between different regions.

CICS uses a normal supervisor call to a bootstrap SVC routine which is supplied
on the pregenerated system load library (CICS212.LOADLlB) under the name
DFHCSVC. You will have to link edit this routine into your system nucleus.
Information on how to do this Is given in the CICS/MVS Installation Guide.

The number of the supplied SVC is 216. You can change the number of the SVC
if required; details are given in the CICS/MVS Installation Guide.

Adding CICS as an MVS subsystem
Multiregion operation with CICS/MVS requires OS/VS Subsystem Interface (SSI)
support. You must therefore install CICS as an MVS subsystem. The procedure
for doing this is detailed in the CICS/MVS Installation Guide.

Modules required for MRO
The standard pregenerated system supplied on the CICS distribution volume
includes a pregenerated version of each of the CICS management modules
required to support multiregion operation.

You must include the following management programs in your system (by using
the SIT or startup overrides):

• The EXEC interface programs. (Specify EXEC = YES or allow it to default.)

These programs are not required if you have no command-level application
programs. The only MRO facility available in this case is transaction routing.

• The intersystem communication programs. (Specify ISC=YES.)

• A terminal control program generated by DFHSG PROGRAM =TCP.

© Copyright IBM CtJrp. 1977, 1991 79

All versions of TCP contain support for interregion communication. The
other requirements for the terminal control program will depend upon your
total installation requirements. See the CICSIMVS Customization Guide for
information on how to generate a suitable version, and the CICSIMVS
Resource Definition (Macro) manual for Information on coding the SIT
operands.

• The system recovery program. (specify SRT=YES or SRT=xx, where xx is
the suffix of your system recovery table.)

Refer to the CICSIMVS Installation Guide to obtain the suffixes, if any, of the
pregenerated versions of these programs.

MRO modules in the link pack area
For multiregion operation, there are certain modules which, for integrity reasons,
must be resident in the shared area or loaded into protected storage.

You must place the following module in link pack area (lPA) of MVS.

• DFHIRP - the CICS Interregion Communication Program.

Module DFHCRC, the interregion communication ESTAE exit module, can be
placed in the lPA to enable it to be shared by CICS address spaces. However, if
it is not in the lPA, it is always loaded into protected storage in the CICS
address space.

Logging on to the IRe access method
Before a CICS system can use the MRO facilities it must "Iog on" to the IRC
access method. You can specify that CICS is to log on when it is initialized by
coding IRCSTRT = YES in the SIT or the startup overrides. If this is not done, the
CEMT SET IRC OPEN command must be used to effect the log on.

80 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 2.2. Installation considerations for Intersystem
communication

This chapter discusses those aspects of installation that apply particularly when
CICS is used in an intersystem communication environment. It also contains
notes on the installation requirements of ACF/VTAM and IMS when these
products are to be used with CICS in an intersystem communication
environment.

The Information on ACF/VTAM and IMS given In this chapter Is for guidance only.
Always consult the current ACF/VTAM or IMS publications for the latest
Information. Some publications references are given under "Books from related
libraries" on page vIII.

--
Modules required for ISC

The standard pregenerated system supplied on the CICS distribution volume
includes a pregenerated version of each of the CICS management modules
required to support intersystem communication_ It is therefore not normally
necessary to do a system generation to add basic ISC support to your system. A
partial regeneration is necessary, however, if you wish to add DLII support; this
is discussed later in this chapter.

You must include the following management programs in your system (by using
the SIT or initialization overrides):

• The EXEC Interface programs. (Specify EXEC = YES or allow it to default.)

These programs are not required if you have no command-level application
programs. The only ISC facility available in this case is transaction routing
(LUTYPE6.2 links only).

• The intersystem communication programs. (Specify ISC = YES.)

• The terminal control program generated by DFHSG PROGRAM = TCP. A
version specifying ACCMETH = VTAM, CHNASSY = YES, and
VTAMDEV= LUTYPE6 is required.

The other requirements for the terminal control program will depend upon
your total installation requirements. See the CICSIMVS Customization Guide
for information on how to generate a suitable version, and the CICSIMVS
Resource Definition (Macro) manual for information on coding the SIT
operands.

Refer to the CICSIMVS Installation Guide to obtain the suffixes, if any, of the
pregenerated versions of these programs.

If, for any reason, you have to perform a partial or complete system generation,
VTAM =YES must be specified, or allowed to default, on the DFHSG
TYPE = INITIAL macro.

© Copyright IBM Corp. 1977, 1991 81

Installing DLII facilities
If your system is required to access DLII databases, you will have to regenerate
some of the pregenerated CICS management programs.

There are three types of DLII access to be considered:

1. Your system will access only local DLII databases
2. Your system will access only remote DLII databases
3. Your system will access both local and remote DLII databases.

Each of these access types requires a different combination of CICS modules to
be generated. Details on how to do this are given in the CICSIMVS Installation
Guide.

If only remote access Is required, DL/I need not be installed and an IMS licence
is not required.

Operating system requirements
There are no special operating system requirements for CICS intersystem
communication.

ACF/VTAM definition for CICS
When you define your CICS system to ACF/VTAM you should include the
following options on the VT AM APPL statement:

• MODET AB = logon-mode-table-name

This option should name the VTAM logon mode table that contains your
customized logon mode entries (see "ACF/VTAM LOGMODE table entries for
CICS" on page 83). You may omit this operand if you choose to ad~ your
MODEENT entries to the IBM-supplied default logon mode table (without
renaming it).

• AUTH = (ACQ,SPO,VPACE[,PASS])

ACQ is required to allow CICS to acquire LUTYPE 6 sessions. SPO is
required to allow CICS to issue the MVS MODIFY vtamname USERVAR
command (see the CICSIMVS XRF Guide for further information). VPACE is
required to allow pacing of the intersystem flows.

PASS is required if you intend to use the EXEC CICS ISSUE PASS command,
which passes existing terminal sessions to other VTAM applications.

• VPACING = number

This option specifies the maximum number of normal-flow requests that
another logical unit can send on an intersystem session before waiting to
receive a pacing response.

Care is needed in the selection of a suitable p~cing count. Too Iowa value
can lead to poor throughput because of the number of line turnarounds
required .. Too high a value can lead to excessive storage requirements.

82 CICS/MVS 2.1.2 Intercommunication Guide

• EAS = number

This option specifies the number of network addressable units that CICS can
establish sessions with. The number must Include the total number of
parallel sessions for this CICS system.

• PARSESS = YES

This option specifies LUTYPE6 parallel session support.

• SONSCIP=YES

This option specifies session outage notification (SON) support. SON
enables CICS, in certain cases, to recover a session following session faiJure
without requiring operator intervention.

• APPC=NO

For ACF/VTAM Version 3.2 and above, this is necessary to allow CICS to use
VTAM macros.

For further information, see the Advanced Communication Function Products
Installation Guide manual.

ACF/VTAM LOGMO.DE table entries for CICS
For LUTYPE6.2 sessions, you can use the MODENAME operand (see "Defining
logical unit type 6.2 links" on page 116) to identify a logmode entry that in turn
identifies the required entry in the VTAM class-of-service table. Every
modename that you supply when you are defining LUTYPE6.2 links must be
matched by a VTAM LOGMODE name. All that is required are entries of the
following form:

MODEENT LOGMODE=modename
MODEEND

An entry is also required for the LU services manager modeset (SNASVCMG).

MODEENT LOGMODE=SNASVCMG
MODEEND

If you plan to use ~utoinstall for single-session LUTYPE6.2 (APpe) terminals,
additional information is required in the MODEENT entry. Details are given in
the CICSIMVS Customization Guide.

For CICS-to-IMS links that are cross-domain, you must associate the IMS
LOGMODE entry with the CICS APPLlD, (the generic applid for XRF systems),
using the DLOGMOD or MODETAB option.

Chapter 2.2. Installation Considerations for ISC 83

Considerations for IMS
If your CICS installation is to use CICS-to-IMS intersystem communication, you
must ensure that the CICS and the IMS installations are fully compatible.

The following sections are intended to help you communicate effectively with the
person responsible for installing the IMS system. They may also be helpful if
you have that responsibility. You should also refer to "Chapter 3.1. Defining
lin~s to remote systems" on page 91, especially the section on defining
compatible CICS and IMS nodes. For full details of IMS installation, refer to the
installation guide for the IMS product.

ACF/VTAM definition for IMS
When the IMS system is defined to VT AM the following options should be
included on the VTAM APPL statement:

• AUTH = (ACQ,VPACE)

ACQ is required to allow IMS to acquire LUTYPE 6 sessions. VPACE is
required to allow pacing of the intersystem flows.

• VPACING = number

This option specifies the maximum number of normal-flow requests that
another logical unit can send on an intersystem session before waiting to
receive a pacing response. An initial value of 5 is suggested.

e EAS=number

The number of addressable units must include the total number of parallel
sessions for this IMS system.

• PARSESS = YES

This option specifies LUTYPE6 parallel session support.

For further information, see the Advanced Communication Function Products
Installation Guide manual.

ACF/VTAM LOGMODE table entries for IMS
IMS allows the user to specify some BIND parameters in a VTAM logmode table
entry. The CICS log mode table entry must match that of the IMS system. IMS
uses the mode table entry specified here in order of priority:

1. The MODETBL parameter of the TERMINAL macro
2. The mode table entry specified in CINIT
3. The DLOGMODE parameter in the VTAMLST APPL statement or the MODE

parameter in the IMS IOPNDST command
4. The ACF/VTAM defaults.

84 CICS/MVS 2.1.2 Intercommunication Guide

Figure 18 shows a typical IMS logmode table entry:

LU6NEGPS MODEENT LOGMODE=LU6NEGPS, NEGOTIABLE BIND
PSNDPAC=X'01', PRIMARY SEND PACING COUNT
SRCVPAC=X '01 1, SECONDARY RECEIVE PACING COUNT
SSNDPAC=X '01', SECONDARY SEND PACING COUNT
TYPE=0, NEGOTIABLE
FMPROF=X 1 121 , FM PROFI LE 18
TSPROF=X 104' , TS PROF! LE 4
PRIPROT=X'Bl l

, PRIMARY PROTOCOLS
SECPROT=X'Bl', SECONDARY PROTOCOLS
COMPROT=X ' 70A0 1, COMMON PROTOCOLS
RUSIZES=X '8585 1, RU SIZES 256
PSERVIC=X 1060038000000380000000000 1 SYSMSG/Q MODEL

MODEEND

Figure 18. A typical IMS logmode table entry

It is very important that the values specified in the MODEENT entry are
acceptable to IMS. For fUl1her information, see the programming guide for the
relevant release of IMS that you are using.

IMS system definition for intersystem communication I

This section summarizes the IMS ISC-related macro instructions and parameters
that are used in IMS system definition. You should also refer to "Defining
compatible CICS and IMS nodes" on page 108. For full details of IMS
installation, refer to the installation guide for the IMS product.

The COMM macro Instruction
APPLID = name

specifies the applid of the IMS system. For an IMS Version 1 system, and for
an IMS Version 2 system generated without XRF support, this is the name
that is specified in the NETNAME operand of DEFINE CONNECTION or
DFHTCT TYPE = SYSTEM when you define the IMS system to CICS.

However, for an IMS Version 2 system with XRF, the CICS NETNAME operand
should specify the USERVAR (that is, the generic applid) that is defined in
the DFSHSBxx member of IMSVS. PROCLlB, not the applid from the COMM
macro.

RECANY = (number,slze)
specifies the number and size of the IMS buffers that are used for VTAM
"receive any" commands. For ISC sessions, the buffer size has a 22-byte
overhead. It must therefore be at least 22 bytes larger than the CICS buffer
size specified in the SENDSIZE operand of DEFINE SESSIONS or the BUFFER
operand of DFHTCT TYPE=TERMINAL for the intersystem sessions.

This size applies to all other ACF/VTAM terminals attached to the IMS
system, and must be large enough for input from any terminal in the IMS
network.

Chapter 2.2. Installation Considerations for ISC 85

EDTNAME = name
specifies an alias for ISCEDT in the IMS system. For CICS-IMS ISC, an alias
name must not be longer than four characters.

The TYPE macro Instruction
UNITYPE = lUTYPE6

must be specified for ISC.

Parameters of the TERMINAL macro can also be specified In the TYPE macro if
they are common to all the terminals defined for this type.

The TERMINAL macro Instruction
The TERMINAL macro identifies the remote CICS system to IMS. It therefore
serves the equivalent purpose to the DEFINE CONNECTION command or the
DFHTCT TYPE = SYSTEM macro in CICS.

NAME=name
identifies the CICS node to IMS. It must be the same as the APPLID name of
the CICS system (the generic applid for XRF systems).

OUTBUF = number
specifies the size of the IMS output buffer. It must be equal to or greater
than 256, and should include the size of any function management headers
sent with the data. It must not be greater than the value specified in the
RECEIVESIZE operand of the DEFINE SESSIONS commands or the RUSIZE
operand of the CICS DFHTCT TYPE = TERMINAL macros for the intersystem
sessions.

SEGSIZE=number
specifies the size of the work area that IMS uses for deblocking incoming
messages. We recommend that you use the size of the longest chain that
CICS may send. However, if IMS record mode (VLV8) is used exclusively,
you could specify the largest record (RU) size.

MODETBl=name
specifies the name of the VT AM mode table entry to be used. You must omit
this parameter if the CICS system resides in a different SNA domain.

OPTIONS = [NOl TWAll TWA]
specifies whether Log Tape Write Ahead (L TWA) is required. For LTWA, IMS
will log session restart information for all active parallel sessions before
sending a syncpoint request. L TWA is recommended for integrity reasons,
but it can carry a performance overhead.

OPTIONS = [SYNCSESSIFORCSESS]
specifies the message resynchronization requirement following an abnormal
session termination. SYNCSESS requires both the inbound and the outbound
sequence numbers to match (or CICS to be cold started) to allow the session
to be restarted. FORCSESS allows the session to be restarted even if a
mismatch occurs. SYNCSESS is recommended.

86 CICS/MVS 2.1.2 Intercommunication Guide

OPTIONS = [TRANSRESPINORESPIFORCRESP]
specifies the required response mode.

TRANSRESP
specifies that the response mode will be determined on a
transaction-by-transaction basis.

NORESP
specifies that response-mode transactions are not allowed. In CICS
terms, this means that a CICS application cannot initiate an IMS
transaction by using a SEND command, but only by means of a START
command.

FORCRESP
forces response mode for all transactions. In CICS terms, this means
that a CICS application cannot initiate an IMS transaction by using a
START command, but only by means of a SEND command.

OPTIONS = [OPNDSTINOPNDST]
specifies whether sessions can be established from this IMS system.

{COMPT1ICOMPT2ICOMPT3ICOMPT4} = {SINGLEnl MUL Tin}
specifies the IMS components for the IMS ISC node. Up to four components
can be d~fined for each node. The input and output components to be used
for each session are then selected by the ICOMPT and COMPT operands of
the SUBPOOL macro.

The following types of component can be defined:

SINGLE1
Used by IMS for asynchronous output. One output message is sent per
SNA bracket. The message mayor may not begin the bracket, but it
always ends the bracket.

SINGLE2
Each message is sent with the SNA change-direction indicator (CD).

MULT1
All asynchronous messages for a given L TERM are sent before the
bracket is ended. The end-bracket (EB) occurs after the last message for
the L TERM is acknowledged and dequeued.

MULT2
The same as MULT1, but CD is sent instead of EB.

SESSION = number
specifies the number of parallel sessions for the link. Each session is
represented by an IMS SUBPOOL macro and by a CICS DEFINE SESSIONS
command or a DFHTCT TYPE = TERMINAL macro.

Chapter 2.2. Installation Considerations for ISC 87

EDIT= [{ NOIVES}][,{ NOIVES}]
specifies whether user~supplied physical output and input edit routines are to
be used.

The VTAMPOOL macro Instruction
The SUBPOOL macro heads the list of SUBPOOL macros that define the
individual sessions to the remote system.

The SUBPOOL macro Instruction
A SUBPOOL macro is required for each session to the remote system.

NAME = subpool-name
specifies the IMS name for this session. A CICS-IMS session is identified by
a "session~qualifier pair" formed from the CICS name for the session and the
IMS subpool name.

The CICS name for the session is specified in the SESSNAME operand of the
DEFINE SESSIONS command or the TRMIDNT operand of the DFHTCT
TYPE = TERMINAL macro for the session.

The IMS subpool name is specified to CICS in the NETNAMEQ operand of the
DEFINE SESSIONS command or the NETNAMQ operand of the DFHTCT
TYPE = TERMINAL macro.

The NAME macro Instruction
The NAME macro defines the logical terminal names associated with the
subpool. Multiple LTERMs can be defined per subpool.

COMPT= {1121314}
specifies the output component associated with this session. The component
specified determines the protocol that IMS ISC will use to process messages.
A SINGLE1 output component is strongly recommended.

ICOMPT= {1121314}
specifies the input component associated with this session. When IMS
receives a message, it determines the input source terminal by finding the
NAME macro that has the matching input component number. A COMPT1
input component must be defined for each session that CICS uses to send
START commands.

EDIT= [{ NOIVES}][,{ ULCIUC}]
The first parameter specifies whether the user-supplied logical terminal edit
routine (DFSCNTEO) is to be used.

The second parameter specifies whether the output is to be translated to
upper case (UC) before transmission or not (ULC).

88 CICS/MVS 2.1.2 Intercommunication Guide

Part 3. Resource definition and master terminal operation

This part tells you how to define the various resources that may be required in a
CICS intercommunication environment.

CICS holds Its resource Information in tables (for example the Terminal Control
Table, or the File Control Table) that are loaded during CICS startup. You can
define resources by coding CICS table definition macro instructions or, for some
resource types, by using resource definition online (ROO). You should refer to
the CICS/MVS Resource Definition (Online) manual and the CICS/MVS Resource
Definition (Macro) manual for details of these procedures.

"Chapter 3.1. Defining links to remote systems" on page 91 tells you how to
define links to remote systems. The links can be MRO links, LUTYPE6.1 links to
remote CICS or IMS systems, or LUTYPE6.2 links to remote CICS systems or to
other LUTYPE6.2 (APPC) systems or terminals.

"Chapter 3.2. Defining remote resources" on page 133 tells you how to define
remote resources to the local CICS system. The resources can be:

• Remote files
• Remote OLII PSBs
• Remote transient data destination
• Remote temporary storage queues
• Remote terminals
• Remote transactions.

"Chapter 3.3. Defining local resources" on page 151 tells you how'to define
local resources for ISC and MRO. In general, these resources are those that are
required for ISC and MRO and are obtained by including the relevant functional
groups in the appropriate tables. However, you do get the opportunity to modify
some of the supplied definitions and to provide your own communication
profiles.

© Copyright IBM Corp. 1977, 1991 89

Chapter 3.1. Defining links to remote systems

This chapter tells you how to define communication links to other systems or to
other CICS regions.

You can use either resource definition online (ROO) or macro-level resource
definition to define links to remote systems. Both methods are described in this
chapter.

Four basic types of link are described:

1. Links for multiregion operation
2. Links to remote systems using logical unit type 6.1 protocols
3. Links to remote systems using logical unit type 6.2 (APPC) protocols
4. Indirect links for CICS transaction routing.

Links using the ACF/VTAM application-to-application facilities are treated exactly
as though they are intersystem links, and can be defined as either LUTYPE6.1 or
LUTYPE6.2 links.

Introduction to link definition
The definition of a link to a remote system consists of two basic parts:

1. The definition of the remote system itself
2. The definition of sessions with the remote system.

If the remote system is CICS, or any other system that uses resource definition
to define i.ntersystem sessions (for example, IMS), the link definition must be
matched by a compatible definition in the remote system. For remote systems
with little or no flexibility in their session properties (for example, LUTYPE6.2
terminals), the link definition must match the fixed attributes of the remote
system concerned.

You are recommended to use resource definition online to define links to remote
systems.

Resource definition online (RDO)
With resource definition online, the definitions of the remote system and the
sessions are always separate, and are not associated with each other until they
are installed.

The remote system is defined by the DEFINE CONNECTION command. Each
session, or group of parallel sessions, is defined by the DEFINE SESSIONS
command.

For single-session APPC terminals, an alternative method of definition, using
DEFINE TERMINAL and DEFINE TYPETERM, is available.

© Copyright I BM Corp. 1977, 1991 91

Macro-level resource definition
With macro-level resource definition, remote systems are defined by means of
the DFHTCT TYPE = SYSTEM macro.

For MRO and LUTYPE6.1 links, the sessions are, in general, also defined in the
TYPE = SYSTEM macro. In some circumstances, however, you can (or even
must) write separate TYPE = TERMINAL macros for the Individual sessions; these
are described in the appropriate sections of this chapter.

For LUTYPE6.2 (APPC) links, the DFHTCT TYPE = SYSTEM macro is used to
define the remote system. Each group of sessions is then defined by means of a
DFHTCT TYPE = MODESET macro. How~ver, a single session to an APPC
terminal is defined by means of a DFHTCT TYPE = SYSTEM macro.

Naming the local CICS system
Each of your CICS/MVS systems requires three names: a generic application
identifier (APPUD), a specific application identifier, and a system identifier
(SYSIDNT).

The APPLIDs of the local eres system
A CICS/MVS system requires two APPUD names: a generic name and a specific
name. The names are specified in the APPUD operand of the system
initialization table:

OFHSIT
APPLIO=(generic-id,specific-id)

The default value for the generic-id is DBDCCICS. The default value for the
specific-id is the value of the generic-id. Either or both of these values can be
overridden during CICS start-up.

As explained in the CICSIMVS XRF Guide, the active and alternate systems in an
XRF pair of CICS systems must have the same generic applid and different
specific applids. Note that a CICS system initialized with XRF = NO still has a
generic and a specific applid, even if they have the same value.

For ISC, the generic APPLID of a CICS system is the name by which it is known
in the intercommunication network; that is, its NETNAME.

For MRO, CICS uses the generic APPUD name to identify itself when it signs on
to the CICS interregion SVC, either during startup or in response to a SET IRC
OPEN master terminal command.

All APPUDs in your intercommunication network should be unique. Also, if you
plan to use the CICS Monitoring Facilities with SYSEVENT reporting to the
resource measurement facility (RMF), you must ensure, particularly in an MRO
environment, that the first four characters of the APPLlDs are unique.

92 CICS/MVS 2.1.2 Intercommunication Guide

The SYSIDNT of the local CICS system
The SYSIDNT of a CICS system is a one-to four-character name known only to
the CICS system itself.

It is obtained (in order of priority) from:

1. The startup override.
2. The SYSIDNT operand of the DFHSIT macro.
3. The default value CtCS.

The CICS active and alternate systems that have the same generic applid must
also have the same sysidnt.

The SYSIDNT of your CICS system may also have to be specified in the DFHTCT
TYPE = INITIAL macro if you are using macro-level resource definition. The only
purpose of the SYSIDNT operand of DFHTCT TYPE = INITIAL is to control the
assembly of local and remote terminal definitions in the terminal control table.
(Terminal definition is described in "Chapter 3.2. Defining remote resources" on
page 133.) The sysidnt of a running CICS system is always the one specified in
DFHSIT (or the default or override value).

Identifying remote systems
As well as having a SYSIDNT for itself, a CICS system requires a SYSIDNT for
every other system with which it can communicate. SYSIDNT names are used to
relate session definitions to system definitions; to identify the systems on which
remote resources, such as files, reside; and to refer to specific systems in
application programs.

SYSIDNT names are private to the CICS system in which they are defined; they
are not known by other systems. In particular, the SYSIDNT defined for a remote
CICS system is independent of the SYSIDNT by which the remote system knows
itself; you need not make them the same.

The mapping between the local, private, SYSIDNT assigned to a remote system
and the APPLID by which the remote system is known globally in the network is
made when you define the intercommunication link. For remote CICS/MVS
systems, this is the generic APPLID.

Resource definition online

DEFINE CONNECTION(sysidnt) The local name for the remote system
NETNAME(app1id) The (generic) app1id of the remote system

Macro-level resource definition:

DFHTCT TYPE=SYSTEM,
SYSIDNT=sysidnt,
NETNAME==app1id

The local name for the remote system
The (generic) app1id of the remote system

In both cases, if NETNAME is omitted, the sysidnt is taken to be the applid of the
remote system. Each sysidnt name must be unique in a CICS system.

Chapter 3.1. Defining links to remote systems 93

Defining links for multiregion operation
This section describes how to define an interregion communication link between
the local CICS system and another CICS region in the same processor.

You can use ROO to define a CONNECTION-SESSIONS pair. Alternatively, you
can use a single OFHTCT TYPE = SYSTEM macro instruction to create a pool of
parallel sessions between the local and the remote CICS system.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. SEND sessions
are used to carry an initial request from the local to the remote system and to
carry any other data flows associated with the initial request. Similarly, RECEIVE
sessions are used to receive initial requests from the remote system.

Interregion communication protocols are basically similar to SNA protocols, and
an initial request is a request that carries a begin bracket indicator. However,
there is no concept of bidding on an interregion link, so that initial requests can
never be sent on a RECEIVE session. You should keep this fact in mind when
you decide how many send and receive sessions you will require.

You must always specify at least one send session and one receive session.

Resource definition online
The ROO definition for an MRO link is shown in Figure 19 on page 95. (This
figure also shows the macro form to show how the operands are related.)

For RO,o, you define the connection and the associated group of sessions
separately. The two definitions are individual "objects" on the CICS system
definition file (CSO), and they are not associated with each other until the group
is installed. The following rules apply for MRO links:

1. The CONNECTION and SESSIONS must be in the same GROUP.

2. The SESSIONS must have PROTOCOL(LU61), but the PROTOCOL operand of
CONNECTION must be left blank.

3. The CONNECTION operand of SESSIONS must match the sysidnt specified for
the CONNECTION.

4. Only one SESSIONS definition can be related to an MRO CONNECTION.

You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for
the link. Cross-memory services are used only if the other end of the link also
specifies cross-memory. To select the CICS Type 2 SVC for interregion
communication, use ACCESSMETHOD(IRC).

As explained earlier in this chapter, the sysldnt is the local name for the CICS
system to which the link is being defined. The NETNAME must be the name by
which the remote/system is known to IRC (CICS interregion communication), that
is, its applid as defined in the system initialization table (SIT) (or, in an XRF
environment, its generic applid). If you do not specify a NETNAME, sysidnt must
satisfy this requirement.

94 CICS/MVS 2.1.2 Intercommunication Guide

RDO Definition

DEFINE
CONNECTION(sysidnt)
GROUP(groupname)
ACCESSMETHOD(IRCIXM)
NETNAME(name)
SECURITYNAME(name)
INSERVICE(NO)

DEFINE
SESSIONS(csdname)
GROUP(groupname)
CONNECTION(sysidnt)
PROTOCOL(LU61)
RECEIVEPFX(prefixl)
RECEIVECOUNT(numberl)
SENDPFX(prefix2)
SENDCOUNT(number2)

OPERPRIORITY(number)
OPERRSL(number)
OPERSECURITY(number)
IOAREALEN(value)
SESSPRIORITY(number)
INSERVICE(NO)

Figure 19. Defining an MRO link

Macro-level Definition

DFHTCT TYPE=SYSTEM
,SYS IDNT =sys i dnt

,ACCMETH={IRCI(IRC,XM)}
, NETNAME=name
,XSNAME=name

,RECEIVE=(prefixl,numberl)

,SEND=(prefix2,number2)

,OPERPRI=number
,OPERRSL=number
,OPERSEC=number
,TIOAL=val ue
,TRMPRTY=number
,TRMSTAT='OUT OF SERVICE'

You must specify the number of SEND and RECEIVE sessions that are required
(at least one of each) and you must also specify prefixes to allow the sessions to
be named.

With RDO, the prefixes and the number of sessions are specified separately (for
example, in SENDPFX and SENDCOUNT).

A prefix is a one-character or two-character string that is used to generate
session identifiers (TRMIDNTs). The count specifies the number of parallel
sessions that is required. The combination of the prefix and the count must not
exceed four characters.

For example:

RECEIVEPFX (RR)
RECEIVECOUNT(10)

generates 10 receive sessions with identifiers RR1 through RR10.

RECEIVEPFX(R)
RECEIVECOUNT(150)

generates 15u receive sessions with identifiers R1 through R150.

Chapter 3.1. Defining links to remote systems 95"

Example of MRO link definition: The following example shows a typical definition
for an MRO link.

DEFINE
CONNECTION (CICB)
GROUP(groupname)
ACCESSMETHOD(XM)
NETNAME(CICSB)
SECURITYNAME(OPA)
INSERVICE(NO)

DEFINE
SESSIONS(csdname)
GROUP(groupname)
CONNECTION (CICB)
PROTOCOl(lU61)
RECEIVEPFX (RB)
RECEIVECOUNT(5)
SENDPFX(SB)
SENDCOUNT(3)
OPERPRI ORI TY (35)
OPERRSl(l)
OPERSECURITY (15)
IOAREAlEN(300)
SESSPRIORITY(l00)
INSERVICE(NO)

local name for remote system
groupname of related definitions
cross-memory services
global name of remote system

unique csd name
same group as the connection
related connection

5 receive sessions RBl through RB5

3 send sessions SBl through SB3

minimum TIOA size for sessions

Figure 20. MRO link definition example - RDO

Macro-level resource definition
The macro-level definition for an MRO link is shown in Figure 19 on page 95.
(This figure also shows the ROO form to show how the operands are related.)

You can specify ACCMETH = (IRC,XM) to select MVS cross-memory services for
the link. Cross-memory services are used only if the other end of the link also
specifies cross-memory. To select the CICS type 2 SVC for interregion
communication, use ACCMETH = IRC.

As explained earlier in this chapter, the sysldnt is the local name for the CICS
system to which the link is being defined. The NETNAME must be the name by
which the remote system is known to IRC (CICS interregion communication), that
is, its applid as defined in the system initialization table (SIT) (or, in an XRF
environment, its generic applid). If you do not specify a NETNAME, sysidnt must
satisfy this requirement.

You must specify the number of SEND and RECEIVE sessions that are required
(at least one of each) and you must also specify prefixes to allow the sessions to
be named. With macro-level definition, the prefixes and the number of sessions
are both specified in the same operand (for example, in SEND).

96 CICS/MVS 2.1.2 Interc:ommunlcatlon Guide

A prefix is a one-character or two-character string that is used to generate
session identifiers (TRMIDNTs). The count specifies the number of parallel
sessions that is required. The combination of the prefix and the count must not
exceed four characters.

For example:

RECEIVE=(RR,18)

generates 10 receive sessions with identifiers RR1 through RR10.

RECEIVE=(R, 158)

generates 150 receive sessions with identifiers R1 through R150.

Example of MRO link definition: The following example shows a typical definition
for an MRO link.

DFHTCT TYPE=SYSTEM,
ACCMETH=(IRC,XM),
SYSIDNT=CICB,
NETNAHE=CICSB,
RECEIVE=(RB,5),
SEND=(SB,3),
XSNAME=OPA,
OPERPRI=35,
OPERRSL=l
OPERSEC=15,
TIOAL=(300) ,

cross-memory services
local name for remote system
global name of remote system
5 receive sessions RBI through RB5
3 send sessions SBI through SB3

minimum TIOA size for sessions
TRMPRTY=108
TRMSTAT='OUT OF SERVICE'

Figure 21. MRO link definition example - macro-level

Choosing the access method for MRO
You can specify ACCESSMETHOD(XM) to select MVS cross-memory services for
an MRO link. Cross-memory services are available only if both ends of the link
select it; otherwise ACCESSMETHOD(IRC) is used. ACCESSMETHOD(IRC) uses
the CICS type 2 SVC for communication between the address spaces.

The use of MVS cross-memory services:

• Reduces the path length for communication
• Uses less MVS CSA storage (as shared buffers are not needed) than SVC

operation
• Requires CICS address spaces to be non-swappable.

However, MVS cross-memory services can create a security exposure (see "Use
of MVS cross-memory services" on page 327).

Chapter 3.1. Defining links to remote systems 97

Defining compatible MRO nodes
An MRO link must be defined in both of the systems that it connects. You must
ensure that the two definitions are compatible with each other. For example, if
one definition specifies 6 sending sessions, the other definition requires 6
receiving sessions.

The following sections describe how the operands of the two definitions are
related to each other. Three types of definition are shown:

1. Resource definition online used in both systems.

2. Macro definition used in both systems.

3. ROO used in one system and macro definition used in the other.

The compatibility requirements are shown in Figure 22 on page 99, Figure 23 on
page 100, and Figure 24 on page 101.

98 CICS/MVS 2.1.2 Intercommunication Guide

CICSA

DFHSIT TYPE=CSECT

,APPLID=CICSA -1
-4-

CICSB

DFHSIT TYPE=CSECT

, APPLID=CICSB

Chapter 3.1. Defining links to remote systems 99

--------_._- ... ------
CICSA CICSB

DFHTCT TYPE=INITIAL
DFHTCT TYPE=INITIAL

,APPLID=CICSA -1-
2- ,APPLID=CICSB

DFHTCT TYPE=SYSTEM
DFHTCT TYPE=SYSTEM

,ACCMETH=IRC
,ACCMETH=IRC

, SYSIDNT=CICB
,SYSIDNT=CICA

,NETNAME=CICSB -2
1- ,NETNAME=CICSA

,RECEIVE=(namel,nn) -3
4- ,RECEIVE=(name2,mm)

,SEND=(name3,mm) -4
3- ,SEND=(name4,nn)

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 23. Defining compatible MRO nodes - macro-level

100 CICS/MVS 2.1.2 Intercommunication Guide

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 24. Defining compatible MRO nodes - mixed RDO and macro

Chapter 3.1. Defining links to remote systems 101

Defining logical unit type 6.1 links
LUTYPE6.1 links are necessary for ilitersystem communication between CICS
and IMS. You can also define LUTYPE6.1 links between CICS systems.
However, you are advised to use LUTYPE6.2 links for CICS-to-CICS
communication whenever possible.

Methods of defining LUTYPE6.1 links
Both resource definition online and macro-level resource definition offer two
methods of defining LUTYPE6.1 sessions. However, you are recommended to
use ROO.

Resource definition online
With ROO, a DEFINE CONNECTION is always required to define the remote
system. The sessions, however, can be defined in either of the following ways:

1. By using a single DEFINE SESSIONS command to define a pool of sessions
with identical characteristics. This is the most convenient method for
CICS-to-CICS communication.

2. By using a separate DEFINE SESSIONS command to define each individual
session. This method must be used to define sessions with systems such as
IMS which require individual sessions to be explicitly named.

Macro-level resource definition
Using macro-level definition, the two methods 'are:

1. Using a single DFHTCT TYPE = SYSTEM macro to define a pool of sessions
with identical characteristics. This is the most convenient method for
CICS-to-CICS communication.

2. Using a DFHTCT TYPE = SYSTEM macro to define the remote system,
followed by DFHTCT TYPE=TERMINAL macros to define the individual
sessions. This method must be used to define sessions with systems such
as IMS which require individual sessions to be explicitly named.

Defining CICS-to-CICS LUTYPE6.1 links
This section describes how to define a pool of LUTYPE6.1 sessions of identical
characteristics.

This method of link definition is the most convenient for CICS-to-CICS ISC links.
If, however, you have a requirement for sessions of differing characteristics, you
can use the definition method described under "Defining CICS-to-IMS LUTYPE6.1
links" on page 108.

From the point of view of the local CICS system, each session on the link is
characterized as either a SEND session or a RECEIVE session. A SEND session
is one in which the local CICS is the secondary (that is, bind receiver) and is the
contention winner. A RECEIVE session is one in which the local CICS is the
primary (that is, bind sender) and is the contention loser. When CICS allocates a
intersystem session to the remote system, it always tries to allocate a contention

102, CICS/MVS 2.1.2 Intercommunication Guide

winner. Only if no contention winners are available will it select a contention
loser. It wHi then have to bid for permission to begin a bracket.

To avoid the overhead of bidding, you should base the numbers of SEND and
RECEIVE sessions on the expected directions and 'frequencies of flows between
the two systems.

Resource definition online
The ROO definition for an LUTYPE6.1 link is shown in Figure 25 on page 104.
(This figure also shows the macro form to show how the operands are related.)

For RDO, you define the connection and the associated group of sessions
separately. The two definitions are individual "objects" on the CICS system
definition file (CSO), and they are not associated with each other until the group
is installed. The following rules apply for LUTYPE6.1 links:

1. The CONNECTION and SESSIONS must be in the same GROUP.

2. Both the CONNECTION and the SESSIONS must have PROTOCOL(LU61).

3. The CONNECTION operand of SESSIONS must match the sysid specified for
the CONNECTION.

The AUTOCONNECT and INSERVICE operands
The AUTOCONNECT operand on the DEFINE CONNECTION command has no
function for a LUTYPE6.1 connection.

On the DEFINE SESSIONS commands, AUTOCONNECT(YESIALL) specifies that
CICS is to bind all the sessions of the group as part of the initialization of the
system. For this to take effect, however, INSERVICE(YES) must also be specified
on the DEFINE CONNECTION command.

INSERVICE(NO) on the DEFINE CONNECTION command initializes sessions to an
out-of-service state only if AUTOCONNECT(NO) is specified in the associated
DEFINE SESSIONS command.

Each CICS system binds its own contention losers; that is, its receive sessions.
At the same time, it passes an Indication to request the remote system to do the
same. In this way, all sessions are bound in one operation.

Macro-level resource definition
The form of the TYPE = SYSTEM macro used to define a pool of LUTYPE6.1
sessions is shown in Figure 25 on page 104. (This figure also shows the ROO
form to show how the operands are related.)

Chapter 3.1. Defining links to remote systems 103

RDO Definition

DEFINE
CONNECTION(sysidnt)
GROUP(groupname)
NETNAME(name)
ACCESSMETHOD(VTAM)
PROTOCOL(LU61)
DATASTREAM(USERI32701

SCS I STRFIELD I
LMS)

RECORDFORMAT(UIVB)
SECURITYNAME(name)

DEFINE
SESSIONS(csdname)
GROUP(groupname)
CONNECTION(sysidnt)
PROTOCOL(LU61)
RECEIVEPFX(prefixl)
RECEIVECOUNT(numberl)
SENDPFX(prefix2)
SENDCOUNT(number2)
SENDSIZE(size)
RECEIVESIZE(size)
BUILDCHAIN(Y)
AUTOCONNECT(YESINO)
INSERVICE(YES)
OPERID(operator-id)
OPE.RPRIORITY (number)
OPERRSL(number)
OPERSECURITY(number)
IOAREALEN(value)
SESSPRIORITY(number)

Figure 25. Defining an LUTYPE6.1 link

Defining compatible CICS LUTYPE6.1 nodes

Macro-Level Definition

DFHTCT TYPE=SYSTEM
,SYSIDNT=sys i dnt

,NETNAME=name
, ACCMETH=VTAM

,DATASTR={USERI32701
SCS I STRFIELD I
LMS}

,RECFM={UIVB}
,XSNAME=name

,RECEIVE=(prefixl,numberl)

,SEND=(prefix2,number2)

, BUFFER=s i ze'
,RUSIZE=size
,CHNASSY=YES

[,CONNECT=AUTO]

,OPERID=operator-id
,OPERPRI=number

, ,OPERRSL=number
,OPERSEC=number
, TIOAL=val ue
,TRMPRTY=number
,TRMSTAT=TRANSCEIVE

When you are defining an LUTYPE6.1 link between two CICS systems, you must
ensure that the definitions of the link in each of the systems are compatible.

The following sections describe how the operands of the two definitions are
related to each other. Three types of definition are shown:

1. Resource definition online used in both systems.
2. Macro definition used in both systems.
3. ROO used in one system and macro definition used in the other.

The compatibility requirements are shown in Figure 26 on page 105, Figure 27
on page 106, and Figure 28 on page 107.

104 CICS/MVS 2.1.2 Intercommunication Guide

Figure 26. Defining compatible CICS LUTYPE6.' ISC nodes - RDO

Chapter 3.1. Defining links to remote systems 105

CICSA CICSB

DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT

,APPLID=CICSA -·1-
-2- ,APPLID=CICSB

DFHTCT TYPE=INITIAL

,SYSIDNT=(sysa)

DFHTCT TYPE=SYSTEM

, ACCMETH=VTAM

,SYSIDNT=CICB

,NETNAME=CICSB -2-
!--l

,RECEIVE=(namel,nn) -3-
-4-

,SEND=(name3,mm) -4-

,RUSIlE=jjjl

,BUFFER=kkk 1

-3-·-
-5-

-6-
-6-

L-.5-

DFHTCT TYPE=INITIAL

,SYSIDNT=(sysb)

DFHTCT TYPE=SYSTEM

, ACCMETH=VTAM

,SYSIDNT=CICA

,NETNAME=CICSA

,RECEIVE=(name2,mrn)

,SEND=(name4,nn)

,RUSIlE=kkkl

,BUFFER=jjjl

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 CICS will negotiate RUSIlE and BUFFER at BIND time if
they do not match.

Figure 27. Defining compatible CICS LUTYPE6.1 ISC nodes - macro-level

1 06CICS/MVS 2.1.2 Intercommunication Guide

1 CICS will negotiate these values at BIND time if they
do not match.

Figure 28. Defining compatible C/CS LUTYPE6.' ISC nodes - mixed RDO and macro

Chapter 3.1. Defining links to remote systems 107

Defining CICS-to-IMS LUTYPE6.1 links
A link to an IMS system requires a definition of the connection (or system) and a
separate definition of each of the sessions.

You are recommended to use resource definition online to define links to remote
systems.

Resource definition online
The'ROO form of definition for individual LUTYPE6.1 sessions is shown in
Figure 29 on page 109. (This figure also shows the macro form to show how 'the
operands are related.)

Macro-level resource definition
The macro-level form of definition for individual LUTYPE6.1 sessions is shown in
Figure 29 on page 109. (This figure also shows the ROO form to show how the
operands are related.)

The TRMTYPE, TRMIONT, SYSIONT, NETNAMQ, and SESTYPE operands must be
coded for each session that you define. The remaining operands of
TYPE = TERMINAL can optionally be coded on the TYPE = SYSTEM macro to
provide defaults for all the defined sessions. Also, the CONNECT; DATASTR, and
RECFM operands of TYPE = SYSTEM can be coded for individual sessions if
required.

Defining compatible CICS and IMS nodes
The definition of CICS-IMS ISC links requires you to understand the relationship
between the way remote systems and sessions are defined in CICS and the way
they are defined in IMS. This section is intended to enable you to write suitable
CICS definitions and to ensure that they are compatible with the corresponding
IMS definitions.

An overview of IMS system definition is given in "Chapter 2.2. Installation
considerations for intersystem communication" on page 81. The relationships
between CICS and IMS definitions are summarized in Figure 30 on page 112
(ROO) and in Figure 31 on page 113 (macro-level definition).

ROO terms are used in the following discussion of the compatibility
requirements. Refer to Figure 29 on page 109 for the equivalent macro-level
operands.

System names
The network name of the CICS system (Its generic applid) is specified in the
APPLIO operand of the OFHSIT macro. (It could be provided as an override
during CICS startup or in the APPLIO operand of the OFHTCT TYPE = INITIAL
macro.) This name must be specified in the NAME operand of the IMS
TERMINAL macro that defines the CICS system.

For IMS Version 1 systems, and for IMS Version 2 systems generated without
XRF support, the network name of the IMS system is specified in the APPLIO
operand of the IMS COMM macro.

108 CICS/MVS 2.1.2 Intercommunication Guide

For IMS Version 2 systems with XRF, the network name is the USERVAR that is
defined in the DFSHSBxx member of IMSVS.PROCLIB.

You must specify the network name in the NETNAME operand of the DEFINE
CONNECTION command that defines the IMS system.

ROO Definition

DEFINE
CONNECTION(sysidnt)
GROUP(groupname)
NETNAME(name)
ACCESSMETHOD(VTAM)
PROTOC0L(LU61)
DATASTREAM(USERI32701

SCS I STRFI ELD I
LMS)

RECORDFORMAT(UIVB)
SECURITYNAME(name)

Macro-level Definition

DFHTCT TYPE=SYSTEM
,SYS IDNT =sys; dnt

,NETNAME=name
,ACCMETH=VTAM

,DATASTR=({USERI32701
SCS I STRFIELD I
LMS})

,RECFM={UIVB}
,XSNAME=name

Each individual session is then defined as follows:

DEFINE
SESSIONS(csdname)
GROUP(groupname)
SESSNAME(name)
CONNECTION(sysidnt)
NETNAMEQ(name)
PROTOCOL(LU61)
SENDCOUNT(011)
RECEIVECOUNT(110)
SENDSIZE(size)
RECEIVESIZE(size)
BUILDCHAIN(Y)
OPERID(operator-id)
OPERPRIORITY(number)
OPERRSL(number)
OPERSECURITY(number)
AUTOCONNECT(NOIYES)
INSERVICE(YES)
IOAREALEN(value)
SESSPRIORITY(number)

DFHTCT TYPE=TERMINAL

, TR~HDNT=name
,SYSIDNT=sysidnt
,NETNAMQ=name
,TRMTYPE=LUTYPE6
,SESTYPE= SENDIRECEIVE

,BUFFER=size
,RUSIZE=size
,CHNASSY=YES
,OPERID=operator-id
,OPERPRI=number
,OPERRSL=number
,OPERSEC=number

[,CONNECT=AUTOIALL]

, TIOAL=val ue
,TRMPRTY=number
, TRt~STAT=TRANSCEIVE

Figure 29. Defining an LUTYPE6.1 link with Individual sessions

Chapter 3.1. Defining links to remote systems 109

Number of sessions
In IMS, the number of parallel sessions that are required between the eles and
IMS system must be specified in the SESSION operand of the IMS TERMINAL
macro. Each session is then represented by a SUBPOOL entry in the IMS
VTAMPOOL. In eleS, each of these sessions is represented by an individual
session definition.

Session names
Each CICS-IMS session is uniquely Ide,ntified by a "session-qualifier pair", which
is formed from the CICS name for the session and the IMS name for the session.

The CICS name for the session is specified in the SESSNAME operand of the
DEFINE SESSIONS command. For sessions that are to be initiated by IMS, this
name must correspond to the 10 parameter of the IMS OPNDST command for the
session. For sessions Initiated by CICS, the name Is supplied on the CICS
OPNDST command and is saved by IMS.

The IMS name for the session is specified in the NAME operand of the IMS
SUBPOOL macro. You must make the relationship between the session names
explicit by coding this name in the NETNAMEQ operand of the corresponding
DEFINE SESSIONS command.

The CICS and the IMS names for a session can be the same, and this approach
is recommended for operational convenience.

other session parameters
This section lists the remaining operands of the DEFINE CONNECTION and
DEFINE SESSIONS commands that are of significance for CICS-IMS sessions.

SENDSIZE
This operand specifies the maximum request unit (RU) size that the remote
IMS system can receive. The equivalent IMS value is specified in the
RECANY parameter of the IMS COMM macro. You must specify a size that
is:

1. Not less than 256 bytes
2. At least 22 bytes less than the value in the RECANY parameter.

BUILDCHAIN(Y)
specifies that multiple RU chains are to be assembled before being passed
to the application program. A complete chain will be passed to the
application program in response to each RECEIVE command, and the
application will have to perform any required deblocking.

BUILDCHAIN(Y) must be specified for LUTYPE6.1 sessions.

DATASTREAM(USER)
must be specified or allowed to default.

This operand is used only when CICS is communicating'with IMS by using
the START command (asynchronous processing). CleSmessages'generated
by the START command always cause IMS to interpret the data stream
profile as input for component 1.

110 CICS/MVS 2.1.2 Intercommunication Guide

The data stream profile for distributed transaction processing can be
specified by the application program by means of the DAT ASTR option of the
BUILD ATTACH command.

RECORDFORMAT(UIVB)
specifies the type of chaining that CICS Is to use for transmissions on this
session that are Initiated by START commands (asynchronous processing).

Two types of data handtlng algorithms are supported between CICS .and IMS:

1. chained

Messages are sent as SNA chains. The user can use private blocking
and deblocking algorithms. This format corresponds to
RECORDFORMAT(U).

2. variable length variable blocked records (VLVB)

Messages are sent In variable length variable blocked format with a
halfword length field before each record. This format corresponds to
RECORDFORMAT(VB).

The data stream format for distributed transaction processing can be
specified by the application program by means of the RECFM option of the
BUILD ATTACH command.

Additional information on these data formats Is given in "Chapter 4.8.
CICS-to-IMS applications" on page 263.

SENDCOUNT and RECEIVECOUNT
These operands are used to specify whether the session is a SEND session
or a RECEIVE session. (In macro-level definition, this is specified in the
SESTYPE = SENDIRECEIVE operand.)

A SEND session Is one in which the local CICS Is the secondary and is the
contention winner. It is specified by:

SENDCOUNT(l)
RECEIVECOUNT(8)

A RECEIVE session Is one In which the local CICS is the primary and is the
contention loser. It is specified by:

SENDCOUNT(8)
RECEIVECOUNT(l)

SEND sessions are recommended for all CICS-IMS sessions.

You need not specify a SENDPFX or a RECEIVEPFX; the name of the session
Is taken from the SESSNAME operand.

Chapter 3.1. Defining links to remote systems 111

CICS

DFHSIT TYPE=CSECT
,SYSIDNT=CICL
,APPLID=SYSCICS -1

DEFINE

DEFINE

DEFINE

CONNECTION(IMSR) -3
GROUP(groupname)
NETNAME(SYSIMS) -2
ACCESSMETHOD(VTAM)
PROTOCOL(LU61)
DATASTREAM(USER)

SESSIONS(csdname)
GROUP(groupname)
PROTOCOL(LU61) -4
SESSNAME (IMS 1)
CONNECTION(IMSR) -3
NETNAMEQ(CIC1) -5
SENDCOUNT(l)
RECEIVECOUNT(0)
SENDSIZE(mmm) -6
RECEIVESIZE(nnn) -7
IOAREALEN(nnn,16364)

SESSIONS(csdname)
GROUP(groupname)
PROTOCOL(LU61) -4
SESSNAME(IMS2)
CONNECTION(IMSR) -3
NETNAMEQ(CIC2) -8
SENDCOUNT(1)
RECEIVECOUNT(0)
SENDSIZE(mmm)
RECEIVESIZE(nnn) -7
IOAREALEN(nnn,16364)

COMM
6-

INS

APPLID=SIMSA
RECANY=mmm+22
EDTNAME=ISCEDT

4- TYPE UNITYPE=LUTYPE6

1- TERMINAL NAME=SYSCICS
SESSION=2
COMPT1=
COMPT2=

7- OUTBUF=nnn

VTAMPOOL

5- SUBPOOL NAME=CIC1

NAME CICLT1 COMPT=1

NAME CICLT1A

8- SUBPOOL NAME=CIC2

NAME CICLT2 COMPT=2

2- DFSHSBxx USERVAR=SYSIMS

Note: DFSHSBxx is in INSYS.PROCLIB.
For non-XRF INS systems, NETNAME
should match the APPLID from the
IMS COMM macro.

This figure shows the relationship between the CICS and IMS
definitions of an intersystem link.

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 30. Defining compatible CICS and IMS nodes - RDO

1.12 CICS/MVS 2.1.2 Intercommunication Guide

CICS

DFHSIT TYPE=CSECT
,SYSIDNT=CICL
,APPLID=SYSCICS -1

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSR -3
,NETNAME=SYSIMS -2

DFHTCT TYPE=TERMINAl
,TRMTYPE=LUTYPE6 -4
,TRMIDNT=IMSl
,SYSIDNT=IMSR -3
,NETNAMQ=CICl -5
,SESTYPE=SEND
,BUFFER=mmm -6
,RUSIZE=nnn -7
,TIOAL=(nnn, 16364)
,DATASTR=USER

DFHTCT TYPE=TERMINAl
,TRMTYPE=LUTYPE6 -4
,TRMIDNT=IMS2
,SYSIDNT=IMSR -3
,NETNAMQ=CIC2 -8
,SESTYPE=SEND
,BUFFER=mmm -6
,RUSIZE=nnn -7
,TIOAL=(nnn, 16364)

IMS

COMM APPLID=SIMSA
6- RECANY=nm+22

EDTNAME=ISCEDT

4-.- TYPE UNITYPE=LUTYPE6

1- TERMINAL NAME=SYSCICS
SESSION=2
COMPTl=
COMPT2=

7- OUTBUF=nnn

VTAMPOOL

5- SUB POOL NAME=CIC1

NAME CIClTl COMPT=l

NAME CIClTlA

SUB POOL NAME=CIC2

NAME CICLT2 COMPT=2

2- OFSHSBxx USERVAR=SYSIMS

Notel DFSHSBxx is in IMSYS.PROCLIB.
For non-XRF IMS systeMs, NETHANE
should match the APPLID fro. the
I MS COMM lIacro.

This figure shows the relationship between the CICS and IMS
definitions of an intersystem link.

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

Figure 31. Defining compatible CICS and IMS nodes - macro level

Chapter 3.1. Denning links to remote systems 113

Defining multiple links to an IMS system
You can define more than one intersystem link between a CICS and an IMS
system. This is done by defining two or more connections (systems), with their
associated session definitions, with the same NETNAME but with different
SYSIDNTs (Figure 32 on page 115). Although all the system definitions resolve
to the same netname, and therefore to the same IMS system, the USA of a SYSID
name in CICS will cause CICS to allocate a session from the link with the
specified SYSIDNT.

It is recommended that you define up to three links (that Is, groups of sessions)
between a CICS and an IMS system, depending upon the application
requirements of your installation:

1. A group of sessions for CICS-initiated distributed transaction processing
(synchronous processing).

CICS applications that use the SEND/RECEIVE interface can use the SYSIDNT
of this group to allocate a session to the remote system. The session will be
held CCbusy") until the conversation is terminated.

2. A group of sessions for CICS-initiated asynchronous processing.

CICS applications that use the START command can name the SYSIDNT of
this group. CICS will use the first "non-busy" session to ship the start
request.

IMS sends a positive response to CICS as soon as it has queued the start
request, so that the session is In use for a relatively short period.
Consequently, the first session in the group will show the heaviest usage,
and the frequency of usage wilt decrease towards the last session in the
group.

3. A group of sessions for IMS-initiatedasynchronous processing.

This group is also useful as part of the solution to a performance problem
that can arise with CICS-initiated asynchronous processing. An IMS
transaction that is Initiated as a result of a start command shipped on a
particular session will normally use the same session to ship Its "reply" start
command to CICS. For the reasons given in (2) above, the CICS start
command was probably shipped on the busiest session, and, because the
session is busy and CICS is the contention winner, the replies from IMS may
back up waiting for a chance to use the session.

However, facilities exist in IMS for a transaction to alter Its default output
session, and a switch to a session in this third group can reduce backup
problems.

114 CICS/MVS 2.1.2 Intercommunication Guide

RDO definition

DFHSIT TYPE=CSECT
,SYSIDNT=CICL
,APPLID=SYSCICS

Macro-level definition

DFHSIT TYPE=CSECT
,SYSIDNT=CICL
,APPLID=SYSCICS

CICS-initiated distributed transaction processing

DEFINE CONNECTION(IMSA)
ACCESSMETHOD(VTAM)
NETNAME(SYSIMS)

DEFINE SESSIONS(csdname)
PROTOCOL(LU61)
SESSNAME (IMS 1)
CONNECTI ON (IMSA)
NETNAMEQ(DTPl)

DEFINE SESSIONS(csdname)

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSA
,NETNAME=SYSIMS

DFHTCT TYPE=TERMINAL
,TRMTYPE=LUTYPE6
, TRMIDNT=IMSI
,SYSIDNT=IMSA
,NETNAMQ=DTPI

DFHTCT TYPE=TERMINAL

CICS-initiated asynchronous processing

DEFINE CONNECTION(IMSB)
ACCESSMETHOD(VTAM)
NETNAME(SYSIMS)

DEFINE SESSIONS(csdname)
PROTOCOL(LU61)
SESSNAME(IMSl)
CONNECTION(IMSB)
NETNAMEQ(ASPl)

DEFINE SESSIONS(csdname)

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSB
,NETNAME=SYSIMS

DFHTCT TYPE=TERMINAL
,TRMTYPE=LUTYPE6
, TRMIDNT=IMSI
,SYSIDNT=IMSB
,NETNAMQ=ASPI

DFHTCT TYPE=TERMINAL

IMS-initiated asynchronous processing

DEFINE CONNECTION(IMSC)
ACCESSMETHOD(VTAM)
NETNAME(SYSIMS)

DEFINE SESSIONS(csdname)
PROTOCOL(LU61)
SESSNAME(IMS1)
CONNECTION(IMSC)
NETNAMEQ(IST1)

DEFINE SESSIONS(csdname)

DFHTCT TYPE=SYSTEM
,ACCMETH=VTAM
,SYSIDNT=IMSC
,NETNAME=SYSIMS

DFHTCT TYPE=TERMINAL
,TRMTYPE=LUTYPE6
, TRrUDNT=IMSl
, SYSIDNT=IMSC
,NETNAMQ=ISTl

DFHTCT TYPE=TERMINAL

Figure 32. Defining multiple links to an IMS node

Chapter 3.1. Defining links to remote systems 115

Defining logical unit type 6.2 links
An lUTYPES.2 link consists of one or more "sets" of sessions. The sessions in
each set have identical characteristics, apart from being either contention
winners or contention losers. Each set of sessions can be assigned a
modename which enables it to be mapped to a VT AM logmode name and thence
to a class of service (COS). A set of lUTYPES.2 sessions is therefore referred to
as a modeset.

You are recommended to use resource definition online (ROO) to define links to
remote systems.

Note: An lUTYPES.2 (APPC) terminal is considered to be a special case of an
lUTYPES.2 system that supports only a single session and which does not
support an lU services manager. There are several ways of defining APPC
terminals; further details are given under "Defining single-session APPC
terminals" on page 123. This section describes the definition of one or more
modesets containing more than one session.

To define a logical unit type S.2 link to a remote system you must:

1. Resource Definition Online

a. Use DEFINE CONNECTION to define the remote system.
b. Use DEFINE SESSIONS to define each set of sessions to the remote

system.

2. Macro-Level Definition

a. Write a DFHTCT TYPE = SYSTEM macro to define the remote system.
b.Write a DFHTCT TYPE = MODESET macro to define each set of sessions

to the remote system.

For a" LUTYPES.2 links, except single-session links to LUTYPES.2 terminals, CICS
automatically builds a set of special sessions for the exclusive use of the LU
services manager, using the modename SNASVCMG. This is a reserved name,
and should not be used for any of the sets that you define.

If you are defining a VTAM logon mode table you should remember to Include an
entry for the SNASVCMG sessions (see "ACF/VTAM LOGMODE table entries for
CICS" on page 83).

116 CICS/MVS 2.1.2 Intercommunication Guide

Defining the remote LUTYPE6.2 system
The ROO and macro-level forms of definition for an LUTYPE6.2 system are shown
In Figure 33.

RDO definition

DEFINE
CONNECTION(name)
GROUP(groupname)
ACCESSMETHOD(VTAM)
PROTOCOL(APPC)
SINGLES ESS (N)
NETNAME(name)
BINDPASSWORD(password)
ATTACHSEC(LOCALIIDENTIFYI

VERIFY)
AUTOCONNECT(NOIYESIALL)
SECURITYNAME(value)

Macro-level definition

DFHTCT TYPE=SYSTEM
,SYSIDNT=name

,ACCMETH=VTAM
,TRMTYPE=LUTYPE62
,FEATURE=PARALLEL
,NETNAME=name
,BINDPWD=password
,USERSEC={LOCALIIDENTIFYI

VERIFY}
,CONNECT={AUTOIALL}
,XSNAME=value

For LUTYPE6.1 applications on LUTYPE6.2

DATASTREAM(USERI32701
SCS I STRFIELD I
LMS)

RECORDFORMAT(UIVB)

Figure 33. Defining an LUTYPE6.2 system

,DATASTR={USERI32701
SCSISTRFIELDI
LMS}

,RECFM={UIVB}

You must specify ACCESSMETHOO(VTAM) and PROTOCOL(APPC) to define an
LUTYPE6.2 system. The CONNECTION name (that is, the sysidnt) and the
NETNAME name have the meanings explained In "Identifying remote systems"
on page 93.

Because this connection will have multiple sessions, you must specify
SINGLESESS(N), or allow it to default. (The definition of single-session APPC
terminals is described in "Defining single-session APPC terminals" on
page 123.)

The AUTOCONNECT operand specifies which of the sessions that are associated
with the connection are to bound when CICS is Initialized. Further information Is
given in "The AUTOCONNECT operand" on page 125.

If the intersystem link is to be used by existing applications that were designed
to run on LUTYPE6.1 links, you can use the OATASTREAM and RECOROFORMAT
operands to specify data stream information for asynchronous processing. The
information provided by these operands is not used by LUTYPE6.2 application
programs.

Chapter 3.1. Defining links to remote systems 117

Defining groups of LUTYPE6.2 sessions
Each group of sessions for an LUTYPE6.2 system is defined by means of a
DEFINE SESSIONS command (ROO) or a DFHTCT TYPE = MODESET macro
(macro-level definition). The two forms of definition are shown In Figure 34.

Each individual group of sessions Is referred to as a modeset.

ROO definition

DEFINE
SESSIONS(csdname)
GROUP(groupname)
PROTOCOL (APPC)
CONNECn ON (name)
MODENAME(name)
MAX IMUM (m 1 ,m2)
AUTOCONNECT(NOIYESIALL)

SENDSIZE(size)
RECEIVESIZE(size)1
OPERID(qperator-id)
OPERPRIORITY(number)
OPERRSL(number)
OPERSECURITY(number)
USERAREALEN(value)
SESSPRIORITY(number)
TRANSACTION (name)

Macro-level definition

DFHTCT TYPE=MODESET

,SYSIDNT=name
,MODENAM=name
,MAXSESS= (ml ,m2)
,CONNECT={AUTOIALL}

[,BUFFER=size]
[, RUSIZE=si ze1]
[,OPERID=operator-id]
[,OPERPRI=number]
[,OPERRSL=number]
[,OPERSEC=number]
[,TCTUAL=value]
[,TRMPRTY=number]
[, TRANSID=name]
[,TRMSTAT=TRANSCEIVE]

1 Minimum value 256. In the SIT, the RAMAX value must be
greater than or equal to these values.

Figure 34. Defining a group of LUTYPE6.2 sessions

The CONNECTION operand specifies the one to four character name of the
LUTYPE6.2 system for which the group is being defined; that is, the
CONNECTION name in the associated DEFINE CONNECTION command. Note
that, for macro-level definition, the associated TYPE = SYSTEM macro must be
coded immediately before any TYPE = MODESET macros that refer to It.

The MODENAME operand enables you to specify a one-to eight-character name
that is to identify this group of related sessions. The name must be unique
among the modenames for anyone LUTYPE6.2 intersystem link, and you must
not use the reserved name SNASVCMG.

118 CICS/MVS 2.1.2 Intercommunication Guide

The MAXIMUM(m1,m2) operand specifies the maximum number of sessions that
are to be supported for the group. The parameters of this operand have the
following meanings:

m1

m2

specifies the maximum number of sessions In the group. The default value
is 1.

specifies the maximum number of sessions that are to be supported as
contention winners. The number specified for m2 must not be greater than
the number specified for m1. The default value for m2 Is zero.

The AUTOCONNECT operand specifies whether the sessions are to bound when
CICS Is initialized. Further information is given In "The AUTOCONNECT
operand" on page 125.

For macro-level definition, the operands shown in brackets ([]) can also be
coded on the TYPE = SYSTEM macro to provide default values for all the
associated modesets.

Defining compatible CICS LUTYPE6.2 nodes
When you are defining an lUTYPE6.2 link between two CICS systems, you must
ensure that the definitions of the link in each of the systems are compatible.

The compatibility requirements are summarized in Figure 35 on page 120 (ROO
used in both systems), Figure 36 on page 121 (mecro definition used In both
systems), and Figure 37 on page 122 (ROO used in one system and macro
definition used In the other).

Chapter 3.1. Defining links to remote systems 119

1 These values need not match, because ~hey are negotiated by the
LU services managers. However, a matching specification will
avoid unusable TCTTE entries, and will also avoid unexpected
bidding because of the "contention winners" negotiation.

2 CICS will negotiate these values at BIND time if they do not match.

3 These values must greater than or equal to 256.

Figure 35. Defining compatible CICS LUTYPE6.2ISC nodes - RDO

120 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

CICSA CICSB

DFHSIT TYPE=CSECT
DFHSIT TYPE=CSECT

,APPLID=CICSA -1-
3- ,APPLID=CICSB

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 MAXSESS need not match, because this parameter is negotiated by
the LU services managers. However, a matching specification will
avoid unusable TCTrE entries, and will also avoid unexpected
bidding because of the "contention winners" negotiation.

2 CICS will negotiate RUSIZE and BUFFER at BIND time if they do not
match.

3 These values must greater than or equal to 256.

Figure 36. Defining compatible CICS LUTYPE6.2 ISC nodes - macro-level

Chapter 3.1. Defining links to remote systems 121

--.-------------------.---------~

CICSA

DFHSIT TYPE=CSECT

,APPLID=CICSA -1

DEFINE CONNECTION(CICB)
GROUP(groupname)
PROTOCOL (APPC)

ACCESSMETHOD(VTAM)

NETNAME(CICSB)

SINGlESESS(N)

BINDPASSWORD(pw)

DEFINE SESSIONS(csdname)
GROUP (groupname)
PROTOCOl(APPC)

CONNECTION(CICB)

MODENAME(Ml)

MAXIMUM(ss,ww) 1

RECEIVESIZE(jjj)2

-2-

-3

-4

-5

SENDSIZE(kkk)2 -9

CICSB

DFHSIT TYPE=CSECT

3- ,APPlID=CICSB

DFHTCT TYPE=SYSTEM

,TRMTYPE=lUTYPE62

,ACCMETH=VTAM

,SYSIDNT=CICA

1- ,NETNAME=CICSA

,FEATURE=PARAllEl

5- ,BINDPWD=pw

DFHTCT TYPE=MODESET

10- ,SYSIDNT=CICA

6- ,MODENA~1=Ml

7- ,MAXSESS=(ss,ss-ww) 1

9- ,BUFFER=kkk2

8- ,RUSIZE=jjj2 3

Related operands are shown by the numbered paths, all of which
pass through the central connecting line.

1 These values need not match, because they are negotiated by the
lU services managers. However, a matching specification will
avoid unusable TCTTE entries, and will also avoid unexpected
bidding because of the "contention winners" negotiation.

2 CICS will negotiate these values at BIND time if they do not
match.

3 These values must greater than or equal to 256.
'---------,---'
Figure 37. Defining compatible CICS LUTYPE6.2ISC nodes - mixed definition

122 CICS/MVS 2.1.2 Intercommunication Guide

Defining single-session APPC terminals
There are three ways of defining a single-session APPC terminal, two using
ROO, and one using a macro. The recommended method is an ROO
TERMINAL-TYPETERM pair.

Resource definition online: Two methods are available with ROO. You can
define a TERMINAL-TYPETERM pair, or you can define a
CONNECTION-SESSIONS pair, with SINGLESESS(Y) specified for the connection.

Macro-level definition: You code a single DFHTCT TYPE = SYSTEM macro to
define both the APPC terminal and its single session; you must not code a
DFHTCT TYPE = MOOESET macro.

No matter how It Is defined, an APPC terminal is always represented by a
system entry (TCTSE) In the terminal control table, and Its single session is
represented by a terminal entry (TCTTE) in the terminal control table.

Resource definition online - TERMINAL-TYPETERM pair
You can define an APPC terminal as a TERMINAL with an associated TYPETERM.
This method of definition has two principal advantages:

1. You can use a single TYPETERM for all your APPC terminals of the same
type.

2. It makes the AUTOINSTALL facility available for APPC terminals.

The basic method for defining an APPC terminal is as follows:

DEFINE TERMINAL(sysid)
MODENAME(modename)
TYPETERM(typeterm)

DEFINE TYPETERM(typeterm)
DEVICE(APPC)

Note that, because all LUTYPE6.2 devices are seen as systems by CICS, the
name In the TERMINAL operand is effectively a system name. You WOUld, for
example, use CEMT INQUIRE CONNECTION. not CEMT INQUIRE TERMINAL. to
Inquire about an APPC terminal.

A single, contention-winning, session is implied by DEFINE TERMINAL. However,
for APPC terminals, CICS will accept a negotiated bind in which it is changed to
contention loser.

The CICS-supplied CSD group OFHTYPE contains a TYPETERM, DFHLU62T,
suitable for APPC terminals. You can either use this TYPETERM as It stands, or
use It as the basis for your own definition.

Chapter 3.1. Defining links to remote systems 123

If you plan to use automatic installation for your APPC terminals, you will need
the model terminal definition (LU62) that is provided in the CICS-supplied CSD
group DFHTERM. You will also have to write an autoinstall user program, and
provide suitable VT AM LOGMODE entries.

For details of TERMINAL/TYPETERM definition, for details of the CICS-supplied
CSD groups, and for an introduction to automatic installation, see the CICSIMVS
Resource Definition (Online) manual. For details of autoinstall user programs
and VT AM LOGMODE entries, see the CICSIMVS Customlzatlon Guide.

Resource definition online - CONNECTION-SESSIONS pair
You can define a CONNECTION-SESSIONS pair to represent an APPC terminal.

The forms of DEFINE CONNECTION and DEFINE SESSIONS commands that are
required are similar to those shown in Figure 33 on page 117 and Figure 34 on
page 118. The differences are shown below:

DEFINE CONNECTION(sysidnt)

SINGLESESS(Y)

DEFINE SESSIONS(csdname)

MAXIMUM(l,l)

You must specify SINGLESESS(Y) for the connection. The MAXIMUM operand
must specify only one session, and you are strongly recommended to make it a
contention winner (as shown). CICS will then attempt to bind as a contention
winner, but will accept a negotiated bind in which it is changed to the contention
loser.

Macro-level definition
You can define an APPC terminal by means of a single DFHTCT TYPE = SYSTEM
macro:

DFHTCT TYPE=SYSTEM
,SYSIDNT=name
,ACCMETH=VTAM
,TRMTYPE=LUTYPE62
,FEATURE=SINGLE
,MODENAME=modename
,NETNAME=name
,BINDPWD=password
,USERSEC={LOCALIIDENTIFYIVERIFY}
,CONNECT={AUTOIALL}
,XSNAME=value

124 CICS/MVS 2.1.2 Intercommunication Guide

You must specify FEATURE = SINGLE. Optionally, you can specify a MODENAME
for the session.

In addition to the operands shown, you can specify any of the optional
session-related operands that are allowed on DFHTCT TYPE = MODESET (see
Figure 34 on page 118).

The AUTOCONNECT operand
The AUTOCONNECT operand of DEFINE CONNECTION and DEFINE SESSIONS
maps to the CONNECT operand of DFHTCT TYPE = SYSTEM and DFHTCT
TYPE = MODESET in the following way:

AUTOCONNECT(NO) Omit CONNECT operand
AUTOCONNECT(YES) CONNECT=AUTO
AUTOCONNECT(ALL) CONNECT=ALL

You can use the AUTOCONNECT operand of DEFINE CONNECTION and DEFINE
SESSIONS (and of DEFINE TYPETERM for APPC terminals) to control when CICS
attempts to establish communication with the remote LUTYPE6.2 system.

Except for single-session APPC terminals (see "Defining single-session APPC
terminals" on page 123), two events are necessary to establish sessions to a
remote LUTYPE6.2 system.

1. The connection to the remote system must be establlshed. This effectively
means binding the LU services manager sessions (SNASVCMG) and carrying
out initial negotiations.

2. The sessions of the modeset in question must be bound.

These events are controlled in part by the AUTOCONNECT operand of the
DEFINE CONNECTION command and In part by the AUTOCONNECT of the DEFINE
SESSIONS command.

The AUTOCONNECT operand of DEFINE CONNECTION
On the DEFINE CONNECTION command, the AUTOCONNECT operand specifies
whether CICS is to attempt to bind the LU services manager sessions at the
earliest opportunity (when the VT AM Ace Is opened). It has the following
meanings:

AUTOCONNECT(NO)
specifies that CICS Is not to attempt to bind the LU services manager
sessions.

AUTOCONNECT(YES)
specifies that CICS Is to attempt to bind the LU services manager sessions.

AUTOCONNECT(ALL)
the same as YES; you could, however, use it as a reminder that the
associated DEFINE SESSIONS specify ALL.

The LU services manager sessions cannot be bound if the remote system is not
available. If for any reason they are not bound during CICS Initialization, they
can be bound by means of a CEMT SET CONNECTION INSERVICE ACQUIRED
command. They are also bound if the remote system itself Initiates

Chapter 3.1. Defining links to remote systems 125

communication. For a single-session APPC terminal, specifying
AUTOCONNECT(YES) or AUTOCONNECT(ALL) on the DEFINE CONNECTION
command has no effect. This is because a single-session connection has no LU
services manager.

The AUTOCONNECT operand of DEFINE SESSIONS
On the DEFINE SESSIONS command, the,AUTOCONNECT operand specifies
which sessions are to be bound when the associated LU services manager
sessions have been bound. (No user sessions can be bound before this time.)

The operand has the following meanings:

AUTOCONNECT(NO)
specifies that no sessions are to be bound.

AUTOCONNECT(YES)
specifies that the contention-winning sessions are to be bound.

AUTOCONNECT(ALL)
specifies that the contention-winning and the contention-losing sessions are
to be bound.

AUTOCONNECT(ALL) allows CICS to bind contention-losing sessions with
remote systems that cannot send bind requests.

Never specify AUTOCONNECT(ALL) for sessions to another CICS system, or
to any system that may send a bind request. This could lead to bind-race
conditions that CICS cannot resolve.

If AUTOCONNECT(NO) is specified, the sessions can be bound by means of a
CEMT SET MODENAME ACQUIRED command. If this is not done, sessions are
bound individually according to the demands of your application program.

For a single-session APPC terminal, the value specified for AUTOCONNECT on
DEFINE SESSIONS or DEFINE TYPETERM determines whether CICS attempts to
bind the Single session or not.

'Note: Specifying AUTOCONNECT(ALL) may cause CICS to bind a number of
contention winners other than the number originally specified in this system.
This depends on the partner system's reply to the request to initiate sessions
(CNOS EXCHANGE). CICS attempts to bind as contention winners any sessions
that are not designated as contention losers in the CNOS reply.

Indirect links for transaction routing
Indirect links allow transaction routing between two CICS systems even though
you have not defined a direct link between them. The only requirement is that
there is a path from one system to the other via one or more intermediate
systems.

126 CICS/MVS 2.1.2 Intercommunication Guide

Terminal-Owning
Region

-_._------,
A

Transaction
defined as
owned by B

-

Direct link
defined to B

Terminal
defined on
system A

l-._. ___ --'

The following figure illustrates the concept of an indirect link.

Intermediate Systems

B

Transaction
defined as
owned by C

r---

Direct link
defined to C

Direct link
defined to A

--

r---

Terminal
defined as
owned by A

C

Transaction
defined as
owned by D

r---

r---

Direct 1 ink
defined to D

D~ect~
define~ ~I

-- '--------.

Indirect
link defined
to A via B

_ 1--.. __ -.

Terminal
defined as
owned by A

Transaction-Owning
Region .

----------,
D

Transaction
defined on
system D

Direct link
defined to C

Indirect
link defined
to A via C
~-

r--- '------,

Terminal
defined as
owned by A

Figure 38. Transaction routing via indirect links

This figure illustrates a chain of systems (A, 8, C, 0) linked by MRO or
LUTYPE6.2 links (you cannot do transaction routing over LUTYPE6.1 links).

It is assumed that you want to establish a transaction-routing path between a
terminal-owning region A and an application-owning region O. There is no direct
link available between region A and region 0, but a path is available via the
Intermediate regions 8 and C.

Chapter 3.1. Defining links to remote systems 127

To enable transaction-routing requests to pass along the path, resource
definitions for both the terminal and the transaction must be available in all four
regions. The terminal is a local resource in the terminal-owning-region A, and a
remote resource in systems B, C, and D. Similarly, the transaction is a local
resource in the application-owning-region 0, and a remote resource in th,e
regions A, B, and C. The definition of remote terminals and transactions is
described in "Chapter 3.2. Defining remote resources" on page 133.

Note: The transaction routing path between the terminal and the transaction
must not turn back on Itself. If, for example, in Figure 38 on page 127, the
transaction definition in system 0 is replaced by a remote definition of a
transaction in system C, the attempt to use the transaction from system A will be
abended when system 0 tries to route back to system C.

Why Indirect links are required
As explained in "Chapter 3.2. Defining remote resources" on page 133, CICS
systems reference remote terminals by means of a unique identifier that is
formed from:

1. The APPLID of the terminal-owning region.
2. The identifier by which the terminal is known on the terminal-owning region.

To enable CICS to form the fully-qualified terminal identifier, a remote terminal
definition must specify the system identifier of a link whose NETNAME is the
APPLID of the terminal-owning region.

If there Is no direct link with the required netname, an Indirect link must be
defined.

The indirect link definition has two purposes:

1. It specifies the NETNAME of the terminal-owning region.
2. It identifies the direct link that is the start of the path to the terminal-owning

region.

Thus, in Figure 38 on page 127, the indirect link definition in region 0 provides
the NETNAME of region A and identifies region C as the next region in the path.
Similarly, the indirect link definition in region C provides the NETNAME of region
A and identifies region B as the next region in the path. Region B has a direct
link to region A, and therefore does not require an indirect link.

Resource definition for indirect transaction routing
This section outlines the definitions required to establish a transaction-routing
path between a terminal-owning region SYS01 and an application-owning region
SYS04 via two intermediate regions SYS02 and SYS03.

The definitions required are shown in Figure 39 on page 129 (resource definition
online) and Figure 40 on page 131 (macro-level definition). You can, of course,
use any combination of resource definition online and macro-level definition for
the various resources.

. 128 CICS/MVS 2.1.2 Intercommunication Guide

SYS81 SYS82
r-----, r-·----------,

OFHSIT OFHSIT
APPllO·SYSOl APPLIO-SYS02

L _______ . .-J L~ ______ -'

Link between SYS81 and SYS82
---_ .. _.------------_._---

DEFINE
CONNECTION(NEXT)
NETNAME(SYS02)

DEFINE
CONNECTImHPREV)
NETNAME(SYS01)

DEFINE DEFINE
SESSIONS(csdname) SESSIONS(csdname)
CONNECTION(NEXT) CONNECTION(PREV)

SYS83 SYS84
,-..... --... - ·-····_·--·--1 r·------1

DFHSIT DFHSIT
APPL to .. SYS03 APPLID1ISYS04

'-- : .•. _ _---______ 1 l_~ ______ ..J

Link between SYS83 and SYS84

DEFINE
CONNECTION(NEXT)
tlETNAME(SYS04)

DEFINE
CONNECTION(PREV)
NETNAt~E(SYSa3)

DEFINE DEFINE
SESSIONS (csdname) SESSIONS(csdname)
CONNECTION(NEXT) CONNECTION(PREV)

Link between SYS82 and SYS03
Indirect Link from SYS84 to
SYS81, routed via SYS83
r-------,

DEFINE
CONNECTION(NEXT)
NETNAME(SYS03)

DEFINE
CONNECTION(PREV)
NETNAI~E (SYS02)

DEFINE
CONNECTION(REMT)
NETNAME (SYS01)
ACCESSMETHOD

DEFINE DEFINE
(INDIRECT)

INDSYS(PREV)
SESSIONS(csdname) SESSIONS (csdname)
CONNECTI ON (NEXT) CONNEC TI ON (PREV)

L-._ J

The Terminal The Terminal
r----.---, ,------,
DEFINE DEFINE
TERMINAL (T42A) TERMINAL (T42A)
NETNA~tE (XXXXX) REMOTESYS TEM (PREV)
TYPETERM(DFHlU2) TYPETERM(DFHLU2)

Indirect Link from
SYS83 to SYS81
routed via SYS82
r----··-·····- ----------,
DEFINE
CONNECTION(REMT)
NETNAt~E(SYSel)
ACCESSMETHOD

(INDIRECT)
INOSYS(PREV)

L __ ._. _____ --...1

The Terminal
r-------.------,
DEFINE
TERMINAl(T42A)
REHOTESYSTEM(REMT)
TYPETERM(DFHLU2)

The Terminal
r- . -,
DEFINE
TERMINAl(T42A)
REMOTESYSTEM(REMT)
TYPETERI~ (DFHlU2)

L ___ ---' L. ___________ I L .. _. ___ . ___ . __ . __ ..J L..:... ___________ .J

The Transaction The Transaction
I --, ,---.-----,
DEFINE DEFINE
TRANSACTION (TRTN) TRANSACTION(TRTN)
REMOTESYSTEM(NEXT) REMOTESYSTEM(NEXT)
L _____ ._--1 L_._. _____ .. ___ J

The Transaction The Transaction
,----.. --.-.- -----, ~ I
DEFINE DEFINE
TRANSACT ION(TRTN) TRANSACTION(TRTN)
REHOTESYSTEf.I(NEXT) PROGRAtHTRNP) . .

1_. ___ ._ --- .---. _____ ...1 I ________ . ___ J

Figure 39. Defining indirect links for transaction routing - RDO

Chapter 3.1. Defining links to remote systems 129

Defining the direct links
The direct links between SYS01 and SYS02. SYS02 and SY803, and SYS03 and
SYS04 are MRO or LUTYPE6.2 links defined as described earlier in this chapter.

Defining the Indirect links
An indirect link for transaction routing must be defined in every system in a
transaction-routing path from a terminal-owning region to an application-owning
region, except for the terminal-owning region itself and the first region in the
path (that is, the region to which the terminal-owning region has a direct link).

In the current example, therefore, indirect links must be defined In SYS04 and
SYS03. The following rules apply to the definition of an indirect link:

1. Resource Definition Online

a. The ACCESS METHOD must be INDIRECT.

b. The NETNAME must be the APPLID of the terminal-owning region.

c. INDSYS (meaning indirect system) must name the CONNECTION name of
an MRO or LUTYPE6.2 link that is the start of the path to the
terminal-owning region.

d. No SESSIONS definition is required for the indirect connection; the
sessions that are used are those of the direct link named in the INDSYS
operand.

2. Macro-Level Definition

a. The ACCMETH must be INDIRECT.

b. The NETNAME must be the APPLID of the terminal-owning region.

c. INDSYS (meaning indirect system) must name the SYSIDNT name of an
MRO or LUTYPE6.2 link that is the start of a path to the terminal-owning
region.

d. No session-related operands are required for the indirect link definition;
the sessions that are used are those of the direct link named in the
INDSYS operand.

Shippable terminals
Transaction routing ships CEDA-installed or autoinstalled terminals across
indirect links. However, the global user exits XAL TENF and XICTENF (see
"Shipping terminals for automatic transaction initiation" on page 48) can be
used only if the TOR and AOR are connected directly.

Defining the terminal
Unless you plan to use shippable terminal definitions (see "Shipping terminal
definitions" on page 141), the terminal must be defined as a remote resource in
every region in the transaction-routing path except the terminal-owning region
itself.

If you do use shippable terminal definitions, you must stili define all the
necessary Indirect links.

130 CICS/MVS 2.1.2 Intercommunication Guide

SYS81

,-'-'-' -"-"·-"--'-1
OFHSIT
APPLIO"SYSOl

L~ __ . _____ _...1

SYS82

,------·-·---·--·---1
OFHSIT
APPLIO-SYS02

L~ ___ . ____ . _____ J

link between SYS81 and SYS82

[

._---------_ _._---_._--. --'-:_-'---'-J OFHTCT OFHTCT
TYPE-SYSTEM, TYPE2SYSTEM,
SYSIONT=NEXT, SYSIONT-PREV,
NETNAME-SYSEl2, NETNAUE-SYSEll, . .
__ • ______ • ________ •.•• _ww_

SYS93

,-"--'--' ---. -..... -. - -. ---1

OFHSIT
APPL ID=SYS03

L~ __ . _ _. ___ ... ___ ...1

SYS84

r .. --------1
OFHSIT
APPLIO-SYS04.

L_· _____ J

Link between SYS83 and SYS84

[
._._. __ ._. __ .. __ _------_._-------] ..

OFHTCT OFHTCT
TYPE=SYSTEH, TYPE=SYSTEM,
SYSIONT=NEXT, SYSIONT-PREV,
NETNAt1E"SYSEl4, NETNA~fE·SYSEl3,

---. __ ._- .. __ ._._-_. __ .. _--------

link between SYS82 and SYS83

Indirect Link from
SYS84 to SYS81
routed via SYS83

The Temlinal
,_._-----,
OFHTCT
TYPE-TERMINAL,
TRMIONT .. T42A,
NETNAME-
l~ ______ --'

The Transaction
.----------"J
OFHPCT
TYPE-RE~fOTE,
TRANSID=TRTN,
SYSIONT·NEXT
L-__

r

--.-----.-------.. -.------J-OFHTCT OFHTCT
TYPE .. SYSTEH, TYPE-SYSTEM,
SYSIONT~NEXT, SYSIONT-PREV,
~ETNA~fE -SYS03, ~ETNAHE" S YSEl2,

The Terminal

OFHTCT
TYPE-REMOTE,
TRMIONT-T42A,
SYSIONT"PREV,

Indirect link from
SYS83 to SYS81
routed via SYS82
r--·----------,
OFHTCT
TYPE-SYSTEM,
ACCMETH-INOIRECT,
SYSIONT·REMT,
NETNAt1E·SYSOl,
INDSYS=PREV L-____ . ___ ---'

The Terminal
r--'
OFHTCT
TYPE-REMOTE,
TRHIONT-T42A,
SYSIONT=REMT,

I_~ ____ J L ... _. ____ __ ._ .. _. ____ J

The Transaction The Transaction
.- r-----.-.. ---.. ---,

OFHPCT DFHPCT
TYPE-REMOTE, TYPE-REMOTE,
TRANSIO-TRTN, TRANS IO-TRTN,
SYSIONT-NEXT SYSIONT·NEXT

L_. __ . ___
J

L .. ___ ._ .. _____ . ______ -'

r ~
OFHTCT
TYPE-SYSTEM,
ACCMETH-INOIRECT,
SYS IDNT .. REMT ,
NETNAME-SYSEll,
INOSYS"PREV

L__ --.J

The Termi na 1

OFHTCT
TYPE-REMOTE,
TRMIONTzT42A,
SYSIONT=REMT,

L .---J

The Transaction

DFHPCT
TYPE-ENTRY,
TRANSID"TRTN,
PROGRAt1· TRNP,

Figure 40. Defining Indirect links for transaction routing - macro

Chapter 3.1. Defining links to remote systems 131

The definition of remote terminals is described in "Chapter 3.2. Defining remote
resources" on page 133. The REMOTESYSTEM (or SYSIDNT) operand in a
remote terminal definition must always name a link whose NETNAME is the
APPLID of the terminal-owning region. The named link must be the direct link to
the terminal-owning region if one exists. Otherwise, it must be an indirect link.

Defining the transaction
The transaction must be defined as a remote resource in every region in the
transaction-routing path except the application-owning region itself. In all cases,
the REMOTESYSTEM (or SYSIDNT) operand must name a direct link to the next
region in the transaction-routing path. (The definition of remote transactions is
described in "Chapter 3.2. Defining remote resources" on page 133.)

Multiple transaction-routing paths
If you have a chain of three or more regions, you may wish to allow
transaction-routing between any pair of regions in the chain. The link definitions
that you will require in this case are shown in the following figure:

A I
Direct link
defined to B

Indirect
1 ink defi ned
to C via B

Indirect
1 ink defi ned
to D via B

B

--------,
Direct link
d"efi ned to A

Direct link
defined to C

Indirect
1 ink defi ned
to D via C

C

Di rect 11 nk
defined to D

Direct link
defined to B

Indirect
1 ink defi ned
to A via B

Figure 41. Multiple indirect links for transaction routing

I D

Direct link
defined to C

~dir.ct
link defined
to B via C

--
Indirect
link defined
to A via C

For your terminal and transaction definitions, you must consider each possible
transaction-routing path in turn and apply the rules that have be explained
previously:

1. Remote terminal definitions must always refer to a link definition that
specifies the NETNAME of the system that owns the terminal.

2. Remote transaction definitions must always name the next system in the
path to the system that owns the transaction; they must not name an indirect
link.

132 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 3.2. Defining remote resources

Remote resources are resources that reside on a remote system but which need
to be accessed by the local CICS system. In general, you will have to define all
these resources in your local CICS system, in much the same way as you define
your local resources, by using CICS resource definition macros or, for remote
transactions and VTAM terminals only, by resource definition online (ROO).

This chapter tells you how to define the remote resources that may be required
for CICS function shipping, CICS transaction routing, and asynchronous
processing (START command shipping). No remote resource definition is
required for distributed transaction processing.

The remote resources that can be defined are:

1. Remote files (function shipping)
2. Remote OLII PSBs (function shipping)
3. Remote transient data destinations (function shipping)
4. Remote temporary storage queues (function shipping)
5. Remote terminals (transaction routing)
6. Remote transactions (transaction routing and asynchronous processing).

All remote resources must, of course, also be defined on the systems that own
them.

Local and remote names for resources
CICS resources are usually referred to by name; a file name for a file, a data
identifier for a temporary storage queue, and so on. When you are defining
remote resources, you must consider both the name of the resource on the
remote system and the name by which it is known in the local system. The CICS
definition macros for remote resources all have a RMTNAME operand to enable
you to specify the name of the resource on the remote system. If you omit this
operand, CICS will assume that the local and remote names of the resource are
identical.

Local and remote resource naming is illustrated in Figure 42 on page 134.

© Copyright IBM Corp. 1977, 1991 133

CICSA
(Local System)

DFHSIT TYPE=
,APPLlD=CICSA

DFHTCT TYPE=SYSTEM
,SYSIDNT=CICR
,NETNAME=CICSB

DFHFCT TYPE=REMOTE
, SYSIDNT=CICR
,FILE=FILEA

DFHFCT TYPE=REMOTE
,SYS IDNT =C I CR
,FILE=alias
,RMTNAf·1E=FI LEB

DFHFCT TYPE=ENTRY
,F I LE=FI LEB

-1

-2
-3

-2
-4

-2

-5

Figure 42. Local and remote resource names

CICSB
(Remote System)

DFHSIT TYPE=

3- ,APPLID=CICSB

DFHTCT TYPE=SYSTEM
,SYSIDNT=CICL

1- ,NETNAME=CICSA

DFHFCT TYPE=FILE
4- ,FlLE=FILEA

DFHFCT TYPE=FILE
5-- ,FlLE=FILEB

This figure illustrates the relationship between local and remote resource
names. It shows two files, FILEA and FILEB, which are owned by a remote CICS
system (CICSB), together with their definitions as remote resources in the local
CICS system CICSA.

FILEA has the same name on both systems, so that a reference to FILEA on
either system means the same file.

FILEB is provided with an alias name on the local system, so that the file is
referred to by its alias in the local system and by FILEB on the remote system.
The "real" name of the remote file is specified in the RMTNAME operand. This
enables CICSA to own a local data set called FILEB.

CICS function shipping
The remote resources that you may have to define if you are using CICS' function
shipping are:

1. Remote files
2. Remote DL/I PSBs
3. Remote transient data destinations
4. Remote temporary storage queues.

134 CICS/MVS 2.1.2 Intercommunication Guide

Defining remote flies
A remote file is a file that resides on another CICS system. CICS file control
requests that are made against a remote file are shipped to the remote system
by means of CICS function shipping.

CICS application programs can name a remote system explicitly on file control
requests, by means of the SYSID option. If this is done, there is no need for the
remote file to be defined on the local CICS system.

More generally, however, applications are designed to access files without being
aware of their location, and in this case the remote file must be defined in the
local file control table.

Remote file entries In the file control table
A remote file entry in the file control table provides CICS with sufficient
information to enable it to ship file control requests to a specified remote
system. It is defined by means of a DFHFCT TYPE = REMOTE resource definition
macro. The format of this macro is given in the CICSIMVS Resource Definition
(Macro) manual and is reproduced here for ease of reference.

DFHFCT TYPE=REMOTE
,SYSIDNT=name
,FIlE=name
[,RMTNAME=name]
[,KEYlEN=key-length]
[,lRECl=record-length]
[,RSl={2InumberIPUBlIC}]

Figure 43. Defining a remote file (function shipping)

Although MRO Is supported for both user-maintained and CICS-maintained
remote data tables, CICS does not allow you to define a local data table based
on a remote source data set. However, there are ways around this restriction
(see the CICSIMVS Data Tables Guide for further information).

The name of the remote system
The name of the remote system to which file control requests for this file are to
be shipped Is specified in the SYSIDNT option. A link to this system must have
been defined as described in "Chapter 3.1. Defining links to remote systems" on
page 91.

The name specified in the SYSIDNT option must not be the name of the local
system.

File names
The name by which the file is known on the local CICS system is specified in the
FILE option. This is the name that is used in file control requests by application
programs in the local system.

Chapter 3.2. Defining remote resources 135

The name by which the file is known on the remote CICS system is specified in
the RMTNAME option. This is the name that is used in file control requests that
are shipped by CICS to the remote system.

If the name of the file is to be the same on both the local and the remote system,
the RMTNAME operand need not be specified. You should, however, consider
carefully the desirability of using the FILE option to provide a local alias for the
file called RMTNAME on the remote system. This technique is, of course,
essential if files of the same name reside on both systems.

Record lengths
The record length of a remote file can be specified in the LRECL option.

If your installation uses COBOL, you should specify the record length for any file
that has fixed length records.

In all other cases, the record length is either a mandatory option on file control
commands or can be deduced by the command-language translator.

Defining remote DLII PSBs
To enable the local CICS system to access remote DLII PSBs, you must define
the remote PSBs In the local PSB directory (PDIR). The form of macro used for
this purpose is:

DFHDLPSB TYPE=ENTRY
,PSB=psbname
,S YS IDNT =name
,MXSSASZ=value
[, RMTNAME=name]

This entry refers to a PSB that is known to the IMS DB system on the system
identified by the SYSIDNT operand.

A database descriptor (DBD) entry In the local CICS OMB directory (ODIR) is not
required if the DBD resides on a remote system.

If there are no local DLII databases on your CICS/MVS system, all the entries in
the PDIR will be defined as remote by inclusion of the SYSIDNT operand. In this
case, you must provide an "empty" DDIR, as follows:

DFHDLDBD TYPE=INITIAL
[,SUFFIX=xx]

DFHDLDBD TYPE=FINAL

136 CICS/MVS 2.1.2 Intercommunication Guide

Defining remote transient data destinations
A remote transient data destination is one that resides on another CICS system.
CICS transient data requests that are made against a remote destination are
shipped to the remote system by means of CICS function shipping. '

CICS application programs can name a remote system explicitly on transient
data requests, by means of the SYSID option. If this is done, there is no need for
the remote transient data destination to be defined on the local CICS system.

More generally, however, applications are designed to access transient data
destinations without being aware of their location, and in this case the remote
destination must be defined in the local destination control table.

A remote entry in the destination control table provides CICS with sufficient
information to enable it to ship transient data requests to a specified remote
system. It is defined by means of a DFHDCT TYPE = REMOTE resource definition
macro. The format of this macro is given in the CICSIMVS Resource Definition
(Macro) manual, and Is reproducedO'here for ease of reference.

DFHDCT TYPE=REMOTE
,DESTID=name
, SYSIDNT=name
[,lENGTH=length]
[,RMTNAME=name]
[,RSl={~lnumberIPUBlIC}]

Defining remote temporary storage queues
A remote temporary storage queue is one that resides on another CICS system.
CICS temporary storage requests that are made against a remote queue are
shipped to the remote system by means of CICS function shipping.

CICS application programs can name a remote system explicitly on temporary
storage requests, by means of the SYSID option. If this is done, there is no need
for the remote temporary storage queue to be defined on the local CICS system.

More generally, however, applications are designed to access temporary storage
queues without being aware of their location, and in this case the remote
destination must be defined in the local temporary storage table.

A remote entry in the temporary storage table provides CICS with sufficient
information to enable it to ship temporary storage requests to a specified remote
system. It is defined by means of a DFHTST TYPE = REMOTE resource definition
macro. The format of this macro is given in the CICSIMVS Resource Definition
(Macro) manual, and Is reproduced here for ease of reference.

Chapter 3.2. Defining remote resources 137

I

..

DFHTST TYPE=R9toTE
,SYSIDNT=name
,DATAID=character-string
[, R~HNAME=character-stri ng]

Asynchronous processing
The only remote resource definitions needed for asynchronous processing are
for transactions that are named in the TRANSID option of CICS START
commands.

Note, however, that an application can use the CICS RETRIEVE command to
obtain the name of a remote temporary storage queue which it subsequently
names in a function shipping request.

Defining remote transactions
A remote transaction for CICS asynchronous processing is a transaction that is
owned by another system and which is invoked from the local CICS system only
by means of START commands.

CICS application programs can name a remote system explicitly on START
commands, by means of the SYSID option. If this is done, there is no need for
the remote transaction to be defined on the local CICS system. However, if the
transaction may be invoked by CICS transaction routing as well as by START
commands, the remote transaction must be defined in the local program control
table to enable transaction routing.

More generally, however, applications are designed to start transactions without
being aware of their location, and in this case the remote transaction must be
defined in the local program control table.

Remote transactions that are invoked only by START commands require only
basic information in the local program control table. The form of resource
definition required for this purpose is:

RDO Definition

DEFINE
TRANSACTION (name)
GROUP(groupname)
REMOTESYSlEM(sysidnt-name)
REMOl ENAt,1E (name)
LOCALQ(NOIYES)
RSL(~lnumberIPUBLIC)

Macro-Level Definition

OFHPCT TYPE=R9toTE
,TRANSID=name

,SYSIDNl=name
[, R~1T NA~1E~name]
[,LOCALQ={NOIYES}]
[,RSL={~lnumberIPUBLIC}]

Figure 44. Defining a remote transaction (asynchronous processing)

138 CICS/MVS 2.1.2 Intercommunication Guide

local queuing (lOCAlQ) can be specified for remote transactions that are
initiated by START requests. For further details, see "Chapter 1.5.
Asynchronous processing" on page 33.

--------_ .. - --- _. __ ._---_._--_ .. _ .. __ _-.-.. _--_._ ... _._._--_._ ... _ .. _. __ ._._--_ _-... - .. -.-

CICS transaction routing
CICS transaction routing enables a terminal that is owned by a particular CICS
region to invoke a transaction that is owned by another CICS region. The two
regions must be connected either by MRO or by an lUTYPE6.2 (APPC) link.

Both the terminal and the transaction must be defined in both CICS regions, as
follows:

1. In the terminal-owning region:

a. The terminal must be defined as a local resource.

b. The transaction must be defined as a remote resource.

2. In the application-owning region:

a. The terminal must be defined as a remote resource (unless a shipped
terminal definition will be available: see "Shipping terminal definitions"
on page 141).

b. The transaction must be defined as a local resource.

If indirect routing is to be used, the rules that have just been stated still apply.
In addition, both the terminal and the transaction must be defined as remote
resources in the intermediate CICS region.

Transactions can be defined either by macro-level resource definition or by
resource definition online (RDO). VT AM terminals can also be defined using
either method,but for non-VTAM terminals you must use macro-level definition.

There is no requirement for the same method to be used in the two systems
involved in transaction routing, but using the same method can simplify the
preparation of local and remote definitions for the same resource.

Not all terminals are eligible for transaction routing. The following terminals and
logical units cannot use transaction routing and therefore cannot be defined as
remote:

• APPC (lUTYPE6.2) terminals
• Pooled TCAM terminals
• IBM 7770 or 2260 terminals
• Pooled 3600 or 3650 pipeline logical units
• MVS operator console.

Chapter 3.2. Defining remote resources 139

Defining remote terminals with ROO (VTAM terminals only)
Remote terminals are terminals owned by a remote system which need to be
able to run with transactions on the local system, using the CICS transaction
routing facility.

The following section tells you how to define remote VTAM terminals using ROO.
However, if the terminal-owning region is using RDO, you do not necessarily
have to define the terminal on the application-owning region. Instead, you can
arrange for a suitable definition to be shipped from the terminal-owning region
when it is required. This method is described in "Shipping terminal definitions"
on page 141.

With resource definition online (RDO), remote terminals are defined by means of
a DEFINE TERMINAL command that specifies a REMOTESYSTEM name that is
different from the SYSIDNT of the region on which the terminal definition is being
installed. Only a few of the various terminal properties need be specified for a
remote terminal definition. They are:

DEFINE
TERMINAL
GROUP

term; na 1 ; detlt; fi ers
TYPETERM
REMOTENI\ME
REMOTESYSTEM

operator defaults
OPERRSL
OPERSECURITY

Figure 45. Defining a remote VTAM terminal (transaction routing)

The TYPETERM referenced by a remote terminal definition can be a
CICS-supplied version for the particular terminal type, or one defined by means
of a DEFINE TYPETERM command. If you are defining a TYPETERM that will be
used only for remote terminals, you can ignore the session properties, the
paging properties, and the operational properties. You can also ignore
BUILDCHAIN in the application features.

Sharing terminal definitions
If you have two or more CICS regions within the same MVS image, they can
share a common CICS system definition file (CSO). In this case, for MRO
transaction routing, you need define each terminal only once.

The terminal must be fully defined by means of DEFINE TERMINAL, and must
have an associated TYPETERM definition, just like a local terminal definition. In
addition, the REMOTESYSTEM operand must specify the SYSIDNT of the
terminal-owning region. When such a terminal is installed on the
terminal-owning region, a full, local, terminal definition is built. On any other
system, a remote terminal definition is built.

140 CICS/MVS 2.1.2 Intercommunication Guide

Shipping terminal dennltlons
If you are using ROO on a terminal-owning region that is involved in transaction
routing, you can arrange for a terminal definition to be shipped from the
terminal-owning region to the application-owning region whenever it is required.
If you use this method, you need not define the terminal on the
application-owning region.

If you require a transaction that Is started by ATI to acquire a remote terminal,
you will normally have to define the terminal on the application-owning region.
For example. specifying a remote terminal in the DESTFAC = (TERMINAL.trmidnt)
operand for an intrapartition transient data queue (see "Intrapartition transient
data queues and remote transactions" on page 157) does not cause a terminal
definition to be shipped from the remote system, but once a shipped terminal
definition has been received, the terminal is eligible for ATI requests.

However, CICS does allow you to cause terminal definitions to be shipped to the
AOR in support of ATI requests. If you enable the user exit XALTENF in the
AOR, CICS invokes this exit whenever it meets a terminal not known condition.
The program you code has access to parameters, giving details of the origin and
nature of the ATI request. You use these to decide the identity of the region that
owns the terminal definition you want CICS to ship. for you.

A similar user exit, XICTENF, is available for start requests that result from EXEC
CICS START. See "Shipping terminals for automatic transaction initiation" on
page 48 for more information.

To make a terminal definition eligible for shipping, you must associate it with a
TYPETERM that specifies SHIPPABLE:

DEFINE
TERMINAl(trmidnt)
GROUP{groupname)
AUTINSTMODEl(YESINOIONlY)
AUTINSTNAME(name)
TYPETERM(TRTERM1)

DEFINE
TYPETERM(TRTERM1)

SHIPPABlE(YES)

Figure 46. Defining a shippable terminal (transaction routing)

This method can be used for any VT AM terminal. For AUTOINSTALL terminals,
this method must be used. In effect, it gives automatic installation of remote
terminals. (For details of AUTOINSTALL, see the CICSIMVS Resource Definition
(Online) manual and the CICSIMVS Customization Guide.)

Chapter 3.2. Defining remote resources 141

When a remote transaction is invoked from a shippable terminal, the request
that is transmitted to the application-owning region is nagged to show that a
shippable terminal definition is available. If the application-owning region
already has a definition of the terminal (which may have been shipped
previously), it ignores the nag. Otherwise, it asks for the definition to be
shipped. A shipped terminal definition is retained until one of the following
events occurs:

1. A CEDA INSTALL command causes the terminal definition on the running
CICS system that shipped the definition to be replaced or deleted.

2. The terminal is logged off on the system that shipped the definition
(autoinstalled terminals only).

3. The system that shipped the terminal definition is cold-started.

If either 1 or 2 above occurs while communication between the two systems has
been lost, the action is deferred until communication has been restored.

Defining remote terminals (macro-level definition)
Remote terminals are terminals owned by a remote system which need to be
able to run with transactions on the local system, using the CICS transaction
routing facility.

A remote terminal requires a full terminal control table entry in the remote
system, and a local terminal control table entry that contains sufficient
information about the terminal to enable CICS to perform the transaction routing.
Data set control information and line information is not required for the local
definition of a remote terminal. With resource definition macros, you can define
remote terminals in either of two ways:

1. By means of DFHTCT TYPE = REMOTE macro instructions

2. By means of normal DFHTCT TYPE = TERMINAL macro instructions preceded
by a DFHTCT TYPE = REGION macro instruction.

The choice of a method is largely a matter of convenience in the particular
circumstances. Both methods allow the same terminal definitions to be used to
generate the required entries in both the local and the remote system.

Definition using DFHTCT TYPE = REMOTE
The format of the DFHTCT TYPE = REMOTE macro instruction is given in the
CICSIMVS Resource Definition (Macro) manual, and is reproduced here for ease
of reference.

142 CICS/MVS 2.1.2 Intercommunication Guide

DFHTCT TYPE=REMOTE
,ACCMETH=access-method
,SYSIDNT=name
,TRMIDNT=name
[,RMTNAME=name]
,TRMTYPE=terminal-type

[,ALTPGE=(lines,columns)]
[,ALTSCRN=(lines,columns)]
[,ALTSFX=number]
[,DEFSCRN=(lines,columns)]
[,ERRATT={NO

I ([LASTLINE][,INTENSIFY][,color][,highlight])})
[,FEATURE=(feature[,feature), •..)]
[,OPERRSl={§I(number[,.~.)})
[,OPERSEC={ll(number[,number], ...)})
[,PGESIZE=(lines,columns)]
[, TCTUAL=number]
[,TIOAL={valuel(valuel,value2)}]
[,TRMMODl=numbercharacter]

Non-VTAM

[,DISMSG=name]
[,LPLEN={132Ivalue}]
[,STN29ae=number]
[,TAB29ae={1I val ue }]

VTAM and TCAM SNA Only

[,BMSFEAT=(FMHPARM,NOROUTE,NOROUTEALL,OBFMT,OBOPID))
[,HF={NO I YES}]
[,LDC~{l;stnamel(aa[=nnn],bb[=nnn],cc[=nnn), .•.)})
[,SESTYPE=session-type]
[,VF={NOIYES}]

VTAM Only

[,FF={NOIYES}]

Figure 47. Defining a remote terminal

With the exception of SYSIDNT, the operands of this macro instruction form a
subset of those that can specified with DFHTCT TYPE = TERMINAl. Any of the
remaining operands can be specified. They are ignored unless the SYSIDNT
operand names the local system, in which case the macro Instruction becomes
equivalent to the DFHTCT TYPE = TERMINAL form.

A single DFHTCT TYPE = REMOTE macro instruction can therefore be used to
define the same terminal In both the local and the remote systems. A typical
use of this method of definition is shown in Figure 48 on page 144.

Chapter 3.2. Defining remote resources 143

Local System CICSL Remote System CICSR
(terminal-owning system)

DFHSIT TYPE= DFHSIT TYPE=
APPLID=CICSL, APPLI D=C I CSR,
SYSIDNT=CICL, SYSIDNT=CICR,
.

DFHTCT TYPE=INITIAL, DFHTCT TYPE=INITIAL,
ACCMETH=VTAM ACCMETH=VTAM

DFHTCT TYPE=SYSTEM, DFHTCT TYPE=SYSTEM,
SYSIDNT=CICR, SYSIDNT=CICL,
NETNAME=CICSR, NETNAME=CICSL,

DFHTCT TYPE=REMOTE, DFHTCT TYPE=REMOTE,
SYSIDNT=CICR, SYSIDNT=CICR,
TRMIDNT=aaaa, TRMIDNT=aaaa,
TRMTYPE=LUTYPE2, TRMTYPE=LUTYPE2,
TRMMODL=2, TRMMODL=2,
ALTSCRN=(43,80) ALTSCRN=(43,80)

.
DFHTCT TYPE=FINAL DFHTCT TVPE=FINAL

Figure 48. Typical use of DFHTCT TYPE - REMOTE

In this example, the same terminal definition is used in both the local and the
remote systems.

In the local system, because the terminal SYSIDNT differs from that specified on
the DFHTCT TYPE = INITIAL macro, a remote terminal entry is built. In the
remote system, because the terminal SYSIDNT is that of the remote system
itself, the TYPE = REMOTE macro is treated exactly as if it were a
TYPE=TERMINAL macro.

The terminal identification is "aaaa" in both systems.

Definition using DFHTCT TYPE = REGION
If this method is used, terminals can be defined in the same way as local
terminals, using DFHTCT TYPE=SDSCI, TYPE = LINE, and TYPE=TERMINAL
macro instructions. The definitions must, however, be preceded by a OFHTCT
TYPE = REGION macro instruction, which has the following form:

DFHTCT TYPE=REGION
,SYSIDNT={name I LOCAL}

Here, SYSIDNT = name specifies the terminal-owning region. If this oper?nd
does not name the local· system, only the information required to build a remote
terminal entry is extracted from the succeeding definitions. DFHTCT
TYPE = SOSCI and TYPE = LINE definitions are ignored. Operands of

144 CICS/MVS 2.1.2 Intercommunication Guide

TYPE =TERMINAL definitions that are not part of the TYPE = REMOTE subset are
also ignored.

A return to local system definitions is made by use of DFHTCT
TYPE = REGION,SYSIDNT == LOCAL.

A typical use of this method of definition is shown in Figure 49.

Local System CICSL Remote System CICSR
(terminal-owning system)

~-------------------;------------------------

DFHSIT TYPE=
APPLID=CICSL,
SYSIDNT=CICL,

DFHTCT TYPE=INITIAL,
ACCMETH=VTAM

DFHTCT TYPE=SYSTEM,
SYSIDNT=CICR,
NETNAME=CICSR,

DFHTCT TYPE=REGION,
SYSIDNT=CICR

COPY TERMDEFS
DFHTCT TYPE=REGION,

SYSIDNT=LOCAL

DFHTCT TYPE=FINAL

DFHSIT TYPE=
APPLID=CICSR,
SYSIDNT=CICR,

DFHTCT TYPE=INITIAL,
ACCMETH=VTAM

DFHTCT TYPE=SYSTEM,
SYSIDNT=CICL,
NETNAME=CICSL,

COPY TERMDEFS

DFHTCT TYPE=FINAL
r-----------------------L-----------------------~

* TERMDEFS COPY BOOK

L77A DFHTCT TYPE=TERMINAL,TRMIDNT=L77A,ACCMETH=VTAM,
TRMTYPE=L3277, TRMt40DL=2,CLASS=(CONV, VIDEO),
TIOAL=1500,RELREQ=(YES,YES),
FEATURE=(SELCTPEN,AUDALARM,UCTRAN),
TCTUAL=8,CONNECT=AUTO,TRMSTAT=(TRANSCEIVE)

DFHTCT TYPE=SDSCI,CU=3272,DEVICE=L3277,LINELST=(035),
DSCNAME=DDAll,BSCODE=EDCDIC

DFHTCT TYPE=LINE,ACCMETH=BTAM,TRMTYPE=L3277,
DSCNAME=DDA11,INAREAL=512,TRMMODL=2,BTAMRLN=1,
POOLADDR=L77B,BSCODE=EBCDIC,DUMMY=DUMMY

L77B DFHTCT TYPE=TERMINAL,TRMIDNT=L77B,LVUNIT=1,
FEATURE=(SELCTPEN,UCTRAN,AUDALARM),
TRMSTAT=TRANSCEIVE,LASTTRM=POOL,
TCTUAL=8,TIOAL=80

and so on
~-----------------.------------------.--------~

Figure 49. Typical use of DFHTCT TYPE == REGION

In this example, the same copy book of terminal definitions is used in both the
local and the remote system.

Chapter 3.2. Defining remote resources 145

In the local system, the fact that the terminal SYSIONT differs from that of the
local system (specified on the OFHSIT macro or the DFHTCT TYPE = INITIAL
macro) causes remote terminal entries to be built. Note that although the
TYPE = SOSCI and TYPE = LINE macros are not expanded in the local system,
any defaults that they imply (for example, ACCMETH = STAM) are taken for the
TYPE =TERMINAL expansions.

Local and remote names for terminals
CICS uses a unique Identifier for every terminal that is Involved in transaction
routing. The identifier is formed from the APPLIO of the CICS system that owns
the terminal and the terminal identifier specified in the terminal definition on the
terminal-owning region.

If, for example, the APPLID of the CICS system is PRODSYS and the terminal
identifier is L77A, the fully-qualified terminal identifier is PRODSYS.L77A.

The following rules apply to all forms of remote terminal definition:

1. The definition must be associated with a system whose NETNAME is the
APPLIO of the system that owns the terminal.

2. The "real" terminal identifier must always be specified, either directly or by
means of aliasing.

Referring to the correct netname
You must always ensure that the system identifier named in a remote terminal
definition refers to a link whose NETNAME is the APPLID of the terminal':'owning
region. In the following examples, it is assumed that the APPLID of the
terminal-owning region is PRODSYS.

146 CICS/MVS 2.1.2 Intercommunication Guide

Resource Definition Online

DEFINE TERMINAL
REMOTESYSTEM(PD1)

Macro-Level Definition
(Method 1)

DFHTCT TYPE=REMOTE,
SYSIDNT=PD1,

Macro-Level Definition
(Method 2)

DFHTCT TYPE=REGION,
SYSIDNT=PDl

DFHTCT TYPE=TERMINAL,

DEFINE CONNECTION(PD1)
NETNAME(PRODSYS)

DFHTCT TYPE=SYSTEM,
SYSIDNT=PD1,
NETNAME=PRODSYS,

DFHTCT TYPE=SYSTEM,
SYSIDNT=PD1,
NETNAME=PRODSYS,

Figure 60. Identifying a terminal-owning region

These rules apply even If an Indirect link Is being used (see "Indirect links for
transaction routing" on page 126). The NETNAME used must never be that of an
indirect system.

Terminal aliases
The name by which a terminal Is known in the application-owning region is
usually the same as its name in the terminal-owning region. You can, however,
choose to call the remote terminal by a different name (an alias) In the
application-owning region.

You will have to provide an alias If the terminal-owning region and the
application-owning region own a terminal with the same name; you cannot have
a local terminal definition and a remote terminal definition with the same name.

Chapter 3.2. Defining remote resources 147

If you use an alias, you must also specify the "real" name of the terminal as its
remote name, as follows:

Terminal-Owning Transaction-Owning
Region Region

Local Terminal I Loca; Terminal

Trmidnt L77A Trmidnt L77A

Remote Ter'mi nal

Trmidnt R77A

Remote Name L77A

Figure 51. Local and remote names for remote terminals

You specify the remote name in the REMOTENAME operand of DEFINE
TERMINAL or the RMTNAME operand of DFHTCT TYPE = REMOTE.

Defining remote transactions
A remote transaction for CICS transaction routing is a transaction that is owned
by another CICS system and which can be invoked from the local CICS system
by a terminal owned by the local system.

You define a remote transaction in exactly the same way as you define a local
transaction, except that some of the operands are not required.

148 CICS/MVS 2.1.2 Intercommunication Guide

In what follows, It is assumed that the online resource definition transaction
CEDA is being used. The form of the CEOA DEFINE command for remote
transactions is:

DEFINE
TRANSACTION(name)
GROUP(groupname)
[PROGRAM (name)]
[TWASIZE({~lvalue})]
[PROFILE({DFHCICSTlname})]
[PARTITIONSET(name)]
[STATUS({ENABLEDIDISABLED})]
[PRIMEDSIZE({~lvalue})]

Remote attributes
REMOTESYSTEM(name)
[REMOTENAME({local-namelremote-name})]
[TRPROF({DFHCICSSlname})]
[LOCALQ({NOIYES})]

Scheduling
[PRIORITY({llvalue})]
[TCLASS({NOlvalue})]

Aliases
[TASKREQ(value)]
[XTRANID (va 1 ue)]

Recovery
[DTIMOUT({NOlvalue})]
[INDOUBT({BACKOUTICOMMITIWAIT})]
[RESTART({NOIYES})]
[SPURGE({NOIYES})]
[TPURGE({NOIYES})]
[DUMP({YESINO})]
[TRACE({YESINO})]

Security
[EXTSEC({NOIYES})]
[TRANSEC({llvalue})]
[RSL({~lvalueIPUBLIC})]
[RSLC({NOIYES I EXTERNAL})

Figure 52. Defining a remote transaction (transaction routing)

Note: For information on the use of the INOOUBT operand, see "Chapter 5.1.
Recovery and restart in interconnected systems" on page 289.

The name in the TRANSACTION operand is the name by which the transaction Is
invoked in the terminal-owning region. TASKREQ can be specified if special
inputs, such as a program attention (PA) key, program function (PF) key, light
pen, magnetic stripe reader, or operator 10 card reader, are used.

Chapter 3.2. Defining remote resources 149

The REMOTESYSTEM operand names the system to which the transaction will be
routed, and an MRO or LUTYPE6.2 link to this system must have been defined.

The PROFI LE operand names the profile that is to be used for communication
between the terminal and the relay transaction. The TRPROF operand names
the profile that is to be used for communication on the session between the relay
transaction and the remote, application-owning, region. Information about
profiles is given under "Defining communication profiles" on page 151.

The program associated with a remote transaction is always the relay program
DFHCRP, and the transaction is often referred to as the relay transaction (see
"Chapter 1.6. CICS transaction routing" on page 45).

The attributes that you define apply to the execution of the relay transaction in
the terminal-owning region, and not to the execution of the routed transaction in
the application-owning region.

It may also be desirable to specify some operands for control of the relay
transaction.

You can set TWASIZE to zero since the relay transaction does not require a
TWA.

You should specify transaction security for routed transactions which are
operator initiated. You do not need to specify resource security checking, since
the relay transaction does not access resources. Security is discussed in
"Chapter 6.1. Security in the intercommunication environment" on page 311.

You should code the DTIMOUT operand to cause the relay transaction to be
timed out if the system to which a transaction is routed does not respond or if a
session does not become available after a reasonable period of time.

Distributed transaction processing
There are no remote resource definition requirements for distributed transaction
processing.

150 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 3.3. Defining local resources

Defining communication profiles
When a transaction acquires an LUTYPE6.1 or LUTYPE6.2 session to another
system, either explicitly by means of an ALLOCATE command or implicitly
because it uses, for example, function shipping, a communication profile is
associated with the communication between the transaction and the session.
The communication profile specifies the following information:

1. Whether FMHs received from the session are to be passed on to the
transaction.

2. Whether input and output messages are to be journaled, and if so the
location of the journal.

3. The node error program (NEP) class for errors on the session.

4. For LUTYPE6.2 sessions, the modename of the group of sessions from which
the session is to be allocated. (If the profile does not contain a modename,
CICS selects a session from any available group.)

CICS provides a set of default profiles, described later in this chapter, which it
uses for various forms of communication. Also, you can define your own
profiles, and name a profile explicitly on an ALLOCATE command.

The general form of the CeOA command used to define a profile is shown in
Figure 53. (For full details, see CICS/MVS Resource Definition (Online) manual).

DEFINE
PROF! LE (name)
GROUP(groupname)
[MODENAME(name)]

Protocols
[INBFMH(NOIALL)]

Jour'na 1 i ng
[JOURNAL(NOlvalue)]
[MSGJRNL(NQ\INPUT\OUTPUTIINOUT)]

Recovery ,
[NEPCLASS(~lvalue)]
[RT H10UT (!!Q I va 1 ue)]

Note: The equivalent operands are also available on the
DFHPCT TYPE=PROFILE macro.

'-------------_ ..
Figure 53. Defining a communication profile

© Copyright IBM Corp. 1977, 1991 151

A profile is always required for a session acquired by an ALLOCATE command;
either a profile that you have defined and which is named explicitly on the
command, or the default profile DFHCICSA. If CICS cannot find the profile, the
CBIDERR condition is raised in the application program.

For MRO sessions that are acquired by an ALLOCATE command, CICS always
uses INBFMH(ALL), no matter what is specified in the profile.

For LUTYPE6.2 conversations, INBFMH specifications are ignored; LUTYPE6.2
FMHs are never passed to CICS application programs.

Communication profiles for principal facilities

Default profiles

A profile is also associated with the communication between a transaction and
its principal facility. You can name the profile in the CEDA DEFINE
TRANSACTION command, or you can allow the default to be taken. The CEDA
DEFINE PROFILE command for a principal facility profile has more operands than
the form required for alternate facilities. Details are given in the CICSIMVS
Resource Definition (Online) m.anual.

CICS provides a set of communication profiles that it employs in cases where
the user does not or cannot specify a profile explicitly. The default profiles are:

DFHCICST
is the default prOfile for principal facilities. You can specify a different profile
for a particular transaction by means of the PROFILE option of the CEDA
DEFINE TRANSACTION command.

DFHCICSV
is the profile for principal facilities of the CICS-supplied transactions CSNE,
CSLG, and CSRS. It Is the same as DFHCICST except that DVSUPRT(VTAM)
is specified in place of DVSU PRT(ALL). You should not modify this profile.

DFHCICSE
is the error profile for principal facilities. CICS uses this profile to pass an
error message to the principal facility when the required profile cannot be
found.

DFHCICSA INBFMH(ALL)
is the default profile for alternate facilities that are acquired by means of an
application program ALLOCATE command. A different profile can be named
explicitly on the ALLOCATE command.

This profile is also used as a principal facility profile for some CICS-supplied
transactions.

DFHCICSF INBFMH(ALL)
is the profile that CICS uses for the session to the remote system or region
when a CICS application program Issues a function shipping request.

DFHCICSS INBFMH(ALL)
is the profile that CICS uses in transaction routing for communication
between the relay transaction (running in the terminal-owning region) and
the MRO or LUTYPE6.2 link.

152 CICS/MVS 2.1.2 Intercommunication Guide

DFHCICSR INBFMH(ALL)
is the profile that CICS uses in transaction routing for communication
between the user transaction (running in the application-owning region) and
the interregion link or LUTYPE6.2 link.

Note that the user-transaction's principal facility is the surrogate TCTTE in
the application-owning region, for which the default profile is DFHCICST.

Refer to the CICSIMVS Resource Definition (Online) manual or the CICS/MVS
Resource Definition (Macro) manual for information on how to include the default
profiles in your program control table.

Modifying the default profiles
You can modify a default profile by means of the CEDA transaction or, if you are
using macro-level definition, by coding a new DFHPCT TYPE = PROFILE macro.

A typical reason for modification is to include a modename to provide class of
service selection for, say, function shipping requests on LUTYPE6.2 links. If you
do this, you must ensure that every LUTYPE6.2 link in your installation has a
group of sessions with the specified modename.

If you modify DFHCICSA, you must retain INBFMH(ALL), because it is required by
certain CICS-supplied transactions. Modifying this profile does not affect the
profile options assumed for MRO sessions.

You must not modify DFHCICSV, which is used only by certain CICS-supplied
transactions.

Architected processes
An architected process is an IBM-defined method of allowing dissimilar products
to exchange Intercommunication requests in a way that is understood by both
products. For example, a typical requirement of intersystem communication is
that one system should be able to schedule a transaction for execution on
another system. Both CICS and IMS have transaction schedulers, but their
implementation differs considerably. The intercommunication architecture
overcomes this problem by defining a model of a "universal" transaction
scheduling process. Both products implement this architected process, by
mapping it to their own internal process, and are therefore able to exchange
scheduling requests.

The architected processes implemented by CICS are:

• System message model - for handling messages containing various types of
information that needs to passed between systems (typically, DFS messages
from IMS)

• Scheduler model - for handling scheduling requests

• Queue model - for handling queuing requests (in CICS terms, temporary
storage or transient data requests)

Chapter 3.3. Defining local resources 153

Process names

• DLII model - for handling DLII requests

• LU services model - for handling requests between LUTYPE6.2 service
managers.

Note: With the exception of the LUTYPE6.2 LU services model, the architected
processes are defined in the LUTYPE6.1 architecture. CICS, however, also uses
them for function shipping on LUTYPE6.2 links by using LUTYPE6.2 migration
mode.

The appropriate models are also used for CICS-CICS communication. The
exception is CICS file control requests, which are handled by a CiCS-defined file
control model.

During resource definition, your only Involvement with architected processes will
be to ensure that the relevant transaction and programs are Included in the CICS
tables, and possibly to change their priorities.

Architected process names are one to four bytes long, and have a first byte
value that is less than X '40' .

In CICS, the names are specified as four-byte hexadecimal transaction
identifiers. If CICS receives an architected process name that is less than four
bytes long, it pads the name with null characters (X'OO') before searching for the
transaction Identifier.

CICS supplies the processes shown in Figure 54.

XTRANID TRANSID PROGRAM

For CICS file control

CSMI DFHMIR

For lUTYPE6.1 architected processes

<:neeeaee
e2eeeaae
e3aaeaae
e5eaaaae

CSMl
CSM2
CSM3
CSM5

DFHMIR
DFHMIR
DFHMIR
DFHMIR

For lUTYPE6.2 architected processes

e6Fleaee
e6F2aaae

ClSl
ClS2

DFHlUP
DFHLUP

Figure 54. CICS architected process names

DESCRIPTION

file control model

system message model
scheduler model
queue model
Dl/I model

lU services model
lU services model

154 CICS/MVS 2.1.2 Intercommunication Guide

Modifying the architected process definitions
You will observe from the previous list that the CICS file control model and the
architected processes for function shipping all map to program DFHMIR2, the
CICS mirror program. The Inclusion of different transaction names for the
various models enables you to modify some of the transaction attributes. You
must not, however, change the XTRANID, the TRANSID, or the PROGRAM
operand.

You can modify any of the definitions by means of the CEDA transaction or, if
you are using macro-level definition, by coding a new DFHPCT macro.

Intarreglon function shipping
Function shipping over MRO links can employ reusable mirror tasks and the
short-path transformer program (see "MRO function shipping" on page 26).

If you modify one or more of the mirror transaction definitions, you must
evaluate the effect that this may have on interregion function shipping. Any
suspended mirror task can be used to service an interreglon request, and that
mirror can have been attached originally by any process name, and hence
transaction identifier.

The short-path transformer always specifies transaction CSMI. It is not,
however, used for DLII requests; they arrive as requests for process
X'05000000', corresponding to transaction CSM5.

Selecting the required peT and PPT entries
The profiles and architected processes described in this chapter, and other
transactions· and programs that are required for ISC and MRO, are contained in
the IBM protected groups DFHISC and DFHSTAND. Details of how to Include
these pregenerated CEDA groups in your CICS system are given in the
CICSIMVS Resource Definition (Online) manual. The contents of group DFHISC
are summarized in the following figure.

2 Transaction CVMI and program DFHMIRVM are also used for LU6.2 parallel connections operating at synclevel(1) and LU6.2
single-session connections.

Chapter 3.3. Defining local resources 155

TRANSACTIONS

XTRANID TRANSID PROGRAM GROUP

CSMI DFHMIR DFHISC CICS file control model
CVMI DFHMIRVM DFHISC Mi rror prog.ram

0le00000 CSMI DFHMIR DFHISC system message model
02000000 CSM2 DFHMIR DFHISC schedul er model
03000000 CSM3 DFHMIR DFHISC queue model
05000000 CSM5 DFHMIR DFHISC DL/I model'
06Fl0000 CLSI DFHLUP DFHISC LU services model
06F20000 CLS2 DFHLUP DFHISC LU services model

. CMPX DFHMXP DFHISC
CRSQ DFHCRQ DFHISC
CRSR DFHCRS DFHISC
CRTE DFHRTE DFHISC routing transaction
CSIR DFHCRR DFHISC
CSNC DFHCRNP DFHISC

PROGRAMS

NAME GROUP

DFHCRNP DFHISC Interregion new connection manager
DFHCRSP DFHISC Interregion control initialization program
DFHCRR DFHISC IRC session recovery program.
DFHCRS DFHISC Remote scheduler program.
DFHCRP DFHISC Transaction routing relay program.
DFHRTE DFHISC Transaction routing program.
DFHCRQ DFHISC ATI purge program.
DFHMXP DFHISC Local queuing shipper program
DFHMIR DFHISC Mirror program
DFHMIRVM DFHISC Mirror program
DFHLUP DFHISC LU services program

DFHSTLK DFHSTAND ISC Link and IRC statistics program

PROFILES

NAME GROUP

DFHCICSF DFHISC Function shipping profile
DFHCICSR DFHISC Transaction routing receive profile
DFHCICSS DFHISC Transaction routing send profile

DFHCICSA DFHSTAND Distributed transaction processing profile
DFHCICSE DFHSTAND Principal facility error profile
DFHCICST DFHSTAND Principal facility default profile
DFHCICSV DFHSTAND Principal facility special profile

Figure 55. Th~ contents of group DFHISC

156 CICS/MVS 2.1.2 IntercommunIcation Guide

Intrapartition transient data queues and remote transactions

Transactions

The general form of the resource definition macro for an intrapartition transient
data queue is:

~--~--------~

DFHDCT TYPE=INTRA
,DESTID=name
[,DESTFAC={(TERMINAL[,termid]) IFILEI (SYSTEM,sysid)}
[,DESTRCV={NOIPHILG}]
[,REUSE={YESINO}]
[,RSL={QlnumberIPUBLIC}]
[,TRANSID=name]
[,TRIGLEV={llnumber}]

Figure 56. Defining an intrapartition transient data queue

Full details of this macro are given in the CICS/MVS Resource Definition (Macro)
manual. In this section we are concerned with the CICS intercommunication
aspects of queues that:

1. Cause automatic transaction initiation (TRANSID specified)

2. Specify an associated prinCipal facility (DESTFAC=TERMINAL or
DESTFAC = SYSTEM).

A transaction that is initiated by an intrapartition transient data queue must
reside on the same system as the queue. That is, the transaction that you
specify in the TRANSID operand must not be defined as a remote transaction.

Principal facilities
The principal facility that is associated with a transaction started by ATI can be:

• A local terminal
• A terminal owned by a remote system
• An intersystem or interregion session to a remote system.

Local terminals
A local terminal is a terminal that is owned by the same system that owns the
transient data queue and the transaction.

For any local terminal other than an LUTYPE6.2 (APpe) terminal, you need to
specify DESTFAC = (TERMINAL[,termid]). If you omit termld, the name of the
queue (specified in DESTID) must be the same as the terminal name.

For a local LUTYPE6.2 (APPC) terminal, you need to specify
DESTFAC = (SYSTEM,sysid), where sysld is the system name of the terminal.
Note that the name of the conversation with the terminal is assigned when the
session is allocated. You do not know it beforehand, and therefore cannot
specify it. Once the transaction has started, the name of the conversation is
available in EIBTRMID.

Chapter 3.3. Defining local resources 157

Remote terminals
A remote terminal is a terminal that is defined as remote on the system that
owns the transient data queue and the associated transaction. Automatic
transaction initiation with a remote terminal is a form of CICS transaction routing
(see "Chapter 1.6. CICS transaction routing" on page 45), and the normal
transaction routing rules apply.

Use DESTFAC = (TERMINAL,termid) to specify the name of the remote terminal.
The terminal itself must be defined as a remote terminal, and the
terminal-owning region must be connected to the local system either by an MRO
link oran LUTYPE6.2 link.

Remote systems
You can name a remote system in the DESTFAC = (SYSTEM,sysid) operand. The
remote system can be connected by any type of link; MRO, LUTYPE6.1, or
LUTYPE6.2.

158 CICS/MVS 2.1.2 Intercommunication Guide

Part 4. Application programming

This part of the manual describes the application programming aspects of CICS
intercommunication. It contains the following chapters:

"Chapter 4.1. Application programming overview" on page 161

"Chapter 4.2. Application programming for CICS function shipping" on
page 163

"Chapter 4.3. Application programming for asynchronous processing" on
page 167

"Chapter 4.4. Application programming for CICS transaction routing" on
page 169

"Chapter 4.5. CICS applications for logical unit type 6.2 mapped
conversations" on page 171

"Chapter 4.6. CICS applications for logical unit type 6.2 unmapped
conversations" on page 221

"Chapter 4.7. CICS-to-CICS distributed transaction processing for MRO and
LUTYPE6.1" on page 245

"Chapter 4.8. CICS-to-IMS applications" on page 263

@ Copyright, BM Corp. 1977. 1991 159

Chapter 4.1. Application programming overview

Application programs that are designed to run in the CICS intercommunication
environment can use one or more of the following facilities:

• Function shipping
• Asynchronous processing
• Transaction routing
• Distributed transaction processing.

The application programming requirements for each of these facilities are
described separately in the remaining chapters of this part. If your application
program uses more than one facility, the relevant chapter should be used as an
aid to designing the corresponding part of the program. Similarly, if your
program uses more than one intersystem session for distributed transaction
processing, it must control each individual session according to the rules given
for the appropriate session type.

Programming languages

Terminology

In general, CICS application programs that use CICS intercommunication
facilities can be written in COBOL, PUI, or Assembler language, and must use
the CICS command-level application programming interface. There are two
exceptions to these rules:

1. Macro-level as well as command-level application programs can be invoked
by transaction routing.

2. Application programs that hold LUTYPE6.2 unmapped conversations must be
written in Assembler language.

The following terms are sometimes used without further explanation in the
remaining chapters of this part:

principal facility
the "terminal" that is associated with your transaction when the transaction
is initiated. The more general term is used because the facility may be not a
"real" terminal but an intersystem session. CICS commands, such as SEND
or RECEIVE, that do not explicitly name a facility are taken to refer to the
principal facility. Only one principal facility can be owned by a transaction.

alternate facility
in distributed transaction processing, a transaction can acquire the use ofa
session to a remote system. This session is called an alternate facility. It
must be named explicitly on CICS commands that refer to it. A transaction
can own more than one alternate facility.

Other intersystem sessions, such as those used for function shipping, are not
owned by the transaction, and are not regarded as alternate facilities of the
transaction.

© Copyright IBM Corp. 1977, 1991 161

front-end and back-end transactions
in distributed transaction processing, one of the pair of conversing
transactions must be initiated first, acquire a session to the remote system,
and cause the other transaction to be initiated. This Is the front-end
transaction. The transaction that the front-end transaction causes to be
initiated is the back-end transaction.

Note that a transaction can at the same time be the back-end transaction on
one conversation and the front-end transaction on one or more other
conversations.

syncpolnt Initiator
the transaction that initially issues a SYNCPOINT or SYNCPOINT ROLLBACK
request. The term is commonly abbreviated to initiator.

syncpolnt agent
the transaction that receives a SYNCPOINT or SYNCPOINT ROLLBACK
request from a partner. The term is commonly abbreviated fo agent.

162 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.2. Application programming for CICS function shipping

File control

If you are writing a program to access resources in a remote system, you code it
in much the same way as If the resources were on the local system. Your
program can be written in PLlI, COBOL, or assembler language. Function
shipping is available only through the CICS command-level interface or through
DLII calls or EXEC DLI commands.

The commands that you can use to access remote resources are:

1. File control commands
2. DLII calls or EXEC DLI commands
3. Temporary storage commands
4. Transient data commands.

Interval control commands are deliberately left out of this list. For information
on this subject, see "Chapter 4.3. Application programming for asynchronous
processing" on page 167.

Your application can run in the CICS intercommunication environment and make
use of the intercommunication facilities without being aware of the location of
the resource being accessed. The location of the resource is defined by the
system programmer in the appropriate CICS table. Optionally, you can use the
SYSID option on EXEC commands to select the system on· which the commana is
to be executed. In this case, the resource definition tables on the local system
are not referenced, unless the SYSID option names the local system.

When your application issues a command against a remote resource, CICS ships
the request to the remote system, where a mirror transaction is initiated. The
mirror transaction executes the request on your behalf, and returns any output to
your application program. The mirror transaction is thus effectively a remote
extension of your application program. If you would like more information on
this mechanism, read "Chapter 1.4. CICS function shipping" on page 21.

Although the same <;ommands are used to access both local and remote
resources, there are a number of restrictions that apply when the resource is
remote. Also, some errors that do not occur in single systems can arise when
function shipping is being used. For these reasons, you should always know
whether resources that your program accesses can possibly be remote.

Function shipping allows you to access VSAM or DAM files located on a remote
system.

If you use the. SYSID option to access a remote system directly. you must
observe the following rules:

1 .. For a file referencing a keyed data set, KEYLENGTH must be specified if
RIDFLD is specified, unless you are using relative byte addresses (RBA) or
relative record numbers (RRN).

. C> Copyright I BM Corp. 1977, 1991 163

DL/I

For a remote DAM file, where the DEBKEY or DEBREC options have been
specified, KEYLENGTH must be the total length of the key.

2. If the file has fixed length records, you must specify the record length
(LENGTH).

These rules also apply if the file control table entry for the file does not define
the appropriate values.

Function shipping allows you to access DLII DOS/VS or IMS DB data associated
with a remote CICS system through the DLII CALL interface or by using EXEC
DLI commands.

Definitions of remote DLII databases are provided by the system programmer.
There is no facility for selecting specific systems in CICS application programs.

Temporary storage

Transient data

-Function shipping allows you to send data to or receive data from tem-porary
storage queues located on remote systems. Definitions of remote temporary
storage queues can be made by the system programmer. You can, however,
use the SYSID option on the WRITEQ TS; READQ TS, and DELETEQ TS
commands to specify the system on which the request is to be executed.

For MRO sessions, the MAIN and AUXILIARY options of the WRITEQ TS
command can be used to select the required type of storage. If the queue is to
be recoverable, AUXILIARY should be selected.

For LUTYPE6.1 or LUTYPE6.2 sessions, the MAIN and AUXILIARY options are
ignored; auxiliary storage is always used In the remote system.

Function shipping allows you to access intrapartition or extrapartition transient
data queues located on remote systems. Definitions of remote transient data
queues can be made by the system programmer. You can, however, use the
SYSID option on the WRITEQ TO, READQ TO, and DELETEQ TO commands to
specify the system on which the request is to be executed.

If the remote transient data queue has fi.xed length record, you must supply the
record length in the LENGTH option if it is not specified in the DFHDCT
TYPE = REMOTE macro, or if you use the SYSID option.

164 CICS/MVS 2.1.2 Intercommunication Guide

Function shipping exceptional conditions
Requests that are shipped to a remote system can raise any of the exceptional
conditions for the command that can occur if the resource is local. In addition,
there are some conditions that apply only when the resource is remote.

Remote system not available
At the time that a function shipping request is issued, a link to the remote
system may not be available. If this is'the case, the SYSIDERR condition is
raised in the application program.

This condition is also raised if the named system is not defined, but this error
should not occur in a production system unless the application is designed to
obtain the name of the remote system from a terminal operator.

The default action for the SYSIDERR condition is to terminate the task
abnormally.

Invalid request
The ISCINVREQ condition occurs when the remote system indicates a .failure that
does not correspond to a known condition. The default action is to terminate the
·task abnormally.

Mirror transaction abend
An application request against a remote resource may cause an abend in the
mirror transaction (for example, the requested Transient Data destination may
have been disabled by the remote CICS master terminal operator).

In theS"e situations, the application program will also be abended, but with an
abend code of ATNI (for ISC connections) or AZI6 (for MRO connections). The
actual error condition will be logged by CICS in an error message sent to the
CSMT destination. Any HANDLE ABEND command issued by the application will
not be able to identify the original cause of the condition and take explicit
corrective action (which may have been possible if the resource was local). An
exception occurs in MRO function shipping If the mirror transaction abends with
a DLII program isolation deadlock; in this case, the application will abend with
the normal deadlock abend code.

Note that the ATNI abend caused by a mirror transaction abend is not related to
a terminal control command, and the TERMERR condition is therefore not raised.

Chapter 4.2. Application programming for CICS function shipping 165

Chapter 4.3. Application programming for asynchronous processing

This chapter discusses the application programming requirements for
CICS-to-CICS asynchronous processing. The general information given for CICS
transactions that use the START or RETRIEVE commands is also applicable to
CICS-IMS communication. For details of the requirements of CICS-IMS
communication, however, you should refer to "Chapter 4.8. CICS-to-IMS
applications" on page 263.

A description of the concepts of asynchronous processing is given in "Chapter
1.5. Asynchronous processing" on page 33. It is assumed that you are familiar
with concepts of CICS interval control, as described in the CICSIMVS Application
Programmer's Reference manual.

Starting a transaction on a remote system
You can start a transaction on a remote system by issuing an EXEC CICS START
command just as though the transaction were a local one. Remote transactions
cannot be initiated by means of macro-level interval control requests.

Generally, the transaction will have been defined as being remote by the system
programmer. You can, however, name a remote system explicitly in the SYSID
option. This use of the START command is thus essentially a special case of
CICS function shipping.

If your application requires you to specify the time at which the remote
transaction is to be initiated, remember that the remote system may be in a
different time zone. The use of the INTERVAL form of control is preferable under
these circumstances.

Exceptional conditions for the START command
The exceptional conditions that can occur as a result of issuing a START request
for a remote transaction depend on whether or not the NOCHECK performance
option is specified on the START command.

If NOCHECK is not specified, the raising of conditions follows the normal rules
for function shipping (see "Function shipping exceptional conditions" on
page 165).

If NOCHECK is specified, no conditions will be raised as a result of the remote
execution of the START command. SYSIDERR, however, will still occur if no link
to the remote system is available, unless the system programmer has arranged
for local queuing of start requests. Also, the local transaction will be abended if
the remote mirror transaction associated with the START command abends.

C> Copyright I BM Corp. 1977, 1991 167

Retrieving data associated with a remotely-issued start request
The RETRIEVE command is used to retrieve data that has been stored for a task
as a result of a remotely-issued start request. This is the only available method
for accessing such data.

As far as your transaction is concerned, there is no distinction between data
stored by a remote start request and data stored by a local start request, and
the normal considerations for use of the RETRIEVE command apply ..

168 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.4. Application programming for CICS transaction routing

In general, if you are writing a transaction that may be used in a transaction
routing environment, you can design and code it just as you would for a single
CICS system. There are, however, a number of restrictions that you must be
aware of, and these are described In this chapter. The same considerations
apply if you are migrating an existing transaction to the transaction routing
environment.

The program can use either command-level or macro-level, and can be written
in PL/I, COBOL, or assembler language.

Note: Information on macro-level programs is intended primarily for the
migration of existing programs to a transaction routing environment. It is
strongly recommended that command level be used for new applications.

Basic mapping support
Any 8MS maps or partition sets that your program uses must reside in the same
CICS system.

In a 8MS routing application, a route request that specifies an operator or an
operator class will direct output only to the operators signed on at terminals that
are owned by the system in which the transaction is executing.

Pseudoconversational transactions

The terminal

A routed transaction requires the use of an interregion or intersystem
(LUTYPE6.2) session for as long as It Is running. For this reason, long-running
conversational transactions are best duplicated In the two systems, or
alternatively designed as pseudoconversational transactions.

Care is needed in the naming and definition of the individual transactions that
make up a pseudoconversational transaction, because a TRANSID specified in a
CICS RETURN command is returned to the terminal-owning region, where it may
be a local transaction.

There is, however, no reason why a pseudoconversational transaction cannot be
made up of both local and remote transactions.

The "terminal" with which your transaction will run is represented by a terminal
control table entry (TCTTE) which Is in many respects a copy of the "real"
terminal TCTTE in the terminal-owning region. This copy is known as the
surrogate TCTTE.

The surrogate TeTTE is released when the transaction terminates. Subsequent
tasks will run using a new copy of the real terminal TCTTE. You should note
that, if the new task is started via ATI, certain fields (for example, TCTTEAID
(EIBAID) and TCTTECAD (EIBSCON» will be meaningless and may contain either
zeros or residual data.

© Copyright IBM Corp. 1977, 1991 169

Using the EXEC CICS ASSIGN command in the AOR
Three of the options to the EXEC CICS ASSIGN command may cause an
unexpected reaction or return unexpected values. A closer look at these will
help you to understand why:

PRINSYSID
This option returns the sysid of the principal facility to the transaction. It
requires that this facility be an MRO, or an LUTYPE6.1 or LUTYPE6.2 session.
The principal facility for a routed transaction is represented by the surrogate
TCTTE, which does not meet the requirement. Therefore the INVREQ
condition is raised (as stated In the CICSIMVS Application Programmer's
Reference manual).

Note: An EXEC CICS ASSIGN PRINSYSID command cannot be used to find
the name of the terminal-owning region.

USERID
For a routed transaction, CICS takes the userid from one of two sources,
depending on how you specified your security requirements (see
"Transaction routing security" on page 326).

If you specified preset security, by including OPERSECURITY, OPERRSL, or
both, on the definition for the remote terminal, whatever was specified for the
USERID option on the same DEFINE TERMINAL command is returned under
this option. This appears as blanks if you let the USERID option default.

CICS goes to the same source for the userid if you did not specify prt:!set
security for the remote terminal definition but you did specify
ATTACHSEC(Local)on the DEFINE CONNECTION command for the link.

If, instead of ATTACHSEC(Local), you requested automatic signon for remote
users by specifying ATTACHSEC(ldentify) or ATTACHSEC(Verify) on the
DEFINE CONNECTION command for the link, the userid returned is the one
that was sent over the link with the attach request for the transaction.

OPERKEYS
This option returns a 64-bit mask that represents the CICS transaction
security profile of·the remote user In the local system.

If preset security was defined in the remote terminal definition, the preset
value is returned. This selection of this possibility precludes all others.

If the remote user is signed on locally as described in the explanation to
USERID above, the returned mask is the value that was defined for the user
In the signon table.

In all other cases, the user transaction security profile takes the default value
of 1.

This option cannot give any information about the user's security status in a
remote system.

170 CICS/MVS 2.1.2 Intercommunication Guide

I
I

. I
I
I

Chapter 4.5. CICS applications for logical unit type 6.2 mapped
conversations

"Chapter 1.7. Distributed transaction processing." introduces the concepts of
distributed transaction processing (DTP). This chapter tells you how to code
CICS application programs that hold high-level (mapped) conversations on
LUTYPE6.2 sessions. The session partner can be another CICS system, or any
other LUTYPE6.2 system that supports mapped conversations.

There is another type of LU6.2 conversation called a basic or unmapped
conversation, and this is documented in "Chapter 4.6. CICS applications for
logical unit type 6.2 unmapped conversations."

Application design
The starting point for the design of an LUTYPE6.2 application is provided by the
application requirements developed during the planning activity.

In general, a program that Is required to hold LUTYPE6.2 conversations must be
designed as one of a pair of conversing applications, not as an isolated entity.

At the same time, you should ensure that your CICS application program follows
a well-defined set of protocols, both to achieve correct operation and to deal with
unexpected situations. This means that you must at all times be aware of the
state of the session, as indicated by the settings of fields in the EXEC interface
block (EIB), and use that state information to determine what operations are
currently valid, or even mandatory.

A guide to the correct use of EIB fields and command sequences is given in
"Command sequences on LUTYPE6.2 mapped conversations" on page 203.

Warning ----------------------------,

Assumptions should not be made about the state of a conversation. The
application must test the EIB flags after each LUTYPE6.2 command to
determine the current state. If you follow this rule, your distributed
application can converse with, or be migrated to, other releases of CICS
without encountering significant problems.

Sessions and conversations
In the LUTYPE6.2 architecture, a distinction is made between a session, which
represents a path between two logical units, and a conversation, which refers to
exchanges between the end users of the session.

Your transaction can acquire the use of a session on which to conduct a
conversation by using the ALLOCATE command. CICS may have to acquire a
new session in order to satisfy your request, but this is incidental. Sessions are
usually long-lived, and are used in turn by many different transactions.

@ Copyright IBM Corp. 1977, 1991 171

When you have acquired a session, you can begin a conversation by using the
CONNECT PROCESS command to initiate a back-end transaction. The
conversation lasts from the sending of begin bracket with the first message to
the receipt of end-bracket with the final message. In CICS transactions, you
must give up your use of the session, by issuing a FREE command, at the end of
the conversation. It is not possible to start another conversation on the same
session.

Conversation state
LUTYPE6.2 conversations embody the concept of a state. Each end of the
conversation is in a particular state, and what you can do on the conversation is
governed by its state.

For example, only one end of the conversation is permitted to have the ability to
send data at any time. This side is in SEND state; this forces its partner to be in
RECEIVE state. The partner in SEND state can give up this ability (for example,
by issuing a SEND INVITE command), thereby placing itself in RECEIVE state and
its partner in SEND state.

Effective use of LUTYPE6.2 DTP depends on the good management of these
states. See "Command sequences on LUTYPE6.2 mapped conversations" on
page 203 for full details.

Synchronization levels
Three levels of synchronization are available for LUTYPE6.2 conversations:

• Level 0 - none

No synchronization can take place between the conversation partners.

• Level 1 - confirm

The conversation partners handle synchronization exchanges themselves.
The CICS syncpointing mechanisms are not involved.

• Level 2 - syncpoint

The equivalent of normal CICS syncpointing.

Synchronization must be at a level that both the conversation partners can
accept. The maximum level that can be used is negotiated when the session
that is to carry the conversation is bound. The level that is to be used for a
particular conversation is requested by the front-end transaction. It will be
accepted provided that:

• It is not greater than the maximum allowed for the session
• It is acceptable to the back-end transaction.

~
Abbreviations and assumptions

The rest of this chapter refers to synchronization levels 0, 1, and 2 as SL(O),
SL(1), and SL(2) respectively. Unless otherwise stated, operation at SL(2)
should be assumed.

.. -

172 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

CICS commands for LUTYPE6.2 conversations
The.commands that can be used to establish and hold LUTYPE6.2 conversations
are:

• ALLOCATE - used by the front-end transaction to acquire a session to the
remote system.

• CONNECT PROCESS - used by the front-end transaction to initiate a
conversation with a named process (or, in CICS terms, a transaction) on the
remote system.

• EXTRACT PROCESS - used by the back-end transaction to access
session-related information (for example, the requested synchronization
level) in the LUTYPE6.2 attach header that caused it to be initiated.

• SEND, RECEIVE, and CONVERSE - used by the conversing transactions to
send or receive data on the conversation.

• SEND INVITE - used to change the state of the Issuing side from SEND to
RECEIVE, and that of the partner from RECEIVE to SEND.

• WAIT or SEND WAIT - used to ensure that all existing data and control
indicators have been sent to a partner before further processing is
performed.

• SEND CONFIRM and ISSUE CONFIRMATION - used primarily at SL(1), but
also available at SL(2), for the exchange of private requests to show that
data has arrived and been processed correctly.

• SYNCPOINT and SYNCPOINT ROLLBACK - operates only at SL(2), and
governs synchronization of all active conversations.

• ISSUE PREPARE - operates only at SL(2), and is used by a syncpoint
Initiator to ensure that its agents are ready to take a SYNCPOINT.

• ISSUE ERROR - used by either transaction to Inform Its conversation
partner that a program-detected error has occurred.

• ISSUE ABEND - used by either transaction to Inform its conversation
partner that It Is necessary to abend the conversation.

• ISSUE SIGNAL - used by the receiving transaction to request a
change-direction from the sending transaction.

• FREE - used by either transaction to free the session.

Considerations for the front-end transaction
The front-end transaction Is responsible for requesting a session to the remote
system and initiating the remote process with which it is to converse.
Thereafter, the conversation partners become equals.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 173

Session allocation
An Application can get an LUTYPE6.2 session to a remote system by means of
the ALLOCATE command, which has the following format:

ALLOCATE SYSID(name)
[PROFILE(name)]
[NOQUEUE]

SYSIDERR,SYSBUSY,CBIDERR

The name specified in the SYSIO option must be the name of an LUTYPE6.2
intersystem link. CICS will raise the SYSIOERR condition if:

• it cannot find the named system,
• the connection is in the INSERVICE RELEASED status (that is, the

SNASVCMG sessions are not bound), or
• the connection Is OUTSERVICE.

You can use the PROFILE option to select a specified communication profile for
the session and the ensuing conversation. The profile, which is set up during
resource definition, can contain the name of the group of LUTYPE6.2 sessions
from which the session is to be acquired, thereby enabling a particular class of
service to be selected. It also contains a set of terminal control processing
options that are to be used for the conversation.

If you omit the PROFILE option, CICS will use the default profile OFHCICSA. Note
that although DFHCICSA specifies INBFMH = ALL, this operand is ignored for
LUTYPE6.2 conversations. LUTYPE6.2 function management headers will never
be passed to your application program.

You can use the NOQUEUE (or NOSUSPEND) option to tell CICS to return control
to you immediately if It finds it has no session available for allocation. For the
purposes of this option, a session Is available for allocation only if it meets all
these conditions:

• It is a contention-winner
• It is already bound
• It is not already allocated.

The SYSBUSY code (X I 03') is set in the EIBRCOOE field of the EXEC interface
block if no session is available for allocation.

If your application has executed a HANDLE command for the SYSBUSY condition
and no session can fulfil the above conditions, control is returned to the label
specified in the HANDLE command. For this, you do not need to specify
NOQUEUE and, if you do, it is overridden.

If you neither select NOQUEUE nor handle the SYSBUSY option, CICS tries to
allocate a contention-winning session that is also available and bound. If it fails,
it suspends your transaction and attempts to obtain an alternative session,
working through the following categories in order and taking the action shown,
where appropriate:

• Unbound contention winners. If one is available, it is bound.

174 CICS/MVS 2.1.2 Intercommunication Guide

• Unbound indeterminate sessions. These may be present if the combined
number of contention winners defined for both sides is less than the total
number of available sessions. If one is available, it is declared to be a
contention winner and is bound.

• Bound contention losers. If one is available, a bid is issued to the partner
system for the session.

Control "is passed back to your transaction as soon as a session can be
allocated. If you specify DTIMOUT on the DEFINE command for the transaction,
CICS causes an ABEND if the time-out expires before a session is allocated.
The HANDLE ABEND command lets you regain control in this event.

Both your resource configuration and your transaction design should be aimed
at avoiding long or, in the worst case, Irresolvable ALLOCATE suspensions.
Single-session connections are particularly vulnerable. For more guidance, refer
to "The AUTOCONNECT operand" on page 125 and "Chapter 6.2. Master
terminal operations for LUTYPE6.2 connections" on page 329.

The conversation Identifier
When a session has been allocated, the name by which the conversation will be
known is available in the EIBRSRCE in the EIB. You should obtain this name
immediately. It is the name that you must use in the CONVID option of all
subsequent commands that relate to this conversation.

You should not make any assumptions about the name of the conversation. It
will be differe"nt for different invocations of your transaction, and bears no
defined relationship to the name that CICS uses to refer to the session that
carries the conversation.

Attaching the remote process
When a session has been acquired, the next step is to initiate the conversation
with the remote process (in CICS terms, a transaction) by means of a CONNECT
PROCESS command. This command has the following format:

CONNECT PROCESS
PROCNAME(data-area)
PROCLENGTH(data-value)
CONVID(name)
SYNCLEVEL(data-value)

[PIPLIST(data-area)
PIPLENGTH(data-value)]

INVREQ, NOTALLOC, LENGERR

The process, or transaction, that is to be connected to the other end of the
conversation is named in the PROCNAME option, and the length of the name is
specified as a halfword binary value in the PROCLENGTH option.

Four bytes are sufficient to identify a CICS transaction. However, the LUTYPE6.2
architecture allows a range of 1 to 64 bytes, leaving each product free to set Its
own maximum. CICS complies by allowing 32 bytes, but this need only concerr
you if you are linked to a non-CICS system which demands longer transaction
identifiers. To attach a transaction in the remote system, you need only supply

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 175

the operands as set out above. If you expect a remote system to send attach
requests with names longer than four bytes, you have a choice. Because CICS
always interprets the first four bytes, you can make sure that these always
represent a transaction identifier within your system. Alternatively, you can
examine the full identifier by coding the user exit XZCATT as described in the
CICSIMVS Customization Guide.

Note: Transaction names that begin with X '00' through X'3F' are reserved for
use as SNA service transaction names, and cannot be used for user
transactions. For details of LUTYPE6.2 symbol string conventions, seethe SNA
publication Transaction Programmer's Reference Manual for LU Type 6.2.

The conversation on which the connect process command is to be issued must
be named in the CONVID option. The name that you use must be the name
acquired from EIBRSRCE after session allocation.

The SYNCLEVEL option enables you to specify the synchronization level that is
required for the conversation. The synchronization level required is usually
determined when the overall application is designed.

You should remember these points when you specify the SYNCLEVEL option:

• Every remote set of sessions has a maximum synchronization leve'
associated with it. A value of 2 is implied for a CICS system. If you want to
converse with a non-CICS system, you cannot specify a level that is greater
than the remote system can support; the CONNECT PROCESS will fail if you
do.

• If you include commands in your transaction that are inconsistent with the
synchronization level you have specified for a session, they will not involve
the remote transaction connected by that session in any way.

• You should specify SYNCLEVEL(2) only if you want both conversation
partners to participate in a syncpoint initiated by either partner. Remember
that transaction termination initiates a syncpoint without express command.

• Distributed syncpointing requires complex coding, and adds flow to the
application, Increasing the network load. Do not use SL(2) unless it is
required to protect data integrity. A discussion of SL(2) operation follows at
"Syncpoint exchanges" on page 186.

The PIPLIST option specifies the process initialization parameter (PIP) data that
is to be sent to the remote system. For a description of the format and use of
PIP data, see "Process initialization parameter data" on page 17. The
PIPLENGTH option must specify the total length of the PIP list.

Automatic transaction initiation
If a transaction is to be started by automatic transaction initiation (ATI) from a
transient data trigger level with an LUTYPE6.2 session as its principal facility, the
definition of the transient data queue must specify DESTFAC=(SYSTEM,sysid),
where sysid is the sysid of the remote LUTYPE6.2 system (see "Intrapartition
transient data queues and remote transactions" on page 157). The transaction

. can acquire the name of the queue that caused its initiation by means of the
ASSIGN QNAME command.

176 CICS/MVS 2.1.2 Intercommunication Guide

Execution of an EXEC CICS START command that names a remote LUTYPE6.2
system in the TERMID option causes the transaction to be initiated with a
session to the named system as its principal facility. The session is selected
from the modeset specified for the transaction, if there is one. Otherwise, the
modeset is selected by CICS.

The transaction starts in state 2 (Session Allocated), and continues by issuing a
CONNECT PROCESS command.

Considerations for the back-end transaction
The back-end transaction in a conversation is initiated by the LUTYPE6.2 attach
FMH received from the remote system and is started with the conversation as its
principal facility.

As the back-end transaction is conversing with its principal facility (that is, the
partner that did the initial ALLOCATE), the CONVID can be omitted from all
LUTYPE6.2 commands. If the back-end transaction initiates its own conversation,
however, CONVID must be supplied when it is conversing with this new partner
(but CONVID can still be omitted when the transaction is conversing with its
principal facility).

Acquiring conversation-related information
You can use the EXTRACT PROCESS command to recover conversation-related
information from the attach FMH if required, but the use of this command is not
mandatory. The command has the following format:

EXTRACT PROCESS
[PROCNAME(data-area)
PROCLENGTH(data-area)]

[CONVID(name)]
[SYNCLEVEL(data-area)]
[PIPLIST(pointer-ref)
PIPLENGTH(data-area)]

INVREQ, NOTALLOC

The process name (PROCNAME) from the LUTYPE6.2 attach header, the length
of the process name (PROCLENGTH), and the requested synchronization level
(SYNCLEVEL) are returned in the specified data areas.

If you are issuing the EXTRACT PROCESS command on the principal facility,
CONVID need not be specified.

The PIPLIST option specifies a pointer reference that is set to the address of a
CICS-provided data area containing a PI PLIST (see II Process initialization
parameter data" on page 17). The pointer value is null if no PIPLIST has been
received.

The PIPLENGTH option returns the total length of the PIPLIST as a halfword
binary value.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 177

Initial state of back .. end transaction
The back-end transaction is always initiated in RECEIVE state. However, to
properly initiate the conversation with the front-end transaction, you must issue
an EXEC CICS RECEIVE command before you do anything else that could effect
the link (for example, a SYNCPOINT or a SYNCPOINT ROLLBACK command).

The only exception to this rule is that you can issue an EXTRACT PROCESS
command, before EXEC CICS RECEIVE, to obtain the synchronization level and
other conversation-related information.

Using the EXEC CICS ASSIGN command

The conversation

You may find that two of the options to the EXEC CICS ASSIGN command return
unexpected values. A closer look at these will help you to understand why:

USERID
CICS takes the userid from one of two sources, depending on how you
specified your security requirements.

If you specified ATTACHSEC(Local) on the DEFINE CONNECTION command
for the link, whatever was specified for the USERID option on the same
DEFINE SESSIONS command is returned under this option. This appears as
blanks if you let the USERID option default.

If, instead of ATTACHSEC(Local), you requested automatic signon for remote
users by specifying ATTACHSEC(Identify) or ATTACHSEC(Verify) on the
DEFINE CONNECTION command for the link, the userid returned is the one
that was sent over the link with the attach request for the transaction.

OPERKEYS
This option returns a 64-bit mask that represents the CICS transaction
security profile of the remote user In the local system. If the remote user is
signed on locally as described in the explanation to USERID above, the
returned mask is the value that was defined for the user in the signon table.

If no signon takes place, the user's security profile defaults to that of the
link. The link itself may be signed on, in which case the mask will be taken
from the signon table entry for the link. The other possibility is that
OPERSECURITY, OPERRSL, or both were specified on the DEFINE SESSIONS
command for the link. This preset security then determines the value
returned under this option. In all cases of default, a value of 1 is returned.

This option cannot give any information about the user's security status in a
remote system.

The conversation between the front-end and the back-end transactions is held
using the SEND, RECEIVE, and CONVERSE commands. Details of these
commands for LUTYPE6.2 programs are given in the CICSIMVS Application
Programmer's Reference manual.

Note that, for LUTYPE6.2 conversations, the use of the FROM option on the SEND
command is optional. This means that you can use the SEND command to send

178 CICS/MVS 2.1.2 Intercommunication Guide

the change-direction Indicator (INVITE option) or the end-bracket Indicator (LAST
option) without naming any data for transmission.

When LUTYPE6.2 commands are being used, the CONVID parameter tells CICS
which partner to talk to. If you are conversing with the principal facility, you can
omit the CONVID parameter. In all other cases, include it. To show the options,
consider this example:

Use of CONVID parameter ---------------------,

TASK A II----~~I TASK B 1-----,.1 TASK C

A ... e uses SEND CONVID(b)

e"'A uses SEND
B"'C uses SEND CONVID(c)

The principal facility of task A is a terminal, so it needs a CONVID when
conversing with task B.

Task B has been Initiated by an ALLOCATE in task A, so task A is its
principal facility, and no CONVID is needed by task B when conversing with
task A.

Task C has been initiated by an ALLOCATE in task B, so task B is its
principal facility, and no CONVID is needed by task C when conversing with
task B. However, one is required by task B when conversing with task C.

Deferred transmission
When you issue a SEND command, CICS normally defers sending the data until it
becomes clear what your further intentions are. This mechanism enables CICS
to avoid unnecessary flows by adding control indicators, such as end-bracket
and syncpoint-request, to the data that is awaiting transmission.

For LUTYPE6.2, CICS reduces the number of flows still further by accumulating
the data from successive SEND commands in an internal buffer. The contents of
the buffer are not transmitted until the buffer becomes full or until it is flushed by
the CONFIRM option on a SEND command or by an explicit or implicit WAIT.
However, although the data is ubunched" for transmission, each RECEIVE
command issued by the receiving transaction recovers only the data associated
with a single SEND command.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 179

The way in which LUTYPE6.2 deferred transmission operates is shown by the
following command sequence:

SEND CONVID(CONVl) datal is placed in the send buffer.
FROM(datal) Transmission is deferred.
LENGTH(251)

SEND CONVID(CONVl) data2 is added to the send buffer.
FROM(data2) Transmission is still deferred.
LENGTH(251)

SEND CONVID(CONVl) the change-direction indicator is
INVITE added. Transmission is still deferred.

WAIT CONVID(CONVl) datal and data2 are transmitted.
data2 carries the change-direction
indicator.

RECEIVE CONVID(CONVl)

The WAIT option can, of course, be added to a SEND command to cause
immediate transmission:

SEND CONVID(CONVl)
FROM(data2)
LENGTH(251)
INVITE
WAIT

RECEIVE CONVID(CONVl)

Please remember that SEND WAIT alone is an incomplete command and is not
the equivalent of WAIT.

A further short-cut is possible by omitting the INVITE and the WAIT options. If
your transaction is in send state, and you issue a RECEIVE command, CICS will
supply any implied options and send the deferred data with the change-direction
indicator set. However, better program documentation will be achieved if you
specify the options explicitly.

The CONVERSE command always implies the sequence:

SEND INVITE
WAIT
RECEIVE

180 CICS/MVS 2.1.2 Intercommunication Guide

Using the LAST option
The LAST option on the SEND command indicates the end of the conversation.
No further data nows can occur on the conversation, and the next action must be
to free the session. However, the session can stili carry CltS syncpointing flows
before it is freed.

The LAST option and syncpolnt flows
If the conversation is using normal CICS syncpointing (level 2), it is eligible to
take part in CICS syncpointing activity. A syncpoint is initiated explicitly by a
SYNCPOINT command, or implicitly by a RETURN command.

If your conversation has been terminated by a SEND LAST command, without the
WAIT option, transmission will have been deferred, and the syncpointing activity
will cause the final transmission to occur with a piggy-backed syncpoint request.
The conversation will thus be automatically involved in the syncpoint.

If you do not want the conversation to be involved in the syncpoint (for example,
because you know that the remote transaction does not access any recoverable
resources) you must issue a SEND LAST WAIT command, or use the WAIT
CONVID or FREE command, to force the transmission before using a command
that causes a syncpoint.

Note: It is recommended that you initiate the last syncpoint for a conversation
explicitly (by an EXEC CICS SYNCPOINT command) rather than Implicitly (by an
EXEC CICS RETURN command).

If an explicit syncpoint request is issued and rejected by one partner, the
application is able to take the appropriate actions and issue notification of the
rejection.

However, if an implicit syncpoint request is issued and rejected by the partner,
the application has already returned control to CICS and no further action can be
taken.

Sending and receiving error indications
Two commands are provided to enable either transaction to inform the other that
an error has occurred:

• ISSUE ERROR
• ISSUE ABEND.

In general, you can use these commands at any point in your program,
irrespective of whether the conversation is in send or receive state. To
understand exactly when they can be used, you should use the state diagrams
given under "Command sequences on LUTYPE6.2 mapped conversations" on
page 203.

The use of these commands on a particular conversation always involves both of
the conversing transactions. If one of the transactions is designed to use ISSUE
ERROR or ISSUE ABEND, the other transaction must be designed to recognize
them and take the appropriate action.

Chapter 4.5. CICS applications for lUTYPE6.2 mapped conversations 181

The ISSUE ERROR command
The ISSUE ERROR command has the following format:

ISSUE ERROR
[CONVID (name)]

INVREQ,NOTALLOC

You can use the ISSUE ERROR command to inform the conversation partner that
something is wrong. Typically, you would use it as a negative response to a
PREPARE, SYNCPOINT, or CONFIRM request (see "Synchronization points" on
page 183). However, you can use ISSUE ERROR for any purpose required by
your application design.

After issuing an ISSUE ERROR command, you should test EIBRECV to find the
state of the conversation. If your transaction has not received ISSUE ERROR
(see "ISSUE ERROR races"), it will be in send state on the conversation. You
can use this opportunity to send information about the error to the other
transaction. The usual continuation is to issue SEND INVITE followed by
RECEIVE, and then check the EIB in the normal way.

From Figure 66 on page 214 you will see that, after issuing ISSUE ERROR in
receive state, you should also test EIBFREE. This is necessary because the
other transaction may already have ended the conversation by a SEND LAST
WAIT command. Normally, of course, you would not design a pair of
transactions in which this sequence is possible.

ISSUE ERROR races: If your application design allows either transaction to use
ISSUE ERROR whenever they detect an error, there is a possibility that two
ISSUE ERROR commands can cross one another. If this happens, the
transaction that wins the race goes into send state. The transaction that loses
the race goes into receive state, and receives an ISSUE ERROR received
indication.

The receipt of an I~SUE ERROR command is indicated by EIBERR, with an error
code of X 10889 1 in the first two bytes of EtBERRCD. These fields are set on
return from the first command you issue on the conversation after the incoming
error indication has been received by CICS.

EIBERR and EIBERRCD are visible only once. If you do not test the EtB nags
after each LUTYPE6.2 command, you will not be aware of these settings. This
will almost certainly result in the application abending.

More information on the use of ISSUE ERROR is given under "Synchronization
points" on page 183.

The ISSUE ABEND command
The ISSUE ABEND command has the following format:

ISSUE ABEND [CONVID(name)]

INVREQ,NOTALLOC

182 CICS/MVS 2.1.2 Intercommunication Guide

The ISSUE ABEND command provides a means for you to abend the
conversation. (If the remote process is a CICS transaction, the conversation
abend will cause the TERMERR condition t9 be raised.) ISSUE ABEND can be
issued by either transaction, irrespective of its send/receive state, at any time
after the conversation has started. For a send-state transaction, any deferred
data that is waiting for transmission is transmitted before the abend command is
transmitted.

The transaction that issues the ISSUE ABEND command is not itself abended. It
must, however, issue a FREE command for the conversation unless it is designed
to terminate immediately.

If you issue an ISSUE ABEND command while your transaction is in receive
state, CICS will purge all incoming data until a change-direction,
syncpoint-request, or end .. bracket indicator is received. If end-bracket is
received, no error indication is sent to the remote process, and EIBFREE is set in
your transaction, indicating that you must free the conversation.

The receipt of an ISSUE ABEND is indicated in EIBERR, with an error code of
X '0864' in the first 2 bytes of EIBERRCD. EIBERR and EIBERRCD are visible only
once. If you do not test the EIB flags after each LUTYPE6.2 command, you will
not be aware of these settings. This will almost certainly result in the
application abending.

Synchronization points
As described in "Synchronization levels" on page 172, there are three possible
synchronization levels for LUTYPE6.2 sessions. You must distinguish between
the maximum synchronization level possible between the communicating
systems, which is determined at the time that the session is established, and the
level at which your application is designed to operate. For a front-end
transaction, you can specify the synchronization level on the CONNECT
PROCESS command:

CONNECT PROCESS

SYNCLEVEL(data-value)

Do not specify a level that is greater than the remote system can support; if you
do, the CONNECT PROCESS fails.

For a back-end transaction. you can find what synchronization level has been
requested by extracting it:

EXTRACT PROCESS

SYNCLEVEL(data-area)

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 183

The possible synchronization levels for a conversation are:

Level 0
This means that no synchronization exchanges at all are possible on the
conversation. If your transaction issues a CICS SYNCPOINT command, your
SL(O) conversations are not involved In any way.

You can still use ISSUE ERROR commands on SL(O) conversations provided
that the other transaction is designed to receive them.

Level 1
This means that the conversation supports the LUTYPE6.2 confirmation
protocols, which enable a pair of conversing transactions to mutually confirm
that they are in synchronism by means of the SEND CONFIRM and ISSUE
CONFIRMATION commands. CICS syncpoint requests cannot be transmitted
over SL(1) conversations; if your transaction issues a CICS SYNCPOINT
command, your SL(1) conversations are not involved in any way.

Level 2
This means that the conversation supports both confirmation protocols and
C1CS syncpoint requests. If your transaction issues a CICS SYNCPOINT
command, all SL(2) conversations are involved in the subsequent
syncpointing activity.

Confirmation exchanges
Confirmation exchanges affect only a single conversation, and are available at
SL(1) and SL(2). A confirmation exchange involves only two commands:

1. The transaction that is in send state issues a SEND CONFIRM command.
2. The transaction that is in receive state responds, if all is well, by issuing an

ISSUE CONFIRMATION command.

Negative responses to a confirmation request can be made by means of the
ISSUE ERROR or ISSUE ABEND commands.

The following sections describe these commands in more detail. The
descriptions refer to the state diagrams given under "Command sequences on
LUTYPE6.2 mapped conversations" on page 203.

Sending SEND CONFIRM
The syntax of the SEND COMMAND for LUTYPE6.2 conversations is:

EXEC CICS SEND
[FROM(data-area) {LENGTH(data-value)IFLENGTH(data-value)}]
CONV ID (name)
[INVITE I LAST]
[CONFIRMIWAIT]

You will see that the CONFIRM and WAIT options are mutually exclusive.
CONFIRM, like WAIT, flushes the conversation send buffer; that is, it causes a
real transmission to occur.

You can send data with the SEND CONFIRM command, and you can also specify
either the INVITE or the LAST option.

184 CICS/MVS 2.1.2 Intercommunication Guide

The state 3 - send state diagram for LUTYPE6.2 mapped conversations (see
Figure 64 on page 212) shows what happens for the possible combinations of
the CONFIRM, INVITE, and LAST options. After a SEND CONFIRM command,
without the INVITE or LAST options, the conversation is still in state 3 - send
state. If the INVITE option is used, the conversation will switch to state 5 -
receive state. If the LAST option is used, the conversation will switch to state 10
- free session.

These state changes assume that the other transaction has responded positively
(ISSUE CONFIRMATION) to the CONFIRM request. You must always test EIBERR
after a SEND CONFIRM command (see "Checking the response to SEND
CONFIRM" on page 186).

You can achieve an effect similar to SEND LAST CONFIRM by using the
command sequence:

SEND LAST
SEND CONFI RM

You can check this sequence in the state diagrams. Note that you cannot send
data with a SEND CONFIRM command used in this way.

The form of command that you use depends on how you expect the conversation
to continue if you receive the required confirmation. You must, however, always
test for a negative response to your SEND CONFIRM command (see "Checking
the response to SEND CONFIRM" on page 186).

Receiving and replying to a confirmation request
If your partner transaction issues a SEND CONFIRM, EIBCONF is set in your EIB.
This is visible only once. If you do not test the EIB flags after each LUTYPE6.2
command, you will not be-aware of these settings. This will almost certainly
result in the application abending. Save the EIB before replying so that you can
determine the conversation state following your reply.

If EIBCONF is set, you have a number of ways of replying (see Figure 67 on
page 215):

1. You can reply positively by means of ISSUE CONFIRMATION, meaning that
all is well. After sending ISSUE CONFIRMATION, you must check the saved
values of EIBFREE and EIBRECV. This enables you to find out whether the
sender sent SEND CONFIRM, SEND INVITE CONFIRM, or SEND LAST
CONFIRM, and determines your next action.

2. You can reply negatively by means of ISSUE ERROR.

This reply puts the conversation into state 3 - send state. What happens
afterward is determined by your application design. A typical continuation is
to use SEND INVITE to pass information about the error to the other
transaction, followed by a RECEIVE and an EIB test to determine the next
action.

3. You can abend the conversation by means of ISSUE ABEND.

This makes the conversation unusable, and you must immediately iSsue a
FREE for the session, or, alternatively, issue EXEC CICS RETURN.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 185

Checking the response to SEND CONFIRM
After issuing SEND CONFIRM (or SEND CONFIRM LAST), you must check the
response by testing EIBERR.

If EIBERR is not set, the other transaction has replied ISSUE CONFIRMATION,
and you can continue normally.

·If EIBERR is set, and the first two bytes of EIBERRCD contain X 10889 1, the other
transaction has replied ISSUE ERROR. In this case, your conversation is in
RECEIVE state, so you should issue a RECEIVE command.

Note: If you receive an error response (EIBERRCD = X 10889 1) in response to
SEND LAST CONFIRM, the LAST option has been ignored and the conversation
has not been terminated.

If the other transaction has replied ISSUE ABEND, the TERMERR condition will be
raised in your transaction. You can choose to handle this condition (or the
default condition ERROR), or you can use IGNORE or NOHANDLE to disable the
condition, and check what has happened by testing EIBERRCD (see Figure 61 on
page 209).

Syncpoint exchanges
This section describes the use of the SYNCPOINT, SYNC POINT ROLLBACK, and
ISSUE PRE-PARE commands. These commands do not affect LUTYPE6.2
conversations operating at SL(O) or SL(1).

The SYNCPOINT and SYNCPOINT ROLLBACK commands do not have the
CONVID option; that is, they cannot be issued to a single conversation. They
always involve all the SL(2) conversations that a transaction is holding. The
ISSUE PREPARE command enables individual conversations to be prepared for
syncpointlng.

The SYNCPOINT command
No matter how many transactions are mutually connected by SL(2)
conversations, your application design should arrange for just one of them to
initiate syncpointing activity for the distributed unit of work. This syncpolnt
Initiator must be in send state on all its conversations when it issues the
SYNCPOINT command. Any trans.action that receives the syncpoint request
becomes a syncpolnt agent.

A syncpoint agent is in receive state on its conversation with the syncpoint
initiator, and becomes aware of the syncpoint request when it tests EIBSYNC
after issuing a RECEIVE command (see Figure 66 on page 214). If it decides to
respond positively by issuing SYNC POINT, it must be in send state on all the
conversations with its own partners, for whom it has become a syncpoint
initiator. If a transaction acting as a syncpoint agent responds negatively to a
syncpoint request by Issuing SYNCPOINT ROLLBACK the Initiator will see this in
the EIB, which must be tested on return from the SYNCPOINT command.

Your transaction design ensures that all participating transactions are in the
correct conversation state when a syncpoint is taken. It should not be necessary

186 CICS/MVS 2.1.2 Intercommunication Guide

for one transaction program to force a state change on another before issuing a
SYNCPOINT command.

Syncpoint examples
CICS transaction syncpointing over an LUTYPE6.2 link involves a two-phase
commit process. This means that the flows that go to partner transactions are
not all the same.

In phase 1, resources are prepared for commitment; in phase 2 they are
committed. In conjunction with this, one partner Is selected to start the phase 2
commitment.

In this section, you should be aware of the specialized terminology used for
syncpoint exchanges. These are defined below. (The 'flows' are defined
according to the LUTYPE6.2 architecture. For full details, see the SNA
Transaction Programmer's Reference Manual for LU Type 6.2).

Partner

Initiator

Agent

Last agent

Generally means the other end of an LUTYPE6.2 conversation.
However, here we use the term to mean all LUTYPE6.2 conversations
except the one that has received a flow from an Initiator.

The end of an LUTYPE6.2 conversation that initiates the syncpoint by
sending either a 'Prepare to commit' or a 'Request commit' flow to a
partner.

The end of an LUTYPE6.2 conversation that receives either a IPrepare
to commit' or a 'Request commit' sent by an initiator. If the
conversation has associated partners, it becomes the initiator for
these conversations.

One of the partners selected by an initiator to initiate the second
phase of commitment. The partner selected is random, and depends
on processing conditions.

'Prepare to commit'
A flow sent from an initiator to an agent requesting the agent to ready
its resources for commitment.

'Request commit'
Sent from an agent to an initiator to say that the agent has readied all
its resources for commitment, or sent by an Initiator to an agent to
get the agent to commit all the resources it has previously readied.

'Committed'
Sent from an agent to an initiator in response to "Request commit', to
indicate that the agent has committed all its resources; or sent from
an initiator to an agent to say that the initiator has committed ,its
resources, and that the agent should undergo the second phase of
commitment and commit its resources.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 187

'Forget'

'Rollback'

Sent from an agent to an initiator in response to a 'Committed' to
show that it has committed all its resources.

Sent from an agent to an initiator to signify the rejection of a 'Prepare
to commit' or 'Request commit' request, and shows that the agent has
instead rolled back its resources. When sent from an initiator to an
agent, it tells the agent to roll back its resources.

A successful two-phase syncpoint works like this:

1. The initiator sends 'Prepare to commit' to all its partners except one (the last
agent).

2. The not-last agents become local initiators for their partners, and send
'Prepare to commit' to all of them. In this way, the syncpoint request
cascades to all distributed members of the conversations.

3. All these agents return 'Request commit' to their initiators.

4. The initiator now sends 'Request commit' to its last agent, so starting the
second phase.

5. The last agent may act as a syncpoint initiator, and so sends out 'Prepare to
commit' and/or 'Request commit' to its partners.

6. All these agents respond positively.

7. The last agent commits its resources, and replies 'Committed'.

8. The initiator now commits its own resources, and sends out 'Committed' to
all its not-last agents.

9. These agents now commit their resources, and reply with a 'Forget' flow (this
'Committed/Forget' sequence is similarly cascaded).

10. When the initiator has received all the Forget flows, the syncpoint has
completed.

Figure 57 on page 189 shows the flows that result from a simple distributed
transaction executing a successful two-phase syncpoint such as the one that has
just been described.

An unsuccessful syncpoint scenario occurs when an agent, instead of returning
'Request commit' or 'Committed', sends a 'Rollback' now. This then forces each
level of initiator to send a 'Rollback' request to its partners, so backing out the
commitment process. Because the commitment process is two-phased, this
means that the local transactions either abandon the phase 1 ready-state and
back out instead, or do a direct backout.

Figure 58 on page 193 shows the nows that result from a simple distributed
transaction executing an unsuccessful syncpoint and triggering a syncpoint
rollback.

In general, you do not need 10 be aware of the details of these flows - just the
concepts. See II Part 5. Recovery and restart" on page 287 to obtain information
on what happens when a sYllcpoint exchange fails, and on how to deal with this
situation.

188 CICS/MVS 2.1.2 Intercommunication Guide

When you follow the rule about testing the EIB nags after each LUTYPE6.2
operation, you test EIBSYNC, EIBSYNRB, and EIBRLDBK to see what has
happened throughout your distributed transaction. You do not need to know
where the syncpoint has originated; just follow the rules, and reply positively or
negatively to the request.

A: Initiator

SYNCPOINT

B: Agent of A;
Initiator

for C and E
(1) PTC

> RECEIVE
(EIBSYNC set)
SYNCPOINT

(6) RC
<

(11) CTD
>

(16) FGT
<-----

(7) RC

D: Last agent
of A;
Init i ator
for F

---> RECEIVE
(EIBSYNC set)
SYNCPOINT

(10) CTD
<------

(2) PTC
->

(3) RC
<

(12) CTD
->

(13) FGT
<---

(4) PTC
>

(5) RC
<

(14) CTD
-->

(15) FGT
<------

(8) RC

C: Agent for B

RECEIVE
(EIBSYNC set)
SYNCPOINT

E: Agent for B

RECEIVE
(EIBSYNC set)
SYNCPOINT

F: Only agent
of D

- .. ----> RECEIVE
(9) CTD (EIBSYNC set)

<------ SYNCPOINT

PTC - Prepare to Commit
RC - Request Commit

CTO - Committed
FGT - Forget

Figure 57. A successful distributed syncpoint

Chapter 4.5. CICS applications for LUTYPE6.2mapped conversations 189

Note: In the following explanation to Figure 57 on page 189, the numbered
references in italics refer to the now of control indicators across the links
and other action initiated by CICS on behalf of the transactions. The
programmer is concerned only with issuing SYNCPOINT in response to
finding EIBSYNC set.

Transaction A issues a SYNCPOINT command. It is in send state on its
conversations with transactions Band D.

(1) Transaction A has more than one partner, so it must prepare aI/ its
partners but one (tile 'last agent') for syncpointing by sending a 'prepare to
commit' flow. This is part 1 of the two-phase commit process.

Transaction B sees that EIBSYNC is set, so it issues a SYNCPOINT command.
This transaction is responding to a request from transaction A, but it also
becomes the syncpoint initiator for transactions C and E, and must ensure that
its conversations with these transactions are in send state.

(2) As a syncpoint initiator, transaction B sends 'prepare to commit' to
transaction C.

Transaction C sees that EIBSYNC is set, so it issues a SYNCPOINT command.

(3) Transaction C returns 'request commit' to transaction B.

(4) Transaction B has received a 'prepare to commit' from its syncpoint
initiator A, therefore the concept of a 'last agent' does not apply. It sends the
'prepare to commit' to all its other partners (only transaction E in this case).

Transaction E sees that EIBSYNC is set, so it issues a SYNCPOtNT command.

(5) Transaction E returns 'request commit' to transaction B.

(6) Transaction B has now received 'request commit' from aI/ its partners -
tlley have all responded positively to the 'prepare to commit' flow. Therefore,
transaction B returns the positive response of 'request commit' to its
syncpoint initiator (transaction A).

(7) Transaction A has now sent 'prepare to commit' to, and received 'request
commit' from, all its partners except the 'last agent'. It is time to get a
commitment of all its distributed resources. Thus, it sends 'request commit'
to its 'last agent', transaction D.

Transaction 0 sees that EIBSYNC is set, so it issues a SYNCPOINT command.
This transaction is responding to a request from transaction A, but it also
becomes the syncpoint initiator for transaction F, and must ensure that its
conversation with this transaction is in send state.

(8) Because transaction D has only one partner, it sends a 'request commif'
flow to transaction F.

190 CICS/MVS 2.1.2 IntercornmlJnicatlon Guide

Transaction F sees that EIBSYNC is set, so it issues a SYNCPOINT command.

All the transactions have now indicated, by issuing SYNCPOINT commands, that
they are ready to commit their changes. This process begins with transaction F,
which has no agents and has responded to 'request commit' by issuing a
SYNCPOINT command.

(9) Transaction F commits its resources and returns 'committed' to
transaction D.

(10) Transaction D has received a positive response to its 'request commit'
request, so it commits its own resources and responds positively to its
syncpoint initiator by issuing a 'committed' flow to transaction A.

(11) Transaction A has received a positive response from its 'last agent'. It
can now commit its own resources. Therefore, it has to signal to all its other
partners that the second part of the two-phase syncpoint can occur, so
getting resource commitment. It does this by sending a 'committed' flow to
transaction B.

(12, 14) B receives the 'committed' flow from its initiator. Because there is no
'last agent' in this case, it sends a 'committed' flow to its partners to request
them to commit their resources.

(13, 15) The agents receive a 'committed' flow from their initiator. They
commit their local resources and return a 'forget' flow to the initiator.

(16) B has successfully completed the commitment of its own resources and
those held by its partners. It signals this success by returning 'forget' to its
initiator, transaction A.

The distributed syncpoint is complete and control returns to transaction A
following the SYNCPOINT command.

Negative responses to syncpolnt requests
The previous discussion of the SYNCPOINT command assumed that all the agent
transactions were ready to take a syncpoint by issuing SYNCPOINT in response
to the syncpoint request (EIBSYNC set).

If, however, an agent has detected an error, it can reject the syncpoint request
by means of one of the following commands (see Figure 68 on page 215):

• SYNCPOINT ROLLBACK (preferred response)
• ISSUE ERROR
• ISSUE ABEND.

The SYNCPOINT ROLLBACK command (see "The SYNCPOINT ROLLBACK
command" on page 195) enables a transaction to initiate a back-out operation
across the whole distributed unit of work. When it is issued in response to a
syncpoint request, it has the following effects:

1. Any changes made to recoverable resources by the transaction that issues
the rollback request are backed out.

2. The syncpoint initiator is also backed out (EIBRLDBK set).

This will cause the syncpoint initiator to initiate a back-out operation across the
distributed unit of work.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 191

Implicit syncpolnt at transaction termination
If a transaction terminates normally, CICS takes a syncpoint. If a connected
transaction rejects the syncpoint with a negative response, the terminating
transaction is correctly backed out, but, because control has already returned to
CICS, it can no longer test whether the syncpoint was successful or not.

To avoid this situation, you should code EXEC CICS SYNCPOINT and test EIB
flags before terminating.

This situation is equivalent to the one described in "The LAST option and
syncpoint flows" on page 181, which explains the consequences of not coding an
explicit SYNC POINT (by an EXEC CICS SYNCPOINT command) before the
transaction terminates.

192 CICS/MVS 2.1.2 IntercommunIcatIon GuIde

Syncpolnt rollback example

A: In; t i ator

SYNCPOINT

Rolled Back
(EIBRLOBK set)

(1) PTC

B: Agent of A;
Initiator
for C and E

----'> RECEIVE
(EIBSYNC set)
SYNCPOINT

(7) RB,
<-----1

(8) RB

Roll ed Back
(EIBRLOBK set)

0: Last agent
of A,
Initi ator
for F

----:> RECEIVE
(EIBSYNRB set)
SYNCPOINT

ROLLBACK

C: Agent for B

(2) PTC
------'-> RECEIVE

(3) RC (EIBSYNC set)
< SYNCPOINT

(6) RB
-----:> Rolled Back

(EIBRLOBK set)

(4) PTC

(5) RB

E: Agent for B

> RECEIVE
(EIBSYNC set)
SYNCPOINT <----

(9) RB

ROLLBACK
i...--. ___ ---'

F: Only agent
of 0

----> RECEIVE
(EIBSYNRB set)
SYNCPOINT

ROLLBACK

PTC - Prepare to Commit RC - Request Commit RB - Roll Back

Note: A positive response (+RSP) is returned after each RB. For
the sake of clarity, these have been omitted.

Figure 58. Rollback during distributed syncpointing

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversatIons 193

Figure 58 on page 193 shows the same distributed syncpoint as Figure 57 on
page 189. In this case, however, transaction E has detected an error that makes
it unable to commit, and it issues SYNCPOINT ROLLBACK when it sees that
EIBSYNC is set. This causes any changes that transaction E has made to be
backed out, and initiates a distributed rollback.

(5) E has detected an error whilst readying its local resources during the
phase 1 commit process. It therefore wants to rollback its own resources by
issuing an EXEC CICS SYNCPOINT ROLLBACK command. This means tflat it
has responded negatively to the 'prepare to commit' request as a 'rollback'
response is issued by CICS to its initiator, B.

(6) B now must send the 'rollback' request to all its other partners - only C
in this case. C reacts by rolling back its own local resources (and would
cascade the 'rollback' to its partners if it had any). C returns a positive
response, which has been omitted from the diagram for clarity.

(7) B has now rolled back its own resources, and ensured that all its partners
have done the same. It replies to its initiator's 'prepare to commit' request
negatively with the 'rollback' flow.

(8) Transaction A now receives tl7e 'rollback' response, and so rolls back its
own local resources. Transaction A then sends the 'rollback' request to all its
partners except the one that returned the 'rollback' response. In this case, it
only sends 'rollback' to transaction D.

(9) Transaction D sees EIBSYNRB, so it issues its own SYNCPOINT
ROLLBACK, which causes the 'rollback' now to its partners (transaction F in
this case).

Transaction F sees that EIBSYNRB is set, and issues a SYNCPOINT ROLLBACK
command. The distributed rollback is now complete.

This example shows how a SYNCPOINT ROLLBACK flows through the distributed
transaction, and how the EIBRLDBK (rollback has occurred) and EIBSYNRB (take
a rollback now) flags show what has happened and what should happen.

The SYNCPOINT ROLLBACK command is the recommended negative response
to a syncpoint request (EIBSYNC set). However, ISSUE ERROR and ISSUE
ABEND are also allowed.

The ISSUE ERROR command, when it is issued in response to a syncpoint
request, causes the transaction that has issued the SYNCPOINT command to
abend. The abend is propagated to the other transactions in the distributed unit
of work, and dynamic backout occurs.

194 CICS/MVS 2.1.2 Intercommunication Guide

The transaction that issued the ISSUE ERROR command is not abended because
this conversation is placed in SEND state. However, because the partner is no
longer present, the conversation is in an unusual state. The state diagrams in
figures Figure 62 on page 210 through Figure 71 on page 216 show what you
should do next. Here is the sequence of commands to achieve an orderly
termination of the conversation on your side:

(1) EXEC CICS SEND INVITE WAIT -to go into Receive state
(2) EXEC CICS RECEIVE - to set the EIB flags
(3) Examine the EIB - EIBSYNRB & EIBFREE are set
(4) EXEC CICS SYNCPOINT ROLLBACK
(5) EXEC CICS FREE

The ISSUE ABEND response causes the initiator to see a conversation abend.
Only consider using ISSUE ABEND in response to a syncpoint request when you
have not updated any recoverable resources in your transaction and its partners.

SYNCPOINT ROLLBACK is the preferred negative response to a SYNCPOINT
request, with ISSUE ERROR as an alternative. Do not use ISSUE ABEND unless
you have to.

The SYNCPOINT ROLLBACK command
A transaction can initiate a rollback at any time, not only in response to a
syncpoint request. If a transaction issues a SYNCPOINT ROLLBACK command,
the current logical unit of work is backed out unconditionally. In addition, the
rollback request is transmitted to all the transaction's SL(2) conversation
partners.

You can issue a SYNCPOINT ROLLBACK command irrespective of the
send/receive state of your conversations. If the rollback command is issued
when you have a conversation in receive state, incoming data on that
conversation is purged in the way described for the ISSUE ERROR and ISSUE
ABEND command.

If you receive a rollback request (EIBSYNRB set) you must respond with a
SYNCPOINT ROLLBAcK command. On return from the command, you will be in
receive state.

If you are the initiator of rollback, your conversation is in send state after the
rollback has completed. Your conversation partner, after responding with
SYNCPOINT ROLLBACK, is in receive state. If, however, you and your partner
issue SYNCPOINT ROLLBACK at the same time, CICS leaves you in the opposite
state to the one you were in when you gave the command (see "CICS deviations
from LUTYPE6.2 architecture" on page 440). Because this puts you in an
ambiguous conversation state, you should design your transactions to avoid
such race situations.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 195

The ISSUE PREPARE command
The use of the EXEC CICS SYNCPOINT command sends either a 'prepare to
commit' or a 'request commit' flow to all the partners; it affects the whole of the
distributed task. However, you can send the first part of the two-phase commit
process to a given partner by means of the ISSUE PREPARE command. This
enables you to ready a portion of the distributed task, or handle a negative
response sent from the partner on a conversation-by-conversation basis.

There are several reasons why you might want to do this:

1. In complex distributed transaction processing involving several conversing
transactions, an ISSUE ERROR command issued by one of the transactions
may not reach the syncpoint initiator in time to prevent It from issuing a
SYNCPOINT command and initiating some syncpoint processing for itself and
other partners. This can lead to the need for complex backout procedures
for the distributed unit of work.

You can use ISSUE PREPARE as a way of flushing any error responses from
the network.

2. You may have one or more syncpoint partners that are not completely
'reliable'. You can use ISSUE PREPARE to check that all is well with these
partners before proceeding with a general distributed syncpoint.

The format of the ISSUE PREPARE command is:

ISSUE PREPARE CONVID(conversation-name)

From this you will see that, unlike the SYNCPOINT and SYNCPOINT ROLLBACK
commands, the ISSUE PREPARE command is directed to a specific conversation.
Your transaction must be In send state on any conversation to which it issues
ISSUE PREPARE.

Receiving and replying to ISSUE PREPARE
If a partner transaction issues an ISSUE PREPARE command, EIBSYNC will
appear in the EIB.

EIBSYNC is the same flag that is used to notify the receipt of a distributed
SYNCPOINT command. CICS does not tell you which command was issued, and
you should not make any assumptions.

Consequently, the responses to an ISSUE PREPARE are exactly the same as for
a SYNC POINT: SYNCPOINT, SYNCPOINT ROLLBACK, ISSUE ERROR, or ISSUE
ABEND. You can therefore use subsequent ISSUE PREPAREs for partner
conversations before taking the decision as to which response is appropriate.

Checking 'the response to ISSUE PREPARE
After issuing ISSUE PREPARE you must check the response by testing EIBERR.

If EIBERR is set, and the first two bytes of EIBERRCD contain X'0889', the other
transaction has sent ISSUE ERROR. In this case, your conversation is in
RECEIVE state, so you should issue a RECEIVE command and test the EIB in the
usual way. Your application design will determine what happens next.

196 CICS/MVS 2.1.2 Intercommunication Guide

If the partner transaction issued a SEND LAST WAIT command (a.s shown by
EIBFREE), the conversation is ended. It cannot participate in further syncpoint
activity, and you should end it by issuing a FREE command. However, If instead
your partner continued via a SEND INVITE WAIT command (the recommended
action after ISSUE ERROR), you can either free the conversation if it Is not
important for syncpointlng, or use SYNCPOINT ROLLBACK to initiate a
distributed rollback.

If EIBERR is set, and the first two bytes of EIBERRCD contain X 10824 1
, the other

transaction has replied SYNCPOINT ROLLBACK. (EIBSYNRB will also be set.)
In this case, you must propagate the rollback by Issuing SYNCPOINT ROLLBACK
in the usual way.

If the other transaction has replied ISSUE ABEND, the TERMERR condition will be
raised in your transaction. You can choose to handle this condition (or the
default condition ERROR), or you can use IGNORE or NOHANDLE to disable the
condition, and check what has happened by testing EIBERRCD for X 10864 1. In
this case, the conversation is no longer usable, and the other transaction can
take no part in subsequent syncpointing activity.

If EIBERR is not set, the other transaction has issued SYNCPOINT, indicating that
it Is ready for syncpointing.

If any partner has responded positively (EIBERR not set) to an ISSUE PREPARE
command, you must eventually Issue either SYNCPOINT or SYNCPOINT
ROLLBACK to cause that partner to commit or backout.

ISSUE PREPARE examples
Figure 59 on page 198 shows four conversing transactions A, B, C, and D.

It is assumed that transaction A is designed to send records to transaction Band
.issue a SYNCPOINT when it has sent a certain number of records. Transaction
B examines each record and decides whether to send it to transaction C or
transaction D for processing. Transactions C and D are both designed to issue
ISSUE ERROR immediately if they find an error in one of the records.

Because transactions C and D can send ISSUE ERROR at any time, transaction B
is designed to use ISSUE PREPARE to find out whether any incoming error
responses have not yet been received.

Chapter 4.5. CICS applications for lUTYPE6.2 mapped conversations 197

Transaction A Transaction B Transaction C

SEND •.. RECEIVE •..
CONVID(AB) CONVID (AB)

(only EIBRECV
is set;
analyze data
and send to
C or D)

SEND ... RECEIVE ..•
CONVID(BC) CONVID (BC)

(1) RC
SYNCPOINT > RECEIVE •..

CONVID (AB)
(EIBSYNC set)

(2) PTC
ISSUE PREPARE > RECEIVE ...

CONVIO(BC) CONVID (BC)
(EIBSYNC set)

(3) RC
(EIBERR clear) < SYNCPOINT

(6) CTO
>

~

(7) FGT

Transaction 0
(4) PTC

ISSUE PREPARE > RECEIVE ...
CONVID (BO) CONVID (BO)

(EIBSYNC set)
(5) RC

(EIBERR clear) < SYNCPOINT

(No Errors) <.

P.El) CTO (8) CTO
SYNCPOINT >

~

(9) FGT

PTC - Prepare to Commit RC - Request Commit CTO - Committed FGT - Forget

Figure 59. ISSUE PREPARE with positive responses

In Figure 59, there are no error responses outstanding, and both transactions
respond positively to EIBSYNC. Transaction B can therefore go ahead and issue
the SYNCPOINT command. If you compare this example with Figure 57 on
page 189, you will see that the flows generated by CICS are the same. In
Figure 60 on page 199, transaction C has issued ISSUE ERROR after receiving a
record, and transaction B sees the error on return from the ISSUE PREPARE
command. After the normal continuation after receiving ISSUE ERROR,

198 CICS/MVS 2.1.2 Intercommunication Guide

transaction B issues SYNCPOINT ROLLBACK. The rollback is propagated In a
similar manner to that shown in Figure 58 on page 193.

Transaction A

SEND ...
CONVID(AB)

SYNCPOINT

Rolled Back <

(EIBRLDBK set)

(1) RC

(5) RB

PTC - Prepare to Commit

>

Transaction B

RECEIVE ...
CONVIO(AB)

(on 1 y EIBRECV
is set;
analyze data
and send to
C or 0)

SEND ...
CONVIO(BC)

RECEIVE .•.
CONVIO (AB)

(EIBSYNC set)
(2) PTC

ISSUE PREPARE
CONVID(BC) (error)

(EIBERR set; <

EIBERRCD 13889;
EIBRECV set)

RECEIVE ••.
CONVIO(BC) (3) RB

(Send State)

SYNCPOINT
ROLLBACK

(4) RB

Note: The positive response (+RSP) after each RB

-

>

r-+

>

RB - Rollback has been omitted for the sake of clarity.

Figure 60. ISSUE PREPARE with error response

Transaction C

RECEIVE ...
CONVIO(BC)

ISSUE ERROR
CONVIO (BC)

SEND INVITE
WAIT
CONVID(BC)

RECEIVE ..•
CONVID(BC)

(EIBSYNRB set)

SYNCPOINT
ROLLBACK

Transaction 0

RECEIVE .••
CONVID(BD)

(EIBSYNRB set)

SYNCPOINT
ROLLBACK

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 199

This example shows just one of many possible application designs using ISSUE
PREPARE.

You are advised to restrict the use of ISSUE PREPARE to complex syncpointing
situations. In most cases, the use of SYNCPOINT and SYNCPOINT ROLLBACK
will be sufficient.

Sending and receiving signals
The ISSUE SIGNAL command sends an SNA signal as an expedited flow
command. This can be used by an application in receive state to notify its
partner that it needs to get into SEND state. For example, this would be useful if
too much data was currently being sent.

If an application receives an incoming signal then the SIGNAL condition will be
raised and the field EIBSIG will be set. Note that EIBSIG is sent only once. If
you miss it, or choose not to take any action in response to it, nothing happens
- the partner's request is never satisfied.

Freeing the session
The command used to free the session has the following format:

FREE CONVID(name)

NOTALLOC, INVREQ

where "name" is the name of the conversation. The FREE command is normally
used to free the session after the conversation has been terminated (for
example, after SEND LAST WAIT has been issued). However, you can issue the
FREE command at any time that your transaction Is in send state. CICS
determines whether the end-bracket indicator has already been transmitted, and
transmits it if necessary before freeing the session. If there is also deferred data
to transmit, the end-bracket indicator is transmitted with the data. Otherwise,
the indicator is transmitted by itself.

If you terminate an SL(2) conversation with one of these command sequences:

• SEND LAST followed by FREE
• SEND LAST WAIT
• FREE in send state.

you divide the distributed transaction into two parts which continue to execute
independently. Consequently, a subsequent SYNCPOINT or SYNCPOINT
ROLLBACK command in either part is not propagated to the other.

This means that protected resources in one part 0'" the divided transaction could
be committed, while those in the other part could t.. backed out.

200 CICS/MVS 2.1.2 Intercommunication Guide

To safeguard against this, you should always terminate sync SL(2) conversations
using the sequence:

SEND LAST
SYNCPOINT
FREE

The EXEC interface block (EIB)

Full details of the EIB are given in the C/CS/MVS Application Programmer's
Reference manual. This section highlights the fields that are of particular
significance in UJTYPE6.2 applications. For further details of how and when
these fields should be tested, or saved, refer to "Command sequences on
LUTYPE6.2 mapped conversations" on page 203.

Conversation identifier fields
The following EIB fields enable you to obtain the name of the LUTYPE6.2
conversation.

EIBTRMID
contains the name of the principal facility. For a back-end transaction it is
the conversation identifier (CONVID). You must acquire this name if you
want to state the CONVID for the principal facility explicitly.

EIBRSRCE
contains the conversation identifier (CONVID) for the session obtained by
means of an ALLOCATE statement. You must acquire this name
immediately after issuing the ALLOCATE statement.

Procedural and error fields
These fields contain information on the state of the conversation and on the
various indicators that are transmitted by the conversing transaction. In most
cases, the settings relate to the session named in the last-executed RECEIVE or
CONVERSE command, and should be tested, or saved for later testing, after the
command has been issued. Further information on the use of these fields is
given in "Command sequences on LUTYPE6.2 mapped conversations" on
page 203.

EIBRECV
indicates the conversation state following RECEIVE or CONVERSE. If it is off
(= X'OO'), your conversation partner is inviting you to send, otherwise you
would normally issue a further RECEIVE command. It does not necessarily
renect receive state at any other time.

EIBCOMPL
This field is used in conjunction with the RECEIVE NOTRUNCATE command; it
is set to indicate that the data is complete.

EIBSYNC
indicates that CICS syncpointing is in progress and that the application
should issue a SYNCPOINT command.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 201

EIBSYNRB
indicates that CICS syncpointing is in progrE!SS and that the applicat.ion
should issue a SYNCPOINT ROLLBACK command.

EIBRLDBK
indicates that the remote transaction has sent SYNCPOINT ROLLBACK in
response to a SYNCPOINT request. The transaction that issued the
SYNCPOINT command has been rolled back.

EIBCONF
indicates that the conversation partner has issued a SEND CONFIRM
command, and that a response is required.

EIBSIG
indicates that the conversation partner has issued an ISSUE SIGNAL
command.

EIBFREE
indicates that the receiver must issue a FREE command for the session.

EIBERR
indicates that an abnormal condition has occurred. The reason is in
EIBERRCD.

EIBERRCD
contains the reason for EIBERR.

The meanings of the various EIBERRCD values are given in Figure 61 on
page 209. Three values that can arise as part of designed error-signaling in
the conversing transactions are:

• XI 08240000 1 - the conversation partner has issued a SYNC POINT
ROLLBACK command.

• X 108640000 1 - the conversation partner has issued an ISSUE ABEND
command.

• X 108890000 1 - the conversation partner has issued an ISSUE ERROR
command.

EIBNODAT
indicates that no application data has been received. This means that the
remote system has generated a null request unit to convey conversation
control information.

202 CICS/MVS 2.1.2 Intercommunication Guide

Fields that are not applicable
The following EIB fields are not applicable to LUTYPE6.2 mapped conversations:

EIBEOC
The EIBEOC is intended for use when the user program is doing its own
chain assembly. Because chain assembly is not supported for LUTYPE6.2
conversations, EIBEOC is set on every RECEIVE command, and can be
ignored.

EIBFMH
Because function management headers (FMH) are never passed to
LUTYPE6.2 application programs, EIBFMH is never set and can be ignored.

Fields and synchronization levels
This table shows you how different fields are relevant at different levels of
synchronization.

Table 6. EIB fields and synclevels at which they are relevant

Field name SL(O) SL(1) SL(2)

EIBCOMPL Y Y Y

EIBCONF Y Y

EIBERR & EIBERRCD Y Y Y

EIBFREE Y Y Y

EIBNODAT Y Y Y

EIBRECV Y Y Y

EIBRLDBK Y

EIBSIG Y Y Y

EIBSYNC Y

EIBSYNRB Y

Command sequences on LUTYPE6.2 mapped conversations
The command sequences that you use to communicate between the front-end
and the back-end transactions are governed both by the requirements of your
application and by a set of high-level protocols designed to ensure that
commands are not issued in inappropriate circumstances.

The protocols presented in this section do not cover all possible command
sequences. However, by following them, you will ensure that each transaction
takes account of the requirements of the other. and hence reduce the error rate
during program development.

The protocols are based on the concept of a number of states. These states
apply only to the particular conversation, not to your application program as a
whole. In each state, there are a number of commands that might most
reasonably be issued. After the command has been issued, fields in the ErB
must be tested in the order shown in the state diagrams, figures 62 through 71,

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 203

Initial states

State diagrams

to check on the current requirements of the conversation. The results of these
tests, together with the command that has been issued, may cause a transition
to another state, in which another set of commands becomes appropriate ..

The states that are defined for the purposes of this section are:

• State 1 - session not allocated
• State 2 - session allocated
• State 3 - send state
• State 4 - receive pending after INVITE
• State 5 - receive state
• State 6 - receiver issue confirmation
• State 7 - receiver take syncpoint
• State 8 - receiver take rollback
• State 9 - free pending after SEND LAST
• State 10 - free session.

The front-end transaction in a conversation will initially be in state 1 ~ session
not allocated - and must issue an ALLOCATE command to acquire a session.

An exception to this occurs when the front-end transaction is started by
automatic transaction initiation (ATI), in the local system, with an LUTYPE6.2
session as its principal facility. In this case, the session is already allocated,
and the transaction is in state 2. For transactions of this type, you must
immediately obtain the conversation name from EIBTRMID if you want to be able
to name the conversation explicitly on subsequent commands.

The back-end transaction is initiated in RECEIVE state as a result of the
CONNECT PROCESS command issued by the front-end transaction. However, to
initiate the conversation properly, you must issue an EXEC CICS RECEIVE
command before you do anything else that could affect the link (for example, a
SYNCPOINT ROLLBACK command). The only exception to this rule is that you
can issue an EXTRACT PROCESS command, before EXEC CICS RECEIVE, to
obtain the synchronization level and other conversation-related information.

Figure 61 on page 209 through Figure 71 on page 216 are intended to enable
you to construct valid command sequences. Each diagram relates to one
particular state, as previously defined, and shows the commands that you might
reasonably issue and the tests that you must make after issuing the command.
Where more than one test is shown, they must be made in the order indicated.

The combination of the c()mmand issued and a particular positive test result lead
to a resultant state, shown in the final column.

Note that an ISSUE SIGNAL command is always valid within an allocated
LUTYPE6.2 session.

204 CICS/MVS 2.1.2 Intercommunication Guide

Using the state diagrams
As a guide to using the state diagrams, consider a front-end transaction that is
designed to invoke a remote back-end transaction and send It some sort of
file-search criteria. The back-end transaction is expected to sen<J each record
that matches the search criteria, and then issue a SYNCPOINT and free the
session.

Note: The use of SYNCPOINT In an Inquiry-only application is normally not
required. It is included in this example only to illustrate the use of the state
diagrams.

Allocating a session
Initia"y, the front-end transaction has no session to the remote system. It is
therefore in state 1 - session not allocated.

The diagram for state 1 shows that you need to issue an ALLOCATE command:

EXEC CICS ALLOCATE SYSID(RSYS)

Where RSYS is the CONNECTION name (or SYSIDNT) of the remote system.

You should now check for SYSIDERR and SYSBUSY to make sure that a session
has been allocated. If a" is we", you must immediately get the conversation
identifier from EIBRSRCE, for example:

MVC CNAME,EIBRSRCE

You must name the conversation explicitly in the commands that follow. The
diagram shows that the conversation is now In state 2 - session allocated.

Connecting the remote process
The diagram for state 2 shows that the next command to issue Is CONNECT
PROCESS:

EXEC CICS CONNECT PROCESS CONVID(CNAME) SYNCLEVEL(2)
PROCNAME('REMT') PROCLENGTH(4)

Here the name of the back-end transaction is REMT and level 2 synchronization
is specified. The state 2 diagram shows that, after this command, the
conversation is in state 3 - send state.

The SEND command
The next thing to do is to send the file-search criteria to the back-end
transaction. This is to be a single transmission, after which you expect to
receive the matching records from the back-end transaction. Your aim,
therefore, is to get into state 5 - receive state, so that you can Issue RECEIVE
commands.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 205

The diagram for state 3 shows that you now have several ways of continuing
after the CONNECT PROCESS command.

1. The first possibility is to use a simple SEND command. The diagram shows
that, after a SEND command, the conversation is still in state 3 - send state,
not in the required receive state.

However, looking further down the table, you will see that you can still go
right ahead and issue your RECEIVE command. CICS will then INVITE the
back-end transaction to send (remember that the back-end transaction is
initialized in state 5 - receive state) and WAIT to make the actual
transmission occur.

The table shows that CICS will supply the INVITE and the WAIT when you
issue a SEND followed immediately by a RECEIVE. However, if you look at
the send-state table for unmapped LUTYPE6.2 conversations (Figure 78 on
page 239) you will see that In that case you have to supply the INVITE and
WAIT options yourself.

2. The next possibility is to use SEND INVITE; that is, to specify the INVITE
explicitly. The table shows that after SEND INVITE the conversation is in
state 4 - receive pending after Invite. If you look at the diagram for state 4,
you will see that you can now issue an explicit WAIT command to get to
state 5, or, as before, just issue the RECEIVE command.

3. The third possibility is to specify INVITE and WAIT explicitly on the SEND
command. The table shows that, after SEND INVITE WAIT, the conversation
is in state 5 - receive state.

Suppose that you decide to use the third option:

EXEC CICS SEND INVITE WAIT CONVID(CNAME) FROM(OUTAREA) LENGTH(OUTLEN)

The RECEIVE commands
You are now ready to issue RECEIVE commands to get the records from the
back-end transaction:

tXEC CICS RECEIVE CONVID(CNAME) INTO(INREC) LENGTH(RECLEN)

The diagram for state 5 shows the tests you must make after issuing a RECEIVE
command. As you will see, there are up to six tests that you may have to make,
depending on the synchronization level established for the conversation (level 2
in this example). As well as showing which fields must be tested, the state table
also shows the order in which you must make the tests.

Because the RECEIVE command in this example did not use the NOTRUNCATE
option, you do not need to test EIBCOMPL. We are assuming that the two
transactions know the maximum length of data that they will be handling, and
that overlength data would be a logic error that would cause the LENGERR
condition to be raised. The use of the NOTRUNCATE option, together with
EIBCOMPL tests, would be appropriate in programs that are communicating with
systems or devices that can send data of no defined maximum length.

206 CICS/MVS 2.1.2 Intercomnlunlcatlon ~ulde

After issuing the RECEIVE command (and checking for EIBCOMPL if this is
appropriate) the first thing to do is to save the EIB values. (You need the values
that were set by the RECEIVE command, and you may have to use other
commands in the meantime that can change the EIB.) The following tests should
then be made on the saved values of the EIB fields, not on the EIB itself.

The first test for level 2 synchronization is EIBCONF. If you know that the other
transaction will never issue the SEND CONFIRM command, as in this example,
you can omit this test. You are advised not to make any similar assumptions
about EIBSYNC and EIBSYNRB, but to test them after every RECEIVE command
on a synchronization-level 2 conversation. However, to keep things simple, the
syncpoint rollback test (EIBSYNRB) is left out of the following description. Your
tests can then proceed as follows:

1. Test EIBSYNC

a. Set

The state 5 diagram shows that the conversation is now in state 7 -
receiver take syncpolnt, so go to the state 7 diagram. Unless you want to
inform the back-end transaction about some problem, the appropriate
command is:

EXEC CICS SYNCPOINT

Using the state 7 diagram, you see that the next thing to do is to test the
saved value of EIBFREE. If this is set, the conversation is in state 10 -
free session, and you must:

EXEC CICS FREE CONVID(CNAME)

If EIBFREE is not set, you must test the saved value of EIBRECV. If
EIBRECV is set, the conversation is back in state 5 - receive state, and
you can issue your next RECEIVE command.

If neither EIBFREE nor EIBRECV is set, the conversation is in state 3 -
send state. This is not expected in this example, but you should test for
it and take some action; for example, ISSUE ERROR.

Note: You would expect to be in send state if, for example, the back-end
transaction was designed to use:

EXEC CICS SEND INVITE
EXEC CICS SYNCPOINT

You can check that sequence in the state diagrams to see how it works.

b. Not set

Make test 2.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 201

2. Test EIBFREE

a. Set

The conversation is now in state 10 - free session, and you must:

EXEC CICS FREE CONVIO(CNAME)

b. Not set

Make test 3.

3. Test EIBRECV

a. Set

The conversation is still in receive state, so you can issue your next
RECEIVE command.

b. Not set

As described earlier, this is not expected in this example.

Testing EIBERR and EIBSYNRB

Other tests

The state diagrams in this section do not show the EIBERR tests for individual
commands.

EIBERR can be set at any time that your transaction is in receive state, and also
following any command that causes a transmission to the remote system. It is
safest to test EIBERR after every command. If EIBERR is set, there will be an
associated error code in EIBERRCD. EIBERRCD values are listed in Figure 61 on
page 209.

If EIBERR is set with an EIBERRCD of X '0889' (ISSUE ERROR received), your
transaction is in receive state, and you should issue a RECEIVE command.

If your application design includes the use of SYNCPOINT ROLLBACK, similar
considerations apply. When the transaction is required to execute a SYNCPOINT
ROLLBACK command, EIBSYNRB is set as well as EIBERR, with an EIBERRCD of
X'0824'.

Tests for other conditions that may possibly arise, for example, INVREQ or
NOTALLOC, should be made in the normal way. Further information on these
errors, if any, is available in EIBRCODE.

Also, if your transaction is expected to receive an incoming SIGNAL command,
you should either execute a HANDLE command for the SIGNAL condition or test
EIBSIG after each command.

208 CICS/MVS 2.1.2 Intercommunication Guide

ALL STATES MAPPED LUTYPE6.2 CONVERSATIONS ERROR CHECKING

Errors associated with commands issued on mapped LUTYPE6.2 conversations
can occur either on the command that causes the error or on a later
command issued on the same conversation.

Errors cause EIBERR to be set, with an associated return code in EIBERRCD.
Some errors cause a CICS condition to be raised, which you may decide to
HANDLE or to check for in EIBRCODE. Some error indications can arise
in a planned-for manner; for example, because the other transaction is
designed to send ISSUE ERROR under certain conditions.

In general, you are advised to check EIBERR after every command, unless
you are prepared to allow your transactions to ABEND when errors occur.

Errors Associated with Connecting and Conversing with the Remote Process

EIBERRCD CICS
Condition

9S9F6951 TERMERR

9S4B6931 TERMERR

9S4C9999 TERMERR

19986921 TERMERR

19956931 TERMERR

19956932 TERMERR

19986934 TERMERR

19956941 TERMERR

Meaning and Notes

The link and/or the user failed to pass the remote
system's security checks.

The specified PROCESS is not available.

The specified PROCESS is not available.

The specified PROCESS name was not recognized.

PIP data was specified but the remote process does
not support it.

The PIP data was incorrectly specified.

The conversation types do not match (the remote
conversation partner is using unmapped commands).

The specified SYNC_LEVEL is not supported by the remote
process.

Figure 61 (Part I of 2). Checking EIBERRCD

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 209

General Errors and State Indications

EIBERRCD CICS Meaning an d Notes
Condition

08240000 A ROLLBACK
set. The

command has been received, and EIBSYNRB is
conversation is in STATE 8.

08640000 TERMERR An ISSUE A BEND command has been received.

08890000 An ISSUE E RROR command has been received.

A000 TERMERR The conver sation has been prematurely terminated.

A001 TERMERR Deadlock tl 'meout or terminal read timeout. This code
is returne d instead of an AKCS or AKCT abend occurring.

-_ ..
Figure 61 (Part 2 of 2). Checking EIBERRCD

STATE 1 MAPPED LUTYPE6.2 CONVERSATIONS SESSION NOT ALLOCATED

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State

ALLOCATE [NOQUEUE] * SYSIDERR 1

SYSBUSY * 1

Otherwise 2
(obtain conversation identifier
from EIBRSRCE)

,-. -
* If you want your program to wait until a session is available, omit

the NOQUEUE option of the ALLOCATE command and do not code a HANDLE
command for the SYSBUSY condition.

If you want control to be returned to your program if a session is not
immediately available, either specify NOQUEUE on the ALLOCATE command
and test EIBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY
command.

Figure 62. State 1 - session not allocated

210 CICS/MVS 2.1.2 Intercommunication Guide

._--- -.
STATE 2 MAPPED LUTYPE6.2 CONVERSATIONS SE~SION ALLOCATED

-- -
Commands You Can Issue What To Test New

(For EIBERRCD tests, see above) State

CONNECT PROCESS TERMERR * 3
--

FREE - 1

* The failure of a CONNECT PROCESS command (caused by such things as the
unavailability of the remote process or mismatched sync levels) is
usually indicated on a later command on the same conversation.

-
Figure 63. State 2 - session allocated

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 211

--
STATE 3 MAPPED LUTYPE6.2 CONVERSATIONS SEND STATE

- -------
Commands You Can Issue What To Test New

(For EIBERRCD tests, see above) State

SEND - 3
----. -------

SEND INVITE - 4

SEND INVITE WAIT - 5
r- --

SEND LAST - 9
----f-----

SEND LAST WAIT - 10
.------

SEND CONFIRM 3
(SYNCLEVEL 1 or 2 only) See "Checking the Response

to SEND CONFIRM" earlier
SEND INVITE CONFIRM in this chapter. New 5
(SYNCLEVEL 1 or 2 only) states assume that EIBERR

is not set. --
SEND LAST CONFIRM 10
(SYNCLEVEL 1 or 2 only)

- --
CONVERSE Go to the STATE 5 table and make -

Equivalent to: the tests shown for the RECEIVE
SEND INVITE WAIT command
RECEIVE

RECEIVE Go to the STATE 5 table and make -
(INVITE is sent by CICS) the tests shown for the RECEIVE

command
--- - --

ISSUE PREPARE EIBSYNRB 8
(SYNCLEVEL 2 only)
Note: If a negative EIBFREE 10
response is received,
EIBERR and EIBERRCD Otherwise 3.
will also be set

SYNCPOINT EIBRlDBK (or ROLLEDBACK condition) 5
(SYNCLEVEL 2 only)

Otherwise 3
(transaction will ABEND if
SYNCPOINT fails)

--1-------

SYNCPOINT ROLLBACK (transaction will ABEND if 3
(SYNCLEVEL 2 only) ROLLBACK fails)

-------- --
WAIT CONVID - 3
--- -

Figure 64 (Part 1 of 2)_ State 3 - send state

212 CICS/MVS 2.1.2 Intercommunication Guide

ISSUE ERROR EIBRECV 5

Otherwise 3
------ -----

ISSUE ABEND 10
------------._---- ._-------------_ .. --_._._---. ----

FREE
Equivalent to:

SEND LAST WAIT
FREE

-------------- ---------

Figure 64 (Part 2 of 2). State 3 - send state

~-------------------------

STATE 4 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVE PENDIN
r---------------------~--------------------

\~hat To Test
(For EIBERRCD tests, see abo

Go to the STATE 5 table and
the tests shown for the RECE
command

EIBFREE

Otherwise
-------+---------

EIBRLDBK (or ROLLEDBACK cond

Otherwise
(transaction will ABEND if
SYNCPOINT fails)

------- ---------+-----
SYNCPOINT ROLLBACK
(SYNCLEVEL 2 only)

(transaction will ABEND if
ROLLBACK fail s)

Figure 65. State 4 - receive pending after INVITE

1

--
G AFTER INVITE

.. ----
New

ve) State

5

make -
IVE

10

3

le

ition) 5

5

3

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 213

-
STATE 5 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVE STATE

Commands YOli Can Issue What To Test New
(For EIBERRCD tests, see above) State

-- ----- -
RECEIVE [NOTRUNCATE] * EIBCDr1PL * -

t----

EIBCONF (SYNCLEVEL 1 or 2 only) 6
t----

EIBSYNC (SYNCLEVEL 2 only) 7
--

EIBSYNRB (SYNC LEVEL 2 only) 8
-- --

EIBFREE 10

EIBRECV ** 5

Otherwise 3
-

SYNCPOINT ROLLBACK (transaction will ABEND if 3
(SYNCLEVEL 2 only) ROLLBACK fails)

f-o--------
ISSUE ERROR EIBFREE 10

Otherwise 3

ISSUE ABEND - 10
1---

* If NOTRUNCATE is specified, a zero value in EIBCOMPL lndicates that the
data passed to the application by CICS is incomplete (because, for
example, the data-area specified in the RECEIVE command is too small).
CICS will save the remaining data for retrieval by subsequent RECEIVE
NOTRUNCATE commands. EIBCOMPL is set when the last part of the data is
passed back. If the NOTRUNCATE option is not specified, overlength data
is indicated by the LENGERR condition, and the remaining data is
discarded by CICS.

** If a receive command completes with 'EIBRECV' and
'EIBNODAT', it is implied that another RECEIVE must be
issued in order to receive additional application-level data.

-- -.-.-------

Figure 66. State 5 - receive state

214 CICS/MVS 2.1.2 Intercommunication Guide

STATE 6 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVER ISSUE CONF IRMATION

Commands You Can Issue What To Test
(For EIBERRCD tests,

ISSUE CONFIRMATION EIBFREE (saved value)

EIBRECV (saved value)

Otherwise

ISSUE ERROR EIBFREE (saved value)

Otherwise

ISSUE ABEND -

Figure 67. State 6 - receiver issue confirmation

see above)
New
State

10

5

3

3

3

~

-
STATE 7 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVER TAKE SYNCPOINT

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State

SYNCPOINT EIBFREE (saved value) 10

EIBRECV (saved value) 5
-

Otherwise 3

SYNCPOINT ROLLBACK - 3

ISSUE ERROR (Now issue
(This will cause the other SEND INVITE WAIT (3)
transaction to abend if it fo11 owed by then
issued SYNCPOINT, but not RECEIVE) 5
if it issued ISSUE PREPARE.)

ISSUE ABEND - 10

Figure 68. State 7 - receiver take syncpoint

STATE 8 MAPPED LUTYPE6.2 CONVERSATIONS RECEIVER TAKE ROLLBACK
-

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State

SYNCPOINT ROLLBACK - 5

Figure 69. State 8 - receiver take rollback

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 215

STATE 9 MAPPED LUTYPE6.2 CONVERSATIONS FREE PENDING AFTER SEND LAST

--
Commands You Can Issue What To Test New

(For EIBERRCD tests, see above) State
._---

WAIT - 10
... _._--_ ..

FREE - 1

SEND CONFIRM (no data) - 10
(SYNCLEVEL 1 or 2 only)

SYNCPOINT ROLLBACK - 10
(SYNCLEVEL 2 only)

SYNCPOINT - 10
(SYNCLEVEL 2 only)

-
ISSUE ABEND - 10

-.

Figure 70. State 9 - free pending after SEND LAST

STATE 10 MAPPED LUTYPE6.2 CONVERSATIONS FREE SESSION

Commands You Can Issue What To Test New
(For EIBERRCD tests, see above) State

FREE -- 1

Figure 71. State 10 - free session

216 CICS/MVS 2.1.2 Intercommunication Guide

Migration of LUTYPE6.1 applications to LUTYPE6.2 links
If your installation is changing its CICS-to-CICS ISC links from LUTYPE6.1 to
LUTYPE6.2, you may want to redesign some of your existing ISC applications to
take advantage of LUTYPE6.2 function. Alternatively, you can continue to run
your existing applications in "migration" mode.

In migration mode, the front-end and back-end transactions use LUTYPE6.1
commands just as if the session was an LUTYPE6.1 session. CICS takes data
from the transaction in the normal way, and formats it as an LUTYPE6.2 data
stream for transmission over the link. At the receiving side, CICS analyses the
LUTYPE6.2 data stream and presents the LUTYPE6.1 data and function
management headers to the receiving transaction.

In general, you will not have to modify existing CICS-to-CICS LUTYPE6.2
applications to enable them to run in migration mode on LUTYPE6.2 links. A
notable exception is the use of the ALLOCATE SESSION command. If your
installation previously had individually-defined LUTYPE6.1 sessions, and your
application used the ALLOCATE SESSION command to acquire a specific
session, you must change this command to ALLOCATE SYSID. The ISSUE
SIGNAL command is available for both LUTYPE6.1 and LUTYPE6.2, but the WAIT
SIGNAL command is valid only for LUTYPE6.1.

Figure 72 on page 218 compares the commands that you can use for:

• LUTYPE6.1 applications on LUTYPE6.1 links
• LUTYPE6.1 applications on LUTYPE6.2 links (migration mode)
• LUTYPE6.2 applications on LUTYPE6.2 links.

As this figure shows, migration mode allows you to start adding new functions to
an application (for example, using ISSUE ERROR or ISSUE ABEND) without
converting it entirely to LUTYPE6.2. You can also implement ~ifferenllevels of
synchronization if you modify the application to use the CONNECT PROCESS
command. The migration of an application towards the "pure" LUTYPE6.2 level
can thus be made stepwise, and halted at any time.

To facilitate migration, the keywords SESSION and CONVID can be used
interchangeably.

If a migration-mode transaction abends, the data flows will be the architected
LUTYPE6.2 flows. The effect on the connected transaction depends on the point
at which the abend occurs and is often different from that which you would
expect if the connection were native LUTYPE6.1.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 217

Operation Command LUTYPE6.1 ~1i grat ion LUTYPE6.2
-

Obtain use ALLOCATE SESSION yes no no
of a session

ALLOCATE SYSIO yes yes yes

Build an LU6.1 BUILD ATTACHIO yes yes no
attach FMH

_.

Start a SEND yes (1) yes(4) no
remote
transaction SEND ATTACHIO yes(2) yes(5) no

--r-0 _ •• --
SEND FMH yes(3) yes (6) no

CONNECT PROCESS no yes (7) yes (7)
-

Retrieve EXTRACT ATTACH yes yes no
information
about how the EXTRACT PROCESS no yes yes
transaction
was initiated

Send data SEND yes yes yes

Send SEND ATTACHID yes yes no
further
LU6.1 FMHs SEND FMH yes yes no

-
Receive EXTRACT ATTACH yes yes no
LU 6.1 FMHs

Receive data RECEIVE yes yes yes
-

Send and CONVERSE yes yes yes
receive data

-- --
Program Error ISSUE ERROR no yes yes

--
Abend ISSlJ.E ABEND no yes yes
conversation

--
Request change ISSUE SIGNAL yes yes yes
of direction

o __

Await change WAIl SIGNAL yes no no
of direction

_____ 0

-.-~---- --
Figure 72 (Part 1 of 2). Migration of LUTYPE6.1 programs to LUTYPE6.2 links

218 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

User exits

------ ---- • _____ ·w __ • ____ .--.-- -------
Synchronize Level e no yes(8) yes

-_ ... _---------- ---- ------ _._-----_.-
Level 1
SEND CONFI RM no yes(8) yes
ISSUE CONFIRMATION no yes yes

. --- ... -.. -.------ --------
Level 2
SEND CONFIRM no yes(8) yes
ISSUE CONFIRMATION no yes yes
SYNCPOINT yes yes yes
SYNCPOINT ROLLBACK no yes yes

Figllre 72 (Part 2 of 2). Migration of LUTYPE6.1 programs to LUTYPE6.2 links

Notes:

1. The CICS transaction identifier is included in the first four bytes of the data.
No attach FMH generated.

2. An LUTYPE6.1 attach FMH is generated.

3. An LUTYPE6.1 FMH provided by the application program is sent.

4. An LUTYPE6.2 attach FMH is generated, but with no TPN (TPNL=O). The
CICS transaction identifier is included in the first four bytes of the data.

5. An LUTYPE6.2 attach FMH and an LUTYPE6.1 attach FMH are generated.

6. An LUTYPE6.2 attach FMH and an LUTYPE6.1 FMH (provided by the
application program) are sent.

7. An LUTYPE6.2 attach FMH is generated.

8. Synchronization levels 0 and 1 can be used if CONNECT PROCESS has been
used to define the SYNCLEVEL in operation. If CONNECT PROCESS has not
been used, SYNCLEVEL 2 is assumed.

Because LUTYPE6.2 uses different modules from LUTYPE6.1, the XZCIN and
XZCOUT user exits are not taken for LUTYPE6.2 sessions. Any programs making
use of these exits on LUTYPE6.1 will need consideration.

LUTYPE6.2 release considerations
The physical action of the LUTYPE6.2 commands is to generate LUTYPE6.2
architectured flows. However, there is a degree of latitude within the
architecture as to exactly when these nows occur. Therefore, upgrading either
of the partners in an LUTYPE6.2 conversation can affect the physical flows. This
means that application programs could function differently, because they are
responding to slightly different flows.

If you are conversing with an LUTYPE6.2 application that uses the SAA Common
Programming Interface for Communications (CPI-C), you might get different flows
from an equivalent CICS application program. Similarly, different CICS releases
may do slightly different things under what seems to be the same circumstance.

Chapter 4.5. CICS applications for LUTYPE6.2 mapped conversations 219

The variations will probably show up in a differing number of EXEC CICS
RECEIVEs that have to be done to collect both data and indicators. However, if
you do not make any assumptions as to the conversation state of your
lUTYPE6.2 application program and always test the EIB nags, as described in
this chapter, you will automatically cater for these variations.

220 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.6. CICS applications for logical unit type 6.2 unmapped
conversations

This chapter contains details of the CICS low-level, "unmapped", interface to
LUTYPE6.2 sessions (which are also known as basic LUTYPE6.2 conversations).

To use this interface, you need to understand the format of LUTYPE6.2 data
entities, which contain both length and identifier fields, and to build the
appropriate data in your application programs.

If you are new to CICS LUTYPE6.2 application programming, you may find it
helpful to read "Chapter 4.5. CICS applications for logical unit type B.2 mapped
conversations" on page 171 before starting on this chapter. You should also
have the SNA Format and Protocol Reference Manual: Architecture Logic for LU
Type 6.2, SC30-3269 and the SNA Transaction Programmer's Reference Manual
for LU Type 6.2, GC30-3084 available for reference. The mapping between
LUTYPE6.2 verbs and CICS commands is described in Appendix C, "CICS
mapping to the LUTYPEB.2 architecture" on page 413.

CICS applications that use the unmapped interface can be written only in
assembler language.

If the device with which you are conversing supports LUTYPE6.2 mapped
conversations, it is much simpler to write an application program using the
mapped protocols than the unmapped.

CICS commands for unmapped LUTYPE6.2 conversations
The commands that can be used to establish and hold unmapped LUTYPE6.2
conversations are listed below. In these commands, GOS stands for Generalized
Data Stream, indicating that you are using the LUTYPEB.2 architectured
datastream with these commands.

• EXEC CICS GOS ALLOCATE .- used to acquire a session to the remote
system.

• EXEC CICS GOS CONNECT PROCESS - used to initiate a conversation with
a named process on the remote system.

• EXEC CICS GDS EXTRACT PROCESS - used to access session-related
information (for example, the requested synchronization level) in the
LUTYPE6.2 attach header that caused the application to be Initiated.

• EXEC CICS GDS ASSIGN - used to obtain the conversation Identifier and
the system identifier of the application program's principal facility.

• EXEC CICS GOS SEND and EXEC CICS GOS RECEIVE - used to send or
receive data on the conversation. There is no GOS equivalent of the mapped
CONVERSE command.

• EXEC CICS GOS WAIT - used to ensure that the transaction has transmitted
any accumulated data or data flow control indicators before it continues with
further processing.

@ Copyright IBM Corp. 1977, 1991 221

• EXEC CICS GDS SEND CONFIRM and EXEC CICS GDS ISSUE
CONFIRMATION - used to exchange private synchronization requests when
SL(1) or SL(2) is being used.

• EXEC CICS GDS ISSUE PREPARE - used to issue the first flow of a
syncpoint exchange (SL(2) only) under direct control of the transaction.

• EXEC CICS GDS ISSUE ERROR- used to inform the conversation partner
that a program-detected error has occurred.

• EXEC CICS GOS ISSUE SIGNAL - used by the receiving transaction to
request a change-direction from the sending transaction.

• EXEC CICS GOS ISSUE ABEND - used to inform the conversation partner
that it is necessary to abend the conversation.

• EXEC CICS GOS FREE - used by a transaction to relinquish its use of a
session. The session is then available for use by other transactions. If a
session is not freed explicitly, it is freed by CICS when the transaction
terminates.

The full syntax of these commands is given in "EXEC CICS GOS commands" on
page 225.

The EXEC CICS SYNCPOINT and EXEC CICS SYNCPOINT ROLLBACK commands
can also be used. Only conversations that can support SL(2) syncpointing are
involved in CICS syncpointing activity.

Session data and return and error codes
The CICS exec interface block (EIB) is not affected by unmapped conversations
on LUTYPE6.2 sessions, and no CICS conditions are raised when EXEC CICS
GOS commands are executed. Instead, you must provide data areas in your
application to receive return codes and session status information.

The data areas required are:

• A 6-byte area to receive RETCOOE information
• A 24-byte area to receive CONVOATA information.

You can give these areas any identifiers you like. They must be named explicitly
in most EXEC CICS GOS commands.

The RETCOOE area is used to detect any errors that occur when an EXEC CICS
GOS command is executed. These errors correspond to CICS exceptional
conditions, such as NOTALLOC, that can be raised when EXEC CICS commands
are executed.

The CONVOATA area contains information on the state of the conversation after
certain EXEC GOS commands have been successfully executed, such as whether
the transaction is in send or receive state on the conversation. Its structure
corresponds to a subset of the CICS EIB.

The application program is responsible for managing this area - we
recommend that you save it after each GOS command in a similar fashion to the
way the EIB should be saved for mapped conversations. However, because you

222 CICS/MVS 2.1.2 Intercommunication Guide

RETCODE values

can specify a different CONVOATA area for each GOS command, you may
choose to manage status information in a different fashion from that for mapped
conversations.

Return codes are returned in the 6-byte area that you name in the RETCODE
option of the EXEC CICS GOS commands. Figure 73 shows the possible
hexadecimal values for the first three bytes of RETCODE; the second three bytes
are normally zeros.

00

01

01 04 ..
01 04 04
01 04 08
01 04 0C
01 04 14

01 08 ..
01 08 00
01 08 04

010C ..
01 0C 00
01 0C 04
01 0C 08
01 0C 0C

03 .•..
03 00 ..
03 04 •.
03 08
030C ..
03 10 ..
03 14 ..
03 18

04

05 .•

NORMAL RETURN CODE

SYSIDERR ERROR

ALLOCATE FAILURE
SYSBUSY (NO BOUND CONTENTION WINNER AVAILABLE)
MODENAME NOT KNOWN ON THIS SYSTEM
ATTEMPT TO USE RESERVED MODENAME SNASVCMG
AVAILABLE COUNT ZERO FOR THIS MODEGROUP

SYSID IS OUT OF SERVICE
LOCAL QUEUEING WAS NOT ATTEMPTED
LOCAL QUEUEING DID NOT SUCCEED

SYSID IS NOT KNOWN IN TCT
SYSID NAME IS NOT KNOWN
SYSID NAME IS NOT THAT OF A TCrSE
SYSID.MODENAME IS NOT KNOWN
SYSID.PROFILE IS NOT KNOWN

INVREQ ERROR
SESSION 15 NOT DEFINED AS LUTYPE6.2
CONVERSATION LEVEL IS WRONG
STATE ERROR
SYNC LEVEL CAN NOT BE SUPPORTED
LLCOUNT ERROR
INVALID REQUEST
TPN SEND CHECK FAILED

NOTALLOC ERROR

LENGERR ERROR

Figure 73. RETCODE values

Testing RETCODE values
The error conditions that can occur when you issue a command for an
LUTYPE6.2 unmapped conversation are shown under "EXEC CICS GOS
commands" on page 225. These errors do not raise the equivalent CICS
exceptional conditions in your application program, and you cannot write CICS
HANDLE commands to "catch" them. Instead, you must test the value returned

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 223

in your RETCODE data area after issuing each command. Possible values are
shown in the previous section.

CONVDATA fields
The fields required in the CONVDATA area are:

COBCOMPL OS C X'FF' = data complete
COBSYNC OS C X'FF' = SYNCPOINT required
COBFREE OS C X'FF' = FREE required
COBRECV OS C X'FF' = RECEIVE required
COBSIG OS C X'FF' = SIGNAL received
COBCONF OS C X'FF' = CONFIRM received
COB ERR OS C X'FF' = ERROR received
COBERRCO OS CL4 error code (when COB ERR set)
COBSYNRB OS C X'FF' = SYNCPOINT ROLLBACK required
COBRSVO OS CL12 reserved

These definitions are provided in copybook DFHCDBLK. The copybook does not
contain a DSECT statement. This enables you to provide your own DSECT
statements and provides the flexibility to enable you to manage more than one
conversation at the same time.

Testing CONVDATA values
CONVDATA contains information on the state of the conv~rsation and on the
various indicators that are transmitted by the remote process (possibly a CICS
transaction) with which your CICS transaction is conversing.

In general, CONVDATA fields are set only as a result of an input operation (such
as RECEIVE), and reflect the state of the conversation after the command has
been executed. The fields are not usually modified as a result of an output
operation (such as SEND). For example, if the remote process issues a SEND
INVITE command (or its non-CICS equivalent), execution of your RECEIVE
command will ensure that COBRECV is set to X '00', indicating that you are now
expected to send. If you now issue a SEND INVITE command, you know that you
can now receive; CDBRECV is not updated until you have issued the RECEIVE
command.

If your application 'Is one that expects to receive an SNA SIGNAL command, it
should also check the CDBSIG field.

Details of the various conversation "states", the commands that you can issue,
and the required CONVDATA tests are given in "Command sequences on
LUTYPE6.2 unmapped conversations" on page 233.

Error code values
Most error conditions that occur on an unmapped LUTYPE6.2 conversation cause
COBERR to be set and an error code to be placed in CDBERRCD. Your
transaction can thus remain in control in many circumstances that would cause
a transaction holding a mapped conversation to abend.

It is normally necessary to test CDBERR after every EXEC CICS GOS command.
Error code values are listed in Figure 75 on page 236.

224 CICS/MVS 2.1.2 IntercommunIcation Guide

---------- ----------- ------
EXEC CICS GDS commands

The following sections show the full syntax of the EXEC CICS GDS commands.
The way in which these commands relate to LUTYPE6.2 verbs is explained in
Appendix C, "CICS mapping to the LUTYPE6.2 architecture" on page 413.

EXEC CICS GDS ALLOCATE
SYSID(name)
CONVID (da ta---a rea)
RETCODE(data-~rea)
[~'ODENAI"E (name)]
[NOQUEUE]

Errors: SYSIDERR, SYSBUSY

EXEC CICS GDS ASSIGN
[PRINCOHVID(data-~rea)]
[PRIHSYSID(data-~rea)]
RETCODE(data-area)

Errors: INVREQ

EXEC CICS GDS COHNECT PROCESS
PROCNAI-tE (name)
PROCLENGTH(data-~alue}
SYMCLEVEL(data-value}
CONVID(name}
CONVDATA(data-area}
[PI PUST (da ta-area)
PIPLENGTH(data-value)]

RETCODE (da ta ---a rea)

Errors: INVREQ, NOTALLOC

EXEC CICS GDS EXTRACT PROCESS
[PROCNAHE(data-area)
PROCLENGTH(data-area)]
[SYNCLEVEL(data-~rea)]
CONVID(name)
[PIPUST (pointer-- ref)
PIPLENGTH(data-area)]

RETCOOE(data-area)

Errors: JtNREQ

EXEC CICS GDS FREE
CONVID(name)
CONVOATA(da t8 --area)
RETCOOE(data-area)

Errors: INVREQ, NOTALLOC

EXEC CICS GDS ISSUE CONFIRI1ATlON
CmIVID(namt')
COHVOATA(data-area)
RETCODE(d~ta·area)

Errors: INVREQ, NOTALLOC

EXEC CICS GOS ISSUE ERROR
CDtIVID(name}
COHVDATA(data·-area}
RETCOOE(data-area}

Errors: INVREQ, NOTALLOC

EXEC CICS GDS ISSUE PREPARE
COHVID(llame)
COHVDATA(data- art'a}
RETCOOE(data--area}

Errors: INVREQ, NOTALLOC

EXEC CICS GDS ISSUE SIGNAL
CONVID(name}
CONVDATA(da ta --area}
RETCOOE(data-area}

Errors: INVREQ, NOTALLOC

EXEC CICS GDS RECEIVE
(INTO(data-area)\SET(pofnter-ref)}
FlENGTH(data-area}
liAXFlENGHI(data-·va 1 ue)
{BUFFER \ LUO}
CONVIO(name)
CONVDATA(data-area)
RETCOOE(data-area)

Errors: INVREQ, LENGERR, NOTAllOC

EXEC CICS GOS SEND
[FROll(data area)
FLENGTH(data~alue)]

[INVITE \ LAST]
[(ONF IR~t I HAlT]
CONVID(name)
CONVDATA(data ~rea)
RETCOOE(data~rea)

Er'r-ol's: HlVREQ, lHIGERR, NOTAllOC

Figure 74 (Part 1 of 2). EXEC CICS GDS commands

Chapter A.S. CICS applications for LUTYPES.2 unmapped conversations 225

EXEC CICS GDS ISSUE ABEND
CONY ID (name)
CONVDATA(data--area)
RETCODE(data-area)

Errors: INVREQ, NOTALLOC

EXEC CICS GDS \1AIT
CONVID(name)
CONVDATA(data-area)
RETCODE(dat~area)

Errors: INVREQ, NOTALLOC

Figure 74 (Part 2 of 2). EXEC CICS GDS commands

Command options
In general, the arguments (such as data-value) can be replaced by absolute or
relocatable assembler expressions. For full detaits of the argument allowed in
assembler language programs, refer to the CICSIMVS Application Programmer's
Reference manual.

BUFFER
specifies that the length of the data passed to the application program in
response to the RECEIVE command is to be the length specified in the
MAXFLENGTH option, irrespective of structured field boundaries. Control is
returned to the application program when this length has been received, or
when a synchronization request, change-direction, or end-bracket is
received.

CONFIRM
allows an application working at SL(1) or SL(2) to synchronize its processing
with that of a process in a remote system. The actions taken to synchronize
processing are wholly defined by the application programs involved. The
CONFIRM option causes RQD2 to be added to the data already sent and
forces a WAIT. On receipt of the indicator, the remote process will take
agreed actions and then send a response. When the WAIT completes,
CDBERR will be set to XIOO' if the appropriate response has been received.

CONVDATA(data-area)
specifies the application data area into which conversation related
information is to be moved. A description of the format of the data area is
given under "CONVOATA fields" on page 224. The data-area must be 24
bytes in length.

CONVID(data-area)
specifies the application data area that is to contain the token returned by an
ALLOCATE command to identify the allocated conversation. The data-area
must be 4 characters in length.

CONVID(name)
identifies the conversation to which the command relates. The name, which
is 4 characters in length, identifies either the token returned by a previously
executed GOS ALLOCATE command or the token representing the principal
session (returned by a previously executed GDS ASSIGN command).

FLENGTH(data-area)
specifies a data nrea that is set to the length of the data made available to
the application program. The data area must be fullword binary.

226 CICS/MVS 2.1.2 Intercommunication Guide

FLENGTH(data-value)
specifies the length (as a fullword binary value) of the data specified in the
FROM option. The length must not exceed 32 767.

INTO(data-area)
specifies the application target data area Into which data is to be received
from the application program connected to the other end of the current
conve rs ation.

INVITE
allows an application program to add CD to data already sent to a process in
a connected LUTYPE6.2 system. CD is not transmitted by CICS until the
subsequent execution of a WAIT or a SYNCPOINT command, unless
CONFIRM or WAIT are also coded on the SEND INVITE command.

LAST
allows an application program to add CEe to data already sent to a process
in a connected LUTYPE6.2 system. CEe is not transmitted by CICS until the
subsequent execution of a WAIT or a SYNCPOINT command, unless
CONFIRM or WAIT are also coded on the SEND LAST command. Note that
the LUTYPE6.2 architecture states that, should one of these commands fail
because of a conversation related error, the conversation will remain in
bracket. In such a case, the application program should execute a RECEIVE
command. However, SEND LAST WAIT (with no data) always causes the
conversation to be deallocated.

LLiD
specifies that the delimiter to be used by CICS to terminate the passing of
data to the application program is the end of a GDS structured field.

MAXFLENGTH(data-value)
specifies, as a fullword binary value, either the length of the target data area
specified in the INTO option or the maximum length of data to be addressed
by the pOinter reference specified in the SET option. The length must not
exceed 32 767 bytes.

MODENAME(name)
specifies the modename group from which the session is to be acquired. If
MODENAME is not specified CICS will select a modename from the
modenames defined for the system.

NOQUEUE
specifies that the request to allocate a session is not to be queued when a
suitable LUTYPE6.2 session can not be acquired immediately. A session will
only be acquired immediately if a session is already available as a
contention winner.

If NOQUEUE is specified, control will be returned to the program whether or
not a session has been acquired. SYSBUSY is set in RETCODE if the
allocation is unsuccessful.

If the NOQUEUE option is not used, a delay may occur before control is
passed back to the application program. A delay can occur for any of the
following reasons:

• All sessions for the specified sysid and modename are in use

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 227

• The CICS allocation algorithm has selected a session that is not currently
bound (in which case CICS has to bind)

• The CICS allocation algorithm has selected a contention loser (in which
case CICS has to bid).

In the event of a delay, the program will wait until the session has b.een
acquired.

PI PLENGTH(data-area)
specifies a halfword binary data area that is to receive the length of the
PIPLIST received by an EXTRACT PROCESS command.

PIPLENGTH(data-value)
specifies the total length of the PIPLIST specified on a CONNECT PROCESS
command.

PIPLlST(data-area)
specifies the PIP data that is to be sent to the remote process. See "Process
Initialization parameter data" on page 17.

PIPLlST(polnter-ref)
specifies the pointer reference that is to be set to the address of the PIPLIST
received by an EXTRACT process. A zero setting Indicates that no PIPLIST
was received.

PR INCONVID(data-area)
specifies a 4-byte data area in which the conversation token (CONVIO) of the
principal facility is to be returned.

PRINSYSID(data-area)
specifies a 4-byte data area in which the SYSIO of the principal facility is to
be returned.

PROCLENGTH(data-area)
specifies a halfword binary data area that is set to the actual length of the
process name.

PROCLENGTH(data-value)
specifies the length (as a halfword binary value) of the target process name.
The value must be greater than zero and not greater than 32.

PROCNAME(data-area)
specifies the application target data area into which the process name,
specified in the LUTYPE6.2 attach function management header, is to be
moved. The data area must be 32 bytes long. The process name will be
moved into this area and the area will be padded with blanks, if necessary.

PROCNAME(name)
specifies the target process (in CICS terms, the transaction) that is to be
connected to the other end of the current conversation. Four bytes are
sufficient to identify a CICS transaction. The LUTYPE6.2 architecture allows a
range of 1 to 64 bytes but leaves each product free to set its own maximum.
CICS complies by allowing 32 bytes, but this need only concern you if you
are linked to a non-CICS system which demands longer transaction
identifiers. To attach a transaction in the remote system, you need only
supply the operands as set out above. If you expect a remote system to

228 CICS/MVS 2.1.2 Intercommunication Guide

send attach requests with names longer than four bytes, you have a choice.
Because CICS always interprets the first four bytes, you can make sure that
these always represent a transaction Identifier within your system.
Alternatively, you can examine the full identifier by coding the user exit
XZCATT as described in the CICSIMVS Customization Guide.

For unmapped conversations, each character of a transaction identifier must
be chosen from the EBCDIC range:

a through z
A through Z
o through 9
.$#@

If the remote system expects ASCII characters, you are restricted to those
which share a binary value with one of the above characters. For full details,
refer to the" AE" character set defined in the SNA publication Transaction
Programmer's Reference Manual for LV Type 6.2.

RETCODE(data-area)
specifies the application data area into which return code information is to
be moved. The data-area must be 6 bytes in length. (See "RETCODE
values" on page 223.)

SET(polnter .. ref)
specifies the pointer reference that is to be set to the address of data
received from the application program connected to the other end of the
current conversation.

SYNCLEVEL(data-area)
specifies a data area that is set to indicate the syncpoint level in effect for
the current conversation. The values that may be returned are:-

o none

1 confirm

2 syncpoint.

The data-area must be halfword binary.

SYNCLEVEL(data-value)
specifies (as a halfword binary value) the syncpointlevel desired for the
current conversation. The values that can be specified are:-

o none

1 confirm

2 syncpoi nt.

SYSID(name)
specifies the remote system to which an LUTYPE6.2 session is to be
allocated. The name, which Is up to 4 characters in length, Identifies an
entry (defined as an LUTYPE6.2 system) in the CICS Terminal Control table.

Chapter 4.6. CICS applicatIons for LUTYPE6.2 unmapped conversations 229

WAIT
specifies that processing of the command must be completed before any
subsequent processing is attempted. If the WAIT option is not specified,
control Is returned to the application program once processing of the
command has started.

Note: If the WAIT option is not used, data from successive SEND commands,
together with any indicators, is accumulated by CICS in an internal buffer. If
the buffer becomes full, the accumulated data is transmitted to the remote
system, but the accumulated indicators are not. Transmission of the
accumulated data plus the indicators is forced by the WAIT or CONFIRM
options of the SEND command, or by an EXEC CICS GDS WAIT command.

Exceptional conditions
This list lists the exceptional conditions that can arise as a result of executing an
EXEC CICS GOS command. These conditions must be tested for in RETCOOE.
EXEC CICS HANDLE branches will not be taken, and there are no default actions.

INVREQ
occurs if the operation requested on the conversation is not valid. For
possible reasons, see "RETCODE values" on page 223.

LENGERR
For a SEND or RECEIVE command, the LENGERR error code is returned if:

1. The value specified in the FLENGTH option is less than zero

2. The value specified in the FLENGTH option exceeds a CICS
implementation-defined limit. CICS returns the implementation limit,
which is currently 32 767, in bytes 2-5 of RETCODE.

For a CONNECT PROCESS or EXTRACT PROCESS command the LENGERR
error code is returned if:

1. The application and CICS supplied values for the attach function
management header together cause the length of the function
management header to exceed 255.

2. The value specified in thePROCLENGTH option is less than or equal to
zero.

3. The value specified by the PIPLENGTH option is less than zero or
exceeds the CICS implementation limit (currently 32763).

4. The sum of the length elements in the PIPLIST is not equal to the value
specified in the PIPLENGTH option.

5. Any length element in the PIPLIST has a value less than four.

NOTALLOC
occurs if the conversation named in the CONVID option is not allocated to
the application program.

SYSBUSY
occurs on an ALLOCATE command when the specified system is busy.

230 CICS/MVS 2.1.2 Intercommunication Guide

SYSIDERR
occurs on an ALLOCATE command when the specified SYSID is in error. For
possible reasons, see "RETCODE values" on page 223.

Comparisons between LUTYPE6.2 mapped and unmapped conversations
At the lowest level, an LUTYPE6.2 unmapped conversation performs flows that
are equivalent to those of an LUTYPE6.2 mapped conversation. The concepts
involved in unmapped conversations are similar to those for mapped
conversations. See "Chapter 4.5. CICS applications for logical unit type 6.2
mapped conversations" on page 171 for an overview of LUTYPE6.2 mapped
concepts if you are unsure about LUTYPE6.2 unmapped operation. The rest of
this chapter assumes that you are familiar with these concepts. See the SNA
Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084 for a full
description of LUTYPE6.2 unmapped programming.

--_._----
The unmapped conversation

The datastream used for both mapped and unmapped LUTYPE6.2 conversations
is the SNA generalized datastream (GDS). In GDS, each chunk of information is
preceded by a 4-byte header field with the following format:

1 4

~LL-'" ~ID~

The first 2 bytes, LL, specify the overall length of the information (including the
length field). The second 2 bytes, 10, specify the type of data. For example, the
10 for user data is X '12FF I. These datastreams are defined in the SNA Format
and Protocol Reference Manual: Architecture Logic for LU Type 6.2, SC30-3269.

For an unmapped conversation, you will normally be responsible for building
GDS structured fields with the appropriate length (LL) and identifier (10) fields.
You must always ensure that the value in the LL field matches the actual length
of the structured field. Note that the LL value must not be zero or one.

You need not observe structured field boundaries in the output data area named
in an EXEC CICS GDS SEND command; you can send several structured fields,
or part of a structured field. You must, however, be on a structured field
boundary when you issue a SEND CONFIRM, SEND LAST, SEND INVITE, or
SYNCPOINT command. This restriction does not apply to ISSUE ERROR or
ISSUE ABEND; the error code in the receiving process will indicate if a
structured field was truncated.

Data from successive SEND commands, together with any indicators, is
accumulated by CICS in an internal buffer. If the buffer becomes full, the
accumulated data is transmitted to the remote system, but the accumulated
indicators are not. Transmission of the accumulated data plus the indicators is
forced by the WAIT or CONFIRM options of the SEND command, or by the WAIT,
ISSUE ERROR, ISSUE ABEND, or SYNCPOINT commands.

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 231

For unmapped conversations; you are required to exercise full control over the
state of the conversation. CICS does not detect implicit state changes, and
therefore cannot supply the implied indicators.

For example, in a mapped conversation, the command sequence

EXEC CICS SEND
EXEC CICS RECEIVE

is valid because CICS supplies the implied INVITE and WAIT option. In an
unmapped conversation, you must specify

EXEC CICS GDS SEND INVITE WAIT
EXEC CICS GDS RECEIVE

explicitly, otherwise a state error will occur. You can avoid errors of this kind by
following the rules given in the state tables, Figure 75 on page 236 through
Figure 85 on page 243.

The LLiD and BUFFER options of the RECEIVE command enable you to specify
how data is to be received by your application program.

A RECEIVE command with the LLiD option will recover at most a single
structured field. If the length exceeds the value specified in the MAXFLENGTH
option, two or more RECEIVE commands are required to recover the whole field.
CDBCOMPL is set to X I FF I to indicate that the end of the structured field has
been received.

A RECEIVE command with the BUFFER option will recover the length of data
specified in the MAXFLENGTH option, ignoring structured field boundaries.
Control is not returned to the application program until this length of data, or
until an indicator such as change-direction that signifies the end of the incoming
data, has been received. CDBCOMPL is set to X I FF I after every RECEIVE
command with the BUFFER option.

If you issue an ISSUE ERROR, ISSUE ABEND, or SYNCPOINT ROLLBACK
command while your transaction is in receive state, CICS will purge all incoming
data until a change-direction, syncpoint-request, or end-bracket indicator is
received. If end-bracket is received, no indication is sent to the remote process,
and CDBFREE is set in your transaction, indicating that you must free the
conversation. Otherwise, the appropriate Indication is sent.

If your transaction is conversing with a remote CICS transaction, and you use
ISSUE ERROR to respond negatively to syncpoint request (CDBSYNC set), the
remote transaction will be abended. The remote transaction should be designed
to back-out under these circumstances. You should continue by issuing a SEND
INVITE WAIT command followed by a RECEIVE command, and then test the COB.
CDBSYNRB will be set, indicating that you must issue a SYNCPOINT ROLLBACK
command to back-out as well. This sequence is shown in the state tables,
Figure 75 on page 236 through Figure 85 on page 243. Note that the
CDBSYNRB test is required even if the remote transaction does not issue any
explicit syncpoint rollback requests.

232 CICS/MVS 2.1.2 Intercommunication Guide

If a transaction receives ISSUE ERROR while CICS syncpolnting (SL(2)
synchronization) is taking place on the session, the transaction is abended.

If the remote transaction is designed to use ISSUE ERROR while it is in receive
state, you can avoid CICS syncpoint failures caused by an incoming error
indication in the following way:

1. Before issuing the CICS SYNCPOINT command, issue SEND INVITE WAIT
followed by RECEIVE. This will flush any deferred data and put your
transaction in receive state.

The remote transaction must be designed to recognize this pre-syncpointing
flow and (unless it has issued ISSUE ERROR) to return SEND INVITE WAIT to
put the conversation in the correct state for syncpointing.

2. In your transaction, test CDBERR and, if it is set, CDBERRCD, to determine
whether the remote transaction has issued ISSUE ERROR. If it has, take
your application-defined action for this condition. If it has not, test the COB
to ensure that the transaction is in the correct state, and if all is well issue
the SYNCPOINT command.

Command sequences on LUTYPE6.2 unmapped conversations
The command sequences that you can ,use on unmapped LUTYPE6.2
conversations are governed by protocols designed to ensure that commands are
not issued in inappropriate circumstances.

The protocols are based on the concept of a number of states. These states
apply only to the particular conversation, not to your application program as a
whole. In each state, there are a number of commands that might most
reasonably be issued. After the command has been issued, fields in CONVDATA
or RETCODE must be tested in the order shown in the state diagrams, Figure 76
on page 238 through Figure 85 on page 243, to check on the current·
requirements of the conversation. The results of these tests, together with the
command that has been issued, may cause a transition to another state,' in
which another set of commands becomes appropriate.

The states that are defined for the purposes of this section are:

• State 1 - session not allocated
• State 2 - session allocated
• State 3 - send state
• State 4 - receive pending after INVITE

.• State 5 - receive state
• State 6 - receiver issue confirmation
• State 7 - receiver take syncpoint
• State 8 - receiver take rollback
• State 9 - free pending after SEND LAST
• State 10 - free session.

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 233

Initial states

State diagrams

The front-end transaction in a conversation will initially be in state 1 - session
not allocated - and must issue an ALLOCATE command to acquire a session.

A back-end transaction, initiated by an attach FMH, is initially in state 5 -
receive state. Because the CONVIO option is mandatory on EXEC CICS GOS
commands, even for the principal facility, you must issue an EXEC CICS GOS
ASSIGN command to obtain the CONVIO immediately. After this, you should
issue an EXEC CICS GOS RECEIVE to set up the back-end 'conversation correctly,
and so obtain any indicators and data that were sent on the initial flow.

The following diagrams are intended to enable you to construct valid command
sequences. Each diagram relates to one particular state, as previously defined,
and shows the commands that you might reasonably issue and the tests that you
should make after issuing the command. Where more than one test is shown,
they must be made in the order indicated.

The combination of the command issued and a particular positive test result lead
to a resultant state, shown in the final column.

Note that a GOS ISSUE SIGNAL command is always valid within an allocated
LUTYPE6.2 session.

See "Using the state diagrams" on page 205 for an example of how to use state
diagrams.

Testing CDBERR and CDBSYNRB
The state diagrams in this section do not show COBERR tests. It is normally
necessary to test COBERR after every EXEC CICS GOS command. Some of the
most common COBERRCO values are shown in Figure 75 on page 236.

You will have to include tests for "issue error received" and "issue abend
received" if your overaJi application design makes use of these facilities. For
SL(1) conversations, this is hardly avoidable, because ISSUE ERROR is the usual
negative response to SEND CONFIRM. You can also test COBERRCD for
"syncpoint rollback received", although this is also indicated in CDBSYNRB.

You can receive issue error, issue abend, or syncpoint rollback at any time that
your transaction is in receive state, and also following any command that causes
a transmission to the remote system. It is safest to test for these CDBERRCO
values after every command.

If ISSUE ERROR is received, your transaction is in receive state, and you should
issue a RECEIVE command. If ISSUE ABEND is received, the conversation has
been abended, and you should free the session.

234 CICS/MVS 2.1.2 Intercommunication Guide

If both the sending and the receiving transaction perform ISSUE ERROR at the
same time, the transaction that is in send state is put into receive state, and will
find CDBERR set. The transaction that is in receive state is put into send state,
and should issue a SEND command.

If your application design includes the use of SYNCPOINT ROLLBACK; similar
considerations apply. When the transaction is required to execute a SYNCPOINT
ROLLBACK command, CDBSYNRB is set as well as CDBERR, with a CDBERRCD
of X'0824'.

Other CDBERRCD values can be tested for· as required. You can, of course,
choose simply to abend the transaction by means of an EXEC CICS ABEND
command.

other tests
Not all possible RETCODE tests are shown in the state diagrams. A RETCODE
test should normally be made as a matter of course after each command, before
any CONVDATA tests.

Also, if your transaction expects to receive an SNA SIGNAL command, you
should test CDBSIG after every command.

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 235

ALL STATES UNMAPPED LUTYPE6.2 CONVERSATIONS ERROR CHECKING

Errors associated with commands issued on unmapped LUTYPE6.2
conversations can occur either on the command that causes the error or
on a later command issued on the same conversation.

Errors cause CDBERR to be set, with an associated return code in CDBERRCD.
Some error indications can arise in a planned-for manner; for example,
because the other transaction is designed to send ISSUE ERROR under
certain conditions.

In general, you are adVised to check CDBERR after every command, unless
you are prepared to allow your transactions to ABEND when errors occur.

Errors Associated with ALLOCATE and CONNECT PROCESS

Meaning and Notes
.---------1

CDBERRCD
r--"

0a0F60S1 The link and/or the user failed to pass the remote system's
security checks.

084B6031 The specified PROCESS is not available.

0a4C0000 The specified PROCESS is not available.

10086021 The specified PROCESS name was not recognized.

100a6031. PIP data specified but the remote process does not support it.

10086032 The PIP data was incorrectly specified.

10086034 The conversation types do not match (the remote conversation
partner is using mapped commands).

10086041 The specified SYNC LEVEL is not supported by the remote process.

Figure 75 (Part 1 of 2). Checking CDBERRCD

236 CICS/MVS 2.1.2 Intercommunication Guide

.-----_._--------------_ .•. _._--
General Errors and State Indications

. ---------_.-- --- ---_._-------
CDBERRCD Meaning and Notes

A000.... The conversation has been prematurely terminated.
Session failure is handled by the node abnormal condition
program, including invocation of any node-error program.
However, the task is not normally abended, regardless of the
setting of the action flags. lhe ABEND error action flag is
overridden and control is returned to the application program.

A001.... Deadlock timeout or terminal read timeout. This code is returned
instead of an AKCS or AKCT ahend occurring.

08240000 A ROLLBACK command has been received, and CDBSYNRB is set. The
conversation is in STATE 8.

08640000 The conversation is terminated abnormally. Either the remote
process has issued ISSUE ABEND or CICS had to force ABEND.

08640001 A system logic error has been detected. No retry of the
conversation should be attempted.

08890000 An ISSUE ERROR command has been received. The GDS field has not
been truncated.

08890001 An ISSUE ERROR command has been received. The GDS field has been
truncated.

---------------------_._------------------

Figure 75 (Part 2 of 2). Checking CDBERRCD

Chapter L.S. CICS applications for LUTYPES.2 unmapped conversations 237

----.-----------------------------~

STATE 1 UNMAPPED LUTYPE6.2 CONVERSATIONS SESSION NOT ALLOCATED

Commands You Can Issue

ALLOCATE [NOQUEUE] *

What To Test
(For CDBERRCD tests, see above)

RETCODE for SYSIDERR (01
or SYSBUSY (01 04 04) *

..)

New
State

1

Otherwise
(conversation identifier
r~turned in CONVID
data area)

2

----.----_.------.--------'--.-._------.-------.--.----.-----i

* If you want your program to wait until a session is available, omit
the NOQUEUE option of the ALLOCATE command.

If you want control to be returned to your program if a session is not
immediately available, specify NOQlIEUE on the ALLOCATE command and test
RETCODE for SYSBUSY.

Figure 76. State 1 - session not allocated

STATE 2 UNMAPPED LUTYPE6.2 CONVERSATIONS SESSION ALLOCATED

Commands You Can Issue What To Test New
(For CDBERRCD tests, see above) State

CONNECT PROCESS RETCODE for INVREQ, 2
NOTALLOC, or LENGERR

--
- 3

-.

FREE RETCODE for INVREQ or 2
NOTALLOC
~- --

- 1
'--------------- -- ----_._----

Figure 77. State 2 - session allocated

238 CICS/MVS 2.1.2 Intercommunication Guide

·-
STATE 3 UNMAPPED LUTYPE6.2 CONVERSATIONS SEND STATE

- --
Commands You Can Issue What To Test New

(For CDBERRCD tests, see above) State
- --f-----.-

SEND - 3
.. - r--- ----_ .. -

SEND INVITE - 4

SEND INVITE WAIT - 5

SEND LAST - 9
-

SEND LAST WAIT - 10
-.

SEND CONFIRM - 3
(SYNCLEVEL 1 or 2 only)

SEND INVITE CONFIRM - 5
(SYNCLEVEL 1 or 2 only)

SEND LAST CONFIRM - 10
(SYNCLEVEL 1 or 2 only)

-
ISSUE PREPARE CDBSYNRB 8
(SYNCLEVEL 2 only)
Note: If a negative CDBFREE 10
response is received,
CDBERR and CDBERRCD Otherwise 3
will also be set

--
SYNCPOINT EIBRLDBK (or ROLLEDBACK condition) 5
(SYNCLEVEL 2 only)
Note: This is not a GDS command. Otherwise 3

(transaction will ABEND .if
SYNCPOINT fail s)

SYNCPOINT ROLLBACK (transaction will ABEND if 3
(SYNCLEVEL 2 only) ROLLBACK fails)

WAIT - 3

ISSUE ERROR - 3

ISSUE ABEND - 10
-

Figure 78. State 3 - send state

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 239

---~--.--... -. ------
STATE 4 UNMAPPED LUTYPE6.2 CONVERSATI ONS RECEIVE PENDING AFTER INVITE

J------.. --------~-
Commands You Can Issue

WAIT

What
(For

------------+--

--_.
To Test
CDBERRCDtests,

-

ISSUE ERROR CDBFR EE

Other wise
-

ISSUE ABEND -
r---------------- ---

-
New

see above) State
- '------

5

10

3

10

SYNCPOINT
(SYNCLEVEL 2 only)

EIBRL OBK (or ROLLEDBACK condition) 5

SYNCPOINT ROLLBACK
(SYNCLEVEL 2 only)

Other
(tran

SYNC

(tran
ROLL

wise
sacti on wi 11
POINT fails)

-
sact i on will
BACK fails)

Figure 79. State 4 - receive pending after INVITE

240 CICS/MVS 2.1.2 Intercommunication Guide

5

ABEND if

ABENO if 3

---_._-_ .. --
STATE 5 UNMAPPED LUTYPE5.2 CONVERSATIONS RECEIVE STATE

--
Commands You Can Issue l~hat To Test New

(For CDBERRCD tests, see above) State
----- -

RECEIVE CDBCOMPL * -

CDBCONF (SYNCLEVEL 1 or 2 only) 6 _.
CDBSYNC (SYNCLEVEL 2 only) 7 _.
CDBSYNRB (SYNCLEVEL 2 only) 8

CDBFREE 10

--

CDBRECV 5

Otherwise 3

SYNCPOINT ROLLBACK (transaction will ABEND if 3
(SYNCLEVEL 2 only) ROLLBACK fail s) _._-_.
ISSUE ERROR COB FREE 10

Otherwise 3

ISSUE ABEND - 10

* A zero value in CDBCOMPL indicates incomplete data. CICS saves the
remaining data for retrieval by subsequent RECEIVE commands. CDBCOMPL is
set when the last part of the data is passed back.

Figure 80. State 5 - receive state

r---.

STATE 6 UNMAPPED LUTYPE6.2 CONVERSATIONS RECEIVER ISSUE CONFIRMATION
-

Commands You Can Issue ~Jhat To Test New
(For CDBERRCD tests, see above) State

-

ISSUE CONFIRMATION CDBFREE (saved value) 10

CDBRECV (saved value) 5
r--.

Otherwise 3
-

ISSUE ERROR CDBFREE (saved value) 3
r--.

Otherwise 3
-- ---

ISSUE ABEND - 10
i.--. -

Figure 81. State 6 - receiver issue confirmation

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 241

STATE 7 U NMAPPED LUTYPE6.2 CONVERSATIONS RECEIVER TAKE SYNCPOINT

Commands You

SYNCPOINT

SYNCPOINT RO

ISSUE ERROR
(Thi s wi 11 c
transaction
issued SYNC
if it issue

ISSUE ABEND

Can Issue

LLBACK

ause the other
to abend i f it

POINT, but not
d ISSUE PREPARE.)

-

What To Test
(For CDBERRCD tests,

00-

CDBFREE (saved value)

CDBRECV (saved value)

Otherwise
--r-o

-

(Now issue
SEND INVITE WAIT
followed by
RECEIVE)

-
-

Figure 82. State 7 - receiver take syncpo;nt

New
see above) State

-- --_.
10

5

--
3

-----1------

3
-- --

(3)
then
5

--
10

STATE 8 UNMAPPED LUTYPE6.2 CONVERSATIONS RECEIVER TAKE ROLLBACK

Commands You Can Issue What To Test New
(For CDBERRCD tests t see above) State

SYNCPOINT ROLLBACK - 5

Figure 83. State 8 - receiver take rollback

242 CICS/MVS 2.1.2 Intercommunication Guide

-----.~---- -_._------------ ----
STATE 9 UNMAPPED LUTYPE6.2 CONVERSATIONS FREE PENDING AFTER SEND LAST _._- - -
Commands You Can Issue What To Test New

(For CDBERRCD tests, see above) State
-~ ------- -'.-

WAIT - 10
.---- -

SEND CONFIRM (no data) - 10
(SYNCLEVEL 1 or 2 only)

--
SYNCPOINT - 10
(SYNCLEVEL 2 only)

-- --
SYNCPOINT ROLLBACK - 10
(SYNCLEVEL 2 only)

1-' ----
ISSUE ABEND - 10

Figure 84. State 9 - free pending after SEND LAST

.....---------------------------------------
STATE 10 UNMAPPED LUTYPE6.2 CONVERSATIONS FREE SESSION

Commands You Can Issue -1 Wha~~~ Test------- New

FREE ___ .~~For CDBER:CD tests, see _a~b_o-_v.-e_-)_-_-_~,_-_s=ta=:=e=.:

Figure 85. State 10 - free session

Chapter 4.6. CICS applications for LUTYPE6.2 unmapped conversations 243

.*
Chapter 4.7. CICS-to-CICS distributed transaction processing for MRO
and LUTYPE6.1

This chapter tells you how to code CICS transactions that use distributed
transaction processing to communicate with other CICS transactions via MRO or
LUTYPE6.1 links. For information on distributed transaction processing via
LUTYPE6.2 links, see "Chapter 4.5. CICS applications for logical unit type 6.2
mapped conversations" on page 171.

There are some differences between DTP under MRO and DTP using an
LUTYPE6.1 link. These are pointed out in the text of this chapter. A summary of
the differences and restrictions for MRO is given under "Restrictions for
multiregion operation" on page 261.

Application design
The starting point for the design of a CICS application is provided by the
application requirements developed during the planning activity.

In general, a program that is required to communicate with another CICS
program must be designed as one of a pair of conversing applications, not as an
isolated entity.

The exchanges between the two applications will be governed primarily by the
total requirements of your application. At the same time, however, you must
ensure that your CICS transactions follow a well-defined set of protocols, both to
achieve correct operation and to deal with unexpected situations. This means
that you must at all times be aware of the state of the session, as indicated by
the settings of fields in the EXEC interface block (EIB), and use that state
information to determine what operations are currently valid, or even mandatory.

A guide to the correct use of EIB fields and command sequences is given in
"Command sequences for CICS-to-CICS sessions" on page 256.

CICS commands for MRO and LUTYPE6.1 sessions
The application programming commands that you can use for MRO and
LUTYPE6.1 are baSically the same, but MRO has a number of restrictions that do
not apply to LUTYPE6.1. In general, programs that are written for MRO will
operate correctly over LUTYPE6.1 links. The converse is not necessarily true.
Differences between MRO and LUTYPE6.1 are pOinted out in the relevant places
in this chapter and are summarized in "Restrictions for multiregion operation"
on page 261.

The commands that can be used to acquire and use CICS-to-CICS sessions are:

• ALLOCATE -- used by the front-end transaction to acquire a session to the
remote CICS system.

© Copyright IBM Corp. 1977, 1991 245

• BUILD ATTACH - used by the front-end transaction to build an LUTYPE6.1
attach header that will be used to initiate the back-end transaction on the
remote system.

The BUILD ATTACH command is seldom used in CICS-CICS communication.

• EXTRACT ATTACH - used by the back-end transaction to recover
Information from the LUTYPE6.1 attach header that caused it to be initiated.

The EXTRACT ATTACH command is seldom used in CICS-CICS
communication.

• SEND, RECEIVE, and CONVERSE - used by the conversing transactions to
send or receive data on the sessions. The first SEND or CONVERSE
command Issued by the front-end transaction can name the attach header if
one is to be sent.

• WAIT TERMINAL SESSION(name) - used by either transaction to ensure
thatCICS has transmitted any accumulated data or data flow control
indicators before it continues with further processing. This command has no
effect on MRO sessions.

• ISSUE SIGNAL - used by the receiving transaction to request a
change-direction from the sending transaction.

• FREE - used by both transactions to relinquish their use of the session.

Considerations for the front-end transaction
The front-end transaction is responsible for acquiring a session to the remote
CICS system and initiating the remote transaction.

Thereafter, the two transactions become equals. However, the front-end
transaction is usually designed as the driving transaction.

Session allocation
You acquire an MRO or LUTYPE6.1 session to a remote system by means of the
ALLOCATE command, which has the following format:

ALLOCATE {SYSID(name)
/SESSION(name)}

[PROF! LE (name)]
[NO QUEUE]

SYSIDERR,SYSBUSY,CBIDERR

You can use the SESSION option to request the use of a specific session only if
the system programmer has defined and named individual sessions to the
remote system. The definition of individual sessions is not normally necessary
for CICS-CICS LUTYPE6.1 links, and cannot be done for MRO links. In most
cases, therefore, you will use the SYSIDoption to name the system with which
the session is required.

246 CICS/MVS 2.1.2 Intercommunication Guide

The name specified in the SYSID option must be the name of an LUTYPE6.1 or
MRO link. CICS will raise the SYSIDERR condition if it cannot find the named
system.

The PROFILE option allows you to select a specified communication profile for an
LUTYPE6.1 session. The profile, which is set up during resource definition,
contains a Ret of terminal control processing options that are to be used for the
session.

If you omit the PROFILE option, CICS will use the default profile DFHCICSA. This
profile specifies INBFMH(ALL), which means that inbound function management
headers will be passed to your program and will cause the INBFMH condition to
be raised.

For LUTYPE6.1 sessions, CICS will raise the CBIDERR condition if it cannot find
the named (or defaulted) profile.

Depending on the circumstances, CICS sometimes Ignores profile specifications.
For example, INBFMH is always used for MRO sessions.

The NOQUEUE option allows you to specify explicitly that you do not want your
request for a session to be queued ira session is not available immediately. A
session is "not immediately available" in any of the following situations:

• All the sessions to the specified system are in use.

• The only available sessions are not bound (in which case CICS would have
to bind a session).

• The only available sessions are contention losers (in which case CICS would
have to bid to begin a bracket).

The action taken by CICS if a session is not immediately available depends on
whether you specify NOQUEUE and also on whether your application has
executed a HANDLE command for the SYSBUSY condition. The possible
combinations are shown below:

• HANDLE for SYSBUSY condition

- Control is returned immediately to the label specified in the HANDLE
command, whether or not you have specified NOQUEUE.

• No HANDLE for SYSBUSY condition

If you have specified NOQUEUE, control is returned immediately to your
application program. The SYSBUSY code (X'D3') Is set in the
EIBRCODE field of the EXEC interface block. You should test this field
immediately after issuing the ALLOCATE command.

If you have omitted the NOQUEUE option, CICS queues the request until
a session is available.

Whether or not a delay in acquiring a session is acceptable will depend on your
application.

Chapter 4.7. CICS-to-CICS DTP for MRO and LUTYPE6.1 247

The session Identifier
When a session has been allocated, the name by which it is known is available
in the EIBRSRCE field in the EIB. Because EIBRSRCE will probably be
overwritten by the next EXEC CICS command, you should acquire the session
name immediately. It is the name that you must use in the SESSION option of all
subsequent commands that relate to this session.

Attaching the remote transaction
When a session has been acquired, the next step is to cause the remote
transaction to be initiated. There are three ways in which this can be done:

1. By using CIOS commands to build an attach function management header
which can then be sent to the remote system.

2. By building an attach header directly in your application program.

3. By sending a CICS transaction identifier as ordinary data.

These three methods are described in the following sections. The formality of
the first two methods (which are for generalized communication between
dissimilar LUTYPE6.1 systems) is not normally necessary for CICS-CICS
communication, for which you are recommended to use method 3, which initiates
the transaction without user-defined attach headers.

Using the BUILD ATTACH command
The LUTYPE6.1 architecture defines a special function management header,
called an attach header, which carries the name of the remote process (in CICS
terms, the transaction) that is to be initiated, and also contains further
session-related information. CICS provides the BUILD ATTACH command to
enable the front-end transaction to build an attach header, and the EXTRACT
ATTACH command to enable the back-end transaction to obtain information from
it. Because these commands are available, you do not need to know the format
of an LUTYPE6.1 attach header. In some cases, however, you will need to know
the meaning of the information that it carries.

For CICS-CICS communication, the only necessary field in the attach header is
the name of the remote transaction. The simplified form of the BUILD ATTACH
command that can be used in CICS-to-CICS communication is:

BUILD ATTACH
ATTACHID(name)

[PROCESS(name)]

The ATTACHID option enables you to assign a name to the attach header so that
you can refer to it in a subsequent SEND or CONVERSE command. (The BUILD
ATTACH command builds an attach header; it does not transmit it) The
process, or transaction, that is to be initiated at the remote system is named in
the PROCESS option.

Although they are not mandatory for CICS-to-CICS communication, other fields in
the attach header can be useful for passing Information from the attaching to the
attached transaction. You could, for example, use the QUEUE option to pass the
name of a CICS temporary storage queue.

248 CICS/MVS 2.1.2 Intercommunication Guide

Having built the attach header, you must ensure that it is transmitted with the
first data sent to the remote system by naming it in the ATTACHID option of the
SEND or CONVERSE command.

Building your own attach header
CICS allows you to build an attach header, or any function management header,
as part of your output data. You can therefore initiate the remote transaction by
including a LUTYPE6.1 attach header in the output area referenced by the first
SEND or CONVERSE command. You must specify the FMH option on the
command to tell CICS that the data contains an FMH.

Transaction Initiation without attach headers
For CICS-to-CICS communication, you can take a short cut by forgetting about
attach headers and simply sending the name of the remote CICS transaction in
the first four bytes of the first data that is sent. This will cause normal CICS
transaction initiation in the remote system.

If you use this method, you must also ensure that the back-end transaction does
not issue an EXTRACT ATTACH command.

Automatic transaction initiation
If the front-end transaction is designed to be started by automatic transaction
initiation (ATI) in the local system, and is required to hold a conversation with an
MRO or LUTYPE6.1 session as its principal facility, the session will have already
been allocated when the transaction starts. You can omit the SESSION option
from commands that relate to the principal facility. If, however, you wish to
name the session explicitly in these commands, you should obtain the name
from EIBTRMID.

Considerations for the back-end transaction
The back-end transaction is initiated either by an LUTYPE6.1 attach FMH
received from the remote system or by a transaction name included in the
incoming data, and is started with the session as its principal facility.

Acquiring session-related information
If the back-end transaction is designed to be initiated by an attach header, you
can use the EXTRACT ATTACH command to recover session-related information
from the attach FMH if required, but the use of this command is not mandatory.

The presence of an attach header is indicated byEIBATT, which is set after the
first RECEIVE command has been issued.

For CICS-to-CICS communication, the only mandatory field in the attach header
is the PROCESS name. It can be recovered by the fonowing command:

EXTRACT ATTACH
[SESSION(data-area)]
[PROCESS(data-area)]

Chapter 4.7. CICS-to-CICS DTP for MRO and LUTYPE6.1 249

The process name (PROCESS) from the LUTYPE6.1 attach header is returned in
the specified data area. If the front-end transaction is designed to pass
application-related data in other fields in the attach header, you can acquire it by
means of the appropriate options.

If you name the SESSION explicitly on an EXTRACT ATTACH command, you must
use the name obtained from EIBtRMID.

Initial state of back .. end transaction
The back-end transaction is always initiated in receive state. However, to initiate
the conversation properly with the front-end transaction, you must issue an EXEC
CICS RECEIVE command before you do anything else that could affect the link
(for example, a SYNCPOINT ROLLBACK command).

Using the EXEC CICS ASSIGN command
You may find that two of the options to the EXEC CICS ASSIGN command return
unexpected values. A closer look at these will help you to understand why:

USERID
CICS takes the userid from one of two sources, depending on how you
specified your security requirements.

If you specified ATTACHSEC(Local) on the DEFINE CONNECTION command
for the link, whatever was specified for the USERID option on the same
DEFINE SESSIONS command is returned under this option. This appears as

. blanks if you let the USERID option default.

For LUTYPE6.1 links, ATTACHSEC(Local) is the only form permitted.

If, however, you requested automatic signon for remote users by specifying
A TT ACHSEC(ldentify) or A TT ACHSEC(Verify) on the DEFINE CONNECTION
command for the link, the userid returned is the one that was sent over the
link with the attach request for the transaction.

OPERKEYS
This option returns a 64-bit mask that represents the CICS transaction
security profile of the remote user In the local system. If the· remote user is
signed on locally as described in the explanation to USERID above, the
returned mask is the value that was defined for the user in the signon table.

If no sign on takes place, the user's security profile defaults to that of the
link. The link itself may be signed on, in which case the mask will be taken
from the signon table entry for the link. The other possibility is that
OPERSECURITY. OPERRSL, or both were specified on the DEFINE SESSIONS
command for the link. This preset security then determines the value
returned under this option. In all cases of default, a value of 1 is returned.

This option cannot give any information about the user's security status in a
remote system.

250 CICS/MVS 2.1.2 Intercommunication Guide

The conversation
The conversation between the front-end and the back-end transactions is held
using the SEND, RECEIVE, and CONVERSE commands. Details of these
commands for MRO and LUTYPE6.1 are given In the CICS/MVS Application
Programmer's Reference manual.

In all of these commands, you must name the session In the SESSION option
unless the conversation is with the principal facility.

Deferred transmission
On LUTYPE6.1 sessions, when you Issue a SEND command, CICS will normally
defer sending the data until It becomes clear what your further intentions are.
This mechanism enables CICS to avoid unnecessary flows by superimposing, or
"piggy-backing", control indicators on the data that is awaiting transmission.

On MRO sessions, SEND data is not deferred, and the later addition of control
indicators to the data is not possible. The same command sequence may
therefore require more flows on an MRO session than it does on an LUTYPE6.1
session, but, provided that the receiving transaction is correctly designed to be
driven by the EIB settings, the same effects will be achieved.

Some of the differences between LUTYPE6.1 and MRO are illustrated In the
following command sequence:

Chapter 4.7. CICS-to-CICS DTP for MRO and LUTYPE6.1 251

Commands

EXEC CICS SEND
SESSION(REMl)
FROM(datal)
LENGTH(251)

EXEC CICS
SYNCPOINT

EXEC CICS SEND
SESSION(REMl)
FROM(data2)
LENGTH(251)
INVITE

EXEC CICS WAIT
SESSION(REMl)

EXEC CICS RECEIVE
SESSION(REMl)

(INVITE received)

EXEC CICS SEND
SESSION(REMl)
FROM(data3)
LENGTH(251)
LAST

EXEC CICS
SYNCPOINT

LUTYPE6.1

sending is deferred

syncpoint request is
added to datal, and
datal is sent

sending of data2,
with change direction,
is deferred

data2, with change
direction, is sent

sending of data3,
with end bracket
indicator, is
deferred

syncpoint request is
added to data3, and
data3 is sent

MHO

datal is sent

syncpoint request
is sent with null data

data2, with change
direction, is sent

(nothing to do)

data3 is sent, but
without end bracket
indicator

syncpoint request
and end bracket are
sent with null data

The WAIT option can be added to the SEND command to cause immediate
transmission on LUTYPE6.1 links; for example:

SEND SESSION(REMl)
FROM(data2)
LENGTH(251)
INVITE
WAIT

RECEIVE SESSION(REMl)

There are no significant differences between the MRO and LUTYPE6.1
implementations of this command sequence.

252 CICS/MVS 2.1.2 Intercommunication Guide

A further implementation difference arises between LUTYPE6.1 and MRO for
command sequences that contain an implicit change of direction.

For MRO, you must not issue a RECEIVE command unless your transaction is in
receive state. For LUTYPE6.1, if you issue a RECEIVE command while your
transaction is in send state, CICS will supply the implied options and send the
deferred data with the change-direction indicator set. However, better program
documentation will be achieved if you specify the options explicitly, and
compatibility with MRO links will be maintained.

Using the LAST option
The LAST option on the SEND command indicates the end of the conversation.
No further data flows can occur on the session, and the next action must be to
free the session. However, the session can still carry CICS syncpointing flows
before it is freed.

The circumstances under which session syncpointing occurs, and the ways in
which you can avoid syncpointing on the session, differ for LUTYPE6.1and MRO.

The LAST option and syncpolnt flows on LUTYPE6.1 sessions
A syncpoint on an LUTYPE6.1 session is initiated explicitly by a SYNCPOINT
command, or implicitly by a RETURN command.

If your conversation has been terminated by a SEND LAST command, without the
WAIT option, transmission wiJI have been deferred, and the syncpointing activity
will cause the final transmission to occur with a piggy-backed syncpoint request.
The conversation will thus be automatically involved in the syncpoint.

If you do not want the conversation to be involved in the syncpoint (for example,
because you know that the remote transaction does not access any recoverable
resources) you must Issue a SEND LAST WAIT command, or a WAIT TERMINAL
SESSION or FREE command, to force the transmission before using a command
that causes a syncpoint.

The LAST option and syncpolnt flows on MRO sessions
A syncpoint on an MRO session is initiated explicitly by a SYNCPOINT command,
or implicitly by a RETURN command.

If your conversation is terminated by a SEND LAST command, without the WAIT
option, the WAIT implicit in all MRO commands will be applied, and the data will
be transmitted. However, in anticipation of coming syncpoint flows, CICS will not
send the end-bracket with this data.

If you do not want the conversation to be involved in the syncpoint (for example,
because you know that the remote transaction does not access any recoverable
resources) you must specify the WAIT option explicitly on the SEND LAST
command to force the end-bracket to be sent with the data. Alternatively, you
could follow the SEND LAST command by a FREE command; in this case CICS
will send a null request unit with the end-bracket indicator set.

Chapter 4.7. CICS-to-CICS DTP for MRO and LUTYPE6.1 253

Freeing the session
The command used to free the session has the following format:

FREE SESSION(name)

where "name" is the name of the session. You can issue the FREE command at
any time that your transaction is in send state. CICS determines whether the
end-bracket indicator has already been transmitted, and transmits it If necessary
before freeing the session. If there is also deferred data to transmit, the
end-bracket indicator is transmitted with the data. Otherwise, the indicator is
transmitted with a null RU.

The EXEC interface block (EIB)
Full details of the EIB are given in the CICSIMVS Application Programmer's
Reference manual. This section highlights the fields that are of particular
significance in LUTYPE6.1 and MRO applications. For further details of how and
when these fields should be tested, refer to "Command sequences for
CICS-to-CICS sessions" on page 256. The EIB should be saved after each MRO
or LUTYPE6.1 operation.

Conversation identifier fields

Procedural fields

The following EIB fields enable you to obtain the name of the ISCor MRO
session.

EIBTRMID
contains the name of the principal facility. For a back-end transaction, or for
a front-end transaction started by ATI, it is the conversation identifier
(SESSION). You must acquire this name if you want to state the session
name of the principal facility explicitly. .

EIBRSRCE
contains the session identifier (SESSION) for the session obtained by means
of an ALLOCATE statement. You must acquire this name Immediately after
issuing the ALLOCATE statement.

These fields contain Information on the state of the session. In most cases, the
settings relate to the session named in the last-executed RECEIVE or CONVERSE
command, and should be tested, or saved for later testing, after the command
has been issued. Further information on the use of these fields is given in
"Command sequences for CICS-to-CICS sessions" on page 256.

EIBRECV
indicates the conversation state following RECEIVE or CONVERSE. If it is off
(= X '00'), your conversation partner ;s inviting you to send, otherwise you
would normally issue a further RECEIVE command. It does not necessarily
reflect receive state at any other time. .

254 CICS/MVS 2.1.2 Intercommunication Guide

EIBCOMPL
This field is used in conjunction with the RECEIVE NOTRUNCATE command; it
is set to indicate that the data is complete.

EIBSYNC
indicates that CICS syncpointing is in progress and that the application
should issue a SYNCPOINT command.

EIBSYNRB
MRO only. Indicates that CICS syncpointing is in progress and that the
application should issue a SYNCPOINT ROLLBACK command.

EIBRLDBK
MRO only. Indicates that the remote transaction has sent SYNCPOINT
ROLLBACK in response to a SYNCPOINT request. The transaction that
issued the SYNCPOINT command has been rolled back.

EIBSIG
indicates that the conversation partner has issued an ISSUE SIGNAL
command.

Note that ISSUE SIGNAL is not a valid command for MRO sessions.

EIBFREE
indicates that the receiver must issue a FREE command for the session.

Informatory fields
EIBEOC

Indicates that end-of-chain has been received. This field is applicable only if
your program is doing its own chain assembly. Otherwise, EIBEOC is set for
every RECEIVE command, and can be ignored.

The following fields contain information about FMHs received from the remote
transaction:

EIBATT
indicates that the data received contained an attach header. The attach
header is not passed to your application program; however, EIBATT indicates
that an EXTRACT ATTACH command is appropriate.

EIBFMH
indicates that the data passed to your application program contains a
concatenated FMH. This can result only from the remote CICS transaction
building an FMH in the data and specifying the FMH option on a SEND
command.

If you want to use these facilities, you must ensure that you use communication
profiles that specify INBFMH(All). The default profile (DFHCICSA) for the
session allocated by the front-end transaction has this specification. However,
the default principal facility profile (DFHCICST) for the back-end transaction does
not. Further information on this subject is given under "Defining communication
profiles" on page 151.

Chapter 4:7. CICS-to~C'CS DTP for MRO and LUTYPE6.1 255

----_ .. _-_._-_._._-_ _---_ ... _._------_.-

Command sequences for CICS-to-CICS sessions

Initial states

The command sequences that you use to communicate between the front-end
and the back-end transactions are governed both by the requirements of your
application and by a set of high-level protocols designed to ensure that
commands are not issued in inappropriate circumstances.

The protocols presented in this section do not cover all possible command
sequences. However, by following them, you will ensure that each transaction
takes account of the requirements of the other, and hence reduce the error rate
during program development.

The protocols are based on the concept of a number of states. These states
apply only to the particular conversation, not to your application program as a
whole. In each state, there are a number of commands that might most
reasonably be issued. After the command has been issued, fields in the EIB
must be tested in the order shown in the state diagrams, Figure 86 on page 257
through Figure 93 on page 261, to check on the current requirements of the
conversation. The results of these tests, together with the command that has
been issued, may cause a transition to another state, in which another set of
commands become appropriate ..

The states that are defined for the purposes of this section are:

• State 1 - Session not allocated
• State 2 - Send state
• State 3 - Receive pending after INVITE
• State 4 - Receive state
• State 5 - Receiver take syncpoint
• State 6 - Receiver rollback or free session (MRO only)
• State 7 - Free pending after SEND LAST
• State 8 - Free session

Normally, the front-end transaction in a conversation will initially be in state 1 -
session not allocated - and must issue an ALLOCATE command to aCQuire a
session.

An exception to this occurs when the front-end transaction is started by
automatic transaction initiation (ATI) in the local system, with an LUTYPE6.1 or
MRO session as its principal facility. In this case the session is already
allocated, and the transaction in is state 2. For transactions of this type, you
must immediately obtain the session name from EIBTRMID if you want to be able
to name the session explicitly on subsequent commands.

You must always assume that the back-end transaction is initially in state 4
(receive state). Even if it is designed only to send data to the front-end
transaction, you must issue a RECEIVE to receive the SEND INVITE issued by the
front-end transaction and get into send state.

256 CfCS/MVS 2.1.2 Intercommunlcatfon Guide

State diagrams
The following diagrams are intended to enable you to construct valid command
sequences. Each diagram relates to one particular state, as previously defined,
and shows the commands that you might reasonably issue and the tests that you
must make after issuing the command. Where more than one test is shown,
they must be made in the order indicated.

The combination of the command issued and a particular positive test result lead
to a resultant state, shown in the final column. In an MRO or LUTYPE6.1
conversation (just as in an LUTYPE6.2 mapped conversation), your program
should not make assumptions as to the current or next state of the conversation.
Always test the EIB to determine the current state of the conversation and what
to do next.

See "Using the state diagrams" on page 205 for an example of how to Lise the
state diagrams.

other tests
The tests that are shown in the diagrams are those that are significant to the
state of the conversation. Tests for other conditions that may possibly arise, f<?r
example, INVREQ or NOTALLOC, should be made in the normal way.

Also, if your transaction is expected to receive an incoming SIGNAL command,
you should either execute a HANDLE command for the SIGNAL condition or test
EIBSIG after each command.

STATE 1 LU

Commands You

ALLOCATE [NOQ

* If you wan
the NOQUEU
command fo

TYPE6.1 and MRO CONVERSATIONS SESSION NOT ALLOCATED

Can Issue What To Test New
State

UEUE] * SYSIDERR 1

SYSBUSY * 1

Otherwise 2
(obtain session name
from EIBRSRCE)

-- _N._'.' __

t your program to wait until a session ;s available, omit
E option of the ALLOCATE command and do not code a HANDLE
r the SYSBUSY condition.

t control to be returned to your program if a session is not If you wan
immediatel
and test E
command.

y available, either specify NOQUEUE on the ALLOCATE command
IBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY

Figure 86. State 1 - session not allocated

Chapter 4.7. CICS-to-CICS DTP for MRO and lUTYPE6.1 257

STATE 2 LUTYPE6.1 and MRO CONVERSATIONS SEND STATE

Commands You Can Issue * What To Test New
State

SEND 2

SEND INVITE - 3

SEND INVITE WAIT - 4

SEND LAST - 7

SEND LAST WAIT - B
--

CONVERSE Go to the STATE 4 table and make -
Equivalent to: the tests shown for the RECEIVE

SEND INVITE WAIT command
RECEIVE

RECEIVE Go to the STATE 4 table and make -
(LUTYPE6.1 only) the tests shown for the RECEIVE

command
.-

'SYNCPOINT .EIBRLDBK (or ROLLEDBACK condition) 4
(MRO only)

Otherwise 2
(transaction will ABEND if
SYNCPOI NT fail s)

SYNCPOINT ROLLBACK (transaction will ABEND if 2
(MRO only) ROLLBACK fail s)

FREE - 1
Equivalent to:

SEND LAST WAIT
FREE

* For the front-end transaction, the first command used after the session
has been allocated must be a SEND command or CONVERSE command that
initiates the back-end transaction in one of the ways described under
'Attaching the Remote Transaction' above.

Figure 87. State 2 - send state

258 CICS/MVS 2.1.2 Intercommunication Guide

-------_._-------------_ ... __ ._--------_._----------
STATE 3 LUTYPE6.1 and MRO CONVERSATIONS RECEIVE PENDING AFTER INVITE

Commands You Can Issue ~Jhat To Tes t New
State

-----4-------------------1-.----
WAIT TERMINAL SESSION

SYNCPOINT
(LUTYPE6.10n1y)

(transaction will ABEND if
SYNCPOINT fails)

Figure 88. State 3 - receive pending after INVITE

4

4

.. --------
STATE 4 LUTYPE6.1 and MRO CONVERSATIONS RECEIVE STATE

- --- --
Commands You Can Issue What To Test New

State.

RECEIVE [NOTRUNCATE] * EIBCOMPL * -
r-

EIBSYNC 5

EIBSYNRB (MRO only) 6

EIBFREE 8

EIBRECV 4

Otherwise 2

SYNCPOINT ROLLBACK (transaction will ABEND if 2
(MRO only) ROLLBACK fail s)

* If NOTRUNCATE is specified, a zero value in EIBCOMPL indicates that the
data passed to the application by CICS is incomplete (because, for
example, the data-area specified in the RECEIVE command is too small).
CICS will save the remaining data for retrieval by subsequent RECEIVE
NOTRUNCATE commands. EIBCOMPL is set when the last part of the data is
passed back. If the NOTRUNCATE option is not specified, overlength data
is indicated by the LENGERR condition, and the remaining data is
discarded by CICS.

Figure 89. State 4 - receive state

Chapter 4.7. CICS-to-CICS DTP for MRO and lUTYPE6.1 259

STATE 5 LUTYPE6.1 and MRO CONVERSATIO NS RECEIVER TAKE SYNCPOINT

Commands You Can Issue

SYNCPOINT

SYNCPOINT ROLLBACK
(MRO Only)

What

EIBFR

EIBRE

Other

EIBFR

EIBRE

To Test

EE (saved value)
-
CV (saved value)

-
wise

EE (saved value)

CV (saved value)

Other wise

Figure 90. State 5 - receiver take syncpoint

~ .-----------

New
State

8

4

2

8

4

2

STATE 6 MRO CONVERSATIONS RECEIVER ROLLBACK OR FREE SESSION
~"

Commands You Can Issue ~Jhat To Test New
State

-
SYNCPOINT ROLLBACK EIBFREE (saved val ue) 8

EIBRECV (saved value) 4

Otherwise 2
-

FREE - 1

Figure 91. State 6 - receiver rollback or free session

-
STATE 7 LUTYPE6.1 and MRO CONVERSATIONS FREE PENDING AFTER SEND LAST

f--.

Commands You Can Issue What To Test New
State

WAIT TERMINAL SESSION - 8
(do not use for MRO
sessions)

SYNCPOINT - 8
1--.

FREE - 1
-

Figure 92. State 7 - free pending after SEND LAST

260 CICS/MVS 2.1.2 Intercommunication Guide

STATE 8 LUTYPE6.1 and MRO CONVERSATIONS FREE SESSION

~:._:~_E_a_nd_S_YO_u_Ca_n_Is_s_u_e _____ -+ What To ._Te_s_t ______ . ___ ~=~_-[:_e_
Figure 93. State 8 - free session

---------_.-._-----------------_._---
Restrictions for multiregion operation

This section summarizes the restrictions that apply when you are using
distributed transaction processing over MRO links.

1. You cannot use the following commands on the MRO session:

EXTRACT TCT
ISSUE SIGNAL
WAIT SIGNAL
ISSUE DISCONNECT

2. You should not use the WAIT command, because it is functionally a null
operation on MRO sessions. In particular, the command sequence:

SEND LAST
WAIT
SYNCPOINT (or RETURN)

will cause a syncpoint now on an MRO session but not on an LUTYPE6.1
session.

To avoid syncpoint nows on an MROsession, use either

SEND LAST WAIT
or

SEND LAST
FREE

The MRO and LUTYPE6.1 implementations of these sequences are
functionally equivalent.

3. You cannot use the following command sequence on an MRO session:

SEND INVITE
SYNCPOINT
RECEIVE

4. You cannot use the following command sequence on an MRO session:

SEND
RECEIVE

You must always code the INVITE option explicitly.

Chclpter 4.7. CICS-to-CICS DTP for MRO and LUTYPE6.1 261

5. You are required always to test the EIB settings after issuing a RECEIVE
command on an MRO session, rather than making any assumptions about
the state of the session. Failure to observe the EIB states can lead to errors.

A program designed to be driven by the EIB states after issuing a RECEIVE
command will operate correctly on both MHO and LUTYPE6.1 sessions.

262 CICS/MVS 2.1.2 Intercommunication Guide

Chapter 4.8. CICS-to-IMS applications

This chapter tells you how to code CICS transactions that communicate with an
IMS system. For full details of IMS ISC, you should read the appropriate IMS
publications. This chapter is intended to provide sufficient information about IMS
to enable you to work with your IMS counterpart to implement a CICS-to-IMS ISC
application.

The design of CICS-to-IMS Ise applications

Data formats

There are many differences between CICS and IMS, both in their architecture
and in their application and system programming requirements.

The design of CICS-to-IMS ISC applications involves principally CICS application
programming and IMS system definition. This difference reflects where the
control lies in each of the two systems.

CICS is a direct control system. Data entered at a terminal causes CICS to
invoke the appropriate application program to process the incoming data. The.
data is stored, rather than queued, and the application "owns" the terminal until
it completes its processing and terminates. In CICS ISC, the application program
is involved with data flow protocols, with syncpointing, and, in general, with most
system services.

In contrast, 1MB is a queued system. All input and output messages are queued
by the IMS control region on behalf of the related application programs and
terminals. The queuing of messages and the processing of messages are
therefore performed asynchronously. (Do not confuse this use of asynchronous
with CICS asynchronous processing.) This is illustrated in Figure 94 on
page 264.,

As a result of this type of system design, IMS application programs do not have
direct control over IMS system resources, nor do they become directly involved
in the control of intersystem communication. IMS message switching is handled
entirely in the IMS control region; the message processing region is not
involved.

Messages transmitted between CICS and IMS can have either of the following
data formats:

• Variable length variable blocked (VLVB)
• Chain of RUs.

© Copyright IBM Corp. 1977, 1991 263

.-----
Control Message
Region Processing

Region

1->- TRAN CODE r->- message
SESSIONS

I I
processing

message program
EDIT

~<- LTERM NAME r-<-

I message I
MESSAGE
QUEUES

Figure 94. Basic IMS message queuing

In normal CICS communication with logical units, "chain of RUs" is the default
data format. In IMS, VLVB is the default. In CICS-to-IMS communication, the
format th.at is being used is specified in the LUTYPE6.1 attach headers that are
sent with the initial data.

Variable length variable blocked
In VLVB format, a message can contain multiple records. Each record is
prefixed by a 2-byte length field, as shown here.

H.· data H data

<- record 1 --><-- record 2 ->

In CICS, the I/O area contains a complete message, which can contain one or
more records. The blocking of records for output,and the deblocking on input,
must be done by your CICS application program.

Chain of RUs
In this format, which Is the most common CICS format, a message IS transmitted
as multiple SNA RUs, as shown here.

data

<--- multiple SNA RUs ,---->

In CICS, the 1/0 area contains a complete message.

264 CICS/MVS 2.1.2 Intercommunication Guide

Forms of intersystem communication with IMS
There are three forms of CICS-to-IMS that must be considered:

1. Asynchronous processing using CICS START and RETRIEVE commands.

2. Asynchronous processing using CICS SEND LAST and RECEIVE commands.

3. Distributed transaction processing (that is, synchronous processing) using
CICS SEND and RECEIVE commands.

The basic differences between these forms of communication are described in
"Chapter 1.5. Asynchronous processing" on page 33 and "Chapter 1.7.
Distributed transaction processing" on page 55.

In any particular application that involves communication between CICS and IMS,
the intersystem communication must be initiated by one or other of the two
systems .. For example, if a CICS terminal operator initiates a CICS transaction
that is designed to obtain data from a remote IMS system, the Intersystem
communication for the purposes of this application is Initiated by CICS.

The system that initiates intersystem communication for any particular
application is the front-end system as far as that application is concerned. The
other system is called the back-end system.

When CICS is the front-end, it supports all three types of intersystem
communication listed above. The form of communication that can be used for
any particular application depends on the IMS transaction type or on the IMS
facility that is being initiated. Details of the forms of communication that IMS
supports when it is the back-end system are given in the IMS Version 2
Programming Guide for Remote SNA Systems.

When IMS is the front-end system, it always uses asynchronous processing
(corresponding to the CICS START/RETRIEVE interface) to initiate communication
with CICS.

Asynchronous processing
In asynchronous processing, the Intersystem session is used only to pass an
initiation request, together with various items of data, from one system to the
other. All other processing is independent of the session that is used to pass
the request.

The two application programming interfaces available in CICS for asynchronous
processing are:

• The START/RETRIEVE interface
• The SEND/RECEIVE interface.

Chapter 4.8. CICS-to-IMS applications 265

The START/RETRIEVE interface
The full syntax of the CICS START and RETRIEVE "interval control" commands is
given in the CICSIMVS Application Programmer's Reference manual. The
relevant forms of these commands, together with the specific meanings of the
command options in a CICS-to-IMS intersystem communication environment, are
given in "The START command" on page 268 and "The RETRIEVE command" on
page 269.

CICS front end
When CICS is the front-end system, you can use CICS START and RETRIEVE
commands to process IMS nonresponse mode and nonconversational
transactions, messages switches, and the IMS lOIS, IROIS, and IFOR operator
commands.

The general command sequence for your application program is shown In
Figure 95.

CICS IMS

TRANA
(st art)

(obtain terminal f->-

input)
START NOCHECK

PROTECT

(SYNCPOINT)
RETURN

TRANB
(st art)

RETRIEVE - <-

(send to terminal)
RETURN

Figure 95. START/RETRIEVE asynchronous processing - C/CS front-end

Note: Unless change direction is also sent, IMS expects the above commands to
be sent requesting a definite response. If you code the PROTECT option on the
START command, CICS sends the command requesting a definite response. For
further information, see the IMS Version 2 Programming Guide for Remote SNA
Systems!

After transaction TRANA has obtained an input' message from the terminal, it
Issues a START NOCHECK command to initiate the remote IMS transaction; The
START·command specifies the name of the IMS editor that is to be initiated to
process ~he message and the IMS transaction or logical terminal (L,TERM) that is

266 CICS/MVS 2.1.2 Intercommunication Guide

to receive the message. It also specifies the name of the CICS transaction that
is to receive the reply and the name of the associated CICS terminal.

The PROTECT option can be specified on the START command to ensure
delivery of the message to IMS.

The start request is not shipped until your application program either issues a
SYNCPOINT command or terminates. However, the request will not carry the
syncpoint-indicator unless PROTECT was specified on the START command.

Although CICS allows an application program to Issue multiple START NOCHECK
commands without intervening syncpoints (see "Deferred sending of START
requests" on page 38), this technique is not recommended for CICS-to-IMS
communication.

IMS sends the reply by issuing a "start" request which is handled in the normal
way by the CICS mirror transaction. The request specifies the CICS transaction
and terminal that you named in the original START command. The transaction
that is started (TRANB) can then retrieve the reply by issuing a RETRIEVE
command.

In the above example, it has been assumed that there are two separate CICS
transactions; one to issue the START command and one to receive the reply and
return it to the terminal. These two transactions can be combined, and there are
two ways in which this can be done.

The first method Is to write a transaction that contains both the START and the
RETRIEVE processing, but which performs only one of these functions for a
particular execution. The CICS ASSIGN STARTCODE command can be used to
determine whether the transaction was initiated from the terminal, in which case
the START processing is required, or by a start request, in which case the
RETRIEVE processing is required.

The second method is to write a transaction that, having issued the START
command, issues a SYNCPOINT command to "flush" the start request and then
waits for the reply by issuing a RETRIEVE command with the WAIT option. The
terminal will be held by the transaction during this time, and CICS will return
control to the transaction when input directed to the same transaction and
terminal is received ..

In all cases, you should make no assumptions about the timing of the reply or itf:
relationship to a particular, previous, request. A RETRIEVE command will
retrieve any outstanding data destined for the same transaction and terminal.
The correlation of requests and replies is the responsibility of your application
program.

IMS front end
When IMS is the front-end system, the only supported flow is the asynchronous
start request. Your application program must use the RETRIEVE command to
obtain the request from IMS, followed by a START command to send the reply if

. one is required.

Chapter 4.8. CICS-to-IMS applications. 267

The general command sequence for your application program is shown in
Figure 96.

If a reply to the retrieved data is required, your start command must specify the
IMS editor and transaction or L TERM name obtained by the RETRIEVE command.

INS

________ ---J

CICS

TRANA
(start)

> RETRIEVE
(communicate with
terminal)
START

(SYNCPOINT)
--< RETURN

(start)

___________ -J

Figure 96. RETRIEVE/START asynchronous processing - IMS front-end

The START command
This section show the format of the START command that is used to schedule
remote IMS transactions. Note that no interval control is possible (although it is
not an error to specify INTERVAL(O)) and that the NOCHECK option must be
specified.

EXEC CICS START
[SYSIO(name)]
TRANSIO (name)
[FROM(data-area) LENGTH(parameter)]
[TERMID(name)]
[RTRANSID(name)]
[RTERMID (name)]

NOCHECK
[PROTECT]
[FMH]

SYSID(name)
specifies the name of the remote IMS system. This is the name that is'
specified by the system programmer in the CONNECTION operand of the
DEFINE CONNECTION command (or the SYSIDNT operand of the DFHTCT
TYPE =SYSTEM macro) that defines the link to the remote system. You need
this option only if you are required to name the remote system explicitly.

TRANSID(name)
specifies the name of the IMS editor that is to be initiated to process the
message. It mllst be an alias (not exceeding four characters) of ISCEDT, or
an MFS MID name.

Alternatively, it can name a transaction that is defined as "remote" in the
local CICS program control table. In this case, the SYSID option is not used.

268 CICS/MVS 2.1.2 Intercommunication Guide

The PCT entry must name the required IMS editor in the RMTNAME operand,
which can be up to eight characters long.

FROM(data-area)
specifies the data that is to be sent. The format of the data (VlVB or chain
of RUs) must match the format specified in the RECORDFORMAT option of
the DEFINE CONNECTION command (or the RECFM operand of the DFHTCT
TYPE = SYSTEM macro) that defines the remote IMS system (see "Chapter
3.1. Defining links to remote systems" on page 91).

LENGTH(parameter)
specifies, as a halfword binary value, the length of the data specified in the
FROM option.

TERMIO(name)
specifies the primary resource name that is to be assigned to the remote
process. For IMS, it is a transaction code or an l TERM name.

If this option is omitted, you must specify the transaction code or the l TERM
name in the first eight characters of the data named in the FROM option.
You must use this method if the name exceeds four characters (the CICS
limit for the TERMID option) or if IMS password processing is required.

RTRANSID(name)
specifies the name of the transaction that is to be invoked when IMS returns
a reply to CICS. The name must not exceed four characters in length.

RTERMIO(name)
specifies the name of the terminal that is to be attached to the transaction
specified in the RTRANSID option when it is invoked. The name must. not
exceed four characters in length.

NOCHECK
This option is mandatory.

PROTECT
specifies that the remote IMS transaction must not be scheduled until the
local CICS transaction has taken a syncpoint.

FMH
specifies that the user data to be passed to the started task contains FMHs.
This option is not normally used.

The RETRIEVE command
This section show the format of the RETRIEVE command that is used retrieve
data sent by IMS.

EXEC CICS RETRIEVE
[{INTO(data-area)ISET(pointer-ref)}

LENGTH(data-area)]
[RTRANSID(data-area)]
[RTERMID(data-area)]
[WAIT]

I NTO(data-area)
specifies the user data area into which the data retrieved from IMS is to be
written.

Chapter 4.8. CICS-to-IMS applications 269

LENGTH(parameter)
specifies the halfword binary length of the retrieved data.

For a RETRIEVE command with the INTO option, the parameter must be a
data area that specifies the maximum length of data that the program is
prepared to handle. If the value specified is less than zero, zero is assumed.
If the length of the data exceeds the value specified, the data is truncated to
that value and the LENGERR condition occurs. On completion of the retrieval
operation, the data area is set to the original length of the data.

For a RETRIEVE command with the SET option, the parameter must be a data
area. On completion of the retrieval operation, the data area is set to the
length of the data.

RTERMID(data-area)
specifies an area to receive the return primary resource name sent by IMS.
It is either a transaction name or an L TERM name.

Your application can use this name in the TERMID of the START command
used to send the reply.

RTRANSID(data-area)
specifies an area to receive the return destination process name sent by
IMS. It is either an MFS MID name chained from an output MOD, or is blank.

Your application can use this name in the TRANSID of a subsequent START
command.

SET(polnter·ref)
specifies the pointer reference to be set to the address of the data retrieved
from IMS.

WAIT
specifies that control is not to be returned to your application program until
data is sent by IMS.

If WAIT is not specified, the ENDDATA condition will be raised if no data is
available. If WAIT is specified, the ENDDATA condition will be raised only if
CICS is shut down before any data becomes available.

The use of the WAIT option is not general1y recommended, because it can
cause intervening messages (not the expected reply) to be retrieved.

The asynchronous SEND/RECEIVE interface
This form of asynchronous processing is, in CICS, a special case of distributed
transaction processing. A CICS transaction acquires the use of a session to a
remote system, and uses the session for a single transmission (using a SEND
command with the LAST option) to initiate a remote transaction and send data to
it. The reply from the remote system causes a CICS transaction to be initiated
just as if it were a back-end transaction in normal DTP. This transaction,
however, can issue only a single RECEIVE command, and must then free the
session.

Except for these additional restrictions, you can design your application
according to the rules given for distributed transaction processing in "Distributed
transaction processing" on page 271.

270 CICS/MVS 2.1.2 Intercommunication Guide

The general command sequence for asynchronous SEND/RECEIVE application
programs is shown in Figure 97.

CICS IMS

--

TRANA
(at tach)

ALLOCATE r--->-

BUILD ATTACH
SEND ATTACHID

LAST
FREE

--

TRANB
.• - (at tach)

RECEIVE ---<--

EXTRACT ATTACH

FREE
'----._---

Figure 97. SEND/RECEIVE asynchronous processing - CICS front-end

Distributed transaction processing
This section describes application programming for CICS-to-IMS distributed
transaction processing.

CICS commands for CICS .. to-IMS sessions
The commands that can be used to acquire and use CICS-to-IMS sessions are:

• ALLOCATE - used to acquire a session to the remote IMS system.

• BUILD ATTACH - used to build an LUTYPE6.1 attach header that will be
used to initiate a transaction on a remote IMS system.

• EXTRACT ATTACH - used by a CICS transaction to recover information
from the LUTYPE6.1 attach header that caused it to be initiated. This
command is required only for SEND/RECEIVE asynchronous processing.

• SEND, RECEIVE, and CONVERSE - used by the CICS transaction to send or
receive data on the session. The first SEND or CONVERSE command issued
by a front-end CICS transaction must name the attach header that has been
defined by the BUILD ATTACH command.

• WAIT TERMINAL SESSION(name) - used to ensure that CICS has
transmitted any accumulated data or data flow control indicators before .it
continues with further processing. This command is required only for certain
highly-specialized applications.

Chapter 4.8. CICS-to-IMS applications 271

• ISSUE SIGNAL SESSION(name) - used by a transaction that is in receive
state to request an invitation to send (change-direction) from IMS. This
command is required only for certain highly-specialized applications.

• FREE - used by a CICS transaction to relinquish Its use of the session.

Considerations for the front-end transaction
Except in the special case of the receiving transaction in SEND/RECEIVE
asynchronous processing, the CICS transaction is always the front-end
transaction in CICS-to-IMS DTP.

The front-end transaction is responsible for acquiring a session to the remote
IMS system and initiating the remote transaction.

Thereafter, the two transactions become equals. However, the front-end
transaction is usually deSigned as the driving transaction.

Session allocation
You acquire an LUTYPE6.1 session to a remote IMS system by means of the
ALLOCATE command, which has the following format:

ALLOCATE {SYSID(name)ISESSION(name)}
[PROFILE(name)]
[NOQUEUE]

You can use the SESSION option to request the use of a specific session to the
remote IMS system, or you can use the SYSID option to name the remote. system
and allow CICS to select an available session. The use of the SESSION option is·
not normally recommended, because it can result in an application program
queuing on a specific session when others are available. In most cases,
therefore, you will use the SYSID option to name the system with which the
session Is required.

CICS will raise the SYSIDERR condition if it cannot find a named system, or the
SESSIONERR condition if it cannot find a named session.

The PROFILE option allows you to select a specified communication profile for an
LUTYPE6.1 session. The profile, which is set up during resource definition,
contains a set of terminal control processing options that are to be used for the
session.

If you omit the PROFILE option, CICS will use the default profile DFHCICSA. This
profile specifies INBFMH{AlL), which means that inbound function management
headers will be passed to your program and will cause the INBFMH condition to
be raised.

The NOQUEUE option aHows you to specify explicitly that you do not want your
request for a session tobe queued if a session is not available immediately. A
session Is "not immediately available" in any of the following situations:

• All the sessions to the specified system are in use:

• The only available sessions are not bound (in which case CICS would have
to bind a session).

272 CICS/MVS 2.1.2 Intercommunication Guide

• The only available sessions are contention losers (in which case CICS would
have to bid to begin a bracket).

The action taken by CICS if a session is not immediately available depends on
whether you specify NOQUEUE and also on whether your application has
executed a HANDLE command for the SYSBUSY condition. The possible
combinations are shown below:

• HANDLE for SYSBUSY condition

- Control is returned immediately to the label specified in the HANDLE
command, whether or not you have specified NOQUEUE.

• No HANDLE for SYSBUSY condition

If you have specified NOQUEUE, control is returned immediately to your
application program. The SYSBUSY code (X'D3') is set in the
EIBRCODE field of the EXEC interface block. You should test this field
immediately after issuing the ALLOCATE command.

If you have omitted the NOQUEUE option, CICS queues the request until
a session is available.

Whether or not a delay in acquiring a session is acceptable will depend on your
application.

Similar considerations apply to an ALl.OCATE command that specifies SESSION
rather than SYSIO. The associated condition is SESSBUSY (EIBRCODE = X' 02').

The session Identifier
When a session has been al/ocated, the name by which it is known is available
in the EIBRSRCE field in the EIB. Because EIBRSRCE will probably be
overwritten by the next EXEC CICS command, you must acquire the session
name immediately. It is the name that you must use in the SESSION option of all
subsequent commands that relate to this session.

Automatic transaction Initiation
If the front-end transaction is designed to be started by automatic transaction
initiation (ATI) in the local system, and is required to hold a conversation with an
LUTYPE6.1 session as its principal facility, the session will have already been
allocated when the transaction starts. You can omit the SESSION option from
commands that relate to the principal facility. If, however. you wish to name the
session explicitly in these commands, you should obtain the name from
EIBTRMID.

Attaching the remote transaction
When a session has been acquired, the next step is to cause the remote IMS
process to be initiated.

The LUTYPE6.1 architecture defines a special function management header.
called an attach header, which carries the name of the remote process (in CICS
terms. the transaction) that is to be initiated, and also contains further
session-related information.

Chapter 4.8. CICS-to-IMS applications 273

CICS provides the BUILD ATTACH command to enable a CICS application
program to build an attach header to send to IMS, and the EXTRACT ATTACH
command to enable information to be obtained from attach headers received
from IMS.

Because these commands are available, you do not need to know the detailed
format of an LUTYPE6.1 attach header. In most cases, however, you will need to
know the meaning of the information that it carries. The format of the BUILD
ATTACH command is:

BUILD ATTACH
ATTACHID (name)

[PROCESS(name)]
[RESOURCE(name)]
[RPROCESS(name)]
[RRESOURCE(name)]
[QUEUE(name)]
[IUTYPE(data-value)]
[DATASTR(data-value)]
[RECFM(data-value)]

The options of the BUILD ATTACH command have the following meanings:

ATIACHID(name)
The ATTACHID option enables you to assign a name to the attach header so
that you can refer to it in a subsequent SEND or CONVERSE command. (The
BUILD ATTACH command builds an attach header; it does not transmit it.)

PROCESS(name)
This corresponds to the process name, ATTDPN, in an attach FMH. It
specifies the remote process that is to be initiated.

In CICS-to-IMS communication, the remote process is always an editor. It
can be ISCEDT (or its alias), BASICEDT, or an MFS MID name. The process
name must not exceed 8 characters.

If the PROCESS option is omitted, IMS assumes ISCEDT.

RESOURCE(name)
This corresponds to the resource name, ATTPRN, in an attach FMH.

The RESOURCE option specifies the primary resource name that is to be
assigned to the remote process that is being initiated.

In CICS-to-IMS communication, the primary resource name is either an IMS
transaction code or a logical terminal name. You can omit the RESOURCE
option if the IMS message destination is specified in the first eight bytes of
the message or if the destination is preset by the IMS operator.

If a primary resource name is supplied to IMS, the data stream is not edited
for destination and security information. You should therefore omit the
RESOURCE option if IMS password processing is required.

The name in the RESOURCE option is ignored during conversational
processing, or if the remote process is BASICEDT.

The name must not exceed eight characters.

274 CICS/MVS 2.1.2 Intercommunication Guide

RPROCESS(name)
This corresponds to the return process name, ATTRDPN, in an attach FMH.

The RPROCESS option specifies a suggested return destination process
name. IMS returns this name as a destination process name (ATTDPN)
when it sends a reply to CICS, although the name may be overridden by
MFS.

CICS uses the returned destination process name to determine the
transaction that is to be attached after a session restart. At any other time,
it is ignored. The RPROCESS option should therefore name a transaction
that will handle any queued messages when it is attached by CICS at
session restart following a session failure.

RRESOURCE(name)
This corresponds to the return resource name, ATTRPRN, in an attach FMH.

The RRESOURCE option specifies a suggested primary resource name that
is to be assigned to the return process. IMS returns this name as the
resource name (ATTPRN) when it sends a reply to CICS.

Although CICS normally ignores this field, one use for it in ISC is to specify a
CICS terminal to which output messages occurring after session restart
should be sent.

QUEUE(name)
This corresponds to the queue name, ATTDQN, in an attach FMH.

The QUEUE option specifies a queue that can be associated with the remote
process. In CICS-to-IMS communication, it is used only to send a paging
request to IMS during demand paging. The name used must be the one
obtained by a previous EXTRACT ATTACH QNAME command. The name
must not exceed 8 characters.

I UTYPE(data-value)
This corresponds to the interchange unit field, ATTIU, in an attach FMH.

The IUTYPE option specifies SNA chaining information for the message. The
value is halfword binary. The bits in the binary value are used as follows:

0-7
8-15

X'OO'
X'OO'
X 101 1

- must be set to zero
- multiple RU chains
- single RU chains

If the option is omitted, multiple RU chains are assumed. Because IMS will
always accept this value, regardless of the actual message chain types, you
are advised to omit the IUTYPE option.

DATASTR(data-value)
This corresponds to the data stream profile field, ATTDSP, in an attach FMH.

The DATASTR option is used to select an IMS component.

The value is halfword binary. The bits in the binary value are used as
follows:

Chapter 4.8. CICS-to-IMS applications 275

0-7
8-11
12-15

X'OO'
0000
0000
0001
0010
0011

- must be set to zero
- (user-defined datastream)
- I MS Component 1
- IMS Component 2
- IMS Component 3
- I MS Component 4

If the DATASTR option is omitted, IMS Component 1 is assumed.

RECFM(data-value)
This corresponds to the deblocking algorithm field, ATTDBA, in an attach
FMH.

The RECFM option specifies the format of the user-data that will be sent to
the remote process.

The name must represent a halfword binary value. The bits in the binary
value are used as follows:

0-7
8-15

X'OO'
X'01'

X'04'

- reserved - must be set to zero
- variable length variable blocked (VLVB)
format
- chain of RUs

If VLVB is specified, your application program must add a 2-byte binary
length field in front of each record. If "chain of RUs" is specified, you can
send your data in the usual way; no length fields are required.

A record is interpreted by IMS as either a segment of a message (without
MFS) or an MFS record (with MFS).

The RECFM option indicates only the type of the message format. Multiple
records can be sent by one SEND command. In this case, it is the
responsibility of your application program to perform the blocking.

Having built the attach header, you must ensure that it is transmitted with the
first data sent to the remote system by naming it in the ATTACHID option of the
SEND or CONVERSE command.

Blilldlng your own attach header
CICS allows you to build an attach header, or any function management header,
as part of your output data. You can therefore initiate the remote transaction by
including a LUTYPE6.1 attach header in the output area referenced by the first
SEND or CONVERSE command. You must specify the FMH option on the
command to tell CICS that the data contains an FMH.

Cons,iderations for the back-end transaction
A CICS transaction can be the back-end transaction in CICS-to-IMS
communication only in the special case of SEND/RECEIVE asynchronous
processing.

The transaction is initiated by an LUTYPE6.1 attach FMH received from the
remote IMS system, and is allowed to issue only a single RECEIVE command,
possibly followed by an EXTRACT ATTACH command.

276 CICS/MVS 2.1.2 Intercommunication Guide

Acquiring session-related Information
You can use the EXTRACT ATTACH command to recover session-related
information from the attach FMH if required, but the use of this command is not
mandatory.

The presence of an attach header is indicated by EIBATT, which is set after the
first RECEIVE command has been issued.

The format of the EXTRACT ATTACH command is:

EXTRACT ATTACH
[SESSION(data-area)]
[PROCESS(data-area)]
[RESOURCE(data-area)]
[RPROCESS(data-area)]
[RRESOURCE(data-area)]
[QUEUE(data-area)]
[IUTYPE(data-area)]
[DATASTR(data-area)]
[RECFM(data-area)]

The options of the EXTRACT ATTACH command have the following meanings:

DATASTR(data-area)
contains a value specifying the IMS output component.

The data-area must be a halfword binary field. The values set by IMS are as
follows:

0-7
8-11
12-15

IUTYPE(data-area)

X'OO'
0000
0000
0001
0010
0011

- must be set to zero
- (user-defined datastream)
- IMS Component 1
- IMS Component 2
- IMS Component 3
- I MS Component 4

indicates SNA chaining information for the message and the type of MFS
paged output.

The data-area must be a halfwordbinary field. The values set by IMS are as
follows:

0-7
8-15

PROCESS(data-area)

X'QO'
X'OO'
X'01 '
X'05'

- must be set to zero
- multiple RU chains, MFS autopaged output
.- single RU chains, MFS non-paged output
-- single RU chains, MFS demand-paged output

IMS returns either the return destination process name specified in the
RPROCESS option of the BUILD ATTACH command, or a value set by the
MFS MOD.

QUEUE(data-area)
IMS returns the L TERM name associated with the ISC session when MFS
demand-paged output is ready to be sent. The returned value should be

Chapter 4.8. CICS-to-IMS applications 277

The conversation

used in the QMODEL FMH and the BUILD ATTACH QNAME when a paging
request is to be sent.

RECFM(data-area)
contains the data format of the incoming user message.

The data-area must be a halfword binary field. The values set by IMS are as
follows:

0-7
8-15

X'OO'
X'01'

- reserved - must be set to zero
- variable length variable blocked (VLVB)
format

X'04' - chain of RUs (can also be X'OO' or X'05')

If VLVB is specified, your application program must deblock the message by
using the halfword binary length field that precedes each record.

RESOURCE(data-area)
IMS returns either the return resource name specified In the RRESOURCE
option of the BUILD ATTACH command, or a value set by the MFS MOD.

RPROCESS(data-area)
IMS sends the chained MFS MID name if MFS is being used. Otherwise, no
value is sent.

RRESOURCE(data-area)
IMS sends the value set by the MFS MOD if MFS is being used. Otherwise,
no value is sent.

Initial state of back-end transaction
The back-end transaction is initiated in receive state, and should issue RECEIVE
as its first command or after EXTRACT ATTACH.

The conversation between the front-end and the back-end transactions is held
using the usual SEND, RECEIVE, and CONVERSE commands. Details of these
commands are given in the CICSIMVS Application Programmer's Reference
manual.

In each of these commands, you must name the session in the SESSION option
unless the conversation is with the principal facility.

Deferred transmission
On ISC sessions, when you Issue a· SEND command, CICS will normally defer
sending the data until it becomes clear what your further intentions are. This
mechanism enables CICS to avoid unnecessary nows by adding, or
"piggy-backing", control indicators on the data that is awaiting transmission.

In general, IMS does not accept indicators such as change-direction,
syncpoint-request, or end-bracket as stand-alone transmissions on null RUs.
You should therefore always allow deferred transmission to operate, and avoid
using the WAIT option or the WAtT TERMINAL command to force transmissions
to take place.

278 CICS/MVS 2.1.2 Intercommunication Guide

Using the LAST option
The LAST option on the SEND command indicates the end of the conversation.
No further data flows can occur on the session, and the next action must be to
free the session. However, the session Crtn still carry CICS syncpointing flows
before it is freed.

The LAST option and syncpolnt flows
A syncpoint on an ISC session is initiated explicitly by a SYNCPOINT command,
or implicitly by a RETURN command.

If your conversation has been terminated by a SEND LAST command, without the
WAIT option, transmission will have been deferred, and the syncpointing activity
will cause the final transmission to occur with a piggy-backed syncpoint request.
The conversation will thus be automatically involved in the syncpoint.

Freeing the session
The command used to free the session has the following format:

FREE SESSION(name)

where "name" is the name of the conversation.

You must free the session after issuing a SEND LAST command, or when the
EIBFREE field has been set.

CICS allows you to issue the FREE command at any time that your transaction is
in send state. CICS determines whether the end-bracket indicator has already
been transmitted, and transmits it if necessary before freeing the session. If
there is also deferred data to transmit, the end-bracket indicator is transmitted
with the data. Otherwise, the indicator is transmitted by itself.

Because only certain IMS Input components accept a "stand-alone" end-bracket
indicator, this use of FREE is not recommended for CICS-to-IMS communication.

The EXEC interface block (EIB)
Full details of the EIB are given in the CICSIMVS Application Programmer's
Reference manual., This section highlights the fields that are of particular
significance in ISC applications. For further details of how and when these fields
should be tested, or saved, see "Command sequences for CICS-to-IMS sessions"
on page 281.

Conversation Identifier fields
The following EIB fields enable you to obtain the name of the ISC session.

EIBTRMID
contains the name of the principal facility. For a back-end transaction, or for
a front-end transaction started by A TI, it is the conversation identifier
(SESSION). You must acquire this name if you want to state the session
name of the principal facility explicitly.

Chapter 4.8. CICS-to-IMS applications 279

EIBRSRCE
contains the session identifier (SESSION) for the session obtained by means
of an ALLOCATE statement. You must acquire this name immediately after
issuing the ALLOCATE statement.

Procedural fields
These fields contain information on the state of the session. In most cases, the
settings relate to the session named in the last-executed RECEIVE or CONVERSE
command, and should be tested, or saved for later testing, after the command
has been issued. Further information on the use of these fields is given in
"Command sequences for CICS-to-IMS sessions" on page 281.

EIBRECV
indicates the conversation state following RECEIVE or CONVERSE. If it is off
(= X'OO'), your conversation partner is inviting you to send, otherwise you
would normally issue a further RECEIVE command. It does not necessarily
reflect receive state at any other time.

EIBCOMPL
This field is used in conjunction with the RECEIVE NOTRUNCATE command; it
is set to indicate that the data is complete.

EIBSYNC
indicates that CICS syncpointing is in progress and that the application must
issue a SYNCPOINT command.

EIBSIG
indicates that the conversation partner has issued an ISSUE SIGNAL
command.

EIBFREE
indicates that the receiver must issue a FREE command for the session.

Informatory fields
The following fields contain information about FMHs received from the remote
transaction:

EIBATT
indicates that the data received contained an attach header. The attach
header is not passed to your application program; however, EIBATT indicates
that an EXTRACT ATTACH command is appropriate.

EIBFMH
indicates that the data passed to your application program contains a
concatenated FMH.

If you want to use these facilities, you must ensure that you use communication
profiles that specify INBFMH(ALL). The default profile (DFHCICSA) for a session
allocated by a CICS front-end transaction has this specification. However, the
default principal facility profile (DFHCICST) for a CICS back-end transaction does
not. Further information on this subject is given under "Defining communication
profiles" on page 151.

280 CICS/MVS 2.1.2 Intercommunication Guide

Command sequences for CICS-to-IMS sessions
The command sequences that you use to communicate between the front-end

. and the back-end transactions are governed both by the requirements of your
application and by a set of high-level protocols designed to ensure that
commands are not issued in Inappropriate circumstances.

The protocols presented in this section do not cover all possible command
sequences. However, by following them, you will ensure that each transaction
takes account of the requirem'ents of the other, and hence reduce the error rate
during program development.

The protocols are based on the concept of a number of states. These states
apply only to the particular conversation, not to your application program as a
whole. In each state, there are a number of commands that might most
reasonably be issued. After the command has been issued, fields in the EIB
must be tested in the order shown in the state diagrams, Figure 98 on page 282
through Figure 104 on page 285, to check on the current requirements of the
conversation. The results ofthese tests, together with the command that has
been issued, may cause a transition to another state, in which another set of
commands become appropriate.

The states that are defined for the purposes of this section are:

• State 1 - Session not allocated
• State 2 - Send state
• State 3 - Receive pending after INVITE
• State 4 - Receive state
• State 5 - Receiver take syncpoint
• State 6 - Free pending after SEND LAST
• State 7 - Free session.

Initial states
Normally, the front-end transaction in a conversation will initially be in state 1
session not allocated - and must issue an ALLOCATE command to acquire a
session.

An exception to this occurs when the front-end transaction is started by
automatic transaction initiation (ATI) , in the local system, with an LUTYPE6.1
session as its principal facility. In this case, the session is already allocated,
and the transaction in is state 2. For transactions of this type, you must
immediately obtain the session name from EIBTRMID if you want to be able to
name the session explicitly on subsequent commands.

You must always assume that the back-end transaction is initially in state 4
(receive state). Even if it is designed only to send data to the front-end
transaction, you must issue a RECEIVE to receive the SEND INVITE issued by the
front-end transaction and get into send state.

Chapter 4.8. CICS-to-IMS applications 281

State diagrams
The following diagrams are intended to enable you to construct valid command
sequences. Each diagram relates to one particular state, as previously defined,
and shows the commands that you might reasonably issue and the tests that you
should make after issuing the command. Where more than one test is shown,
they must be made in the order Indicated.

The combination of the command issued and a particular positive test result lead
to a resultant state, shown in the final column.

Your program should not make assumptions as to the current or next state of the
conversation. Always test the EIB flags to determine the current state of the
conversation and what to do next.

See "Using the state diagrams" on page 205 for an example of how to use the
state diagrams.

other tests
The tests that are shown in the diagrams are those that are significant to the
state of the conversation. Tests for other conditions that may possibly arise, for
example, INVREQ or NOTALLOC, should be made in the normal way.

STATE 1 CICS to IMS CONVERSATIONS SESSION NOT ALLOCATED

Commands You Can Issue What To Test New
State

-

ALLOCATE [NOQUEUE] * SYSIDERR 1

SYSBUSY * 1

Otherwise 2
(obtain session name
from EIBRSRCE)

* If you want your program to wait until a session is available, omit
the NOQUEUE option of the ALLOCATE command and do not code a HANDLE
command for the SYSBUSY condition.

If you want control to be returned to your program if a session is not
immediately available, either specify NOQUEUE on the ALLOCATE command
and test EIBRCODE for SYSBUSY (X'D3'), or code a HANDLE CONDITION SYSBUSY
command.

--

Figure 98. State 1 - session not allocated

282 CICS/MVS 2.1.2 Intercommunication Guide

---------------_._---------------.-.-.--...... --~--------.---------

STATE 2 CICS to IMS CONVERSATIONS SEND STATE
f------------------------- r----------------------------

Commands You Can Issue * \~hat T o Test

SEND
~-------------------____il___- ----

SEND INVITE -

SEND LAST -
1---------_._----+------------

CONVERSE
Equivalent to:

SEND INVITE WAIT
RECEIVE

RECEIVE

SYNCPOINT

Go to
the te
cornman

the STATE 4 table and make
sts shown for the RECEIVE
d

the STATE 4 table and make
.sts shown

Go to
the te
cornman

for the RECEIVE
d
------_ .. __ .. _---------

(trans
SYNCP

action wi 11
OINT fails)

ABEND if

----_._-------_._-----
FREE

Equivalent to:
SEND LAST WAIT
FREE

-

-

New
State

2
.--

3 or 4

6

-

1-._---

-

2

1

* For the front-end transaction, the fir
has been allocated must be a SEND comm
initiates the back-end transaction in
'Attaching the Remote Transaction' abo

st command used after the session
and or CONVERSE command that
one of the ways described in
ve.

Figure 99. State 2 - send state

STATE 3 CICS to IMS CONVERSATIONS RECEIVE PENDING AFTER INVITE

Commands You Can Issue

SYNCPOINT

-----------~-----~-------

What To Test New
State

------------------I-----i
(transaction will ABEND if
SYNCPOINT fails)

4

-----------------------_.'-----'

Figure 100_ State 3 -- receive pending after INVITE

Chapter 4.8. CICS-to-IMS applications 283

STATE 4 CICS to IMS CONVERSATIONS RECEIVE STATE
r-0---------o--_______________ ~----

Commands You Can Issue ~Jhat To Test New
State

RECEIVE [NOTRUNCATE] * EIBCot1PL * -
f---o----

EIBSYNC
I---

EIBFREE

EIBRECV

Otherwis

* If NOTRUNCATE is specified, a' zero value
data passed to the application by CICS i
example, the data~area specified in the
CICS will save the remaining data for re
NOTRUNCATE commands. EIBCOMPL is set wh
passed back. If the NOTRUNCATE option i
is indicated by the LENGERR condition, a
discarded by CICS.

Figure 101. State 4 - receive state

STATE 5 CICS to IMS CONVERSATIONS

5

7

4

e 2

in EIBCOMPL indicates that the
s incomplete (because,for
RECEIVE command is toosmall).
trieval by subsequent RECEIVE
en the last part of the data is
s not specified, overlength data
nd the remaining data is

RECEIVER TAKE SYNCPOINT

Commands You Can Issue What To Test ,New
State

SYNCPOINT EIBFREE (saved value) 7

EIBRECV (saved value) 4
~--

Otherwise 2

Figure 102. State 5 - receiver take syncpoint

STATE 6 CICS to IMS CONVERSATIONS FREE PENDING AFTER SEND LAST
-

Commands You Can Issue What To Test New
State

SYNCPOINT - 7

FREE - 1

Figure 103. State 6 - free pending after SEND LAST

284 CICS/MVS 2.1.2 Intercommunication Guide

STATE 7 CICS to IMS CONVERSATIONS FREE SESSION

-------~··--··------·--------------E-Commands You Can Issue \1hat To Test New
State

"~'------------------- ---
FREE - 1

- -------. -----_.-

Figure 104. State 7 - free session

Chapter 4.6. CICS-to-IMS applications 285

'I
Part 5. Recovery and restart

This part tells YOll what CICS can do when things go wrong in an
intercommunication environment, and what you can do to help.

"Chapter 5.1. Recovery and restart in interconnected systems" deals with
individual system failure, and with system failure and restart.

"Chapter 5.2. Intercommunication and XRF" discusses those aspects of the CICS
extended recovery frtcility (XRF) that affect intercommunication.

© Copyright IBM Corp. 1977, 1991 281

Chapter 5.1. Recovery and restart in interconnected systems

This chapter describes those aspects of CICS recovery and restart that apply
paliicularly in the intercommunication environment. It is assumed that you are
familiar with the concepts of logical units of work (LUWs), synchronization points
(syncpoints), dynamic transaction backout, and other topics related to recovery
and restart in a single CICS system. These topics are presented in detail in the
CICSIMVS Recovery and Restart Guide.

In the intercommunication environment,most of the single-system concepts
remain unchanged. Each system has its own system and dynamic logs (or the
equivalent for non-CICS systems), and is normally capable of either committing
or backing out changes that it makes to its own recoverable resources.

In the intercommunication environment, however, a logical unit of work can
include actions that are to be taken by two or more connected systems. This
means that the participating systems must reach mutual agreement to commit
the changes they have made which, in turn, means that they must exchange
syncpoint requests and responses over the intersystem sessions. This
requirement represents the major single difference between recovery in single
and multiple systems.

Terminology
The task that initiates the syncpoint activity is called the Initiator. All other tasks
in the syncpoint sequence receive syncpoint requests from the initiator and are
called agents.

© Copyright IBM Corp. 1977, 1991 289

Syncpoint exchanges
Consider the following example:

- Syncpolnt example -----------"

An order-entry transaction is designed so that, when an order for a particular
Item Is entered from a terminal, (1) an Inventory file Is queried and
decremented by the order quantity, (2) an order for dispatch of the goods is
written to an Intrapartitlon transient data queue, and (3) a synchronization
point Is taken to Indicate the end of the current LUW.

In a single CICS system, the syncpoint will cause both (1) and (2) to be
committed.

The same result is required if the inventory file is owned by a remote system
and is accessed by means of, say, CICS function shipping. This is achieved
in the following way:

1. When the local transaction issues the syncpoint request, CICS sends a
syncpoint request to the remote transaction (in this case, the CICS mirror
transaction).

2. The remote transaction commits the change to the inventory file and
sends a positive response to the local CICS system.

3. CICS commits the change to the transient data queue.

During the period between the sending of the syncpoint request to the remote
system and the receipt of the reply, the local system does not know whether
the remote system has committed the change. This period is known as the
Indoubt period, as illustrated in Figure 105 on page 293.

If the intersystem session fails before the indoubt period is reached, both
sides will back out in the normal way. After this period, both sides will have
committed their changes. If, however, the intersystem session fails during
the indoubt period, the local CICS system cannot tell whether the remote
system committed or backed out its changes. The local system performs
backout according to the INDOUBT attribute of the local transaction (see
page 291); this action may be inconsistent with the action taken by the
partner system.

For LUTYPE6.2 sessions, CICS reduces the risk explained in the example by
attempting resynchronization on a separate session (see II Action following
failure during the indoubt period" on page 295). For LUTYPE6.1 sessions, and
also for LUTYP.E6.2 sessions if the resynchronization attempt fails, there are
three possible courses of action that an application can take:

1. Commit the changes unilaterally.
2. Back out the changes unilaterally.
3. Neither commit nor back out the changes, but wait until the session is

reestablished and attempt resynchronization.

290 CICS.lMVS 2.1.2 Intercommunication Guide

The INDOUBT attribute of the transaction definition·
You can control, in some part, the action that CICS takes after failure during the
indoubt period by specifying transaction backout attributes when you define the
transaction. This is done by means of the INDOUBT operand of the CEDA
DEFINE and ALTER TRANSACTION commands, or the DTB operand of the
DFHPCT resource definition macro. The INDOUBT attribute of a transaction is
honored when communication is lost with a partner and the task is in the indoubt
period. This may occur at the time of a session failure (for example, agent's
system failure), or during initiator's system emergency restart (for example,
initiator's system failure).

MRO and LUTYPE6.1 restrict support of the INDOUBT attribute to the initiator,
because they rely on not-las13 agents committing if they are in-doubt. LUTYPE6.2
supports the INDOUBT attribute for the initiator and not-last agents .

. The INDOUBT operand has the following format:

INDOUBT{ (BACKOU1]COMMITIWAIT})

and the parameters have the following meanings:

BACKOUT
specifies that the transaction is to be backed out if a failure occurs during
the indoubt period. This is the default value.

Transaction backout is always performed for failures that occur outside the
indoubt period, irrespective of what is specified in the INDOUBT operand.
Because a dynamic transaction backout buffer is not acquired until a
protected resource is modified, the transaction backout overhead for a
transaction that never modifies a protected resource is negligible.

COMMIT
specifies that the changes made by the transaction are to be committed
when failure occurs during the indoubt period. A typical situation in which
COMMIT is appropriate is when transaction backout can cause data to be
lost, but a unilateral commit can result only in duplicated data.

WAIT
(LUTYPE6.1 and LUTYPE6.2 only) specifies that, if the session fails during the
indoubt period:

• Changes to recoverable temporary storage are to be neither committed
nor backed out.

• Transactions started by an interval control START PROTECT request are
neither committed or backed out.

• Changes to other recoverable resources are backed out.

A CICS Internal algorithm determines the order In which syncpolnt requests are Issued. An optimized syncpolnt protocol Is
used for the last session In which a syncpolnt request is sent.

Chapter 5,1. Recovery and restart In interconnected systems 291

The changes to recoverable temporary storage are locked until the session
is recovered. A comparison is then made with the remote system and the
locked resources are either committed or backed out to coordinate with it.

This option is honored only In the following circumstances:

• The only changes to recoverable resoUrces are local

• The changes are made by either WRITEQ TS (without REWRITE) or
START PROTECT, and

• Only one connection with a partner exists for the local transaction at the
time of the syncpoint.

In other circumstances, normal backout is provided.

If session recovery is unsuccessful, the START commands are canceled but
temporary storage queue changes are committed.

Macro equivalents of INDOUBT attributes: If you are using OFHPCT macros,
"rather than ROO, to define your transactions, you can specify your
transaction-backout requirements in the OTB operand.

OTB = NO has no equivalent In ROO

OTB = YES is equivalent to INOOUBT(BACKOUT)

OTB=(YES,NO) is equivalent to INOOUBT(COMMIT)

OTB = (YES,WAIT) Is equivalent to INOOUBT(WAIT)

Syncpolnt flows
The ways in which syncpoint requests and responses are exchanged on
intersystem conversations are defined in the LUTYPE6.1 and LUTYPE6.2
architectures. CICS multireglon operation uses the LUTYPE6.1 protocols.
Although the formats of syncpolnt flows for LUTYPE6.1and LUTYPE6.2 differ, the
concepts of syncpoint exchanges are similar.

The flows involved in syncpoint exchanges are illustrated In Figure 105 on
page 293. In CICS, all of these flows are generated automatically in response to
explicit or implicit SYNCPOINT commands issued by a transaction. However, a
basic understanding of the flows that are Involved can assist you in the design of
your application and give you an appreciation of the consequences of session or
system failure during the syncpolnt activity. For more information about these
flows, see "Chapter 4.5. CICS applications for logical unit type 6.2 mapped
c~>nversations" on page 171.

292 CICS/MVS 2.1.2 Intercommunication Guide

Single session
commit (1)

Initiator -----. Agent ,
indoubt

t committed(2)
+-----1

Chained sessions - agent task is also an initiator with its own agent
commit(l) _. __ .

-- • Agent1 commit(2) Agent2
(initiator) • , Init i ator

r
indoubt indoubt

t ! committed(3)
committed(4) <'-----

'41-~--

Multiple sessions - initiator has multiple agents
prepare(l) .-------,

Initiator • Agent!

commit(2)

1
commit (3) <----

Agent2 +------ ,
indoubt indoubt

committed(4) t

1 +
committed(5)

~

forget(6)
..... -----

--- (LUTYPE6.2)

The numbers in brackets, for example, (1), show the sequence of the
actions in each flow.

A. Initiator must be in send state on all its sessions.
B. When they issue their syncpoint, agents must be in send state

on all sessions except the session on which they receive, the
prepare, or commit.

1....-_____________________ ._ _. __ . __ ,. __ . ______ _

Figure 105. Syncpointing flows

In the simplest case, the initiator has a single conversation with an agent that
has no conversations other than with the initiator. At the start of the syncpoint
activity, the initiator sends a commit request to the agent. The agent commits its
changes and responds with committed. The initiator then commits its changes,
and the logical unit of work is complete.

Chapter 5.1. Recovery clnd restart in interconnected systems 293

If the agent transaction also has a conversation with a third transaction, it must
itself initiate syncpoint activity on this latter conversation before it responds to its
initiator. The third transaction commits first, ·then the agent transaction, and
finally the initiator transaction.

In the more general case, the initiator transaction can have more than one
agent, and must inform each of them that a syncpoint is being taken. It does this
by sending a 'prepare' request to all of its agents except one. (The order in
which this is done and the identity of the" last" agent are not defined.) An agent
that receives a 'prepare' request responds by sending a 'commit' request back
to the initiator.

When all these 'prepare' requests have been sent and all the 'commit'
responses received, the initiator sends a 'commit' request to its "last" agent.
When this responds with a 'committed' indication, the initiator then sends
'committed' requests to all the other agents. For LUTYPE6.2 conversations only,
these agents respond 'forget' to show that they do not require resynchronization.

Initiator - agent relationship
The diagram below shows the relationship of the initiator and agent regions.
Region A contains the initiator task for a syncpoint sequence; regions B, C, and
D contain the agent tasks for the same sequence.

Note that this relationship exists only for the duration of syncpoint processing for
a single LUW. In distributed transaction processing, the same tasks might
process a subsequent unit of work in which a different task is the initiator.

IRe~ionl
Initiator

r t -------l
Agent Agent Agent

t~j IRe~ionl 53
Initiator r--------L-- 1

Agent Agent

The lower part of the diagram shows a more complicated situation that can exist.
As well as communicating with tasks in regions A, B, and D, the task in region C
may also be communicating with tasks in regions E and F.

294 CICS/MVS 2.1.2 Intercommunication Guide

Before responding to a syncpoint request from the task in A, the task in C must
first initiate synchronization of its processing with the tasks in E and F. The task
in C thus becomes the initiator in its relationship with the tasks in E and F. How
C responds to A depends on the outcome of the syncpoint processing for C, E,
and F. If C loses contact with E or F during the indoubt period, then C honors its
INDOUBT attribute.

The flows between C, E, and F, correspond to those between A, B, C, and 0, the
only difference being that there is one fewer agent.

Failures in connected systems
The failures that can occur in connected systems are:

1. Session failures, either between the CICS systems or between CICS and the
terminal associated with a transaction. These failures cause transaction
abends of the transaction or transactions connected to the session and
resource recovery is performed as for non-connected transaction abends.

2. Total CICS system failures. The failing system is recovered using
emergency restart as for a non-connected system though there are extra
features, described following, added for intersystem communication. Any
remote system connected at the time of the system failure sees the failure
as a session failure and treats it as such. Thus, a remote system failure
causes a local transaction abend.

3. Transaction abends. These are recovered using dynamic transaction
backout as for non-connected systems. The mirror and relay transactions
are not special In this respect and, to make full use of CICS recovery, you
should specify dynamic transaction backout for both.

The transaction restart facility can also be used. You cannot specify this for
the mirror or relay transaction, but, if you specify it for the associated
user-written transaction, the mirror or relay transaction will be restarted.

Action following failure during the indoubt period

This section discusses CICS actions following failure during the indoubt period
under the following headings:

• "LUTYPE6.2 connections"
• "LUTYPE6.1 connections"
• "MRO connections"
• "Messages that can help recovery"
• "Restoration of data integrity .. "

LUTYPE6.2 connections
When an LUTYPE6.2 session fails during the indoubt period, CICS tries
immediately to contact the partner system using a different session. If this is
successful, CICS completes the syncpoint by comparing unit-of-recovery

Chapter 5.1. Recovery and restart in interconnected systems 295

descriptors (URDs)4 to decide whether to commit or back out the resources that
are in doubt. The failed session can no longer be used by this task, having been
freed by the system. If either transaction issues a command for the failed
conversation, the result is a 'termerr' condition, which, if not expressly handled,
leads to an abend and (if necessary) back out, but with no loss of
synchronization.

Immediate recovery is not always possible, for example when all sessions are
out of service because of a serious failure of one of the systems or the
connecting hardware. In this case, the system must abend the transaction and
obey the INDOUBT option. It must then wait until the connection has been
reestablished, possibly after emergency restart, before it can determine and
report the state of the distributed logical unit of work.

When the intersystem session is recovered, URDs are compared by the two
systems to find out and report (to the CSMT log) whether the unilateral actions
taken by the systems matched or riot, and commit or backout any temporary
storage changes locked due to the INDOUBT{WAIT) option.

LUTYPE6.1 connections
The absence of an LU services manager makes immediate recovery impOSSible.
Recovery is possible only after sessions have been reestablished. When the
sessions are reestablished, the two sides exchange message sequence numbers
to determine (and report to the CSMT log) whether the actions taken by the
systems matched, and to decide whether to commit or back out temporary
storage changes locked due to the INDOUBT(WAIT) option.

MRO connections
The INDOUBT(WAIT) option is not available for MRO conversations.
Consequently, at the time of failure, the transactions are either committed or
backed out, according to whether INDOUBT(COMMIT) or INDOUBT(BACKOUT) is
specified in the PCT.

Messages that can help recovery
The messages associated with intersystem session failure and recovery are
shown in two figures. Figure 106 on page 297 shows the messages associated
with the INDOUBT(BACKOUT or COMMIT) attributes. Figure 107 on page 297
shows the messages associated with theINDOUBT(WAIT) attribute. Full details
are in the CICS/MVS Messages and Codes manual.

I 4 A URD Is a CICS control block that describes the progress of a unit of work through the sequence of syncpolnt messages. It
Is recovered at CICS restart.

296 CICS/MVS 2.1.2 Intercommunication Guide

t------------------ ----------------------------~

I

I
(session
recovery
successful)

I
DFH2182
Intersystem session
recovery. Database
changes found to be
synchronized.

(session failure, and
immediate recovery failed or

is not possible)
I

I

DFH2181
Intersystem session
failure. Database
changes may be out
of sync.

I

DFH2183
Intersystem session
recovery. Database
changes found to be
out of sync.

I
(session
recovery
failed)

DFH2184
Intersystem session
recovery error when
database changes
may be out of sync.

Figure 106. Session failure messages for INDOUBT(BACKOUT or COMMIT)

I
(session
recovery

(session failure, and
immediate recovery failed or

is not possible)
I
DFH2185
Intersystem session
failure. Database
changes will not be
committed or backed
out until session
recovery.

I

~_f_Ul_) ______ ~1
DFH2186 DFH2187
Intersystem session Intersystem session
recovery. Suspended recovery. Suspended
changes now being changes now being
committed. backed out.

Figure 107. Session failure messages for INDOUBT(WAIT)

I
(session
recovery
fail ed)

DFH218S
Intersystem session
recovery error while
local recoverable
changes are suspended.

Chapter 5.1. Recovery and restart In Interconnected systems 297

All these messages contain the following information, which enables the
messages to be correlated:

• The time
• The transaction identifier and task number
• The remote system identifier
• The intersystem terminal identifier (the session name)
• The operator identifier
• The operator terminal identifier
• The unit-of-work identifier.

Because the partner region may have resolved the logical unit of work (LUW)
differently, a region issues message DFH2101 when it loses communication with
a partner. The message may appear at the time of a session failure or partner
region failure, or during emergency restart.

When the connection has been reestablished, the state of the LUW is
. determined, and a DFH2102, DFH2103, or DFH2104 message is issued for each
session. For MRO and LUTYPE6.1, these messages appear only on the initiator
side.

If an agent region successfully commits but a session failure occurs before the
initiator receives confirmation of this, the region does not issue a DFH2101
message. After session recovery, a DFH2102, DFH2103, or DFH2104 message
may be issued by the agent region.

As the following example shows, the system or application design can mean that
there is no exposure to data integrity even though DFH2103 or DFH2104 has been
issued.

Example --------

An order entry transaction Is designed to update a recoverable file which ;s
defined on a remote C/CS region. The update is achieved using a function
shipped file control request and there are no other recoverable resources
Involved In the transaction.

If the intersystems session fails during the indoubt period, the local CICS
region reports the possible integrity exposure with DFH2101 and takes
unilateral action to commit or backout the LUW. Because there are no
recoverable changes in this region, there can be no loss of synchronization
with the remote file.

After session recovery, CICS may issue DFH2102 or DFH2103. You would
ignore this if data integrity were your only concern. However, if the message
shows that the units of work are out of step, this could still be significant. For
instance, it would tell a terminal operator whether the order entered last was
registered or not.

298 CICS/MVS 2.1.2 Intercommunication Guide

Restoration of data Integrity
If CICS messages indicate that database changes are or may be out of sync,
restoration of data integrity is made possible by the inclusion of the UOWID in all
in-doubt messages and in a logged correlation record for each agent that has
updated a recoverable resource. A user-written log-scanning utility can read all
log records for the UOW in the affected CICS regions, and determine what action
is needed to synchronize the databases.

Recovery for LUTYPE6.2 connections
This section describes recovery for LUTYPE6.2 connections under the following
headings:

• "Exchange-Iognames process"
• .. Pending units of work" on page 300
• "Connected system recovery - an example" on page 301.

Exchange-Iognames process
When a CICS system is restarted. operational constraints can cause a new or .
different system log to be used. If the restarted system has been communicating
with a partner that is waiting to perform session recovery, the recovery process
is corrupted. The exchange-Iognames process detects this situation and is
performed whenever a connection is established.

The exchange-Iognames process is a defined piece of the LUTYPE6.2
architecture. For a full description of the concepts and physical flows, see the
SNA Transaction Programmer's Reference Manual for LU Type 6.2.

Exchange Lognames - an example ---------------------
A networking failure occurs during the indoubt period of a transaction
causing a failure of the connection between two CICS systems.
INDOUBT(WAIT) is coded in the PCT for both transactions. One CICS system
is shut down and cold-started. The partner system remains active and,when
the connection is reestablished. the exchange-Iognames process detects the
cold start. CICS treats this as an operational error, ~nd will not attempt
session recovery. The master operator is made aware of the
exchange-Iognames failure by console messages issued by CICS.
Alternatively, the CEMT INQUIRE CONNECTION command can be used to
determine whether a failure has occurred.

The exchange-Iognames process alerts the master operator if the logs (used to
restore URDs) are not the same ones that were in use at the preceding failure.

The exchange-log names process affects only SL(2) conversations. If it fails,
SL(2) conversations are not allowed on the link until the failure is resolved. This
resolution can be achieved only by operator action. However, SL(O) and SL(1)
traffic on the link are unaffected by the failure. and continue as normal.

The CEMT INQ CONNECTION command can be used to determine whether the
exchange-Iognames process has completed successfully. The status is sh .. ~wn

Chapter 5.1. Recovery and restart In interconnected systems 299

I
I
I
I

I
I
I
I
I
I
I

I
I

as 'XOK' if the process was successful. If the connection status is shown as
"XNOtdone" (exchange lognames not done) and" ACquired", CICS will not allow
any synclevel 2 conversations. This may (depending on the design of your
system) effectively mean that the connection is not available to applications.

One or more of the following messages will appear on the CSMT log:

DFH2110 ABNORMAL REPLY TO EXCHANGE LOG NAME COMMAND SENT TO SYSTEM:
sysid

DFH2111 COLDIWARM RESTART MISMATCH WITH SYSTEM sysid
DFH2112 LOG NAME MISMATCH WITH SYSTEM sysid. EXPECTED LUNAME.LOGNAME

/ogname RECEIVED LUNAME.LOGNAME logname

In these messages the term 'warm' means that a connection has previously
been established with the partner system, and the lognames have been
exchanged and saved. A system is 'cold' if the logname has not been exchanged
with the partner, or if the memory of it has been erased. The memory can be
erased by:

• Cold start of the CICS system.
• The CEMT SET CONNECTION(...) NOTPENDING command

Note, however, that the CEMT SET CONNECTION(...) NOTPENDING command
deletes any outstanding resynchronization data for the connection. Depending
on what information is present, this could lead to integrity problems. Issue this
command with care.

The CICS/MVS Messages and Codes manual gives possible actions to correct the
various conditions without damaging data integrity; these involve restarting one
or both CICS systems with the correct logs. Note, however, that the "XNOtdone"
status also means that at least one end of the connection has pending URDs.
The next section, .. Pending units of work." explains a way to resolve the situation
without restarting. and describes the factors that determine the best action to
take.

For more detailed diagnosis-type information on the exchange-Iogname process,
see the CICSIMVS Diagnosis Reference manual.

Pending units of work
When an LUTYPE6.2 session failure leaves a URD requiring session recovery,
CICS sets the connection status to "pending". After successful session recovery,
this status is removed. The CEMT INQ CONNECTION command can be used to
discover whether there are any pending URDs for the named system.

You should determine whether data integrity in your system is dependent on
successful session recovery, You may find that intersystems communication
does not involve recoverable resources. or that recoverable resources reside on
only one of the communicating systems. In these cases. communication failure
does not affect resource integrity. Alternatively. application design may provide
a method other than session recovery to restore data integrity following a
connection failure.

300 CICS/MVS 2.1.2 Intercommunication Guide

If you are dependent on session recovery and resynchronization and this has
failed, you should carefully determine why. This situation indicates an abnormal
operation such as an unscheduled cold start of a connected CICS system.

You can allow normal operation to continue by using the command CEMT SET
CONNECTION(....) NOTPENOING to override the normal resynchronization
process and put the CICS system into a state in which it is prepared to accept
any log name chosen by the remote system. This action prevents CICS from
determining whether or not a loss of Integrity actually occurred.

CEMT SET CONNECTION(....) NOTPENOING has the following effects.

• A connection can immediately be acquired with the remote system.
• If the connection is already acquired, the exchange-log names process is

successfully executed and synclevel 2 conversations are permitted.
• The connection is set to 'notpending' status.
• The normal resynchronization process is overridden by the deletion of all

information (UROs) describing the unresolved units of work.
• The URD containing the logname of the partner system Is erased; the

connection is in the same state as if the CICS system had been cold started.
• If INOOUBT(WAIT) has been specified and temporary storage changes are

suspended (OFH2105 has been issued), the changes are unilaterally
committed. You can determine the status of data integrity and restore it as
described in "Restoration of data integrity" on page 299.

In summary, you can resolve the "pending" and "XNOtdone" status by

• Restarting both CICS systems using the correct logs

• Issuing the CEMT SET CONNECTION NOTPENOING command on whichever
system displays the "pending" status.

Which of these actions is best for your installation depends on your requirements
for availability and data integrity, and on your own procedures for recovering
data integrity.

Connected systenl recovery - an example
As an illustration of connected system recovery design, consider the following
simple example:

A transaction is given a part number; it checks the entry in a local file to see
whether the part is in stock, decrements the quantity in stock and updates
the stock file, and sends a record to a remote transient data queue to initiate
the dispatch of the part.

It is assumed that function request shipping is used, which means that a mirror
transaction runs in the remote system. However, the same principles would
apply if OTP is being used and the remote transaction is user-written.

Ideally, the update to the local file should take place only if the addition is made
to the remote transient data (TO) queue, and the TO queue should only be
updated if an addition is made to the local file. The first step towards achieving
this is to specify both the file and the TO queue as recoverable resources and to
specify INOOUBT(BACKOUT), or allow it to default, on the definitions of the local

Chapter 5.1. Recovery and restart in interconnected systems 301

transaction and the mirror transaction in the remote system. This ensures
synchronization of the changes to the resources (that is, both changes will either
be backed out or committed) in all cases except for an intersystem session
failure during the indoubt period of syncpoint processing.

For failure during the indoubt period (and, for LUTYPE6.2 sessions, following a
failure of the resynchronization attempt), the change made to the stock file is
backed out, and message OFH2101, warning that the resources might be out of
synchronization, is sent to the master terminal destination.

Under these conditions, the mirror transaction may, or may not, have backed
out, and it is possible that the entry dispatching the part was added to the
remote TO queue, but the stock file was not updated. Consequently there is a
danger that the part might be dispatched elsewhere before the mismatch
between the two resources can be corrected.

A more acceptable solution is to update the stock file even though there is a
danger that the dispatch record has not been added to the TO queue, especially
if the delayed dispatch can readily be reinitiated on session recovery. This can
be achieved by specifying INOOUBT{COMMIT) for the local transaction.

When the session is eventually recovered, CICS checks whether the resources
are in fact out of synchronization. If they are not, message OFH2102 is issued.
Otherwise, OFH2103 is issued and a transaction to reconcile the mismatch
should be run. In this case, the reconciliation process is simply to retransmit the
dispatch record to the remote transient data queue. This could be implemented
by the same application with special logic to inhibit local changes.

In general, the reconciliation process is a rerun of the original transaction with
local Changes inhibited if INOOUBT{COMMIT) is specified, or with remote
changes inhibited if INOOUBT(BACKOUT) is specified.

Intersystem communication and emergency restart
If a partner system totally fails, to a conversation it appears as if only the
connection had failed. The failed system will usually be emergency restarted,
and so its local resources will be recovered in the normal way. Because there
were connected systems, emergency restart restores these to the state they
were in when the partner system failed.

LUTYPE6.1 message sequence numbers and LUTYPE6.2 unit-of-work states are
both recovered from the system log, as well as sufficient information to take
actions as for session failures. Consequently, recoverable resources are backed
out, committed, or held, and the appropriate messages are issued. When the
session is restored, normal resynchronization occurs.

302 CICS/MVS 2.1.2 Intercommunication Guide

----------_._-----------------
Error handling programs for intercommunication

CICS intercommunication uses CICS terminal control facilities to exchange
messages with connected systems_ When an unrecoverable situation is detected
in eitherCICS system, the exchange of messages is terminated by means of a
special negative response. This special response will be sent to the CSMT
destination by the receiving system. It is followed by a detailed error recovery
message. The sense code in the error message will lead to abnormal
termination of the transactions, so that CICS dynamic transaction backout
processing can be invoked to guard against inconsistent resource updates.

For LUTYPE6.1 and LUTYPE6.2, the negative response received by CICS is
handled by the node abnormal condition program (DFHZNAC) and passed to the
user-supplied node error program (DFHZNEP) if present. The default actions set
by CICS ensure that CICS reads in the following error message. The sense code
in this message is made available to DFHZNAC and DFHZNEP in the same way
as system sense codes carried by the LUSTATUS commands or negative
responses. CICS default actions based on this system sense code are set by
DFHZNAC, before making the code available to DFHZNEP. Error conditions
occurring on intersystem communication sessions are therefore handled exactly
like errors on other SNA sessions through VT AM.

It is not necessary to write a node error program to handle intersystem
communication sessions, because the default actions set by DFHZNAC have
been selected to enforce correct recovery based on the error condition detected.
When the system sense code indicates that the original request to VTAM may be
retried, CICS will do so transparently to the application program attempting to
send a message.

For details of user-supplied DFHZNEP programs, see the CICS/MVS
Customization Guide.

Database interlock
As a part of database and application design in a single CICS system, you must
be careful not to design programs in such a way that two programs running
concurrently can request the same records in such a way as to interlock on each
others requests.

This problem continues to exist in interconnected systems where application
programs in two different systems can cause transactions in a third system to
interlock in a similar manner. Such an interlock will be detected by means of a
timeout value specified for the PCT, which will expire when a program has
waited the specified period without a reply from the deadlocked transaction.
CICS will ahend the task that has been waiting the longest, so breaking the
interlock and allowing the contending task (or tasks) to continue.

Use of transaction chaining can lead to such a situation. Chaining also opens
the possibility for a designer employing function request shipping or transaction
routing (though not DTP) to define a specific resource (including a transaction or
terminal) as being in a remote CICS system, and further define that resource in

Chapter 5.1. Recovery and restart in interconnected systems 303

the remote system to be in yet another system. If the definition in the third
system inadvertently specifies the resource to be in the first, any request for that
resource will be routed to all three systems and will then deadlock until the
specified timeout value expires, abending all the transactions. For these
reasons great care should be taken during system definition to guard against
unintended use or misuse of chained transactions.

Problem determination
Application programs that make use of CICS intercommunication facilities are
liable to be subject to error conditions not experienced in single CICS systems.
The new conditions result from the intercommunication component not being
able to establish a session with the requested system (for example, it is not
defined to CICS, or is not available).

In addition, some types of request may cause a transaction abend because
invalid data is being passed to the CICS function manager (for instance the file
control program). Where the resource is remote, the function manager is also
remote, so the transaction abend is suffered by the remote transaction. This in
turn causes the local transaction to be abended with a transaction abend code of
ATNI (for communication via VT AM) or AZI6 (for communication via MRO) rather
than the particular code used in abending the remote transaction. However, the
remote system sends the local CICS system an error message identifying the
reason for the remote failure. This message is sent to the local CSMT
destination. Therefore, if an application program uses SETXIT and user task
abend exits to continue processing when abehds occur while accessing
resources, it will be unable to do so in the same way when those resources are
remote.

Application programs not using the command level or DLII CALL interfaces may
inadvertently attempt to access, via function request shipping, resources defined
as remote. In this case, the request will fail with a condition indicating that the
resource is not defined to CICS.

Trace and dump facilities will exist in both local and remote CICS systems.
When the remote transaction is abended, its CICS transaction dump is available
at the remote site to assist in locating the reason for an abend 'condition.

Applications to be used in conjunction with remote systems should be well
tested to minimize the probability of failing when accessing remote resources. It
should be remembered that a "remote test system" can actually reside in the
same processor as the local system and so be tested in a single location where
the transaction dumps from' both systems, and the corresponding trace data, are
readily available. The two transactions can be connected via MRO or via the
VTAM application-to-application facility.

Detailed sequences and request formats for CICS intercommunication can be
found in the CICS/MVS Diagnosis Reference manual and the CICS/MVS Problem
Determination Guide.

304 CICS/MVS 2.1.2 Intercommunication Guide

Recovery and restart with non-CICS systems
The cross-link exchanges used by CICS to establish the state of the other system
during recovery are defined by SNA. They are therefore independent of the
nature of the remote system. CICS follows the same recovery procedures
whether the other system is CICS or not.

Chapter 5.1. Recc)very and restart in interconnected systems 305

Chapter 5.2. Intercommunication and XRF

The extended recovery facility (XRF) of CICS/MVS is described in the CICSIMVS
XRF Guide. This chapter looks at those aspects of XRF that apply to ISC and
MRO sessions. For more details of the link definitions mentioned in this chapter,
refer to "Chapter 3.1. Defining links to remote systems" on page 91.

MRO and ISC sessions are not XRF-capable because they cannot have backup
sessions to the alternate CICS system.

You can use the AUTOCONNECT operand in your link definitions to cause CICS
to attempt to reestablish the sessions following a a takeover by the alternate
CICS system.

Also, the bound/unbound status of some ISC session types can be tracked. In
these cases, CICS can attempt to reacquire bound sessions irrespective of the
AUTOCONNECT specification.

In all cases, the timing of the attempt to reestablish sessions is controlled by the
AUTCONN operand of DFHSIT (the CICSIMVS Resource Definition (Macro)
manual describes DFHSIT in detail).

MRO sessions: The status of MRO sessions cannot be tracked. Following a
takeover by the alternate CICS system, CICS attempts to reestablish MRO
sessions according to the value specified for the INSERVICE operand of the
CONNECTION definition.

LUTYPE6.1 sessions: Following a takeover, CICS will attempt to reestablish
LUTYPE6.1 sessions in either of the following cases:

1. The AUTOCONNECT operand of the SESSIONS definition specifies YES.

2. The sessions are being tracked, and are bound when the takeover occurs.
The status of LUTYPE6.1 sessions is tracked unless RECOVQPTION(NONE) is
specified in the SESSIONS definitionS.

Single-session APPC devices: Following a takeover, CICS will attempt to
reestablish single LUTYPE6.2 sessions in either of the following cases:

1. The AUTOCONNECT operand of the SESSIONS or TYPETERM definition
specifies YES.

2. The session is being tracked, and is bound when the active CICS fails.
Single LUTYPE6.2 sessions are tracked unless RECQVOPTION(NONE) is
specified in the SESS10NS or the TYPETERM definition (depending upon
which form of definition is being used)5.

5 Although the RECOVOPTION has five possible values, for ISC there Is effectively a choice between NONE (no tracking) and
anyone of the other options (tracking).

© Copyright IBM Cmp. 1977, 1991 307

Parallel LUTYPE6.2 sessions: Following a takeover, CICS will attempt to
reestablish the LU services manager sessions in either of the following cases:

1. The AUTOCONNECT operand of the CONNECTION definition specifies YES or
ALL.

2. The sessions are being tracked, and are bound when the active CICS fails.
Only the LU services manager sessions (SNASVCMG) can be tracked in this
case; tracking is not available for user sessions.

Once the LU services manager sessions are reestablished, CICS will attempt to
establish the sessions for any mode group that specifies autoconnect.

Effect on application programs: To application programs that are using the
intercommunication facilities, a takeover in the remote CICS system is
indistinguishable from a session failure.

308 CICS/MVS 2.1.2 Intercommunication Guide

Part 6. Link services

This part contains two chapters:

"Chapter 6.1. Security In the intercommunication environment" on page 311
describes security in the intercommunication environment. Before reading this
chapter, you should be familiar with the contents of "Chapter 3.1. Defining links
to remote systems."

"Chapter 6.2. Master terminal operations for LUTYPE6.2 connections" on
page 329 gives special guidance on the management of LUTYPE6.2 links using
the CICS-supplied transaction CEMT.

C) Copyright IBM Corp. 1977,1991 309

Chapter 6.1. Security in the intercommunication environment

This chapter discusses those aspects of security that apply to CICS intersystem
communication and multireglon operation.

The security requirements of a CICS system that uses ISC or MRO to
communicate with other, remote, systems are basically an extension of the
security requirements of a single, stand~alone, CICS system. The CICS/MVS
Facilities and Planning Guide describes how to plan for and implement security
in a single CICS system, using either CICS security facilities or an external
security manager such as the Resource Access Control Facility (RACF) of MVS.

References to RACF in this chapter refer to the Resource Access Control Facility
of MVS or to any external security manager of equivalent function.

This chapter assumes that you are familiar with security planning and
implementation for a single CICS system. In particular, you should understand
the concepts of operator signon, how the relationship between operator security
and transaction security determines which transactions a particular user is
allowed to invoke, and how resource security determines which other resources
a user is allowed to access.

© Copyright IBM Corp. 1977, 1991 311

~---.--- ----------,
REMOTE SYSTEM SECURE eIes SYSTEM

Security level Enforced by
Remote User

Bind Session =========> Bind-Time Security:
(BIND received)

Attach

1. Accept bind session
request?

Bind-Time Security:
<========= (BIND sent)

1. Is the remote system
the correct one?

Transaction ==========> Transaction Security:

1. Has the session
authority to
attach transaction

2. Has the remote user
authority to access
this system?

3. Has the remote user
authority to
attach transaction

LU6.1 No check.
lU6.2 Bind Password in link

defi nit ion.
MRO Security Name in link

definition.

lU6.1 No check.
lU6.2 Bind Password in link

defi nit ion.
MRO No check.

link security authority
established when session
is bound. Authority obtained
through eIeS sign-on table
or from link definition.

LU6.1 No check.
lU6.2 Authorized remote user

defined in eIeS
sign-on table.

MRO As LU6.2.

LU6.1 Link security autho~ity
LU6.2 User security authority

established at this
attach request (or
possibly at earlier
attach request from
same user). Authority
obtained through eIes
sign-on table.

MRO As LU6.2.

Figure 108 (Part 1 of 2); Summary of intersystem and interregion security

312 CICS/MVS 2.1.2 Intercommunication Guide

----------....----
Resource Security:

1. Hfls the session
authority to access
other resources
that the transaction
uses?

2. Has the remote user
authority to access
other resources
that the transaction
uses?

Link security authority
established when session
is bound. Authority obtained
from CICS sign-on table or
from link definition.

LU6.1 Link security authority
LU6.2 User security authority

established at this
attach request (or
possibly at earlier
attach request from
same user). Authority
obtained through CICS
sign-on table.

MRO As LU6.2.

Figure 108 (Part 2 of 2). Summary of intersystem and interregion security

------------------------ ._--------
Planning foor Intercommunication security

When you are planning a eles system that will use Ise or MRO, you must
extend your concept of a user of your system to include remote systems and
also the "users" of those systems. Your security concerns for your CICS system
will be directed primarily towards incoming requests for access to your
resources, rather than with requests that you send to other systems.

The security problem with incoming requests is:

A particular user at a particular remote system Is trying to access one or more
of the resources of your CICS system. Is this access authorized, or should It be
rejected?

The following sections describe the points in the processing of an incoming
request at which you can apply security checks:

1. The first requirement is for a session to be established between the two
systems. This does not, of course, happen on every request; a session, once
established, is usually long-lived. Also, the connection request that
establishes the session can, depending on the circumstances, be issued
either by the remote system or by your CICS system. However, the initial
establishment of a session presents the first potential security exposure for
your system.

Your security-concern is to prevent the attachment of unauthorized remote
systems to your eles system; that is, to ensure that the remote system is
really the system that it claims to be.

This level of security is called bind-time security. You can specify bind-time
security for MRO and LUTYPE6.2 links, but not for LUTYPE6.1 links.

Chapter 6.1. Security In the Intercommunication environment 313

-----_ .. ---

Note: In this chapter, the term bind is used to refer both to the SNA BIND
command that is used to establish SNA sessions between systems and to
the CICS connection request that is used to establish MRO sessions for CICS
interregion communication.

2. You also have to decide whether you want to'limit the remote system's
access to your transactions and resources. This level of security is called
link security. It is concerned with the security profile that you assign to the
remote system as a whole. Like operator security in a single-system
environment, it governs:

• Transaction security This controls the link's authorization to attach
specific transactions.

• Resource security Ttlis controls the link's authorization to access specific
resources. Transactions that are initiated by EXEC CICS START are
regarded as resources.

There are two methods of defining link security. For one of these, you simply
specify preset security keys in the resource definition for the link. For the
other, you set up a signon table entry, which is used to sign on each session
to the system at bind-time. An important point to remember is that link
security values are established when a session is bound and remain in effect
until the session is broken.

3. Within the bounds of the security profile that you set up forthe link, you may
want to restrict each remote user's access to the transactions and resources
in your system. This is done by defining a signon table entry for each user,
as you would for a single CICS system. This user security, like link security,
distinguishes between transaction security and resource security.

It is important to note that a user cannot access any transaction or resource
that the link itself is not authorized to access. This means that each user's
access keys must be included in those defined for the link. Also, if you do
not expressly specify link security, CICS will sign the link on at the minimum
security level, which will prevent you from applying any meaningful user
security.

You can specify user security for MRO and LUTYPE6.2 links, but not for
LUTYPE6.1 links. For LUTYPE6.1 links, the user security is taken to be the
same as the link security.

Implementing intercommunication security
Security in the intercommunication environment is implemented through
resource definition. The following sections tell you how to define your
intersystem links, your signon table, and all your protected resources such as
transactions and databases. Once you have set it up, your security system
functions quite independently and requires no intervention from remote terminal
operators or application programs.

If you are using RACF, you will also need RACF profiles for your resources and
users.

314 CICS/MVS 2.1.2 Intercommunication Guide

Bind-time security

LUTYPE6.2 links

Bind-time security Is the CICS security that can be applied when a request to
establish a session is received from or sent to a remote system.

From Figure 108 on page 312, you will see that LUTYPE6.2 links provide a
password facility that can be used to prevent sessions from being established
with any remote system that does not know the password. For MRO links, only
incoming requests can be checked. No bind-time security can be applied to
LUTYPE6.1 links.

Although link security values are established at bind-time, there is no need to
apply bind-time security to make link security work. If there is no Inherent
bind-time security exposure in your network configuration, you may choose not
to apply the bind-time checks.

For LUTYPE6.2 links, you can achieve bind-time security by specifying a bind
password when you define the connection to the remote system.

Note: The implementation of bind-time security is optional in the LUTYPE6.2
architecture. Do not specify bind-time security if the remote system does not
support it.

The method of defining a bind password is shown in Figure 109.

RDO Definition

DEFINE
CONNECTION (name)
GROUP(groupname)
ACCESSMETHOD(VTAM)
SECURITYNAME(name)
PROTOCOL (APPC)
SINGLESESS(N)
NETNAME(name)
BINDPASSWORD(password)

Macro-level Definition

DFHTCT TYPE=SYSTEM
tSYSIDNT=name

tACCMETH=VTAM
tXSNAME=name
tTRMTYPE=LUTYPE62
tFEATURE=PARALLEL
tNETNAME=name
tBINDPWD=password

Note: For APPC terminals defined as a TERMINAL-TYPETERM pair, the
B I NDPASS\~ORD operand is on the DEFI NE TERMI NAL command.

Figure 109. Defining LUTYPE6.2 bind-time security

A password consists of up to 16 hexadecimal digits (0 through F), optionally
surrounded by quotes. If you specify less than 16 digits, the password is padded
on the left with hexadecimal zeros. '

Each pair of communicating systems must have the same password for the link
between them. For example, if you are defining a link between two CICS
systems, the CONNECTION definition in each system must specify the, same
password. You are advised to select a unique password for each system that

Chapter 6.1. Security In the Intercommunication environment 315

your CICS system will communicate with, rather than using the same password
for two or more remote systems.

The specification of a bind password causes CICS to perform password checking
each time a session is bound. This enables bind requests from systems that do
not know the password to be rejected. It also prevents your bind requests from
being intercepted and accepted by systems that do not know your password.

Failure to reconcite the two BIND PASSWORDs results in a message at the
master terminal destination. The session is not bound, and the system reacts to
a user request for a session with sysiderr.

The checking of a password involves three flows between the two systems. The
protocol for these flows, which carry encryption information, is defined by the
LUTYPE6.2 architecture, and is iflustrated in Table 7. The seeds used to test the
passwords are random numbers.

Table 7. LUTYPE6.2 bind-time security

System 1 System 2

1. Send SEEO(1) to system 2
2. Encrypt SEEO(1) using BINOPW(2)

3. Return encrypted SEEO(1/2) and
SEEO(2) to system 1

4. Encrypt SEEO(1) using BINOPW(1)

5. Compare encrypted SEEO(1/1) with
encrypted SEEO(1/2) from system 2

6. If equal, system 2 is the correct
system

7. Encrypt SEEO(2) using BINOPW(1)

8. Send encrypted SEEO(2/1) to system
2

9. Encrypt SEEO(2) using BINDPW(2)

10. Compare encrypted SEEO(2/2) with
encrypted SEEO(2/1) from system 1

11. If equal, system 1 is the correct
system

-

Although only one password is defined for each LUTYPE6.2 connection, the
exchange of encryption information occurs for every session that is bound, to
ensure continuing security. Information about the password itself is protected in
the following ways:

1. The BINDPASSWORD field in the CEDA DEFINE CONNECTION panel is a
non-display field. For this reason, it is better to use resource definition
online to define connections, rather than coding the password in a DFHTCT
TYPE = SYSTEM macro.

2. CICS does not store a "plain language" copy of the password, either in its
internal control blocks or on the CICS system definition file (CSO).

316 CICS/MVS 2.1.2 Intercommunication Guide

MRO links

3. The bind password is never transmitted between systems; it is used only as
a factor in the encryption algorithm.

The LUTYPE6.2 architecture implemented by CICS is also designed to prevent
the recording and subsequent misuse of bind-time password exchanges.

For MRO links, the connection between CICS systems is handled by the
CICS-supplied interregion SVC, which invokes the interregion program DFHIRP in
supervisor state.

The establishment of an interregion link between two systems, say CICSA and
CICSB, involves two connection requests.

1. The send sessions of CICSA must be bound to the receive sessions of
CICSB. For these sessions, CICSA is the primary, or requesting, system, and
CICSB must decide whether to allow the connection.

2. The send sessions of CICSB must be bound to the receive sessions of
CICSA. For these sessions, CICSB is the primary, or requesting, system, and
CICSA must decide whether to allow the connection.

CICSapplies bind-time security to MRO links by comparing a local security name
specified for the receiving system with a passed security name received from the
requesting system.

In your particular CICS system, therefore, you need to provide two security
names to achieve MRO bind-time security:

1. A security name for passing to the remote CICS system, in your role as a
requesting system.

2. A local security name for the link. in your role as a receiving system.

A requesting system finds out its own security name by calling a security
identification module (DFHACEE). The security name that this module returns is
determined as follows:

• If RACF is present and active, DFHACEE returns the name specified in the
USER = parameter of the CICS startup jobstream JOB card.

• If RACF is not active, or if the USER = parameter Is omitted from the job
card, DFHACEE returns a string of eight null (X '00') characters. In this case,
the security name of the system is said to be unknown.

If you are not using RACF. but wish to implement MRO bind-time security, you
can write your own version of DFHACEE to provide a security name for your
system. Details are given in the CICSIMVS Customization Guide.

No matter how it is obtained, the security name is always passed by the
requesting system along with the connection request.

The local security name of an MRO link, for Incoming connection reque~ts, is
specified in the SECURITY NAME operand when you define the link

Chapter 6.1. Security in the Intercommunication environment 317

LUTYPE6.1 links

(see "Chapter 3.1. Defining links to remote systems" on page 91), as shown in
Figure 110 on page 318.

RDO Definition Macro-level Definition

DEFINE
CONNECTION(sysidnt)
GROUP(groupname)
ACCESSMETHOD(IRCIXM)
NETNAME(name)
SECURITYNAME(name)

DFHTCT TYPE=SYSTEM
,SYSIDNT=sysidnt

,ACCMETH={IRCI(IRC,XM)}
,NETNAME=name
,XSNAME=name

Figure 110. Defining MRO bind"time security

The name specified in the SECURITYNAME operand is the security name that the
requesting system must have for the connection to be allowed. If you do not
specify a security name, any incoming connection request will be accepted.

During connect processing, CICS compares the security name passed by the
remote system with the security name you have specified in the link definition.
The possible results of the comparison are shown In Figure 111.

Passed Security Name
-

SECURITYNM1E Valid Name "Unknown" (null) Name
Operand

--
Specified If the passed name is Reject the connection

the same as the name request.
specified in the
SECURITYNAME operand,
accept the connection
request.
Otherwise, reject the
connection request.

Omitted Accept the connection Accept the connection
request. request.

-

Figure 111. Security-name checking for MRO links

For LUTYPE6.1 links, CICS cannot check the identity of the requesting system,
and the bind request is never rejected on security grounds. For this reason, you
are advised to use the intersystem security offered by LUTYPE6.2 links wherever
possible.

318 CICS/MVS 2.1.2. Intercommunication Guide

Link $ecurity
Link security limits a remote system's authorization to attach your transaCtions
and access your resources. You can specify it in one of two different ways:

1. By using the CICS slgnon table: You use the CICS signon table (DFHSNT) in
your system to define CICS security values, or to specify RACF signon, or both,
for the link. You must specify a security name when you define the connection,
as shown in Figure 112. CICS matches the SECURITYNAME operand against the
USERID of the DFHSNT TYPE = ENTRY macro each time a session is bound, and
performs a signon with the security parameters defined in the macro. If you are
using RACF or some other external security manager, you may only need to
code the DFHSNT TYPE = (ENTRY,DEFAUL T) macro.

CICS does not sign the link on to RACF if the SECURITYNAME in the
CONNECTION definition is the same as the RACF user identifier of the CICS
system (USER parameter in the JOB card for the CICS startup jobstream).

If the signon fails, the usual signon failure message is sent to the master
terminal destination, and the link is given the minimum security level; that is, it
is able to access only unprotected resources.

ROO Definition

DEFINE
CONNECTION

SECURITYNAME(name)

Macro-level Definition

DFHTCT TYPE=SYSTEM

,XSNAME=name

Note: For APPC terminals defined as a TERMINAL-TYPETERM pair, the
SECURITYNAME operand is on the DEFINE TERMINAL command.

Figure 112. Defining a link security name

For MRO links, the s'ecurity name is also used for bind~time security; the bind
will fail unless the requesting system passes the same name with the connection
request (see Figure 111 on page 318). If you do not specify a security name, but
the requesUng system passes a name, the connection request is accepted and
the passed name is used as the link security name.

No signon for the I,ink takes place if you are using RACF and the requesting
system passes a name that is the same as the RACF user identifier of the
receiving system (USER parameter on the JOB card of the CICS startup
jobstream). Therefore, if you are using bind-time security and you want to apply
effective link security, the SECURITYNAME on one side of an MRO link must not
match the SECURITYNAME on the other side.

Chapter 6.1. Security in the Intercommunication environment 319

User. security

2. By specifying security in the link definition: You can specify CICS security
keys for each set of sessions bymeans of the OPERSECURITY and OPERRSL
operands, as shown in Figure 113 below.

ROO Definition

DEFINE
CONNECTION

DEFINE
SESSIONS

OPERSECURITY(number-list)
OPERRSL(number-list)

Macro-level D~finition

DFHTCT TYPE=SYSTEM

,OPERSEC=number-list
,OPERRSL=number-list

Note:" For APPC terminals defined as a TERMINAL-TYPETERM pair, the
OPERSECURITY and OPERRSL operands are on the DEFINE TERMINAL
command.

Figure 113. Defining preset link security in a link definition

As with ordinary terminals, OPERSECURITY and OPERRSL specify one or more
keys as decimal values. A value of 1 is always implied for OPERSECURITY,
meaning that the link always has access to unsecured transactions.

If you specify OPERSECURITY and/or OPERRSL, eles will not perform a slgnon
for the link, even If you have specified a security name.

The real user of an interregion or intersystem link resides at the remote system.
For example, if someone who has signed on at a terminal on a remote system
invokes a transaction on your system (via CICS transaction routing), then that
person is the real user of your transaction.

With MRO and LUTYPE6.2 links, information about the real user can be
transmitted with the attach request from the remote system. This means that
you can protect your resources not only on the basis of which remote system is
making the request, but also on the basis of which actual user at the remote
system is making the request.

If you decide to apply CICS user security, yOl! must specify an option on the link
definition as described in "User security in link definitions" on page 322. Then
you define each remote user by an entry in the CICS signon table (DFHSNT
TYPE = ENTRY). The entry in the signon table can specify CICS security values,
or external security, or both. For those users who are subject to external
security only you can provide a suitable default entry (DFHSNT
TYPE = (ENTRY,DEFAUL T)). If you select external security, you probably have to

320 CICS/MVS 2;1.2 Intercornmunlcatlon Guide

define your users to the appropriate external security manager: for example,
RACF.

If a remote user is not defined by an entry in the CICS signon table (and no
external security manager is in use), then any attach requests from that remote
user will be rejected.

There can also be hidden users of your system. For example, the remote CICS
system itself may want to attach transactions (see Table 8 on page 322).
Depending on your security strategy, you may need to cover each of these by an
entry in the signon table, a RACF defi'nition, or both.

Make sure that the security profile you define for the link Is a collation of all the
separate profiles that you have allotted to remote users.

Note that remote users are "signed on" to your system automatically. They do
not even have to be aware that requests are being shipped on their behalf. As
stated earlier in this chapter, you are responsible for defining what security is
required, and CICS takes care of the rest.

With LUTYPE6.1 links, information about the remote user is not available for
security purposes. In this case, the authority of the user is taken to be that of
the link itself, and you have to rely on link security alone to protect your
resources.

Information about remote users
This section describes some of the concepts associated with user security, and
how CICS sends and receives user information.

CICS user security for LUTYPE6.2 links conforms to the LUTYPE6.2 architecture,
and CICS implements similar facilities for MRO links. No user security is
available with LUTYPE6.1 links.

The LUTYPE6.2 architecture allows user identifiers, user passwords, and user
profiles to be transmitted with requests to attach a transaction. User profiles can
be transmitted instead of or as well as user identifiers. CICS, however, makes
no use of profiles, and ignores them if they are received. They are therefore
omitted from the rest of this discussion.

CICS always sends a user identifier with attach requests that it sends on
LUTYPE6.2 and MRO links. Table 8 on page 322 shows how CICS decides what
user identifier to send.

CICS never sends a password with attach requests that it sends to remote
systems. This is because CICS can perform its own password checking, and it Is
assumed that the security set up in the local system does not allow
unauthenticated users access to remote systems.

Special rules apply to links with CICS/VM and CICS OSI2 systems. See the
CICS/VM System Support and Administration manual and the CICS OS/2 System
and Application Guide for details.

Chapter 6.1. Security in the intercommunication environment 321

,-,

Table 8. LUTYPE6.2 and MRO attach-time user identifiers

Characteristics of the User Identifier Sent by CICS
Local Task to the Remote System

Task with associated terminal - user Terminal user identifier
signed on or USERID specified in the
terminal definition.

Task with associated terminal - no user Default (null) user identifier
signed on and no USERID specified in
the terminal definition.

Task with no associated terminal started User identifier for the task that issued
by interval control START command the START command -
Task with no associated terminal started Default (null) user Identifier
by transient data trigger

CICS system task The SYSIDNT of the CICS system

Signing on the remote user has two purposes:

1. To ensure that the remote user is allowed to access the CICS system.

2. If the signon is successful, to establish a security profile for the remote user.

Apart from the fact that it is performed automatically by CICS, this signon is just
the same as a normal operator signon in a single CICS system.

CICS signs off the remote user under the circumstances described in "CICS
action with ATTACHSEC{ldentify)" on page 323 and "CICS action with
A TT ACHSEC(Verify)" on page 324.

User security In link definitions
The level of user security you require for a remote system is specified in the
ATTACHSEC operand of the DEFINE CONNECTION command, as shown in
Figure 114.

RDO Definition

DEFINE,
CONNECTION(name)
GROUP(groupname)

ATTACHSEC(Locall
Identifyl
Verify)

Macro-Level Definition

DFHTCT TYPE=SYSTEM
,SYSIDNT=name

.USERSEC={LOCALI
IDENTIFYI
VERIFY}

Note: For APPC terminals defined as a TERMINAL-TYPETERM pair, the
ATTACHSEC operand is on the DEFINE TERMINAL command.

Figure 114. User security in link definition

322 CICS/MVS 2.1.2 Intercommunication GuIde

The ATTACHSEC operand specifies your security requirements for Incoming
attach requests. It has no effect on attach requests that are issued by your
system to a remote system.

Except for CICS transaction routing, where special rules apply (see "Transaction
routing security" on page 326), the parameters of the ATTACHSEC operand have
the following meanings:

Local
specifies that a user identifier is not required from the remote system and if
one is received it is ignored. Here, CICS makes the user security profile
equivalent to the link security profile. You do not need to specify entries in
the signon table for the remote users. Local is the default value.

ATTACHSEC(Local) must be used for all LUTYPE6.1 links and also for
LUTYPE6.2 links to systems that do not send user identifiers.

You can choose to use ATTACHSEC(Local) for other links if you think that the
link security profile alone provides sufficient security for your system.

Identify
specifies that a user identifier is required on every attach request. This level
of user security is recommended for CICS-to-CICS communication over
LUTYPE6.2 and MRO links.

ATTACHSEC(ldentify) is appropriate when CICS can "trust" the remote
system to verify its users (by some sort of signon mechanism) before
allowing them to use the link to CICS.

If an attach request with both a user identifier and a password is received on
a link with ATTACHSEC(ldentify), CICS will verify by performing a signon with
password.

If a null user identifier is received, CICS applies minimum security
capabilities only.

Verify
specifies that, in addition to a user identifier, a user password is required for
verification against the locally-defined password.

ATT ACHSEC(Verify) is appropriate when the remote system does not have a
security manager and therefore cannot verify its own users.

CICS action withATT ACHSEC(ldentlfy)
When an attach request with a particular user identifier is first received on a link
defined with ATTACHSEC(ldentify), CICS carries out a signon without password
to ensure that the user has authority to access this system, and to establish
security levels for the user.

Thereafter, CICS accepts attach requests from the same ,user without a new
signon until one of the following occurs:

i.A period of over 30 minutes has elapsed since the previous attach request
from this user.

2. The link to the remote system is broken.

Chapter 6.1. Security in the intercommunication environment 323

In either of these events, CICS "forgets" the remote user, and carries out a new
signon to reestablish the user's authority on the next attach request.

Warning: If you are using RACF, and you alter the authority of a signed-on
remote user, CICS will continue to use the security values acquired at the first
attach request until one of the events previously listed causes the user to be
forgotten.

CICS action with ATTACHSEC(Verlfy)
A specification of ATTACHSEC{Verify) means that you require a user identifier
and a user password with every attach request.

Every time that an attach request with a user identifier and user password is
received on a link defined with ATTACHSEC{Verify), CICS carries out a signon
with password to ensure that the user has authority to access this system, to
verify that the password is correct, and to establish security levels for the user.

CICS "forgets" verified users between attach requests; a new signon is
performed every time.

Securing transactions and resources

Transactions

The last step in defining security for your system is to make sure that the access
parameters for your transactions and resources match the profiles you have
defined for the link and the individual remote users.

The security requirements of a transaction are specified when the transaction is
defined (see the CICSIMVS Resource Definition (Online) manual or the
CICSIMVS Resource Definition (Macro) manual). A transaction can be .defined
with no security, with CICS security, or with external security (RACF), as shown
in Figure 115.

No Security

DEFINE
TRANSACTION

EXTSEC(NO)
TRANSEC(1)

CICS Security

DEFINE
TRANSACTION

EXTSEC(NO)
TRANSEC(2-64)

Figure 115. Specifying transaction security

External Security

DEFINE
TRANSACTION

EXTSEC(YES)

Before a secure transaction can be initiated, two basic security requirements
must be met.

1. The link must have sufficient authority to initiate the transaction.

2. The "user" who is making the request via the link must have sufficient
authority to access the system and to initiate the transaction.

324 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

Resources

If the transaction specifies resource security checking, both the IInl< and the user
must also have sufficient authority for the resources that the attached transaction
will access.

Resource security In the intercommunication environment is handled in much
the same way as It is in a single-system environment.

Resource security checking is performed only if the program control table entry
for the transaction specifies that it is required (YES or EXTERNAL in the RSLC
operand). If It is specified, two conditions must be satisfied before the attached
transaction is allowed to access a protected resource:

1. The link must have sufficient authority to access the resource.

2. The remote user must have sufficient authority to access the resource. For
LUTYPE6.1 links, and for links that specify ATTACHSEC(Local), the user
authority is the same as the link authority.

The way in which resource security values for links and remote users are
acquired has been described earlier in this chapter.

DLII databases
For resources other than OLII databases, you can use either RACF security or
CICS security. For DLII databases, an external security manager such as RACF
must be used if resource security is required.

CICS function shipping security
When CICS receives a shipped function request, the transaction that is invoked
is the mirror transaction. The CICS-supplied definitions of the mirror
transactions (CSMx and CVMI) specify resource security level checking, but not
transaction security. They can therefore be invoked by any remote system and
user that are allowed to access your system, but they can access only those
resources for which the link and remote user have authority.

You can modify.the appropriate mirror transaction definitions to achieve the level
of security that you require.

Security considerations for the user
If you include a remote resource in your resource definitions, you can arrange
for security checking to be done locally, just as if the resource were a local one.
Also, the system that owns the resource can be made to apply an independent
check, if it is able to receive the user identifier from you. You can therefore
choose to apply security restrictions on both sides, on either s.ide, or not at all.

If you specify RSLC(YES) or RSLC(EXTERNAL) for a transaction, the NOTAUTH
condition is raised if the transaction attempts to issue an EXEC CICS. command
with the SYSID option specified. This is to prevent transactions from bypassing
the local security check.

Chapter 6.1. Security In the Intercommunication environment 325

The NOTAUTH condition
If a transaction attempts to access a resource, but fails the resource security
checks, the NOTAUTH condition is raised.

When the transaction is the CICS/MVS mirror transaction, the NOTAUTH
condition is returned to .the requesting transaction, where it can be handled in
the usual way.

Note: If you have problems with a mirror transaction abending during function
shipping, wrong resource security levels are a likely cause .

. ----... -------------------------------
Transaction routing security

In CICS transaction routing, the transaction in the application-owning region has
as its principal facility a remote terminal (the "surrogate") that represents the
"real" terminal in the terminal-owning region (see "Chapter 1.6. CICS
transaction routing" on page 45). The way in which the remote terminal is
defined (see "Chapter 3.2. Defining remote resources" on page 133) can have
an effect on the way in which user security is applied.

1. If the definition of the remote terminal contains neither OPERSECURITY nor
OPERRSL values:

• For links with ATTACHSEC(ldentify), the transaction security and
resource security of the user are established when the remote user is
signed on.

• For links with ATTACHSEC(Local), the transaction security and resource
security are handled in different ways. Transaction security is set to that
of the link but resource security is set to minimum capability; that is, the
use·r is allowed to access unprotected resources only. This is to prevent
unauthenticated users from achieving wider security capabilities in the
AOR than they might have in the TOR.

2. If the definition of the remote terminal contains either OPERSECURITY or
OPERRSL values, the security characteristics of the remote user are ignored,
and the values coded in the terminal definition are used.

In both cases, tests against the link security are made as described earlier in
this chapter.

Notes:

1. OPERSECURITY and' OPERRSL values are not transferred when a terminal
definition is shipped from one region to another (see "Shipping terminal
definitions" on page 141), Terminal definitions that have been acquired by
shipping therefore always correspond to case 1 given above.

2. During transaction routing, the operator identifier from the terminal-owning
region (if it is available) is transferred to the surrogate terminal entry in the
application-owning region. This identifier is not used for security purposes,
but it may be referred to in messages and audit trails.

326 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

-----------.------.---------.--.---.----.------~---------------

Use of MVS cross-memory services
MVS cross-memory services can be used for interregion communication
(function shipping, transaction routing, distributed transaction processing, and
asynchronous processing).

If you use cross-memory services, you will lose the total separation between
systems that is normally provided by separate address spaces.

The risk of accidental Interference between two CICS address spaces connected .
by a cross-memory link is small. However, an application program in either
system could access the other system's storage (subject to key';controlled
protection) by using a sequence of cross-memory instructions.

If this situation would create a security exposure in your installation, you should
use the CICS SVC for interregion communication.

Chapter 6.1. Security In the Intercommunication environment 327

Chapter 6.2. Master terminal operations for LUTYPE6.2 connections

This chapter offers advice on managing LUTYPE 6.2 connections using the
master terminal transaction (CEMT) and the interaction between these
commands and the way these resources have been defined to CICS.

The commands are described under the headings:

• Acquiring the connection
• Controlling and monitoring sessions on the connection
• Releasing the connection.

The commands used to achieve these actions are:

• CEMT SET CONNECTION ACQUIRED/RELEASED
• CEMT SET MODENAME AVAILABLE/ACQUIRED/CLOSED

Detailed formats and options of CEMT commands are given in the CICS/MVS
CICS-Supplied Transactions manual.

The information is mainly about parallel-sessions connections between CICS
systems.

General Information
The operator commands controlling LUTYPE6.2 connections cause CICS to
execute many internal processes,some of which involve communication with the
partner systems. The major features of these processes are described below,
but you should note that the processes are sometimes independent of one
another and can be asynchronous. This makes simple descriptions of them
imprecise In some respects. The execution can occasionally be further modified
by independent events occurring in the network, or simultaneous operator
activity at both ends of an LUTYPE6.2 connection; these circumstances are more
likely when a component of the network has failed and recovery is in progress.
The following sections explain the normal operation of the commands.

Note: The principles of operation described in this chapter also apply to the
EXEC CICS INQUIRE CONNECTION, INQUIRE MODENAME, SET CONNECTION,
and SET MODENAME commands (for more information, see the CICS/MVS
Customization Guide).

Acquiring a connection

The SET CONNECTION ACQUIRED command causes CICS to establish a
connection with a partner system. The major processes involved in this
operation are:

• Establishment of the two LU services manager sessions in the modegroup
SNASVCMG.

• Initiation of the change-number-of-sesslons (CNOS) process by the partner
initiating the connection.

@ Copyright I BM Corp. 1977 I 1991 329

CNOS negotiation is executed (using one of the LU services manager
sessions) to determine the numbers of contention-winner and
contention-loser sessions defined in the connection. The results of the
negotiation are reported in messages DFH4900 and DFH4901.

• Establishment of the sessions that carry CICS application data.

The following processes, also part of connection establishment, are described in
II Part 5. Recovery and restart" on page 287.

• Exchange lognames

• Resolution and reporting of synchronization information.

Connection status during the acquire process
The status of the connection before and during the acquire process is reported
by the INQUIRE CONNECTION command as follows:

Released Initial state before the SET CONNECTION ACQUIRED command. All
the sessions in the connection are released.

Obtaining Contact has been made with the partner system, and CNOS
negotiation is in progress.

Acquired CNOS negotiation has completed for all modegroups. In this status
CICS has bound the LU services manager sessions in the modegroup
SNASVCMG. Some of the sessions in the user modegroups may also
have been bound, either as a result of the AUTOCONNECT operand
on the SESSIONS definition or to satisfy allocate requests from
applications.

Acquiring sessions: effect of the AUTOCONNECT operand
The results of requests for the use of a connection by application programs
depend on the status of the sessions. You can control the status of the sessions
with the AUTOCONNECT operand of the SESSIONS definition as described in the
following section.

CICS can bind contention-winner sessions to satisfy an application request, but
not contention losers. However, it can assign contention-loser sessions to
application requests if they are already bound. Considerations for binding
contention losers are described in the next section. For more detailes about the.
use of sessions by an application, see "Session allocation" on page 174.

The meanings of the AUTOCONNECT operand for LUTYPE6.2 connections are
described in "The AUTOCONNECT operand" on page 125. The effect of the
AUTOCONNECT operand of the SESSIONS definition is to control the acquisition
of sessions in modegroups associated with the connection. Each modegroup
has its own AUTOCONNECT parameter and the setting of this parameter affects
the sessions in the modegroup as described in Table 9.

330 CICS/MVS 2.1.2 Intercommunication Guide

Table g. Effect of AUTOCONNECT on the SESSIONS definition.
------- r----- -

Setting Effect
,--t-- -

Ves CNOS negotiation with the partner system is performed for the
modegroup, and all negotiated contention-winner sessions are
acquired when the connection is acquired.

No CNOS negotiation with the partner system is performed, but no
sessions are acquired. Contention-winner sessions can be bound
individually according to the demands of application programs (for
example, when a program issues an ALLOCATE command), or the set
MODENAME ACQUIRED command can be used to bind
contention-winner sessions.

All CNOS negotiation with the partner system is performed for the
modegroup, and all negotiated sessions, contention winners, and
contention losers are acquired when the connection is acquired. This
setting should be necessary only on connections to non-CICS systems.

When the connection is in ACQUIRED status, the INQUIRE MODENAME command
can be used to determine whether the user sessions have been made available
and activated as required. The binding of user sessions Is not completed
instantaneously, and you may have to repeat the command to see the final
results of the process.

Binding contention-loser sessions
Contention-loser sessions on one system are contention-winner sessions on the
partner system, and should be bound by the partner as described above. If you
want all sessions to be bound, you must make sure each side binds its
contention winners.

If the connection is between two CICS systems, specify AUTOCONNECT(YES) on
the SESSIONS definition for each system. or issue CEMT SET MODENAME
ACQUIRED from both systems. If you are linked to a non-CICS system that is
unable to send bind requests. specify AUTOCONNECT(ALL) on your SESSIONS
definition.

If the remote system can send bind requests, find out how you can make it bind
its contention winners so that it does so immediately after the SNASVCMG
sessions have bound.

The ALLOCATE command, either as an explicit command in your application or
as implied in automatic transaction initiation, cannot bind contention-loser
sessions, although It can assign them to conversations if they are already bound.

Effects of the MAXIMUM operand
The MAXIMUM operand of the SESSIONS definition specifies

• The maximum number of sessions that can be supported for the modegroup
• The number of these that are supported as contention winners.

Operation of LUTYPE6.2 connections is made easier if the maximum number of
sessions at each end of the connection match. and the number of
contention-winner sessions specified at the two ends add up to this maximum

Chapter 6.2. Master terminal operations for LUTYPE6.2 connections 331

number. If this is done, CNOS negotiation does not change the numbers
specified.

If the specifications at each end of the connection do not match, as has just been
described, the actual values are negotiated by the LU services managers. The
result of the negotiation on the maximum number of sessions is to adopt the
lower of the two values. An architected algorithm is used to determine the
number of contention winners for each partner, and the results of the negotiation
are reported in messages DFH4900 and DFH4901.

These results can also be deduced as shown in Table 10 by issuing a CEMT
INQUIRE MODENAME command.

Table 10. INQ MODENA ME display

Display Interpretation

MAXimum The value specified in the sessions definition for th is modegroup. This
y if it is equal to or
e partner system.

represents the true number of usable sessions onl
less than the corresponding value displayed on th

AVAilable Represents the result of the most recent CNOS ne gotiation for the
ntially active. number of sessions to be made available and pote

Following the initial CNOS negotiation it reports th e result of the
perand. negotiation of the first operand of the MAXIMUM 0

ACTive The number of sessions currently bound.

To change the MAXIMUM values, release the connection, set it OUTSERVICE,
redefine it with new values, and install it using the CEDA transaction.

Controlling sessions with the SET MODENAME commands
The SET MODENAME commands can be used to control the sessions within the
modegroups associated with an LUTYPE6.2 connection, without releasing or
reacquiring the connection. The processes executed to accomplish this are:

• CNOS negotiation with the partner system to define the changes that are to
take place.

• Binding or unbinding of the appropriate sessions.

The algorithms used by CICS to negotiate with the partner the numbers of
sessions to be made available are complex, and the numbers of sessions
actually acquired may not match your expectation. The outcome can depend on
the following:

• The history of preceding SET MODENAME commands
• The activity in the partner system
• Errors that have caused CICS to place sessions out of service.

Modegroups can normally be controlled with the few simple' commands
described in Table 11 on page 333.

332 CICS/MVS 2.1.2 Intercommunication GuIde

-- --_._---- --
Table 11. SET MODENAME commands

-
Command Effect

---- --
SET MODENAME ACQUIRED Acquires all negotiated contention-winner

sessions.

SET MODENAME CLOSED Negotiates with the partner to reduce the
available number of sessions to zero, releases
the sessions, and prevents any attempt by the
partner to negotiate or activate any sessions in
the modegroup. Only the system issuing the
command can subsequently increase the session
count. _._-- -

SET MODENAME If this command is issued when the modegroup is
AVAIL(maxlmum) ACQUIRED closed, the sessions are negotiated as if the

- connection had been newly acquired, and the
contention-winner sessions are acquired. It can
also be used to rebind sessions that have been
lost due to errors that have caused CICS to place
sessions out of service.

--- -_.---._._-------- -------------

Commands, scope and restrictions
User modegroups, which are built from CEDA DEFINE SESSIONS (or macro
equivalent) definitions, can be modified by using the SET MODENAME command
or by overtyping the INQUIRE MODENAME screen.

The SNASVCMG modegroup is built from the CONNECTION definition and any
attempts to modify its status with a SET MODENAME command, or by overtyping
the INQUIRE MODENAME screen, will be suppressed. It is controlled by the SET
CONNECTION command, or by overtyping the INQUIRE CONNECTION screen,
which will also affect associated user modegroups.

CEMT INQUIRE NETNAME(....), where the netname is the APPLID of the partner
system, displays the status of all sessions associated with that connection and
can be useful in error diagnosis. Any attempt to alter the status of these
sessions by overtyping, will be suppressed.

You must use the SET/INQ CONNECTION/MODENAME to manage the status of
user sessions and to control negotiation with remote systems.

Releasing the connection
The SET CONNECTION RELEASE command causes CICS to quiesce a connection·
and release all sessions associafed with it. The major processes involved in this
operation are:

• Execution of the CNOS process to inform the partner system that the
connection is closing down. The number of available sessions on all
modegroups is reduced to O.

Chapter 6.2. Master terminal operations for LUTYPE6.2 connections 333

• QUiescing of transaction activity using the connection. This process allows
the completion of transactions that are using sessions and queued allocate
requests; new requests for session allocation are refused with the SYSIDERR
condition.

• Unbinding of the user and LU services manager sessions.

Connection status during the release process
The following states are reported by the CEMT INQUIRE CONNECTION command
before and during the release 'process.

Acquired Sessions are acquired; the sessions can be allocated to transactions.

Freeing Release of the connection has been requested and is in progress.

Released All sessions are released.

If you have control over both ends of the connection, or If your partner is unlikely
to issue commands that connict with yours, you can use SET CONNECTION
RELEASED to quiesce activity on the connection. When the connection is in the
RELEASED state, SET CONNECTION OUTSERVICE can be used to prevent any
attempt by the partner to reacquire the connection.

If you do not have control over both ends of the connection, you should use the
sequence of commands described in "Making the connection unavailable."

The effects of limited resources
If an LUTYPE6.2 connection traverses non-leased links (such as Dial, ISDN, X.25,
X.21 or Token Ring links) to communicate to remote systems, the links can be
defined within the network as limited resources. CICS recognizes this definition
and automatically unbinds the sessions as soon as no transactions require them.
If new transactions are invoked that require the connections, CICS will bind the
appropriate number of sessions. The connection status is shown by the CEMT
INQUIRE CONNECTION command as follows:

Acquired Some of the sessions in the connection are bound, and are probably
in use. The LU services manager sessions in modegroup
SNASVCMG may be unbound.

Available The connection has been acquired, but there are no transactions that
currently require the use of the connection. All the sessions have
been unbound because they are defined in the network as limited
resources.

The connection behaves in other ways exactly as for a connection over
non-limited-resource links. The SET MODENAME and SET CONNECTION
RELEASED commands operate normally.

334 CICS/MVS 2.1.2 Intercommunication Guide

Making the connection unavailable
The SET CONNECTION RELEASED command quiesces transactions using the
connection and releases the connection. It cannot, on its own, prevent
reacquisition of the connection from the partner system. To prevent your partner
from reacquiring the connection, you must execute a sequence of commands.
The choice of command sequence determines the status the connection adopts
and how it responds to further commands from either partner.

If the number of available sessions for every modegroup of a connection is
reduced to zeros, ALLOCATE requests that do not specify NOQUEUE or
NOSUSPEND are suspended. Transaction routing and function shipping requests
are also suspended. The connection is effectively unavailable. However,
because the remote system can renegotiate the availability of sessions and
cause those sessions to be bound, you cannot be sure that this state will be
held.

To prevent your partner from acquiring sessions that you have made
unavailable, use the CEMT SET MODENAME CLOSED command. This reduces
the number of available user sessions in the'modegroup to zero and also locks
the modegroup. Even if your partner now issues SET CONNECTION RELEASED
followed by SET CONNECTION ACQUIRED, no sessions in the locked modegroup
become bound until you specify an AVAILABLE value greater than zero.

If you lock all the modegroups, you make the connection unavailable, because
the remote system can neither bind sessions nor do anything to change the
state. On both sides, transaction programs that need sessions are suspended,
unless the NOQUEUE or NOSUSPEND option has been specified on the
ALLOCATE request, and all further progress depends on the action of only one of
the two operators. Make sure the connection does not remain in this state for
any length of time.

Having closed all the modegroups for a connection, you can go a step further by
issuing CEMT SET CONNECTION RELEASED. This unbinds the SNASVCMG (LU
services manager) sessions. An inquiry on the CONNECTION returns INSERVICE
RELEASED (or INSERVICE FREEING if the release process is not complete).
Transaction programs suspended by CEMT SET MODENAME CLOSED now
resume but return SYSIDERR as for connection out of service.

If you now enter SET CONNECTION ACQUIRED, you free all locked modegroups
and the connection is fully established. If, instead, your partner issues the same
command, only the SNASVCMG sessions are bound and transaction programs
on both sides may well suspend as earlier described.

You can prevent your partner from binding the SNASVCMG sessions by invoking
CEMT SET CONNECTION OUTSERVICE, which is ignored if the connection is
already in the RELEASED state.

I 8 By, for example, a CEMT SET MODENAME AVAILABLE(O) command

Chapter 6.2. Master terminal operations for LUTYPE6.2 connections 335

Summary

To summarize, you can maKe a connection unavailable and retain it under your
control by issuing these commands in the order shown:

Making the connection unavailable. -------------.---,

CEMT SET MODENAME(*) CONNECTION(....) CLOSED

[The CONNECTION option Is significant only if
the MODENAME applies to more than one
connection.]

INQ MODENA~1E(*) CONNECTION(•...)

[Repeat this command until the AVAILABLE count
for al/ non-SNASVCMG modegroups becomes zero.]

SET CONNECTION(.••.) RELEASED
INQ CONNECTION(....)

[Repeat this command until tile RELEASED status
is displayed.]

SET CONNECTION(.•.•) OUTSERVICE
--------_.- -. - ---------------'

Diagnosing and correcting error conditions
User sessions that have become unavailable because of earlier failures can be
brought back into use by restoring or increasing the available count with the SET
MODENAME AVAILABLE(n) command. The addition of the ACQUIRED option to
this command will result in the binding of any unbound contention-winner
sessions.

If the SNASVCMG sessions become unbound while user sessions are active, the
connection is still acquired. A SET CONNECTION ACQUIRED command binds all
contention-winner sessions in all modegroups, and may be sufficient to
re-establish the SNASVCMG sessions.

Sometimes, you may not be able to recover sessions, although the original
cause of failure has been removed. Under these circumstances, you should first
release then reacquire the connection.

Figure 116 on page 337 summarizes the effect of CEMT commands on the status
of an LUTYPE6.2 link.

336 CICS/MVS 2.1.2 Intercommunication Guide

Commands issued
in sequence shown

Resulting states

and reactions

[
,--

-

1 1

2

y N

Y Y

N Y

N Y

nla Y

1
1 1

2 2
3

N y N

N N N

Y N Y

Y N Y

N nla y

S
1 S
2 1 1 S
3 2 S

N N N A

N Y N P

Y Y Y A
--

Y Y Y S

N Y N P
- ----'-----

ET MODENAME AVAILABLE(0)
ET MODENAME CLOSED
ET CONNECTION RELEASED
ET CONNECTION OUTSERVICE

LLOCATE requests suspended

artner can renegotiate

LLOCATE rejected with SYSIDERR

NASVCMG sessions released

artner can rebind SNASVCMG

I Figure 116. Effect of CEMT commands on an operational LUTYPE6.2 link.

Chapter 6.2. Master terminal operations for LUTYPE6.2 connections 337

Appendix A. Rules and restrictions checklist

This appendix provides a checklist of the rules and restrictions that apply to
intersystem communication and multiregion operation. Most of these rules and
restrictions also appear in the body of the book.

Macro-level and command-level transactions
• In general, remote data resources can be accessed only by command-level

transactions.

• Function-shipping, distributed transaction processing, and asynchronous
processing are available only to command-level transactions.

• Macro-level Interval control requests cannot be used for starting a
transaction in a remote system (asynchronous processing). In other words,
transactions initiated by macro-level interval control requests must reside on
the same system as the transaction that initiates them.

• Transaction routing is available to both command-level and macro-level
transactions. Both command-level and macro-level transactions can be
initiated from a remote terminal, and can acquire a remote terminal when
they are started by automatic transaction initiation.

• All programs, tables, and maps that are used by a transaction must reside
on the system that owns the transaction (the programs, tables, and maps
can be duplicated in as many systems as necessary).

Transaction routing
• A transaction routing path between a terminal and a transaction must not

turn back on itself. For example, if system A specifies that a transaction is
on system B, system B specifies that it is on system C, and system C
specifies that it is on system A, the attempt to use the transaction from
system A will be abended when system C tries to route back to system A.

This restriction also applies if the routing transaction (CRTE) is used to
establish all or part of a path that turns back on itself.

• Transaction routing using the following terminals is not supported:

LUTYPE6.1 sessions

IBM 7770 terminals

Pipeline logical units with pooling

Pooled TCAM terminals

The MVS system console. (Messages entered through a console can be
directed to any CICS system via the MODIFY command.)

• The transactions CEOT and CSOT are not supported by the transaction
routing facility.

• The transaction CSMT is not supported from a remotely-owned 2780 for
which BSCODE = ASCII is specified.

© Copyright IBM Corp. 1977, 1991 339

• The execution diagnostic facility (EDF) can be used in single terminal mode
to test a remote transaction provided that the routing transaction CRTE is
used to invoke both EDF and the transaction under test.

EDF running in two-terminal mode is supported only when both of the
terminals and the user transaction reside on the same system; that is, when
no transaction routing is involved.

• The user area of the TCTTE is updated at task attach and task detach times.
Therefore, a user exit program running on the terminal-owning region and
examining the user area while the terminal is executing a remote transaction
will not necessarily see the same values as a user exit running at the same
time in the application-owning region. Note also that the user areas must be
defined as having the same length in both systems.

• Application programs that use the DFHTC TYPE = SIGNAL macro instruction
without the WAIT option may behave differently when running on a
remotely-owned terminal. This is because the signal indicator is passed to
the application only when a terminal control request with a WAIT implied is
issued by the application program. If the application does not issue such a
request then continually testing the signal indicator by means of DFHTC
TYPE = SIGNAL macro instruction will continually fail to detect the inbound
signal.

Basic mapping support
• BMS support must reside on each system that owns a terminal through

which paging commands can be entered.

• A BMS ROUTE request cannot be used to send a message to a selected
remote operator or operator class unless the terminal at which the message
is to be delivered is specified in the route list.

Automatic transaction initiation
• A terminal-associated transaction that is initiated by the transient data

trigger level facility must reside on the same system as the transient data
queue that causes its initiation. This restriction applies to both macro-level
and command-level application programs.

• If a transaction is started by ATI on a remotely-owned terminal, the
transaction must be defined on the terminal-owning region as a remote
resource owned by the system where the ATI request is issued (but see
"Shipping terminals for automatic transaction initiation" on page 48).

Allocating LUTYPE6.1 sessions
• If an application issues a ALLOCATE command for an LUTYPE6.1 connection,

and the remote system is unavailable, the connection is placed
out-of-service.

• If the remote system is a CICS system that uses AUTOCONNEtT, the
connection is placed back in service when the initialization of the remote
system is complete.

• If the remote system does not specify AUTOCONNECT, or if it is a non-CICS
system that does not have autoconnect facilities, you must place the

340 CICS/MVS 2.1.2 Intercommunication Guide

Syncpointing

connection back in service by using a CEMT SET CONNECTION command or
by issuing an EXEC CICS SET CONNECTION command from an application
program.

• SYNCPOINT ROLLBACK calls are supported only by LUTYPE6.2 and MRO
sessions.

Local and remote names
• Transaction identifiers are translated from local names to remote names

when a request to execute a transaction is transmitted from one CICS
system to another.

However, a transaction identifier specified in an EXEC CICS RETURN
command (or a DFHPC TYPE = RETURN macro) is not translated when it is
transmitted from the application-owning region to the terminal-owning
region.

• Terminal identifiers are translated from local names to remote names when
a transaction routing request to execute a transaction on a specified terminal
is shipped from one CICS system to another.

However if an EXEC CICS START command specifying a terminal
identification is function shipped from one CICS system to another, the
terminal identification is not translated from local name to remote name.

Master terminal transaction
• Only locally-owned terminals can be queried and modified by the master

terminal transactions CSMT and CEMT. The only terminals visible to these
transactions are those owned by the system on which the master terminal
transaction is actually running.

Installation and operations
• Module DFHIRP must be made LPA-resident, otherwise jobs and console

commands may abend on completion.

• Interregion communication requires subsystem interface (SSI) support.

• The SIT, or system initialization overrides, must not specify SRT = NO.

Resource definition
• The PRINTER and AL TPRINTER operands for a VTAM terminal must (if

specified) name a printer owned by the same system as the terminal being
defined.

• The terminals listed in the terminal list table (DFHTL T) must reside on the
same system as the terminal list table.

Appendix A. Rules and restrictions checklist 341

Customization
'. Communication between node error programs, user exits, and user

programs is the responsibility of the user.

• The DFHTC CTYPE macros cannot be used for terminals that are owned by
remote systems.

• Transactions that recover input messages for protected tasks after a system
crash must run on the same system as the terminal that invoked the
protected task.

MRO abend codes
• An MRO transaction in send state is unable to receive an error reason code

if its partner has to abend. It abends itself with code AZI2, which should be
interpreted as a general indication that the other side is no longer there.
The real reason for the failure can be read from the CSMT destination of the
CICS region that first detected the error. For example, a security violation in
attaching a back-end transaction is reported as such by the front end only if
the initiating command is CONVERSE and not SEND.

342 CICS/MVS 2.1.2 Intercommunication Guide

I
I

I
I
I

Appendix B. Sample application programs

This appendix describes several CICS application programs that illustrate the
use of distributed transaction processing and asynchronous processing on
LUTYPE6.2 and LUTYPE6.1 links.

The samples, all of which are written in assembler language, are presented in
the following order:

1. The transfer of a temporary storage queue from a local CICS system to a
remote CICS system, using distributed transaction processing and
LUTYPE6.2 protocols.

2. Browsing a remote file, using distributed transaction processing. This
sample can be used on LUTYPE6.2, LUTYPE6.1, or MRO links.

3. The retrieval of a record from a remote temporary storage queue, using
asynchronous processing. This sample can be used on LUTYPE6.2,
LUTYPE6.1, or MRO links.

4. A CICS to remote LUTYPE6.1 system (CICS or IMS) conversation. LUTYPE6.1
links must be used for this sample.

5. A simple CICS to IMS conversation. LUTYPE6.1 links must be used for this
sample.

6. A CICS to IMS sample showing the use of demand paging. LUTYPE6.1 link~
must be used for this sample.

The sample programs and their associated BMS mapsets are provided in both
source and object form on the CICS distribution volume.

Sample programs: The source modules are on library CICS212.SAMPLIB and
the object modules are on library CICS212.LOAOLIB. The source and object
modules have the same names. For all the sample programs, the transaction
name is the last four characters of the module name.

Sample mapsets: The source modules and the symbolic description maps are
on library CICS212.SAMPLIB. The physical maps are on CICS212.LOAOLIB. All
the BMS mapset source modules have names of the form OFH$IMx. The
symbolic description map and the physical map generated from OFH$IMx are
both named DFH$IGx.

Resource definition: For resource definition online (ROO), all the transaction,
program, and mapset definitions for the sample programs are provided in the
CICS-supplied group DFH$ICOM. If you are not using ROO, you must supply
appropriate definitions in the program control table (OFHPCT) and the processing
program table (OFHPPT).

The names of the source modules for the sample programs and mapsets are
shown in Table 12 on page 344.

© Copyright IBM Corp. 1977, 1991 343

Table 12. Summary of sample application programs

Sample Description Source Module description
modules

.. -
1 Transfer of a DFH$IQXL Local transaction

temporary storage DFH$IQXR Remote transaction
queue to a remote DFH$IMX BMS mapset DFH$IGX
CICS system.

-
2 Browsing a remote DFH$IFBL Local transaction

file. DFH$IFBR Remote transaction
DFH$IMB BMS mapset DFH$IGB

3 Retrieval of a DFH$IQRL Local request transaction
record from a DFH$IQRR Remote retrieve ttansaction
remote temporary DFH$IQRD Local display transaction
storage queue. DFH$IM1 BMS mapset DFH$IG1

DFH$IM2 BMS mapset DFH$IG2 .
--

4 CICS to CICS or IMS DFH$ICIC Local/remote transaction
conversation DFH$IMC BMS mapset DFH$IGC

5 CICS to IMS DFH$IMSN CICS transaction
conversation DFH$IMS BMS mapset DFH$IGS

-
6 CICS to IMS DFH$IMSO CICS transaction

conversation with DFH$IMS BMS mapset DFH$IGS
demand paging

344 CICS/MVS 2.1.2 Intercommunication Guide

Sample 1
--------------_._----_._-_._--------

temporary storage queue transfer
This sample illustrates the use of distributed transaction processing to transmit a
temporary storage queue to a remote system. It consists of a front-end
transaction (DFH$IQXL), a back-end transaction (DFH$IQXR), and a BMS mapset
(DFH$IMX) that is used by the front-end transaction.

The front-end transaction is invoked by the transaction code IQXL, and displays
the following menu at the user's terminal:

CICS-CICS QUEUE TRANSFER
SAMPLE PROGRAM MAP

LOCAL TS Q NAME ...
REMOTE TS Q NAME REMOTEQ
REMOTE SYSTEM 10 ..

TYPE IN VALUES, THEN PRESS ENTER
OR HIT "PF3" TO TERMINATE.

The displayed menu has three input fields:

LOCAL TS Q NAME
specifies the name of the local temporary storage queue that is to be
transferred to the remote system.

if this field is left blank, the front-end transaction will itself build a small (5
records) temporary storage queue to transfer to the remote system.

REMOTE TS Q NAME
specifies the name that the transferred queue is to be given on the remote
system.

The menu supplies the default name REMOTEQ.

REMOTE SYSTEM 10
specifies the name of the remote system.

This name must be the connection name of an LUTYPE6.2 link.

The front-end transaction initiates the back-end transaction and transmits the
temporary ~torage records for writing on the remote queue.

The user is informed of data input errors, and also of the progress of the queue
transfer operation. The local temporary storage queue is deleted after
successful completion.

Figure 117 on page 346 shows the overall now of the queue-transfer sample.

Appendix B. Sample application programs 345

Local Transaction

(front-end)

1 Get User Requirements
2 ..•. Create TS Queue if Needed
3. . ALLOCATE SYSID()

(MVC ATCHSESS,EIBRSRCE)
4. . . . CONNECT PROCESS
5. . . . SEND remote queue name =====>
6.. SEND record (loop) =====>
7 SYNCPOINT =====>

<=====
8. . . . FREE SESSION
9. • DELETE TS queue

RETURN

Remote Transaction
(back-end)

RECEIVE queue name
RECEIVE record (loop)

SYNCPOINT
RETURN

1. The user's input values are received and are validated.

2. If a local queue name is not supp1ied,a queue is constructed.

3. The front-end transaction allocates a conversatton and
acquires its name from the EIB.

4. The back-end transaction is initiated, using a SYNCLEVEL of
2 to allow CICS syncpointing.

5. The name of the remote queue is transmitted to the back-end
transaction.

6. Using consecutive sends, the front-end transaction sends one
queue record at a time to the back-end transaction, until the
end of the queue is reached.

The back-end transaction receives one record at a time and
writes it to the temporary storage queue.
The end of the transfer is indicated by the EIB settings.

7. When all the records have been sent, the front-end transaction
issues a syncpoint.
The back-end transaction, on checking the EIB, does the same.

8. The front-end transaction frees the session.
The back-end transaction terminates (thus freeing the session)
when the EIB shows FREE.

9. Finally, the front-end transaction deletes the local temporary
storage queue and terminates.

Figure 117. Sample 1: temporary storage queue transfer - overall design

346 CICS/MVS 2.1.2 Intercommunication Guide

Source listing of sample 1 front-end transaction (DFH$IQXL)

----.---
OFH$IQXL TITLE 'CICS INTERCOMMUNICATION SAMPLE - QUEUE TRANSFER - LOCAL*

PROCESSING'

*
*
*
*
*
*

CICS SAMPLE PROGRAM IQXL
SYNCHRONOUS PROCESSING

'QUEUE TRANSFER'
LOCAL TRANSACTION

*
*
*
*
*
*

* *
* INPUTS TO THIS PROGRAM LOCAL TS Q NAME *
* (FROM USERS SCREEN) REMOTE TS Q NAME *
* REMOTE SYSTEM 10 *
* *
* OUTPUTS FROM THIS PROGRAM REMOTE TS Q NAME *
* (PASSED TO TRANSACTION IQXR). TS Q RECORDS *
* *

OFH$IQXL CSECT
*

* SEND INITIAL REQUEST MENU TO USERS SCREEN *

RESETMAP DS 9H

XC SPMAPAO(SPMAPAL),SPMAPAO CLEAR MAP STORAGE
EXEC CICS SEND MAP('SPMAPA') MAPSET('DFH$IGX') MAPONLY *

ERASE
* *

* RECEIVE USERS REQUIREMENTS FROM THE SCREEN *

RETRY DS 9H

EXEC eICS RECEIVE MAP('SPMAPA') MAPSET('DFH$IGX') *
RESP(RESP)

*
CLI EIBAID,DFHPF3 PF3 PRESSED ?
BE USEREXIT YES, GO END TRANSACTION
CLC RESP,DFHRESP(MAPFAIL) MAP FAILED ?
BE RESETMAP YES, GO TRY AGAIN
CLC RESP,OFHRESP(NORMAL) NORMAL RESPONSE ?
BNE BAORCV NO, GO TERMINATE TRANSACTION
CLI EIBAIO,DFHENTER ENTER PRESSED
BNE INV~1SG NO, GO TO ERROR MSG ROUTINE

* *
CLC RQN~1L, =U' 9' REMOTE Q NAME ENTERED
BE NORQNAME NO, GO REQUEST Q NAt1E
CLC RQNm , BLANKS REMOTE Q NAME BLANK ?
BE NORQNAME YES, GO REQUEST Q NAME

*
CLC RSYSL,=H'9' REMOTE SYS ID ENTERED
BE NOSVSID NO, GO REQUEST SYS 10
CLC RSYSI,BLANKS REMOTE SYS 10 BLANK ?
BE NOSVSID VES, GO REQUEST SYS 10

*
Figure 118 (Part 1 of 8). Sample 1: temporary storage queue transfer - front-end transact/on (DFH$IQXL)

Appendix B. Sample application programs 347

*

CLC QNAML,=H'9'
BE NOQNMGVN
CLC QNAMI,BLANKS
BE NOQNMGVN

LOCAL TS Q NAME SUPPLIED
NO, SO GO CREATE TS Q
LOCAL TS Q NAME SUPPLIED
NO, SO GO CREATE TS Q

MVC TSQNAME,QNAMI SAVE SUPPLIED TS Q NAME
* CLEAR SCREEN

EXEC CIC~ SEND FROM(MSGWA) LENGTH(S) ERASE
B GOTTSQNM GO READ FIRST RECORD FROM TS Q

*
NOQNMGVN OS

BAL
*
*
*

SH
R7,BUILDTSQ BUILD TS Q WITH DEFAULT NAME

(N.B~ WILL NOT RETURN HERE IF
ANY PROBLEM BUILDING TS QUEUE.)

* READ FIRST RECORD IN Q TO ENSURE Q SPECIFIED EXISTS. *

GOTTSQNM OS

lA
STH
MVC

* *

SH
R6,1
R6,ITEMNUM
TSLEN,=H'89'

INITIALIZE RECORD ITEM
NUMBER FOR 'READ Q'.
SET A MAX ON THE REC LENGTH.

EXEC CICS READQ TS QUEUE(TSQNAME) INTO(TSRECORO)
LENGTH(TSLEN) ITEM(ITEMNUM) RESP(RESP)

*

*

ClC RESP,DFHRESP(QIDERR)
BE BADQNM
ClC RESP,DFHRESP(NORMAl)
BNE BADREADQ

TS Q KNOWN TO CICS
NO, SO GO INFORM USER
RECORD READ OK ?
NO, GO TERMINATE TASK

*
*

SEND 'ALLOCATING SESSION AND TRANSFERRING Q'
MESSAGE TO USERS SCREE~.

*
*

EXEC CICS SEND MAP('SPMAPC') MAPSET('DFH$IGX')

* *

* ACQUIRE A SESSION TO THE REMOTE SYSTEM *

*

*

EXEC CICS ALLOCATE SYSID(RSYSI) RESP(RESP)

CLC
BE
ClC
BNE
MVC

RESP,DFHRESP(SYSIDERR)
SYSERR
RESP,DFHRESP(NORMAL)
BADAllOC
ATCHSESS,EIBRSRCE

SYSTEM 10 ERROR
YES, GO CHECK REASON
ACQUIRED SESSION OK ?
NO, GO TERMINATE TASK
SAVE NAME OF CONVERSATION

* INITIATE THE ACQUIRED CONVERSATION *

*

EXEC CICS CONNECT PROCESS CONVID(ATCHSESS)
PROCLENGTH(4) PROCNAME('IQXR') SYNCLEVEL(2)

* SEND THE Q NAME TO BE ASSIGNED, TO THE REMOTE TRANSACTION

EXEC CICS SEND CONVID(ATCHSESS) FROM(RQNMI) lENGTH(8)
*

*

*

Figure 118 (Part 2 of 8). Sample 1: temporary storage queue transfer - front·end transaction (DFH$IQXL)

348 CICS/MVS 2.1.2 Intercommunication Guide

----------------- ,----- ------------------.

*
*

SEND EACH RECORD (VIA THE SESSION) TO
THE REMOTE INITIATED TRANSACTION

*
*

SEND LOOP OS 9H

*

EXEC CICS SEND CONVID(ATCHSESS) FROM(TSRECORD)
LENGTH(TSLEN)

* READ NEXT RECORD FROM THE TEMP. STORAGE QUEUE *

*

*

*

LA R6,1(R6)
STH R6,ITEMNUM
MVC TSLEN,=H'a9'

INCREMENT AND STORE THE ..•
••• RECORD ITEM NUMBER.
RESET MAX REC LENGTH.

EXEC CICS READQ TS QUEUE(TSQNAME) INTO(TSRECORD)
LENGTH(TSLEN) ITEM(ITEMNUM) RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BE SEND LOOP
CLC RESP,DFHRESP(ITEMERR)
BNE BADREADQ

GOT RECORD ?
YES, GO SEND IT TO REM. TRAN.
ALL RECORDS READ ?
NO, BAD RESPONSE

THE QUEUE HAS NOW BEEN SENT, SO TAKE A SYNCPOINT *

EXEC CICS SYNCPOINT

*

* FREE THE SESSION AS SOON AS POSSIBLE, AS NO LONGER NEEDED *

EXEC CICS FREE CONVID(ATCHSESS)
*

* DELETE THE TS QUEUE *

EXEC CICS DELETEQ TS QUEUE(TSQNAME)
*
~:********

*
*

SEND 'TRANSFER COMPLETE, TRANSACTION SUCCESSFUL'
MESSAGE TO USER'S SCREEN.

*
*

EXEC CICS SEND MAP('SPMAPD') MAPSET('DFH$IGX')

*

* RETURN TO CICS *

EXIT OS 9H

EXEC eICS RETURN
EJECT

~********************

* ROUTINES TO HANDLE INSUFFICIENT INPUT *

NORQNAME OS

MVC
MVC
B

*

9H *** NO REMOTE TS Q NAME SUPPLIED ***
ERRMSGO(L'NORQNMSG),NORQNNSG MOVE ERROR MSG. TO MAP
RQNt1L, =H ' -1 ' SET CURSOR POS I T ION
RESEND GO RESENO MAP

*

-----------------------------"'--'
Figure 118 (Part 3 of 8). Sample 1: temporary storage queue transfer - front-end transaction (DFH$/QXL)

Appendix B. Sample application programs 349

9H *** NO REMOTE SYSTEM 10 SUPPLIED ***
ERRMSGO(L'NOS,{SMSG),NOS,{SMSG MOVE ERROR MSG. iO W\P

MVC RSYSL,=H'-l' SET CURSOR POSITION
*
RESEND OS 9H RESEND MAIN MAP WITH ERR. MSG.

EXEC CICS SEND MAP('SPMAPA') r1APSET('DFH$IGX') *
DATAONLY CURSOR

* *
B RETRY GO CHECK NEW INPUT

*
*

*
*
*
*

SUBROUTINE T~ BUILD A TS QUEUE WITH A DEFAULT Q NAME
OF 'TSQLCL'.

FIRST SEND 'CONSTRUCTING Q' MESSAGE TO USERS SCREEN

*
*
*
*

BUIlDTSQ DS 0H

* *

*
TSLOOP

*

*

*

*

EXEC CICS SEND MAP('SPMAPB') MAPSET('DFH$IGX') ERASE

MVC TSRECORD,INITTSR INITIALIZE TS RECORD AREA
MVC TSlEN,=AL2(L'INITTSR) INITIALIZE TS RECORD LENGTH
LA R5,5 INITIALIZE LOOP COUNT

'DS 0H
IC R4,DIGITl INCREMENT AND STORE THE .•.
LA R4,1(R4) ••. RECORD NUMBER DIGIT INTO •.•
STC R4,DIGITI ••. THE TS RECORD AREA TO BE .•.
STC R4,DIGIT2 ••• WRITTEN TO THE TS Q.

EXEC CICS WRITEQ TS QUEUE(DEFAULTQ) FROM(TSRECORD)
LENGTH{TSLEN) NOSUSPEND RESP{RESP)

CLC RESP,DFHRESP(NOSPACE)
BE NOSPACE
CLC RESP,DFHRESP(NORMAL)
BNE BADWRTQ
BCT R5,TSLOOP

MVC TSQNAr1E,DEFAULTQ
BR R7

TS Q FULL ?
YES, GO INFORM USER
RECORD WRITTEN OK ?
NO, GO TERMINATE TRANSACTION
LOOP UNTIL 5 RECS. WRITTEN

SAVE TS Q NAME
RETURN TO MAIN LINE CODE

*

* ROUTINE TO HANDLE L,OCAL TS QUEUE FULL CONDITION. *

NOSPACE OS 0H

CH
BE

*

R5,=H'5'
BYPDELQ

ANY RECORDS WRITTEN ?
NO, BYPASS DELETEQ

EXEC CICS DELETEQ TS QUEUE(DEFAULTQ)
*
BYPDELQ DS 0H

*

MVC ERRMSGO,TSFULMSG
MVC QNAML,=H'-l'
B SENDAGN

MOVE MESSAGE TO r1AP
SET CURSOR POSITION
GO RESEND ORIGINAL MAP

*

Figure 118 (Part 4 of 8). Sample 1: temporary storage queue transfer - front-end transaction (DFH$IQXL)

350 CICS/MVS 2.1.2 Intercommunication Guide

*

* ROUTINE TO HANDLE UNKNOWN TS QUEUE NAME *

BADQNM DS

*

MVC
MVC
MVC
B

9H
MSGWA,QIDERMSG
QNN1WA, TSQNAME
QNN1L, =H ' -1'
MOVEM

MOVE SKELETON MSG. TO WORK AREA
INSERT TS Q NAME INTO MSG.
SET CURSOR POSITION
GO RESEND ~1AI N MAP

* ROUTINE TO HANDLE SYSIOERR RESPONSE FROM ALLOCATE COMMAND *

SYSERR DS 9H

CLI EIBRCODE+1,X'98' LINK OUT OF SERVICE ?
BNE UNKNOWN NO, GO SET UP 'UNKNOWN' MSG.
MVC MSGWA,OUTSVMSG MOVE SKELETON MSG. TO WORK AREA
MVC SYSWA1,RSYSI INSERT SYSID INTO MESSAGE.
B SET CURS GO RESEND ORIGINAL SCREEN

*
UNKNOWN OS 9H UNKNOWN SYSTEM NAME

MVC MSGWA, UNKWNt1SG MOVE SKELETON MSG. TO WORK AREA
MVC SYSWA2,RSYSI INSERT SYSID INTO MESSAGE.

*
SET CURS OS 9H

MVC RSYSL,=H' -1' SET CURSOR POSITION
*

* ROUTINE TO DISPLAY THE ORIGINAL MAP WITH AN ERROR MESSAGE *

MOVEM OS 9H

MVC ERRMSGO,MSGWA MOVE ERROR MESSAGE TO MAP
*
SENOAGN DS 9H

*

*

EXEC CICS SEND MAP{'SPMAPA') MAPSET('OFH$IGX')
CURSOR ERASE WAIT

B RETRY

SENOAGN1 DS 9H

* *

* *

EXEC CICS SEND MAP('SPMAPA') MAPSET('OFH$IGX')
CURSOR ERASE WAIT

EXEC CICS RECEIVE

B RESEH1AP
*

* ROUTINES FOR UNRECOVERABLE ERRORS *

BAORCV

*

OS
MVC
MVC
B

9H
EMBReV~l, BRMTXT
EMLEN,BRMTLEN
COMNERR

BAD RESPONSE FROM 'EXEC eIes RECEIVE'
SET UP MESSAGE
SET MESSAGE LENGTH
GO SET LIP COMt10N PART OF ~'SG.

*

*

Figure 118 (Part 5 of 8). Sample 1: temporary stora!1e queue transfer - front-end transaction (DFH$/QXL)

Appendix B. Sample application programs 351

f~~~;;;'-?~n 0H -'-~AD -;~~~~~;;-FRO;~;~'~;~~-W~;-;~~'-';;-~'---'------'----'----I

*

I'IVI..

MVC
B

BADREADQ os
MVC
MVC
B

*
BADALLOC DS

MVC
MVC

*
cm1NERR DS

MVC
B

EMBWTQ,BWQTXT SET UP MESSAGE
EMLEN,BWQTLEN SET MESSAGE LENGTH
COMNERR GO SET UP CO~1~10N PART OF MSG.

0H
H1BRDQ, BRQTXT
EMLEN,BRQTLEN
COMNERR

0H
EMBALL,BATXT
EMLEN,BATLEN

9H
EMBRESP,BRTXT
ENDTRAN

BAD RESPONSE FROM 'EXEC CICS READQ TS~
SET UP MESSAGE
SET MESSAGE LENGTH
GO SET UP CO~1MON PART OF MSG.

BAD RESPONSE FROM 'EXEC CICS ALLOCATE'
SET UP MESSAGE
SET MESSAGE LENGTH

SET UP COMMON PART OF MSG.
GO COMPLETE MSG. & TERr1. TRAN.

*
+******************
* HANDLE INVALID PF KEY *

I NVMSG OS

LA
MVC
B

eH
R5,INVALID
ERRMSGO,e(R5)
SENDAGNI

*

HANDLE PF3 PRESSED BY USER *

USEREXIT DS

MVC
MVC

*

eH
EMUSER,USERTXT
EMLEN,USERTLEN

SET UP MESSAGE
SET MESSAGE LENGTH

* COMPLETE TERMINATION MESSAGE AND SEND IT TO SCREEN *

HIOTRAN OS

MVC
0H
EMHEAD,EXITTXT cm1PLETE MESSAGE

* SEND TERMINATATION MSG. TO SCREEN
EXEC CICS SEND FROM(EXITMSG) LENGTH(EMLEN) ERASE

*
B EXIT GO TERMINATE TRANSACTION
EJECT

* CONSTANTS *

*
BLANKS DC
DEFAULTQ DC
INITTSR DC
TSRECLEN DC
NORQNMSG DC
NOSYSt1SG DC
TSFUlNSG DC
OUTSVr1SG DC
UNKWN~1SG DC
QIDERt1SG DC
EXITTXT DC

CLB' ,
CLB'TSQLCL'
c'eeaaea SYNCHRONOUS PROCESSING TS Q REC.e'
AL2(L'INITTSR)
CL36'PLEASE SUPPLY A REMOTE QUEUE NAME'
CL36'PLEASE SUPPLY A REMOTE SYSID'
CL36'LOCAl TS FULL - PRESS ENTER TO RETRY'
CL36'LINK TO .•.• IS OUT OF SERVICE'
Cl36'SYSTEM NA~1E IS NOT KNOWN'
CL36'QUEUE NAME •.•••.•• IS NOT KNOWN'
C'IQXl TRANSACTION TERMINATED BY ,

---._----_._----------------'
F;gure 118 (Part 6 of 8). Sample 1: temporary storage queue transfer -- front-end transaction (DFH$/QXL)

352 CICS/MVS 2.1.2 Intercommunication Guide

------------------ ------------------------------ ._---
USERTXT DC
BRTXT DC
BRMTXT DC
BWQTXT DC
BRQTXT DC
BATXT DC
INVALID DC
USERTLEN DC
BRtHLEN DC
BWQTLEN DC
BRQTLEN DC
BATLE'" DC
*

LTORG
EJECT

C'USER'
C'BAD RESPONSE TO '
C'RECEIVE MAP COt1t·1AND'
C 'WRITEQ TS COMt1AND'
C'READQ TS COMMAND'
C'ALLOCATE COMMAND'
C'INVALID KEY - ENTER TO CONTINUE
AL2(L'EXITTXT+L'USERTXT)
AL2(L'EXITTXT+L'BRTXT+L'BRMTXT)
AL2(L'EXITTXT+L'BRTXT+L'BWQTXT)
AL2(L'EXITTXT+L'BRTXT+L'BRQTXT)
AL2{L'EXITTXT+L'BRTXT+L'BATXT)

* EQUATES *

*
COPY DFHAIO

DFHREGS
EJECT

ATTENTION 10 DEFINITIONS

REGISTER EQUATES

* WORKING STORAGE *
~~

DFHEISTG DSECT
COPY DFH$IGX

*
RESP OS F
TSQNAME OS CLB
ITEMNUM OS H
ATCHSESS OS CL4
*
TSLEN OS H
TSRECORD OS eCLR0

OS CL5
DIGIll OS C

OS CL33
DIGIT2 OS C

OS CL4e
*
MSGWA OS CL36

ORG MSG\1A+B
SYSWAI OS CL4

ORG MSG~/A+12

SYSWA2 OS CL4
ORG MSG~/A+ll

QNAMWA OS CL8
ORG

*
Figure 118 (Part 7 of 8).

MAPSET DEFINITIONS

RESPONSES TO CICS COM~1ANDS

TS QUEUE NAME
RECORD ITEM NUMBER
ATTACHED SESSION 10

LENGTH OF TS RECORD
I/O AREA FOR TS RECORD

WORK AREA FOR BUILDING ERROR MSG

Sample 1: temporary storage queue transfer - front-end transaction (DFH$IQXL)

Appendix B. Sample application programs 353

EMLEN OS H LENGTH OF TRAN. TERMINATION MSG.
EXITMSG nc.' aCL66 WORK AREA FOR TRAN. TERMINATION MSG U.J

EMHEAO OS eL3!
EMUSER OS eCL4
EMBRESP OS CL16
EMBALL OS eCll6
EMBROQ OS eCLl6
H1BWTQ OS eCll7
EMBRCVM OS CUg
*

END

Figure 118 (Part 8 of 8). Sample I: temporary storage queue transfer - front-end transaction (DFH$IQXL)

354 CICS/MVS 2.1.2 Intercommunication Guide

Source listing of sample 1 back-end transaction (DFHSIQXR)

----_.--------.------ ----------_._-----------------------,

DFH$IQXR TITLE 'CICS INTERCOMMUNICATION SAMPLE - QUEUE TRANSFER - REMOT*
E PROCESSING'

* *
* CICS SAMPLE PROGRAM IQXR *
* SYNCHRONOUS PROCESSING *
* 'QUEUE TRANSFER' *
* REMOTE TRANSACTION *

'* *

*
*
*
*
*
*

INPUTS TO THIS PROGRAM
(FROM PROGRAM IQXL)

OUTPUTS FROM THIS PROGRAM

NAME OF TRANSFERRED Q
TS Q RECORDS

. NONE

*
*
*
*
*
*

DFH$IQXR CSECT
*

*
*
*

RECEIVE THE QUEUE NAME, PASSED TO THIS TRANSACTION
BY IQXL. SAVE EIB FIELDS AND THEN TEST THEM TO SEE
WHAT TO 00 NEXT.

*
*
*

EXEC CICS RECEIVE INTO(QNAME)

*
MVC XSYNC,EIBSYNC SAVE EIB FIEl.DS
MVC XFREE,EIBFREE
MVC XRECV,EIBRECV

*
EIBTEST OS 0H

CLI XSYNC,X'FF' SYNCPOINT REQUIRED ?
BNE TEST FREE NO, GO TEST IF FREE REQUIRED

* ISSUE SYNCPOINT
EXEC CICS SYNCPOINT

*
TEST FREE OS 011

CLI XFREE,X'FF' FREE REQUIRED ?
BE TERMNATE YES, GO ISSUE FREE

* AND TERMINATE TRANSACTION
*

CLI XRECV,X'FF' RECEIVE REQUIRED ?
BNE TER~1NATE NO, GO TERMINATE TRANSACTION

*
* RECEIVE TS RECORD PASSED BY IQXL

*

*

EXEC CICS RECEIVE SET(R9) LENGTH(TSLEN)

MVC XSYNC,EIBSYNC
MVC XFREE,EIBFREE
MVC XRECV,EIBRECV
CLC TSLEN,=H'0'
BE EIBTEST

SAVE EIB FIELDS

ANY DATA RECEIVED ?
NO, SO GO TEST EIB IMMEDIATELY

* DATA WAS RECEIVED, SO WRITE RECORD TO NAt1ED QUEUE
EXEC CICS WRITEQ TS QUEUE(QNAME) FROM(0(R9» *

LENGTH(TSlEN)
*

Figure 119 (Part 1 of 2) .. Sample 1,' temporary storage queue transfer - back-end transaction (DFH$IQXR)

Appendix B. Sample application progra!11s 355

B EIBTEST GO AND TEST EIB

*

* TRANSACTION TERMINATION *
********,~**
TERMNATE OS eH

*

*
*

*

*

EXEC CICS FREE

EXEC CICS RETURN

LTORG

OFHREGS REGISTER EQUATES

* WORKING STORAGE *

OFffEISTG OSECT
XSYNC OS C
XFREE OS C
XRECV OS C
*
QNAME
TSLEN
*

OS
OS

END

CLB
H

IF SET, EXECUTE SYNCPOINT
IF SET, FREE TERMINAL / lU
IF SET, EXECUTE RECEIVE

Figure 119 (Part 2 of 2). Sample 1: temporary storage queue transfer - back-end transaction (DFH$/QXR)

356 CICS/MVS 2.1.2 Intercommunication Guide

BMS mapset for sample 1 (DFHSIMX)
-------------_._--_._--_.-.. _ _.-._--_._-_._._-------------_.-

DFH$It1X TITLE I INTERCOMMUNICATION SA~1PLE - LOCAL TO REMOTE TS Q XFER -*
MAPSH '

AIF
DFH$IGXC CSECT
,SKIPSD ANOP,

('&SYSPARM ' EQ 'DSECT').SKIPSD - OS SM~ REQUIRES CSECT

DFH$IGX OFHMSO TYPE=&SYSPARM,MODE=INOUT,
LANG=ASM,STORAGE=AUTO,TIOAPFX=YES,EXTATT=NO

1(

SPMAPA OFHMDI SIZE=(24,B8),CTRl=(ALARM,FREEKB)
OFHMDF POS=(4,18),LENGTH=25,ATTRB=(ASKJP,BRT),

INITIAL=' CICS-CICS Q TRANSFER I

DFHMDF POS=(5,lB),LENGTH=25,ATTRB=(ASKIP,BRT),
INITIAL=' SAMPLE PROGRAM MAP

OFHMDF POS=(6,15),LENGTH=29,ATTRB=(ASKIP),
INITIAL='*****************************'

OFHMDF POS=(10,4),LENGTH=19,ATTRB=(ASKIP),
INITIAL='LOCAL TS Q NAME '" I

QNAM DFHMDF POS=(18,25),LENGTH=B,ATTRB=(UNPROT,BRT,IC,FSET)
DFHMDF POS=(18,34),ATTRB=(ASKIP),LENGTH=1
DFHMDF POS=(12,4) ,LENGTH=19,ATTRB=(ASKIP) ,

INITIAL='REMOTE TS Q NAME "I

RQNM DFHMDF POS=(12,25),LENGTH=8,ATTRB=(UNPROT,BRT,FSET),
INITIAL='REMOTEQ I

DFHMDF POS=(12,34),ATTRB=(ASKIP),LENGTH=1
DFHMDF POS=(14,4),lENGTH=19,ATTRB=(ASKIP),

INITIAL='REMOTE SYSTEM ID "I

RSYS DFHMDF POS=(14,25),LENGTH=4,ATTRB=(UNPROT,BRT,FSET)
DFHMDF POS=(14,38),ATTRB=(PROT),LENGTH=1

ERRMSG DFHMDF POS=(16,4),LENGTH=36,ATTRB=(ASKIP,BRT),
INITIAL= I I

*

OFHMDF POS=(18,4),LENGTH=32,ATTRB=(ASKIP),
INITIAL='TYPE IN VALUES, THEN PRESS ENTER'

DFH~1DF POS=(l9,4) ,LENGTH=32,ATTRB=(ASKIP),
INITIAL= lOR HIT IPF3" TO TERMINATE, I

SPMAPB DFH~1DI SIZE=(24,88)

*

DFHMDF POS=(2,4),LENGTH=22,ATTRB=(PROT,BRT),
INITIAL='CONSTRUCTING TS QUEUE. I

SPMAPC DFHMDI SIZE=(24,B8)

*
SPMAPD

DFHMDF POS=(5,4),LENGTH=22,ATJRB=(PROT,BRT),
INITIAL='ALLOCATING SESSION AND'

DFHMDF POS=(6,4),LENGTH=22,ATTRB=(PROT,BRT),
INITIAL='TRANSFERRING TS QUEUE, I

DFHMDI SIZE=(24,88),CTRL=(ALARM,FREEKB)
DFHMDF POS=(18,4),LENGTH=28,ATTRB=(PROT,BRT),

INITIAL='Q TRANSFER COMPLETE, I

DFHMDF POS=(11,4),LENGTH=23,ATTRB=(PROT,BRT),

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

,---: ___ :_:o_H~_'S_0 I_~_::.~ :~~~:_:A_N_SA_CT :_N _S_UCC::~U~ ___________________ . ___________ --'--. _J
I Figure 120. Sample 1: temporary storage queue transfer - BMS mapset (DFH$fMX)

Appendix 8. Sample application programs 357

Sample 2
,---------------,---,._ .•. _ .. -._._. __ ._--_. ----_. __ ._-_._._-

remote file browse
This sample illustrates the use of distributed transaction processing to browse a
remote file. it consists of a front-end transaction (DFH$IFBl), a back-end
transaction (DFH$IFBR), and a BMS mapset (DFH$IMB) for the front-end
transaction.

The front-end transaction is Invoked by the tranr-;action code IFBl, and displays
the following menu at the user's terminal:

CICS-CICS REMOTE FILE BROWSE
SAMPLE PROGRAM MAP

6 DIGIT STBR KEY
REMOTE FILE NAME FILEA
REMOTE SYSTEM ID

TYPE IN VALUES, THEN PRESS ENTER
OR HIT "PF3" TO TERMINATE.

The displayed menu has three input fields:

6 DIGIT STBR KEY
specifies the key of the record at which the browse is to start.

REMOTE FILE NAME
specifies the name of the file that is to be browsed. The menu supplies the
default name FllEA.

REMOTE SYSTEM ID
specifies the name of the remote system. This name can be the connection
name of an lUTYPE6.2 or lUTYPE6.1 link.

Initially, the file is browsed forwards, and four records from the remote file are
displayed. Thereafter, the user can choose to browse forwards (PF8), browse
backwards (PF7), or terminate the browse (PF3).

Figure 121 on page 359 shows the overall now of the file browse sample.

358 CICS/MVS 2.1.2 Intercommunication Guide

Local Transaction
(front-end)

Remote Transaction
(back-end)

1 Get User Requirements
2. . ALLOCATE SYSID()

(MVC ATCHSESS,EIBRSRCE)
3 CONVERSE =====> RECEIVE
4.
5 .•
6.

Process and Buffer Records
SEND

7 ..
S.

9 ••
10.

. . FREE Conversation
Process Input and
Send to User's Screen
If More Browsing go to 2

. RETURN

RETURN

1. The user's input values are received and are validated.

2. The front-end transaction allocates a conversation and
acquires its name from the EIB.

3. The file name, the record key, and the browse direction
are sent to the back-end transaction.

Note: The CONVERSE Cot~MAND is equivalent to SEND, ~IAITt RECEIVE.
This is a "migration mode" command.
No CONNECT PROCESS command is issued; instead, the remote
transaction identifier is sent in the first four bytes of the message.

4. The back-end transaction retrieves four records from the data
set and places them in a buffer.

5. The back-end transaction sends the buffered records to the
front-end transaction, together with the key of the last record
that was retrieved.

6. The back-end transaction terminates, thereby freeing the
session.

7. The front-end transaction, after receiving the data, frees
the session.

S. The front-end transaction unblocks the records and sends them
(or possibly and error message) to the user.

9. If the user wants to browse more records (PF7 or PFS),
the process is repeated from step 2.

10. Otherwise, the front-end transaction terminates.

Figure 121. Sample 2: remote file browse - overall design

Appendix B. Sample application programs 359

Source listing of sample 2 front-end transaction (DFH$IFBL)

.------------- --------------------------_._-_.-
TITLE 'DFH$IFBL - CICS INTERCO~1MUNICATIONSAMPLE - REt10TE FILE*

BROWSE - LOCAL PROCESSING'
DFHEISTG DSECT
*

*
*
*
*
*
*

C I CS SA~1P LE PROGRAM I FB L
SYNCHRONOUS PROCESSING

'REMOTE FILE BROWSE'
LOCAL TRANSACTION

*
*
*
*
*
*

* *
* *
* INPUTS TO THIS PROGRAM START BROWSE KEY *
* (FROM USERS SCREEN) REMOTE FILE NAME *
* REMOTE SYSTEM 10 *
* *
* OUTPUTS FROM THIS PROGRAM START BROWSE KEY *
* (PASSED TO PROGRAM IFBR) REMOTE FI LE NAME *
* RUN AND DIRECTION FLAG *
* (FIRST RUN AND *
* BROWSE FWD OR BKWD BITS *
* *

*
~**

* STATUS FLAG AND EIB SESSION STORAGE AREA *

*
XDFEIFLG OS eCL7
*
XSYNC DS C IF SET, EXECUTE SVNCPOINT
*
XFREE OS C IF SET, FREE TERMINAL / LU
*
XRECV DS C I F SET, EXECUTE RECEIVE
*
XSEND DS C RESERVED
*
XATT OS C IF SET, EXECUTE EXTRACT TO
* ACCESS ATTACH HEADER DATA
XEOC DS C IF SET, END-OF-CHAIN WAS
* RECEIVED WITH DATA
XFMH OS C IF SET, DATA PASSED TO APPL'N
* CONTAINS FMH - N/A FOR LU6.2
*

* MAP DEFINITIONS FOR MAPSET DFH$IGB *

*

*

COPY DFH$IGB
COPY DFHAID

Figure 122 (Part 1 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

360 CICS/MVS 2.1.2 Intercommunication Guide

---_._------_ .. _----
OUT AREA os SCUg
TRANOUT OS CL4
FLAG OS XU
KEYOUT OS CL6
BRDSET OS CL8
*
ATCHSESS OS CL4
MESSAGE OS CL36
INAREA OS CL35S
RECVDI~SG OS CL20
INLEN OS H
OUT LEN OS H
RECLEN OS H·
MSGLEN OS H
FROMLEN D~ H
CURSOR OS H
REGSTOR1 DS F
RESP DS F
REGSTOR2 OS F
SAVEll EQU X'01'
FORWARD EQU X'02'
R0 EQU El
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R14 EQU 14
*
*
FILEA DSECT
FILEREC OS CL86
*
*
PROGSTRT CSECT
*
*

BAL R14,GETDATA
*

BAL R14,SETUP
*

BAL R14,CLEARSCN
*
GETMORE os SH
*

CH R7,PAGEFULL
BNE NOTFULL
LA R7,1
STH R7,CURSOR

*
BAL R14,CLEARSCN

*
NOT FULL OS 0H
*

DATA OUTPUT AREA
TRANSACTION TO INITIATE
RUN AND DIRECTION FLAG
START BROWSE KEY OUTPUT
FILE TO BE BROWSED

ATTACHED SESSION 10
OUTPUT MESSAGE
DATA INPUT AREA
RECEIVED MESSAGE TO BE DISPLAYED
LENGTH OF TS RECORD
DATA OUTPUT LENGTH
LENGTH OF A RECVD RECORD
LENGTH OF OUTPUT MSG
COMt10N SEND LENGTH VARIABLE
CURSOR POSITION ON PAGE
LINK REGISTER SAVE AREA 1
RESPONSES TO CICS COMMANDS
LINK REGISTER SAVE AREA 2
FIRST RUN INDICATOR BIT
FORWARD BROWSE INDICATOR BIT

RECEIVE CORRECT USER INPUT

INITIALIZATION SECTION

CLEAR USERS SCREEN

IS PAGE FULL ?
NO. . . . CONTI NUE .
yES .••. POSITION CURSOR
AT TOP OF SCREEN.

CLEAR USERS SCREEN

* OBTAIN CONVERSATION LINK *

*
*

Figure 122 (Part 2 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

Appendix B. Sample application programs 361

r-::~**~"~*******************~
* ACQUIRE SESSION TO REMOTE SYSTEM *

*

EXEC CICS ALLOCATE SYSID(RSYSI) RESP(RESP)
CLC RESP,DFHRESP(SYSIDERR) CHECK FOR VALID SYSTEM 10
BE SYSERRI
CLC RESP,DFHRESP(NORMAL) CHECK FOR NORMAL RESPONSE
BNE ERRORl

*
MVC ATCHSESS,EIBRSRCE SAVE SESSION NAME

*

* CONVERSE WITH REMOTE TRANSACTION (IMPLICIT SEND/RECEIVE) *

"*
EXEC CICS CONVERSE SESSION(ATCHSESS) FROMLENGTH(OUTLEN) *

FROM(OUTAREA) TOLENGTH(INLEN) INTO(INAREA) *

*

RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BE CONVEROK
CLC RESP,DFHRESP(EOC) EOC RESPONSE OK, ALL ELSE ERROR
BNE ERRORl

* FREE THE SESSION AND PROCESS THE DATA RECEIVED *

*
CONVEROK OS 8H

EXEC CICS FREE SESSION(ATCHSESS) RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERROR!

*
BAL R14,OISPOATA SEND DATA RECEIVED TO SCREEN

*
BAL Rl4,GOAGAIN ASK USER IF MORE BROWSING REQUIRED

*
B GETMORE lOOP BACK TO RECEIVE MORE RECORDS

*
GETDATA OS 8H
*

* ROUTINE TO RECEIVE USERS INPUT FROM SCREEN AND VALIDATE IT *

*
MAPFAIL OS

XC
ST

*

0H
SPMAPAI (SPMAPAE-SPt1APAI), SPMAPAI
R14,REGSTORl

CLEAR MAP STORAGE
SAVE LINK REGISTER.

* SEND INITIAL REQUEST MENU TO SCREEN *

*
CLEANUP OS 0H
*

Figure 122 (Part 3 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

362 CICS/MVS 2.1.2 Intercommunication Guide

EXEC CICS SEND MAP('SPMAPA') MAPSET('OFH$IGB') t1APONlY *
ERASE WAIT RESP(RESP)

CLC RESP,OFHRESP(NORMAL)
BNE ERRORl

*'
RETRY OS 9H
*
'*

EXEC CICS RECEIVE MAP('SPMAPA') ~1APSET('OFH$IGB') *
RESP(RESP)

CLI EIBAIO,OFHPF3 WAS PF3 PRESSED?
BE COMPLETE •••• YES, GO TO COMPLETE
CLI EIBAIO,OFHCLEAR WAS CLEAR KEY PRESSED?
BE CLEANUP ••.• YES, GO TO CLEANUP
CLI EIBAIO,DFHENTER WAS. ENTER KEY PRESSED?
BNE I NVMSG IF NOT, GO TO INVMSG
CLC RESP,DFHRESP(NORMAL) WAS NORMAL REPONSE?
BE RECEVOKl •.• YES, GO TO RECEVOKl
CLC RESP,DFHRESP(EOC) WAS EOC RESPONSE?
BNE ERRORl ••• NO, ERROR

*
RECEVOKl OS 9H

CLI STRTKEYI,a START KEY FIELD CHANGED ?
BE BAOKEY NO, SEND ERROR MSG.
CLC STRTKEYL, =H' a' ANY DATA GIVEN ?
BNE KEYGVN YES, TEST FILE FIELD.

*
BADKEY OS aH

LA R5,=CL(L'ERRMSGO) 'PLEASE SUPPLY A START BROWSE KEY'
B RESEND

*
I NVMSG OS 9H

LA R5,=CL(L'ERRMSGO) 'INVALID KEY ENTERED'
B SENOt1AP

'*
KEYGVN OS 9H

CLI ROSETI ,a FILE FIELD CHANGED ?
BE BADDSET NO, SEND ERROR MSG.
CLC ROSETL,=H'a' ANY DATA GIVEN ?
BNE OSETGVN YES, TEST SYSIO FIELD.

*
BADOSET OS aH

LA R5,=CL(L'ERRMSGO) 'PLEASE SUPPLY A FILE NAME'
B RESEND

*'
OSETGVN OS aH

L Rl4,REGSTORl RESET LINK REGISTER.
CLI RSYSI,a SYSIO FIELD CHANGED ?
BE BADSYSID NO, SEND ERROR MSG.
CLC RSYSL,=H'a' ANY DATA GIVEN ?
BNER R14 YES, ALL FIELDS PRESENT.

*
BAOSYSID OS. aH

LA R5,=Cl(L'ERRMSGO) 'PLEASE SUPPLY A REMOTE SYSTEM 10'
*
RESEND os aH VALUE NOT GIVEN, INFORf.1 USER.
*'

---------~-----------.---

Figure 122 (Part 4 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

Appendix B. Sample application programs 363

/:=:*.**:::*****~**:*******~-:.-****:-::~=~=~~-::::~~-~:-::,-------------_._ .. _--_._----_._-]
* DATA RECEIVED WAS INCOMPLETE~ SO SEND ERROR MESSAGE *
* WITH MAP AND RECEIVE REQUIREMENTS AGAIN *
k******************
*

xc _ SPMAPAI (SPMAPAE-SP~1APAI), SP~1APAI CLEAR MAP STORAGE.
*
SENDMAP DS 0H

MVC ~RRMSGO,e(R5) PUT CORRECT MESSAGE
* IN OUTPUT FIEl.D.

EXEC CICS SEND MAP('SPMAPA') MAPSET('DFH$IGB') *
DATAONLY WAIT RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BNE ERROR!

*
B RETRY

*
k****************************
* INITIALIZATION SECTION *

*
SETUP DS 0H

~IVC RECLEN,==AL2(L 'FILEREC)
MVC INLEN,nAL2(L'INAREA)
MVC OUTLEN,=AL2(L'OUTAREA)
MVC BRDSET,RDSETI
MVC TRANOUT,=C'IFBR'
MVC KEYOUT,STRTKEYI
MVI FLAG,X'e0'
01 FLAG,SAVEIT
01 FLAG, FORWARD
LA R7,1
STH R7,CURSOR
BR R14

SET MAX LEN OF EACH RECORD.
SET DATA INPUT AREA LENGTH.
SET DATA OUTPUT AREA LENGTH.
SAVE FILE RECEIVED.
ASSIGN REM TRANID TO INITIATE.
PUT RECVD START KEY IN OUTAREA.
INITIALIZE FLAG BYTE.
SET SAVE FLAG TO 'SAVE'
SET BROWSE DIRECTION TO FORWARO
POSITION CURSOR ON FIRST.
LINE OF SCREEN.
RETURN CONTROL.

*

* ROUTINE TO CLEAR THE USERS SCREEN *

CLEARSCN OS 0H

*

*

*

'I:

ST R14,REGSTORl SAVE LINK REGISTER.

EXEC CICS SEND FROM(CURSOR) LENGTH(O) ERASE RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BHE ERROR1

L
BR

R14,REGSTORl
R14

RESET LINK REGISTER.
RETURN CONTROL.

~**********~*~*****

* ROUTINE TO PROCESS AND DISPLAY THE DATA RECEIVED
***********************************.**************~********************

DISPDATA DS 0H

*

*

ST
NI

R14,REGSTORI
FLAG,X'rF'-SAVEIT

SAVE LINK REGISTER.
NEXT CONVERSE WILL NOT
BE FIRST SO SET SAVE FLAG.

Figure 122 (Part 5 of 9). Sample 2: remote file browse -- front-end transaction (DFH$IFBL)

364 CICS/MVS 2.1.2 Intercommunication Guide

LA R5,INAREA R5 -> BEGINNING OF DATA RECEIVED.
MVC KEYOUT,0(R5) SAVE LAST KEY READ.
LA R5,L ' KEYOUT(R5) R5 -> BEGINNING OF RECORD DATA.
LH R6,INLEN REDUCE THE LENGTH OF DATA
SH R6,=Y(L'KEYOUT) RECEIVED BY LENGTH OF KEY.
MVC FROMLEN,=H ' 78 1 TRUNCATE RECORD LENGTH SENT

* TO SCREEN TO ONE LINE (78 CHARS)
NEXTllNE OS 0H

CH R6,RECLEN ANY RECORDS LEFT ?
BL ER~1SGOUT NO, MUST BE ERROR MSG.
BAL R14,SHIOTEXT SEND RECEIVED RECORD TO SCREEN.
LH R7,CURSOR
LA R7,l(R7) INCREMENT OUTPUT LINE NUMBER.
STH R7,CURSOR
SH R6,RECLEN DECREMENT R6 BY LEN. OF 1 RECORD.
LA R5,L ' FILEREC(R5) INCRH1ENT INPUT DATA AREA PTR.
BNZ NEXTLINE GET NEXT RECORD FROM INPUT BUFFER

* IF POINTER IS NOT AT ZERO.
*

EXEC CICS SEND PAGE TRAILER(PFMSG) RESP(RESP)
CLC RESP,DFHRESP(NORMAL)

*

*

BNE ERROR 1

L
BR

R14,REGSTORl
R14

ERMSGOUT OS 0H
*

RESET LINK REGISTER.
RETURN CONTROL.

*
*

DATA RECEIVED CONTAINS MESSAGE, SO DISPLAY IT AND
TERMINATE AS NO DATA LEFT TO PROCESS

*
*

*

*

*

*

STH R6,FROMLEN
BAL R14,SEND1EXT

SET LENGTH OF DATA TO SEND.
SEND MESSAGE TO USERS SCREEN.

EXEC CICS SEND PAGE TRAILER(PFMSG) RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERROR 1

L
BR

R14,REGSTORl
R14

RESET LINK REGISTER
RETURN CONTROL

RECEIVE FROM USER NEXT OPERATION REQUIRED BY ISSUING A
'RECEIVE' FROM THE SCREEN. REQUEST MUST BE PF3, PF7 OR

*
*
* PF8, FOR TERMINATION, BROWSE BACK, OR FORWARD RESPECTIVELY.

*
*
*

GOAGAIN OS 0H
*

ST R14,REGSTORl SAVE LINK REGISTER.
*
*

EXEC CICS RECEIVE RESP(RESP)
CLI EIBAID,DFHPF3
BE COMPLETE
CLI EIBAID,DFHPF7
BE BROWBK
CLIEIBAID,DFHPFB

WAS PF3 PRESSED?
.•.. YES, GO TO COMPLETE
WAS PF7 PRESSED?
.••• YES, GO TO BROWBK
WAS PFe PRESSED?

Figure 122 (Part 6 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

Appendix B. Sample application program: 365

BE BROWFD
CLC RESP,DFHRESP(NORMAL)

•••• YES, GO TO BRo\~FD
WAS NORMAL RESPONSE?
••• YES, GO TO RECEVOK2
WAS EOC RESPONSE?

--------------------,
*

BE RECEVOK2
CLC RESP,DFHRESP(EOC)
BNE ERRORI ••• NO, ERROR

*
*

AN INVALID KEY WAS RECEIVED SO SEND MESSAGE
WITH MAP AND TERMINATE.

*
*

*
RECFVOK2 OS 8H

LA R5,=CL(L'ERRMSGO) 'INVALID KEY - TRANSACTION TERMINATED'
MVC ERRMSGO,8(R5) PUT CORRECT MESSAGE

* IN OUTPUT FIELD.
EXEC CICS SEND MAP('SPMAPA') MAPSET('DFH$IGB') *

ERASE WAIT RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERRORl

*
B TERMNATE

*
BROWBK OS 8H

'*

*

NI

L
BR

BROWFD OS

*

*

01

L
BR

FLAG,X'FF'-FORWARD BROWSE BACK REQUESTED, SO SET
DIRECTION FLAG.

Rl4,REGSTORl RESET LINK REGISTER.
R14 RETURN CONTROL.

8H
FLAG, FORWARD

R14,REGSTORl
R14

BROWSE FORWARD REQUESTED, SO SET
01 RECTI ON FLAG.
RESET 'LINK REGISTER.
RETURN CONTROL.

* ROUTINE TO SEND RECEIVED DATA TO THE USERS SCREEN *

*
SENDTEXT OS 8H
*

'*

*

*

ST R14,REGSTOR2 SAVE LINK REGISTER.

EXEC CICS SEND TEXT FROM(8(R5» LENGTH(FROMLEN)
JUSTIFY(CURSOR) ACCUM FREEKB ALARM RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BNE ERRORI

L
BR

R14,REGSTOR2
R14

RESET LINK REGISTER.
RETURN CONTROL.

* PREPARE CORRECT SYSERR ERROR MESSAGE TO SEND TO USER. *

*
SYSERRI OS

CLI
BE

8H
EIBRCOOE+1,X'9C'
UNKNOWN

SYSIO ERROR

*

I Figure 122 (Part 7 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

366 CICS/MVS 2.1.2 Intercommunication Guide

CLI
BE

*
NOl.INK OS

LA
MVC
B

*
UNKNOWN OS

CLI
BE
LA
MVC
B

*
OUTSERV OS

LA
MVC
B

*
NOTRENT OS

LA
MVC
B

*

EIBRCOOE+l,X ' 0B '
OUTSERV

0H
R5,NOLNKHSG
SYSl,RSYSI
SENDERR

0H
EIBRCOOE+2,X '041
NOTRE NT
R5,lJNKWNMSG
SYS2,RSYSI
SENOERR

ElH
R5, OUTSV~lSG
SYS3,RSYSI
SENDERR

eH
R5,NOTRMSG
SYS4,RSYSI
SENDERR

LINK OUT OF SERVICE ?

ADDRESS NO LINK ERROR MSG.
INSERT SYSID INTO MESSAGE.

SYSID NOT A REMOTE SYSID ?

ADDRESS UNKNOWN SYS ERROR MSG.
INSERT SYSIO INTO MESSAGE.

ADDRESS OUT OF SERVICE ERROR MSG.
INSERT SYSID INTO MESSAGE.

ADDRESS NOT REMaDE SYSID ERRMSG.
INSERT SYSIO INTO MESSAGE.

* MESSAGE ASSIGNMENT IF CONDITION ERROR RAISED *

*
ERROR! OS

*

LA
B

ElH
R5,ERRORMSG
SENDERR

ADDRESS ERROR MSG.

* PREPARE ERROR MESSAGE, SEND ERROR MAP TO USER THEN TERMINATE *

*

0H SENDERR OS
~1VI
rwc
LH
STH
BeTR
EX

OUTMSGO,C ' I CLEAR ERROR MESSAGE OUTPUT AREA.

*

*

OUTMSGO+l(L ' OUTMSGO),OUTMSGO
R6,e(R5) PUT MESSAGE LENGTH IN R6.
R6,~1SGLEN

R6,R0
R6,MVCMSG PREPARE MESSAGE TO BE SENT.

EXEC CICS SEND MAP('SPMAPE ') MAPSET('DFH$IGB ') ERASE WAIT *
RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BNE ERROR!

B TERt1NATE TERMINATE TRANSACTION.
MVCMSG MVC OUH1SGO(e),L 'MSGLEN(R5)
*
TERMNATEOS 0H
*

------------_._._-------
Figure 122 (Part 8 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

Appendix B. Sample application progranls 367

*

EXEC CICS SEND CONTROL FREEKB RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERRORl
EXEC CICS RETURN

COMPLETE OS 9H
*

EXEC CICS SEND TEXT FROM(TERMMSG) LENGTH(LTERMMSG)
FREEKB ERASE RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BNE ERRORl
EXEC CICS RETURN

*
PAGE FULL DC
PFMSG OS

DC
DC
OS

TRLDATA DC
*

H'2l' PAGE FUll VARIABLE.
9CLS9 TRAILER MESSAGE
H'46 1 TO BE PLACED AT
C I I BOTTOM OF I SEND
C PAGE I CO~1MAND.

CL46 I PF7=BROWSE BACK PF8=BROWSE FWD PF3=TERMIHATE '

* ERROR MESSAGE STORAGE DEFINITIONS *

*
NOLNKMSG DC AL2(L 'MSG1)
MSGI DC C'UNABLE TO ESTABLISH LINK TO

ORG MSGl+28
SYSl OS CL4

ORG ,
UNKWNt1SG DC AL2(L 'MSG2)
MSG2 DC C I SYSTEM NAt1E .••• IS NOT KNOWN I

ORG MSG2+12
SYS2 OS CL4

ORG ,
OUTSVMSG DC AL2(L 'MSG3)
MSG3 DC C'LINK TO IS OUT OF SERVICE I

ORG MSG3+8
SYS3 OS Cl4

ORG ,
NOTRMSG DC AL2(L 'MSG4)
MSG4 DC C' •••• IS NOTA REMOTE SYSTEM NAME I

ORG MSG4
SYS4 OS CL4

ORG ,
ERRORMSG DC AL2(l'MSGS)
MSGS DC ClAN ERROR HAS OCCURRED I

*
TERMMSG DC C'TRANSACTION TERMINATED I

LTERMMSG DC AL2(l'TERMMSG)
END

*

Figure 122 (Part 9 of 9). Sample 2: remote file browse - front-end transaction (DFH$IFBL)

368 CICS/MVS 2.1.2 Intercommunication Guide

Source listing of sample 2 back-end transaction (DFH$IFBR)
--_ __ ._---------_ ..•. _--- _ .. _----------

TITLE 'DFH$IFBR - CICS INTERCOMMUNICATION SAMPLE - REMOTE FILE*
BROWSE - REMOTE PROCESSING '

DFHEISTG DSECT
*

*
*
*
*
*
*

CICS SAMPLE PROGRAM IFBR
SYNCHRONOUS PROCESSING

'REMOTE FILE BROWSE(
REMOTE TRANSACTION

*
*
*
*
*
*

*
* INPUTS TO THIS PROGRAM
* (RECEIVED FROM IFBL)
*
*
*
* OUTPUTS FRot1 nn S PROGRN1
* (PASSED BACK TO IFBL)
*

*
START BROWSE KEY *
FI LE TO BRO\~SE *
BROWSE DIRECTION REQD. *
RUN FLAG (FIRST RUN BIT *

*
UP TO 4 RECORDS READ FROM *
REQUIRED FILE, OR UP TO *
3 AND AN ERROR MESSAGE *

* *

.*

* STATUS FLAG AND EIB SESSION STORAGE AREA *

*
XDFEIFlG OS
*
XSVNC DS
*
XFREE DS
*
XRECV DS
*
XSEND OS
*
XATT DS
*
XEOC OS
*
XFMH DS
*
INAREA OS
TRANIN DS
RUNDNFlG OS
KEVIN DS
DSETIN OS
OUT AREA DS
INLEN OS
OUT LEN OS
RESP OS
SAVEll EQU
FORWARD EQU

eCl7

C

C

C

C

C

C

C

eCL20
Cl4
XLl
Cl6
Cl8
CL350
H
H
F
X' 01 1

X'02 1

IF SET, EXECUTE SYNCPOINT

IF SET, FREE TERMINAL / LU

IF SET, EXECUTE RECEIVE

RESERVED

IF SET, EXECUTE EXTRACT TO
ACCESS ATTACH HEADER DATA

IF SET, END-OF-CHAIN WAS
RECEIVED WITH DATA

IF SET, DATA PASSED TO APPLIN
CONTAINS FMH - N/A FOR LU6.2

DATA OUTPUT AREA
THIS TRANSACTION ID
RUN AND DIRECTION INDICATOR
START BROWSE KEV RECEIVED
FILE TO BE BROWSED
DATA INPUT AREA
INPUT DATA LENGTH
OUTPUT DATA LENGTH
RESPONSES TO CICS Cor·1~1ANDS

FIRST RUN INDICATOR
BROWSE DIREC1ION INDICATOR

----------_ .. _-
Figure 123 (Part 1 of 6). Sample 2: remote file browse - back-end transaction (DFH$IFBR)

Appendix B. Sample application programs 369

._---------------------------_._ .. _ ... ---_.-
R9 EQU 9
Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
RHI EQU 18
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
FILEA DSECT
FILEREC OS CL86
*
PROGSTRT CSECT
*
oJ.:

LA R4,I
LA R5,OUTAREA
LA R5,L'KEVIN(R5)
USING FILEA,R5
LA R6, L' INAREA
STH R6,INLEN

*

SET COUNTER TO 1.
R5 <- ADORS OF OUTPUT BUFFER.
MAKE ROOM FOR LAST RIDFLD USED.
DECLARE FILE BASE REGISTER.
SET INLEN TO LENGTH OF
INPUT DATA AREA.

* RECEIVE DATA PASSED FROM 'IFBL' *

*

EXEC CICS RECEIVE INTO(INAREA) LENGTH{INLEN) RESP(RESP)
CLC RESP,DFHRESP(NORMAL) CHECK FOR NORMAL RESPONSE
BE RECEIVOK
CLC RESP,DFHRESP(EOC) CHECK FOR EOC RESPONSE
BNE ERROR!

REGEIVOK OS 9H
MVC XOFEIFLG,EIBSVNC SAVE EIB VALUES

*
EIBTEST os 9H
*
TESlSVNC OS

CLI
BNE

9H
XSVNC,X'FF'
TESTFREE

*
~********.~

* SVNCPOINT SET, SO ISSUE A SVNCPOINT REQUEST ""

*

*

EXEC CICS SVNCPOINT RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERROR 1

TEST FREE OS 9H

---------_._-

-_ .. _-_._---_ .•. _------_._---------------_ .. _------------_._---------_._--
Figure 123 (Part 2 of 6). Sample 2: remote file browse - back-end transaction (DFH$IFBR)

370 CICS/MVS 2.1.2 Intercommunication Guide

ClI XFREE,X'FF'
BNE TESTRECV FREE NOT ON SO TEST RECV

*

* FREE SET, SO ISSUE A FREE REQUEST *

*

*

*

EXEC CICS FREE RESP(RESP)
ClC RESP,DFHRESP(NORMAL)
BNE ERRORl

B IMMRET

TESTRECV DS
CLI
BNE

8H
XRECV,X'FF'
ENDTEST RECEIVE NOT ON SO BEGIN BROWSE

*

* RECEIVE SET, THIS SHOULD NOT OCCUR SO RETURN IMMEDIATELY *
+********************
*

B H1t·1RET
*
ENDTEST OS 8H
*

* START BROWSE FROM SUPPLIED RECORD KEY, AND READ *
* THROUGH FILE, (FORWARDS OR BACKWARDS AS REQUIRED) *
* BUFFERING FOUR RECORDS AND SENDING THEM *
* BACK TO THE DRIVER TRAN. ON EACH TRAN. INVOCATION. *

*
*
*

EXEC CICS STARTBR FILE(DSETIN) RIDFLD(KEYIN)
RESP(RESP)

CLC RESP,OFHRESP(DSIOERR) DOES FILE EXIST?
BE DSIDERRI ••• NO, GO TO DSIDERRI
CLC RESP,DFHRESP(DISABlED) IS FILE DISABLED?
BE DISABLED ••• YES, GO TO DISABLED
ClC RESP,DFHRESP(NOTFNO) IS RECORD PRESENT?
BE NOTFNDI •.. NO, GO TO NOTFNDl
CLC RESP,DFHRESP(NORMAL) CHECK FOR NORMAL RESPONSE .
BNE ERRORl

*
Hi RUNDNFLG,FORWARD BROWSE FORWARD REQUESTED ?
BNO BRO~/BK NO, BROWSE BACK REQUESTO.

*

* BROWSING FORWARD ROUTINE *
~********

*
BROWFWO os 8H
*

*

EXEC CICS READNEXT INTO(FILEREC) FILE(DSETIN)
RIDFLD(KEYIN) RESP(RESP)

BAL R2,BRWTEST BRANCH TO BRWTEST TO TEST RESPONSES

*

*

._--------------------------'
Figure 123 (Part 3 of 6). Sample 2: remote file browse - back-end transaction (DFH$IFBR)

Appendix B. Sample application programs 371

'-----~---- -- ".-.,-

BAL R14,COMMON
CH R15,=H'4'
BE RETURN
B BROWFWD

*

EXECUTE COMMON PROCESSING ROUTINE.
IS THE BUFFER FULL ?
YES, SO RETURN RECORDS.
NO, SO READ ANOTHER RECORD

* BROWSING BACKWARDS ROUTINE *
:t******************
*
BROWBK OS 9H
*

EXEC CICS READPREV INTO(FILEREC) FILE(DSETIN) *

*

*

RIDFLD{KEYIN) RESP(RESP)
BAL R2,BR~TEST BRANCH TO BRWTEST TO TEST RESPONSES

BAL R14,COMMON
CH R15,=H'4'
BE RETURN
B BROWBK

EXECUTE COMMON PROCESSING ROUTINE.
IS THE BUFFER FULL ?
YES, SO RETURN RECORDS.
NO, SO READ ANOTHER RECORD

*
*
*
*
*
*

COMMON RECORD PROCESSING ROUTINE
NOTE. THE SAVE INDICATOR FLAG IS USED TO PREVENT US FROM
SAVING THE FIRST RECORD READ FROM THE FILE. THIS IS
BECAUSE WE WILL RESTART THE FILE BROWSE AT THE SAME POINT
AS WE FINISHED IN THE LAST RUN (ASSUMING THIS IS NOT
THE FIRST RUN OTHERWISE WE MISS OUT THE FIRST RECORD).

*
*
*
*
*
*

*
COMMON OS

SR
TM
BO
01
B

CONTINUE OS
LA
LA
CH
BL
LA

*
COMMONR OS

BR
*

BH
R15,R15
RUNDNFLG,SAVEIT
CONTINUE
RUNDNFLG, SAVE IT
COMMONR
9H
R4,1(R4)
R5,L'FILEREC(R5)
R4,=H'5'
COMMONR
R15,4

9H
R14

ZERO RETURN REG
DO WE WANT TO SAVE THIS RECORD?
YES, SO CONTINUE
NO, SET UP TO SAVE NEXT RECORD

AND RETURN

INCREMENT RECORD COUNT.
INCREMENT BUFFER POINTER.
OUTPUT AREA FILLED ?
NO, RETURN
YES, SET RIC FOR FULL BUFFER

RETURN

* ERROR RECEIVED DURING PROCESSING SO PREPARE RELEVANT ~1ESSAGE *

*
ERRORI 6s 9H ERROR HAS OCCURRED,

LA R4,ERRORMSG SO RETURN WI TH
B SENDERR ERROR MESSAGE.

*
ENDFILEI OS 9H END OF FILE REACHED,

LA R4,ENDFLMSG SO SEND BACK
B SENDERR 'END OF FILE' MESSAGE.

*
Figure 123 (Part 4 of 6). Sample 2: remote file browse - back-end transaction (DFH$IFBR)

372 CICS/MVS 2.1.2 Intercommunication Guide

I
I
I
I
I

I
I

I
I
I
I

----------- --------.------~---.--------..

NOTFNDl os eH RECORD WAS NOT FOUND,
LA R4 , NOT Fm1SG SO SEND ERROR MESSAGE.
MVC KEY!, KEYIN INSERT KEY INTO MESSAGE.
B SENOERR

*
DISABLED OS eH FILE WAS DISABLED,

LA R4,DISABMSG SO SEND ERROR MESSAGE.
MVC DSETl ,OSETIN INSERT FILE INTO MESSAGE.
B SENDERR

*
SYSERRl OS eH FILE WAS NOT ACCESSIBLE,

LA R4,SYSERNSG SO SEND ERROR MESSAGE.
MVC DSET2,DSETIN INSERT FILE INTO MESSAGE.
B SENDERR

*
DSIDERRl OS eH FILE WAS NOT FOUND,

LA R4, OS TERr1SG SO SEND ERROR MESSAGE.
MVC DSET3,OSETIN INSERT FILE INTO MESSAGE.
B SENDERR

*
SENOERR OS eH

LH R6,e(R4) PUT MESSAGE LENGTH IN R6.
BCTR R6,R0
EX R6,t1VCMSG PUT ERROR MSG IN OUTAREA.
LA R5,l(R5,R6) POINT TO END OF DATA
B RETIJRN RETURN DATA AND TERMINATE.

MVCMSG MVC e(e,R5),L 'OUTLEN(R4)
*

* ROUTINE FOR TESTING RESPONSE TO CICS COt1MANDS WHILE BRO~/SING *
* FILE *

BRWTEST OS eH

CLC RESP,DFHRESP(DSIDERR) DOES FILE EXIST?
BE OSIOERRl ••. NO, GO TO DSIDERRI
CLC . RESP,OFHRESP(OISABLED) IS FILE DISABLED?
BE DISABLED •.• YES, GO TO DISABLED
CLC RESP,OFHRESP(ENDFILE) HAS END OF FILE BEEN REACHED?
BE ENDFILEl .•. YES, GO TO ENDFILEl
CLC RESP,DFHRESP(NOTFND) CAN THE RECORD BE FOUND?
BE NOTFNDl •.. NO, GO TO NOTFNDl
CLC RESP,DFHRESP(LENGERR) IS RECORD TOO LONG?
BER R2 •.. YES, IGNORE AND RETURN
CLC RESP,OFHRESP(NORMAL) CHECK FOR NORMAL RESPONSE
BER R2 IF OK THEN RETURN
B ERRORl ELSE GO TO ERROR ROUTINE

*
RETURN OS eH
*

* RETURN CONTROL (AND DATA) BACK TO MASTER TRANSACTION *

*

*

*

MVC

LA
SR
STH

OUTAREA(L'KEYIN),KEYIN

R4,OUTAREA
R5,R4
R5,OlJTLEN

PUT LAST KEY READ AT
FRONT OF OUTAREA.
CALCULATE LENGTH
OF DATA TO SEND.

I Figure 123 (Part 5 of 6). Sample 2: remote file browse - back-end transaction (DFH$IFBR)

Appendix B. Sample application programs 373

EXEC CICS SEND FROM(OUTAREA) LENGTH(OUTLEN) WAIT LAST *
RESP(RESP)

CLC RESP.DFHRESP(NOR~1AL)
BNE ERROR 1

I.ff1RET OS 9H
EXEC CICS RETURN

*
ENDFLMSG DC
MSGI DC
NOTFDMSG DC
MSG2 DC

ORG
KEY! OS

ORG
DISABMSG DC
MSG3 DC

ORG
DSETI OS

ORG
SYSERMSG DC
MSG4 DC

ORG
DSET2 OS

ORG
DSTERMSG DC
MSG5 DC

ORG
DSET3 OS

ORG
ERRORMSG DC
MSG6 DC
*

END

AL2(L'MSGl)
C 'END OF FI LE '
AL2(L'MSG2)
C'RECORD WITH KEy ...••• NOT FOUND'
MSG2+16
CL6
,
AL2(L '~1SG3)
C'FIlE ••••.••• IS DISABLED'
MSG3+5
ClB
,
AL2(L i MSG4)
C'FILE •••••.•• IS NOT ACCESSIBLE'
MSG4+5
CLB
,
AL2(L'MSG5)
C'FILE .••..••• NOT FOUND'
MSG5+5
CLB
,
AL2(L'MSG6)
C 'ERROR HAS O.CCURRED I N REMOTE TRANSACT! ON'

I Figure 123 (Part 6 of 6). Sample 2: remote file browse - back-end transaction (DFH$IFBR)

374 CICS/MVS 2.1.2 Intercommunication Guide

BMS mapset for sample 2 (DFH$IMB)

DFH$IGB

SPMAPA

._--------_._---_ .. _-----------------------
TITLE 'DFH$IMB - INTERCOMMUNICATION SM1PLE - REMOTE FI lE BROWS*

E - MAPSET'
DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(ALARM,FREEKB),

LANG=ASM,STORAGE~AUTO,TIOAPFX=YES,EXTATT=NO

DFHMDI SIZE=(24,B9)
DFHMDF POS=(4,15),lENGTH=2B,ATTRB=(PROT,BRT),

INITIAL='CICS-CICS REMOTE FILE BROWSE'
DFHMDF POS=(5,15),LENGTH=25,ATTRB=(PROT,BRT),

INITIAL=' SAMPLE PROGRAM MAP
DFHMDF POS=(6,15),LENGTH=29,ATTRB=(PROT),

INITIAL='*****************************'

*

*

*

*

DFHMDF POS=(19,4),LENGTH=19,ATTRB=(PROT), *
INITIAL='6 DIGIT STBR KEY •• '

STRTKEY DFHMDF POS=(19,25),LENGTH=6,ATTRB=(UNPROT,BRT,IC,FSET), *
INITIAL= '

DFHMDF POS=(19,32),ATTRB=(PROT),LENGTH=1
DFHMDF POS=(12,4),LENGTH=19,ATTRB=(PROT), *

INITIAL='REMOTE FILE NAME .. '
RDSET DFHMDF POS=(12,25),LENGTH=8,ATTRB=(UNPROT,BRT,FSET), *

INITIAl='FILEA
DFHMDF POS=(12,34),ATTRB=(PROT),LENGTH=1
DFHMDF POS=(14,4),LENGTH=19,ATTRB=(PROT), *

INITIAL='REMOTE SYSTEM 10 .. '
RSYS DFHMDF POS=(14,25),LENGTH=4,ATTRB=(UNPROT,BRT,FSET)

DFHMDF POS=(14,30),ATTRB=(PROT),lENGTH=1
ERRMSG DFHMDF POS=(18,4),LENGTH=36,ATTRB=(PROT,BRT),INITIAL=' ,

DFHMDF POS=(20,4),LENGTH=32,ATTRB=(PROT), *
INITIAL='TYPE IN VALUES, THEN PRESS ENTER'

DFHMDF POS=(21,4),lENGTH=32,ATTRB=(PROT), *
INITIAL='OR HIT ~PF3" TO TERMINATE.'

SPMAPE DFHMDI SIZE=(24,B9)
OUTMSG DFHMDF POS=(22,4),lENGTH=40,ATTRB=(PROT,BRT), *

INITIAL=' ,
DFHMDF POS=(23,4),LENGTH=23,ATTRB=(PROT,BRT), *

INITIAL='TRANSACTION TERMINATED.'
DFHMSD TYPE=FINAL
END

I Figure 124. Sample 2: remote file browse - BMS mapset (DFH$IMB)

Appendix B. Sample application programs 375

----_ ... _-_ .. _------- ---_._----_ .. _---.. _-----.- .. - _ _._. __ ._ ... _------_ .. _---_._-
Sample 3 - remote record retrieval

This sample illustrates the use of asynchronous processing to retrieve a single
record from a remote temporary storage queue. It consists of a local transaction
(DFH$IQRL) to send the request to the remote system, a remote transaction
(DFH$IQRR) to retrieve the record and return it to the local system, and a local
transaction (DFH$IQRD) to receive the record and display it at the user terminal.

The remote temporary storage queue is assumed to consist of records that have
unique user-defined keys in their first six bytes. If you want to run this sample,
you will have to create a temporary storage queue of this form on the remote
system.

The request transaction is invoked by the transaction code IQRL, and displays
the following menu at the user's terminal:

CICS-CICS RECORD RETRIEVAL
SAMPLE PROGRAM MAP

KEY OF REC. REQD •.
REMOTE 1S Q NAME.
REMOTE SYSTEM ID ..

TYPE IN VALUES, THEN PRESS ENTER
OR HIT "PF3" TO TERMINATE.

'---------_.----

KEY OF REC REQD
specifies the user-defined key (that is, the first six bytes of data) of the
remote temporary storage record.

REMOTE TS Q NAME
specifies the name that the remote queue from which the record is to be
retrieved.

REMOTE SYSTEM ID
specifies the name of the remote system.

This name can be the connection name of an LUTYPE6.2 or LUTYPE6.1 link.

The local request transaction uses a START command to start the remote
retrieve transaction. The start request passes the name of the queue, the record
number, the return transaction identifier (IQRD), and the return terminal identifier
(obtained from the EIB). It also passes the APPLID of the local CICS system.

376 CICS/MVS 2.1.2 Intercornmunication Guide

This enables the remote transaction to find the SYSID of the connection to
system that issued the Initial start request. Because both the local and the
remote transactions name a SYSID explicitly on their START commands, neither
of the systems requires a remote transaction definition.

The remote transaction retrieves the required record, and passes it back to the
local system, again by means of a START command. This START command
names the locaf display transaction lORD.

The local display transaction then displays the. record at the user's terminal.

Appendix B. Sample application programs 377

Source listing of sample 3 local request transaction (DFH$IQRL)

OFU$IQRL TITLE 'CICS INTERCOMMUNICATION SAMPLE - TS RECORD RETRIEVAL - *
LOCAL REQUEST'

*
*
*
*
*
*

CICS SAMPLE PROGRAM IQRL
ASYNCHRONOUS PROCESSING

'RECORD RETRIEVAL'
LOCAL TRANSACTION

*
*
*
*
*
*

~****

* *
* INPUTS TO THIS PROGRAM KEY OF RECORD REQUIRED *
* (FROM USERS SCREEN) REMOTE TS Q NAME TO SEARCH *
* REMOTE SYSTEM ID *
* *
* OUTPUTS FROM THIS PROGRAM KEY OF RECORD REQUIRED *
* (PASSED TO TRANSACTION IQRR) REMOTE TS Q NAME TO SEARCH *
* THIS SYSTEMS APPLID *
* USERS TERMINAL ID *
* RETURN TRANSACTION ID *
* *

*
DFH$IQRL CSECT
*

* SEND INITIAL REQUEST MENU TO SCREEN *

RESETMAP OS 9H

XC SPMAPAO(SPMAPAL),SPMAPAO CLEAR MAP STORAGE
EXEC CICS SEND MAP('SPMAPA') MAPSET('DFH$IGl') MAPONLY *

ERASE WAIT
*
fr*'*
* RECEIVE AND VALIDATE THE REQUIREMENTS *

RETRY

*

*

*

*

os 9H
EXEC CICS RECEIVE MAP('SPMAPA') MAPSET('DFH$IGl')

RESP(RESP)

CLI EIBAID,DFHPF3 PF3 PRESSED .1
BE TERMNATE ••• YES, GO TERMNATE TRANS.
CLC RESP,DFHRESP (MAPFAI L) MAPFAIL 1
BE RESETMAP ••• YES, GO RESEND MAP
CLC RESP,DFHRESP(NORMAL) NORMAL RESPONSE 1
BNE BADRESPI ••• NO, GO TERMINATE TRANS.

CLC KEYVALL,=H'9' RECORD KEY ENTERED 1
BE BAD KEY ••• NO, GO SEND ERROR HSG.
CLC KEYVALI , BLANKS RECORD KEY BLANK ?
BE BAD KEY •.. YES, GO SEND ERROR MSG.

CLC RQNAML,=H'9' TS Q NAME ENTERED ?
BE BADQNM ••• NO, GO SEND ERROR MSG.
CLC RQNAMI,BLANKS TS Q NAME BLANK 1
BE BADQNM ••• YES, GO SEND ERROR MSG.

*

Figure 125 (Part I of 4). Sample 3: temporary storage record retrieval - local (request) transaction (DFH$IQRL)

378 CICS/MVS 2.1.2 Intercommunication Guide

CLC RSY$L,=H '81

BE BADSYSID
CLC RSYSI,BLANKS
BE BADSYSID

*

SYSID ENTERED
••• NO, GO SEND ERROR MSG.
SYSID BLANK ?
••. YES, GO SEND ERROR MSG.

* SET UP DATA TO BE PASSED BY START Cot~MAND. *

MVC KEYOUT,KEYVALI
EXEC CICS ASSIGN APPLID(APPLID)

*

* ISSUE START CO~~AND FOR TRANSACTION 'IQRR' IN REMOTE *
* SYSTEM, PASSING REMOTE QNAME, RECORD KEY, *
* THIS NETNAt1E AND RETURN TRANID AND TERmD. *
* TO ENABLE THE REMOTE TRANSACTION TO FIND OUR SYSID, WE *
* PASS IT THE APPLID OF TflIS SYSTEM IN THE 'START ' COMMAND. *
* THE REMOTE TRANSACTION WILL USE THE 'EXTRACT TCT 1 Catt·1AND *
* TO ACQUIRE OUR SYSID. IT WILL THEN USE IT IN THE 'START ' *
* COMMAND TO INITIATE ANOHIER TRANSACTION ON THIS SYS1Hl. *
*****~:**~**********

*
EXEC CICS START TRANSID(, IQRR I) SYSIO (RSYSI) QUEUE (RQNAm) *

FROM(DATAOUT) RTRANSID('IQRD') RTERMID(EIBTRMID) *

*

*

RESP(RESP)

ClC RESP,DFHRESP(SYSIDERR)
BE SYSERR
CLC RESP,DFHRESP(NORMAL)
BNE BADRESP2
B COMPLETE

SYSIDERR ?
.•• YES, GO SEND ERROR MSG.
NORMAL RESPONSE ?
••• NO, GO TERMINATE TRANS.
••• YES, GO TO COMPLETE TRAN.

* TRANSACTION TERMINATION *

TERMNATE OS 8H

MVC EMLEN,NORMLEN SET UP MSG. LENGTH
EXIT OS 8H

MVC EXIH1SGl, NORMt~SG SET UP EXIT MESSAGE
EXEC CICS SEND FROM(EXITMSG) LENGTH(EMLEN) ERASE

*
COMPLETE OS 8H

EXEC CICS RETURN
EJECT

* ROUTINE TO HANDLE INVALID INPUT FROM USER *

BADKEY OS

*

MVC
MVC
B

BADQNM OS

*

MVC
MVC
B

0H
ERRt1SGO, KEYMSG
KEYVALL,=H'-l '
RESEND

0H
ERRt1SGO , QNMMSG
RQNAML,=H'-l'
RESENO

RECORD KEY NOT SUPPLIED
MOVE MESSAGE TO MAP
SET CURSOR POSITION
GO SEND ERROR MSG.

REMOTE Q NAME NOT SUPPLIED
t10VE ~1ESSAGE TO MAP
SET CURSOR POSITION
GO SEND ERROR MSG.

Figure 125 (Part 2 of 4). Sample 3: temporary storage record retrieval - local (request) transaction (~FH$IQRL)

Appendix B. Sample application prograrT1S 379

BAOSYSIO OS
NVC
MVC
B

*

BH
ERRMSGO;SYSMSG
RSYSL,=H '-I'
RESENO

REMOTE SYSTEM NAME NOT SUPPLI~D
MOVE MESSAGE TO MAP
SET CURSOR POSITION
GO SEND ERROR MSG.

*

* ROUTINE TO HANDLE SYSIDERR RESPONSE FROH START cot1r1AND *

*
SYSERR OS 9H

CLI EIBRCODE+l,X'9B' LINK OUT OF SERVICE ?
BNE UNKNOWN ••. NO, GO SET UP 'UNKNOWN' MSG.
MVC MSGWA,OUTSVMSG MOVE SKELETON MSG. TO WORK AREA
MVC SYSWAI,RSYSI INSERT SYSIO INTO MESSAGE.
B MOVEM GO MOVE COMPLETE MSG.

*
UNKNOWN OS BH

MVC MSGWA,UNKWNMSG MOVE SKELETON MSG. TO ~ORK AREA
MVC SYSWA2,RSYSI INSERT SYSID INTO MESSAGE.

*
MOVEM OS BH

MVC ERRMSGO ,~1SG\~A MOVE ERROR MESSAGE TO MAP
~1VC RSYSL,=H'-l' SET CURSOR POSITION

*
~**********

*
'I:

*

DATA RECEIVED WAS INCOMPLETE, OR THERE WAS A PROBLEM
WITH THE SYSID, SO GIVE THE USER ANOTHER CHANCE TO
ENTER DATA.

*
*
*

RESEND OS 9H

EXEC CICS SEND MAP('SPMAPA') MAPSET('DFH$IGl') DATAONLY *
CURSOR WAIT

*
B RETRY RECEIVE REQUIREMENTS AGAIN

*
*

* HANDLE BAD RESPONSE FROM RECEIVE MAP Cot·1MAND *

BADRESPI OS

MVC
MVC
B

0H
EXITMSG2,BADRCV
EMLEN,BRLEN
EXIT

SET UP EXIT MSG.
SET UP MSG. LEN
GO TERMINATE TRANS.

*

* . HANDLE BAD RESPONSE FROM START Cot1MAND

BADRESP2 OS'

MVC
MVC
B
EJECT

0H
EXITMSG2(L'BADSTRT),BADSTRT SET UP EXIT MSG.
EMLEN,BSLEN SET UP MSG. LEN
EXIT GO TERMINATE TRANS.

I Figure 125 (Part 3 of 4). Sample 3: temporary storage record retrieval - local (request) transaction (DFH$/QRL)

380 CICS/MVS 2.1;2 Intercommunication Guide

-----------------_._-_ .. _--

* CONSTANTS *

BLANKS DC
KEYMSG DC
QNMMSG DC
SYSMSG DC
OUTSVMSG DC
UNK~/NMSG' DC
NORMMSG DC
NORMLEN DC
BADRCV DC
BRLEN DC
BADSTRT DC
BSLEN DC
*

LTORG
EJECT

CL8' ,
CL36'PLEASE SUPPLY KEY OF RECORD REQUIRED'
CL36'PLEASE SUPPLY A RE~OTE QUEUE NAME.'
CL36'PLEASE SUPPLY A REMOTE SYSTEM 10.'
CL36'LINK TO .••. IS OUT OF SERVICE'
CL36'SYSTEM NAME •••• IS NOT KNOWN'
C'IQRL TRANSACTION TERMINATED'
AL2 (L ' NOR~1MSG)
C' DUE TO BAD RESPONSE FRO~' RECEIVE t~AP COt~AND'
AL2 (L ' NORt1MSG+L 'BADRCV)
C' DUE TO BAD RESPONSE FROM START COMMAND'
AL2(L'NOR~1MSG+L'BADSTRT)

* EQUATES *

*
COPY DFHAID

DFHREGS
EJECT

DEFINITIONS FOR ATTENTION IO'S

REGISTER EQUATES

* WORKING STORAGE *

Figure 125 (Part 4. of 4). Sample 3: temporary storage record retrieval - local (request) transaction (DFH$IQRL)

Appendix B. Sample application programs 381

Source listing of sample 3 remote retrieve transaction (DFH$IQRR)

DFH$IQRR TITLE I CICS INTERCOM~1UNICATION SAHPLE - TS RECORD RETRIEVAL -*
RH10TE READ TS I

~**********

* *
* CICS SAMPLE PROGRAM IQRR *
* ASYNCHRONOUS PROCESSING *
* 'RECORD RETRIEVAL ' *
* REHOTE TRANSACTION *
* *

*
* INPUTS TO THIS PROGRAM
* (RECEIVED FROM IQRl)
*
*
*
*:
* OUTPUTS FROM THIS PROGRAH
* (PASSED TO PROGRAM IQRD)
*

*
KEY OF RECORD REQUIRED *
TS Q NAME TO SEARCH *
DRIVER TRANSACTIONS APPLIO *
USERS TERMINAL 10 *
RETURN TRANSACTION 10 *

*
REQUIRED RECORD (+ KEY) *

OR ERROR MESSAGE *
TS Q NAME REQUESTED *

* *
~**********

*
oFff$ I QRR CSECT
*

* RETRIEVE THE DATA PASSED BY START FROM IQRL *

*

EXEC CICS RETRIEVE INTO(DATAIN) RTRANSID(TRANIN)
RTERMID(TERMIN) QUEUE(QNAMEIN)

* TO OBTAIN THE SYSID TO RETURN TO, WE WILL USE THE 'EXTRACT *
* TCT ' COMMAND. WE SPECIFY THE NETNAME AS BEING THE APPLIo *
* THAT WAS PASSED TO US. THIS WIll YIELD THE SYSID THAT \~E *
* ASSOCIATE WITH THE RECEIVED APPLID. *
~******************

*
EXEC CICS EXTRACT TCT NETNAME(APPLIN) SYSID(SYSBK)

*
*****:~***

*
*

FINO THE REQUIRED RECORD BY READING THROUGH THE QUEUE,
AND COMPARING THE RECORD'S KEY WITH THE KEY SUPPLIED.

*
*

XC

*
READ NEXT DS

l.H
LA
STH

*

QRECNUM,QRECNUN

9H
R5,QRECNUf1
R5,1(R5)
R5, QRECNur1

INITIALIZE TS Q ITEM NO.

INCREMENf TS Q ITEM NO.

EXEC eICS READQ TS QUEUE(QNAMEIN) SET(R6) LENGTH(RECLEN)
ITEM(QRECNlIt1) RESP(RESP)

*

*

CLC RESP,DFHRESP(NORMAL)
BNE CHKI TEt~

GOT A RECORD ?
NO, GO CHECK REASON

*

*

-_._._-------------_ .. _------------_._-------------_.---_.----_._.---_._------------------
Figure 126 (Part 1 of 3). Sample 3: remote file browse - remote (retrieve) transaction (DFH$IQRR)

382 CICS/MVS 2.1.2 Intercommunication Guide

IS THIS THE RIGHT RECORD ? CLC KEYIN,0(R6)
BNE READNEXT
B STARTBK

NO, SO GO READ THE NEXT RECORD.
YES, SO GO START TRANS.

*
*****t***
* HANDLE NON NORMAL RESPONSE FROM READQ. *

CHKITEM OS 0H

CLC RESP, OFHRESP (ITEt1ERR) GOOD Q 10, BUT REC. NOT FOUND
BNE CHKQIO NO, GO CHECK FOR BAD Q 10
MVC EMESSAGE(L'NOTFOMSG),NOTFOMSG SET UP ERROR MESSAGE
tWC EMNFKEY,KEYIN INSERT KEY INTO MSG.
tWC RECLEN, Nn1LEN SET UP MSG. LENGTH
B SENOERR

*
CHKQID OS 0H

CLC RESP,OFHRESP(QIOERR) UNKNOWN QUEUE NAME ?
BNE READQERR NO, GO SET BAD READQ MSG.
MVC EMESSAGE(L 'QIDERt1SG) ,QIDER~1SG SET UP ERROR MESSAGE
MVC Et~BADQ , QNA~1E I N INSERT Q NAME IN t1SG.
MVC RECLEN, QH1LEN SET UP MSG. LENGTH
B SENDERR

*
READQERR DS 0H

t1VC EMESSAGE(L ' RDQERt1SG),RDQERMSG SET UP ERROR MESSAGE
MVC RECLEN,RDQMLEN SET UP MSG. LENGTH

*
SENDERR OS 0H

tWC H1KEY ,KEY I N MOVE KEY
LA R6,ERRORMSG ADDRESS DATA TO BE PASSED

*

*
*

ISSUE START BACK TO USERS SYSTEM PASSING THE
REQUIRED RECORD OR EXPLANATORY ERROR MESSAGE.

*
*

STARTBK OS 0H

EXEC eICS START TRANSID(TRANIN) TERMID(TERMIN) SYSID(SYSBK) *
FRm1(0(R6» LENGTH(RECLEN) QUEUE(QNAt~EIN)

*

* TERMINATE TRANSACTION. *

EXEC eICS RETURN
EJECT

*****?***************f'******************************* ******************
* CONSTANTS *

NOT Fm·1SG DC
QIOERt1SG DC
ROQERt1SG DC
Nn~LEN DC
QEMLEN DC
RDQt~LEN DC

*
LTORG
E~lECT

C'RECORD WITH KEy •.•.•. NOT FOUND I

C'QUEUE NAME •••.••.• IS NOT KNOWN I

C'BAO RESPONSE TO REAOQ TS IN REMOTE IQRR TRANSACTION '
AL2(L ' EMKEY+L'NOTFDMSG)
AL2(L ' EMKEY+L ' QIOERMSG)
AL2(L ' EMKEY+L ' RDQERMSG)

----_.-._._------------------------------_.
Figure 126 (Part 2 of 3). Sample 3: remote file browse - remote (retrieve) transaction (DFH$/QRR)

Appendix B. Sample application programS 383

************************~*******************~*****~******~*******.~****

EQUATES *
~*****~*******************~

DFHREGS
EJECT

WORKING STORAGE

REGISTER EQUATES

*
************************-**********.***********************************
OFHEISTG OSECT
RESP OS F RESPONSES TO CICS COMt1P,NDS
*.
DATAIN OS aCL14 DATA RECEIVED FROM IQRl
KEVIN OS CL6 RECORD KEY RECEIVED
APPLIN OS CLB ~PPllb PASSED TO FIND
*
TRI\NII~ OS CL4 TRANIO TO START BACK TO
lERNIN DS CL.4 TERMID TO PASS BACK
QNANEIN DS CL.8 QUEUE NAME TO BE SEARCHED
SYSBK OS CL4 SYSID TO RETURN TO
*
QRECN1Jr~ os H NUMBER OF RECORD ~/ITHIN QUEUE
REeL.EN OS H LENGTH OF DATA TO SEND
oJ·

ERRORMSG OS aCL8e ERROR NESSAGE
HIKEY OS CL.6 RECORD '~EY
HIESSAGE OS CL74 ~IESSAGf TEXT

ORG EMESSAGE f 16
HINFKEV OS CL6 KEY OF NOT FOUND RECORD

ORG HIESSAGE + 11
HIBAOQ OS CL8 ~W1E OF' BAD Q II)

ORG
'*

END

Figure. 126 (Part 3 of 3). Sample 3: remote me browse - remote (retrieve) transaction (DFH$/QRR)

384 CICS/MVS 2.1.2 Intercommunication Guide

/ Source listing of sample 3 local display transaction (DFHSIQRD)

----- ---------_._._-_._-----------._ .. _ .. __ .-._.-... _ -._ .. -... __ ._- _ .. __ •. _ .. _------_ .. __ .•... _-----------

DFH$IQRD TITLE 'CICS INTERCO~1MUtHCATION SAMPLE - TS RECORD RETRIEVAL - *
LOCAL DISPLAY'

* *
* CICS SA~lPLE PROGRAt1 IQRD *
* ASYNCHRONOUS PROCESSING *
* 'RECORD RETRIEVAL' *
* DISPLAY TRANSACTION *
* *
~********
* INPUTS TO THIS PROGRAM REQUIRED RECORD (t KEY) *
* (RECEIVED FROM IQRR) OR ERROR MESSAGE *
* QUEUE NAME REQUESTED +.

* *
* OUTPUTS FROM THIS PROGRAM KEY OF REQUIRED RECORD *
* (DISPLAYED VIA MAP DFH$IG2) QUEUE NAME REQUESTED *
* REQUIREO RECORD OR ERROR MSG *
* *
~*****~,**

*
DFH$IQRO CSECT
*

XC SPMAPAO(SPMAPAL),SPMAPAO CLEAR MAP STORAGE
*
~:********

* RETRIEVE THE DATA PASSED BY START FROM 'IQRR' *

*

EXEC Clts RETRIEVE SET(R6) LENGTH(DATALEN) QUEUE(RQNAMO)
*

* MOVE DATA TO f·1AP *

*

MVC
CLC
BNH
LH
SH
EX
B

MVCRECO MVC
*

RECKEYO,0(R6)
DATALEN,~AL2(L'RECKEYO)
SENDt1AP
R5,DATALEN
R5,=AL2(L'RECKEYO+l)
R5,~1VCRECO

SENDMAP
RECORDO(0),L'RECKEYO(R6)

MOVE KEY OF RECORD.
ANY OTHER DATA ?
NO, BYPASS MOVE
CALCULATE LENGTH OF .•.
.•. DATA FOR fWC
MOVE DATA

MOVE DATA TO MAP

* SEND MAP TO SCREEN *

SENDMAP DS 0H

EXEC CICS SEND ~1AP ('SPt,lAPA') t~APSET ('DFH$I G2') ERASE
*

* TERMINATE TRANSACTION *
~********************

*
*

*

EXEC eICS RETURN

LTORG

-----------_._------_.
Figure 127 (Part 1 of 2). Sample 3: remote record retrieval - local (display) transaction (DFH$IQRD)

Appendix B. Sample application programs 385

DFHREGS REGISTER EQUATES
*

* WORKING STORAGE *

DFHEISTG DSECT

COpy
*
RESP OS
DATALEN OS
*

END

DFH$IG2

F
H

MAPSET DEFINITIONS

RESPONSES TO CICS COW1ANDS
LENGTH OF DATA TO SEND TO SCREEN.

I Figure 127 (Part 2 of 2). Sample 3: remote record retrieval - local (display) transaction (DFH$/QRD)

386 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

8MS mapset 1 for sample 3 (DFH$IM1)

DFH$IMI TITLE 'INTERCOMMUNICATION SAMPLE - TS RECORD RETRIEVAL - MAPSE*
T I'

AIF
DFH$IGIC CSECT
.SKIPSD ANOP,

('&SYSPARM' EQ 'DSECT').SKIPSD - OS SMP REQUIRES CSECT

DFH$IGI DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(ALARM,FREEKB),
LANG=ASM,STORAGE=AUTO,TIOAPFX=YES,EXTATT=NO

'*
SPMAPA DFHt1DI SIZE=(24,ae)

DFHMDF pdS=(4,16) ,LENGTH=26,ATTRB=(ASKIP,BRT) ,
INITIAL='CICS-CICS RECORD RETRIEVAL'

DFHMOF POS=(5,18),LENGTH=25,ATTRB=(ASKIP,BRT),
INITIAL=' SAMPLE PROGRAM MAP

DFHMDF POS=(6,16),LENGTH=29,ATTRB=(ASKIP),
INITIAL='*'*'**'**'*****'******************'

DFHMDF POS=(le,4),LENGTH=19,ATTRB=(ASKIP),
INITIAL='KEY OF REC. REQD •• '

KEYVAL DFHMDF POS=(18,25),LENGTH=6,ATTRB=(UNPROT,BRT,IC,FSET)
DFHMDF POS=(lEl,32),ATTRB=(ASKIP),LENGTH=1
OFHMOF POS=(12,4),LENGTH=19,ATTRB=(ASKIP),

INITIAL=' REMOTE TS Q NAt,1E •• '
RQNAM DFHMDF POS= (12 ,'25), LENGTH=B ,ATTRB=(UNPROT ,BRT , FSET)

DFHMDF POS=(12,34),ATTRB=(ASKIP),LENGTH=1
DFHMOF POS=(14,4),LENGTH=19,ATTRB=(ASKIP),

INITIAL='REMOTE SYSTEM 10 •• '
RSYS DFHMDF POS=(14,25),LENGTH=4,ATTRB=(UNPROT,BRT,FSET)

DFHMDF POS=(14,3e),ATTRB=(PROT),LENGTH=1
ERRMSG DFHMDF POS=(lB,4),LENGTH=36,ATTRB=(ASKIP,BRT),

INITIAL=' ,

'*

'*

DFHMDF POS=(28,4) ,LENGTH=32,ATTRB=(ASKIP) ,
INITIAL='TYPE IN VALUES, THEN PRESS ENTER'

DFHMDFPOS=(21,4),LENGTH=32,ATTRB=(ASKIP),
INITIAL='OR HIT "PF3" TO TERMINATE.'

DFHMSD TYPE=FINAL

END

I Figure 128. Sample 3: remote record retrieval - BMS mapset 1 (DFH$IM') ,

*

*

*

*

*

*

*

*

*

Appendix B. Sample application programs 387

BMS mapset 2 for sample 3 (DFH$IM2)

DFH$1f12 TITLE 'INTERCOMMUNICATION SAMPLE - TS RECORD RETRIEVAL - r1APSE:I
T 21

AIF
DFH$IG2C CSECT
.SKIPSD ANOP,

('&SYSPARM ' EQ 'DSECT').SKJPSO - OS SMP REQUIRES CSECT

OFH$IG2 DFHMSD TYPE=&SYSPA~M,MODE=OUT,CTRL=(ALARM,FREEKB),
LANG=ASM,STORAGE=AUTO,TIOAPFX=YES,EXTATT=NO

*
SPMAPA DFHMDI SIZE=(24,80)

DFHMDF POS=(1,1),LENGTH=28,ATTRB~(PROT,BRT),
INITIAL='REQUEST FOR RECORD PROCESSED'

DFHMDF POS=(3,1),LENGTH=8,ATTRB=(PROT,BRT),
INITIAL='REC. KEY'

RECKEY OFHMDF POS=(3,18),LENGTH=6,ATTRB~(PROT,NORM)
DFHMDF POS=(3,28),LENGTH=4,ATTRB=(PROT,BRT),

INITIAL='TS Q'
RQNAM DFHMDF POS=(3,25),LENGTH=8,ATTRB=(PROT,NORM)
RECORD DFHMDF POS=(5,1),LENGTH=80,ATTRB=(PROT,NORM)

DFHMDF POS=(7,1),LENGTH=20,ATTRB=(PROT,BRT),
INITIAL='PROCESSING COMPLETE.'

'*
DFHMSD TYPE=FINAL

END

Figure 129. Sample 3: remote record retrieval - BMS mapset 2 (DFH$IM2)

388 CICS/MVS 2.1.2 Intercommunication Guide

*

*

*

*

*

--_._----------- --- --_._--_ ...• -... __ .. __ ._--
Sample 4 - CtCS to CtCS or tMS conversation

The CICS to CICS synchronous sample application program allows a terminal
operator to enter a command on the screen and have that command transmitted
to a remote system for execution. If necessary, the remote system responds
with a request for further details, and the operator is given the opportunity of
replying.

The front-end transaction is invoked by the transaction code ICIC, and displays
the following menu at the user's terminal:

TYPE REMOTE SYSTEM 10 AND COMt·1AND

REMOTE SYSTEM 10
CO~1t~AND

THEN PRESS ENTER TO CONTINUE, OR
CLEAR TO TERMINATE

The program is able to converse with any application on a remote system which
sends output data either one line at a time or in multiple line format. The CICS
supplied programs listed below have this capability, so the main purpose of this
example is to provide the CICS system programmer with a Simple test
transaction that will show how to establish contact with a second, remote CICS
system without the need for any application program coding. A successful test
of this sample will indicate, to the extent of the features actually being tested,
that the system network has been correctly set up and that the Inter-System
components of CICS to allow distributed transaction processing are in order;
failure will indicate errors in set up rather than in user programming.

At the start of the program, the operator is prompted to enter the name of the
remote system to be attached, and the actual command to be executed on the
remote system which is entered just as if it were a local command, for example,
CSMT TAS. The program is able to handle both single line output from the
remote system and also output which exceeds the terminal page size.

The message received from the remote system is assumed to be in SCS form, .
that is, containing printable characters and new line symbols only. This is the
default output format for LU6 type terminals as produced by CICS supplied
programs such as CSFE, CSMT, CSOT, CSST, or CSTT.

Appendix 8. Sample application programs 389

Source listing of sample 4 combined front-end and back-end transaction
(DFH$ICIC) .

'I< $SEG(DFH$ICIC) ,COMP(SAMPLES) ,PROD(CICS/VS):
TITLE 'DFH$ICIC - INTERCOMMUNICATION SAMPLE - CICS TO CICS OR 'I<

INS CONVERSATION'
DFHEISTG OSECT
* * STORAGE AREA FOR EIB SESSION AND STATUS FLAGS
*
XOFEIFLG OS aCL7
*
XSYNC OS C
*
XFREE OS C
*
XRECV OS C
*
XSEND OS C
*
XATT
*
*
XEOC
*
XFMH
*

OS C

OS C

OS C

COPY DFH$IGC
REHOATA OS 2560
ATCHSESS OS Cl4
CONTROL OS eCl6a
SBA OS Cl3
CDATA OS CL57
MESSAGE OS CL32
INLEN tis H
OUTLEN OS H
NEWLINE EQU X'15'

EJECT
DFH$IC IC CSECT

IF SET, SYNCPOINT ~tUST
BE EXECUTED
IF SET, TERMINAL I LU
ImST BE FREED
IF SET, RECEIVE MUST
BE EXECUTED
RESERVED

IF SET, ATTACH HEADER
DATA EXISTS AND MAY BE
ACCESSED USING EXTRACT
IF SET, END-OF-CHAIN
WAS RECEIVED WITH DATA .
IF SET, DATA PASSED TO
APPL'N CONTAINS FMH(S)

COPY MAP

1) EXEC CICS HANDLE CONDITION MAPFAIl(MAPFAIl)
EXEC CICS HANDLE AID CLEAR(CLEAR)

MAPFAIL XC MAPAI (MAPAE-tiAPAI), MAPAI CLEAR t1AP

*

2) EXEC CICS SEND 14AP('MAPA') MAPSET('DFH$IGC')
ERASE MAPONLY WAIT

3) EXEC CICS RECEIVE MAP('MAPA') tiAPSET('OFH$IGC')
LA 8, DATAl
MVC DATABL(3+L'DATABO),DATAL
NVC OUTLEN,DATAL

4) EXEC CICS HANDLE CONDITION SYSIDERR(SYSERR)

5) EXEC CICS SEND UAP('MAPB') MAPSET('DFH$IGC')
WAIT ERASE.

6) EXEC CICS ALLOCATE SYSID(SYSIDI)
MVC ATCHSESS,EIBRSRCE

CONVERSE OS 9H
MVC INLEN,-H'2948'

7) EXEC CICS CONVERSE
SESSION(ATCHSESS)
FROM(a(8»
FROMlENGTH(OUTlEN)
INTO(REMOATA)
TOLENGTH (I NLEN)

~IVC XOFEIFLG, EIBSYNC SAVE EIB VALUES

*

*
*
*
*
*

Figure 130 (Part I of 3). Sample 4: CICS to CICS or IMS conversation - combined front-end and back-end
transaction (DFH$ICIC)

390 CICS/MVS 2.1.2 Intercommunication Guide

DATASENT os eH
INLEN,=H'e'
TESTSYNC

*

*

8) CLC
BE

LH 1,INLEN
LA 2,REMDATA(1)
MVI 9(2),X'13'
LA 1,1(,1)
STH 1,INLEN

IF NULL RU SENT
NOTHING TO SEND.

ADDR BYTE AFTER DATA
INSERT CURSOR HERE

EXEC CICS SEND TEXT FROt-f(REI-tOATA) LENGTH (INLEN)
Accmf.

TESTSYNC OS 9H
9) CLI XSYNC,X'FF'

BNE TESTFREE
EXEC CICS SYNCPOINT

TESTFREE os 9H
1e) CLI XFREE,X'FF'

BNE TESTRECV
EXEC CICS SEND PAGE RETAIN
EXEC CICS RETURN

TESTRECV OS 9H
11) ClI XRECV,X'fF'

BNE SEND
MVC INLEN,=H'2048'
EXEC CICS RECEIVE SESSION(ATCHSESS) INTO(REIfDATA)

LENGTH(INLEN)
MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES
B DATASENT

SEND OS OH
12) EXEC CICS SEND PAGE RETAIN

MVC OUTLEN,=H'69'
EXEC CICS RECEIVE INTO(CONTROL) LENGTH(OUTLEN)
LH O,OUTlEN
SH a, "H' 3' FOR LENGTH OF SBA
LA 8,CDATA
B CONVERSE

*
SYSERR os

13) CLI
BE
CLI
BE
CLI
BE

NOlINK OS
14) twC

I~VC

B
LINKMSG DC
*
UNKNOWN OS

15) t~VC
MVC
B

UNKMSG DC
*
OUTSERV OS

16) MVC
MVC
B

OUTSVMSG DC
*

9H
EIBRCOOE+1,12
UttKNm/N
EIBRCODE+l,8
OllTSERV
EIBRCODE+1,4
NOTCTSE
9H
MESSAGE, LINKHSG
HESSAGE+2B(4),SYSIDI
EXPLAIN
CL32'UNABLE TO ESTABLISH LINK TO

OH
MESSAGE,UNKt~SG
MESSAGE+12(4),SYSIDI
EXPLAIN
CL32'SYSTEM NAME IS NOT KNOWN

9H
MESSAGE,OUTSVHSG
MESSAGE+8(4),SYSIDI
EXPLAIN
CL32'LINK TO IS OUT OF SERVICE'

*

Figure 130 (Part 2 of 3). Sample 4: CICS to CICS or IMS conversation - combined front-end and back-end
transaction (DFH$ICIC)

Appendix B. Sample application programs 391

NOTCTSE os
17) IWC

HVC
B

TCTllSG DC
*

OH
MESSAGE,TCTHSG
MESSAGE(4),SYSIDI
EXPLAIN
CL32' IS NOT A SYSTEN NAME'

EXPLAIN os OH
EXEC CICS SEND FR0I1(~lESSAGE) LH1GTH(=H'32')

ERASE WAIT.
CLEAR OS OH

EXEC CICS SEND CONTROL FREEKB
EXEC CICS RETURN
END

Figure 130 (Part 3 of 3). Sample 4: CICS to CICS or IMS conversation - combined front-end and back-end·
transaction (DFH$/CIC)

Program notes for DFH$ICIC
1. Set up exit for map errors and clear key.

2. The screen is erased, and the prompting map displayed at the terminal.

3. The remote system name and command to be transmitted are mapped in.

4. Set up exit for the error conditions which may arise while establishing
connection to the remote system.

5~ The screen is erased again and the command entered by the operator is
displayed on the top line.

6. A session Is now allocated naming the remote system only, and Its name is
obtained from EIBRSRCE.

7. A CONVERSE command is now Issued which sends the data entered by the
terminal operator to the remote system which he has specified, then
receives the resulting response from that system. To enable the program to
determine what action is next expected of it, the contents of the EXEC
Interface Block will have to be examined, thus the values therein must be
retained. The SESSION option is used since the application is requesting
that an alternate facility be made available to it. Note that, although it is
permissible to build an attach header and transmit it using the CONVERSE
command, this action does not need to be taken In this case since by default
cles will assume that the first four characters of the transmitted data coritain
the transaction code.

8. If the data length field for the RECEIVE component of the CONVERSE
indicates that there is data to be handled, a logical message is built using
the BMS TEXT facility for subsequent sending to the screen. To ensure that
the terminal cursor is placed on the next available line for any further input,
the "Insert Cursor" control character Is appended to the data stream.

9. The session-oriented information transmitted across the LU6 session by the
remote transaction must now be examined to determine what action should
be taken next. The "SYNCPOINT required" indicator In the EXEC Interface
Block is first tested and if need be the program issues its own SYNCPOINT.

392 CICS/MVS 2;1.2 Intercommunication Guide

10. If the EXEC Interface Block Indicates that the program should now free the
session, thereby denoting that the remote transaction has completed
successfully and has terminated the conversation, the built logical message
is sent to the screen using the RELEASE option of the SEND PAGE command
which returns control direct to CICS and thus frees the session.

11. If the EXEC Interface Block indicates that the application is to continue
receiving data from across the session, a further RECEIVE command is
Issued.

12. The indicators SYNCPOINT, FREE session, or RECEIVE, do not apply, thus by
default the remote application has requested a further transmission from this
program. (In the case of the CICS supplied programs named in the
description above this would imply the receipt of a prompting message.) The
program therefore sends the logical message built to date, which will include
the prompt, to the terminal operator and receives the operator's reply; a
second CONVERSE can then be issued across the session. Note that the
"Set Buffer Address" control and the two buffer address bytes received from
the terminal must be bypassed before transmission across the link.

13. The SYSID error routine has been entered. To determine the exact cause of
the error, EIBRCODE must be examined, and an appropriate informatory
message sent to the operator.

14. Some kind of error eXists which prevents the link between the two systems
from being established.

15. The remote system name given by the operator is not recognized.

16. The link 10 the remote system is out of service.

17. The system name given is recognized, but is not that for a remote system.

Appendix B. Sample application programs 393

BMS mapset for sample 4 (DFHSIMC)

--'-----_._ ... __ ... _-----

* $SEG (OFH$IMC) ,COMP(SAMPLES), PROD (CICS/VS) :
. TITLE 'DFH$IMC - INTERCOMMUNICATION SAMPLE - CICS TO CICS OR 1*

MS CONVERSATION - MAPSET'
DFH$IGC DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=FREEKB,

MAPA
LANG=ASM,STORAGE=AUTO,TIOAPFX=YES

DFHMDI SIZE=(12,80)
DFHMDF POS=(l,l),ATTRB=ASKIP,LENGTH=33,

INITIAL='TYPE REMOTE SYSTEM ID AND Cot4~1AND'

DFHMDF POS=(3,l),ATTRB=ASKIP,LENGTH=16,
INITIAL='REMOTE SYSTEM 10'

SYSID DFHMDF POS=(3,20),ATTR8=(NORM,IC),LENGTH=4,

DATA

MAPB
DATAB

INITIAL:::'
DFHMDF POS=(3,25),LENGTH~1
DFHMDF POS=(4,l),ATTRB=ASKIP,LENGTH=07,

INITIAL='COMMAND'
DFHMDF POS=(4,10),ATTRB=(NORM),LENGTH=68,

INITIAL=' ,
DFHMDF POS=(6,1),ATTRB=ASKIP,LENGTH=29,

INITIAL='THEN PRESS ENTER TO CONTINUE, OR'
DFHMDF POS=(7,1),ATTRB=ASKIP,LENGTH=18,

INITIAL='CLEAR TO TERMINATE'
DFHMDI SIZE=(12,80)
DFHMDF POS=(1,1),ATTRB=(NORM),LENGTH=68,

INITIAL=' ,
DFHMSD TYPE=FINAL
END

*

*

*

*

*

*

*

*

*

---_. __ ._------
Figure 131. Sample 4: CICS to CICS or IMS conversation - BMS mapset (DFH$IMC)

394 CICS/MVS 2.1.2 Intercommunication Guide

Sample 5 - CICS to'iMS conversation
This sample is activated with the transaction code IMSN.

The CICS to IMS sample is intended to illustrate a conversation of a simple
nature. It is designed to operate with a program similar to the IMS ECHO
application.

At the start of the program, the operator is prompted to enter the name of the
remote system and application on that system, together with the input data to be
ECHOed back.

The response at the terminal consists of the reECHOed data only,

The message received from the remote system is assumed to contain printable
characters only, and to be in variable length variable block format. Each logical
record is treated as representing one screen line and, for the purposes of this
sample, may not be greater than 79 characters in length.

Appendix B. Sample application programs 395

Source listing of sample 5 CICS transaction (DFHSIMSN)

* $~EG(DFH$IMSN),COMP(SAMPlES),PROD(CICS/VS):
TITLE 'DFH$IMSN - INTERCOMMUNICATION SAMPLE - CICS TO IMS CONV*

ERSATION'
DFHEISTG DSECT
*
* STORAGE AREA FOR EIB SESSION AND STATUS FLAGS
*
XDFEIFlG DS eCl7
*
DFHSYNC OS C
*
DFHFREE OS C
*
DFHRECV OS C
*
DFHSEND DS C
*
DFHATT OS C
*
*
DFHEOC DS C
*
DFHFMH OS C
*

COpy DFH$IGS
COPY DFHBMSCA

R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU a
R9 EQU 9
REMSYS OS Cla
ATCHSESS OS CL4
INLEN OS H

EJECT
DFH$IMSN CSECT

IF SET, SYNCPOINT MUST
BE EXECUTED
IF SET, TERMINAL / lU
MUST BE FREED
IF SET, RECEIVE MUST
BE EXECUTED
RESERVED

IF SET, ATTACH HEADER
DATA EXISTS AND MAY BE
ACCESSED USING EXTRACT
IF SET, END-OF-CHAIN
WAS RECEIVED WITH DATA
IF SET, DATA PASSED TO
APPLIN CONTAINS FMH(S)

BMS ATTRIBUTES

XC MAPAI (MAPAE-MAPAI) ,MAPAI CLEAR MAP
SENDMAP

1)
2)
3)
4)

5)
6)

DS eH.
EXEC CICS SEND MAP('MAPA') MAPSET('DFH$IGS') ERASE WAIT
XC DATAl ,DATAl RE-CLEAR THE DATA AREA
EXEC CICS RECEIVE MAP('MAPA') MAPSET('DFH$IGS')
CLI SYSIDI,0 REMOTE SYSTEM NAME GIVEN?
BE REMAP .. NO, SEND MSG TO OPERATOR
EXEC CICS ALLOCATESYSID(SYSIDI)
MVC ATCHSESS,EIBRSRCE
B BUILD

Figure 132 (Part 1 0(3). Sample 5: C/CS to IMS conversation - C/CS transaction (DFH$IMSN)

396 CICS/MVS 2.1.2 IntercommunIcation Guide

REMAP OS 0H
7) MVC ERROIO(L'SYSMSG),SYSMSG SET UP PROMPTING MSG

BUILD
8)

MVI ERROIA,DFHBMBRY HIGHLIGHT MESSAGE
B SENDMAP AND SEND IT.
OS 0H
EXEC CICS BUILD ATTACH ATTACHID('TIMS')

RESOURCE(TRANI) IUTYPE(=H'l') .
*

9) EXEC CICS SEND SESSION(ATCHSESS) ATTACHID('TIMS') FROM(DATAI) *
lENGTH (DATAL) INVITE

DS 0H RECV
10) EXEC CICS RECEIVE SESSION(ATCHSESS)

SET(R9) lENGTH(INlEN)
DATASENT DS 0H

MVC XDFEIFlG,EIBSYNC
*

lA R4,MAPBI
lR R6,R4
lA R5,MAPBE-MAPBI
XR R7,R7
MVCl R4,R6

*
11) ClC INlEN,=H'0'

BE TESTSYNC
*

LA R7,LINEIO
LH R4,INLEN

LRECl OS 0H
LH R5,0(R9)
SR R4,R5
SH R5,=H'3'
EX R5,SETlINE
lTR R4,R4
BZ SENDMAPB
AH R9,0(R9)
LA R7,LINE20-LINEIO(R7)
B LRECL

SENDMAPB DS 0H

SAVE EIB VALUES

START OF OUTPUT MAP

lENGTH OF MAP

CLEAN UP THE MAP

IF NULL RU SENT THEN
NOTHING TO SEND TO TRM

ADDRESS 1ST OUTPUT lINE
lENGTH OF RECEIVED DATA

lOGICAL RECORD LENGTH
REDUCE BLOCK LENGTH
PREPARE FOR EX INS1R.
MOVE lREC TO MAP
END OF BLOCK REACHED ?
.. YES, SEND THE MAP
ADVANCE TO NEXT RECORD
ADDR NEXT OUTPUT LINE
GO TO MOVE NEXT REC

EXEC CICS SEND MAP('MAPB') MAPSET('DFH$IGS')
CURSOR(=H'1840')

ERASE ~JAIT

*
TESTSYNC OS 0H

12) ClI DFHSYNC,X'FF'
BNE TESTFREE
EXEC CICS SYNCPOINT

TEST FREE OS 0H
13) ClI DFHFREE,X'FF'

BE EXIT
14) EXEC CICS RECEIVE SET(R8) lENGTH(INLEN)
15) ClI DFHRECV,X'FF'

BE RECV

*

*

Figure 132 (Part 2 of 3). Sample 5: CICS to IMS conversation - CICS transaction (DFH$IMSN)

Appendix B. Sample application programs 397

16) EXEC CICS CONVERSE FROMLENGTH(INLEN) SESSION(ATCHSESS)
SET(R9) TOLENGTH(INLEN) FROM(0(RS))

*

B DATASENT
*
SETLINE MVC
SYSMSG DC
EXIT OS

END·

0(0,R7),2(R9) MOVE INPUT RECORD TO MAP
C'MUST SPECIFY REMOTE SYSID'
0H

Figure 132 (Part 3 of 3). Sample 5: CICS to IMS conversation - CICS transaction (DFH$IMSN)

Program notes for DFH$IMSN
1. The screen is erased, and the prompting map displayed at the terminal.

2. The data area portion of the map Is used to hold any error messages sent to
the terminal; this area is cleared before a RECEIVE is issued.

3. The remote system name and data are mapped in.

4. The terminal operator now enters the remote system name.

5. If the remote system name is given, an ALLOCATE is performed on that
system, and

6. The name of the actual session allocated is found in the EIBRSRCE field.

7. Use the Input data area of the map to advise the operator to try again.

8. A transaction is to be initiated on a remote system which needs to know the
transaction name. This is detailed in the attach header which is built at this
point. For IMS, the "transaction name" must be entered as the resource
name; the processing name being reserved for an attached system process
(when used). Also, since IMS requires single-chain input, the IUTYPE option
is set to binary halfword '1'.

9. The data entered by the terminal operator is now sent across the acquired
session together with the previously built attach header. The presence of
the INVITE option indicates that a RECEIVE will directly follow this SEND and
improves performance across the session.

10. A RECEIVE is issued against the remote system to read back the echoed
data. To enable the program to determine what action is next expected of it,
the contents of the EXEC Interface Block will have to be retained.

11. If the data length field for the previous RECEIVE indicates that there is data
to be handled, it is sent to the requesting terminal.

12. The session-oriented information transmitted across the LU6 session by the
remote transaction must now be examined to determine what action should
be taken next. The SYNCPOINT required indicator in the EXEC Interface
Block is first tested and if necessary the program issues its own SYNCPOfNT.

13. If the EXEC Interface Block indicates that the program should now free the
session, thereby denoting that the remote transaction has completed
successfully and has terminated the conversation, the program now exits
causing an automatic freeing of the session.

398 CICS/MVS 2.1.2 Intercommunication Guide

14. The program receives further Input data from the terminal operator. This
allows for the remote program to send, for example, a request for further
Input. For simple autopaging through an output file, pressing ENTER is all
that is required.

15. If the EXEC Interface Block indicates that the application is to continue
receiving data from the session, a further RECEIVE command is issued.

16. A CONVERSE command is now issued which sends the data entered by the
terminal operator to the remote system which he has specified, then
receives the resulting response from that system. To enable the program to
determine what action is next expected of it, the contents of the EXEC
Interface Block must again be retained.

Appendix B. Sample application programs 399

BMS mapset for sample 5 (DFH$IMS)
Note: This mapset is also used for sample 6.

------_._------_ ..• ----_._-------------_ ... _-_.- __ ._-_._--------------------_ .•. _---------
* $SEG(DFH$IMS),COMP(SAMPLES),PROD(CICS/VS):

TITLE 'DFH$IMS - INTERCOMMUNICATION SAMPLE - CICS TO
RSATION/DEMANO PAGED OUTPUT - MAPSET'

DFH$iGS OFHMSO TYPE=&SYSPARM,MODE=INOUT,CTRL=FREEKB,

MAPA

TRAN

SYSID

DATA
ERROl
MAPB
LINEl
LINE2
LINE3
LINE4
LINE5
LINE6
LINE7
LINE8
LINE9
LI NE10
ERROR

LANG=ASM,STORAGE=AUTO,TIOAPFX=YES
DFHMDI SIZE=(24,80)
DFHMDF POS=(1,01),ATTRB=ASKIP,LENGTH=26,

INITIAL='INVOKE RETURN APPLICATION'
DFHMDF POS=(3,01),ATTRB=ASKIP,LENGTH=25,

INITIAL='SUPPLY VALUES AS REQUIRED'
DFHMDF POS=(4,01),ATTRB=(BRT,ASKIP),LENGTH=30,

INITIAL='REMOTE TRANSACTION NAME ...•.. ,
DFHMDF POS=(4,32),ATTRB=(NORM,IC),LENGTH~8,

INITIAL= , ,
OFHMOF POS=(4,41),LENGTH=1
OFHMOF POS=(5,01),ATTRB=(BRT,ASKIP),LENGTH=30,

INITIAL='REMOTE SYSTEM 10 '
DFHMDF POS=(5,32),ATTRB=NORM,LENGTH=4,INITIAL=' ,
DFHMDF POS=(5,37),LENGTH=1
OFHMOF POS=(8,01),ATTRB=(BRT,ASKIP),LENGTH=34,

INITIAL='AND RETURN TRANSACTION INPUT DATA'
DFHMOF POS=(8,36),LENGTH=1
DFHMDF POS=(10,1),ATTRB=NORM,LENGTH=79,INITIAL=' ,
DFHMDF POS=(11,1),ATTRB=NORM,LENGTH=79
OFHMDI SIZE=(24,80)
DFHMDF POS=(1,1),ATTRB=NORM,LENGTH=79
DFHMDF POS=(2,1),ATTRB=NORM,LENGTH=79
OFHMOF POS=(3,1),ATTRB=NORM,LENGTH=79
DFHMDF POS~(4,1),ATTRB=NORM,LENGTH=79
DFHMDF POS=(5,1),ATTRB~NORM,LENGTH=79
DFHMDF POS=(6,1),ATTRB~NORM,LENGTH=79
DFHMDF POS=(7,l),ATTRB=NORM,LENGTH=79
DFHMOF POS=(8,1),ATTRB~NORM,LENGTH=79
OFHMOF POS=(9,1),ATTRB=NORM,LENGTH=79
DFHMDF· POS=(l0,1),ATTRB=NORM,LENGTH=79
DFHMDF POS=(23,1),ATTRB=(BRT,ASKIP),LENGTH=70
DFHMDF POS=(23,74),LENGTH~1,ATTRB=NORM
DFHMSD TYPE=FINAL
END

H1S CONVE*

*

*

*

*

*

*

*

L--___ ~ ___________________________ . _____ . ____ ._ .. __ ... __ .. _ -___ .. ____ . _____ . _________ _

Figure 133. Samples 5 and 6: CICS to IMS - BMS mapset (DFH$IMS)

400 CICS/MVS 2.1.2 Intercommunication Guide

Sample 6 - CICS to IMS (demand paged output)

The following sample fulfills the same requirements as sample 4 except that
provision is made for the operator to read IMS Demand Paged Output using
Operator Logical Paging_

The sample automatically reads the first logical page of the IMS output and it is
then the re~ponsibility of the terminal operator to signify which logical page of
the output message he now requires to see.

The message received from the remote system is assumed to contain printable
characters only, and to be in VLVB (variable length variable block) format. Each
logical record is treated as representing one screen line, and for the purposes of
this example, may not be greater than 79 characters in length.

This sample Is activated with the transaction code IMSO.

The following functions, available to the operator, are supported by the sample;
they should be preceded by 'PI' as if normal CICS BMS paging were being
performed.

• N = display the next logical page.

• P = display the previous logical page.

• C = redisplay the current logical page.

• Enter = n, = nn or = nnn to display a specific logical page of the message.

• + n, + nn or + nnn to display the nth logical page past the current position.

• -n, -nn or -nnn to display the nth logical page before the current position.

• Press CLEAR to delete the current message from the IMS system and CLEAR
the user's screen.

Appendix B. Sample application programs 401

Source listing of sample 6 CICStransaction (DFHSIMSO)

TITLE 'DFH$IMSO - INTERCOMMUNICATION SAMPLE - CICS TO IMS DEMA*
NO PAGED OUTPUT I

DFHEISTG DSECT
COPY DFH$IGS

*
* STORAGE AREA FOR fIB SESSION AND STATUS FLAGS

.*
XDFEIFLG OS 0Cl7
*
DFHSYNC OS C
*
DFHFREE OS C
*
DFHRECV OS C
*
DFHSEND DS C
*
DFHATT OS C
*
*
DFHEOC OS C
*
DFHFMH OS C
*

COpy DFHBMSCA
COPY DFHAID

R2 EQU . 2
* R3 IS BASE ~EGISTER
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
DPAGEREG EQU 8
R9 EQU 9
Rl~ EQU 10
*
MESSAGE OS Cl32
RESP OS F
DBlWORD OS 0
INlEN OS H
REMSYS OS Cl8
ATCHSESS OS Cl4
*
OlP DSECT
OlPCODE OS Cl2
OlPVAL OS Cl3

EJECT
DFH$IMSO CSECT

·IF SET, SYNCPOINT MUST
BE EXECUTED
IF SET, TERMINAL / LU
MUST BE FREED
IF SET, RECEIVE MUST
BE EXECUTED
RESERVED

IF SET,ATTACH HEADER
DATA EXISTS AND MAY BE
ACCESSED USING EXTRACT
IF SET, END-OF-CHAIN
WAS RECEIVED WITH DATA
IF SET, DATA PASSED TO
APPLIN CONTAINS FMH(S)
BMS ATTRIBUTES
ATTENTION IDS

MAPFAIl XC MAPAI (MAPAE-MAPAI) ,MAPAI CLEAR IIIAP

Figure 134 (Part 1 of 8). Sample 6: CICS-to-IMS demand paged output - CICS transaction (DFH$IMSO)

402 CICS/MVS 2.1.2 Intercommunication Guide

SENDMAP
1)

2)

RESPOK1

3)

4)

REMAP
5)

6)

BUILD
7)

*

8)

9)

HI)
11)

OS 0C
EXEC CICS SEND MAP('MAPA') MAPSET('DFH$IGS ') ERASE WAIT

RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERROR1

CHECK FOR NORMAL RESPONSE

EXEC CICS RECEIVE MAP('MAPA ') MAPSET('DFH$IGS') RESP(RESP)
CLI EIBAID,DFHCLEAR WAS CLEAR KEY PRESSED ?
BE EXIT YES, EXIT
CLC RESP,DFHRESP(NORMAL) WAS MAP RECEIVED OK?
BE RESPOK1 YES, GO TO RESPOK1
CLC RESP,DFHRESP(MAPFAIL)
BE MAPFAIL
CLC RESP,DFHRESP(EOC)
BNE ERRORl
DS 0H

NO, GO TO MAPFAIL
EOC OK

CLI SYSIDI,0 REMOTE SYSTEM NAME GIVEN?
BE REMAP .. NO, SEND MSG TO OPERATOR
EXEC CICS ALLOCATE SYSID(SYSIDI) RESP(RESP)
CLC RESP,DFHRESP(SYSIDERR) IS SYSTEM 10 VALID?
BE SYSERR ... NO, GO TO SYSERR
CLC RESP,OFHRESP(NORMAL)
BNE ERROR1
MVC ATCHSESS,EIBRSRCE
B BUILD
DS 0H
MVC ERROIO(L'SYSMSG),SYSMSG SET UP PROMPTING MSG
MVI ERROIA,DFHBMBRY HIGHLIGHT MESSAGE
XC MAPAI (MAPAE-MAPAI) ,MAPAI RE-CLEAR t4AP
B SENDMAP AND SEND IT.
DS 0H
EXEC CICS BUILD ATTACH

ATTACHID('TIMS ') RESOURCE(TRANI) IUTYPE(=H'l')
RESP(RESP)

CLC RESP,OFHRESP(NORMAL)
BNE ERROR1

*

*
*

EXEC CICS SEND SESSION(ATCHSESS) ATTACHID('TIMS') FROM(DATAI) *
LENGTH(DATAL) INVITE RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BNE ERROR1
EXEC CICS SYNCPOINT RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERROR1
EXEC CICS RECEIVE SESSION(ATCHSESS)

BAL
MVC
CLI
BNE

SET(R9) LENGTH(INLEN) RESP(RESP)
R2,TESTRESP CHECK RESPONSES FROM COMMAND
XDFEIFLG,EIBSYNC SAVE EIB VALUES
DFHATT,X'FF' IF NO HEADER SENT,
ABEND REt40TE SYSTEM ERROR.

*

Figure 134 (Part 2 of 8). Sample 6: CICS-to-IMS demand paged output - CICS transaction (DFH$IMSO)

Appendix B. Sample application programs 403

... _------,----------'
Figure 134 (Part 3 of 8). Sample 6: CICS~to~/Ms demand paged output - CICS transaction (DFH$IMSO)

404 CICS/MVS 2.1.2 Intercommunication Guide

r---------------------------·------·--·
SENDMAPB OS 0H

*

22) EXEC CICS SEND MAP('MAPB') MAPSET('DFH$IGS') ERASE WAIT
CURSOR(~H'1841') RESP(RESP)

CLC RESP,DFHRESP(NORMAL)
BNE ERROR1
XC ERRORO,ERRORO CLEAR ERROR LINE.

TESTSYNC OS 0H
23) CLI DFHSYNC,X'FF'

BNE TESTFREE
EXEC CICS SYNCPOINT RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERRORl

TEST FREE OS 0H
24) CLI DFHFREE,X'FFi

BE EXIT
25) CLI DFHRECV,X'FF'

BE ABEND
*

OS 0H GETOLP
26) EXEC CICS RECEIVE SET(R9) LENGTH(INLEN) RESP(RESP)

CLI EIBAID,DFHCLEAR WAS CLEAR KEY PRESSED ?
BE CLEAR YES, EXIT
BAL Rl,TESTRESP

*
LA R9,3(R9) BYPASS SBA BYTES.
USING OLP,R9

27) CLC OLPCOOE,~C'P/' 'PI' REQUIRED TO START.
BNE OLPERR

28) CLI OLPVAL,C'C' CURRENT PAGE AGAIN ?
BE READQ YES.
L R5,=F'1' SET PAGE NUMBER INCREMENT +1

29) CLI OLPVAL,C'N' NEXT PAGE REQUIRED ?
BE ADDINCR YES

30) CLl OLPVAL,C'P' PREVIOUS PAGE REQ'D ?
BE SUBINCR

*
31) LH R4,INLEN

SH R4,=H'6' SBA + 3 CHARS. R4 IS LEN OF
NUMBER IF A SIGN IS PRESENT

BM OLPERR MUST BE SBA + 'PI' + MIN 1 CHAR
*

LA R5,OLPVAL+l POINT R5 AFTER SIGN
CLl OLPVAL,C'+' POSITIVE INCREMENT ?
9E PACKINST
CLI OLPVAL,C'-' NEGATIVE INCREMENT ?
BE PACKINST
LA R5,OLPVAL NO SIGN SO POINT R5 TO 1ST DIG
LA R4, 1(,R4) NO SIGN SO LEN IS 1 GREATER

*
... __ .. _-----_._-----... -.

*

X

Figure 134 (Part 40(8). Sample 6: CICS-to-IMS demand paged output - CICStransaction (DFH$IMSO)

Appendix B. Sample application programs 405

PACKINST OS
LR
LR
AR

0H
R10, R5
R6,R5
R6,R4

R5 POINTS TO 1ST DIGIT

R6 POINTS AFTER LAST DIGIT

IF DIGIT < '0' THEN ...
. .. IT IS AN ERROR
IF DIGIT> '9' THEN ...
..• IT IS AN ERROR
ADDRESS NEXT DIGIT
HAVE WE REACHED THE MAX LENGTH?
NO, CHECK NEXT DIGIT
DECREMENT LENGTH FOR EXECUTE
PACK PAGE NO. AND

CHECKNUM OS
CLI
BL
CLI
BH
LA
CR
BL
S
EX
CVB

0H
0(R10),C'0'
NONUM
0(R10),C'9'
NONUM
R10,1(,R10)
R10,R6
CHECKNUM
R4,=F'1'
R4,PACK
R5,DBLWORD CONVERT TO BINARY VALUE. R5 NOWX

CONTAINS THE NUMBER ENTERED
*

CLI OLPVAL,C'+' POSITIVE INCREMENT ?
BE ADDINCR
CLI OLPVAL,C'-' NEGATIVE INCREMENT ?
8E SUBINCR

*
LR DPAGEREG,R5 NO INCR - ABSOLUTE PAGE
B READQ

*
SUBINCR OS 0H

SR DPAGEREG,R5 SET TS ITH1 NO.
B READQ

AOOINCR OS 0H
AR DPAGEREG,R5 SET TS ITEM NO.

*
REAOQ OS 0H

LTR DPAGEREG,DPAGEREG IF PAGE NO. IS NOT POSITIVE
BNP OLPERR THIS IS AN ERROR.

32) STCM DPAGEREG,3,DPAGENO STORE QUEUE RECORD NO.
EXEC CICS CONVERSE SESSION(ATCHSESS) FROM(QGET)

FROMLENGTH(QGETLEN) TOLENGTH(INLEN) SET(R9) FMH
RESP(RESP)

BAL R2,TESTRESP TEST RESPONSES FROM COMMAND
33) CLC INLEN,=H'0' IF NULL RU SENT,THEN

BNE UNPICK ANALYSE INPUT.
MVC XDFEIFLG,EIBSYNC SAVE EIB VALUES
B TESTSYNC NOTHING fO SEND.

*
PACK PACK DBLWORD,0(0,R5)
*
OLPERR OS 0H

34) ~1VC ERRORO(L'OLPERMSG),OLPERMSG SET UP t·1SG.
B SENm1APB

*

*
*

F;gure 134 (Part 5 o(8). Sample 6: C/(~S·to-IMS demand paged olltPlJt - CICS transacUon (DFH$IMSO)

406 CICS/MVS 2.1.2 Intercommunication Guide

.---_.-.-------_._-----------.----------------------
QSTATUS DS 0H
35) MVC ERRORO(L'QSTAMSG),QSTAMSG SET UP ~1SG.

LA DPAGEREG,l 1ST LOGICAL PAGE.
EXEC CICS CONVERSE SESSION(ATCHSESS) FROM(QGETN)

FROMLENGTH(QGETNLEN) TOLENGTH(INLEN) SET(R9) H1H
RESP(RESP)

BAL R2,TESTRESP CHECK RESPONSES FROM COMMAND
*

B UNPICK
*
CLEAR DS 0H

36) EXEC CICS CONVERSE SESSION(ATCHSESS) FROM (QPURGE)
FROMLENGTH(QPURGELN) TOLENGTH(INLEN) SET(R9) H1H
RESP(RESP)

BAL R2,TESTRESP CHECK RESPONSES FROM COMMAND
B EXIT

*
ABEND DS 0H

MVC ERRORO(L'ABENDMSG),ABENDMSG SET UP ERROR NSG.
EXEC CICS SEND MAP('MAPB') MAPSET('DFH$IGSf)

*

WAIT RESP(RESP)
CLC RESP,DFHRESP(NORMAL)
BNE ERRORl
B EXIT

SETLINE MVC 0(9,R7),2(R9)
*

MOVE LOG.REC. TO MAP.

SYS~1SG DC
OLPERMSG DC
ABENDt~SG DC
QSTAMSG DC

C'MUST SPECIFY REMOTE SYSID'

*
*
*

QGETN

C'OPERATOR LOGICAL PAGING ERROR ~ RE-TYPE'
C'PROCESSING ERROR IN REMOTE SYSTEM'
C'PAGE NO. EXCEEDS QUEUE SIZE'

QGETN DS 0H
DC X'10060A1000010208'

QGETQNAM DC CL8"
*
QGETNLEN DC AL2(*-QGETN)
*
*
*
QGET

QGET

DS
DC
DC

QGETNQNM DC
DC

DPAGENO DS
*
QGETLEN DC
*
*

0H
X'13060A04000102,
X'0S'
CL8' ,
X'02'
CL2

AL2 (* -QGET)

LENGTH.

LENGTH.

---_. . --_ .. _----_.

*

*
1.'

*

Figure 134 (Part 6 of 8). Sample 6: C/CS-to-IMS demand paged output - C/CS transaction (OFH$IMSO)

Appendix 8. Sample application programs 407

* QPURGE
*
QPURGE os

DC
DC

QPURGENM DC
*
QPURGELN· DC
*
QMODEL OS

DC
DC

*
TESTRESP OS

CLC
BER
CLC
BER
CLC
BER

*
NONUM OS

MVC
B

ERRNUM DC
ERROR! OS

MVC
B

ERRMSG DC
*
SYSERR OS

CLI
BE
CLI
BE
CLI
BE

NOLINK OS
MVC
MVC
B

LINKMSG DC
*
UNKNOWN OS

MVC
MVC
B

UNKMSG DC
*

eH
X'lee6eAe6eeele2'
X'e8'
CL8' ,

AL2(*-QPURGE) LENGTH.

eCL8
X'e3'
CL7' ,

eH
RESP,DFHRESP(INBFMH) IF FMH PRESENT, THEN IGNORE
R2 AND RETURN
RESP,DFHRESP(EOC) IF EOC PRESENT, THEN IGNORE
R2 AND RETURN
RESP,DFHRESP(NORMAL) ELSE CHECK FOR NORMAL RESPONSE
R2

eH
ERRORO(L'ERRNUM),ERRNUM NON NUMERIC MESSAGE
SENDMAPB
CL32'ERROR - VALUE IS NOT NUMERIC'
eH
MESSAGE,ERRMSG
EXPLAIN
CL32'ERROR - TRANSACTION TERMINATED'

eH
EIBRCODE+l,12
UNKNOWN
EIBRCODE+l,8
OUTSERV
EIBRCODE+ 1 t 4
NOTCTSE
eH
MESSAGE, LI NKMSG
MESSAGE+28(4),SYSIDI
EXPLAIN
CL32'UNABLE TO ESTABLISH LINK TO

eH
MESSAGE,UNKMSG
MESSAGE+12(4),SYSIDI
EXPLAIN
CL32'SYSTEM NAME IS NOT.KNOWN

Figure 134 (Part 7 of 8). Sample 6: CICS-to-IMS demand paged output - C/CS transact/on (DFH$IMSO)

408 CICS/MVS 2.1.2 Intercommunication Guide

'~
I

o

------------_ .. _-_._-_._------------_ .. _-_._._--_ --_ .. _---------- ._-_ ... _-----
OUTSERV DS

MVC
MVC
8

OUTSVMSG DC
*
NOTC1SE DS

MVC
MVC
8

TCTMSG DC
*

0H
MESSAGEtOUTSVMSG
MESSAGE+8(4),SYSIDI
EXPLAIN
CL32 1 LINK TO IS OUT OF SERVICE'

0H
MESSAGE.TCTMSG
MESSAGE(4).SYSIDI
EXPLAIN
CL32' IS NOT A SYSTEM NAME'

EXPLAIN DS 0H
EXEC CICS SEND FROM(MESSAGE) LENGTH(=H ' 32 1

)

ERASE WAIT RESP(RESP)
*

EXIT DS 0H
EXEC CICS SEND CONTROL FREEKB RESP(RESP)
EXEC CICS RETURN
END

Figure 134 (Part 8 of 8). Sample 6: CfCS-to-IMS demand paged Olltput - CICS transaction (DFH$IMSO)

Program notes for DFHSIMSO
1. The screen is erased. and the prompting map displayed at the terminal.

2. The remote system name and data are mapped in.

3. If the remote system name is given, an ALLOCATE is performed on that
system

4. The name of the actual session allocated is found in the EIBRSRCE field.

5. Use the input data area of the map to advise the operator to reenter his
data, correctly naming the remote system.

6. The map is recleared to ensure that all three fields are correctly reentered.

7. A transaction is to be initiated on a remote system; the name of the
transaction on that system is supplied via the attach FMH, built at this ·point.

8. The data entered by the terminal operator is now sent across the acquired
session together with the previously built attach header. The presence of
the INVITE option indicates that a RECEIVE will directly follow this SEND and
Improves performance across the session.

9. A RECEIVE Is issued against the remote system to read back the IMS reply.
IMS will initially transmit an attach FMH to signify that the output will now be
sent at the request of the CICS terminal operator; this header will be
examined to enable the name of the IMS demand paged output queue to be
found.

Appendix B. Sample application programs 409

10. To enable the program to determine what action should next be performed
on the session, the contents of the EXEC Interface Block, set by RECEIVE, will
have to be retained for future reference.

11. For IMSdemand paging output queues, IMS sends as its initial output an
attach header. The absence of this header indicates an error on the remote
system.

12. The IMS queue name is extracted. (The SESSION option is required in this
instance, since the EXTRACT relates to data sent by this sample's alternate
facility; without this option, the principal facility, that is, the operator terminal,
would be addressed.)

13. The sample will Issue three types of request to the IMS queue.

a. Get Next
b. Get (specific)
c. Purge

The queue model FMHs required to perform these functions must be
completed so as to contain the appropriate 1MB queue name.

14. Preceding each queue model FMH. 1MB needs an attach FMH, which must
contain the queue model function as its destination process name. The FMH
is built at this point and will be used in conjunction with all remaining
commands across the session.

15. The program has to keep a note of the page number of the logical page
being currently accessed on the 1MB queue; this Is to enable the new page
number to be correctly calculated each time a logical paging command is
entered by the operator. To do this, the register "DPAGEREG" is used to
hold the current number.

16. In order to open the IMS queue for output a GET NEXT command has first to
be issued; this will cause the first logical page of the message to be returned
to CICS. Thereafter, GET commands will be issued. It will be seen that the
command is sent as a text string containing an attach FMH together with the
queue model FMH. The use of the ATTACHID and FMH options should be
noted.

17. The record sent by IMS (that is, a logical page) is now prepared for writing to 1'--
the operator's terminal. \'\..._

18~The output record received from 1MB will contain the requested page record
preceded by a QXFR FMH; this FMH is not requited in this sample and is
bypassed.

19. The presence of a FMH but no accompanying data in the message returned
from 1MB indicates that a request has been made for a logical page outside
the dimensions of the queue size. In such instances, IMS sends a QSTATUS
FMH with the QINVCUR (invalid cursor) nag set.

20. The output from IMS is in VLVB format; the IMS mapping function sets one
screen output tine as one logical record. The following lines of code unpack
the physical record received to obtain single logical records for transmission
to the terminal via BMS.

410 CICS/MVS 2.1.2 Intercommunication Guide

o

21. One logical record is inserted and a check made for further logical records.

22. The whole logical message is now sent.

23. The session-oriented information transmitted across the LU6 session by the
remote transaction must now be examined to determine what action should
be taken next. The syncpolnt required indicator In the EXEC Interface Block
is tested and if necessary the program issues its own SYNCPOINT.

24. If the EXEC Interface Block indicates that the program should now free the
session, thereby denoting that the remote transaction has completed
successfully and has terminated the conversation, the program now exits
causing an automatic freeing of the session.

25. If the EXEC Interface Block indicates that a further RECEIVE should be made
over the session, some kind of error has occurred, since normally IMS will
be awaiting a paging command at this point; thus the program should be in
"send" state.

26. The operator now enters a paging command as if this were a normal CICS
application.

27. The command must begin with 'PI'.

28. If the current page ('PIC') is required again, go back to reuse the current
page number in the GET command.

29. If the next page ('PIN') is required, add 1 to "DPAGEREG" and issue the GET
command.

30. If the previous page ('PIP') is required, subtract 1 from "DPAGEREG" and
issue the GET command.

31. The presence of a '+' or '-' sign is now detected, in which case the
increment or decrement is found and either added to or subtracted from'the
logical page number "DPAGEREG'·. If no sign is found, the actual value
typed in is the new logical page number required.

32. The page number of the logical record to be read next, held in "DPAGEREG"
is stored into DPAGENO and a GET command issued.

33. If the data length field indicates that no data has been sent, the session
status must be tested to determine what to do next; otherwise, the new data
will be unpacked.

34. If any error is detected in the paging command entered by the operator, an
error message is sent to him to prompt for the command to be reentered
correctly.

Appendix 8. Sample application programs 411,

35. The QSTATUS FMH Indicates that IMS has detected an Invalid paging
request. Having sent the QSTATUS, IMS relocks the queue in question, and
it is the responsibility of the queue owner, in this case the sample program,
to open the queue again for further processing; this is done by issuing the
original GET NEXT which will unlock the queue and resend the first logical
page.

36. A queue purge request is sent to IMS to cause it to delete the demand
paging queue. This command is sent using CONVERSE since IMS will
respond to the purge request by returning a QSTATUS FMH and the program
must allow for its receipt.

8MS mapset for sample 6 (DFH$IMS)
See Figure 133 on page 400.

412 CICS/MVS 2.1.2 Intercommunication Guide

Appendix C. CICS mapping to the LUTYPE6.2 architecture

This appendix shows how the LUTYPE6.2 programming language (described in
the SNA Transaction Programmer's Reference Manual for LV Type 6.2,
GC30~3084) is implemented by CICS.

The appendix contains four main sections:

1. Supported option sets

This is a table showing which APPC option sets are supported by CICS and
which are not.

2. Command-mapping for basic conversations

The CICS application programming interface for basic, or unmapped,
conversations is described in "Chapter 4.6. CICS applications for logical unit
type 6.2 unmapped conversations" on page 221. These tables show how the
LUTYPE6.2 verbs map to the EXEC CICS commands.

3. Command-mapping for mapped conversations.

The CICS application programming interface for mapped conversations is
described in "Chapter 4.5. CICS applications for logical unit type 6.2 mapped
conversations" on page 171 The full syntax of EXEC CICS commands for
LUTYPE6.2 mapped conversations is given in the CICSIMVS Application
Programmer's Reference manual. These tables show how the LUTYPE6.2
verbs map to. the EXEC CICS commands.

4. CICS implementation of control operator verbs.

This section describes how CICS implements the LUTYPE6.2 control operator
verbs. It includes tables showing how these verbs map to CICS commands.

Supporied option sets
Table 13 (Page 1 of 2). CICS support o(APPC options sets

Set #
101
102
103
104
105
106
107
108
109
110
111
201
202
203
204

211
212

© Copyright IBM Corp. 1977, 1991

Set Name
----_.-.. _------

Flush the LU's send buffer
Get attributes
Post on receipt with test for posting
Post on receipt with wait
Prepare to receive
Receive immediate
Program reconnect
Syncpoint services
Get TP properties
Get conversation type
Recovery from program errors detected during syncpoint
Queued allocation of a contention-winner session
Queued allocation of a conversation-group session
Immediate allocation of a session
Conversations between two programs located at the same
lU
Session-level LU-lU verification
User 10 verification

Supported

Yes
Yes
No
No
Yes
No
No
Yes
No
Yes
No
No
No
Yes
No

Yes
Yes

413

Table 13 (Page 2 of 2). CICS support of APPC options sets
___ "M __ ._. __ ._~_ ...

Set ;'I Set Name Supported
---------.. --

213 Program-supplied user 10 and password No
214 User 10 authorization Yes
215 Profite verification and authorization No
216 Origin LU authorization No
217 Profite pass through No
218 Program-supplied profite No
219 Send persistent verification No
220 Receive persistent- verification No
241 '.~end PIP data Yes
242 Receive PIP data Yes
243 Accounting Yes
244 Long locks No
245 Test for request-to-send received Yes
246 Data mapping No
247 FMH data Yes
248 Syncpoint restart No
249 Vote read-only response to a syncpoint operation No
250 Performance improvement for syncpoint No
290 Logging of data in a system log No
301 Mapped conversation LU services component No
501 CHANGE_SESSION_L1MIT verb Yes
502 ACTIVATE_SESSION verb Yes
504 DEACTIVATE SESSION verb No
505 LU-definition verbs Yes
601 MIN_CONWINNERS_TARGET parameter No
602 RESPONSIBLE(TARGET) parameter No
603 DRAIN_ TARGET(NO) parameter No
604 FORCE parameter No
605 LU-LU session limit No
606 Locally known LU names Yes
e07 Uninterpreted LU names No
608 Single-session' reinitiation No
610 Maximum RU size bounds Yes
611 Session-level mandatory cryptography No
612 Contention winner automatic activation limit No

Command-mapping for basic conversations
The following tables show the mapping between lUTYPE6.2 verbs and CICS
commands for basic conversations. See" Return codes for basic conversations"
on page 422 for details of the corresponding return code mapping.

414 CICS/MVS 2.1.2 Intercornmunication Guide

----_._----.. _-_. __ ._-------._ .. _ - .. -._._-_._-----
ALLOCATE

-----_._ ... _--

LU NAME (OV/N)
LU - NM1E (OTHER(vb 1 e»
MODE NAME(vble)
~100E - NAt1E (I SNASVCt1G I)

TPN(vble)

TYPE(BASIC CONVERSATION)
TYPE(MAPPED CONVERSATION)
RETURN CONT~OL(WHEN SESSION ALLOCATED)
RETURN-CONTROL(OELAYED ALLOCATION PERt-1ITTED)
RETURN=CONTROL(It1t,1EOIATE) -
SYNC_LEVEL

SECURITY (SA~lE)
SECURITY(PGM(USED ID(vble)

(PASSWORO(vble»)
PIP(NO)
PIP(YES(vblel,vble2 •.. vblen»
RESOURCE
RETURN CODE

EXEC CICS GDS ALLOCATE
+ EXEC CICS GDS CONNECT PROCESS

Not supported
SYSIO on ALLOCATE
t~ODENAME on ALLOCATE
MODENAME on ALLOCATE
PROCNAME on CONNECT PROCESS

(with PROCLENGTH)
Supported by GDS
Not supported
Default on ALLOCATE
Not supported
NOQUEUE on ALLOCATE
SYNC LEVEL on CONNECT PROCESS

e - none
1 _. Confi rm
2 - Syncpt

Default on ALLOCATE
Not supported
Not supported
Supported by PIPLENGTH(e)
Supported by PIPLIST+PIPLENGTH
Returned in CONVID field
Supported

.._--_ ... _-------------------_._._._._--_._-- -,--- ._--------

CONFIRM

RESOURCE
RETURN_CODE
REQUEST_TO_SEND_RECEIVEO

CONFIRMED

__ ~_~~_ EXEC CICS SYNCPOINT ROLLBACK~

EXEC CICS GDS CONFIRM

.----] ~~~~~~ted
Returned in CDBSIG

-------- - -----_._-----------'

. __ ... _----_._-------------
EXEC CICS GDS ISSUE CONFIRMATION

._--------------_._-_._-_ __ .. [-------------------
RESOURCE CONVIO

__ ._. _____ ._._. ___ ~ ___ · ____ . ____ •. ~ •..•.. ··_.h_ •.• _·_·_.· ·· ___ ' __ · _____ 0. ________ .

Appendix C. CICS m<lpplng to the LUTYPE6.2 architecture 415

DEALLOCATE

TYPE=SYNC_LEVEL None

TYPE=SYNC_LEVEL Confirm

TYPE=SYNC_LEVEL Syncpt

TYPE::FLUSH

TYPE=ABEND_SVC
TYPE=ABEND_TIMER

TYPE=LOCAL

LOG_DATA(vble)

RETURN_CODE

Depends on setting of
CDBFREE by previous
command:

CDBFREE = X'00'

CDBFREE = X'FF'

EXECCICS GDS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS GDS FREE

EXEC CICS GDS SEND LAST WAIT
+ EXEC CICS GDS FREE

EXEC CICS GDS SEND LAST CONFIRM
+ EXEC CICS GDS FREE

EXEC CICS GDS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXECCICS GDS FREE

EXEC.CICS GDS SEND LAST WAn
+ EXEC CICS GDS FREE

EXEC CICS GDS ISSUE ABEND
+ EXEC CICS GDS FREE

EXEC CICS GDS FREE

Not supported at API Option
Not supported at API Set 11

EXEC CICS GDS FREE

Not available at API. CICS
inserts the appropriate values.

Supported

~FL_U_S_H _____________________________ EX_E_C_C_IC_S __ GD_S_W_A_I_T _________ .J

416 CICS/MVS 2.1.2 Intercommunication Guide

,..---_._---_._---
EXEC CICS GDS EXTRACT PROCESS

or EXEC CICS GDS ASSIGN
or EXEC CICS ASSIGN

t----. ------------.-----.-

RESOURCE
SYNC_LEVEl

UOW_IDENTIFIER
OWN FULLY QUALIFIED LU NAME
PARTNER_LU_NAME --
PARTNER_FULLY_QUALIFIED_LU_NAME
MODE_NAME
USERID

CONVID
SYNCLEVEL on GDS EXTRACT PROCESS

9 - none
1 - Confirm
2 - Syncpt

See note
See note
GDS ASSIGN PRINSYSID
See note
See note
ASSIGN USERID

Note:
These values are not normally
required in CICS applications
and are not available at the API .

. _---------_. __ ._- ._---_._----

. ---.--.----------- -----------,
GET_TYPE EXEC CICS GDS ASSIGN

(+ return code test)

RESOURCE CONVID
TVPE(vble) RETCOOE

clear = GDS (BASE)
93 94 = wrong conversation

level
-_ _---------._--_._--

Not Supported

Appendix C. C1CS mapping to the LUTYPE6.2 architecture 417

. __ ._--_ .. _------_._ .. _._--_ .. __ ._ •.•..... _ .•. - .. _ ..•. ------_._--_._------

TYPE=SVNC_lEVEl none

TVPE=SVNC_lEVEl confirm

TVPE=SVNC_lEVEl syncpt

TVPE=FlUSH

lOCKS(SHORT)
lOCKS(lONG)
RETURN_CODE

418 CICS/MVS 2.1.2 Intercornmunlcatlon Guide

EXEC CICS GDS SEND INVITE

EXEC CICS GDS SEND INVITE WAIT

EXEC CICS GDS SEND INVITE
CONFIRM

EXEC CICS GDS SEND INVITE
+ EXEC CICS SYNCPOINT

EXEC CICS GDS SEND INVITE WAIT

Defaulted
Not Supported
Supported

-------_. -----

RECEIVE_AND_WAIT EXEC CICS GDS RECEIVE
(for both LL and BUFFER)

.. --------- --"--'--' . ------ --_.-

RESOURCE
FILL(BUFFER)
FILL(LL)
LENGTH(vble) Input
LENGTH(vble) Output
RETURN CODE
REQUE~ .,fO _SEND _ RECEI VED
DATA
~/HAT _RECEIVED

Notes:

CONFIRt·1
CONFI Rt·t OEALLOCATE
CONFIRt~_SENO

OATA
tJATA_CONPLETE
DATA_I Ncm1PLETE
LL TRUNCATED
SEND
TAKE_SYNCPT
TAKE_SVNCPT_DEALLOCATE
TAKE_SVNCPT_SEND

CONVID field
BUFFER option
LLID option
MAXFLENGTH option
FLENGTH option
Supported
Returned in CDBSIG
INTO or SET option
CICS Settings

COBCONF + COBRECV
COBCONF + COB FREE [+ COBRECV]
COBCONF
FLENGTH field ~= a [+ COBRECV]
COBCOMPL [+ COBRECV]

~COBCOMPL [+ COBRECV]
RETCOOE = x~e31a '

..,CDBRECV
COB SYNC + COBRECV
CDBSYNC + COB FREE [+ COBRECV]
CDBSYNC

1. The mapping of RECEIVE_AND_WAIT to EXEC CICS RECEIVE is not always
one-to-one.

When a CICS RECEIVE command is issued, CICS returns all the
i nformati on and data (the DATA, the \'iHAT RECEIVED fl ags, and the
RETURN CODE) at once. On completion of a CICS cOl11nand, more than one
indicator may be set, as shown in the ~!HAT_RECEIVEO mapping above. It
may be necessary to perform more than one subsequent c0l1111and to honor
the actions required by the indicators. For this reason, the action
flags must be saved when they are received, and then acted on one by
one. If the same data area is used for CONVOATA on successive GOS
c0l1111ands, the flags will be overwritten and lost.

LU6.2 does not work this way; a RECEIVE ANO WAIT verb returns either
data or information about the conversation state (as indicated by
WHAT_RECEIVEO), but never both.

It is necessary to program round this difference in philosophy when
translating LU6.2 verbs into CICS conl11~nds.

2. LU6.2 allows a RECEIVE ANO ~/AIT to be issued il1111ediately after an
ALLOCATE verb. When you are writing base conversations in CICS,
however, you must supply the PREPARE_TO_RECEIVE explicitly,
as follows:

ALLOCATE

(Required by CICS)
RECEIVE_AND_WAIT

EXEC CICS GOS ALLOCATE
tEXEC CICS CONNECT PROCESS

EXEC eICS GOS SENO INVITE WAIT
EXEC CICS GOS RECEIVE

------_ .. -------_ ... _----_._-_ -.. -.. __ _ .. _ .. -._---

Appendix C. CICS m~pptng to the LUTYPE6.2 architecture 419

EXEC CICS GDS ISSUE SIGNAL

L-..R_ES_O_U_RC_E ______ -_-~~_-_ -_-~_~~~_-l-~NVID --f;-e-l d---·------

,...-----------------------
EXEC CICS GDS SEND

~----------------------.--------,--------------------~~

RESOURCE
DATA
LENGTH
RETURN CODE
REQUEST_TO_SEND_RECEIVED

CONVID field
FROM option
FLENGTH option
Supported
Returned in CDBSIG

"---____ . __________ . ______L--. _____ ---'-_

RESOURCE
TYPE(PROG)
TYPE(SVC)
LOG DATA
RETURN CODE
REQUEST_TO_SEND_RECEIVED

Note:

EXEC CICS GDS ISSUE ERROR

CONVIO field
Default
See note
See note
Supported
Returned in CDBSIG

TYPE(SVC) and LOG DATA are not available at the API. CICS inserts
appropriate values.

420 CICS/MVS 2.1.2 Intercommunication Guide

---_ .. _-----_._._-------_.-------_ ... __ ... _. __ •... _------_._--_.
SYNCPT EXEC CICS SYNCPOINT

RETURN_CODE Zero - Control returned to
program.

Non-zero - CICS takes action;
normally to abend the
task and backout the UOW.

Returned in CDBSIG on next
command.

1----- ---------......... ----.---

Note:

[!An

EXEC CICS SYNCPOINT is not a GDS command.

For certain specialized applications, the PREPARE flow (the first flow
in SYNCPT exchanges) may be sent for a particular conversation by
using the comnand:

EXEC CICSGDS iSSUE PREPARE

This enables any outstanding messages in the network (for example, SEND
ERROR) to be received before proceeding, or deciding not to proceed,
with the full SYNCPT.

Not Supported

Appendix C. CICS mapping to the LUTYPE6.2 architecture 421

Return codes for basic conversations

~- --------_._-----_._-
LU&.2 RETURN_CODE

OK

ALLOCATION_ERROR

Local Allocation Failures:

Remote Allocation Fal1ures:

CONVERSATION_TYPE_MISMATCH
PIP_NOT_ALLOWED
PIP NOT SPECIFIED CORRECTLY
SECURITY_NOT_VALID
SYNC LEVEL NOT SUPPORTED BY PGM
SYNC=LEVEL=NOT=SUPPORTED=BY=LU

TPN NOT RECOGNIZED
TRANS PG~1 NOT AVAIL NO RETRY
TRANS=PGM=NOT=AVAIL=RETRY

BACKED_OUT

DEALLOCATE_ABEND_PROG
DEALLOCATE ABEND SVC
DEALLOCATE=ABEND=TIMER

CICS Return Codes

CDBERR and RET CODE are zero

CICS is unable to allocate a
session for an ALLOCATE command

RETCODE = 81 ••..
The second and subsequent bytes
give further information.

For temporary problems, CICS
wi 11 wait in the ALLOCATE
conlnand until the probl em has
cleared and then continue~

See also the UNSUCCESSFUL return
code, which relates to the
NOQUEUE option on the C~CS
ALLOCATE conmand.

These will be returned to the
program after the CONNECT PROCESS
cOll1l1and has been issued, and the
remote system has been unable to
start the requested task. They
may be returned on any subsequent
cOll1l1and that relates to the
session in use.

CDBERRCD = 18886834
CDBERRCD = 18886831
CDBERRCD = 18886832
COBERRCO = 888F6851
CDBERRCD = 18886841
RETCODE = 838C
Note: CICS remembers SYNC LEVEL
negotiated at Bind time and does
not permit a request to ~e sent
for a Sync Level not supported
by the remote LU.

COBERRCD = 18886821
CDBERRCD = e84C88ee
CDBERRCD = e84B6e31

CDBERRCD = eS248eee

CDBERRCD = e864eeee
CDBERRCO = 88648ee1
CDBERRCD = e864eee2

-.----.--- ---------------------1
DEALLOCATE_NORMAL CDBFREE + ~CDBERR
-.-------------------~-------

422 CICS/MVS 2.1.2 Intercommunication Guide

r------.--.-------.----.-----.------------.-------.--
LU6.2 RETURN_CODE

PARAMETER_ERROR

PROG_ERROR_NO_TRUNC
PROG_ERROR_TRUNC
PROG_ERROR_PURGING

----.------------------------
RESOURCE_FAILURE_RETRY
RESOURCE_FAILURE_NO_RETRY

CICS Return Codes

RETCODE = 01 0C ••
This return code relates ONLY to
the ALLOCATE command (for CICS).
It is given when an invalid LU
name or MODE name has been
specified. The third byte gives
additional information.

CDBERRCO = 0B8ge0ae (RECEIVE Only)
COBERRCD = 08890a01
COBERRCD = 0889000e

CDBERRCO = A00e
CDBERRCO = A999

....------------_._._-------- ----_._---
SVC ERROR NO TRUNC
SVC-ERROR-TRUNC
SVC=ERROR=PURGING

UNSUCCESSFUL

This return code relates ONLY to the
LU6.2 ALLOCATE verb with
RETURN CONTROL(It1MEDIATE) specified.
This is implemented in CICS with the
NOQUEUE opt; on on the ALLOCATE c0ll111and

COBERRCO = 9889910e (RECEIVE Only)
CDBERRCD = 08890101
COBERRCO = 088901ee

RETCODE = 01 04 04

Control returned to the program
because a session was not
in1l1ediately available.

1--._----------.--_._-_ __ ... -.-----------------
Note:

In all cases, where a value for COBERRCO is given, COBERR will be
set to X'FF', It is intended that the program should first test
CDBERR and then examine CDBERRCD if additional information is
required,

"--._--------_._-_._-----------_ _._--- ._----_.-_. __ . __ ._--

Command-mapping for mapped conversations
The following tables show the mapping between LUTYPE6.2 verbs and CICS
commands for mapped conversations. See "Return codes for mapped
conversations" on page 430 for details of the corresponding return code
mapping.

Appendix C. CICS mapping to the lUTYPE6.2 Architecture 423

MC_ALLOCATE EXEC CICS ALLOCATE
~ EXEC CICS CONNECT PROCESS

LU_NAME(OWN)
LU_NAME(OTHER(vble»
MODE NAr-1E (vb 1 e)
TPN(vble)

RETURN CONTROL{WHEN SESSION ALLOCATED)
RETURN-CONTROL{OELAYED ALLOCATION PERfHTTED)
RETURN=CONTROL(IMMEOIATE) -
SYNC_LEVEL

SECURITY (SAttE)
SECURITY(PGH(USEO JO(vble)

(PASSWORD(vble»}
PIP(NO)
PIP(YES(vblel,vble2 .•• vblen»
RESOURCE
RETURN_CODE

Not supported
'SYSID on ALLOCATE
r·10DENAttE on ALLOCATE
PROCNAr~ on CONNECT PROCESS

(with PROCLENGTH)
Default on ALLOCATE
Not supported
NOQUEUE on ALLOCATE
SYNC_LEVEL on CONNECT PROCESS

o -- none
1 - Confirm
2 -- Syncpt

Default on ALLOCATE
Not supported
Not supported
Supported by PIPlENGTH(O)
Supported by PIPLIST+PIPLENGTH
Returned in CONVID field
Supported

~
.---------------.. --.. -...... -.. ---... ---•. -------... ----.----~- .

BACKOUT EXEC CICS SYNCPOINT ROLLBACK ----_ .. __ ._------_. __ ... _-_ .. _ _----------_._---

RESOURCE
RETURN CODE
REQUEST_TO_SENO_RECEIVEO

EXEC CICS SEND CONFIRM

CONVID
Supported
Returned in EIBSIG

[
---------. -_._ _------_._--_ .. __ _ ... _ _--_._ -... _--_._---_. __ . __ ._ _--_.]

Me_CONFIRMED EXEC CICS ISSUE cOtlnRMATION
.... _______ ._N ____ . ____ . __ .. _._. ___ ._. __ ... _. ______ .. ~ ... _ _ .. ~ _ • __ .. ______ .. _. ________ . __ . _____ _

RESOURCE CONVIO

_______ •• M. ___ _ •• ____ • ___ • ___ ... __ ... , ••• _. __ , •••• _............. _ _~ ... __ _ _ .. __ ••• __ ._. ____ • __ _

424 CICS/MVS 2.1.2 Intercommunication Guide

HC_DEALLOCATE EXEC CICS SEND LAST

TYPE-=SYNC __ LEVEL Conf i rm

TYPE=SYNC LEVEL Syncpt

TYPE"'FLUSH

TYPE=ABEtm _PROG

TYPE=LOCAL

RETURN_CODE

Depends on setting of
EIBFREE by previous
conmand:

EIBFREE = X I!:)!:) I

EIBFREE = XIFF'

+ EXEC CICS SYNCPOINT
+ EXEC CICS FREE

EXEC CICS SEND LAST WAIT
+ EXEC CICS FREE

EXEC CICS SEND LAST CONFIRM
+ EXEC CICS FREE

EXEC CICS SEND LAST
+ EXEC CICS SYNCPOINT
+ EXEC CICS FREE

EXEC CICS SEND LAST WAIT
+ EXEC CICS FREE

EXEC CICS ISSUE ABEND
+ EXEC CICS FREE

EXEC CICS FREE

EXEC CICS FREE

Supported

[
-.. -.--------.. -------.. ---.---.. -.---.----.---.--.--.--.-.-...... -- --.-.. -.------... -.-------J--.
HC_FLUSH EXEC tICS WAIT

or EXEC CICS SEND WAIT
-_._-----_ .. _---_.'------_._--_ .. -._---_._--_.. ---------

Appendix C. CICS mapping to the LUTYPE6.2 architecture 425

----_._--------_ .. _ ... _. __ ... _--------_._----

RESOURCE
SYNC_lEVEL

UOW_IDENTIFIER
OWN _FUll Y _ QUALI FI EO _lU _ NAt·1E
PARTNER_lU_NAME
PARTNER. FUllY QUALIFIED LU NAME
MODE_NAME - - -
USERID

RESOURCE
TYPE(vble)

EXEC CICS EXTRACT PROCESS
or EXEC CICS ASSIGN

CONVID on EXTRACT PROCESS
SYNClEVEl on EXTRACT PROCESS

a - none
1 - Confirm
2 - Syncpt

See note
See note
ASSIGN PRINSYSID
See note
See note
ASSIGN USERID

Note:
These values are not normally
required in CICS applications
and are not available at the API.

(Examine EIBRSRCE)

EIBRSRCE
EIBRSRCE set - mappea
EIBRSRCE not set - not mapped

'-----_._-------------------------_._._----'

[-;_POST_ON_R_~_C_EI_P_T _________ _

TVPE=SYNC_lEVEL none

TYPE=SYNC_lEVEL confirm

TYPE=SYNC_lEVEl syncpt

TVPE=FLUSH

lOCKS(SHORT)
lOCKS(lONG)
RETURN_CODE

Not Supported

EXEC CICS SEND INVITE

EXEC CICS SEND INVITE WAIT

EXEC CICS SEND INVITE CONFIRM

EXEC CICS SEND INVITE
+ EXEC CICS SYNCPOINT

EXEC CJCS SEND INVITE WAIT

Defaulted
Not Supported
Supported

'--------------------'--------------------'

426 CICS/MVS 2.1.2 Intercommunication Guide

RESOURCE
FIll(BUFFER)
FIll(ll)
LENGTH(vble) Input
LENGTH(vble) Output
RETURN CODE
REQUEST_TO_SEND_RECEIVED
DATA
~1AP NAME
WHAT_RECEIVED

Notes:

CONFIRti
CONFIRM DEALLOCATE
CONFIRM=SEND
DATA CotiPLETE
DATA-INCOMPLETE
FtiH j>ATA _COMPLETE
FMltDATA_INCOMPLETE
SEND
TAKE SYNCPT
TAKE-SYNCPT DEALLOCATE
TAKE=SYNCPT=SEND

EXEC CICS RECEIVE [NOTRUNCATE]

CONVIO field
BUFFER option
LLID option
MAXFLENGTH option
FLENGTU option
Supported
Returned in EIBSIG
INTO or SET option
Not supported
CICS Settings

EIBCONF + EIBRECV
EIBCONF + EIBFREE [+ EIBRECV]
EIBCONF
EIBCOMPL [+ EIBRECV]

~EIBCOMPl [+ EIBRECV]
EIBFMH + EIBCOMPL [+ EIBRECV]
EIBH1H + ~EIBCOMPL [+ EIBRECV]

~EIBRECV + no other flags
EIBSYNC + EIBRECV
EIBSYNC + EIBFREE [+ EIBRECV]
EIBSYNC

1. The mapping of MC_RECEIVE_AND_WAIT to EXEC CICS RECEIVE is· not
always one-to-one.

When a CICS RECEIVE conmand is issued, CICS returns all the
information and data (the DATA, the ~/HAT RECEIVED flags, and the
RETURN CODE) at once. On completion of a CICS command, more than one
indicator may be set, as shown in the WHAT_RECEIVED mapping above. It
may be necessary to perform more than one subsequent conwnand to honor
the actions required by the indicators. For this reason, the action
flags must be saved \O/hen they are received (because the EIB can be
overwritten by subsequent CICS conlnands) and then acted on one-by-one.

LU6.2 does not work thi s way; a ~1C RECEIVE AND WAIT verb returns either
data or information about the conversation-state (as indicated by
WHAT_RECEIVED), but never both.

It is necessary to program round this difference in philosophy when
translating LU6.2 verbs into CICS connlands.

2. CICS EIBCOMPL settings are applicahle only if NOTRUNCATE is specified
on the CICS RECEIVE command.

If NOTRUNCATE is specified, DATA_INCO~1PLETE is indicated by a zero value
in EIBCOMPl. CICS will save the remaining data for retrieval by
subsequent RECEIVE NOTRUNCATE conmands. EIBCO~'Pl is set when the 1 ast
part of the data is passed back.

If the NOTRUNCATE option is not specified, DATA_INCor·1PLETE is indicated
by the CICS lENGERR condition, and the data remaining after the
RECEIVE is discarded.

L--____ .. ________ • ________ _

Appendix C. CICS mapping to the LUTYPE6.2 architecture 4.27

--- ._-------------._._-----------------.. ~

MC_REQUEST_TO_SEND EXEC CICS ISSUE SIGNAL -'--. -----------------------·-l--·----- . ----- .
RESOURCE CONVJD field

------•.. --.... ---------------.----~- ---

r------ --------------------

RESOURCE
DATA
LENGTH
FMH DATA(NO)
FMH=DATA(YES)
RETURN_CODE
REQUEST_TO_SEND_RECEIVED

EXEC CICS SEND

CONVID field
FRO~1 opt i on
LENGTH option
Default
See note
Supported
Returned in EIBSIG

-----------------------_·--------------------------1
Note:

FMH_DATA(YES) permits the sending of l.U6.1 FMHs within an LU6.2
conversation (for example, when running a CICS program which· was
originally written for use on LU6.1). An LU6.1 FMH may be built
either by using the EXEC CICS BUILD ATTACH corrmand, prior to issuing
the EXEC CICS SEND comnand, or by building the H1H within the program,
putting it the output area, and specifying the FMH option on the SEND
comnand. Either of these two actions is equivalent to specifying
Fr1H;..DATA(YES) .

-------~-

---- --------------,---

RESOURCE
RETURN_CODE
REQUEST_TO_SEND_RECEIVEO

428 CICS/MVS 2.1.2 Intercommunication Guide

EXEC CICS ISSUE ERROR

CONVID field
Supported
Returned in EIBSIG

----------_ .. _-_._. __ ._ ... __ .. _-_• _--_._._ .. _--------_._ .. -._-------_._-_ ..
SYNCPT EXEC CICS SYNCPOINT

RETURN_CODE Zero - Control returned to
program.

Note:

[WAIT

Non-zero - CICS takes action;
normally to abend the
task and backout the UOW.

Returned in EIBSIG on next
comnand.

For certain specialized applications, the PREPARE flow (the first flow
in SYNCPT exchanges) may be sent for a particular conversation by
using the cOll1l1and:

EXEC CICS ISSUE PREPARE

This enables any outstanding messages in the network (for example, SEND
ERROR) to be received before proceeding, or deciding not to proceed,
with the full SYNCPT.

--.-.--------.. --.-.-.--.-.. -.. ----.------.- . ---------·-··--1
Not Snpported

--------.-~.-.~ --~-.. --- .. ---.------------------.-~-.

Appendix C. CICS mapping to the LUTYPE6.2 architecture 429

Return codes for mapped conversations
. . --------_._---_ .. _------.. -----_.- --.~ -.- .. ---.----~-.------.--- ... ------.

LU6.2 RETURN_CODE

OK

ALLOCATION ERROR
Local A1Tocation Failures:

ALLOCAT I ON_FAI LURE _.NO __ RET RY

ALLOCATION FAILURE RETRY - -

Remote Allocation Failures:

CONVERSAT I ON_ TYPE_MI S~1ATCH
PIP _NOT_ALLO~/ED
PIP_NOT_SPECIFIED_CORRECTLY
SECURITY _NOT_VAll D
SYNC LEVEL NOI SUPPORTED BY PGM - - - - -
SYNC_LEVEL_NOT_SUPPORTEO_BY_LU

IPN_NOT_RECOGNIZED
TRANS_PGM_NOT_AVAIl_NO_RETRY
TRANS _PGt'I_NOT _ AVAI L_ RETRY

. RACKED OUT

DEALLOCATE_AREND

DEALLOCATE NOR~1AL

MAP_EXECUTION_FAILURE
f1AP _NOT _FOUND
~1ArpING NOT SUPPORTED

430 CICS/MVS 2.1.2 Intercommunication Guide

CICS Return Codes

EIBERR zero + INVREQ not raised

CICS is unable to allocate a
session for an ALLOCATE connmnd

SYSIOERR raised
The second and subsequent bytes
of EIBRCODE give further
informRtion.

SYSBUSY raised if there is a
HANDLE for it. Otherwise,
CICS queues the request until
a session is available.

See also the UNSUCCESSFUL return
code, which relates to the
NO QUEUE option on the CICS
ALLOCATE collllland.

These will be returned to the
program after the CONNECT PROCESS
conwna.nd has been issued, and the
remote system has been unable to
stArt the requested task. They
may be returned on any subsequent
comnand that relates to the
session in use.

TERMERR (EIBERRCD :: 10086034)
TERMERR (EIBERRCD ~ 19086031)
TERMERR (EIBERRCD :: 10086032)
TERMERR (EIBERRCD :: 080F6051)
TERt1ERR (EIBERRCD :: 10086041)
INVREQ (EIBRCODE:: E0 00 ee)
Note: CICS remembers SYNC LEVEL
negotiated at Bind time Cl.nd does
not permit a request to be sent
for a Sync Level not supported
by the remote LU.

TERtlERR (EIBERRCD :: 10086021)
TERt'IERR (EIBERRCD :: 084C0000)
TERMERR (EIBERRCD :: 084R6931)

EIBSYNRB (FIBERRCD ~ 08249900)

lERMERR (EIBERRCD :: 08640088)

EIRFREE + ~EIBERR

TFRllERR (EIBERRCO :: 88890100)

Not f\rplicf\ble. t1ap requests
are not sent because the option
is not supported.

LU6,2 RETURN_CODE

PARA~1ETER ERROR

PARAMETER_ERROR (Invalid LU name)

PARAHETER ERROR (Invalid mode name)

This return code relates ONLY to
the CICS ALLOCATE cOllmand,
It is given when an invalid LU
name or mode name has been
specified,

SYSIDERR (EIBRCODE = 00 04 "
or 00 0C ..

CBIDERR raised for invalid PROFILE
on ALLOCATE cmnnand

•• _______ .n _____ • ________ R ________________ ._. ___ ._. .~ ___________ • __________ • ____ _

PROG_ERROR_NO_TRUNC
PROG ERROR PURGING - -
RESOURCE_rAILURE_RETRY
RESOURCE FAILURE NO RETRY - --
UNSUCCESSFUL

This return code relates ONLY to the
LU6,2 ALLOCATE verb with
RETURN_CONTROL(IMMEOIATE) specified.
This is implemented in eIes with the
NOQUEUE option on the ALLOCATE comlland

Note:

EIBERRCD = 08890000 (RECEIVE Only)
EIBERRCD = 08890e00

EI BERRCD = A00e
EIBERRCO = Aee0

SYSBUSY (EIBRCOOE = 03)

Control returned to the program
because a session was not
ilrmediately available,

In all cases, where a value for EIBERRCD is given, EIBERR will be
set to X'FF ' , It is intended that the program should first test
EIBERR and then examine EIBERRCD if additional information is
required,

_________________ . ____ --J

-----------_.-.. _._--_._ ... _-_ .. _._---_._ .. -.-._-------_ .. _-----------_.-_._---... -.... __ ._-_ .. _-_. __ ._--

CICS implementation of control operator verbs
CICS supports control operator verbs in a variety of ways.

Some verbs are supported by the CICS master terminal transaction CEMT. The
relevant CEMT commands are:

CEMT INQUIRE CONNECTION
CEMT SET CONNECTION
CEMT INQUIRE MODENAME
CEMT SET MODENAME

CEMT is normally entered by an operator at a screen. It is described in the
CICS/MVS CICS-Supplied Transactions manUAl.

The inquire and set operations for connections and modenames are also
available at the CICS API, using the following commands:

EXEC CICS INQUIRE CONNECTION
EXEC CICS SET CONNECTION
EXEC CICS INQUIRE MODENAME
EXEC CICS SET MODENAME

Appendix C. CICS mapping to the LUTYPE6.2 architecture 431

Details of these commands are given in the CICSIMVS Customization Guide.

Some control operator verbs are supported by CICS resource definition. The
definition of LUTYPE6.2 links is described in "Defining logical unit type 6.2 links"
on page 116. Full details of the resource-definition syntax are given in the
CICSIMVS Resource Definition (Online) manual and the CICSIMVS Resource
Definition (Macro) manual.

With resource definition online, the CEDA transaction can be used to change
some CONNECTION and SESSION parameters while CICS is running. With
macro-level definition, the corresponding parameters are fixed for the duration of
the CICS run.

The following tables show how LUTYPE6.2 control operator verbs are
implemented by CICS. See "Return codes for control operator verbs" on
page 439 for details of the corresponding return code mapping

Note: Wherever CEMT is shown, the equivalent form of EXEC CICS command
can be used.

CHANGE_SESSION_LIMIT

lU_NAME(OWN)
MODE NAME(vble)
LU MODE SESSION lIMIT(vble)
MIN_CONWINNERS_SOURCE(vble)

MIN CONWINNERS TARGET(vble)
RESPONSIBLE (SOURCE)
RESPONSIBLE(TARGET)

RETURN_CODE

LU NAME(vble)
MODE NAME(vble)
LU_MOOE_SESSION_lIMIT(vble)
MIN CONWINNERS SOURCE(vble)
MIN=CONWINNERS=TARGET(vble)
RETURN_CODE

CEMT SET MODENAME

CONNECT! ON ()
r~ODENAME ()
AVAI LABLE ()
CICS negotiates a revised value,
based on the AVAILABLE request
and the MAXIMUM value on the
DEFINE SESSIONS for the group.

Not supported
Yes
Not supported. CICS does not
support receipt of RESP(TARGET).

Supported

DEFINE SESSIONS
(GICS resource deflnition)

CONNECTI ON ()
t100ENAME ()
MAXH1U~1() parameter 1
MAXIt1Ur,1() parameter 2
Not supported
Supported

"'------_._---------_.- -'---"-

432 CICS/MVS 2.1.2 Intercommunication Guide

----_. __ . __ ._-----_. __ .. -----_._ •. _-
Automatic action by GICS-supplied
transaction CLSI when CNOS is
received by a target CICS system.

1----- .. -----.-----... ---.- ---- --_. ------

LU NAME(vble)
t10DE_NAME (vbl e)
RETURN CODE

Passed internally
Passed internally
Supported

,--_ .. _------_._---_ ... _. __ .. _-------_ ...

--_ .. _-----_ .. _-----_._ _.-.. _ _-_ _-_ ..• _ •. _------_ ... _-----
CEHT SET HODENAME

(for individual modegroups)
or CEMT SET CONNECTION RELEASED

(to reset all modegroups)
-----._._---_._--_ _. __ ._ _ .•..... _ _._-_. __ ._----_ ... _-------

LU NAME(vble)
MODE NM1E (ALL)
MODE-NAME(ONE(vble»
t'1ODE -NAME (ONE (' SNASVCMG '))
RESPONSIBLE(SOURCE)
RESPONSIBLE(TARGET)
DRAIN_SOURCE
DRAIN_TARGET
R~TURN_CODE

ACTIVATE_SESSION

caNNE cn ON ()
SET CONNECTION() RELEASED
MODENAr·1E() AVAILABLE(e)
SET CONNECTION() RELEASED
Yes
Not supported
CIes supports NO
CICS supports NO
Supported

--_ .. _--------
CEMTSET MODENAME ACQUIRED

(for individual modegroups)
or CEMT SET CONNECTION ACQUIRED

(for SNASVCMG sessions)
--_._---------

LU_NAME(vble)
MODE NAME(vble)
r-10DE=NAME ('SNASVCf1G')

CONNECTION()
t~ODENAt1E() ACQUIRED
Activated when

CEMT SET CONNECTION ACQUIRED
is issued.

Supported

~
--'--'---, .. ------.----........ --.. -............. ---.---------.------ J

DEACTIVATE SESSION Not supported . ____ ~ __ . ____ ao_ .. _~ _____ .. _._.~ ___ ... __ ._ __ . ___ ... ___________ _

Appendix C. CICS mapping to the lUTYPE6.2 architecture 433

FULL Y _QUALI FlED_LU_.NANE (vb 1 e)

LU SESSION LIMIT ~ONE
LU-SESSION-LIMIT VALUE(vble)
SECURITY ADO USER ID(vble)
SECURITY ADO PASSWORD(vble)
SECURITY ADD PROFILE(vble)
SECURITY DELETE USER ID(vble)
SECURITY DELETE PASSWORO(vble)
MAP NN1E ADD(vble)
r1AP=NAME DELETE(vble)

DEFINE SESSIONS
+ DFHSNT TYPE=ENTRY macro
+ DFHsn macro

(CIeS resource definition)

cannot be specified. CICS uses the
network LU name (APPLID on DFHSIT)
not supported
MAXIMUM on SESSIONS
USERID on DFHSNT
PASSWRD on DFHSNT
RLSKEY on DFHSNT
] supported by

redefining DFHSNT
] not

supported

--_. __ ._------------_._---- .-.-.- .. -.---

DEFINE CONNECTION
(GICS resource definition)

------. --.----.. ---------------i

FULLY _QUALI FlED _LU_NAt·1E (vb 1 e)
LOCALLY KNO\m LU NAME ~IONE

LOCALL Y = KNOW~C LU = NA~1E (vb 1 e)
UNINTERPRETED LU NAME NONE
UNINTERPRETED=LU=NA~1E (vb 1 e)
INITIATE_TYPE INITIATE_ONLY
INITIATE TYPE INITIATE OR QUEUE
PARALLEL-SESSION SUPPORT (YEsINO)
CNOS SUPPORT (YEsINO)
LU Li:j PASS\10RD NONE
LU-LU-PASSWORD VALUE(vble)
SECURITY_ACCEPTANCE NONE
SECURITY_ACCEPTANCE CONVERSATION
SECURITY_ACCEPTANCE ALREADY_VERIFIED

cannot be specified
mandatory on CONNECTION
CONNECTION(name)
defaults to CONNECTION(name)
NETNAME on CONNECTION
) not

supported
SINGLESESS(NOIYES) on CONNECTION
always YES
default on CONNECTION
BINDPASSWORD on CONNECTION
ATTACHSEC(LOCAL)
ATTACHSEC(VERIFY)
ATTACHSEC(IDENTIFY)

--- -------------_._. --.---.. ----

434 CICS/MVS 2.1.2 Intercommunication Guide

._--_._._----_._-_._.-------._---------,

1------ --------------------

FULLY_QUALIFIED_LU_NAt1E (vble)

HODE_NA~1E (vble)

SEND PACING WINDOW (vble)
RECEIVE_PACING_WINDOW (vble)
SEND MAX RU SIZE LOWER BOUND (vble)
SEND-MAX-RU-SIZE-UPPER-BOUND (vble)
RECEIVE MAX-RU SIZE LOWER BOUND (vble)
RECEIVE-r'IAX-RU-SIZE-UPPER-BOUNO (vbl e)
SYNC LEVEL SUPPORT CONFIRM
SYNC-LEVEL-SUPPORT CONFIRH SYNCPT
SINGLE_SESSION_REINITIATION OPERATOR
SINGLE_SESSION_REINITIATION PLU
SINGLE_SESSION_REINITIATION SLU
SINGLE SESSION REINITIATION PLU OR SLU
SESSION LEVEL CRYPTOGRAPHY (YESTNO)
CONWINNER_AUTO_ACTIVATE_LU1IT (vbl e)

EXEC CICS CONNECT PROCESS
+ MODEENT macro

(ACF/VTAM systems definition)
+ DEFINE SESSIONS

(CICS resource definition)

cannot be specified. LU identified
via CONNECTION on SESSIONS
MOOENAME on SESSIONS is mapped
to LOGMODE on MODEENT
PSNDPAC on MODEENT
SSNDPAC on MODEENT
fixed at 8
SENOSIZE on SESSIONS
fixed at 256
RECEIVESIZE on SESSIONS
] is always

CONFIRM_SYNCPT

1
not

supported

ENCR on MODEENT
MAXIMUM(,value2) on SESSIONS

Appendix C. CICS mapping to the LUTYPE6.2 architecture 435

---.- --------------_ .. _---_._ .. __ .. _ .. _. __ .. _-------------------

TP_NAME (vble)
STATUS ENABLED
STATUS TEMP_DISABLED
STATUS PERM DISABLED
CONVERSATION_TYPE (MAPPEDIBASIC)

SYNC_LEVEL (NONEICONFIRMISYNCPT)

SECURITY_REQUIRED NONE
SECURITY_REQUIRED CONVERSATION
SECURITY_REQUIRED ACCESS PROFILE
SECURITY_REQUIRED ACCESS USER_ID
SECURITY REQUIRED ACCESS USER 10 PROFILE
SECURITY-ACCESS ADD USER ID(vblej"
SECURITY-ACCESS ADD PROFILE(vble)
SECURITY-ACCESS DELETE USER ID(vbl~)
SECURITY=ACCESS DELETE PROFILE(vble)
PIP NO
PIP YES(vble)
DATA MAPPING (NOIYES)
H1UjJATA (NOIYES)
PRIVILEGE NONE
PRIVILEGE CNOS
PRIVILEGE SESSION_CONTROL
PRIVILEGE DEFINE
PRIVILEGE DISPLAY
PRIVILEGE ALLOCATE_SERVICE_TP

DEFINE TRANSACTION
(CIGS resource definition)

TRANSACTION(name)
STATUS(ENABLED)
not supported
STATUS(DISABLED)
supported for all TPs
(rletermined by choice of command)
SYNCPT for all TPs (actual level
specified on CONNECT PROCESS)
RSL(PUBLIC) + TRANSEC(l)
TRANSEC(2-64)
not supported
RSL(1-24)
not supported

Transaction can
be redefined

supported for all TPs
(specified on CONNECT PROCESS)

DATA MAPPING (NO) for all TPs
H1HjiATA (YES) for all TPs

not
supported

[
.

. _--_._ .. _--_._._-_ .. __ ._------_._-_._ .. _ ... __ ._ .. _ ---_ _._ _--_ _---------~
DELETE not supported

•• ___________ ••. ___________ •• _______ •••• __ ~ •• __ .•• "_ .• _H _____ • _______ ~_. __ _

438 CICS/MVS 2.1.2 Intercommunication Guide

DISPLAY_LOCAl_LU CEMT INQUIRE CONNECTION
+ CEMT INQUIRE MODENAME
+ CEMT INQUIRE TRANSACTION

~----.-.----.. -------.------------... -.----....... _--_ .. _-_._----------------

FULLY_QUALIFIED_LU_NAME (vble) cannot be specified in CICS.

LU_SESSION_LIMIT (vble)
LU SESSION COUNT (vble)
SECURITY (vble)
tlAP NAMES (vb 1 e)
REMOTE LU NAMES (vb1e)
TP _NA'~ES (vbl e)

The APPLID on DFHSIT serves as
identifier for the local LU.
Specific information can be had
by identifying the remote LU.
Otherwise, the universal id ''II

may be used.

',1Axmun on INQ ~10DENAr~E

ACT I VE on I NQ t~ODENN1E
not available
not supported
INQ CONNECTION(*)
INQ TRANSACTION(*)

---------_._------------_._-------... __ ._-._ ... __ _-_. __ ._ .. _-------------

CEMT INQUIRE CONNECTION
+ CEMT INQUIRE MODENAME

---------------_._------_._---_._- ----_._-----------_._----

LOCALLY KNOWN LU NAME (vble)
UNI NTERPRETED - LU - NAt~E (vb 1 e)
INITIATE TYPE-(vble)
PARALLEL-SESSION SUPPORT (vb1e)
CNOS SUPPORT (vble)
SECURITY ACCEPTANCE LOCAL LU (vble)
SECURITY-ACCEPTANCE-RH10TE LU (vh1e)
MODE_NAMES (vble) - -

cannot be specified. CONNECTION
or t100ENAME may be used.

1 his i 5 CONNECT! ON name
NETNME on INQ CONNECTION
not supported
not available
always YES
not available
not available

-----_._ .. -----------_._-------_._- _._ .. _._- .. - ... ----------------- ._---'--'

Appendix C. CICS mapping to the LUTYPE6.2 architecture 437

,.----------- ,--------------------

FULLY QUALIFIED LU NAME (vble)
MOOEjiM1E (vble) -

SEND PACING WINDOW (vble)
RECEIVE PACING WINDOW (vble)
SEND MAX RU SIZE LOWER BOUND (vble)
SENO-MAX-RU-SIZE-UPPER-BOUNO (vble)
RECEIVE MAX-RU SIZE LOWER BOUND (vble)
RECEIVE-MAX-RU-SIZE-UPPER-aOUND (vble)
SYNC LEVEL SUPPORT (vble)-
SINGLE SESSION REINITIATION (vble)
SESSION LEVEL CRYPTOGRAPHY (vble)
CONWINN~R AUT~ ACTIVATE LIMIT (vble)
LU MODE S~SSION LUlIT (vble)
MIN CONWINNERS (vble)
MIN-CONLOSERS (vble)
TERMINATION COUNT (vble)
DRAIN LOCAL-LU (vble)
ORAIN-REMOT~ UJ (vble)
LU MODE SESSION COUNT (vble)
CONWINN~RS SESSION COUNT (vble)
CONLOSERS SESSION COUNT (vble)
SESSION_IDS (vble)

CEMT INQUIRE MODENAME
+ CEMT INQUIRE TERMINAL

cannot be specified.
MOOENAME

] not
available

fixed at 8
not avail ab 1 e
fixed at 256
not available
always CONFIRM SYNCPT
not supported -
not available
not available
~1AXINUM on INQ MOOENA~1E

1

not
supported

ACTIVE on INQ ~100ENAME
] not

available
INQ TERt·lINAL(*)

,.-----------------:-------_._---_._-------.

t-------.-------.. -------

STATUS (vble)
CONVERSATION TYPE (vb1e)
SYNC LEVEL (;ble)
SECURITY REQUIRED (vble)
SECURITY-ACCESS (vble)
PIP (vble)
DATA MAPPING (vb1e)
FMH DATA (vble)
PRIVILEGE (vb1e)

CEMT INQUIRE TRANSACTION

TRANSACTION(tranid)

ENABLED/DISABLED
CICS TPs all ow both types
CICS TPs allow all sync levels

] not
available

CICS TPs allow PIP YES and NO
a1wtlYS NO
always YES
not supported

---_._--.- _._--_._--------_._------'

438 CICS/MVS 2.1.2 Ihtercommunication Guide

Return codes for control operator verbs
The CEMT INQUIRE and SET CONNECTION or MODENAME, and the equivalent
EXEC CICS commands, cause CICS to 8tal1 up the LU Services Manager
asynchronously.

Some of the errors that can occur are detected by CEMT, or the CICS API, and
are passed back immediately. Other errors are not detected until a later time,
when the LIJ Services Manager transaction (CLS1) actually runs.

If CLS1 detects errors, it causes messrlges to be written to the CSMT log, as
shown in Figure 135 on page 440. In normal operation, the CICS master
terminal operator may not wish to inspect the CSMT log after issuing a
command. So in general, the operator, after isslling a command to change
parameters (for example, SET MODENAME() .. ,) should wait for a few seconds
for the request to be carried out and then reissue the INQUIRE version of the
command to check that the requested change has been made., In the few cases
when an error actually occurs, the operator can refer to the CSMT log.

If CEMT is driven from the menu panel, it is very simple to perform the above
sequence of operations.

The message used to report the results of CLS1 execution is DFH4900. The
explanatory text which accompanies the message varies and is summarized
below. Refer to the CICSIMVS Messages and Codes manual for a full description
of the message. In certain cases, DFH4901 is also issued to give further
information, as shown in Figure '135 on page 440.

Appendix C. CICS mflpplng to the LUTYPE6.2 architecture 439

·_._--
LU6.2 RETURN_CODE

r-----·-· .. · --
OK
.---". __ ._- ------
ACTIVATION_FAILURE_RETRY

---- .. -

ACTIVATION_FAILURE_NO_RETRY

ALLOCATION_ERROR

COMMAND_RACE_REJECT

LU_MODE_SESSION_lIMIT_ClOSED

LU_MODE_SESSION_LIMIT_EXCEEDED

~-

LU_MODE_SESSION_LIMIT_NOT_ZERO

_.
LUJ100E_SESS I ON_LIMIT _ZERO

--_. --
LU_SESSION_LIMIT_EXCEEOED

PARAMETER_ERROR
--

REQUEST_EXCEEDS_MAX_ALLOWED
1--

RESOURCE_FAIlU~E_NO_RETRY

--- -
UNRECOGNI ZED J~ODE_NAME

----.---. ._--_._-
CICS Mes sag e

1------_._-._.-
DFH49r:H:l

--_ ... __ .•.....•
DFH49GG

... DFH49Gl
--

DFH49Ge
+ DFH49Gl

.. _--_.-... _.
Checked

SYSTEH

re

re
MA

re
r~A

sult = SUCCESSFUL
-_._--------_._---
sult = VALUES AMENDED
X = G

sult = VALUES AMENDED
X = G
-~---

eEt-n. If allocation fails.
ACQUIRED is returned to

the ope

by
NOT
rat or •

. _ .. -
DFH4gee

DFH4ge9
... DFU4991

--_ ... -
DFH4999

+ DFH4991

DFH4999
+ DFH4991
-----.-.~

DFH49GG
+ DFH4991 ._--_ .. -

DFH4999
-t. DFH4991

Checked

Checked
---.. ---.~---

The LU s
(ClSl) a

DFH4999

re

re
MA

re
MA

re
HA

re
MA

re
r~A

sult = RACE DETECTED

sult = VALUES AMENDED
X = 9

sult = VALUES AMENDED
X = (negotiated value)

sult = VALUES AMENDED
X = (negotiated value)

-
sult = VALUES AMENDED
X = 9

sult = VALUES AMENDED
X = (negotiated value)

by

by

CEMT

erv
ben

CEMT
.--
ices manager transaction
ds with abend code ATNI.

--

re sult = MODENAME NOT RECOGNIZED

Figure 135. CLSI-detected errors written to CSMT log

CICS deviations from LUTYPE6.2 architecture
This section describes the way in which the CICS implementation of LUTYPE6.2
differs from the architecture described in the SNA Format and Protocol Reference
Manual: Architecture Logic for LU Type 6.2, SC30-3269.

There are four deviations:

1. CICS Implementation: CICS checks incoming BIND requests for valid
combinations of the CNOS indicator (BIND RQ byte 24 bit 6) and the
PARALLEL-SESSIONS indicator (BIND RQ byte 24 bit 7). If an invalid
combination is found (that Is, PARALLEL-SESSIONS specified but CNOS not
specified), CICS sends a negative response to the BIND request.

440 CICS/MVS 2.1.2 Intercommunication Guide

LUTYPE6.2 Architecture: The secondary logical unit (SLU), or BIND request
receiver, should negotiate the CNOS and PARALLEL-SESSIONS indicators to
the supported level and return them in the BIND response. The SLU should
not check for an invalid combination of these indicators.

2. eles Implementation: If a transaction program (TP) issues ISSUE ERROR in
RECEIVE state, at a time when CICS has received change direction (CD) on
the conversation but has not yet passed it to the TP, CICS will process the
ISSUE ERROR as though the TP was in SEND state. That is, CICS will not
send a negative response (0846) before the FMH-7(0889), but will send the
FMH-7(0889) alone.

LUTYPE6.2 Architecture: Until the TP is passed the CD, the conversation
should remain in RECEIVE state. If ISSUE ERROR is issued in this state, a
negative response (0846) should precede the FMH-7(0889).

3. elcs Implementation: CICS does not allow a transaction program (TP) to
distinguish between the return codes "'_ERROR_NO _ TRUNC and
"'_ERROR_PURGING. In both cases, the TP is returned a sense code value of
08890000.

LUTYPE6.2 Architecture: The return code in both cases is 08890000. For
"'_ERROR_PURGING, however, the FMH-7(0889) is preceded by a negative
response (0846), indicating that some data was not received b1 the partner
TP. The transaction programs should be able to distinguish between the two
cases and perform appropriate error processing.

4. eles Implementation: When the parties to a distributed transaction at
SYNCLEVEL 2 exchange SYNCPOINT ROLLBACK commands, CICS applies
the following rules in determining the conversation state of each party after
roll back has completed:

• The transaction which first issues SYNCPOINT ROLLBACK is left in send
state, while the partner which issues SYNCPOINT ROLLBACK in
response is in receive state.

• When two connected transactions - the one initially in send state and
the other in receive state - issue SYNCPOINT ROLLBACK together, then
each will change to the opposite state.

LUTYPE6.2 Architecture: Both parties to an exchange of SYNCPOINT
ROLLBACK commands will revert to the same conversation state as that.
following the last SYNCPOINT.

----_._------_ ... _-_._-_._--_ .. _---
Effects of CICS deviations on the transaction programmer

Deviation 2 can have an effect on transaction programs running on products
other than CICS that are In conversation with CICS transaction programs.
Deviation 3 can have an effect on transaction programs running on CICS.

These effects can be avoided by using the following programming conventions
(the verbs and return codes referred to here are described in SNA Transaction
Programmer's Reference Manual for LU Type 6.2):

• When writing a transaction program that will converse with a CICS
transaction program, do not lise the verb PREPARE_TO _RECEIVE with the

Appendix C. CICS mapping to the lUTYPE6.2 architecture 441

TYPE(CONFIRM) and LOCKS(LONG) parameters, or with the
TYPE(SYNC_LEVEL) and LOCKS(LONG) when the SYNC_LEVEL is CONFIRM.
Instead, use the LOCKS(SHORT) paramet~r to achieve the same function.
The LOCKS(LONG) parameter provides a line-flow optimization, only.

• When writing a transaction program that will converse with a CICS
transaction program, do not depend on the distinction between the the return
codes PROG_ERROR._PURGING and PROG_ERROR_NO_TRUNC, and
between the return codes SVC ERROR PURGING and - -
SVC_ERROR_NO_.TRUNC. Instead, the CICS transaction program must be
coded to send additional error information after it issues the EXEC CICS
ISSLIE ERROR in order to describe the reason for sending the error
indication.

• When writing a transaction program that will run on CICS, do not depend on
the receipt of the sense data X'08890000' or X'08890100' to indicate the state
of the other end of the conversation when the partner transaction program
sent the error indication. Instead, the partner transaction program must be
coded to send additional error information after it sends the error indication
in order to describe the reason for sending the error indication.

• Because CICS may omit the negative response before an FMH-7
(ALLOCATION_ERROR), a transaction program in conversation with CtCS can
receive an ALLOCATION_ERROR after the point where the partner
transaction appears to have been successfully allocated. The transaction
program must therefore be written to handle this possibility.

442 CICS/MVS 2.1.2 Intercornmunicatlon Guide

»

Glossary

This glossary contains definitions of ::\c~e terms and
abbrevi<ltions that relate specifically to the contents
of this book.

If you do not find the term you are looking for, refer
to the Index or to the IBM Vocabulary for Data
Processing, Telecommunications, and Office Systems,
GC20-1S99.

ANSI definitions are preceded by an asterisk (*).

The symbol "(ISO)" at the beginning of a definition
indicates that it has been discussed and agreed on at
meetings of the International Organization for
Standardization, Technical Committee
97/Subcommittee 1, and ha.s been c:tpproved by ANSI
for inclusion in the American National Dictionary for
Information Processing.

ACB. Access method control block (VTAM).

ACF/NCPNS. Advanced Communication
Facilities/Network Control Program/Virtual Storage.

ACFIVTAM. Advanced Communication Facilities,
Virtual Telecommunications Access Method. A set of
programs that control communication between
terminals and application programs running under
VSE/AF, OS/VS1, and MVS.

Advanced Program-to-Program Communication
(APPC). The general term chosen for the LUTYPES.2
protocol under systems network architecture (SNA).

alternate facility. An MRO or SNA session that is
obtained by a transaction by means of an ALLOCATE
command. Compare principal facility.

AOR. Application-owning region.

APPC. Acronym for Advanced Program-to-Program
Communication.

attach header. In SNA, a function management
header that causes a remote process or transaction
to be attached.

back-end transaction. In synchronous
transaction-to-transaction communication, a
transaction that is started by a front-end transaction.

backout. See dynamic transaction backout.

bind. In SNA products, a request to activate a
session between two logical units.

© Copyright IBM Corp. 1977, 1991

conversation. A sequence of exchanges over a
session, delimited by SNA brackets.

data link protocol. A set of rules for data
communication over a data link in terms of a
transmission code, a transmission mode, and control
and recovery procedures.

data security. Prevention of access to or use of
stored informc:ttion without authorization.

destination control tRble. A table describing each of
the transient data destinations used in the system, or
in connected CICS systems.

distributed transaction processing. The distribution of
processing between transactions that communicate
synchronously with one another over intersystem or
interregion links.

OLII. Data Language/!. An IBM database
management facility.

domain-remote. A term used in previous releases of
CICS to refer to a system in another ACFIVTAM
domain. If this term is encountered in the CICS
library, it can be taken to refer to any system that is
accessed via SNA LUS.1 or LUS.2 links, as opposed to
elcs interregion communication.

OTP. Acronym for distributed transaction processing.

dynamic transaction backout. The process of
canceling changes made to stored data by a
transaction following the failure of that transaction for
whatever reason.

EDF. Execution (command-level) diagnostic facility
for testing command-level programs interactively at a
terminal.

EIB. EXEC interface block.

FCT. File control table.

file control table. A table containing the
characteristics of the files a~cessed by file control.

FMH. Function management header.

front-end transaction. In synchronous
transaction-to-transaction communication, the
transaction that acquires the session to a remote
system and initiates a transaction on that system.
Compare back-end transaction.

443

function management header (FMH). In' SNA, one or
more headers optionally present in the lea~ing
request unit (RU) of an RU chain. It allows one
session partner. in a LU-LU session to send function
management information to the other.

function request shipping. The process, transparent
to the application program, by which CICS accesses
resources when those resources are actually held on
another CICS system.

GOS. Generalized data stream.

generalized data stream. The data stream used for
conversations on LUTYPE6.2 sessions.

host computer. The primary or controlling computer
in a data communication system.

IMS. Information Management System.

Inquiry. A request for information from storage.

Installation. A particular computing system, In terms
of the work it does and the people who manage it,
operate it, apply it to problems, service it and use the
work it produces.

Interactive. Pertaining to an application in which
each entry ca'lIs forth a response from a system or
program, as in an inquiry system or an airline
reservation system. An interactive system can also
be conversational, implying a continuous dialog
between the user and the system.

Intercommunication facilities. A generic term
covering intersystem communication (ISC) and
multiregion operation (MRO).

Interreglon communication (IRC). The method by
which CICS provides communication between a CICS
region and another region in the same processor.
Used for multi region operation.

Intersystem communication. Communication between
, separate systems by 'means of SNA networking
facilities or by means of the application-to-application
facilities of an SNA access method.

Interval control. The CICS element that provides
time-dependent facilities.

I"trapartltlon destination. A queue of transient data
used subsequently as input data to another task
within the CICS partition or region.

IRC. Acronym for Interregion Communication.

444 CICS/MVS 2.1.2 Intercommunication Guide

ISC. Acronym for Intersystem Communication.

last agent. One of the LUTYPE6.2 conversations
selected by a syncpoint initiator to initiate the second
phase of the two-phase commitment process.

limited resources. This is a VTAM feature, indicated
in the BIND. When a limited resource session is
freed, CICS unbinds it if no other task requires it.

local resource. In CICS intercommunication, a
resource that is owned by the local system.

local system. In CICS intercommunication, the CICS
system from whose point of view intercommunication
is being discussed.

logical unit. A port through which a user gains
access to the services of a network.

logical unit of work. A unit of work that can be
regarded as a logically-related sequence of actions
for the purposes of CICS error recovery mechanisms.

LU. See logical unit.

LUW. See logical unit of work.

LU·LU sessIon. A session between two logical units
in a SNA network.

message performance option. The improvement of
ISC performance by eliminating syncpoint
coordination between the connected systems.

message switching. A telecommunication application
in which a message received by a central system
from one terminal is sent to one or more other
terminals.

MRO. Multiregion operation - communi catton
between CICS systems in the same processor without
the use of SNA networking facilities.

multiprogramming. Concurrent execution of
application programs across partitions.

multlreglon opetatlon. Communication between CICS
systems in the same processor without the use of
SNA networking facilities.

multitasking. Concurrent execution of application
programs within a CICS partition or region.

multithreading. Use, by several transactions, of a
single copy of an application program.

MVS. Multiple Virtual Storage. An alternative name
for OSNS2 Release 3.

network. A configuration connecting two or ",ore
terminal installations.

network configuration. In SNA, the group of links,
nodes, machine features, devices, and programs that
make up a data processing system, a network, or a
communication system.

nonswltched connection. A connection that does not
have to be established by dialing.

Operating SystemNlrtual Storage (OSNS). A
compatible extension of the IBM Sy~tem/3S0*
Operating System that supports relocation hardware
and the extended control facilities of System/3S0.

OSNS. Operating System/Virtual Storage.

partition. A fixed size subdivision of main storape,
allocated to a system task.

partner. The task at the other end of an LUTYPES.2
conversation.

PCT. Program control table.

piggy-backing. In CICS, the later addition of an SNA
indicator, such as change-direction, to output data
that has been created by a SEND command but whose
transmi ssion has been deferred.

PPT. Processing program table,

principal facility. The terminal or logical unit that is
connected to a transaction at its initiation. Compare
alternate facility.

processing program table. A table defining all
application programs valid for processing under CICS.
It also keeps track of whether an application program
is in main storage or not.

processor. Host processing unit.

program control table. A table defining all
transactions that may be processed by the system.

program Isolation. Ensuring that only one task at a
time can update a particular physical segment of a
DUI database.

pseudoconversatlonal. CICS transactions designed to
appear to the operator as a continuous conversation
occurring as part of a single transaction.

* IBM Trademark. For a list of trademarks, see page III.

queue. A line or list formed by items in a system
waiting for service; for example, tasks to be
performed or messages to be transmitted in a
message switching system.

RACF. The Resource Access Control Facility
program product. An external security management
facility.

region. A section of the dynamic area that is
allocated to a job step or system task. In this manual,
the term is used to cover partitions and address
spaces as well as regions.

region-remote. A term used in previous releases of
CICS to refer to a CICS system in another region of
the same processor. If this term is encountered in
the CIGS library, it can be taken to refer to a system
that is accessed via an MRO link, as opposed to al'
SNA LUS.1 or LUS.2 link.

remote. See remote system and remote resource.

remote resource. In CICS intercommunication, a
resource that is owned by a remote system.

remote system. In CICS intercommunication, a
system that the local CIGS system accesses yia
intersystem communication or multi region operation.

resource. Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

rollback. A programmed return to a prior checkpoint.
In CIGS, the cancelation by an application program of
the changes it has made to all recoverable resources
during the current logical unit of work.

routing transaction. A CICS-supplied transaction
(CRTE) that enables an operator at a terminal owned
by one CICS system to sign onto another CICS system
connected by means of an MRO or LUTYPES.2 link.

RU. request unit

SCS. SNA character stream.

SOLC. Synchronous data link control.

security. Prevention of access to or use of data or
programs without authorization.

Glossary 445

session. In CICS intersystem communication, an SNA
LU-LU session. In multi region operation, a connection
between two CICS regions.

SIT. System initialization table.

SNA. Systems network architecture.

startup Jobstream. A set of job control statements
used to initialize CICS.

subsystem. A secondary or subordinate system.

surrogate TenE. In transaction routing, a TCne in
the application-owning region that is used to
represent the terminal that invoked or was acquired
by the transaction.

switched connection. A connection that is
established by dialing.

synchronization level. The level of synchronization
(0, 1, or 2) established for an LUTYPE6.2 session.

syncpoint. Synchronization point. An intermediate
point in an application program at which updates or
modifications are logically complete.

syncpolnt agent. The end of an LUTYPE6.2
conversation that receives a syncpoint from a
syncpoint initiator. The syncpoint agent can become
a syncpoint initiator if it has additional LUTYPE6.2
conversations.

syncpoint initiator. The end of an LUTYPE6.2
conversation that initiates a syncpoint.

system. In CICS, an assembly of hardware and
software capable of providing the facilities of CICS for
a particular installation.

system generation. The process of creating a
particular system tailored to the requirements of a
data processing installation.

system initialization table. A table containing
user-specified data that will control a system
initialization process.

systems network architecture (SNA). The total
description of the logical structure, formats, protocols,
and operational sequences for transmitting
information units through a communication system.
The structure of SNA allows the end users to be
independent of, and unaffected by, the specific
facilities used for information exchange.

446 CICS/MVS 2.1.2 Intercommunication Guide

task. (1) A unit of work for the processor; therefore
the basic multiprogramming unit under the control
program. (CICS runs as a task under VSE or OSNS.)
(2) Under CICS, the execution of a transaction for a,
particular. user. Contrast with transaction.

task control. The CICS element that controls alJ CICS
tasks.

TeAM. Telecommunications Access Method.

TeT. Terminal control table.

temporary storage control. The CICS element that
provides temporary data storage facilities.

temporary storage table. A table describing
temporary storage queues and queue prefixes for
which CICS is to provide recovery.

terminal. In CICS, a device equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a communication channel.

terminal control. The CICS element that controls all
CICS terminal activity.

terminal control table. A table describing a
configuration of terminals, logical units, or other CICS
systems in a CICS network with which the CICS
system can communicate.

terminal operator. The user of a terminal.

terminal paging. A set of commands for retrieving
"pages" of an oversize output message in anyorder~

TIOA. Terminal input/output area.

TOR. Terminal-owning region

transaction. A transaction can be regarded as a unit
of processing (consisting of one or more application
programs) initiated bya single request, often from a
terminal. A transaction may require the initiation of
one or more tasks for its execution. Contrast with
task.

transaction backout. The cancelation, as a result of a
transaction failure, of all updates performed by a task.

transaction Identifier. Synonym for transaction
identifier. For example, a group of up to four
characters entered by an operator when selecting a
transaction.

transaction restart. The restart of a task after a
transaction backout.

transaction routing. A eles facility that allows
terminals or logical units connected to one eles
region to initiate and to communicate with
transactions in another eles region within the same
processor system or in another eles system
connected by an LUTYPE6.2 link.

transient data control. The elcs element that
controls sequential data files and intrapartition data.

TST. Temporary storage table.

VSE. Virtual Storage Extended.

VTAM. See AeF/VTAM.

Glossary 447

»

Index

A
ABEND command

See ISSUE ABEND command
ACF/VTAM definition

CICS 82
LOGMODE entries 83

IMS 84
LOGMOOE entries 84

acquired, connection status. 329, 330
acquiring a connection 329

active, value in CEMT INQUIRE MODENAME
display 332

Advanced Program-to-Pr()gram Communication - see
LUTYPE6.2

agent, syncpoint 162
ALEXIT operand of SIT 50
ALLOCATE command

LUTYPE6.1 sessions (CICS·ClCS) 245, 246
LUTYPE6.1 sessions (CICS-lMS) 271, 272
LUTYPE6.2 mapped conversations 173, 174
LUTYPE6.2 unmapped conversations 225
making LUTYPE6.2 sessions available for 331
M RO sessions 245, 246
setting LUTYPE6.1 connection in-service after

SYSIOERR 340
alternate facility

allocating
See ALLOCATE command

default profile 152
defined 161

application programming
asynchronous processing 167
CICS mapping to LUTYPE6.2 verbs 413
CICS-I MS 263
function shipping 163
LUTYPE6.1 conversations (CI.cS-CICS) 245
LUTYPE6.1 conversations (CICS-IMS) 263
UJTYPE6.2 mapped conversations 171
L.UTYPE6.2 unmapped conversations 221

conversation de!;ign 231
MRO distributed transaction processing 245
overview 161
programming languages 161
transaction routing 169

APPLID
and IMS LOGMODE: entry 83
passing with START command 37

APPLlDs
default 92
generic 92

© Copyright IBM Corp. 1977, 1991

APPLlDs (continued)
of local CICS system 92
specific 92

architected processes 153
DUI model 154
LU services model 154
modifying the default definitions 155
process names 154
queue modol 153
resource definition 154
scheduler model 153
system message model 153

ASSIGN command
in AOR 170
LUTYPE6.2 mapped conversatiol1~ 178
LUTYPE6.2 unmapped conversations 225
MRO and LUTYPE6.1 conversations 250

asynchronous processing
application programming 167
canc:eling remote transactions 36
CICS-IMS 265
compared with synchronous processing (DTP) 33,

55
defining remote transactions 138
examples 40
information passed with START command 36
information retrieval 39
initiated by OTP 34
local queuing 38
main discussion 33
NOCH ECK option 37
performance improvement 37
PROTECT option 38
RETRIEVE command 39
security 35
SEND/RECEIVE interface 35

CICS-IMS applications 270
starting remote transactions 35
START/RETRIEVE interface 34, 35

CICS-IMS applications 266
system progr;~mming considerations 40
terminal acquisition 39
typical application 33

ATI
See automatic tnm~action initiation

attaching remote transactions
LUTYPE6. 1 ses~ions (CICS-CICS) 248
LUTYPE6.1 sessions (CICS-IMS) 273
LUTYPE6.2 mapp~d conversations 175
LUTYPE6.2 unmapped conversations 221
M RO sessions 248

449.

ATTACHSEC operand 323
AUTOCONNECT 329
AUTOCONNECT operand

effect on CEMT commands for lUTYPE6.2 330
lUTYPE6.2 resource definitions 125
011 DEFINE CONNECTION

for lUTYPE6.1 103
for lUTYPE6.2 125

on DEFINE SESSIONS
for lUTYPE6.1 103
for lUTYPE6.2 126

on DEFINE TYPETERM for APPC terminals 126
automatic transaction initiation (ATI)

by transient data trigger level 157
definition 46
restriction with routing transaction 54
restriction with shipped terminal definitions 141
rules and restrictions summary 340
with asynchronous processing 36
with lUTYPE6.2 session as "terminal" 176
with terminal-not-known condition 48
with transaction routing 46

available, value in CEMT INQUIRE MODENAME
di!=;play 332

B
back-end transaction

defined 162
LUTYPE6.1 sessions (CICS-CICS) 249
LUTYPE6.1 sessions (CICS-IMS) 276
LUTYPE6.2 mapped conversations 177
LUTYPE6.2 unmapped conversations 234
MRO sessions 249

base conversations 16
See also unmapped conversations

basic mapping support (BMS)
rules and restrictions summary 340
with remote terminals 45
with transaction routing 52, 169

batching of work in MRO regions 12
BIND

sender and receiver 19
bind-time security 315

introduction 313
LUTYPE6.1 links 318
LUTYPE6.2 links 315
MRO links 317

BINDPASSWORD option 315
BMS

See basic mapping support
BUFFER option

L.UTYPE6.2 unmapped conversations 226
BUILD ATTACH command

LUTYPE6.1 sessions (CICS-CICS) 246, 248

450 CICS/MVS 2.1.2 Intercommunication Guide

BUILD ATTACH command (continued)
lUTYPE6.1 sessions (CICS-IMS) 271, 274
MRO sessions 248

C
CANCEL command 36

See also asynchronous processing
CEMT INQUIRE MODENAME display 332
CEMT mClster terminal transaction

restriction with remote terminals 341
setting IRC open 80
with APPC terminals 123
with routing transaction 54

chain of RUs format 264
chClnnel-to-chClnnel communication 14
CICS function request shipping

See function shipping
CICS mClpping to LUTYPE6.2 architecture 413

deviations 440
CICS-CICS communication

application programming (LUTYPE6.1 and
MRO) 245

application programming (LUTYPE6.2
mapped) 171

defining compatible nodes
LUTYPE6.1 sessions 104
LUTYPE6.2 sessions 119
MRO sessions 98

CICS-IMS communication
application design 263
application progrClmming 263
asynchronous processing 265

CICS front end 266
IMS front end 267

chain of RUs format 264
compClrison of CICS and IMS 263
dClta formats 263
defining compatible nodes 108
forms of communication 265
RETRIEVE command 269
SEND/RECEIVE interface 270
START commClnd 268
START/RETRIEVE interface 266
VLVB format 264

class of service (COS) 18
ACFIVTAM LOGMODE entry 83
modesets 18
modifying default profiles to provide

modename 153
selection by PROFILE option of ALLOCATE

command 65
CNOS negotiation 331
command sequences

LUTYPE6.1 sessions (CICS-CICS) 256

command sequences (continued)
LUTYPE6.1 sessions (CICS-IMS) 281
LUTYPE6.2 mapped conversations 203
LUTYPE6.2 unmapped conversations 233
M RO sessions 256

commands
LUTYPE6.1 sessions (CICS-CICS) 245
LUTYPE6.1 sessions (CICS-IMS) 271
LUTYPE6.2 mapped conversations 173
LUTYPE6.2 unmapped conversations 221
MRO sessions 245

communication profiles 151
CONFIRM option

LUTYPE6.2 mapped conversations 184
. LUTYPE6.2 unmapped conversations 226

CONNECT PROCESS command
LUTYPE6.2 mapped conversations 173, 175
LUTYPE6.2 unmapped conversations 225

connections to remote systems 91
acquired, status of 330
acquiring a connection 329
defining 91
freeing, status of 334
released, status of 334
releasing the connection. 333
XNOtdone, status of 300
XOK, status of 300

contention loser 19
contention winner 19
CONVOATA fields 224

error code values 224
testing 224

CONVOATA option
LUTYPE6.2 unmapped conversations 226

conversation
LUTYPE6.1 sessions (CICS-CICS) 251
LUTYPE6.1 sessions (CICS-IMS) 278
LUTYPE6.2 mapped conversations 178
MRO sessions 251

CONVERSE command
LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 sessions (CICS-IMS) 271
LUTYPE6.2 mapped conversations. 173
M RO sessions 246

CONVIO option
LUTYPE6.2 mapped conversations 175
LUTYPE6.2 unmapped conversations 226

COS
See class of service

CRTE routing transaction 53

D
data stream

GOS for LUTYPE6.2 15

data stream (continued)
user data stream for IMS communication 110

data tables 23, 135
OBOCCICS 92
deferred transmission 69

LUTYPE6.1 sessions (CICS-CICS) 251
LUTYPE6.1 sessions (CICS-IMS) 278
LUTYPE6.2 mapped conversations 179
MRO sessions 251
START NOCHECK requests 38

DEFINE CONNECTION
APPC terminals 124
indirect links 130
LUTYPE6.1 links 102,103,108,117
MRO links 94
NETNAMEoperand 93

DEFINE PROFILE 151
DEFINE SESSIONS

APPC terminals 124
indirect links 130
LUTYPE6.1 links 102, 118
MAXIMUM operand

effect on CEMT commands for LUTYPE6.2 331
MRO links 94

DEFINE TERMINAL
APPC terminals 123
remote VTAM terminals 140
shippable terminal definitions 141

DEFINE TRANSACTION
asynchronous processing 138

RSLC operand 35
INDOUBT operand 291
transaction routing 149

DEFINE TYPETERM
APPC terminals 123

defining resources
See resource definition

deviations from LUTYPE6.2 architecture 440
DFHCDBLK copy book 224
DFHCICSA 152
DFHCICSE 152
OFHCICSF 152
OFHCICSR 153
DFHCICSS 152
DFHCICST 152
DFHCICSV 152
DFHOCT TYPE = REMOTE 137
DFHDLDBD TYPE = 136
DFHDLPSB TYPE= ENTRY 136
OFHFCT TYPE = REMOTE 135
OFHSIT

See system initialization table
DFHTCT TYPE = MODESET 118
OFHTCT TYPE = REGION 144

Index 451

DHfTCT TYPE == REMOTE 142
DFHTCT TYPE == SYSTEM

APPC terminals 124
LUTYPEG.l links 102

individual sessions 108
LUTYPE6.2 links 117
LUTYPE6.2 terminals 117
MRO links 96
NETNAME operand 93

OFHTCT TYPE - TERMINAL
LUTYPE6.1 links

DFHTST TYPE- REMOTE 137
distributed transaction processing

application programming 171,245,263
CICS~CICS (LUTYPE6.2 mapped) 171
CICS,.I MS 263

application programming overview 64
conversation 66
freeing the session 67
obtaining use of a session 65
starting a back~end transaction 65
synchronization points 67

CICS-IMS 271
compared with asynchronous processing 33,55
main discussion 55
multiple sessions 73
queue transfer 74
requester/server design 73
restrictions for MRO 261
SNA considerations 67
synchronization with multiple sessions 73
with non·CICS systems 74
&12@DTP.

CICS~CICS (LUTYPE6.1) 245
CICS-CICS (MRO) 245

OLII
defining remote PSBs (CICS/MVS) 136
function shipping 23, 164
installation considerations 82

DLII database
external security manager 325
security checking 325

DLII model 154
DTB operand 292

E
EIB fields

LUTYPE6.1 sessions (CICS~CICS) 254
LUTYPE6.1 sessions (CICS-IMS) 279
LUTYPE6.2 mappf~d conversations 201
MRO sessions 254
order of testing 72

emergency restart 302

452 CICS/MVS 2.1.2 Intercommunication Guide

ERROR command
See ISSUE ERROR command

exceptional· condi tions
function shipping 165

exchange-Iognames process (LUTYPE6.2
connections) 299

EXEC CICS GDS commands 225
EXTRACT AITACH command

LUTYPE6.1 sessions (CICS-CICS) 246, 249
LUTYPE6.1 sessions (CICS-IMS) 271, 277
MRO sessions 249

EXTRACT PROCESS command

F

LUTYPE6.2 mapped conversations 173, 177
LUTYPE6.2 unmapped conversations 225

file control
function shipping 22, 163

FLENGTH option
LUTYPE6.2 unmapped conversations 226

FREE command
LUTYPE6.1 sessions (CICS-CICS) 246, 254
LUTYPE6.1 sessions (CICS-IMS) 272, 279
LUTYPE6.2 mapped conversations 173, 200
LUTYPE6.2 unmapped conversations 225
MRO sessions 246,254

freeing, connection status 334
front-end transaction

defined 162
LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 sessions (CICS-IMS) 272
LUTYPE6.2 mapped conversations 173
MRO sessions 246

function shipping
and transaction routing 46
application programming ·163
defining remote resources 134

DUI PSBs (CICS/MVS) 136
files 135
temporary storage queues 137
transient data destinations 137

design considerations 22
DLII requests 23, 164
exceptional conditions 165
file control 22, 163
interval control 21
main discussion 21
mirror transaction 24
mirror transac~ion Abend 165

likely cause 326
security 325
short-path trAnsformer 28
temporary storage 23, 164
transient data 23, 164

G
GDS

See generalized data stream
generalized data stream (GDS) 15
generic applid 92

I
lev operand of SIT 12
IMS

comparison with CICS 263
installation considerations 84
messages switches 266
nonconversational transactions 266
nonresponse mode transactions 266
system definition 85

I MS-CICS communication
See CICS-IMS communication

indirect links
defining

ROO method 130
resource definition 128
shippable terminals 130

INDOUBT operand 291
indoubt period 290

session failure during 290
initiator, syncpoint 162
INSERVICE operand

on DEFINE CONNECTION
for LUTYPE6.1 103

on DEFINE SESSIONS
for LUTYPE6.1 103

installation 77
ACF/VTAM definition for CICS 82

LOG MODE entries 83
ACF/VTAM definition for IMS 84

LOGMODE entries 84
CICS modules required for ISC 81
CICS modules required for MRO 79
DUI facilities 82
IMS considerations 84
IMS system definition 85
intersystem communication 81
MRO modules in the link pack area 80
multi region operation 79
subsystem support for CICS/MVS MRO 79
type 2 SVC routi ne 79

interregion communication (IRC) 9
See also multi region operation
security 311
setting IRC open 80
short-path transformer 28

intersystem communication (ISC)
channel-to-channel communication 14

intersystem communication (ISC) (continued)
concepts 13
connections between systems 13
defined 3
defining compatible CICS and IMS nodes 108
defining compatible CICS-CICS LUTYPE6.1

nodes 104
defining compatible LUTYPE6.2 nodes 119
defining LUTYPE6.1 links 102
defining LUTYPE6.2 links 116
defining LUTYPE6.2 modesets 118
defining LUTYPE6.2 terminals 123
facilities 4
Installation considerations 81
intrahost communication 14
multi-channel adapter 14
required CICS modules 81
security 311
sessions 14
transaction routing 45

intersystem sessions 14
interval control

function shipping 21
INTO option

LUTYPE6.2 unmapped conversations, 227
intrahost ISC 14
I NVITE option

LUTYPE6.2 unmapped conversations '227
INVREQ condition

LUTYPE6.2 unmapped conversations 230
IRC

See interregion communication (IRC)
IRCSTRT 80
ISC

See intersystem communication
ISSUE ABEND command

LUTYPE6.2 mapped conversations 173,182
LUTYPE6.2 unmapped conversations 225

ISSUE CONFIRMATION command
LUTYPE6.2 mapped conversations 173
LUTYPE6.2 unmapped conversations 225

ISSUE ERROR command
LUTYPE6.2 mapped conversations 173, 182
LUTYPE6.2 unmapped conversations 225

ISSUE PREPARE command
LUTYPE6.2 mapped conversations 173, 196
LUTYPE6.2 unmapped conversations 225

ISSUE SIGNAL command
LUTYPE6.1 sessions (eICS-CICS) 246
LUTYPE6.1 sessions (CICS·IMS) 272
LUTYPE6.2 mapped. conversations 173
LUTYPE6.2 unmapped conversations 225
MRO sessions 246

Index 453

L
LAST option

LUTYPE6.1 sessions (CICS-CICS) 253
with syncpointing 253

LUTYPE6.1 sessions (CICS-IMS) 279
with syncpointing 279

LUTYPE6.2 mapped conversations 181
with syncpointing 181

LUTYPE6.2 unmapped conversations 227
M RO sessions 253

with syncpointing 253
LENGERR condition

LUTYPE6.2 unmapped conversations 230
level 0 synchronization 16
level 1 synchronization 16
level 2 synchronization 17
limited resources 18

effects of 334
link pack area modules for MRO 80
link security

introduction 314
links to remote systems 91

defining 91
LlfD option

lUTYPE6.2 unmapped conversations 227
local CICS system

APPUDs 92
naming 92

local names for remote resources 133
!OCa! queuing of START iequests 33
logical unit type 6.1

See lUTYPE6.1
logical unit type 6.2

See lUTYPE6.2
LOGMODE entry

CICS 83
IMS 84

long-running mirror tasks 26
LU services manager

description 17
SNASVCMG sessions 116

lU services model 154
lU-LU sessions '14

contention 19
primary and secondary LUs 19

lUTYPE6.1
bind-time security 318
CICS-CICS application programming 245
CICS-IMS application programming 263
deferred transmission 69
link definition 102

lUTYPE6.2
base conversations 16
bind passwords 315

454 CICS/MVS 2.1.2 Intercommunication Guide

LUTYPE6.2 (continued)
bind-time security 315
CICS·CICS application programming 171
class of service 18
data stream 15.
deferred transmission 69
link definition 116
link definition for terminals 123
lU services manager 17, 116

mapped conversations 16
mapping to lUTYPE6.2 architecture 413
master terminal operations 329
modeset definition 118
overview 15
single-sessions

limitations 17
synchronization level s 16
unmapped conversations 16

.lUTYPE6.2 connections
exchange-Iognames process 299

LUTYPE6.2 mapped conversations 171
C:ICS mapping to LUTYPE6.2 verbs 423
deviations from lUTYPE6.2 architecture 440

lU·TYPE6.2 unmapped conversations
CICS mapping to LUTYPE6.2 verbs 414
commands 221
CONVDATA fields 224

testing 224
deviations from LUTYPE6.2 architecture 440
error code values 224
RETCODE values 223
session data and error codes 222

LUW
See units of work

M
macro-level resource definition

APPC terminals 124
links for multi region operation 96
links to remote systems 92
LUTYPE6.1 links 103, 108
LUTYPE6.2 links 116
remote DllI PSBs 136
remote files 135
remote resources 133
remote temporary storage queues 137
remote transactions 138
remote transient data destinations 137

mapped conversations 16
mapping to LUTYPE6.2 architecture 413

basic (unmapped) conversations 414
control operator verbs 431
deviations 440
mapped conversations 423

MAXFLENGTH option
LUTYPE6.2 unmapped conversations 227

MAXIMUM operand, DEFINE SESSIONS command
effect on CEMT commands for LUTYPE6.2 331

maximum, value in CEMT INQUIRE MODENAME
display 332

MAXSMIR operand of SIT 27
methods of asynchronous processing 34
migration

from single region operation to MRO 11
LUTYPE6.1 programs on LUTYPE6.2 links 66, 217
transaction routing environment 169

migration mode 217
mirror transaction 24

long-running mirror tasks 26
reusable mirror tasks 26
security 325

mirror transaction abend 165
likely cause 326

MODENAME
MODENAME option

LlJTYPE6.2 unmapped conversations 227
rnodesets

class of service 18
MRO

See multi region operation
MROBTCH operand of SIT 12
multi-channel adapter 14
multiregion operation

long-running mirror tasks 26
reusable mirror tasl<s 26

multi region operation (MRO)
applications 10

departmental separation 11
extended recovery 10
multiprocessing 11
program development 10
reliable database access 10
time sharing 10

batching 12
CICS-CICS application programming 245
concepts 9
conversion from single region 11
defined 4
defining CICS/MVS as a subsystem 79
defining compatible nodes 98
DTP restrictions 261
facilities 4, 9
installation considerations 79
interregion communication 9
modules in the link pack area 80
required CICS modules 79
security 311
setting IRC open 80
short~path transformer 28

multiregion operation (MRO) (continued)
transaction routing 45
unhelpful abend codes 342

MVS cross-memory services
security 327
specifying for interregion links 94

N
names

local CICS system 92
remote resources 133
remote systems 93

NETNAME
default 93
mapping to SYSIDNT 93

NOCHECK option of START command 37
mandatory for local queuing 39

NOQUEUE option
LUTYPE6.2 unmapped conversations 227

NOQUEUE option of ALLOCATE command
LUTYPE6.1 sessions (CICS-CICS) 247
LUTYPE6.1 sessions (CICS-IMS) 272
LUTYPE6.2 mapped conversations 174
MRO sessions 247

NOTALLOC condition
LUTYPE6.2 unmapped conversations 230

o
obtaining, connection status 330
obtaining, status of 330
online resource definition

See resource definition online
operating system requirements

ISC installation 82
OPERJ<EYS

option on EXEC CICS ASSIGN command 170, 178,
250

order of EIB tests 72

p
pending units of work 300
PIPLENGTH option

LUTYPE6.2 mapped conversations 175, 177
LUTYPE6.2 unmapped conversations 228

PIPLIST option
LUTYPE6.2 mapped conversations 175, 177
LUTYPE6.2 unmapped conversations 228

primary logical unit 19
principal facility

default profiles 152
defined 161

Index 455

PRINCONVIO option
LUTYPE6.2 unmapped conversations 228

PRINSYSIO
option on EXEC CICS ASSIGN command 170

PRINSYSID option
LUTYPE6.2 unmapped conversations 228

PROCLENGTH option
LUTYPE6.2 mapped conversations 175, 177
LUTYPE6.2 unmapped conversations 228

PROCNAME option
LUTYPE6.2 mapped conversations 175, 177
LUTYPE6.2 unmapped conversations 228

PROFILE option of ALLOCATE command 65
class of service for LUTYPE6.2 sessions 65
LUTYPE6.1 sessions (CICS~CICS) 247
LUTYPE6.1 sessions (CICS-IMS) 272
LUTYPE6.2 mapped conversations 174
M RO sessions 247

profiles
CICS~supplied defaults 152
for alternate facilities 152
for principal facilities 152
modifying the default definitions 153
named on ALLOCATE command 65
resource definition 151

PROTECT option of START command 38
pseudoconversational transactions

n
'If

with trarisaction routing 169

queue model 153
queue transfer using OTP 74

R
RACF

See resource access control facility
ROO

See resource definition online
RECEIVE command

LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 sessions (CICS~IMS) 271
LUTYPE6.2 mapped conversations 173
LUTYPE6.2 unmapped conversations 225
MRO sessions 246

record lengths for remote files 136
recovery and restart 289

database interlock 303
dynamic transaction backout

specifying backout options following session
failure 291

emergency restart 302
i ndoubt period 290
LUTYPE6.2 pending units of work 300

456 CICS/MVS 2.1.2 Intercommunication Guide

recovery and restart (continued)
syncpoint exchanges 290
syncpoint flows 292

relay program 45
released, connection status 330, 333, 334

releasing the connection. 333
released, status of 330
remote OLII PSBs

defining (CICS/MVS) 136
remote files

defining 135
file names 135
record lengths 136

remote operators 320
remote resources

defining 133
naming 133

remote temporary storage queues
defining 137

remote terminals
definition using OFHTCT TYPE = REGION 144
definition using OFHTCT TYPE = REMOTE 142
terminal identifiers 146

remote transactions
defining for asynchronous processing 138
defining for transaction routing 148

remote transient data destinations
defining 137

remote users 320
resource access control facility (RACF) 311
resource definition

architected processes 154
asynchronous processing 138
CICS-CICS LUTYPE6.1 links 102
CICS-IMS LUTYPE6.1 links 108

defining multiple links 114
default profiles 152
defining compatible cles and IMS nodes 108
defining compatible CICS-CICS LUTYPE6.1

nodes 104
defining compatible LUTYPE6.2 nodes 119
defining compatible MRO nodes 98
distributed transaction processing 150
function shipping 134
links for multi region operation 94

macro method 96
ROO method 94

links to remote systems 91
local resources 151
LUTYPE6.1 links 102

macro method for CICS-to-CICS 103
macro method for CICS-to-IMS 108
ROO method for CICS-to-GICS 103
ROO method for CICS~to-IMS 108
ROO methods 102

resource definition (continued)
LUTYPE6.2 bind password 315
LUTYPE6.2 links 116

macro method 116
ROO method 116

LUTYPE6.2 modesets 118
LUTYPE6.2 terminals 123

macro method 124
ROO method 1 124
ROO method 2 123

modifying architected process definitions 155
modifying the default profiles 153
overview 89
profiles 151
remote OUI PSBs (CICS/MVS) 136
remote files 135
remote resources 133
remote temporary storage queues 137
remote terminals 140, 142
remote transactions 138, 148
remote transient data destinations 137
resource security 325
transaction routing 139
transaction security 324
user security in link definitions 322

resource definition online (ROO)
APPC terminals 123, 124
indirect links 130
links for multiregion operation 94
links to remote systems 91
LUTYPE6.1 links 102,103, 108
LUTYPE6.2 links 116
remote resources 133
remote transactions 138
remote VTAM terminals 140
shippable terminal definitions 141

resource security
link security 319
resource definition 325
transaction routing 326
user security 320

RETCODE option
LUTYPE6.2 unmapped conversations 229

RETCODE values 223
RETRIEVE command

See also asynchronous processing
CICS"IMS communication 269
terminal acquisition

when "terminal" is a system 39
WAIT option 39

retrieving information shipped with START
command 39

reusable mirror tasks 26
maxirnum number 27
suspension and resumption 27

reusable mirror tasks (continued)
timeout 26

RMTNAME operand in remote resource
definitions 133

ROLLBACK
See SYNCPOINT ROLLBACK command

routing transaction (CRTE) 53
automatic transaction initiation 54
Invoking CEMT 54

RSLC operand of DEFINE TRANSACTION 35

S
scheduler model 153
secondary logical unit 19
security 311

bind passwords 315
.bind-time security 315
DUt databases 325
function shipping 325

considerations for the user 325
identifying remote users 323
implementation 314
linksecurity 319
mirror transaction 325
of remote-user identification 323
planning for intercommunication security 313
resource security 325
securing transactions and resources 324
transaction initiation 324
transaction routing 326
transaction security 324
type 2 SVC routine 327
user security 320
user security in link definitions 322
verifying remote users 324
with MVS cross-memory services 327

SEND command
LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 sessions (CICS-IMS) 271
LUTYPE6.2 mapped conversations 173
LUTYPE6.2 unmapped conversations 225
MRO sessions 246

SEND CONFIRM command
LUTYPE6.2 mapped conversations 173

SEND INVITE command
LUTYPE6.2 mapped conversations 173

SEND/RECEIVE asynchronous processing 35
CICS-IMS communication 270

session allocation
LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 sessions (CICS-IMS) 272
LUTYPE6.2 mapped conversations 174
MRO sessions 246

Index 451

session failure
during indoubt period 290

SESSION option of ALLOCATE command
LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 sessions (CICS-IMS) 272
M RO sessions 246

shippable terminals
resource definition 141
terminal-not-known condition 48
with ATI 48
with indirect links 130

short-path transformer 28
SIGNAL command

See ISSUE SIGNAL command
SIT

See system initialization table
SL(l)

See synchronization levels
SL(2)

See synchronization levels
SNA

considerations for OTP 67
SNA indicators

generation 68
transmission 69

SNASVCMG 329
SNASVCMG sessions

generation by CICS 116
purpose of 17

specific applid 92
SSi

See Subsystem Support
START command

See also asynchronous processing
CICS-IMS communication 268

START NOCHECK command 37
deferred sending 38
local queuing 39

START PROTECT command 38
START/RETRIEVE asynchronous processing 34,35

CICS-IMS communication 266
Subsystem Support (SSI)

required for MRO with CICS/MVS 79
surrogate terminal 169
SVC routine

See type 2 SVC routine
switched lines

cost efficiency 18
synchronization levels 16

mapped conversations 172
specifying for mapped conversations 176
testing in mapped conversations 177
unmapped conversations 229

SYNC LEVEL option
LUTYPE6.2 mapped conversations 175, 177

458 CICS/MVS 2.1.2 Intercommunication Guide

SYNC LEVEL option (continued)
LUTYPE6.2 unmapped conversations 229

syncpoint agent 162
SYNCPOINT command

interaction with LAST option 181
LUTYPE6.2 marped conversations 173, 186
with 181

syncpoint initiator 162
SYNC POINT ROLLBACK command

LUTYPE6.2 mapped conversations 173, 195
SYSBUSY condition

LUTYPE6.2 mapped conversations 174
LUTYPE6.2 unmapped conversations 230

SYSIO option
LUTYPE6.2 unmapped conversations 229

SYSIO option of ALLOCATE command
LUTYPE6.1 sessions (CICS-CICS) 247
LUTYPE6.1 sessions (CICS-IMS) 272
LUTYPE6.2 mapped conversations 174
MRO sessions 247

SYSIOERR condition
LUTYPE6.2 mapped conversations 174
LUTYPE6.2 unmapped conversations 231

SYSIDNT
default 93
local CICS system 93
mapping to NETNAME 93
of local CICS system 93
of remote systems 93

system generation
intersystem communication 81

multi region operation 79
system initialization table (SIT)

ALEXIT operand 50
APPLIO operand 92
entries for intersystem communication 81
entries for multiregion operation 79, 341
IRCSTRT operand for multiregion operation 80
MAXSMIR operand 27
SYSIONT operand 93

system message model 153

T
table definition

See resource definition
temporary storage

function shipping 23, 164
terminal-nat-known condition during ATI 48
testing EIB fields 72
timeout of reusable mirror tasks 26
transaction routing

and function shipping 46
application programming· 169
automatic transaction initiation 46, 48

transaction routing (continued)
basic mapping support 52, 169
defining remote resources 139

terminals 140, 142
transactions 148

main discussion 45
pseudoconversational transaction!-; 169
relay program 45
routing transaction 53
security 326
surrogate terminal 169
system programming considerations 54
terminal shipping 48
use of ASSIGN command in AOR 170

transaction security
link security 319
resource definition 324
user security 320

transient data
function shipping 23, 164

TRPROF option
on remote terminal definition 149
on routing transaction (eRTE) 53

type 2 SVC routine

U

and CICS APPLIO 92
installing 79
security compared with cross-memory

services 327
specifying for interregion links 94
used for interregion communication 9

units of work 300
unmapped conversations 16

application programming 221
CICS commands 221
command sequences 233
CONVOATA fields 224

testing 224
conversation design 231
error code values 224
EXEC CICS GOS commands 225
RETCOOE values 223
session data and error codes 222
structured fields 231

user exits
XALTENF 36,49, 54, 141
XICTENF 36,49, 54, 141

user security
introduction 314
seen in relationship to user 320
transaction routing 326

USERID
option on EXEC CICS ASSIGN command 170, 178,

250

V
VLVB format 264
VTAM

limited resources 18

W
WAIT command

LUTYPE6.1 sessions (CICS-CICS) 246
LUTYPE6.1 se~sions (CICS-IMS) 271
LUTYPE6.2 mapped conversations 173
LUTYPE6.2 unmapped conversations 225
M RO sessions 246

WAIT option of RETRIEVE command 39

X
XALTENF, user exit 49
XICTENF, user exit 49
XNOtdone, connection status 300
XOK. connection status 300
XRF (extended recovery facility) 307

APPLIDs 92

Index 459

Readers' Comments

CICS/MVS
Intercommunication Guide
Version 2 Release 1 Modification 2

Publication No. SC33·0519·02

Use this form to tell us what you think about this manual. If you have found errors in it, or you want to
express your opinion about it (such as organization, subject matter, appearance) or make suggestions
for improvement, this is the form to use. To help us produce books that meet your needs, we have
included a questionnaire at the front of the book; Whichever form you use, your comments will be sent
to the author's department for review and appropriate action.

When you send comments to 18M, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to vou.

Thank you for your time and effort. No postage stamp is necessary if mailed in USA. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.) Be sure to print your name and address
below if you would like a reply.

-----_._-------_ ... -
Name Address

-:-----:--,.--,.,.---------_._--------- -----------. __ ..
Company or Organization

Phone No.

;;4i¥ MT41 rm",R 0; 4MOOJ.SWJitt9i,"""""' • .o@ .• .M'!Mt4iL?!

Readers' Comments
SC33-0519-02

Fold and Tape

--~.------------.

Fold and Tape

Please do not staple

···11

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WIll BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 6R1H
180 KOST ROAD
MECHANICSBURG PA 17055-0786

I ••• 111 ••• 111 •••• 1.' •• 1.1.11 ••• 1 ••• 11 •• ' •• 11 ••••• ,"

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

Fold and Tape

Cu
Ale

cutor(
Along lIr

