$C33-0077-3

Customer Information
Control System/Virtual
Storage (CICS/VS)
Version 1 Release 5

Application Programmer’s
Reference Manual
Program Product - (Command Level)

Program Numbers 5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

Fourth Edition (July 1981)

This edition applies to Vaersion 1 Release 5 (Version 1.5) of the IBM
program product Customer Information Control System/Virtual Storage
CICS/VS, program numbers 5746-XX3 (for DOS/VS) and 5740-XX1 (for 0S/VS).

This edition is basad on the previous CICS/VS Version 1.5 edition, and
changes from that edition are indicated by vertical lines to the left of
the changes. :

Information in this publication is subject to change. Changes will be
published in new editions or technical newsletters. Before using this
publication, consult the latest IBM System/370 and 4300 Processors
Bibliography, 6C20-0001, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material may contain references to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or to
the IBM branch office servipg your locality.

A form for reader's comments is provided at the back of this puk'ication;
"if the form has been removed, comments may be addressed eith

International Business Machines Corporation,
Department 812HP,

1133 Westchester Avenue, . ;
White Plains, New York 10604. o

or to:

i IBM United Kingdom Laboratories Limited,
Programming Publications, Mail Point 095
Hursley Park, .

Winchester, Hampshire $021 2JN, Englan

IBM may use or distribute any of the informat
believes appropriate without incurring any ot
wPf course, continue to use the information.yc

Qb Copyright International Business Machinas ¢
1980, 1981

i1

Summary of Amendments Number 10

Date of Publication: December 3, 1976
Form of Publication: TNL GN26-0887 to GC28-6394-4, -5, -6

IBM DOS COBOL

Maintenance: Documentation

® Minor technical changes and additions have been made to the text.

Summary of Amendments Number 9

Date of Publication: March 15, 1974
Form of Publication: TNL GN28-1062 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

¢ SORT-OPTION clause for Sort and Merge Features
® 5425 MFCU Support

Maintenance: Documentation only

Minor technical changes and corrections to update the documentation to
Release 2

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

® 5425 MFCU support deleted

® Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to thefﬂ
left of the text. These bars will be deleted at any subsequent republication of the page affected. ;

'
i

[

Summary of Amendments : Number 8

* Date of Publication: October 15, 1973
<Form of Publication: TNL GN28-1047 to GC28-6394-4

1BM DOS/VS COBOL

New: Programming Features
® Merge Facility

New: Documentation only

® Miscellaneous File Processing Considerations

Maintenance: Documentation only

Minor technical changes to update the documentation to the initial release level.
IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Pretface

This manual describes the IBM Customer
Information Control System/Virtual
Storage (CICS5/VS) command-level
application-programming interface; it
contains introductory and reference
information necessary to prepare
assembler-language, COBOL, and PL/1
application programs, using CICS/VS
commands, to execute under either of two
IBM program products: CICS/DOS/VS
(5766-XX3) or CICS/05/VS (5740-XX1). It
is intended primarily for use by
application programmers, but will be
useful also for system programmers and
system analysts. A knowledge of the
concepts and terminology introduced in
the Customer Information Control
Svystem/Virtual Storage (CICS/YS) Version
1l Release 5: General Information,
GC33-0066 1s required.

The manual contains the following parts:

. "Part 1. Command-level Programming®
introduces CICS/VS commands and
describes the basic facilities that
are available to the user. A chapter
is included about the command
language translator and the options
that can be selected to modify the
way in which the translator operates.

. "Part 2. Data Base Operations" deals
with access to data sets in the
user's CICS/VS system either through
CIC5/7VS file control or through DL/I.

. "Part 3. Data Communication
Operations" deals with communication
with terminals and logical units of
the subsystems in the
telecommunications network that
forms part of the CICS/VS system.

. "Part 4. Control Operations" groups
together facilities for controlling
the operation of application
programs in the CICS/VS system.

. "Part 5. Recovery and Debugging®
deals with facilities available for
recovery from abnormal termination;
monitoring; tracing program
operation; and dumping areas of main
storage.

. "Part 6. The CICS/VS Built-In
Function (BIF DEEDIT) Command"
describes the one built-in function
available with the command-level
interface.

. "Part 7. Appendixes™

. EXEC Interface Block.

. Translation Tables for the 2980.
. CICS/VS Macros and Equivalent
Commands.

Sample Programs (ASM).

Sample Programs (COBOL).

Sample Programs (PL/I).

Sample Programs for Distributed
Transaction Processing.

@TMO OW»

Experience in writing programs in
assembler language, COBOL, or in PL/I is
assumed. No previous experience of
CICS5/VS is assumed. (Note: in some places
in the manual, ASM is used as the
abbreviation for assembler language.)

Related publications are listed in the
bibliography at the end of this
publication.

In this publication, the term VTAM refers
to ACF/VTAM, to ACF/VTAME (CICS/DOS/VS
only), and to the Record Interface of
ACF/TCAM (CICS/05/VS only). The term
TCAM refers both to TCAM and to the DCB
Interface of ACF/TCAM. The term BTAM
refers to BTAM (CICS/05/VS only) and to
BTAM-ES (CICS/D0OS/VS only). For further
details of system requirements, refer to
the publication CICS5/VS General

Information.

. "Preface iii

Summary of Amendments

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE 5

This fourth edition (SC33-0077-3)
includes information about outboard
formatting support for 8100 Information
Systems using the DPPX/DPS Version 2.

In addition various editorial and
formatting changes, together with minor
corrections, have been made throughout.

The third edition (5C33-0077-2) provides
information about the new or enhanced
features introduced by CIC5/VS Version 1
Release 5, as follows:

. Extensions to the intercommunication
facilities, offering:

- Multiregion operation (MRO) -- a
new mechanism that allous
communication between multiple
connected CICS/VS regions within
the same processing system
without the use of SNA networking
facilities.

- Distributed transaction
processing (DTP) -- direct
transaction-to-transaction
communication across systems.
(This facility is not available
on MRO.)

- Intersystem Communication
between CICS/VS and IMS/VS.

- Improved throughput by support
of SNA parallel sessions.

. Enhanced master terminal facilities
for interactive control of CICS/VS.

. Command-level interface
enhancements: an interactive
command interpreter, and a new
command-level interface with DL/I.

) Security enhancements, including
support for an external security
manager (for example, the Resource
Access Control Facility (RACF)
program product).

. Improved monitoring facilities.

. Further device support, including:
- Additional 3270 support.

- Use of the 05/VS console as a
CICS/VS terminal.

- Networking of TWX and WTTY
terminals through the Network
Terminal Option (NTO0) program
product.

. Usability and serviceability aids,
including a new user exit mechanism
and facilities in CICS/D0OS/VS
similar to those provided by the FERS
service aid.

Some of the above features are not
described in this manual because they do
not directly affect the application
programmer; for information on these,
refer to the other CICS5/VS manuals listed
in the bibliography.

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE &.

The technical newsletter (SN33-6242)
provides information about the new or
enhanced features introduced by CICS/VS
Version 1 Release 4.1, as follows:

U LUTYPE4 support

. FBA device support (CICS/D0OS/VS
only)

. Intersystem communication message
performance option.

SUMMARY OF AMENDMENTS FOR VERSION 1
RELEASE &

The second edition (5C33-0077-1)
provides information about the new or
enhanced features introduced by CICS/VS
Version 1 Release 4, as follows:

. Intersystem Communication

. Data Base Support (Transaction
Restart)

L Extensions to Support of the 3270
Information Display System

o Enhancements to the Command Level
Interface (Assembler Language and
DL/I)

. Execution (Command Level) Diagnostic
Facility (EDF)

The apprendixes have been extended to
include assembler-language sample
application programs and a separate
appendix has been allocated to each
language.

Summary of Amendments v

Contents

Part 1. Command-Level Programming 1 Chapter 1.5. Exceptional
conditions . . . ¢« ¢« ¢« « 4« + + + « « 25
Chapter 1.1. Introduction to The ERROR Exceptional Condition 25
Command-Level Programming “ e o e 3 Handle Exceptional Conditions
Structure of this Manual . . 3 (HANDLE CONDITIOHN) . .« . 25
Syntax Notation Used in this Manual % Handle Condition Command Optlon . . 26
Ignore Exceptional Conditions
Chapter 1.2. cCommand Format and (Iognore Condition) 26
Argument Values « e s e e e e e e . 5 List of Exceptional Condltlons . . 26
Command Format e e e e e e e e e e 5
Coding Conventions e e e e e e 5 Chapter 1.6. Access to System
Argument Values - . - e e . 5 Information “ e e e e e s e e s . 29
Argument Values in Assembler EXEC Interface Block (EIB) e .. 29
Language . 6 Access to CICS/VS Storage Areas
Argument Values 1n COBOL . . 6 (ADDRESS) . . e e e .. 29
Argument Values in PL/I .« e e e 7 ADDRESS Command Options 29
Values Outside the Appl|cat\on
Chapter 1.3. cCommand Language Program (ASSIGN) . 1 1
Translator . . ¢ v ¢ ¢ ¢ o o v o o 9 Assign Command Options e e e e e . . 30
Translator Data Sets e e e e e e e 9
Input Data Set e e e e e e e e 9 Chapter 1.7. Execution
Output Data Set e e e e e e e 9 (Command-Level) Diagnostic
Listing Data Set e e e e e 9 Facility e -3
Translated Code e e e e e e e« 4 . . 10 Functions of EDF e e e e e e e e . . 35
Assembler Language P 1 Security Rules . 1 -
COBOL .o D 4 Installing EDF .]
PL/I . . P 4 Invoking EDF O 1
Translator Uptxons . e . 12 Using EDF Displays . . e e e e o« 37
Assembler-Language Translator Terminal Sharing Between
Options e e e e 13 Transaction and EDF e e e« s+ . . 38
COBOL Translator Optlons e oo. 13 Enter and PF Keys e e e e e . 39
PL/I Translator Options e e e .. 16 Overtyping EDF D\splays R 3 |
Checking Out
Chapter 1.4. Programming Pseudo-conversational Programs . . 641
Tachniques and Restrictions e o o 17 Program Labels 62
General Programming Techniques .. 17 Using EDF with EXEC DLI Commands . 642
CICS/VS Macros used with
CICS/7VS Commands e e e e e .. 18 Chapter 1.8. Command-Level
Object Program Size .. 19 Interpreter e e o e s s e e s e s « 45
Assembler-lLanguage Consuderatlons 19 Invoking the Command-Level
Restrictions . e e . . . 19 Interpreter e e e e e e 45
Commands Conta\ned wlthln Screen Layout . . 45
Macros and COPY Code . e . . . 19 Command Input Area . . . 45
Invoking Assembler- Lanquage Status Area . e e e e e « . . 46
Application Programs by a Call Information Area 46
Statement 19 Command Syntax Check B 1)
COBOL Consxderatlons e e e v e e« . 19 About to Execute Command N ¥
Restrictions . e e e e e e .. 19 Command Execution Complete . . 48
Compilers Supported <. 19 Variables T 2.1
Base Locator for Llnkage (BLL) 0 Expanded Area .« < . 49
BLL and Chained Storage Areas 20 Enter Key and PF Key Values . . . 49
BLL and OCCURS DEPENDING ON Terminal Sharing e e e+« s+ « . 50
Clauses 21 Program Control .1
BLL and Large Storage Areas .. 21 Security Rules . .+« . 50
BLL and the Optimization Installing the Command Level
Feature . .. 21 Interpreter -1
BLL and Large Communlcat1on
Area . e e e e .. 22 Part 2. Data Base Oparations « « « B51
NOTRUNC Compller Optlon c e e .. 22
Program Segments e e e e e e .. 22 Chapter 2.1. Introduction to Data
PL/1 Considerations e e e e e e . 22 Base Operations .- X 4
Restrictions . . . 22
PL/1I STAE Executlon T1me Opt\on 22 Chapter 2.2. File Control e » o« o« o« 55
Compilers Supported 22 Data Set Identification e « +« .+ . 55
OPTIONS(MAIN) Spec1flcatton .. 23 Direct Access to Records e« + « . 5B
Program Segments T Multiple File Operations . -+« . 56

Contents vii

Sequential Access to Records
(Browsing) “ e e e e e e
Segmented Records C e e e
ISAM Data Sets . . e e e e e
Record Identrflcatvon

Adding Records to ISAM Da%a Sets

ISAM Exclusive Control e
ISAM Browsing Operations ..
VSAM Data Sets

Initialization of VSAM Data Sets

Record Identification e e e
VSAM Keys .. e
VS5AM Exclusive Control ..

Deletion of VSAM Records
VSAM Mass Sequential Insertlon
VSAM Browsing Operations

VSAM Skip-Sequential ProceSSIng.

Sharing VSAM Resources e e
V5AM Alternate Indexes . e e
DAM Data Sets . . e e e

Record Identlflcatlon

Adding Records to DAM Data Sets

DAM Exclusive Control .

DAM Browsing Operations .
KEYLENGTHS for Remote Data Sets
Read a Record (READ) « e e
Write a Record (WRITE) .

Update a Record (REWRITE) .
Delete a VSAM Record (DELETE)

Release Exclusive Control (UNLOCk)

Start Browse (STARTBR) .
Read Next Record during a Browse
(READNEXT) .
Read Previous Rncord durlng a
Browse (READPREV) (VSAM ONLY)
Resat Start of Browse (RESETBR)
End Browse (ENDBR) e e e
File Control Options

.

-

.

-

.

-

.

.
.
-
.

File Control Exceptlonai Condltlons'

Chapter 2.3. DL/I Services (DL/X
CALL Statement) . . .
User Interface Block (UIB) . .
Schedule the PSB and Obtain PCB
Addresses .

Segment Search Argumpnts (SSA)
I/0 Work Area for DL/] Segments
Issue a DL/I Data Base Call .

Release a PS5B in the CICS/VS

. Application Program

Check the Response to a DL/I CALL

Example of DL/I Request Using Call

Chapter 2.4.
DLI Command)

DL/I Services (EXEC

e o a ® o

DL/I Interface Block (DIB)

Example of DL/I Request Using E.XEC

DLI . e e e e e
COBOL e e e e e e e
PL/1 e e e e e e
Part 3. Data Ccommunication
oPerations . ¢ ¢ ¢ ¢ ¢« ¢ s o o o

Chapter 3.1.
communication Operations

Chapter 3.2. Terminal Control
Commands and Options for
Terminals and Logical Units
Read from Terminal or Logical
Unit (RECEIVE) e e e .

viii CICS5/7VS APRM (CL)

Introduction to Data

® e o o & o

.

* e & e o o

General Format of EXEC DLI Command

* o o o

¢ s e e

59

oo ONOVUY
WWUHUINN = O W

o
-}

[o X v e N
[B R R)

69
70

70
71

71
72
72
72
77
77
78
79

81

83

. 85

86
86

Write to Terminal or Logical
Unit (SEND) .
The WAIT Option of the SEND
Command
Synchronize Termtnal
Input/0utput for a Transaction
(WAIT TERMINAL) e e e e e e
Converse with Terminal or
Logical Unit (CONVERSE) ..
Send an Asynchronous Interrupt
(ISSUE SIGNAL) ..
Relinquish a Communtcation Llne
(ISSUE RESET)
Disconnect a Switched Llne
(ISSUE DISCONNECT)
Terminal-Oriented Task

Identification .
Conmands and Options for Loglcal
Units . e e e e e e e e

Send/Recelve Mode .
Send/Receive Protocol (Inv1te
Option) . e e o v »
Chaining of Input Data
Chaining of Qutput Data .
Logical Record Presentation .
Definite Response

Function Management Header (FMH)

Inbound FMH e e e e e
Outbound FMH e e e e e
Unsolicited Input
Bracket Protocol (LAST optton)
Suspend a Task (WAIT SIGNAL)
Terminate a Session (ISSUE
DISCONNECT) .
Return a Facility to CICS/VS
(Free) . .
TCAM- Supported Terminals and
Logical Units (CIC5/05/VS Only)
BTAM Programmable Terminals . .
Teletypewriter Programming
Message Format e e e e e
Message Length . .
Connection through VTAM .
Display Device Operations .
Print Displayed Information
(ISSUE PRINT) e e e e e
Copy Displayed Information
(ISSUE COPY)
Erase All Unprotected Flelds
(ISSUE ERASEAUP) .
Input Operation Nvthout Data
(RECEIVE) . .
Standard Attentlon Identlfler
List (DFHAID) .
Handling Attention Identxflers
(HANDLE AID)
Standard Attrubute and Pr1nter
Control Character List

.

.

(DFHBMSCA) .
Standard CICS/VS Termlnal Support
(BTAM or TCAM)
LUTYPE4 Logical Unit e e e e e
LUTYPE6 Logical Unit

Session Status Informatlon

Application-Oriented Informatlon

Session-Oriented Information

System/3 e e e e e e e e e
Systems/370 e e e e ..
System/7 . o .

2260 Dlsplay.statlon
2265 Display Station
2741 Communication Termxnal

¢ o e e

Read Attention e v e e e s : :.

86
86

99

e e e (b et b et
coo0oOD
NN oo

Write Break (CICS5/0S/VS only)
2770 Data Communication System .
2780 Data Transmission Terminal
2980 General Banking Terminal

System . e e e e e e

Passbook Control ..

Qutput Control . .

Butput to a Common Buffer .

The DFH2980 Structure . . .
3270 Information Display System

(BTAM or TCAM) . .
3270 in 2260 Compatxblllty Mode

(BTAM)« e e .
3270 Loglcal Unlt .

3270 SCS Printer Loglcal Un1t : :
3270-Display Logical Unit

(LUTYPE2)
3270-Printer Loglcal Unlt
(LUTYPE3) . .
3600 Finance Communlcatton System
(BTAM) e e e e e e e e e e e
Input e e e e e e e e e e e e e
Output .. e v e e e e

Resend Message e e
3600 Pipeline Logical Un1t e e
3600 (3601) Logical Unit .

Logical Device Code (LDC optlon)
3600 (3614) Logical Unit . .
3630 Plant Communication System
365073680 Host Command Processor

Logical Unit .
3650 Host Conversat1onal (3270)
Logical Unit .
3650 Host Conversat10nal (3653)
Logical Unit . e
3650 Interpreter Loglcal Unlt
3650 Pipeline Logical Unit .
3850;3680 Full Function Loglcal

ni .. .
3660 Supermarket Scannung System
3735 Programmable Buffered

Terminal . .
3735 Transactlons - Autoanswer
3735 Transactions - Autocall

and Time-Initiated e e e e e s
3740 Data Entry System e e e e e

Batch Mode Applications e e
3767 Interactive Logical Unit . .
3770 Batch Logical Unit . e e .
3770 Interactive Logical Un1t . .
3770 Full Function Logical Unit
3780 Communications Terminal . .
3790 Full Function Logical Unit
3790 Inquiry Logical Unit e e e
3790 SCS Printer Logical Unit . .
3790 (3270-Display) Logical Unit
3790 (3270-printer) Logical Unit
7770 Audio Response Unit e e e
Terminal Control Options e e e .
Terminal Control Exceptional

Conditions

Chapter 3.3. Basic Mapping
support (BEMS) e e o e
Device Independence
Format Independence .
Data Mapping e e e . .
Map Definition . .
Input Mapping ..

Qutput Mapping .
Input/Qutput Mapplng . .
Map Retrieval e e e e

| Outboard Formatting ..

¢« e o s @

-

DR I S
I I I I N I R)

109

g e ok X ol T S Sy S S
b o o et h bt fod fod et ok b ek b fh b et b b et e e e OO
AUIUIVIPA DI DDDUHUWUH NN NN NN [[~ I~ X~ XY, XV,]

125
125
125
126
126
127
128

129

129
129

Define a Map Set (DFHMSD Macro)
Define a Map (DFHMDI Macro)
Define a Field (DFHMDF Macro)
Map Positioning . e .
The Screen Contents .
The Trailer Area
JUSTIFY=FIRST and JUSTIFY LAST
The LINE Operand . .
The COLUMN and JUSTIFY Operands
Page Building Examples . e e .
Using Maps . .
Copving Symbollc Descrlptlon
Maps e e
Logical Message BU\ldlng .« e .
Qutput Operations
Output Commands with the SET
Option . . « e
Terminal Code Table e e e e e e
Message Routing e e e e e e e s
BMS Message Recovery . .
Display Device 0perat1ons (BMS)
Symbolic Cursor Positioning .
Terminal Operator Paging
Commands . .
Map Input Data (RECEIVE ‘MAP)
Map Output Data (SEND MAP) .
Overflow Processing .
Format OQutput Data Nlthout
Mapping (SEND TEXT)

e s o e o »

¢ e e

Header and Trailer Format . .
OQutput Data with Extended
Attributes . . .
Complete and Transmtt a Loglcal
Message (SEND PAGE) . . .
Delete a Logical Message (PURGE
MESSAGE)

Route a Logical Message (ROUTE)
Disposition and Message Routing
Interleaving Conversation with

Message Routing e e e e e e e
Message Title . .
Route List and Operator Class

Codes (LIST and OPCLASS

Options) . e e .

Basic Mapping Support Optlons .

Basic Mapping Support Exceptional

Conditions e e e e e e e e e e
Chapter 3.4. Batch Data
Interchange
Destination Selection and
Identification e e e e e e e
Definite-Response . . .

Waiting for Function COmpletlon
Interrogate a Data Set (ISSUE
QUERY) . . . e .
Read a Record From a Data Set
(ISSUE RECEIVE) .
Add a Record to a Data Set (ISSUE

ADD) . e e . .
Update a Record 1n a Data Set
* (ISSUE REPLACE) . . .
Delete a Record from a Data Set
(ISSUE ERASE) ..

Terminate Processing of a Data Set
(ISSUE END) e e

Terminate Processing of a Data Set
Abnormally (ISSUE ABORT) . . .

Transmit Data to an Output Devnce
(ISSUE SEND) . .

Request Next Record Number (ISSUE
NOTE) e e e e . N

Contents

129
135
138
143
143
144
144
144
144
145
146

147
148
148

149
149
149
150
150
15¢6

150
151
152
152

155
155

156
156
157
157
158
158
159
159
161

166

169
169
169
169
170
170

170

- 170

171
171
171
171
171

ix

Wait for an Operation to be

Completed (ISSUE WAIT) e e e e e
Batch Data Interchange Options .
Batch Data Interchange

Exceptional Conditions e e e e
part 4. control Operations « e e

Chapter 4.1. Introduction to
control Operations e e e v e s

Chapter 4.2. Interval Control. .
Expiration Times e e e e e e
Request Identifiers e e e

Request Current Time of Day
(ASKTIME) .
Delay Processtng of a Task (DELAY)
Request Notification when
Specified Time has Expired
(POST)
Wait for an Event to Occur (NAIT
EVENT) .. e e
Start a Task (START) .
Starting Tasks Without Termlnals
Starting Tasks with Terminals
but Without Data .
Starting Tasks with Termlnals
and Data . . .
Retrieve Data Stored for a Task
(RETRIEVE) .o .
Cancel Interval Control Requests
(CANCEL) e e e . e e e e ee
Interval Control Optlons e e e e e
Interval Control Exceptional
Conditions e e e e e e e e e e

chapter 4.3. Task Control . s e e
Suspend a Task (SUSPEND) e e e e e
Schedule use of a Resource by a
Task (ENQ and DEQ) e e e e
Task Control Options e e e e e e
Task Control Exceptional
Conditions e e e e e e e

Chapter 4.4. Program Ccontrol . e
Application Program Logical Levels
Link to Another Program
Anticipating Return (LINK) .
Transfer Program Control (XCTL)
Return Program Control (RETURN)
Load a Program (LOAD)
Delete a Loaded Program (RELEASE)
Passing Data to Other Programs .
Program Control Options e e e e
Program Control Exceptional
Conditions e e e e e e e e e e

Chapter %.5. Storage Control . .
Obtain and Initialize Main
Storage (GETMAIN)
Release Main Storage (FREEMAIN)
Storage Control Options . .
Storage Control Exceptional
Conditions e e e e e e e e e e e

Chapter 4.6. Transient Data
control ® o s o o s s 6 e s s v
Intrapartition Destinations
Extrapartition Destinations
Indirect Destinations . e e
Automatic Task Initiation
(ATI) e e e e e e e e e e e

X CICS/VS APRM (CL)

172
172

173
175

177

179
179
179

179
180

201
201
201
201

202

Asynchronous Transaction

Processing (ATP) . . .
Write Data to Transient Data Queue
(WRITEQ TD) . I
Read Data from Transvent Data
Queue (READQ TD) . e e e e

Delete an Intrapartltlon

Transient Data Queue (DELETEQ

™)
Transient Data Control Optlons
Transient Data Control

Exceptional Conditions v e .

Chapter 4¢.7. Temporary Storage
control e o s o s e s s s e s s e
Temporary Storage Queues
Typical Uses of Temporary
Storage Control
Write Data to a Temporary Storage
Queue (WRITEQ TS) e e .
Read Data from Temporary Storage
Queue (READQ TS) . .
Delete Temporary Storage Queue
(DELETEQ TS) .
Temporary Storage Control Optlons
Temporary Storage Control
Exceptional Conditions

Part 5. Recovery and Debugging .

chapter 5.1. Introduction to
Recovery and Debugging « e s e e
Sequential Terminal Support e e

Chapter 5.2. Abnormal
Termination Recovery c e s e e s
Handle an Abnormal Termination
Exit (HANDLE ABEND) .
Terminate Task Abnormally (ABEND)
Abnormal Termination Recovery

Options . . e
Abnormal Termrnatlon Recovery
Exceptional Conditions e e e e
Chapter 5.3. Trace COntrol “ . .
Trace Entry Points e e e e
Event Monitoring Points . e e .
Trace Facility Control e e e e s
Trace Table Format .

CICS/VS Auxiliary Trace Fac111ty
User Trace Entry Point and Event
Monitoring Point (ENTER) e e .
Control the CICS/VS Trace
Facility (TRACE ON, TRACE OFF)
Macro-lLevel Trace Facilities
Trace Control Options . .
Trace Control Exceptional
Conditions © e e e e e e e

Chapter 5.4. Dump Control
Dump Main Storage (DUMP) e e e e
Dump Control Options . e e e e e
Dump Control Exceptlonal
Conditions e e e e e e e e e

Chapter 5.5. Journal Control . o
Journal Records . .
Journal Output Synchronlzatxon

Create a Journal Record (JOURNAL)

Synchronize with Journal Output

(WAIT JOURNAL) i . e e e e

Journal Control Optnons e e e e e

202
203
203
203
206
204
207
207
207
208
208

209
209

210
211
213
213

215

217
217

217
218

219
219
219
219
220
221

221

221
222
222

222

223
223
223

225
227
227

227
228

229
229

Journal Control
Conditions

Chapter 5.6.
points)

Establish a Sync Point (SYNCPOfNT)

Exceptional

« e & e =+ e

Recovery (Sync

e o & o o e

Sync Foint Option

Part 6.

chapter 6.1.

The CICS/VS Built-in
Function Command

The Field Edit

Built-In Function (BIF DEEDIT)

command
Part 7.

Appendixes

e« o o o o

3

® o o © & o o s o o o o

Arpendix A. EXEC Interface Block

EIB Fields

Appendix B. Translaticn Tables

for the 2980

» & ® o ® & s o o

Appendix C. CICS/VS Macros and

Equivalent Commands

Appendix D, Sample Programs

(Assembler Language)

Executing the Sample Programs
Operator Instruction Sample
Program (Assembler Language)

Description

e e e o e & e @

Source Listing e e e e e e

Program Notes

-

Update Sample Program (Assembler.

Language)
Description

Source Listing

Program Notes

e e e e .« o

e s s e s e =

« & e e a e

Browse Sample Program (Assembler.

Language) .
Description

. .

e e e e e s

Source Listing . . .

Program Notes

Order Entry Sample Program.
(Assembler Language) e e e e

Description

Source Listing ..

Program Notes

Order Entry Queue Prlnt Program
(Assembler Language)

Description

L S T Y

Source Listing e e

Program Notes

. .

L Y T

Report Sample Program (Assembler.

Language)
Description

D N Y

o o o

Source Listing e e e

Program Notes

Sample Maps and Screen Layouts for

-

Assembler-Language Sample

Programs

XDFHAMA Map Definition
Screen Layout
Map Definition
Screen Layout
Map Definition
Screen Layout
XDFHAMD Map Definition
Screen Layout

XDFHAMA
XDFHAMB
XDFHAMB
XDFHAMC
XDFHAMC

XDFHAMD

- .

L S S T S S T S Y
.

XDFHAMK Map Definition . . .

XDFHAMK
XDFHAML

Screen Layout ..
Map Definition ..

-

-

¢« o 0 e

230

231
231
231

233

235
237

239
239

243

247

251
251

252
252
252
252

253
253
253
256

258
258
259
260

262
262
262
263

264
264
2664
265

266
266
266
267

268
268
268
269
269
270
270
271
271
272
272
273

XDFHAML Print Format .« e .
Additions to Tables for
Assembler-Language Sample

Programs e e e e e e e e
PPT e e e e e e e e e e e
PCT e e e e e e e e e e e
DCT . . “ e

Record Descrlptlons for
Assembler-Language Sample
Programs . . .

FILEA Record Descr1ptxon
LOGA Record Description .
L860 Record Description .

Appendix E. Sample Programs
(CcoROL) e e 4 e e s
Executing the Sample Programs
Operator Instruction Sample
Program (COBOL) e e e e e
Description e e e e e e
Source Listing e e e e e
Program Notes
Update Sample Program (COBOL)
Description . e .
Source Listing . e
Program Notes
Browse Sample Program (COBOL)
Description e e e .
Source Listing . .
Program Notes

e o e o

Order Entry Sample Program (COBOL)

Description e e e e e e
Source Listing .. .
Program Notes

Order Entry Queue Pr!nt Sample

Program (COBOL) e e e e e
Description e e e e e e
Source Listing « .
Program Notes

Report Sample Program (COBOL)
Description . e .
Source Listing e e e e
Program Notes

Sample Maps and Screen Layouts

COBOL Sample Programs . .
XDFHCMA Map Definition
XDFHCMA Screen Layout
XDFHCMB Map Definition
XDFHCMB Screen Layout
XDFHCMC Map Definition
XDFHCMC Screen Layout .
XDFHCMD Map Definition .
XDFHCMD Screen Layout .

e 4 s s e e e 4 s o

XDFHCMK Map Definition .

XDFHCMK SCREEN LAYOQUT .

XDFHCML Map Definition . .

XDFHCML Print Layout
Additions

to Tables for COBOL
Sample Programs . .
PPT . . o

- .

DR Y

PCT ..

DCT .
Record Descr1pt1ons for COBOL
Sample Programs . . .

FILEA Record Descript1on
LOGA Record Description
L860 Record Description

Appendix F. Sample Programs (PL/I)

Executing the Sample Programs

Operator Instruction Sample

Program (PL/1) e e e e e e
Description e e e e e e

Contents

-

.

-

-

.

e o s o e

e o s e s

-

.

-

.

-

.

273

274
274
274
274

274
274
274
274

275
275

276
276
276
276
277
277
277
279
281
281
282
283
285
285
285
286

287
287
287
288
289
289
289
290

291
291
291
292
292
293
293
294
294
295
295
296
296

297
297
297
297

297
297
297
297

299
299

300
300

xi

Source Listing e e e e
Program Notes

Update Sample Program (PL/I)
Description . . .
Source Listing e e e e
Program Notes .«

Browse Sample Program (PL/I) .
Description e e e e e e e e
Source Listing W e e e e e e e
Program Notes

Order Entry Sample Program (PL/I)

Dascription N e e e e e
Source Listing e e e e e e e e
Program Notes . .
Order Entry Queue Prlnt Sample
Program (PL/I) e e e e P
Description e v e s e e e e e
Source Listing e e e « e .
Program Notes . .« .
Report Sample Program (PL/I) .
Description s e e e e e e e s
Source Listing e e e e e e e
Program Notes . RN
Sample Maps and Screen Layouts for
PL/7I Sample Programs . e
XDFHPMA Map Definition -
XDFHPMA Screen Layout .

XDFHPMB Map Definition . .
XDFHPMB Screen Layout . .
XDFHPMC Map Definition e e e s
XDFHPMC Screen Layout e e e
XDFHPMD Map Definition A
XDFHPMD Screen Layout
XDFHPMK Map Definition ..
XDFHPMK Screen Lavout ..
XDFHPML Map Definition .
XDFHPML Print Format . . .
Additions to Tables for PL/I
Sample Programs C e e e e e e s
PPT e e e e e e e e e e
PCT e e e e e e e e e e e
DCT .
Record Descrrptvons for the PL/I
Sample Programs e e e
FILEA Record Descrlptlon . .
LOGA Record Description . .
L860 Record Description . e e

o s e o o

L

xii CICS/VS APRM (CL)

o o ¢ o e+ o o s .

312
312

313

314
314
314
315
315
316
316
317
317
318
318
319
319

320
320
320
320

320
320
320
320

Appendix 6. Sample Programs for
Distributed Transaction

ProcessiNg .« o o« « ¢ o ¢ o o o o«
CICS to CICS Synchronous Sample
Program e e e . v e .
Description .
Source Listing of Local User
Transaction e e e e e e e

Program notes
Source Listing OFf Remote User
Transaction e e e e e
Program Notes
CICS to CICS (Or Other)

Synchronous Sample Program .
Description . .
Source Listing of the Sendlng

User Transaction . . .
Program Notes e e 6 e e s e s
Map Definition e e e e e
Screen Layout . .

CICS To CICS Conversatlon
(Synchronous) Sample Program

Description « e e e
Source Listing of User
Transaction e e e e e e o

Program Notes e e e e e e e
Map Definition e e e e e e e s
Screen Layout .
CICS to Other Synchronous Sample

Program . e e e e e e
Description .
Source Listing of the SendIng

User Transaction .. e e e
Proaram Notes e e e e e e e
Map Definition e e e e e e e
Screen Layout e e e e e .

Description
Source Listing of the SENDlng
user transaction e e e e
Program notes
Additions to Tables for the Sample
Programs e e e e e e e e e e e .

Bibliography
Availability of Publications .

Index

e o o o © o o+ o o e

@ ® e & e e & e e o o e o o+ o

321

322
322

322
324

325
326

327
327

327
329
330
330

331
331

331
333
335
335

336
336

336
337
339
339
340

340
344

346

347
347

349

Figures

. .

0 oo~ o VT D NN -
. . o o o v

[
- o

12.
13.

Translated Code for BMS Command
Translated Code for Variables
Typical EDF Display .
"Stop-Conditions" D]Splay
First Page of Typical EXEC

DLI Display .

Second Fage of Typlcal EXEC
DLI Display .

"Command Syntax Check“ Dlsplay
"About to Execute Command"
Display . .
"Command Execut:on Complete"
Display . .

Examples of Record
Indentification . .
CICS/VS-DL/1I Interface
Response Codes .
Terminal-Oriented Task
Identification

BTAM Programmable Termlnal

10
11
38
42
43

43
46

47
48
60
73
89

14,
15.
16.
17.
18.

19,
20.

21.
22.

23.
26.

Programming

DFHMSD Macro (6ef1ne a Map

Set)

DFHMDI Macro (Define a Map)

DFHMDF Macro (Define a Field)

Map Positioning for More

than One Map

Page Address Lust (SET

Option)
Overflouw Process1ng

e o

Application Program Loglcal

Levels

ABEND Exx} Proceastng

2980-1 Character
Set/Translate Table
2980-2 Character
Set/Translate Table
2980-4 Character
Set/Translate Table

. e

Figures

93
130
136
139
147

149
154

190
216

244
245
2646

xiii

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Part 1. Command-Level Programming

Introduction to Command-Level Programming

Command Format and Argument Values

Command Language Translator

Programming Techniques and Restrictions

Exceptional Conditions

Access to System Information

Execution (Command-Level) Diagnostic Facility (EDF)

Command-Level Interpreter

Part 1.

Command-Level Programming

1

Chapter 1.1. Introduction to Command-Level Programming

The Customer Information Control
System/Virtual Storage (CICS/VS)
command-level application-programming
interface allows application programmers
to request CIC5/VS services by means of
CICS/7VS commands. These commands are
statements that can be included at
appropriate points in an application
program. They have a format similar to
the statements of the programming
language in use.

CICS/VS commands can be used in
application programs written in
assembler language, COBOL, PL/I, and in
RPG II. The commands are essentially the
same in each language, differing only in
the delimiter used, and, in the case of
RPG II only, in the syntax.

Because of its fixed format, RPG II is
not included in this manual. Instead, a
separate manual is available entitled
CICS/VS Application Proarammer's
Reference Manual (RPG II).

Application programs that include
CICS/VS commands are processed by the
command language translator, which
translates the commands into statements,
in the language being used, which can
then be assembled (or compiled) and
link-edited in the usual way. When these
application programs are executed, the
statements inserted by the translator
invoke the EXEC interface program
(DFHEIP), which provides the service
requested by each command by invoking one
or more CICS/VS control programs.

In addition.to invoking CICS/VS control
programs, the EXEC interface program
obtains, and provides addressability to,
any required areas of storage, such as
terminal input/output areas and various
work areas which, when no longer
required, are released automatically. As
a general rule, the application
programmer need only select the required
function and code the appropriate
command. There is normally no need to
know about CICS/VS storage areas and
control blocks; in those cases when
access to such areas is needed, the
command-level interface provides a
command for this purpose, the ADDRESS
command, described in "Chapter 1.6.
Access to System Information" on page 29.

STRUCTURE OF THIS MANUAL

This manual consists of several parts,
each generally having an introductory
chapter and one or more other chapters.

. Command format and argument values
used throughout this manual
("Chapter 1.2. Command Format and
Argument Values" on page 5)

. Command language translator
("Chapter 1.3. Command Language
Translator” on page 9)

. Programming techniques, and
restrictions placed on the use of the
programming language when CICS/VS
commands are used ("Chapter 1.4.
Programming Techniques and
Restrictions” on page 17)

. Exceptional conditions that can
occur during the execution of CICS/VS
commands ("Chapter 1.5. Exceptional
Conditions" on page 25)

. Access to system information
("Chapter 1.6. Access to System
Information"™ on page 29)

L Execution (command-level) diagnostic
facility (EDF) ("Chapter 1.7.
Execution (Command-Level) Diagnostic
Facility"™ on page 35)

. Command-level interpreter ("Chapter
1.8. Command-Level Interpreter" on
page %5)

Part 2 through 6 of the manual are each
concerned with CIC5/VS commands that can
be discussed as a group:

. Part 2. Data base operations -
describes the CICS/VS commands
provided for storage and retrieval of
data in a data base using CICS/VS
file control facilities or using DL/I
services.

. Part 3. Data communication
operations - describes the CICS5/VS
commands provided for communication
between CICS/VS and the terminals and
logical units of the subsystems in
the telecommunications network of
the CICS/7VS system.

. Part ¢. Control operations -
describes the CICS/VS commands that
control the execution of tasks within
the CICS/VS system.

U Part 5. Recovery and debugging -
describes the CICS/VS commands
provided for recovery from abnormal
termination, and for error-handling,
tracing, and monitoring. Commands
are also provided to cause dumping of
selected areas of storage for offline

The remaining chapters in Part 1 deal analysis.
with the following topics:
Chapter 1.1. Introduction to Command-Level Programming 3

. Part 6. The CICS5/VS Built-In
Function (BIF DEEDIT) Command -
describes the one built-in function
available with the command level
interface.

Fach of the chapters (other than the
introductory chapter) of these parts of
the manual has a standard format. The
first section of a chapter describes, in
general terms, functions of the commands
included in the chapter. For each
command the following information is
presented: the syntax of the command and
its associated options; exceptional
conditions that can occur; a detailed
description of what the command does; and
possibly one or more examples showing
typical coding of the command. Finally,
two lists are given: a list of the
options, with their functions, that can
be used in any of the commands in the
chapter; and a list of the exceptional
conditions, and their causes, that can
occur during the execution of the
commands.

Part 7 contains several appendixes.
References to most of these appendixes
are included in the text. The last four
appendixes provide sample programs that
- 1llustrate the use of many of the
commands described in the manuval. The
BMS maps and file record descriptions
used by the sample programs are also
included.

SYNTAX NOTATION USED IM THIS MANUAL

Throughout this manual, wherever a
CICS/VS command is presented, the symbols
{3}, L1,], and ... are used in defining
the command format. These symbols are not
part of the command and are not coded by
the programmer. Their purpose is to
indicate how the command may be written,

% CICS7VS APRM (CL)

and they should be interpreted as
follows:

. Uppercase identifiers and
punctuation symbols must be coded
exactly as shown.

. Lowercase identifiers indicate that
user text should be coded as
required. The lower case character
“"b" is used in some places to
indicate a blank.

L Square brackets [] are used to
indicate that the enclosed
identifiers are optional. The less
than, and greater than symbols < >
are used to replace square brackets
in the syntax displays produced by
the command-level interpreter. (See
"Chapter 1.8. Command-lLevel
Interpreter" on page 45).

. The "or"™ symbol | is used to separate
alternatives.

. Underlining is used to denote that
the identifier is the default; that
is, the one that wmill be assumed if
no explicit choice is made.

. Braces { } are used to enclose a set
of alternatives, one of which must be
coded.

. The ellipsis ... denotes that the
immediately preceding identifier(s)
can be coded repetitively.

To denote, for example, that either GTEQR,
or EQUAL, or neither, can be coded (and
that GTEQ is the default), the syntax
notation would be:

[GTEQ|EQUAL]

Chapter 1.2. Command Format and Argument Values

The purpose of this chapter is to explain
the general rules governing the use of
the CICS5/VS commands that are described
in the following chapters.

COMMAND_ FORMAT

The general format of a CICS/VS command
is EXECUTE CICS (or EXEC CICS) followed
by the name of the required function, and
possibly by one or more options, as
follows:

{EXECUTE |EXEC)
CICS function l[optioni(argument)l] ...

where:

"function" describes the operation
required (for example READ),

"option" describes any of the many
optional facilities available with each
function. Some options are followed by
an argument in parentheses, others are
not. Options (including those that
require arguments) can be written in any
order,

"argument™ is a value such as
"data-value" or "name", as defined later
in this chapter.

An example of a CICS/VS command (from
"Chapter 2.2. File Control” on page 55)
is as follows:

EXEC CICS READ INTO(FILEA)
DATASET('FILEA') RIDFLD(KEYNUM) UPDATE

The appropriate end-of-command
delimiter, described in the next section,
must be added.

CODING CONVENTIONS

CICS/VS commands can be included in an
assembler-language, COBOL, or PL/I
program anyiwhere that an executable
statement can be included.

In assembler language:

. The keyword EXEC must appear in an
operator position. The command can
be labeled.

. The delimiter between options must be
either a blank or a comma, but not
both. The appearance of ",b" or ".b"
immediately following an option
indicates that the rest of the line
is a comment.

Chapter 1.2.

. The usual continuation conventions
apply (non-blank character in column
72, the continuation line to start in
column 16).

In COBOL, a command must be delimited
with "END-EXEC" as shouwn in the following
example:

EXEC CICS ISSUE RESET END-EXEC

This delimiter allows a command to be
written within a THEN clause.

In PL/I, a command must be delimited with
a semicolon as shown in the following
example:

EXEC CICS ISSUE RESET;

In the followinag chapters, for
simplicity, the syntax of each of the
commands that can be specified in an
application program is presented without
the phrase EXEC CICS, without the
continuation conventions, and without
the end-of-command delimiter (END-EXEC
or semicolon).

In the programming examples in the text,
the phrase EXEC CICS is added but not the
continuation conventions or
end-of-command delimiter. When coding
commands these must be added as
appropriate for the programming language

_in use.

ARGUMENT VALUES

In the following chapters, the
parenthesized argument values that
follow options in a CICS/VS command are
specified as follows:

data-value

data-area

pointer-value (or ptr-value)
pointer-ref (or ptr-ref)
name

label

hhmmss

¢ & & 069 00

Halfword binary values are generally used
for lengths. This restricts the size of
data areas to 32,768 bytes. There will
usually be no other restriction so, in
particular, a communication area
(COMMAREA) can be 32,768 bytes long and
GETMAIN can be used to obtain such an
amount of storage.

The argument values are defined in the
following sections.

Command Format and Argument Values 5

ARGUMENT VALUES IN ASSEMELER LANGUAGE

In general, an argument may be either the
address of the data or the data itself
(in assembler-language terms, either a
relocatable expression or an absolute
expression).

A relocatable expression must not contain
unmatched brackets (outside quotes) or
unmatched quotes (apart from length
attribute references). Provided this
rule is obeved, any expression may be
used, including literal constants, such
as =AL2(100), forms such as 20(0,R11),
and forms which use the macro replacement
facilities. i

An absolute expression must be a single
term which may be either a length
attribute reference, or a self-defining
constant.

Care must be taken with equated symbols
mhich should be used only when referring
to registers (pointer references). If an
equated symbol is used for a length, say,
it will be treated as the address of the
length and an unpredictable error will
occur.

. "data-value" can be replaced by an
assembler-language reference to data
of the correct tvype for the argument
or by a constant of the correct type
for the argument.

. "data-area"” can be replaced by an
assembler-language reference to data
of the correct type for the argument.

. "pointer-value" can be replaced by an
assembler-language reference to a
register.

U "pointer-ref" can be replaced by an
assembler-language reference to a
register.

. "name" can be raplaced either

by a character string in quotes

by an assembler-language reference
to a character string with a length
equal to the maximum length allowed
for the name. The value of the
character string is the name to be
used by the argument.

. "label™ can be replaced by any
program label or address constant.

. "hhmmss" can be replaced by a
self-defining. decimal constant or an
assembler-language reference to a
field defined as PL4. The value must
be of the form O0HHMMSS+ where HH
represents hours from 00 through 99,
MM represents minutes from 00 through
59, and SS represents seconds from 00
through 59.

6 CICS/VS APRM (CL)

Many commands involve the transfer of
data between the application program and
CICS/VS. In most cases, the length of
the data to be transferred must be
provided by the application program.
However, if a data area is specified as
the source or target, it is not necessary
to provide the length explicitly, because
the command language translator will
generate a default length value of
L'data-area.

Although the DESTIDLENG, FROMLENGTH,
KEYLENGTH, LENGTH, PFXLENG, TOLENGTH, or
VOLUMELENG options are shown as required
options in the syntax for a command,
these options are always optional in an
assembler-language program which
specifies a data area (except in the case
of the ENQ and DEQ commands). Length
values cannot be defaulted if the SET
option is specified in a command.

ARGUMENT VALUES IN COBOL

] "data-value" can be replaced by any
COBOL data name of the correct data
type for the argument or by a
constant that can be converted te the
correct type for the argument. The
data type can be specified as being
one of the following:

halfword binary - PIC 59(4) COMP
fullword binary - PIC $9(8) COMP

character string = PIC X(n) where n
is number of bytes

. "data-area"™ can be replaced by any
COBOL data name of the correct data
type for the argument. The data type
can be specified as being one of the
following:

halfword binary - PIC S9(4) COMP
fullword binary - PIC $9(8) COMP

character string - PIC X(n) where n
is number of bytes

In cases where the data tvpe is
unspecified, the data area can refer
to an elementary or group item.

. "nointer-value”™ can be replaced by
the name of any BLL (base locator for
linkage) cell, or by any COBOL data
name which contains a copy of such a
pointer in a BLL cell.

. "pvointer—-ref" can be replaced by the
name of any BLL (base locator for
linkage) cell.

. "name" can be replaced either

by a character string in quotes (that
is, a nonnumeric literal)

by a COBOL data-area with a length
equal to the maximum length allowed
for the name. The value in the data
area is the name to be used by the
argument.

. "label™ can be replaced by any COBOL
paragraph name or a section name.

. "hhmmss" can be replaced by a decimal
constant or by a data name of the
form PIC S9(7) COMP-3. The value
must be of the form OHHMMSS+ where HH
represents hours from 00 through 99,
MM represents minutes from 00 through
59, and 5SS represents seconds from 00
through 59.

ARGUMENT VALUES IN PL/I

L "data-value" can be replaced by any
PL/]1 expression that can be converted
to the correct data type for the
argument. The data type can be
specified as being one of the
following:

halfword binary - FIXED BIN(15)
fullword binary - FIXED BIN(31)

character string - CHAR(n) where n is
number of bytes

If the data value is specified as
halfword binary, the data value is
converted, if necessary, to FIXED
BIN(15). "Data-value" includes
"data-area™ as a subset.

U "data~area"™ can be replaced by any
PL/1 data reference which is ALIGNED
and has the correct data type for the
argument. The data type can be
specified as being one of the
following:

halfword binary - FIXED BIN(15)
fullword binary - FIXED BIN(31)

character string - CHAR(n) where n is
number of bytes

If the data type is unspecified, the
data area can refer to an element,
array, or structure; the reference
must be to connected storage, for
example, FROM(P->STRUCTURE)
LENGTH(LNG).

If data, that is not in
varying-length string format, is
read into a varving-length string,
the length bytes at the beginning of
the varying-length string will be
corrupted.

Chapter 1.2.

. "nointer-value" (which includes
"pointer—ref" as a subset) can be
replaced by any PL/I expression that
can be converted to POINTER.

) "wointer-ref" can be replaced by any
PL/I reference of type POINTER
ALIGNED.

["name" can be replaced either

by a character string in quotes (that
is, a literal constant); or

by a PL/I expression or reference
whose value can be converted to a
character string with a length equal
to the maximum length allowed for the
name. The value of the character
string is the name to be used by the
argument.

. "label" can be replaced by any PL/1
expression whose value is a label.
Program labels are always passed by
value, not by reference.

. "hhmmss" can be replaced by a decimal
constant or an expression that can be
converted to a FIXED DECIMAL(7,0)
value. The value must be of the form
OHHMMSS+ where HH represents hours
from 00 through 99, MM represents
minutes from 00 through 59, and 55
gepresents seconds from 00 through

9.

If the UNALIGNED attribute is added to
the ENTRY declarations generated by the
CICS/VS translator by a DEFAULT
DESCRIPTORS statement, data-area or
pointer-reference arguments to CICS/VS
commands must also be UNALIGNED.

Many commands involve the transfer of
data between the application program and
CICS/7VS. In most cases, the length of
the data to be transferred must be
provided by the application program.
However, if a data area is specified as
the source or target, it is not necessary
to provide the length explicitly, because
the command language translator will
generate a default length value of either
STG(data-area) or CSTG(data—-area) as
appropriate.

Although the DESTIDLENG, FROMLENGTH,
KEYLENGTH, LENGTH, PFXLENG, TOLENGTH, or
VOLUMELENG options may be shown as
required options in the syntax for a
command, these options are always
optional in a PL/I program which
specifies a data area (except in the case
of the ENQ and DEQ commands). Length
values cannot be defaulted if the SET
option is specified in a command.

Command Format and Argument Values 7

Chapter 1.3. Command Language Translator

The command language translator accepts
as input a source program, written in
assembler language, -COBOL, or PL/I, in
which CICS5/VS commands have been codel,
and produces as output an equivalent
source program in which the commands have
been translated into statements in the
language of the source program. At
execution time, these statements invoke
the EXEC interface program, which accepts
the arguments passed by the call from the
application program, sets up the
parameters in the CICS/VS control blocks,
and passes control to the appropriate
CICS/VS facility.

The translator is executed in a separate
job step. The job step sequence for
~reparing an application program is
translate - assemble (or compile) -
link-edit. Cataloged procedures are
supplied to assist the user; refer to the
appropriate CICS/VS System Programmer's
Guide for details. The translator
raquires a region or partition of 96K
bytes.

There are three separate translators, one
for assembler language, one for COBOL,
and one for PL/I. The translators are
each provided in two versions, one for
V'SE and one for 05/VS. The VSE version
reads its input from SYSIPT, produces its
output (the translated source proaram) on
SYSPCH, and writes the source listing,
error messages and so on, on SYSLST. The
05/7VS version reads its input from SYSIN,
produces its output on SYSPUNCH, and
writes the source listing, error messages
and so on, on SYSPRINT. (SYSLST and
SYSFRINT do not contain the source
listing or error messages for the
assembler-language translator).

The VSE translators for COBOL and PL/I
accept also the commands that can be used
to access DL/I data bases. These
commands, of the form EXEC DLI, are
translated in a similar way to EXEC CICS
commands, and are described in "Chapter
2.4. DL/1 Services (EXEC DLI Command)"
on page 77.

If the Entry Level System (ELS) is used
(VSE only), a translator is generated
with function limited to that supported
by the host entry level CICS/VS system.
This translator will flag functions that
are not supported by the entry level
system (as described in the CICS/VS Entry
Level System User's Guide (D0S/VS)).

Chapter 1.3.

TRANSLATOR DATA SETS

INPUT DATA SET

The input data set must be a sequential
data set. It may be on punched cards, on
a direct-access device, or on magnetic
tape.

For VSE, the input data set must contain
80-byte fixed-length unblocked records.

For 05/7VS, the input data set for COBOL
must contain fixed-length records
(blocked or unblocked); for assembler
language and PL/I it may contain either
fixed-length or variable-length records.
The maximum record size (LRECL) must not
exceed 104 bytes.

OUTPUT DATA SET

The output data set must be a sequential
data set. It may be on punched cards, on
a direct access device, or on magnetic
tape.

For VSE, the output data set must contain
80-byte fixed-length unblocked records.

For 05/7VS, the output data-set must
contain 80-byte fixed-length records
{blocked or unblocked).

LISTING DATA SET

The listing data set must be a sequential
data set. Although the listing is
usually printed, it can be stored on any
magnetic tape or direct access device.

For VSE, the listing data set must
contain 121-byte fixed-length unblocked
records.

For 0S/VS COBOL users, the listing data
set must contain 121l-byte fixed-length
blocked records (RECFM=FBA).

For 05/VS assembler language and PL/1I
users, the listing data set must contain
variable length blocked records with a
maximum length of 121 bytes (RECFM=VBA).

Command Language Translator 9

TRANSLATED CODE

ASSEMBLER LANGUAGE

For an assembler-language application
program, each command is replaced by an
invocation of the DFHEICAL macro which
builds an argument list in dynamic
storage, so that the application program
is reentrant, and then invokes the EXEC
interface program. A definition of this
dynamic storage is provided
automatically by the translator
inserting an invocation of the macros
DFHEISTG and DFHEIEND. The translator
will also insert an invocation of the
DFHEIENT macro which performs prolog
initialization code and an invocation of
the DFHEIRET macro which performs epilog
code.

The example in Figure 1 shows a simple
assembler-language application program
that uses the BMS command SEND MAP to
send a map to a terminal.

The dynamic storage that is obtained for
building the parameter list may be
extended by the user to provide reentrant
storage for assembler-language
variables. The example in Figure 2 on
page 11 shows a simple assembler-language
application program that uses variables
in dvnamic storage.

The use of the reserved name DFHEISTG as
the DSECT name indicates that dynamic
storage is to be provided for the extra
user variables within that named DSECT.

The invocation of an assembler-language
application program using the
command-level interface obeys system
standards and the invocation of the EXEC
interface program by a command also obeys
system standards. Details are given
below.

On entry to an assembler-language
application program using the
command-level interface;

R1 contains address of parameter
list.

R15 contains address of entry point.

R14 contains address of return point.

R13 contains address of save area.

Other registers are undefined.

The parameter list held in register 1
consists of two entries, as follows:

. Address of the EXEC interface block
(EIB).

. Address of the COMMAREA. If there is
no COMMAREA, the entry should
contain the value X'80000000°".

A copy book, DFHEIBLK, containing a DSECT
which describes the EIB is included
automatically.

Each command is replaced by an invocation
of the DFHEICAL macro which expands to a
system-standard call sequence using the
following registers:

R15 contains entry point of EXEC
interface program.
R14 contains return address in
application program.
R0 is undefined.
R1 Tontains address of parameter
ist.

The entry point held in register 15 is
resolved in a stub (DFHEAI) which must be
link-edited with the application
program.

Storage for the parameter list is
provided automatically by the
translator, which inserts invocations of
the two macros DFHEISTG and DFHEIEND.
These macros define the storage required
for the parameter list and a save area.

INSTRUCT CSECT
END
which is translated to:

INSTRUCT CSECT
DFHEIENT

HEIV00)
DFHEIRET
DFHEISTG
DFHEIEND
END

EXEC CICS SEND MAP('XDFHAMA') MAPONLY ERASE

INSERTED BY TRANSLATOR
* EXEC CICS SEND MAP('XDFHAMA') MAPONLY ERASE
DFHEICAL (23,5),("1804C0000800000000046206000020", *XDFHAMA',DFx

INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR

Figure 1. Translated Code for BMS Command

10 CICSs/VS APRM (CL)D

DFHEISTG DSECT
COPY XDFHAMA
COPY XDFHAMB
MESSAGE DS CL39
INQUIRY CSECT

MVC NUMBO, KEYI

EXEC CICS SEND MAP('XDFHAMB')
END

which is translated to:

DFHEISTG DSECT
DFHEISTG
COPY XDFHAMA
COPY XDFHAMB
MESSAGE DS CL39
INQUIRY CSECT
DFHEIENT

FHAMAI)
MvVC NUMBO,KEYI

* EXEC CICS SEND MAP('XDFHAMB')

FHAMBO)
DFHEIRET
DFHEISTG
DFHEIEND
END

INPUT MAP DSECT

OUTPUT MAP DSECT

EXEC CICS RECEIVE MAP('XDFHAMA')

MvC MESSAGE, =CL(L"MESSAGE)'THIS IS A MESSAGE"

INSERTED BY TRANSLATOR
INPUT MAP DSECT
OUTPUT MAP DSECT

INSERTED BY TRANSLATOR
% EXEC CICS RECEIVE MAP('XDFHAMA')
DFHEICAL (23,5),('1802C0000800000000040900000020", "XDFHAMA"' ,XDx

Mve MESSAGE, =CL(L'MESSAGE) "THIS IS A MESSAGE'
DFHEICAL (23,5),('1804C000080000000004E004000020", *XDFHAMA",XDx*
INSERTED BY TRANSLATOR

INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR

Figure 2. Translated Code for Variables

The translator also inserts an invocation
of the DFHEIENT macro after the first
CSECT or START statement. This macro
saves registers, obtains an initial
allocation of the storage defined by
DFHEISTG, sets up a base register
(default register 3), a dynamic storage
register (default register 13), and a
register to address the EXEC interface
block (default register 11).

Exit from the assembler-language program
can be achieved by the EXEC CICS RETURN
command or by the DFHEIRET macro, which
is inserted by the translator before the
END statement to restore registers and
return to the address in register 16.

The dynamic storage defined by DFHEISTG
can be extended by the user to provide
reentrant storage for user variables.
This is done by defining the user
variables in a DSECT with the reserved
name DFHEISTG. The translator inserts
the DFHEISTG macro after the DFHEISTG
DSECT statement. In this way the DSECT
finally describes dynamic storage
consisting of the parameter list area,
other areas needed by the command-level
interface, and space for user variables.

Assembler-lanauage programs larger than
4095 bytes that do not use the CODEREG

Chapter 1.3.

parameter of the DFHEIENT macro to
establish multiple base registers, must
include an LTORG statement for use by
DFHEIENT.

The user may also modify or extend the
defaults used by the DFHEIENT macro by
coding the required default as a keyword
argument. The macro can have up to three
keyword arguments, as follouws:

CODEREG - base register or registers

DATAREG - dynamic storage register or
registers

EIBREG ~ register to address the EIB.

and must be coded instead of the first
CSECT or START statement, as shown in the
following example:

INSTRUCT DFHEIENT CODEREG=(2,3,4)
»DATAREG=(13,5), EIBREG=6

The symbolic register DFHEIPLR is equated
to the first DATAREG either explicitly
specified or obtained by default. It is
recommended that register 13 be used as
the first dynamic storage register since
register 13 points to the save area
defined in dynamic storage by DFHEISTG.
DFHEIPLR will be assumed by the expansion
of an EXEC command to contain the value
set up by DFHEIENT. It is the user's

Command Language Translator 11

responsibility to either dedicate this
register or to ensure that it is restored
before each command.

An assembler-language application
program that uses both the command-level
interface and the macro-level interface
(that is, a mixture of commands and
macros) must define the macro global bit
&DFHEIMX and set it to 1. This will
ensure that register 13 points to the
CSA, and register 12 to the TCA. In this
case, DFHEIPLR will not be assumed by the
expansion of a command.

COBOL

For COBOL, each command is replaced by
one or more COBOL MOVE statements
followed by a COBOL CALL statement. The
purpose of the MOVE statements is to
assign constants to COBOL data variables:;
this enables constants and names to be
specified as arguments to options in the
commands. For example, a command such
as:

EXEC CICS RECEIVE MAP('A') END-EXEC
may be translated to:

MOVE ' ' TO DFHEIVO
MOVE 'A' TO DFHEIV1
CALL 'DFHEI1' USING DFHEIVO DFHEIV1 AI

Declarations for the generated variables
DFHEIV0 and DFHEIV] are included
automatically in working storage; their
names are reserved. Tha string moved to
DFHEIV0 is a hexadecimal string, not
blanks. The use of EXEC, CICS, DLI, and
END-EXEC as names for user variables
should be avoided.

The translator modifies the linkage
section by inserting the EIB structure as
the first parameter, and inserts
declarations of the temporary variables
that it requires into the working-storage
saction,

It is possible to translate program
segments for later inclusion into the
procedure division.

PL/1

For PL/I, each command is always replaced
by a single PL/I CALL statement. Warning
messages from the PL/I compiler to the
effect that the number of arguments to
the call is incorrect should be ignored.

If OPTIONS(MAIN) is spacified, the
translator modifies the parameter list by
inserting the EIB structure pointer as
the first parameter, and a %ZINCLUDE
statement to copy the structure into the
program. If OPTIONS(MAIN) is not
specified (that is, if the program is to
be link-edited to the main module), the

12 CICS/VS APRM (CL)

parameter list is not modified, and it is
the application programmer's
responsibility to pass the EIB structure
(or addressability to it) to the
link-edited program if access to it is
required.

It is possible to translate program
segments for later inclusion into a main
program.

TRANSLATOR OPTIONS

The translator provides a number of
optional facilities, for example, to
allow for different record formats and to
specify what information is reaquired on
the listing. The translator options and
their defaults (indicated by underlines)
are listed below. There are different
sets of options for assembler language,
COBOL, and for PL/I users.

Translator options are specified in the
¥ASM statement for assembler language,
the CBL statement for COBOL, or in the
¥PROCESS statement for PL/I. These
statements must precede the source
program; there is no batching facility.
The *¥ASM statement must obey the same
syntax and continuation rules as the
assembler-language comment statement.
For 05/VS, options may also be specified
in the EXEC job control statement that
invokes the translator; if both methods
are used, the options specified in the
¥ASM, CBL, or XPROCESS statements
override those in the EXEC job control
statement, and the last setting for each
option takes precedence.

Translator options are written as a list
within the CICS keyword option, for
example:

¥ASM CICS(NOPROLOG NOEPILOG)
or

CBL CICS(QUOTE SPACE2)
or

¥PROCESS CICS(FLAG(W) SOURCE);

No characters, other than blanks, can
appear before the CBL statement on the
COBOL options card.

The options may appear in any order.
They may be separated by one or more
blanks or by a comma. If coded in the
EXEC job control statement, the CICS
keyuword (and its associated parentheses)
is unnecessary; only options for the
translator are permitted.

For COBOL and PL/I under VSE, the CBL and
¥PROCESS statements can use the XOPTS
kayword as an alternative to the CICS
keyword, for example:

CBL XOPTS(QUOTE SPACE2)
or
*PROCESS XOPTS(FLAG(W) SOURCE);

If the application program contains EXEC
DLI commands, the options DLI and CICS
must be specified in a CBL or *PROCESS
statement, as follows:

CBL XOPTS(DLI,CICS)
or
¥PROCESS XOPTS(DLI,CICS);

The CBL or XPROCESS statement can also
contain options that apply to the
following compiler. These options will
be ignored by the translator (that is,
they will not be checked for validity)
but they will be copied through onto the
output data set. For example, a PL/I
application program preceded by:

¥PROCESS CICS(SOURCE),ATTRIBUTES;

Wwill be passed to the PL/I compiler
preceded by:

¥PROCESS ATTRIBUTES;.

ASSEMBLER-LANGUAGE TRANSLATOR OPTIONS

NOSPIE ~
prevents the translator trapping
unrecoverable errors; instead, a
dump is produced.

NOPROLOG
prevents the translator inserting
the macros DFHEISTG, DFHEIEND, and
DFHEIENT, described earlier in this
chapter.

NOEPILOG
prevents the translator inserting
the macro DFHEIRET, described
earlier in this chapter.

COBOL TRANSLATOR OPTIONS

DEBUG | NODEBUG
specifies whether or not the
translator is to produce code that
passes the translator line number
through to CICS/VS to be displaved
by the Execution (Command Level)
Diagnostic Facility (EDF).

cICS

specifies that the translator is to
process EXEC CICS commands. This
option may be specified either as an
alternative to, or as a suboption
of, the XOPTS option. If neither
XOPTS nor CICS is specified, CICS is
assumed by default. This option
must not be specified for batch DL/I
application programs containing

Chapter 1.3.

EXEC DLI commands; XOPTS(DLI) must
be specified instead.

PLI
specifies that the translator is to
process EXEC DLI commands.

FE
produces translator informatory
messages which print (in
hexadecimal notation) the bit
pattern corresponding to the first
argument of the translated call.
This bit pattern has the encoded
information that the EXEC interface
program uses to determine which
function is required and which
options are specified. If FE is
specified, all diagnostic messages
are listed, whatever the FLAG option
specifies.

FLAGI |FLAGK |FLAGE
specifies which diaghnostics the
translator is required to list:
FLAGI specifies diagnostics at all
severity levels; FLAGW specifies
diagnostics at severity levels W, C,
E, and D; and FLAGE specifies
dizggostics at severity levels C, E,
an .

LANGLVL (1) |LANGLVL(2)
specifies whether the translator is
to analyse the source program and
generate code according to the ANS
X3.23-1968 (LANGLVLC(1)) or ANS
X3.23-1974 (LANGLVL(2))
interpretation. The same value for
this option must be specified for
the translator and following
compiler.

LISTINOLIST (VSE only)
specifies whether or not the
translator is to produce a listing
of the source program.

NOSPIE
is used to prevent the translator
from trapping unrecoverable errors;
instead, a dump is produced.

NUM|NONUNM
specifies whether or not the
translator is to use the line
numbers appearing in columns 1
through 6 of the card as the line
number in its diagnostic messages
and cross-reference listing. If NUM
is not specified, the translator
generates its own line numbers.

OPT |NOOPT
specifies whether or not the
translator is to generate SERVICE
RELOAD statements to address the EIB
and DFHCOMMAREA. The same value for
this option must be specified for
the translator and fellowing
compiler. The default is OPT for
0S5, NOGPT for VSE.

Command Language Translator 13

QUOTE|APOST

QUOTE indicates to the translator
that the double quotation marks (")
should be accepted as the character
to delineate literals; APOST
indicates that the apostrophe (')
should be accepted instead. The
same value must be specified for the
translator and following compiler.

SEQINOSEQ

indicates whether or not the
translator is required to check the
sequence of source statements. If
SEQ is specified and a statement is
not in sequence it is flagged.

SOURCE |NOSOURCE (0S/VS only)

specifies whether or not the
translator is to produce a listing
of the source program.

SPACE] |SPACE2 |SPACE3

indicates the required type of
spacing to be used in the output
listing: SPACELl specifies single
spacing; SPACE2 double spacing; and
SPACE3 triple spacing.

XREF | NOXREF

specifies whether or not the
translator is required to provide a
cross—reference list of all the
commands used in its input.

PL/I TRANSLATOR OPTIONS
DEBUG | NODEBUG .

CICs

DLI

FE

14

specifies whether or not the
translator is to produce code that
passes the translator line number
through to CICS/VS to be displaved
by the Execution (Command Level)
Diagnostic Facility (EDF).

spacifies that the translator is to
process EXEC CICS commands. This
option may be specified either as an
alternative to, or as a suboption
of, the XOPTS option. If neither
XOPTS nor CICS is specified, CICS is
assumed by default. This option
must not be specified for batch DL/I
application programs containing
EXEC DLI commands; XOPTS(DLI) must
be specified instead.

specifies that the translator is to
process EXEC DLI commands.

specifies that the translator is to
produce informatory messages which
print (in hexadecimal notation) the
bit pattern corresponding to the
first argument of the translated
call. This bit pattern forms a code
that the EXEC interface program uses
to determine which function is
required and which options are

CICS/VS APRM (CL)

specified. If FE is specified, all
diagnostic messages are listed,
whatever the FLAG option specifias.

FLAGI(I|H|E]|S)]

Abbreviation: F

specifies the minimum severity of
error that requires a message to be
listed.

all messagés

FLAG(I)

FLAGIFLAG(W) all except informatory
messages

FLAG(E) all except warning and
informatory messages

FLAG(S) only severe and
unrecoverable erro
messages :

LINECOUNT (n)

Abbreviation: LC

specifies the number of lines to be
included in each page of translator
listing, including heading and
blank lines. The value of n must be
an integer in the range 1 to 32767;
ifnis less than 5, only the
heading and one line of listing will
be included on each page. The
default is 55.

MARGINS(m,nl,cl)

Abbreviation: MAR

speci fies the extent of the part of
each input line or record that
contains PL/I statements. The
translator does not process data
that is outside these limits (but it
does include it in the source
listings).

The option can also specify the
position of an American National
Standard (ANS) printer control
character to format the listing
produced if the SOURCE option
applies; otherwise the input
records will be listed without any
intervening blank lines.

l'm"

Column number of left-hand
margin.

'Vn'l

Column number of right-hand
margin. It must be greater than
"m" .

'lc“

Column number of the ANS
printer control character. It
must be outside the values
specified for "m" and "n™. A
zero value for "c" means no
printer control character.
Only the following printer
control characters can be
used: : :

(blank)
Skip one line before
printing.

0
Skip two lines before
printing.
Skip three lines before
printing.

+

: No skip before printing.
1

Start new page.

The default is MARGINS(2,72,0) for
fixed-length records; and
MARGINS(10,100,0) for
variable-length records (0S5/VS
only).

NOSPIE
is used to prevent the translator
trapping unrecoverable errors;
instead, a dump is produced.

OPMARGINS (m,nl,cl)
Abbreviation: OM :
specifies the translator output
margins, that is, the margins of the
input to the following compiler.
Normally these will be the same as
the input margins. For the meaning
of "m", "n", and "c" see MARGINS.
The default is OPMARGINS (2,72,0)

OPSEQUENCE{m,n) |[NOOPSEQUENCE
Abbreviations: 0S and NOS
specifies the position of the
sequence field in the output
records. For the meaning of "m" and
"n" see SEQUENCE. The default is
OPSEQUENCE(73,380).

OPTIONS |[HOOPTIONS
Abbreviations: OP and NOP
specifies whether the translator is
to include in the listing a list of
all the translator options used
during this translation.

XREF|

Chapter 1.3.

SEQUENCE{m,n) | NOSEQUENCE

Abbraviations: SEQ and NSEQ
specifies the extent of the part of
each input line or record that
contains a sequence number. This
number is included in the source
listing and used in the error
message and cross-reference
listings. No attempt is made to
sort the input lines or records into
sequence. If no sequence field is
specified, the translator creates
and prints in the source listing its
own sedquence humbers; this is
necessary so that the error messages
and cross-reference listings can
refer to a particular line in the
source listing.

"m'l
Column number of left-hand
margin.

'In"

Column number of right-hand
margin.

The extent must not exceed eight
characters and must not overlap the
source program (as specified in the
MARGINS option).

The default for fixed-length
records is SEQUENCE(73,80);
varying-length records it is
SEQUENCE(1,8) (0S/VS only).

for

SOURCE |NOSOURCE

Abbreviations: § and NS

specifies whether or not the
translator is to produce a listing
of the source program.

NOXREF
Abbreviations: X and NX

specifies whether the translator is
to include in the listing a list of
all the commands used in the program
together with the sequence numbers
of the lines in which they are used.

Command Language Translator 15

Chapter 1.4. Programming Techniques and Restrictions

This chapter contains information that
will help to improve performance and
efficiency of an application program in
the CICS5/VS system.

The first section deals with general
programming techniques; this section
gives advice about the virtual-storage
environment in which CICS/VS application
programs operate. The rest of the
chapter contains information that is
applicable only to programs written in
assembler language, COBOL, and PL/I
respectively, and includes the
restrictions that apply to each language
when CICS/VS commands are used.

This manual does not contain any guidance
on the use of programming-language
statements or programming techniques
that are unrelated to CICS/VS; such
information is given in the appropriate
language publications.

Files and queues are not defined within
application programs; these definitions
are established with the help of the
system programmer. Refer to the CICS/VS
System Programmer's Reference Manual.

GENERAL PROGRAMMING TECHNIQUES

To see how programming techniques can
affect the performance and efficiency of
the CICS5/VS system, it is necessary to
understand a little of the
virtual-storage environment in which
CICS/VS operates. Two concepts are
important: multithreading and
virtual-storage paging.

Hultithreading is a technique, used by
CICS,sVS, that allows a single copy of an
application program to process several
transactions concurrently. For example,
the first section of an application
program may be processing one
transaction. When that section is
completed (in genaral, signaled by the
execution of a CICS/VS command that
causes a wait), processing of another
transaction using a different section of
the application program may take place.
(Compare this with single threading,
which is the execution of a program to
completion. Processing of one
transaction is completed before another
transaction is started.)

Multithreading requires that all CICS/VS
application programs be quasi-reentrant;
that is, they must be serially reusable
between entry and exit points, and any
instructions or data altered in them must
be restored. CICS/VS application
programs using the command-level

Chapter 1.4.

interface obey this rule automatically
(provided that, in PL/I programs, static
storage is used for read-only data). For
these program to stay reentrant, variable
data should not appear as static storage
in PLZI, nor as a DC in the program CSECT
in assembler language.

Care must be taken if a program involves
lengthy calculations; since an
application program retains control from
one CICS5/VS command to the next,
processing of other transactions is
completely excluded. However, the
SUSPEND command can be used to allow
other transaction processing to proceed;
refer to "Chapter 4.3. Task Control" on
page 187 for details.

Virtual-storage paging is a techniaue
used by CICS/VS in a virtual-storage
environment. The key objective of
programming in this environment is the
reduction of page faults. A page fault
occurs when a program refers to
instructions or data that do not reside
in real storage, in which case, the page
in virtual storage that contains the
referenced instructions or data must be
paged into real storage. The more paging
required, the lower the overall system
performance.

An understanding of the following terms
is necessary for writing application
programs to be run in a virtual-storage
environment:

. locality of reference - the
consistent reference, during the
execution of the application
program, to instructions and data
within a relatively small number of
pages (compared to the total number
of pages in a program) for relatively
long periods

. working set - the number and
combination of pages of a program
needed during a given period

. validity of reference - direct
reference to the required pages,
without intermediate storage
references that retrieve useless
data

In general, the following techniques
should be used:

1. To improve locality of reference,
processing should be sequential for
both code and data, where possible.

a. The ideal application program
executes sequentially with no
branch logic reference beyond a

Programming Techniques and Restrictions 17

18

small range of address space.
However, error-handling or
unusual-situation routines
should be separated from the main
section of a program; they should
be subprograms.

Subroutines should be placed
near to the caller.

Subprograms that are short and
used only once or twice (other
than error-handling or
unusual-situation routines)
should be coded inline in the
calling program.

Try to keep the execution path in
a straight line by using XCTL
commands to transfer control to
other programs when necessary,
rather than LINK commands.

Initialize data as close as
possible to its first use.

Define arrays or other data
structures in the order in which
they will be referred to. Refer
to elements within arrays in the
order in which they are stored;
for example, in PL/I programs, in
rows rather than in columns.

Issue as few as possible GETMAIN
commands.

In COBOL programs, avoid using
EXAMINE or YARIABLE MOVE
operations, because these expand
into subroutine executions.

To minimize the size of the working
set, the amount of storage that a
program refers to in a given period
should be as small as possible.

a.

Write modular programs and
structure the modules according
to frequency and anticipated
time of refaerence. Do not
modularize merely for the sake of
size; consider duplicate code
inline as opposaed to subroutines
or separate modules.

Use separate subprograms
whenever the flow of the program
suggests that execution will not
be sequential.

Do not tie up main storage
awaiting a reply from a terminal
user,

Use command-level file control
locate-mode input/output rather
than move-mode.

In COBOL programs, specify
constants directly, rather than

CICS/VS APRM (CL)

as data variables in the
Working-Storage Section.

f. In PL/I programs, use static
storage for constant data.

g. Avoid using LINK commands where
possible, because they generate
requests for main storage.

3. To improve validity of reference, the
correct page should be determined
directly.

a. Avoid long searches for data.

b. Use data structures that can be
addressed directly, such as
arrays, rather than structures
that must be searched, such as
chains.

c¢. Avoid indirect addressing and
any methods that simulate
indirect addressing.

No attempt should be made to use overlays
(paging techniques) in an application
program. System paging is provided
automatically and has superior
performance. The design of an
application program for a
virtual-storage environment is similar
to that for a real environment. The
system should have all modules resident
so that code on unreferenced pages need
not be paged in.

If the program is dynamic, the entire
program must be loaded across adjacent
pages before execution begins. Dynamic
programs can be purged from storage if
not in use and an unsatisfied storage
request exists. Allowing sufficient
dynamic area to prevent purging is more
expensive than making them resident,
because a dynamic program will not share
unused space on a page wWwith another
program.

CICS/VS MACROS USED WITH CICS/VS COMMANDS

Care should be exercised when writing
application programs that contain a
mixture of CICS5/VS commands and CICS/VS
macros, or in a macro—-level program that
invokes a command-level program and
vice-versa.

When a RECEIVE MAP command is used with
the SET option, the EXEC interface
program always reuses the terminal
input/output area (TI0A) obtained. Do
not use a DFHSC TYPE=FREEMAIN,
RELEASE=ALL macro in the same or an
invoked program because the TIOA is freed
unknown to the EXEC interface program,
which will attempt to reuse it, giving
unpredictable results.

OBJECT PROGRAM SIZE

The object module resulting from any
application program must not occupy more
than 262,136 bytes of main storage.

ASSEMBLER-LANGUAGE CONSIDERATIONS

RESTRICTIONS

The following restrictions apply to an
assembler-language program that is to be
used as a CICS5/VS application program.

1. The assembler instructions COM
(identify blank common control
section), ICTL (input format
control), and OPSYN (equate
operation code) cannot be used.

2. Private code containing commands
cannot be used.

cgﬂgANDS CONTAINED HITHIN MACROS AND COPY
coD

Macro instructions that generate
commands, and COPY code that contains
commands, must be translated and stored
in the source library in translated form
for later inclusion by the assembler.

INVOKING ASSEMBLER-LANGUAGE APPLICATION
PROGRAMS BY A CALL STATEMENT

Assembler-language application programs
containing commands can be treated as
separate CICS/VS programs that have their
own PPT entries and that can be invoked
by assembler-language, COBOL, PL/I, or
RPG II application programs using LINK or
XCTL commands (see "Chapter 4.4. Program
Control" on page 189).

Howaver, since assembhler-language
application programs containing commands
are invoked by a system standard call,
they can be invoked also by a COBOL,
PL/I, or RPG II CALL statement or by an
assembler-language CALL macro. A single
CICS5/VS application program with one PPT
entry may consist of a module containing
separate CSECTs linked together,
although they may have been compiled or
assembled separately.

Also, assembler~-language application
programs containing commands can be
linked with other assembler-language
programs, or with programs in one of the
high-level languages COBOL, PL/I, or RPG
II, but with only one. When such an
application program is linked with an
assembler-language application program,
the main program must be the one coded in
the high-level language, and the PPT must
specify that high-level language.

Chapter 1.4.

Since assembler-language application
programs containing commands are always
passed the parameters EIB and COMMAREA
when invoked, the CALL statement or macro
must pass these two parameters followed,
optionally, by other parameters.

COBOL CONSIDERATIONS

RESTRICTIONS

The following restrictions apply to a
COBOL program that is to be used as a
CICS5/VS application program. (Refer to
the appropriate COBOL programmer's guide
for more information about these
features.)

1. Environment Division and Data
Division entries normally associated
with data management cannot be used.

2. File Section of the Data Division
cannot be used.

3. Special features: AGCEPT, DISPLAY,
EXHIBIT, INSPECT, REPORT WRITER,
SEGMENTATION, SORT, TRACE, and
UNSTRING cannot be used. For
CICS/705/VS, any feature that
requires an 05/VS GETMAIN cannot be
used, (for example, CURRENT-DATE).

4. Options that require the use of
operating system services: COUNT,
FLOW, STATE, STOP RUN, STXIT, or
SYMDMP for CICS/D0OS/VS; COUNT,
ENDJOB, FLOW, DYNAM, STATE, STOP
RUN, SYMDUMP, SYST, or TEST for
CICS5/7057VS cannot be used. Note that
since STOP RUN can be generated by
the COBOL compiler, the application
programmer must always code either a
COBOL GOBACK statement or an EXEC
CICS RETURN command at the end of the
program.

5. COBOL statements: READ, WRITE, OPEN,
and CLOSE cannot be used. (Commands
are provided for the storage and
retrieval of data, and for
communication with terminals.)

6. Optimization option of the DOS Full
COBOL V3 compiler cannot be used.

7. When separate COBOL routines are
link-edited together, only the first
can invoke CICS/VS.

&. The length of working storage plus
the length of the TGT (task global
table) must not exceed 64K bytes.

OOHPILEhS SUPPORTED

Only the following compilers are
supported by CICS/VS:

Programming Techniques and Restrictions 19

. DOS Full COBOL Version.3 Compiler
(5736-CB2)

. DOS/VS‘COBOL Compiler (5746-CB1)

. 0S Full COBOL Version 4 Compiler
(5734-CB2)

. 0S/VS COBOL Compiler (5740-CBl)

BASE LOCATOR FOR LINKAGE (BLL)

The base locator for linkage (BLL)
mechanism is used to address storage
outside the working-storage section of an
application program. It operates by
addressing the storage as if it were a
parameter to the program. The storage
must be defined by means of an 01-level
data definition in the linkage section of
the program. The COBOL compiler
generates code to address the storage via
the parameter list. When the program is
invoked, CICS/VS sets up the parameter
list in such a way that the parameter
list is itself addressable by the

- application program.

The parameter list must be defined as the
first parameter to the program, unless a
communication area is being passed to the
program, in which case the DFHCOMMAREA
definition must precede it. (See "Chapter
6.4, Program Control"™ on page 189).

In the following example, the first
02-level data name (that is, FILLER) is
set up by CIC5/VS5 to provide ‘
addressability to the other fields in the
parameter list. The other data names are
known as BLL cells, and address the
remaining parameters of the program.
There is a one-to-one correspondence
between the 02-level data names of the
paramater list definition and the
0l-level data definitions in the linkage
section.

LINKAGE SECTION.
01 PARMLIST.
02 FILLER PIC S9(8) COMP.
02 A-POINTER PIC S59(8) COMP.
02 B-POINTER PIC 59(8) COMP.
02 C-POINTER PIC 59(8) COMP.
61 A-DATA.
02 PARTNO PIC 9(4).
02 QUANTITY PIC §(4) .
02 DESCRIPTION PIC X(100).
01 B-DATA PIC X. .
01 C-DATA PIC X.

In this example, A-POINTER addresseas
A-DATA, B-POINTER addresses B-DATA, and
C-POINTER addresses C-DATA. The actual
data names chosen for the BLL cells and
for the data areas that they address are
not significant, but the names must be
defined in the correct order, so that the
necessary correspondence is established.

If a BLL cell is named in the SET option
of a CIC5/VS command, subsequent

20 CICS/VS APRM (CL)

reference to the corresponding data
definition name will address the storage
supplied by CICS/VS as a result of
executing the command. For example,
suppose that a program is required to
read a variable-length record from a
file, examine part of it, and update it;
all of this is to be done without
providing storage for the record within
the program. Using the data definitions
shown in the example above, the program
could be written as follows:

EXEC CICS READ UPDATE DATASET('FILEA")
RIDFLD(PART-REQD) SET(A-POINTER)
LENGTHCA-LRECL) END-EXEC

F A-LRECL LESS THAN 8 GO TO ERRORS.

F QUANTITY GREATER ZERO
SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE DATASET('FILEA')

FROMCA-DATA) LENGTHCA-LRECL)
END-EXEC.

I
I

CIC5/VS reads the record into an internal
buffer and supplies the address of the
record in the buffer to the application
program. The application program updates
the record in the buffer and rewrites the
record to the data set.

BLL and Chainad Storage Areas

If access is neaded to a series of
chained storage areas (that is, areas
each of which contain a pointer to the
next area in the chain), a paragraph name
must be inserted immediately following
any statement that establishes
addressability to one of the storage
areas. For example:

LINKAGE SECTION.
01 PARMLIST.

02 USERPTR PIC S9(8) COMP.

01 USERAREA.
' 02 FIELD PIC X(4).
02 NEXTAREA PIC S9(8) COMP.

PROCEDURE DIVISION.

MOVE NEXTAREA TO USERPTR.
ANYNAME.
MOVE FIELD TO TESTVAL.

In this example, storage areas mapped or
defined by USERAREA are chained. The
first MOVE statement establishes
addressability to the next area in the
chain. The second MOVE statement moves
data from the newly addressed area, but
only because a paragraph name follows the
first MOVE statement. If no paragraph
name is inserted, the reference to FIELD
is taken as being to the storage area

that is addressed when the first MOVE
statement refers to NEXTAREA. Insertion
of a paragraph name causes the compiler
to generate code to reestablish
addressability through USERPTR, so that
the reference to FIELD (and the next
reference to NEXTAREA) is to the neunly
addressed storage area.

BLL and OCCURS DEPENDING ON Clauses

If the object of an OCCURS DEPENDING ON
clause is defined in the linkage section,
a special technique is required to ensure
that the correct value is used at all
times. In the following example,
FIELD-COUNTER is defined in the linkage
section. The MOVE FIELD-COUNTER T0O
FIELD-COUNTER statement is needed to
ensure that unpredictable results do not
occur when referring to DATA.

LINKAGE SECTION.

.

01 FILE-REC.

02 FIELD-COUNTER PIC 9(4) COMP.

02 FIELDS PIC X(5) OCCURS 1 TG0 5
TIMES DEPENDING ON
FIELD-COUNTER.

802 DATA PIC X(20).

PROCEDURE DIVISION.

EXEC CICS READ DATASET('FILEA")
RIDFLD(KEYVAL)

SET(RECPTR) END-EXEC.

MOVE FIELD-COUNTER TO
FIELD-COUNTER.

MOVE DATA TO DATA-VAL.

The MOVE statement referring to
FIELD-COUNTER causes the compiler to
reestablish the value it uses to compute
the current number of occurrences of
FIELDS and ensures that it can determine
the displacement of DATA correctly.

BLL and Large Storage Areas

If an area greater than 4096 bytes is
defined in the linkage section,
additional statements are required to
establish addressability to the extra
area. An additional BLL cell is required
for each extra 4096 bytes (or part) added
to the area. (No additional
corresponding 0l-level data name
definition is added, so the usual
one-to~one correspondence of BLL cells to
the data areas they address is not
maintained.) An ADD statement is
required also for each extra 4096 bytes
(or part); it is placed after the

Chapter 1.4,

statement that establishes
addressability to the data area.

The extra statements are shown in the
following example:

LINKAGE SECTION.
61 PARMLIST.

02 FRPTR PIC $9(8) COMP.
02 FRPTR1 PIC S9(8) COMP.

01 FILE-REC.
02 FIELD1 PIC X(4000
62 FIELD2 PIC X(1000
02 FIELD3 PIC X(400)

).
).

PROCEDURE DIVISION.

EXEC CICS READ DATASET('FILEA')
RIDFLD(KEYVAL) SET(FRPTR)
END-EXEC.

ADD 4096 TO FRPTR GIVING FRPTR1.

BLL and the Optimization Feature

If an application program is to be
compiled using the 05 full COBOL V4
Compiler, the 05/VS COBOL compiler, or
the DOS/VS COBOL compiler with the
optimization (0PT) feature, a special
compiler control statement must be
inserted at appropriate places within the
program to ensure addressability to a
particular area defined in the linkage
section. This control statement has the
form:

SERVICE RELOAD fieldname

where "fieldname" is the symbolic name of
a specific storage area which is also
defined in an 0l-level statement in the
linkage section. The SERVICE RELOAD
statement must be used following each
statement which modifies addressability
to an area defined in the linkage
section, that is, whenever the contents
of a BLL cell is changed in any way.

If a HANDLE CONDITION or a HANDLE AID
command is invoked as a result of a
command that changes the contents of a
BLL cell, a SERVICE RELOAD statement
should follow the label branched to as
the exit for that condition.

If the BLL mechanism is used (described
earlier in this chapter), addressability
to the parameter list must be established
at the start of the procedure division.
This is done by adding a SERVICE RELOAD
PARMLIST statement at the start of the
procedure division in the earlier
examples.

For example, after a locate-mode input
operation the SERVICE RELOAD statement

Programming Techniques and Restrictions 21

must be used to establish addressability
to the data, as follows:

EXEC CICS HANDLE CONDITION
ERROR(GIVEUP)
LENGERR(BADLENGTH) END-EXEC

EXEC CICS READ DATASET('FILEA')
RIDFLD(PART-REQD)
SET(A-POINTER)
LENGTH(A-LRECL)
END~EXEC

SERVICE RELOAD A-DATA.

BADLENG.

SERVICE RELOAD A-DATA.

If an address is moved into a BLL cell,
addressability must be established in the
same way, for example:

MOVE B-POINTER TO A-POINTER
SERVICE RELOAD A-DATA.

If areas larger than 4096 bytes are being
addressed, the secondary BLL cells must
be reset after tha SERVICE RELOAD
statement has been executed. (Resetting
a BLL cell is described in the previous
section.)

BLL and Large Communication Area

If a communication area greater than 4096
bytes is defined in the linkage section,
an additional statement is required for
each extra 4096 bytes (or part) to
establish addressability to the extra
area. For example, the coding for a
communication area of 10000 bytes might
be as follows:

LINKAGE SECTION

01 DFHCOMMAREA PIC X(10000).

01 PARMLIST.
02 FILLER PIC $9(8) COMP.
02 FILLER PIC S$9(8) COMP.
gg FILLER PIC $9(8) COMP.

The first FILLER statement establishes
BLL addressability to the first 4096
bytes, the second FILLER statement
establishes addressability to the next
4096 bytes, and so on.

NOTRUNC COMPILER OPTION

If an argument to a command is greater
than 9999 in value, the NOTRUNC compiler
option must be specified to ensure
successful execution.

PROGRAM SEGMENTS

Segments of programs to be copied into
the procedure division ¢an be translated
by the command language translator,
stored in their translated form, and
later copied into the program to be
compiled.

22 CICS/VS APRM (CL)

PL/I CONSIDERATIONS

RESTRICTIONS

The following restrictions apply to a
PL/1 program that is to be used as a
CICS/VS application program. (Refer to
the PL/I Optimizing Compiler
Programmer's Guide for more information
about these features.)

1. The multitasking built-in functions:
COMPLETION, PRIORITY, and STATUS
cannot be used.

2. The multitasking options: EVENT,
PRIORITY, and TASK cannot be used.

3. The PL/] statements: READ, WRITE,
GET, PUT, OPEN, CLOSE, DISPLAY,
DELAY, REWRITE, LOCATE, DELETE,
UNLOCK, STOP, HALT, EXIT, FETCH, and
RELEASE should not be used. Commands
are provided for the storage and
retrieval of data, and for
communication with terminals.

Refer to the PL/I Optimizing Compiler
Programmer's Guide for information

on when the use of these PL/I
statements is necessary and the
consequences of using them.

4. PL/I Sort/Merge cannot be used.

5. Static storage (except for read-only
data) cannot be used. A consequence
of this restriction for CICS5/D0S/VS
PL/I users is that CONTROLLED
variables cannot be used.

6. A declaration for a variable with the
attributes STATIC EXTERNAL should
have also the INITIAL attribute.
Failing this, such declarations will
generate a common CSECT that cannot
be handled by CICS/VS.

PL/1 STAE EXECUTION-TIME OPTION

If this option is specified, an abend
occurring in the transaction will be
handled by PL/I error handling routines,
and the transaction may terminate
normally, in which case, CICS/VS
facilities, such as dynamic transaction
backout (DTB), will not be invoked.

COMPILERS SUPPORTED

Only the following compilers are
supported: k

U] DOS PL/I Optimizing Compiler,
Version 1, Release 5.0

. 05 PL/I Optimizing Compiler, Version
1, Release 3.0

OPTIONS(MAIN) SPECIFICATION

If OPTIONS(MAIN) is specified in an
application program, that program can be
tha first program of a transaction, or
control can be passed to it by means of a
LINK or XCTL command.

If OPTIONS(MAIN) is not specified, it
cannot be the first program in a
transaction, nor have control passed to
it by a LINK or XCTL command, but it can
be link-edited to a main program.

The definition of the EIB is generated
only in main programs. If fields in the

EIB are referred to in an external
procedure for which OPTIONS(MAIN) is not
specified, either the address of the EIB,
or the necessary fields themselves, must
be passed to the external procedure as a
parameter to the CALL statement that
invokes the external procedure.

PROGRAM SEGMENTS

Segments of programs can be translated by
the command language translator, stored
in their translated form, and later
included in the program to be compiled.

Chapter 1.4. Programming Techniques and Restrictions 23

Chapter 1.5. Exceptional Conditions

Exceptional conditions may occur during
the execution of a CICS5/VS conimand and,
unless specified otherwise in the
application program by an IGNORE
CONDITION or HANDLE CONDITION command or
by the NOHANDLE option, a default action
for each condition will be taken by
CICS/VS. Usually, this default action is
to terminate the task abnormally.
(Exceptional conditions are described,
together with the CICS/VS default action,
at the end of a chapter, and a list of
conditions that apply to a command is
included within the syntax box for the
command.)

However, to prevent abnormal
termination, an exceptional condition
can be dealt with in the application
program by a HANDLE CONDITION command.
The command must include the name of the
condition and, optionally, a label to
which control is to be passed if the
condition occurs. The HANDLE CONDITION
command must be executed before the
command which may give risa to the
associated condition.

The HANDLE CONDITION command for a given
condition applies only to the program in
which it is specified, remaining active
until the associated task is terminated,
or until another HANDLE CONDITION command
for the same condition is encountered, in
which case the new command overrides the
previous one.

When control returns to a program from a
program at a lower logical level, the
HANDLE CONDITION commands that were

active in the higher-level program before

control was transferred from it are
reactivated, and those in the lower-level
program are deactivated. (Refer to
"Chapter 4.4. Program Control" on page
189 for information about logical
levels.)

Some exceptional conditions can occur
during the execution of any one of a
number of unrelated commands. For
example, IOERR can occur during
file-control operations,
interval-control operations, and others.
If the same action is required for all
occurrences, a single HANDLE CONDITION
IOERR command at the beginning of the
program will suffice.

If different actions are required, HANDLE
CONDITION commands specifying different
labels, at appropriate points in the
program will suffice. The same label can
be specified for all commands, and fields
EIBFN and EIBRCODE (in the EIB) can be
tested to find out which exceptional
condition has occurred and in which

Chapter 1.5.

command. The EIB is described in
"Appendix A. EXEC Interface Block"™ on
page 239.

The IGNORE CONDITION command specifies
that no action is to be taken if an
exceptional condition occurs. Execution
of a command could result in several
conditions being raised. CICS/VS checks
these in a predetermined order and only
the first one that is not ignored (by an
IGNORE CONDITION command) will be passed
to the application program.

The NOHANDLE option may be used with any
command to specify that no action is to
be taken for any condition resulting from
the execution of that command. In this
way the scope of the IGNORE CONDITION
command covers specified conditions for
all commands (until a HANDLE CONDITION
for the condition is executed) and the
scope of the NOHANDLE option covers all
conditions for specified commands.

THE ERROR EXCEPTIONAL CONDITION

Apart from the exceptional conditions
associated with individual commands,
there is a general exceptional condition
named ERROR whose default action also is
to terminate the task abnormally. If no
HANDLE CONDITION command is active for a
condition, but one is active for ERROR,
control will be passed to the label
specified for ERROR. A HANDLE CONDITION
command (Wwith or without a label) for a
condition overrides the HANDLE CONDITION
ERROR command for that condition.

Commands should not be included in an
error routine that may give rise to the
same condition that caused the branch to
the routine; special care should be taken
not to cause a loop on the ERROR
condition. A loop can be avoided by
including a HANDLE CONDITION ERRGOR
command as the first command in the error
routine. The original error action
should be reinstated at the end of the
error routine by including a second
HANDLE CONDITION ERROR command.

HANDLE EXCEPTIONAL CONDITIONS (HANDLE

CONDITION)

HANDLE CONDITION conditionl[(label)]l
[conditionl(label)]]...

This command is used to specify the label
to which control is to be passed if an

Exceptional Conditions 25

exceptional condition occurs. It remains
in effect until a subsequent IGNORE
CONDITION command for the condition is
encountered. No more than twelve
conditions are allowed in the same
command; additional conditions must be
specified in further HANDLE CONDITION
commands. The ERROR condition can also
be used to specify that other conditions
are to cause control to be passed to the
same label. If "label"™ is omitted, the
default action for the condition will be
taken.

The following example showus the handling
of exceptional conditions, such as
DUPREC, LENGERR, and so on, that can
occur when a WRITE command is used to add
a record to a data set. DUPREC is to be
handled as a special case; system default
action (that is, to terminate the task
abnormally) is to be taken for LENGERR;
and all other conditions are to be
handled by the generalized error routine
ERRHANDL .

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(DUPRTN)
LENGERR

If the generalized error routine can
handle all exceptional conditions except
IOERR, for which the default action (that
is, to terminate the task abnormally) is
required, IOERR (without a label) would
be added to the above command.

In an assembler-language application
program, a branch to a label caused by an
exceptional condition will restore the
registers in the application program to
their values at the point where the EXEC
interface program is invoked.

In a PL/Y application program, a branch
to a label in an inactive procedure or in
an inactive begin block, caused by an
exceptional condition, will produce
unpredictable results.

HANDLE CONDITION COMMAND OPTION

conditioni(label)l
"condition" specifies the name of
the exceptional condition, and
"label" specifies the location
within the program to be branched to
if the condition occurs. If this
option is not specified, the default
action for the condition is taken,
unless the default action is to
terminate the task abnormally, in
which case the ERROR condition
occurs., If the option is specified
without a label, any HANDLE
CONDITION command for the condition
is deactivated, and the default
action taken if the condition
occurs,

26 CICSs/VS APRM (CL)

IGNORE EXCEPTIONAL CONDITIONS (IGNORE
CONDITION) '

IGNORE CONDITION condition
[condition]...

This command is used to specify that no
action is to be taken if an exceptional
condition occurs. It remains in effect
until a subsequent HANDLE CONDITION
command for the condition is encountered.
No more than twelve conditions are
allowed in the same command; additional
conditions must be specified in further
IGNORE CONDITION commands. The option
"condition"” specifies the name of the
exceptional condition that is to be
ignored.

LIST OF EXCEPTIONAL CONDITIONS

The following list shows all the
exceptional conditions that can occur
during the execution of CICS/VS commands.
Each condition is followed by one or more
keywords and by numbers (in parentheses).
The keywords are the commands during the
execution of which the condition may
occur, and the numbers are the chapters
that describe those commands. For the
meaning of a condition, and the default
action associated with that condition,
refer to the list of exceptional
conditions at the end of the indicated
chapter.

CBIDERR ALLOCATE(3.2),
CONVERSE(3.2), EXTRACT
ATTACH(3.2),

SEND(3.2)

DSIDERR DELETE(2.2), READ(2.2),
READNEXT(2.2),
READPREV(2.2),
REWRITE(2.2), STARTBR(2.2),
UNLOCK(2.2), WRITE(2.2)

DSSTAT ISSUE RECEIVE(3.%)

DUPKEY READ(2.2), READNEXT(2.2),
READPREV(2.2)

DUPREC WRITE(2.2), REWRITE(2.2)

ENDDATA RETRIEVE(4.2)

ENDFILE READNEXT(2.2),
READPREV(2.2)

ENDINPT RECEIVE(3.2)

ENQBUSY ENQ(4.3)

ENVDEFERR RETRIEVE(Q.Z)

EOC CONVERSE(3.2), RECEIVE

MAP(3.3), RECEIVE(3.2)

EODS

EOF

ERROR

EXPIRED
FUNCERR

IGREQCD

IGREQID

ILLOGIC

INBFMH
INVERRTERM
INVLDC

INVMPSZ

INVREQ

INVTSREQ

CONVERSE(3.2), ISSUE
RECEIVE(3.4),
RECEIVE MAP(3.3),
RECEIVE(3.2)

CONVERSE(3.2),
RECEIVE(3.2)

I0ERR

General exceptional
condition (1.5). Not
included in the list of
conditions in the syntax of
individual commands.

DELAY(4.,2), P0OST(4.2)

ISSUE ABORT(3.4),
ISSUE ADD(3.4),
ISSUE END(3.4),
ISSUE ERASE(3.4),
ISSUE NOTE(3.4),
ISSUE QUERY(3.4),
ISSUE REPLACE(3.4),
ISSUE SEND(3.4),
ISSUE WAIT(3.4)

CONVERSE(3.2),
ISSUE SEND(3.4),
SEND(3.2),

SEND MAP(3.3),
SEND PAGE(3.3),
SEND TEXT(3.3)

SEND MAP(3.3
SEND PAGE(3
SEND TEXT(3

)

DELETE(2.2), ENDBR(2.2),
READ(2.2), READNEXT(2.2),
READPREV(2.2),
RESETBR(2.2), REWRITE(2.2),
STARTBR(2.2), UNLOCK(2.2),
WRITE(2.2)

CONVERSE(3.2),
ROUTE(3.3)

ROUTE(3.3), SEND MAP(3.3),
SEND TEXT(3.3)

RECEIVE MAP(3.3),
SEND MAP(3.3)

NOJBUFSP
ALLOCATE(3.2), ASSIGN(1.6), NONVAL
CANCEL(4.2), CONVERSE(3.2),
DELAY(4.2), DELETE(2.2), NOPASSBKRD

ENDBR(2.2),
EXTRACT ATTACH(3.2), NOPASSBKUWR
NOSPACE

ISCINVREQ

ITEMERR

3
) JIDERR
.33,
.3

)
)

LENGERR
E

RECEIVE(3.2)

MAPFAIL
NODATARECD

EXTRACT TCT(3.2), FREE(3.2),
P0OST(4.2), READ(2.2),
READNEXT(2.2), READPREV(2.2),
RECEIVE(3.2), RESETBR(2.2),
RETRIEVE(4.2), RETURN(4.4),
REWRITE(2.2), SEND(3.2),

SEND MAP(3.3),
SEND FAGE(3.3),
SEND TEXT(3.3), START(4.2),
STARTBR(2.2),

WAIT JOURNAL(5.5),
WRITE(2.2), WRITEQ TS(4.7)

RETRIEVE(4%.2)

NOSTART
NOSTG
NOTALLOC

Chapter 1.5.

DELETE(2.2),
READ(2.2),
READPREV(2.2)
READQ TD(4
READQ TS(4
RESETBR(2.
RETRIEVE(4.
REWRITE(2.2
STARTBR(2.2
UNLOCK(2.2)
WAIT JOURNA

JOURNAL(5.5),
READNEXT(2.2),

’
’
14

14

START(4.2),

.5),

(5
WRITE(2.2), ??ITEQ TD(4.6),

WRITEQ TS(4.

CANCEL(%.2)
DELETEQ TD(
DELETEQ TS(
ENDBR(2.2),
READNEXT (2.
READPREV(2.
READQ TD(4.
READQ TS(4.
RESETBR(2.2
RETRIEVE(4.
REWRITE(2.

WRITE(2.2

ETE(2.2),

(2.2),

START(4.2),
UNLOCK(2.2),

2
STARTBR(2.2

), WRITEQ TD(4.6),
WRITEQ T5(4.7)

READQ T75(4.7),
WRITEQ TS(4.7)

JOURNAL(5.5),
WAIT JOURNAL(5.5)

CONVERSE(3.2),

ISSUE RECEIVE(3.4),
JOURNAL(5.5), READ(2.2),
READNEXT(2.2),
READPREV(2.2),
READQ TD(4.6),
READQ TS(4.7),
RECEIVE(3.2),
RETRIEVE(4.2),
REWRITE(2.2),
WRITEQ TD(4.6)

RECEIVE MAP(3.3)
ISSUE RECEIVE(3.4)
JOURNAL(5.5)

ISSUE LOAD(3.2)
RECEIVE(3.2)
SEND(3.2)
REWRITE(2.2), WRITE(2.2),
WRITEQ TD(4.6),
WRITEQ TS(4.7)

ISSUE LOAD(3.2)
GETMAIN(4.5)
CONVERSE(3.2),
EXTRACT ATTACH(3.2),
FREE(3.2),

ISSUE DISCONNECT(3.2),
ISSUE SIGNAL(3.2),

WRITE(2.2),

Exceptional Conditions 27

NOTFND

NOTOPEN

OVERFLOW
PGMIDERR

QBUSY
QIDERR

QZERO
RDATT

RETPAGE

RTEFAIL
RTESOME
SEGIDERR

SELNERR

POINT(3.2),
RECEIVE(3.2), SEND(3.2),
WAIT TERMINAL(3.2)

CANCEL(4.2), DELETE(2.2
READ(2.2), READNEXT(2.2
READPREV(2.2),
RESETBR(2.2),
RETRIEVE(4.2), STARTBR(2.2)

DELETE(2.2), JOURNAL(5.5),
READ(2.2), READNEXT(2.2),
READPREV(2.2),

),
),

READQ TD(4.6),
RESETBR(2.2), REWRITE(2.2),
STARTBR(2.2), UNLOCK(2.2),
WAIT JOURNAL(5.5),

WRITE(2.2),
WRITEQ TD(4.6)

SEND MAP(3.3)

HANDLE ABEND(5.2),
LINK(4.4), LOAD(4.4),
RELEASE(4.4), XCTL(4.4)

READQ TD(4.6)

DELETEQ TD(4.
DELETEQ TS(4.

READQ TD(4.6)
READQ T75(4.7)
WRITEQ TD(4.6
WRITEQ TS(4.7

READQ TD(4.6)
CONVERSE(3.2),
RECEIVE MAP(3.3),
RECEIVE(3.2)

SEND MAP(3.3),
SEND PAGE(3.3),
SEND TEXT(3.3)
ROUTE(3.3)
ROUTE(3.3)

READ(2.2), READNEXT(2.2),
READPREV(2.2)

ISSUE
ISSUE
ISSUE
ISSUE
ISSUE
ISSUE
ISSUE

ABORT(3.4),
ADD(3.4),
END(3.4),
ERASE(3.4
NOTE(3.4)
QUERY (3.4
REPLACE(3

),
),
.4),

28 CICS/VS APRM (CL)

SESSBUSY
SESSIONERR

SIGNAL

SYSBUSY
SYSIDERR

TERMIDERR
TRANSIDERR
TSIOERR

UNEXPIN

WRBRK

ISSUE SEND(3.4),
ISSUE WAIT(3.4)

ALLOCATE(3.2)

ALLOCATE(3.2),
CONVERSE(3.2),

EXTRACT ATTACH(3.2),
FREE(3.2),

ISSUE DISCONNECT(3. 2),
ISSUE SIGNAL(3.2),
FOINT(3,2), RECEIVE(3,2),
SEND(3.2),

WAIT TERMINAL(3.2)

CONVERSE(3.2),

ISSUE DISCONNECT(3.2),
RECEIVE(3.2),

WAIT TERMINAL(3.2),
SEND(3.2), WAIT SIGNAL(3.2)

ALLOCATE(3.2)

ALLOCATE(3.2), CANCEL(4.2
DELETE(2.2), DELETQ TD(4.
DELETEQ TS(4.7), ENDBR(2.
READ(2.2), READNEXT(2.2),
READPREV(2.2), READ TD(4.
READQ T75(4.7), RESETBR(Z2.
RETRIEVE(4.2), REWRITE(2.
START(4.2), STARTBR(2.2)
UNLOCK(2.2), WRITE(2.2),
WRITEQ TD(4.6),

WRITEQ T5(4.7)

ISSUE COPY(3.2), START(4.2)
START(4.2)

PURGE MESSAGE(3.3),

SEND MAP(3.3),

SEND PAGE(3.3),
SEND TEXT(3.3)

)
6
2
6),
2),
23,

’

ISSUE
ISSUE
ISSUE
ISSUE
ISSUE
ISSUE
ISSUE
ISSUE

ABORT(
ADD(3.
END(3.
ERASE

SEND TEXT

ISSUE SEND(
ISSUE WAITC

CONVERSE(3.
SEND MAP(3.
(
(

)

)
SEND PAGE(3.3), SEND(3.2),
3.3

Chapter 1.6. Access to System Information

It is possible to write many application
programs using the CICS/VS command-level
interface without any knowledge of or
reference to CICS/VS control blocks and
storage areas. However, it is sometimes
necessary to obtain information that is
valid outside the local environment of
the application program; the ADDRESS and
ASSIGN commands are provided to make
access to such information possible and
these commands are described in the
following sections. Not all fields are
intended to be accessed by the
application program; refer to the CICS/VS
Application Programmer's Reference
Manual (Macro lLevel) for a list of the
fields that are part of the application
programming interface (the API) and that
ill remain valid from release to
release. Details of each control block
and its fields are contained in the
appropriate CICS/VYS Data Areas
publication.

EXEC INTERFACE BLOCK (EIR)

In addition to the usual CICS/VS control
blocks, each task in a command-level
environment has a control block called
the EXEC interface block (EIB) associated
with it. The offsets, fieldnames, and
lengths of the fields in this control
block are as follows:

Offset Field Length
(Hex) Name (Bytes)

0 - EIBTIME 4
4 EIBDATE 4
8 EIBTRNID 4
c EIBTASKN 4
10 EIBTRMID 4
14 EIBRSVD1 2
16 EIBCPOSN 2
18 EIBCALEN 2
1A EIBAID 1
1B EIBFN 2
1D EIBRCODE 6
23 EIBDS 3
2B EIBREQID 8
33 EIBRSRCE 8
3B EIBSYNC 1
3C EIBFREE 1
3D EIBRECV 1
3E EIBSEND 1
3F EIBATT 1
40 EIBEOC 1
41 EIBFMH 1

An application program can access all of
the fields in the EIB by name. The EIB
contains information, additional to that
provided by execution of a terminal
control command, that is useful during
the execution of an application program,
such as the transaction identifier, the

Chapter 1.6.

time and date (initially when the task is
started, and subsequently, if updated by
the application program), and the cursor
position on a display device. The EIB
also contains information that will be
helpful when a dump is being used to
debug a program.

ACCESS TO CICS/VS STORAGE AREAS (ADDRESS)

ADDRESS [CSA(ptr—ref)]
[CWA(ptr—ref)]
[TCTUA(ptr—ref)]
[TWA(ptr—ref)]

This command is used to obtain access to
any of the following areas: the common
storage area (CSA), the common work area
(CWA), the terminal control table user
area (TCTUA), and the transaction work
area (THWA).

ADDRESS COMMAND OPTIONS

CSA
allows access to control blocks
addressed by the CSA. The pointer
reference is set to the address of
the CSA. The CSA gives access to all
fields in CICS5/VS control blocks and
storage areas.

CUA
is used to pass information between
application programs. The pointer
reference is set to the address of
the CWA. If a CWA does not exist,
the pointer reference is set to
X'FFo00000".

TCTUA
is used also to pass information
between application programs, but
only if the same terminal is
associated with the application
programs involved (which can be in
di fferent tasks). The pointer
reference is set te the address of
the TCTUA. If a TCTUA does not
exist, the pointer reference is set
to X'FF000000'. The data area
contains the address of the TCTUA of
the principal facility, not that for
any alternate facility that may have
been allocated.

THA
is used also to pass information
between application programs but
only if they are in the same task.
The pointer reference is set to the

Access to System Information 29

address of the TWA. If a TWA does
not exist, the pointer reference is
set to X'FF000000°'.

An example of the use of the ADDRESS
command is given in the next section.
(Information can also be passed between
programs using the COMMAREA option of the
program control commands, described in
Iggagter 4.4, Program Control"™ on page

I1f an ADDRESS command is included in a
COBOL program that is to be compiled
using the optimization feature, it must
be followed by SERVICE RELOAD statements
to reload the BLL cell being used. (The
SERVICE RELOAD statement is described
earlier in the manual in "BLL and the
Optimization Feature™ in "Chapter 1.4%.
Programming Techniques and Restrictions"”
on page 17.)

<

ALUES OUTSIDE THE APPLICATION PROGRAM

ASSIGN)

o=

ASSIGN option(data—area)
[option(data—areall...

Condition: INVREQ

This command is used to obtain values
outside the local environment of the
application program. The value obtained
is assiogned to the data area specified in
the option.

The following values can be obtained:
. lengths of storage areas

. values needed when communicating
with the 2980 General Banking
Terminal System (copied from the
TCTTE)

. values needed during BMS operations
(copied from the TCA)

. values needed during batch data
interchange

. screen size in use on the 3270

. other information that may be useful
to the application programmer
(copied from various CICS/VS control
blocks)

A complete list of ASSIGN command options
is given at the end of this chapter.

The following example shows, in the
different application programming
languages, how the ADDRESS command is
used to obtain access to the TWA, and how
the ASSIGN command is used to obtain the
lenagth of the TWA. Included is a test for

30 CICS/VS APRM (CL)

validity based on the fact that, if there
is no TWA, the ASSIGN command will obtain
a length of zero.

Assembler Language

DSWORKA DSECT
WAPTR EQU 08
USING DSWORKA,WAPTR
COUNT DS H
DFHEISTG DSECT
TWALENG DS H
CODE CSECT
EXEC CICS ASSIGN
TWALENGCTWALENG)

CcLC TWALENG,=H'0"
BNH CONTINUE
EXEC CICS ADDRESS TWA(WAPTR)
LH 6,COUNT
LA 6,1(6)
STH 6, COUNT
CONTINUE DS O0H

coBOL

WORKING-STORAGE SECTION.
77 TWALENG PIC S9(4) COMP.

LINKAGE SECTION.
01 BLLCELLS.
02 FILLER PIC S9(8) COMP,
02 WAPTR PIC $S9(8) COMP.
01 WORKAREA.
02 COUNT PIC S9(4) COMP.

PROCEDURE DIVISION.
EXEC CICS ASSIGN TWALENG(TWALENG)
END-EXEC
IF TWALENG GREATER THAN 0 THEN
EXEC CICS ADDRESS TWACWAPTR)
END-EXEC
ADD 1 TO COUNT.

PL/I

DCL TWALENG FIXED BIN(15);
DCL 1 WORKAREA BASED(MWAPTR),
2 COUNT FIXED BINC15);

EXEC CICS ASSIGN TWALENG(TWALENG);
IF TWALENG>0 THEN DO;

EXEC CICS ADDRESS TWACWAPTR);
EN COUNT=COUNT+1;
D; '

ASSIGN COMMAND OPTIONS

Where any of the following options apply
to terminals or terminal-related data,
the reference is always to the principal
facility. '

ABCODE

specifies a variable that is set to
the current value of the abend code
(abend codes are documented in
CICS/VS Messages and_Codes). If an
abend has not occurred, the variable
is set to blanks. The format of the
valuve is a four~byte character
string.

APPLID

specifies that the value required is
the application name used in
transaction routing or to identify
the local CICS/VS system to VTAM.
The format of the value is an
eight-byte character string.

specifies that the value required is
an indicator showing that the
terminal is defined as having the
extended color capability (X'FF');
or no extended color capability
(X'00'). If this option is
specified and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a one-byte character.

CHALENG

specifies that the length of the CWA
is required. If no CWA exists, a
zero length is returned. No
exceptional condition occurs. The
format of the value is halfword
binary.

DELIMITER '

specifies that the value required is
the data~link control character for
a 3600, copied from TCTTEDLM. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs. The format of the
value is a one-byte character.

DESTCOUNT

specifies that the value required is
the relative overflow control
number of the destination that has
encountered overflow. If this
option is specified when overflow
processing is not in effect, the
value obtained will be meaningless.
If no BMS commands have been issued,
the INVREQ condition occurs. The
format of the value is halfword
binary.

DESTID

specifies that the value required is
the identifier of the outboard
destination, padded with blanks on
the right to eight characters. If
this option is specified before a
batch data interchange command has
been issued in the task, the INVREQ
condition occurs. The format of the
value is an eight-byte character
string.

Chapter 1.6.

DESTIDLENG

EXTDS

specifies that the value required is
the length of the destination
identifier obtained by DESTID. If
this option is specified before a
batch data interchange command has
been issued in the task, the INVREQ
condition occurs. The format of the
value is halfword binary.

specifies that the value required is
an indicator showing that the
terminal is defined as having the
extended data stream capability
(X'FF'); or no extended data stream
capability (X'00'). If this option
is specified and there is no TCTTE
for the task, the INVREQ condition
occurs. The format of the value is
a one-byte character.

FACILITY

FCI

specifies that the value required is
the identification of the facility
that initiated the transaction. The
value is copied from the first four
bytes pointed at by TCAFCAAA. If
this option is specified, and there
is no allocated facility, the INVREQ
condition occurs. For example, this
option gives the name of the
transient data destination whose
trigger level caused the
transaction to be started. The
format of the value is a four-byte
character string.

specifies that the value required is
the facility control indicator,
copied from TCAFCI, that indicates
the type of facility associated with
the transaction, for example, X'01°'
indicates a terminal or logical
unit. The obtained value is always
returned. No exceptional condition
occurs. The format of the value is
a one-byte character.

HILIGHT

specifies that the value required is
an indicator showing that the
terminal is defined as having the
extended highlight capability
(X'FF'); or no extended highlight
capability (X'00'). If this option
is specified and there is no TCTTE
for the task, the INVREQ condition
occurs., The format of the value is
a one-byte character.

LDCMMNEM

specifies that the value required is
the LDC mnemonic of the destination
that has encountered overflow. If
this option is specified when
overflow processing is not in
effect, the value obtained will be
meaningless. No exceptional
condition occurs. The format of the
value is a two-byte character
string.

Access to System Information 31

LDCNUM

spaecifies that the value required is
the LDC numeric value of the
destination that has encountered
overflow. If this option is
specified when overflouw processing
is not in effect, the value obtained
will be meaningless. No exceptional
condition occurs. The format of the
value is a one~-byte character.

NUNTAB

specifies that the value required is
the number of the tabs required to
position the print element in the
correct passbook area of the 29890.
If this option is specified and
there is no TCTTE for the task, the
INVREQ condition occurs. The format
of the value is a one-byte
character.

OPCLASS

OPID

specifies that the value required is
the operator class, copied from
TCTTEQCL. 1If this option is
specified and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a three-byte character string.

specifies that the value required is
the operator identification, copied
from TCTTEOI. If this option is
specified and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a three-byte character string.

OPSECURITY

specifies that the value required is
the operator security key, copied
from TCTTESK. If this option is
specified and there is no TCTTE for
the task, the INVREQ condition
occurs. The format of the value is
a three-byte character string.

PAGENUM

specifies that the value required is
the current page number for the
destination that has encountered an
overflow. If this option is
specified vhen overflow processing
is not in effect, the value obtained
will be meaningless. If no BMS
commands have been issued, the
INVREQ condition occurs. The format
of the value is halfword binary.

PRINSYSID

32

specifies that the value required is
the name of the TCTSE (terminal
control table system entry)
associated with the principal
facility. If there is no TCTTE for
the task or if the principal :
facility is not an LU6 or MRO
session, the INVREQ condition
occurs. The format of the value is
a four-byte character string.

CICS/VS APRM (CL)

PS

spacifies that the value required is
an indicator showing that the
terminal is defined as having the
programmed symbols capability
(X*'FF'); or no programmed symbols
capability (X'00'). If this option
is specified and there is no TCTTE
for the task, the INVREQ condition
occurs. The format of the value is
a one-bvte character.

RESTART

specifies that the value required is
an indicator showing whether a
restart (X'FF'), as opposed to a
normal start (X'00'), has occurred.

SCRNHT

specifies that the value reaquired is
the height of the current 3270
screen. If this option is specified
and there is no TCTTE for the task,
the INVREQ condition occurs. The
format of the value is halfword
binary.

SCRNHD

specifies that the value required is
the width of the current 3270
screen. I1f this option is specified
and there is no TCTTE for the task,
the INVREQ condition occurs. The
format of the value is halfword
binary.

SIGDATA

specifies that the value required is
the signal data received from a
logical unit; copied from TCTESIDI.
If this option is specified and
there is no TCTTE for the task, the
INVREQ condition occurs. The format
of the value is a four-byte
character string.

STARTCODE

specifies that the value required is
a code indicating how a transaction

has been started. The format of the
value is a two-byte character string
which can have the following values:

Code Transaction started by
QD Transient data trigger level
S START command (no data)

SD START command (with data)
D Terminal input
U User-attached task

STATIONID

specifies that the value required is
the station identifier of a 2980. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs. The format of the
value is a one—~byte character.

SYSID

specifies that the value required is
the name given to the local CICS/VS
system. This value may be specified

in the SYSID option of a file
control, interval control,
temporary storage, or transient
data command, in which case the
resource to be accessed is assumed
to be on the local system. The
format of the value is a four-byte
character string.

TCTUALENG

specifies that the value required is
the length of the terminal control
table user area (TCTUA). If no
TCTUA exists, a zero length is
returned. No exceptional condition
occurs. The format of the value is
halfuword binary.

TELLERID

specifies that the value required is
the teller identifier of a 2980. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs. The format of the
value is a one~byte character.

TERMCODE

specifies that the value required is
a code giving the type and model
number of the terminal associated
with the task, copied from TCTTETT
and TCTTETM. If this option is
specified and there is no TCTTE for
the task, the INVREQ condition

Chapter 1.6.

occurs. The format of the value is
a two-byte character string.

THALENG

specifies that the value required is
the length of the transaction work
area (TWA)Y. If no TWA exists, a
zero length is returned. No
exceptional condition occurs.

UNATTEND

specifies that the value required is
a code indicating that the mode of
operation of the terminal is
unattended (X'FF') or attended
(X'00"'), copied from TCTEMOP. If
this option is specified and there
is no TCTTE for the task, the INVREQ
condition occurs.

VALIDATION

specifies that the value required is
an indicator showing that the
terminal is defined as having the
validation capability (X'FF')
consisting of the mandatory fill,
mandatory enter, and trigger
attributes. No validation
capability is indicated by (X'00').
If this option is specified and
there is no TCTTE for the task, the
INVREQ condition occurs. The format
of the value is a one-byte
character.

Access to System Information 33

Chapter 1.7. Execution (Command-Level) Diagnostic Facility

The Execution (Command-Level) Diagnostic
Facility (EDF) enables an application
programmer to test a command-level
application program online without
making any modifications to the source
program or the program preparation
procedure. The facility intercepts
execution of the program at various
points and displays information about the
program at these points. Also displaved
are any screens sent by the user program,
so that the programmer can converse with
the application program during testing
just as a user would on the production
system.

EDF runs as a CICS/VS transaction. It is
started by a transaction identifier or PF
key named in the PCT by the system
programmer; also, the PPT needs to
specify the programs and maps that are
used by EDF. EDF uses temporary storage
and BMS. It can be used only from a 3270
terminal with a screen width of 80
columns and a screen depth of 24 lines or
more.

EDF is a command-level diagnostic aid
only, and unpredictable results may occur
if macro instructions are coded in
application programs using this

facility.

For 05/VS only, this facility is not
supported if TCTUA=VICOMPAT is specified
in the DFHSG TYPE=INITIAL system macro.

TCAM (a data stream access method) is not
supported by EDF, which supports only
terminals and logical units.

Terminal input received by EDF should be
in read modified format as it is mapped
using BMS,

When using EDF, the user task should
specify DTIMOUT=NC or a large value in
the DFHPCT TYPE=ENTRY system macro. When
running EDF from the same terminal as the
user task, the user task must not specify
the ONEWTE parameter in the DFHPCT
TYPE=0PTGRP system macro.

FUNCTIONS OF EDF

During execution of a transaction in
debug mode, EDF intercepts the execution
of the application program at the
following points:

1. At transaction initialization:

After the EXEC interface block (EIB)
has been initialized; but

Chapter 1.7.

Before the application program is
given control.

2. At the start of the execution of
every EXEC CICS and EXEC DLI command:

After the initial trace entry has
been made; but

Before the requested action has been
performed.

3. At the end of the execution of every
command (except ABEND, XCTL, and
RETURN):

After the requested action has been
performed; but

Before the HANDLE CONDITION
mechanism is invoked; and

Before the response trace entry is
made.

At program termination

At normal task termination

o U p

When an ABEND occurs
7. At abnormal task termination

At these points of interception, EDF
displays the current status, by
identifying the cause of interception.
In addition:

1. At point 1, EDF displays the values
of the fields in the EIB.

2. At point 2, EDF displays the command,
including kevwords, options, and
argument values. The command is
identified by transaction
identification, program name, the
hexadecimal offset within the
program, and, if the program has been
translated with the DEBUG option, the
line number of the command as given
in the translator source listing.

3. At point 3, EDF displays the same as
at point 2, plus the response from
command execution.

4. At points 6 and 7, EDF displays the
values of the fields in the EIB and
the following items:

The abend code;

If the abend code is ASRA (that is, a
program interrupt has occurred), the
PSW at the time of interrupt, and the
source of the interrupt as indicated
by the PSW;

Execution (Command-Level) Diagnostic Facility 35

If the PSH indicates that the
instruction giving rise to the
interrupt is within the application
program, the offset of that
instruction.

The user is also given the ability to
display any of the following:

. The values of the fields in the EIB
and the DIB (DL/1 interface block).

. The program's working storage in
hexadecimal and character form.

. The last ten commands executed,
including all argument values,
responses, and so on.

. The hexadecimal contents of any
address location within the CICS5/VS
partition.

At any of these points of interception,
the user is allowed to interact with the
application in the following ways:

. If the current command is being
displaved before it is executed, the
user can modify any argument value by
overtyping the value that is
displayed on the screen.
Alternatively, the user can suppress
execution of the command (that is,
convert it to a null operation).

. If the current command is being
displayed after it has been executed,
the user can modify certain argument
values and the response code by
overtyping the displaved value or
response with the required value or
response.

. The user can modify the program's
working storage and most fields of
the EIB and DIB.

. The user can suitch off debug mode
(except at point 2) and continue
running the application normally.
Alternatively, the user can force an
abend.

. The user may request that command
displays are suppressed until one or
more of a set of specific conditions
;s fulfilled. These conditions may

e: ,

A specific named command is
encountered.

Any exceptional condition occurs for
which the system action is to raise
ERROR.

A specific exceptional condition
occurs.

The command at a specific offset_or
on a specific line number (assuming

36 CICS/VS5 APRM (CL)

the program had been translated with
the DEBUG option) is encountered.

An abend occurs.

The task terminates normally.
The task terminates abnormally.
Any DL/I error status occurs.

A specific DL/I error status occurs.

SECURITY RULES

To inveoke EDF, the user must have a
security key that matches the security
key defined for EDF in the PCT. In
addition, to test a particular
transaction, the EDF user must have a
security key that matches the security
key for that transaction. If this
condition is not satisfied, the EDF
session is terminated immediately.

Resource level security checks will be
made during execution of the transaction
under test unless EDF has been defined as
not requiring these checks. If such
checks indicate that the EDF user is not
allowed access to the resource, the user
transaction will be abended.

INSTALLING EDF

To ensure that EDF is available on the
test system, the system programmer must
make one group entry in the PPT and one
group entry in the PCT (see the CICS/VS
System Programmer's Reference Manual for
details of constructing a PPT and PCT).

EDF can send messages greater than 4K
bytes in length. VTAM users should ensure
that their NCP (network control program)
can handle data of this length. The same
applies if temporary storage is defined
as auxiliary, in which case the VS5AM
control interval length must be large
enough to handle the message.

INVOKING EDF

EDF can be run on the same terminal as
the transaction requiring checkout
provided that the application under test
does not make use of extended attributes,
or on a different terminal.

For same-terminal checkout, EDF can be
invoked either by:

1. Using the transaction CEDF or

2. Using the appropriate PF key, if one
has been defined for EDF.

The transaction requiring checkout can
then be started.

For different-terminal checkout, EDF is
invoked on the current terminal, which
must be in TRANSCEIVE status, by using
the transaction identifier CEDF with an
argument that specifies the
four-character identifier (as defined in
the TRMIDNT operand of the DFHTCT
TYPE=TERMINAL system macro) of the
terminal on which the transaction
requiring checkout is being run. For
aexample:

CEDF L774A

If a command-level transaction is already
running on that terminal, EDF will
associate itself with that transaction;
otherwise it will associate 1tself with
the next command-level transaction
started at that terminal.

The above applies to a single system. If
the transaction running on the terminal
has been transaction routed, EDF will not
associate itself with it, nor with any
other transaction that has been routed.
EDF will associate itself with the next
command-level transaction that runs on
the system to which the terminal is
connected.

The transaction identifier CEDF may be
entered from a formatted screen, in which
case the effect is the same as pressing
the PF key; that is, the terminal at
which CEDF is entered is put into EDF
mode. (No message is issued, so that the
formatted screen remains intact.)

The full format of the command to
initiate or terminate an EDF session is:

CEDF [terminal—-idl[, {ON|OFF}]

If the terminal identifier is omitted,
the terminal at which the CEDF
transaction is initiated is assumed.

CEDF cannot be defined to be a remote
transaction. The only way to test a
transaction running in a connected system
is by means of the routing transaction
CRTE. This transaction is used to set up
a routing session with the connected
system; CEDF can then be used for
same-terminal checkout.

To invoke EDF within the routing session,
the user must type CEDF because the
routing session does not allow the use of
PA or PF keys. It is impossible to use
EDF for tmo-terminal checkout if the
transaction under test, or the terminal
that invokes it, is owned by a different
system.

Chapter 1.7.

USING EDF DISPLAYS

An example of a typical EDF display is
given in Figure 3 on page 38.

The five lines at the foot of the screen
provide a menu indicating the effect of
the ENTER and PF keys for that particular
display. If the terminal does not have
PF keys, the same effect can be obtained
by positioning the cursor under the
required instruction on the screen and
pressing the ENTER key. The cursor can
be correctly positioned by using the tab
keys.

Although the menu may change from one
display to another, no function will move
from one key to another as a result of a
menu change.

If the ENTER key is pressed while the
cursor is not positioned within the menu,
the function specified for the ENTER key
is performed.

EDF uses the line immediately above the
menu to display messages to the user.

Up to ten displays are remembered and can
be redisplaved later.

The number at the top right of the screen
indicates the current display number; it
is possible to recall any of the last ten
displavs, which are numbered -01, -02,
and so on, by overtyping this number.
Alternatively, PF7 and PF8 can be used to
scroll back and forward one display at a
time.

Argument values can be displayed in
character or hexadecimal format. If
character format is requested, numeric
arguments are shown in signed numeric
character format. Each argument value is
restricted to one line of the display; if
the value is too long, only the first few
bytes are displayed, followed by "..." to
indicate that the value is incomplete. If
the argument is displaved in hexadecinmal
format, the address of the argument is
also displaved. This enables the user to
display the argument value in full by
requesting a display of that location and
scrolling if necessary.

The user can overtype any screen area at
which the cursor stops when the tabbing
keys are pressed, such as the response
field. Thus, for example, the response
can be changed from "NORMAL"™ to "“ERROR"
or some other exceptional condition, so
as to test the program's error handling
at this point in the program. A list of
areas that can be overtyped is given:
later under "Overtyping EDF Displays."

The response of EDF to a user request is
in accordance with the following order of
priority:

Execution (Command-lLevel) Diagnostic Facility 37

TRANSACTION: CMNU
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS SEND
MAP (' XDFHCMA'")

TERMINAL
ERASE

OFFSET:X'0003EE"
RESPONSE: NORMAL

ENTER: CONTINUE

PF10: PREVIOUS DISPLAY

PROGRAM: XDFHINST

FROM(CY N....F..J&K..Y&...... Kooooon m...

EIBFN=X'1804"
EIBRCODE=X"000000000000"

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 STOP CONDITIONS

PF11: UNDEFINED

TASK NUMBER: 0000115 DISPLAY: 00

PF12: ABEND USER TASK

Figure 3. Typical EDF Display

1. If the CLEAR key is used, EDF
redisplays the screen with any
changes ignored.

2. If invalid changes are made, EDF
accepts any valid changes and
redisplays the screen with a
diagnostic message.

3. If the display number is changed, EDF
accepts any other changes and
displays the requested display.

4. If a PF key is used, EDF accepts any
changes and performs the action
requested by the PF key.

5. If the ENTER key is pressed, and the
screen has been modified (other than
the REPLY field), EDF redisplays the
screen with changes included.

6. If the ENTER key is pressed, and the
screen has not been modified (other
than the REPLY field), then if the
ENTER key means CONTINUE, execution
of the user transaction continues,
otherwise if the ENTER key means
CURRENT DISPLAY, EDF redisplays the
current status display.

TERMINAL SHARING BETWEEN TRANSACTION AND
EDF

When both EDF and the user transaction
are sharing the same terminal, EDF
restores the user transaction's display
at the following times:

. When the transaction requires input
from the operator

38 CICS/VS APRM (CL)

L] When the transaction's display is
changed

. At the end of the transaction
L4 When EDF displays are suppressed
. When USER DISPLAY is requested.

Thus, when a SEND command is followed by
a RECEIVE command, the display sent by
the SEND command appears twice, once when
the SEND command is executed, and again
when the RECEIVE command is executed. It
is not necessary to respond to the SEND
command, but if a response is made, EDF
will remember it and redisplay it when
the screen is restored for the RECEIVE
command. The response passed to the
transaction is that which is made to the
RECEIVE command.

When EDF restores the transaction
display, it does not sound the alarm or
affect the kevboard in the same way as
the user transaction. The effect of the
user transaction options will be seen
when the SEND command is executed, but
not when the screen is restored.

For same-terminal use, when EDF restores
the transaction display on a device that
uses color, programmed symbols, or
extended highlighting, the attributes
will no longer be present and the display
will be in monochrome with no programmed
symbols, or extended highlighting.

“If the inbound reply mode in the

application program is set to character
(to enable the attribute setting keys)

EDF will reset this mode causing these
keys to be disabled.

When EDF restores the transaction
display, it locks the keyhoard until the
transaction issues a RECEIVE command, at
which time EDF frees the keyboard.

If the EDF session is terminated part way
through the transaction, EDF restores the
screen with the keyboard locked if the
last send/receive to the terminal was in
fact a RECEIVE command; otherwise, the
keyboard is unlocked. This will usually,
but not always, match the normal behavior
of the transaction.

ENTER AND PF KEYS

The following list explains the meanings
of the ENTER key and the program function
(PF) keys:

ABEND USER TASK
terminates the task. EDF asks the
user to confirm this action by
displaying the message "ENTER ABEND
CODE AND REQUEST ABEND AGAIN."™ After
entering the code at the position
indicated by the cursor, the user
must request this function again to
actually abend the task with a
transaction dump identified by the
specified code. If the user enters
"NQO," the task will be abended
without a dump.

This function cannot be used if an
abend is already in progress or the
task is terminating.

CONTINUE
causes the user transaction to
continue unless the screen has been
modified. In the latter case, EDF
redisplays the screen with changes
incorporated.

CURRENT DISPLAY

displays the screen that was being
displayed before the user started
examining other displays, such as
remembered displays, unless the
screen has been modified. In the
latter case, EDF redisplays the
screen with changes incorporated.

DIB DISPLAY
shows the contents of the DIB.

EIB DISPLAY
shows the contents of the EIB and
COMMAREA (if any) (see "Appendix A.
. EXEC Interface Block™ on page 239
for a description of the fields in
the EIB).

END EDF SESSION
ends the debugging session, and
takes the terminal out of debug
mode. The user transaction
continues.

Chapter 1.7.

NEXT DISPLAY
used when examining displays, to
step on to the next remembered
display. Repeated use stops at the
current display, when the "next
display" key is no longer available.

PREVIOUS DISPLAY
shows the latest remembered
display. Repeated use stops at the
earliest remembered display.
Further use merely causes the
earliest remembered display to be
redisplaved.

REGISTERS AT ABEND
displays storage containing the
values of the registers in the event
of an ASRA abend. The lavout of the
storage is as follows:

. PSW at abend (8 bytes)
. Register values (0 through 15)

In some (very rare) cases, when a
second program check occurs in the
system before EDF has captured the
values of the registers, this
function will not appear on the menu
of the abend display. If this
happens, a second test run will
generally prove to be more
informative.

REMEMBER DISPLAY
places a display that would not
normally be remembered, such as an
EIB display, in the memory.
(Normally, only the command
displays are remembered.) The
memory can hold up to ten displays.
All pages associated with the
display are remembered (and can be
scrolled when recalled) except for
storage displays where only the page
currently displaved is remembered.

SCROLL BACK
scrolls a command or EIB display
backwards. A plus sign (+) against
the first option or field indicates
there are more options or fields
preceding.

SCROLL BACK FULL
scrolls a working storage display a
full screen backuards, displaying
lower addresses.

SCROLL BACK HALF
scrollsia working storage display
half a screen backwards, displaying
lower addresses.

SCROLL FORWARD
scrolls a command or EIB display
forwards. A plus sign (+) against
the last option or field indicates
there are more options or fields
following.

Execution (Command-Level) Diagnostic Facility 39

SCROLL FORMARD HALF

scrolls a working storage display
half a screen forwards, displaying
higher addresses.

SCROLL FORWARD FULL

serolls a vorking storage dlsplay a
full screen forwards, d1sp1ay1ng
higher addresses.

STOP CONDITIONS

displays, as shown in Figure 4 on
page 42, a skeleton menu with which
the user can specify one or more
conditions that will cause EDF to
stop the user transaction, and start
redisplaying commands, after
displays have been suppressed by the
SUPPRESS DISPLAYS function. These
functions are used to reduce the
amount of operator intervention
required to check out a program that
is partly working.

The transaction can be stopped:

. blhen a specified type of command
is reached.

. When a specified exceptional or
error condition occurs during
execution of a command.

. When a specified offset or line
is reached.

. At transaction abend:
. At normal task termination.
. At abnormal task termination.

The line number, which will be
available on the source listing if
the program has been translated
using the DEBUG option, must be
specified exactly as it appears on
the listing, including leading
zeros, and must be the line on which
a command starts.

The offset specified must be the
offset of the BALR instruction
corresponding to the command.

The correct line can be determined
easily from the translator output
listing. The offset can be
detaermined from the code listing
produced by the assembler or
compiler.

For transactions that contain DLI
commands, the qualifier CICS on the
command line can be overtyped with
DLI to specify a DLI command. Also,
the transaction can be stopped when
a specified error status, or any
error status, occurs.

SUPPRESS DISPLAYS

suppresses all EDF displays until
the next stop condition occurs.

CICS/VS APRM (CL)

SHITCH HEX/CHAR

switches the display between
hexadecimal and character
representation. This is a mode
switeh; subsequent displays will
stay in the chosen mode until the
next time this key is pressed. This
siwitch has no effect on
previously-remembered displavs,
stop condition displays, and
working storage displays.

UNDEFINED

means that this key is not available
with this type of display.

USER DISPLAY

shows what the user would see if the
terminal was not in EDF mode. Hence,
this function is usable only for
same—-terminal checkout.

WORKING STORAGE

displays the program's working
storage, in a form similar to that
of a dump listing, that is, in both
hexadecimal and character
representation. When this key is
used, two additional scrolling keys
are provided, and other PF keys
allow the EIB (and the DIB if a DL/I
command has been processed by EDF)
to be displayved.

The meaning of "working storage"™
depends on the programming language
of the application program, as
follows:

ASHM
the storage defined in the
current DFHEISTG DSECT.

COROL
all data storage defined in the
WORKING-STORAGE section of the
program.

PL/I
the dynamic storage area (DSA)
of the current procedure.

Except for COBOL programs, working
storage starts with a standard
format save area, that is, registers
14-12 are stored at offset 12 and
register 13 at offset 4.

Working storage can be changed at
the screen; either the hexadecimal
section or the character section may
be used. Also, the ADDRESS field at
the head of the display can be
overtyped with a hexadecimal
address; storage starting at that
address will then be displayved when
ENTER is pressed. This allows any
location in the partition to be
examined. Further information on
the use of overtyping is given later
under "Overtyping EDF Displays.™

If the storage examined is not part
of the user's working storage (which
is unique to the particular
transaction under test), the
corresponding field on the screen is
inhibited to prevent the user from
overwriting storage that can affect
more than one task in the program.

If the initial part of a working
storage display line is blank, the
blank portion is not part of working
storage. This can occur because the
display is doubleword aligned.

At the beginning and end of a task,
working storage is not available. In
these circumstances, EDF generates
a blank storage display so that the
user can still examine any storage
area in the partition by overtyping
the address field.

OVERTYPING EDF DISPLAYS

As mentioned above, certain areas of an
EDF display can be overtyped. These areas
can be identified by use of the tab keys;
the cursor stops only at fields that can
be overtyped (excluding fields within the
menu) .

. The verb of a command, such as the
"SEND" in "EXEC CICS SEND", can be
overtyped with "NOOP™ or "NOP"™ before
execution; this suppresses execution
of the command. When the screen is
redisplayed with NOOP, the original
verb line can be restored by erasing
the whole verb line with the ERASE
EOF key. i

. Any argument value can be overtyped,
but not the keyvword of the argument.
Overtyping must be in the same
representation, hexadecimal or
character, as the original field, and
must not extend bevond the argument
value displayed. Any modification
that is not overtyping of the
displayed value is ignored (no
diagnostic message being generated).
When an argument is displayved in
hexadecimal format, the address of
the argument location is also
displaved.

. Numeric values always have a sign
field, which can be overtyped with a
minus or a blank only.

. The response field can be overtyped
with the name of any exceptional
condition, including ERROR, that can
occur for the current function, or
with the word "NORMAL". The effect
when EDF continues will be that the
program will take whatever action has
been prescribed for the specified
response.

Chapter 1.7.

L3 The EIBRCODE field, when displaved as
part of the EXEC Interface Block, can
be overtyped with any desired bit
pattern. This does not apply when
the EIBRCODE field is part of a
command display.

When a field representing a data area of
a program is overtyped, the entered value
is placed directly into the arplication
program's storage. On the other hand,
before execution of a command, when a
field representing a data value (which
may possibly be a constant) is overtyped,
a copy of the field is used; thus, other
parts of the program that might use the
same constant for some unrelated purpose
will not be affected by the change. If,
for example, the map name is overtyped
before executing a SEND MAP command, the
map actually used temporarily is the map
with the entered name; but the map name
displaved on response will be the
original map name. (The "previous
display" key can be used to display the
map name actually used.)

When an argument is to bhe displaved in
character format, some of the characters
may not be displavable (including
lowercase characters). EDF replaces each
non-displayable character by a period.
When overtyping a period, the user must
be aware that the storage may in fact
contain a character other than a period,
the user may not overtype any character
with a period; if this is done, the
change is ignored and no diagnostic
message is issued. Similarly, when a
value is displayed in hexadecimal format,
overtyping with a blank character is
ignored and no diagnostic message is
issued.

When storage is displaved in both
character and hexadecimal format and
changes are made to both, the value of
the hexadecimal field will take
precedence should the changes conflict;
no diagnostic message is issued.

If invalid data is entered, the result is
as follows, regardless of the action
requested by the user:

U The invalid data is ignored;

. A diagnostic message is displayed;

. The alarm is sounded if the terminal
has the alarm feature;

EDF does not translate lowercase
characters to uppercase. If uppercase
translation is not specified for the

terminal in use, the user must take care

to enter only uppercase characters.

CHECKING OUT PSEUDO-CONVERSATIONAL
PROGRAMS

On termination of the task, EDF displays

Execution (Command-lLevel) Diagnostic Facility 41

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
DISPLAY ON CONDITION:— -
GCOMMAND: EXEC CICS
OFFSET: L '
LINE NUMBER: ...
CICS EXCEPTIONAL CONDITION:
ANY CICS ERROR CONDITION YES
TRANSACTION ABEND YES
NORMAL TASK TERMINATIOHN YES
ABNORMAL TASK TERMINATION YES
DLI ERROR STATUS: ..
ANY DLI ERROR STATUS YES
ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 UNDEFINED PF3 END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PFé6 USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: UMDEFINED PF11: UNDEFINED PF12: REMEMBER DISPLAY
Figure 4. "Stop-Conditions" Display
a message saying that the task is USING EDF WITH EXEC DLI COMMANDS
terminated and prompting the user to
specify wnhether or not debug mode is to EDF supports EXEC DLI commands in the
continue into the next task. This is to same way as it supports EXEC CICS
allow realistic debugging of commands. However, the following minor
pseudo-conversational programs. If the differences should be noted:

terminal came out of debug mode between
the tasks involved, each task would start
with fresh EDF settings, and the user

would not be able, for example, to
gi5£1ay screens remembered from previous
asKs.

PROGRAM_ LABELS

Some commands, such as HANDLE CONDITION,
reaquire the user to specify a program
label. The form of the display program
labels depends on the programming
language in use:

. For assembler language, the offset of
the program label is displayed; for
example, ERROR (X'00030C")

. For COBOL, a null argument is
displaved: for example, ERROR ()

. For PL/I, the address of the label
constant is displayed; for example,
ERROR (X'001D0016")

If no label value is specified on a
HANDLE CONDITION command, EDF displays
the condition name alone. -

42 CICS/VS APRM (CL)

. The two-character DL/I status code
appears in the RESPONSE field and the
EIBRCODE field is not displaved. The
status code can be displayed in
character or hexadecimal format. If
the status code is changed to an
invalid value, or to a value that
would have caused DL/I to abend the
user task, a warning message.is
issued before continuing the user
task.

. For commands that generate more than
one CALL statement, the offset is
that of the last CALL.

. For the WHERE option, only the
keyfield value (the third component)
can be converted to hexadecimal. The
address shown for this option is that
of the keyfield value.

. The line number of the command is
always displayed.

. For transactions that contain EXEC
DLI commands, the DL/I interface
block can be displayed, and
additional stop conditions can be
specified.

Examples of typical displays for an EXEC
DLI command are given in Figure 5 on page
43 and Figure 6 on page 43.

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111l DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE

EXEC DLI GET NEXT

USING PCB (+00003)

FIRST

SEGMENT ('A ")

INTO (' ")
SEGLENGTH (+00012)

FIRST

VARIABLE
+SEGMENT ('B ")

OFFSET:X'000246" LINE: 00000510 EIBFN:X'000C"
RESPONSE: 'AD!

ENTER: CONTINUE

FF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 5. First Page of Typical EXEC DLI Display

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE

EXEC DLI GET NEXT

+

FIRST

SEGMENT ('C ")
SEGLENGTH (+00010)

LOCKED

INTO C("SMITH ')

WHERE (ACCOUNT = '12345")
FIELDLENGTH (+00005)

OFFSET:X'000246"' LINE: 00000510 EIBFN:X'000C"
RESPONSE: 'AD®

ENTER: CONTINUE

PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY

PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 6. Second Page of Typical EXEC DLI Display

Chapter 1.7. Execution (Command-Level) Diagnostic Facility

Chapter 1.8. Command-Level Interpreter

The command-level interpreter enables
CICS/VS commands to be entered,
syntax-checked, and executed
interactively at a 3270 screen. The
interpreter performs a dual role in the
operation of a CICS/VS system.

. For the application programmer, it
provides a reference to the syntax of
the whole of the CICS/VS
command-level application
programming interface (excluding
DL/I). Most of the commands can be
carried through to execution, and the
results of execution can be
displaved.

. For the system programmer, it
provides a means of interaction with
the system. For example, a corrupted
data-base record can be "repaired", a
temporary storage queue can be
created or deleted, and so on. It
thus provides a useful extension to
the facilities provided by the master
terminal transaction CEMT.

INVOKING THE COMMAND-LEVEL INTERPRETER

The command-level interpreter is a
CICS/VS application program and runs as a
CICS5/7VS transaction. It is started by
the transaction identification of

"CECI™, or "CECS", followed optionally by
the command.

The general format is:

CECI|CECS [command]

where "command"” can be any of the CICS5/VS
commands (except EXEC DLI) described
throughout this manual.

The use of CECI will give the full
facilities of the interpreter right
through to execution of the command.
For example, entering:

CECI READ DATASET('FILEA")

will give the screen display shown in
Figure 7 on page 46.

Modifying the command input to:
READ DATASET('FILEA') RIDFLD(C'000001")
will give the screen display shown in

Figure 8 on page 47. The error message
has disappeared because the requested

Chapter 1.8,

record identification field has been
supplied.

The command is now ready to be executed,
and this is achieved simply by pressing
the ENTER key. The display shown in
Figure 9 on page 48 will appear showing
the result of execution.

It is possible to prevent unauthorized
access by the interpreter to resources
such as data sets. Refer to the security
rules later in the chapter.

A question mark (?) before the command
always gives the command syntax check
display and prevents command execution.

The use of CECS forces a question mark
before the command. This always gives
the command syntax check display and
prevents command execution. In a system
where security is important, CECS can be
made more widely available than CECI.

SCREEN LAYOUT

The command interpreter uses a basic
screen layout of four areas, as shown in
Figure 7 on page 46. These areas are:

. Command Input Area (the first line of
the screen)

. Status Area (the second line of the
screen)

. Information Area (21 lines on a 2% x
80 display)

. PF Key Values Area (the last line of
the screen)

COMMAND INPUT AREA

This is the first line of the screen.

The command, whose syntax is to be
checked, or which is to be executed, is
entered on this line, either in the
normal format described in "Chapter 1.2.
Command Format and Argument Values" on
page 5 and as illustrated throughout this
manual, or in an abbreviated or condensed
form that reduces the number of
keystrokes involved. The condensed form
of the command is obtained as follows:

. The keywords EXEC CICS are optional.

. The options of a command can be
. abbreviated to any number of
characters sufficient to make them
unique. Valid abbreviations are
shown in capital letters in syntax
displays.

Command-lLevel Intarpreter 45

. The quotes around character strings
are optional, and all strings of
characters will be treated as
character-string constants unless
they are preceded by an ampersand (&)
in which case they are treated as
variables, as described later in the
chapter.

* Options of a command that receive a
value from CICS/VS when the command
is executed are called "receivers",

.and need not be specified. The value
received from CICS/VS will be
included in the syntax display after
the command has been executed.

The following example shous the condensed
form of a command. The file control
command:

EXEC CICS READ DATASETC('FILEA'")
RIDFLD(C'000001') INTO(data-area)

can be entered on the command input
line, as:

READ DAT(FILEA) RID(C000001)
or at a minimum, as:
READ D(FILEA) R(000001)

here, the INTO option is a receiver (as
defined above), and can be omitted.

STATUS AREA

This is the second line of the screen.
It will contain one of the following:

. COMMAND SYNTAX CHECK

ABOUT TO EXECUTE COMMAND
COMMAND EXECUTION COMPLETE (or
COMMAND NOT EXECUTED)

EIB DISPLAY

VARIABLES

ERROR MESSAGES

EXPANDED AREA

L K J

This status line describes the type of
information in the immediately following
information area of the display.

INFORMATION AREA

This area consists of the remainder of
the screen between the "command input”
and "status" areas at the top, and "PF
key values" at the bottom of the screen.
This area is used to display the syntax
of the entered command, error message
information, the response to execution,
and any other information that can be
obtained by using the PF keys or the
cursor.

A line at the bottom of this area is
reserved for messages that describe
errors in the conversation with the user
(for example, "INVALID PACKED DECIMAL™).
These messages are intensified to attract
attention.

command Syntax Check

When this status message appears (as
shown in Figure 7), it indicates that the

READ DATASET('FILEA')

STATUS: COMMAND SYNTAX CHECK
EXEC CICS READ :
Dataset('FILEA ')
SETO) | Into()
< Length() >

Ridfld()

< Keylength() < GEneric > >

< SYsid() >

< SEGset() | Segsetall >

< RBa | RRn | DEBRec | DEBKey >

< GTeq | Equal >

< Update >

DFH70521 S RIDFLD OPTION MUST BE SPECIFIED

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

NAME=

Figure 7. "Command Syntax Check" Display

46 CICS/VS APRM (CL)

command which has been entered on the
command input line has been syntax
checked but is not about to be executed.
This will always be the status for CECS
or for CECI with a question mark before
the command. It is also the status when
the syntax check of the command gives
severe error messages and for those
commands which are not executable (for
§§g?ple, HANDLE CONDITION and HANDLE

The INFORMATION AREA of the display for
"Command Syntax Check™, "About to Execute
Command", and "Command Execution
Complete"™ contains information common to
all three displays.

The full syntax of the command is
displayed together with error
information at the foot of the display.
Options in the syntax panel are
intensified to show those specified on
the command input line, those assumed by
default, and any "receivers”.

The command on the command input line can
be modified at any time by overtyping and
pressing ENTER.

If the command has more options than can
be held in one display, a plus sign (+)
will appear at the left-hand side of the
last option of the current display to
indicate that there are more. These can
be displayed by using one of the
scrolling PF keys.

The syntax display differs slightly from
the syntax shown throughout the manual in
the following ways:

. Square brackets [] are replaced by
the less-than and greater-than
symbols < >,

. Braces { } are not used. If a
mandatory option is omitted, an error
message will be displayed and
execution will not proceed until the
option has been specified.

. Parentheses () are used to indicate
that an option requires a value or
data field but none has been
specified.

The error information consists either of
a single error message or an indication
of the number and severity of the
messages generated.

The NAME= field on the syntax display can
be used to create a variable containing
the current command. (See the description
of a variable later in the chapter.)

About to Execute Command

This display (as shown in Figure 8)
appears when none of the reasons for
stopping at Command Syntax Check apply.
Option values can be modified by
overtyping them in the syntax panel.
This is a temporary modification for the
duration of the command and does not
affect the command input line. It is
similar to the modification of option
values that is possible with EDF when
debugging an application program.

READ DATASETC('FILEA') RIDFLD(C'000001"')
STATUS: ABOUT TO EXECUTE COMMAND
EXEC CICS READ
Dataset('FILEA 'y
SET() | Into()
< Length() >
Ridfld('000001")
Keyvlength() < GEneric > >
SYsid() >
SEGset() | Segsetall >
RBa | RRn | DEBRec | DEBKey >
6Teq | Equal >
Update >

AAAANAN

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

NAME=

Figure 8. "About to Execute Command™ Display

Chapter 1.8.

Command-Level Interpreter 47

Command Exacution Complete

This display (as shown in Figure 9)
appears in response to the ENTER key
aftter an "about to execute command"
display. The command has been executed
and the results are displayed on the
screen. Any "receivers", whether
specifiaed or not, together with their
CICS/VS-supplied values, are displayed
intensified. If the value of an option is
too long for the line, only the first
part will be displayed followed by "..
to indicate there is more. Positioning
the cursor, using the tab key, at the
start of the option value and pressing.
ENTER will produce an expanded display of
the whole option value.

"
.

Also displayed at the foot of the
information area, is the appropriate
response code (for example, NORMAL)
together with the contents of the
EIBRCODE field of the EIB.

Variables

This display will show, in response to
pressing key PF5, all the variables
associated with the current interpreter
saession, showing for each, its name,
length, and value.

Normally, the value supplied for an
option in the command input area is taken
as a character-string constant. However,
there is sometimes a requirement for this
value to be represented by a variable.
The command intaerpreter will recognize a

value as a variable only if it is
preceded by an ampersand (&).

A variable is required when two
associated commands are to be connected
through the values supplied in their
options, for example, READ
INTO(data-area) UPDATE and REWRITE
FROM(data-area). A variable can be used
to make the data area in the FROM option
the same as that in the INTO option.

A variable is also useful when the values
of options cause the command to exceed
the line length of the command input
area. Creating variables with the
required values and specifying the
variable names in the command will enable
a command to be accommodated.

Variables can also be used to contain
commands, and variable names can be
entered in a command input line that
contains complete or partial commands.

Variables are deleted at the end of an
interpreter session unless action has
been taken to save them, for example, in
temporary storage, as described below.

Variables, which can be of data type
character, fullword, halfword, or packed
decimal, can be created, as follous:

By naming the variable in .a receiver.
The variable will be created when the
command is executed. The data type
is implied by the type of receiver.

By adding one or more new entries to
the list of variables already

READ D(FILEA) R(000001)
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS READ
Dataset('FILEA ')
SET() | Into('U000001
< Length(+00080) >
Ridfld('000001")
Keylength() < GEneric > >
SYsid() >
SEGset() | Segsetall >
RBa | RRn | DEBRec | DEBKey >
GTeq | Equal >
Update >

AANAAAAN

RESPONSE: NORMAL

NAME=

EIBRCODE=X'00000000000"

PF: 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 9. "Command Execution Complete™ Display

48 CICS/VS APRM (CL)

defined. This list is displayed by
pressing key PF5. The display shows
all defined variables giving, for
each, its name, length in bytes, and
its value. The value is displaved in
character form but PF2 can be used to
switch from character to
hexadecimal. An expanded display of
each variable can be obtained by
positioning the cursor under the & of
the name and pressing ENTER. To
create a new character variable,
entar its name and its length and
press ENTER. The variable will be
initialized to blanks, which can then
be overtyped. For a fullword,
halfword, or packed variable, enter
F, H, or P in the length field.

These fields are initialized to zero.

Variable names, lengths, and their
values, can be modified by
overtyping. Variables can be deleted
by positioning the cursor under the &
of the name and pressing erase EQOF.
Variables can be copied by obtaining
the expanded display of the variable
and overtyping the name field.

3. By associating a variable name with
the value of an option. Positioning
the cursor, using the tab key, at the
start of the line of the syntax
display and pressing ENTER will
produce an expanded display of the
whole option value. A variable name
can now be assigned to the data so
displaved.

4. By entering a name in the NAME= field
of the syntax panel. This will
create a variable containing the
current command.

Three variables are provided initially.
The first, &DFHC, is a sample. The
second, &DFHW, contains a temporary
storage WRITEQ command, and the third,
&DFHR, contains a READQ command. It is
possible to write a command to temporary
storage by entering &DFHC in the NAME=
field of the syntax panel, entering &§DFHW
in the command input line, and executing
the WRITEQ command. In this way, a list
of commands can be wuritten. The command
list can be read and executed by
alternately entering &DFHR and &DFHC in
the command input line.

Expanded Area

This display will use the whole of the
information area of the screen to display
areas selected by means of the cursor.
The cursor can be positioned at the start
of the value of an option on a syntax
display, or under the ampersand of a
variable in a variables display.
Pressing ENTER will then give the
expanded area display. The scrolling
keys can be used to display all the
information if it exceeds a full screen.

Chapter 1.8.

ENTER KEY AND PF KEY VALUES

The single line at the foot of the screen
provides a menu indicating the effect of
the ENTER and PF keys for the display.
Continuation of interpretation depends
entirely upon use of the ENTER key;
unless this key is pressed no further
action will occur.

The PF keys are self-explanatory; if the
terminal has no PF keys, the same effect
can be obtained by positioning the cursor
under the required item in the menu by
means of the tab keys and pressing ENTER.
The following PF keys are available:

PFl: HELP
displays a HELP panel giving more
information on how to use the
command interpreter and on the
meanings of the PF keys.

PF2: SHITCH HEX/CHAR
switches the display betuween
hexadecimal and character
representation. This is a mode
switch; all subsequent displays
Wwill stay in the chosen mode until
the next time this key is pressed.

PF3: END SESSION
ends the current session of the
interpreter.

PF4: EIB DISPLAY
shows the contents of the EXEC
interface block (EIB). (See
"Appendix A. EXEC Interface Block"”
on page 239 for a description of the
fields in the EIB).

PF5: VARIABLES
shows all the variables associated
with the current command
interpreter session, giving for
each its name, length, and value.

PF6: USER DISPLAY ‘
shows what the user would see if the
terminal had been executing a
transaction which contained the
commands which have been executed
using the interpreter.

PF7: SCROLL BACK HALF
scrolls half a screenful backwards.

PF8: SCROLL FORWARD HALF
scrolls half a screenful forwards.

PF9: EXPAND MESSAGES
shows all the messages generated
during the syntax check of a
command.

PF10: SCROLL BACK
sgcrolls backwards.

Command-Level Interpreter 49

PFll: SCROLL FORHARD
scrolls forwards.

PF12: UNDEFINED
means that this key is not available
with this type of display.

TERMIMAL SHARING

When the command being interpreted is one
that uses the screen which the
interpreter is using, the command
interpreter will manage the sharing of
the screen between the interpreter
display and the user display.

The user display will be restored:

. when the command being executed
requires input from the operator.

. when the command being executed is
about to modify the user display.

. when USER DISPLAY is requested.

Thus, when a SEND command is followed by
a RECEIVE command, the display sent by
the SEND command appears tuice, once when
the SEND command is executed, and again
when the RECEIVE command is executed. It
is not necessary to respond to the SEND
command, but if a response is made, the
interpreter will remembar it and
redisplay it when the screen is restored
for the RECEIVE command.

When the interpreter restores the user
display, it does not sound the alarm or
affect the keyboard in the same way as

when a SEND command is executed.

PROGRAM CONTROL

The interpreter is itself a CICS5/VS
application program and the execution of
certain program control commands may
cause different results from an
application program containing those
commands. For example, an EXEC CICS

50 CICS/VS APRM (CL)

ABEND command will be intercepted by the
interpreter rather than abending the
interpreter (unless the CANCEL option is
specified).

If the interpreter is used to LINK to a
program, the interpreter will not be
aware of modifications to the USER
DISPLAY made by that program. If the
interpreter executes an XCTL command,
control will be transferred to that
program and that will be the end of the
interpreter session.

SECURITY RULES

To invoke the command interpreter, the
user must have a security key that
matches the security key defined in the
PCT.

The command-level interpreter
transaction identifier, CECI, specifies,
by default, that resource level security
checking is required for any resources
referenced with the interpreter. This
checking applies to data sets, transient
data queues, temporary storage queues,
programs, transaction identifiers of the
START command, and journal file
identifiers,

If the resource security level specified
in the appropriate CICS/VS table (for
example, the FCT for a dataset) is not
matched by the authorization obtained
from a sign-on, the resource security
check fails, and the response to the
command will be ABEND AEY7. This
response is given on the "command
execution complete" display.

INSTALLING THE COMMAND-LEVEL INTERPRETER

To ensure that the command interpreter is
available on the system, the system
programmer must make ona group entry in
the PPT and in the PCT. (See the CICS/VS
System Programmer's Reference Manual for

details on constructing a PPT and a PCT.)

Part 2. Data Base Operations

Chapter 2.1. Introduction to Data Base Operations
Chapter 2.2. File Control

Chapter 2.3. DL/I Services

Part 2. Data Base Operations 51

Chapter 2.1. Introduction to Data Base Operations

CICS/VS transactions can access two kinds
of data bases, which can be on either a
local or remote system, as follows:

. Standard operating system data sets
holding a data base.

. DL/I (Data Languages/l) data bases.

standard operating system data sets are
processed by the CICS5/VS file control
program, which permits the retrieval,
addition, updating, deletion, and
browsing of records in ISAM, VSAM, and
DAM data sets. File control relieves the
application programmer of buffer
management, blocking and deblocking, and
access-method dependencies. File control
is described in "Chapter 2.2. File
Control" on page 55.

A DL/I data hase gives the application
programmer a greater degree of data
independence than is given by file
control. The programmer is presented
with a logical view of the data base in
terms of a hierarchy of segments. DL/I

Chapter 2.1.

offers powerful facilities for the
manipulation of these segments without
requiring the programmer to be aware of
how they are organized.

Processing of a DL/I data base is
performed by one of the following program
products with which CICS/VS interfaces:

. For VSE users, Data Languages/I DOS/VS
(Program Number 5746-XX1).

. For 0S5/VS users, Information
Management System/Virtual Storage
(IMS/VS) (Program Number 5740-XX2).

The CICS/VS5-DL/I interface for both VSE
and 05, which is invoked by means of the
DL/1 CALL statement, is described in
"Chapter 2.3. DL/I Services (DL/I CALL
Statement)™ on page 69.

The CICS/7VS-DL/I interface for VSE only,
which is invoked by means of the EXEC DLI
command, is described in "Chapter 2.4.
DL/1 Services (EXEC DLI Command)™ on page
77.

Introduction to Data Base Operations 53

Chapter 2.2. File Control

The CICS/VS file control program
processes fixed-length or
variable-length, blocked or unblocked,
undefined, or segmented records of a
direct-access data set. (Sequential data
sets are processed by the transient data
control program, as described in "Chapter
36?5 Transient Data Control™ on page

File control uses the standard access
methods of the host operating system
(05/VS or VSE), namely:

. Direct Access Method (DAM)

. Indexed Sequential Access Method
(ISAM)

. Virtual Storage Access Method
(VSAM) .

Application programs can access DAM data
sets on a logical-record level,
deblocking services being provided by
CICS/VS. If an ISAM data set is
converted to a VSAM data set
organization, using VS5AM data set
conversion utilities, no alteration to
application programs that access the data
set is necessary, but the file control
table (FCT) must be changed. Data sets
on fixed block architecture (FBA) devices
can be accessed only by VSAM.

File control commands can be used to:
. Read a record from a data set (READ).
. Write a record to a data set (WRITE).

. Update a record in a data set
(REWRITE).

. Delete a single record or a group of
records from a key-sequenced or
relative-record data set (DELETE)
(VSAM only).

. Release exclusive control over a data
set (UNLOCK).

. Specify the starting point for a
browse (that is, sequentially access
a data set) (STARTBR).

L] Read the next record in a data set
during a browse (READNEXT).

’ Read the previous record in a data
sef ?uring a browse (READPREV) (VSAM
only).

. Reset the starting point for a browse
(RESETBR).

. End a browse (ENDBR).

An option can be included in these
commands to specify that the record to be
accessed is in a data set on a remote
system.

Exceptional conditions that occur during
execution of a file control command are
handled as described in Chapter 1.5.

The following sections discuss the
identification of data sets to be used in
file control operations; direct access to
records in data sets; sequential access
to records (browsing); and information
particular to the access methods
available (ISAM, V5AM, and DAM).

DATA SET IDENTIFICATION

Data sets are identified in file control
commands by the DATASET option; they must
have been defined previously in the file
control table (FCT) unless, for a local
system only, the SYSID option has been
specified also, in which case a FCT
definition is unnecessary. These
definitions may be set up with the help
of the system programmer, although
logical record handling only is required
in the application program; buffers and
work areas are acquired automatically by
CICS/VS.

DIRECT ACCESS TO RECORDS

When reading records directly (that is,
searched for by a search argument such as
a key) using the READ command, the record
is retrieved and placed in main storage
according to which of the options INTO or
SET has been specified.

The INTO option specifies the area into
which the record is to be placed. For
variable-length records, the LENGTH
option must specify the maximum length of
record that the application program will
accept. If the record exceeds this
value, it is truncated to this value and
the LENGERR condition will occur. For
fixed-length records, the LENGTH option
must specify the length of the record,
otherwise the LENGERR condition will
occur. After the record has been .
retrieved, the data area specified in the
LENGTH option is set to the actual record
length (before any truncation occurred).

The SET option specifies a pointer
reference that is set to the address of
an area large enough to hold the record.
After the record has been retrieved, the
data area specified in the LENGTH option
is set to the actual record length.

Chapter 2.2. File Control 55

The READ command can be used for both
read-only and read-for-update
operations. If the record is to be
updated, the UPDATE option must be
specified. When a record has been read
for update, CICS/VS maintains exclusive
control (which varies according to the
access method in use) to prevent another
task accessing the record until it has
been rewritten, or until exclusive
control is released by an UNLOCK command,
or (for VS5AM only) until the record is
deleted.

When adding records using the WRITE
command, or when updating records using
the REWRITE command, the record to be
written is specified in the FROM option,
and its length in the LENGTH option.
(LENGTH can be omitted for fixed-length
records.)

When a record has been read for update,
the REWRITE or UNLOCK command should be
issued as soon as possible to avoid
obstructing file storage, and possibly
preventing other transactions from
accessing the record.

MULTIPLE FILE OPERATIONS

When accessing more than one file at a
time, a lockout may occur, for example,
if tuo tasks attempt to read the same
record for update at the same time or
when accessing files on a remote system.
Assume the following:

Prog 1: READ UPDATE (File
READ UPDATE (File

Prog 2: READ UPDATE (File B)
READ UPDATE (File A)

w >
~ N

Suppose that the two tasks become
intermixed in multitasking, as follows:

Prog 1: READ UPDATE (File A, rec 338)
Prog 2: READ UPDATE (File B, rec 753)
Prog 1: READ UPDATE (File B, rec 753)
Prog 2: READ UPDATE (File A, rec 338)

The two tasks will both be suspended
indefinitely, because each would have
exclusive control of the first record
requested by the other. The second
request of each task cannot be conmpleted.
To avoid this problem, all programs
should access the files in the same
sequence, such as A first, followed by B.

SEQUENTIAL ACCESS TO RECORDS (BROWSING)

When reading records sequentially, the
STARTBR command specifies the starting
point only for the browse; no records are
retrieved. The READNEXT command reads
records sequentially from the data set,
starting with the specified record, which

56 CICS/7VS APRM (CL)

would normally be, but need not be, the
record specified in the STARTBR command.
(For VSAM data sets, the READPREV command
does the same as the READNEXT command,
except that records are read in reverse
order.)

Records are retrieved and placed in main
storage using the INTO, SET, and LENGTH
options in the same way as for direct

access, described in a previous section.

The starting point can be reset at any
time by a RESETBR command.

When more than one browse is required on
a data set at the same time, the REQID
option must be included in every browse
command to distinguish between the brouse
operations.

If records are unblocked, or have a very
low blocking factor (which means that
many file reads are done before
displaying a page), it may be more
efficient to display fewer records.

With a high blocking factor, fewer read
operations are done, records merely being
moved from a buffer area, so lengthy
browses are not so inefficient.

A browse should always be terminated by
an ENDBR command, but will, in any case,
be terminated by a normal or abnormal end
of task.

SEGMENTED RECORDS

An optional feature of CICS/VS file
management allows the user to create and
define a data set containing segmented
records. A segment is one or more
adjacent fields within a record. Some
segments appear in all records while
others appear in only certain records.
Each record contains one segment (the
root segment) which contains information
about which other segments are present.
Groups of segments can be defined and
identified symbolically as segment sats.
A record can be read with a specified
segment set and only those segments of
the record defined in that segment set
are returned. The user cannot access
segmented records in a data set on a
remote system.

If it is planned to use segmented records
the structure of individual segments and
of segment sets must have been defined in
the file control table by the system
programmer, and the user must create and
maintain the control information in the
root segment of each record.

For further information on segmented
records see the CICS/VS
Systems/Application Design Guide.

ISAM DATA SETS

RECORD IDENTIFICATION

Records in ISAM data sets are identified
by key. This key must be provided in a
record identification field specified by
the RIDFLD option.

For CICS/057VS systems, the contents of
the record identification field may have
been changed following the addition of a
record; this point should be considered
in CICS5/D0OS/VS systems also, to avoid
future VSE to 05/VS conversion problems.

Records that are flagged for deletion are
presented to the application program,
which must be able to recognize them.

ADDING RECORDS TO ISAM DATA SETS

Adding records to an I5AM data set may
degrade performance due to overflow
accesses; also data sets may be destroyed
undetected, if for example, a power
failure occurs, or CICS5/VS terminates
abnormally. If such a failure occurs
when adding records, records may be lost
and overflow chains destroyed. To
prevent these problems, consider one of
the following:

. Memo posting. This is a technique
that uses special memo fields created
in each record of a file. All fields
that are normally updated by changing
quantities, such as the number of
items, amounts, and so on, are
recorded in these memo fields, so
that system failures affect only
these memo fields. All changes must
be posted to a log file, so that the
data file can be updated later on a
batch basis. This ensures the
integrity of the data file while
retaining the advantages of online
posting.

. Using a file copy. A copy of the
data file is provided for use with
CICS5/VS. This allows the addition
and deletion of records and
modification of any data in the file
without affecting the file
integrity. All changes must be
posted to a log file, so that the
data file can be updated later on a
batch basis. This ensures the
integrity of the data file and allouws
complete online file maintenance.

ISAM EXCLUSIVE CONTROL

When an ISAM record is read for update,
CICS5/VS maintains exclusive control of
the record. An attempt to re-read the
record before it is updated (by a REWRITE
command), or before exclusive control is

released (by an UNLOCK command), will
cause a lockout.

ISAM BROWSING OPERATIONS

A browse can be started at any record in
an ISAM data set. A complete key of
hexadecimal zeros, or the options
KEYLENGTH(0) and GENERIC, will start the
brouse at the first record. Any other
starting point must be specified in the
RIDFLD option of the STARTBR or RESETBR
command. The key provided can be a
complete (specific) key or a generic
(partial) key.

If a complete key is provided, the browse
starts with the record having that key.
If this record cannot be found, then by
default, the browse starts with the first
record having a key greater than the
specified key.

If a generic key is provided, its length
must be specified in the KEYLENGTH
option, and the GENERIC option also must
be specified. The search for the
starting record uses only the number of
characters in this key. The first record
having a matching generic key is the
starting point. If this record cannot be
found, then by default, the browse starts
with the first record having a generic
tey greater than the specified generic
ey.

The record identification field is
updated by CICS5/VS with the complete key
of the record retrieved each time a
READNEXT command is executed. For a given
browse, all associated commands must use
the same record identification field.

Records flagged for deletion are
presented to the application program,
which must be able to recognize them.

VSAM DATA SETS

INITIALIZATION OF VSAM DATA SETS

When creating a V5AM key-sequenced data
set for use with CICS/VS, at least one
dummy record must be loaded into the data
set before it can be processed by
CICS/VS.

RECORD IDENTIFICATION

Records in V5AM data sets are identified
in one of three ways: by key,by
relative byte address, or by relative
record number. One of these must be
specified (in the RIDFLD option) as the
search argument. If a relative hyte
address is supplied, the RBA option must
be specified; if a relative record number
is supplied, the RRN option must be
specified.

Chapter 2.2. File Control 57

VSAM KEYS

When writing records to a VSAM data set,
a complete key must be provided.

When reading records in inquiry mode, the
search key can bhe a complete key or a
generic key, and, for either type, the
search can be for an equal key (EQUAL
option) or a greater-or-equal key (GTEQ
option).

When reading records for update, the
search key should be a complete key, and
the search should be for an equal key
(EQUAL option).

If a complete key is specified, the
record having that key is retrieved; if

. it cannot be found and the GTEQ option is
specified, the first record having a key
greater than the specified key is
retrieved, otherwise the NOTFND
exceptional condition occurs. The
complete key is returned in the record
identification field after the record has
been retrieved.

If a generic key is specified, its length
must be specified in the KEYLENGTH
option, and the GENERIC option also must
be specified. The search for the
raequired record uses only the number of
characters in the generic key. The first
record having a matching generic key is
retrieved; if no matching record is
found, and the GTEQ option is specified,
the first record having a generic key
greater than the specified generic key is
retrieved, otherwise the NOTFND
exceptional condition occurs.

VSAM EXCLUSIVE CONTROL

When a VSAM record is read for update,
VS5AM maintains exclusive control of the
control interval containing that record.
An attempt to read a second record for
update or add a new record to the same
control interval before exclusive
control is released, would cause a
lockout.

Wihen local resources are shared, a
lockout will also occur if an attempt is
made to read two records (one of them for
update) from the same control interval.

CICS/VYS prevents such a lockout by
raising the INVREQ condition if,
following the first READ UPDATE command,
a second READ UPDATE command, or a WRITE
command is issued for the same data set
and within the same transaction before
exclusive control is released (by a
REWRITE, UNLOCK, or DELETE command).

58 CICS/VS APRM (CL)

DELETION OF VSAM RECORDS

Records in a VSAM key-sequenced or
relative-record data set can be deleted,
either singly or in groups, using the
DELETE command. Single records are
identified by key, relative byte address,
or relative record number., Groups of
records can be deleted only if the data
set is unprotected, and if the records
all have a common starting group of
characters in their keys (that is, a
common generic key).

A record that has been read for update
(that is, with UPDATE specified in the
READ command) may be deleted also by a
DELETE command, but only if a complete
key has been specified. If deletion is
attempted for a record with a generic
key, or if the DELETE command includes
the RIDFLD option, the INVREQ condition
will occur.

VSAM MASS SEQUENTIAL INSERTION

The MASSINSERT option is used to specify
that a VSAM mass sequential insertion
operation is in progress; it must be
specified in every WRITE command that is
part of the operation.

A mass insert operation must be
terminated (by an UNLOCK command) to
ensure that all records are written to
the data set; a READ command will not
necessarily retrieve a record that has
been added by an incomplete mass insert
operation. Incomplete operations will be
taerminated when the task terminates.

A lockout will occur if more that one
transaction is attempting simultaneously
to perform a mass insert operation to the
same control interval of a protected data
set. A lockout will occur also if a
transaction uses keys that are not in
ascending sequence.

VSAM BROWSING OPERATIONS

A VSAM data set can be browsed in either
direction.

A record identification field of
hexadecimal zeros, or the options
KEYLENGTH(0) and GENERIC in a STARTBR or
RESETBR command, will start a forward
browse at the first record.

A record identification field of
hexadecimal 'FF's will start a backward
browse at the last record.

Any other starting point must be
specified in the same way as a single
record is retrieved, using a key
(complete or generic), relative byte
address, or relative record number.

There is one exception; a backward brouwse

cannot be specified if the previous
STARTBR command has the GENERIC option.

Thae RESETBR command can be used not only
to reset the starting position for the
browse, but also to change the type of
search argument (key, relative byte
address, or relative record number).

The record identification field is
updated by CICS5/VS with the complete key,
relative byte address, or relative record
number of the record retrieved each time
a READNEXT or READPREV command is
executed. For a given browse, all
associated commands must use the same
record identification field.

When browsing a protected data set
(LOG=YES specified in the DFHFCT
TYPE=DATASET macro by the system
programmer), an end browse (ENDBR)
command must be issued before issuing a
READ UPDATE command.

VSAM SKIP-SEQUENTIAL PROCESSING

Skip-sequential processing can be
performed on a VSAM data set. The
identifier (key, relative byte address,
or relative record number) of the next
record required must be placed in the
racord identification field specified in
the RIDFLD option of the READNEXT
command. This record need not be the
next sequential record in the data set,
but must have a key, relative byte
address, or relative record number
greater than the last record accessed.
(A READPREY command should not be used.)
This procedure allows quick random access
to a V5AM data set by reducing index
search time.

The identifier must be of the same form
(key, relative byte address, or relative
record number) as that specified in the
STARTBR (or the last RESETBR) command for
this browse. If the STARTBR or last
RESETBR command specified a generic key,
the new identifier must also be a generic
key, but it need not be of the same
length.

If the STARTBR or last RESETBR command
specifies an equal-key search (complete
or generic), a READNEXT command using
skip-sequential processing may result in
& NOTFND condition.

SHARING VSAH RESOURCES

CICS/VS permits the sharing of VSAM
resources. Resources to be shared are
identified in the DFHFCT TYPE=SHRCTL
macro instruction, as explained in the
CICS/VS Svstem Programmer's Reference
Manual. When a task requires resources
in several V3AM data sets at the same
time and these data sets are sharing

resources, the probability of a lockout
increases.

VSAM ALTERNATE INDEXES

The VSAM Alternate Index feature allows
access to a data set using several
indexes, which contain alternate keys to
the records in the data set. A record
can be accessed by many different keys;
also, many records can have the same
alternate key in an alternate index.

Accessing a record via an alternate index
is similar to accessing a normal
key-sequenced data set, unless records
having non—unique alternate keys are
involved. If the (alternate) key
provided in a READ, READNEXT, or READPREY
command is not unique, the first record
in the data set having that key is read,
and the DUPKEY condition occurs. To
retrieve other records havinag the same
keyv, a browse should be started, the
subsequent READNEXT commands reading the
records in the order in which they were
added to the data set. (READPREV
commands could be used, but the records
will be returned in the same order as for
READNEXT commands.)

When switching from direct retrieval
(READ) to a browse (READNEXT), the first
record having a non-unique key is read
twice: once for the READ command, and
again for the first READNEXT command.

The DUPKEY condition occurs for each
retrieval operation except the last. For
example, if there are three records with
the same alternate key, DUPKEY occurs for
the first two records, but not for the
third. The application program can be
designed to revert to direct retrieval
operations when DUPKEY no longer occurs.

DAM DATA SETS

RECORD IDENTIFICATION

Records in DAM data sets are identified
by a block reference, a physical key
(keved data set), and a deblocking
argumant (blocked data set). The record
identification (specified in the RIDFLD
option) contains a subfield for each,
which, when used must be in the above
order. The subfields are as follows:

Block reference - one of the following:

. Relative block address (CICS/0S/VS
only): three-byte binary
(RELTYPE=BLK).

. Relative track and record
(hexadecimal format): two-byte TT,
one-byte R (RELTYPE=HEX).

Chapter 2.2. File Control 59

Byte [0 1 2 3 4 5 6 7 8

9 10 11 12 13 164 15

IRELBLK# lNl

[reLBLK® | KEY |

|t 1 R pi—keY] Kkev |

Im 8 8 c c won R[N

(CICS/0S57VS only)

(CICS/057VS only)

Search by relative block;
deblock by relative record

Search by relative block;
deblock by key

Search by relative track
and record and key;
deblock by key

Search by actual address;
deblock by relative record

[T T 7T T T T R Rl PH—-KEY l, KEY I Search by zoned decimal
relative track and record
and key; deblock by key

|T T R KEY I Search by relative track
and record; deblock by key

Figure 10. Examples of Record Indentification

. Relative track and record (zoned
decimal format): six~byte TTTTTT,
two-byte RR (RELTYPE=DEC).

. Actual (absolute) addfess:
eight-byte MBBCCHHR (RELTYPE operand
omitted).

The type of block reference being used
must be specified in the RELTYPE operand
of the DFHFCT TYPE=DATASET system macro
which defines the data set. ~

Physical key - required only if the data
sat has recorded keys. If used, it must
immediately follow the block reference.
Its length must be the same as the length
specified in the BLKKEYL operand of the
DFHFCT TYPE=DATASET system macro that
defines the data set.

Deblocking argument - required only if
specific records are to be retrieved from
a block. If used, it must follow
immediately the physical key (if present)
or the block reference. If omitted, an
entire block will be retrieved.

The deblocking argument may be either a
key (specify DEBKEY), in which case its
length must be the same as that specified
in the KEYLEN operand of the DFHFCT
TYPE=DATASET system macro, or it may be a
relative record number (specify DEBREC),
in which case it is a one-byte binary
number (first record=0).

The examples in Figure 10 assume a
physical key of four-bytes and a
deblocking argument of three bytes.

60 CICSs/VS APRM (CL)

ADDING RECORDS TO DAM DATA SETS

When adding records to a DAM data set,
the following considerations and
restrictions apply:

1. When adding undefined or
variable-length records (keyed or
non—keved), the track on which each
new record is to be added must be
specified. If space is available on
the track, the record is written
following the last previously
written record, and the record number
is placed in the "R" portion of the
record identification field of the
racord. The track specification may
be in any of the acceptable formats
except relative block. If zoned
decimal relative format is used, the
record number is returned as a
two-byte zoned decimal number in the
seventh and eighth positions of the
record identification field.

In a CIC5/D0OS5/7VS system, an attempt
to add undefined or variable-length
records is limited to the single
track specified. If insufficient
space is available on that track, the
NOSFPACE condition occurs. However,
an attempt may be made to add the
record oh another track simply by
altering the track identifier and
using another WRITE command.

In a CICS5/705/VS system, the extended
search option allows the record to be
added to another track if no space is
available on the specified track.

The location at which the record is
added is returned to the application

program in the record identification
field being used.

When adding records of undefined
length, the length of the record must
be specified in the LENGTH option.
When an undefined record is
retrieved, the application program
must determine its length.

2. When adding keved fixed-length
records the data set must first be
formatted with dummy records or
"slots" into which the records may be
added. (A dummy record is signified
by a key of hexadecimal '"FF's; in a
CICS5/05/VS system, the first byte of
data contains the record number.)

3. When adding non—keyed fixed-length
records the block reference must be
given in the record identification
field., The new records are written
in the location specified,
destroying the previous contents of
that location.

4. When adding keyed fixed-length
records track information only is
used to search for a dummy key and
record, which, when found, is
replaced by the new key and record.
The location of the new record is
returned to the application program
in the block reference subfield of
the record identification field.

For example, for a record whose
identification field is as follous:

0 3 0 ALPHA
T TR KEY

the search will start at relative
track 3. When control is returned to
the application program, the record
identification field will be as
follows:
0 4 6 ALPHA

showing that the record is now record
6 on relative track 4.

5. When adding variable-length blocked
records a four-byte record
description field (RDF) must be
included in each record. The first
two bytes specify the length of the
record (including the 4-byte RDF);
the other two bytes consist of zeros.

DAM EXCLUSIVE CONTROL

When a blocked record is read for update,
CICS/VS maintains exclusive control of
the containing block. An attempt to read
a second record from the block before the
first is updated (by a REWRITE command),
or before exclusive control is released
(by an UNLOCK command), will cause a
lockout.

DAM BROKSING OPERATIONS

The record identification field must
contain a block reference (for example,
TTR or MBBCCHHR) that conforms to the
addressing method defined for the data
set. Processing begins with the
specified block and continues nith each
subsequent block until the brouwse is
terminated. If the data set contains
blocked records, processing begins at the
first record of the first block and
continues with each subsequent record,
regardless of the contents of the record
identification field.

The record identification field is
updated by CICS5/VS with the complete
jdentification of each record retrieved
by a READNEXT command. For example,
assume a browse is to start with the
first record of a blocked, keyed data
set. Before issuing the STARTBR command,
the TTR (assuming that is the addressing
method) of the first block should be
placed in the record identification
field. After the first READNEXT command,
the record identification field might
contain

X'0000010504"

where 000001 represents the TTR value, 05
represents the block key, and 04
represents the record key.

As another example, assume that a
blocked, non-keyed data set is being
browsed, and the second record from the
second physical block on the third
relative track is read by a READNEXT
command. Upon return to the application
program, the record identification field
contains

X'0000020201"
where 000002 represents the track, 02

represents the block, and 01 represents
the record within the block.

KEYLENGTHS FOR REMOTE DATA SETS

In general, execution of file control
commands requires the RIDFLD and
KEYLENGTH options to be specified.
KEYLENGTH may be specified explicitly in
the command, or it may be determined
implicitly from the file control table
(FCT).

For remote data sets however, KEYLENGTH
should be specified whenever SYSID and
RIDFLD are specified, unless either RBA
or RRN is specified, (when it is
invalid), or if the command is a READNEXT
or READPREV, (when it is not required).

For a remote DAM data set, mhere the
DEBKEY or DEBREC options have been

Chapter 2.2. File Control 61

specified, KEYLENGTH (when specified
explicitly) should be the total length of
the key (that is, all specified
subfields). If the value of KEYLENGTH is
taken from the FCT, the system programmer
must ensure that the default for the
KEYLENGTH value is equal to the DEBKEY
value; again this value must be the total
length of the key.

For relative-record data sets, the system
programmer should specify KEYLEN=4 in the
DFHFCT TYPE=REMOTE system macro. This
will allow an application program
translated on Version 1.3 to be executed
on succeeding versions without
retranslation,

READ A RECORD (READ)

READ DATASET(name)
{SET(ptr—ref)|INTO(data—area)}
[LENGTH(data—area)l
RIDFLD(data—area)
[KEYLENGTH(data—value) [GENERICI]]
[SYSID(name)]
[SEGSET (name) | SEGSETALL]
[RBA|RRN] (VSAM only)
[DEBKEY|DEBREC] (blocked DAM only)
[GTEQ|EQUAL] (VSAM only)
[UPDATE]

Conditions: DSIDERR, DUPKEY,
ILLOGIC (VSAM only), OMVREQ, IOERR
ISCINVREQ, LENGERR, NOTFND, NOTOPEN
SEGIDERR, SYSIDERR

This command is used to read a record
from a direct-access data set on a local
or remote system.

The following example shows ‘how to read a
record from a data set into a speclfled
~ data area:

EXEC CICS READ
INTO(RECORD)
DATASET('MASTER")
RIDFLD(ACCTNO)

The following example shows how to read a
record from a VS5AM data set using a
ganeric key, specifying a
greater-or-equal key search, and that the
record is later to be rewritten into a
data area provided by CICS5/VS:

EXEC CICS READ
INTO(RECORD)
LENGTH(RECLEN)
DATASET('MASTVSAM')
RIDFLDCACCTNO)
KEYLENGTH(4)
GENERIC
GTEQ
UPDATE

62 CICS/VS APRM (CL)

If more than one READ command with the
UPDATE option is executed without
corresponding REWRITE commands, a unique
record identification field must exist
for each to preserve the correct key for
subsequent execution of the REWRITE
commands.

Note that the last example above would
fail if the data set is protected
(LOG=YES specified in the DFHFCT
TYPE=DATASET system macro), because a
generic key cannot be used with READ
UPDATE on a protected data set.

HRITE A RECORD (WRITE)

WRITE DATASET(name)
FROM(data—area)
[LENGTH(data—value)]
RIDFLD(data—area)
[KEYLENGTH(data~value)]
[SYSID(name)]

[RBA|JRRN]I (VSAM only)
[MASSINSERT] (VSAM only)
[SEGSETALL]

Conditions: DSIDERR, DUPREC,

ILLOGIC (VSAM only), INVREQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE, NOTOPEN,
SYSIDERR

This command is used to write a record to
a direct-access data set on a local or
remote system. For example:

EXEC CICS WRITE
FROM(RECORD)
LENGTH(DATLEN)
DATASET('MASTER")
RIDFLD(KEYFLD)

For a VSAM entry-sequenced data set
(ESDS) the record is always added at the
end of the data set, its relative byte
address (RBA) being placed in the record
identification field specified in the
RIDFLD option.

For a VSAM key-sequenced data set (KSDS),
the record is added in the location
specified by the associated key; this
location may be anywhere in the data set.

Records for entry-sequenced and
key-sequenced data sets can be either
fixed length or variable length. Those
for a relative record data set must be
fixed length.

UPDATE A RECORD (REWRITE)

REWRITE DATASET(name)
FROM(data—area)
[LENGTH(data—value)]
[SYSID(name)]
[SEGSETALL]

Conditions: DSIDERR, DUPREC,
ILLOGIC (VSAM only),INVREQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE, NOTFND,
NOTOPEN, SYSIDERR

This command is used to update a record
in a direct~access data set on a local or
remote system. The record to be updated
must first be read by a READ command with
the UPDATE option. For example:

EXEC CICS REWRITE

FROM(RECORD)
DATASET("MASTER')

DELETE A VSAM RECORD (DELETE)

DELETE DATASET(name)
[RIDFLD(data—area)] (mandatory

with GENERIC)
[KEYLENGTH(data—valuel)] (mandatory

with GENERIC)

[GENERIC [NUMREC(data—area)ll
[SYSID(name)l
[RBA|RRN]

Conditions: DSIDERR, ILLOGIC,
INVREQ, IOERR, ISCINVREQ, NOTFND,
NOTOPEN, SYSIDERR

This command is used to delete a record
from a key-sequenced or relative-record
data set on a local or remote system. The
record to be deleted must be identified
by means of the RIDFLD option.

A record that has been retrieved for
update (by a READ UPDATE command) can
also be deleted, instead of being
rewritten, by the DELETE command. Since
the record has already been identified,
there is no need to specify RIDFLD.

Groups of records can be deleted in a
similar way. A group is identified by the
GENERIC option.

A ganeric key must not be used for data
sets for which LOG=YES has been specified
in the DFHFCT TYPE=DATASET macro by the
system programmer.

The following example shows how to delete
a group of records in a V5AM data set:

EXEC CICS DELETE
DATASET("MASTVSAM')
RIDFLDCACCTNO)
KEYLENGTH(4)
GENERIC
NUMREC(NUMDEL)

RELEASE EXCLUSIVE CONTROL (UNLOCK)

UNLOCK DATASET(name)
[SYSID(name)l

Conditions: DSIDERR,
ILLOGIC (VSAM only), IOERR,
ISCINVREQ, NOTOPEN, SYSIDERR

This command is used to release exclusive
control arrangements made in response to
a READ command with the UPDATE option.

It is used when a record has been
retrieved for update and it is
subsequently determined that the update
should not occur. The effect is to allow
other application programs to access the
record that was to be updated. However,
for a data set for which auto logging has
been specified by the system programmer,
the resource remains under the task
control enqueue until either a sync point
command is executed, or the task is
terminated. The record can be in a data
set on a local or remote system.

This command is also used to terminate a
VSAM mass insert operation.

START _BROWSE (STARTBR)

STARTBR DATASET(name)
[RIDFLD(data—area)
[KEYLENGTH(data—value) [GENERIC]]
REQID(data—value)

[SYSID(name)]

{RBAJRRN] (VSAM only)
[DEBKEY|DEBREC] (blocked DAM only)
[GTEQIEQUAL] (VSAM only)

Conditions: DSIDERR,
ILLOGIC (VSAM only), INVREQ, IOERR,
ISCINVREQ, NOTFND, NOTOPEN, SYSIDERR

This command is used to specify the
record in a data set, on a local or
remote system, at which the browse is to
start. No records will be read until a
READNEXT command (or, for VSAM only, a
READPREV command) is executed.

Chapter 2.2. File Control 63

READ NEXT RECORD DURING A BROWSE
(READNEXT)

READNEXT DATASET(name)
{SET(ptr-ref)|INTO(data—area)}
[LENGTH(data—area)l
RIDFLD(data—area)
[KEYLENGTH(data—value)]

REQID (data—value)

[5YSID(name)]
[SEGSET(name) | SEGSETALL]
[RBA|RRN] (VSAM only)

Conditions: DSIDERR, DUPKEY,
ENDFILE, ILLOGIC (VSAM only), INVREQ,
I0OERR, ISCOMVREQ, LENGERR, NOTFND,
NOTOPEN, SEGIDERR, SYSIDERR

This command is used to read records in
sequential order from a data set on a
local or remote system. It can also be
used during VSAM skip-sequential
processing.

The RIDFLD option must specify the same
data area as that specified in the RIDFLD
option in the corresponding STARTBR
command, but the contents of the data
area can be different. If the NOTFND
condition occurs during a brouse, a
RESETBR command must be issued to reset
the browse, or an ENDBR command must be
issued to terminate the browse.

READ PREVIQUS RECORD DURING A BROUWSE
(READPREV) (VSAM ONLY)

READPREV DATASET(name)
{SET(ptr—ref)|INTO(data—area)l}
[LENGTH(data—area)l
RIDFLD(data—area)
[KEYLENGTH(data-value)l
REQID(data—value)
[SYSID(name)l
[SEGSET(name) | SEGSETALL]
[RBA|RRN]

Conditions: DSIDERR, DUPKEY,
ENDFILE, ILLOGGIC, IMNVREQ, IOERR,
ISCINVREQ, LENGERR, NOTFND, NOTOPEN,
SEGIDERR, SYSIDERR

This command is used only to read records
in reverse sequential order from a VSAM
data set on a local or remote system.

The RIDFLD option must specify the same
data area as that specified in the RIDFLD
option in the corresponding STARTBR
command, but the contents of the data
area can be different.

If a READPREV command follows immediately
a STARTBR command, the latter must
specify the key of a record that exists
on the data set, otherwise the NOTFND

64 CICS/VS APRM (CL)

condition will be raised for the READPREY
command.

A READPREV command following a READNEXT

command will read the same record as that
read by the READNEXT command.

RESET START OF BROWSE (RESETBR)

RESETBR DATASET(name)
RIDFLD(data—area)
[KEYLENGTH(data—value) [GENERIC]]
REQID(data—value)

[SYSID(name)l

<] | EQUAL] (VSAM only)
[RBA|RRNI (VSAM only)

Conditions: ILLOGIC (VSAM only),
INVREQ, IOERR, ISCINVREQ, NOTFND,
NOTOPEN, SYSIDERR

This command is used to specify the
record in a data set, on a local or
remote system, at which the browse is to
be restarted.

The RIDFLD option must specify the same
data area as that specified in the RIDFLD
option in the corresponding STARTBR
command, but the contents of the data
area can be different.

The RESETBR command can be issued at any
time prior to issuing a command. It is
similar to an ENDBR STARTBR sequence (but
with less function), and gives the ISAM
and DAM user the sort of skip-sequential
capability that is available to VSAM
users through use of the READNEXT
command.

END BROWSE (ENDER)

ENDBR DATASET(name)
REQID(data—value)
[SYSID(name)]

Conditions: ILLOGIC (VSAM only),
INVREQ, ISCINVREQ, SYSIDERR

This command is used to end a browse on a
data set on a local or remote system.

FILE CONTROL OPTIONS

DATASET (name)
specifies the symbolic name of the
data set to be accessed. The name
must be alphameric, up to seven
characters in length for D0S, up to
eight characters in length for 0S5,
and must have been defined in the
file control table (FCT).

DEBKE

DEERE

EQUAL

FROM(

GENER

GTEQ

INTOL

If SYSID is specified, the data set
is assumed to be on a remote system
irrespective of uhether or not the
name is defined in the FCT.
Otherwise, the FCT entry will be
used to determine if the data set is
on a local or remote system.

Y (hlocked DAM only)

specifies that deblocking is to
occur hy key. If neither DEBREC nor
DEBKEY is specified, deblocking
does not occur.

If KEYLENGTH is specified, its value
must be the sum of the lengths of
all three subfields comprising the
kay.

¢ (blocked DAM only)

specifies that deblocking is to
occur by relative record (relative
to zero). If neither DEBREC nor
DEBKEY is specified, deblocking
does not occur.

If KEYLENGTH is specified, its value

must be the sum of the lengths of

all three subfields comprising the
ey.

(VSAM only)
specifies that the search will be
satisfied only by a record having
the same key (complete or generic)
as that specified in the RIDFLD
option.

data-area)
specifies the record that is to be
uritten to the data set.

IC (ISAM, VSAM only])

specifies that the search key is a
generic key whose length is
specified in the KEYLENGTH option.
The search for a record is satisfied
when a record is found that has the
same starting characters (generic
key) as that specified. For VSAM,
this search will only take place if
the EQUAL option also has been
specified.

A generic key cannot be used with a
READ UPDATE command or a DELETE
command if the data set is protected
(LOG=YES specified in the DFHFCT
TYPE=DATASET system macro).

(VSAM only)

specifies that if the search for a
record having the same key (complete
or generic) as that specified in the
RIDFLD option is unsuccessful, the
first record having a greater key
will satisfy the search.

data-area)

specifies the data area into which
the record retrieved from the data
set is to be written.

KEYLENGTH(data-value)

specifies the length (halfword

. binary) of the key that has been
specified in the RIDFLD option,

~except when RBA or RRN is specified
when it is invalid. This option
must be specified if GENERIC is
specified, and it can be specified
whenever a key is specified.
However, if the length specified is
different from the length specified
in the FCT and the operation is not
generic, the INVREQ condition
occurs.

If XKEYLENGTH is omitted from a
READNEXT or READPREV command used in
a generic browse, normal brouwsing
occurs.

If KEYLENGTH is specified in a
READNEXT or READPREV command used in
a generic browse, a new brouse is
started using the kevlength
specified and the key in the RIDFLD
option.

The use of KEYLENGTH with remote
data sets is discussed earlier in

LENGTH(parameter)

specifies the length (as a halfword
binary value) of the record to be
used with READ, READNEXT, READPREV,
REWRITE, and WRITE commands. This
option must be specified if SYSID
and either INTO or FROM are
specified.

For a READ, READNEXT, or READPREV
command with the INTQ option, the
parameter must be a data area that
specifies the largest record the
program will accept. If the value
specified is less than zero, zero is
assumed. If the record exceeds the
value specified, it is truncated to
that value and the LENGERR condition
occurs. On completion of the
retrieval operation, the data area
is reset to the original length of
the record.

™

For a READ, READHNEXT, or READPREV
command with the SET option, the
parameter must be a data area. On
completion of the retrieval
operation, the data area is set to
the length of the record, except for
a record whose format is undefined,
when it is set to the maximum record
length.

For a WRITE or REWRITE command, the
parameter must be a data value that
is the length of the record that is
to be written.

This option need not be specified
for fixed-length records when the
length is known and a data area of
the correct size is available.

Chapter 2.2. File Control 65

MASSINSERT (VSAM only)
specifies that the WRITE command is
part of a mass-insert operation.

NUMREC(data-area)
specifies a halfword binary data
area that is to be set to the number
of records deleted.

RBA (VSAM only)
specifies that the record
identification field specified in
the RIDFLD option contains a
relative byte address.

REQID(data~value)
specifies as a halfword binary value
a unique request identifier for a
browse, used to control multiple
browse operations on a data set. If
this option is not specified, a
default value of zero is assumed.

RIDFLD(data-area)
specifies the record identification
field. The contents can be a key
(for ISAM and VSAM data sets), a
relative byte address or relative
record number (for VSAM data sets),
or a block reference, physical key,
and deblocking argument (for DAM
data sets). For a relative byte
address or a relative record number,
the format of this field must be
fullword binary. For a key, the
format must be that of the key of
the record when adding records.

RRN (VSAM only)
specifies that the record
identification field specified in
the RIDFLD option contains a
relative record number. This option
should only be used with relative
record data sets.

SEGSET (hama)
specifies the name of the segment
set to be retrieved. The name may
be up to eight characters and must
have been defined in the segment
control section of the FCT. The
data set must contain segmented
records. SEGSET cannot be used with
UPDATE.

SEGSETALL
specifies that the entire record in
an unpacked and aligned format is
required. The data set must contain
segmented records. If neither
SEGSET nor SEGSETALL is specified in
a command, and the data set contains
segmented records, the record is
returned in its packed unaligned
format.

SET(ptr~ref)
specifies the pointer-reference
which is to be set to the address of
the retrieved record. This option
implies locate-mode access.

.

66 CICSs/VS APRM (CL)

In assembler language, if the DUPKEY
exceptional condition occurs, the
register specified will not have
been set, but can be loaded from
DFHEITP1L.

SYSID(nama)
specifies the name of the system
whose resources are to be used for
intercommunication facilities. The
name may be up to four characters in
length.

When this option is specified,
LENGTH and KEYLENGTH must be
specified in some situations where
normally they need not be, as
follows. If neither RBA nor RRN is
specified, KEYLENGTH must be
specified; it cannot be found in the
FCT. If SET is not specified,
LENGTH must either be specified
explicitly or must be capable of
being defaulted from the INTO or
FROM option using the length
attribute reference in assembler
language, or STG and CSTG in PL/I.
LENGTH must be specified explicitly
for COBOL.

UFDATE
specifies that the record is to be
obtained for updating or (for VSAM
only) deletion. If this option is
omitted, a read-only operation is
assumed.

FILE CONTROL EXCEPTIONAL CONDITIONS

DSIDERR
occurs if a data set name referred
to in the DATASET option cannot be
found in the FCT.
Default action: terminate the task
abnormally.

DUPKEY
occurs if a record is retrieved via
an alternate index in which the key
that is used is not unique. It will
not occur as a result of a READNEXT
command that reads the last of the
records having the non-unique key.

In assembler language, if the SET
option is being used, the register
specified will not have been set,
but can be loaded from DFHEITP1.
Default action: terminate the task
abnormally.

DUPREC
occurs if an attempt is made to add
a record to a data set in which the
same key already exists.
Default action: terminate the task
abnormally.

ENDFILE

occurs if an end-of-file condition
is detected during a browse.

Default action: terminate the task
abnormally.

ILLOGIC (VSAM only)

occurs if a VSAM error occurs that
does not fall within one of the
other CICS/VS response categories.
Further information is available in
the EXEC interface block (refer to
"Appendix A. EXEC Interface Block"
on page 239 for details).

Default action: terminate the task
abnormally.

INVREQ

occurs if any of the following
situations exist:

. A requested file control
operation is not provided for or
allowed according to the data
gg% entry specification in the

. A REWRITE command, or a DELETE
command without the RIDFLD
option, is issued for a data set
for which no previous READ
UPDATE command has been issued.

. A READNEXT, READPREV, ENDBR, or
RESETBR command is issued for a
data set for which no previous
STARTBR command has been
issued.

. A READPREY command is issued for
@ data set for which the
previous STARTBR command has
the GENERIC option.

. The KEYLENGTH option is
specified (but the GENERIC
option is not specified), and
the specified length does not
equal the entry in the FCT for
the data set.

. The KEYLENGTH and GENERIC
options are specified, and the
length specified in the
KEYLENGTH option is either less
than zero, or greater than or
equal to the length in the FCT
entry.

. A DELETE command is issued fof
an ISAM or DAM data set.

. A DELETE command with the RIDFLD
option specified is issued for a
VSAM data set when a READ UPDATE
command is outstanding.

. Following a READ UPDATE command
for a data set, a WRITE or READ
UPDATE command is issued for the
same data set before exclusive

control is released by a
REWRITE, UNLOCK, or DELETE
command.

. The data area specified in the
RIDFLD option is not the same
ohe in all the commands of a
brouse.

. An attempt is made to start a
browse with a REQID already in
use for another browse.

. The method (for example, key or
relative record number) used to
access a file during a browse is
changed by a READNEXT or
READPREV command.

. SEGSET or SEGSETALL is
specified but the data set does
not contain segmented records,
or is on a remote system.

Further information is available in
the EXEC interface block (refer to
"Appendix A. EXEC Interface Block"
on page 239 for details).

Default action: terminate the task
abnormally.

occurs if there is an 170 error
during a file control operation. An
170 error is any unusual event that
is not covered by a CICS/VS
exceptional condition.

Default action: terminate the task
abnormally.

ISCINVRER

occurs when the remote system
indicates a failure which does not
correspond to a known condition.

Default action: terminate the task
abnormally.

LENGERR

occurs if any of the following
situations exist:

. The LENGTH option is not
specified for an input (without
the SET option specified) or
output operation involving
variable-length records.

o The length specified for an
output operation exceeds the
maximum record size; the record
is truncated.

. The length of a record read
during an input operation (with
the INTO option specified)
exceeds the value specified in
the LENGTH option; the record is
truncated, and the data area
supplied in the LENGTH option is

Chapter 2.2. File Control 67

set to the actual length of the
record.

. An incorrect length is
specified for an input or output
operation involving
fixed-length records.

Default action: terminate the task
abnormally.

NOSPACE

occurs if no space is available on
the direct-access device for adding
records to a data set. i

Default action: terminate the task
abnormally. .

NOTFND

63

occurs if an attempt to retrieve or
delete a record based on the search
argument provided is unsuccessful.
This could occur on a REWRITE
command if the RIDFLD data area has
changed since the previous READ
command. It may occur also on a
READPREV command immediately
following a STARTBR command which
specifies the key of a record that
does not exist on the data set.

Default action: terminate the task
abnormally.

CICS/VS APRM (CL)

NOTOPEN

occurs if the requested data set is
not open. This condition can occur
in response to any file control
command except UNLOCK and ENDBR,
because a data-base data set can be
closed dynamically at any time
without regard to outstanding
activity on the data set.

Default action: terminate the task
abnormally.

SEGIDERR

occurs when the name specified in
the SEGSET option is not defined in
the FCT.

Default action: terminate the task
abnormally.

SYSIDERR

occurs when the SYSID option
specifies either a name which is not
defined in the intersystem table or
a system to which the link is
closed.

Default action: terminate the task
abnormally.

Chapter 2.3. DL/I Services (DL/I CALL Statement)

DL/I is a general-purpose data base
control system that executes in a
virtual-storage environment under VSE,
057VS1, or 05/VS2. It simplifies the
creation and maintenance of data bases
that can be created by CICS/VS
application programs.

For VSE, the DL/I program product
(program number 5746-XX1) is used,
running as part of the CICS/VS partition.

For further information about DL/I, refer

éo.tre CICS5/VS Svystem/Application Desian
uide.

For 05/VS, the IMS/VS program product
(program number 5740-XX2) is used,
running as part of the CICS/VYS region.
For further information about IMS/VS,
refer to the CICS/VS System/Application
Design Guide.

For assembler language, COBOL, and PL/I
application programs using the
command-level interface, all CICS/0S/VS
requests, and CICS/D0OS/VS
assembler-language requests must be in
the form of DL/I CALL statements which
are identical to DL/I data base CALL
statements running in batch mode or under
IMS/VS data communication. (For
assembler-language application programs,
the CALLDLI macro, rather than the CALL
macro, should be used when running under
CICS/VS.) .

However, for CICS5/D0S/VS recquests for
COBOL and PL/I application programs, the
DL/I command-level interface provides a
simpler method (by means of the EXEC DLI
command) of accessing DL/ data bases.

This chapter describes only the CALL DL/I
method of accessing DL/I data bases. The
use of the EXEC DLI command for COBOL and
PL/I users is described in "Chapter 2.4.

?%/I Services (EXEC DLI Command)"™ on page

The two methods of accessing DL/I data
bases cannot both be used in the same
tash. However, it is possible for
different tasks in the same system to use
different methods.

The CICS/VS application program can
request DL/1 services by means of a DL/I
CALL statement. 1In response to such a
request, control is passed to a
CICS7VYS-DL/I routine that acts as an
interface between the CICS/VS
application program and DL/I. This
~interface routine checks the validity of
the CALL list, sets up DL/I to handle the
request, and passes control and the CALL
list to DL/I. When the interface routine
regains control, it, in its turn, returns

Chapter 2.3.

control to the calling program, unless a
DL/I pseudo—~ABEND has occurred, in which
case the CICS5/VS task is abnormally
terminated.

Under CICS/VS, two or more tasks may
require access to the same application
program at the same time. Because
CICS/VS application programs must be
quasi-reenterable, DL/I areas that may be
modified under CICS/VS, such as PCB
pointers, segment search arguments, and
170 work areas, should be placed in
dynamic storage. For assembler language
this will be in the DFHEISTG DSECT, for
COBOL in working storage, and for PL/I in
AUTOMATIC storage.

The DL/I data-base access capabilities of
a CICS/VS application program are defined
in a program specificaetion block (PSB)
which is created, by the system
programmer, by means of a PSB generation
utility program.

The PSB contains one or more program
communication blocks (PCBs) that
describe the data-base access
requirements of each DL/I data base to be
accessed by the application program.

A CICS/VS application program designed to
access DL/I data bases must schedule its
access to DL/I. Scheduling involves, for
example, ensuring that the PSB is valid,
that the application is not already
scheduled, that the referenced data bhases
are open and enabled, and that there is
no intent conflict between the PSB and
already scheduled PSBs from other
application programs. Negative
responses to any of the above will
prevent scheduling.

The scheduling call, if successful,
returns a list of addresses of the PCBs
within the scheduled PSB. The
application program in a subsequent CALL
statement can specify, from this list,
the address of the PCB corresponding to
the data base to be accessed. If the
addresses cannot be obtained, an INVREQ
(invalid request) indicator is returned
in response to subsequent DL/I CALL
statements in the application program.

A task may schedule only one PSB at a
time. Any attempt to schedule a second
P3B while one is still scheduled causes
the INVREQ indicator to be returned.

A sync point request (see "Chapter 5.6.
Recovery (Sync Points)" on page 231) by a
task that is scheduled to use DL/I
resources implies the release of those
resources. This means that if, after
issuing a sync point request, access to a

DL/I Services (DL/I CALL Statement) 69

DL/I data base is required, the PSB must
be rescheduled. The previous position of
the data base has been lost.

To access DL/Y data bases, the following
steps are required.

1. Issue a DL/]I call to schedule the PSB
and obtain PCB addresses.

2. Issue a DL/I call to access the
required data base.

3. Check the results immediately
following each DL/T call.

4., Issue a DL/I call, when all DL/I
access is complete, to terminate the
connection by releasing the PSB.

USER INTERFACE BLOCK (UIB)

The CICS/VS-DL/I routine that acts as the
interface between the CICS5/VS ‘
application program and DL/ passes
information to the application program in
a User Interface Block (UIB). A
definition of the UIB must be included in
the application program. The UIB is
acquired by the interface routine when an
application program issues a schedule
request specifying a pointer reference to
ba set with the address of the UIB. The
-UIB contains the address of the PCB
address list (UIBPCBAL) from the schedule
request and, for each DL/I request, the
response (UIBRCODE) from the interface
routine, as follows:

Field ASM COBOL PL/I

UIBPCBAL DS A PIC 9(8) COMP POINTER
UIBRCODE DS 0XL2 PIC XX

UIBFCTR DS X PIC X BIT(8)
UIBDLTR DS X PIC X BIT(8)

The fields UIBFCTR and UIBDLTR are
overlays for the first and second bytes
respectively of the return code.

ASM
The UIB definition is included by
invoking the DLIUIB macro.

COBOL
The UIB definition is included by a
COPY DLIUIB statement in the Linkage
Section of the program.

PL/I
The UIB definition is included by a
%INCLUDE DLIUIB statement.
Examples of these are given at the end of
the chapter.
SCHEDULE _THE PSE_AND OBTAIN PCB ADDRESSES
The format of the CALL statement to
request scheduling of the PSB and to

.70 CICS/VS APRM (CL)

obtain the associated PCB addresses is as
follous:

ASM:

CALLDLI ASMTDLI, ([parmcount,]
function,psbname,pointer-ref)

COBOL :

CALL 'CBLTDLI' USING [parmcount,]
function,psbname,pointer-ref

PL/I:

CALL PLITDLI ([parmcount,]
function,psbname,pointer-ref)

where:

"parmcount™
is a binary fullword containing a
count of the arguments that follouw.

"function™
is the name of the field containing
the four-character function 'PCBb'.

"psbhname™
is an eight-byte field containing
the PSB generation name (one through
seven characters for VSE, and one
through eight for 05/VS) accessed by
the apprlication program. It is left
justified and padded right with
blanks as appropriate. If the PSB
name is specified as '"¥' padded
right with blanks, a default name is
supplied. For CICS/D0OS/VS this

- default is the first PSB name

associated with the application
program in the DL/I DOS/VS
Application Control Table (ACT) as
defined during DL/I DOS/VS system
generation. For CICS5/05/VS, this
default is the name of the
application program associated with
this task in the CICS/VS Program
Control Table (PCT).

If the call is successful, field
UIBPCBAL in the UIB will contain the
address of the list of PCB
addresses. The order of the .
addresses is the same as the PCBs
within the PSB as specified when the
PSB was generated.

If the call is unsuccessful, the
reason for the failure will be

angicated in field UIBRCODE in the
IB.

“pointer-ref"
is a pointer reference that will
be set to the address of the UIB
after the call has been processed.
The UIB contains the address of the
PCB address list and the response
from the CICS/VS5-DL/1 interface.

SEGMENY SEARCH ARGUMENTS (SSAS)

Segment search arguments (55As) are used
to identify segments of a DL/I data base.
5SAs may be simple segment names or they
may be qualified to include constraints
made upon the values of fields within the
named segment types. (For information on
how to build an $55A, refer to the
publications DL/I DOS/VS Application
Programming Reference Manual or IMS/VS
Application Programming Reference
Manual.) .

Except for a read-only operation, when it
is unnecessary, 55As used by a CICS/VS
application program must be in dynamic
storage because of the requirement for
the program to be quasi-reenterable.

. For assembler-language programs, the
5SAs should be placed in the dummy
saction called DFHEISTG.

. For COBOL programs, the 5SAs should
be in the Working-Storage Section.

. For PL/I programs, the 55As should be
in AUTOMATIC storage.

170 HORK AREA FOR DL/I SEGMENTS

An 170 work area is required by DL/I to
hold the segment being retrieved or to
hold the segment being written to the
data base. Like $5As, this work area
must be in dynamic storage. The address
of the work area is specified as the
address of the first byte of the data
area.

ISSUE A DL/I DATA BASE CALL

The format of the CALL statement to
request DL/] services is as follows:

ASHM:

CALLDLI ASMTDLIL, ([parmcount,lfunction
»pcb,workareal,ssal,ssa2,...1)1]

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function,pcbh,workareal, ssal,ssa2,..

PL/I:

CALL PLITDLI (I[parmcount,lfunction
spcbh,workareal,ssal,ssa2,...1)

where:

"parmcount"”
is the name of a binary fullword

containing a count of the arguments
that follow.

Chapter 2.3.

"function™
is the 2-4 byte name of the function
to be performed. Valid function
names for a CICS/VS application
program are as follows:

CHKPY
request that a checkpoint be
issued. (VSE only).

!IGUII
get a unique segment
identified by 5S5As.

"GN"
get the next segment in the
data base, optionally
qualified by S55As.

"GNP“
get the next segment within the
scope of the current hierarchy
in the data base, optionally
qualified by $5S5As.

"GHU"
as for "GU", but in addition,
hold the segment for
subsequent update.

"GHN"
as for "GN", but in addition,
hold the segment for
subsequent update.

"GHNP"
as for "GNP", but in addition,
hold the segment for
subsequent update.

"ISRT™
insert a new segment at the
current position; also used in
the initial load of a data
base.

"REPL"™
replace a segment at the
current position.

YDLET™
delete the segment at the
current position.

"PCb"
is a field containing the address of
the PCB corresponding to the data
base specified in the call. This
address is one of the addresses
returned in the address list by the
scheduling call.

"workarea"™
specifies the workarea that
contains the segment being passed to
DL/I or is to contain the segment
being retrieved from DL/I.)

"gsal,ssa2,..."
are the names of the SSAs.

DL/1 Services (DL/I CALL Statement) 71

For details of VSE calls, refer to the
DL/I DOSs/VYS Application Programmer's
Reference Manual.

RELEASE A PSB IN THE CICS/VS APPLICATION
PROGRAN

When all DL/1 operations have been
completed, the PSB should be released (or
terminated), so that it can be used by
other application programs. The
releasing application program can reuse
the PSB or a different PSB as required.

The DL/I CALL statement is used to
release a PSB. It causes all data base
records used by the application program,
and all associated log records to be
written out. It also causes a CICS/VS
sync point to be taken, which commits all
activity performed by this task, both
related to DL/I and to CICS/VS protected
resources. (A sync point is taken by
maeans of the SYNCPOINT command, as
described in "Chapter 5.6. Recovery
(Sync Points)" on page 231.)

Changes performed prior to the execution
of the command will not be backed out
either in the event of Dynamic
Transaction Backout for a single failing
task, or in the event of an emergency
restart following an abnormal
termination of the system. A CICS/VS
sync point generates implicitly a DL/I
release statement. CALL statements and
sync points should be specified only at
points in the transaction where logically
related processing ends.

The PSB must be rescheduled explicitly
after it has been released (by a CALL or
sync point) if further access to the data
base is required, because the position of
the data base has been lost by the
release mechanism.

The format of the CALL statement to
release a P5B is as follows:

ASM:

CALLDLI ASMTDLI, ([parmcount,lfunction)
COBOL:

CALL 'CBLTDLI' USING [parmcount,lfunction
PL/I:

CALL PLITDLI (parmcount,function);

where:

“parmcount™

is the name of the binary fulluord
containing the parameter count

72 CICS/VS APRM (CL)

value of one.

"function” C . ‘
is the name of the field containing
the four-character function "TERM'
or '"Thbhbh'.

CHECK THE RESPONSE TO A DL/I CALL

The response to a DPL/I CALL statement
should always be checked so that, if
unsuccessful, alternative processing can
be initiated. Two types of check can be
performed, as follows:

. A check that the CICS/VS-DL/I
interface has been used correctly by
the application program (for
example, the required PSB not being
found in the directory of P5Bs would
cause a response code to be
returned). The response codes for
this type of error appear in the UIB
for the task.

. A check that the specified DL/I
function has been performed
correctly according to the rules of
DL/I (for example, a segment that
cannot be located from the specified
SSA would cause an error indication).
This type of error is detected
internally by DL/I and is explained
in the appropriate DL/I application
programming reference manual. DL/1I
may also issue a pseudo~-ABEND which
causes the task to be terminated
rather than control to be returned to
the CICS/VS application program. For
CICS/D0S/VS the task is terminated
with an ABEND code of "Dnnn", where
"nnn" is the DL/I pseudo-ABEND code;
for CICS/0S/VS the code is ADLA.

For the first type of check, the response
codes are returned in fields UIBFCTR and
UIBDLTR in the UIB; these two fields are
known collectively as UIBRCODE.

Figure 11 on page 73 lists the response
codes. These fields should be examined
first and, if normal, the DL/I response
in the PCB should be examined.

EXAMPLE OF DL/I REQUEST USING CALL

The example at the end of the chapter
shows, in the different application
programming languages, the use of the
DL/7I CALL statements to request DL/I
services.

UIBFCTR Response Code
Condition
ASM COBOL PL/Y
NORESP (normal response) X'00°" LOW-VALUES 00000000
NOTOPEN (not open) X'oC?* 12—-4-8—-9 00001100
INVREQ (invalid request) X'08" 12—-8-9 00001000
Invalid PCB address xXr1i0? 12-11-1-8-9 00010000
Following codes returned in UIBDLTR after NOTOPEN condition raised

Data base not open; request issued in 0S5/VS X'00°" 12-0~1-8-9 60000000
system

Data base not open; request issued in VSE X011 12-1-9 00000001
system

Intent scheduling conflict Xro2* 12—2-9 00000010

Following codes returned in UIBDLTR after INVREQ condition raised

Data base not in FCT, or not open according X'00" 12—-0-1-8—-9 00000000
to FCR, or invalid argument passed to DL/I

PSBNF (PSB not found) Xr'o1? 12-1-9 60000001
TASKNA (task not authorized)? Xre2" 12—-2-9 00000010
PSBSCH (PSB already scheduled) X'03" 12-3-9 00000011
LANGCON (language conflict)! X'06" 12-4-9 00000100
PSBFAIL(PSB initialization failed) X'o05" 12-5-9 00000101
PSBNA (PSB not authorized)? X'06" 12—-6-9 00000110
TERMNS (termination unscheduled) Xo7° 12-7-9 00000111
FUNCNS (function unscheduled) Xro8" 12-8-9 00001000
DLINA (DL/I not active) X'FF!' 12-11-0-7—-8-9 11111111

1 CICS/D0S/VYS only

Figure 11.

Chapter 2.3.

CICS/VS-DL/1 Interface Response Codes

DL/] Services (DL/I CALL Statement)

73

AS

M

DFHEISTG DSECT
UIBPIR DS F
I0AREA DS 0CL4O
AREAL DS CL3
AREAZ2 DS CL37
DLIUIB
USING UIB,8
PCBFTRS DSECT
PCBIPTR DS F
PCB1 DSECT
USING PCB1,6
DBPC1DBD DS CL8
DBPCILEV DS cL2
DBPC1STC DS CL2
DBPCI1PRO DS CL4
DBPC1RSV DS F
DBPCISFD DS CL8
DBPCIMKL DS F
DBPC1NSS DS F
DBPC1KFD DS 0CL256
DBPCINM DS oCL12
DBPC1NMA D5 0CL14
DBPCINMP DS cL17
ASMUIB CSECT
B SKIP
PSBNAME DC CL8'ASMPSB"
PCBFUN DC CL4'PCB"
REPLFUN DC CLG'REPL"®
TERMFUN DC CL4'TERM!'
GHUFUN D¢ CL4YGHU"
BLANKS bC CL3? '
SSAl DC CLITAAAAGGGS"
GQODRC DC XL1'00"
GOgDSC DC cLzar !
SKIP DS OH
CALLDLI ASMTDLI, (PCBFUN,PSBNAME,UIBPTR)
L 8,UIBPTR
CLC UIBFCTR,X'00"
BNE ERROR1
L 4,UIBPCBAL
USING PCBPTRS, 4
L 6,PCBIPTR
CALLDLI ASMTDLI, (GHUFUN,PCB1,I0AREA,SSAl1)
CLC UIBFCTR, GOODRC
BNE ERROR2
CLC DBPC1STC,GOODSC
BNE ERROR3
MVC AREA1l,BLANKS
CALLDLI ASMTDLI,(REPLFUN,PCB1,I0AREA,SSA1)
CLC UIBFCTR, GOODRC
BNE ERROR%
cLC DBPC1STC, GOODSC
BNE ERRORS
B TERM
ERROR1 DS OH
* INSERT ERROR DIAGNOSTIC CODE
ERROR2 DS OH
* INSERT ERROR DIAGNOSTIC CODE
ERROR3 DS OH
* INSERT ERROR DIAGNOSTIC CODE
ERROR% DS OH
X INSERT ERROR DIAGNOSTIC CODE
ERRORS5 DS OH
b INSERT ERROR DIAGNOSTIC CODE
TERM DS O0H
CALLDLI ASMTDLI,(TERMFUN)
END ASMUIB
74 CICS/VS APRM (CL)

COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CBLUIB'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING~STORAGE SECTION.

01

PSB-NAME PIC X(8) VALUE 'CBLPSB .
PCB-FUNCTION PIC X(4) VALUE 'PCB '.
TERM-FUNCTION PIC X(4) VALUE 'TERM'.
GHU-FUNCTION PIC X(4) VALUE 'GHU "'.
REPL-FUNCTION PIC X(4) VALUE 'REPL'.
THREE-BLANKS PIC X(3) VALUE ' .
SSA1 PIC X(9) VALUE 'AAAA4444 ',
SUCCESS-MESSAGE PIC X(40).
GOOD-STATUS-CODE PIC XX VALUE ' ',
GOOD-RETURN-CODE PIC X VALUE LOW-VALUE,.
MESSAGE.

02 MESSAGEL PIC X(33).

02 MESSACGE2 PIC XX.

DLI-I0-AREA.

02 AREAl PIC X(3).

02 AREA2 PIC X(37).

LINKAGE SECTION.

01

BLLCELLS.

02 FILLER PIC 59(8) COMP.

02 UIB-PTR PIC S9(8) COMP .

02 B-PCB-PTRS PIC $59(8) COMP.
02 PCB1-PTR PIC S59(8) COMP.
DLIUIB COPY DLIUIB.

PCB-PTRS.

02 B-PCB1-PTR PIC 9(8) COMP.
PCB1l.

02 PCB1-DBD-NAME PIC X(8).

02 PCB1-SEG-LEVEL PIC XX.

02 PCB1-STATUS-CODE PIC XX.

02 PCB1-PROC-OPT PIC XXXX.

02 FILLER PIC $9(5) COMP.

02 PCB1-SEG-NAME PIC X(8).

02 PCBl1-LEN-KFB PIC S9(5) COMP.
02 PCBI1-NU-SENSEG PIC S9(5) COMP.
02 PCBl-KEY-FB PIC X(256).

PROCEDURE DIVISION.

CALL 'CBLTDLI' USING PCB-FUNCTION, PSB-NAME, UIB-PTR.
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE B-PCB1-PTR TO PCBL-PTR.
CALL *CBLTDLI' USING GHU-FUNCTION, PCB1l, DLI-IO-AREA, SSAl.
SERVICE RELOAD UIB-PTR
IF UIBFCIR IS NOT EQUAL GOOD-RETURN-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
IF PCB1-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
MOVE THREE-BLANKS TO AREAL.
CALL 'CBLTDLI' USING REPL-FUNCTION, PCB1, DLI-IO-AREA, SSAl.
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
IF PCB1-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN
INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.
CALL 'CBLTDLI' USING TERM-FUNCTION.
EXEC CICS RETURN END-EXEC.

Chapter 2.3. DL/] Services (DL/I CALL Statement)

75

PL/1

PLIUIB: PROC OPTIONS(MAIN);

DCL PSB_NAME CHAR(8) STATIC INIT('PLIPSB '

DCL PCB_FUNCTION CHAR(%) STATIC INIT('PCB '

DCL TERM_FUNCTION CHAR(4) STATIC INIT('TERM

DCL GHU_FUNCTION CHAR(4) STATIC INIT('GHU *

DCL REPL_FUNCTION CHAR(4) STATIC INIT('REPL

DCL THREE_BLANKS CHAR(3) STATIC INIT(' s

DCL SSA1l CHAR(9) STATIC INIT('AAAAG44G

DCL PARM_CT_1 FIXED BIN(31) STATIC INIT

DCL PARM_CT_3 FIXED BIN(31) STATIC INIT

DCL PARM_CT_ 4 FIXED BIN(31) STATIC INIT

DCL GOOD_RETURN_CODE BIT(8) STATIC INIT

DCL GOOD_STATUS_CODE CHAR(2) STATIC INI

DCL IO_AREA_PTR POINTER;

%INCLUDE DLIUIB;

DCL 1 PCB_POINTERS BASED(UIBPCBAL),

2 PCB1_PTR POINTER;

DCL 1 DLI_IO_AREA,

2 AREAT CHAR(3),
2 AREA2 CHAR(37);

DCL 1 PCB1 BASED(PCB1_PTR),
PCB1_DBD_NAME CHAR(8),
PCB1_SEG_LEVEL CHAR(2),
PCB1_STATUS_CODE CHAR(2),
PCBI1_PROC_OPTIONS CHAR(4),
PCB1_RESERVE_DLI FIXED BIN (31,0),

PCB1_SEGNAME_FB CHAR(3),

PCB1_LENGTH_FB_KEY FIXED BIN(31,0),
PCB1_NUMB_SENS_SEGS FIXED BIN(31,0),
PCB1_KEY_FB_AREA CHAR(17);

CALL PLITDLICPARM_CT_3,PCB_FUNCTION,PSB_NAME,UIBPTR);
IF UIBFCTR-=GOOD_RETURN_CODE THEN DO;

e /% INSERT ERROR DIAGNOSTIC CODE */

ND;

CALL PLITDLI(PARM_CT_4,GHU_FUNCTION,PCBl1,DLI_IO_AREA,SSAl);
IF UIBFCTR-=GOOD_RETURN_CODE THEN DO;
/% INSERT ERROR DIAGNOSTIC CODE X/
END;
IF PCB1_STATUS_CODE-=GOCD_STATUS_CODE THEN DO;
ENB* INSERT ERROR DIAGNOSTIC CODE x/
AREA1=THREE_BLANKS;
CALL PLITDLI(PARM_CT_4,REPL_FUNCTION,PCBL,DLI_IO_AREA,S5A1);
IF UIBFCTR-~=GOOD_RETURN_CODE THEN DO;
EN/* INSERT ERROR DIAGNOSTIC CODE x/
D;
IF PCB1_STATUS_CODE-=GOOD_STATUS_CODE THEN DO;
ENE* INSERT ERROR DIAGNOSTIC CODE x/
CALL PLITDLI(PARM_CT_1,TERM_FUNCTION);
END PLIUIB;

)5
)3
')
)3
")

—f NN -

| VL I T

NN

76 CICS/VS APRM (CL)

Chapter 2.4. DL/I Services (EXEC DLI Command)

This chapter outlines the EXEC DLI
command that can be used in CICS/D0S/VS
command-level application programs that
are used to access DL/I data bases under
VSE. These programs, which can be
written only in COBOL or PL/I, require
the installation of the DL/I DOS/VS
program product (program number
5746~XX1), which runs as part of the
CICS/VS partition in the VSE system.

These commands have a syntax and format
that are similar to CICS5/VS commands
(EXEC DLI instead of EXEC CICS). Full
details of the commands are given in the
publication DL/I DOS/VS Application

Programmer's Reference Manual.

The commands are translated by the
appropriate command language translator
(see "Chapter 1.2. Command Format and
Argument Values" on page 5) into calls to
the CICS/VYS link-edit stub. At execution,
DFHEIP is invoked which in turn invokes a
DL/1 interface program to perform the
requested operations.

There are no exceptional conditions for
DL/1 commands, though the HANDLE ABEND
command can be used if desired to handle
abends issued by DL/I.

GENERAL FORMAT OF EXEC DLI COMMAND

The general format of the EXEC DLI
command is as follows:

EXECUTE|EXEC) DLI function
[optionl(argument)1]...

The functions, options, and arguments
that can be used are as follous:

CHECKPOINT |CHKP Request a checkpoint
ID(char-expr)

DELETE|DLET Delete a segment
[USING PCB(integer-expr)l
[VARIABLE]

SEGMENT(name)
FROM(data-area)
[SEGLENGTH(integer-expr)]l

GET UNIQUE|IGU or GET NEXT|GN or

GET NEXT_IN PARENT|GNP Get a segment
[USING PCB(integer-expr)]
[VARIABLE]
{FIRST|LAST]
[SEGMENT (name)]
[LOCKED]
INTO(data-area)
[SEGLENGTH(integer—-expr)]

Chapter 2.4.

[WHERE(name operator data area)l
[FIELDLENGTH(integer-expr)]
[OFFSET(integer—expr)]

INSERT|ISRT Insert a segment
{USING PCB(integer-expr)]
[VARIABLE]

[FIRSTILAST]

SEGMENT (name)
[SEGLENGTH(integer—expr)]
FROM(data~area)

[WHERE(name operator data area)l
[FIELDLENGTH(integer-expr)]l

REPLACE|REPL Replace a segment
[USING PCB(integer-expr)
[VARIABLE]

SEGMENT (name)
[SEGLENGTH(integer—expr)]
FROM(data-area)

SCHEDULE|SCHD Schedule the PSB
[PSB(name)]

TERMINATE|TERM Terminate access

SEGLENGTH is required in COBOL whenever
FROM or INTO is specified. It is never
required in PL/I.

On the GET, INSERT, and REPLACE commands,
the segment-oriented keywords (that is,
all those except USING PCB) may be
repeated for each segment. Keywords
preceding the keyword SEGMENT in the
above list must be written immediately
preceding the segment to which they
apply, but within themselves may be
written in any order. Similarly,
keywords which follow the keyword SEGMENT
in the above list must be written
immediately following the segment to
which they apply, but within themselves
they may be written in any order.

The command must be delimited, in the.
same way as an EXEC CICS command, by
END-EXEC for COBOL and by a semicolon for
PL/1I, for example:

EXEC DLI GET SEGMENT(SKILL)

WHERE(SKILLTYPE='PLUMBER"')
INTO(SKILLSTRUCT) END-EXEC

DL/I INTERFACE BLOCK (DIB)

The CICS/VS-DL/I interface module passes
information to the CICS/VS application
program in a DL/I Interface Block (DIB).
The DIB contains the response from the
interface module in the field DIBSTAT.
The DIB structure is included
automatically in the application proaram
by the translator, and unlike the EIB, no
copy book exists in the source statement

DL/I Services (EXEC DLI Command) 77

library. The fields and their
descriptions are as followus:

Field COBOL PL/1

DIBFLAG PIC X CHAR(1)
DIBSEGLV PIC XX CHAR(2)
DIBSEGM PIC X(8) CHAR(8)
DIBSTAT PIC XX CHAR(2)

Field DIBFLAG is a flag indicating that
an online task had to wait for a resource
owned by an MPS batch task. The value is
either X'FF' (HIGH-VALUE in COBOL,
HIGH(1) in PL/I) or X'00"' (LOW-VALUE in
COBOL, LOWC(1) in PL/I).

Field DIBSEGLY gives the hierarchical

level of the object segment or lowest
level parent segment actually retrieved.

COBOL

Field DIBSEGM is the name of the object
segment or the lowest level parent
segment actually retrieved.

Field DIBSTAT is the DL/I status code.

EXAMPLE OF DL/I REQUEST USING EXEC DLI

The following example (in COBOL and PL/I)
shows the use of the EXEC DLI command to
request DL/I services; it provides the
same functions as the example in the
previous chapter.

CBL XOPTS(DLI,CICS)
IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPL.
ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEGDATA.
02 AREAL PICTURE X(3).
02 AREA2 PICTURE X(37).

PROCEDURE DIVISION.

* INSERT ERROR CODE

% INSERT ERROR CODE
MOVE SPACES TO AREAL.

* INSERT ERROR CODE
EXEC DLI TERMINATE END-EXEC
EXEC CICS RETURN END-EXEC
GOBACK.

01 SEGDATAL COMPUTATIONAL PICTURE 59999 VALUE IS +40

EXEC DLI SCHEDULE PSB(CBLPSB) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN

EXEC DLI GET UNIQUE SEGMENT(AAAAGG44)
INTO(SEGDATA) SEGLENGTH(SEGDATAL) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN

EXEC DLI REPLACE SEGMENT(AAAA44464)
FROM(SEGDATA) SEGLENGTH(SEGDATAL) END-EXEC
IF DIBSTAT IS NOT EQUAL SPACES THEN

78 CICS/VS APRM (CL)

PL/1

¥ PROCESS XOPTS(DLI,CICS
EXAMPLE: PROC OPTIONS(MA
DCL 1 SEG_DATA,
2 AREA1l CHAR(3),
2 AREA2 CHAR(37);
EXEC DLI SCHEDULE PSB(PLIPSB);
IF DIBSTAT == ' ' THEN CALL ERROR;
EXEC DLI GET UNIQUE SEGMENT(AAAAG444) INTO(SEG_DATA);
IF DIBSTAT -= ' ' THEN CALL ERROR;
AREA1l = '"XXX';
EXEC DLI REPLACE SEGMENT(AAAA444%4) FROM (SEG_DATA);
IF DIBSTAT =-=' ' THEN CALL ERROR;
EXEC DLI TERMINATE;
ERROR: PROC;
Eg; INSERT USER ERROR ROUTINE %/
b4
END; /% EXAMPLE x/

;NCLUDE;

-
’

),
IN

Chapter 2.4. DL/1 Services (EXEC DLI Command) 79

Chapter
Chapter
Chapter
Chapter

Part 3. Data Communication Operations

Introduction to Data Communication Operations

Terminal Control

Basic Mapping Support (BMS)

Batch Data Interchange

Part 3.

Data Communication Operations

81

Chapter 3.1. Introduction toData Communication Operations

Three methods are available to the
CICS/VS application programmer for
communicating with the terminals and
logical units in the subsystems of the
network that forms part of the CICS5/VS
system. The methods dealt with are:

. Terminal control
. Basic mapping support (BMS)
. Batch data interchange

Terminal control is the basic method for
communicating with devices, whereas both
BMS and batch data interchange extend the
facilities of terminal control to
simplify further the manipulation of data
streams. Both BMS and batch data
interchange use terminal control
facilities when invoked by an application
program. Terminal control provides
commands and options that can be
specified in various combinations
according to the requirements of the
devices. However, application programs
written in this way are dependent on the
data formatting requirements of these
davices and a detailed knowledge of the
devices is required. Terminal control is
described in "Chapter 3.2. Terminal
Control"™ on page 85.

Chapter 3.1.

BasiC mapping support provides commands
and options that can be used to format
data in a standard manner. BMS converts
data streams provided by the application
program to conform to the requirements of
the devices. Conversely, data received
from a device is converted by BMS to a
standard form. However, not all devices
supported by CICS/VS can be used with BMS
and, for those that cannot, terminal
control must be used. Also, in some
cases, the overhead incurred to achieve
data stream independence may outweigh the
advantages. The choice as to whether BMS
should be used is a matter for
application design and is discussed more
fully in the CICS/VS System/Application
Design Guide. BMS is described in
"Chapter 3.3. Basic Mapping Support
(BMS)" on page 125.

Batch data interchange provides commands
and options that may be used, possibly in
conjunction with BMS commands, to
communicate with the 6670 logical unit
and Wwith the batch logical units of the
3770 and 3790 subsystems. Batch data
interchange is described in "Chapter 3.4.
Batch Data Interchange" on page 169.

Introduction to Data Communication Operations 83

Chapter 3.2. Terminal Control

The CICS/VS terminal control program
provides for communication betuween
user-written application programs and
terminals and logical units, by means of
terminal control commands.

Terminal control uses the standard access
methods available with the host operating
system. The Basic Telecommunications
Access Method (BTAM) is used by CICS/VS
for most start-stop and BSC terminals.

As an option for 05/YS, the
Telecommunications Access Method (TCAM)
can be specified. The Sequential Access
Method (SAM) is used where kevboard
terminals are simulated by sequential
devices such as card readers and line
printers. The Virtual
Telecommunications Access Method
(ACF/7VTAM) or the Telecommunications
Access Method (TCAM) is used for Systems
Network Architecture (SNA) terminal
systems,

Terminal control polls terminals to see
if they are ready to transmit or receive
data. Terminal control handles code
translation, transaction validation,
synchronization of input and output
operations, and the line control
necessary to read from or urite to a
terminal. The application program is
freed from having to physically control
terminals. During processing, an
application program is connected to one
terminal for one task and the terminal
control program monitors which task is
associated with which terminal. The task
to be initiated is determined as
described later in this chapter under
"Terminal-Oriented Task Identification".

Terminal control is used for
communication with terminals. In SNA
systems, however, it is used also to
contrel communication with logical units
or with another CICS/VS system. A
logical unit (LY) represents either a
terminal directly, or a program stored in
a subsystem controller which in turn
controls one or more terminals. The
CICS/VS application program
communicates, by means of the logical
unit, 2ither with a terminal or with the
stored program. For example, a 3767
terminal is represented by a single
logical unit without an associated
usar-written application program. In
contrast, a 3790 subsystem is represented
by a 3791 controller, user-wuritten 3790
application programs, and one or more
3790 terminals; when the subsystem is
configured, one or more logical units are
designated by the user.

Terminal control is used also for
communicating with terminals or logical

units in a remote system by means of
Distributed Transaction Processing
(DTP). SNA protocols are available,
through terminal-control commands, to
initiate and terminate a conversation (a
session) with a remote LU6 logical unit.

This conversation is carried on between a
principal facility and one or more
alternate facilities.

A principal facility for a task is a
terminal or LU6 session that is made
available to the application program when
the task is initiated.

An alternate facility for a task is a
terminal or LU6 session acquired as
needed by the application program. In
general, terminal-control commands that
refer to an alternate facility should
include the SESSION option.

The ALLOCATE and FREE commands allow the
application program to acquire and
release these alternate facilities and
allow both principal and alternate
facilities to be used at the same time.

The BUILD ATTACH and EXTRACT ATTACH
commands, together with the ATTACHID
option of the SEND command, allow the
application program to attach a
transaction in a remote system.

Fields in the EIB allow access to
indicators that give the status of the
conversation after execution of RECEIVE
or CONVERSE commands. For example,
EIBEOC, EIBATT, and EIBFMH provide more
information about the received data, and
EIBSYNC, EIBFREE, and EIBRECY provide
more information about the session.

The INVITE option of the SEND command
allows the optimization of SNA flows that
occur when communicating with another
transaction, or with IMS/VS.

Distributed transaction processing is
described fully in the CICS/VS
Svstem/Application Design Guide.

Commands and options that apply
specifically to logical units are
described later in the chapter.

Terminal control commands are provided to
request the following services that are
applicable to most, or all, of the types
of terminal or logical unit supported by
CICS/VS:

. Read data from a terminal or logical
unit (RECEIVE).

Chapter 3.2. Terminal Control 85

. Write data to a terminal or logical
unit (SEND).

. Converse with a terminal or logical
unit (CONVERSE).

. Synchronize terminal input/output
for a transaction (WAIT TERMINAL).

. Send an asvynchronous interrupt
(ISSUE SIGNAL).

U Relinquish use of a communication
line (ISSUE RESET).

. Disconnect a switched line or
terminate a session with a logical
unit (ISSUE DISCONNECT).

It is possible to read records from a
card reader and read records from or
write records to a disk data set,
magnetic tape unit, or a line printer
defined by the system programmer as a
card-reader-in/line-printer-out (CRLP)
terminal. For additional information,
see the section "Sequential Terminal
Support™ in "Chapter 5.1. Introduction
to Recovery and Debugging™ on page 213.

Other services available in response to
tarminal control commands apply to
specific types of terminal. The
permissible commands and options that can
be used by specific terminal types are
detailed later in this chapter. Because
many types of terminal are supported by
CICS/VS, many special servicaes are
provided. (For a list of terminals
supported by CICS5/VS, see the publication
CICS/VS General Information.) In
particular, a large number of commands
are provided for communicating with
display devices such as the 3270
Information Display System; these are
described in the section "Display Device
Oparations"” later in this chapter.

The options that follow the command
depend on the terminal or logical unit
(and sometimes, access method) used and
the operations required. Options
included in a terminal control command
that do not apply to the device being
used will be ignored.

The HANDLE CONDITION and IGNORE CONDITION
commands, and the NOHANDLE option, can be
used to deal with exceptional conditions
that occur during the execution of
terminal control commands. Refer to
"Chapter 5.1. Introduction to Recovery
and Debugging" on page 213 for further
information about exceptional
conditions.

COMMANDS AND OPTIONS FOR TERMINALS AND
LOGICAL UNITS

The commands and options described in
this section apply to all terminals and
logical units. There may, however, be

86 CICS/VS APRM (CL)

others that apply to specific devices.
If so, details are given later in the

chapter under headings for the device
tyvpes.

READ FROM TERMINAL OR LOGICAL UNIT
(RECEIVE)

The RECEIVE command is used to read data
from a terminal or logical unit. The
INTO option is used to specify the area
into which the data is to be placed, in
which case the maximum length of data
that the program will accept must be
specified in the LENGTH option. If the
data exceeds the specified maximum, it is
truncated and the LENGERR condition
occurs. If the LENGTH option is
specified, the named data area is set to
the actual data length (before truncation
occurs) when data has been received.

Alternatively, a pointer reference can be
specified in the SET option. CICS/VS
acquires an area large enough to hold the
data and sets the pointer reference to
the address of that area. When data has
been received, the data area specified in
the LENGTH option is set to the data
length.

The first RECEIVE command in a
terminal-initiated task will not issue a
terminal-control read but will simply
copy the input buffer, even if the data
length is zero. A second RECEIVE must be
issued to cause a terminal-control read.

HRITE TO TERMINAL OR LOGICAL UNIT (SEND)

The SEND command is used to write data to
a terminal or logical unit. The options
FROM and LENGTH specify respectively the
data area from which the data is to be
gaken and the length (in bytes) of the
ata.

The HAIT Option of the SEND Command

Unless the WAIT option is specified also,
the transmission of the data associated
with the SEND command is deferred until a
later event, such as a sync point,
occurs. This deferred transmission
reduces the flows of data by allowing
data flow controls to be transmitted with
the data.

SYNCHRONIZE TERMINAL INPUT/OUTPUT FOR A
TRANSACTION (WAIT TERMINAL)

This command is used to ensure that a
terminal operation has completed before
further processing occurs in a task under
which more than one terminal or logical
unit operation is performed.
Alternatively, the WAIT option can be
specified in a SEND command. (A wait is

always carried out for a RECEIVE
command.)

Either method may cause execution of a
task to be suspended. If suspension is
necessary, control is returned to
CICS/VS. Execution of the task is
resumed when the operation is completed.

Even if the WAIT option is not specified
in a SEND command, the EXEC interface
program wWwill ensure that the operation is
completed before issuing a subsequent
RECEIVE or SEND command.

CONVERSE WITH TERMINAL OR LOGICAL UNIT
(CONVERSE)

For most terminals or logical unit types
a conversational mode of communication is
permissible. The CONVERSE command is
used for this purpose. Inh general, the
CONVERSE command can be considered as a
combination of a SEND command followed
immediately by a WAIT TERMINAL command
and then by a RECEIVE command. However,
not all options of the SEND and RECEIVE
commands are valid for the CONVERSE
command. Specific rules are given in the
syntax descriptions for different
devices later in this chapter. The
TOLENGTH option is equivalent to the
LENGTH option of the RECEIVE command, and
the FROMLENGTH option is equivalent to
the LENGTH option of the SEND command.

SEND AN ASYNCHRONOUS INTERRUPT (ISSUE
SIGNAL)

This command is used, in a transaction in
receive mode, to inform the sending
transaction that it wishes to change
modes. The execution of the command will
raise the SIGNAL condition on the next
SEND or RECEIVE command executed in the
sending transaction, and a previously
executed HANDLE CONDITION command for
this condition can be used either to
action the request or to ignore it.

RELINQUISH A COMMUNICATION LINE (ISSUE
RESET)

This command is used to relinquish use of
a communication line. The command
applies only to binary synchronous
devices using BTAM. The next BTAM
operation will be a read or write
initial.

DISCONNECT A SWITCHED LINE (ISSUE
DISCONNECT)

This command is used to brzak a line
connection between a terminal and the
processor, or to break a session between
TCAM or ACF/VTAM logical units, whan the

transaction is completed. If the
terminal is a buffered device, the data
in the buffers will be lost.

TERMINAL-ORIENTED TASK IDENTIFICATION

When CICS/VS receives input from a
terminal to which no task is attached, it
has to determine which transaction should
be initiated. The methods by which the
user can specify the transaction to be
initiated and the sequence in which
CICS/VS checks these specifications are
as follows (see also Figure 12 on page
89). The system macros referred to in
the following tests are described in the
CICS/VS System Programmer's Reference
Manual.

Test 1:
Is the input from a PA key (of a
3270 terminal) that has been defined
at system initialization as the
print request kay?

If ves, printing of the data
displaved on the screen is
initiated.

Test 2:
(a) Is this terminal of a type
supported by BMS terminal paging?

(b) Is the input a paging command?
(The terminal operator can enter
paging commands defined in the
DFHSIT system macro.)

If ves to both (a) and (b)), the
transaction CSPG, which processes
paging commands, is initiated.

Test 3:

If an attach FMH is present in the
data stream and Tests 4 and 5 are
not fulfilled, the transaction
specified in the attach FMH is
initiated. The architectured attach
names are converted to "CSMI"™.

Test 4:

Does the terminal control table
entry for the terminal include a
transaction identification
(specified by the TRANSID operand of
the DFHTCT TYPE=TERMINAL system
macro.)

If yes, the specified transaction is
initiated.

Test 5:
Is a transaction specified by the
TRANSID option of a program control
RETURN command (or by the
application program moving the
transaction name into TCANXTID)?

If ves, the specified transaction is
initiated.

Chapter 3.2. Terminal Control 87

Test 6:
(a) Is the terminal a 3270
(including 3270 logical unit and
3650 host-conversational (3270)
logical unit, connected via VTAM)?

(b) Is the input from a PA key, PF
key, light pen attention, or
operator identification card
reader?

(c) Is this input specified by the
TASKREQ operand of the DFHPCT
TYPE=ENTRY system macro?

If yes to (a), (b), and (¢), the
program specified by the PROGRAM
opaerand of the same DFHPCT
TYPE=ENTRY macro is given control.

Test 7:
Is a valid transaction
identification specified by the
first one to four characters of the
terminal input?

If yes, the specified transaction is
initiated.

For all PA keys and some LPAs there
cannot be terminal input. If there
is no terminal input an "invalid
transaction identification” message
is sent to the terminal.

If none of the above tests is met, an
invalid transaction identification
exists, and message DFH2001 (INVALID
TRANSACTION IDENTIFICATION - PLEASE
RESUBMIT) is sent to the terminal.

The 3735 Programmable Buffered Terminal
makes an exception to this sequence when
operating in inquiry mode. The test of
input from the terminal (Test 7 above) is
given highest priority.

COMMANDS AND OPTIONS FOR LOGICAL UNITS

An application program communicates with
a TCAM or VTAM logical unit in much the
same way as it does with BTAM or TCAM
terminals (that is, by using the terminal
control commands described above).
However, communication with logical
units is governed by the conventions
(protocols) that apply to each type of
logical unit. This section describes the
additional commands and options provided
by CICS5/7VS to enable application programs
to comply with these protocols.

The types of logical units and the
related protocols for each of the SNA
subsystems supported by CICS/VS are
described in the CICS5/VS guides for the
subsystems. (See the Bibliography).

88 CICS/VS APRM (CL)

SEND/RECEIVE MODE

For SNA logical units, only one of the
two ends of the session can be in send
mode at any one time, that is, one is in
send mode, the other is in receive mode.
An application program in send mode can
issue any commands for the logical unit.
On the other hand, one in receive mode,
can issue only RECEIVE commands until the
mode is changed back to send. The EIB
indicator EIBRECV informs the
application program that it is in receive
mode and that it must perform the above
operations.

If the above protocols are not followed,
the transaction will be abended, unless
the read-ahead queueing feature
(RAQ=YES) is specified in the DFHPCT
TYPE=ENTRY system macro. This option
allows the application program to ignore
the EIBRECV indicator and to send and
receive at any time. However, it should
only be used with transactions that
support both bisynchronous davices and
logical units.

For displays, the transaction would
normally be in send mode, provided that
the INVITE option is not used, and can
ignore the EIBRECV indicator. Displays
work with a subset of the full protocols
(see the CICS/VS Svstem/Application
Design Guide for further information).

SEND/RECEIVE PROTOCOL (INVITE OPTION)

The INVITE option of a SEND command
informs the session partner that it is
now in send mode and that it should send
a reply. At the same time it places the
transaction in receive mode. The
transaction should now issue a RECEIVE
command as its next operation.

CHAINING OF INPUT DATA

The unit of data from a logical unit is
the request/response unit (RU). One or
more RUs can be grouped together and
treated as a chain.

The last RU in a chain (even if it is the
only RU in the chain) raises an
end-of-chain (EOC) condition. When this
occurs, a HANDLE CONDITION EOC command
will give control to a user-written
routine, which can do any additional
processing required when the complete
chain has been received.

For logical units that do not send
chained data (for example, the 32790
logical unit), the EOC condition occurs
for every RECEIVE request. For logical
units that send chained data, the EOC
condition usually occurs for every
RECEIVE request, but it may not,
depending on the length of the data and
on whether the terminal control table

}

3270
Print Request
Key?

Terminal
supported by
paging?

Yes

Initiate
Printing

Paging
command
entered?

Attach
FMH present
?

Trans.
spec. by DFHTCT
TRANSID?

Yes

Initiate CSPG

spec. by TRANSI

Initiate transaction
specified in
Attach FMH

Trans.

of RETURN
?

Trans.
spec. by DFHTCT
TRANSID?

spec. by TRANSID

Yes

Yes

Initiate specified

transaction

Initiate specified

transaction

PA, PF, LPA, or
OPID?

Term
input begins with
trans. id.?

Send "‘invalid
transaction ident.”’
message to terminal

Initiate transaction
specified by
terminal input

Figure 12. Terminal-Oriented Task Identification

Chapter 3.2.

TASKREQ = Yes
specified?
Initiate transaction
specified by
terminal input AID
Terminal Control 89

CHNASSY option is specified by the system
programmer. The syntax descriptions for
individual logical units in this chapter
omit the EOC condition unless it is
likely that meaningful use may be made of
the fact that it has not been received.
The IGNORE CONDITION command can be used
to ignore the EOC condition in cases
where it is raised on every RECEIVE
command.

The EOC condition may occur
simultaneously with the EODS
(end-of-~data-set) and/or INBFMH
(inbound-FMH) conditions. When this
happens, the user-written routine for the
EODS or INBFMH conditions will be given
control rather than the EOC routine.

The system programmer specifies, in the
TCTTE, whether or not chaining is to
occur. If chain assembly is specified,
instead of an input request being
satisfied by one RU at a time until the
chain is complete, the whole chain is
assembled and is sent to the CICS/VS
application program satisfying just one
request. This ensures that the integrity
of the whole chain is knowun before it is
presented to the application program.

CHAINING OF OUTPUT DATA

As in the case of input data, output data
is transmitted as request/response units
(RUs). If the length of the data to be
sent exceeds the RU size, CICS/VS
automatically breaks up the data into RUs
and transmits these RUs as a chain.
During transmission from CICS5/VS to the
logical unit, the RUs are marked FOC
(first-of-chain), MOC (middle-of-chain),
or EQC (end-of-chain) to denote theair
position in the chain. An RU that is the
only one in a chain is marked 0C
(only-in-chain).

If the system programmer specified that
the application program can control the
chaining of outbound data, the
application program uses the CNOTCOMPL
(chain-not-complete) option of the SEND
command to indicate continuation of the
chain. In general, the CMOTCOMPL option
should not be used. Once an output
request with CNOTCOMPL specified has been
made, subsequent output requests may not
use the FMH, LAST, or (for the 3600
(36012 logical unit) LDC options until
the beginning of the next chain (that is,
the first output request following an
output request in which CNOTCOMPL is
omitted).

LOGICAL RECORD PRESENTATION

Each RECEIVE command results in one RU
(or one chain of RUs if chain assembly is
specified) being presented to the
application program. An RU may consist of
one or more logical records. If an RU

90 CICS7VS APRM (CL)

contains more than one logical record,
the records will be separated by new
line(NL), inter-record separator(IRS),
or transparent(TRN) characters. Except
for LUTYPEG devices, a logical record
cannot be transmitted in more than one
RU; the end of the RU is always the end of
the logical record. Data from an LUTYPES4
may contain logical records that span
RUs, in which case, chain assembly should
be specified.

The system programmer can specify in the
PCT, for specific application programs,
that the application program will be
presented with logical records instead of
with RUs or chains. For those
application programs for which this
option is specified, each RECEIVE command
results in one logical record being
presented to the application program,
regardless of whether chain assembly is
specified or not.

If the logical records are separated by
IRS or TRN characters, these are removed,
and do not appear in the data.
Therefore, a blank card will have a
length of zero. If NL characters are
used to separate the logical records,
they are not removed, and the NL
character from the end of each logical
record appears at the end of the data.
If the delimiter is a transparent (TRN)
character, CICS/VS will pass up to 256
bytes in one logical record. This
logical record can contain any
characters, including NL and IRS
characters, all of which will be treated
as data .

All communication features for logical
units are still in operation, that is,
notification of end-of-chain conditions,
and (for batch logical units only)
notification of end-of-data-set
conditions and presentation of the
inbound FMH at the beginning of a chain,
still occurs.

If chain assembly has been specified, a
logical record ends with a delimiter (NL,
IRS, or TRN), or the end of the assembled
chain. The end of chain notification
occurs in the last logical record of the
chain.

DEFINITE RESPONSE

The type of response requested by CICS/VS
for outbound data is generally determined
by the system programmer in the PCT; it
can be specified that all outbound data
for an application program will require a
definite response, or that
exception-response protocol is to be
used, that is, a response will be made
only if an error occurs.

The use of definite-response protocol has
some performance disadvantagesf but may
be necessary for some application

programs. To provide a more flexible
method of specifying the protocol to be
used, the DEFRESP option is provided for
use on the SEND command. One example of
the use of this option is to request a
definite response for every tenth output
command, exception response being the
general rule.

Because a definite response can be
requested only on the last element in the
chain, the DEFRESP and CNOTCOMPL options
are mutually exclusive.

FUNCTION MANAGEMENT HEADER (FMH)

A function management header (FMH) is a
field that can be included at the
beginning of an input or ocutput message.
It is used to convey information about
the message and how it should be handled.
For some logical units, the use of an FMH
is mandatory, for others it is optional,
a?d in some cases FMHs cannot be used at
all.

For output, the FMH can be built by the
application program or by CICS/VS. For
input, the FMH can be passed to the
application program or it can be
suppressed by CICS/VS.

The FMH option of the SEND command is
used to specify that the application
program will provide the FMH in the data
to be transmitted.

The ATTACHID option specifies a set of
values that CICS/VS puts into an LU6
attach FMH which is concatenated ahead of
the user data.

Further information about FMHs is given
in the CICS/VS guides for the subsystems.
(See the Bibliography.)

Inbound FMH

An application program can regquest
notification when an FMH is included in
the data received from a batch logical
uni t.

Whether or not inbound FMHs will be
passed to the application program is
specified in the INBFMH operand of the
DFHPCT TYPE=ENTRY system macro. It can be
specified that no inbound FMHs will be
passed, or that only the FMH at the end
of the data set will be passed, or that
all inbound FMHs will be passed.

If inbound FMHs are to be passed to the
application program, a HANDLE CONDITION
INBFMH command will allow control to be
passed to a user-written routine whenever
an inbound FMH is received. These
user-written routines can investigate
the contents of the FMH and take some
action depending on, for example, the
device from which the data has come. The

contents of the FMH can be accessed also
by means of the EIBFMH field of the EIB.

If an inbound FMH, containing an attach
FMH, is passed to the application
program, the attach FMH can be removed as
long as this has been allowed for by the
system programmer in the PCT. The values
of the attach FMH may be examined by
using the EXTRACT ATTACH command.

When input data is received as a chain of
RUs, only the first (or only) RU of the
chain is preceded by an FMH.

Ooutbound FMH

If the user data contains one or more
FMHs, the output request must specify the
FMH option. When sending output data to
a logical unit that expects an FMH, the
FMH must be at the start of the user data
to be transmitted.

UNSOLICITED INPUT

If unsolicited input arrives from a
logical unit, it is queued and used to
satisfy future input requests for that
logical unit. Houwever, for 3270 logical
units, unsolicited input will be
discarded if the PUNSOL operand is
specified in the DFHSG PROGRAM=TCP system
macro.

BRACKET PROTOCOL (LAST OPTION)

Bracket protocol prevents the
interruption of a transaction between
CICS/VS and a logical unit. A bracket
can, generally, be begun either by
CICS/VS or by the logical unit, or ended
only by CICS/VS unless it is for an LU6
logical unit, in which case the logical
unit can end it. A bracket also can
delimit conversation between CICS/VS and
the logical unit or merely the
transmission of a series of data chains
in one direction.

Bracket protocol is used when CICS/VS
communicates with some logical units,
The use of brackets is usually
transparent to the application program.

Only on the last output request of a task
to a logical unit does the bracket
protocol become apparent to the
application program. On the last output
request to a logical unit, the
application program may specify the LAST
option on the SEND command. The last
output request is defined as either the
last SEND command specified for a task
without chain control; or as the output
request that transmits the FOC or 0OC
marker of the last chain of a transaction
with chain control. The LAST option
causes CICS/VS to transmit an end-bracket
indicator with the final output message

Chapter 3.2. Terminal Control 91

to the logical unit. This indicator
notifies the logical unit that the
current transaction is ending. If the
LAST option is not specified, CICS/VS
waits until the task detaches before
sending the end-bracket indicator. Since
an end-bracket indicator is transmitted
only with the first RU of a chain, the
LAST option is ignored for a transaction
with chain control unless FOC or 0C is
also specified.

Including a FREE command after a SEND
command with the LAST option may be
useful if the transaction does not
terminate immediately after issuing the
SEND command. This allows another
transaction to be initiated from the LU
or from CICS/VS.

SUSPEND A TASK (WAIT SIGNAL)

WAIT SIGNAL

Condition: SIGNAL

This command is used, for a principal
facility only, to suspend a task until a
SIGNAL condition occurs. Some logical
units can interrupt the normal flow of
data to the application program by a
SIGNAL data-flow-control command to
CICS/VS, signaling an attention, which in
turn causes the SIGNAL condition to
occur.

The HANDLE CONDITION SIGNAL command will
cause a branch to an appropriate
user-written routine when an attention is
received.

TERMINATE A SESSION (ISSUE DISCONNECT)

ISSUE DISCONNECT

This command is used to terminate a
session between CICS/VS and a legical
unit, but only if the system programmer
has specified RELREQ=(,YES) in the DFHTCT
TYPE=TERMINAL macro for the logical unit.

RETURN A FACILITY TO CICS/VS (FREE)

FREE [SESSION(name)]

Conditions:
INVREQ, NOTALLOC, SESSIONERR

This command is used to return a facility
(a principal facility or a previously

92 CICS/VS APRM (CL)

allocated alternate facility) to CICS/VS
when a transaction owning it no longer
reqguires it. The facility then can be
allocated for use by other transactions.

Facilities not freed explicitly will be
freed by CICS/VS when the task
terminates.

TCAM-SUPPORTED TERMINALS AND LOGICAL
UNITS (CICS/05/VS ONLY)

Because TCAM permits many applications to
share a single network, the CICS/VS-TCAM
interface supports data streams rather

than specific terminals or logical units.

Operations for terminals supported by
TCAM use the same options as the
terminals supported by other access
methods. With the exception of the
BUFFER option for the 3270, all options
applicable for input operations are
supported by CICS/VS-TCAM. However, the
exceptional conditions ENDINPT and EOF
will not occur.

All output requests are the same for TCAM
as for other CICS/VS supported terminals,
except that:

e the ISSUE RESET command cannot be
used

. the ISSUE COPY and ISSUE PRINT
commands for the 3270 cannot be used

. the DEST option is available on the
SEND command, in addition to other
appropriate options

With the exception of 3650 logical units,
operations for logical units supported by
TCAM use the same options as logical
units supported by VTAM.

The 2260 compatibility facilities for the
3270 cannot be used with TCAM.

BTAM PROGRAHMABLE TERMINALS

When BTAM is used by CICS/VS for
programmable binary synchronous
communication line management, CICS/VS
initializes the communication line with a
BTAM read initial (TI); the terminal
response must be a write initial (TI) or
the equivalent. If an application
program makes an input request, CICS/VS
issues a read continue (TT) to that line;
if the application program makes an
output request, CICS/VS issues a read
interrupt (RVI) to that line. If end of
transmission (EQT) is not received on the
RVI, CICS/VS issues a read continue(TT)
until the EOT is received. When TCAM is
used, all of this line control is handled
by the MCP rather than by CICS/VS.

The programmable terminal response to a
read interrupt must be "end of

transmission" (EO0T). The EOT response
may, however, be preceded by writes, in
order to exhaust the contents of ocutput
buffers; this is provided the input
buffer size is not exceeded by this data.
The input buffer size is specified by the
system programmer during preparation of
the terminal control table. CICS/VS
issues a read continue until it receives
an EOT, or until the input message
exceeds the size of the input buffer (an
error condition).

After receiving an EOT, CICS/VS issues a
write initial (TI) or the equivalent
(depending on the tvpe of line). The
programmable terminal response must be a
read initial (TI) or the equivalent.

If the application program makes another
output request, CICS/VYS issues a write
continue (TT) to that line. If the
application program makes an input
request after it has made an output
request, CICS/VS turns the line around
with a write reset (TR). (CICS/VS does
not recognize a read interrupt.)

To ensure that binary synchronous
terminals (for example, System/370,
1130, 2780) remain coordinated, CICS/VS
processes the data collection or data
transmission transaction on any line to
completion, before polling other
terminals on that line.

The programmable terminal actions
required for the above activity, with the
corresponding user application program
commands and CICS/VS actions, are
summarized in Figure 13.

Automatically initiated transactions
attached to a device will cause message
DFH2503 to be sent to the device which
must be prepared to action it.

Input data is deblocked to ETX, ETB, RS,
and US characters. These characters are
moved with the data but are not included
in the data length. Characters such as
NL, CR, LF, and EM are included as data
in a CICS/VS application program.

RECEIVE

Application Program CICSsVS! Programmable
Command Terminal Program
Read initial (TI) Write initial (TI)
RECEIVE . Read continue (TT) Write continue (TT)
SEND Read interrupt (RVI)? Write reset (TR) or

Read continue (TT)S3

Write initial (TI)
SEND Write continue (TT)
Write reset (TR)*
Read initial (TI)

Write continue
Write reset

Read initial (TI)
Read continue (TT)
Read continue (TT)
Write initial (TI)

1 CICS/VS issues the macro shown, or,

of the BTAM operation shoun.

the read interrupt.

if the line is switched, the equivalent.
The user—-uritten programmable terminal program must issue the equivalent

2 An RVI sequence is indicated by the DECFLAGS field of the data event control
block (DECB) being set to X'02' and a completion code of X'7F' being
returned to the event control block (ECB).

* The read continue is issued only if the EOT character is not received on the

Write reset is issued only for point—to—point terminals.

Figure 13. BTAM Programmable Terminal Programming

Chapter 3.2. Terminal Control 923

JELETYPEKURITER PROGRAMMING

The teletypewriter (World Trade only)
uses two different control characters for
print formatting, as follows:

< carriage return, (X'22' in ITA2
code or X'15'" in EBCDIC)

= line feed, (X'28' in ITA2 code
or X'25' in EBCDIC)

The character < should always be used
first; that is <= or <z==, but never =X,
otherwise following characters (data)
may be printed while the typebar is
moving to the left.

MESSAGE FORMAT

Message Begih: To start a message on a
new line at the left margin, the message
text must begin with X'1517" (EBCDIC).
CICS/VS recognizes the X'17' and changes
it to X'25"' (X'17' is an IDLE character).

Message Body: To write several lines with
a single transmission, the lines must be
separated by X'1525', or if multiple
blank lines are required, by
X'152525...25".

Message End Before Next Input: To allow
input of the next message on a line at
the left margin, the preceding message
must end with X'1517'. CICS/VS
recognizes X'15' and changes the
character following it to X'25'.

Hessage End Before Next Qutput: In the
case of two or more successive output
messages, the message begin and the
message end look the same; that is
X'1517"', except for the last message (see
above). To make the message end of the
preceding message distinguishable from
the message begin of the next message,
the penultimate character of the message
end must not be X'15"'.

MESSAGE LENGTH

It is recommended that messages for
teletypewriter terminals do not exceed a
length of about 3000 bytes or
approximately 300 words.

CONNECTION THROUGH VTAM

Both the THX Model 33/35 Common Carrier
Teletypewriter Exchange and the WTTY
Teletypewriter (World Trade only) can be
connected to CICS/VS through BTAM, or
through VTAM using NTO.

If a device is connected through VTAM
using NT70, the protocols used are the
same as for the 3767 logical unit, and
the application program can make use of
these protocols (for example, HANDLE

94 CICS/7VS APRM (CL)

CONDITION SIGNAL). However, the data
stream is not translated to a 3767 data

stream but remains as that for a
TWX/Z7WTTY.

DISPLAY DEVICE OPERATIONS

Besides the standard terminal control
commands for sending and receiving data,
several additional commands and lists are
provided for use with display devices
such as the 3270, as follous:

. Print displayed information (ISSUE
PRINT). :

. Copy displaved information (ISSUE
COPY).

. Erase all unprotected fields (ISSUE
ERASEAUP) .

U Input operation without Data
(RECEIVE).

. Standard Attention Identifier List
(DFHAID).

. Handling Attention Identifiers
(HANDLE AID).

. Standard Attribute and Printer
Control Character List (DFHBMSCA).

For devices with switchable screen sizes,
the size of the screen that can be used,
and the size to be used for a given
transaction, are defined by CICS/VS table
generation. These values can be obtained
by means of the ASSIGN command, described
in "Chapter 1.6. Access to System
Information" on page 29.

The ERASE option should always be
included in the first SEND command to
clear the screen and format it according
to the transmitted data. This first SEND
with ERASE will select also the screen
size to be used, as specified in the PCT
and TCT. If ERASE is omitted, the
screensize will be the same as its
previous setting, which may be incorrect.

Use of the CLEAR key outside of a
transaction will set the screen to its
default size.

PRINT DISPLAYED INFORMATION (ISSUE
PRINT)

If the 3270 print request facility is
included in the terminal control program
at CICS/VS system generation, the ISSUE
PRINT command will cause the displayed
data to be printed on the first
available, print-request-eligible
printer. For a BTAM-supported 3270, this
is a printer on the same control unit.
For a 3270 logical unit or a 3650
host-conversational (3270) logical unit,
it is a printer predesignated by the

system programmer using the PRINTTO or
ALTPRT oparands of the DFHTCT
TYPE=TERMINAL macro. For a 3270-display
logical unit with the PTRADAPT feature
(LUTYFE2 specified in the TRMTYPE=
operand and PTRADAPT specified in the
FEATURE=operand of the DFHTCT
TYPE=TERMINAL system macro) used with a
3274 or 3276, it is a printer allocated
by the printer authorization matrix.
(See the IBM 3270 Information Display
System Component Description for details
of this matrix.) For a 3790
(3270-display) logical unit, it is a
printer allocated by the 3790.

For a printer to be available it must be
intservice and not currently attached to
a task.

For a BTAM printer to be eligible, it
must be attached to the same control unit
as the display, must have a buffer
capacity equal to or greater than that of
the display, and must have FEATURE=PRINT
specified in the associated DFHTCT
TYPE=TERMINAL system macro.

For a 3270 logical unit to be eligible,
it must have been specified by the system
programmer, using the PRINTTO or ALTPRT
operands, and it must have the correct
buffer capacity; FEATURE=PRINT is not
necessary. If COPY is specified with the
ALTPRT or PRINTT0 operands, the printer
must be on the same control unit.

For some 3270 displays, it is possible
also to print the displaved information
without using CICS/VS. For further
details see under "printer authorization
matrix"™ in the IBM 3270 Information
Display System Component Description.

COPY DISPLAYED INFORMATION (ISSUE COPY)

The ISSUE COPY command is used to copy
the format and data contained in the
buffer of a specified terminal into the
buffer of the terminal that started the
transaction. This command cannot be used
for an LUTYPE2. Both terminals must be
attached to the same remote control unit.
The terminal whose buffer is to be copied
is identified in the TERMID option. If
the terminal identifier is invalid, that
is, it does not exist in the TCT, the
TERMIDERR condition will occur. The copy
function to be performed is defined by
the Copy Control Character (CCC)
specified in the CTLCHAR option of the
ISSUE COPY command.

The WAIT option of the ISSUE COPY command
ensures that the operation -has been
completed before control is returned to
the application program.

ERASE ALL UNPROTECTED FIELDS (ISSUE
ERASEAUP)

The ISSUE ERASEAUP command is used to
erase all unprotected fields of a 3270
buffer. The following actions are
performed:

1. All unprotected fields are cleared to
nulls (X'00').

2. The modified data tags (MDTs) in each
unprotected field are reset to zero.

3. The cursor is positioned to the first
unprotected field.

4. The keyboard is restored.

The WAIT option of the ISSUE ERASEAUP
command ensures that the operation has
baen completed before control is returned
to the application program.

INPUT OPERATION WITHOUT DATA (RECEIVE)

The RECEIVE command with no options
causes input to take place and the EIB to
be updated. However, data received by
CICS/VS is not passed on to the
application program and is lost. A wait
will be implied. Two of the fields in
the EIB that are updated are described
below:

cursor Position (EIBCPOSN) - For every
terminal control (or BMS) input operation
associated with a display device, the
screen cursor address (position) is
placed in the EIBCPOSN field in the EIB.
The cursor address is in the form of a
halfword binary value and remains until
updated by a new input operation.

Attention Identifier (EIBAID) - For every
terminal control (or BMS) input operation
associated with a display device, an
attention identifier (AID) is placed in
field EIBAID in the EIB. The AID
indicates which method the terminal
operator has used to initiate the
transfer of information from the device
to CICS/VS; for example, the ENTER key, a
program function key, the light pen, and
50 on. The field contents remain
unaltered until updated by a new input
operation.

Field EIBAID can be tested after each
terminal control (or BMS) input operation
to determine further processing and a
standard attention identifier list
(DFHAID) is provided for this purpose.
Alternatively, the HANDLE AID command can
be used to pass control to specified
labels when the AIDs are received. The
standard attention identifier list and
the HANDLE AID command are described in
the next two sections.

Chapter 3.2. Terminal Control 95

STANDARD ATTENTION IDENTIFIER LIST
(DFHAID)

The standard attention identifier list
DFHAID simplifies testing the contents of
the EIBAID field. The following list is
obtained by copying DFHAID into the
application program and shows the
symbolic names for the attention
identifiers (AIDS) and the corresponding
3270 functions.

For COBOL users, the list consists of a
set of 01 statements that must be copied
into the working-storage section. For
PL/I users, the list consists of DECLARE
statements defining elementary character
variables.

Name 3270 Function

DFHCLEAR CLEAR key

DFHENTER ENTER key)
DFHOPID Oprerator identification

card reader or MSR

DFHMSRE Extended (standard) MSR
DFHTRIG Trigger field

DFHPAL PAl key

DFHPA2 PA2 key

DFHPA3 PA3 key

DFHPEN Light pen attention
DFHPF1 PFl key

DFHPF2 PF2 key

DFHPF24 PF24 key

Egg?LING ATTENTION IDENTIFIERS (HANDLE

HANDLE AID optionl(label)l
[optionl(label)ll...

This command is used to specify the label
to which control is to be passed when an
AID is received from a display device.
Control is passed after the input command
is completed; that is, any data received
in addition to the AID has been passed to
the application program . In the absence
of a HANDLE AID command, control returns
to the application program at the point
immediately following the input command.

No more than twelve options are allowed
in the same command.

A HANDLE AID command wmill take precedence
over a HANDLE CONDITION command (see
"Chapter 1.4. Programming Techniques and
Restrictions" on page 17); if an AID is
received during an input operation, for
which a HANDLE AID command is active,
control will pass to the label specified
in that command, regardless of any
conditions that may have occurred (but
which did not stop receipt of the AID).

96 CICS/VS APRM (CL)

The options that can be specified are:

. Program attention key names (PAl,
PA2, or PA3)

Program function key names (PF1
through PF24)

. CLEAR or ENTER (for the keys of the
same names)

. LIGHTPEN (for a light pen attention)

. OPERID (for the operator
identification card reader, the
magnetic slot reader (MSR), or the
extended MSR)

. ANYKEY (any PA key, any PF key, or
the CLEAR key, but not the ENTER key)

The HANDLE AID command for a given AID
applies only to the task in which it is
specified, remaining active until the
task is terminated, or until another
HANDLE AID command for the same AID is
encountered, in which case the new
command overrides the previous one.

When control returns to a program from a
program at a lower logical level, the
HANDLE AID commands that were active in
the higher-level program before control
was transferred from it are reactivated,
and those in the lower—level program are
deactivated. (Refer to "Chapter 4.4.
Frogram Control" on page 189 for
information about logical levels.)

If no HANDLE AID command is active for
anyv PA key, any PF key, or the CLEAR key,
but one is active for ANYKEY, control
will be passed to the label specified for
ANYKEY. A HANDLE ‘AID command for an AID
overrides the HANDLE AID ANYKEY command
for that AID.

The following example shows a HANDLE AID
command that specifies one label for the
FAl key AID, a second label for the PA2
and PA3 key AIDs, all of the PF key AlIDs
except PF10, and the CLEAR key AID. If a
FF10 AID is received, control returns to
the application program at the
instruction immediately following the
input command.

EXEC CICS HANDLE AID
PAL1(LABL)
ANYKEY(LAB2)
PF10

If a task is initiated from a terminal by
means of an AID, the first RECEIVE
command in the task will not read from
the terminal but will copy only the input
buffer (even if the length of the data is
zero) so that control may be passed by
?egns of a HANDLE AID command for that
ID.

A BMS RECEIVE MAP command with the FROM
option will not cause a HANDLE AID

command to be invoked because no tarminal
input is involved.

STANDARD ATTRIBUTE AND PRINTER CONTROL
CHARACTER LIST (DFHBMSCA)

The standard list DFHBMSCA simplifies the
provision of field attributes and printer
control characters. The list is obtained
by copying DFHBMSCA into the application
program. The symbholic names for the
various combinations of attributes and
control characters are given below.
Combinations other than shown must be
generated separately.

Name AttributesControl Character
DFHBMPEM Printer end-of-message
DFHBMPHL Printer new-line character
DFHBMASK Autoskip

DFHBMUNP Unprotected

DFHBMUNN Unprotected; numeric
DFHBMPRO Protected

DFHBMBRY High intensity

DFHBMDAR Dark; nonprint

DFHBMFSE MDT set to 1

DFHBMPRF Protected; MDT set to 1
DFHBMASF Autoskip; MDT set to 1
DFHBMASB Autoskip; high intensity
DFHSA? Set attribute order

DFHCOLOR! Color attribute code

DFHPS? PS attribute code

DFHHLT? Highlight attribute code
DFH3270' 3270 attribute code

DFHVAL?! Validation attribute code
DFHALL?} X'00'(Reset all attributes)
DFHERROR X'3F'(Error code)

DFHDFT X'FF'(Default for maps)

DFHDFCOL! Default color
DFHBLUE Blue
DFHRED Red
DFHPINK Pink

DFHGREEN Green

DFHTURQ Turquoise
DFHYELLO VYellow

DFHNEUTR Neutral

DFHBASE! Base PS

DFHDFHI! Default highlight
DFHBLINK Blink

DFHREVRS Reverse video
DFHUNDLN Underline
DFHMFIL?2 Mandatory fill
DFHMENT?2 Mandatory enter
DFHMFE?2 Mandatory fill and enter

! For text processing only. Use

for constructing embedded set
attribute orders in user text

2 Cannot be used in set attribute
orders

For assembler-language users, the list
consists of a set of EQU statements. For
COBOL users, the list consists of a set
of 01 statements that must be copied into
the working-storage section. For PL/I
users, the list consists of DECLARE
statements defining elementary character
variables.

The symbolic name DFHDFT must be used in
the application structure to override a
map attribute with the default. On the
other hand, to specify default values in
a set attribute (5A) sequence in text
build, the symbolic names DFHDFCOL,
DFHBASE, OR DFHDFHI should be used.

TANDARD CICS/VS TERMINAL SUPPORT (BTAM
R _TCAM)

olll)

RECEIVE {INTO(data—area)|SET(ptr—ref)}
LENGTH(data—area)

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—-value)
[DEST(name)]

[WAIT]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—-ref)]
[TOLENGTH(data—area)l
[DEST(name)]

Condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

These commands can be used by all
terminals supported by CICS/VS that are
not dealt with separately in the
following sections.

Chapter 3.2. Terminal Control 97

LUTYPEG LOGICAL UNIT

LUTYPE6 LOGICAL UNIT

RECEIVE {INTO(data—area)|SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGHNAL

SEND FROM(data—area)
LENGTH(data—value)

[WAIT]

[INVITEJLAST]
[CNOTCOMPL | DEFRESP]

[FMH]

Conditions: IGREQCD, SIGNAL

CONVERSE FROM(data—area)
FROMLENGTH(data-value)
[INTO(data—area) |SET(ptr-ref)]
[TOLENGTH(data—area)l

RECEIVE [SESSION(name)]
{INTO (data—area)|SET(ptr—ref)!}
LENGTH(data—area)

INBFMH,
SESSIONERR,

NOTALLOC,
SIGNAL

Conditions:
LENGERR,

SEND [SESSION(name)]
[WAIT]

[INVITE|LAST]
[ATTACHID(name)]
[FROM(name)]
[LENGTH(hame)]

[FMH]

[DEFRESP]

CBIDERR,
SIGNAL

Conditions: NOTALLOC,

SESSIONERR,

[DEFRESP] CONVERSE [SESSION(name)]l
[FMH) (ATTACHID(name)l
[FROM(name)]
Conditions: EOC, EODS, IGREQCD, [FROMLENGTH(name)]
INBFMH, LENGERR, SIGNAL [INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l]
[FMH])
FREE [SESSION(name}] [DEFRESP]
Conditions: INVREQ, NOTALLOC, Conditions: CBIDERR, INBFMH,
SESSIONERR LENGERR, NOTALLOC, SESSIONERR, SIGNAL
WAIT SIGNAL ALLOCATE {SYSID{(name)|SESSIONCname)}
LPROFILE(name)]
Condition: SIGNAL

ISSUE DISCONNECT

Condition: SIGNAL

98

CICS/VS APRM (CL)

Conditions: CBIDERR, INVREQ,
SESSBUSY, SESSIONERR, SYSBUSY,
SYSIDERR

BUILD ATTACH

[ATTACHID(name)]l

[PROCESS(name)] [RESOURCE(name)l]
[RPROCESS(name)] [RRESOURCE(name)]
[QUEUE(name)] [IUTYPE(name)]
[DATASTR(name)] [RECFM(name)l

EXTRACT ATTACH

[ATTACHID(name) |SES5510N(data—area)]
[PROCESS(data—area)]l
[RESOURCE(data—area)l
[RFROCESS(data—area)l
[RRESOURCE(data—area)]l
[QUEUE(data—area)l
[IUTYPE(data—area)l
[DATASTR(data—area)l
[RECFM(data—area)l

Conditions: CBIDERR,
NOTALLOC, SESSIONERR

INVREQ,

LUTYPES LOGICAL UNIT (continued)

EXTRACT TCT
NETNAME(name)
{sYSID{(data—area) |TERMID(data—area)}

Condition: IMNVREQ

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,

SESSIONERR

POINT [SESSION(name)]

Conditions: HOTALLOC, SESSIONERR

WAIT SIGHAL

WAIT TERMINAL [SESSION(name)]

Conditions: NOTALLOC, SESSIONERR,

SIGNAL

ISSUE DISCONNECT [SESSION(name)]

Conditions: NOTALLOC, SESSIONERR

ISSUE SIGNAL [SESSION(name)]
NOTALLOC

Conditions:

The ALLOCATE command is used to acquire
an alternate facility and to select
optionally a set of terminal control
processing options. If SYSID is
specifTied, CICS5/V5 will make available to
the application program one of the
sessions associated with the named
system. The name of this session can be
obtained from field EIBRSRCE in the EIB.
If SESSION is specified, CICS/VS will
make the named session available.

The BUILD ATTACH command is used to
specify a set of values to be placed in
the named attach header control block.
This control block contains values that
are to be sent in an LU6 attach FMH uhich
is constructed by CICS5/VS, and is sent
only when a SEND ATTACHID or CONVERSE
ATTACHID command is executed. The
specified values override existing
values in the control block; unspecified
values are set to default values.

The EXTRACT ATTACH command is used to
retrieve a set of values held in an
attach header control block or that have
been built previously. This control
block contains values received in an
attach FMH or that have been built
previously.

The EXTRACT TCT command is used to allow
the eight-character VTAM networlk name for
a terminal or logical unit to be
converted into a corresponding
four~-character name by which it is knouwn
in the local CIC5/VS system.

The FREE command is used to return a
facility to CICS5/VS when a transaction
owning it no longer requires it. The
facility can then be allocated for use by
other transactions. A facility can be
freed only when it is in free mode
(EIBFREE set to X'FF').

The POINT command is used to obtain
information about a named facility, such
as whether it owns the given facility.

SESSION STATUS INFORMATION

This information consists of several
fields that contain application-oriented
and session-oriented information when an
LU6 session is in progress. These fields
are located in the EIB.

Session status information is set to
zeros at the start of execution of every
command and is updated whenever a RECEIVE
or CONVERSE command naming an LU6 session
is executed. If the information is to be
retained across the execution of several
commands, the user must take steps to
preserve it.

APPLICATION-ORIENTED INFORMATION

The application-oriented information
determines the action taken by function
processing logic. The information
consists of, for example, indicators
(such as end-of-chain), an attach header,
and user data.

The user data is moved to an area
specified in the application program;
alternatively the address of the user
data is passed to the application
program.

The indicators, together with an attach
header indicator, are passed to the
application program in the EIB. The
EXTRACT ATTACH command (described
earlier in the chapter) can be used to
process the attach header data if such
data exists.

The following application-oriented
fields, each one byte in length, appear
in the EIB: EIBATT, EIBEOC, and EIBFMH.

SESSION-ORIENTED INFORMATION

The session-oriented information
determines the action taken by
session—~handling logic, for example,
syncpoint requested. This information is
available to the application program in

Chapter 3.2. Terminal Control 99

fields EIBSYNC, EIBFREE, and EIBRECY in SYSTEM/7
the EIBR, and should be processed in that
order, before further operaticns, such as
SEND, RECEIVE, CONVERSE, or FREE, are
performed on the session. RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)
SYSTEM/3 [PSEUDOBINI]?
[ASIS]

Condition: LENGERR

RECEIVE {INTO(data—area)l|
SET(ptr—ref)}

LENGTH(data—area) SEND FROM(data—area)
[ASIS] LENGTH(data-value)

[DEST(name)]
Condition: LENGERR [WAIT]

[PSEUDOBIN]?

[ASIS]

SEND FROM(data—area)
LENGTH(data—-value)

[DEST(name)]

[WAIT] CONVERSE FROM(data—area)

[ASIS) FROMLENGTH(data—value)

[CNOTCOMPL] [INTO(data—area) |SET(ptr—reaf)]
[TOLENGTH(data—area)l
[DEST(name)]l

CONVERSE FROM(data—area) Condition: LENGERR

FROMLENGTH(data~value)

[INTO(data—area) |SET(ptr—ref)]

[TOLENGTH(data—area)l ISSUE RESET

[DEST(name)l ISSUE DISCONNECT

Condition: LENGERR

Start—stop only

SYSTEM/370 Transactions are normally initiated from
the Systems/7 by issuing a four-character

Support and command syntax as for transaction code which is transmitted in

System/3. BCD mode. Pseudobinary mode can be used

only while communicating with an active
CICS/VS transaction; it cannot be used to
initiate the transaction. The message
length is given as the number of words to
be transmitted (not as the number of
characters).

When a transaction is initiated on a
Systems/7, CICS5/VS services that System/7
only for the duration of the transaction;
that is, to ensure efficient use of the
line, any other System/7s on the same
line are locked out for the duration of
the transaction. CICS5/VS application
programs for the multipoint System/7
should be designed with the shortest
prossible execution time.

The first word (two characters) of every
message received by the System/7 must be
an identification word, except words
beginning with "a" (X'20') which are
reserved by CICS/VS.

When the PSEUDOBIN option is specified,
the length of the data-area provided by
the application program must be at least
twice that of the data to be read.

In the case of a System/7 on a dial-up
(switched) line, the Systems/7

100 CICS/VS APRM (CL)

application program must, initially,
transmit a four-character terminal
identification. (This terminal
identification is generated during
preparation of the TCT through use of the
DFHTCT TYPE=TERMINAL, TRMIDNT=parameter
specification.) CICS5/VS responds with
either a "ready" message, indicating that
the terminal identification is valid and
that the System/7 may proceed as if it
were on a leased line, or an INVALID
TERMINAL IDENTIFICATION message,
indicating that the terminal
identification sent by the System/7 did
not match the TRMIDNT=parameter
specified. :

Whenever CICS/VS initiates the
connection to a dial~up Svstem/7, CICS/VS
writes a null message, consisting of
three idle characters, prior to starting
the transaction. If there is no program
resident in the System/7 capable of
supporting the Asynchronous
Communication Control Adapter (ACCA),
BTAM error routines cause a data check
message to be recorded on the CICS/VS
(host) system console.- This is normal if
the task initiated by CIC5/VS is to IPL
the System/7. Although the data check
message is printed, CICS/VS ignores the
error and continues normal processing.

If a program capable of supporting the
ACCA is resident in the System/7 at the
time this message is transmitted, no data
check occurs.

When a disconnect is issued to a dial-up
System/7, the "busy' bit is sometimes
left on in the interrupt status word of
the ACCA. If the line connection is
reestablished by dialing from the
System/7 end, the 'busy' condition of the
ACCA prevents message transmission from
the System/7. To overcome this problem,
the System/7 program must reset the ACCA
after each disconnect and before message
transmission is attempted. This can be
done by issuing the following
instruction:
PWRI 0,8,3,0 RESET ACCA
This procedure is not necessary when the
line is reconnected by CICS/VS (that is,
by an automatically initiated
transaction).

2260 DISPLAY STATION

RECEIVE {INTO(data—area)]
SET(ptr—-ref)}
LENGTH(data—area)
[LEAVEKB]

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[CTLCHAR(data—value)l
[DEST(name)]
[LINEADDR(data—value)]
[WAIT]

[LEAVEKB]

CONVERSE FROM(data—area)
FROMLENGTH(data-value)
[INTO(data—~area) |SET(ptr-ref)]
[TOLENGTH(data—area)l
[CTLCHAR(data—value)]
[DEST(name)]
[LINEADDR(data—value)]

Condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

The LINEADDR option specifies on which
line of a 2260 screen writing is to
begin. A line number in the range 1
through 12 must be provided in the
application program.

2265 DISPLAY STATION

Support and command syntax as for the
2260 Display Station except that a line
number in the range 1 through 15 must be
provided in the application program.

Chapter 3.2. Terminal Control 101

2741 COMMUNICATION TERMINAL

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

Conditions: LENGERR, RDATT(not TCAM)

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT)

Condition: WRBRK

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEST(name)l

Conditions: LENGERR, RDATT (not
TCAM), WRBRK

ISSUE RESET
ISSUE DISCONNECT

READ ATTENTION

If the terminal operator presses the
Attention key on the 2741 after typing a
message, it is recognized as a Read
Attention if:

. Read Attention support is generated
into the system (CICS5/05/VS or
CICS/DOS/VS).

. The message is read by a RECEIVE
command.

When this occurs, control is transferred
to @ CICS/VS read attention exit routine,
if it has been generated into the system.
This routine is a skeleton program that
can be tailored by the system programmer
to carry out actions such as the
following:

. Perform data analysis or
modification on a Read Attention.

. Return a common response to the
terminal operator following a Read
Attention.

. Return a response and request
additional input that can be read
into the initial input area or into a
new area.

. Reaquest new 1I/0 without requiring a

return to the task to request
additional input.

102 CICS/VS APRM (CL)

When the Read Attention exit routine is
completed, controel is returned to the
application program at the address
specified in the HANDLE CONDITION RDATT
command. The return is made whenever one
of the following occurs:

. The exit routine issues no more
requests for input.

. The exit routine issues a RECEIVE
request and the operator terminates
the input with a carriage return.

(If the operator terminates the input
with an Attention, the exit routine
is reentered and is free to issue
another RECEIVE request).

If a HANDLE CONDITION RDATT command is
not included in the application program
or Read Attention support has not been
generated, the attention is treated as if
the return key had been pressed.

WRITE BREAK (CICS/0S/VS ONLY)

If the terminal operator presses the
Attention key on the 2741 while a message
is being received, it is recognized as a
Write Break if:

U Write Break support is generated into
the system (available only in
CICS/0S/VS) by the system
programmer.

. A HANDLE CONDITION WRBRK command is
active in the application program.

When this occurs, the remaining portion
of the message is not sent to the
terminal. The write is terminated as
though it were successful, and a new-line
character (X'15') is sent to cause a
carrier return. Control is returned to
the application program at the address
specified for the WRBRK condition.

If a HANDLE CONDITION WRBRK command is
not included in the application program
or if Write Break support has not been
generated, the attention is treated as an
170 error.

2770 DATA COMMUNICATION SYSTEM

Support and command syntax as for
System/3. The 2770 recognizes a read
interrupt and responds by transmitting
the contents of the I/0 buffer. After the
contents of the buffer have baen
transmitted, the 2770 responds to the
next read continue with an EOT. If the
I70 buffer is empty, the 2770 transmits
an EOT. CICS/VS issues a read interrupt
and read continue to relinquish use of
the line and to enable the application
program to write to the 2770.

Input from a 2770 consists of one or more
logical records. CICS/VS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the I70 buffer. If the input spans
multiple buffers, multiple reads must be
issued by the application program.

The 2265 component of the 2770 Data
Communication System is controlled by
data stream characters, not BTAM macro
instructions; appropriate screen control
characters should be included in the
output area.

For 2770 input, data is deblocked to ETX,
ETB, RS, and US characters. These
characters are moved with the data to the
input area but are not included in the

data length; characters such as NL, CR,

Sng LF are passed in the input area as
ata.

2780 DATA TRANSMISSION TERMINAL

Support and command syntax as for
System/3. The 2780 recognizes a read
interrupt and responds by transmitting
the contents of the I/70 buffer. After the
contents of the buffer have been
transmitted, the 2780 responds to the
next read continue with an EOT. If the
I/0 buffer is empty, the 2780 transmits
an EOT. CICS/VS issues a read interrupt
and read continue to relinquish use of
the line and to enable the application
program to write to the 2780.

Input from a 2780 consists of one or more
logical records. CICS/VS provides one
logical record for each read request to
the application program. The size of a
logical record cannot exceed the size of
the 170 buffer. If the input spans
multiple buffers, multiple reads must be
issuad by the application program.

Qutput to a 2780 requires that the
application program contains an
appropriate "escape sequence" for
component selection associated with the
output message. (For programming
details, see the publication Component
Description: IBM 2780 Data Transmission
Terminal.)

For 2780 input, data is deblocked to ETX,
ETB, RS, and US characters. These
characters are moved with the data to the
input area but are not included in the
data length; characters such as NL, CR,

gng LF are passed in the input area as
ata.

2980 GENERAL BANKING TERMINAL SYSTEM

RECEIVE {INTO(data—area)]
SET(ptr—ref)}
LENGTH(data—area)

PASSBK

Conditions: LENGERR, NOPASSBKRD

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]
{PASSBK|CBUFF}

Condition: HNOPASSBKWR

PASSBOOK CONTROL

All input and output requests to the
passbook area of a 2980 are dependent on
the presence of a passbook. The PASSBK
option is used to specify the passbook
area. The conditions NOPASSBKRD and
NOPASSBKWR will occur on input and output
requests respectively when a passbook is
not present. These conditions can be
handled by a HANDLE CONDITION command and
appropriate handling routines.

If the passbhook is present on an input
request, the application program
generally writes back to the passbook
area to update the passbook. If the
NOPASSBKWR condition occurs, CICS/VS
allows immediate output to the terminal.
In a routine for the NOPASSBKWR
condition, the application program
should send an error message to the
journal area of the terminal to inform
the 2980 operator of this error
condition. To allow the operator to
insert the required passbook, CICS5/VS
automatically causes the transaction to
wait 23.5 seconds before continuing.

On regaining control from CICS/VS after
sending the error message, the
application program can attempt again to
update the passbook when it has ensured
that the print element is positioned
correctly in the passhook area. This is
generally accomplished by issuing two
carrier returns followed by the number of
tabs required to move the print element
to the correct position. (See "The
DFH2980 Structure™ later in this
section).

If the NOPASSBKWR condition occurs during
the second attempt to write to the
passbook area, the application program
can send another error message or take
some alternative action (for example,
place the terminal "out of service").

The presence of the Auditor Key on a 2980
Administrative Station Model 2 is
controlled by the SEND PASSBK command and

Chapter 3.2. Terminal Control 103

may be used in a manner similar to that
described above.

QUTPUT CONTROL

The unit of transmission for a 2980 is
called a segment. A segment is
equivalent to the buffer size of the 2972
Control Unit. However, for the passbook
and journal areas, CICS5/VS allows an
application program to send messages that
exceed the buffar size. For the passbook
area, the maximum length of message is
limited to one line of a passbook to
avoid spacing (indexing) past the bottom
of the passbook. For the journal area,
the maximum length of message is
specified in the LENGTH option of the
SEND command.

For example, consider a 2972 buffer size
of 48 characters and a 2980 Teller
Station Model 4 passbook print area of
100 characters/line. The application
program can send a message of 100
characters to this area; CICS/VS
automatically seoments the message to
adjust to the buffer size. The
application program must insert the
passbook indexing character (X'25') as
the last character written in one output
request to the passbook area. This is
done to control passbook indexing and
thereby achieve positive control of
passbook presence.

If a message contains embedded passbook
index characters, and segmentation is
necessary because of the length of the
message, the output is terminated if the
passbook spaces beyond the bottom of the
passbook; the remaining segments are not
printed.

QUTPUT TO A COMMON BUFFER

The SEND CBUFF command is used to
transmit data to a common buffer. The
data 1s translated to the character set
of the receiving 2980 model. If more
than one 2980 model type is connected to
the 2972 Control Unit, the lengths are
automatically truncated if they exceed
the buffer size.

THE DFH2980 STRUCTURE

The DFH2980 structure contains constants
that may be used when writing only COBOL
or PL/I application programs for the
2980. The structure is obtained by
copying DFH2980 into the application
program.

For COBOL, DFH2980 is copied into the
Working Storage section; for PL/I,

104 CICS/VS APRM (CL)

DFH2980 is included using a XINCLUDE
statement.

The station identification is given in
the field STATIONID, whose value must be
determined by the ASSIGN command. To
test whether a normal or alternate
station is being used, the STATIONID
field is compared with values predefined
in DFH2980. The values are:

STATION-#-A or STATION-#-N
STATION_#_A or STATION_#_N

(COBOL)
(PL/1)

where # is an integer (0 through 9) and A
and N signify alternate and normal
stations. (The break symbol is "-"
(minus) for COBOL, and "_" (underline)
for PL/I1.)

The teller identification on a 298¢0
Teller Station Model 4 is given in the
one-byte character field TELLERID. An
ASSIGN command must be used to determine
the TELLERID value.

Tab characters (X'05') must be included
in the application program. The number
of tabs required to position the print
element to the first position of a
passbook area is given in the field
NUMTAB. An ASSIGN command must be used
to determine the NUMTAB value. The value
of NUMTAB is specified by the system
programmer and may be unique to each
terminal.

Other tab characters are inserted as
needed to control formatting.

Any of the DFH2980 values TAB-ZERO
through TAB-NINE for COBOL and PL/I, may
be compared with NUMTAB to determine the
number of tab characters that need to be
inserted in an output message to obtain
correct positioning of the print element.
The tab character is included in DFH2980
as TABCHAR.

Thirty special characters are defined in
DFH2980. Twenty-three of these can be
referred to by the name SPECCHAR-# or
SPECCHAR_# (for ANS COBOL or PL/I) where
is an integer (0 through 22). The
seven other characters are defined with
names that imply their usage, for
example, TABCHAR. For further
information on these thirty characters,
see "Appendix B. Translation Tables for
the 2980" on page 243.

Several other characters defined in
DFH2980, such as HOLDPCF or TCTTEPCR, are
intended for use in application programs
using CICS/VS macro-instructions and
should not be required in application
programs using CICS/VS commands.

3270 INFORMATION DISPLAY SYSTEM (BTAM OR

JCAN)

RECEIVE {INTO(data—area)]
SET(ptr—ref)}
LENGTH(data—area)

[ASIS]

[BUFFER] (not TCAM)

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]
[STRFIELD|L[LERASE]
[CTLCHAR(data—value)]1l]

(TCAM only)

CONVERSE FROM(data-area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[STRFIELD|LL[ERASE]
[CTLCHAR(data~value)ll]

Condition: LENGERR

ISSUE PRINT!

3270 IN 2260 COMPATIBILITY MODE (BTAM)

RECEIVE {INTO(data—area)]|
SET(ptr—ref)}
LENGTH(data—area)
[LEAVEKB]

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[LINEADDR(data—value)]l]
[WAITI]

[ERASE]

[LEAVEKB]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[LINEADDR(data—value)l

[ERASE]

Condition: LENGERR

ISSUE DISCONNECT

On output, a SEND ERASE command will
clear the screen and set the cursor to
the upper left corner before writing
ISSUE COPY!TERMID(name) starts.

[CTLCHAR(data—value)l
[IWAIT]

Condition: TERMIDERR

ISSUE ERASEAUP [WAIT]

ISSUE RESET
ISSUE DISCONNECT

1 The ISSUE PRINT and ISSUE COPY
commands cannot be used with TCAM.

Chapter 3.2. Terminal Control 105

3270 LOGICAL UNITY

RECEIVE {INTO(data—area)]
SET(ptr—ref)}
LENGTH(data—area)

[ASIS]

[BUFFER]

Condition: - LENGERR

SEND FROM(data—area)
LENGTH(data-value)
[WAIT]

[INVITE]JLAST]
[STRFIELD|LLERASE]
[CTLCHAR(data—value)lll]
[DEFRESP}]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[STRFIELD|U[ERASE]

[CTLCHAR(data—value)1l
[TOLENGTH(data—area)l
[DEFRESP]

Condition: LENGERR

FREE [SESSION(name)]l

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE PRINT

ISSUE COPY TERMID(name}
[CTLCHAR(data—value)l
[WAIT]

Condition: TERMIDERR

ISSUE ERASEAUP [WAITI]

ISSUE DISCONNECT

106 CICS/VS APRM (CL)

3270 SCS PRINTER LOGICAL UNIT

SEND FROM(data—area)
LENGTH(data—value)
[DEST (nhame)]

[WAIT]

[LINVITEJLAST]
[CNOTCOMPL | DEFRESP]
[DEFRESP]

FREE [SESSION(name)]l

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE DISCONNECT

The S5CS printer logical unit accepts a
character string as dafined by SNA
(Systems Network Architecture). Some
devices connected under SNA can send a
signal which can be detected by the
HANDLE CONDITION SIGNAL command, which in
turn can invoke an appropriate handling
routine. If necessary, a WAIT SIGNAL
command can be used to make the
application program wait for the signal.
The PA keys on a 3287 can be used in this
way, or with a RECEIVE command.

3270-DISPLAY LOGICAL UNIT (LUTYPE2)

3270-PRINTER LOGICAL UNIT (LUTYPE3)

RECEIVE{INTO(data—area)]|
SET(ptr—ref)}

LENGTH(data—area)

[ASIS]

[BUFFER]

Condition: LENGERR

SEND FROM(data—area)

LENGTH(data—value)
[DEST(name)}

[WAIT] ‘
[STRFIELD][LERASE]
[CTLCHAR(data-value)l]]
[INVITE|LAST]

[DEFRESP]

CONVERSE FROM(data—area)
FROMLENGTH(data~value)
INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)]
[STRFIELD|L{ERASE]
[CTLCHAR(data-value) 1]
[DEST(name)]
[DEFRESP]

Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAITI

ISSUE DISCONNECT

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

[ASIS]

[BUFFER]

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]
[STRFIELD|[LERASE]
[CTLCHAR(data-value)ll]
[INVITE|LASTI]

[DEFRESP]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[STRFIELD]LLERASE]
[CTLCHAR(data—value)]l]
[DEST(name)]
[DEFRESP]

Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAITI]

ISSUE DISCONNECT

Chapter 3.2. Terminal Control

107

3600 FINANCE COMMUNICATION SYSTEM (BTAM)

RECEIVE {INTO(data—area)|
SET(ptr-ref)}
LENGTH(data—area)

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAITI]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEST(name)]

Condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

INPUT

The unit of transmission from a 3601
Finance Communication Controller to
CICS/VS is a segment consisting of the
start-of-text data link control
character (5TX), the one byte
identification of the 3600 logical work
station that issued the processor write,
the data, and either an end-of-block
(ETB) or an end-of-text (ETX) control
character.

A logical work station sends a message
either in one segment, in which case the
segment ends with ETX, or in more than
one segment, in which case only the last
segment ends with ETX, all others ending
with ETB.

The input area passed to the user-written
application program consists of the data
only. The one-byte field TCTTEDLM, which
may be obtained by means of an ASSIGN
DELIMITER command, contains flags
describing the data-link control
character (ETB, ETX, or IRS) that ended
the segment. The application program can
issue terminal control commands to read
the data until it receives a segment
ending with ETX. If blocked data is
transmitted, it is received by CICS/VS as
blocks of segments. Only the first
segment in a block starts with the $TX
control character, and all segments are
separated by IRS characters. HNone of the
segments contain ETB or ETX.characters
except the last, which has the ETX
character.

108 CICS/7VS APRM (CL)

For blocked input, the flags in TCTTEDLM
only indicate end of segment, not end of
message. The CICS/VS application program
still receives only the data, but
user~defined conventions may be required
to determine the end of the message.

The field TCTTEDLM also indicates the
mode of the input, either transparent or
non-transparent. Blocked input is
non-transparent,

The terminal control program does not
pass input containing a "start of header™
(S50H) data link control character to a
user-written application program. If it
receives an SOH it sets an indicator in
TCTTEDLM, passes the input to the user
exit in the terminal control program, and
then discards it.

OUTPUT

When an application program issues a SEND
command, the terminal control program
determines, from the value specified in
the BUFFER parameter of the DFHTCT
TYPE=TERMINAL system macro, the number of
segments to be built for the message. It
sencds the message to the 3600 logical
unit either in one segment consisting of
a start-of-text character (5TX), the
data, and an end-of-text character (ETX);
or in more than one segment, in which
case only the last ends with ETX, all
others ending with ETB.

The host input buffer of the 3600
controller and the input segment of the
receiving logical unit must be large
enough to accommodate the data sent by
CICS/VS. However, space for the data
link control characters need not be
included. The 3600 application program
reads the data from the host, by means of
an LREAD, until it has received the
entire message.

CICS/VS system output messages begin with
"DFH" followed by a four~byte message
number and the message text. These
messages are sent in non-transparent
mode. It is suggested that CICS/VS
user-written application programs do not
seng messages starting with "DFH" to the
3601.

RESEND MESSAGE

When a logical unit sends a message to
the host and a short-on-storage condition
exists or the input is unsolicited (the
activa task associated with the terminal
has not issuaed a read), the terminal
control program sends a "resend" message
to the logical unit. The format of this
message is DFH1033 RE-ENTER followed by
X'15" (a 3600 new line character)
followed by the first eight bytes of the
text of the message being rejected. No

message is sent to the destinations CSMT
or CSTL.

The first eight bytes of data sent to
CICS/VS can be used by the 3600
application program to define a
convention to associate responses
received from CICS5/VS with transactions
sent to the host, for example, sequence
numbers could be used.

If a CICS/VS user-written application
program has already issued a SEND command
when a resend situation occurs, the
resend message is not sent to the 3601
until the user-written application
program message has been sent. A 34600
logical unit cannot receive a resend
message while receiving a segmented
message.

Only one resend message at a time can be
queuad for a logical unit. If a second
resend situation occurs before CICS/VS
has written the first, a resend message,
containing the eight bytes of data that
accompanied the second input transaction
from the 3600 logical unit, is sent.

The resend message is sent in transparent
mode if the input data from the 3601 to
be re-transmitted is received by CICS/VS
in transparent mode. Otherwise it is
sant in non-transparent mode.

3600 PIPELINE LOGICAL UNIT

SEND FROM(data—area)
LENGTH(data—value)
[WAIT]

ISSUE DISCONNECT

3600 (3601) LOGICAL UNIT

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EQOC, EODS, INBFMH,
LENGERR, SIGNAL

SEND FROM(data—area)
LENGTH(data—value)
[LDC(name) | FMH]
[DEST(name)]

[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]

Condition: SIGNAL

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) | SET(ptr—ref)]
[TOLENGTH(data—area)l
[LDC(name) | FMH]

[DEST(name)]

[DEFRESP]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

FREE [SESSION(name)]l

Conditions:
INVREQ, NOTALLOC, SESSIONERR

WAIT SIGNAL

Condition: SIGNAL

ISSUE DISCONNECT
SIGNAL

Condition:

LOGICAL DEVICE CODE (LDC OPTION)

A logical device code (LDC) is a code
that can be included in an outbound FMH
to specify the disposition of the data
(for example, to which subsystem terminal
it should be sent). Each code can be
represented by a unique LDC mnemonic.
The installation can specify up to 256
two-character mnemonics for each TCTTE,
and two or more TCTTEs can share a list
of these mnemonics. Corresponding to
each LDC mnemonic for each TCTTE is a
numeric value (0 through 255). A 3600
davice and a logical page size are also
associated with each LDC. "LDC" or "LDC
value" is used in this publication in
reference to the code specified by the
user. "LDC mnemonic" refers to the

Chapter 3.2. Terminal Control 109

two-character symbol that represents the
LDC numeric value.

When the LDC option is specified in the
SEND command, the numeric value
associated with the mnemonic for the
particular TCTTE, is inserted in the FMH.
The numeric value associated with the LDC
mnemonic is chosen by the installation,
and is interpreted by the 3601
application program.

3600 (3614) LOGICAL UNIT

RECEIVE {INTO(data—area)]|
SET(ptr—ref)}
LENGTH(data—area)

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)l

[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)]l
[DEFRESP(name)]

[DEST(name)]

Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,

SESSIONERR

ISSUE DISCONNECT

The data stream and communication format
used between a CICS/VYS application
program and a 3614 is determined by the
3614. The application program is

110 CICS5/VS APRM (CL)

therefore device dependent when handling
3614 communications.

For further information about designing
3614 application programs for CICS/VS,
refer to the CICS/VS 3600 Guide.

3630 PLANT COMMUNICATION SYSTEM

Support and command syntax as for the
3600 (3601) logical unit and the 3600
pipeline logical unit as described
earlier in this chapter for the 3600
Finance Communication System.

38?3/3680 HOST COMMAND PROCESSOR LOGICAL

RECEIVE {INTO(data-area)l
SET(ptr-ref)}
LENGTH(data—area)

Conditions: EOC, LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]
[LFMH]

CONVERSE FROM(data-—area)
FROMLENGTH(data—value)
[INTO(data~area) |SET(ptr—ref)]
[TOLENGTH(data—area)l

[FMH]

[DEFRESP]

~Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,

SESSIONERR

ISSUE DISCONNECT

3650 HOST CONVERSATIONAL (3270) LOGICAL

UNIT

3650 HOST CONVERSATIONAL (3653) LOGICAL

UNIT

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, LENGERR

RECEIVE {INTO(data—area)]|
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[CTLCHAR(data~value)]l
[WAIT]

[ERASE]

[INVITE|LAST]
(CNOTCOMPL | DEFRESP1
[FMH]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[CTLCHAR(data-value)]l

[ERASE]

[DEFRESP]

[FMH]

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[WAIT]

[INVITE|LAST)
[CNOTCOMPL | DEFRESP]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEFRESP]

Conditions: EOC, LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

FREE [SESSION(name)l

Conditions: INVREQ, NOTALLOQC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAITI

ISSUE DISCONNECT

ISSUE DISCONNECT

Chapter 3.2. Terminal Control

111

3650 INTERPRETER LOGICAL UNITY

RECEIVE {INTO(data—area)]
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, EODS, INBFMH,
LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[WAIT]

[TINVITE|LAST]
[DEFRESP]

[FMH]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—~ref)l
[TOLENGTH(data—area)]l
[DEFRESP]

[FMH]

Conditions: EOC, EODS, INBFMH,
LENGERR

FREE [SESSION(name)]l]

Conditions: INVREQ, NOTALLOC,

SESSIONERR

ISSUE LOAD PROGRAM(name)
[CONVERSE]

Conditions: HNONVAL, NOSTART

ISSUE EODS

ISSUE DISCONNECT

The ISSUE LOAD command specifies the name
of the 3650 application program that is
to be loaded.

The ISSUE EODS command can be used to

send an end-of-data-set function
management header to the 3650.

112 CICS/VS AFRM (CL)

3650 PIPELINE LOGICAL UNIT

Support and command syntax as for the
3600 Pipeline Logical Unit.

365073680 FULL FUNCfION LOGfCAL UNITY

Support and command syntax as for the
3790 Full Function Logical Unit.

3660 SUPERMARKET SCANNING SYSTEM

Support and command syntax as for
System/3.

3735 _PROGRAMMABLE BUFFERED TERMINAL

RECEIVE {INTO(data—area)]
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOF (not TCAM), LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]

[ASIS]

CONVERSE FROM(data-area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEST(name)]

Conditions: EOF (not TCAM), LENGERR

ISSUE RESET
ISSUE DISCONNECT

The 3735 Programmable Buffered Terminal
may be serviced by CIC5/VS in response to
terminal-initiated input, or as a result
of an automatic or time-initiated
transaction. Both are explained below.

3735 TRANSACTIONS - AUTOANSHER

The 3735 transaction is attached by
CICS/VS upon receipt of input from a
3735. Data is passed to the application
program in 476-byte blocks; each block
(one buffer) may contain several logical
records. - The final block mayv be shorter
than 476 bytes; zero-length final blocks
are not, however, passed to the
application program. If the block
contains several logical records, the
application program must perform any
necessary deblocking and gathering of
partial logical records.

It is recommended that input data from a
3735 be spooled to an intermediate data
set (for example, an intrapartition
destination) to ensure that all data has
been captured before deblocking and
processing that data.

The application program must follow 3735
conventions and read to end-of-file
before attempting to write FDPs (form
description programs) or data to the
3735. For this reason, the application
program must include a HANDLE CONDITION
command for the EOF condition. When
control passes to the EOF routine, FDPs
or data may be written to the 3735, or,
optionally, CICS/VS requested to
disconnect the line.

The 3735 may transmit the EOF condition
immediataely upon connection of the line,
in which case, a HANDLE CONDITION command
for the EOF condition must be issued
before any other terminal control
commands.

The application program must format all
special message headers for output to the
3735 (for example, SELECTRIC,

POWERDOWN). If FDPs are to be
transmitted to a 3735 with ASCII
transmission code, the ASIS option must
be included in the SEND command for each
block of FDP records.

An ISSUE DISCONMECT command must be
issued when all output has been
transmitted to the 3735. If the
application program ends during batch
write mode before the ISSUE DISCONNECT
command is executed, CIC5/VS forces a
3735 "receive abort" condition and all
§?§§ just transmitted is ignored by the

3735 TRANSACTIONS - AUTOCALL AND
TIME-INITIATED

In automatic and time-initiated
transactions, all considerations stated
above apply when CICS/VS dials a 3735,
except that the EOF condition cannot
occur.

CICS5/VS connhects the line and allows the
first terminal control command to
indicate the direction of data transfer.
If this first command is a SEND and the
3735 has data to send, the 3735 causes
the line to be disconnected.

3740 DATA ENTRY SYSTEM

RECEIVE {INTO(data—area)|
SET{(ptr—-ref)}
LENGTH(data—area)

Conditions: EOF (except TCAM),
ENDINPT (except TCAM), LENGERR

. SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]
[ASIS]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data~area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEST(name)]

Condition: LENGERR

ISSUE ENDFILE [ENDOUTPUTI]

ISSUE ENDOUTPUT LENDFILE]

ISSUE RESET
ISSUE DISCONNECT

BATCH MODE APPLICATIONS

In batch mode, many files are exchanged
between the 3740 and CICS/VS in a single
transmission. The transmission of an
input batch must be complete before an
output transmission can be started.

On input, the EOF (end-of-file) condition
is raised by CICS5/VS when a null block
(indicating the end of a physical file)
is received from the 3740. A HANDLE
CONDITION EOF command should be included
to specify that processing of the file is
to continue. Eventually, the ENDINPUT
condition is raised by CIC5/VS when all
input has been received. No more RECEIVE
commands will be executed and a HANDLE
CONDITION ENDINPUT command should be
included to specify that control is to be
returned to CICS/VS so that the 3740 can
be set to receive data.

On output, the ISSUE ENDFILE and ISSUE
ENDOUTPUT commands are used to indicate
the end-of-file and end-of-output
conditions, respectively, to the 3740.
These two conditions may be specified in
one command if required, for example:
ISSUE ENDFILE ENDOUTPUT.

Chapter 3.2. Terminal Control 113

3767 INTERACTIVE LOGICAL UNIT

3770 BATCH LOGICAL UNIT

RECEIVE {INTO(data—area)]
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, LENGERR, SIGNAL

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)}

[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]

Condition: SIGNAL

CONVERSE FROM(data—area)
FROMLENGTH(data-value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DESTC(name)]

[DEFRESP]

Conditions: EOC, LENGERR, SIGNAL

FREE [SESSION(name)l

Conditions: INVREQ, NOTALLOC,
SESSIONERR

WAIT SIGHAL
Condition: SIGNAL

ISSUE DISCONNECT
Condition: SIGNAL

114 CICS/VS APRM (CL)

RECEIVE {INTO(data-area)|
SET(ptr—-ref)}
LENGTH(data—area)

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

SEND FROM(data—area)
LENGTH(data—-value)
[DEST(name)]

[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]
[LFMH]

Condition: SIGNAL

CONVERSE FROM(data—area)
FROMLENGTH(data-value)
LINTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEST(name)]

[DEFRESP1

[FMH]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

FREE [SESSION(name)]l

Conditions: INVREQ, NOTALLOC,
SESSIONERR

WAIT SIGNAL
Condition: SIGNAL

ISSUE DISCONNECT
Condition: SIGNAL

3770 INTERACTIVE LOGICAL UHIT

Support and command syntax as for 3767
Interactive Logical Unit.

3770 _FULL _FUNCTION LOGICAL UNIT

Support and command syntax as for 3790
Full Function Legical Unit.

3780 COMMUNICATIONS TERMINAL

Support and command syntax as for
System/3.

3790 FULL FUNCTION LOGICAL UNIT

3790 INQUIRY LOGICAL UNIT

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]

[INVITE|LAST]
{CNOTCOMPL | DEFRESP]
[FMH]

Condition: SIGNAL

CONVERSE FROM(data—area)
FROMLENGTH(data-value)
[{INTO(data-area) |SET(ptr—ref)l
[TOLENGTH(data—area)l

[DEST (name)]

[FMH]

[DEFRESP]

Conditions: EOC, EODS, INBFMH,
LENGERR, SIGNAL

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

WAIT SIGNAL
Condition: SIGNAL

ISSUE DISCONNECT
Condition: SIGNAL

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

Conditions: EOC, EODS, INBFMH,
LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]
[FMH]

CONVERSE FROM(data—area)
FROMLENGTH(data—-value)
[INTOCdata—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l
[DEST(name)]l

[FMH]

[DEFRESP]

Conditions: EOC, EODS, INBFMH,
"LENGERR

FREE [SESSION(name)l

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE DISCONNECT

3790 SCS _PRINTER LOGICAL UNIT

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]

[WAIT]

[INVITE|LAST]
[CNOTCOMPL | DEFRESP]
[DEFRESP]

FREE [SESSION(name)l

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE DISCONNECT

Chapter 3.2. Terminal Control

115

3790 (3270~-DISPLAY) LOGICAL UNIT

3790 (3270-PRINTER) LOGICAL UNIT

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

- [ASIS]

[BUFFER]

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—value)
[DEST(name)]
[CTLCHAR(data-value)]
[WAIT]

[ERASE]

[INVITE|JLAST]
[DEFRESP]

SEND FROM(data—area)
LENGTH(data—value)
[CTLCHAR(data—value)]
[WAIT]

[ERASE]

[INVITE|LAST]
[DEFRESP]

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC, -
SESSIONERR

ISSUE PRINT

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)]
[DEST(name)]

[DEFRESP]
[CTLCHAR(data—value)]

[ERASE]

Condition: LENGERR

FREE [SESSION(name)]

Conditions: INVREQ, NOTALLOC,
SESSIONERR

ISSUE PRINT

ISSUE ERASEAUP [WAIT]

ISSUE DISCONNECT

116 CICS/VS APRM (CL)

ISSUE ERASEAUP [WAITI]

ISSUE DISCONNECT

7770 AUDIO RESPONSE UNIT

RECEIVE {INTO(data—area)|
SET(ptr—ref)}
LENGTH(data—area)

Condition: LENGERR

SEND FROM(data—area)
LENGTH(data—~value)
[DEST(name)l

[WAIT]

CONVERSE FROM(data—area)
FROMLENGTH(data—value)
[INTO(data—area) |SET(ptr—ref)]
[TOLENGTH(data—area)l

Condition: LENGERR

ISSUE RESET
ISSUE DISCONNECT

GCICS/7YS cannot distinguish between
special codes (characters) entered at
audio terminals (for example, the 2721
Portable Audio Terminal); however, an
application program can make use of these
codes. The special codes that can be
entered from a 2721 are as follows:

Kay Code(hex)
CALL END 37

CNCL 18

3B or 7B
VERIFY 2D

RPT 3D

EXEC 26

Fl Bl

F2 B2

F3 B3

F4% B4

F5 B5

00 AQ

00 3B or BO
IDENT 11, 12, 13, or 14

plus two other characters

For further information concerning the
2721, see the publication IBM 2721
Portable Audio Terminal Component

Description.

The special codes A0 and 3B (or BO) are
also generated by the keys ¥ and #
respectively of a "Touch-Tone"”
telephone. (Touch-Tone is the trademark
of the American Telephone and Telegraph
Company.)

If the SET option has been specified in
the associated command, codes 26, 37, and
3B (each of which causes a hardwuare
interrupt) will immediately follow the
data, but will not be included in the
value set by the LENGTH option.

If the end-of-inquiry (EOI) Disable
Feature (Feature No. 3540) is installed
on the 7770 Model 3, the option of
including either or both # and 000 as
data is available.

If, after receiving at least one code
from a terminal, no other codes have been
received by the 7770 for a period of five
seconds, the 7770 generates an EOQOI
hardware interrupt that ends the
operation.

JERMINAL CONTROL OPTIONS
ASIS

For System/370, Systems7, 2770,
2780, and 3740: indicates that
output is to be sent in transparent
mode (with no recognition of control
characters and accepting any of the
256 possible combinations of eight
bits as valid transmittable data).

For System/7: indicates that the
data being written or read is not to
be translated.

For 3735: prevents translation of
the Form Description Program (FDP)
records that are to be transmitted
to a 3735 using ASCII code.

For 3270 and VTAM terminals:
specifies a temporary override of

the uppercase translation featurae
of CICS/VS to allow the current task
to receive a message containing both
uppercase and lowercase data.

This option has no effect on the
first RECEIVE command of a
transaction, as terminal control
will perform a read initial and use
the terminal defaults to translate
the data.

This option has no effect if the
screen contains data prior to a
transaction being initiated. This
data will be read and translated in
preparation for the next task and
the first RECEIVE command in that
task will retrieve the translated
data.

ATTACHID(name)
specifies, for a BUILD ATTACH
command, that the set of values
specified is to be placed in an
attach header control block
identified by the specified name
(maximum of eight characters).

specifies, for a SEND or CONVERSE
command, that an attach header
(created by a BUILD ATTACH command)
is to precede, and be concatenated
with, the user data supplied in the
FROM option. "Hame" (maximum of
eight characters) identifies the
attach header control block to be
used in the local task.

specifies, for an EXTRACT ATTACH
command, that values are to be
retrieved from an attach header
control block. "Name" (maximum of
eight characters) identifies this
control block to the local task. If
the option is omitted, the attach
header control block to be used is
that associated with the facility
named in the SESSION option.

BUFFER
specifies that the contents of the
3270 buffer are to be read,
beginning at buffer location one and
continuing until all contents of the
buffer have been read. All
character and attribute sequences
(including nulls) appear in the
input data stream in the same order
that they appear in the 3270 buffer.

CBUFF
specifies that data is to be written
to a common buffer in a 2972 Control
Unit. The WAIT option is implied.

CNOTCOMPL
indicates that the request/response
unit (RU) sent as a result of this
SEND command will not complete the
chain. If this option is omitted

Chapter 3.2. Terminal Control 117

and chain assembly has been
specified, the RU will terminate the
chain.

CONVERSE

specifies that the 3650 application
program will communicate with the
host CPU. If this option is not
specified, the 3650 application
program cannot communicate with the
host CPU.

CTLCHAR(data-value)

specifies a one-byte Write Control
Character (WCC) that controls a SEND
command, or the Copy Control
Character (CCC) that controls an
ISSUE COPY command, for a 3270. An
COBOL user must specify a data area
containing this character. If the
option is omitted from a SEND
command, all modified data tags are
reset to zero and the keyboard is
restored. If the option is omitted
from an ISSUE COPY command, the
contents of the entire buffer
(including nulls) are copied.

DATASTR{ (name)] (data-area)}

118

This corresponds to the data stream
ggﬁfile field, ATTDSP, in an attach

For communication between two
CICS/VS systems, no particular
significance is attached by CIC5/VS
to the data stream profile field in
an attach FMH. For most CICS/VS
applications, the option may be
omitted when a value of "user
defined” will be assumed.

For communication between a CICS5/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the data
gﬁ;eam profile field in an attach

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the data stream
gagfile field received in the attach

The value is halfword binary; only
the low-order byte is used. If this
option is omitted, "usaer defined" is
assumed. The bits in the binary
value are used as follows:

0-7
8-11

reserved - must be set to

. zero

user defined

SCS datastream

3270 datastream
structured field
logical record
management

ined by the user if bits
11 are set to 0000;

Pt ot ok s
OO
[I IR I A |

0
1
1
6
0
f

12-15

0
1
1
1
1
de
8_

CICS/VS APRM (CL)

otherwise reserved (must be
set to zero).

A value of "structured field"”
indicates that chains begin with
four bytes of data that are used to
interpret the following data; the
four byvtes consist of overall length
(2 bytes), class identifier (1
byte), and sub-class identifier (1
byte). A value of "logical record
managementindicates that chains
can be split into separate fields by
the data receiver.

These values may be used for
communication between a CICS5/VS
system and another subsystem; for
further details of structured
fields and logical record
management refer to the
documentation supplied by the
subsystem.

If:the option is omitted from the
BUILD ATTACH command, a value of
"usar defined" is assumed.

DEFRESP

indicates that a definite response
is required when the output
operation has been completed.

DEST (hame)

ERASE

FMH

speci fies the four-byte symbolic
name of the TCAM destination to
which the message is to be sent.
This option is meaningful only for
terminals for which DEVICE=TCAM has
been specified in the DFHTCT
TYPE=SDSCI system macro.

speci fies that the screen is to bhe
erased and the cursor returned to
the upper left corner of the screen
before writing occurs. Normally,
ERASE should be specified in the
first output command of a
transaction. This will clear the
screen ready for the new output
data. :)

However, when switching from one
screen size to another on a
transaction basis, it is important
to note that 1f ERASE is not
specified in the first output
command of the transaction, the
screen size will be unchanged from
its previous setting, that is, the
previous transaction setting, or
the default screen size if the CLEAR
key has been pressed.

specifies that a function
management header has been included
in the data that is to be written.
If the ATTACHID option is specified
as well, the concatenated FMH flag
will be set in the attach FMH .

FROM(data~area)
specifies the data that is to be
written to the terminal or logical
unit. This option may be omitted if
ATTACHID is specified.

FROMLENGTH(data-value) ,
See LENGTH(parameter). The
FROMLENGTH option of the CONVERSE
command is equivalent to the LENGTH
option of a SEND command.

INTO(data-area)
specifies the receiving field for
the data read from the terminal or
logical unit.

INVITE
specifies that the next terminal
control command to be executed for
this facility is a RECEIVE. This
allows optimal flows to occur.

IUTYPE{ (name) | (data-areall
This corresponds to the interchange
unit field, ATTIU, in an attach FMH.

For communication between two
CICS/VS systems, no particular
significance is attached by CICS/VS
to the interchange unit field in an
attach FMH. For most CICS/VS
applications, the option may be
omitted when a value of "multiple
chain" will be assumed.

For communication between a CICS5/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the
;aﬁerchange unit field in an attach

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the interchange unit
field received in the attach FMH.

The value is halfword binary; only
the low-order 7 bits being used.
The bits in the binary value are
used as follows:

0-10 reserved - must be set to zero
11 0 -~ not end of multichain
interchange unit
1 - end of multichain
interchange unit

12-13 reserved - must be set to zero
14-15 00 - multichain interchange
unit
01l - single chain interchange
unit
10 - reserved
11 - reserved

If the option is omitted from the
BUILD ATTACH command, values of "not
end of multichain interchange unit”
and "multiple chain™ are assumed.

LAST
specifies that this is the last
output operation for a transaction
and therefore the end of a bracket.

LDC(name)
specifies the two-character
mnemonic used to determine the
appropriate logical device code
(LDC) numeric value. The mnemonic
represents an LDC entry in the
DFHTCT TYPE=LDC macro instruction.

LEAVEKB
specifies that the keyboard is to
remain locked at the completion of
the data transfer. This option is
applicable only to CICS5/0S/VS but
may be used in a CICS/D0OS/VS
application program if
compatibility is required.

LENGTH(parametenr)
specifies the length (as a halfword
binary value) of the data
transmitted by RECEIVE and SEND
commands.

For a RECEIVE command with the INTO
option, the parameter must be a data
area that specifies the maximum
length that the program will accept.
If the value specified is less than
zero, zero is assumed. If the
length of the data exceeds the value
specified, the data is truncated to
that value and the LENGERR condition
occurs. When the data has bheen
received, the data area is set to
the original length of the data.

For a RECEIVE command with the SET
option, the parameter must be a data
area. When the data has been
received, the data area is set to
the length of the data.

For a SEND command, the parameter
must be a data value that is the
length of the data that is to be
written.

LINEADDR(data-value)
specifies that the writing is to
begin on a specific line of a
226072265 screen. The data value is
a halfword binary value in the range
1 through 12 for a 2260, or 1
through 15 for a 2265.

NETNAME (name)
specifies the eight-character name
of the logical unit in the VTAM
network.

PASSBK
specifies that communication is
with a passbook at a 2980. The WAIT
option is implied.

PROCESS{(name)|(data areall
This corresponds to the process
name, ATTDPN, in an attach FMH.

Chapter 3.2. Terminal Control 119

For communication between two
CICS/VS systems, a transaction
running in one system can acauire a
session to the second system and can
identify the transaction to be
attached in the second system; tha
identification is carried in the
first chain of data sent across the
session.

In general, the first four bytes of
data will identify the transaction
to be attached. However an attach
FMH, identifying the transaction to
be attached, may be built and sent;
the PROCESS option on the BUILD
ATTACH command is used to specify
the transaction name. (Note that
the receiving CICS/VS system will
use just the first four bytes of the
process name as a transaction name).

No significance is attached by
CICS/VS to process names in attach
FMHs sent in chains of data other
than the first.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
sybsystem on how to use the process
name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the process name
received in the attach FMH.

PROFILE(name)

specifies the name (maximum of eight
characters) of a set of terminal
control processing options, held in
the PCT, that are to be used during
execution of terminal control
commands for the session specified
in the SYSID or SESSION options. If
this option is omitted, a set of
processing options, called
DFHCICSA, will be selected.

PROGRAM{name)

specifies the name (maximum of eight
characters) of the 3600 application
program that is to be loaded.

PSEUDOBIN

specifies that the data being
written or read is to be translated
from System/7 pseudobinary
representation to hexadecimal on a
RECEIVE command or from hexadecimal
to pseudobinary on a SEND command.

QUEUE{ (name) | {(data-areall

120

This corresponds to the queue name,
ATTDQN, in an attach FMH.

For communication between two
CICS/VS systems, no significance is
attached by CICS5/V5 to the queue
name in an attach FMH.

CICS/VS5 APRM (CL)

For communication betuween a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the queue
name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the queue name
received in the attach FMH.

RECFM{(name)] (data area))

This corresponds to the deblocking
algorithm field, ATTDBA, in an
attach FMH.

For communication betuween two
CICS/VS systems, no particular
significance is attached by CICS/VS
to the deblocking algorithm field in
an attach FMH. For most CICS/VS
applications, the option may be
omitted when a value of "chain of
RUs"™ will be assumed.

For communication betuween a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the
deblocking algorithm field in an
attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the deblocking
algorithm field received in the
attach FMH. -

The value is halfword binary; only
the low-order 8 bits being used.
The bits in the binary value are
used as follows:

0-7 reserved - must be sat to zero
8-15 X'00" reserved

X'0l' - variable length variable

blocked
X'02' - reserved
X'03' - reserved

X104 chain of RUs
X'05°" to X*FF' - reserved

If the option is omitted from the
BUILD ATTACH command, a value of
"chain of RUs"™ is assumed.

RESOURCE{ (name} | (data-area)ll}

This corresponds to the resource
name, ATTPRN, in an attach FMH.

For communication between two
CIC5/VS systems, no significance is
attached by CICS/VS to the resource
name in an attach FMH.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the resource
name field in an attach FMH.

When EIBATT is set during execution
of @ RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the resource name
received in the attach FMH.

RPROCESS{(name) | (data-area)l

This corresponds to the return
?Eacess name, ATTRDPN, in an attach

For communication between two
CICS/VS systems, no significance is
attached by CICS/VS to the return
process name in an attach FMH.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
sybsystem on how to use the return
process name field in an attach FMH.

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the return process
name received in the attach FMH.

RRESOURCE{ (name) | (data-area)}

This corresponds to the return
Fﬁaource name, ATTRPRN, in an attach

For communication between two
CICS/VS systems, no significance is
attached by CICS/VS to the return
resource name in an attach FMH.

For communication between a CICS/VS
system and another subsystem, refer
to documentation supplied by the
subsystem on how to use the return
Eﬁﬁource name field in an attach

When EIBATT is set during execution
of a RECEIVE or CONVERSE command,
the EXTRACT ATTACH command may be
used to examine the return resource
name received in the attach FMH.

SESSION(name)

specifies the symbolic identifier
(maximum of four characters) of a
session TCTTE. This option
specifies the alternate session to
be used. If this option is omitted,
the principal facility for the task
will be used.

SET(ptr-ref)

specifies the pointer reference
that is to be set to the address of
the data read from the terminal or
logical unit.

STRFIELD

specifies that the data area
specified in the FROM option
contains structured fields. If this
option is specified, the contents of
all structured fields must be
handled by the application program.

The CONVERSE command, rather than a
SEND command, must be used if the
data area contains a read partition
structured field. (Structured
fields are described in the CICS/VS
IBM 3270 Guide.) CTLCHAR and
ERASE are mutually exclusive with
STRFIELD, and their use with
STRFIELD will generate an error
message.

syYsID{tname)|{(data-area)ll

specifies the name (maximum of four
characters) of a system TCTSE. This
option specifies that one of the
sessions to the named system is to
be allocated.

When used with the EXTRACT TCT
command, this option specifies the
variable to be set to the equivalent
local name of the system.

TERMID{ (name) | (data-areall

specifies the name (up to four
characters in length) of the
terminal whose buffer is to be
copied. The terminal must have been
defined in the TCT.

When used with the EXTRACT TCT
command this option specifies the
variable to be set to the equivalent
local name of the terminal.

TOLENGTH(data-area)

WAIT

See LENGTH(parameter). The
TOLENGTH option of the CONVERSE
command is equivalent to the LENGTH
option of a RECEIVE command.

spacifies that processing of the
command must be completed before any
subsequent processing is attempted.

If the WAIT option is not specified,
control is returned to the
application program once processing
of the command has started. A
subsequent input or output request
(terminal control, BMS, or batch
data interchange) to the terminal
associated with the task will cause
the application program to wait
until the previous request has been
completed.

TERMINAL CONTROL EXCEPTIONAL CONDITIONS

Some of the following exceptional
conditions may occur in combination with

others. CICS/VS checks for these
conditions in the following order: EODS,
INBFMH, EOC. If more than one of these

conditions occurs, only the first one
found to be present is passed to the
application program.

CBIDERR

Chapter 3.2.

occurs if the named set of
terminal-control processing options

Terminal Control 121

cannot be found.
Default action: terminate the task
abnormally.

ENDINPT .
occurs when an end-of-input
indicator is received.

Default action: terminate the task
abnormally.

EDC :
occurs when a request/response unit
(RU) is received with the
end~of-chain indicator set.
EIBEOC also contains this
indicator.

Field

Default action: ignore the
condition.

EODS
occcurs when an end-of-data-set
indicator is received.

EOF
occurs when an end-of-file
indicator is received.

Default action: terminate the task
abnormally.

IGREQCD
occurs when an attempt is made to
execute a SEND or CONVERSE command
after a SIGNAL data-flow control
command with an RCD (request chanhge
direction) code has been received
from an LUTYPE4 logical unit.

Default action: terminate the task
abnormally.

INBFMH
occurs if a request/response unit
(RU) contains a function management
header (FMH). Field EIBFMH contains
this indicator and it should be used
in preference to INBFMH. The IGNORE
CONDITION command can be used to
ignore the condition.

Default action: terminate the task
abnormally.

INVREQ
occurs, for the EXTRACT TCT command,
if the name specified in the NETNAME
option cannot be found.

LENGERR
occurs if the length of data
received in response to a command
that specifies the INTO option,
exceeds the value specified by the
LENGTH or TOLENGTH option.

Default action: terminate the task
abnormally.

122 CICS/VS APRM (CL)

NONVAL
occurs if a 3650 application program
name is invalid.

Default action: terminate the task
abnormally.

NOPASSBKRD
occurs if no passbook is present on
an input operation.

MOPASSBKHNR
occurs if no passbook is present on
an output operation.

NOSTART
occurs if the 3551 is unable to
initiate the requested 3650
application program.

Default action: ferminate’the task
abnormally.

NOTALLOC
occurs if the facility specified in
the command is not owned by the
application.
Default action: terminate the task
abnormally.

RDATT
occurs if a RECEIVE command is
terminated by the attention (ATTN)
key rather than the return key.

Default action: ignore the
condition.

SESSBUSY
occurs if the request for a session
cannot be serviced immediately.

Default action: queue the request
until a session is available.

SESSIONERR
occurs if the name specified in the
SESSION option is not that of a
session TCTTE or if the session
cannot be allocated because it is
out of service.
Default action: terminate the task

abnormally.

SIGNAL
cccurs when an inbound SIGNAL
data-flow control command is
received from a logical unit or
session. It is raised by execution
of the next SEND, RECEIVE, or MWAIT
TERMINAL command that refers to the
logical unit or session. It is
raised also by execution of a WAIT
SIGNAL command, in which case the
data-flow control command has been
received from the principal
facility.

Default action: ighore the
condition.

SYSBUSY

occurs if the request for a session
cannot be serviced immediately.

Defgult action: queue'the request
until a session is available.

SYSIDERR

occurs if the name in the SYSID
option is not that of a system
TCTTE, or if all sessions are out of
service.

Default action: terminate the task
abnormally.

TERMIDERR
occurs if the specified tarminal
identifier cannot be found in the
terminal control table (TCT).

Default action: terminate the task
abnormally.

HRBRK
occurs if a SEND command is
terminated by the attention key.

Default action: ignore the
condition.

Chapter 3.2.

Terminal Control 123

Chapter 3.3. Basic Mapping Support (BMS)

CICS/VS basic mapping support is an
interface, between an application
program and the terminal control program,
that provides various formatting
services for interpreting input data
streams and for preparing output data
streams for the terminal network.

The application program passes data to
BMS and receives data from BMS in a
standard device independent format. BMS
commands are included in the application
program to control formatting of the data
and to initiate input from a terminal or
output to one or more terminals.

BMS commands are provided to:

. Map data into a data area in the
program (RECEIVE MAP).

. Map, and possibly transmit, output
data in field or block data format
(SEND MAP).

. Build, and possibly transmit, output
data in text data format (SEND TEXT).

. Complete and transmit a logical
message (SEND PAGE).

U Delete an incomplete logical message
(PURGE MESSAGE) .

e Initiate building a logical message
for delivery to one or more terminals
(ROUTE) .

All of these commands, with their
associated options and exceptional
conditions, are described in the last
part of this chapter. 0Other sections
describe how combinations of the commands
can be used to control output operations
and discuss features shared by the
commands.

BMS input and output commands result in
terminal control commands. However, both
terminal control and BMS commands can be
included in an application program. An
operation to map a data stream already in
storage, rather than receiving and
mapping, may be requested to cause BMS to
map a device-dependent input data stream.
If a map operation is requested for input
from the non-formatted 3270 buffer,
mapping is not performed; the
non-formatted data stream is returned to
the application program, and the MAPFAIL
exceptional condition occurs.

The HANDLE CONDITION and IGNORE CONDITION
commands, and the NOHANDLE option, can be
used to deal with any exceptional
conditions that occur during the
execution of BMS commands. Refer to

Chapter 1.5 for further information about
exceptional conditions.

Two principal advantages are obtained by
using BMS: device independence and
format independence.

DEVICE INDEPENDENCE

Device independence allows the
application program to send data to a
terminal or to receive data from a
terminal without regard to the physical
characteristics of the terminal.

Under BMS, the terminal may be any of the
following devices: 1050, 2740, 2741,
2770, 2780, 2980 Models 1 and 2, 2980-4
(keyboard and printer only), 3270, 3780,
TWX, tape, disk, CRLP (a device declared
to have card-reader—-in/line-printer-out
characteristics), or terminals specified
by the system programmer in the terminal
control table (TCT) as TRMTYPE=TCAM.

Certain BMS facilities can also be used
with some 3270, 3600, 3650, 3767, 3770,
and 3790 logical units; for information
about these logical units, refer to the
appropriate CICS/VS subsystem guide.
These guides are listed in the
bibliography.

With BMS, a CICS/VS installation with
more than one type of terminal need
provide only one application program for
each transaction to support all terminals
in the installation. BMS identifies
which type of terminal is requesting use
of the application program and provides
for the conversion of the
device-dependent data stream to and from
the standard device independent data
format used by the application program. A
CICS/VS installation using only one type
of terminal may wish to use the
formatting services of BMS to facilitate
the addition of other types or the
conversion to another type in the future.

FORMAT INDEPENDENCE

Format independence allows the
application program to provide data to
one or more terminals or to receive data
from a terminal without regard to the
placement of fields within the data
stream or on the terminal.

All references to data by the application
program are through symbolic field names.
Fields are placed within the data stream
by BMS according to information stored in
data format tables called maps. A
CICS/VS installation in which BMS is used

Chapter 3.3. Basic Mapping Suppo;t (BMS) 125

may rearrange the fields to be included"
in the data by simply changing the values
stored in the map that defines the format
of the data. The application program
that causes the data to be written need
not be modified. The programming
maintenance requirements should be
considerably less than they might be if
BMS were not used.

Format independence also allows
information such as headings,
field-identifying kevwords, and 3270
screen formats to be stored in maps.
This information can be modified simply
by changing its value in the maps.
Programs that refer to the maps benefit
from the changes, but none of the
programs themselves need be modified.

The format independence provided by BMS
removes from the application program the
requirement to know the location of
fields within the data stream; fields may
be rearranged, removed, or added without
changing the application program.

DATA MAPPING

Data mapping is the technique used by BMS
to convert the standard
device-independent data format, which
the application program uses, to and from
the device-dependent data stream
required for the particular terminal in
use. Device-dependent control
characters are embedded or removed by BMS
during this processing.

There are three standard formats . in which
the application program can provide or
accept BMS data, as follows:

Field Data Format: data is passed to BMS
as separate fields. Each field is given a
symbolic name, which is used when passing
data to, or retrieving data from, BMS.
Each field consists of a two-byte length
area (used by BMS on input), a one-byte
attribute area (for 3270 output
operations), and the data area. A map is
used to describe the field position, data
length, and other necessary information.

Block Data Format: data is passed to BMS
as line segments. Fields positioned
within the line segments may be given
symbolic names to aid the application
program in positioning the fields. Each
field provides for a one-byte attribute
and the field data area. A gap
consisting of several blanks may separate
consecutive fields in the line segment.
A map is used to describe the number and
lengths of line segments, the field
position, data length, and other
‘necessary information.

Text Data Format: output data is passed
to BMS as a data stream which is divided
into lines no longer than those defined
for the terminal to which the data stream

126 CICS/VS APRM (CL)

is related. Printable character strings
or words which overlap lines are placed
unbroken on the next available line.
New-line (X'15') characters can be
included in the data stream to further
define line lengths. CICS5/VS inserts the
appropriate leading characters, carrier
returns, and idle characters, and
eliminates trailing blanks from each
line. If tab control characters are
contained in the data stream, the user
should also supply all of the necessary
new-line characters. No maps are used
with text data format.

Field data format is the most common for
both display and printer terminals.

Block data format may be used with both
display and printer terminals, but it is
more useful for input operations on
printer terminals.

Text data format is used with both
display and printer terminals and is
especially convenient for handling data
not divided into fields. When text data
format is used with a 3270 device, an
attribute byte appears on the 3270 as a
blank at the beginning of each line and
in front of each new piece of data. When
the data is destined for a device with
extended attributes, set attribute (SA)
orders can be included also in the data
stream. These orders enable characters
in the data stream to be modified by the
extended attributes. To aid this

modi fication, symbolic names are
available in DFHBMSCA (the standard
attribute list). The standard attribute
list is described in Chapter 3.2.

MAP DEFINITION

Most of the facilities of BMS (text data
format is the exception) require two
types of maps to be defined by CICS/VS
macro instructions and to be assembled
offline prior to running the application
program. The two types are:

1. Physical map - used by BMS to convert
data to or from the format required
by the application program. The map
is a table containing information
about each field; it is stored in the
CICS/VS program library and is loaded
by BMS at execution time. -

2. Symbolic description map - used by
the application program to refer to
the data in storage. This map is a
set of source statements that are
cataloged into the appropriate
source library and copied into the
application program when it is
assembled or compiled.

All maps must be generated as members of
a map set; a single map must be generated
as the only member of such a map set. A
map set is a collection of related maps

that are generated and stored together in
the CICS/VS libraries. A reference to
any map in a map set requires that the
entire map set be loaded into storage for
the duration of the task or until another
map set is referred to by the task.

An alternative method of defining maps
for use with BMS is by means of SDF/CICS
(Screen Definition Facility (CICS)). The
unload facility of SDF/CICS converts the
stored form of the BMS map into a form
acceptable to the Interactive Map
Definition component of DPPX/DPS. For
more information refer to the SDF/CICS

Program Reference Manual.

The following macro instructions are used
in the map-definition process.

DFHMSD macro
. defines a map set

. specifies that a set of macros is for
a physical map or for a symbolic
description map

- specifies that the map is for input,
output, or both

. specifies that the data format is
either field or block.

DFHMDI macro
U defines a map within a map set

. specifies the position of the map on
the page, either absolutely or in
relation to other maps

. specifies the size of the map

. specifies that the data format is
either field or block.

DFHMDF macro

. defines a field within a map

d specifies the position of the field
. specifies the length of the field.

The formats of these macros and an
example of their use and of the symbolic
descriptions maps generated is given
later in the chapter. The macros follow
the normal coding conventions for
assembler-language macros; in
particular, note that if the comma
preceding an operand is omitted, that
operand and all succeeding operands for
the associated macro will be treated as a
comment, without notification.

An operand in a DFHMDF macro will always
override the same operand in a DFHMDI
macro. Similarly, an operand in a DFHMDI
macro will always override the same -
operand in a DFHMSD macro.

Chapter 3.3.

If an operand is omitted from a DFHMDF
macro, the same operand, if present, in
the DFHMDI macro will be used.

Similarly, if an operand is omitted from
both the DFHMDF or DFHMDI macros, that in
the DFHMSD macro will be used.

If an operand is omitted from a8ll the
macros used to define a map set, the
default values for the DFHMDF macro will
be assumed.

Some facilities, such as color, are
available only on certain terminals, and
a specification for such a facility will
be ignored if the terminal does not
support it. This obviates the
requirement to define separate maps for
different terminals.

The map definition macros are assembled
twice, once to produce the physical map
used by BMS, and once to produce the
symbolic description map (or DSECT) that
will be copied into the application
program.

Examples of map definition are included
in the sample programs in the appendixes.

INPUT MAPPING

For an input map, the starting position
and the maximum data length of each field
must be defined, as follows:

The TI0OA symbolic storage definition
contains an area for the length of each
input data field, followed by a flag byte
and an area for the data itself. Space
is reserved for the maximum number of
bytes defined for each field.

The program can access the length, flag,
and data areas of any field by symbolic
labels. The length area is a halfword
binary field and is addressed by the name
"fieldnamel™ or "groupnamel™™. The flag
is a one-byte field and is addressed by
the name "fieldnameF" or "groupnameF".
The data portion of each field (or group
of fields) is contiguous with the length
and flag areas. A group of fields, or a
single field not within any group of
fields, has one data portion addressed by
the name "groupnamel" or "fieldnamel™.
For fields contained within a group,
there are no intervening length or flag
areas (only "groupnamel™ exists) but each
field is addressed by a name
"fieldnamel™.

In assembler-language programs, the
first byte of the first occurrence of a
field defined by the DFHMDF operand
OCCURS=n (where n is greater than 1) is
named "fieldnameD", and the first byte of
the next occurrence of the field is named
"fieldnameN". These names refer to the
first byte of the length area if
DATA=FIELD is specified, and to the first

Basic Mapping Support (BMS) 127

byte of the attribute data if DATA=BLOCK
is specified. e .

In COBOL and PL/I programs, "fieldnameD"
is the name of the array of minor
structures containing the length, flag,
and data areas of the field.

The number of characters entered may
differ from the length of the field at
program execution time. If more data is
keyed than specified in the map, the data
is truncated on the right to the number
of characters specified. The length that
is returned to the application program is
the truncated length. If less data is
keved than specified, the remaining
character positions are filled with
blanks or zeros and the length of the
?gyfg data is returned in the length
ield.

The flag byte is normally set to X'00°'.
However, if the field has been modified
but no data has been sent (as, for
example, if it has been modified to
nulls), the flag byte is set to X'80' and
the length area is set to zeros.

Fields that are entered as input but are
not defined in the map are discarded.
The length and data areas of fields
?ifgggg but not keved are set to nulls

For a light pen-detectable field,
although no data is passed, a single data
byte is reserved. This byte contains
X'FF' if the field is selected or X'00°"
if the field is not selected. The length
area of a light pen-detectable field
contains a binary one if selected or a
binary zero if not selected.

OUTPUT MAPPING

For an output map, the starting position,
length, field characteristics, and
default data (if desired) must be
defined, as follows:

The fields of an output map are assigned
names in the DFHMDF macro. The
characteristic or attribute byte is named
"fieldnameA" or "groupnameA"™. For a field
contained within a group, the data area
is given the name "fieldnameO", but there
is no separate attribute byte for the
field. (Only the group name has the
attribute byte.) For a group name, or a
field not contained within a group, the
data area is given the name "groupnameQ"
or "fieldnameGQ."

In assembler-language programs, the
first byte of the first occurrence of a
field defined by 0CCURS=n (wheren is
greater than 1) is named "fieldnameD",
and the first byte of the next occurrence
of the field is named "fieldnameN".

These names refer to the first byte of

128 CICS/VS APRM (CL)

the length area if DATA=FIELD is
specified, and to the first byte of the
attribute data if DATA=BLOCK is
specified.

In COBOL and PL/1 programs, "fieldnameD"
is the name of the array of minor
structures containing the attribute byte
and data area of the field, together with
the unused two-byte length field
(described below). A field not contained
within a group is treated as a group
containing one field entry. An unused
two-byte length field precedes each
attribute byte and data field to provide
a format similar to an input symbolic
storage description TIOA.

The TIOAPFX=YES operand must be specified
in the DFHMSD or DFHMDI macros that
create the maps. Also, if the symbolic
description maps are referred to by a
PL7I program, the STORAGE=AUTO operand
must be specified in the DFHMSD macro.

When defining fields, the user may
provide a name for any field that he
wishes to refer to at execution time.
Such names are associated with the fields
in the symbolic storage definition of the
TICA to allow symbolic references to be
made to them. The user may specify not
only the characteristics of the field but
also the default data to be written as
output for a field when no data is
supplied for that field by an application
program. This facility permits the
specification of titles, headers, and so
forth, for output maps. The user may
temporarily override the field
characteristics, the data, or both field
characteristics and data of any field for
which a name has been specified. The
desired changes are simply inserted into
the TIOA under the specified field name
in the symbolic storage definition
(symbolic description map) in the
program.

OQutput field data supplied by the
application program must not begin with a
null character (X'00'), or the entire
field will be ignored by BMS. A suitable
character to use in the first position is
blank (X'40").

Light pen-detectable fields should be
"autoskip™ to prevent data from being
keyed into them. Because of the nature
of these fields, in most instances, they
should not be modified. If the data
field is modified, the application
program must ensure that the first
character is a "?", ">%, "§U", or a blank
character; otheruwise, the field is no
longer light pen-detectable.

Fields that can be keved should be
delimited by a stopper field to ensure
that all the data keyed and transmitted
can be mapped.

INPUT/0UTPUT MAPPING

Input/output maps combining all the
functions of input and output maps can
also be created using the DFHMSD, DFHMDI,
and DFHMDF macros.

The number of fields which can be
specified for a COBOL or PL/I
input/output map is limited to 1023.

MAP RETRIEVAL

Map sets placed in the CICS5/VS program
library are accessed by BMS through
program control LOAD commands. Each map
set name must have been entered in the
processing program table (PPT) by the
system programmer. When device-dependent
map sets are placed in the CICS/VS
program library, they must be identified
by the device-dependent suffixed name,
and a corresponding entry of thae same
name must appear in the PPT.
(Device~-dependent suffixes are described
below under the "mapset” name of the
DFHMSD macro and under the SUFFIX and
TERM operands of that macro.)

OUTBOARD FORMATTING

Qutboard formatting is a facility that
can be used in a telecommunication
network to offload some of the display
presentation work normally performed at
the host to another node. DPS Version 2
supports outboard formatting on an 8100
running DPPX and communicating with a
System/370 host running CICS/VS.
Outboard formatting is also supported on
a 3650 (for details refer to the CICS/VS
365073680 Guide).

The support is designed primarily for use
by an application program running under
CICS/VS basic mapping support (BMS) at
the host, and interacting with a 3650 or
a terminal at the 8100 node. Instead of
input and output mapping being performed
wholly by BMS at the host, it is
performed in part by either the 3650 or
by DPS at the 8100. Some of the resulting
advantages are that:

1. The number of processing cycles at
the host can be reduced.

2. The line traffic between the two
systems can be reduced.

3. On an 8100 the BMS application
program can take advantage of
DP5/8100 facilities; it can make use
of DPS exits, for example, and device
features that are supported by DPS
but not BMS. :

For detailed information on DPS Version 2
outboard formatting support, including
the procedure for setting up an outboard

Chapter 3.3.

formatting system, see the DPPX/DPS
Version 2 System Programming Guide.

DEFINE A MAP SET (DFHMSD MACRO)

The syntax of the DFHMSD macro used to
define a map set is shown in Figure 14 on
page 130. The macro specifies whether
physical maps (TYPE=MAP) or symbolic
description maps (TYPE=DSECT) are to be
generated. The end of a map set is
indicated always by a DFHMSD TYPE=FINAL
macro.

Alternatively, both types of map can be.
assembled in the same job by job control
language, as described in the CICS/VS

System Programmer's Guide.

The operands are defined as follows:

mapseat
is the name of the map set. The
name (1 through 7 characters) must
begin with an alphabetic character.
A suffix specified by the SUFFIX
operand, or based on the terminal
type specified in the TERM operand,
is added during assembly.

This suffixed name is the name that
should be used in the NAME statement
(0S) or the PHASE statement (D0S) in
cataloging the map set (see the
appropriate CICS/VS System
Programmer's Guide for further
details), and the name that should
be specified in the PPT (see the
CICS/VS Svystem Programmer's
Reference Manual). Valid suffixes
are shown in the description of the
TERM operand, below.

When a mapping operation is
requested by a BMS command, CICS/VS
adds a similar suffix to the map set
name specified in the command, and
attempts to load a map set with the
suffixed name. If the suffixed map
set name cannot be found in the
library, CICS/VS will load a map set
with the specified name (equivalent
to being suffixed with a blank).

CICS/VS obtains the suffix from the
TCTTE for the terminal (either the
terminal associated with the
transaction or, for routing, the
destination terminal) depending on
the terminal type specified in the
TRMTYPE operand (together with the
SESTYPE operand for VTAM terminals)
of the DFHTCT TYPE=TERMINAL (or
TYPE=LINE) system macro. If the
alternate page size is being used,
as specified by the ALTPGE operand
of the DFHTCT TYPE=TERMINAL system
macro, and the ALTSFX operand of
that same system macro has also been
spaecified, an attempt will be made
to load the map set that has the
alternate suffix specified in the

Basic Mapping Support (BMS) 129

mapset | DFHMSD TYPE={DSECT |MAP}

[,BASE=namel

[,CTRL=CIPRINTIL, {L4O|LG64G|L
[,DATA= {FIELDIBLOCK}]

E LEXTATT={NO|MAPONLY|YES}]
[,HTAB=tabl, tabl
[,LANG={ASM|COBOL|PLI|RPG}]
[,LDC=mnemonicl
[,MODE={IN|QUT|INOUT}]
[,0BFMT={YES|NO}]
[,PS={BASE|psid}]
[,STORAGE=AUTO]

[;SUFFIX=n]
[,TERM=terminal—typel

[, TIOAPFX={YES|NO}]

[,VTAB=tab[,tab]...]

[,COLOR={DEFAULT|BLUE|RED|PINK}GREEN|TURQUOISE|YELLOW|NEUTRAL}]

HILIGHT= {OFFIBLIN§ REVERSE|UNDERLINE}]

[,VALIDN=C[MUSTFILLIL,MUSTENTER])]

80 |HONEOM} I[, FREEKBIL , ALARMIL,FRSET1)1

mapset | DFHMSD TYPE=FINAL

Figure 14. DFHMSD Macro (Define a Map Set)

ALTSFX operand of the DFHTCT
TYPE=TERMINAL system macro. If this
load is unsuccessful, normal map set
selection will occur.

For example, if two map sets are
assembled, one with TERM=CRLP and
the other with TERM=ALL, the first
map set name will be suffixed with A
and the second with blank. The
system programmer should use these
suffixed names in the NAME/PHASE
statements and in the PPT. If a
CICS/VS transaction now routes a
message to two terminals, one of
which has TRMTYPE=CRLP and the other
TRMTYPE=L3277, TRMMODL=2, CICS/VS
will attempt to load "mapsetA" for
the first and "mapsetM” for the
second. The second of these will be
unsuccessful, so BMS will then look
for the unsuffixed map set name for
routing to the 3277.

TYPE=
specifies the function of the macro.

DSECT
specifies that a symbolic
description map is to be
generated. If the same map set
is to be used by application
programs written in different
languages, a separate DFHMSD
TYPE=DSECT macro must be
written for each language to
put the symbolic description
map into the copy library of
the language.

130 CICS/VS APRM (CL)

MAP
specifies that a physical map
is to be generated. This
physical map is stored in the
CICS/VS program library and
loaded as required by BMS. The
assembler-language application
programmer can, alternatively,
generate the map in his program
and pass its address to BMS.

FINAL
must be coded to indicate the
end of the map set. If other
parameters are specified in
this macro, they will be
ignored.

BASE=name
specifies that the same storage base
Wwill be used for the symbolic
description maps from more than one
map set. The same name is specified
for each map set that is to share
the same storage base. Since all
map sets with the same base describe
the same storage, data related to a
previously-used map set may be
overuritten when a new map set is
used. Furthermore, different maps
within the same map set will also
overlay one another.

This operand is not valid for
assembler-language programs.

For example, assume that the
following macros are used to
generate symbolic description maps
for two map sets. .

MAPSET1 DFHMSD TYPE=DSECT, CTRL=
TERM=2780, LANG=COBOL, specifies device characteristics
BASE=DATAREAL, related to terminals of the 3270
MODE=IN Information Display System.
CTRL=ALARM is valid for TCAM 3270
MAPSET2 DFHMSD TYPE=DSECT, SDLC and VTAM-supported terminals
TERM=3270, LANG=COBOL, (except interactive and batch
BASE=DATAREAL, logical units); all other
MODE=0UT parameters for CTRL are ignored.
This operand must be specified on
The symbolic description maps of the last (or only) map of a page
this example might be referred to in unless the options of a BMS command
a COBOL application program as are being used to override the
follows: corresponding operand in the DFHMSD
macro. If the CTRL operand is
LINKAGE SECTION. specified in the DFHMDI macro, it
01 DFHBLLDS COPY DFHBLLDS. cannot be specified in the DFHMSD
. macro.

62 TIOABAR PIC S59(8) COMP. PRINT
must be specified if the

02 MAPBASEl1l PIC S9(8) COMP.

DFHTIOA COPY DFHTIOCA.
DATAREALl PIC X(1920).
name COPY MAPSET1.
01 name COPY MAPSETZ2.

MAPSET1 and MAPSET2 both redefine
DATAREALl; only one 02 statement is
needed to establish addressability.
However, the program can only use
the fields in one of the symbolic
description maps at a time.

If BASE=DATAREAl is deleted from
this example, an additional 02
statement is needed to establish
addressability for MAPSET2; the 01
DATAREALl statement is not needed.
The program could then refer to
fields concurrently in both
symbolic description maps.

coo
[y

In PL/1 application programs, the
name specified in the BASE operand
is used as the name of the pointer
variable on which the symbolic

description map is based. If this

operand is omitted, the default name

(BMSMAFPBR) is used for the pointer
variable. The PL/I programmer is
responsible for establishing
addressability for the based
structures.

COLOR=

specifies the default color for all
fields in all maps in a map set
unless overridden explicitly by the
COLOR option of a DFHMDI or DFHMDF
macro. If this option is specified
when EXTATT=NO, a warning will be
issued and the option ignored. If

this option is specified, but EXTATT

is not, EXTATT=MAPONLY will be
assumed.

Chapter 3.3.

printer is to be started; if
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored if the map set is used
with 3270 displays without the
Printer Adapter feature.

L40, L6%, 1.80, HONEOM

are mutually exclusive options
that control the line length on
the printer. L40, L64%, and L80
force a carrier return/line
feed after 40, 64, or 80
characters, respectively.
HONEOM causes the default
printer line length to be used.

FREEKB
specifies that the keyboard
should be unlocked after the
map is written out. If
omitted, the kevboard remains
locked; further data entry
from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible
alarm feature. For other VTAM
terminals it sets the alarm
flag in the FMH; this feature
is not supported by
interactive and batch logical
units.

FRSET
specifies that the modified
data tags (MDTs) of all fields
currently in the 3270 buffer
are to be reset to-a
not-modified condition (that
is, field reset) before map
data is written to the buffer.
This allows the DFHMDF macro
with the ATTRIB operand to
control the final status of any
fields written or rewritten in
response to a BMS command.

Basic Mapping Support. (BMS) 131

DATA=

specifies the format of the data.

FIELD

BLOCK

EXTATT=

specifies that the data is
passed as contiguous fields
where each field has the
following format:

lLLIAIdata...

"LLY is two bytes specifying
the length of the data as input
from the terminal (these two
bvtes are ignored in output
processingl). "A" is a byte into
which the programmer may place
an attribute to override that
specified in the map used to
process this data (see
"Standard Attribute List and
Printer Control Characters
(DFHBMSCA), in "Chapter 3.2.
Terminal Control"™ on page 85).

spaecifies that the data is
passed as a continuous stream
in the following format:

lA'data field|space...

This stream is processed as
line segments of the length
specified in the map used to
process the data set. The data
is in the form that it appears
on the terminal; that is, it
contains data fields and
interspersed blanks
corresponding to any spaces
that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.
EXTATT=YES cannot be used if
DATA=BLOCK is specified.

specifies whether the extended
attributes (COLOR, HILIGHT, PS, and
VALIDN) are supported.

NO

specifies that the extended
attributes are not supported;
the physical and symbolic
description maps will be the
same as those generated under
Vaersion 1 Release 4. "NO" is
the default unless COLOR,
HILIGHT, PS, or VALIDN is
specified in the DFHMSD macro,
in which case EXTATT=MAPONLY
will be assumed. If the TERM
operand is specified and is
other than 3270, 3270-1,
3270-2, or ALL, EXTATT=MAPONLY
or EXTATT=YES will be invalid,

132 CICS/VS APRM (CL)

and the COLOR, HILIGHT, PS, and
VALIDN operands on the DFHMSD,
DFHMDI, or DFHMDF macros will
be invalid.

MAPONLY

YES

HILIGHT=

specifies that the extended
attributes can be specified in
a map, but that the resulting
symbolic description map will
contain no fields for them, and
that it will be the same as one
generated under Version 1,
Release 4. This operand can be
used to add the extended
attributes to an existing map
without recompiling.

specifies that the extended
attributes can be specified in
a map, and that they can be
modified dynamically. The
symbolic description map
(DSECT) will contain subfields
for the attributes, identified
by suffixes C (for COLOR), H
(for HILIGHT), P (for PS), and
V (for validation).

specifies the default highlighting
attribute for all fields in all maps
in a map set.

OFF

BLINK

is the default and means that
no highlighting is used.

specifies that the field is to
"blink” at a set frequency.

REVERSE

specifies that the character
or field is displayed in
"reverse video", for example,
on a 3278, black characters on
a green background.

UNDERLINE

specifies that a field is
underlined.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is

not,

EXTATT=MAPONLY will be

assumed.

HTAB=tabl, tabl...

specifies one or more tab positions
for use with interactive and batch
logical units having horizontal
forms control.

specifies the language in which the
application program referring to a
symbolic description map is written
and, hence, is applicable for only a
DFHMSD TYPE=DSECT macro.

>
n
b 4

l
|

specifies that the symbolic
description map is to be
referred to by an
assembler-language program.

COBOL
specifies that the symbolic
description map. is to be
referred to by a COBOL program.

PLI
specifies that the symbolic
description map is to be
referred to by a PL/I program.

RPG
specifies that the symbolic
description map is to be
referred to by an RPG 11
program. This parameter is
valid for CICS/D0OS/VS only.

LDC=mnemonic

specifies the mnemonic to be used by
CICS/VS to determine the logical
device code that is to be used for a
BMS output operation and
transmitted in the function
management header to the logical
unit if no LDC operand has been
specified on any previous BMS output
in the logical message. This
operand is used only for TCAM and
VTAM-supported 3600 terminals, and
batch logical units.

IN
specifies an input map
generation.

uT

specifies an output map
generation.

INOUT
specifies that the map
definition is to be used for
both input and output mapping
operations.

Input mapping is not available for
VTAM-supported 3600 terminals.
However, INOUT may be specified for
map generation. The map can then be
used as a dummy input map for input
operations using the RECEIVE MAP
command.

OBFMT=

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units and for 8100
Information Systems using the
DPPX/DPS Version 2 acting as a
logical unit for a real display (for
example, 3277, 3278, 3279, or 8775).
If a logical unit does not support

Chapter 3.3.

Ps

outboard formatting this operand
will be ignored at execution time.
Refer to the CICS/VS 3650,3680
Guide, or the DPPX/Distributed
Presention Services Version 2

Svstems Programming Guide for more
details.

YES
specifies that all maps within
this map set can be used in
outboard formatting, except
those for which OBFMT=NO is
specified in the DFHMDI macro.
NO

specifies that no maps within
this map set can be used in
outboard formatting, except
those for which OBFMT=YES is
specified in the DFHMDI macro.

specifies that programmed symbols
are to be used.

BASE
specifies that only the basic
symbols are used.

psid
specifies a single EBCDIC
character or a hexadecimal
code of the form X'nn', that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO, a warning will be issued
and the option ignored. If this
option is specified, but EXTATT is
not, EXTATT=MAPONLY will be
assumed.

STORAGE=AUTO

specifies, for assembler-language
programs, that separate maps within
a map set are to occupy separate
storage, not to overlay one another.

specifies, for COBOL programs, that
the symbolic description maps in the
map set are to be in separate (that
is, not redefined) areas. This
operand is used when the symbolic
description maps are copied inhto the
WORKING-STORAGE section and the
storage for the separate maps in the
map set is to be used concurrently.

specifies, for PL/I programs, that
the symbolic description maps are to
be declared as having the AUTOMATIC
storage class. If not specified,
they are declared as BASED.

If STORAGE=AUTO is specified,
BASE=name cannot be used. If
STORAGE=AUTO is specified and
TIOAPFX is not specified,
TIOAPFX=YES is assumed.

Basic Mapping Support (BMS) 133

SUFFIX=n

specifies a one-character map set
suffix that overrides any suffix
implied by the TERM operand. A
message Will indicate that the TERM
operand has been ignored. The user
should catalog the map set, with
this suffixed name, in the program
library, and ensure also that there
is no conflict with a generated name
of another version of the map set.
The use of numeric suffixes would
help prevent conflict.

TERM=terminal type

134

specifies the type of terminal or
logical unit associated with the map
set. If no terminal type is
specified, 3270 is assumed.

TERM= Suffix

CRLP

TAPE

DISK

TWX

1050

2740

2741

2770

2780

3780

3270-1 (40-col dlsplay)
3270-2 (80-col display)
INTLU|3767137701|5CS?
2980

2980-4%

3270

3601

36532

3650UP3

3650/3270¢

BCHLU|3770B5

ALL blank

lank

A XKXESCTALOUIr-rXNCHOTMIMUOIY>

1 Use also for all interactive LUs,
3790 full function LU, and
SCS-printer LUs (3270 and 3790)

Use for host conversational
(3653) LU

Use for interpreter LU

Use for host conversational
(3270) LU

5 Use also for all batch and batch
data interchange LUs.

For TCAM-connected terminals (other

~than 3270 or SNA devices), use

either CRLP or ALL; for
TCAM~connected 3270s or SNA
devices, select the appropriate
parameter in the normal way.

If ALL is specified, ensure that
device-dependent characters are not
included in the map set and that
format characteristics such as page
size are suitable for all
input/output operations (and all

CICS/VS APRM (CL)

terminals) in which the map set will
be applied. For example, some
terminals are limited to 480 bytes,
others to 1920 bytes; the 3604 is
limited to six lines of 40
characters each. Within these
guidelines, use of ALL can offer
important advantages. Since an
assembly run is required for each
map generation, the use of ALL,
indicating that one map is to bhe
used for more than one terminal, can
result in significant time and
storage savings.

However, better run-time
performance for maps used by single
terminal types will be achieved if
the terminal type (rather than ALL)
is specified. Alternatively, BMS
support for device-dependent map
sets can be bypassed by specifying
BMSDDS=NO in the DFHSG PROGRAM=BMS
system macro. (See the CICS/VS
System Programmer's Reference
Manual for further details.)

TIOAPFX=

specifies whether BMS should
include a filler in the symbolic
description maps to allow for the
unused TIOA prefix.

YES
specifies that the filler
should be included in the
symbolic description maps. If
TIOAPFX=YES is specified, all
maps within the map set have
the filler, except when
TIOAPFX=NO is specified on the
DFHMDI macro. TIOAPFX=YES
should always be used for
command-level application
programs.

is the default and specifies
that the filler is not to be
included. The filler may still
be included for a map if
TIOAPFX=YES is specified on
the DFHMDI macro.

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before it
has been filled, or to transmit
data from an incomplete field,
will raise the inhibit input
condition,

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor from
-an empty field will raise the
inhibit input condition.

VTAB=tabl, tabl...
specifies one or more tab positions
for use with interactive and batch
logical units having vertical forms
control.

DEFINE A MAP (DFHHMDI MACRO)

The syntax of the DFHMDI macro to define
a map is shown in Figure 15 on page 136.
It defines the size of the data to be
mapped and its position within the input
or output. When defining more than one
map, the corresponding number of DFHMDI
macros must be used.

If the maps are for use in a COBOL
program, and STORAGE=AUTO has been
specified in the DFHMSD macro, they must
be specified in descending size sequence
(size refers to the generated 01 level
data areas and not to the size of the map
on the screen).

The operands are defined as follows:

map
is the name (1 through 7 characters)
of the map.

COLOR=
specifies the default color for all
fields in a map unless overridden
explicitly by the COLOR option of a
DFHMDF macro. If this option is
specifiaed when EXTATT=NO: is
specified in the associated DFHMSD
macro, a warning Will be issued and
the option ignored.

COLUMN=
specifies the column in a line at
which the map is to be placed, that
is, it establishes the left or right
map margin. The JUSTIFY operand
controls whether map and page margin
selection and column counting are to
be from the left or right side of
the page. The columns between the
specified map margin and the page
margin are not available for
subsequent use on the page for any
lines included in the map.
numbar ‘

is the column from the left or

right page margin where the

left or right map margin is to

be established.

NEXT
indicates that the left or
right map margin is to be
placed in the next available
column from the left or right
on the current line.

indicates that the left or
right map margin is to be
established in the same column
as the last non-header or

Chapter 3.3.

non-trailer map used that
specified COLUMN=number and
the same JUSTIFY parameters as
this macro.

Refer to the section "Map
Positioning," later in this
chapter, for a more detailed
discussion.

CTRL=
specifies device characteristics
related to terminals of the 3270
Information Display System.
CTRL=ALARM is valid for TCAM 3270
SDLC and VTAM-supported terminals
(except interactive and batch
logical units); all other
parameters for CTRL are ignored.
This operand must be specified on
the last (or only) map of a page
unless options of a BMS command are
being used to override the
corresponding operands in the
DFHMSD macro. If the CTRL operand
is specified in the DFHMDI macro, it
cannot be specified in the DFHMSD
macro.

PRINT
must be specified if the
printer is to be started; if
omitted, the data is sent to
the printer buffer but is not
printed. This operand is
ignored if the map set is used
with 3270 displays without the
Printer Adapter feature.

LG0, L6%, L8O, HONEOM
are mutually exclusive options
that control the line length on
the printer. L40, L64, and L80
force a carrier return/line
feed after 40, 64, or 8§
characters, respectively.
HONEOM causes the default
printer line length to be used.

FREEKB :
specifies that the keyboard
should be unlocked after the
map is written out. - If
omitted, the kevboard remains
locked; further data entry
from the kevboard is inhibited
until this status is changed.

ALARM - ,

activates the 3270 audible
alarm. For other VTAM
terminals it sets the alarm
flag in the FMH; this feature
is not supported by
interactive and batch logical
units.

FRSET
specifies that the modified
data tags (MDTs) of all fields
currently ‘in the 3270 buffer
are to be reset to a
not-modified condition (that

Basic Mapping Support (BMS) 135

map DFHMDI L,COLOR={DEFAULT|BLUE
[,COLUMN= {number |{NEXT
[,CTRL=CIPRINTIL, {L40
[,DATA= {FIELDIBLOCK}J
[;HEADER=YES]
[L,HILIGHT={OFF|BLINK|REVERSE|UNDERLINE}]
[,JUSTIFY=C(L{LEFT|RIGHT}IIL, {FIRSTILAST}])]
[,LINE={number |NEXT|SAME}]
[,0BFMT={YES|NOYT

E ,PS={BASE|psid}]
[

REDI?%NKIGREENITURQUOISEIYELLON!NEUTRAL}
SAME
L64[L80 | HONEOMY 1, FREEKBIL,ALARMI[,FRSETI)]

»SIZE=(line,column)l

>, TIOAPFX={YES|NO}]
[, TRAILER=YES]
[,VALIDN=C(IMUSTFILLIL,MUSTENTER]1)]

Figure 15. DFHMDI Macreo (Define a Map)

DATA=

is, field reset) before map
data is written to the buffer.
This allows the DFHMDF macro
with the ATTRIB operand to
control the final status of any
fields written or rewritten in
response to a BMS command.

that are to appear between the
fields on output. The first
byte of each line is the
attribute byte; it is not
available for data.

HEADER=YES

allows the map to be used during
page building without terminating

specifies the format of the data. the overflow condition (see
" "Qverflow Processing," later in
FIELD this chapter). This operand may be

specifies that the data is specified for more than one map in a

136

BLOCK

passed as contiguous fields in
the following format:

ILLlAldata...

"LL" is two bytes specifying
the length of the data as input
from the terminal (these two
- bytes are ignored in output
processing). "A" is a byte
into which the programmer may
place an attribute to override
that specified in the map used
to process this data (see
"Standard Attribute List and
Printer Control Characters
(DFHBMSCA), in "Chapter 3.2.
Terminal Control™ on page 85).

specifies that the data is
passed as a continuous stream
in the following format:

[A|data field|space. ..

This stream is processed as
line segments of the length
specified in the map used to
process the data set. The data
is in the form that it appears
on the terminal; that is, it
~contains data fields and

interspersed blanks
corresponding to any spaces

CICS/VS APRM (CL)

map set.

HILIGHT=

specifies the default highlighting
attribute for all fields in a map.

OFF
is the default and means that
no highlighting is used.

BLINK
- specifies that the field is to
"hlink" at a set frequency.

REVERSE
specifies that the field is
displayed in "reverse video",
for example, on a 3278, black
characters on a green
background.

UNDERLINE
specifies that a f1eld is
underlined.

If this option is 5pecified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the optlon
jgnored. If this optionis
specified, but EXTATT is not,
EXTATT=MAPONLY will be assumed.

JUSTIFY=

specifies the margins on a page in
which a map is to be formatted.

LEFT
indicates that the map is to be
positioned starting at the
specified column from the left
margin on the specified line.

RIGHT
indicates that the map is to be
positioned starting at the
specified column from the
{jght margin on the specified
ine.

FIRST
indicates that the map is to be
positioned as the first map on
a new page. Any partially
formatted page from preceding
BMS commands is considered to
be complete. This operand can
be specified for only one map
per page.

LAST
indicates that the map is to be
positioned at the bottom of the
current page. This operand can
be specified for multiple maps
to be placed on one page.
However, maps other than the
first map for which it is
specified must be able to be
positioned horizontally
without requiring that more
lines be used.

LEFT and RIGHT are mutually
exclusive, as are FIRST and LAST.
If neither FIRST nor LAST is
specified, the data is mapped at the
next available position as
determined by other parameters of
the map definition and the current
mapping operation. FIRST and LAST
are ignored unless PAGEBLD is
specified, since otherwise only one
map is placed on each page.

Refer to the section "Map
Positioning," later in this
chapter, for a more detailed
discussion.

specifies the starting line on a
page in which data for a map is to
be formatted.

number
is a value from 1 to 240,
specifying a starting line
number. A request to map data
on a line and column that has
been formatted in response to a
preceding BMS command causes
the current page to be treated
as though complete. The new
data is formatted at the
requested line and column on a
new page.

Chapter 3.3.

specifies that formatting of
data is to begin on the next
available completely empty
line. If LINE=NEXT is
specified in the DFHMDI macro,
it is ignored for input
operations and LINE=1 is
assumed.

SAME
specifies that formatting of
data is to begin on the same
line as that used for a
preceding BMS command. If the
data does not fit on the same
line, it is placed on the next
available completely-empty
line.

Refer to the section "Map
Positioning,”" later in this
chapter, for a more detailed
discussion.

OBFMT=

PS

specifies whether outboard
formatting is to be used. This
operand is available only for 3650
logical units and for 8100
Information Systems using the DPPX
operating system with DPPX/DPS
Version 2 acting as a logical unit
for a real display (for example,
3277, 3278, 3279, or 8775). If a
logical unit does not support
outboard formatting this operand
will be ignored at execution time.
Refer to the CICS/VS 3650/3680
Guide, or the DPPX/Distributed
Presentation Services Version 2
System Programming Guide for more
details.

If omitted, the OBFMT operand in the
DFHMSD macro is used.

YES
specifies that this map is to
be used with outboard
formatting.

NO

spacifies that this map is not
to be used Wwith outboard
formatting.

specifies that programmed symbols

" are to be used.

BASE
specifies that only the basic
symbols are used.

psid
specifies a single EBCDIC
character or a hexadecimal
code of the form X'nn' that
identifies the set of
programmed symbols.

Basic Mapping Support (BMS) 137

If this option is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the option
ignored. If this option is
specified, but EXTATT is not,
EXTATT=MAPONLY will be assumed.

SIZE=
specifies the size of a map.

line
is a value from 1 to 240,
specifying the depth of a map
as a number of lines.

column
is a value from 1 to 240,
specifying the width of a map
as a number of columns. Space
for the attribute byte should
he included.

This operand is required in the
following cases:

. An associated DFHMDF macro with
the POS operand is used.

. The map is to be referred to in
a SEND MAP command with the
ACCUM option.

. The map is5 to be used when
referring to input data from
other than a 3270 terminal in a
RECEIVE MAP command.

TIOAPFX=
specifies whether BMS should
include a filler in the symbolic
description maps to allow for the
unused TIOA prefix. If omitted, the
TIOAPFg operand on the DFHMSD macro
is used.

YES
specifies that the filler
should be included in the
symbolic description map.
TIOAPFX=YES should always be
used for command level
application programs.

NO .
specifies that the filler is
not to be included for this
map.

TRAILER=YES

allows the map to be used during
page building without terminating
the overflow condition (see
"Overflow Processing," later in
this chapter). This operand may be
specified for more than one map in a
map set. If a trailer map is used
other than in the overflow
environment, the space normally
reserved for overflow trailer maps
is not reserved while mapping the
trailer map.

138 CICS/VS APRM (CL)

VALIDN=

MUSTFILL
specifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before it
has been filled, or to transmit
data from an incomplete field,
will raise the inhibit input
conditions.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor from
an empty field will raise the
inhibit input condition.

DEFINE A FIELD (DFHMDF MACRO)

The syntax of the DFHMDF macro to define
a field is shown in Figure 16 on page
139. This macro is used to define a
field. One DFHMDF macro is required for
each field in a map, giving information
such as symbolic field name, field
position, field length, attribute byte
(for 3270 terminals), initial constant
data, justification of input, and COBOL
or PL/I data picture. Two or more DFHMDF
macros must be arranged in numerical
order of the P0S operand, except for
output mapping operations using
DATA=FIELD.

The number of named fields that can be
defined for a COBOL or PL/I input/output
map must not exceed 1023.

The operands are defined as follows:

fld
is the name (1 through 7 characters)
of the field. Although a name is
not required for every field within
a map, a name must be specified for
at least one field of a map to be
compiled under COBOL or PL/7I. All
fields within a group must have
names.

If name is omitted, an application
program cannot access the field to
change its attributes or alter its
contents. For an output map,
omitting the field name may be
appropriate when the INITIAL
operand is used to specify field
contents. If a field name is
specified and the map that includes
the field 1s used in a mapping
operation, data supplied by the user
overlays data supplied by
initialization (unless default data
only is being written).

POS=
specifies the location of a field.
This operand specifies the
individually addressable character

[fld] |[DFHMDF [,P0S={number|(line,column)}]
[,ATTRB=C[{ASKIP{PROT|UNPROTIL,NUMI}1L, {(BRT|NORM|{DRK}IL,DETI[,IC]

[,FSETI)]
[, GRPNAME=group—namel

[,LENGTH=number]
[,0CCURS=number]
[,PICIN="value']
[,PICOUT='value']
[,PS={BASE|psid}]

[,COLOR={DEFAULT|BLUE|RED|PINK|GREEN|TURQUOISE|YELLOW|NEUTRAL}]
[,HILIGHT={0FF|BLINK|REVERSE|UNDERLINE}]

[,INITIAL="character data']XINIT=hexadecimal datal
[,JUSTIFY=CL{LEFT|{RIGHT}1L[, {BLANK|ZERO}1)1]

[,VALIDN=CIMUSTFILLIL,MUSTENTER])]

Figure 16. DFHMDF Macro (Define a Field)

location in a map at which the
attribute byte that precedes the
field is positioned.

number
specifies the displacement
(relative to zero) from the
beginning of the map being
defined.

(line,column)}
specify lines and columns
(relative to one) within the
map being defined.

The location of data on the output
medium is dependent on DFHMDI macro
parameters as well.

The first position of a field is
reserved for an attribute byte.

When supplying data for input
mapping from non-3270 devices, the
input data must allow space for this
attribute byte. Input data must not
start in column 1 but may start in
column 2.

Tha POS operand always contains the
location of the first position in a
field, which is normally the
attribute byte when communicating
with the 3270. For the second and
subsequent fields of a group, the
POS operand points to an assumed
attribute-byte position, ahead of
the start of the data, even though
no actual attribute byte is
necessary. If the fields follow on
immaediately from one another, the
P0OS operand should point to the last
character position in the previous
field in the group.

When a position number is specified
which represents the last character
position in the 3270, two special
rules apply:

¢ The IC attribute should not be
coded. The cursor may be set to

Chapter 3.3.

location zero by using the
cursor option of the SEND MAP or
SENT TEXT command.

) If the field is to be used in an ~
output mapping operation with
the DATA=0NLY specification, an
attribute byte for that field
must be supplied in the TIOA by
the application program.

ATTRB=

is applicable only to fields to be
displayed on a 3270 and specifies
device-dependent characteristics
and attributes, such as the
capability of a field to receive
data or the intensity to be used
when the field is output. If the
ATTRB operand is specified within a
group of fields, it must be
specified in the first field entry.
A group of fields appears as one
field to the 3270. Therefore, the
ATTRB specification refers to all of
the fields in a group as one field
rather than as individual fields.
Refer to the publication IBM 3270
Information Display Svstem
Component Description for further
information.

This operand applies only to 3270
data stream devices; it will be
ignored for other devices,

including the S5CS Printer Logical
Unit. It will also be ignored if
the NLEOM option is specified on the
SEND MAP command for transmission to
a 3270 printer. In particular,
ATTRB=DRK should not be used as a
method of protecting secure data on
output. It could however, be used
for making an input field nondisplay
for secure entry of a password from
a screen.

For input map fields, DET and NUM

are the only valid options; all
others are ignored.

Basic Mapping Support (BMS) 139

ASKIP

" PROT

UNPRO

NUM

BRT

NORM

DRK

DET

specifies that data cannot be
keved into the field and causes
the cursor (current location
pointer) to skip over the
field.

specifies that data cannot be
keyed into the field.

If data is to be copied from
one device to another attached
to the same 3270 control unit,
the first position (address 0)
in the buffer of the device to
be copied from must not contain
an attribute byte for a
protected field. When
preparing maps for 3270s,
ensure that the first map of
any page does not contain a
protected field starting at
position 0.

T
specifies that data can be
keved into the field.

ensures that the data entry
keyboard is set to numeric
shift for this field unless the
operator presses the alpha
shift key, and prevents entry
of nonnumeric data if the
Kevboard Numeric Lock feature
is installed.

specifies that a
high~intensity display of the
field is required. By virtue
of the 3270 attribute
character bit assignments, a
field specified as BRT is also
potentially detectable.
However, for the field to be
recognized as detectable by
BMS, DET must also be
specified.

specifies that the field
intensity is to be normal.

specifies that the field is
nonprint/nondisplay. DRK
cannot be specified if DET is
specified.

specifies that the field is
potentially detectable.

The first character of a 3270
detectable field must be a "?",
n>n, vgw, or blank. If the
first character is "&" or
blank, the field is an
attention field; if the first
character is "?" or ">", the

CICS/VS APRM (CL)

IC

field is a selection field.
(See the publication IBM 3270
Information Display Svstem
Component Description for
further details of detectable
fields.)

A field for which BRT is
specified is potentially
detectable to the 3270, by
virtue of the 3270 attribute
character bit assignments, but
is not recognized as such by
BMS unless DET is also
specified.

DET and DRK are mutually
exclusive options.

If DET is specified for an
input field, only one data byte
is reserved for each input
field. This byte is set to
X'00', and remains unchanged
if the field is not selected.
If the field is selected the
byte is set to X'FF'.

No other data is supplied, even
if the field is a selection
field and the ENTER key has
been pressed.

If the data in a detectable
field is required, all of the
following conditions must be
fulfilled:

1. The field must begin with
either a "?" “>l|' or "&"
and DET must be specified
in the output map.

2. The ENTER key (or some
other attention key) must
be pressed after the field
has been selected,
although for detectable
fields beginning with "&"
the ENTER key is not
required.

3. DET must not be specified
for the field in the input
map. DET must, however, be
specified in the output
map.

specifies that the cursor is to
be placed in the first position
of the field. The IC attribute
for the last field for which it
is specified in a map is the
one that takes effect. If not
specified for any fields in a
map, the default location is
zero. Specifying IC with ASKIP
or PROT causes the cursor to be
placed in an unkeyable field.

This option may be overridden
by specifying the CURSOR

option of the SEND MAP or SEND
TEXT command that causes the
write operation.

FSET
specifies that the modified
data tag (MDT) for this field
should be set when the field is
sent to a terminal.

Specification of FSET causes
the 3270 to treat the field as
though it has been modified.
0n a subsequent read from the
terminal, this field is read,
whether or not it has been
modified. The MDT remains set
until the field is rewritten
without ATTRB=FSET or until an
output mapping request (for
example, DFHMSD CTRL=FRSET or
DFHBMS CTRL=FRSET) causes the
MDT to be reset.

Either of two sets of defaults may
apply when a field to be displaved
on a 3270 is being defined but not
all parameters are specified. If no
ATTRB parameters are specified,
ASKIP and NORM are assumed. If any
parameter is specified, UNPROT and
NORM are assumed for that field
unless overridden by a specified
parameter.

COLOR=

specifies the colors to be used. If
this option is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the option
ignored.

GRPNAME=group-name

is the name (1 through 7 characters)
used to generate symbolic storage
definitions and to combine specific
fields under one group nhame. The
same group name must be specified
for each field that is to belong to
the group.

The fields in a group must follow
on; there can be intervening gaps
betuween them, but not other fields
from outside the group. A field
name must be specified for every
field that belongs to the group, and
the P0OS operand must be also
specified to ensure the fields
follow each other. All the DFHMDF
macros defining the fields of a
group must be placed together, and
in the correct order (upward numeric
order of the P0S operand).

For example, the first 20 columns of
the first six lines of a map can be
defined as a group of six fields, so
long as the remaining columns on the
first five lines are not defined as
fields.

Chapter 3.3.

The ATTRB operand specified on the
first field of the group applies to
all of the fields within the group.
The sum of the lengths of the fields
within the group must not exceed 256
bytes. If this operand is
specified, the 0CCURS operand
cannot be specified.

Examples showing the effect of this
operand are included later in the
chapter.

HILIGHT=

specifies the type of highlighting
to be used.

OFF
is the default and means that
no highlighting is used.

BLINK
specifies that the field is to
"hlink" at a set frequency.

REVERSE
specifies that the field is
displaved in "reverse video™,
for example, on a 3278, black
characters on a green
background.

UNDERLINE
) specifies that a field is
underlined.

If this operand is specified when
EXTATT=NO is specified in the
associated DFHMSD macro, a warning
will be issued and the operand
ighored.

INITIAL='character

data' [XINIT-hexadecimal data
specifies constant or default data
for an output field. The INITIAL
operand is used to specify data in
character form; the XINIT operand is
used to specify data in hexadecimal
form. INITIAL and XINIT are
mutually exclusive.

For fields with the DET attribute,
initial data that begins with a
blank character, "&", ">", or "%
should be supplied.

The number of characters that can bhe

specified in the INITIAL operand is

restricted to the continuation
limitation of the assembler to be
used or to the value specified in
the LENGTH operand (whichever is the
smaller).

Hexadecimal data is written as an
even number of hexadecimal digits,
for example, XINIT=C1C2. If the
number of valid characters is
smaller than the field length, the
data will be padded on the right
with blanks. For example,

Basic Mapping Support (BMS) 141

XINIT=C1C2 might result in an
initial field of 'AB '.

If hexadecimal data is specified

that corresponds with line or format
control characters, the results
will be unpredictable. The XINIT
operand should therefore be used
with care.

JUSTIFY=

specifies the field justifications
for input operations. This operand
is ignored for TCAM-supported 3600
and 3790, and for VTAM-supported
3600, 3650, and 3790 terminals, as
input mapping is not available.

LEFT
speci fies that data in the
input field is left-justified.

RIGHT
specifies that data in the
input field is
right-justified.

BLANK -
"specifies that blanks are to be
inserted in any unfilled
positions in-an input field.

ZERO
specifies that zeros are to be
inserted in any unfilled
positions in an input field.

LEFT and RIGHT are mutually
exclusive, as are BLAMK and ZERO.
If certain parameters are specified
but others are not, assumptions are
made as follows:

specified Assumed
LEFT BLANK
RIGHT ZERO
BLANK LEFT
ZERO RIGHT

If JUSTIFY is omitted, but the NUM
attribute is specified, RIGHT and
ZERO are assumed. If JUSTIFY is
omitted, but attributes other than
NUM are specified, LEFT and BLANK
are assumed.

If a field is initialized by an

output map or contains data from any

other source, data that is keyed as

input may not be justified and the

3@d}§ional data may remain in the
ield.:

LENGTH-number

142

specifies the length (1 through 256
bytes) of the field. This specified
length should be the maximum length
required for-application-program
data to be entered into the field;
it should not include the one-byte
attribute indicator appended to the
field by CICS/VS for use in

CICS/VS APRM (CL)

T

subsequent processing. The sum of
the lengths of the fields within a
group must not exceed 256 bytes.
LENGTH can be omitted if PICIN or
PICOUT is specified but is required
othernise.

The map dimensions specified in the
SIZE operand of the DFHMDI macro
instruction defining a map may be
smaller than the actual page size or
screen size as defined for the
terminal. The LENGTH specification
inal DFHMDF\macro instruction cannot
cause the map- defined boundary on
the same line to be exceeded. That
is, the length declared for a field
cannot exceed: the number of
posttlons available from the
starting position of the field to
the final position of the
map~defined line. For example,

given an 80-position page line, the
following map definition and field
definition are valid: :

DFHMDI SIZE=(2,40),...
DFHMDF PO0S=22,LENGTH=17,...

but the following definitions are
not acceptable: :

DFHMDI SIZE=(2,40),...
DFHMDF PO0S=22,LENGTH=30,...

0CCURS=number

\

§

\

PIC

specifies that the indicated number
of entries for the field are to be
generated in a map and that the map
definition is to be generated in
such a way that the fields are
addressable as entries in a matrix
or an array. This permits several
data fields to be addressed by the
same nhame (subscripted) without
generating a unique name for each
field. OCCURS and GRPNAME are
mutually exclusive; that is, OCCURS
cannot be used when fields have been
defined under a group name. If this
operand is omitted, a value of 1 is
assumed.

Examples showing the effect of the
O0CCURS operand are included later in
the chapter.

='value"'
specifies a picture to be applied to
an input field in an IN or INOUT

. map; this picture serves as an

editing specification which is
passed to the application program,
thus permitting the user to exploit
the editing capabilities of COBOL or
PL/I. The PICIN operand is not
valid for assembler-language
programs. BMS checks 'value' to

ascertain that the specified

characters are valid picture
specification characters for the
language of the map.

However, no validity checking of the
input data is performed by BMS or
the high-level language when the map
is used, so any desired checking
must be performed by the application
program. The length of the data
associated with 'value' should be
the same as that specified in the
LENGTH operand if LENGTH is
specified. If both PICIN and PICOUT
(see below) are used, an error
message is produced if their
calculated lenaths do not agree; the
shorter of the two lengths is used.
If PICIN or PICOUT is not coded for
the field definition, a character
definition of the field is
automatically generated regardless
of other operands that are coded,
such as ATTRB=NUM.

As an example, assume the following
map definition is created for
reference by a COBOL application
program:

MAPX DFHMSD TYPE=DSECT,
LANG=COBOL,

MODE=INOUT
MAP DFHMDI LINE=1,
COLUMN=1,
SIZE=(1,80)
F1l DFHMDF PO0S=0,LENGTH=30
F2 DFHMDF P0S=40,LENGTH=10,
PICOUT='$$$,$60.00"
F3 DFHMDF PO0S=60,LENGTH=6,
PICIN="9999V99",
PICOUT='229.99"
DFHMSD TYPE=FINAL

The following DSECT is génerated:

01 MAPI.

02 FIL PIC 59(4) COMP.
02 FIlA PIC X.

02 FILLER REDEFINES F1lA.
03 FIlF PIC X.

02 F1I PIC X(30).

02 FILLER PIC X.

02 F2L PIC S9(4) COMP.
02 F2A PIC X.

02 FILLER REDEFINES F2A.
03 F2F PIC X.

02 F2I PIC X(10).

02 FILLER PIC X.

02 F3L PIC $9(4) COMP.

02 F3A PIC X.

02 FILLER REDEFINES F3A.
03 F3F PIC X.

02 F3I PIC 9999V99.

02 FILLER PIC X.

01 MAPO REDEFINES MAPI.
02 FILLER PIC X(3).
02 F10 PIC X(30).
02 FILLER PIC X.
02 FILLER PIC X(3).
02 F20 PIC $$$,$%$0.00.
02 FILLER PIC X.
02 FILLER PIC X(3).
62 F30 PIC 279.99.
02 FILLER PIC X.

Chapter 3.3.

PICOUT='value"'
is similar to PICIN, except that a
picture to be applied to an output
field in the OUT or INOUT map is
generated.

Like PICIN, PICOUT is not valid for
assembler-language programs.

PsS=
specifies the programmed symbol set
to be used for the display of the
field.

BASE
specifies that only the basic
symbols are used.

psid
specifies a single EBCDIC
character or a hexadecimal
code of the form X'nn' that
identifies the set of
programmed symbols.

If this option is specified when
EXTATT=NO is specified in the
associated DFHMDS macro, a warning
will be issued and the option
ignored. If this option is
specified, but EXTATT is not,
EXTATT=MAPONLY will be assumed.

VALIDN=

MUSTFILL
spacifies that the field must
be filled completely with
data. An attempt to move the
cursor from the field before it
has been filled, or to transmit
data from an incomplete field,
will raise the inhibit input
conditions.

MUSTENTER
specifies that data must be
entered into the field. An
attempt to move the cursor from
an empty field will raise the
inhibit input condition.

MAP POSITIONING

The position of a map on a screen is
determined by two major factors: the
current contents of the screen, and the
values coded for the LINE, COLUMN, and
JUSTIFY operands of the DFHMDI macro.
Positioning is also affected if the
DFHMDI macro specifies HEADER=YES or
TRAILER=YES, and by the depth of the
deepest trailer map in the map set.

THE SCREEN CONTENTS
At any instant, the part of the screen

which is still available for maps is in
the form of either an L, a reversed L, a

Basic Mapping Support (BMS) 143

rectangle, or an inverted T, as shown by
the unshaded area in the following
diagram:

next col left next col right
from ref from ref
left col right col
I | I
v v v v
1177727777777/ 77777772727727/77277777277277777
LIVI2L 777277777777 7777772777777/7772272777
LI77 7777777777727 777277777777 777/7/777777
I27/ 7277777777727 7272727277/77/7727777/77277277
77777777 ~ 777777777
/17777777 /77777777
17777777 /11777777
77777777 current 177777777
I/ line 177777777
N\
next free
line
free
area
trailer

The shape and size of this area is
represented internally by four
variables: current line, next free line,
next column from left, and next column
from right.

Three other pointers are maintained that
are relevant to map placement though they
do not affect the area available: left
reference column and right reference
column, which are used when COLUMN=SAME
is specified, and trailer si:ze.

THE TRAILER AREA

The trailer size is equal to the number
of lines that would be occupied by the
deepest trailer map in the map set
currently in use. It is determined when
the map set is assembled, and is copied
from the map set whenever one is loaded.
The trailer size is assumed to be zero if
there is no overflow routine.

The area defined by trailer size is not
available for mapping unless no overflow
routine has been specified or the map has
TRAILER=YES specified in its DFHMDI
macro.

JUSTIFY=FIRST AND JUSTIFY=LAST
If JUSTIFY=FIRST is specified, the map is

placed on a new page, so that the only
maps above it are the header maps used in

144 CICS/VS APRM (CL)D

overflow processing. The LINE operand may
also be used with JUSTIFY=FIRST to place
the map below. the top of the page.

If JUSTIFY=LAST is specified, thamap is
placed as low as possible on the page.
For a non-trailer map, this is
immediately above the trailer area; for a
trailer map, it is at the bottom of the
page. In the absence of an overflow
routine, the trailer area is null and
JUSTIFY=LAST places the map at the bottom
of the page .

A map defined with JUSTIFY=LAST cannot be
used in input operations unless it was
previously put out without the ACCUM
option , in which case JUSTIFY=LAST is
ignored and the map is positioned at the
top of the page.

THE LINE OPERAND

The LINE operand specifies the line of
the screen on which the first line of the
map is to be placed. The initial
determination of this line is made
without regard to the specification of
the COLUMN operand or the columns
available on the screen on that
particular line. If it transpires that
the map will not fit on the chosen line,
the first subsequent line that will
satisfy the column requirements is
selacted.

If LINE=SAME or LINE=NEXT is specified,
the initial line selected for the start
of the map is the current line or the
next free line , respectively. If a
number is specified in the LINE operand,
the line with that number is selected,
provided the number is greater than or
equal to the number of the current line;
if not, the overflow condition is raised
so that the map can be placed on the next
page.

The line selected becomes the new current
line and, if it is below the next free
line, the next free line is reset to the
same line; the next column from the left
and right are also reset, to the left and
right margins respectively.

If the line selected is such that the end
of the map extends into the trailer area
for a non-trailer map or beyond the end
of the page for a trailer map, the
overflow condition is raised and the map
Wwill be placed on the first available
line of the next page when the request is
reissued after handling the overflow.

THE COLUMN AND JUSTIFY OPERANDS

The COLUMN specification may be either
NEXT, SAME, or a number and is processed
in conjunction with the LEFT or RIGHT
specification of the JUSTIFY operand.
JUSTIFY=LEFT is the default and implies

that the column specification is related
to the left-hand margin. Conversely,
JUSTIFY=RIGHT implies that the column
specification is related to the
right-hand margin. For the purposes of
this explanation, it is assumed hereafter
that JUSTIFY=LEFT has been specified (or
applied by default).

If COLUMN=NEXT is specified, the column

chosen for the map is the next column

from the left. If a numeric value is
specified, the column with that number is
chosen, counting from the left. If

COLUMN=SAME is specified, the left

reference column is chosen. (The left 3.
reference column is the one that was most
recently specified by number with
JUSTIFY=LEFT.)

The map is then checked to ensure that
its right margin is not to the right of
the next column from the right. If it
is, the map will not fit into the
remaining space, so a new line must be
selected. This will be either the next
full line or, if the map is too deep, the
first available line on the next page.

Finally, the column pointers are updated
by setting the next column from the left
to the right margin of the map, and, if
COLUMN=number was specified, by setting
the left reference column to the
specified column number.

PAGE BUILDING EXAMPLES

The effects of the mechanisms described
above are illustrated by the following
examples. The examples show the
interactions between SIZE, LINE, COLUMN,
and JUSTIFY=LEFT or RIGHT; header and
trailer maps and JUSTIFY=FIRST or LAST
are not brought into the examples.

In processing a BMS command, BMS .
determines whether the area of the page
required by the map is wholly available
or whether any part of it has been used
by an earlier command. "Used" means
actually filled by a map or rendered
unavailable as described belou.

1. When the LINE operand of the DFHMDI
macro is coded, all lines above the
specified line are unavailable.

2. When JUSTIFY=LEFT is coded (or
applied by default), all columns to
the left of the leftmost map column,
for the full depth of the map, are
unavailable

Chapter 3.3.

o3 172277

MAPA DFHMDI .»LINE=3,COLUMN=5,

JUSTIFY=LEFT,...
5

1I/L 7170777077777 7 /7777777777
SI0LSIII L7777 7707707777777 7/777777
3 (/7777
/7777
7777
/7777

Map A

When JUSTIFY=RIGHT is coded, all
columns to the right of the rightmost
map column, for the full depth of the
map, are unavailable.

MAPA DFHMDI .»LINE=3,COLUMN=35,
JUSTIFY=RIGHT, ...

35 1

V001717777777 7727 77777772/ 770/777777
L1170 700777772770 /77770/777777777

777777
777777
777777

Map A

When two or more maps are placed so
that they share certain lines, all
columns beneath a map that ends
higher are unavailable to the depth
of the map that ends lowast.
Similarly unavailable are all
columns to the left (if the higher
map is left justified) or to the
right (if the higher map is right
justified) of the 'used! area beneath
the higher map.

MAPA DFHMDI
MAPB DFHMDI

.»LINE=3,COLUMN=2,
JUSTIFY=LEFT,...

.»LINE=4,COLUMN=20,
JUSTIFY=LEFT,..

2 20

LI2IL 7777772777772 7277 7777777777777
SIS0/ PSS

-/ /
3 |s7 ASSUNNEEN RN SN NN NNNNNN
7/ NANNN
Vo4 Map A ASNN QN Map B
7/ ASNNNN
V4 AAVANANNNNNNNNANN

Basic Mapping Support (BMS) 145

MAPA DFHMDI
MAPB DFHMDI

.»LINE=3,COLUMN=2,
JUSTIFY=LEFT,...
.»LINE=4,COLUMN=20,
JUSTIFY=RIGHT, ..

2

£/ 0077777777777 777 7777777777777/
L1007 7777777727777 7777727777/77777

3 (/7
V4 ANLLLLNRANNNAN NN
V4 ANNN
/7 Map A Map B A\
77 ANV
7/ NANMAANNNNANNANYN

MAPA DFHMDI
MAPB DFHMDI

.»LINE=3,COLUMN=40,
JUSTIFY=RIGHT,...

.»LINE=3,COLUMN=1,
JUSTIFY=LEFT,...

S22 7 7772777777777 77777222777277727
LIl III7 7777777777772/ 2777777
3 /77
/77
Map A |77/
77/

NANNANNNNANN
NNNNANNANNAN
NAONNNANANNNYN
SAONNANNNNAN
NANNANANNNNANYN
NANNANNANNNNN

Map B

Figure 17 on-page 147 shows the effect of
several different maps on one page.

If an area of the page directly specified
for a map has already been used by a
previous map, the overflow condition is
raised. This condition is handled as
described later in the chapter under
"Overflow Processing."

USING MAPS

The symbolic description map provides
names for fields and groups of fields
that may be sent to and received from the
devices supported by BMS. The symbolic
description map must be copied into each
application program that uses the
associated physical map. (Refer to
"Copying Symbolic Description Maps"
below.)

Data can then be passed to and from the
application program under the field names
in the symbolic description map. (The
names used in the application program are
those defined by the DFHMDF macro

146 CICS/VS APRM (CL)D

instructions with the addition of the
suffix "I" for input or "O" for output.)

Since the application program is written
to manipulate the data under the field
names, altering the map format by adding
new fields or rearranging old fields does
not necessarily alter the program logic.

If the map format is altered, it is
necessary in most cases to make the
appropriate changes to the macro
instructions that describe the map and
reassemble both the physical map and the
symbolic description map. The new
symbolic description map must then be
copied into the application program and
the program reassembled or recompiled.
There are some map alterations that can
be made without reassembly of the
symbolic description map, in particular,
COLOR, PS, HILIGHT, and VALDN can be
added to existing maps if it is not
required to change the attributes
dynamically. It is only necessary to
specify EXTATT=MAPONLY, define the new
attributes, and reassemble the physical
map.

An application program has access to the
input and output fields using the names
given to the fields when the maps were
generated. The application-program
logic should be dependent upon the named
fields and their contents but should be
independent of the positions of the
fields within the terminal format. If it
is necessary to modify a map, the
existing application program must be
racompiled to gain access to the new
positions of these fields. Reprogramming
is not necessary to account for new
fields or for the changed terminal format
of those fields.

By tising BMS to construct and interpret
data streams, application programs can be
insulated from the device-dependent
considerations required to handle the
data streams. If necessary, the
application program can modify
temporarily the attributes or the initial
data of any named field in an output map.
A collection of named attribute
combinations is supplied within BMS so
that the application program remains
essentially independent of the data
stream format.

The ability to add to map definitions
without obsoleting existing application
programs permits the design and
implementation of systems in a modular
fashion with a progressive expansion of
the screen formats. Design and
programming of the first stages of
applications can begin before later
stages have been designed. These early
implementations are protected from
updates in the terminal formats.

L0277 7277777777777 277777727077777777727772277277227777727772777272777777277727727777/77/77777
L1277 77272277772727777727777277777777777777777777772277777/77727777277727277/777272/772727277277277

1177777
AT THLLTAHTE LA TR AR AR LRI NN 7777777
ATATHLHHTHLARTLH L ERE TR LR AR NN 7777777
ANSN QNN Map A 7777277
NANANN 7777777
ANSN QN 7777777
ANSN NN 7777777
NANANNN 7177777
ANSN NN Map B /1777777
NAANNNN 7777777
NN\ /11077777
ANSN NN Map C 1777777
NANNNN | JUSTIFY /177777
N\N\NN\N| = LEFT 1777777
ANSN RN Map D 7777777
NAANNNN 1777777
ANSS NN N AN NN NNNNNY JUSTIFY 17777777
ANANRILNNNNNNNNNNN = RIGHT 1177177
ANSS NN N NN NNNNNN JUSTIFY |(s/777/777
ANANNAUNNNNNNNNNNN = RIGHT {s77/7777
AANANNNNNANNNNNNNN JUSTIFY 1777777
ANANNANNNANANNNNN = LEFT 1777777
ANANNANNNNNNNNNN 1777777
ASSNSNNENNNNNNNNNY /7777277
ANSN SR NNNNNNNNNNNY /177777
ANAAANLANNNNNNNNN /1777777

Figure 17. Map Positioning for More than One Map

COPYING SYMBOLIC DESCRIPTION MAPS

The symbolic description maps must be
copied into the application program as
shown in the following examples;
"mapsetnamel™, "mapsetname2", and
"mapsetname3d"™ are the names of members
that contain the assembly of a BMS
symbolic storage definition. The
TIOAPFX=YES operand must be specified in
the DFHMSD macro instructions used to
define the maps.

1. Assembler language COPY statements.

COPY mapsetnamel
COPY mapsetname2
COPY mapsetnamel

.
. 2.
.

The symbolic storage definitions can
be copied into the DFHEISTG DSECT, in
which case storage will be provided
automatically. Alternatively, the
application program can provide its
own DSECT, storage, and
addressability. ‘

While it is generally stated that
TIOAPFX=YES must be specified in the
map definition macros, it is possible
to use maps created without the TIOA
pregix if the following technique is
used.

Chapter 3.3.

The EXEC interface program assumes
that the FROM or INTO option
specifies an area which includes the
12-byte TIOA prefix. If the symbolic
description maps do not include this,
the COPY instruction in the DFHEISTG
DSECT should be preceded by a filler,
as follows:

NEWNAME DS 12C
COPY MAP1

and the command must specify the FROM
or INTO option instead of using the
default, for example as follows:

EXEC CICS RECEIVE MAP('MAP1')
INTOCNEWNAME)

COBOL COPY statements. The names
"mapnamel”, "mapname2", and
"mapname3" in this example are the
names of the first maps in the map
sets. These names include the
appropriate suffix to signify the
type of map; that is, "I" for input
(or input/output), and "0" for
output.

The symbolic storage definitions can
be copied into either the linkage
section or the working-storage
section.

Basic Mapping Support (BMS) 147

If the symbolic storage definition is
copied into the linkage section, the
required storage must be obtained by
the application program and access to
this storage made by the BLL (base
locator for linkage) mechanism, as
follows:

61 BLLCELLS.
02 FILLER PIC S%(8) COMP.
02 MAPIBLL PIC $9(8) COMP.
02 MAP2BLL PIC $9(8) COMP.
02 MAP3BLL PIC S9(8) COMP.

01 mépnamel COPY mapsetnamel.
01 mapname2 COPY mapsetname2.
01 mapnamed COPY mapsetnamel.

-

If the symbolic storage definition is
copied into the working~storage
section, and there is more than one
map in the map set, and separate
storage is required for the data in
each map, the STORAGE=AUTO operand
must be specified in the DFHMSD
macros.

If working storage is used as the
origin or destination of data
processed by BMS it should be
initialized with low-values by a
"MOVE LOW-VALUES T0..." statement.

3. PL/I %ZINCLUDE statements.

ZINCLUDE mapsetnamel;
ZINCLUDE mapsetname2;
%INCLUDE mapsetnamed;

The symbolic storage definitions may
specify AUTOMATIC or BASED storage
depending on the operands of the
DFHMSD macro.

LOGICAL MESSAGE BUILDING

Logical message building allowus the
application program to:

. Combine several small mapped data
areas into one or more pages of
ocutput, or

. Prepare more output than can be
contained in one page of output.

A pPagR is the area of a terminal on which
data can be displaved or printed at one
time. The size of the area (in numbears
of lines and columns) for the terminal is
specified in the TCT by the system
programmer. A page of output may be
constructed by BMS from several small

148 CICS/YS APRM (CL)

maps, and these maps must be generated
together to form a map set.

The SEND MAP command is used to map and
position portions of a page. If all data
to be mapped cannot be contained on one
page, the overflow condition occurs and
control is passed to an overflow routine
within the application program. This
routine normally causes any required
trailer (footing) data to be placed at
the foot of the page, the current page to
be written to temporary storage, a new
page to be started, a heading to be
placed on the new page, and the data
causing the overflow to be mapped on the
new page.

As each page of output is completed, it
is written to temporary storage to await
completion of other pages. The result of
building output data in this cumulative
manner is known as a logical message. A
SEND PAGE command signifies completion of
the logical message. Alternatively, the
logical message is completed upon
termination of the application program
unless CICS/VS has insufficient storage
available, in which case the logical
message is deleted.

An alternative way to build a logical
message without the use of maps is by
means of SEND TEXT commands. Data is
passed in text data format, which BMS
places on succeeding lines (and pages, if
necessary) without reference to maps. A
word is not split between lines; any word
that cannot fit on the remaining portion
of a line is placed on the next line.
Formatting can be controlled by new-line
characters (X'15') embedded within the
text. A SEND PAGE command signifies
completion of the logical message;
alternatively, the logical message is
completed upon termination of the
application program unless CICS/VS has
insufficient storage available, in which
case the logical message is deleted.

OUTPUT OPERATIONS

The SEND MAP and SEND TEXT commands can
be used individually to request BMS to
map data and transmit it to a terminal or
to a data area in the application
program.

Alternatively, these commands can be used
to build a logical message cumulatively.
The logical message is built by
successive SEND MAP or SEND TEXT
commands, each of which must include the
ACCUM option. Finally, a SEND PAGE
command must be issued to complete the
logical message and transmit it.

SEND MAP and SEND TEXT commands cannot be
used to build portions of the same
logical message. The process of building
a logical message can be discontinued by
means of a PURGE MESSAGE command, which

(a) | TC I Page Buffer ' TC | Page Buffer X'FF ... FF" ’
4 bytes 4 bytes 4 bytes
(b) ' CICS/VS Storage Acctng Buffer Length | Reserved Data ﬁJ
8 bytes o 2 bytes 2 bytes x bytes
Figure 18. Page Address List (SET Option)
deletes the portions of the message command. The code is available also in

already built.

OUTPUT COMMANDS HITH THE SET OPTION

The SET option of the SEND MAP and SEND
TEXT commands causes completed pages to
be returned to the application program
and a pointer to be set to the address of
a list of completed pages. Since more
than one page of output may result from a
single BMS output command, there may be
more than one entry in the list for a
given type of terminal. The entries for
each type of terminal immediately follow
one another in the list (TC is the
terminal code as described in the next
section). The list is laid out as shoun
in Figure 18.

The page buffer pointer in (a) of
Figure 18 points to an area of storage
which has an eight-byte storage
accounting prefix, as shown in (b) of
Figure 18.

At this point, page buffers are on the
user's storage chain and are
disassociated from BMS control blocks;
when no longer needed, page buffers
should be released by the FREEMAIN
command. The data to be freed should not
include the storage accounting prefix.
The storage containing the list of
buffers should not be freed; the list
Wwill be reused to reduce processing time.
This list nill be altered by the next BMS
command; its contents must be saved
before that command is executed.

TERMINAL CODE TABLE

A terminal code table is established
within BMS for reference in servicing
BMS-supported terminals. There is one
entry in this table for each terminal
supported under BMS. The terminal codes
that appear in the table are given belou.
This code appears in the list of
completed pages made available to the
application program when the SET option
is specified in a SEND MAP or SEND TEXT

Chapter 3.3.

the EIBRCODE field of the EXEC interface
block when the INVMPSZ condition occurs;
for a description of this field, refer to
"Appendix A. EXEC Interface Block™ on
page 239.

Code Terminal or Logical Unit

CRLP or TRMTYPE=TCAM terminals
Magnetic Tape
Sequential Disk
TWX Model 33735
1050
2740-1,-2 (no buffer receive)
2741
2740-2 (with buffer receive)
2770
27890
3780
3270 (40-character width)
3270 (80-character width)
Not used
Not used
1 3767770 Interpreter LU
2980 Models 1 and 2
2980 Model 4
Not used
Not used
3600 (3601) LU
3650 Host Convers (3653) LU
3650 Interpreter LU
3650 Host Convers (3270) LU
2 3770 Batch LU
Not used

Used also for the 3790 full function
logical unit, the SCS printer logical
unit, and the S5CS printer.

2 Used also for the 3770 and 3790 batch
data interchange logical units.

N<LKXESKCHUOBOTOZZrXRXC-ITOTMOUOwE >

[

MESSAGE ROUTING

Message routing permits an application
program to build and route a logical
message to one or more terminals. The
message is scheduled, for each designated
terminal, to be delivered as soon as the
terminal is available to receive
messages, or at a specified time.

Basic Mapping Support (BMS) 149

A ROUTE command initiates a message
routing operation. It is followed by

. SEND MAP or SEND TEXT commands to build
the logical message to be routed. A SEND
PAGE command terminates the page building
and causes the message to be routed.

Whan individual logical messages are
routed to a terminal, they are not
necessarily delivered in the sequence in
which they were issued. If a specific
sequence is required, the pages must be
output as one message.

The SEND MAP or SEND TEXT commands that
build the message must include the ACCUM
option. Other SEND MAP or SEND TEXT
commands without the ACCUM option can be
interleaved mith these commands to send
messages to the terminal that initiated
the transaction while the message to be
routed is being built.

Another consideration of routing to
different types of terminal is the
handling of overflow conditions. Since
di fferent types of terminal may have
different page sizes, the overflow
condition is apt to occur at different
times in page building. BMS returns
control to an overflow routine in the
application program, indicating which
type of terminal caused the overflow and
Qow many pages have been created for that
vpe.

The message routing facility of BMS is
useful for developing message switching
and broadcasting applications. CICS/VS
provides a generalized message switching
application program that uses the message
routing facility of BMS (see the CICS/VS
Operator's Guide for details).

BMS MESSAGE RECOVERY

BMS provides message recovery for routed
and non-routed messages. Recoverable
messages must satisfy the Tollowing
requirements:

U The PAGING option must have been
specified in the BMS output commands
that built the logical message.

. The BMS default REQID (%%) or the
speci fied REQID for the logical
message must have been identified to
the temporary storage program (via
the TST) as recoverable.

. The task that built the message must
have reached its logical end of task.

. The temporary storage program and the

interval control program must also
support recovery.

150 CICS/VS APRM (CL)

e

_____’/,M

DISPLAY DEVICE OPERATIONS (BMS)

The information in this section applies,
in general, only to the IBM 3270
Information Display System. All the
basic facilities described in the section
"Display Device Operations" in "Chapter
3.2. Terminal Control"™ on page 85 can be
requested in a BMS program. The following
additional facilities apply only to BMS,
and are described in the following
sections:

. Symbolic Cursor Positioning

o N
. Terminal Operator P g Commands

-

SYMBOLIC CU POSITIONING

The CURSOR option of the SEND MAP and
SEND TEXT commands can be used to
position the cursor on completion of an
output operation. Alternatively, a
method called symbolic cursor
positioning can be used, which allows a
field in the data to be marked,
symbholically, such that the cursor is
placed under the first data byte of the
field on the output screen.

Requirements for the use of symbolic
cursor positioning are as follows:

] MODE=INOUT must be specified in the
DFHMSD macro.

. CURSOR must be specified in the BMS
command.

. The length field, suffix "L",
associated with the field under which
the cursor is to be placed must be
initialized to -1.

The remainder of the data may be built as/
desired by the user. Symbolic cursor
positioning is operable only for devices/
that allow cursor placement to be /
performed independently of data /
placement; for example, 3604 and 3270.
Symbolic cursor poswtionlng is 1gnored

1 for other devuces o

ETEﬁﬁINAL OPERATOR PAGING COMMANDS

The commands used by terminal operators
to communicate with BMS are collectively
known as terminal paging commands, or
simply as paging commands. Their format
and use are discussed in detail in the
CICS/VYS Operator's Guide.

Cursor placement is an important
consideration in programming for paging
commands. Any of the following can cause
a paging command not to be the first data
read by CICS/VS and therefore not to be
interpreted as a paging command.

. After a print operation on a 3275
‘Display Station, the cursor is set to

position zero. A paging command
entered at this location is not
recognized unless the last position
of the buffer contains an attribute
byte or the buffer has been cleared.

. A field sent with the DATAONLY option
of the SEND MAP command and without
an attribute in the data (that is,
with an attribute byte in the data
having the value X'00') is written
into the buffer without an attribute
byte. If the application program
places the cursor in this field and
the operator keys a paging command
beginning at the cursor location, the
paging command is not recognized.

Since the field has no attribute
byte, the data is considered to be an
extension of the previously defined
field. When the operator keys into
the middle of the
harduare-recognized field and
presses the enter key, the field is
transmitted from the beginning of the
previously defined field. The data
at the beginning of the field is
examined for a paging command and
responded to accordingly.

. Cursor specification in the BMS
commands can adversely affect
operator action if the cursor is not
set at the beginning of a field.
Paging commands entered at a cursor
location that is not the beginning of
a field are not recognized by BMS
because data transmission starts at
the beginning of the field if the
field is not set to nulls (X'00').

MAP_INPUT DATA (RECEIVE MAP)

RECEIVE MAP(name)
[SET(ptr—ref)|INTO(data—value)l
[MAPSET (name)]

[FROM(data—area) LENGTH(data—value)]
JERMINALLASIS]]

Conditions:
EOC, EODS, INVMPSZ, MAPFAIL, RDATT

This command is used to map data into a
data area in the application program.
The source of the data can be either a
terminal (TERMINAL option) or another
data area in the program (FROM option).
If neither option is specified, TERMINAL
is assumed. The ASIS option inhibits
translation of lowercase characters to
uppercase. ‘ '

Chapter 3.3.

If the FROM and LENGTH options are used,
the length specified must equal the value
received by the corresponding terminal
control RECEIVE command that includes the
INTO and LENGTH options.

The data area into which the data is to
be mapped can be specified in the INTO
option. Alternatively, BMS will supply a
data area and place its address in the
pointer reference given in the SET
option.

Data from certain logical units is not
mapped, but is left unaltered. Refer to
the appropriate CICS/VS subsystem guide
for details.

If neither the INTO option nor the SET
option is specified, it is assumed that
the data is to be mapped into the data
area defined by the symbolic description
map copied into the program. This can be
accomplished only if the map name
provided is a literal constant. If it is
a variable, INTO or SET must be
specified. If the data is to be written
into another data area, it must be named
in the INTO option. The data area named

must be large enough to accommodate the
mapped data.

Once the data has been mapped, fields
within the mapped data can be referred to
by the field names specified in the
DFHMDF macro instructions used to define
the map with the additional suffix "I".
(For example, a field named PERSN must be
referred to in the application program as
PERSNI.)

The data area into which the data is
mapped must include a 12-byte prefix for
use by BMS. The application program must
make provision for this prefix only if a
data description other than the
BMS-supplied symbolic description is
used, or if TIOAPFX=YES is omitted from
the DFHMDI macro defining the map.

If the symbolic description is included
in the linkage section of a COBOL

application program, the 12-byte prefix

must not be overwritten.

If RECEIVE MAP commands are used to read
data from a 3770 batch logical unit, the
FMHs will be removed. However, if an FMH
is required, a terminal control RECEIVE
command should be included to deal with
the FMH, followed by a RECEIVE MAP
command with the FROM option to map the
data.

Basic Mapping Support (BMS) 151

MAP OUTPUT DATA (SEND MAP)

SEND MAP(name)
FROM(data—area) IDATAONLY]|MAPONLY
[LENGTH(data—value)]l
[MAPSET(name)]
[FMHPARM]
[REQID(name)]
[LDC(name)]
[CURSORI[(data—value)l]
[SET(ptr—ref) |PAGING]
TERMINALIWAITI]
[ACCUM]
[ERASE|ERASEAUP1]
[PRINT]
[FREEKB]

LUs only

LUs only

]
[L40|L64|L80]HONEOM]
[NLEOM]

[LAST] LUs only
Conditions:

IGREQCD, IGREQID, INVLDC, INVMPSZ,
éggEEQ, OVERFLOW, RETPAGE, TSIOERR,

This command is used to map output data.
Several successive SEND MAP commands with
the ACCUM option can be used to build a
logical message, which must be completed
by a SEND PAGE command.

If the FROM option is omitted, it is
assumed that the data to be mapped is in
the data area defined by the symbolic
description map copied into the program.
This assumption is valid only if the map
name provided is a literal; if it is a
variable, the FROM option must be
specified. If the data is to be obtained
from another data area, it must be named
in the FROM option; the LENGTH option is
not required unless the data to be mapped
is less than the total length of the data
area named.

The data area specified by the FROM
option must include & 12-byte prefix for
use by BMS. The application program must
make provision for this prefix only if a
data description othaer than the
BMS;supplied symbolic description is
used.

In the symbolic description map
definition, the DFHMSD macro must have
the TIOAPFX=YES operand specified either
explicitly or implicitly by the
appearance of the STORAGE=AUTO operand.

The mapped data can be transmitted to a
terminal (specify the TERMINAL or PAGING
option) or made available to the
application program in its mapped form

" (specify the SET option). If none of
these options is specified, TERMINAL is
assumed. The WAIT optien specifies that
control is not to be returned to the
program until the operation is completed.

152 CICS/VS APRM (CL)

The PAGING option causes the logical
message to be placed in temporary storage
until it is requested by paging commands
entered by the terminal operator. The
PAGING option conflicts with the LAST
option and is ignored.

If the disposition specified by the
PAGING, SET, or TERMINAL option is
changed while a logical message is being
built, the INVREQ condition occurs.

The DATAONLY and MAPONLY options are used
to specify that application-program data
only, or default data only, is to be
written. If both these options are
omitted, data placed in the data area
named in the FROM option by the
application program is merged with
default data from the map. The
user—-supplied data and/or attribute
character (3270 only) supplied for a
given field replaces the corresponding
default data and/or attribute character
from the map. The MAPONLY and FROM
options are mutually exclusive. If the
user-supplied data for a field is X'00°',
the data from the map for that field is
used. If the user-supplied attribute for
a field is X'00', the attribute from the
map for that field is used.

The mapped data is positioned by BMS
within an area large enough to contain
one page of output. The application
program need not keep track of when a
page is full: a HANDLE CONDITION
OVERFLOW command will cause BMS to
transfer control to an overflow routine.

The ERASE option should always be
specified on the first SEND MAP command
to select the correct screensize for the
application.

If ACCUM is specified, the po