
Program Product

SC33-0086-1

Customer Information
Control System/Virtual
Storage (CICS/VS)
Version 1 :Release 5

Entry Level System
User's Gui"de (DOS/VS)

Program Number 5746-XX3 (CICS/DOS/VS)

Second Edition (May 1980)

This edition applies to Version 1 Release 5 (Version 1.5) of the IB!
program product Customer Information Control System/Virtual Storage
(CICS/VS), program numbers S7Q6-XX3 (for DOS/VS)-and 57QO-XX1 (for

OS/VS). Until the OS/VS version is released, the information applicable
to that version is for planning purposes only.

This edition is based on the CICS/VS Version 1.q.1 edition, and changes
from that edition are indicated by vertical lines to the left of the
changes. Note, however, that the 1.Q.1 edition remains current and
applicable for users of Version 1.Q.1 of CICS/VS.

Information in this publication is subject to change. changes will be
published in new editions or technical newsletters. Before using this
publication, consult the latest IB~_Syst~370 and Q300 Processors
BibliograEhY, GC20-0001, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material ~ay contain references to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication; if the form has been removed, comments may be addressed
either to:

International Buiiness Machines Corporation,
Department 812HP,
1133 Westchester Avenue,
White Plains, New York 1060Q.

or to:

IBM United Kingdom Laboratories Limited,
Programming Publications, Mail Point 095,
Hursley Park,
Winchester, Hampshire S021 2JN, England.

IBM may use or distribute any of the information you supply in. any way
it believes appropriate without incurring any obligation WhateVer. You
may, of course, continue to use the informationyoll supply.

© Copyright International Business Machines Corporation 1978, 1979,
1980

ii

Preface

This publication is intended fo.r users of the CICS/DOS/VS Entry Level
System ~ICS/DOS/VS-ELS). Its purpose is to provide all of the
informatio.n no.rmally needed to. design, install, and service the system,
and to write and run CICS/DOS/VS-8LS applicatio.n programs.

CICS/DOS/VS-BLS is a subset o.f CICS/DOS/VS. It requires an IBM ij300
or IBM 310 pro.cessor operating under VSE/Advanced Functions Release 2,
suppo.rting the IBM 3210 information display system.

Data files fo.r use with the entry level system may be o.rganized using
the Indexed sequential Access Metho.d (ISAM) o.r the Virtual storage
Access Method (VSAM).

In this publication, the term VTAM refers to. ACP/VTAM or to
ACF/VTAME. The term ~ refers to BTAM-ES. For further details of
system requirements, refer to the publication CICStVS General
Information.

The reader is assumed to have a basic knowledge of VS8 batch
processing and some programming experience in o.ne of the fo.ur languages
supported, which are:

• Assembler Language

• COBOL

• PL/I

• RPG II

QR§ANIZATION OF TH!~~UAL

The info.rmatio.n in this manual is organized intofo.ur parts and five
appendixes, as fo.llows:

• Part 1 is an introductio.n to. data communication systems in general,
and to. CICS/DOS/YS-ELS in particular. It also. defines the syntax
no.tation used in the rest o.f the manual.

• Part 2 covers applicatio.n pro.gramming in five chapters. The first
chapter describes the CICS/VS functio.ns available to. the entry
level system user; it is intended to be used as an applicatio.n
design guide at first, and later as a so.urce o.f reference to.
CICS/YS co.mmands during applicatio.n pro.gramming. The remaining
chapters give info.rmatio.n specific to. each of the fo.ur pro.gramming
languages suppo.rted, such as translato.r o.ptio.ns, co.mmand syntax,
and a sample pro.gram written in the particular language.

• Part 3 co.vers system pro.gramming in eight chapters. It describes
how to install the system as supplied by IBM, ho.w to. run the sample
pro.grams, and ho.w to. tailo.r the system to. the requirements o.f the
user's installation. Also included in this part are chapters o.n
system executio.n (fo.r example, o.perato.r pro.cedures), servicing, and
performance consideratio.ns.

Preface iii

• Part 4 contains two chapters describing the facilities available
for proqram checkout. The first chapter describes a comprehensive
online diagnostic aid, and the second provides an introduction to
trace and dump facilities.

• The appendixes are:

Appendix Ai which is a summary of the program libraries
supplied for the entry level system, and their contents.

Appendix B describes the fields of the EXEC interface block,
which is a control block containing current information
relating to the interface between the application program and
the system. The fields can be read by any application program.

Appendix C provides system programming 'information for use when
CICS/DOS/VS-ELS is runninq under the virtual Telecommunications
Access !ethod (VTAM).

Appendix D gives information relating to the printer
authorization matrix that can be defined for the IBM 3274
control unit.

Appendix E describes how to load programmed symbol sets into
program symbol store.

Appendix F briefly describes the Facility Error Recognitioa
System (P'ERS).

Appendix G is a guide to transferring from the entry level
system to full CICS/DOS/VS.

A bibliography follows Appendix G.

iv CICS/DOS/VS-BLS User's Guide

PART 1. INTRODUCTION

CHAPTER 1.1. INTRODUCTION.
Introduction to Data Communication •
Introduction to the Entry Level System •
Syntax Notation Used in this Manual

PART 2. APPLICATION PROGRAMMING

CHAPTER 2.1. APPLICATION DESIGN
Use of Examples in this Chapt'er

Command Level Interface
Translator Data Sets •

Command Syntax Checker •
Terminal Control •

•

The IBM 3210 Information Display System
Screen Layout Design •
3210 Field Concepts
Basic Mapping Support (BMS)
Terminal Control Commands

Access to System Information •
Access to Data Bases •
File Control •

VSAM Data Sets •
File Control Commands

Transient Data Control •

•

Transient Data Control Commands
Temporary storage Control
Program Control
Interval Control •
Exceptional Condition Handling

HANDLE CONDITION Command •
List of Exceptional Conditions

CHAPTER 2.2. ASSEMBLER LANGUAGE PROGRAMMING.
Translator Invocation
Assembler Language Translator Options
Command Syntax •
General Rules for Assembler Language Programming
Description of UPDATE Sample Program •
Listing of UPDATE Sample Program and Maps

CHAPTER 2.3. COBOL PROGRAMMING
Translator Invocation
COBOL Translator Options • •
Command Syntax •
General Rules for COBOL programming
Description of UPDATE Sample Program •
Listing of UPDATE Sample Program and Maps

CHAPTER 2.4. PL/I PROGRAMMING.
Translator Invocation •
Translator Options
Command Syntax •
General Rules for PL/I Programming
Description of UPDATE sample Program •
Listing of UPDATE Sample Program and Maps

CHAPTER 2.5. RPG II PROGRAMMING •

Contents

• 3
• 3

3
• 4

• 9
10
11
12
12
14
14
16
11
21
25
33
34
36
37
40
48
49
53
58
65
12
12
13

75
15
75
75
76
79
81

89
89
89
92
92
95
97

105
105
105
108
109
110
11.1

119

content's v

Translator Invocation
Translator Options • • •
Command Syntax • • • •
General Rules for RPG II Programming •
Description of BROWSE Sample Program ••
Listing of BROWSE Sample Program • • • • •

PART 3. SYSTEM PROGRAMM!!iQ.

CHAPTER 3.1. CIC3/VS SYSTEM DESIGN
Introduction to CICS/VS Program Logic •••••

Transaction Flow • • • • • • • '
CICS/VS Operating Environment •••• ~ •
System Control Functions • • • • • • • ~ •

CffAPTER 3.2. SUPERVISOR GENERATION

CHAPTER 3.3. INSTALLATION OF DISTRIBUTION VOLUME
Establishing Standard Labels • • • • • • • •
Contents of the Distribution Volumes • • • • • • •
Processin~ the DistributionVolu.es •••••
Bringing Up the System to Run the Sample Program •

The DFHJCELS Macro - CICS/DOS/VS-ELS Installation Aid
Running the Sample Programs

Running User Applications

CHAPTER 3.q. TABLE GENERATION.
Table Generation Procedures ••••
DCT -- Destination Control Table • •
FCT File Control Table •••
PCT -- Program Control Table • •
PPT -- Processing Program Table
SNT -- Sign-on Table • • • • • •
'lCT -- Terminal Control Table

CHAPTER 3.5. PREPARATION OF APPLICATION PROGRAMS
Program Compilation and Translation

~ssembler Language Programs' '. • •
. COBOL Programs • •

PL/I Programs • • • • • •
RPG II Programs ••• • • • • • • • • • • • •
supplied Cataloged Procedures

• 119
• • • • • 119

• • • • 120
• 121

123
• 126

135
135
135
1QO

• lQ2

• 143

• • • • 145
1Q5

• 145
• • 146
• • 146

146
• 153

• • • • • • • 153

• 155
• 155
• 157

• • • 163
• 171

176
• 180
• 182

• • 191
• • • • 191

191
193

• • • • 194
• • • • • 196

197
Map Creation and Cataloging • • • • ". • • • • • 200

Physical and Symbolic Description Maps •
Map Definition Macros ••••
Cataloging Maps •• • • • • • • • • •

CHAPTER 3.6. ENTRY-LEVEL SYSTEM EXECUTION.
Startup Override Parameters
Console Operator Procedures ••••

. C ICS/VS Startup
CICS/VS Termination
Processor Console as CICSjVS Terminal

• • • • • • • 201
• 203
• 213

• 217
• • • • 211

• • • • • 222
• 222

• • 223
225

• 226
• 227

ftaster TarBinal Operations •
Program Function Keys ••••
Scrolling • 228
Tasks •••••
Trace Program
Dump Program • •
CICS/VS Shutdown •
Terminals
Control Units ••••
Lines •••••
Data Base Files

. '. .

Dump Data Set ••••.••••

vi CICSjDOS/VS-ELS User's Guide

. . ~. .

• 228
• 229
• 229
• 230

• •.• • 230
• 231
• 232
• 232

233

~ransient Data File
Programs
Transactions. •

•

User Terminal Operations
Sign-on/Sign-off Procedure •
3270 Print Procedure
CWTO Transaction •
User Transaction Requirements •
Transaction Error Recovery Procedures

CHAPTER 3.7. SERVICING

•

•

•

Authorized Program Analysis Report (APAR) Fixes
DFHGEN Macro • •
Preventive Service (PUT) Tape

CHAPTER 3.8. PERFORMANCE •
Design Criteria •

•

Operating System Design from a Performance Viewpoint •
Supervisor Generation •
TPBAL Command
Basic Telecommunications Access Method (BTA!)
Data Base Access Methods (ISA! and VSAM)

CICSjVS System Design from a Performance Viewpoint •
Sequence of Entries in CICS/VS Tables

•

Storage Reguirements for Execution (Command Level) Diagnostic
Facility (EDF)

Application Program Design •
Use of CICSjVS Statistics

PART q. PROGRAM CHECKOUT
Introduction •

CHAPTER q.1. EXECUTION
Functions of EDF •
Security Rules •

(COMMAND LEVEL) DIAGNOSTIC FACILITY
•

Installing EDF •
Invoking EDF •
Using EDP Displays •
Checking Out Pseudo-conversational
Program Labels •

Programs

CHAPTER 4.2. TRACE AND DUMP CONTROL.
ABEND Command
ENTER Command
DUMP Command.
Trace Table Analysis
Dump Analy sis

PART 5. APPENDIXES

APPENDIX A. ENTRY LEVEL SYSTE! SUMMARY
Source Statement Libraries
Relocatable Library
Core Image Library

APPENDIX B. EXEC INTERFACE BLOCK
EIB Fields •
EIBPN Codes
EIBRCODE Codes •

(EIB)

•

APPENDIX C. CICS/DOS/VS-ELS UNDER VTAM

APPENDIX D. PRINTER AUTHORIZATION MATRIX
Defining the Printer Authorization Matrix
Loading the Printer Authorization Matrix •

contents

•

233
• 233

234
• 234
• 235
• 236

236
237

• 237

• 239
• 239

239
• 241

243
243

• 244
• 244
• 244

245
• 245

246
247

• 247
• 248
• 248

249

• 251
• 251

253
• 253

253
• 254

261
• 262

263
• 263
• 263

264
264
265

• 269
• 269
• 269
• 271

• 273
• 273
• 275
• 276

• 279

• 281
• 281
• 282

vii

APPENDIX E. LOADING PROGRAMMED SYl!BOLS • 283

APPENDIX F. THE FACILITY ERROR RECOGNITION SYSTEM •• • 285

A·PPENDIX G. TRA NSFERRING TO A FULL CICS/DOS/V S SYSTE" •
CICS/VS Generation • • • • • •
Table Generation • • • • • • • •

• 287 . . • 287
• 287

System Initialization Table • • • • • 287
BMS Maps • • • • • • ~ • • • • • • • • • • 287
Application Programs • • • • • • • • • • . • • • • • • • 287

BIBLIOGRAPHY • • 289

INDEX 291

viii CICS/DOS/VS-ELS User's Guide

Figures
2.1-1.
2.2-1.
2.2-2.
2.3-1.
2.3-2.
2.4-1.
2.4-2.
2.5-1.
2.5-2.
3.3-1.
3.5-1.

3.5-2.

3.5-3.

3.5-4.

3.5-5.

3.5-6.

3.5-7.

3.5-8.

3.5-9.

3.5-10.

3.5-11.

3.5-12.

3.5-13.

3.5-14.

3.5-15.

3.5-16.

3.5-17.
3.5-18.
3.6-1.

3.6-2.

3.6-3.

3.6-4.
3.6-5 ~ .
3.6-6.
3.6-7.
3.6-8.

3.6-9.

3.6-10.

Application Program Logical Levels • • • • • • • • • • 59
Menu Screen Layout (as seen on 40-character Screen) •••• 86
File Screen Layout (as seen on 40-character Screen) •••• 87
Menu Screen Layout (as seen on 40-character Screen) 102
File Screen Layout (as seen on 40-character Screen) 103
Menu Screen Layout ~s seen on 40-character Screen) •••• 116
File Screen Layout (as seen on 40-character Screen) • 117
RPG II Format of a CICS/VS Command • • • • • • • • • • • • • 121
Menu Screen Layout (as seen on 40-character Screen) •••• 131
Example of Job Control Required to Run CICSjDOSjVS-ELS • • • 151
Assembling an Application Program using DASD as
Intermediate storage for the Translator Output •
Assembling an Application Program using Tape as
Intermediate Storage for Translator Output • • •
Compiling COBOL Application Programs using DASD as
Intermediate Storage for the Translator Output • •
Compiling COBOL Application Programs using Tape as
Intermediate Storage for the Translator Output • • • •
Compiling PL/I Application Programs using DASD as
Intermediate Storage for the Translator Output
Compiling PL/I Application Programs using Tape as
Intermediate Storage for the Translator Output •
Compiling RPG II Application Programs using DASD as
Intermediate storage for the Translator Output •
Compiling RPG II Application Programs using Tape as
Intermediate Storage for the Translator Output •
Example of Cataloged Procedure (DFHEITAL) for

• 192

192

• 193

• 194

• 195

• 195

196

• • • 197

Assembling Application Programs using DASD as Intermediate
Storage for Translator Output • • • • • • • • • • • • • • • 198
Example of Cataloged Procedure (DFHEITCL) for
Compiling COBOL Application Programs using DASD as
Intermediate Storage for Translator Output • • • •
Example of Cataloged Procedure (DFHEITPL) for Compiling
PL/I Application Programs using DASD as Intermediate

• • 198

Storage for Translator Output ••••••••••••••• 198
Example of Cataloged Procedure (DFHEITRL) for Compiling
RPG II Application Programs using DASD as Intermediate
Storage for Translator Output • • • • • • • • • • • • •
Use of Cataloged Procedure for Assembling Application

199

Programs • • • • • • • • • ••• • • • • • • • • • 199
Use of Cataloged Procedure for Compiling COBOL Application
Programs • • • • • • • •• •• • • • • • • • • • • • • • 199
Use of Cataloged Procedure for Compiling PL/I Application
Programs • • • • • • • •• ••• • • • • • • • • • • 200
Use of Cataloged Procedure for Compiling RPG II Application
Programs • 200
Cataloging Maps using DASD Intermediate Storage • • 215
Cataloging Maps using Tape as Intermediate Storage • • • 216
CICS/VS startup in a Background Partition using a
Sequential SYSIN Device •••• • • • • • • • • • 222
CICS/VS Startup in a Foreground Partition using a Sequential
SYSIN Device ••••••••••••••••••••• 222
CICS/VS Startup in a Foreground Partition using a DASD SYSIN
Device • 223
Job Stream Used to Print the CICS/VS SYSLST File • • • • 223
Job Stream Used to Print a CICS/VS Dump File from Tape • • • 224
Job S'tream Used to Print a CICS/VS Dump File from DASD ••• 224
Job Stream Used to Consolidate the Log File •••••••• 224
Job Stream Used to Print the Auxiliary Trace Data Set
from Tape ••• • • • • • • • • • • • • • • 225
Job Stream Used to Print the Auxiliary Trace Data Set
from DASD •••• • • • • • • • • • • • • • 225
Console as a Terminal in the Background Partition • • 226

contents ix

3.6-11. Console as a Terminal in a Foreground Partition · 226
~ .1-1. Typical ED!' Display · · · · · · · · · · · · · 25"
B-1. BIBFN Codes · · · · · · · · · · · · 216
B-2. EIBRCODB Codes · · · · · · · · · · · · · 211
0.1. Map Definition for Printer Authorization Matrix · 282

x CICS/DOS/VS-ELS User's Guide

Summary of Amendments for Version 1 Release 5

This publication supersedes, for CICS/VS Version 1 Release 5, the
£ICS/VS Entry Level System User's Guide, SC33-0086-0. The Guide has
been modified to accommodate the following changes to CICS/VS introduced
in version 1 Release 5:

• Command Syntax Checker

•

A new transaction (CECS) enables an application programmer to check
the syntax of CICS/VS commands.

Enhanced Master Terminal, Supervisory Terminal, and Ordinary
Terminal transactions replace the existing transactions. The new
transaction identifiers are CEMT, CEST and CEOT respectively.

Extended Data Stream •
CICSjVS 1.5 uses an extended data stream to communicate with
devices which can use COLOR, EXTENDED HIGHLIGHTING and PROGRAMMED
SYMBOLS when displaying application data.

• Q1LI High Level Programming Interface

A new set of commands allows COBOL and PL/I programmers to process
DL/I data bases.

• The Facility Error Recognition System WERS)

FERS, an integral part of CICS/VS 1.5, collects communication error
data to facilitate communication system fault diagnosis.

Summary of Amendments xi

Part 1. Introduction

1

Chapter 1.1. Introduction

Introduction to Data Communication

In the conventional batch processing environment, application programs
are usually scheduled individually to process a batch of data records in
a physical or logical sequence. Data files in such environments tend to
be organized to suit the requirements of a particular application.

The real-time data communication environment differs from the batch
processing environment primarily in the numoer and types of activities
that are likely to occur concurrently within the system. A data
communication system controls many requests arriving randomly, and data
files tend to be organized so that many application programs can access
the same data. If this type of file organization is used extensively in
a data communication system, it is called a data base/data communication
(DB/DC) system.

Some of the characteristics of data communication systems are:

• A data communication system is terminal-oriented. Application
programs executed under the control of such a system receive input
entered from terminals connected to the computer, and direct output
to the same or different terminals, as well as transmitting data to
and from files.

• A data communication system is capable of handling two or more
application programs concurrently.

• A data communication system allows different application programs
to access the same data base.

Introduction to the Entry -Level System

CICS/DOS/VS-ELS (or the "entry level system," a synonym used in this
manual) is a subset of CICS/VS designed for ease of installation and
use. Although it has a limited set of functions, these functions have
bean carefully chosen for their wide range of applications. This subset
is compatible with the larger CICS/DOS/VS and CICS/OS/YS systems.
Little or no change need be made to an application program to enable it
to run on the larger systems.

CICS/VS is an interface between the customer's application programs
and the operating system, designed to enable tbe customer to build and
operate a DB/DC system that is tailored to the requirements of a
particular installation.

CICS/VS provides commands for the application programmer to use in
the program to request services such as reading and writing files and
controlling terminals. When these commands are executed, CICS/VS passes
the requests to the operating system. In this way, the application
programmer is relieved of the difficult task of providing such services
on the random basis that a terminal-oriented system demands. The
commands can be written to any of four syntaxes, whicb conform to those
of the four programming languages supported.

Chapter 1.1. Introduction 3

CICS/DOS/VS Version 1.5 operates under VSE/Advanced Functions Release
2, and can be regarded as an extension of this operating system.

According to the configuration of his system, a CICS/VS user might
re·quire additional licensed programs. For details of these proqrams see
the CICS/VS General Information Manual.

CICS/DOS/VS is executed as one job, eith~r in a dedicated modewitb
no other partition operating, or in a multiprogramming mode with one or
more batch partitions.

Within its partition, CICS/DOS/VS can control the concurrent
processing of input from and output to many terminals by many
application programs. The terminal operator invokes an application
program by entering a transaction identifier at the terminal; this
causes CICS/DOS/VS to attach a task to execute the program. The sys.tem
can handle more than one transaction at a time DY mUltitasking, that is,
by overlapping input/output operations' and processing.

Since it resides in a partition with a high priority, CICS/DOS/VS
retains system control in a multiprogramlling environment as long as
there are transactions to be serviced. It relinquishes c.ontrol to VSE
only when it has no further processing to do.

CICS/DOS/VS takes advantage ot operating system services; for
example, it uses BTA! or VTAM for terminal input/output, and standard
file access methods, such as DAM, ISAM, and 'SAM. (The application
programmer may not specify any files as DAM, but the system may use it
for certain operations.)

The functions of the entry level system are described in Chapter 2.1,
which readers are advised to survey briefly before familiarizing
themselves with the chapter in Part 2 that is specific to their
programming language, returning to Chapter 2.1 later for a closer
examination of the system functions.

Further introductory information about the system is given in Chapter
3.1.

Syntax Notation Used in this Manual.

The syntax notation used in this manual is as follows:

• Braces indicate that from a set of aiternatives, one must be coded.
A vertical bar separates thaalternatives. For example:

{TIME (data-value) I INTERVAL (data-value)}

• Brackets indicate that the enclosed is optional. For example:

[FREEKB I FRSET][ALARM]

• Uppercase entries must be used exactly as shown.

• Lowercase entries must be replaced by a suitable parameter.

• Defaults are indicated by an underscore.

• "data-value" can be replaced by any element (that is, a data name
or varia·ble) of the correct data type, or by a constant that can be
converted to the correct type~ The data type required can be:

CICS/DOS/V5-ELS User's Guide

halfword binary

fullword binary

packed decimal

• "data-area" can be replaced by any element, but not a constant, of
the correct data type.

• "pointer-refll can be replaced by the name of any data pointer (or,
for Assembler language, by a reference to a register).

• "name" or "identifier" (for example, file-nama and queue-identifer)
can be replaced by:

A literal constant.

An element containing a character string of length equal to the
maximum length allowed for the name. The name must be padded
with blanks to provide a character string of the length
required.

• "label" can be replaced by any program label (or paragraph or
section name). For assembler language, it can also be replaced by
a reference to storage containing the addrass value of the label.

• Parentheses () act as delimiters. They must be coded unless the
accompanying text states otherwise.

• An ellipsis (•••) indicates that the preceding element in the
statement can be repeated. For example:

SERVREQ = (request [, •••])

indicates that SERVREQ can be used to define one or more service
requests. Multiple service requests are made by coding a list of
keywords, separated by commas.

Chapter 1.1. Introduction 5

Part 2. Application Programming

7

Chapter 2.1. Application Design

This chapter is designed to serve both as a guide to the facilities
offered by ELS for application programming and as a reference source to
the associated commands.

Each section describes a set of related functions, and the CICS/VS
commands that invoke them, classified as follows:

Command level interface
-- the means by which CICS/VS accepts instructions written to a
syntax similar to that of the application programming language

Terminal control
-- screen layout and input/output to and from terminals

Access to system information
-- use of CICS/VS storage areas to pass information between
application programs

Access to data bases
-- CICS/VS relieves the application programmer of many data
management tasks.

File control
-- direct-access processing of ISAM and VSAft files

Transient data control
--. general queuing of data inside and outside the CICS/VS
partition1 sequential input/output

Temporary storage control
-- storing of data in virtual storage for later retrieval by
any program (a IIscratchpadll facility)

Program control
-- transfer of control, with or without accompanying data,
between programs

Interval control
-- initiating transactions (that is, starting tasks that
execute application programs) according to time of day or
elapsed time

Exceptional condition handling
-- overriding the system default actions for exceptional
conditions

Each section gives a general description of the related set of
functions, followed by a description of the associated commands (with
the general syntax of each), then a list of the command options for the
set, and finally a list, if applicable, of the exceptional conditions
that can occur during the execution of the commands. The general syntax
of the commands is presented in a way that does not relate to a
particular programming language; the language-specific sections of the
manual show how to interpret this syntax in terms of the particular
language.

The CICS/VS commands described are generally used in place of the
corresponding functions in the application programming language. For

Chapter 2.1. Application Design 9

example, programmers must not use input/output functions from their own
language, they must use the CICS/VS commands.

USE OP EXA!PLES IN THIS CHAPTER

Because of the differences in syntax between the programaing languages
supported, the examples in this chapter are shown in a generalized form
that does not relate to a specific language. (Por details of the syntax
of CICS/VS commands in the different languages, see the language- .
specific chapters later in this part.) The generalized form is as
follows:

1. Only CICS/VS commands are shown formally in upper case.

2. All other essential instructions are set out informally in upper
and lower case English. (The sample programs supplied in each of
the languages contain detailed examples of the features described
in this section, in the appropriate language context.)

~~S Commands

The coded form for CICS/VS com.mands in the examples in this section
consists of:

EXEC CICS command-keyword [options]

Thus, if the command

EXEC CIeS RE~UBN TRANSID (ll!IO')

appeared in an example, it would represent the following in the
different languages:

lssembler
EXEC CICS RETORI TR1ISID('1!IU')

COBOL
EXEC CICS RETORN TR1NSID('1!NU') END-BXEC

PL/I
EXBC CICS RETORN TRANSID(11BNO');

RPG II (in a calculation specification)

Colulln 1
8

RETORN
TRAISID

10 CICS/DOS/VS-BLS User's Guide

2
8

EXBC

3
3

BLEB 'A810'

other Instructions

Essential instructions other than CICS/VS commands are set out in
English. For example:

Copy the value in ACCTNO to KEYF.

would represent the following in the different languages:

Assembler
!VC KEYF,ACCTNO

COBOL
MOVE ACCTNO TO KEYF.

PL/I
KEYF = ACCTNO:

RPG II (in a calculation specification, assuming field length 5)

Column

Command Level Interface

1
8

2
8

3
3

I!OVE ACCTNO

4
3

KEYF

5
1

5

The comlland level interface consists of the comlland language translator
and the EXEC interface program.

The command language translator accepts as input a source program,
written in one of four languages, in which CICS/VS commands have been
coded. The translator produces as output an equivalent source prograll
in which the CICS/VS commands have been translated into CALL statements.
At execution time, the CALL statements invoke the EXEC interface
program, which accepts the arguments passed in the CALL statements, sets
up the parameters in the CICS/VS control blocks, and passes control to
the appropriate CICS/VS facility. The four languages supported are
assembler language, COBOL, PL/I, and RPG II.

The translator is executed in a separate job step_ The job step
sequence for preparing an application program is translate - compile or
assemble - link-edit. Cataloged procedures are supplied to assist the
user; for details, see Chapter 3.5, "Preparation of Application
Programs." The translator requires a partition of 64K bytes except for
RPG II, which requires 128K bytes.

The translator reads its input from SYSIPT,produces its output (the
translated source program) on SYSPCH (or, for RPG II only, optionally on
5YS003), and writes the source listing, error messages and so on, on
SYSLST. The translator will reject functions that are not supported by
the entry level system.

There are four separate translators, one for each language.

Chapter 2.1. Application Design 11

I
I
I
I

TRANSLATOR DATA SETS

Three translator data sets (files) are required: one for source input,
one for translated output, and one for listings.

Input and OutEut Data Sets

The input and output data sets must be sequential. They may be on
punched cards, a direct-access device (or devices), or magnetic tape.
They must contain 80-byte fixed-length unblocked records.

Listing Data Set

The listing data set must be sequential~ Although the listing is
usually printed, it can be stored on any magnetic tape or direct access
device. It must contain 121-byte fixed-length, unblocked records.

OEtional Pacilitiee

The translator provides a number of optional facilities, for example, to
allow for different record formats and to specify what information is
required on the listing. There are different sets of options for the
different languages; for details, see the section appropriate to the
language you are using.

Command Syntax Checker

CICS/VS-ELS supports a command syntax checker. To invoke the checker,
an operator types the transaction code CECS. The transaction responds
by displaying a menu panel which contains a list of CICS/VS commands.
When the operator types one of the listed keywords onto the command line
and presses ENTER, the interpreter displays the full syntax of the
command.

Por example, selecting the keyword ABEND produces the following
display:

?ABEND
STATUS: COMMAND SYNTAX CHECK

EXEC CICS ABEND
<ABCODE () >
<CANCEL>

I~: The brackets < > indicate optional parts of the command, and
I brackets () indicate data to be supplied (if they are empty), or
I eXisting data (if they contain text).

12 CICS/DOS/YS-ELS User's Guide

Program Function~

When an operator uses the command syntax checker, he can use program
function (PF) keys to perform a variety of operations. The bottom line
of the display contains a list of the keys. If the terminal has no PF
keys, key pressing can be simulated by positioning the cursor under the
key name within this list and pressing ENTER. The keys are as follows:

PF1: END SESSION
ends the current session of the command interpreter.

PF2: RE-DISPLAY
re-displays the current screen to enable confirmation that a
change entered on the screen has in fact taken place as
expected.

PF3: SWITCH BEX/CHAR
switches the display between hexadecimal and character
representation. This is a mode switch; all subsequent displays
will stay in the chosen mode until the next time this key is
pressed.

PF4: EIB DISPLAY
shows the contents of the EXEC interface block (EIB). (See
Appendix A for a description of the fields in the EIB).

PF5: VARIABL ES
shows all the variables associated with the current command
interpreter session, giving for each its name, length, and
value.

PF6: USER DISPLAY
shows what the user would see if the terminal bad been
executing a transaction which contained the comaands which have
been executed using the interpreter.

PF7: SCROLL UP HALF
scrolls half a screenful upwards.

PF8: SCROLL DOWN HALF
scrolls half a screenful down~ards.

PF9: EXPAND MESSAGES
shows all the messages generated during the syntax check of a
command.

PF10: SCROLL UP
scrolls one screenful upwards.

PF11: SCROLL DOWN
scrolls one screenful downwards.

PF12: UNDEFINED
means that this key is not available with this type of display_

Chapter 2.1. Application Design -- Command Level Interface 13

Terminal Control

CICS/VS-ELS supports the IBM 3270 range of displays and printers. This
discussion covers the elements of display layout design, then the
mechanism by which the programmer specifies the selected screen layouts
to CICS/VS (that is, Basic Happing Support (BMS», and finally the
terminal control commands and options available under ELS.

THE IBM 3270 INFORMArION DISPLAY SYSTEM

This section describes 3270 input and output operations, screen design
considerations, and 3270 field concepts.

The 3270 screen layouts maybe designed using the form IBM 3270
Information Display System Layout Sheet (GX27-29S1).

3270 Input Operations

The terminal operator keys the transaction code and any required input
data on the 3270 keyboard. Where applicable, any keyed-in data is
immediately displayed on the screen for sight verification. An
underscore character (cursor) indicates the screen position of the next
character to be entered. The operator may use any of the following 3270
features to enter data or correct errors:

Typamatic keys
Forward and backward tabbing keys
New line tabbing key
Horizontal cursor positioning keys
Vertical cursor positioning keys
Backspace key
Erase input key
Erase end-of-field key
Character insertion and deletion keys

These and other 3210 features are described in the Operatorls Guide
for the IBM 3270 Information Display System.

When the ~ata has been correctly entered on the screen, the terminal
operator may transmit it to the processing unit by using one of the 3270
input keys, the selector light pen, the cursor select key, or the
operator identification card reader attached to the 3270. The following
3270 input keys are available, depending on the keyboard ordered:

Enter key
Clear key
Test request key
Cursor select key
Program function keys (PF1~F2q) or (PF1-PF12)
Program access keys (PA 1-PA3) or (PA 1-PA2) •

An attention identification (AID) character is always transmitted to
the processing unit for 3270 input operations. However, input data is
transmitted to the processing unit only when the enter key, program
function ~F) keys, or the identification card reader is used. If the
selector pen or cursor select key is used, the screen locations of
selected fields without data are transmitted, provided that the fields

lq CICS/DOS/VS-ELS Userls Guide

are selection fields. (Purther information on selector pen fields is
given in Chapter 3.5' under the 1TTBB=DET operand of the DPH!DP macro.)
When a program access (P A) key or the clear key is used, no data is
transmitted. The test request key is not used by CICS/VS.

The CICS/VS terminal control program reads the data entered by the
operator and makes it available to the requested program. It also
indicates to the application program which input key was used to
transmit the dat,a. This lID ,character is made available in a field
called EIBAID (or, for BPG II, EAID). Alternatively if, prior to the
terminal read, the application program has set up an exit routine to
trap occurrences of the input key being depressed, control is
transferred to that routine.

To help the programmer identify the AID character, CICS/yS has
providedl a set of constants, under the n,ame DPBAID, that may be copied
into a user prog.ram. Por further details see under "BANDLB AID
Command," later in this chapter.

To reduce transmission tiae and improve throughput, the 3270
transmits only modified data fields and suppresses nulls (XIOO·). 1s a
result, the input data stream is not in a form that can be conveniently
handled by the application program. CICS/'S basic mapping support
(discussed later in this chapter) converts the data stream to a
convenient form.

127Q Outeut Operations

The application program processes the input data, prepares a response to
send to the 3270 terminal, and specifies whether or not the 3270 screen
is to be erased before the data is sent.

If the program does not specify ERASE, the output data overlays a
predetermined portion of the screen without changing the remainder of
the data on the screen. The operator can then view data sent to the
terminal at different times by different write operations~

This overlapping of output data on the screen can be used to guide
the operator with special messages' without destroying the application
data being viewed. However, care must be taken in designing the screen
layouts to avoid conflicting use of, the same area of the screen. ~he
last few lines at the bottom of the screen are often reserved for
operator messages.

After reformatting the output data, B!S uses the terminal control
program to send the data to the terminal. The application program may
also send special control characters to the 3270 to activate the
following features:

• Sounding the audible alarm at the terminal (special feature)

• Unlocking the keyboard for data input

• Besetting the modified status of each field

• Printing the contents of a screen

• Erasing all unprotected fields

Chapter 2.1. Application Design -- Terminal Control 15

I

SCREEN LAYOUT DESIGN

The unique features of the 3270 system allow screen layouts to be
designed for operator convenience and efficiency. The success of an
online system depends on its ease-of-use, screen clarity, and terminal
operator acceptance.

The following features of some IBM 3270 displays make it easier for
the layout designer to fulfil the- requirements:

I • color
I • field highlighting
I • programmed symbols
I • easy correction
I • numeric shift for numeric data
I • validation
I • field delimiters or stoppers (to control the length of data entered)

The first step in designing 3270 screen layouts is to divide the
screen into functional areas such as a title area, an application data
area, and an operator message area.

Title Area

The title area of a screen should identify the program that displayed
the data. Data fields from the same file can appear in the same screen
locations for different applications, permittin.g the operator to become
familiar with fields by their screen location. A title can be used to
help the operator recognize the application. The title area is normally
the top one or two lines of the screen and may contain a page number~ if
multiple pages are needed, field headings, and other information besides
the title.

Application Data A rea

The application ,data a.rea comprises the main portion of the screen.
Data from one or more records in the same file or multiple files is
entered or displayed, depending on the application requirements.

Three types of fields are usually found in this area: keyword, data,
and stopper fields.

The keyword fields contain constant information sent by the program
to identify the contents of a data field. For example, a keyword field
containing 'JACCOUNT BALANCE:" might precede and identify a data field
containing"$129 .54". A keyword field might also be used in a data
entry application to identify the data being entered. For example,

QUANTITY:
means enter the quantity.

The data fields contain file data that the application program
retrieves from files and displays. The data may appear exactly as
stored in the file, or it may be edited by the program. Data fields may
also be left blank for the operator to enter data. The application
program can use the entered data to make changes to a record or to alter
the processing of the program. In some cases, it may be appropriate for

16 CICS/DOS/VS-ELS User's Guide

the program to display characters in an entry data field to guide the
operator in entering the data. For example,

DATE: KliDDY!
means enter month, day, year, each having two characters.

stopper fields (see "Attribute Character" in the section "3270 Field
Concepts") on data entry screens restrict the length of the data fields.
Stopper fields containing no data are used to define the space between
data fields and to stop the operator from entering too many characters
in a field. For example, a field containing a street address may be 20
characters long, but for screen layout reasons an entire line of 40
characters is provided for this field. To prevent the operator from
keying more than 20 characters on this line, the program should define a
stopper field starting in the twenty-first position of the line. The
stopper field should be protected from data entry to restrict the
operator to the 20-character field.

Message Area

The message area of a screen is used to send instruction messages to
assist the operator in processing a transaction. This area should be
separate from the application data area to allow communication with the
operator, without disturbing the application data. The message area is
normally the bottom one or two lines of the screen.

3270 FIELD CONCEPTS

The 3270 is available in several screen sizes (see "Screen Sizes" later
in this chapter). A program can divide these screens into multiple
fields. The fields combine to produce a complete screenful of data, an
• image'.

A field starts with an attribute character, continues with data
characters, and ends at the next attribute char~cter. A field may
contain only 1 character or it may span several lines, since the last
character on a line is logically followed by the first character on the
next line. Basic mapping support limits a field to 256 bytes and does
not allow a field to extend beyond the bottom of the screen, "wrapping"
the screen.

Normally, an image is divided into several fields by the program but
it is possible to have an image with no fields (no attribute
characters). This occurs when the operator presses the clear key. Such
unformatted images are not supported by basic mapping support and are
not described in this manual. An application program can use the HANDLE
AID command, described later in this section, to detect the use of the
clear key~ also, an attempt to read from a cleared screen raises the
MAPFAIL condition.

Chapter 2.1. Application Design -- Terminal Control 17

Attribute Character

'I'he attribute character is always the first character: of a'field. It
occupies a character position on the screen but appears as, a blank. An
extended data stream is used to communi<;:ate with a device which 'supports
extended color, highlighting, programmed symbols 'or validation. The
single"blank attribute' character prodUced by such a data stream can
reprasent several attribute bytes.

Attribute bytes can convey the following field attributes.

• UnRrotected

In an unprotected field, the operator may enter any keyboard
character.

• Numeric onl,!

A numeric only field is u:nprotected 'and only the numeric characters
o through 9' and the special characters period, dash, and "DUP" may
be entered. If t'he keyboard numeric lock feature is installed on
the 3270 and the operator attempts to enter any other cha,racte~s,
the keyboard is locked. If the keyboard numeric lock feature ~s
not installed, any data can be entered in the field. Ona data
entry keyboard, a nUlIleric-only field ca'uses a numeric shift to
occur.

• Protected

Data cannot be entered in a protected field. If the operator
attempts to enter data, the keyboard is locked. Stopper fields
following variable-length data fields are normally defined'with
protected attribute characters. If the operator attempts to enter
more characters than the variable lenqth data field can c()ntai~6
the stopper field following it' wil.l'causethe keyboard to be
locked.

• Autoskip

Anautosk,ip field is a protected field which a'utoDla,tically skips
the cursor to the; next unprotected field. ;Keyword fields and
stopper fields following fixed-length data fields are normally
defined with autoskip attribute characters. r

1!.Qte: The unprotected, numeric only" protected, and autoskip
characteristics of the attribute character are 'mutually exclusive.

, Only one maybe selected for each field.

• Normal intensity

A normal inte,nsity field displays the 'data at the normal operating
intensity.

/

A bright intensity field "displays ,the data at' a brigliter than
normal intensity. This is often used to highl'ightkeywords,
errors, or operator messages. ~

18 CICS/DOS/VS-ELS, User"s Gu,ide

• ~ase color

The IBB 3279 model 21 or 31 display produces a Ibase color' image
by using the PROTECT and IITEHSIFY attributes of the IB! 3270
standard data stream to select four colors: white, red, blue, and
green. 1 switch on the display control panel permits the operator
to select default color, causing the display to behave as a
monochrome 3270 display, with WBITE representing INTENSIFY. The
'protect' bit retains its protect function when conveying color
information.

• Extended color

The IB! 3279 model 2B or model 3B uses extended color attributes in
an extended data stream to determine the colors of display
elements. The data streaa can specify the colors of multi
character fields. Seven colors can be selected. They are blue,
red, pink, green, turquoise, yellow, and neutral.

An IB! 3279 Rodesl 2B or 3B will act as a Bodel 21 or 31 until it
detects an extended color attribute byte in the data stream. It
will display the image in default color or base color, according to
the setting of the switch on the control panel.

I As soon as an extended color attribute is received, the display
I treats the whole image as an extended color image. Fields which
I have no color attribute adopt the default colors wrean for normal
I intensity, white for bright). If the color control switch has been
I set to Ibase color', the part of the image which has already been
I displayed will change from base color to default c010r. Such a
I change, which could disturb an operator, can be avoided by applying
I an extended color attribute to the first field in any image which
I uses extended color.

The device interprets extended color attributes to determine the
colors of fields in an image.

• Extended highlighting

Extended highlighting can be applied to characters, or character
fields, in a display which uses the extended data stream. It can
take one of three forms: REVERSE VIDEO, BLIBK, or UBDERLIBE.

• Nondisplay

1 nondisplay field does not display the data on the screen for
operator viewing and does not print the field data. This might be
used to enter security information when the screen is visible to
others. This attribute characteristic should be used with care, as
the operator loses the ability to verify the data entered in a
nondisplay field. This field might also be used to store messages
on the screen. The messages can be displayed later by changing the
attribute character to bright or normal intensity. The 'protect'
bit retains its protect function while conveying color information.

Note: The normal, bright, and nondisplay characteristics of the
attribute character are autually exclusive. Only one may be
selected for each field.

Chapter 2.1. Application Design -- Terminal Control 19

• Programmed symbols

As well as the standard display sy~bol sets, t~e IB!l 3278.and the
IBK 3279 Kodel 2B or 3B can have optional., .addi t,ional symbol store,
enabling them to display up to six 191-charac:t;.er symbol sets, whose
font·s and codes are defined by the u~er. Characters in different
display fields can be selected from 'different symbol 'sets. This
feature uses~ the ,extended data.stream.

Appendix E describes how to load Symbol Sets.

• Selector~n detectable

A selector pen detectable field is sensitive to· the selector pen
(special feature) and the cursor select ~ey. Two types of
detectable fields are possible: a delayed detectable field and an
immediately detectable field.

If a delayed detectable field is selected by the operator using the
s~!ector pen, ,the modified-data tag: (!DT) is turned on • If an .
immediately detectable field is selected, the modified-data tag is
turned on and transmission occurs. Further information on selector
pen fields is given in Chapter 3.5 under the ATTRB=DEr operand of
the DPHKDP macro. The publication IBM 3270 Information Display
Syst~~omp~~~~iEi!~ de~cribes the use of detect~ble
fields.

• Validation

The extended datastreaDl can be used to define a,n input field in an
IBK 8775 display ~s a MANDATORY PILL, or !lA»DATORY ENTER field.

!landatory fill
Input field must be filled before pressing ENTER.

Mandatory enter
The operator must key data into the input field before
pressing ENTER

• !odified-data tag (MDT)

The modified-data tag is turned on when fields are modified by the
operator. When the operator presses the enter key o~ a PP key,
only fields which have been modified by the operator or selected by
the selector, pen are transmitted to the computer. The program may
send fields to the 3270 with the modified-data tag already on to
guarantee that the field will be returned with the next
transmission .,

• Insert-cursor indicator

The insert-cursor indicator is no't, a field att~ibute" Instead, it
positions the cursor, under the first data character of the field.
If multiple fields specify insert cursor, the cursor is positioned
with the last field specified. If .no insert cursor is specified,
the cursor is placed at position zero ,(row 1, colum.n 1) on the
screen.

20 CICS/DOS/VS-ELS User's Guide

Screen Sizes

As mentioned above, the 3270 is available in several screen sizes. Some
3270 devices are available with two screen sizes: the DEFAULT (small)
size and the ALTERNATE Uarge) size. The system programaer specifies
the screen sizes in the terminal control table (TCT), and specifies, in
the program control table (PCT) for each transaction, which of the two
possible sizes that transaction will use. See Chapter 3.4 for details.

If ERASE is not specified on a terminal output command, the screen
will be unchanged from its previous setting, that is, the previous
transaction selection, or the default if the operator has just switched
on or has cleared the screen.

In normal practice, this means that an application program should
specify ERASE with its first output request& On receipt of a CLEAR key
indication, CICS/VS will preserve the selected screen size, so that an
ERASE is not needed for output requests following the first.

BASIC MAPPING SUPPORT (BMS)

The facility used by the ELS programmer to interface with 3210 devices
is known as Basic Mapping Support (BMS).

Basic mapping support provides commands and options that can be used
to specify formatting in a standard way. BMS adapts data streams
provided by the application program, to satisfy the requirements of a
particular device. Conversely, data received from a device is converted
by BMS to a standard form.

Data Mapping And Formatting

Data mapping is the technique used by BMS to convert the standard non
device-dependent data format, which the application program uses, to and
from the device-dependent data stream required for the particular
terminal in use. Device-dependent control characters are embedded or
removed by B8S during this processing.

The standard format ("field data format ..) in which the application
program can provide or accept BMS data is as follows:

Data is provided to BMS as separate fields. Each field is given a
symbolic field name, which is used when passing data to, or retrieving
data from, BSS. The data stream is presented to BMS as a series of
fields, each of which has the following form:

r--,
LENGTH I ATTR I EXT: ATTRS. t FIELD DATA

LENGTH
Two bytes containing the length (in bytes) of the following
field.

t
.i

Chapter 2.1. Application Design - Terminal Control 21

ATTR
'I single byte defining attributes of the field, such as
protected or unprotected.

EXT. ATTRS.
Four bytes which define special field attributes to a device
with special features. Por example, they can convey field
color information to an IB! 3279.

FIELD DATA
The data to be displayed, and to vhich the attributes vill be
applied.

p'efininq Maps

As a preparatory step to using Bes mapping in a particular application,
tvo forms of map are assembled offline by means of CICS/VS macro
instructions:

1. Physical map - used by B!S to convert data to or from the format
required by the application program.

2. Symbolic description map - used by the application program to refer
to the data in storage. This map is a set of source statements
held in a source library and copied into the application proqram
during compilation.

All maps form part of a map set'; a lIap set may consist of one or aore
related maps that are generated and stored together in the CICS/VS
libraries.

A map set is prepared using the following macros: DPB!SD to define
the map set, DFBMDI to define the maps in the map set, and DPH!DP to
define and name the fields in each map. The set of macro instructions
for each map set is assembled twice, once to produce the physical maps,
and once to produce the symbolic description maps.

~: Application programmers may need to create and catalog their ovn
maps; however, for the purposes of this manual, operations using macros
are treated as system programming. Accordingly, details of the BSS
macros and associated information are in Chapter 3.5 of this manual.

Map sets are accessed by BSS through program control. Each map set
name must be entered in the processing program table (PPT) by the system
programmer (see Chapter 3.4).

22 CICS/DOS/VS-ELS Userls Guide

!!sing Maps

The symbolic description map provides names for fields and groups of
fields that may be sent to and received from the devices supported by
BMS. The symbolic description map must be copied into each application
program that uses the associated physical map. (The method of copying
varies according to programming language. See "Copying Symbolic
Description Maps ," in Chapter 3.5.) Data can then be passed to and from
the application program under the field names in the symbolic
description map. (The actual names used in the application program are
those defined by the DFHMDP maCro instructions with the addition of the
suffix "I" for input or "0" for output.) Since the application program
is written to manipulate the data under the field names, altering the
map format by adding new fields or rearranging old fields does not
necessarily alter the program logic.

If the map format is altered, it is necessary in most cases to make
the appropriate changes to the macro instructions that describe the map
and reassemble both the physical map and the symbolic description map.
The application program must then be recompiled so that the new symbolic
description map is copied into the program. If changes to the map are
restricted to addition of extended attributes, and the extended
attributes will not be changed by the application program, only the
physical map need be reassembled.

An application program has access to the input and output data fields
using the names supplied to the fields when the maps were generated.
The application-program logic should be dependent on the named fields
and their contents but should be independent of the relative positions
of t,he data fields within the, terminal format. If it becomes necessary
to reorganize or add to a map format, the existing application program
must be recompiled to gain access to the new positions of these data
fields. Reprogramming is not necessary to account for new fields or for
the changed terminal format of ~hose fields.

CICS/VS ,provides a list of the standard attribute bytes that may be
used by the programmer in modifying the. attribute assigned to a field.
The programmer must copy these constants into the program using the name
DFHBMSCA (DBMSCA for RPG II). The following constants will then be
a va,i1able for the programmer's use.

Chapter 2.1. Application Design -.' Terminal Control 23

CONSTANT

DFHBMUNP
DFHBMUNN
DFHBMPRO
DFHBM1SK
DFHBMBRY
DFHBMDAB
DFHBMFSE
DFHBMPRF
DFHBMASF
DFHB!ASB
DFHBMPEM
DFHBMPNL
DFHDFT

DFHBLUE
DFHRED
DFBPINK
DFHGREEN
DFHTURQ
DFHYELLO
DFHNEUTR
DFBBLINK
DFHREVRS
DFHUNDLN
DFHMFIL
DFHMENT
DFHKFE

~ II CONSTANT

DBltUNP
DBltUNN
DB!tPRO
DBMASK
DBMBRY
DBltDAR
DBMFSE
DBMPRF
DBMASF
DBMASB
DBMPE!
DBMPNL
DDFT

DBLUE
DRED
DPINK
DGREEN
DTURQ
DYELLO
DNEUTR
DBLINK
DREVRS
DUNDLN
DMFIL
DMENT
DMFE

ATTRIBUTES

Un protecte d
Unprotected numeric only
Protected
Autoskip
Brigh t intensity
Nondisplay
MDT on (field set)
Protected and MDT on
Autoskip and MDT on
Autoskip and bright intensity
Printer end of message
Printer new-line character
Default override for attribute
values in maps
Blue
Red
Pink
Green
Turqouise
Yellow
Neutral
Blink
Reverse video
Underline
Mandatory fill
Mandatory enter
Mandatory fill and mandatory enter

Additional attribute constants may be created and cataloged to the
source statement library by defining singla-character areas, with the
appropriate value, in the source language.

The value of the attribute constant may be determined by referring to
the manual IBM 3270 Information Display System Component Description.

The application program can temporarily modify the attributes or the
initial data of any named field in an output map. BMS supplies a
collection of named attribute combinations so that the application
program remains essentially independent of the data stream format. (See
"Attribute Character," earlier in this section) •

The ability to add to map definitions without changing application
programs permits modular design and implementation of systems, with a
progressive expansion of the screen formats. Design and programming of
the first stages of applications can beg in before later stages have been
designed. These early implementations are protected from updates in the
terminal formats.

Display and Print Options

In addition to the techniques discussed here, the following options are
provided and are grouped together in the syntax displays that accompany
the descriptions of the commands. The explanations of the options are
given later in this section, under "Terminal control Options."

24 CICS/DOS/VS-ELS User's Guide

ALARM
CURSOR
ERASE
ERASEAUP
FREEKB
FRSET
HONEOM
L40
L64
L80
PRINT

~mbolic Cursor Positioning

The CURSOR option of the SEND MAP command can be used to position the
cursor on completion of an output operation. Alternatively, a method
called symbolic cursor positioning can be used. symbolic cursor
positioning allows a field in the data to be marked, symbolically, such
that the cursor is placed under the first data byte of the field on the
output screen.

Requirements for the use of SCP are as follows:

• MODE=INOUT must be specified in the DFHMSD macro.

• CURSOR, without an argument, must be specified in the command.

• The length field, suffix "L", associated with the field under which
the cursor is to be placed must be initialized to -1.

TERMINAL CONTROL COMMANDS

Terminal control commands are provided to:

• Receive data from a terminal into a data area in the program
(RECEIVE MAP)

• Display a formatted screen with initial data only (SEND MAP
MAPONLY)

• Modify an already formatted screen, by sending only changed data
(SEND MA P DATAONLY)

• Display a formatted screen together with variable data (SEND MAP)

• Erase unprotected (that is, keyed-in) fields on a screen, leaving
the screen format and initial data intact (ISSUE ERASEAUP)

• Print the contents of a screen (ISSUE PRINT)

• Pass control on receipt of an attention identifier from a terminal
(HANDLE AID)

• Load a programmed symbol set (see Appendix E)

Not~: The SEND MAP, SEND MAPONLY, and SEND DATAONLY commands are
treated together in this section under "SEND MAP Command."

Chapter 2.1. Application Design -- Terminal Control 25

RECEIVE MAP Command

I

I
I
I
I
I
t
I
I

RECEIVE MAP (name)
[MAP SET (name)]
[INTO (data-area) I SET (pointer-ref))

Exceptional conditions: ERROR, MAPFAIL

The RECEIVE MAP command is used to map data from a terminal into a data
area in the application program.

•
I
I
I
I
I
I
I
•

If the MAPSET option is omitted, the MAPSET name is assumed to ,be the
same as that specified in the MAP option.

The data area into which the data is to be mapped can be specified in
the INTO option. Alternatively, BMS will supply a data ar8a and place
its address in the pointer specified in the SET option.

If neither the INTO option nor the SET option is specified, it is
assumed that the data is to be mapped into the map area, that is, the
data arGa defined by the symbolic description map copied into the
program. If the data is to be written into another data area, it must
be named in the INTO option. The data area named must be large enough
to accommodate the mapped data.

Once the data has been mapped, fields within the mapped data can be
referred to by the field names specified in the DFHMDF macro
instructions used to define the map with the additional suffix "I".
(For example, a field named PERSNO must be referred to in the
application program as PERSNOI.)

In the symbolic description map definition, the DFHMSD macro must
have the TIOAPFX=YES operand specified either explicitly or implicitly
(see Chapter 3.5).

SE~D MAP Command

SEND MAP (nam e)
[MAPSET (name)]
[FROM (data-area)]
[LENGTH (data-value))
[DATAONLY I MAPONLY]

[ALARM)
(CURSOR[(data-value)]]
[ERASE I ERASEAUP]
[FREERB 1
[FRSET)
[HONEOM I L40 I L64 I LSO)
[PRINT]

Exceptional condition: ERROR

The SEND MAP command is used to map output data to a terminal.

26 CICS/DOS/VS-ELS User's Guide

If the KAPSET option is omitted, the MAPSBT name is assumed to be the
same as that specified in the KAP option.

If the FROM option is omitted, it is assumed that the data to be
mapped is in the map area, that is, the data area defined by the
symbolic description map copied into the program. If the data is to be
obtained from another data area, it must be named in the FROM option:
the LENGTH option is not required unless the data to be mapped is less
than the total length of the data defined by the map.

In the symbolic description map definition, the DFHKSD macro must
have the TIOAPFX=IES operand specified either explicitly or implicitl.y
(see Chapter 3.5).

The MAPONLY option specifies that only the map, with initial data, is
to be written. This option could be used, for example, to send a menu
to a screen for the operator to enter selections into. (After any
entered data has been read, the screen can be cleared of keyed-in data
by the ISSUE ERASEAUP command, described below.) The KAPONLY option
cannot be used with the FROM option.

The DATAONLY option specifies that only data supplied by the
application program is to be written; it can be used to modify some of
the data on the screen while leaving the remainder of the screen intact.
When the DATAONLY option is used, the screen must be formatted, and the
receiving field must have a format compatible with the data being
entered.

Unless the KAPONLY option is specified, data placed in either the map
area or the data area named in the FROM option is merged with initial
data from the map. The user-supplied data and/or attribute character
supplied for a given field replaces the corresponding default data
and/or attribute character from the map. If the first byte of the user
supplied data for a field is X'OO', the data from tne map for that field
is used. (Unused data fields must be cleared to binary zeros.) If the
user-supplied attribute for a field is X100', the attribute from the map
for that field is used.

Attribute bytes can be modified by moving one of the symbolic names
described above, under "Attribute Character," to an attribute field.

ISSUE ERASEAUP Command

ISSUE ERASBAUP

'rhe ISSUE ERASEAUP command erases all unprotected fields on a screen,
positions the cursor at the first unprotected field, resets modified
data tags in unprotected fields to zero, and unlocks the keyboard.

The command is useful in applications such as continuous data entry,
where the operator enters records on a formatted screen. A screen
format with protected keyword fields is first sent to the terminal;
then, after the entered data has been read, ISSUE ERASEAUP allows
further entry against the protected keywords. This saves line time,
since the screen format does not have to be retransmitted.

Chapter 2.1. Application Design -- Terminal Control 27

ISSUE PRINT Command

ISSUE PRINT

The ISSUE PRINT command prints the contents of a screen on the first
eligible and available 3270 printer.

A printer is eligible if:

• The printer is attached to the same control unit as the screen.

• The printer's buffer size is at least equal to that of the screen.

• The printer and screen are specified in the same DFHTCT
TYPE=GPENTRY macro (see Chapter 3.4).

• The printer is flagged as eligible by specifying

DFHTCT TYPE=GPENTRY ,TRMFEAT= (P)

A printer is available if it is operational and not already printing.

For a BTAM system, if the screen image cannot be printed immediately,
the data is automatically queued in temporary storage until it can be
printed.

For a VTAM system, the data might be printed on an alternative
printer, depending on whether the system programmer has arranged this
(see the'CICSt'S System Programmer's Reference Manual).

The ISSUE PRINT command should not be confused with the local copy
operation available with 3274 and 3276 controllers. (For information on
the local copy operation, see the IBM 3270 Component Description.) The
ISSUE PRINT command is a CICS/VS function that prints the contents of a
screen; the local copy operation is a hardware feature, available with
some 3270 control units, that prints the contents of a screen.

HANDLE AID Command

r'--~
I
I HANDLE AID option[(label)] [option[(label)]] •••
I
I

The HANDLE AID command can be used to pass control to a specified label
when a particular attention identifier (AID) is received from a display
device; control is passed after the input operation is completed. In
the absence of any HANDLE AID request for an AID, control returns to the
application program at the point immediately following the input
request. A HANDLE AID request will take precedence over a HANDLE
CONDITION request; if an AID is received during an input operation, for
which a HANDLE AID request is active, control will pass to the label
specified in that request, regardless of any exceptional conditions that
may have occurred (but that did not stop receipt of the AID) •

The HANDLE AID options that can be specified are:

28 CICS/DOS/VS~ELS User's Guide

• any of the program attention key names (PAl, PA2, or PA3)

• any of the program function key names (PFl through PP24)

• CLEAR or ENTER (for the keys of the same nalles)

• LIGHTPEN (for a selector pen attention or cursor select key
attention)

• OPERID (for the Operator Identification Card Reader, or the
extended(standard) magnetic stripe reader)

• ANIKEY (which is a general option that is equivalent to any PA key,
any PP key, or the CLEAR key)

A HANDLE AID request made to handle a particular AID remains active
until the task is terminated or until another HARDLE AID request for
that AID is made, when the new request overrides the old one. (If no
label is specified in the new request, the request has the effect of
deactivating the request.) The effect of a HANDLE lID request extends
only to the program in which it is issued. Each new program in a task
starts without any active HANDLE AID requests. When control returns to
a program from a program at a lower logical level, the HANDLE lID
requests that were active in the higher-level program before control was
transferred from it are reactivated, and any HANDLE AID requests
activated in the lower-level program are deactivated.

If an OPERID attention identifier is received, the BXEC interface
block can be inspected, to determine which of the magnetic stripe
readers (MSR OR MSRE) has been used. MSRE generates an AID of X'E7',
and MSR generates lID X8E6'.

If any AID covered by the general option ANYKEY is received and there
is no active HANDLE AID request for the particular AID but there is an
active HANDLE AID ANYKEY request, control will .pass to the label
specified in this request. Any HANDLE AID request for a specific AID
overrides the HANDLE AID ANYKEY request as far as that AID is concerned.

The following example shows a HANDLE AID request that sets up one
label for the PAl key AID, and a second label for the PA2 and PA3 key
AIDs, all of the PP key AIDs except PP10, and the CLEAR key AID:

EXEC CICS HANDLE AID
PAl (LAB 1)
ANYKEY (LAB2)
PP10

Handle AID characters
Specify label for PAl
Specify label for ANYKEY group
Exclude PP10 from ANYKEY group

The maximum number of key names· that can be coded on a single BANDLE
AID command is 12.

Alternatively the program may examine the value of the EIBAID field
of the EXEC interface block (EIB) to determine which attention key had
been pressed by the terminal operator. The 3210 terminal transmits an
attention identification character AID, which is stored in the EIBAID
(BAlD for RPG II) field of the EXEC interface block (EIB). The program

may compare the contents of this field with the following constants
copied into the working storage area.

Chapter 2.1. Application Design -- Terminal Gontrol 29

CONSTANT ATTENTION KEY CONSTANT ATTENTION !ll

DFBENTER ENTER KEY DFBPF11 PFll KEY
DFBCLEAR CLEAR KEY DFHPF12 PF12 KEY
DFBPAl PAl KEY DFHPF13 PF13 KEY
DFBPA2 PA2 KEY DFHPF14 PF14 KEY
DFBPA3 PA3 KEY DFBPF15 PF15 KEY
DFBPFl PFl KEY DFHPF16 PF16 KEY
DFBPF2 PF2 KEY DFBPF17 PF17 KEY
DFBPP3 PF3 KEY DPBPF18 PF18 KEY
DFBPF4 PF4 KEY DFBPF19 PF19 KEY
DFHPF5 PP5 KEY DFHPF20 PP20 KEY
DFHPP6 PF6 KEY DFHPF21 PP2l KEY
DFBPF7 PF7 KEY DFHPF22 PF22 KEY
DFBPP8 PP8 KEY DFBPP23 PF23 KEY
DFBPF9 PF9 KEY DFBPF24 PF24 KEY
DFBPF10 PF10 KEY DFHPEN SELECTOR PEN or
DF80PID OPERID or I! SR CURSOR SELECT KEY
DF81!SRE Extended (standard)

8SR

~: For RPG II, the constant names are as above, except that the "FH"
is removed; for example, "DF8ENTER" would be "DENTER" for RPG II.

The clear, PAl, PA2, and PA3 keys do not transmit any data to
CICS/VS. They norllally signal a special operator request that does not
require data, such as print, page forward, page backward, or exit from a
repeating transaction.

Terminal Control Options

ALARI!
specifies that the 3270 audible alarm feature is to be
activated.

CORSOR[(data-value)]

ERASE

ERASEAUP

specifies the position to which the cursor is to be returned
upon completion of a write operation.

The data value must be a halfword binary value that specifies
the cursor position relative to zero; the range of values that
can be specified depends on the size of the screen being used.
If no data value is specified, symbolic cursor positioning is
assumed; see "Symbolic Cursor Positioning" earlier in this
section.

specifies that the screen is to be erased and the cursor
returned to the upper left corner of the screen before this
page of output is displayed. (ERASE will also select the
screen size 'to be used -- either default or alternate -
depending on the parameters in the TCT and PCT entries for the
terminal and transaction.)

specifies that all unprotected fields are to be erased before
the screen is displayed.

30 CICSjDOS/YS-BLS User's Guide

PREEKB
specifies that the keyboard should be unlocked after the data
is written. If PREEKB is omitted, the keyboard remains locked.

PROK (data-area)

PRSET

RONEO!!

specifies the data area containing the data to be mapped by a
SEND MAP or RECEIVE MAP command.

If PROM is specified, the BIPONLY option must not be specified.
If this option is omitted fro. a SEND MAP command, and the map
name is a literal constant, the name of the data area is
assumed to be the map name with the addition of the suffix "0".

specifies that the modified data tags (MDTs) of all fields
currently in the 3210 buffer are to be reset to the not
modified condition ~hat is, field reset) before any map data
is written to the buffer.

If an attribute for a field is generated by a BKS request,
either from the map ~y the ATTRB operand of the DPHMDP macro)
or from the data, the request will control the MDT setting for
the field.

See L40, L60, L80, HONEO!

INTO (data-area)
specifies the data area into which the mapped data is to be
written. If neither INTO nor SET is specified and the map name
is a literal constant, the name of the data area is assumed to
be the map name with the addition of the suffix "I". If the
data area has not been generated by the BMS map definition
process, it must start with a 12-byte TIOl.prefix.

L40, L64, L80, HONEOM

MAP (name)

specify the line length for a 3270 printer; a carrier return
and line feed are forced after the specified number of
characters have been printed on the line. If HONEOM is
specified, the line length is the default line length of the
device (usually 132).

specifies the name, up to seven characters long, of the map to
be used.

ftAPSET (name)
specifies the name, up to seven characters long, of the map set
to be used. The map set must reside in the CICS/VS program
library, and an entry for it must exist in the processing
program table ~PT). If the KAPSET option is not specified,
the name given in the KAP option is assumed to be that of the
map set.

Chapter 2.1. Application Design -- Terminal Control 31

PRINT
specifies that the data is to be sent to a printer.

SET(pointer~ef)
specifies the pointer that is to be set to the address of the
input or output data.

Terminal Control Exceptional Conditions

~APFAIL

ERROR

occurs, on input only, if the data to be mapped has a length of
zero or does not contain a start-buffer-address ~BA) sequence.

Default action: terminate the task abnormally.

See under "Exceptional Condition Handling" for an explanation
of the BRROR condition.

32 CICS/DOS/VS-ELS User's Guide

Access to System Information

It is possible to write many application programs using the CICS/VS
command-level interface without any knowledge of or reference to CICS/VS
control blocks and storage areas. However, it is sometimes necessary to
obtain information that is valid outside the local environment of the
application program; the ADDRBSS command is provided to make access to
such information possible. The control blocks are introduced below.

Common Work Area (CiA)

The common work area may be used by any task during CICSjVS operation
for storage or retrieval of information such as statistics. If
requested, it is supplied by CICSjVS as a pool of storage availaole to
all users. As there is only one CWA, standards must be established to
coordinate its use by all programs.

TransactiQ.n Work Area-l!!.!l

If the transaction work area is requested, it is supplied by CICS/yS for
storage throughout a transaction. The common work area is shared by all
terminals using CICS/VS, but each terminal has a separate TiA.
Therefore, the program may store variable information, such as counters
and switch settings in the TiA, without concern for ·other terminals
sharing the program. Constants may also be stored in the TiA, but
initial values must De provided by the program.

Fields within the TiA are described by the program. The TiA size
must be specified in the program control table before the program is
run. Although the TWA size may range up to approximately 32K, typical
sizes should not exceed a few hundred bytes. The TWA is acquired by
CICS/VS when the transaction is initiated, and freed on transaction
termination.

Terminal Control Table User's Area (TCTUA)

Occasionally, a program may need to save variable data between
transactions. For example, an application with multiple programs may
need to store intermediate results. The terminal control table user's
area serves this purpose. It is supplied by CICS/VS as storage to be
used to retain data between transactions from a single terminal.

Fields within the TCTUA are defined by the program. The largest size
TC'ruA (maximum 255 bytes) used by any program must be specified in the
terminal control table before CICS/VS execution. As the data stored in
the TCTUA exists from program to program, or as long as CICS/VS is
running, TCTUA usage must be coordinated between programs, since there
is only one TCTUA per terminal.

Chapter 2.1. Application Design -- System Information 33

EXEC Interface Block CEIBL

In addition to the usual CICS/VS control blocks, each task in a command
level environment has a control block called the EXEC interface block
(EIB) associated with it. An application program can access all of the
fields in the EIB of a task by name. The EIB contains information that
is useful during the execution of an application program, such as the
transaction identifier, the time and date ; (ini tially when the
transaction was initiated, and subsequently, if updated by the
application program), and the cursor position on a display device. The
EIB also contains information that will be helpful when a dump is being
used to debug a program. Refer to Appendix B for details of the EIB.

ADDRESS Command

ADDRESS option (pointer-ref)
[opt ion (pointer-ref)] •••

The ADDRESS command is used to obtain access (addressability) to
specified CICS/VS storage areas. The pointer reference specified in the
option is set to the address of the storage area named in the option.
If the storage area does not exist, the pointer reference is set to
X'FFOOOOOO'.

The ADDRESS command options are:

CWA - common work area

TCTUA - terminal control table user area

TWA transaction work area

The CWA, TC~UA, and TWA, described above, are used to pass
information between application programs. The CWA can be used at any
time, but the TCTUA can be used only if the same terminal is associated
with the application programs involved (which can be in different
tasks) , and the TWA can be used only if the application programs are in
the same task. The following example shows how the ADDRESS command can
be used to obtain access to the TWA:

EXEC CICS ADDRESS TWA (WAPTR)

(Information can also be passed between programs using the CO!MAREA
option of program control cOllmands, described under "Passing Data
between Programs," later in this section.)

Access to Data Bases

CICS/VS transactions can access two kinds of data bases:

• Standard VSE files holding a data base.

• Data Language/I (DL/I) data bases.

34 CICS/DOS/VS-ELS· User's Guide

Standard VSE files are processed by CICS/VS file control, which
permits the retrieval, addition, and updating of records in IS1M and
VSAft files, and the deletion of records in VSAft files. File control
relieves the programmer of buffer management, blocking and deblocking,
and access-aethod dependencies.

A DL/I data base gives the application programmer a much greater
degree of data independence than is given by file control. The
progra.~r is presented with a logical view of the data base in terms of
a hierarchy of segments. BLS application programs can access these
segments for online enquiry without the programmer having to know how
they are organized. (Online updating of DL/I data bases is not
available in BLS; a batch program must be used.)

The Entry Level System supports the DL/I high level language
interface as vell as the DL/I call interface.

The actual processing of a DLjI data base is performed by the program
product Data Language/! DOS/VS (program number 5746-111), with which
CICS/VS interfaces.

For information on the use of DL/I, please refer to the CICS/VS
Application Programmer's Reference ftanual (Command Level, RPG II, or
ftacro Level).

Chapter 2.1. Application Design -- System Information 35

File Control.

The CICS/VS file control program processes fixed:"'length or variable
length, blocked or unblocked, or undefined records of an indexed file.
(Sequential files are processed by the transient data control program.)

CICS/VS uses the standard· access methods Indexed sequential Access
!ethod (ISA!) and Virtual Storage Access Method (VSAM). If an IS1M file
is converted to a VSAMfile organization, usingVSAft file conversion
utilities, no alteration to application programs that access the file is
necessary, but the system programmer" must change the file control table
(see Chapter 3.4).

File control commands can be used to:

• Read a record from a file (READ).

• write a new record to a file (WRITE).

• Update an existing record in a file ~EWRITE).

• Delete a single record or a group of records from a VSAM key
sequenced data set (DELETE).

• Browse through a VSAM file (STARTBR, READNEXT, READPREV, RESETBR,
and ENDBR).

• Release the task-s exclusive control over a file (UNLOCK).

File Identification

Files are identified in file control com.ands by the DATASET option, and
must have been defined previously in the file control table. These
definitions may be set up with the help of the system programmer.
Logical record handling only is required in the application program;
buffers and work areas are acquired automatically by CICSjVS.

Direct Access to Records

When records are read directly (that is, searched for by a search
argument such as a key) using the READ command, the record is retrieved
and placed in main storage according to which of the options INTO, SET,
and LENGTH have been specified.

The INTO option is used to specify the area into which the record is
to be placed. For variable-length records, the LENGTH option must
specify the maximum length of record that the application program will
accept. If the record exceeds this value, it is truncated and the
LBNGERR condition occurs. If the LBNGTH option is specified for fixed
length records, the length specified must be equal to the record length,
or the LENGERR condition occurs. After the record has been retrieved,
the data area specified in the LENGTH option is set to the actual record
length ~efore any truncation occurred).

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of that area. After the

36 CICS/DOS/VS-ELS User's Guide

record has been retrieved, if a data area is specified in the LENGTH
option, it is set to the record length.

The READ command can be used for both read-only and read-for-update
operations. If the record is to be updated, the UPDATE option must be
specified. When a record has been read for update, CICS/VS maintains
exclusive control (which varies according to the access method in use)
to prevent another task accessing the record until it has been
rewritten, or until exclusive control is released by an UNLOCK command,
or (for VSAM only) until the record is deleted.

When adding records, using the WRITE command, or when updating
records, using the REWRITE command, the record to be written is
specified in the FROM option, and its length in the LENGTH option.
(LENGTH can be omitted for fixed-length records.)

When a record has been read for update, the REWRITE command should be
issued as soon as possible, to avoid obstructing file storage and
possibly preventing other transactions from accessing the record.

VSAM DATA SETS

Record Identification

Records in VSAM files are identified in one of three ways: by ket, by
relative byte address or by relative record number. One of these must
be specified (in the RIDFLD option) as the search argument. If a
relative byte address is supplied, the RBA option must be specified; if
a relative record number is supplied, the RRN option must be specified.

VSAM Keys

When writing records, a complete key must be provided. When reading
records (except for the purpose of updating a protected, key-sequenced
file, when a complete, equal-key search must be specified), the search
key provided can be a complete key or a generic key, and, for either
type, the search can be for an equal key or a greater-or-equal key.
Greater-or-equal searches are made when the GTEQ option is specified.

If a complete key is specified, CICS/VS searches for the record
having that key; if it cannot be found and the GTEQ option is specified,
the first record having a key greater than the specified key is
retrieved, but if the GTEQ option is not specified, the NOTFND
exceptional condition occurs.

If a generic key is specified, its length must be specified in the
KEYLENGTH option, and the GENERIC option must be specified. The search
for the required record uses only the number of characters contained in
the generic key. CICS/VS searches for the first record having a
matching generic key; if no matching record is found, and the GTEQ
option is specified, the first record having a greater generic key than
the specified generic key is retrieved, but if the GTEQ option is not
specified, the NOTFND exceptional condition occurs.

Chapter 2.1. Application Design -- File Control 37

VSAMExclusive Control

When a VSAM record is read for update, VSAM maintains exclusive control
of the control interval containing that record. An attempt by the same
task to read a second record from the same control interval for update,
or add a new record to the same control interval before exclusive
control is released (by an UNLOCK request), will cause a lockout. To
prevent lockout, the ERROR exceptional condition occurs if, followin9 a
READ UPDATE command, a second READ UPDATE command or a WRITE command is
executed before exclusive control is released by a REWRITE, UNLOCK, or
DELETE command.

Deletion of VSAM Records

Records in a VSAM key-sequenced file can be deleted, either singly or in
groups, using the DELETE command. single records can be searched for
uS1ng a key, relative byte address, or relative record number. Groups
of records can be deleted only if the records all have a common starting
group of characters in their keys (that is, a common generic key) •

A record that has been read for update (that is, with the UPDATE
specified in the READ command), may be deleted also by a DELETE command,
but only if a complete key has been specified. If deletion is attempted
for a record with a generic key, or if the DELETE command includes the
RIDFLD option, the ERROR condition will occur.

Note that a DELETE request that follows a READ UPDATE request must
not have the RIDFLD option specified, or the ERROR condition occurs.

VSAM Mass Insert Operations

The MASSINSERT option specifies that a VSAft mass insert operation is in
progress; it must be specified in every WRITE command that is part of
the operation.

A mass insert operation must be ended to ensure that all records are
written to the file; a READ command will not necessarily find a record
that has been added by an incomplete mass insert operation. A mass
insert operation is ended by an UNLOCK command; any incomplete
operations will be ended when the task ends.

VSAM Browse Operations

When reading VSAM records sequentially, the STARTBR command specifies
the starting point only for the browse; no records ara retrieved. The
READNEXT command reads. records sequentially from the data set, starting
with the specified record. The READPRBV command does the same as the
READ NEXT command, except that records are read in reverse order.

Records are retrieved and placed in main storage using the INTO, SET,
and LENGTH options in the same way as for direct access.

The starting point can be reset at any time by a RESETBR command.
The ENDBR command ends a browse.

38 CICSjDOS/VS-ELS User-s Guide

When more than one browse is required on a data set at the same time,
the REQID option must be included in every browse comlland to distinguish
between the browse operations.

A browse can be started at any record in a V SA! data set. A recor d
identification field of zero, or the options KBYLENGTB(O) and GENERIC,
will start the browse at the first record. Any other starting point
must be specified in the same way as a single record is retrieved, using
a key (complete or generic), relative byte address, or relative record
nUllber.

The RESETBR command can be used not only to reset the starting
position for the browse, but also to change the type of search argument
(key, relative byte address, or relative record number).

The record identification field is updated by CICS/VS with the
complete key, relative byte address, or relative record number of the
record retrieved each time a READNEXT or READPRBV command is executed.
For a given browse all associated comllands must use the same record
identification field.

VSAM data sets can be browsed backwards as well as forwards.
Specifying a record identification field of hexadecimal 'FP's will start
the browse at the end of the data set.

VSAM Skip-Sequential Processing

Skip-sequential processing can be performed on a VSAM data set. The
identifier ~ey, relative byte address, or relative record number) of
the next record required must be placed in the record identification
field specified in the RIDPLD option of the READNEXT command. This
record need not be the next sequential record in the data set, but must
have a key, relative byte address, or relative record number greater
than the last record accessed. (A READPREV command should not be used.)
This procedure allows quick random access to a VSA! file by reducing
index search time.

The identifier must be of the same form (key, relative byte address,
or relative record number) as that specified in the STARTBR (or the last
RESETBR) command for this browse. If the STARTBR or last RESETBR
command specified a generic key, the new identifier must also be a
generic key, but it need not be of the same length.

If the STARTBR or last RESETBR command specifies an equal-key search
(complete or generic), a READNEXT command using skip-sequential
processing may result in a NOTPND condition.

Sharing 'SAM Resources

CIes/vs permits the sharing of' VSAM resources. Resources to be shared
can be specified by the DPHPCT TlPE=SBRCTL macro instruction, as
explained in the Chapter 3.4. When a task requires resources in several
VSAM files at the same time and these files are sharing resources, the
possibility of a lockout increases.

Chapter 2.1. Application Design - Pile Control 39

VSAM Alternate Indexes

The VSAM Alternate Index feature allows access to a file using several
~ndexes, which contain alternate keys to the records in the file. A
record. can be accessed by many different keys; also, many records can
have the same alternate key in an alternate index.

Accessing a record via an alternate index is similar to accessing a
normal key-sequenced file, unless records having non-unique alternate
keys are involved. If the ~lternate) key provided in a READ command is
not unique, the first record in the file having that key is read, and
the DUPKEY exceptional condition occurs.

FILE CONTROL COMMANDS

READ Comm and

READ {INTO (data-area) I SET (poin ter-ref)}
[LENGTH (data-area)]
DATASET (name)
RIDFLD(data-area)
[KEYLENGTH (data-value)) (manda tory with GENERIC)
(GENERIC] ~SAM only)
[GTEQ I IQOAL] (VSAM only)
[RBA I RRN] (V SA M only)
[UPDATE]

Exceptional conditions: LENGERR, NOTFND, DUPKEY, ERROR

The READ command is used to retrieve a single record from a file.

The following example shows how to read a record from a file into a
specified data area:

EXEC CICS READ
INTO (RECORD)
DATASET ('MASTER I)
RIDFLD (1 CCTNO)

Read a record
Data area
File
Record identification field

The following example shows how to read a record from a VSla file,
using a generic key, specifying a greater-or-equal key search, and
specifying that the record is later to be rewritten into a specified
data area:

EXEC eIes READ
SET (RECBAR)
LENGTH (RECLEN)
DATASET ('MASTVSAM')
RIDFLD(ACCTNO)
KEYlENGTR (4)
GENERIC
GTEQ
UPDATE

ijO CICSjDOS/VS-ELS Userls Guide

Reao a record
Request pointer reference set
Record length
File
Record identification field
Generic key length
Key is generic
Greater-or-equal search
Record is to be rewritten

UNLOCK Command

, ,
, UNLOCK DATASET (name) ,
I Exceptional conditions: ERROR
I L __ ~

The UNLOCK command releases exclusive control that has been applied as a
resul t of a READ UPDATE command. It is used when a record has been
retrieved for update but can then be seen not to need updating. The
effect is to allow other programs to access the data that was to be
updated.

The UNLOCK comaand also terminates a VSAM mass insert operation.

WRITE FROe(data-area)
[LENG'rH (data-value)]
DATASET (name)
RIDFLD(data-area)
(REYLENGTH (data-value)]
[RBA I RRN]
(MASSINSERT]

(VSAlt only)
(VSAMonly)

Except~onal conditions: LENGERR, DUPREe, ERROR

The WRITE command is used to write a record to a file. For example:

EXEC CICS WRITE
FROM (RECORD)
LENGTH (DATLER)
DrtTASET (,MASTER')
RIDFLD (KEYFLD)

REWRITE Command

REWRITE FROM(data-area)
[LENGTH (data-value)]
DATASET (name)

Write a record
Data area
Racord length
File
Record identification field

Exceptional conditions: LENGERR, ERBOR
L _____________________ , ___ _

The REWRITE command is used to update a record in a file. The record to
be updated must first be read by a READ command with the UPDATE option.
For example:

EXEC CICS REWRITE
FROM (RECORD)
DATASET (,MASTER')

Update a record
Data area
File

Chapter 2.1. Application Design -- File Control 41

DELETE Command (VSAft only)

i

I
I
I
I
I
I
I
I
t
I

DELETE DATASET (name)
[RIDFLD (data-area) 1
[K8YLENGTH (da ta-value) 1
[GENERIC [NUftREC(data-area)]]
[RBA I RRN]

Exceptional conditions: NOTFND, ERROR

(mandatory with GENERIC)
(mandatory with GENERIC)

The DELETB command is used to delete a single record or, if a generic
key is provided, a group of records, from a VSA! key-sequenced file;
when used for a group of records, the RIDFLD option is required.

•
I
I
I
I
I
I
I
I
I
I

Unless a generic key is used, this command can be used also to delete
a VSAa record that has been read for update, instead of using a REWRITE
or UNLOCK command. When used in this way, RIDFLD must not be specitied.

The following example shows how to delete a group of records in a
VSAft data set:

EXEC CICS DELETE
DATASET (. MASTVS AM')
RIDFLD(ACCTNO)
KEYLENGTH (4)
GENERIC
NUI!REC(NUftDEL)

STARTBR Command (VSAM only}

Delete record
File
Record identification field
Generic key length
Key is generic
Return number deleted

• i

I I
I STARTBR DATASET(name) I
I RIDFLD(data-area) I
I (KEY LENGTH (data-value)] (mandatory wi tb GENERIC» I
I [GTE2 I EQUAL) I
I [BBA I RRN] I
I [REQID(data-value) 1 I
I I
I Exceptional conqitions: ERROR I
I I L __ ~ __ ~t

This command is used to specify the record in a file at which the browse
is to start. No records will be retrieved until a RBADNEXT or RBADPR8V
cossand is executed.

~2 CICS/DOS/VS-ELS User's Guide

READNEXT Command (VSA! on!1l

READNEXT {INTO (data-area) I SET (pointer-ref)}
[LENGTH (data-area)]
DAT1SET(name)
RIDFLD ~ata-area)
[KEYLENGTH(data-value)]
[RBA I RRN]
[REQID (data-value)]

Exceptional conditions: DUPKEY, ENDFILE, ERROR,
LENGERR, NOTFND

This command is used to retrieve records in sequential order from a
file. It can also be used during VSAM skip-sequential processing.

The RIDFLD option must specify the same data area as was specified in
the RIDFLD option in the corresponding STARTBR command or in the last
RESETBR command, but the contents of the data area can be different.

READPREV {INTO (data-area) I SET (pointer-ref)}
[LENGTH (data-area)]
DATASET (name)
RIDFLD~ata-area)
[KEYLENGTH(data-value)]
[RBA I RRN]
[REQID (data-value)]

Exceptional conditions: DUPKEY, ENDFILE, ERROR,
LENGERR, NOTFliD

This command is used to retrieve records in reverse sequential order
from a VSAM file.

The RIDFLD option must specify the same data area as was specified in
the RIDFLD option in the corresponding STARTBR command or in tbe last
RESETBR command, but the contents of the data area can be different.

Chapter 2.1. Application Design -, - File Control 43

RESETBR Command ('SA! only)

RESETBR DATASET(name)
RIDFLD(data-area)
[KEYLENGTH (data-value)]
[GENERIC]
[GTEQ I EQUAL]
[RBA I RRN]
[REQID(data-value)]

Exceptional conditions: ERROR

(Illandatory with GENERIC)

This com.and is used to specify the record ina file at which the browse
is to be restarted.

The RESETBR command can be issued at any time. It is equivalent to
an ENDBR STARTBR sequence.

END BROWSE Command ('SAM only)

ENDBRDATASE'l (name)
[REQID (data-value)]

Exceptional condition: ERROR

This command is used to end a browse.

qq CICSjDOS/VS-ELS User's Guide

•
I
I
I
I
I
I
•

Pile Control. Options

DATISBT (name)
specifies the symbolic name of the file to be accessed. The
name must be alphameric, up to seven characters long, and must
have been defined in the file control table (PCT). Por details
of the PCT, see Chapter 3.4.

PRO! (data-area)
specifies the record that is to be written to the file.

GBNBRIC (YSI! only)
specifies that the search key is a generic (partial) key, the
binary length of which is specified in the KBYLBIGTB option.
The search for a record is satisfied when a record is found
that has the same starting characters as that specified.

GTEQ I BQUAL (YSI! only)
BQUIL specifies that the search will be satisfied only by a
record having the same key (complete or partial) as that
specified in the RIDFLD option.

GTBQ specifies that if the search for a record having the same
key ~omplete or partial) as that specified in the RIDFLD
option is unsuccessful, the first record having a greater key
will satisfy the search.

lITO (data-area)
specifies the data area into which the record retrieved from
the file is to be written.

KEYLBIGT'H (data-value)
specifies the length of the key (halfword binary) that has been
specified in the RlDPLD option. When a generic key is
specified, KEYLBIGTH is mandatory, and must specify that key.
This option can also be specified whenever a key is specified;
if the length specified is different from the length specified
in the PCT, the ERROR condition occurs.

Chapter 2.1. Application Design .-- File Control Options 4S

LBNGTH (parameter)
specifies a halfword binary value indicating the length of data
to be read or written. This option is not needed for fixed
length records .•

Por WRITB or RBWRITB, the parameter may be a data value.

Por READ INTO, RBAD.EXT INTO, or READPREV I.TO, the parameter
must be a data area specifying the maximum length of data the
program viII handle. If the value specified is less ,than zero,
zero is assumed. If the actual data length exceeds the value
specified, the data is truncated and the LBNGERR condition
occurs. On completion of the retrieval operation, the data
area is set to the original length of the data, except for
undefined record format, when the area is set to the maximum
record length.

Por RBAD SET, RBADNBXT SET, or READPRBV SET, the parameter must
be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

fllSSIHSBRT (VSA! only)
specifies that the WRITB co •• and is part of a mass-insert
operation.

RBI (V 5 A!! only)
specifies that the record identification field in the RIDPLD
option contains a relative byte address.

RBQID (data-value) (VSA! only)
specifies, as a halfword binary value, a unique request
identifier· for a particular browse operation. This option is
used when multiple browse operations are performed on one data
set. If this .option is not specified, a default value of zero
is assumed.

RIDPLD (data-area)
specifies the record identification field. The contents can be
a key (for ISAfI and VSA!:files), or a relative byte address or
relative record number (for VSA fI files).

RRN (VSA! only)
specifies that the record identification field in the RIDFLD
option contains a relative record number.

SET (pointer-ref)

UPDATE

specifies the pointer-reference, which is to be set to the
address of the retrieved record.

specifies that the record is to be obtained for updating or
(YSA! only) deletion. If this option is omitted, a read-only
operation is assumed.

46 CICS/DOS/VS-ELS User's Guide

File Control Exceptional Conditions

DUPKEY ('SA! only)

DUPREC

BNDFILE

LBBGBBB

NOTFND

BRROR

occurs if a record is retrieved via an alternate index in which
the key that is used is not unique. It will not occur as a
result of a BE1DNBXT request that reads the last of the records
having the non-unique key.

Default action: terminate the task abnormally.

occurs if an attempt is made to add a record to a file in which
the same key already exists.

Default action: terainate the task abnormally.

occurs if an end-of-file condition is detected during a browse
operation.

Default action: terminate the task abnormally.

occurs if any of the following situations exist:

• The LENGTH option is not specified for an input (without
the SET option specified) or output operation involving
variable-length records.

• The length specified for an output operation exceeds the
maximum record size; the record is truncated.

• The length of a ~cord read during an input operation (with
the INTO option sp_cified) exceeds the value specified in
the LENGTH option; the record is truncated, and the data
area supplied in the LBNGTH option is set to the actual
length of the record~

• An incorrect length is specified for an input or output
operation involving fixed-length records.

Default action: terminate the task abnormally.

occurs if an attempt to retrieve or delete a record based on
the search argument provided is unsuccessful.

Default action: terainate the task abnormally-

See under "Exceptional Condition Handling" for an explanation
of the BRROR condition.

Chapter 2.1. Application Design - :File control options 47

Transient Data Control

Transient data control provides a generalized queuing facility and an
efficient means of sequential input/output. Data can be queued for
subsequent internal or external processing. Selected data, as specified
by the application prograllller,can be routed to or from predefined
symbolic destinations, either intrapartition or extrapartition.
Destinations are intrapartition if associated with a facility allocated
to the CICS/VS partition and extrapartition if the data is directed to
some destination outside the CICS/VS partition. The definitions for the
destinations must be contained in the destination control table (DCT)
established by the system programmer when the CICS/VS system is
generated (see Chapter 3.4 of this manual).

Transient data control commands are provided to:

• irite data to a transient data queue (WRITEQ TD).

• Read data from a transient data queue (REIDQ TD).

• Delete an intrapartition transient data queue (DELETEQ TD).

Intrapartition Destinations

Intrapartition destinations are queues of data on direct-access storage
devices for use with one or more programs running as separate tasks.
Data directed to or froll these internal destinations is called
intrapartition data; it consists of variable-length records.
Intrapartition destinations can be associated with either a terminal or
an output file. Intrapartition data may ultimately be transmitted on
request to the destination terminal or retrieved sequentially from the
output file.

The storage associated with an intrapartition queue can be reused.
The system programmer can specify, for each symbolic destination,
whether or not storage is to be reused as the data on it is read. If
the storage is specified to be nonreusable, an intrapartition queue
continues to grow, irrespective of whether the data has been read, until
a DELETEQ TD command is issued; the whole queue is then deleted.

Extrapartition Destinations

Extrapartition destinations are queues, residing on any sequential
device, that are accessible by programs outside (or within) the CICS/VS
partition. In general, sequential extrapartition destinations are used
for storing and retrieving data outside the CICS/VS partition. For
example, one task might read data from a remote terminal, edit the data,
and write the results to a file for later processing in another
partition. Logged data, statistics, .and transaction error messages are
examples of data that can be written to extrapartition destinations. In
general, extrapartition dat"a created by CICS/VS is intended for
subsequent batched input to non-CICS/VS programs. Data can also be
routed to an output device such as a line printer.

Data directed to or from an externa1 destination is called
extrapartition data and consists of sequential records that are fixed
length or variable-length, blocked or unblocked. The record format for
a particular extrapartition destination must be described by the system

48 CICS/DOS/VS-ELS User's Guide

programmer when setting up the destination control table. (Befer to
Chapter 3.q for details.)

lndirect Destinations

Intrapartition and extrapartition destinations can be used as indirect
destinations, which are symbolic references to other destinations. This
can help in program maintenance, in that data can be routed to a
destination known by a different symbolic name, without changing
programs that usa the original name; only the destination control table
(DCT) need be changed. Since indirect destinations are established by
destination control table entries, the application progra •• er need not
usually be concerned with how this is done. Further information is
available in Chapter 3.q.

Automatic Transaction Initiation (AT I)

For intrapartition destinations, CICS/VS provides the option of
automatic transaction initiation. The system programmer establishes a
basis for automatic transaction initiation by specifying a nonzero
trigger level and a transaction identifier for a particular
intrapartition destination in the destination control table. (See the
discussion of the DFHDCT TYPE=INTRl macro in Chapter 3.q.) When the
number of entries (created by WRITEO TD commands issued by one or aore
programs) in the queue reaches the specified trigger level, the
specified transaction is automatically initiated. Control is passed to
a program that processes the data in the queue; the program must issue
repetitive READO TD commands to deplete the queue.

Once the queue has been depleted, a new automatic transaction
initiation cycle begins. That is, a new transaction is scheduled for
initiation when the specified trigger level is again reached, whether or
not the prior transaction is complete.

To ensure that termination of an automatically initiated transaction
occurs when the queue is empty, the application program should test for
a QZERO condition rather than for some application-dependent factor such
as an anticipated number of records; only the QZERO condition indicates
a depleted queue.

TRANSIENT DATA CONTROL COMMANDS

WRITEQ TD Command

WRITEQ TD QUEUE(name)
FROM (dat~-area)
[LEN GTH (data-value)]

Exceptional condition: ERROR

Chapter 2.1. Application Design -- Transient Data Control qg

The WRITE TD com.and is used to write transient data to a predefined
symbolic destination. The destination is identified in the QUEUE
option.

The FRO! option specifies the data to be written to the queue, and
the LENGTH option specifies the record length. The LENGTH option need
not be specified for extrapartition queues of fixed-length records if
the data area is the same length as the records.

The following example shows how to write data to a predefined
symbolic destination; in this case, the control system Bessage log
(CS!L) :

EXEC CICS WBITEQ TD
QUEUE ('CS!t')
FRO! (MESSAGB)
LENGTH (LENG)

REIDO TD Command

BEADQ TD QUEUE (name)

write to transient data queue
Queue name (destination)
Data to be written
Data length

{INTO (data-area) I SET (pointer-ref)}
[LENGTH (data-area)]

Exceptional conditions: ERROR, LENGERR, QZERO

The READQ TD cOBmand is used to read transient data froB a predefined
sYBbolic source. The source is identified in the QUEUE option.

The INTO option is used to specify the area into which the data is to
be placed. The LENGTH option must specify a data area that contains the
maximua length of record that the program will accept. If the record
exceeds this value, it is truncated and the LENGERR condition occurs.
After the retrieval operation, the data area specif ied in the LENGTH
option is set to the record length (before any truncation occurred).
(The LENGTH option need not be specified for extrapartition queues of
fixed-length records if the length is known and a data area of the
correct size is available.)

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of that area. After the
retrieval operation, the data area specified in the LENGTH option is set
to the record length.

The following example shows how to read a record frOB an
intrapartition queue, which in this case is the control system message
log (CS!L), into a data area specified in the request:

EXEC CICS READQ TD
QUEUE ('CS!L')
INTO (DATA)
LENGTH (LENG)

Read from transient data queue
Queue name (source)
Data area
Length program will accept

The next example shows how to read a record from an extrapartition
queue having fixed-length records into a data area provided by CICS/VS;
the pointer reference specified by the SET option is set to the address

50 CICS/DOS/VS-BLS User's Guide

of the storage area reserved for the d~ta record. It is assumsd that
the record length is known.

r
I

EXEC CICS READQ TD
QUEUE (EX 1)
SEr(PBEF)

Read from transient nata queue
Queue name (source)
Requ~st pointer reference set

" DELETEQ rn QUEilE(na~e)
t
I Exceptional condition: £d~OH

I L __ ~

The DELETEQ lD command is u3~d to delete all of the transient data
associated with a particular intrapartition destination (queue). All
storage associateu with the destir.dtion is fread.

This command must be used to freE the storaqe associated with a
d£stin~tion spEcified as nonreusable in the dE~tin~tion control tanle.
Otherwise, th9 storags remains allocated to the isstination and
continues to grow wh~n~v;r data is written to the destination.

FRO[1 (data-area)
specities th~ data that is to be written to the transient data
queue.

18'fO (data-area)
specifies the ~scr da~~ area into whic~ the data read from th~
transient data gu~u; is to be writt~n. If this option is
specified, move-mode access is implied.

LE~GTH~arametdr)
specif1es a halfword binary value to be used with WRlrEQ TD aad
READQ TD commands.

For a WRITEQ TD command, tha parameter must be a data value
tha~ is ~he l2ngtn of the data that is to be written.

,For a HEADQ TD,co~rua~Q with the INTO option, the parameter must
,'libe ,;. da.-:a arca th":~t specifies the maximum length of data that
the program CdU accept. If the valu? sp~cified is less t~an
Z8ro, zero is assumed. If the length of the da~a exceeds the
value specified, th~ data is tran~ated to that value ana the
LENGEhd conait1on occurs. On comolat1on of the ratriaval
operation, trie data area is set to the original length of the
aata.

F'or a READQ 'I'D co;nmana. with thE: SE'r option, 'tone parameter must
be a data area. On c6mpletion of tne retriaval operation, the
data area is set to the lenqth of the data.

Chapter 2.1. Application Design - Transien t Da.ta Control 51

QUEUE (name)
specifies the symbolic name of the queue (destination) to be
written to, read from, or deleted. The name must be
alphameric, up to four characters in length, enclosed in single
quotes (t t), and must have been defined in the destination
control table (DCT)by the system programmer.

SET (pointer-ref)
specifies a pointer reference that is to be set to the address
of the data read from the queue. If this option is speCified,
locate-mode access is implied.

Transient Data Control Exceptional Condit10ns

LENGERR

QZERO

ERROR

occurs in any of the following situations:

• The LENGTH option is not coded for an input (without the
SET option) or output operation involving variable-length
records.

• The length specified on output is greater than the maximum
record size specified for the queue in the DCT.

• The record read from a gueue is longer than the length
specified for the input area; the record is truncated and
the data area supplied in the LENGTH option is set to the
actual record size.

• An incorrect length is specified for a fixed-length-record
~nput or output operation.

Default action: terminate the task abnormally.

occurs when the destination (gueue) accessed by a READQ TD
command is empty.

Default action: terminate the task abnormally.

See under "Exceptional Condition Handling" for an explanation
of the ERROR condition.

52 CICSjDOS/VS-ELS User's Guide

Temporary Storage Control

Temporary storage control allows an application program to store data in
virtual storage for later retrieval by any program. This is sometimes
known as a scratchpad facility. The same data can be retrieved as often
as required.

Temporary storage control commands are provided to:

• Write data to a temporary storage queue ~RITEQ TS).

• Read data from a temporary storage queue (RE1DQ TS) •

• Delete a temporary storage queue (DELETEQ TS) •

I~~orary storage Queues

Temporary storage queues are identified by symbolic names of up to eigh.t
. characters assigned by the originating task. Temporary data can be
retrieved by the originating task or by any other task using the
symbolic name assigned to it. Specific items within a queue are
referred to by relative position numbers. To avoid conflicts caused by
duplicate names, a naming convention should be established and followed
by all programmers; for example, the operator identifier, terminal
identifier, or transaction identifier could be appended as a prefix or
suffix to each programmer-supplied symbolic name.

Temporary storage queues remain intact, and can be accessed as often
as required, until they are deleted. Thus, even after the originating
task is terminated, temporary data can be accessed by other tasks
through references to the symbolic name under which it was stored.
However, temporary storage is released at CICS/VS shutdown, so data
cannot be passed from day to day unless the system remains in operation.

In general, temporary storage queues should be used only when direct
access to the records is necessary, or for passing data between
transactions; transient data control provides facilities for efficient
handling of sequential files.

!!!TEQ TS Command

iRITEQ TS QUEUE (name)
FROM (data-area)
LENGTH (data-value)
[ITEM (data-area) [REWRITE]]

Exceptional conditions: ERROR, ITEMERR

The WRITEQ TS command is used to store temporary data in a temporary
storage queue.

The queue is identified in the QUEUE option. The FROM and LENGTH
options are used to specify the data that is to be written to the queue,
and its length.

Chapter 2.1. Application Design -- Temporary storage Control 53

The REWRITE option determines whether new records are to be written
to a queue, or if existing records are to be updated. If the REWRITE
option is not specified, the data is written to the queue specified in
the QUEUE option. CICS/VS assigns an item number for this record in the
queue and, if the ITEM option is specified, sets the data area supplied
in that option to the item number. If the record starts a new queue,
the item number is 1; subsequent item numbers follow on sequentially.

If the REWRITE option is specified, the ITEM option must also be
specified to identify the item to be replaced by the data identified by
the PROM option. If the specified queue cannot be found, the R.EWRITE
option is ignored, a new queue is started, and the ITEKERR exceptional
condition occurs. Pailure to :Eind the correct item in a queue also
causes the ITEMERR condition to occur, but the data is not stored.

The following example shows how to write a new record to a temporary
storage queue:

EXEC CICS WRITEQ TS
QUEUE (UNIONAKE)
PROM (MESSAGE)
LENGTH (LENGTH)
ITEM (DREF)

Write to temporary storage queue
Queue name
Da~a to be written
Data length
Accept item number

The next example shows how to update a record in a temporary storage
queue:

EXBC CICS WRITEQ TS
QUEUE C'TElIPQ1')
FROM (DATAFLD)
LENGTH (40)
ITEM CITEMPLD)
REWRITE
HAIN

R EADO TS ComlRand

READQ TS QUEUE (name)

Write to temporary storage queue
Queue name
Data to be written
Data length
Provide item number
Data is to update record
Queue is in main storage

{INTO (data-area) I SET (pointer-ref)}
LENGTB(data-area)
[ITEM (data-value)]

Exceptional conditions: ERROR, ITEHBRR, LENGERR

The READQ TS command is used to retrieve data from a temporary storage
queue. ~he queue is identified in the QUEUB option.

The INTO option can be used to specify the area into which the data
is to be placed. The LENGTH option must specify a data area that
contains the maximum length of record that the program will accept. If
the record length exceeds the specified maximum length, the record is
truncated and the LENGERR condition occurs. After the retrieval
operation, the data area specified in the LENGTH operand is set to the
record length (before any truncation occurred).

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area of sufficient size to hold the

54 CICS/DOS/VS-ELS User's Guide

record and sets the pointer reference to the address of the record.
After the retrieval operation, the data area specified in the LENGTH
option is set to the record length.

The ITEM and NEXT options are used to specify which record within a
queue is to be read. If the ITEM option is specified, the record with
the specified item number is retrieved. If the NEXT option is
specified, the next record after the last record to be retrieved (by any
task) is retrieved.

The following example shows how to read the first (or only) record
from a temporary storage queue into a data area specified in the
request:

EXEC eICS READQ TS
QUEUE (UNIQlfAME)
INTO (DATA)
LElfGTH(LDATA)

Read from temporary storage queue
Queue name
Data area
Length program will accept

The following example shows how to read the next record from a
temporary storage queue into a data area provided by eleS/VS; the
pointer reference specified by the SET option is set to the address of
the storage area reserved for the data record.

EXEC CIeS READQ TS
QUEUE (DESCRQ)
SET (PREP)
LENGTH (LENG)
NEXT

DELETEQ TS Command

DELETEQ TS QUEUE (name)

Exceptional condition: ERROR

Read from temporary storage queue
Queue name
Request pointer reference set
Length of data retrieved
Specify next record in queue

This command is used to delete all of the temporary data associated with
a particular temporary storage queue. All storage associated with the
queue is freed.

Temporary:lata should be deleted at the earliest possible time to
avoid using too much storage.

Temporarx Storage Control Options

FROM (da ta-area)
specifies the data that is to be written to temporary storage.

Chapter 2.1. Application Design -- Temporary storage Control 55

INTO (data-area)
specifies the user data area into which the data is to be
written. The data area may be any.variable, array, or
structure. If this option is specified, move-mode access is
implied.

ITEM (parameter)
specifies a halfword binary value to be used with WRITEQ TS and
READQ TS commands.

When used with a WRITBQ TS command in which the REWRITE option
is not specified, the parameter must be a data area that is to
be set to the item number assigned to this record in the queue.
If the RBWRITE option is specified, the data area specifies the
item in the queue that is to be replaced.

When used with a READQ TS command, the ITE! option specifies
the item number of the logical record to be retrieved from the
queue. The parameter must be a data value that is to be taken
as the relative number of the logical record to be retrieved.
This number may be the number of any item that has been written
to the temporary storage queue.

LENGTH (parameter)
specifies a halfword binary value to be used with WRITEQ ~s and
READQ TS commands.

Por a WRITEQ TS command, the parameter may be a data value that
is the length of the data that is to be written.

For a READQ TS command with the INTO option, the parameter must
be a data area that specifies the maximum length of data that
the program can accept. If the value specified is less than
zero, zero is assumed. If the length of the data exceeds the
value specified, the data is truncated to that value and the
LENGERR condition occurs. On completion of the retrieval
operation, the data area is set to the original length of the
data.

Por a READQ TS command with the SET option, the parameter must
be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

QUEUE (name)
specifies the symbolic name of the queue to be written to, read
from, or deleted. The name must be alphameric, up to eight
characters in length, and must be unique within the CICS/VS
system. Do not use hexadecimal IFAI through 'PP' as the first
character of the name; these characters are reserved for
CICS/VS use.

I~mEorary Storage Control Exceptional Conditions

ITE!ERR
occurs when the item number specified or implied by a READQ TS
command, or a WRITEQ TS command with the REWRITE option, is
invalid (that is, outside the range of entry numbers assigned
for the queue); or if the queue referred· to in a WRITEQ TS
cannot be found.

56 CICS/DOS/VS-ELS User's Guide

LENGERR

ERROR

Default action: terminate the task abnormally.

occurs if the length of the stored data is greater than the
value specified by the LENGTH option for move-mode input
operations.

Default action: terminate the task abnormally.

See under "Exceptional Condition Handling" for an explanation
of the ERROR condition.

Chapter 2.1. Application Design -- Temporary Storage Control 57

Program Control

Program control governs the flow of control between application programs
in a CICS/VS system. The name of an application program referred to in
a program control comBand must have been placed in the processing
program table (PPT) by the system programmer before CICS/VS is started
(see Chapter 3.4).

Program control comsands are provided to:

• Link one user-written application program to another, anticipating
return to the requesting program (LINK).

• Transfer control from one user-written application program to
another, with no return to the requesting program (XCTL).

• Return control from one user-written application program to another
or to CICS/VS (RETURN).

Application Program Loqi£~X.!!2.

Application programs running under CICS/VS are executed at various
logical levels. The first program to receive control within a task is
at the highest logical level. When one application program is linked to
another, expecting an eventual return of control, the linked-to program
is considered to reside at the next lower logical level. When control
is simply transferred from one application program to another, without
expecting return of control, the two programs are considered to reside
at the same logical level. Figure 2.1-1 illustrates the concept of
logical levels.

58 CICS/DOS/VS-ELS User's Guide

1
CICS/VS

1
Application

LINK
r--- Program t--

A

L.r ~ RETURN 1 XCTL

!
Application Application

LINK Program ,- Program I---
B C

-

1 ~ r.... RETURN XCTL

Application
Program
D

t--

F~gure 2.1-1. App1ication Program Logical Levels

LINK Command (Anticipating Return)

LINK PROGRAM (name)
[COMMABEA (data-area) LENGTH (data-value)]

Exceptional condition: ERROR

!
Application
Program
E

RETURN 1

CICS/VS
level

Highest
logical
level

Lowest
logical
level

The LINK command is used to pass control from an application program at
one logical level to an application program at the next lower logical
level. If the linked-to program is not already in main storage, it will
be loaded. when the RETURN command is executed in the linked-to
progra~, control is returned to the program initiating the linkage, at
the next sequential executable instruction.

The following example shows how to request a link to an application
program called PROG1:

EXEC CICS LINK
PROGRAl! (. PROG 1')

Link to a program
Program name

Chapter 2.1. Application Design -- Program Control 59

The COMMAREA option can be used to pass data to the linked-to
program. For further details, see "Passing Data Between Programs" later
in this section. The LENGTH option specifies the length of the data
being passed.

The linked-to program operates independently of the program that
issues the LINK command. For example, the effects of any HANDLE
CONDITION or HANDLE AID commands in the linking program are not
inherited by the linked-to program, but the original HANDLE CONDITION
and HANDLE AID commands are restored on return to the linking program.

XCTL Com_and ~ithout Return)

ICTL PROGRAM (name)
[COMMAREA (data-area) LENGTH (data-value)]

Exceptional condition: ERROR

The XCTL command is used to transfer control from one application
program to another at the same logical level. The program from which
control is transferred is released. If the program to which control is
transferred is already in main storage, it will be reloaded only if it
is an RPG II program.

The following example shows how to request a transfer of control to
an application program called PROG2:

EXEC CICS XCTL
PROGRAM C'PROG2·)

Transfer control
Program name

The COMMARE! option can be used to pass data to the invoked program.
For further details, see "Passing Data Between Programs" later in this
section. The LENGTH option specifies the length of the data to be
passed.

RETURN Command

i

I
I RETURN [TRANSID(name) [COMMAREA(data-area) LENGTH (data-value)]]
I
I Exceptional condition: ERROR
I
•

The RETURN command is used to return control from an application program
either to an application program at the next higher logical level or to
CICS/VS.

When the command is issued in a lower-level program, the program to
which control is returned will have relinquished control by issuing a
LINK command and will reside one logical level higher than the program
returning control.

When the command is issued in a program at the highest logical level,
control returns to CICS/VS. If the task is associated with a terminal,

60 CICS/DOS/VS-ELSUser's Guide

the TRANSID option can be used to specify the transaction identifier for
the next program to be associated with that terminal; this causes
subsequent input entered from the terminal to be interpreted wholly as
data. (See "Pseudo-conversational Programming," below.) In addition,
the COMMA REA option can be used to pass data to the new transaction.
Further details follow, under "Passing Data Between Programs. n The
LENGTH option specifies the length of the data to be passed. The
COMMAREA and LENGTH options can be used only when the RETURN command is
returning control to CICS/VS.

Pseqdo-conversational Programming

Pseudo-conversational programming is the term used to describe a
technique that allows a conversational effect to be achieved without the
overhead of true conversational programming. It is advocated for entry
level system users because it allows transactions to free resources
while. awaiting input from terminals.

Instead of a task remaining in existence to communicate with the
terminal, it is allowed to terminate, having first identified the next
transaction to be associated with the terminal. (See the TR1NSID option
of the RETURN command.) When data is next sent froll the termi.nal, the
identified transaction is invoked to continue the session.

Passing Data Between Programs

This section describes how data can be passed when control is passed to
another program by a program control request. (Data can be passed
between application programs and transactions in other ways. For
example, the data can be stored in a CICS/VS storage area outside the
local environment of the application program, such as the transaction
work area (TWA); see "Access to System Information" in this section for
details. Another way is to store the data in temporary storage; see
"Temporary storage Cont rol" in this section.)

The COMMAREA option of the LINK, XCTL, and RETURN commands can
specify the name of a data area (known as a communication area) to be
used to pass data to the program being invoked or to the transaction
identified in the TRANSID option. (The TRANSID option specifies a new
transaction that will be initiated when input is next received from the
terminal associated with the current transaction.) The length of the
communication area is specified in the LENGTH option.

The invoked program receives the data as a parameter. The program
must contain a definition of a data area to allow access to the passed
data. The data area is SUbject to conventions that differ according to
programming language. See the appropriate language-specific section of
this manual for details.

The data area need not be of the same length as the original
communication area; if access is required only to the first part of the
data, the new data area can be shorter, but must not be longer.

The invoked program can determine the length of any communication
area that has been passed to it by accessing the EIBCALEN field in the
EIB of the task. If no communication area has been passed, the value of
EIBCALEN will be zero; otherwise, EIBCALEN will always contain the value
specified in the LENGTH option of the LINK, XCTL, or RETURN comlland,
regardless of the size of the data area in the invoked program.

Chapter 2.1. Application Design -- Program Control 61

When a communication area is passed by means of a LINK command, the
invoked program is passed a pointer to the communication area itself.
Any changes made to the contents of the data area in the invoked program
are available to the invoking program, when control returns to it; to
access any such changes, the program names the data area specified in
the original CO!MAREl option. When a communication area is passed by
means of a RETURN command, a copy of the comaunication area is made, and
addressability to the copy is passed to the invoked program.

The invoked program can access the EIBFN field in the EIB to
determine which type of request invoked the program. Any testing of the
field must be carried out before any CICS/VS commands are issued. If a
LINK or XCTL request invoked the program, the approprate code will be
found in the field; if a RETURN request was used, no CICS/VS commands
will have been issued in the task, and the field, will contain zeros.

The following example shows how a LINK command causes data to be
passed to the program being linked to; the XCTL command is coded in a
similar way.

Two programs are named PROGl and PROG2.

In PROG1:

A structure named CO!REGION includes, as its first element,
a three-character data area named F.IELD.

Place the value 'ABC' in FIELD.

EXEC CICS LINK PROGRAM C'PROG2') COMlllREA CCOMREGION) LENGTH (3)

Overlay the storage for CO!REGION in PROGl with a similar
structure whose first element is a three-character data area
named FIELD. (Note: The technique varies according to language.
For example, PL/I uses a based structure in PROG2, picking up
a pointer to CO!REGION asa parameter in the PROG2 PROCEDURE
statement; COBOL programs must name the structure as DFHCO!!AREA
in the linkage section of PROG2. See the appropriate language
specific section for further information.)

Test for EIBCALE» greater than zero and FIELD equal to IABC'.

rhe next example shows how a RETURN command causes data to be passed
to a new transaction.

62 CICS/DOS/VS-ELS User's Guide

Two programs are named PROGl and PROG2. ;

In PROGll

A structure named TER!STOR includes, as its first two elements,
a 3-character data area named FIELD and a 11-character data
area named DATlFLD.

Place the value IXYZ' in FIELD.

EXEC CICS RETURN TRANSID C1TRN2')
CO!MAREA(TERMSTOR) LEBGTB(20)

In PROG2:

Overlay the storage for TER!STOR in PROG1 with a similar
structure.

Test for EIBCALEN greater than zero and FIELD equal to 'XYZ'.

EXEC CICS RETURN

Program Control Options

COMMAREACdata-area)
specifies a communication area that is to be made ava~lable to
the invoked program. For LINK commands, a pointer to the data
area is passed; for XCTL and RETURN commands, because the data
area is freed before the next program is invoked, a copy'of the
data area is created and a pointer to the copy is passed.

LENGTB~arameter)

PROGRAM

specifies a half word
and RETURN commands.
is the length of the
is supplied, zero is

binary value to be used with LINK, XCTL,
The parameter must be a data value that

communication area. If a negative value
assumed.

specifies the name of the program to which control is to be
passed. The name may be up to eight characters long, must be
enclosed ~n single quotes{1 I), and mnst have been defined in
the processing program table (PPT).

Chapter 2.1. Application Design -- Program Control 63

TRANSID (name)
specifies the transaction identifier to be used with the next
input message entered from the terainal with which the task
that issued the RETURN command has been associated. The
specified name must consist of up to four characters and must
have been defined in the program control table (PCT).

Program Control Exceptional Conditions

ERROR
See under "Exceptional Condition Handling .. for an explanation
of the ERROR condition.

64 CICS/DOS/VS-ELS User's Guide

Interval Control

CICS/VS maintains a time-of-day clock so that various interval conotrol
functions can be performed at the correct time; such functions are
called time-controlled functions. The time of day is obtained from the
operating system at intervals whose frequency, and thus the accuracy of
the time-of-day clock, depends on the transaction mix and the frequency
of transaction switching operations.

Interval control commands are provided to:

• Bequest the current date and time of day (ASKTIME).

• Initiate a transaction and store data for the transaction (START).

• Retrieve data stored for a transaction (RETRIEVE).

• Cancel the effect of previous interval control commands (CANCEL).

Specifying Expiration Times

The time at which a time-controlled function is to be performed is
called the expiration time. Expiration times can be specified
absolutely, as a time of day, or as an interval that is to elapse before
the function is to be performed.

If the specified expiration time is later ~y up to 18 hours) than
the current clock time, the requested function is performed when the
specified time occurs. If the specified expiration time is the same as
the current clock time, or up to and including six hours preceding the
current clock time, the specified time is considered to have expired and
the requested function is performed immediately. If the specified
expiration time precedes the current clock time by more than six hours,
the requested function is performed the next day at the specified time.

As a means of symbolically identifying the request and any data
associated with it, a unique request identifier is assigned to each
START command. The application programmer can specify his own request
identifier by means of the REQID option; if none is assigned by the
programmer, then for START commands only, CICS/VS assigns a unique
request identifier and places it in the field EIBREQID in the EXEC
interface block (EIB). A request identifier should be specified by the
application programmer if the request may be canceled at some later time
(see "CANCEL Command," later in this section).

ASKTIME Command

,
I
I ASKTI!!E
I
I

Chapter 2.1. Application Design·- Interval Control 65

The ASKTIPJE command is used to update the CICS/VS time-of-day clock, and
the fields EIBDATE and EIBTIBE in the EXEC interface block. The two
fields initially contain the date and time when the transaction was
initiated.

START Comm~nd

r'---
I
I START TRANSID(name)
I [INTERYAL(hhmmss) I IHTERYAL(O) I TIBE(hhmmss)]
I [TEBPJID (nalle)]
I [REQID (name)]
I [FROB (data-area) LENGTH (data-value)]
I
I Exceptional condition: ERBOR
I
•

~he START command is used to initiate a transaction at a specified time
and, optionally, to pass data to that transaction. The application
programaer provides the identifier of the transaction, the location of .
any data to be stored, and, if the transaction must communicate with a
terminal, a terminal identifier. CICSjVS stores the data and queues the
request until the specified time occurs. Then, as soon as all necessary
resources are available (for example, a terminal), the transaction is
initiated. Only one transaction is initiated if several START requests
for the same transaction and terminal expire at the same time or prior
to terminal availability.

A transaction can be initiated immediately by specifying an
expiration time equal to the current time of day (or more than 18 hours
later than it) explicitly or by using a zero time interval value. (This
provides a way of ,initiating a transaction to send data to a local
printer .)

The following example shows how to request initiation of a specified
transaction not associated with a terminal:

EXEC CICS START
TRANSID ('TBNL I)
INTERVAL C 10000)
REQID (NONGL)

Request transaction initiation
Transaction identifier
Start transaction in one hour
Request identifier

The next example shows how to request initiation of a transaction
associated with a terminal. since no request identifier is specified in
this example, CICS/VS assigns one and makes it available to the
application program by placing it in the EIBREQID field of the EXEC
interface block.

EXEC CICS START
TRANSID (ITRN1')
TIKE (PACKTIPJE)
TERKIDC'STASI)

66 CICS/DOS/yS-ELS User's Guide

Request transaction initiation
Transaction identifier
Expiration time
Terminal identifier

~assi~ Data between Transactions

Data is passed to a new transaction by specifying the FRO~ and LENGTH
options. The new transaction retrieves data by issuing the RE~RIEVE
command, which ~s aescribed later. If the transaction to be started is
not associated with a terminal, each START request results in a separate
transaction being started. Therefore, only one data r~cord can be
passed to a transaction that is not associated with a terminal.

If the transaction to be started is associated with a terminal, it is
possible to pass many data records to the new transaction by issuing
further START reguests having the same transaction identifier, terminal
identifier, and expiration time as the original request.

If, owing to some delay in obtaining resources (for example, the
terminal), a transaction is not initiateu at the correct time, oth8r
START requests may have expired by the time the transaction is
initiated. It theSe reguests have the same transaction identifier and
terminal identifier as the original request, only the one transaction is
in1t~at~d; the data stored by the other requests becomes available to
this transaction. So does data stored by requests that expire while
this transaction is still actiVe. If any data made available thus is
still unretrieved at the end of th; transaction, a new transaction is
initiated.

The following example shows how to request initiation of a
transaction associated with a terminal and request that data be made
available to it:

EXEC CICS START
TRANSID('TRN2')
TI~E(173000)
TERMID('STA3 1)

REQID(DATAREC)
FROM (DATAFLD)
LENGTH (100)

EETftIEVE Command

Reg~est transaction initiation
Transaction identifier
Expiration time 1730
Terminal identifier
Request identifier field
Data address
Data length

r--,
I
I RETRIEVE {INTO(data-area) I SET(pointer-ref)}
I LENGTH (data-area)
I
I Exceptional conditions: ERROR, LENGERR, NOTFND, ENDDATA
I ,

The RETRIEVE command is used to retrieve data stored by expired START
commands. This command is the only way to retrieve such data, and it
should De issued only oy a taSK startad in response to a START command.

The INTO option is used to specify the area into which the data is to
be placed. The LENGTH option must specify a data area that contains the
maximum length of recor~ that the application program will accept. If
the record length exceeds the specified maximum, it is truncated and the
LENGERR cond~tion occurs. Aftar the retrieval operation, the data area
specified in the LENGTH option is set to the record length (before any
truncation occurred).

Chapter 2.1. ~pplication Design -- Interval Control 67

Alternatively, a pointer reference can be specified in the SET
option. CICS/VS then acquires an area large enough to hold the record
and sets the pointer reference to the address of that area. After the
retrieval operation, the data area specified in the LENGTH option is set
to the record length.

A transaction that is not associated with a terminal can access only
the single data record associated with the original START command; it
does so by issuing a RETRIEVE command. The storage occupied by the data
associated with the transaction is freed on execution of the RETRIEVE
command, or upon termination of the transaction if no RETRIEVE command
is executed prior to termination.

A transaction that is associated with a terminal can access all data
records associated with all expired START commands having the same
transaction identifier and terminal identifier as the START command that
initiated the transaction; it does so by issuing consecutive RETRIEVE
commands. Expired data records are presented to the transaction upon
request in expiration time sequence, starting with any data stored by
the command that started the transaction, and including data from any
commands that have expired since the transaction started. When all
expired data records have been retrieved, the ENDDATA exceptional
condition occurs. The storage occupied by the single data record
associated with a START command is released after the data has been
retrieved by a RETRIEVE command; any storage occupied by data that has
not been retrieved is released when the CICS/VS system is terminated.

The following example shows how to request retrieval of a data record
stored for a transaction into a specified data area:

EXEC· CICS RETRIEVE
INTO (DATAFLD)
LENGTH (LENG)

Retrieve time-ordered data
User-provided data area
Length program will accept

The next example shows how to request retrieval of a data record
stored for a transaction into a data area provided by CICSjVS, which
sets the pointer reference PREF to the address of the area.

EXEC CICS RETRIEVE
SET (PREF)
LENGTH (LENG)

CANCEL Command

CANCEL REQID(name)

Retrieve time-ordered data
Request pointer reference set
Set to length of data

Exceptional conditions: ERROR, NOTFND

The CANCEL command is used to cancel a previously issued START command.
The effect of the cancellation is as if the original request had never
been made. The cancellation request is effective only prior to
expiration of the original request.

68 CICS/DOS/VS-ELS User's Guide

Interval Control Options

FROM (data-area)
specifies the data that is to be stored for a transaction that
is to be initiated later.

INTERVAL (hhmmss)
specifies the time that is to elapse from the issuing of the
command to the initiation of the transaction. When the command
is executed, CICS/VS calculates the expiration time by adding
the specified time to the current clock time. If the
calculated time of day is the same as the current clock time,
or more than 18 hours later than it, the specified time is
considered to have expired.

This option is used in START commands, to specify when a new
transaction should be initiated.

The tille interval is specified in the form "hhmmss" where "hh"
represents hours froll 00 to 99, tlma tt represents minutes from 00
to 59, and "ss" represents seconds from 00 to 59.

INTO (data-area)
specifies the user data area into which retrieved data is to be
written. If this option is specified, move-mode access is
implied.

LENGTH(pa~ameter)
specifies a halfword binary value to be used with START and
RETRIEVE commands.

For a START command, the parameter may be a data value that is
the length of the data that is to be stored for the new
transaction.

For a RETRIEVE command with t~e INTO option, the parameter must
be a data area that specifies the maximum length of data that
the program is prepared to handle. If the value specified is
less than zer0, zero is assumed. If the length of the data
exceeds the value specified, the data is truncated to that
value and the LENGERR condition occurs. On completion of the
retrieval operation, the data area is set to the original
length of the data.

For a RETRIEVE command with the SET option, the parameter must
be a data area. On completion of the retrieval operation, the
data area is set to the length of the data.

REQID (name)
specifies a unique name to identify a request.

This option can be used in a START command when another
transaction is to be provided with the capability of canceling
an unexpired reguest, and in CANCEL commands.

The length of the name must be less than or equal to eight
characters. If this option is omitted from a START command,
CICS/VS generates a unique request identifier in the EIBREQID
field of the EXEC interface block.

Chapter 2.1. Application Design -- Interval Control 69

SET (pointer-ref)
specifies the pointer reference to be set to the address
location of retrieved data. This option implies locate-mode
access.

TERMID (name)
specifies the symbolic identifier of the terminal associated
with a transaction to be initiated as a result of a START
command. This option is required when the transaction to be
initiated must communicate with a terminal; it should be
omitted otherwise. The name must be alphameric, up to four
characters in length, and must have been defined in the
terminal control table (TCT) by the system programmer (see
Chapter 3.4).

TIME (hhIlIlSS)
specifies the expiration time. If the specified time is the
same as the current clock time, or up to and including six
hours preceding the current clock time, the specified time is
considered to have expired.

This option is used in START commands to specify when a new
transaction should be started.

The time is specified in the form "hhmmss" where "hh"
represents hours from 00 to 99, "mm" represents minutes from 00
to 59, and 'ISS" represents seconds from 00 to 59.

TRAN SID (name)
specifies the s ymbol.ic identifier of the transaction to be
initiated as the result of a START command. The name must be
up to four characters in length and must have been defined in
the program control table (PCT) by the system programmer (see
Chapter 3.4).

Interval Control Exceptional Conditions

ENDDATA

LENGERR

NOTFND

occurs if no more data is stored for a task issuing a RETRIEVE
command. It can be considered a normal end-of-file response
when retrieving data records sequentially.

Default action: terminate the task abnormally.

occurs in a move-mode retrieval operation if the length
specified is less than the actual length of the stored data.

Default action: terminate the task abnormally.

occurs if any of the following situations exists:

• The l;"eguest identifier specified in a C.lNCEL command fails
to match an unexpired time-controlled-function command.

70 CICS/DOS/VS-ELS Userls Guide

ERROR

• The RETRIEVE command is issued by a transaction that was
not initiated in response to a START command.

• The request identifier associated with a START command
fails to remain unique; when a RETRIEVE command is issued,
CICS/VS cannot determine where the data is stored.

Default action: terminate the task abnorma~ly.

See under "Exceptional Condition Handling .. for an explanation
of the ERROR condition.

Chapter 2.1. Application Design -- Interval Control 71

Exceptional Condition Handling.

Exceptional conditions may occur during the execution of a CICS/VS
command and, unless specified otherwise in the application program, a
default action for each condition will be taken automatically by
CICS/VS. Usually, this default action is to terminate the task
abnormally. However, to prevent abnormal termination, the application
program can issue a HANDLE CONDITION command. The command must include
the name of the condition and, optionally, a label to which control is
to be passed if the condition occurs.

The HANDLE CONDITION command for a given condition applies only to
the program in which it is specified, remaining active until the
associated task is terminated, or until another HANDLE CONDITION command
for the same condition is encountered, in which case the new command
overrides the previous one.

When control returns to a program from a program at a lower logical
level, the HANDLE CONDITION commands that were active in the higher
level program before control was transferred are reactivated, and those
in the lower-level program are deactivated. (Information about logical
levels is given earlier in this section.)

Some exceptional conditions can occur during the execution of anyone
of a number of unrelated CICS/VS commands. If the same action is
required for all occurrences, a single HANDLE CONDITION command at the
beginning of the program will suffice. If different actions are
required, HANDLE CONDITION commands, specifying different labels, at
appropriate points in the program will suffice. The same label can be
specified for all commands and EIBFN and EIBRCODE (fields in the EXEC
interface block) can be tested to find out which exceptional condition
has occurred and in which command. The EIB is described in Appendix B.

Apart from the exceptional conditions associated with individual
commands, there is a general exceptional condition named ERROR whose
default action also is to terminate the task abnormally. If no HANDLE
CONDITION command is active for a condition, but one is active for
ERROR, control will be passed to the label specified for ERROR. A
HANDLE CONDITION command (with or without a label) for a condition
overrides the HANDLE CONDITION ERROR command for that condition.

Do not issue any commands in an error routine that may give rise to
the same condition that caused the branch to the routine; be especially
careful not to cause a loop on the ERROR condition. A way to avoid this
would be to issue a HANDLE CONDITION ERROR comlland -- without a label -
at the start of any routine that handles the ERROR condition. This
would result in system default action for any recurrence of ERROR while
in the ERROR routine.

HANDLE CONDITION CO!!!ND

•
I
IHANDLE CONDITION
I
I
•

condition[(label)]
[condition[(label)]] •••

72 CICS/DOS/VS-ELS User's Guide

The HANDLE CONDITION command is used to specify the label to which
control is to be passed if an exceptional condition occurs. No more
than twelve conditions are allowed in the same command. The ERROR
condition can also be used to specify that other conditions are to cause
cont~ol to be passed to the same label. If label is omitted, the
default action fo~ the condition will be taken.

The following example shows the handling of exceptional conditions,
such as DUPREC, LENGERR, and so on, that can occur when a WRITE command
is used to add a ~ecord to a data set. In this example, DUPREC is to be
handled as a special case; system default action is to be taken for
LENGERR; and all othe~ conditions are to be handled by the generalized
er~or routine ERRHANDL.

EXEC CICS HANDLE CONDITION
ERROR (EHRHANDL)
DUPREC (DUPRTN)
LBNGBRR

Handle exceptional conditions
General label
Label of duplicate-reco~d routine
Default action ~equested

HANDLE CONDITION Command Ootions

condi tion[(la.o~l)]
"condition" specifies the name of the exceptional condition,
and "label" specifies the location within the program to be
branched to if the condition occurs. If this option is not
specified, the default action for the condition is taken,
unless the default action is to terminate the task abnormally,
in which case the BRROR condition occurs. If the option is
specified without a label, any HANDLE CONDITION command for the
condition is deactivated, and the default action is taken if
the condition occu~s.

LIST OF EXCEPTIONAL CONDITIONS

The following list shows exceptional conditions that can occur during
the execution of CICS/VS commands. Each condition is followed by one or
mo~e keywords, showing CICS/VS coamands during the execution of which
the condition may occur. For the meaning of a condition, and the
defaul t action associated with that condition, refer .to the list of
exceptional conditions given at the end of each subsection. Note that
some error conditions that can occur are not documented in this manual;
howeve~ they can be covered by the ERROR condition. A full list of
error condition is given in the !2£!i£atiQ!-f~~grammer's RefereB~
Manual (Command Lavel). The EIBRCODE field of the EXEC Interface Bloc~
(see Appendix B) contains a code related to the conditions.

DUPKEY
READ ~SAK), READNEXT

DUPREC
WRITE

ENDDATA
RETRIEVE

Chapter 2.1. Application Design -- Condition Handling 73

EIDP':ILE

ERROR

:ITE!!ERR

LEIGERR

!lAPP'A:IL

NOTPND

OZEBO

RRADNEXT, READPREV

-- can occur during the execution of any command

RBADO TS, WR:ITEO TS

REID, REIDNEXT, REIDPREY, RBIDO TD, REIDO TS, RETRIEVE,
REWRITE, WRITE

RECE:IVE !lAP

CINCEL, DELETE, READ, READIEXT, READPRBV, RETRIEVE

READO TD

74 C:ICS/DOS/VS-ELS User's Guide

Chapter 2.2. Assembler Language Programming

CICS/VS acts as an interface between assembler language application
programs and the operating system. When an assembler language
application program is designed to run under CICS/VS, certain commands
can be replaced by CICS/VS commands. This substitution is usually
mandatory. In particular, applications must always use CICS/VS commands
to perform input and output operations.

The first part of this chapter describes the use of CICS/VS commands
in assembler language programming, and lists some programming rules.
The second part demonstrates the principles by describing, listing, and
analysing a sample program.

Translator Invocation

For details of translator invocation, see Chapter 3.5, "Preparation of
Application Programs."

Assembler Language Translator Options

The translator provides optional facilities, which can be requested by
job control statements. Some of the options have default values.

Translator options are specified in the *ASK job control statemen~,
and are writt€n as a list within the CICS keyword option.

The *ASM statement must obey the same syntax and continuation rules
as the assembler comment statement.

Translator Options Default

NOSPIE

NOSPIE
is used to prevent the translator from trapping unrecoverable
errorSi instead, a dump is produced.

Command Syntax

The format of a CICS/VS command is as follows:

1. The keyword EXECUTE or its abbreviation, EXEC. This keyword must
appear in an operator position.

Chapter 2.2. Assem.bler Lan.guage Programlling 75

2. The identifier CICS

3. The function

4. A sequence of options. The options may be written in any order.
They may be separated by either a comma or a blank.

5. Remarks may be added to a line by following an option with either a
comma or a period, then a blank, and then the ~emark.

6. Continuation follows normal Assembler language conventions: there
must be a non-blank character in column 72, and continuation lines
must start in column 16.

rhe general format is:

{EXECUTEIEXEC} CICS function [option] •••

General·Rules for Assembler Language Programming

For an assembler language application program, each EXEC CICS command is
replaced by an invocation of the DFHEICAL macro. The DFBEICAL macro
builds an argument list in dynamic storage, so that the application
program is reentrant, and then invokes the EXEC interface program. A
definition of this dynamic storage is provided automatically by the
translator inserting an invocation of the macros DFHEISTG and DFHEIEND.
The translator will also insert an invocation of the DFHEIENT macro,
which perforas prolog initialization code and an invocation of the
DFHEIRET macro which performs epilog code.

The following example shows a simple assembler language application
program that sends a BMS map to a terminal.

INsrRUCT CSECT
EXEC CICS SEND MAP('XDFHAMA') MAPONLY ERASE
END

which is translated to:

INSTRUCT CSECT
DPHEIENT INSERTED BY TRANSLATOR

* EXEC CICS SEND MAP('XDFHAftA') ftAPONLY ERASE
DFHEICAL (23,5) , ('1804C0000800000000046204000020','XDFHAftA',DF *

HEIVOO)
DPHEIRET
DPHEISTG
DFHEIEND
END

INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR

The dynamic storage that is obtained for building the parameter list
may be extended by the user to provide reentrant storage for assembler
variables. The following example shows a simple assembler language
application program that uses variables in dynamic storage.

DFHEISTG DSECT
COpy
COpy

MESSAGE DS

XDFHAMA
XDFHAMB
CL39

INPUT MAP DSECT
OUTPUT MAP DSECT

76 CICS/DOS/VS-ELS User's Guide

INQUIRY CSECT
EXEC
!!VC
!lVC
EXEC
END

CICS RECEIVE !!AP(-XDFBA!!AI)
NU!lBO,KEYI
SESSAGE,=CL(L1!lESSAGE) 'THIS IS A RESSAGEI
CICS SEND !!AP('XDFBA!!B')

which is translated to:

DFHEISTG DSECT
DFBEISTG
COPY XDFHAMA
COPY XDFRA!!B

INSERTED BY TRANSLATOR
INPUT HAP DSECT
OUTPUT !AP DSECT

MESSAGE
INQUIRY

DS CL39
CSECT

*

*

DPHEIENT INSERTED BY TRANSLATOR
EXEC CICS RECEIVE MAP(IXDFB1!lA')
DPBEICIL (23,S),(11802C0000800000000040900000020','XDFBAHA',XD *

PBAHAI)
!lVC NUHBO,KEYI
HVC MESSAGE,=CL ~IHESSAGE)'THIS IS A !!ESSAGE'
EXEC CICS SEND HAP('XDFBA!!B-)
DFHEICAL (23,S),('1804C000080000000004E004000020','XDFHA!lA',XD *

PRAMBO)
DPHEIRET
DPHEISTG
DFHEIEND
END

INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR
INSERTED BY TRANSLATOR

The use of the reserved name DFBEISTG as the DSECT name indicates
that dynamic storage is to be provided for the extra user variables
within that named DSECT.

The invocation of an assembler language application program using the
command level interface obeys system standards and the invocation of the
EXEC interface program by an EXEC CICS command also obeys system
standards. Details are given below.

On entry to an assembler language program using the com.and level
interface;

Register 1 contains the address of the parameter list.
Register 15 contains the address of the entry point.
Register 14 contains the address of the return point.
Register 13 contains the address of a save area.

The parameter list consists of two entries, as follows:

• Address of the EXEC interface block.

• Address of the COKMAREA or zeros if it does not exist.

A copy book, DPHEIBLK, containing a DSECT which describes the EXEC
interface block is automatically included.

Each EXECUTE CICS command is replaced by an invocation of the
DFHEICAL macro which expands to a system-standard call sequence using
the following registers:

Register 15
Register 14
Register 0
Register 1

contains the en try point of the EXEC interface program.
contains the return address in the application program.
is undefined.
contains the" address of the parameter list.

Chapter 2.2. Assembler LanguageProgramaing 77

The entry point is res01ved in a stub (DFHEAI) which must be link
edited with the application program.

storage for the parameter list is provided automatically by the
translator, which inserts invocations of the macros DFHEISTG and
DFHEIEND.These macros define the storage required for the parameter
list and a save area. The translator also inserts an invocation of the
DFHEIENT macro after the first CSECT or START statement. This macro
saves registers, obtains an initial allocation of the storage defined by
DFHEISTG, sets up a .base register (default register 3) , a dynamic
storage register (default register 13), and a register to address the
EXEC interface block (default register 11).

Exit from the assembler language program can be achieved by the EXEC
CICS .RETtJRN com.and or by the DFHEIRET macro, which is inserted by the
translator before the END statement to restore registers and return to
the address in register 1ij.

The dynamic storage defined by DPHEISTG can be extended by the user
to provide reentrant storage for user variables. This is done by
defining the user variables in a DSECT with the reserved name DFHEISTG.
The translator inserts the DFHEISTG macro after. the DFHEISTG DSECT
statement. In this way the DSECT finally describes dynamic storage
consisting of the parameter list area, other areas needed by the EXEC
interface, and space for user variables.

The user may also modify or extend the defaults used by the DFHEIENT
macro by coding the lIacro himself. The macro can have up to three
keywo~d arguments, as follows:

CODE REG - base register
pATAREG - dynamic storage register
EIBREG - register to address the EXEC interface block.

and must be coded instead of the first CSECT or START statement, as
shown in the following example:

INSTRtJCT DFHEIENT CODEREG=(2,3,ij) ,DATAREG=5,EIBREG=6

The symbolic register DFBEIPLR is equated to the first DATAREG either
explicitly specified or obtained by default. DFHEIPLR will be assumed
by the expansion of an EXEC command to contain the value set up by
DFHEIENT. It is the user's responsibility to either dedicate this
registeror~nsurethat it is restored before each EXEC command.

RestrictiQns

The following assembler language features cannot be used in an
application program designed for use withCICS/VS.

1. The assembler language instructions COl'! (Common control section), .
ICTL, and OPSIN.

2. Private code must not contain EXEC commands.

78 CICS/DOS/VS-ELS U.ser's Guide

EXEC Commands Inside oacros and COpy Code

Macros can generate EXEC commands and COpy code can contain BXBC
commands, but such macros and COpy code must be translated and stored in
the source library in translated form for later inclusion by the
assembler.

Invoking Assembler Aeelication Prog~ams by a CALL Sta~~

Assembler application programs containing BXEC commands can be treated
as separate CZCS/VS·programs that have their own PPT entries and that
can be invoked by assembler language, COBOL, RPGII, or PL/I' progralls
using EXBC CICS LINK or ICTL commands (see Chapter 2.1).

However, since assembler application programs containing EXEC
commands are invoked by a system standard call, they can also be invoked
by a COBOL, RPGII, or PL/I CALL statement or by an assembler CALL macro.
A single CICS/VS program with one PPT entry may consist of a module
containing separate CSECTs linked together, although they may have been
compiled or assembled separately.

Also, assembler language application programs containing EIBC
commands can be linked with other assembler language programs, or with
programs in one of the high level languages (BLL), COBOL, RPGII, or
PL/I, but with only one. When an BLL program is linked with an
assembler language program the main program, and the language specified
in the PPT, must be the BLL program.

Since assembler language application programs containing EXEC
commands are always passed the two parameters EIB and COK!AREA when they
are invoked, the CALL statement or macro must pass these two parameters
followed~ optionally, by other parameters.

Description of UPDATE Sample Program

The update sample program combines the facilities of file update, file
add and file inquiry.

The update program maps in the account number and reads the file
record. The required fields from the file area, and a title depending
on the invoking transaction-identifier, are moved to the map area. In
the case of the file add function being required, the number entered
onto map IDFHAM! and a title are moved to the map area of IDPBA!B. Then
XDPBAMB, containing the record fields, is displayed at the terminal. If
the function of this transaction is file inquiry, the program ends here.

The update program then reads and maps in the record to be added or
updated, and edits the fields. The sample program only suggests the
type of editing that might be done. The user should insert editing
steps needed to ensure valid changes to the file. Those fields which
have been changed are moved to the file area. Log information is moved
to the transient data area. 'lhe file record is then either added or
updated, depending on the function required of the program. Either the
message "PILE UPDATED" or "RBCORD ADDED" is inserted in XDPHA!A and the
map is transmitted to the terminal.

Note: This program demonstrates a pseudo-conversational programming
technique, where control is returned to CICS/VS along with a transaction

Chapter 2.2. Assembler Language Programming 79

identifier whenever a response is requested from the operator.
Associated with each return of control to CICS/VS is a storage area
containing details associated with the previous invocation of this
transaction.

80 CICS/DOS/VS-ELS User's Guide

Listing of UPDATE Sample Program and Maps

DFHEISTG

RETREG
ROG
R07
ROa
R09
FILEDS

COltPTR

ltESSAGES
KEYNUM
COMLEN
XDFHAALL

1

OKTRANID
2

3
4

5

6

7

a

INQUPD
9
10
11

12

13
UPDTSECT
14

15

DSECT
COpy
COpy
EQU
EQU
EQU
EQU
EQU
DS
COPY
EQU
COPY
COPY
DS
DS
DS
CSECT
CLC
BE
CLC
BE
CLC
BNE
DS
LH
LTR
BNZ
EXEC
EXEC
OC
BZ
l'!VC
XC
CLC
BNE
l'!VC
MVC
MVI
MVC
MVC
ltVI
MVC
MVC
BAL
B
DS
EXEC
EXEC
CLI
BE
CLC
BNE
!fVC
MVC
BAL
B1L
EXEC
DS
MVC
MVC
l'!VC
BAL

XDFHAMA
XDFHAl'!B
2
6
7
a
9
OC
FILEA
4
LOGA
DFHBl'!SCl
CL39
CL9
1H

MAP A
MAP B
SET UP REGISTER USAGE

RECORD DESCRIPTION FOR FILEA
POINTER TO COMBAREA
LOG FILE RECORD DESCRIPTION
BrtS ATTRIBUTE BYTES
TEltP STORE FOR MESSAGES
TEMP STORE FOR FILE RECORD KEY
LENGTH OF COMBAREA

EIBTRNID,=CL~'EIBTRNID)'AINQ' IS INVOKING T-ID 'AIIO'?
OKTRANID OK HERE, SO CONTINUE
EIBTRNID,=CL(L'EIBTRNID)'AUPDI IS IT 'AUPD'?
OKTRANID OK HERE, SO CONTINUE
EIBTRNID,=CL(L'EIBTRNID) 'AADD' FINALLY, IS IT IA1DDI?
ERRORS IF NOT, GO TO ERROR ROUTINE
OH CORRECT INVOKING TRANSACTION 10 HERE
COMPTR,EIBCALEN HAS A COMBAREA BEEN RETURNED?
CO!PTR,COl'!PTR
COMRETND ••• YES, SO GO GET MAP

CICS HANDLE CONDITION MAPFAIL(AMNU) ERROR(ERRORS)
eICS RECEIVE MAP ('IDFHAMA')

KEYI,KEYI IS KEYI HEX ZEROS?
NOTFOUND •• YES, SO TREAT AS NOT FOUND
KEYNUM,KEYI •• NO, SO SAVE KEY TO PILE
IDFHAMBO(IDFHAMBE-IDFHAl'!BO),IDFHAKBO CLEAR MAP
EIBTRNID,=CL~IEIBTBNID)IAADD' IS INVOKING T-ID 'AADD'?
INQUPD •• NO, SO GO TEST FOR OTHER 10'5
TITLEO,=CL~'TITLEO)'FILE ADD' SET UP TITLE
KSG30,=CL(L'BSG30) IENTER DATA AND PRESS ENTER KEY'
NUMBA,DFHBMFSE SET MDT ON NUMBER
NUMB,KEYI PUT KEY IN COMMAREA
NUMBO,KEYI ••• AND ON KAP ENTRY
AMOUNTA,C'JI NUMERIC AND MDT AT~RIBUTE BYTE
lMOUNTO,=CI~OOOO.OO' PROMPTING FIELD FOR KAP
COMLEN,=H'7' SET UP LENGTH OF COKMAREA TO BE RTND
RETREG,MAPSEND GO SEND MAP
CICSCONT GO RETURN CONTROL TO CICS
OH HERE INVOKING T-ID IS AINQ, OR lUPD

CIes HANDLE CONDITIOI NOTFND(NOTFOUND)
CICS REID DATASET (,FILEA') INTO (FILEA) RIDFLD (KEYNUK)
STAT,X'FF' IS RECORD CODED IS NOT FOUND?
NOTFOUND •• YES, SO BRANCH TO NOTFOUND ROUTINE
EIBTRNID,=CL(L'EIBTRNID)'AINO' IS INVOKING T-ID lIRO?
UPDTSECT •• NO, SO BRANCH TO AUPD ROUTINE
TITLEO,=CL~'TITLEO)'FILE IIQUIBY' SET UP TITLE ON MAP
MSG30,=CL (L'MSG30) 'PRESS ENTER TO CONTINUE' SET UP TITLE
RETREG,l'!APBUILD GO BUILD l'!AP
RETBEG,l'!APSEND GO SEND MAP

CICS RETURN TRIISID('AMNU')
OH 'UPDATE ROUTINE
TITLEO,=CL(L'TITLBO) 'FILE UPDATE' SET UP MAP TITLE
MSG30,=CL(L'KSG30) 'CHANGE FIELDS AND PRESS ENTER'
COMLEN,=H'ao' STORE LENGTH OF COMMAREA
RETREG,ltAPBUILD GO BUILD MAP

Chapter 2.2. Assembler Language Programming 81

BAL
B

RETREG ,!APSEND
CICSCONT

GO SEND !AP
GO RETURN CONTROL TO CICS

* *
*
*
*

BERE A CO!BAREA HAS BEEN RETURNED, AND IS THEREFORE SECOND
INVOCATION OF THIS PROGRAM *

*
* ***

COBRETND DS OH HERE COBBAREA HAS BEEN RETURNED

16

17

18

19

20

21

OKREC

22

SECADD

23

CICSCONT
24

A!lNU

25

L CO!PTR,DFHEICAP GET ADRESSABILITY TO COMM1REA
EXEC CICS HANDLE CONDITION BAPFIIL ~OTMODF) BRRORCERRORS)

DUPREC (DUPREC) NOTFND CNOTFOUND)
EXEC CICS RECEIVE BAPC'IDFHA!B')
CLC EIBTRNID,=CL~'BIBTRNID)'IUPD' IS INVOKING T-ID IUPD?
BNE SECADD •• NO, SO BRANCH TO SECOND AADD ROUT
EXEC CICS READ UPDATE DATASETC-FILEA') INTO (FILEA)

CLC
BE
!VC
!VI
!VI
BAL
EXEC
KVC
B
DS
BAL
MVI
BAL
!VC
B
DS
!VC
BAL
XC
BVI
BAL
!VC
B
DS
EXEC

RIDFLD(NU!B-FILEDS (CO!PTR»
FILERBC,FILEREC-PILEDS (COMPTR) RECORD CHANGED ON PILE?
OKREC •• NO, SO BRANCH AND CONTINUE
!SG10,=CL (L'BSG10) 'PILE ALREADY UPDATED - REENTER'
!SG1A,DFHB!BRY BRIGHTEN !ESSAGE ON SCREEN
!SG3A,DFHB!DAR DARKEN OPERATOR INSTRUCTION
RETREG,!APBUILD GO BUILD HAP

CICS SEND MAPC'XDPHA!B') DATAONLY
CO!LEN,=H'80' SET UP LENGTH OF COM!EREA
CICSCONT GO RETURN CONTROL TO CICS
08 HERE RECORD IS OK FOR UPDATE
RETREG,CHECK GO TEST RECORD TO BE UPDATED
STAT,C'U' MOVE 'UPDATE' BYTE TO FILE RECORD
RETREG,PILESTUP GO SET UP FILE RECORD
!ESSAGBS,=CL~IMESS1GES)'FILE UPD1TED' SET UP MESSAGE
A!NU CO!PLETE, GO PINISH.
08 SECOND ADD ROUTINE
NU!B,NUMB-PILEDS(CO!PTR) MOVE SlVED RECORD KEY TO PILE
RETREG,CHECK' GO CHECK RECORD TO BE ADDED
PILEDS,FILEDS RECORD IS OK BERE,SO CLEAR FILE AREA
STAT,C'A' MOVE 'ADDED' BYTE TO FILE RECORD
RETREG,FILESTUP GO WRITE RECORD ON FILE
MESSAGES,=CL(LIMESSIGES) IRECORD ADDED' SET UP !ESSAGE
ARNU COBPLETE, GO FINISH.
OH THIS ROUTINE RETURNS CONTROL TO CICS

CICS RETURN TRANSID (EIBTRNID) CO!!AREA (FILEDS)
LENGTH (CO!LEN)

DS OH ENDING ROUTINE
XC XDFHAMAOCXDFHA!AE-XDFBIMAO),XDFHI!AO CLEAR !AP
KVI BSGA,DFHB!BRY BRIGHTEN MESSAGE FIELD ON MAP
!VC BSGO,!ESSAGES MOVE ANY !ESSAGE TO !AP AREA

26 EIEC CICS SEND !APC'IDPHA!A') ERASE
27 EXEC CICS RETURN

*

*

*

* *
*
*

GENERAL ROUTINES *
* ***

!APBUILD DS OB ROUTINE TO BUILD !tAP XDFHAKB
BYC NUBBO,NU!B MOVE FILE KEY TO MAP AREA
!YC NA!EO,NA!E MOVE NAftE TO !AP AREA
!VC ADDRO,ADDRX MOVE ADRESS TO KAP AREA

28 MVC PBONEO,PHONE MOVE PHONE TO KAP AREA
MVC DATEO,DATEX MOVE DATE TO MAP AREA
!VC ABOUNTO ,AMOUNT MOVE AMOUNT TO KAP AREA
MVC CO!MENTO,COMMENT MOVE COM!ENT TO MAP IREA
BR RETREG RETURN

MAPSEND DS OH ROUTINE TO SEND MAPXDF8AMB '
29 EIEC CICS SEND MAPCIXDF8A!B') ERASE

82 CICS/DOS/VS-ELS User's Guide

BR
CHECK DS

LA
LA
LA
LA
IC!

30 CLCL
BE
CLC
BE

UPNA!C8K DS
OC
BZR

ADNA!CHK TRT
B!
BR

FILESTUP DS
31 OC

BZ
HVC

ADRTST OC
BZ
HVC

PHNTST OC
BZ
!tVC

DATTST OC
BZ
!VC

AMTTST OC
BZ
liVC

COMTST OC
BZ
MVC

CONTINUE DS
!tVC

32 MVC
MVC
!VC

33 EXEC
CLC
BNE

34 EXEC
BR

ADDWRITE DS
35 EXEC

BR
DATAERR DS
36 !tVI

MVI
MVI
MVI
,MVI
MVI
MYI

'MVI
31 HVC
38 EXEC

CLC
BE
MVC
B

RET REG RETURN
OH ANY INPUT FRO! SCREEN? ROUTINE
R06,XDFHA!BO R6 POINTS TO START OF MAP XDFHA!B
R07, (XDFHAMBE-XDFHA!BO) R7 CONTAINS LENGTH OF !AP B
R08,HEXZERO R8 POINTS TO HEXZERO
R09,L'HEXZERO R9 CONTAINS LENGTH OF HEXZERO
R09,B'100 1 ,HEXZERO X'OOI INTO TOP BYTE OF R9
R06,R08 DOES MAP CONTAIN ANY INPUT?
NOTMODF •• NO, SO RAISE NOT MODIFIED
EIBTRNID,=CL(L'EIBTRNID) 'AADD' IS INVOKING T-ID 'ADDSt?
ADNAMCHK •• YES, SO GO TO 'AADD' NAME CHECK
OH UPDATE TRANSACTION HERE
NAMEI,NA!EI HAS NA!E BEEN CHANGED?
RETREG •• NO, SO DON'T CHECK IT
NA!EO,TAB •• YES, IS IT ALPHABETIC?
DATAERR •• NO, SO RAISE ERROR
RETREG •• YES, SO RETURN
08 ROUTINE TO SET UP FILE RECORD
NA!EI,NA!tEI HAS NAME BEEN ENTERED?
ADRTST •• NO, BRANCH
NA!E ,NAIlEI •• YES, PUT IT IN FILE AREA
ADDRI,lDDRI HAS ADRESS BEEN ENTERED?
PBNTST •• NO, BRANCH
ADDRX,ADDRI •• YES, PUT IT IN FILE AREA
PHONEI,PHONEI HAS PHONE BEEN ENTERED?
DATTST •• NO, BRANCH
PRONE,PHONEI •• YES, PUT IT IN FILE AREA
DATEI,DATEI HAS DATE BEEN ENTERED?
AMTTST •• NO, BRANCH
DATEX,DATEI •• YES, PUT IT IN FILE AREA
AMOUNTI,AMOUNTI HAS AMOUNT BEEN ENTERED?
COMTST •• NO, BRANCH
AMOUNT,AMOUNTI •• YES, PUT IT IN FILE AREA
COMMENTI,CO!MENTI HAS COMMENT BEEN ENTERED?
CONTINUE •• NO, CONTINUE
CO!MENT,CO!MENTI •• YES~ PUT IT IN FILE AREA
OH FILE RECORD IS NOW SET UP
LOGREC,FILEREC MOVE FILE RECORD TO LOG AREA
LDAY,EIBDATE !OVE DATE TO LOG AREA
LTIME,EIBTI!E !OVE TIME TO LOG AREA
LTERML,EIBTRMID MOVE TERMINAL-ID TO LOG AREA

CICS WRITEQ TD QUEUE(tLOGA') FROM(LOGA) LENGTH (92)
EIBTRNID,=CL(L'EIBTRNID)'AUPD' UPDATE REQUIRED?
ADDW RITE •• NO, SO BRANCH

CICS REWRITE DATASET('FILEA') FRO!(FILEA)
RETREG FINISHED, SO RETURN
OR ADD PUNCTION REQUIRED

CICS WRITE DATASET(tPILEA') FROM (FILEA)
RIDFLD(NUMB-FILEDS(COMPTR»
RETREG FINISHED, SO RETURN
OH GENERAL ROUTINES
NA!EA,DFHBMFSE PRESERVE CONTENTS OF SCREEN
ADDRA,DFHBMFSE BY SETTING THE MODIFIED DATA TAG
PRONEA,DPRBMFSE ON THE FIELDS ON THE SCREEN.
DATEA,DFHBMFSE
AMOUNTA,DFHBMPSE
COMMENTA,DFHBMFSE
MSG3A,DPRBMBRY BRIGHTEN ERROR MESSAGE
MSG1A,DPHBKDAR DARKEN OPERATOR INSTRUCTION
MSG30,=CL(L'MSG30)'DATA ERROR - PLEASE REENTER'

CICS SEND MAP(IXDPHAMBt) DATAONLY
EIBTRNID,=CL(LIEIBTRNID)'AUPDt UPDATE REQUIRED?
UPDTERR •• YES, SO BRANCH
COMLEN,=H'1' •• NO,SET UP COMLEN
CICSCONT GO RETURN CONTROL TO CICS

*

Chapter 2.2. Assembler Language Programaing 83

OPDTERR DS
MVC
B

NOTI!ODF DS
39 MVC

B
DUPREC DS
40 MVC

B
NOTPOOND DS
41 MVC

B
ERRORS DS
42 EXEC

live
B

HEXZERO DC
TAB DC

ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG
DC
ORG
END

Program Notes

OH
C08LEN,~H'80' OPDATE, SET UP REQUIRED COMLEN
CICSCONT
OH SCREEN NOT CHANGED
MESSAGES,=CL(L'MESSAGES)'PILE NOT MODIFIED' MESSAGE
AMNO COMPLETE, GO FINISH
OH DUPLICATE RECORD
MESSAGES,=CL(L'ftESSAGES) 'DUPLICATE RECORD' KESSAGE
AKIO COMPLETE, GO FINISH
OH RECORD ROT FOUND
MESSAGES,=CL(L'ftESSAGES) 'INVALID NUMBER-PLEASE REENTER'
AMNO COMPLETE, GO FINISH

OH GENERAL ERROR ROUTINE
CICS DUMP DUKPCODE('ERRS')

MESSAGES,=CL ~'MESSAGES)'TRANSACTIOH TERMINATED'
AMNO COMPLETE, GO ·FINISH
XIOO' CONSTANT POR COMPARISONS
256X'FF~ TRANSLATE TABLE
TAB+X '40' BLANK
X'OO'
TAB+X'4B' CHAR '.'
X'OO'
TAB+X'Cl' CHARS 'A' 'I'
9X'OO'
TAB+X'Dl' CHARS ~J' 'R'
9X'OO'
TAB+XIE2' CHARS'S' 'Z'
8X'OO-

1. The possible invoking transaction identifiers are tested.

2. The length of the COMMAREA is tested.

3. The program exits are set up.

4. Map XDFHAMA is received.

5. The account number is saved.

6. If the program was invoked by the transaction-identifier 'AADD' a
title and command message are moved to the title area.

7. The record key is moved to the map area and to the eOMMAREA.

8. In the case of the AADD transaction, the amount field has the
modified data tag and the numeric attribute byte set on so only
numeric data can be entered, and if no data is entered, the field
contains the original data if it has not been modified when the
contents of map XDFHAMB were mapped in.

9. The exit for the record not found condition is set up.

10. The file control READ reads the file record into the file area.

11. If the record is coded as deleted, it is treated as not found.

12. If the program was invoked by the transaction-identifier 'AINQ' a
title and command messaga are moved to the map area.

84 CICS/DOS/VS-ELS User's Guide

13. Thi~ invocation of the program ends.

14. If the program was invoked by tne transid 'AUPD' a title and
command message are moved to the map area.

15. The length of the COMMAREA to be returned is set up.

16. The error exits are set up.

17. This command maps in the contents of the screen.

18. The file control READ UPDATE reads the file using the number from
the last invocation of this program, which is stored in COMMAREA.

19. The fields trom the last invocation are checked against those on
the current file record.

20. A message and attribute bytes are moved.

21. The cont~nts of the map XDFHAMB are sent to the terminal.

22. The message 'FILE UPDATED' is moved to MESSAGES.

23. The message 'RECORD ADDED' is moved to MESSAGES.

24. Control is returned to CICS together with the name of the
transaction to be invoked when an attention key is pressed at the
terminal, and data associated with this transaction is returned in
the COMMAREA.

25. The bright attribute is turned on, and !ESSAGES is moved to the map
area.

26. The screen is erased, and map XDFHAMA is transmitted to the screen.

27. The program ends.

28. The fields from the file area are moved to the map area.

29. The screen is erased, and the map XDFHAaB is sent to the terminal.

30. Any required editing steps should be inserted here. A suitable
form of editing should be used here to ensure that valid records
are placed on the file.

31. The record to be written to the file is created.

32. The record fields, date, time, and terminal identification are
moved to the transient data area.

33. This record is written to a transient data file.

34. The updated record is rewritten to the file.

35. The record is written to the file.

36. The fields from the map have the modified data tag attribute set so
that data is still in those fields when the map is received.

37. An error message is move~.

38. The contents of the map XDFHAaB are sent to the screen.

39. If no fields were modified, the message 'FILE NOT MODIFIED' is
moved to MESSAGES.

Chapter 2.2. Assembler Language Programming 85

40. If a duplicate record condition exists, the message 'DUPLICATB
RECORD I is moved to flESS1GES.

41. If the file record was not found, the message III'ILID lUBBER
PLEASB REBNTER' is moved to !ESSAGBS.

~2. On an error (notes 4, 10, 13, 17, 18, 21, 24, 26, 29, 33, 34, and
38) a dump is taken and the message 'TRANS1CTIONTERBIN1TEDI is
moved to messages.

flAP XDPH1!1 (BEIO SCREBI)

flap Definition

fllPSETl DPHBSD TYPE=SSYSPAR!,HODE=IIOUT,CTRL=(PREEKB,PRSBT),L1NG=lSB, •
TIOAPPX=YES,EXTATT=fllPONLY,COLOR=BLUB

XDFHlflA DPH!DI SIZE=(12,40)
DPHBDP POS=(1,10),LENGTH=21,INITI1L=IOPER1TOR INSTRUCTIONS'

HIGHLIGHT = UNDERLINE
DPH!DP POS=(3,1),LEIGTH=27,INITIAL='OPER1TOR INSTR - ENTER lflN.

U'
DPH!DP POS=(4,1) ,LENGTH=38,IIITIAL=IPILE INQUIRY - ENTER III.

Q AND NUflBERI
DPHBDP POS=(S,1),LEHGTH=38,INITI1L='PILE BROiSB - ENTER lBR.

i AND lUBBER'
DPHllDP POS=(6,1),LENGTH=38,INITIAL='PILE lDD - ENTER liD.

D AND IUSBER'
DPHflDP POS=(7,1) ,LBNGTH=38,IRITIAL=IPILE UPDATB - ENTER lUP.

D AND RUSBER'
SSG DPH!DP POS=(11,1),LENGTH=39,INITIAL='PRESS P11 TO PRINT--PRESS.

CLEAR TO EXIT"
DPH!DP POS=(12,1),LBNGTH=18,IIITIAL='BNTER TR1NS1CTION:'
DPH!DP POS=(12,20) ,LEIGTH=4,ATTRB=IC,COLOR=GREBN,

HILIGHT=REVERSE
DPH!DP POS= (12,25) ,LENGTH=6 ,INITIAL= INU!BER I

KEY DPHftDP POS=(12,32),LENGTH=6,lTTRB=NUfI,COLOR=GREEI,
HILIGHT=REVERSE

DPHftDP POS=(12,39),LENGTH=1
DPHftSD TYPE=FIN1L
END

8enu Screen Layout

+OPER1TOR INSTRUCTIOBS
+OPER1TOR INSTR - ENTER lBNU
+PILE INQUIRY - ENTER lINQ liD NU8BER
+PILE BROiSE - ENTER lBRi lND BU8BER
+PILE ADD - ENTER lADD lND NU8BER
+PILE UPDATE - ENTER lUPD AND HUflBBR

+PRESS PAl TO PRINT--PRESS CLE1R TO EXIT
+EBTEB TR1NSACTION: +XXXX+NUflBEB+XXXXXX+

Pigure 2.2-1. flenu Screen Layout (as seen on 40-character Screen)

86 CICS/DOS/V5-ELS User's Guide

MAP XDFHA!B (FILE SCREEN)

Map Definition

M1PSETB DFH!SD TYPE=&SYSPARM,ftODE=INOUT,CTRL=(FREEKB,FRSET) ,LANG=AS!, *
TI01PFX=YES,EXTATT=MAPONLY

XDFHA!B DPHKDISIZE=(12,40)
TITLE DFHKDP POS=(1,15),LBNGTH=12

DFH!DP POS=(3,1),LENGTH=8,INITIAL=tNUftBEB:I,COLOB=BLUE
NUMB DFHKDP POS=(3,10),LEIGTH=6

DFHMDF POS=(3,11),LBNGTH=1
DPH!DP POS=(4,1),LENGTH=8,INITIAL=INAME: I,COLOR=BLUE

BAME DPH!DP POS= (4,10) ,LBNGTH=20 ,1TTBB= (UNPBOT, IC)
DPHKDP POS=(4,31),LBNGT~=1
DPH!DP POS=(5,1) ,LENGTH=8,IIITIAL=IADDRESS:',COLOR=BLUE

ADDB DPH!DF POS=(5,10),LBNGTH=20,ATTRB=UBPROT
DPH! DF Pos= (5,31), LBNGTH=1
DFHMDF POS=(6,1),LENGTH=8,IBITIAL=IPHONE: ',COLOR=BLUE

PHONE DFHl!DP POS= (6, 10) ,LENGTH=8,ATTRB=UNPROT
DFH!DF POS=(6,19),LENGTH=1
DPHMDP POS=(1,1),LENGTH=8,INITIAL='DATE: ',COLOR=BLUE

DATE DFHMDF POS=(1,10),LENGTH=8,ATTBB=UNPROT
DPH!DP POS=(7,19) ,LENGTH=1
DPHMDF POS= ~,1),LEBGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUNT DFH!DF POS=(8,10),LENGTH=8,ATTRB=NUM
DFH!DF POS=(8,21),LENGTH=1
DFHMDF POS=~,1),LENGTH=8,INITIAL='CO!MENT:I,COLOR=BLUE

COMMENT DF8MDF POS=(9,10),LEBGTH=9,ATTRB=UNPROT
DFHMDF POS= (9,20) ,LENGTH=1

MSGl DFHMDF POS=(11,1),LENGTH=39
MSG3 DPHMDF POS=(12,1),LENGTH=39

DFH!SD TYPE=FINAL
END

Pile Screen Layout

+XXXXXXXXXXIX

+NUMBER: +XXXXXX+
+8AME: +XXXXXXXXXXXXXXIXXXXX+
+lDDRESS:+XXXXXIXXXXXXXXXXXXXX+
+PHONE: +XXXXXXXX+
+DATE: +XXXIXXXX+
+l!OUNT: +XXXXXXXX+
+COM!ENT:+XXXXXXXXX+
+XXXXIXXXXXXXXXXIXIXXXXXXXXXXXIIIXXIXXX
+XXXXIXXXXXIXIXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 2.2-2. File Screen Layout (as seen on 40-character Screen)

Chapter 2.2. Assembler Language Programming 87

I
I

Chapter 2.3. COBOL Programming

I CICSjVS acts as an interface between COBOL language application programs
I and the operating system. When an COBOL language application program is
I designed to run under CICSjVS, certain commands can be replaced by
I CICSjVS commands. This sUbstitution is usually mandatory. In
I particular, applications aust always use CICS/VS comsands to perform
I input and output operations.

The first part of this Chapter describes the use of CICSjVS commands
in COBOL language programming, and lists some programming rules. The
second part demonstrates the principles by describing, listing, and
analysing a sample program.

Translator Invocation

por details of translator invocation, see Chapter 3.5, "Preparation of
Application Programs."

COBOL Translator Options

The translator provides optional facilities, which can be requested by
job control statements. Some of the options have default values.

Translator options are specified in the CBL job control statement,
and within the xoprs keyword option. Por example:

CBL XOPTS(QUOTE SPACE2)

The options can be specified in any order, and can be separated by
commas or blanks. If the options are coded in the EXEC job control
statement, the XOPTS keyword (and its associated parentheses) is
unnecessary. Only options for the translator are permitted.

~: Por compatibility with existing coding, CICS/VS-ELS 1.5 will
continue to recognize the job control keyword CICS, which has been
replaced by keyword XOPTS.

The CBL statement can also contain options which apply to the
following compiler. These options will be ignored by the translator
(that is, they will not be checked for validity), but will be copied
through into the output data set. Por example, a program preceded by:

CBL XOPTS (QUOTE),ATTRIBUTES

will be passed to the compiler preceded by:

CBL ATTRIBUTES

Chapter 2.3. COBOL Programming 89

r--
I
I
I
I
I
I
I
I
I

CICS

DLI

Translator options Default

CICS

DLI

DEBUG I BODEBUG HODEBUG

PE

PLAGWIPLAGEIPLAGI PLAGW

LIST,BOLIST LIST

HU!IBOHUft BONU!

HOSPIE

QUOTE,APOST ~ APOST

SEQIHOSEQ SEQ

SPACEll SPACE2"1 SPACE3 SPACE 1

IBEP, BOIBEP lfOIBEP

Specifies that the program contains "EXEC CICS •••• " commands.

This option is assumed as a default if CBL CICS C •••••) is
coded, but not if CBL XOPTS (•••••) is coded.

Specifies that the prograll contains "EXE C DLI commands.

DEBUGIBODEBUG

PE

specifies whether or not the execution diagnostic facility
~DP) is ~o display the line numbers of commands as shown in

the source listing. The default is BODEBUG. CEDP is described
in Chapter 4.1.)

produces translator informatory messages which print (in
hexadecimal notation) the bit pattern corresponding to the
first argument of the translated call. This bit pattern has
the encoded information that the EXBC interface program uses to
determine which function is required and which options are
specified. If PE is specified, all diagnostic messages are
listed, whatever the PLAG option specifies.

90 CICS/DOS/VS-ELS User's Guide

PL1GIIPLAGWIPL1GE
specifies which diagnostics the translator is required to list:
PLAGI specifies diagnostics at all severity levels; PLAGi
specifies diagnostics at severity levels W, C, E, and D; and
PLAGE specifies diagnostics at severity levels C, E, and D.
The default is FLAGW.

LISTIHOLIST

HOSPIE

HU!!IHONU!!

specifies whether or not the translator is to produce a listing
of its COBOL input. The default is LIST.

is used to prevent the translator ,from trapping unrecoverable
errors; instead, a dump is produced.

specifies whether or not the translator is to use the line
numbers appearing in colu.~s 1 through 6 of the card as the
line number in its diagnostic messages and cross-reference
listing. If HUft is not specified, the translator generates its
own line numbers.

QUOTEIAPOST

SEQINOSEQ

QUOTE indicates to the translator that the double quotation
marks (n) should be accepted as the character to delineate
literals; APOST indicates that the apostrophe (I) should be
accepted instead. The default is lPOST.

indicates whether or not the translator is required to check
the sequence of source statements. If SEQ is specified and a
statement is not in sequence it is flagged. The default is
SEQ.

SPACE11SPACE21SPACE3
indicates the required type of spacing to be used in the output
listing: SPACE1 specifies single spacing; SPACE2 double
spacing; and SPACE3 triple spacing. The default is SPACE1.

XBEF I NOXREF
specifies whether or not the translator is required to provide
a cross-reference list of all the CICS/VS commands used in its
input. The default is HOXBEP.

Chapter 2.3. COBOL Programming 91

Command Syntax

The format of a CICS/VS command is as follows:

1. The verb EXECUTE or its abbreviation, EXEC

2. The identifier CICS

3.· The function

4. A sequence of options. The options may be written in any order.

5. The statement ternlinator EHD-EXEC.

The general format is:

{EXECUTE I EXEC} CICS function t option]... END-EXEC.

General Rules for COBOL Programming

A CICS/VS COBOL application program contains the four standard divisions
a COBOL programmer is familiar with, the identification division,
environment division, data division, and procedure division.

IDENTIFICATION DIVISION

The identification division may include any entries specified in COBOL.
For simplicity, the examples in this manual show only the program
identification entry:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.

ENVIRONMENT DIVISION

The environment division may include the configuration section, but not
the input-output section. CICS/VS provides commands to replace all
COBOL input and output verbs. The examples in this manual show only the
environment division entry:

ENVIRONMENT DIVISION.

DATA DIVISION

The data division describes the data areas available to the program.
These areas are defined in the working-storage and linkage sections.
The file section is not used, as CICS/VS includes commands to perform
all file operations.

92 CICS/DOS/VS-ELS User's Guide

Storage Area Summary

The table below summarizes the four types of storage areas in which an
application program may store data. CWA, TWA, and TcrUA are areas
supplied by CICS/VS additional to those normally available to the COBOL
programller.

AREA AREA COBOL HOW TYPICAL AREA
l!!ME Ilf~ g~TIQ!i 9!!ATEI! CONTE!TS DURATION

WORKING WORK WORKING- COBOL CONSTANTS PROGRAM
STORAGE AREA STORAGE PROGRAMS &VARIABLES DURATION

SECTION

CWA* ~ORK LINKAGE CICS/VS SYSTEM CICS/VS
AREA SECTION GENERATION VARIABLES DURATION

TWA WORK LINKAGE PCT VARIABLES SINGLE
AREA SECTION TASK

TCTUA** WORK LINKAGE rCT VARIABLES CICS/VS
AREA SECTION DURA'rION

*Maximum size: 3584 bytes
**Maximum size: 255 bytes

working-Storage Section

The working-storage section contains the worKing storage area of the
application program and any data areas required for move-mode
input/output operations.

To simplify 3~70 progralltming, CICS/VS provides two sets of constants
that should be copied int'o the working-storage section. The first set,
DFHAID, is u3ed to determine which 3270 attention key was pressed to
initiate a transaction. The second set, DFHBMSCA, contains some
commonly-used 3270 attribute bytes which may be used to modify the
attribute bytes on a screen. (Information about these constants is
giVen in Chapter 2.1 of this manual.)

The program may describe other constants in the working-storage
section. The following is an example of how this section might be
coded.

DATA DIVISION.
WORKING-STORAGE SFCTION.
01 DFHAID COpy DFHAID.
01 DFHBMSCA COpy DFHBMSCA.
01

The linkage section defines the user overlay areas. User overlay areas
may be used to describe the CWA, TWA, TCTUA and any data areas required
for locate-mode input/o~tput operations.

Chapter 2.3. COBOL Programming 93

The linkage section is divided into two parts, data area pointers and
data area descriptions.

Data Area Pointers

Data area pointers are used so that the program may access data in
external areas without copying the data. A separate pointer is required
for each overlay area referred to by the program. The following is an
example of how the pointers are coded in part one of the linkage~
section:

LINKAGE SECTION.
01 POINTERS.

1. FILLER

02 FILLER PICTURE S9(8) COMP.
02 AREA1-PTR PICTURE S9(8) CaMP.
02 AREA2-PTR PICTURE S9 (8) COM.P.

specify exactly as shown.

2. ARE A 1-PTR

(See Note 1.)
(See Note 2.)

Specify to provide a pointer to a storage area provided by
CICS/VS.

Data Area Descri2iioB2

The second part of the linkage section contains the record dascription
antries for the areas accessed by means of pointers.

For each record description entry in part two of the linkage section,
thare must be a corresponding data area pointer in part one of the
linkage section. The correspondence between pointers and record
descriptions is determined by the sequence of the pointers and record
descriptions. The first pointer in part one of the linkage section is
associated with the first record description in part two of this sec
tion, the second pointer with the second record description, and so on.

When coding the linkage section, the programmer must be careful of
the sequence of pointers and record descriptions. The following is an
example of how the data area record descriptions are coded in part two
of the linkage section and how the pointers relate to data area
descriptions.

LINKAGE SECTION.
o 1 PO IN TE R S •

02 FILLER PICTURE S9(8) COMP.
02 AREA 1-PTR PICTURE S9 (8) COMP.
02 AREA2-PTR PICTURE S9(8) COMP.

o 1 AREAl.
02 COUNT •••
02 NAME-FIELD •••

01 AREA2.
02 FI lE-KEY •••
02 INTERMEDIATE-RESULTS •••

94 CICS/DOS/VS-ELS User's Guide

" AREA1-PTR addresses AREAl. AREA2-PTR addresses AREI2~ The pointer
values are set up by means of a CICS/VS command. The fields of the
corresponding data area can then be referred to simply by coding their
name.

The sample programs in this chapter illustrate coding for the
identification, environment, and data divisions.

PROCEDURE DIVISION

This section describes the use of the procedure division and introduces
the CICS/VS commands used in the procedure division to perform CICS/VS
services.

The procedure division of a COBOL program must not use the following
COBOL verbs or features:

REID, WRITE, OPEN, CLOSE
ACCEPT, DISPLAY (except with the system console)
TRACE, EXHIBIT
FLOW, STATE
STXIT, SY!!DBP
STRING, UNSTRING
SORT, REPORT WRITER, SEG!ENTATION
STOP RUN

If the default for the COBOL compiler is OPT then NOOPT must be
specified in the CBL card indicating no optimizer compilation.

CICS/VS provides special commands to perform input and output
operations to terminals and files.

Commands may be written anywhere in a COBOL program that a COBOL
executable statement may be written.

separate COBOL routines cannot be link-edited together.

Description of UPDATE Sample Program

The update sample program combines the facilities of file update, file
add and file inquiry.

The update program maps in the account number and unless the invoking
transaction-identifier is -CADD', reads the file recodd. The required
fields from the file area, and a title depending on the invoking
transaction-identifier, are moved to the map area. In the case of the
file add function being required, the number entered onto map XDPBCBA,
and a title, are moved to the Ilap area of XDFBCBB. Then XDFHC!B,
containing the record fields, is displayed at the terminal. If the
function of this transaction is file .inquiry, the program ends here.

The update program then reads and maps in the record to be added or
Updated, and edits the fields. The sample program only suggests the
type of editing that might be done. The user should insert editing
steps needed to ensure valid changes to the file. ThQSe fields which
have been changed are moved to the file area. Log information is moved
to the transient data area. The file record is then either added or

Chapter 2.3. COBOL Programming 95

updated, depending on the function required of the program. Either the
message 'FILE UPDArEU' or 'RECORD ADDED' is inserted in XDFHCftA and the
map is transmitted to the terminal.

~: This program demonstrates a pseudo-conversational programming
technique, where control is returned to CICS/VS along with a transaction
identifier whenever a response is requested from the operator.
Associated with each return of control to CICS/VS is a storage area
containing details associated with the previous invocation of this
transaction.

96 CIGS/DOS/VS--ELS User's Guide

Listing of UPDATE Sample Program and Maps

IDENTIPICATION DIVISION.
PROGRAM-ID. UPDATE.
ENVIRON!ENT DIVISIOI.
DATA DIVISION.
WORKING-STORAGE SECTION.
11 I!ESSAGES PICTURE X (39).
77 NAI!ET PIC X(20).
17 KEYNUI! PICTURE 9(6).
71 COI!LEN PICTURE S9(4) COMP.
01 XDPBCI!AI COpy XDPHCMA.
01 XDPHCMBI COpy XDPHCI!B.
01 PILEA COpy PILEA.
01 LOGA COpy LOGA.
01 DPBBI!SCA COPY DPRB8SCA.
01 CO!I!AREA COPY FILEA.
LINKAGE SECTION.
01 DFHCOl!8AREA COpy PILEA.
PROCEDURE DIVISION.

1 IP EIBTRNID NOT = 'CINQ'
OR EIBTRNID NOT = 'CADD'
OR EIBTRNID NOT = 'CUPD' THEN GO TO ERRORS.

2 IP EIBCALEN NOT = 0 THEN
3 MOVE DFHCOKMAREA TO COMMAREl GO TO READ-INPUT.
4 EXEC CICS RANDLE CONDITION MAPPAIL ~ENU)

ERROR (ERRORS) BND-EXEC.
5 EXEC CICS RECBIVE 8AP(~XDPBCMA') END-EXEC.

IP KEYI = LOW-VALUES THEN GO TO NOTFOUND.
6 MOVE KEYI TO KBYNUM

KOVE LOW-VALUES TO XDPBCMBO.
7 IP BIBTRNID = 'CADD' THEN

KOVE 'PILE ADD' TO TITLEO
KOVE 'ENTER DATA AND PRESS ENTER KEY' TO KSG30

8 ftOVE KEYI TO NUMB IN COI!MAREA, NUMBO
9 KOVE 'J' TO AMOUNTA

I!OVE ,~OOO.OO~ TO AKOUNTO
MOVE 7 TO COKLEN GO TO KAP-SEID.

10 EXEC CICS HANDLE CONDITION NOTFID(NOTPOUND) END-BXEC.
11 EXEC CIes READ DATASET('PILEA') INTO (PILEA) RIDPLD(KEYNUM)

END-EXEC
12 IF STAT IN FILEA = BIGH-VALUE THEN GO TO NOTPOUND.

IF EIBTRNID = 'CINQ' THEN
13 MOVE 'FILE INQUIRY' TO TITLEO

MOVE 'PRESS ENTER TO CONTINUE' TO MSG30
PERFORI! KAP-BUILD THRU KAP-SEND ,

14 EXEC CICS RETURN TRANS ID ('CKNU') END-EXEC.
IF EIBTRNID = 'CUPD' TREN

15 KOVE 'FILE UPDATE' TO TITLEO
KOVE 'CHANGE FIELDS AND PRESS ENTER' TO KSG30

16 KOVE PILEREC IN PILEA ~O PILEREC IN COMMAREA
KOVE 80 TO COMLEN.

KAP-BUILD.
MOVE NUMB IN PILEA TO NUMBO
MOVE NA8E IN PILEA TO NAMEO

11 KOVE ADDRX IN PILEA TO ADDRO
KOVE PRONE II PILEA TO PHONEO
80VE DATEX IN PILEA TO DATEO
KOVE AMOUNT IN PILEA TO AKOUNTO
MOVE COMKENT IN PILEA TO COI!I!ENTO.

I!AP-5END.
18 EXEC CICS SEND MAP('XDPHC8B') ERASE END-EXEC.

PIN.

Chapter 2.3. COBOL Programming 91

GO TO CICS-COdTROL.
R!AD-INPUT.

19 EXEC CICS HANDLE CONDITION l.'fAPFAIL (NOTMODF) NOTPND. (IOTFOUND)
ERROR (ERRORS) DUPREC(DUPREC) END-EXEC.

20 EXEC CICS RECEIVE MAP ('XDFHCMB') END-EXEC.
IF EIBTRNID = 'CUPD' THEN

21 EXEC CICS BEAD UPDATE DATASET('FILEA') INTO~ILE~
RIDFLD(NOMB IN CO!~AREA) END-EXEC

22 IF FILEREC IN FILE! NOT = FILEREC IN COMMAREATHEN
!OVE 'FILE ALREADY UPDATED - REEN.TER' TO l!SG10

23 MOVE DFHBMBRY TO MSG1!
MOVE DFHBMDAR TO MSG3A
PERFORM MAP-BUILD

2~ EXEC CICS SEND MAP PXDFHCMB') END-EXEC
MOVE 80 TO COMLEN
~OVE FILEREC IN FILEA TO FILEREC IN COMMAREA
GO TO CICS-CONTROL

ELSE
MOVE 'U' TO STAT IN FILE!
PERFORM CHECK THRU FILE-WRITE

25 MOVE 'FILE UPDATED' TO MESSAGES GO TO MENU.
IF EIBTRNID = 'CADD' THEN

MOVE LOW-VALUES TO FILERECIN FILE!
MOVE 'A' TO STAT IN FILEA
PERFORM CHECK THRU FILE-WRITE

26 MOVE 'RECORD ADDED' TO MESSAGES GO TO MENU.
CHECK.

IF NAMEI = LOW-VALUES AND
ADDRI = LOW-VALUES AND

27 PHONEI = LOW-VALUES AND
DATEI = LOW-VALUES AND
AMOUNTI = LOW-VALUES AND
COMMENTI = LOW-VALOES GO TO NOTMODF.

MOVE NAMEI TO NAMET
TRANSFORM NAMET CHARACTERS FROM I.' TO ' ,
IF EIBTRNID = 'CADD' THEN

IF NAMET NOT ALPHABETIC THEN GO TO DATA-ERROR.
IF EIBTRNID = 'CUPD' THEN
IF NAMEI NOT = LOW-VALUES
AND NAMET NOT ALPHABETIC THEN GO TO DATA-ERROR.

FILE-WRITE.
IF EIBTRNID = ICADD' THEN MOVE NUMB I~ COMMAREA TO

NUMB IN FILEA.
IF NAMEI NOT = LOW-VALUE MOVE NAMEI TO NAME IN FILEA.

28 IF ADDRI NOT = LOW-VALUE MOVE ADDRI TO ADDRX IN FILEA.
IF PHONEINOT = LOW-VALUE MOVE PHONEI TO PHONE IN FILEI.
IF DATEI NOT ::;: .LOW~VALUE MOVE DATEI TO DATEX IN FILEA.
IF AMOUNTI NOT = LOW-VALUE MOVE AMOUNTI TO AMOUNT IN FILEA.
IF COMMENTI NOT = LOW-VALUE THEN

MOVE COMMENTI TO COMMENT IN FILEA.
MOVEFILEREC IN FILEA TO LOGREC.
MOVE EIBDATE TO LDAY

29 MOVE EIBTI!E TO LTIME
MOVE EIBTRMID TO LTERML

30 EXEC· CICS WRITEQ QUEUE('LOGA') FROM (LOGA) LENGTH (92)
END-EXEC .•

IF EIBTRNID = 'CUPD' THEN
31 EXEC CICS REWRITE DArASET (. FILEA ') FROM CFILEA) END-EXEC

ELSE
32 EXEC CICS WRITE DATASETC'FILEA') FROM ~ILEA)

DATA-ERROR.
MOVE DFHBMBRY TO MSG3A

RIDFLD(NUMB IN COM8AREA)
END-EXEC.

33 MOVE 'DATA ERROR CORRECT AND PRESS ENTER'- TO MSG30

98 CICS/DOS/VS-ELS User's Guida

34 MOVE DFaB~FSE TO NA!EA, ADDRA, PHONEA, DATEA, A!OUNTA,
CO~MENTA •

35 EXEC CICS SEND MAP ('XDPHCMB') DATAONLY END-EXEC.
IF EIBTRNID = 'CADD' THEN MOVE 7 TO COMLEN
ELSE aOVE 80 TO COMLEN.

CICS-CONTROL.
36 EXEC CICS RETURN fRANSID(EIBTBNID) COM~AREA(COMMAREA)

LENGTH (COMLEN) END-EXEC.
NOTMODF.

37 MOVE 'FILE NOT MODIFIED' TO MESSAGES
GO TO MENU.

DUPREC.
38 MOVE 'DUPLICATE RECORD' TO MESSAGES

GO TO MENU.
NOTFOUND.

39 MOVE 'INVALID NUMBER - PLEASE REENTER' TO aESSAGES
GO TO MENU.

ERRORS.
40 EXEC CICS DUMP DU~PCODE ('ERRS') END-EXEC

MOVE 'TRANSACTION TERMINATED' TO ~ESSAGES.
MENU.

MOVE LOW-VALUE TO XDFHCMAO
q1 MOVE DFHBMBRY TO ~SGA

MOVE MESSAGES TO MSGO
42 EXEC CICS SEND !AP('XDFHCMA') ERASE END-EXEC
q3 EXEC CICS RETURN END-EXEC.

GOBl\CK.

Program Notes

1. The possible invoking transaction-identifier's are tested.

2. The length of the COMMAREA is tested.

3. If it has a length, the COMMAREA returned is moved to working
storage in the program.

q. The program exits are set ape

5. Map XDFHCMA is received.

6. The account number is saved.

1. If th& program was invoked by the transaction identifier 'CADD', a
title and command message are moved to the title area.

8. The record key is moved to the COMMABEA ana to the map area.

9. In the case ot the CADD transaction, the amount field has the
modified data tag ana the numeric attrinate byte set on so that
only numeric data can be entered, and if no data is entered, the
field conta~ns the original data if it has not Deen modified when
the contents of map XDFaC3B are mapped in.

10. The error exit is set up for the record not found condition.

11. The file control READ reads the file record into the file area.

12. If the record is coded as deleted, it is treated as not found.

13. It the program was invoked oy the transaction-identifier ·CIN·~' a
title and command message are moved to the map area.

Chapter 2.3. COBOL Programming 99

14~ This invocation of the program ends.

15. If the program was invoked by the transaction identifier 'CUPD' a
title and command message are moved to the map area.

16. The file record is moved to the COMMAREA and the length of the
COMMAREA to be returned is set up.

11. The fields from the file area are moved to the map area •.

18. The screen is erased and the map XDFHCMB is sent to the terminal.

19. The program exits are set up.

20. This command maps in the contents of the screen.

21. The file control READ UPDATE reads the file using the number from
the last invocation of this transaction of this program, which is
stored in the CO!MAREA.

22. The fields from the last invocation are checked against those on
the current file record.

23. A message and attribute bytes are moved.

24. Map XDFHCMB is sent to the terminal.

25. The message. 'FILE UPDATED' is moved to MESSAGES.

26. The message 'RECORD ADDED' is moved to ~ESSAGES.

27. Any reguired editing steps should be inserted here. A suitable
form of editing should be used here to ensure that valid records
are placed on the file.

28. The record to be written to the file is created.

29. The record fields, date, time, and terminal identification are
moved to the transient data area.

30. This record is written to a transient data file.

31. The updated record is rewritten to the file.

32. The record to be added is written to the file.

33. An error message is moved.

34. Fields on map XDFHCMB which are to be sent back to the screen have
the modif1ed data tag set on so they will still contain data if the
contents are not altered, when the screen is mapped in.

35. The contents of the map XDFHCMB are sent to the screen.

36. Control is returned toCICS along with the name of the transaction
to be invoked when an attention key is pressed at the terminal, and
data associated with this transaction is returned in the COMMARBA.

37. If no fields were modified, the message 'PILE NOT MODIPIED' is
moved to ftESSAGES.

38. If a duplicate record condition exists, the message 'DUPLICATE
RECORD' is moved to MESSAGES.

100 CICS/DOS/VS-ELS User's Guide

39. If the file record was not found, the message IINVALID NUMBER
PLEASE REBNTERI is moved to MESSAGES.

40. On an error (notes 5, 11, 18, 20, 21, 24, 30, 31, 32, 35, and 42) a
dump is taken, and the message 'TRANSACTION TERMINATED' is moved to
!ESSAGES.

41. The bright attribute is turned on, and MESSAGES is moved to the map
area.

42. The screen is erased, and map XDFHCMA is transmitted to the screen.

43. The program ends.

MAP XDFHC!A (MENU SCREEN)

Map Definition

MAPSET DFHMSD TYPE=&SYSPARM,!ODE=INOUT,CTRL=(FREEKB,FRSET), *
LANG=COBOL,TIOAPFX=YES,EXTATT=MAPOHLY,COLOR=BLUE

XDFHCMA DFHMDI SIZE=(12,40)
DFH!DF POS=(1,10) ,LENGTH=21,INITIAL=IOPERATOR INSTRUCTIONS', *

HILIGHT=UNDERLINE
DFH!DF POS=(3,1),LENGTH=27,INITIAL='OPERATOR INSTR - ENTER CBN*

UI
DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER CIN*

Q AND NUBBER I
DFHMDF POS=(5,1),LENGTH=38,INITIAL=IFILE BROWSE - ENTER CBR*

WAND NUMBERI
DFHMDF POS=(6,1),LEHGTH=38,INITIAL='FILE ADD - ENTER CAD*

D AND NUMBERI
DFH!DF POS=(7,1),LENGTH=38,INITIAL='FILE UPDATE - ENTER CUP*

D AND NUMBER'
MSG DFHMDF POS=(11,1),LENGTH=39,INITIAL=IPRESS PAl TO PRINT--PRESS*

CLEAR TO EXIT'
DFHMDF POS=(12,1),LENGTH=18,INITIAL=IENTER TRANSACTION:'
DFHMDF POS={12,20) ,LENGTB=4,ATTRB=IC,COLOR=GREEN,BILIGHT=REVER*

SE
DFHMDF POS= (12,25) ,LENGTH=6 ,INITIAL= 'NU!BBR I

KEY DFHMDF POS=(12,32),LENGTB=6,ATTRB=NUM,COLOR=GREEN,HILIGHT=REVE*
RSE

DFHMDF POS=(12,39),LENGTB=1
DFBMSD TYPE=FINAL
END

Chapter 2.3. COBOL Programming 101

Menu Screen Layout

+OPERATOR INSTRUCTIONS
+OPERATOR INSTR - ENTER CMNU
+FILE INQUIRY - ENTER CINQ AID HUMBER
+FILE BROWSE - ENTER CBRW AND NUMBER
+FILE ADD - ENTER CADD AND HUMBER
+FILE UPDATE - ENTER CUPD AND lUMBER

+PRESS PAl TO PRINT--PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBEB+XXXXXX+

Figure 2.3-1. Menu Screen Layout (as seen on 40-cbaracter Screen)

MAP XDFHCMB (FILE SCREEN)

Map Definition

MAPSET DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=~REEKB,FRSET), *
LANG=COBOL,TIOAPFX=YES,EXT1TT=MAPONLY

XDFBCMB DFHMDI SIZE=(12,40)
TITLE DFBMDF POS=(1,15),LENGTH=12

DFHMDF POS=(3,1) ,LENGTH=8,INITIAL='NU!BER:',COLOR=BLUE
NUMB DFHMDF POS=(J,10),LENGTH=6

DFHMDF POS=(3,17),LENGTH=1
DFHMDF POS= (4,1) ,LENGTH=8,INITIAL= INA!E: " CO LOR=BLUE

NAME DFHMDF POS= (4,10) ,LENGTB=20 ,ATTRB= (UNPBOT, IC)
DFHMDF POS=(4,31),LENGTH=1
DFHMDF POS=(5,1),LENGTH=8,INITIAL='ADDRESS:',COLOB=BLUE

ADDR DFHMDF POS=(5,10),LENGTH=20,ATTRB=UNPROT
DFHMDF POS=(5,31),LENGTB=1
DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE

PHONE DFHMDF POS=(6,10),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(6,19),LENGTB=1
DFHMDF POS=(7,1),LENGTB=8,INITIAL='DATE: ',COLOB=BLUE

DATE DFHMDF POS= (1,10) ,LENGTB=8, ATTRB=UNPROT
DFHMDF POS=(7,19),LENGTH=1
DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUNT DFHMDF POS=(8,10),LENGTB=8,ATTRB=NUM
DFHMDF POS=(8,19),LENGTB=1
DFBMDF POS=(9,1) ,LENGTH=8,INITIAL='COMMENT:',COLOR=BLUE

COMMENT DFHMDF POS=(9,10),LENGTB=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSG1 DFHMDF POS=(11,1),LENGTB=39
MSG3 DFHMDF POS=(12,1),LENGTB=39

DFHMSD TYPE=FINAL
END

102 CICS/DOS/VS-ELS User's Guide

+XXXXXXIXXXXX

+NOMBER: +XXlXXX+
+NAKE: +XXX~XXXXXXXXXXXXXXXX+

+ADDRESS:+XXXXXXXXXXXXXXXXXXXX+
+PBONE: +XXIXXIIX+
+DATE: +IIXIIXXX+
+AKOONT: +XXIIIXIX+
+COMMENT:+XIXXXXXXX+
+IXXXXXIXXXXXIXXXIXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXIXXXXXXIXXXXXXXXXXIX

Figure 2.3-2. File Screen Layout (as seen on 40-character Screen)

Chapter 2.3. COBOL Programming 103

Chapter 2.4. PL/I Programming

CICS/VS acts as an interface between PL/I language application programs
and the operating system. When a PL/I language application program is
designed to run under CICS/VS, certain commands can be replaced by
CICS/VS commands. This substitution is usually mandatory. In
particular, applications must always use CICS/VS com.ands to perform
input and output operations.

The first part of this chapter describes the use of CICS/VS commands
in PLjI language programming, and lists some programming rules. The
second part demonstrates the principles by describing, listing, and
analysing a sample program.

Translator Invocation

For details of translator invocation, see Chapter 3.5, "Preparation of
Application Programs."

Translator Options

The translator provides optional facilities, which can be requested by
job control statements. Some of the options have default values.

Translator options are specified in the *PROCESS job control
statement, and within the XOPTS keyword option. For example:

*PROCESS XOPTS(FLAG(W) DEBUG)

The options can be specified in any order, and can be separated by
commas or blanks. If the options are coded in the EXEC job control
statement, the XOPTS keyword (and its associated parentheses) is
unnecessary. Only options for the translator are permitted.

Note: For compatibility with existing coding, CICS/VS-ELS 1.5 will
continue to recognize the job control keyword "CICS", which has been
replaced by keyword "XOPTS".

The *PROCESS statement can also contain options which apply to the
following compiler. These options will be ignored by the translator
(that is, they will not be checked for validity), but will be copied
through into the output data set. For example, a program preceded by:

*PROCESS XOPTS (SOURCE) ,ATTRIBUTES

will be passed to the compiler preceded by:

*PROCESS ATTRIBUTES

Chapter 2.4. PL/I Programming 105

t

Translator Options

C1CS

DtI

DEBUG I NODE BUG

PB

FLAG[(I I'll E IS)]

LINECOUNT (n)

BARGINS (m, nr , c])

NOSPIB

OPB1RGINS (m, n[, c])

OPSEQUENCB (II ,n) I
NOOPSEQUENCE

OPTIONS I NOOPTIONS

Abbreviations

F[(I I W I E IS)]

LC(n)

!llR (lIl,n[,c])

021 (m ,n[,c])

OS (m,n) I NOS

OP INOP

Default

NODEBUG

FLAG (1)

LINECOUNT (55)

MARGINS (2,72,0)

OPftlRGINS(2,72,0)

OS (73,80)

OPTIONS

I SBQUENCE(m,n) I SEQ (m,n) INSEQ SEQUBNCE (13,80)
I NOSEQUENCB
I
I SOURCE I NOSOURCE SINS SOURCE
I
I XREFINOXRBP XINX NOXREF
I ,

CICS

DLI

Specifies that the program contains "EXBC C1CS ••• " commands.

This option is assumed as a default if * PROCESS CICS (••••••)
is coded, but not if * PROCESS XOPTS (••••••) is coded.

Specifies that the program contains "EXEC DLI ••• II cOllmands.

DEBUGINODEBUG
specifies whether the execution diagnostic facility (EDF) is to
display the line numbers of com.ands as shown in the source

PE

. listing • (EDF is described in Chapter 4.1.)

produces translator informatory messages, which print ~n
hexadecimal notation) the bit pattern corresponding to the
first argument of the translated call. This bit pattern forms
a code that the EXEC interface program uses to determine which
function is required and which options are specified. If FE is
specified, all diagnostic messages are listed, whatever the
PLAG option specifies.

106 CICS/DOS/VS-ELS User's Guide

FLAG[(I Ii lEIS)]
specifies the minimum severity of error that requires a message
to be 1 isted •

FLAG (1) List all messages

FLAG)
or) List all except informatory messages
FLAG (W))

FLAG (E) List all except warning and informatory messages

FLAG (S) List only severe error and unrecoverable error messages

LINECOUNT (n)
specifies the number of lines to be included in each page of
translator listing, including heading and blank lines. The
value of n must be an integer in the range 1 to 32767; if n is
less than 5, only the heading and one line of listing will be
included on each page.

MARGINS (m,n[~c)

NOSPIE

specifies the extent of the part of each input line or record
that contains PL/I statements. The translator does not process
data that is outside these limits (but it does include it in
the source listings).

The option can also specify the position of an American
National Standard ~NS) printer control character to format the
listing produced if the SOURCE option applies; otherwise the
input records will be listed without any intervening blank
lines. .

"m" is the column number of the left-hand margin.

lin II is the column number of the right-hand margin.
It must be greater than "m".

"C" is the column number of the lNS prihter control
character. It must be outside· the values specified
for "m" and "nil. A zero value for"c" specifies
that there is no printer control character.

Only the following printer control characters can be used:

(blank) Skip one line before printing

Skip two lines before printing

+ No skip before printing

1 Start new page

is used to prevent the translator trapping unrecoverable
errors; instead, a dump is produced.

Chapter 2.4. PL/I ProgralDming 107

OPt! ARGIIS (m ,n[,c])
specifies the translator output margins, that is, the margins
of the input to the PL/I compiler. lormally these will be the
same as the input margins. For the meaning of "m", "nil and
"CO, see 81RGIIS.

OPSEQUENCE(m,n) IIOOPSEQUERCE
specifies the position of the sequence field in the output
records. For the meaning of "m" and "n", see SEQUERCE.

OPTIONSIROOPTIONS
specifies whether the translator is to include in the listing a
list of all the 'translator options used during this
translation.

SEQUERCE(m,n) I BOSEQUEICE
specifies the extent of the part of each input line or record
that contains a sequence number. This number is included in
the source listing and used in the error message and cross
reference listings. 10 attempt is made to sort the input lines
or records into sequence. If ROSEQUENCE is specified, the
translator creates and prints in the source listing its own
sequence numbers: this is necessary so that the error messages
and cross-reference listings can refer to a particular line in
the source listing.

"." specifies the column number of the left-hand margin

"nil specifies the column number of the right-hand margin.

The extent specified must not overlap with the source program
(as specified in the MARGINS option).

The maximum length for the sequence field is 8 characters.

SOtJRCEINOSOUBCE
specifies whether the translator is to include in the listing a
listing of the source program.

XREFINOXBEP
specifies whether the translator is to include in the listing a
list of all the CICS/VS commands used in the program together
with the sequence numbers of the lines in which they are used.

Command Syntax

The format of a CICS/VS command is as follows:

1. The keyword EXECUTE or its abbreviation, EXEC

2. The identifier CICS

3. The function keyword

4. Possibly a sequence of options, can be written in any order.

108 CICS/DOS/VS-ELS User's Guide

5. The statement terminator

The general format is:

• •• ,

{EXECUTE I EXEC} CICS function [option) •••

General Rules for PL/I Programming

Re strict ions

The following PL/I features cannot be used in an application program
designed for use 'irlith CICS/VS (refer to the Q,Q.§._f,1L.L.Q.E.1imizing,_ColDpiler
~~2qra~~rt§_QY1gi for more information):

1. The multitas~ing built-in functions: COMPLETION, PRIORITY, STATUS.

2. The multitasking options: EVENT, PRIORITY, TASK.

3. The PL/I statements: READ, WRITE, GET, POT (a limited form is
permitted), OPEN, CLOSE, DISPLAl, DELAY, REWRITE, LOCATE, DELETE,
UNLOCK, STOP, HALT, EXIT, FETCH, and RELEASE. (CICS/VS commands
are provioed for the storage and retrieval of data, and for
communication with terminals.)

4. PLjI sort/merge.

5. Static sto,cage (except tor read-only data).

If OPTIONS (MAIN) is specified in an application program, that program
can be the first program of a transaction, or control can be passed to
it by means of a LINK or xeTL command.

If OPTIONS (MAIN) is not specified, the program cannot be first in a
transaction, nor have control passbd to it by a LINK or XeTL command,
but ~t can ba link-edited to a main program.

The definition of the EXEC interface block (EIB) is generated only in
main programs. If fields in the EIB are referred to in an external
procedure for which OPTIONS(MAIN) is not specified, either the address
of the EIB, or the necessary fields themselves, must be passed to the
external procedure as a parameter to the CALL statement that invokes the
external procedure.

Segments of programs can be translated by the command language
translator, stored in their translated form, and later included in the
program to be compiled.

Chapter 2.4. PL/I Programming 109

Description of UPDATE Sample Program

The update sample program combines the facilities of file update, file
add, and file inquiry.

The update program maps in the account number and reads the file
record. The required fields from the file area, and a title depending
on the invoking transaction identifier, are moved to the map area. In
the case of the file add function being required, the number entered
onto map XDFHP~A and a title are moved to the map area of XDFHP~B. Then
XDFHPMB containing the record fields, is displayed at the terminal. If
the function of this transaction is file inquiry, the program ends here.

The update program then reads and maps in the record to be added or
updated, and edits the fields~ The sample program only suggests the
type of editing' that might be done •. The user should insert editing
steps needed to ensure valid changes to the file. Those fields which
have been changed are moved to the file area. Log information is moved
to the transient data area. The file record is then either added or
updated, depending on the function required of the program. Bither the
message 'PILE UPDATED' or 'RECORD ADDED' is inserted iri XDPHP~A and the
map is transmitted to the terminal.

Hote: This program demonstrates a pseudo-conversationa1 programming
technique, where control is returned to CICS/VS along with a transaction
identifier whenever a response is requested from the operator.
Associated with each return of control toCICS/VS is a storage area
containing details associated with the previous invocation of this
transaction.

/

110 CICS/DOS/VS~BtSUser's Guide

List of·UPDATE Sample Program and Maps

PALL:

1
2

3

~

5

6
1

8
9

10

11

12

13

14

PROC(COMPOINT) OPTIOBS(MAIN),
DCL MESSAGES CBAR(39);
DCL COBLEN PIXED BIN(15):
DCL REYNUM PICTURE' (6)9',
IINCLUDE XDPHPMA:
IINCLUDE XDPBPBB:
"INCLUDE PILEA,
IINCLUDE LOGA;
"INCLUDE DPBBMSCA;
DCL CBSTR CHAR(256) BASED;
DCL COM POINT PTR,
DCL COMMAREA LIKE PILEA BASEDCCO!POIIT),
IP EIBCALEN~=O TBEN GO TO READ_INPUT:
EXEC CIes BANDLE COBDITIOI ERROB(BBRORS) !APFAIL(PMBU):
ALLOCATE COMMAREA;
EXEC CIes RECEIVE MAPC'XDPHPMA'),
IF KEYL=O THEN GO TO NOTPOUID:
KEYNUft=KEYI:
SUBSTR~DDR ~DPHPMBO)->CHSTR,1,STG(XDPHPMBO»

=LOW(STG(XDFBPBBO»,
IP EIBTRNID='PADD' THEN

DO:
TITLEO='PILE ADD'1
BSG30='EB~ER DATA AND PRESS EITER KEY';
NUBBO,COBKAREA.HUftB=KEYI:
A!lOUNTA='J' ,
AMOUNTO='.oOOo.oo':
COBLBN=1,
CA LL !lAP_SEND;
GO TO CICS_CONTROL;

END,
ELSE
IP BIBTRIID='PINQ'

, EIBTRNID='PUPD' THBN
D01

BXEC CICS HARDL! CONDITION NOTPNDCIOTFOUBD),
EXEC CICS READ DATASET('PILEA') INTO(PILEA)

RIDl'LD(KEYNUft);
Il' PILEA.STAT=HIGH(1) THBN GO TO IOTPOUID;
IP EIBTRNID='PINQ' TBEN

DO:
TITLEO='l'ILE INQUIRY';
MSG30='PRESS ENTER TO CONTINUE';
CALL SAP_BUILD:
CALL !lAP_SEID;
EXEC CICS RETURN TRAISIDC'PBNU');

END;
ELSE

END;
ELSE

DO;
TITLEO='l'ILE UPDATE':
KSG30='CHANGE l'IELDS AND PRESS ENTER';
COMMAREA.PILEREC=PILEA.FILEREC,
CALL MAP~BUILD:
CALL MAP_SEND;
CO!!LEN=80;
GO TO CICS_CONTROL:

BND;

GO TO ERROR S ;
SAP_BUILD: PROC;

NUMBO=PILEA.NUftB,

Chapter 2.~. PL/I Programming 111

NlMEO=FILEA.8AME;
ADDRO=FILEA.ADDRX;

1S PHONEO=FILEA .PHONE;
DlTEO=FILEA.DATEX;
A!OUNTO=FILEA .AMOUNT;
CO!!ENTO=FILEA. COM!ENT; .
RBTURN;

END;
MAP_SEND: PROC;

16 EXEC eICS S*ND 8AP(~XDFHPMB') ERISE;
'RB'rURR;

END;
READ INPUT:

17- EXEC CICS HANDLE CONDITION !APFAIL(BOTMODF) DUPREC(DUPREC)
ERROR(ERRORS) BOTFBD (IOTFOUBD) ;

18 EXEC CICS RECBIVE 8AP('XDFBP!B');
IF EIBTBNID~IPUPD''rHEN '. '.

DO;
19 EXEC CICS READ UPDATE DATASET ('FILEAI) IBTO(FILEA)

.. . . RIDFLD (CO!!AREA.NU!lB) ;
20 IF'STB::rNG(FILEA.FILEREC)';"=STRING(CO!!AREA.FILEREC) THEN

DO;
KSG10='FILE ALREADY UPDATED - REENTER';
! SG 1 A=D FHB!BR Y ;

21 MSG3A=DFHB!DAR;
CALL MAP_BUILD;

22 EXEC CICS SEND MAP ('XDFHPMB') DATAONLY;
COMMAREA.FILEREC=FILEA.FILEREC;
COMLf;N=80;

23

GO TO CICS_CONTROL;
END;

ELSE

END;
ELSE

DO;
FILEi. STAT=' U';
MESSAGES='FILE UPDATEDI;

END';

IF EIBTRNID='PADDI THEN
DO;

FILEI.STAT='A';
24 MESSAGES=tRBCORD ADDED';

END;
ELSE

GO TO ERRORS;
IF NAMEL=O &

ADDRL=O &
2S PHOBEL=O &

DATEL=O &
AftOUNTL=O &
CO!8ENTL=O THEN
GO TO BOTHODF;

IF EIBTRNID=IPADD' THEN
IF VERIFY (B1MEI, I ABCDEFGHIJKLMNOPQRSTUVWXY Z .') ,=0 THEN

GO TO DATA_ERROR; .
. IF EIBT:RNID~'PUPD'TBEN IF BA8EL,=0TBEB

11" V.D!lY (IA!!EI, 'ABCDBFGHIJKL8HOPQRSTUViXYZ • ') ,=0 then
GO TO 'DATA_ERROR;

::rF,B::rBTRNID=IPADD'THEN
FILEA.NU!B=CO!!!AREA.NU8B;

IF IA8EL,=0 THEB FILEA.BA!E=NAMEI;
IF ADDRL,=O THEN FILEA.ADDRX=ADDRI;

26 IF PBOBEL,=O THEN FILEA.PHOBE=PHONEI;
IF DATEL,=O THEN PILE1.DATEX=DATEI;
IF AMOUBTL,=O THEB 1'1 LEA .A!!OUNT=A!OUNTI;

IF COM~ENTL~=O THEN FILEA.COMMENT=COMgENTI;
LOGREC=FILEA.FILEREC;
LDAY=EIBDATE;

27 LTIME=EIBTIME;
L'rERM L=EIBTRMID;

28 EXEC CICS WRITEQ TD QUEUE('LOGA') FROM(LOGA) LENGTH (92);
IF EIBTRNID='PUPD' THEN

29 EXEC CIes REWRITE DAfASET('FILEAI) FROM ~lLEA);
ELSE

30 EXEC CICS WRITE DArASET(IFILEA') FROM (FILE1)
RIDFLD ~O""AREA~NUMB);

GO TO PMNU;
DATA_ERROR:

MSG3A=DFHBMBRY;
31 MSG30='DA'rA ERROR - eORREcr AND PRESS EN'rER';
32 NAMEA, ADDRA, PHONEA, DATEA, AMOUNT!, COM~ENTA=DFBBMrsE:
33 EIEe eIes SEND MAP(I~DFrlP!B') DATAONLY;

IF EIBTRNID= 'PADD' 'lHEN COMLEN=7;
ELSE eOMLEN=80;

CICS_CONTROL:
34 EXEC CIes RETURN TRANSID~IBTRNID) eOM~ARE.(COMM1REA)

LENGTH(COl!LEN);
NOTMODF:

35 MESS1GES='FILE NOT MODIFIED',
GO TO PMNU;

DUPREC:
36 MESSAGES='DUPLICATE RECORD';

GO TO PMNU;
NOTFOUND:

37 MESSAGES='INVALID NUMBER - PLEASE REENTER';
GO TO PMNU;

ERRORS:
48 EXEC CICS DUMP DUMPCODEC'ERRS');

MESSAGES='TRANSACTION TERMINATED';
P~NU:

SlJBSTR (ADDR (XDFHPMAO)->CHSTR, 1,STG (XDFHPMAO) »
=LOW(STG(XDFHPKA~»;

39 MSGA=DFrlBMBRY;
MSGO=MES5AGES;

40 EXEC CICS SEND MAP('XDFHPMA') ERASE;
41 EXEC CICS RETURN;

END;

Program Notes

1. The length of the CO!i.lMAREA is tested.

2. The program exits are set up.

3. Map XDFHPMA is received.

4. The account number is saved.

5. If the program was invoked by the transaction identifier
title and command message are moved to the titla area.

'PlDD',

6. The record key is moved to the map area and to the CO!MARE1.

a

Chapter 2.4. PL/I ~roqra •• ing 113

7. In the case of the PADD'transaction, the amount field has the
modified data tag and the numeric attribute byte set on so only
numeric data can be entered, and if no data is entered, the field
contains the original data if it has not been modified when the
contents ot map XDFHPMB are mapped in. .

8. The exit for the record not found condition is set up.

9. The file control READ reads the file record into the file area.

10. If the' record is coded as deleted, it is treated as not found.

11. If the program was invoked by the transaction identifier 'PINQ' a
title and command message are moved to the map area.

12. This invocation of the program ends.

13. If the program was invoked by the transaction identifier 'PUPD' a
title and com.and message are moved to the map area.

14. The file record is moved to COMBIREA and the length of the COKMAREA
to be returned is set up.

15. The fields from the file area are moved to the map area.

16. The screen is erased and the map XDFHPMB is sent to the terminal.

11. The program exits are set up.

18. This command lIaps in the contents of the screen.

19. The file control READ UPDATE reads the file using the number from
the last invocation of this program which is stored in COl!UIIREA.

20. The fields from the last invocation are checked against those on
the current file record.

21. I message and attribute bytes are moved.

22. The contents of the map XDFBPMB are sent to the terminal.

23. The message 'FILE UPDATED' is moved to MESSAGES.

24. The message 'RECORD IDDED' is moved to MESSIGES.

25. Any required editing steps should be inserted here. A suitable
form of editing should be used here to ensure valid records are
placed on the file.

26. The record to be written to the file is created.

27. The record fields, date, time and terminal identification are moved
to the transient data area.

28. This record is written to a transient data file.

29. The updated record on .the file is rewritten.

30. The added record is rewritten to the file.

31. An error message is moved.

! 32. The fields from the map have the modified data tag attribute set so
/ that data is still in those fields when the map is received.

114 CICS/DOS/VS-ELS User's Guide

33. The contents of the map XDPHPBB are sent to the screen.

34. Control is returned to CICS along with the name of the transaction
to be invoked when an attention key is pressed at the ter.inal, and
data associated with this transaction is returned in the COBMAREA.

35. If no fields were modified, the message 'PILE NOT MODIFIED' is
moved to MESSAGES.

36. If a duplicate record condition exists, the message 'DUPLICATE
RECORD' is moved to BESSAGES.

37. If the file record was not found; the message 'INVALID IU~BER -
PLEASE REENTER' is moved to MESSAGES.

38. On an error (notes 3, 9, 12, 16, 18, 22, 28, 29, 30, 33, 34, and
40) a dump is taken and the message 'TRANSACTION TERMINATED' is
moved to messages.

39. The bright attribute is turned on, and MESSAGES is moved to the map
area.

40. The screen is erased, and map XDPHPBA is transmitted to the screen.

41. The program ends.

MAP XDPHPMA (BENU SCREEN)

Map Definition

MAPSET DFBMSD TYPE=&SYSPARM,ftODE=INOUT,CTRL=(PREEKB,FRSET),LANG=PLI, *
STORAGE=AUTO

XDFHPMA DFHMDI SIZE=(12,40)
DPH!DF POS=(1,10),LENGTB=21,INITIAL='OPERATOR INSTRUCTIONS',

HILIGHT=UNDERLIN!
DPBMDP POS=(3,1),LEBGTH=27,INITIAL='OPERATOR INSTR - ENTER PBN*

U'
DPBMDP POS=(4,1),LEHGTH=38,INITIAL='PILE INQUIRY - ENTER PIN*

Q A8D NUMBER'
DPHMDP POS=(5,1) ,LENGTH=38,INITIAL='PILE BROWSE - ENTER PBR*

WAND NUBBER'
DPHBDP POS=(6,1),LEIGTH=38,INITIAL='PILE ADD - ENTER PAD*

D AND NUBBER·
DPBMDP POS=(7,1),LENGTB=38,INITIAL=tPILE UPDATE - ENTER PUp*

D AND lUMBER'
BSG DPBBDP POS=(11,1),LEHGTB=39,IHITIAL='PRESS PAl TO PRINT--PRESS*

CLEAR TO EXIT'
DFHBDF POS=(12,1),LENGTH=18,INITIAL='ENTER TRANSACTION:'
DPBBDF POS=(12,20),LENGTH=4,ATTBB=IC,COLOR=GREEN,BILIGBT=REVER*

SE
DFHMDP POS=(12,25) ,LENGTH=6,INITI1L=INUBBER'

KEY DPHMDP POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN,HILIGHT=REVE*
RSE

DFHMDP POS=(12,39),LBNGTH=1
DPH!SD TYPE=PIBAL
END

Chapter 2.4. PL/I Programming 115

Menu Screen L~2ut

+OPERATOR INSTRUCTIONS
+OPERATOR INSTR - ENTER PMNU
+PILE INQUIRY - ENTEB PINQ AND NUMBER
+PILE BROiSE - ENTER PBRi AND NUMBER
+PILE ADD ENTER PADD AND NUMBER
+PILE UPDATE - ENTER PUPD AND NUMBER

+PRESS PAl TO PRINT--PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+

Figure 2.4-1. Menu Screen Layout (as seen on 40-character Screen)

MAP XDFHPMB (PILE SCREEN)

Map Deflllition

MAPSET DFHMSD TYPE=&SYSPARPl,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *
STORAGE=AUTO,EXTATT=MAPONLY

XDFHPMB DFHMDI SIZE=(12,40)
TITLE DFHMDF PO 5= (1,15),LENGTH=12

DFHMDP POS=(3,1) ,LENGTH=8,INITIAL='NUMBER: ',COLOR=BLUE
NUMB DFHMDP POS=(3,10),LENGTH=6

DFHMDP POS=(3,11),LENGTH=1
DFHM DF FOS= (4,1) ,LENGTH=8, INITIAL= 'NAME: " COLOR=BLUE

NAME DFHMDP POS=(4,10),LENGTH=20,ATTRB=(UNPROT,IC)
DFHMDF POS=(4,31),LENGTH=1
DFHMDF POS= (S,1),LEBGTH=8,INITIAL='ADDRESS:I,COLOR=BLUE

lDDR DPHMDF POS=(S,10),LENGTH=20,ATTRB=UNPROT
DFHMDF POS=(S,31),LENGTH=1
DFHMDP POS=(6,1) ,LENGTH=8,INITIAL='PHONE: ',COLOR=BLUE

PHONE DFHMDF POS=~,10),LENGTH=S,ATTRB=UNPBOT
DFHMDF POS=(6,19),LENGTH=1
DFHMDF POS=(7, 1) ,LENGTH=8,INITIAL='DATE: ',COLOR=BLUE

DATE DFHMDF POS=(7,10),LENGTH=8,ATTRB=UNPROT
DPHMDF POS=(7,19),LENGTH=1
DFHMOP POS=(8,1),LENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

A~OUNT DFBMDF POS=(8,10),LENGTH=8,ATTRB=NUM
DFH!DF pos= (8, 19),LENGTH=1
DPHMDP POS=~,1),LENGTH=8,INITIAL='COftMENT:',COLOR=BLUE

COMftENr DFHMDF POS=(9,10),LENGTH=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGl DFHMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=(12,1),LENGTH=39

DFHMSD TYPE=FINAL
END

116 CICS/DOS/VS-ELS User's Guide

File Screen Layout

r--~
I
I +XXXXXXXXXXXX
I
I+NUMBER: +XXXIXX+
I+NAME: +XXXXXIXIXXXXI11XII1X+
I+ADDRESS:+XXXXIXIXXXXXXXXXXXXX+
t+PHONE: +XXXIXXXX+
I+DATE: +XXIXXXXX+
I+AKOUNT: +XXXIXXXX+
t+COMMENT:+XXXXXXXXX+
I+XXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXXXXXX
I+XXXXXXXXXXXIXIXXXXXXXXXIXXXXXXXX1XXXXX
l

Figure 2.4-2. File Screen Layout (as seen on 40-character Screen)

Chapter 2.4. PL/I Programming 111

Chapter 2.5. RPG II Programming

Translator Invocation

For details of translator invocation, see Chapter 3.5, "Preparation of
Application Programs."

Translator Options

The translator provides a number of optional facilities, for example, to
specify a listing of the source program on SYSLIST. These options are
specified in the // OPTION job control statement and their defaults are
as specified at system generation. The options are as follows:

r---------------------------r---------------------r----------------------~

Translator Options

DUMPINODuap

LISTtNOLIST

LISTX I'SOLISTX

DlJMP/NODUMP

Abbrevia tions Default

DUMP is used to prevent the translator from trapping
unrecoverable ,errors; instead, a dump is produced. NODUMP must
be used if trapping is required.

LIST/NOLIST
specifies whether or not the translator is to produce a listing
of the source program on SYSLIST.

LISTX/NOLISTX
LISTt produces translator information messages which print (in
hexadecimal) the bit patterns corresponding to the first
argument of the translated call. NOLISTX causes no messages to
be produced.

Chapter 2.5. RPG II Programming 119

~EBUG Option

The DEBUG option, specified by including liD" in position 15 of the H
Spec, causes the execution diagnostic facility (EDP) to display the line
numbers of com.ands as shown in the source listing. EDPis described in
Chapter 4.1.

Command Syntax

A CICS/yS command for use in an RPG II application program consists of
an EXEC statement followed by one or more ELE! statements. The commands
are always coded on an RPG Calculation Specifications Porm.

Figure 2.5-1 shows the RPG format of the command:

EXEC CICS READ INTO (RECORD) FILE (-!ASTER') UPDATE

The following points should be noted:

1. The CICS/VS command-keyword (BEAD) is specified in an EXEC
operation (line 01).

2. Operand keywords ~NTO, etc.) are specified in ELEM operations~

3. Literal arguments for operands are specified in columns 33-42 (line
03). A literal argument lIlay be a numeric or alphameric literal.
constant as defined in IBM DOS/VSE RPG II Language.

4. Variable-name arguments for operands are specified in columns 43-48
(line 02). The variable name may be the name of an RPG variable
that describes an RPG II field, subfield,array, sUharray, array
element (fixed subscript), subarray-element ~ixed subscript), or
data structure.

5. An indicator is required in columns 56-57 of the EXEC operation;
but this indicator should not be tested. If it is omitted, an
indicator of 13 is provided by the translator.

6. The "line" and "comments" fields may be used in the normal manner •.

120 CICS/DOS/VS-ELS User's Guide

RPG CALCULATION SPECIFICATIONS

DMlnternat,ona,Bu"ntUMachIM,CorporO,lon

C Indicators Result Field

r-- J. J. Operation Factor 2 Factor 1
Ii

Line ~ Name Length

of
9101112131415181718192021222324252821282930313233343638313839404142434445464748495051

Ole REAl>
o 2 C INTO E~EM RECORP
o 3 C PAITASET ELfM'IMAsrreR'
o 4 C U" PAITE fUM
o 6 C

o 6 C

o 7 C

o B C

o 9 C

1 0 C

1 1 C

1 2 C

1 3 C

1 4 C

1 6 C

1 6 C

1 7 C

1 8 C

1 9 C

2 0 C

GX21·909J.2UM/050·
Printed in U.S.A.

P ... [00'_ ~;~::':.!OOnI7517617717BI791·80 I

RHultiOQ
Indicators

Plus Minus Zero
Compare

1>21<21-2
Lookup(Factor21i,

Comments

High Low Equal
~~~~u~ro~~a~~~~~~ro"nnN 

13 

U~LOLe9.L9I9ggt9E9mI909111811.9gg9!1KtIIl9IS096"M'L .. 9t'9""E"Z:"U'O"6t8£l.t9tKKtEl;EI& otez:8ZLl9l:SZ .. l:CZZZU:OZ618LLI919atLEIU 1101 6 8 L 9 9 .. t l. L 
-No,ofthHuperpadmayvarv"iQhtly. 

Figure 2.5-1. RPG II For~at of a CICS/VS COillmand 

General Rules for RPG II Programming 

An RPG II application program using CICS/VS commands to request CICS/VS 
services is written in th~ sam: way as a batch RPG II program, except 
tor the restrictions liste~ later in this section. CICS/VS commands can 
be included anywhere in the C-Specifications. 

To satisfy the compiler requirements, the order of the specifications 
must be H, P, E, L, I, C, and o. An a-Specification must always na 
first and it must specify "main" or "subprogram" in position 55, and "c" 
in position 56. If th~ a-Spec is omitted, NQTR~NSLATE is assumed and 
/INSEfT statements only are processed by the translator. 

'rhe IINSERT statement can be uSed in any of ttl~ specifications to 
include program pieces, da'ta structur9S and maps that are itald in 
lioraries. rhe inserte.u text must be untranslated 50urce, and must not 
itself contain IINSERT statem ents. 

ThE format of a /INSERT statement is as follo~s: 

Chapter 2.5. aPG II Programming 121 



Position -;=s--
6 
7-13 
14 
15 
16 
17-24 
25-49 
50-74 
75-80 

£.2l11~§ 
(See note» 

HIFIEILIIICIO 
/INSERT 
blank 
sub library-name I blank 
• (period) 
book-name 
blank 
comment 
(See note) 

Uf.Q~i.: the contents of these positions are standard RPG II entries as 
defined in IBM DOS/VSE RPG II Language.) 

An explanation of the contents of the column positions in the above, 
apart from the obvious ones, or those referred to in the note, is as 
follows: 

"sublibrary-name" 
name of the sublibrary from which the insertion is to be made. 
If omitted, the name R is assumed. 

"book-name" 
name of the sublibrary member to be inserted. 

The contents of the specified sublibrary book are generally inserted 
in place of the /INSERT statement. There are some exceptions, as 
follows: 

• If the text that replaces a /INSERT statement in an E-8pec contains 
I-Specs the inserted text is placed in the I-5pecs in the correct 
position. If maps are to be included, they should be inserted in 
this vay. 

• /INSERT statements for the data structures DBMSCA, DFHAID, and 
D2980 must be specified in the E-Specs. Each data structure is 
initialized during compilation by an array that overlays it. For 
this purpose, the required data is generated after the O-Specs 
following a ** statement. 

*ENTRY PLIST statement 

The *ENTRY PLIST statement must be specified explicitly only if options 
that require pointer reference arguments are used in a command, or if 
DL/I is to be used. 

If an *ENTRY PLIST statement is not specified explicitly, the 
translator generates an *ENTRY PLIST with the following PAR! statements 
in the order shown: 

PAR! 
PAR! 
PARM 

DFHEIB 
DFHCO!t 
DFHDUM 

If specified explicitly, an *ENTRY PLIST must be the first C-Spec. 
The parameters are passed unchanged but the three required parameters 
(DFBEIB, DFHCOM, and DFHDUM) are always inserted at the beginning of the 
parameter list, if they have not been specified explicitly. 

122 CICS/DOSjVS-ELS User's Guide 



Restrictl.ons 

The following RPG II features cannot be used in an application program 
designed for use with CICS/VS. 

1. Files, other than DB and DC files. A DC file may be any data set 
relevant to CICS/VS; it does not necessarily have to be associated 
with a te~minal. (DB and DC files are defined in P-Specifications 
that have DB or DC starting in position 40). 

2. RPG II statements requesting file operations. (CICSjVS commands 
are provided for the storage and retrieval of data in files.) 

3. Tables and arrays loaded or saved at execution time. 

q. Program error subroutines, except those that process the program 
errors It invalid index", "negative square root", and "error return 
from a CALL". 

5. The op-codes CHAIN, DEBUG, DSPLY, DUKP, DUKPP, ERPGC, EICPT, EITCV, 
FORCE, KEYCV, READ, RPGCV, SETLL, and TIME. 

6. Pile I/O errors. (CICS/VS commands are provided for CICS/VS error 
handling. ) 

1. Formatted dump. (CICS/VS commands are provided for obtaining 
CICS/VS dumps.) 

8. AN or OR lines with CICS/VS commands. 

9. Special Features: SORT 

~enqth Restrictio~ 

The length of a map used with DC files and referred to in I-Specs and 0-
Specs must be less than, or equal to, 256, because the complete map 
(mapname concatenated with IXI) must be specified as a field, and a 
field length in RPG II cannot be greater than 256. 

Description of BROWSE Sample Program 

The browse program sequentially retrieves a page or set of records for 
display, starting at a point in a file specified by the terminal 
operator. Depressing the PF1 key or typing in F causes retrieval of the 
next page or paging forward. If the operator wishes to re-examine the 
previous records displayed, depressing the PF2 key or typing B allows 
paging backward. 

To start a browse, the account number is mapped in and stored in a 
four entry key table in working storage. To retrieve a page, the key of 
the first record of that page is all that need be maintained in the 
table. The values in the key table are shifted right, so that the table 
is primed for the next page. A map area is obtained to move the fields 
from each record. The starting point of the browse is then established, 
the first record is read, and its fields are moved to the map area. As 
many successive records as can be shown on the screen are then read and 
set up. The sample program shows four records to a page ~our lines). 
If conditions dictate displaying other than four lines, READNEXT and 

Chapter 2.5. RPG II Programming 123 



associated commands should be added or deleted. If only one record can 
be accommodated, browse is still possible. 

Pollowing the last line, the key of the last record obtained is 
stored by ISIK in FLDl. The program must increase this by o~e, as this 
number becomes the search argument or key for the next page, if the 
browse is continued forward. Is the browse operates on finding the 
first record of a page, where the record key is equal to or higher tha.n 
the search argument, . increasing the last record key by one assures that 
the next record, whatever its key values, will be retrieved when the' 
browse is continued. 

After view ing the first page, the operator may indicate page forward 
through the PPl key or by typing P. The program proceeds directly to 
building the next page, as the key table is already conditioned. The 
browse may continue for as long as is desired (or until the end of the 
file is reached) • 

If the operator wishes to page backward with the PP2 key or by typing 
B, the key table entries are shifted left, so that the previous page is 
retrieved. The program resets the browse starting position and branches 
back to the main routine to construct a page. The backward browse ' 
depends on the number of keys that may be stored in the key table. ,If 
more than two page backwards in a sequence are required, the four entry 
key table should be expanded. 

The operator may cancel a browse at any time by depressing the clear 
key. 

Key Table example 

The following are the field functions: 

PLDl 
PLDB 
PLDC 
PLDD 

- Next page forward 
- Current page being viewed 
- Previous page 
- Page before previous page 

( + additional backward paging keys, if needed) 

Assume that the file contains the following records, and there will 
be two records to a page for display: 

14 17 18 20 25 28 I •••• 1 •••• 

The operator keys in 15, indicating that the browse should start with 
the first record equal to or greater than 15. The program stores 15 in 
FLDA and FLDB. 

15 
FLD! 

15 
FLDB 

o 
FLDC 

o I 
FLDD 

The program reads records 17 and 18 from the file and displays them 
at the terminal. The last record (18) is increased by one and stored in 
FLDA, to be ready for a page forward. 

19 
FLDI 

15 
FLDB 

o 
FLDC 

o 
PLDD 

'rhe operator presses PF1 or types F to page forward and display the 
next page. The program uses PLDA (19) to retrieve records 20 and 25. 

124 CICS/DOS/VS-ELS Userls Guide 



These are displayed after the keys are shifted right. The last record 
read (25) is increased by one and stored in FLOA. 

26 
PtDA 

19 
PLOB 

15 
PtDC 

o 
PLDD 

Additional page forward requests would cause the table entries to be 
shifted right, and a new entry stored in PLDA. Entries in PLDD are 
dropped during the shift right. 

The operator presses PP2 or types B to page backward and display the 
previous page of two records. The keys are shifted left to place the 
starting key of the previos page displayed (15) in PLDA and PLDB. FLDD 
is moved to PLOC, and zeros are moved to PLDD. 

15 
P'LDA 

15 
FLDB 

o 
FLOC 

o 
FLDO 

The program uses PLDA to retrieve records 11 and 18, which are then 
displayed. The last record (18) is increased by one and stored in FLDA 
for the next page forward. 

19 
PLDA 

15 
PLDB 

o 
FLDC 

o 
FLDD 

The operator is viewing the first page that was requested, after 
paging forward one page and then paging backward to the starting page. 
The sample program does not permit paging beyond the starting page, so 
that the operator may only page forward at this point or cancel the 
browse by pressing the clear key. Although browse permits paging 
forward to the end of the file, paging backward is limited by the number 
of table entries. The four-entry table allows going back two pages. If 
this is insufficient, a larger table will allow further backward paging. 

The source listing is shown in the following RPG II specifications. 

Chapter 2.5. RPG II Programming 125 



Listing of BROWSE Sample Program 

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS 
IBM '0,,,0,,'00" Bu"o, .. _hm .. Oo,,,,,,,,,oo 

H 
-

Size to ~.~ h:;lzeto 
& Compile '5 a EXecute 

line > 00 
I- ~ ~ 

~ !~ 

F 
~ 

Filename 

Punching 

I Date 

Control Specifications 

i I----,--r-T""T-r-...-I 

. ~ ~~;,~; i 
a: ~ Positions CJ ~d~;:;: 

ji I 
2122 '232425262728293031323334353637383940414243444546 

1\ \ \\ 

File Description Specifications 

File Type Mode of Processing 

File Designation length of Key Field or 
of Record Address Field 

End of File 

Sequence 

Record 

Length 

Record Address Type 

Type of File ...J Device 
Organilation W 

~orAdditionalArea ~ 

~Overfl~~ 

i ~ ~:;:i~:d j 

Symbolic 
Device 

Refer to the specific Svstem Reference 
Library manual tor actualentues 

Name of 
Label Exit 

Extent Exit 
for DAM 

Storage Index 

Continuation Lmes 

Option Entry 

FrleAddltlon/Unordered 

Number of Tracks 
forCyfindetO .... erfiow 

NU~ 

~ 
z u,~ 

~ 
, ; ; ; { ~ ~ " 13 '4 '; ; 17 lB; 202122 23 24";¢ 2B 29 303,323334 3S 36 31 30 3. ~ ~ 42 43 44 4' 46 41 4.4' '0" " 53 54 "'6" sa 59 606' 626364 6' 66 61 68 69 10 11 12 13 14 

o 6 

08 

o 9 

, 0 

l.t Lt O£ 69 .. L8 9It 99 t9 [9 Z9 19 09 6S 'M.lS 9S SS K CS ZS IS ~ 6" at" U' 9" 5 .. "" 0 til' LV 0,," 6t 8t it 9r!it K tC zt It ac 6l 8l a 9Z !it: trZ tZ lZ \Z ot 6181 Ll 9191 '" (I II 11 01 6 8 t 

RPG EXTENSION AND LINE COUNTER SPECIFICATIONS FormX]1-9091·2 
Printed In U.S.A 

IBM InUrnilltlonalBusinessMl!IChine!Corporation 

I D." 
Punching I P,o,,,m 8R.Or.JSc 

Programmer 

I COld EloctloNumb .. 
1 2 75 76 77 78 79 80 

P.ge~OI~? ~~~;:I:.t;onIBIR.IOIWISIEI 

Extension Specifications 

E Aecord Sequence of the Chaining File 
Number 

~ Number of the Chaining Field 

Line ! 
~ 

From Filename 

Comments To Filename 

01 Number 

:~ ~ Table or .g e Table or Entries 01 Length length 

Array Name POI Entries of £-: 
Array Name of ~ ~ 

Record Per Table Entry 

ill 
(Alternating Entry 0: 

A1 or Array 
Format) 

~ 

5678 9 10,,121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 

Ml '.1 39 
M2 1 1 3r-J 

o 5 

o 6 

o 8 

Line Counter Specifications 

L 
, 2 3 4 5 6 7 8 9 '0 " '2 

-
Line ! Filename 

~ E ~ ~ ~ ~ H ~ U ~ U ~ U 1: H .1l If l~ H H ~ 'ii t 

~ 
• E 

~ !~ ~ 
• E • E !~ 

• E 
~~ ~~ !~ !~ ~~ !~ ~~ 

• E ~l :J~ :§i Iii 3~ :§~ t3i fji :Si 

345 . 7 8 9 1011 1213 14 151617 1819 202122 2324 252627 2829 303132 3334 353637 38"39 404142 4344 454f;l47 4849 505152 5354 555657 5859 606162 6364 656667 6869 70717.2 7374 

,1,1 L, I I I I I I I I I I I I I I I I I I I I I I I I I I I T TT T 1T 1 II I II I II I 
,1 21 L, I I I I II I II I II I II I II I II I 11 T rT T TT T Tl I II I II I II I 
II L; I I I I I I I II I II I II I II I II I II I II I II I II I II I II I II l 

No. of sheets per pad may vary slightly. 

126 CICS/DOS/VS-ELS User's Guide 



r-----------.--------------------.--------------------------------------------------------------RPG INPUT SPECIFICATIONS 

1r--::::---.:::.c ... ,8Mc.=..:..:....W5~E --,--1
0 
... -------1.1 ~7;;~~n 1 :~:.c I I I I 1 1 1 I C.,dEI.ct<oNumb .. 

Record Identification Codes 
Field Location I 

I-- § 

:1 ~ Field Name -... 
Position t Position t Position t.ll ox From To 

.f j 
~ ~ 11 i§~ ~o p~ ) j ~ s & ~ § 6 ~ ~ 

Filename j ~ 

o , 

o 2 

1./' tJS~R.IT Fe ILEA 
o 4 

o 5 1.FARr:A DS 
o 6 L {,~FL..DA 
o 7 1. 
o 8 1. 
o 9 1. 
, 0 1. 2.5 31v1~srARTN 

,2 

'3 

,4 
'6 1. 

, 8 

2 0 

1. 

RPG CALCULATION SPECIFICATIONS 

IBM Internat.onal Bus.n,ss Machmes Corporation 

P,09<am 8~OW5E. 
Programmer 

C Indicators Result Field 
Resulting 
Indicators 

:.....-- At At 
Arithmetic 

Factor 1 Operation Factor 2 
Plus Minus Zero 

Compare 

Line ! Name Length ,>2 ,<2' =2 

! ~ ~ 
Lookup(Factor 2)is 

z High Low Equal 

3456 9'0 1112 1314 15161 718192021222324252621 2829303132 33343536373839404142 434445464148 495051 54" 5651 5859 

01 C 'tJ0 VE- L' I ~E lss ~IG 3~ 
02 C /Zr- ~tD In Ii FL lPv.. 
03 C 12- lAD ~1!2! FL 1D6 
04 C 2- lAD ~I¢ FL DC 
o 5 C z- AD I¢ FL DID 
o 6 c HA N~)L E~ EC 13 
o 7 C CO tJiD II (0(\\ L E-~ 
o 8 c ~R. {(OR. EL EM f~ ~O ~s 
o 9 C ~~ PF AIL !C:L f~ ~E NU 
, 0 c ~N DF I LE LEM ~N ~F IL 
, , c NO TF ND EL M NO Fl LE 
'2 C HlA "'D L~ ~X~ i3 
, 3 c All> LEM 
,4 C CL £~R EL &~ ~E NU 
, 5 c PFl fL ~~ PF oRW 
, 6 c PF2 LE~ P8 AC KW 
'7 C Rf: 1:, liE EX EC /l~ 
, B c ~AP L/l:~ \ X [lJR ~A' 
, 9 C M~ Vf Kf VI FL lDLA 
2 0 c ST iT8R ~R. f~ ~C 13 

c 
c 
c 
c 
c 

.~ 
~ ! H j f·[ 
U ~ 

GX2HIOIM· UIM060" 
Printed in U.S.A. 

Field 
Indicators 

z .. o 
Plus Minus Of 

Blink 

GX2' ·90932 UMI060" 
Printed in U.S.A. 

Comments 

606162636465666168697071727374 

I 

z ~ cz zz tZ 0 6~ 8t B 9t 'it .t tl ZL LL Ot 6 8 L 9 'i .. (; z: L uu~~.a~§~~~~~~~~~~~~~~M~DaDD~~U"~~~aOC~K~u~~~~U~. , 
-No. of sbeets per pad may vary slightly. 

Chapter 2.5. BPG II Programming 

1 

3 

2 
4 
5 

121 



IBM '0'''0".00'' B."o,,' M"'m,, Co,oo,,,.oo 

I P,og"m 81{oWSE 
Programmer I Date 

C Indicators 

r-- J. J. 
Line ! 

~ ~ ~ ~ 

--$. 

Factor 1 

RPG CALCULATION SPECIFICATIONS 

Punchmg 

Instruction 

Operation Factor 2 

I C". Elect'" Numb .. 

Result Field 

Name Length 

3456 9'0 1112 1314 1516 1718192021222324252627 2829303132 3334 35 36 37 38 39 40 41 42 434445464748 495051 

o , c J>i" T~ SE:o-;T IeL ~M 'IF IL EA' 
02 c fU ~F Lv ~L EM FL DA 
03 c PF Ot?W IA4 
04 c 7- ~D VF LDC FL ~~ 
05 C z- V\J) 'OF LVB FL DC 
o 6 C z- AD DF LVA FL »8 
o 7 c BU lL~ tAG 
08 c Z- AP 1 1 
o 9 C MO VE ~Z "~O XP ~CO 
, 0 c NX [rL (N E TA~ , , c RE ~D ~E XT EX E.C 
12 c I~ ITO EL E~ PI Lf:4 
, 3 c VA TA SET EL ~ \ F ( L EA' 
, 4 c Rf DF LD EL "'1 L ~ 
, 5 c TES B \ ¢L 23 ~5 b7 ' S' TAT 
16 c l~ CiO IrO tVX TL INE 
, 7 c 1 c() ~p I 
I 8 c GO ITO L1 
19 C ~O VE NU ~6 NU ~~~ 
2 0 C ~o VE NA ME NA ~£1 

c 
c 
C 

C 

C 

Resulting 
Indicators 

Arithmetic 

Plus Minus Zero 
Compare 

'>2' <2 1-2 
Lookup(Factor2lis 

High low Equal 
54 .. "57 5859 

13 

l¢ 

~¢ IfJ 

--$. GX2'·9093·2 UM;05O· 
Printed in U.S.A, 

Comments 

60616263646566 (i16a 69 70 71 n 13 74 

I 

I 

z .z Z ZZ lZ Z 61 8~ II 91 SI '" £1 I tl 01 6 8 L 9 S .. C Z I UU.~~~~~~~~~OO~~d~~~~~~~~~"~~~~n~~&~u~~~~m~~&~a9~ t 
·No.of sheets per pad mayvaryslightfy. 

RPG CALCULATION SPECIFICATIONS 
IBM '0"'0",0"" B."o, .. M"'m,, co,po",,"o 

~~~~OW~SE~ ____ .-________ ~ 
~ /Date

I C".Elec"oNumbe, Punchmg

C Indicators Result Field

t-- Jd Jd Factor 1 Operation Factor 2

Line ! Name Length

E

.z z z ~
345'6 9'0 1112 1314 1516 1718192011222324252627 2829303132 33343536373839404142 434445464748 495051

0, c HoO VE ~M Of) lilT A~ OT 10
02 'c OTP L4
03 C L1 TAG
o 4 C 2 OMP ,
o 5 C l¢ ~O TO L2
f- i- i-

o 6 c AAD V~ NV M6 fIlV ~8 ~O
07 C ~O VE N~ totE NA ~E ~o
o 8 C Mp VE A~ OU ~IT ~~ OT 2P
o 9 C (40 !,O LI4-
I 0 c Ll2. TA~ , , c 3 CO ~p (

, 2 c l¢ CiO ITO L3
, 3 C ~O VE NU ~8 NU ~B3
, 4 C ~O VE NA ~E rJA AtE 30
15 C ~O If£ AM ot> NT AlA OT 30
16 C GO TO L4
, 7 c L3 T~G
, 8 C ~ CO MP ,
I 9 C l¢ GO TO L4
2 0 c MO IfE NU MIB NU fIof3 40

c
c
c
c
C

Resulting
Indicators

Arithmetic

Plus Minu_dZero
Compare

'>2 I <2 1-2
Lookup(Factor 2)is

High low Equal

5455 5657 5859

l¢ HI>

L~ LI9!

lIP L9l

GX21·9093·2 UMI050'
Printed in U.S.A.

Comments

6061626364656667686970717'17374

I

lL u. Ot 6989 L9 99 99 tr9 t9 Z9 19 09 6S as LS gg 55 ~ £5 ZS tS OS 6t 8~ Lt 9t st n [to Zl> U' 01' 6t BE L£ 9£ it K: tt zt t£ Ot 6t 8l £t 9Z Sl .. Z: £Z ZZ tZ Ot 6& 8t Li 9t,St .. , tl II Ll 01. 6 8 L

-No. of sheets per pad may vary slightly.

t ,

128 CICS/DOS/VS-ELS User's Guide

6

7

8

9

10

RPG CALCULATION SPECIFICATIONS
IBM '", .. " ... "" "",,",n MK"'""CO'po""O"

Programmer

C Indicators Resui1 Field

r--- At At Factor 1 Operation Factor 2

LIne ! Name Length

~ z z Z

3 4 ~ 6 910 "'2 1314 1516 \718192021222324252627 2829303132 33343536373839404142 434445464748 49 SOM

01 C ~O VE- NA ~E:: NA A(~ I4-h
02 C ~O Vf ~M OU tJlT ~A{ OT ~O
o 3 C L~ ITAG
04 C L IA DD I I
05 C 5 co ~P I
06 C l¢ GO TO NX TL I ~£
07 C VI SP Rf:C iTA~
o 8 C S~ N1> EX fC
09 C MAP fL E~ I X ~R MC'
1 0 c ER- ASE L EM
11 C Rf Pf: AT fAIG
12 C Rf: CE:: I V E EX EC
13 C M-1P EL EM IX PR Mk: I

14 C VI RI Cp ~p \ F I

15 C l,¢ Go iro PF OR.w
16 C 1>1 RI Co ~P \ 8 I

17 C l~ GO [0 P6 At KW
1 8 C GO [f0 Me ~u
19 C ND FIL I;\~
20 C MO ~E ~Ml ktS cdO

c
c
c
c
C

Result,ng
Indicators

Arithmetic

Plus Minus Zero

Compare

1>21<2 1-2
LookuplFactor 21is

High Low Equal

"55 5657 5859

l.~ l.¢

13

13

l¢

1¢

--$- GX21·9093·2 UMIOSO'
Printed in U.S.A.

Comments

60 6162636465 ti6 61 68 69 7071 71 73 74

I

UU.OO~~OO~~~~~~"~"~~~~~~~~DOD~»DDW .& Lt 9C!it K CC Z; U: 0 6Z 8Z LZ 9~ ~z; tt: CZ ZZ lZ OZ , ,. i S v C Z I
-No. of sheets per pad may vary slightly.

IBM ,","m",o""""""""M,,","".co,,o .. ,,O"

Programmer I Date

C Indicators
~-

r-- At At
~ ~

Factor 1

Line I- ;;

§ ~
~ ~ 8 z z

RPG CALCULATION SPECIFICATIONS

Punching

Result Field

Operation Factor 2

Name Length

Resulting
Indicators

Arithmetic

Plus Minus Zero

Compare

1 >21 <2 1·2
lookup(Factor 2)is

High Low Equal

-$-- GX21·9093-2 UMI050'
Printed in U.S.A.

Comments

34. 67 9 LO 1112 1314 lS16 1118192021222324252627 2829303132 33343536373839404142 434445464748 495051 5455 5657 5859 606162636465666168697071727374

01 C

02 C

03 C plB ~C
04 C ¢
05 C

r-r- - -1-
o 6 c _.
07 C

o 8 C

o 9 C

1 0 c 5T AR
11 C i¢ 1
12 C RS: 5E:
13 C IPA T~
14 C RI Vf
t 5 C

16 C TO pf
17 C

18 C Sf: tJP
1 9 C M~P
20 c PA trA

c
c
c
c
c , ZL L OL 69 89 L9 99 99 t9 E9 Z9 19 09 69 89 LS

-No. ofsheeu per pad may vary slightly.
~ ~

KW

TN

T~ R-
SET

L~

1AR.

ON LY

Z9l9096 .

MO V£; DB MB!RY ~~ Ci2f.6.
GO TO DI SP REC
T~8
co ~P FL DC n>j
~O TO :TO of AR
~- ~D vF LV C FL J>A
~- lAp FL DC FL :z>6
~- AD FL DIP FL iDc
~ lAp i¢ FL PP
CO MP FL D~ l'¢ l¢
ADD FL J)~ FL VA
EX £c l3
S:L f:::~ 'F IL EA'
EL E~ FL ~A
~O TO 6U (L
MO V~ ~8 lA48 RY ~S ~lA
MO V~ iDf3 ~V AR ~S ~12A
E~ EC 13
EL E~ \ Ix. !DR MC'
EL ~1\Il

. v VIP'''& LC 9C 9C t'£ C£ ZC 1£ at 6Z ez. a 9Z 9Z vZ £z ZZ IZ OZ 6l 8t Ll 91 SL"I CL Zl lL Ot 6 8 L 9 S v £ Z I

Chapter 2.5. BPG II Programming

11

12

13

14

15

16

17

129

RPG CALCULATION SPECIFICATIONS GX21·9093·2 UM/050·

IBM trl1ernational BuSiness Machines Corporation

Printed m U.S.A.

-

C Indicators Result Field
Resulting
Indicators

~ Jd Jd Arithmetic

Factor 1 Operation Factor 2 Plus--IMinu;[Zero
Comments

It Name Length
Compare

Line ;': 1>21<2Tl=2
E

~ ~ ~
Lookup(Factor 2lis

~ High low Equal

3456 "0 1112 1314 15161 718192021222324252627 2829303132 3334 35 36 37 l8 39 40 41 42 434445464748 495051 5455 5657 5859 606162636465666768697071727374

01 C GO r- O ~E PE ~T
o 2 c £R. V<b Rs *a
03 C VMP XEC 13
o 4 C lvu MP~ ~f f f~ fR ~S
o 5 C ~O vlf ~w12 ME SS" JAG
o 6 C GO fro ~f NU
o 7 C NO F (LE TA4
o 8 C lMO Vf IAM3 WE 55 ~4
o 9 c ~f ~LJ IT~4
1 0 C ~O Vf ~Z ~~ X.:D FH AO
11 C ~O VE IDs MB ~y ~S K:;A
12 C ~O VE ~E S'5 f.\4 I4ts lGo
1 3 c Sf ~V EX fie 13
1 4 c ~AP LEM \ X DR ~~'
1 5 c ER. ASE EL ~M
1 6 c RE IU RN ~X EC 13
17 C SE TOiN . L R
t 8 C l- e- I- - I

~~
£N~ OF FI LE

lit *
TR ~/II SA crr ION TfR MI filA rrE~

** 11\1 VA L I J) NU ~8 E~ - PL EA SE ~E ENT ~
/1*
uu~~m~~~~~~~OO~~U~~~~~~~~DOD~n ,. 6t: C9&SC , LZ Z, ZZ, Ct> Zit' 0"" 8C l. K ££ zt t oc 6l: 8l 9Z Ii Z CZ l 01; 61 8~ II 91 51 '" £:1 1;1 U 01 6 II , 9 Ii " t Z ,

-No. ofsl'leets per pad may vary slightly.

Program Notes

1. The program exits are set up.

2. This command maps in the account number.

3. The exits for each of the defined function keys are set up.

4. The starting key is stored in field A in the key table.

5. This commaand establishes the browse starting point.

6. The keys in the table are shifted right in anticipation of a
continuation of a browse.

7. The READNEXT reads the first record into the file area.

19

18

20

21

22

8. If the record is flagge;d as deleted, the program reads the next
record.

9. The required fiel.ds are moved from the file area to the map area.

10. The same basic commands are repeated to read and set up the next
three lines. The same file area is used and, therefore, the fields
must be reused after eachREADNEXT.

11. The screen is erased and the page is displayed at the terminal.

130 CICS/DOS/VS-ELS User's Guide

12. The browsing command (CLEAR, PP1, or PP2 key, or 'P' or 'B') is
read from the terminal, and control is passed according to the
operator response (see note 3).

13. If the end of file is reached on any READNEXT, any records read to
that point are displayed, together with the message 'END OP FILE'.
The label to which this routine branches allows the operator to
restart the browse at a different point. The bright attribute for
the page backward message is turned on.

14. If the PF2 key is depressed or B typed in, indicating page
backward, and FLDC contains zeros, further backward paging is not
possible. The program branches to TOOP~ (see note 11) •

15. If not, the key fields are shifted left to retrieve the previous
page and the starting point for the browse reset accordingly.

16. The table limit is exceeded. An output map area is acquired, the
bright attribute for the page forward message is turned on, and a
dark attribute is moved to the page backward message.

11. An error message is written to the terminal.

18. On the record NOTPND condition, the message 'INVALID NUMBER -
PLEASE REENTER' is moved to MESSAGES.

19. On an error (notes 2, 5, 1, 11, 12, 17, 19 or 21) a dump is taken
and the message 'TRANSACTION TERMINATED' is moved to MESSAGES.

20. The map area is cleared. This is also the entry point if the clear
key was depressed. The bright attribute to highlight the message
is turned on, and the message 'TRANSACTION TERMINATED' or the
default message is moved to MESSAGES.

21. The screen is erased and map IDRMA is displayed.

22. The program ends.

Menu Screen Layout

r---
+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER RMNU
+PILE INQUIRY ENTER RINQ AND NUMBER
+FILE BROWSE ENTER RBRW AND NUMBER
+FILE ADD ENTER RADD AND NUMBER
+FILE UPDATE ENTER RUPD AND NUMBER

+PRESS PAl TO PRINT--PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+

Figure 2.5-2. Menu Screen Layout (as seen on 40-character Screen)

Chapter 2.5. RPG II Programming 131

Part 3. System Programming

133

Chapter 3.1. CICS/VS System Design

This chapter provides an introduction to CICS/VS program logic. Other
information relating to system design will be found in Chapter 3.8,
"Performance." (IIore detailed information can be found in the CICSIVS
Introduction to Program Logic.

Introduction to CICSNS Program Logic

The entry level system contains the following components:

Terminal control
-- controls all terminal activity.

Task control
-- controls all CICS/VS tasks.

Program control
-- manages CICS/VS application programs.

Basic mapping support
-- handles terminal data formatting.

File cont rol
-- controls file I/O operations.

Transient data control
-- controls sequential data files and intrapartition data.

Trace control
-- provides a trace facility.

Dump control
-- provides dumps to aid testing.

Temporary storage control
-- provides for temporary data storage.

storage control
-- obtains working storage areas.

Interval control
-- provides time-dependent facilities.

TRANSACTION PLOW

The following is a description of the use of the CICS/VS components in a
typical inquiry application. In the application described, a terminal
operator enters the transaction code INQY and an account number, ~
signifying that he wants a particular record to be displayed at the
terminal. The application program retrieves this record, selects fields
required, and displays them at the terminal.

Chapter 3.1. CICSjVS System Design 135

Terminal Cont~Q!

Assume the terminal operator has entered the transaction code and an
account number. Terminal control reads this input message into a
terminal input/output area (TIOA).

Terminal control consists of a terminal control program (TCP for BTAK
and ZCP for VTA!), a terminal control table (TCT), and terminal error
routines.

The terminal control program controls terminal operations through
BTAK or VTAK. Terminal control's primary functions are polling and
addressing. Polling checks all remote terminals periodically to
determine whether any have input to transmit, and is an invitation to
send input to the application program. Addressing is having the
computer check to see if a terminal is ready to receive output. With
basic mapping support, terminal control provides an application program
with the ability to communicate with a terminal. Terminal control also
handles I/O errors, and keeps track of which task is associated with
which terminal.

The terminal control table aids in controlling terminal operations,
in that it specifies the communication line characteristics, the types
of terminals, special features, and terminal priorities. The terminal
control program refers to this table in performing its functions. The
polling sequence, that is, the order in which the terminals should be
polled, is defined in the TCT. Also stored is operational data, such as
an indication that a certain terminal is temporarily out of service.
This terminal is excluded from polling until it is put back in service.

CICS/VS provides several terminal error routines. When unrecoverable
I/O errors occur, terminal control uses a terminal abnormal condition
program (TICP for BTAH, NACP for VTAft) to analyze the condition.
statistics are maintained, and an error message is sent to a transient
data file.

Iask Control

Terminal control passes control to task control, which creates a task
for the inquiry transaction. A terminal can have only one transaction
associated with it at a given time, and .the terminal is locked until the
program makes a response to the terminal.

Task control consists of a task control program (KCF) and a program
control table (PCT).

The task control program keeps track o~ the status of many tasks
being processed concurrently (multitasking). Transactions are not
usually processed through to completion in a single, uninterrupted
operation. A transaction may be processed up to a file I/O
instruction, for instance, whereupon another waiting task receives
control. Therefore, there may be many incomplete tasks which task
control must control simultaneously.

Task control validates transactions by checking the program control
table, which lists all valid transaction codes and the associated
programs, so that control may be transferred to the correct program. If
an operator entered an invalid transaction code, task control would not
find it in the program control table, and an error message would
automatically be sent to the terminal.

136 CICS/DOS/VS-ELS User's Guide

To control each task, task control acquires a task control area (TCA)
through storage control (see the section "storage Control- later in this
chapter). If desired, this area may be extended to include a
transaction work area (TWA), which may be used by an application program
during the life of a transaction. The TCA and TWA are released when the
task terminates.

Program Control

Task control passes control to program control, which keeps track of the
locations of the application programs.

program control consists of a program control program ~CP), a
processing program table (PPT), and an abnormal condition program (ACP).

The program control program manages application programs that are
stored in the DOS/yS core image library. All programs are loaded into
virtual storage when CICS/yS is initialized and are resident throughout
CICS/VS operation except for RPG II programs, which must be reloaded
each time they are used (see Chapter 3.4).

The processing program table is used by the program control program
to determine a program's location in virtual storage during CICS/VS
operation. Programs are relocatable, and may be in different main
storage locations from run to run. The PPT contains the program size,
source language, and other program information.

Under certain conditions, such as an unrecoverable I/O error, the
application program may wish to end the task. However, if a program
check occurs, this type of abnormal end is treated differently. If a
program terminates abnormally in a batch system, the operating system
may purge the job in that partition and schedule another. CICS/VS
should clearly not be purged because of one application program's
exception condition. Therefore, CICS/VS intercepts these program checks
and terminates that task only.

User Application Prog~m

Program control passes control to the application program, in this
example to the program that handles the transaction code IRQY.

In summary, before passing control to the application program,
CICS/yS has read the input (IRQY and account number) into a terminal I/O
area, validated the transaction code, and initiated a transaction. The
application program may now process this input and issue commands to
request services needed in handling the transaction.

Basic Map~-=S~u~p.p~o~r~t~ ___ I~n:p~u~t

Basic Mapping Support (BMS) is a CICS/VS feature that allows the user to
define layouts of 3270 screens. Its use and functions are described in
more detail in Chapter 2.1 and 3.5 of this manual. In the context of
this transaction flow description, the next step is as follows:

A BMS command is issued by the application program to format and move
the account number from the terminal I/O area to a symbolic description

Chapter 3.1. CICS/VS System Design 137

map. Control passes to the BMS module to perform this serv~ce and
returns to the application program.

Basic mapping support consists of tn& BMS modules and BMS physical
maps.

BMS uses physical maps as requested by the application program to
control the formatting (or mapping) of ter~inal I/O data. A physical
map is defined for each 3270 screen layout used in the application
program. The phys~cal map contains such informat~on ~s the terminal
position and length of each data field, 3270 field attribute characters,
extended a~tributes (if any), and constant data for headings and
keywords.

The application program issues a file control command to retrieve a
record from a file or a data base. File control reads the record ~nto a
file area, ana returns control to the program.

File control consi~ts of the file control program (FCP) and the file
control table (FCT).

fhe file control program provides file services or tile management.
It supports rcad only (inquiry), update, aad, and VSAM browse functions,
and provides a file pro~ection function called exclusive control. This
function is invoked by the file control progra~ if sev~ral tasks request
the same record for updating. Exclusive control plac;s all tasks, with
tha exception of the first, into a wait queue, so that only one tasK at
a time apdates that record and returns it to the file Defore another
task may access .the record.

Tile file control table contains, for ~achfile, user-supplied file
characteristics including the access method, record format and length,
and block size. The FCT also specifies what operations can De performed
on ~ach file. A file may be online and yet effectively protected
against moaitications by specifying read only. CICS/VS does not allow
any program to update such a file. New files may be added, old files
delated, and characteristics such as nlockiug factors modified, without
necessarily having to change the application programs.

When a file is changed by updating a record or adding a naw ona, a
record of the change can be logged tbrough a transient data command.
This provides an audit trail and allows reconstruction of records, if
neC€SSaLY. Inquiries do not change records and are not normally logged,
but, in this example, the record is logged because statistics are
wanted. Control returns to the application program following logging.

Transient data control consists of the transient data control program
(TDP) and the destination control table (DCT).

The transient data control program is a queuing facility which stores
records in the order received on a sequential DASD or tape file. These
may be records for later batch processing, audit records, statistics, or
error messages. Sequential input files may also be read by issuing
transient data control commands.

138 CICS/DOS/VS-ELS Userls Guide

The destination control table contains information used by the
transient data control program to direct data to the correct file. This
includes the file name, and record and file descriptions.

Trace control

The trace control program is a CICS/VS debugging aid which may be used
to trace the processing path of an application program. This module is
invoked for each CICS/VS command if trace is active, and after execution
of the trace control program, control returns to the application
program.

Trace control consists of the trace control program ~RP) and the
trace table (TRT) and, optionally, the auxiliary trace file.

Whenever a trace command is encountered, CICS/VS makes an entry in
the trace table. CICS/VS also records in the trace table which CICS/VS
components have been used by the application program.

The trace table resides in virtual storage, and a copy is provided if
the transaction is abnormally terminated or requests a transaction dump.
It is also provided together with a formatted dump.

Dump Control

If an unusual condition occurs during processing, the application
program may issue a dump control command to write all transaction
related storage areas to a dump file. After the dump bas been taken,
control returns to the application program.

Dump control consists of the dump control program (DCP) and the dump
utility program ~UP).

Dump control commands may be inserted at strategic points in a
program to facilitate debugging. The dump control program dumps storage
areas to a sequential file ~ASD or tape) for subsequent printing. The
dump control commands should be removed from the application program
when it has been debugged.

Dump control commands may also be used to provide printed records of
certain error conditions, such as unrecoverable I/O errors. Used in
this way, the command is regarded not as a debugging aid, but as a
permanent part of the program.

The dump utility program supplied with CICS/VS is a batch program
that formats and prints the dump file.

Temporary storage Control

The application program may need to store information for later
retrieval by another task. The temporary storage control program allows
the program to store such data in virtual storage before the next
instruction is executed.

Temporary storage control consists of the temporary storage control
program (TSP).

Chapter 3.1. CICS/VS System Design 139

An application program may issue com.ands requesting that information
be stored for subsequent retrieval by assigning a record to a named
queue. Such records are queued and may be retrieved later in the same
sequence in which they were stored, or randomly by entry number. All
temporary storage records, whether single or queued, are retained by
CICS/VS until purged by an application program.

Interval Control

The application program may need to start a task at some future time
(possibly to process the data stored by the temporary storage control
program). The interval control program allows the application program
to start a task after a certain interval of time has expired~or at a
certain time of day.

Interval control consists of the interval control program (ICP).

Basic sapping Support Output

The application program must now extract the necessary fields from the
record in the file area, and set up a symbolic description map to be
written to the terminal.

1 B!S command formats the record fields for transmission to the
terminal. B!S moves the data from the symbolic description map to a
terminal I/O area, and it is then written to the terminal by terminal
control. The terminal operator may view the record for as long as
desired, and then initiate a new transaction.

Ending the Transaction

The transaction is terminated by issuing a program contrQl RETURN
command. All storage, except the TIOl, allocated to this transaction is
released and made available for use by other transactions. Upon
completion, control returns to task control which deletes this
transaction from its transaction list. Task control then indicates to
terminal control that no task is attached to the terminal. If input
data is received, it will initiate another transaction. The TIOA is
released only when terminal control has finished.

CICS/VS OPERATING ENVIRON!ENT

The previous discussion considered only one terminal and one application
program to be active. In reality, many terminals and programs may be
operating. With CICS/VS, three types of multiple operations usually
exist: multiprogramming via the operating system, multitasking within
the CICS/VS partition, and multithreading of CICS/V 5 application
programs; these operations are described next.

140 CICSjDOS/VS-ELS User's Guide

If CICSjVS is executed in a multipartition environment, it is usually in
one of the highest priority partitions. Batch partitions receive
control from VSE only when CICS/VS has no dispatchable transactions.
Thus, as long as there is a transaction ready for processing, CICS/VS
maintains system control. Control is released to VSE for continuation
of a job in another partition only when there are no ready transactions.
CICS/VS regains control as soon as any previously waiting CICS/VS
transaction is ready to continue, or, if all active transactions are in
wait state, as soon as a new transaction code is entered at a terminal.

!luI ti tasking

Much as VSE controls concurrent execution of application programs across
partitions ~ultiprogramming), CICS/VS controls concurrent execution of
CICS/VS application programs within its partition. This is called
multitasking. Whenever one task has to wait for the completion of an
I/O operation, for example, CICS/VS assigns the processing unit to some
other task that is ready to use it.

In the inquiry transaction flow described earlier, control was
returned to the task after completion of file control or transient data
I/O operations. When several tasks are running concurrently, a task
that issues an I/O command, and thus has to wait for completion, will be
suspended and another task that is ready for processing is dispatched.
This overlapping of I/O operations and processing unit usage between
several tasks is called task switching.

In CICSjVS, several transactions running concurrently may require the
same application program. Rather than have more than one copy of a
program in storage at the same time, one copy is used by various
transactions. This process is called multithreading. An application
program, especially one with several I/O operations, may have many
transactions associated with it, some having gone through the first
portion of the program, or up to the first I/O instruction, some the
second, and so on. With only one copy of the program in storage, each
transaction would be waiting its turn to continue through the next
portion of the program, and on to completion. To control
multithreading, task control uses the task control area for each
transaction. This allows task control to determine whereabouts in a
program each transaction is, or where it should return to resume
processing when it receives control.

As programs may be used by more than one transaction, programs must
not modify themselves •. This requires that the code be left in its
original condition, so that each transaction may be processed in exactly
the same manner. Thus, any intermediate values or variables must be
stored in a separate area for each transaction. With multithreading,
each transaction must also have its own I/O areas, thus allowing each to
issue I/O instructions independently of other transactions. For COBOL
programs using the command-level interface, CICS/VS makes a copy of the
user-defined working storage for each transaction so that the programs
can be used in a multithreading environment.

Chapter 3.1. CICS/VS System Design 1ql

SYSTB! CONTROL PUNCTIONS

To control overall system, the following functions are included in
CICS/VS:

System initialization
The system initialization progralls initialize CICS/VS for
operation by loading the CICS/VS components according to
requirements specified in startup override parameters. This
process allows the CICS/VS system to be tailored for different
requirements, such as weekends, second shift, or testing.

!aster terminal
The master terminal program allows control over the system
during CICS/VS operation. Any terminal may b~ designated
temporarily as a master terminal, and an individual may be
authorized to perform master terminal functions through a
security key. The master terminal functions includ.e enabling
or disabling programs, files, transactions , or terminals ,.a.nd
requesting shutdown.

Syste. termination

Sign-on

The system termination program is invoked through the master
terminal and shuts down the system; and, if requested, it does
so only after all previously accepted transactions have been
processed. It prevents further terminal entries, closes files,
finalizes CICS/VS statistics, and sends shutdown messages to
the console operator.

The sign-on program and table optionally provide security by
restricting the personnel allowed to operate terminals. All
opera.tors may be required to sign on before being allowed to
operate terminals, and sign off when finished. Through
security keys only selected operators may be allowed to use
restricted programs and have access to confidential files.

System statistics
Various modules accullulate statistics that are useful in
analyzing and improving performance. The statistics include
the number of transactions initiated, the number of times a
program was used, and the number of file operations.

CICS/VS Command Language Translators
These translators permit the use of CICS/VS com.ands in
assembler language, COBOL, PL/I, or RPG II programs, making
possible the use of these languages with CICS/VS.

142 CICS/DOS/VS-BLS User's Guide

Chapter 3.2. Supervisor Generation

CICS/VS 1.5 ELS operates under a default VSI supervisor for which
default values of the BGPGI and PnPGI operands of IOT.lB have been
overridden as described in note 3 (below).

Motes:

1. The 'SI supervisor generation parameters applicable to CICS/'S are:

SUP'I 1l0DE= {310 I B}

2. The nuaber of programmer logical units in the system is defined
during supervisor generation, and the default number is 10.

The jobstreaa generated by DPBJCELS, for use with the sample
tables, references progra •• er logical units numbered up to SYS014,
but can be adapted to run user applications, referencing logical
units with nuabers outside this range. The default of 10 should
thus be overridden, at supervisor generation tiae, by a value of at
least 14, as shown below:

IOTAB BGPGI=14
PnPGI=14

Chapter 3.2. Supervisor Generation 143

Chapter 3.3. Installation of Distribution Volume

The machine-readable material for CICS/DOS/VS, including the entry level
system, is shipped on one or more Distribution Tape Reels (DTR). The
recording density is 1600 or 6250 bpi, as ordered. The tape reel is
termed a distribution volume. The information in this chapter, briefly
describes the contents of the volumes.

Por a full description of how to process the machine-ceadable
material, the user should refer to the Program Directory supplied with
the distribution volume.

Establishing Standard Labels

When VSE private libraries are used for CICSjDOS/VS, their D1SD label
information is stored in the standard label track or partition standard
label area. These libraries are used throughout the CICS/DOS/VS system
installation and servicing process. The label information should be
added to existing standard or partition standard label information.

The file identification and date of the DLBL statement and the EXTENT
information are those used when the libraries are restored from the
distribution volume. See the Program Directory supplied with the volume
for details of space required.

Contents of the Distribution Volumes

The files on the distribution volumes include the following modules:

• A private core-image library containing the entry level system.

• A private source-statement library, called the ~imar! source
statement ·library, containing CICS/DOS/VS source code needed for
application program and map preparation, table generation, and
servicing. This library also includes the Z sub-library books,
which contain job streams and data to run the sample application
programs. Note that this library does not contain the source code
for most of the CICSjDOS/vs control programs. Nor does it contain
the A sub-library form of the CICS/DOS/VS macros, the source code
for the command-level language translators, or the source code for
the execution diagnostic facility (not normally needed online) a

• Two private source-statement libraries containing further
CICSjDOS/VS source. One of these libraries contains copycode and
E.macros used by sysgen and E.macros for the macro interface; the
other contains source for sysgen and maintenance modules.

• A private relocatable library used to build the entry level system.
It contains certain CICS/DOS/VS object modules and VSE logic
modules needed for CICSjDOS/VS table generation.

Chapter 3.3. Installation of Distribution Volume 145

• A private source-statement library containing the A sub-library
form of the CICS/DOS/VS macros. The library is not normally needed
online.

The private core-image library contains sample application programs,
maps, tables, and the CICS/DOS/VS entry level programs.

Processing the Distribution Volumes

Full instructions for processing the distribution tape are contained in
the Prograa Directory. The information given includes the following:

• Descriptions of the layout and content of the files on the tape.

• Disk space requirements for the distributed tape files.

• Job control statements for restoring the tape files.

Bring Up the. System to Run the Sample Program

Sample application programs written in Assembler language, COBOL, PL/I,
and RPG II are provided in the entry level system private core-image
library. The relevant books, both of which are in the primary source
Ii brary, are:

Z.DFHSTAP

Z.DFHSTMP

containing the source of the sample application programs.

containing the maps and data area descriptions used by the
sample application programs.

To bring up the system to run the sample programs, the DFHJCELS macro
is provided. This macro generates a jobstream which on execution allows
the sample transactions to be tried.

THE DFBJCELS MACRO - CICS/DOS/VS-ELS INSTALLATION AID

This macro generates a jobstream with which the sample applications may
be run and upon which the installation jobstream for bringing up
CICS/DOS/V5-ELS may be based.

Input: The macro is coded with up to eight operands which describe the
environment in which the entry level system will be running.

Qutput: A jobstream which should suit most installation configurations.

lq6 CICS/DOS/V5-ELS User's Guide

~~nninq the Generated Jopstream

Disk Space: The extents of the files required -to run the sample
applications are calculated in the macro, based upon the SFILE and
SAMPVOL operands. The macro assumes that there are 20 contiguous
cylindeIS (or equivalent) on a pack designated for sample application
testing.

Partition Standard Labels and 1SSGB Statements

The first job to be generated by DFHJCELS is a partition standard label
job, and is intended to be merged with existing partition standard
labels in the partition to be used for CICSjVS. The macro will generate
DLBL and EXTEBT information for the following:

1) CICS Private Core Image Library
2) YSAM.SPACE (If SFILE=VSAM)
3) SAMPLE.TEST.FILEA (A subset of VSAM.SPACE

pperand: CICSCIL)
(Operand: SFILE)

if SFILE=YSAM)

CICS.IBTRA
4) CICS.DUMPA

5) CICS.DUMPB

r
I

.J
dump data Sets

~perand: SFILE,SAMPVOL)
(Operand: SFILE)

6) CICS.1UXTRACE auxiliary trace data sets
7) CICS.MSGUSR r

I sample application extrapartition data sets
8) CICS.LOGUSR .J

9) CICS.INTRA sample application intrapartition dataset.

In the partition standard label job are permanent lSSGB statements for
the following:

1) Private Core-Image Library - SYSCLB
2) Sample Application Testing Pack
3) Local Screens L771 and L71B
4) BT1M Local Printer L860
5) BT1M Remote Control unit

Running with YSAM

(Operand: CICSCIL)
(Operand: SAMPVOL)
(Operand: SYS011&12)
~perand: SYS013)
(Operand: SYS014)

When the operand SFILE=YSAM is used, it refers to the access method of
the sample application testing file (I/DLBL FILE!) and the transient
data (intraparti tion) file (I/DLBL DFBTR!). The second job contains a
step which defines a YSAM space "YSAM.SPACE", in which
"SA!PLE.TEST.FILEA" and "CICS.INTRA" will reside.

Sample Application Test Data

The second job contains a step which will set up a "SAMPLE.TEST.FILE!",
using whichever access method was selected by the SFILE operand.

Chapter 3.3. Installation of Distribution Volume 147

The generated jobstream is intended only for use with BTA8; both the
jobstream and initialization parameters would need modification for
VTAl! •

~LS InitiAlization Parameters

These are contained in a SYSIPT data stream and are generated to suit
the environment described by the macro operands; however certain
assumptions have been made which may not suit your installation, and the
opportunity is provided for overriding the generated options.

UPSI 1 indicates to DFHSIP that a SYSIPT data stream is to be
expected.

UPSI 001 indicates to DFBSIP that overrides and options will be
input from the VSB console.

The jobstream is generated with both UPSI options in effect. There
are two initialization commands which can switch the source of these
input options during initialization and these are used to provide the
user with an "initialization conversation" at bring-up time, as
follows:

The SYSIPT data stream provides a selected CICS/DOS/VS-ELS
initialization option, plus a narrative of any alternatives. The
command 'CN I follows and there is a wait on the DOS/VSE console for the
user's reply. If the given option is acceptable, the user replies ISII;
this command causes the SYSIPT data stream to be resumed.

If, however, the user wishes to override the given option, he replies
by typing in the option he wants on the VSE console typewriter, followed
by -,SIt, and the SYSIPT data stream is resumed.

Having established the particular set of initialization options for a
standard CICS/DOS/VS-ELS bring-up, the user should remove the following
from the jobstream

1) Narrative comments
2) eN commands (except the final one)

DFHJCELS Macro Specification

JOB

DFHJCELS [JOB=ELS I name 1
[,SFILE=ISAMIVSA8]
[,SA8PVOL=(volid, volsys, voldev, volstart, voldensity)]
[,CICSCIL=(cicsname, cicsvol)]
[,SYS011=cuu]
[, SY so 12=cuu]
[,SYSO 13=cuu]
[,SYS014=cuu]

generates a prefix for numbered jobs in the generated
jobstream. ELS is the default, but any valid jobname of one
through seven characters in length may be specified.

148 CICS/DOS/VS-ELS User's Guide

SPILE

S1MPVOL

CICSCIL

defines the access method of the sample application testing
file and the intrapartition data set. The allowed values are
IS1M or VS1M (only VS1M for 3350 and FBA devices) •

supplies information about the Sample Application Testing Pack.

volid
represents the six-character serial number of the volume on
which the sample application testing file and other data
sets will be created.

volsys
is the three digit system number which is used in
generating the permanent ASSGN for the testing pack
"volid·. The default is 008, and the value specified
should not be 009 through 014, as this conflicts with
values coded in the various pre-qenerated CICSjVS programs
and tables. A full list of the usage of 'SYS' numbers 9
through 14 is given in the generated jobstream.

voldev
describes the device type on which the sample application
testing file and other CICSjVS datasets are to be held.
The device type may be 2314, 3330, 3340, 3350 or FBA, but
note that neither 3350 nor FBA is allowed unless
SFILE=VSAM.

volstart
is the number of the cylinder, relative to zero, on which
the sample application testing file and other data sets
start. For FBI devices it is the relative block number
(between 2 and 99,000,000).

voldensity
may be either SINGLE or DOUBLE. It should be coded DOUBLE
only if 'voldev' is 3340 and the 3348 model 70/70F or
'voldev' is 3330 and the 3336 Model 11 is being used.
SINGLE is the default.

this supplies information for the DLBL and ASSGN for the
CICS/VS Private Core Image Library.

cicsname
is the filename on the DLBL card; it may be coded in
quotes.

cicsvol
is the six-character volume identifier of the pack on which
the CICS/VS PCIL resides, even if it is the same as "volid"
as coded on SAKPVOL.

*SYS011=
*SY5012=
*SYS013=
*S1S014=

only code this if you will use L77A local BTAM 3270
only code this if you will use L77B local BTAM 3270
only code this if you will use L860 local BTIM 3286
only code this if you will use remote BTA! line.

* Any combination of these may be coded, but at least one must be
coded. These are the system numbers and channel unit addresses of the
terminals used while running the sample applications.

Chapter 3.3. Installation of Distribution Volume 149

Job Control Reg~ired to Run an Entry Level System

Figure 3.3-1 shows an example of a jobstream used to define permanent
ASSGNs and standard label information in the VSE partition designated
for CICS/VS use. with the exception of cards 19 through 22 and 31
through 33, the example is part of the output from assembling the
DFHJCELS macro. The example contains all. of the different categories of
JCL definition required to bring up an entry level system, as outlined
below.

CICS/VS Library: Cards 1, 2, and 23 in the example define the private
core-image library in which CICS/VS nucleus modules, sample
applications, and tables reside.

Files Used by CICS/VS File Control: In the exampl.e, FILEA is the only
file to which CICS/VS File Control refers in response to CICS/VS
commands in the sample application programs. In this case, FILEA
resides in the VSAK data space (SPACE), and cards 3 through 6 and 2Q,
together with cards 19 through 22, define FILEA and its associated
catalogs and data space. DL/I data bases used by CICS/VS File Control
would also be defined here.

Files Used by CICS/yS Transient Data Control: MSGUSR, LOGUSR, and
DFHNTRA are all examples of transient data files to which the sample
programs refer; they are defined by cards 13 through 18, and 24.
DFHNTRA contains all of the intrapartitiondata, but each extrapartition
data set is defined separately.

CICS/VS Trace and Dump Files: Cards 7 through 12 define an auxiliary
trace file (not opened unless auxiliary trace is set on by a master
terminal command) and a switchable dump file. The switchable dump file
is always required; it allows CICS/VS operations to continue in the
event of a large amount of transaction dump output, when a master
terminal command can be used to switch the output to an alternative file
while the full one is being printed down by the DFHDUP utility program.

As the DFHDUP and DF8TUP utility programs respectively open the dump
and trace files for output, a retention period of zero days should be
specified in the DLBLs, and full extent information, incl uding start and
size, should be specified in the EXTBNT statement.

BTl! Device ASSGNs: Cards 27 through 30 define the terminal
configuration for BTAB devices. with VTAB, the assignments would occur
in the VTAK partition.

Note: Logical units SYS009 and SYS010 are reserved for trace and dump
data sets respectively. SYS011 through SYS01Q are used by the sample
application table definitions.

150 CICS/DOS/VS-ELS User's Guide

II DLBL IJSYSCL,'CICS.PCIL'
II EXTENT SYSCLB

* II DLBL SPACE,'SAMPLE.TEST.SP1CE',0,VS1M
1/ EXTENT SYS008, SAMPLE",2, 1200
* // DLBL FILEA,·SAMPLE.TEST.FILEA',O,VSAM
1/ EXTENT SYSOOB,SlMPLE

* /1 DLBL DFHNTRA,'CICS.INTBA',O,VSAM
// EXTENT SYS008,SAMPLE

* * DFHDMPA IS FOB :- DUMP DATA SET WHEN DUMPDS=A
// DLBL DFHDMPA,'CICS.DUMPA',0,SD,CISIZE=2048
// EXTENT SYS010,SAMPLE",1202,2000

* * DFHDMPB IS FOR :- DUMP DATA SET WHEN DUMPDS=B
// DLBL DFHDMPB,'CICS.DUMPB',0,SD,CISIZE=2048
// EXTENT SYS010,SAMPLE",3202,2000
*

Card

// DLBL DFHAUXT,'CICS.AUXTRACE',O AUXILIARY TRACE DATA SET
1/ EXTENT SYS009,SAMPLE",5202,2000
* * MSGUSR IS FOB :- PL/I MESSAGES, PL/I DUMPS, AND
* :- CSSL SHUT-DOWN STATISTICS
* :- CERT OPERATOR STATISTICS
* :- CSML SIGN-OFF STATISTICS
* :- CSTL TERMINAL 1/0 STATS
// DLBL MSGUSR,'CICS.MSGUSR',O SAMPLE EXTRA TRANS.DS
// EXTENT SYS008,SAMPLE",7202,400

* * LOGUSB KEEPS UPDATE LOG POR SAMPLE APPLICATION
// DLBL LOGOSR,'CICS.LOGUSRI,O FILEA UPDATE LOG
1/ EXTENT SYS008,SAMPLE",7602,400

* * DLBL and EXTENT information supplied by the user •••

* // DLBL IJSYSCT,'VSAM.MASTER.CATALOG'"VSAM
// EXTENT SYSCAT,SYSRES
// DLBL IJSYSUC,ICICS.ELS.OCAT'"VSAM
.// EXTENT SYS008,SAMPLE

* * C.I.C.S. PERMANENT ASSGNS
* ASSGN.SYSCLB,DISK,VOL=SAMPLE,SHR
ASSGN SYS008,DISK,VOL=SAMPLE,SHR
ASSGB SYS009,DISK,VOL=SAMPLE,SHR
ASSGN SYS010,DISK,VOL=SAMPLE,SHB
ASSGN SYS011,X'OA1' SCREEN L77A
ASSGB SYS012,IGN SCREEN L17B
ASSGB SYS013,X'OA4' PRIBTER L860

SAMPLE APPL. PACK
AUXILIARY TRACE DATA SET
BOTH DUMP DATA SETS

I ASSGN SYS014,IGN REMOTE
I
I
t
I
I
I
I

* * 155GB information

* ASSGN SYSPCH,X 101BI
ASSGN SYSIPT,X~01AI
ASSGN SYSLST,X'011'

supplied by the user •••
i

I
I
I
I
I ,

Number

1
2

3
4

5
6

17
18

7
8

9
10

11
12

13
14

15
16

19
20
21
22

23
24
25
26
21
28
29
30

31
32
33

L __ ----------------------------~

Figure 3.3-1. Example of job control required to run CICS/DOS/VS"":BLS

Chapter 3.3. Installation of Distribution Volume 151

Estimating DASD SRace for CICS/VS Piles

DumR Piles: Pormatted and partition dumps requested implicitly at
transaction abnormal termination, or explicitly by master terminal or
p~o?raJl commands, can cause a considerable vol.ume of output; therefore a
m1nl..mUIB of one !lillion bytes of DASD space is recommended for each of
DPHDftPA and DPHDMPB.

Auxiliary Trace Pile: Each trace entry causes a 20-byte record (as part
of a 2040-byte block) to be output. Insufficient DASD space will. cause
data to be lost; after the operator has been warned, the auxiliary trace
file is closed, and the auxil.iary trace option is set off.

Transient Data IntraRartition Data set: A minimum of two tracks is
required to hold intrapartition control data for all gueues. In
addition, variable-l.ength messages with an average of four bytes
additional overhead are written, unblocked, when requested by program
commands. Insufficient DASD space will cause an excessive number of
ERROR conditions to be encountered by application programs unable to
write messages to full queues.

EXEC statement to Bring UR CIC~S

Phase Name: DPBSIP is invoked by the VSE EXEC statement to bring up
CICS/VS.

Partition Size: The SIZE parameter of the VSE EXEC statement must be
used to specify the virtual address space in which CICS/VS is to run.
The difference between the EXEC size and the ALLOC size is the GETVIS
size. Two examples of cases where GETVIS storage is required are:

1. Where VS1M is being used.

2. Where rotational position sensing ~PS) is being used.

The size of the virtual address space specified on the EXEC SIZE
parameter depends on:

1. The total size of the CICS/VS nucleus modules selected as a result
of function required by initialization options.

2. The total size of the application modules in the user's
environment.

3. The subpool size required by both (1) and a) above; this subpool,
or dynamic storage area (DS1), is controlled by DFBSCE, the storage
control program for CICS/DOS/VS-ELS.

152 CICS/DOS/VS-ELS User's Guide

RUNNING THE SAMPLE PROGRAMS

After the jobstream created by the DFBJCELS macro has been executed,
that is, when CICS/VS is running, users can enter the channel unit
addresses of the terminals that invoke the sample programs; any of the
following transaction identifiers may be entered, where "X" is the
initial letter of the programming language being used (for example, AMNO
displays the Assembler language transaction identifiers). Note that the
xINQ, xADD, xOPD, and xBRW transactions must be entered via the menu
screen displayed by XKNO. The xORD and xCO! transactions need both a
screen and a printer for correct execution.

xMNO
display the sample transaction identifiers.

xINQ
display a file entry

xADD
-- add a file entry

xOPD
-- update a file entry

xBRW
-- browse (VSAK only)

xORD
- order entry

xCOM
-- print order entry queue

The first four transactions listed above are provided by the UPDATE
sample program, described and listed in Part 2 of this manual, in the
appropriate language-specific chapters for Assembler, COBOL, and PL/I.
(The VS1M brow se transaction is described and listed in Chapter 2.5 for

RPG II users. All the sample programs in each of the languages are
described and listed in the appropriate CICS/VS Application Programmer's
iefe.~~ual. The program descriptions should be read before any
attempt is made to run the sample programs.)

If Release 5 of the PL/I Optimizing Compiler Transient Library is not
available on the private core-image library being used, messages will be
produced during startup indicating that application programs with names
beginning with "IB!U cannot be found. The messages should be ignored if
the intention is to run the COBOL, Assembler language or RPG II sample
programs.

Running User Applications

The sample programs are supplied complete with the maps and tables
needed to run them. To tailor the system to the user's own application
programs, suitable maps and tables will have to be generated. As a
short cut, it may well be possible to modify the supplied sample
programs and maps to fit in with required user applications. In any
case, the following list enumerates the operations that will be
necessary, and shows where to find the information about them:

1. Prepare the application programs (see Part 2 of this manual).

Chapter 3.3. Installation of Distribution Volume 153

2. Prepare the tables (see Chapter 3.4).

3. Prepare the maps (see Chapter 3.5).

4. Brinq up the system usinq startup overrides where required ~ee
Chapter 3.6).

154 CICS/DOS/VS-ELS User's Guide

Chapter 3.4. Table Generation

CICS/VS is a table-driven system. All information regarding the
terminals, files wermanent and temporary), programs, transactions, and
operator identifications is contained in these tables. The tables are
spe!cified in table generation macros, which conform to assembler
language macro syntax.

CICS/VS tables have to be prepared, assembled, link-edited, and
cataloged in the core image library. Each table is created separately,
and may be recreated at any time prior to CICS/VS initialization. !ore
than one table of each type (identified by unique suffixes) can be
maintained and used. This allows the user to maintain special tables
for testing, and other tables for normal operation.

CICSjDOS/VS-ELS contains examples of al1 the tables. They have been
provided mainly to support the sample applications. However, the user
may be able to use some without change. A summary of the function
provided by the tables is given in the following pages. For the
complete details, see the source used to generate the tables in the
source statement library (see Appendix A) •

organization of this Chapter

The remainder of this chapter consists of general information on the
table generation macros and how to assemble them, followed by summaries
of the macros in alphabetic order. Each summary includes the syntax
definition and an alphabetic list of operands with their descriptions.
Where possible, default parameters are indicated by underscoring. An
example of the use of the macros is given £or each table.

Table Generation Procedures

The following table generation macro's need to be coded and assembled:

1. DFHDCT Destination control table

2. DFHFCT File control table

3. DFHPCT - Program control table

4. DFHPPT Processing program table

5. DFHSNT Sign-on table

6. DFHTCT Terminal control table

The TYPE=INITIAL and TYPE=FINAL macros are required for each table;
they establish the beginning and end of the table. Each table assembly
run must be terminated by the assembler END statement.

To assemble tables, the source statement library containing the VSE
data management macro instructions is also needed. To link-edit the
tables, the relocatable library containing logic modules is needed.
(See the System Summary in Appendix A.)

Chapter 3.4. Table Generation 155

The output of each assembly contains the linkage-editor control
statements ~BASE and INCLUDE) required to link-edit the table into the
VSE core image library.

The following is an example of the assembly, link-edit, and catalog
of CICS/VS control tables, showing the standard sequence of macro types:

// JOB CICSTAB
* CICS/DOS/VS-ELS CONTROL TABLE GBNBRATION
// OPTION C1TAL,NOXBEP,lLIGB
// ISSGB SYSSLB,DISK,VOL=CICSCS,SBR
// EXEC ASSEMBLY,SIZE=64K

/*

PRINT BOGEN
DPBxxx TYPE=INITIIL,SUPPIX= ••
DPHxxJ[TYPE= •••

(macros defining table xxx)

DPBxxx TYPE=PINIL
END

/ / EXEC LREDT
/S

In the above illustration, xxx represents the type of table as listed
above.

The tables are named as follows:

Destination control table
Pile control table
Program control table
Processing program table
Sign-on table
Terminal control table

DPRDCTyy
DPBPCTyy
DPRPCTyy
DPHPPTyy
DPBSNT
DPHTCTyy

The first six characters of the name are standard for each of the
tables. Except for the sign-on table, the last two characters (yy) may
be specified by the user through the SUFPIX operand to allow several
versions of a table to exist; anyone or two characters (other than NO,
I, and $) are valid. The suffix determines which version of that table
is to be loaded during system initialization. startup override
parameters are used to specify which version is used (see Chapter 3.6).

15'6 CICS/DOS/VS~ELS User's Guide

DCT - Destination Control Table

The DCT describes sequential files used for transient data, and
associates the files with the appropriate destination names.

t
IDFHDCT
I
I
I
DFHDCT

IDFHDCT
I
t
I
IDFHDCT
I
I
I
IDFHDCT
I
I
I
I
I
IDFHDCT

TtPE=INITIAL
[, SUFFIX=xx]
[,DEVICE={23141333013340133S0}]

TtPE=SDSCI
,DEVICE=device
, DSCNAME=name
[,BLKSIZE=length]
[,BUFNO=UI2}]
[,DEVADDR=symbolic address]
[,ERROPT={IGNOREISKIP}]
[,RECFORft=fFIXUNBIFIXBLKIVARUNBIVARBLK}]
[,RECSIZE=length]
[,REWIND={UNLOADINORWD}]
[,TIPEFLE= {INPUT IOUTPUT}]
[, TPMARK=NO]

TYPE=EXTRA
,DESTID=name
,DSCNAl'tE=name

TYPE=INDIRECT
,DESTID=name
,INDDEST=name

TYPE=INTRA
,DESTID=name
[,DESTFAC={TERMINALIFILE}]
[,TRANSID=name]
[,TRIGLEV=Ulnumber}]

TtPE=FIN1L
------~,-------~--~

The DFHDCT macro instruction types are:

1. DFHDCT TtPE=INITIAL

2. DFHDCT TYPE=SDSCI: data set control inforlBa t ion

3. DFHDCT TYPE=EXTRA: extrapartition destinations

4. DFHDCT TYPE=INDIRECT: indirect data destinations

5. DFHDCT TYPE=INTR1: intrapartition destinations

6. DFRDCT TYPE=FIN1L

Chapter 3.4. Table Generation·- DCT 157

DFHDCT TYPE=SDSCI -- Data Set Control Information

This macro generates the data set control block (DTF) necessary to
process a single transient data file. It is needed only for
extrapartition transient data, and a DFHDCT TYPE=EXTRA macro instruction
must be associated with it by specifying the same file name in the
DSCNAME operand. All DFHDCT TYPE=SDSCI macros must be issued
imllediately after the DFHDCT TYPB=IRITIALmacro and before any DFHDCT
TYPE=EXTRA, DFHDCT TYPE=INTRA, or DFBDCT TYPE=INDIRECT macros.

DFBDCT TYPE=EXTRA -- Extrapartition Destinations

Destinations external to the system are specified using the DFHDCT
TYPE=EXTRA macro instruction. This macro instruction must be generated
once for each extrapartition destination.

Note: The DFHDCT TYPE=IHDIRECT macro instruction should be used when
multiple extrapartition destinations share the same data set.

DFHDCT TYPE=INDIRECT -- Indirect Data Destinations

The DFHDCT TYPE=INDIRECT macro instruction is used for data that is to
be routed to a file already described by a DPHDCT TYPE=EXTRA or
TYPE=INTRI macro. A separate DTF is not required.

DPHDCT TYPE=IHTRA Intrapartition Destinations

The DPHDCT macro must be coded once for each intrapartition destination.
If automatic transaction initiation is required, this macro sets the
trigger level for the destination and identifies the transaction to be
initiated.

QPHDCT Operands

BLKSIZ E=length

BUFNO=!12

DE5TFAC=

specifies the length, in bytes, of the block (the maximum
length for variable-length records including four bytes for the
LL~~ block length prefix). For DA5D output, add eight bytes
for the record count field.

Example: BLK5IZE=128 (120-byte block + 8 for DA5D count field)

specifies the number of buffers (one or two) to be provided.
Two should be specified for high-usage files or printers.

specifies the type of destination that the queue represents.

158 CIC5/D05/VS~ELS User's Guide

TEBIlINAL

FILE

DESTID=name

-- the transient data destination is to be associated with
a specific terminal. If autoaatic transaction initiation
is used, the specified terminal must be available before
the transaction can be initiated.

-- the transient data destination is to be used as a file
not associated with a particular terminal. Automatic
transaction initiation does not require a terminal to be
available.

specifies the symbolic name of the destination. The symbolic
name is the same as that used in transient data commands (such
as WBITEQ TD) that specify the destination.

Any destination identification (DESTID) of more than four
characters is truncated on the riqht. Hames startinq with the
letter tiC" are reserved for CICS/VS.

If the ultimate destination of intrapartition data is a
terminal and if automatic transaction initiation is associated
with the destination, the name specified in the DESTID operand
must be the same as the name specified in the TBIlIDNT operand
of the DFBTCT TYPE=GPEHTBY macro. It may be convenient to use
the same naminq convention for terminal destinations and data
set destinations, reqardless of whether automatic transaction
initiation is requested.

Example: DESTID=CSIlT

DEVADDB=symbolic address
specifies the symbolic unit address. This operand is not
required for disk data sets when the symbolic address is
provided throuqh the VSE EXTENT statement. It is required for
tape and unit record devices.

Example: DEVADDB=SYS041

DEVICB=device
specifies the type of input/output device.

Type=I.ITIAL
specifies the device to be used for intrapartition data
sets. Valid device types are: 2314 (the default), 3330,
3340, and 3350. If the data is VSAB intrapartition
transi~nt data, the default device is used reqardless of
the device specified.

Type=SDSCI
specifies the device to be used for extrapartition data
sets. Valid device types are: 1403, 1404, 1443, 1445,
2314, 3203, 3211, 3330, 3340, 3350, FBI, 5203, and TAPE.

Chapter 3.4. Table Generation -- DCT 159

DSCNA!fE=name

ERROPT=

specifies the one- to seven-character file name used in the
DLBL statement. The name should not start with the letters
"DPH", which are reserved. for use by CICS/VS. TYPE=EXTRA
macros are associated with TYPE=SDSCI macros by specifying the
same file name in the DSCNA!!B operand.

specifies the error option to be performed.

IGNORE
-- accept the block that caused the error.

SKIP
-- skip the block that caused the error.

INODEST=name

RECPOR!!=

identifies an intrapartition or extrapartition destination.
This identification must be the same as the DESTID of the
actual destination. If the name specified is not defined in
the OCT, an assembly error will result.

Example: INDDEST=CSMT

specifies the record format.

FIIUNB
fixed unblocked records.

FIXBLK
fixed blocked records.

VARUNB
variable unblocked recoras.

VARBLK
variable blocked records.

RECSIZE=length

REWIND=

TPMARK=NO

specifies the record length (the maximum length for variable
length records including four bytes for the LL~ record length
prefix). This parameter is needed .only if RECFOR!=FIXBLK or
RECFOR!f=VARBLK is specified.

specifies the disposition of a tape data set.

UNLOAD
rewind and unload the current volume

NORiO
do not rewind

specifies that no tapemark is to be written at the beginning of
the file.

160 CICS/DOS/VS-ELS Userls Guide

TRANSID=name
-- identifies the transaction that is to be automatically
initiated when the trigger level is reached. The purpose of
such initiated transactions is to read records from the
destination. If this operand is omitted, or if TRIGLEV=O is
specified, some other means must be employed to schedule
transactions to read records from the destinations.

TRIGLEV=number

TYPEFLE=

specifies the number of data records (the trigger level) to be
accumulated for a destination before automatically requesting
the creation of a task to process these records. The TRIGLEV
default value 1 applies when TRANSID is specified without
TRIGLEV. The maximum allowed is 32161.

If the DESTFAC operand specifies TERMINAL, the transaction will
not be initiated until the associated terminal is available.

During operation, the master terminal operator can use the CEMT
transaction to change the trigger level. If the trigger level
is reduced to a number equal to or less than the number of
records accumulated so far, the task will be initiated when the
next record is written to the destination.

specifies the type of data set. The default is TYPEFLE=INPUT.

INPUT
-------input data set.

OUTPUT
--output data set.

An extrapartition SDSCI can be either input or output, but not
both.

Chapter 3.4. Table Generation -- DCT 161

Example of Destination Control Table

*

// JOB DFHDCT
// OPTION CATAL,NOXREF,ALIGB
// ISSGN SYSSLB,DISK,VOL=CICSCS,SHR
// EXEC ASSEMBLY,SIZE=64K

PRINT BOGEN
DFBDCT TYPE=INITIAL,SUFFIX=3E,DEVICE=3330

DFHDCT TYPE=SDSCI,DSCHAME=ftSGUSR,BLKSIZE=128,RECFORM=VARUNB, *
TYPEFLE=OUTPUT,BUFNO=1,DEVICE=3330

*
*
*
*

*

*

*

DFHDCT TYPE=SDSCI,DSCNAME=LOGUSR,BLKSIZE=100,RECFORM=PIXUNB, *
TYPEFLB=OUTPUT,BUFNO=1,DEVICE=3330

/*

DFHDCT TYPE=EXTRA ,DESTID=SLOG ,DSCNAME=MSGUSR

THE NEXT FOUR ENTRIES ARE CICS/VS-REQUIRED

DFBDCT TYPE=INDIRBCT,DESTID=CSMT,INDDEST=SLOG
DFHDCT TYPE=INDIRECT,DESTID=CSTL,INDDEST=SLOG
DFHDCT TYPE=INDIRECT,DESTID=CSSL,INDDEST=SLOG
DFHDCT TYPE=INDIRECT,DESTID=CSML,INDDEST=SLOG

DFBDCT TY PE=EXTRA ,DESTID=ULOG, DSCNAME=LOGUSR
DFHDCT TYPE=INDIRECT,DESTID=LOGA,INDDEST=ULOG

DFHDCT TYPE=INTRA,DESTID=L860,TRIGLEV=30,TRANSID=ACOM,
DESTFAC=TERKINAL

DFHDCT TYPE=FINAL
END

// EXEC LNKEDT
/&

*

162 CICS/DOS/VS-ELS User's Guide

Fcr - File Control Table

The file control table identifies all of the user files to be included
in the system. ELS supports IS Aft and VSAft files.

I

IDFHFCT
I
I
DFBFCT

DFBFCT

IDFBFCT
I
IDFHFCT
I ,

TYPE=INITIAL
[,SUFFIX=xx]

TYPE=DATASET
,DATASET=name
,ACC!ETB=({ISA!IDL/IIVSA![,~IESD5IRRDS1})
,SERVREQ=(request[,request], •••)
[,RECFOBft= ([{UNDEFINED I VARIABLE I FIXED}]

[{, BLOCKED I UNBLOCKED}])]

ISA! only

, EXTENT=number
[,BLKKEYL=length]
[,BLKSIZE=length]
[,CYLOPL=number]
[, DEVICE= (device[,device])
[,INDABEA=symbolic name]
[,INDSIZE=length]
[,IOSIZE=length]
[, LRECL=length]
[, MSTIND=YES]
[,NRECD5=number]
[, BKP=n umber 1
[, VERIFY=YES 1

V5AM onl~

[,BUFND=number]
[, BUFNI=number]
[,BUPSP=number 1
[,PASSWD=passwordl
[, 5TRNO=number 1

TYPE=SHBCTL
[, BUFFERS= (size (count) , • • .) 1
[,KEYLEN=number]
[, RSCLMT=nulllber]
[,STRNO=number]

TYPE=FINAL

TYPE=LOGICMOD
[,RP5=SVA]

The DFHFCT macro types are as follows:

• DFHFCT TYPE=INITIAL

• DFRFCT TYPE=DATA5ET -- describes the characteristics of a data set.

• DFHFCT TYPE=FINAL

• DFHFCT TYPE=LOGICMOD - generates an ISA! logic module. If this
macro is used, it must be included after DFHFCT TYPE=FINAL.

Chapter 3 .". Tab~e Generation - FCT 163

DFHFCT TYPE=DATASET -- Data Set Description

The DFHFCT TYPE=DATASET macro describes the characteristics of a single
file. A separate TYPE=DATASET macro must be coded for each file to be
included in the system.

If the DL/I DOS/VS facility is to be used, the .DFHFCT TYPB=DATASBT
macro is used to provide information about DL/I data bases. DATASBT and
ACC!ETH are the only operands required for DL/1 data bases. Physical
characteristics of the DL/I data bases need not be specified.

DFHFCT TYPB=SHRCTL -- VSAI! Shared Resources control

The DFHFCT TYPE=SBRCTL macro instruction can be used to control the
sharing of VSAM resources by CICS/VS VSAM files. Because both the entry
that describes the VSA! data set and the entry that controls the sharing
of resources are referred to by the file control program whenever I/O is
requested for a data set that is sharing resources, it may be desirable
to group all data sets which share resources together in the file
control table, along with the entry to co.ntrol the sharing of resources.

The DFBFCT TYPE=SHRCTL macro should follow the entries for the VSA8
data sets that are sharing resources.

If one or more VSAM data sets indicate that they are to share
resources and this macro instruction has not been issued prior to the
DFHFCT ·TYPE=FINIL macro instruction, the entry necessary to control the
sharing of resources is automatically generated with all values
defaulted.

DFBFCT Operands

ACCMETH=
specifies the access method.

ISAM

DL/I

VSAM

Indexed Sequential Access Method.

DL/I DOS/VS

Virtual Storage Access Method.

KSD2

ESDS

RRDS

key-sequenced data set. KSDS is the default when
ACCMETH=VSAM.

entry-sequenced data set.

relative-record data set

164 CICS/DOS/VS-ELS User's Guide

BLKKEYL=length
specifies a physical key length.

BLKSIZE=length
specifies the physical block length. For undefined blocks, the
length should be the maximum user-defined blocksize plus 8.
This operand is not required for VSAM.

BUFFERS=size
is used to override part of the CICS/VS resource calculation.
Each pair of values specifies a buffer size and a number of
buffers of this size to be allocated. Each buffer size must be
a power of 2, at least 512, or if greater than 20Q8, a multiple
of 4096. The number of buffers of each size must be at least 3
and less than 32168. If a given buffer size is not defined and
it is required, the next larger buffer size will be used. When
this parameter is specified, it overrides all of the buffer
requirement calculation. What is specified in this parameter
is exactly what will be passed to VSAM when the request is made
to build the resource pool. If this parameter is not
specified, CICS/VS will determine the buffer sizes required and
the maximum number of buffers of each size and allocate the
percentage specified or implied via the RSCLMT parameter.

BUFND=number (VSAM only)
specifies the number of buffers to be used for data. The
minimum specification is the number of strings plus one (see
the STRNO operand).

BUFNI=number (VSAM only)
specifies the number of buffers to be used for the index. The
minimum specification is the number of strings specified in the
STRNO operand.

BUFSP=number (VSAM only)
specifies the size in bytes of the area to be reserved for
buffers for this data set within the CICS/VS partition. If
less than the minimum is specified, VSAM vill not open the data
set. If this operand is not specified, VSAM OPEN will obtain a
minimum size area. The minimum size must be large enough to
hold one data and one index buffer per string (see the STRNO
operand) plus one data buffer.

The BUFSP value should be chosen with great care. While the
file is open, this storage space is controlled exclusively by
VSAM; it vill be used only for buffers and only for the
specified file.

CYLOFL=number (ISAM only)
specifies the number of tracks per cylinder reserved for
overflow records. CYLOFL=O is invalid; if no cylinder overflow
space is to be reserved the operand should be omitted
completely.

Chapter 3.4. Table Generation -- FCT 165

DA'rASET=name
specifies the one- to seven-character file name, which must be
the same as the "filename" operand in the CICS/VS startup DLBL
statement.

If VSAM alternate index support is used to access a base
cluster via an alternate index path, the data set name must be
the same as the name of the alternate index path. This is
specified on the VSE file name used in the job control
statement defining the path. No entry is required in the file
control table for the alternate index that is used to access
the base data set. The link between the alternate index and
the base data set is established when the path is defined using
Access Method Services.

Note: The data set name should not start with characters "DFH"
or "FCT", both of which strings are reserved.

For a DL/I data base, the DATASET operand must specify the same
data base name as was specified by the NAME operand when
generating the DBD.

DEVICE= (device[,device]) (ISA! only)
specifies the type of device on which the prime data area
resides, followed by that of the high-level index. The
applicable devices are 2314, 3330, and 3340. The default is
DEVICE= (2314,2314).

EXTENT=number (lSI! only)
specifies the number of extents required for the file. This
operand is required if ACCMETH=ISAft. The miniaum is two (one
for the prime data area and one for the cylinder index) •

INDAREA=symbolic name (ISAM only)
specifies the unique symbolic name of a virtual storage
resident cylinder index. A storage area within the FCT is
generated automatically, to contain all or part of the cylinder
index. This operand is required only if the cylinder index is
to be processed in dynamic storage.

Example: INDAREA=CYLINDA

INDSIZE~length (ISA! only)
If INDAREA is specified, the size is calculated as follows:

(M + 4) * (keylength + 6).

where
M = number of prime data cylinders, and
keylength = keylength in BLKKEYL operand.

Example: INDSIZE=392 (for 24 prime data cylinders, keylength
8)

166 CICS/DOS/VS-ELS User's Guide

IOSIZE=length (ISA! only)
specifies the size of the area to be used when adding records
to a file. This operand should be used only when
SERVBBQ=BEWBEC is also specified.

Selection of the size should depend on the number of ISAft ADDs
expected. The operand should be oaitted for a system with few
ISA! ADDs, but a large area should be specified for a file with
many 1518 ADDs, or where 1518 ADD response time is critical. A
large volume will improve ISA! ADD performance, but will need
additional real storage. The size is calculated as follows:

size = m (BLKKEYL + BLKSIZE + ~O) + 24

where m is the number of blocks that may be read or written at
one time. The size thus calculated must at least equal
(BLKKEYL + BLKSIZE + 74) •

As a guideline, the user with limited real storage should
select a size of less than 1000 bytes. Other users may
increase this amount to that represented by the maximum number
of blocks on a track.

Example:
The ISA! file has a moderate number of ADDs, minimal
storage, a key length of 8, and a blocksize of 250 bytes.
Then

size = 3 (8 + 250 + 40) + 24 = 918

IOSIZE=918

KEYLEN=number
is used to override part of the CICS/VS resource calculation.
It specifies the maxiaum key length of any of the data sets
that are to share resources. If not specified, CICS/VS will
determine the maximum key length.

LBECL=length (ISAR only)
specifies the size of logical records in a block. Por
variable-length records within fixed-length blocks, the
specified record length, multiplied by the BRECDS value, must
equal the actua.l block size.

KSTIND=YES (ISA! only)
specifies that a master index is used.

NRECDS=number(ISA! only)
specifies the number of logical records in a block. Por
variable-length records within fixed-length blocks, the number
specified, multiplied by .the LBECL parameter, must equal the
block size.

~: NRECDS=1, LRECL=blocksize, is not allowed. The most
advantageous specification is NRECDS=n, LRECL= (blocksize/n)
where n is some decimal valu~ greater than 1.

Chapter 3.4. Table Generation --- PCT 167

PASSWD=password (iSAM only)

RECFORM=

specifies a one- to eight-character password for access to the
data set. If less than eight characters are specified, the
password will be padded to the right with blanks. If this
operand is omitted for a password-protected file, the console
operator may be asked to provide the appropriate password.

The password must differ from the name in the DATASET operand,
and must be unique within the FCT.

describes the record format. The default is UNDEFINED for' ISAM
and (VARIABLE,BLOCKED) for VSA!.

FIXED
fixed-length records.

VARIABLE
variable-length records.

UNDEFINED
undefined records.

BLOCKED
blocked records.

UNBLOCKED
unblocked records.

Notes:

1. BLKSIZE must include an additional eight bytes for the
count field when NEWREC is specified for undefined records.

2. BLOCKED or UNBLOCKED must be specified for all ISAM files
of FIXED or VARIABLE format.

3. UNBLOCKED indicates IS!M compatibility for a VSAM file.

RKP=number (ISAM only) "-

RPS=SVA

specifies the starting position of the key field in the record,
relative to the beginning of the record (position one). For
variable-length records, the. number must include the four-byte
LL~~ field at the beginning of each logical record. BKP is
required for data sets with embedded keys.

For unblocked files with RKP, IS!M will issue the following
MROTE: "0, KEYLOC INVALID, PARAMETER IGNORED".

Example: RKP=6 (key starting in position 2 of variable-length
record)

specifies that the logic module to be generated will use
Rotational Position Sensing. For further information on this
option, see the CICSIVS System Programmer's Reference Manual.

168 CICS/DOSjVS-BLS User's Guide

RSCLMT=number

SERVREQ=

CICS/VS w ill calculate the maximum amount of resources required
by the VSAM data sets that are to share resources. Because
these resources are to be shared, some percentage of this
maximum amount of resources must be allocated. This parameter
is used to specify the percentage of the maximum amount of VSAft
resources to be allocated. If this parameter is omitted, 50
percent of the maximum amount of resources will be allocated.
If both the STRNO and BUPPERS parameters are specified, RSCL!T
will have no effect.

defines the types of service request to be allowed for the
file.

GET
records may be read.

PUT
records may be written.

UPDATE
records may be updated. If UPDATE is specified, both GET
and PUT are implied, and need not be specified.

NEWREC
records may be added. NEWRRC implies that PUT was also
specified.

BROWSE (V SAM only)
records may be sequentially retrieved.

DELETE (VSAM key-sequenced files only)
records may be deleted from this data set. DELETE implies
that UPDATE was specified.

SHARE (VSAM only)
this file is to share resources. This service cannot be
requested for a path, or for the base data set of an
alternate indexing structure in which there is an upgrade
set.

~~: If any output service request option is to be added
dynamically through the CEMT transaction, at least one output
option (for example, SERVREQ=PUT) must be specified at assembly
time. Similarly, for input options to be added with CEMT, at
least one input option must have been specified in SERVREQ.

Example: SERVREQ=(GET,PUT,NEWBEC)

STRNO=number (VSAM only)
for TYPE=DATASET, specifies a limit to the nUllber of requests
that can be processed concurrently for a VSAM file. CICS/VS
will automatically queue any requests received while the number
of concurrent requests is at the limit. CICS/VS will
accumulate statistics that will help the system programmer find
the optimum STRNO value. This operand is required for VSAM
files, there being no default value.

Chapter 3.4. Table Generation - PCT 169

Por ~YPE=SHRCTL, S~RNO is used to override part of the CZCS/yS
resource calculation. Zt specifies the total number of strings
to be shared among the data sets that are to share resources.
~he value must be at least one and not .ore than 255. If a
number is not specified for STBNO, CICS/VS will determina the
maxiaum nQmber of strings and allocate the percentage specified
or implied in the BSCLMT parameter.

VEBIPY=YES (lSI! only)
specifies that the parity of disk records is to be checked
after they are written.

Examples of File Control Table

Example 1 (ISlft):

/ / JOB DPHPC~
// OP~10N C1TAL,NOXREP,ALIGN
// 15SGB SYSSLB,DISK,VOL=CICSCS,SBB
// EXEC ASSE!BLY,SIZE=64K

PRINT NOGEN
DPHFCT TYPE=INI~IAL,SUPFIX=3E
DPHPCT TYPE=DA~ISE~,D1TASET=PILE1,ACc!ETH=IS1M, *

SERVREQ=(GET,NEWBEC,UPD1TE),BLKSIZE=160, *
BECPOB!=(PIXED,BLOCKED),VEBIPI=YES,LBECL=80,IBECDS=2, *
IOSIZE=240,CYLOPL=3, *
BLKKEYL=6,BKP=2,DEVICE=(3330,3330) ,EX~ENT=2

/*

DPBPCT TYPE=PINAL
DPBPCT TYPE=LOGIC!OD
END

// EXEC LIKEDT
/S

Exam.ple 2 (YSAB):

/ / JOB DPBPCT
// OPTION CATAL,ROXBEF,ALIGN
// ISSGB SYSSLB,DISK,VOL=CICSCS,SBR
//EXBC ASSE!BLY,SIZE=64K

/*

DPBPCT TYPE=IRITI1L,SUPPIX=lE
DPBPCT TYPE=DAT1SET,DATASBT=PILEB,ACC!ETB=(VSA!,KSDS),

SERVREQ= (GET,U'PDATE,IEWBEC,BBOWSE,DELETE) ,
RECPOBM=(FIXED,BLOCKED),
BUFSP=4096,
BUPII=4,
BtJFNO=4,
STRNO=3

DFRPCT TYPE=PINAL
END

// EXEC LRKEDT
/S

170 CICS/DOS/VS-ELS User's Guide

*
*
*
*
*
*

PCT - Program Control Table

The PCT identifies all valid transaction codes, and establishes the
criteria under which the transaction is to be processed.

~-----~i-------~--~
IDFBPCT TYPE=INITIAL

,CICS=ELS I
I
I
I

[, SUFFIX=xx]
[,TRANSEC= ([JI!ASTEB (nn)][,SVR (nn)](,FE (nn)][,EDF (nn)])]

[,INTERPRETER (nn)]
I
IDFHPCT TYPE=ENTRY
I
I
I
I
I
I

, PROGRAM=name
{,TASKREQ=xXXXI,TRANSID=transaction id}
[, SCRNSZE= {DEFAULT I ALTERNATE}]
[,TRANSEC={11 decimal value}]
[, TWASIZE= {Q.I decimal value}]

I
IDFHPCT TYPE=GROUP
I ,FN= (function[, •••], •••)
I
IDFHPCT TYPE=FINAL
I

The types of DFBPCT macros are as follows:

• DFHPCT TYPE=INITIAL

• DFBPCT TYPE=ENTRY, which specifies the transaction control
information

• DFBPCT TYPE=GROUP, which allows the system programmer to code a
single keyword, instead of a list of program names, for each
CICS/VS supplied function to be included in the system.

• DFBPCT TYPE=FINAL

DFHPCT TYPE=INITIAL - Operands

SUFFIX=xx
specifies a one- or two-character alphameric suffix for the
program control table being assemb;ed. This suffix, if
specified, is appended to the standard module name (DFBPCT) and
is used to name the module on the linkage editor output
library. If this operand is omitted, a suffix is not provided.

TRANSEC=([!ASTER (nn)][,SVR (nn)][,FE (nn)][,EDP(nn)][,INTERPRETER (nn)])
allows the user to set the transaction security key value for
transactions generated by the DFHPCT TYPE=GROUP macro for the
following functions:

MASTER - master terminal facility ~EMT)
SVR - supervisor functions (CEST)
FE - field engineering terminal test facility (CSFE transaction)

and facility error recognition system ~SFR transaction)
EDF - execution (command level) diagnostic facility
INTERPRETER - command interpreter ~ECI)

Chapter 3.4. Table Generation -"-,<PCT 171

Each value specified must be in the range 1 through 24

DFHPCT TYPE=E!TRY Transaction Control Information

The DFHPCT TYPE=ENTRY macro provides information about the transaction.
One TYPE=ENTRY macro must be coded for each user transaction.

Pre-defined entries in a GROUP macro (see next section) may be
overridden in a DFHPCT TYPE=ENTRY macro coded before the GROUP macro.
Otherwise, GROUP and ENTRY macros can be mixed in any order. The
"groupable ll entries will not be generated twice in an assembly.

I DFHPCT TYPE=GROOP - Operands

CICS/VS provides certain transactions, some of which can be invoked
directly from the terminal, the rest being used internally by CICS/VS.

Entries for CICS/VS supplied transactions must be made in the PCT.
Entries are generated using the DFBPCT TYPE=GROUP macro, in the form
DFHPCT TYPE=GROUP,FN=function[, •••].

FN=function
indicates the functions for which entries in the PCT must be
generated. Any number of functions from the list below can be
specified in one DFBPCT TYPE=GROUP macro.

STANDARD
This is always required for ELS internal use. It provides
the transaction identifications that are required in the
majority of CICS/VS systems. The transaction
identifications generated are:

• CSTT - supervisor statistics program
• CSlC - abnormal condition program
• CSTE - terminal abnormal condition program

CONSOLE

EDF

FE

This is optional. It permits operators to send messages to
the system console. It generates TRANSID=CWTO for
processing unit console support in CICS/DOS/VS.

Generates TBANSID=CEDF for the execution diagnostic
facility (EDF).

This is required if the CSFE transaction is to be used. It
generates TRANSID=CSFE for the FE terminal test facility,
and TRANSID=CSFB for the Facility Error Recognition System

HARDCOPY
This is required unless the PRINT startup override
specifies NO. It generates TRANSID=CSPP for the 3270 print
support function (BTA! and VTAM).

172 CICS/DOS/VS-ELS User's Guide

INTERPRETEB
This is required if the command interpreter is to be used.
It generates the following transaction identifier:

• CECS - command interpreter, com.and syntax checker

OPERATORS
This is always required for the master terminal
transaction. It provides the following transaction
identifications for the master terminal facility:

• CEKT - master terminal functions
• CEST - supervisor terminal functions
• CEOT - terminal operator functions

SIGNOR

'lIKE

VTA!

This must be specified if the sign-on facility is to be
used. It generates the transaction identifications
associated with the sign-on program. The transaction
identifications generated are:

• CSSN sign-on
• CSSF - sign-off

This is always required for ELS internal use. It generates
TBAHSID=CSTA for the time-of-day adjustment program.

This is required if VTIK is being used ~TAK=YES was
startup override). It generates TBINSID=CSNE for the VTI!
node abnormal condition program and CSG! for the good
morning sign-on message.

VTI!!PBT
This is required if V'll! is being used. It provides the
following transaction identifications associated with the
VTI! 3270 print function: CSCY, CSPK, and CSRK.

PROGRA!!=name

SCRHSZE=

specifies the name of the program that processes this
transaction. This program must also be defined in the PPT.

selects one of two screen sizes (defined in the DFHTCT
TYPE=GPEHTRY macro) to be used for this transaction. This
selection operates only when the transaction is attached to a
terminal entry that is able to switch screen sizes. This
operand also selects the buffer size for printers using a 3270
data stream.

If SCRBSZE=ILTERNITE is specified for the transaction, and the
TCT entry for the terminal to which the transaction is attached
has the alternate screen size facility, the transaction will
run in alternate screen size mode; that is, the screen size
used will be that specified in the ILTSCRN parameter of the TCT
for the terminal.

Chapter 3.4. Table Generation -- PCT 173

If SCRNSZE=DEFAULT is specified for the transaction, .and the ,"
TCTentry for the terminal to which the tra.nsaction is attached
has the alternate screen size facility., the transaction will
run in default screen size mode; t.hat is, tbe screen. size used
will be that specified in the TRMMODL parameter of the TCT for
the terminal.

If the TCT entry for the terminal towhicb the transactipn is
attached does not have the alternate scr~en size fadility, any
SCRNSZE option for the transaction is ignored.

TASKREQ=xxx
specifies that a terminal operator may use a program access
(PA) key, program function (PF) key, light pen attention (LPA)
field, operator identification card. reader (OPID) ,or magnetic
stripe reader (MSRE) to.ini tiate this task. Valid parameters
are: PAl through PA3, PFl through PF24, LPA, OPID, and MSRE.

TASKREQ and TRANSID are mutually exclusive. Only one may be
specified per PCT entry.

If 3210 printer support is used, the PA key associated with the
PRINT startup override parameter must not be specified. (See
"Startup Override Parameters," in Chapter 3.6~)

TRANSEC=decimal value
defines the transaction security key. The range of the value
is 1 (the default) through 24 .No operator without the
specified security key can initiate the transaction. See the
SCTYKEY operand in thesign-on table.

When a transaction is automatically initiated, the operator
signed on to the terminal must have the same security key as
the transaction. To ensure that all automatically initiated
transactions can be initiated without a security violation,
either the security key of the transaction should be "1" or the
operator signed on to the terminal should have a maximum
security key.

Any automatically-initiated transaction associated with a non--.
operator terminal, such as a 3284 printer, must have the
security key "1".

TRANSID=transaction id
specifies a one- to four-character transaction identifier. The
transaction identifier entered by the operator must exactly
match th~t specified in this macro, including upper and
lowercase characters. (However, it is possible to specify that
lowercase characters keyed in at a terminal are converted to
uppercase, using the TRMFEAT=U operand of the DFHTCT
TYPE=GPENTRY macro.)

~: Transaction identifiers (TRANSIDs) for supplied CICS/VS
transactions begin with the letter "C". The TRANSID for a
user-written transaction can also begin with "C", but this is
not recommended, because there is a danger of duplication of
user-defined identifiers by future supplied CICS/VS TRANSIDs.

174; CICS/DOS/V S-ELS User's Guide

I
I

TW1SIZE=decimal value
specifies the size of the transaction work area to be acquired
for this transaction. The default is TIASIZB=O. The maximum
size is 32767 minus the length of the task control area.'

Bxample of Program Control Table

II JOB DPHPCT
II OPTION C1TAL,NOXREP,lLIGI
II ASSGB SYSSLB,DISK,YOL=CICSCS,SBR
1/ EXEC lSSE!BLY,SIZE=6~K

*
PBIBT NOGEN

DPHPCT TYPE=IHITI1L,CICS=ELS,SUPPIX=VB,EXTSBC=YES,
TR1NSBC=(SlSTEB{2~) ,PEeS»~

t * * APPLICATION ENTRIBS

*

*

DPBPCT TIPE=BNTRY,T1SKREQ=P11,PBOGB1S=XDPHINST
DPHPCT TIPE=BNTBY,TBABSID=CftBU,PROGBAft=XDPHINST
DPBPCT TYPE=ENTRY,TRANSID=CINQ,PROGRAft=XDPHC1LL
DPHPCT TIPE=BNTRY,TRANSID=CADD,PBOGR1S=XDPHC1LL
DPBPCT TYPE=ENTRY,TBANSID=CUPD,PBOGBA8=XDPBC1LL
DPBPCT TYPE=ENTRY,TBAISID=CBBW,PBOGBA8=XDPHBBWS
DPBPCT TYPE=ENTRY,TBANSID=COBD,PBOGBA8=XDPBOBEN
DPHPCT TYPE=ENTRY,TRANSID=CCO!,PBOGRA8=XDPHCCOft

* IP EDP IS TO BE INVOKED BY A PP KEY INSTEAD OP BY TB1NSID CEDP

* DPBPCT TYPE=ENTRY,T1SKBEQ=PP12,PBOGBA8=DPHEDPP,TB1NSEC=8

* * GROUP ENTRY

*

*

1*

DPHPCT TYPE=GBOUP,PN=~E,OPBBATORS,CO.SOLE,
H1BDCOPY,SIGBOR,TIHE,STAIDARD)

DPHPCT TYPE=PINAL
EID

1/ EXEC LNKEDT
IS

*

*

Chapter 3.~. Table Generation - peT 175

PPT - Processing Program Table

This table identifies all programs and physical maps to CICS/VS, in the
order that they are loaded.

i

IDPBPPT
I
I
I
,DPBPPT
I
I
I
I
IDPBPPT
I
I
IDPBPPT
•

TYPE=IlfITI1L
,CICS=ELS
[, SUPPIX=xx]

TYPE=EBTRY
, PROGRAM=name
[,PGMLANG={ASSEMBLERICOBOLIPL/IIRPG}]
[,RELOAD={~IYES}]

TY PE=GROUI?
,PN=(function [,function] •••)

TYPE=PINIL

The DPHPPT macro types are as follows:

• DFBPPT TYPE=IIITIAL

• DPBPPT TYPE=ENTRY - identifies programs and maps

• DPBPPT TYPE=GROUP -- simplifies the specification of application
program nalles required for certain CICS/VS facilities

• DPHPPT TYPE=PINAL

DPHPPT TYPE=ENTRY -- Processing Program Description

The DFHPPT TYPE=ElfTRY macro must be coded once for each program or map.
Multipurpose map tables should be entered first .in the table. Programs
and map tables used together should be grouped together to reduce VSg ll

paging. To improve performance, PPT entries should be coded by
frequency of usage (high activity programs and maps should appear
first) • .

DFHPPT TYPE=GROUP - Required Entries

The optional DPBPPT TYPE=GROUP macro instruction allows the system
programmer to specify the application program names that are required
when certain CICS/VS facilities are used, on a functional basis instead
of having to specify the PROGRA8=name operands for each individual
program being generated in the system.

A pre-defined entry in a TYPE=GROUP macro can be overridden in a
DFBPPT TYPE=ENTRY macro coded before the TYPE=GROUP macro. Otherwise,
TYPE=GROUP and Typg=ENTRY macros can be mixed in any order. The
"groupable lt entries will not be genera ted twice in an ass~mbly.

Entries for some functions are required and others are optional, as
follows:

17.6 CICS/DOS/VS-ELS User's Guide

STANDARD

OPERATORS

OPENCLSE

TIME

CONSOLE

EDF

FE

HARDCOPY

PL/I

SIGNON

always required.

always required.

always required.

always required.

required if terminal operators are to be able to send messages
to the console.

required if the Execution Diagnostic Facility is to be used.

required if the terminal test facility is to be used.

required if the PRINT startup override specifies anything other
than NO.

required if PL/I application programs are to be used.

required if the sign-on facility is to be used.

VTAM and VTAMPRT
required if VTAM is being used.

DFHPPT Operands

FN=function
indicates the generic function name that generates the entries
required in the P~T for the associated facility. Any number of
options from the list below can be specified in one DFHPPT
TYPE=GROnp macro. The options are:

STANDARD
provides the application program names that are required in
the majority of CICS/VS systems. The program names
generated are:

• DFHACP
• DFHSTP
• DFHSTLK
• DFHSTKC
• DFHSTPD

• DFHSTTD
• DFBSTTR
• DFHTACP
• DFHTEP

abnormal condition program
system termination program
intersystem communication link statistics program
supervisor statistics program
Transaction, program, and dump
statistics program
data management statistics program
file and terminal statistics program
terminal abnormal condition program
terminal error program

Chapter 3.4. Table Generation -- PPT 177

The programs generated by FN=STANDARD are low-usage
programs and should be generated towards the end of the
PPT.

CONSOLE

EDF

PE

generates PROGRAM=DPHCWTO for console support in
CICS/DOS/VS.

generates the following program names associated with the
execution (command level) diagnostic facility (EDP):

• DFHEDFP - EDP control program
• DFHEDPX - EDP task switch program
• DFBEDPD - EDF display program
• DFHEDP! - EDP map set
• DFHEDPP - EDF function description table
• DPHEDPR - EDF response table

generates PROGRA!=DPHPEP for the terminal test facility,
and PROGRA!I= DPBPELG for the Pacility Error Recognition
System.

HARDCOPY
generates PROGRAM=DFHP3270 for the 3270 print allocation
program (BTA! and VTA!I) •

INTERPRETER
generates programs DPHECIP, DFHECSP, and DFHEIND for the
command interpreter.

OPENCLSE
generates PROGRAM=DFBOCP for the dynamic open/close
function.

OPERATORS

PL/I

generates programs DFHE!lTP, DFHESTP, DFBEOTP, DFHEMTD, and
DFHEMA through DPHEMB for the master terminal function.

generates the programs needed to provide PL/I support in
CICS/VS.

SIGNON

TIME

generates the program names associated with the sign-on
program. The programs generated are:

• DFHSFP - sign-off program
• DFHSNP sign-on program
• DFHSNT - sign-ontable

generates PROGRA!=DFHTAJP for the time adjustment program.

VT1!
generates PROGRA!I=DPHZN1C and DFHZHEP for the VTA!I node
abnormal condition and node error programs and DPHG!l1! for
the VT1M good morning sign-on message program.

178 CICS/DOS,/JS...;.ELS User's Guide

VTA!PRT
generates DPBCPY, DPHEXI, DPBPRK, and DPRRKB for the VTA!
3270 terminal control print key function.

PG!LANG=
specifies the language in which the program is written. This
operand should be omitted for PPT entries describing BSS maps.

ASSE!BLER
-- Assembler program

COBOL
- COBOL program

PL/I
- PL/I program

RPG
- RPG II program

PROGRAM=name
specifies the program name (one through eight characters) or
map name (one through seven characters). The name is that
under which the module has been cataloged in the VSE core image
library.

RELOAD=YES
specifies that a load request is to bring in a fresh copy of a
program. This parameter is required for RPG II programs; it is
not allowed for other programs.

~xample of Processing Program Table

/ / JOB DPHPPT
// OPTION CATAL,NOXREP,ALIGN
// ASSGN SYSSLB,DISK,VOL=CICSCS,SHR
// EXEC ASSESBLY,SIZE=64K

PRINT HOGEN
DPRPPT TYPE=INITIAL,CICS=ELS,SUPPIX=VE

* * APPLICATION PROGRAMS AND THEIR MAPS

* DPHPPT TYPE=ENTRY,PBOGRAM=XDFHCMA
DPBPPT TYPE=ENTRY,PROGRAM=XDFHINST,PGMLANG=COBOL
DPHPPT TYPE=ENTRY,PROGBAM=XDFHCMB
DPHPPT TYPE=ENTRY,PROGRAM=XDFHCALL,PG!LANG=COBOL
DFBPPT TYPE=ENTRY,PROGRAM=XDFBC!C
DPHPPT TYPE=ENTRY,PROGRAM=XDFHBRWS,PGftLANG=COBOL
DPHPPT TYPE=ENTRY,PBOGRA!=XDFHC!K
DPHPPT TYPE=ENTBY,PBOGBAM=XDFHOREN,PGMLANG=COBOL
DPHPPT TYPE=ENTRY,PROGRA!=XDPBCML
DPHPPT TYPE=ENTRY,PROGRAM=XDPHCCO!,PGMLANG=COBOL

* * REQUIRED CICS/VS ENTRIES

*

*

DPHPPT TYPE=GROUP,PN=(EDP,PE,OPERATORS,
CONSOLE,HARDCOPY,SIGNOH,TI!E,OPENCLSE,STANDARD)
DPHPPT TYPE=ENTRY,PBOGRA!=DPHPEP

*

Chapter 3.4. Table Generation -. PPT 179

/*

DFHPPT TYPE=FINAL
END

// EXEC LNKEDT
/&

SNT - Sign-on Table

The sign-on table contains operator security keys and operator
priorities, to provide system security.

i

IDPHSIT TYPE=INITIAL
r
IDFHSNT TYPE=ENTRY
I
I
I
I
I

,OPIDENT=operator identification
,OPNAME='operator name'
,PASSWRD=password
[,SCTYKEY= U I Cn 1[,n2], •••)}]

I
IDFBSNT TYPE=FINAL ,

If the security key for a transaction in the PCT matches one of the
operator's security keys from the SIT, the transaction is allowed to
continue. otherwise, the transaction is terminated and the attempted
security violation is recorded. This table is required if the operator
SIGN ON/SIGN OFF function is desired.

~FHSNT TIPE=EHTBY --. Terminal Operator Description

The DPBSNT TYPE=ENTRY macro must be coded once for each terminal
operator.

DFHSNT Operands

OPIDENT=operator identification
specifies the one- to three-character operator identification
code assigned by the system administrator to each operator.
This code is placed in the appropriate terminal control table
terminal entry (TCTTE) when the operator signs on, and is made
available to the master terminal when a security violation is
detected.

OPN1ME='operator name'
specifies the name of the terminal operator for this table
entry. The operator name may be 1 to 20 characters long and
must be unique for each entry. On sign-on, the name keyed in
by the operator must exactly match that in the sign-on table.

180 CICS/DOS/VS-ELS User's Guide

P1SSWBD=password
specifies a four-character password to be keyed in by the
operator on sign-on. The password keyed in must exactly match
that in the sign-on table. The same password may appear in
more than one table entry.

5CTYKEY=number
specifies one or more security key values from 1 to 24. The
default is SCTYKB!=l. Bach key specified allows access to all
transactions specified with that key in the program control
table (see the TBANSEC operand of the DPBPCT macro).

Example of Siqn-on Table

II JOB DPHSIT
1/ OPTION CAT1L,NOXREP,ALIGN
1/ 15sGI sYssLB,DIsK,VOL=CIC5CS,5HB
1/ EXEC AsSB!BLY,sIZE=64K

1*

PRINT IOGEN
DPHSIT TYPE=INITIAL
DPHsNT TYPE=ENTBY,OPIA!E='APPLICATION',PA5sWBD=UsER, *

OPIDEIT=UsB,5CTYKEY=(1,8)
DPHsNT TYPE=ENTBY,OPN1KE='!ASTEB OPER1TOR',PASSWBD=8sTR, *

OPIDERT=!OP,sCTYKEY=(1,8,15),OPPBTY=50
DPHSIT TYPE=PIIAL
EID

II EXEC LIKEDT
IS

Chapter 3.~. Table Generation -. - SIT 181

TCT -. Terminal Control Table

The terminal control table provides the information needed by the
terminal control program ('lCP) to control the CICS/VSterminal netwQrk.

------i--------,~----------------------------~------------------------IDFHTC'l TYPE=IlfITIAL
I
I
I
I
I
I
I
DFHTCT

,CICS=ELS
,MODNA!E=(~Alname)
[, ERRAT'l= {NO I ([LASTLINE](, INTB8SIPY][, {BLUE I RBD I PI NK I
GREEN ITURQUOISB I YELLOW I NEUTRAL}][, {BLINK I
REVERSE I underline}])}]
[, SUPFIX=xx]

TYPE=GPEM'lRY
,GP'lIPE=type
[,ALTSCRN=«lines,columns) [, •••], •••)]
[,ALTSPX= (n[, •••], •••)]
[,CUADDR= (nn[, •••], •••)]
[, CUPEAT= (fea ture[, •••], •••)]
[,CUPOSN= (nn[, •••], •••)]
[,GPTCU={21011210212103I ICQ]
[,LINELST= (nnn[, •••], •••)]
[,LIMFEAT= (feature[, •••], •••)]
[, LININL= (number[, •••], •••)]
[,TRMADDR= (nn[, •••], •••)]
[, TRMFEAT= ([A][D][S](U][P][T][, •••],)]

I [,TRHIDN'l= (xxxx[, •••], •••)]
I [,TRMIlfL= (nulRber[, •••), •••)]
I [,'lR!KODL=(number,character[, •••], •••)]
I .. [, TRMPOSN= (nn[, •••], •••)]
I I [, TRMPR'lY= (number[, •••], • ••)]
I I [,TRllUAL= (nullber[, •••], •••)]
I I
I IDFHTCT , 'lYPE=FINAL L ______ ~ ______ I·~ __ __
~: This syntax does not apply to VTI!, for which DFBTCT TYPB=TBB!INAL
macros are needed. For details, please refer to Appendix C.

DFHTCT 'lIPE=INITIAL -- Operands

MODNI!E=(IJLBT!,name)
specifies the name of the B'lA! logic module that will be link
edited with the table.

IJLBT! is the default name generated by BTl8.

name
is a user chosen name and must be the same as the name used
when the BTIB logic module vas generated. On the PRLB of
the distribution voluae there are three BTA! logic modules
that are suitable for ELS. They are:

BTMODL#
BT!ODR#
B'l!OD!#

local 3210s
remote 3210s
local and remote 3210s

The source used to generate them (and others in the PRLB)
is in Z.DFBSTL!. If you wish to generate logic lIodules

182 CICS/DOS/VS-BLS User's Guide

with different BTA! options, you must use the name you
chose in !ODNA!B.

BR:aA~T= {!.QI ([LASTLINE][, IN~ENSIPY][, {BLUB I RED IPINKI GREEN ITURQUOISE I YELLOW I
NBUTRAL}][, {BLINKIRBVBRSBI UNDERLINB}])}

indicates the attributes that are to be associated with error
messages that are displayed on all 3270 screens in the terminal
control table.

indicates that an error message will be displayed at the
current cursor position and without any additional
attributes.

LAS'lLI»E
indicates that an error message will be displayed starting
at the beginning of the line nearest the bottom of the
screen such that the message will fit on the screen • .
The other values indicate that one or more of the 3270
attributes are to be used when an error messages is
displayed. Specification of any attribute implies
LASTLINE. Valid attributes are:

for field intensification:
INTENSIFY

for color:
BLUE
RED
PINK
GREEN
TURQUOISE
YELLOW
NEUTRAL

for highlighting:
BLINK
REYERSE
UNDERLINE

Any attributes specified that are not valid for a particular
device will be ignored.

DPBTCT TYPB=GPBNTRY --. Terminal Line Group Definition

The DFHTCT TYPE=GPENTBY macro instruction maybe used with the following
device types:

• Local 3270

• Remote 3270

• Processing unit console operating as a terminal

The DPHTCT TIPE=GPBNTRY macro allows the system program.er to specify
terminal types and device characteristics on a line group basis.

One DFHTCT 'lYPE=GPENTBY must be coded for each line group. If the
network consists of only one type of terminal, at least two line groups

Chapter 3.11. Table Generation -- TCT 183

should be established so that if one line group is placed out of
service, terminals in the other line group can continue in service and
can be used to restore the first line group.

The parameters in each operand of this macro, except for GPTYPE and
GPTCU, are positiona11 forexample* LINFE1T=~"O) indicates that the
first and third terminals in this line group have open polling.

DPBTCT Operands

lLTSCRN=«lines,columns), •••)
specifies the alternate screen size for each ~erminal in the
line group. If a terminal does not have the alternate screen
size facility, the entry for that terminal should be omitted;
this operand specifies the screen size to be used when a
transaction with SCRNSZE=lL~EBN1TE is attached to this
terminal.

Example: lLTSCRN=«2ij,80),(32,80)" (12,80»)

I lLTSFX=n
I specifies the one-character suffix to be added by B!S to a

mapset name if an alternate page size is being used (that is,
if PCT specifies SCRNSZE=ALTERIATE). BftS will try to load the
lBapset with the correct alternate suffix. If it cannot find
the mapset, or is unable to load it, B!S will try to load the
mapset which has the correct device suffix (for the device
specified in the DPB!SD macro TER! operand). If this also
fails, B!S will load the unsuffixed map set.

I
I
I
I
I
I
I

CUADDR=nn
applies to 3270R only, and indicates the control unit address
for each remote 3270 control unit within its line group. The
range is 0 through 31.

Example: CUADDR=(O,O,l)

which means that the first control unit is the only one on this
line1 the second control unit is the first one on the second
line; the third control unit is the second one on the second
line.

CUFEAT=feature
applies to 3270R only, and specifies the features associated
with the control unit. C indicates the COpy feature.

Example: CUFE1T= (C,,)

which means that the first control unit has COpy; the second
and third do not.

CUPOSN=nn
This operand applies to 3270B only.

The numbers following the CUPOSN Keyword must be arranged in
ascending order. They convey two pieces of information:

184 CICS/DOS/VS-ELS User'sGuide

GPTCU=

(1) Each number bas a positional value. Thus, the first number
in the list represents control unit 1, the second
represents control unit 2, and so on. Up to 40 control
units can be represented by the CDPOSN operand.

(2) Each number is a pointer to LINELST, indicating the
identity of the line to which the control unit is attached.
The value 0 f a number can range from 1 to 31.

Example: CDPOSN= (1,2,2,3)

This means that:

C.U. 1 is one line 1
C.D.s 2 and 3 are on line 2
C.D. 4 is on line 3

Thus, if LIBELST=(021,022,023), the configuration
can be summarized as follows:

There are four control units; the first connected
to line SYS021; the second and third to line
SYS022; the fourth to SYS023.

applies to 3270B terminals, and specifies the transmission
control unit attached to the processor. The options are: 2701,
2702, 2703, and ICA. 270x must be specified when a 270x
control unit is being emulated by a 370x.

GPTYPE=type
specifies the type of terminal in the line group. One type
option may be specified in each DFHTCT TYPE=GPENTBY macro. The
options are:

• 3270L - Local 3270

• 3270RA -- Remote 3270 with ASCII communications code

• 3270RE -- Bemote 3270 with EBCDIC communications code

• CONSOLE -- Processing unit console

LINELST=nnn (nnn of SYSnnn)
is available for all group types except the console device, and
specifies the system logical unit number assigned to each
terminal in the line group. A maximum of 31 lines may be
defined in this list.

Example: LINELST=(021,022) (SY5021, 5Y5022)

LINPEAT=feature
applies to 3270B terminals only, and specifies the line
features. Wrap-around polling is the default; 0 indicates open
polling.

Example: LINFEAT=(,O) (Second line open polling)

Chapter 3.4. Table Generation -.- TCT 185

LININL=number
applies to 3270L terminals, and specifies the terminal input
area length in bytes. The number specified should be large
enough to handle 801 of the input messages. If the area is too
small, CICS/VS issues GETftAIN macro instructions for more
storage and rereads the message.

Example: LININL=50

TR!ADDR=nn
applies to 3270R terminals, and specifies the relative address
of each terminal within its controller. The range is 0 through
31.

Example: TR!ADDR=(0,1,2,0,0)

TR!FE1T=feature
indicates the features for each terminal in the line group.
The options are:

• A - audible alarm feature

• D - dual case keyboard

• Q - Programmed symbols

• H - Highlight

• V - Validation

• E - Extended datastream

• C - Color

• S - selector pen feature

• U - upper case translate

• P - printer (required for 3270 printers). CUFEAT
must be specified with C, and the
remote 3270 control unit must
have the COpy feature, if copying is required.
If P is specified, no other features apply.

Example: TR!FEAT=(ADSU"P,A,DU)

TR!IDNT=xxxx
specifies a four-character terminal identification for each
terminal in the line group. CNSL must be specified for the
console.

Examples: TRftIDNT=(R77A,R77B,R86A,R75A,B75B)
TRMIDNT=CNSL

186 CICS/DOS/VS-ELS . User-s Guide

TRMINL=nullber
applies to 3210R only, and specifies a terminal input area
length in bytes, large enough to handle 80% of input messages.
If the number specified is too small, CICS/VS issues GET!AIN
macros to obtain more storage. TRMINL=O must be specified for
printer ~nput areas.

Example: TRMINL=(SO,50,0,SO,SO)

TRMMODL=(number character)
indicates the model number of each terminal in the line group.
For terminals having the alternate screen size facility, this
parameter is used to specify the default screen size for the
terminal. For dev~ces without the alternate screen size
facility, the options are:

Device Buffer size Model !lumber
3217- 480 1A

1920 21
328'1 480 1B

1920 2B
3286 480 1C

1920 2C

For devices with the alternate screen size facility:

!!~iQg ~
Display

Printer

.Qgfaul! 2££~§'!! si~~
480

1920
480

1920

Example: TRMMODL= (lA ,2A,2C, lB,2B)

TRMPOSN=nn

l1od~! .!B!!!!'Q~£
1A
2A
1B
2B

applies to 3210R terminals, and indicates the relative position
of the control unit within the list CUPOSN (CUPOSN= 1 through
~O) to Which each terminal is attached. A maximum of 40
terminals may be defined.

Example: TRMPOSN=(1,1,1,2,3)

If CUPOSN and LINELST are as shown in
the exam~les, this means:

5Y5010 has one 3211 with three terminals;
SY5011 has two 3211s, each with one terminal attached.

TRMPRTY=number
specifies the priority to be assigned for each terminal in the
group. The task priority is the sum of the terminal, operator,
and transaction prior1ties, and must not exceed 255.

Chapter 3.4. Table Generation - TCT 187

TRMUAL=number
is available for all device types and indicates, for each
terminal in the line group, the size of the terminal control
table user area (TeTUA) if this area is to be used by
application programs. Any information stored in this area is
available to all transactions originated by this terminal. The
maximum TRMUAL size is 255 bytes; the default is O.

Example: TRMUAL=(SO,SO,0,SO,50)

Examples of Terminal Control Table

Example 1:

The table below describes a network of two local 3277 1 s and a 3284
printer:

OPERAND TERMINAL 1 TERMINAL 2 PRINTER

LINELST 010 011 012
TRMIlODL lA 2A 2B
TRMPEAT ADU ADSU P
TRMIDNT L77A L77B L84A
TRMU1L* 0 0 0
TiUIPRTY 100 100 100

* TRMUAL defaults to 0, and s,nce all values are zero,
this parameter may be omitted.

The following example defines the line group described in the above
table:

/1 JOB DPHTCT
/1 OPTION CATAL,NOXREP,ALIGN
/1 ASSGN SYSSLB,DISK,VOL=CICSCS,SBB
/1 EXEC lSSEMBLY,SIZE=256K

PRINT NOGEN
DPHTCT TYPE=INITIAL,CICS=ELS,SUFPIX=LC,MODNlIlE=BTMODL
DFHTCT TYPE=GPENTRY,GPTYPE=3270L, *

LINIIL=50, *
LINELST=(010,011,012), *
TRM!ODL=(1A,2A,2B), *
TRMFEAT=(ADU,ADSU,P), *
TR!IDNT= (L 771,L 77B, L841), *
TRMPRTY= (100,100)

DFBTCT TYPE=GPENTRY,
GPTYPE=CONSOLE, CONSOLE SUPPORT *
TR!IDNT=CNSL, TERMINAL NAME *
TR!PRTY=50, TERIlIN1L PRIORITY *
LINIIL=80 TIOI LENGTH *

DFHTCT TYPE=FINAL
END

/*
I I EXEC LNKEDT
1&

188 CICS/DOSjVS-ELS User's Guide

Example 2:

3211

i i
,'R11A'1
I 3211 I

Alarm
Dual Case
U/C Trans
lation

t

Host ,
I

, 2103
•

SYS020 r--l

COpy
WRAPLIST

r •
, 'B11B',
I 3271 I

3211

• i
, 'R11C'1
I 3211 I
I ,

t •

I 'B86A',
I 3286 I

Alarm Printer
Dual Case
U/C Trans-
lation
Selector Pen

SYS021

NOCOPY
WRAPLIST

i i

I'R18A'1
I 3278 I

3274

t ,

I 'B78B' I
I 3278 I

COpy
OPENLST

, j

I'B18C I I
I 3279 I , ,

i •

I IB81A "
I 3287 I , ,

Alarm Alarm Alarm Printer
Dual Case Dual Case Dual Case
U/C Trans- U/C Trans- U/C Trans-
lation lation lation

Selector Highlight
Pen Extended Color

Chapter 3.4. Table Generation - 'lCT 189

'rhe following example defines the configuration illustrated above:

II JOB DPHTCT
II OPTION CATAL,NOXREP,ALIGR
II ISSGB SYSSLB,DISK,YOL=CICSCS,SHR
II EXEC ASSE!BLY,SIZE=256K

1*

PRIBT BOGEN
DPHTCT TYPE=INITIAL,

CICS=ELS,
l!ODN1ME=BT!ODR'

DPBTCT TYPE=GPENTRY,
GP'rYPE=CONSOLE,
'rR!IDNT=CBSL,
TR!PRTY=50,
LINIIL=80

DPBTCT TYPE=GPEBTRY,

ELS GENERATION
USING 3270 REKOTE B'rl!OD

CONSOLE SUPPORT
'rERKIIAL 11ftE
TERKINAL PRIORITY
TIOA LENGTH

*

*
*
*
*

GPTYPE=3270RE, REBOTE 3270 EBCDIC *
GPTCU=2703, CONTROLLER is 2703 *
LINELST=(020,021), ON SYS020 and SYS021 *
LINPEA'r=(,O), SYS021 OPEN LIST POLLING *
CUADD=(0,1,0), 2 CUS OB LIBE 1,1 ON LIBE2 *
CUFEAT=(C"C), 1ST AID 3RD HAYE COpy *
CUPOSN=(1,1,2), 1 CU ON SYS021,2 ON SYS020 *
ALTSCRR= ("" (12,80), (32,80), (43,80), (43,80», ALTSCR *
TRKADDR~(0,1,2,0,0,1,2,3), 3 TERKS ON 1ST CU, 1 ON 2ND *
TRKPEAT=(ADU,ADSU,P"lDU,ADSU,ADUCH,P), TERKNL FEATURES*
'rRMIDHT= (R77A ,R77B ,R86A ,R77C,R78A, R78B ,R78C ,R87A), N lKE*
TRHINL= (SO ,50,0,50,100,100,100,0), TIOA SIZES *
TRMKODL=(2A,11,2C,lA,lA,2A,2B,2B), KODEL TYPES *
TR!POSN=(1,1,1,2,3,3,3,3), 3 ON CU 1,1 ON CU2,4 OR CU3 *
TRHPRTY={50,50,50,25,100,100,100,100), TRKBL PRIORITIES*
TRKUAL=(75,1S,1S,O,O,0,0,O) TRKNL TC'rUA SIZE*

DFHTCT TYPE=FIN1L
EID

II EXEC LNKEDT
IS

190 CICS/DOS/VS-ELS User's Guide

Chapter 3.5. Preparation of Application Programs

This chapter consists of two sections. The first deals with the
translation and compilation or assembly of the source programs for each
language. The second describes the creation and cataloging of .aps.

Program Compilation an~ Translation

Application programs written to U$e the command-level interface to
CICS/VS or DL/I must be translated by the appropriate CICS/VS Command
Translator before being assembled or compiled.

The following sample job streams illustrate how the output from the
translator is used as input to the assembler or appropriate compiler.
DASD can be used as intermediate storage for translator output only if
VSE has been generated to allow system data sets to reside on disk
(SYSFIL parameter of FOPT macro).

ASSEMBLER LANGUAGE PROGRAMS

Assembler language programs using the command-level interface must
satisfy the following conditions:

• DFUEAI and DFHEAIO must exist in the relocatable library. ~heJ
are supplied in the private relocatable library on the distribution
volume.)

• An INCLUDE card for DFREAI must follow immediately after the PRASE
card and before the EXEC ASSEftBLY card.

Chapter 3.5. Preparation of Application Programs 191

r--~ // JOB jobname
// DLBL IJSYSPH,'ASSEftBLER TRANSLATION',ff/ddd
// EXTENT SYSPCH,balance of extent information
ISSGB SYSPCH,DISK,VOL=volid,SHB
// EXEC DPHEAP1',SIZE=6ijK

Assembler source deck

/*
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN, 'lSSE!BLEB TRANSLATION' ,ff/ddd
// EXTENT SYSIPT
1SSGN SYSIPT,DISK,VOL=volid,SHR
// OPTION SYft,ERRS,NODECK,C1TIL

PHASE phase-name,*
INCLUDE DPBEAI

// EXEC lSSB!lBLY,SIZE=6ijK
// EXEC LNKEDT
/&
// JOB
// CLOSE

I /& L __ ~

Pigure 3.5-1. Assembling an Application Program using D1SD as
Intermediate Storage for the Translator Output

// JOB
// AS5GB
// MTC
// EXEC

jobname
SYSPCH,X '181 '
REW,SYSPCH
DPHEAP1#,SIZE=64K

Assembler source deck

/*
// !TC
// !TC
// RESET

t // AS5GN
I // OPTION
I PHASE
I INCLUDE
I // EXEC
I // EXEC
I /&
I // JOB
I // RESET
I /&

WT!I,SYSPCH,2
REW,SYSPCH
SYSPCH
SYSIPT,X'181'
SY!,ERRS,NODECK,CATAL
phase-name, *
DFHEAI
ASSE!BLY,SIZE=64K
LNKEDT

RESET
SYSIPT

L __ ~

Figure 3.5-2. Assembling an Application Program using Tape as
Intermediate Storage for Translator Output

192 CICS/DOS/VS-ELS User's Guide

COBOL PROGRAMS

For COBOL programs using the command-level interface the following
conditions must be met:

• The LIB option must be specified for the compilation step so that
the COPY statements inserted by the translator can be processed
correctly.

• DFHECI must exist in the relocatable library. (It is supplied in
the private relocatable library on the distribution volume.)

• An INCLUDE card for DFHgCI must follow immediately after the PHASE
card and before the EXEC FCOBOL card.

r--,
// JOB jobname
// DLBL IJSYSPH,'COBOL TRANSLATION',Iy/ddd
// EXTENT 5Y5PCH,balance of extent information
A55GB 5YSPCH,DI5K,VOL=volid,SHR
// EXEC DFHECP1#,SIZE=64K

CSL LIB

COBOL source deck

/*
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN,'COBOL TRANSLATION-,yy/ddd
// EXTENT SYSIPT
A5SGN 5Y5IPT,DI5K,VOL=volid,SHR
// OPTION SY!,ERRS,NODECK,CATAL

//
//
/&

PHASE phase-name,*
INCLUDE DFHECI
EXEC FCOBOL,SIZE=64K
EXEC LNKEDT

// JOB
CLOSE
/&

RESET
SYSIPT,X'OOC'

Figure 3.5-3. Compiling COBOL Application Programs using DASD as
Intermediate storage for the Translator Output

Chapter 3.5. Preparation of Application Programs 193

// JOB
// ASSGN
// MTC
// EXEC

CBL LIB

jobname
SYSPCH,X'181'
REW,SYSPCH
DFHECP1t,SIZE=64K

COBOL source deck

/*
// MTC
// MTC
// RESET
// ASSGN
// OPTION

PHASE
INCLUDE

// EXEC
// EXEC
/&
// JOB
// RESET
/&

1fTM ,SYSPCH,2
RE1f,SYSPCH
SYSPCH
SYSIPT ,X'181'
SYM,ERRS,BODECK,CATAL
phase-name ,*
DFHECI
FCOBOL ,SIZE=64K
LNKEDT

RESET
SYSIPT

Figure 3.5-4. Compiling COBOL Application Programs using Tape as
Intermediate Storage for the Translator Output

PL/I PROGRAMS

i

I
I
I
I '
I
I
I
l,

PL/I application programs using the command-level interface must satisfy
the following conditions:

• Either the INCLUDE or MACRO option must be specified so that the
"INCLUDE statement inserted by the translator is processed
correctly.

• The modules DFHPL11 and DFHSAP that are supplied with PL/I must be
in the relocatable library.

• The module DFHEPI must be in the relocatable library. (It is
supplied in the private relocatable library on the distribution
volume. »

• An INCLUDE card for DFRPL1I must follow immediately after the PHASE
card and before the EXEC PLIOPT card.

194 CICS/DOS/VS-ELS User's Guide

i

I
I II JOB jobname
I II DLBL IJSYSPH,'PLjI TRANSLATION',YY/ddd
I II EXTENT SYSPCH,balance of extent information
I ASSGB SYSPCH,DISK,VOL=volid,SBR
I II EXEC DPHEPP1t,SIZE=64K

*PBOCBSS INCLUDE;

PL/I source deck

1*
CLOSE SYSPCB,PUNCB
IIOLBL IJSYSIN,'PL/I TBANSLATION',YY/ddd
II EXTENT SYSIPT
ASSGB SYSIPT,DISK,VOL=volid,SHB
II OPTION C1T1L

PHASE phase-name,*
INCLUDE DPHPL1I

II EXBC PLIOPT,SIZE=64K
II EXEC LNKEDT
IS
II JOB RESET
CLOSE SYSIPT,X'OOC'
IS

Figure 3.5-5. Compiling PL/I Application Programs using DASD as
Intermediate Storage for the Translator Output

II JOB
II ASSGB
II MTC
II EXEC
*PBOCESS

jobname
SYSPCH,X'181'
BEW,SYSPCH
DFHEPP1t,SIZE=64K
INCLUDE;

PLjI source deck

1*
II MTC
II MTC
II BESET
II ISSGN
II OPTION

PHASE
INCLUDE

II EXEC
II EXEC
IS
II JOB
CLOSE
IS

WTK, SYSPCH,2
REW,SYSPCH
SYSPCH
SYSIPT,X'181'
CATAL
phase-name ,*
DFHPL1I
PLIOPT,SIZE=64K
LNKEDT

RESET
SYSIPT

Pigure 3.5-6. Compiling PL/I Application Programs using Tape as
Intermediate storage for the Translator Output

Chapter 3.5. Preparation of Application Programs 195

RPG II PROGRAItS

RPG II programs using the command-l~vel interface must satisfy the
following conditions:

• The module DPHERI must exist in the relocatable library. (It is
supplied in the private relocatable library on the distribution
volume.)

• An INCLtJDE card for DPHERI must follow immediately after the PHASE
card and before the EXEC RPG II card.

r---
// JOB jobname
// DLBL IJSYSPB,'RPG II TRANSLATION',yy/ddd
// EXTENT SYSPCH,balance of extent information
ASSGB SYSPCH,DISK,YOL=volid,SHR
// EXEC DPHBRP1t,SIZE=128K

RPG II source deck

/*
CLOSE SYSPCH,PtJNCH
// DLBL IJSYSIN"RPG II TRANSLATION',yy/ddd
// EXTEIT SYSIPT
ASSGB SYSIPT,DISK, YOL=volid,SHR
// OPTIOI CATAL

PHASE phase-name, *
INCLtJDE DPHERI

// EXEC RPGII,SIZE=64K
// EXEC LNKEDT
1&
// JOB RESET
CLOSE SYSIPT,X'OOC'
/&

Pigure 3.5-1. Compiling RPG II Application Programs using DASD as
Intermediate Storage for the Translator Output

196 CICS/DOS/VS-BLS User's Guide

// JOB jobname
// AS5GN SYSPCH,X'181'
// MTC REW,SYSPCH
// EXEC DFHERP1#,5IZE=64K

RPG II source deck

/*
// MTC WTM,SYSPCH,2
// MTC REW,SYSPCB
// RESET SYSPCB
// 1SSGB SYSIPT,X'181'
// OPTION CATAL

PHASE phase-name,*
INCLUDE DFBERI

// EXEC RPG II,SIZE=64K
// EXEC LNKEDT
/&
// JOB RESET
CLOSE SYSIPT
/&

Figure 3.5-8. Compiling RPG II Application Programs using Tape as
Intermediate Storage for the Translator Output

SUPPLIED CATALOGED PROCEDURES

To facilitate compiling programs using the command-level interface, the
source code of example cataloged procedures is supplied in the following
bOOks in the CIC5/VS source-statement library:

Z.DFHEITAL for Assembler language
Z.DFBEITCL for COBOL
Z.DFHEITPL for PL/I
Z.DFBEITRL for RPG II

Before putting these cataloged procedures into the procedure library
the system programmer ~21 modify:

1. The extent information.

2. The volume identifications.

Chapter 3.5. Preparation of Application Programs 191

I Jon Control Statements in Supplied Cataloge~ Procedures

// DLBL IJSYSPH,'ASSE!BLER TRANSLATION',69/365
// EXTENT SYSPCH,,1,O,399,19
ASSGB SYSPCH,DISK,VOL=DB0007,SHR
// EXEC DFHEAP1',SIZE=64K
CLOSE SYSPCB,PUNCH
/ / DLBL IJSYSIN, 'ASSEMBLER TRANSLATION' ,69/365
// EXTENT SYSIPT
ASSGB SYSIPT,DISK,VOL=DB0007,SHR

INCLUDE DFHEAI
// EXEC ASSE!BLY,SIZE=64K
CLOSE SYSIPT ,READER
// EXEC LNKEDT

Figure 3.5-9. Example of Cataloged Procedure (DFHEITAL) for Assembling
Application Programs using DASD as Intermediate Storage for
Translator Output

// DLBL IJSYSPH,'COBOL TRANSLATION',69/365
// EXTENT SYSPCH,,1,0,399,19
ASSGB SYSPCH,DISK,VOL=DB0007,SHB
// EXEC DFHECP11,SIZE=64K
CLOSE SYSPCH,PUNCH
// DLBL IJSYSIN,'COBOL TRANSLATT.ON',69/365
// EXTENT SYSIPT
ASSGN SYSIPT,DISK,YOL=DB0007,SHR

INCLUDE DFHECI
// EXEC FCOBOL,SIZE=64K
CLOSE SYSIPT,READER
// EXEC LNKEDT

L

Figure 3.5-10. Example of Cataloged Procedure (D FBBI TCL) for Compiling
·COBOL Application Programs using DASD as Intermediate Storage
for Translator Output

r--
t
1// DLBL IJSYSPH,'PL/I TRABSLATION',69/365
t // EXTENT SYSPCH,,1,O,399,19
t ASSGN SYSPCH,DISK,VOL=DB0007,SHR
I // EXEC DFHEPP1t,SIZE=64K
I CLOSE SYSPCH,PUNCH
1 // DLBL IJSYSIN,'PL/I TRANSLATION',69/365
I // EXTENT SYSIPT
l ASSGN SYSIPT,DISK,VOL=DB0007,SHR
I INCLUDE DFHPL1I
I // EXEC PLIOPT,SIZE=64K
, CLOSE SYSIPT,READER
1 // EXEC LNKEDT ,

Figure 3.5--11 p Example of Cataloged Procedure (DFBEITPL) for Compiling
PL/I Application Programs using DASD as Intermediate Storage
for Translator Output

198 CICS/DOS/VS-ELS User's Guide

i

I
I II DLBL IJSYSPH, 'RPG II TRANSLATION' ,69/365,
I II EXTENT SYSPCH,,1,O,399,19
I ASSGN SYSPCH,DISK,VOL=DB0001,SHB
I II EXEC DPHERP1t,SIZE=6QK
I CLOSE SYSPCH,PUNCH
I II DLBL IJSYSIN,'RPG II TRANSLATIONt,69/365
I II EXTENT SYSIPT
I ASSGB SYSIPT,DISK,YOL=DB0007,SHR
, INCLUDE DFHERI
I II EXEC RPG II,SIZE=6QK
I CLOSE SYSIPT,RBADER
I II EXEC LNKEDT
I

Figure 3.5-12. Example of Cataloged Procedure (DFHEITRL) for Compiling
RPG II Application Programs using DASD as Intermediate storage
for Translator Output.

~: These procedures are valid only if the output from the
translation step is written to a disk other than that on which the
procedure library resides.

I Using SUEElied Cataloged Procedures

II JOB
II OPTION

PHASE
II EXEC

jobname
NODECK,CATAL
phase-name, *
PROC=DPHEITAL

Assembler source deck

1*
IS

Figure 3.5-13. Use of Cataloged Procedure for Assembling Application
Programs

II JOB
II OPTION

PHASE
II EXEC

CBL LIB

jobname
NODECK,CATAL
phase-name ,*
PROC=DPHEITCL

COBOL source deck

1*
IS

Figure 3.S-1lJ. Use of Cataloged Proc,edure for Compiling COBOL
Application Programs

Chapter 3.5. Preparation of Application Programs 199

i

1
I // JOB
1 // OPTION
I PHASE
I // EXEC
I- *PROCESS

jobname
CATAL
phase-namej*
PROC=DFHEITPL
INCLUDE;

I
1
I ,

PL/I source deck

I ,
/*
/&

Figure 3.5-15. Use of Cataloged Procedure for compiling PL/I
Application Programs

r--~

// JOB
// OPTION

PHASE
// EXEC

jobname
CATAL
phase-name, *
PBOC=DFHEITRL

RPG II source deck

/*
/&

Figure 3.5-16. Use of Cataloged Procedure for Compiling RPG II
Application Programs

Notes:

1. If tape or disk is used as intermediate storage for the translator
output, 81 byte records are written out, but only 80 bytes are
input to the following compiler or assembler.

2 • (PL/! only)

t
r
t
t
I
I
I
I
I
I
t

a. Warning messages issued by the PL/I compil~r stating that there
are fewer arguments than parameters for the calls to procedure
DFHEInn should be ignored.

b. Weak external references unresolved by the linkage editor
should be ignored.

c. Warning messages from the PL/I compiler, stating that arguments
and parameters for calls to procedure DFHEInn do not match, are
issued automatically. The user should check that the arguments
and parameters specified are those required; otherwise these
messages can be ignored.

Map Creation and Cataloging

Basic mapping support (BMS) provides the interface between the user's
application program and the CICS/VS terminal control program.

200 CICS/DOS/VS-ELS User's Guide

The application program passes data to BRS and receives data from BRS
in a device-independent format. The terminal control commands (see
Chapter 2.1) issued by the application program use BMS to control
formatting of the data and to initiate input from and output to a
terminal.

PHYSICAL AND SYMBOLIC DESCRIPTION ftAPS

Two forms of map need to be defined by CICS/VS macros and assembled
offline in advance of running the application program. The two forms
are:

1. A physical map used by BftS to convert data to or from the format
required for the application program.

2. A symbolic description map used by the application programmer to
symbolically refer to the data in the terminal buffer.

The physical map is a table of information about each field, and is
stored in the CICS/VS program library to be loaded by BMS at execution
time. The symbolic description map is a set of source statements that
are cataloged into the appropriate source library (Assembler language,
COBOL, PL/I, or BPG II) and copied into the application program when it
is assembled, compiled, or translated.

The programmer defines and provides names for fields and groups of
fields that may be written to and received from the devices supported by
BftS. The symbolic description map can be copied into each application
program that uses the associated physical map. Data can thus be passed
to and from the application program under the field names in the
symbolic description map. Since the application program is written to
manipulate the data under the field names, altering the map format by
adding new fields or rearranging old fields does not necessarily alter
the program logic.

If the map format is altered, it is necessary in most cases to make
the" appropriate changes to the macro instructions that describe the map
and then reassemble both the physical map and the symbolic description
map. The new symbolic description map must then be copied into the
application program and the program reassembled. Certain map
alterations can be made without reassembling the symbolic description
map. In particular, if the only change to the map is addition of
extended attributes, it is not necessary to modify the application
program. Instead, the operator defines the required extended attributes
in the map definition macros (DFHMSD, DFB!DI, and DFBMDF), and specifies
EXTATT=KAPONLY.

!l~P Definition

Raps are defined by three macros: DFBKSD, DFBMDI, and DFBMDF.

The DFHftSD macro

• defines a map set

• specifies the attributes of the map set

Chapter 3.5. Preparation of Application Programs 201

• indicates whether a particular set of macros is for a physical map
or for a symbolic description map

The DFHMDI macro

• defines a map

• specifies the attributes of symbols used in the map

• specifies the size of the map

The DFBMDF macro

• defines a field within a map

• specifies the position of the field

• specifies the length of the field

• specifies the attributes of symbols which appear in the map.

The formats of these macro instructions are given later in this
chapter. Examples of their use are included in the sample applications
described and listed in the language specific chapters of Part 2 of this
manual.

An attribute of ~ map is specified by the DFHMDI macro. Its value
overrides, for that map, the corresponding attribute of its map set
(defined by macro OFHMSD). An individual field within a map can have
yet another attribute value if the DFHMDP macro is used to override the
value for the whole map.

The map definition macro instructions are assembled twice, once to
produce the map used by B!S,and once to produce the symbolic storage
definition (or DSECT) that will be copied into the application program.

~opying Symbolic Description !laps

The BBS symbolic description maps must be copied into the application
program as shown in the following examples. In these examples,
mapsetname 1, mapsetname2, and mapsetname3 are the names of members that
contain the assembly of a Bas symbolic storage definition.

1. Assembler-language COpy instructions for each symbolic storage
definition. If it is required that each definition overlays the
same area, the second and subsequent COpy instructions must be
preceded by an ORG instruction to reposition the Assembler to the
start of the data area.

COPY mapsetname1
COpy mapsetname2
COpy mapsetname3

2. COBOL COpy statements for each symbolic storage definition. Rote
that mapname1, mapname2, and mapname3 in this example are the names
of the first maps in the map sets.

202 CICS/DOS/VS-ELS User's Guide

LINKAGE SECTION.
01 mapnaae1I COpy mapsetname1.
01 mapname2I COpy mapsetname2~
01 mapname3I COPY mapsetname3.

3. PLjI %INCLUDE statements.

IINCLUDE mapsetname1;
%INCLUDE mapsetname2;
%INCLUDE mapsetname3;

MAP DEFINITION MACROS

This section describes the syntax and operands of the three map
definition macros ~FHMSD, DFH!DI, and DFHftDF)

DFH!!SD !lacro - Define a :lap Set

All maps must belong to a map set, even if the set contains only one
map. BMS generates and stores map sets in the CICS/VS program library
under the names selected by the application programmers.

Information pertaining to an entire map set is specified in the
DFH!!SD macro instruction, which always appears at the beginning and end
of each map set generation. The one at the beginning indicates whether
physical maps or symbolic description maps are being generated; the one
at the end indicates the end of the map set.

All operands other than the TYPE operand of a DFHMSD macro
instruction are the same for a physical map generation run and for the
corresponding symbolic description map generation run. TYPE=!!AP is
specified for the former, and TYPE=DSECT for the latter. Alternatively,
physical maps and symbolic description maps can be assembled in the same
job by the use of job control language options, as described later in
this chapter, under "Cataloging Maps."

The format of the DFHMSD macro is as follows:

Chapter 3.5. Preparation of Application programs 203

i rr-------·r---~--~
I I
mapset DFHMSD TIPE={DSECTI!APIFINAL}

mapset

TYPE=

EITATT= {!QIYESIMAPONLY,}
COLOR={DEFAULTIBLUBIRBDIPINK IGREENITURQUOISE I

YELLOW IWHITE} ,
PS= {BASE I psid} ,
HILIGHT= {QllIBLINK IREVERSEIUNDERLINE}
VALIDATION={[!USTFILL I ,!USTENTER]}
,!ODE=INOUT
,TIOAPFX=YES
[,BASE=name]
(,CTBL=([PBINTX,{L40IL64IL80IHONEO!}]

[,FREEKBX,ALAR!X,FRSET])]
(,LANG={AS!ICOBOLIPLIIRPG}]
[,STORAGE=AUTO]

is the one- to seven-character name of the map set, to be
specified in the !APSET operand of any terminal control command
that refers to the map set. The name must begin with an
alphabetic character and must differ from other map names or
program names. An entry for the name must be made in the
Processing Program Table (PPT) -- see Chapter 3.4. The name
must be specified in the PHASE card when the physical map is
link edited.

indicates the type of run.

DSBCT

MAP

indicates that this is a symbolic description map
generation run to create the list of field names to be
copied into an application program. If a single map set is
to be used by application programs wri tten in different
languages, all of the macros for the map set must be
provided for each language used~

indicates that this is a physical map generation run to
create the control information block used by B!S to perform
mapping. This physical map is stored in the CICS/VS
program library.

FINAL
must be coded in the DFH!SD macro instruction that marks
the end of the map set. If other parameters are coded in
the DFHMSD TYPE=FINAL macro instruction, they will be
ignored.

The values of TYPE= can be overridden in the SYSPAR! option
when the maps are cataloged (see under "Cataloging Maps," later
in this chapter).

204 CICSjDOS/VS-ELS User's Guide

EXTATT

COLOR

PS

HILIGHT

Indicates whether the extended attributes are supported.

NO indicates that no support for extended attributes is
required. This is the default unless COLOR, PS, HILIGHT or
VALIDATION is specified on the DFaaSD macro. It results in the
same maps and application structures as appear in existing
applications.

MAPONLY indicates that the extended field attributes can be
specified in the maps within the map set, but that application
structures contain no field for the extended attributes. This
means that they are the same as generated on CICS/VS Version 1
release ij.O, and the extended attributes can not be dynamically
changed. This option can be used to add extended attributes to
existing maps, without having to recompile the eXisting
application programs.

YES indicates that the extended field attributes can be
specified in the map and can be dynamically modified.

specifies the color of characters used in a mpa set defined for
a device using the extended data stream.

specifies the symbol set to be used in a mapset using
programmed symbols.

specifies the form of highlighting to be applied to characters
in a mapset.

A symbol set identifier (psid) can be expressed as either a
single character or as two hexadecimal digits (if there is no
EBCDIC equivalent). For example, psid=a or psid=X ' 7ij'.
Identifiers will be allocated by the installation's system
programller.

BASE=name (COBOL and PL/I only)

CTRL=

is used to indicate that the same storage base will be used for
the symbolic description maps from more than one map set. The
same name is coded in the BASE operand for each map set that is
to share the same storage base. Since all map sets with the
same base describe the same storage, data related to a
previously-used map set may be overwritten when a new map set
is used. Furthermore, maps will overlay other maps from their
own map set.

If this operand is omitted and STORAGE=AUTO is not specified,
BASE=BMSMAPBR is assumed.

is used to specify device characteristics. Itsparameters
correspond to similarly named options of the terminal control
commands described in Chapter 2.1. (Terminal control command
options, when specified, override these parameters.)

Chapter 3.5. Preparation of Application Programs 205

L.!NG=

PRINT
must be specified if the printer is to be started; if
omitted, the data is sent to the printer buffer but is not
printed •. This operand is ignored if the map set is used
with 3275s without the Printer .Adapter feature or with
3277s.

L40, L64, LBO, HONEO!
are mutually exclusive options that control the line length
on the printer. L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respectively. BONEOM causes the printer to honor all new
line (NL) characters and the first end-of-message (EM)
character that appear in displayable fields. of the data
stream. If the latter option is specified, the application
program must insert the NL and EM characters into the data
stream. If the NL character is omitted, a carrier
return/line feed occurs at the physical end of the
carriage. If the EM character is omitted, printing stops
at the end of the 3270 buffer.

These operands are ignored for devices other than printers.

FREEKB
specifies that the keyboard should be unlocked after this
map is written out. If omitted, the keyboard remains
locked; further data entry from the keyboard is prevented
until this status is changed.

ALAR!
activates the 3270 audible alarm feature.

FRSET
indicates that the modified data tags (~DTs) of all fields
currently in the 3270 buffer are to be reset to a not
modified condition ~hat is, field reset) before any map
data is written to the buffer. This allows the DFBMDF
ATTRB specification for the requested map to control the
final status of any fields written or rewritten in response
to a terminal control command.

specifies the language in which the application program
referring to a symbolic description map is written and, hence,
is applicable for only a DFB!SD TYPE=DSECT macro.

ASM
Assembler language

COBOL
COBOL

PLI
- PL/I

RPG
- RPG II

MODE=INOUT
specifies that the map definition may be used for both input
and output operations.

206 CICS/DOS/VS-ELS User's Guid~

STORAGE=AUTO (not valid for RPG II)
specifies, for COBOL programs, that the symbolic storage
definitions of the maps in the map set are to be separate (that
is, not redefined) areas. This operand is used when the
symbolic storage definitions are copied into the WORKING
STORAGE section of a program using the command-level interface
and the storage for the separate maps in the map set is to be
used concurrently.

specifies, for PL/I programs, that the symbolic storage
definitions are to be declared AUTOMATIC. If the operand is
omitted,the symbolic storage definitions are declared BASED.

specifies, for assembler l.a·nguage programs, that separate maps
within a aap set are to occupy separate storage, not to overlay
one another.

If STORAGE=AUTO is specified, BASE=name cannot be used.

TIOAPFX=YES
is required for the entry level system (to reserve space for
BMS control information).

Chapter 3.5. preparation of Application Programs 207

DFH!DI Macro -- Map Definition

The DFHMDI macro instruction is used to name a single map and define its
size. When defining more than one map within a map set, the
corresponding number of DFHMDI· macro instructions must be used. If the
maps are for use in a COBOL program, and the BASE operand is coded, tney
must be specified in descending order of the lengths of the associated
COBOL structuras~ The format of the macro is as follows:

,
I

map IDFH!DI SIZE=(lines,columns)
I
I
I
I
I
I
I
I

EX TA'l'T= {!.Q lYE S I M APO N LY , }
COLOR={DEFAULTIBLUEIREDIPINKIGREENITURQUOISEI

YELLOWIWBITE},
PS={BAS!lpsid},
HILIGHT={QllIBLINKIREVERSEIUNDERLINE}
VAL1DATION={[MUSTFILL][,MUSTENTER]}

Qperangs of DFHMDI Macro

map

COLOR
PS
8IL1GHT

SIZE=

is the one- to seven-character name of the map, to be specified
in the MAP option of any terminal control command that refers
to the map. Note, however, that for RPG II programs, the name
must not exceed 5 characters.

The operands have the same meanings as the operands for DFHMSD.

gives the dimensions of a map in terms of length and width.

lines
is a value from 1 to 2QO, indicating the length of a map as
a number of lines.

columns
is a value from 1 to 240, indicating the width of a map as
a number of characters per line. Space for the attribute
byte should be included in the column specification.

208 CICS/DOS/VS-ELS User's Guide

DFHMDF Macro -- Field Definition

The DFH!DF macro is used to define one field in a map. One DFHMDF macro
is required for each field, giving information such as symbolic field
name, field position, field length, attribute byte, initial constant
data, justification of input, and COBOL or PL/I data picture.

The maximum number of named fields that may be specified depends on
various factors. For details, see the CICStVS Application Programmer's
Reference Manua! jCom~nd Level). (In normal use for the entry level
system, the limit will not be exceeded.)

The format of the macro is as follows:

r-, ---r-r---
I I
I[fld] DFHltDF POS= (lines ,columns)

,COLOR={DEFAULTIBLUEIREDIPINKIGREENtTURQUOISEI
YELLOW I WHIT E}

, PS = {BASB I psid}
,HILIGBT={OFFIBLINK IREVERSEI UNDERSCORE}
[, VALIDATION={[!USTFILL][, MUSTENTER]}
[,ATTRB= a: {ASKIP I PROT I UN PROT} [,NO!][, {BRT I NOR! I DRK}]

[,DET)[,IC][,FSET])]
[, DECP@=number]
[,GRPNA!E=group-name]
[,INITIAL='character data'IXINIT='hexadecimal data')
[, JUSTIFY= ([{LEFT I RIGHT}][, {BLANK I ZERO}])]
[, LENGTH=number]
[,OCCURS =number]
[,PICIN='value']
[,PICOUT='value']

Q£erands of DFH!DF Sacro

fld
is the one- to seven-character name of the field, used as a
symbolic reference to the field by the application program.
Note, however, that for RPG II programs, the field name must
never exceed 5 characters, and if OCCURS= is specified, the
field name must not exceed 3 characters.

Although specification of a field name is not required for
every field within a map, a field name must be specified for at
least one field of any map to be compiled under COBOL or PL/I.
All fields within a group must have names.

If no name is specified for a field, an application program
cannot modify the field attributes or data. For an output map,
omitting the field name may be appropriate when the INITIAL
operand is used to specify field contents. If a field name is
specified and the map that includes the field is used in a
terminal control command, any data supplied by the user
overlays data supplied by the INITIAL operand of DFHMDF.

Chapter 3.5. Preparation of Application Programs 209

POS=

COLOR
PS
HILIGRT

specifies the line and column of the attribute character for
this field, relative to line 1, column 1.

These operands have the same meanings as the operands for
DFH!tSD.

VALIDATION

ATTRB=

specifies the kind os validation to be performed on data
entered into an input field. It can be:

!USTFILL
The system will not accept data unless it fills the input
field.

MUSTENTER
The system will not resume execution unless data is
entered.

specifies device-dependent characteristics and attributes, such
as the capability of a field to receive data or the intensity
to be· used when the field is output. If the ATTRB operand is
specified within a group of fields, it must be specified in the
first field entry. (Since a group of fields appears as one
field to the 3210, the lTTRB specification refers to all of the
fields in the group.)

ASKIP

PROT

prevents data from being keyed into the field and causes
the cursor to automatically skip over the field.

prevents data from being keyed into the field, but no
automatic skipping occurs.

UNPROT

NUlt

BRT

NOR!

specifies that data can be keyed into the field.

ensures that the data entry keyboard is set to numeric
shift for this field unless the operator presses the alpha
shift key, and prevents entry of nonnumeric data if the
Keyboard Numeric Lock feature is installed.

specifies that the field display intensity is to be
brighter than normal.

specifies that the field intensity is to be normal.

DRK,
specifies that the field is nonprint/nondisplay. DRK
cannot be specified if DET is specified.

210 CICS/DOS/VS-ELS User's Guide

DET

IC

specifies that the field is potentially detectable by the
selector pen or cursor select key.

The first character of a 3270 selector pen detectable field
must be a"?", ">", nS", or blank. If the first character
is liS" or blank, the field is a selector-pen attention
field; if the first character is "1" or ">", the field is a
selector-pen selection field. (See the publication IBM
3270 Information ~!spla~stem Component Description for
further details of selector pen detectable fields.) If DET
is specified, only one data byte is reserved for each input
DET field. This byte is set to X'OO' when the field is
unselected, or to X'FP' when the field is selectedJ no
other data is supplied, even if the field is a selection
field and the ENTER key has been pressed.

indicates that the cursor is to be placed in the first
position of this field. The IC attribute for the last
field for which it is specified in a map is the one that
takes effect. If not specified for any fields in a aap,
the default location is line 1, column 1. Specifying IC
with ASKIP or PROT causes the cursor to be placed in an
unkeyable field.

This option may be overridden by specifying the CURSOR
option in a SEND command.

FSET
specifies that the modified data tag (MDT) for this field
should be set when the field is sent to a terminal.

Specification of FSET causes the 3270 to treat the field as
though it has been modified. On a subsequent read from the
terminal, this field is read, whether or not it has been
modified. The I!DT remains set until the field is rewritten
without ATTRB=FSET or until a SENn command with the FRSET
option is issued.

Either of two sets of defaults may apply when not all
parameters are specified. If no ATTRB parameters are
specified, ASKIP and NORM are assumed. If any parameter is
specified, UNPROT and NORI! are assumed for .that field unless
overridden by a specified parameter.

DECPOS=number (RPG II only)
specifies a value to he inserted into the 'decimal positions'
column of the generated RPG input specification for the data
area of the field being defined. 'number' may be any value
from 0 to 9. This operand has no effect in a DFHI!SD TIPE=MAP
assembly.

Chapter 3.5. Preparation of Application Programs 211

GRPNAMB=qroup name
is the name used to generate· symbolic storage definitions and
to combine specific fields under one group name. The group
name has a maximu. length of five characters for RPG II
programs, and seven characters for other languages. The fields
composing a group must be contiguous, and the same group name
must be specified for each field that is to belong to the
group.. A field name must be specified for every field that
belongs to the group, and the POS operand must be also
specified to ensure that the fields are contiguous. All the
DFH.!DF macros defining the fields of a group must be placed
together, and in the correct order (upward numeric order of the
POS operand). The fields in a group must follow on; there can
be intervening gaps between them, but not other fields from
outside the group. For example, the first 20 columns of the
first six lines of a map can be defined as a group of six
fields, so long as the remaining columns on the first five
lines are not defined as fields.

The ATTRB operand specified on the first field of the group
applies to all of the fields within the group. The lengths of
the fields within the group must not collectively exceed 256
bytes. If this operand is specified, the OCCURS operand
(below) cannot be specified.

INITIAL=lcharacter data'IXINIT='hexadecimal data'

JUSTIFY=

is used to specify constant or default data for an output
field. The INITIAL operand is used to specify data in
character form; the XINIT operand is used to specify data in
hexadecimal form •. INITIAL and XINIT are mutually exclusive.

For fields with the DET attribute, initial data that begins
with a blank character, ItS"i ">", or "1 1t should be supplied
(or, for XINIT, the hexadecimal equivalent, '40 1, 150~, '6E',
or'6FI).

The number of characters that can be specified in the INITIAL
operand is restricted to the continuation limitation of the
assembler to be used or to the value specified in the LENGTH
operand (whichever is the sllaller).

Hexadecimal data is written as an even number of hexadecimal
digits, for example, XINIT=C1C2. If the number of valid
characters is smaller than the field length, the data will be
padded on the right with blanks. For example, XINIT=C1C2 might
result in an initial field of lAB

Use XINIT with care. If hexadecimal data is specified that
corresponds with line or format control characters, the results
will be unpredictable.

specifies field justification for input operations.

LEFT
data is to be left-justified.

RIGHT
-- data is to be right-justified.

BLANK
-- blanks are to be inserted in any unfilled data
positions.

212 CICS/DOSjVS-ELS User's Guide

ZBBO
zeros are to be inserted in any unfilled data positions.

LEF~ and BIGBT are mutually exclusive, as are BLANK and ZBBO.
If certain parameters are specified but others are not,
assumptions are made as follows:

§.2ecified
LEFT
RIGHT
BLANK
ZBRO

!§§umeg,
BLAIK
ZERO
LEFT
RIGHT

If JUSTIPY is omitted, but the NU! attribute is specified,
RIGHT and ZERO are assumed. If JUSTIPY is omitted, but
attributes other than NU! are specified, LEFT and BLANK are
assuaed.

LEIGTH=nuaber
specifies the field length (from 1 to 256 bytes), not including
the attribute character. The sum of the lengths of the fields
within a group must not exceed 256 bytes. LENGTH can be
omitted if PICII or PICOUT is specified but is required
otherwise.

The field length must not extend beyond the end of the map.

OCCUllS=nuaber
specifies that the indicated number of entries for the field
are to be generated in such a way that the fields are
addressable as entries in a matrix or an array. Por non
Asse.bler applications, this permits several data fields to be
addressed by the same name, qualified by subscript. OCCURS and
GRPHA!B are mutually exclusive.

PICIH='value l (COBOL and PL/1 only)
specifies that a user-defined picture, composed of picture
characters that are valid in the language being used, is to be
used to edit input data.

PICOOT='value' (COBOL and PL/I only)
is like PICIN, but it applies to output fields.

XINIT=hexadecimal data
(See under "IRITIAL" above) •

C1TALOGIIG aAPS

Physical maps are cataloged in the core image library for use by B!S,
and symbolic description maps are cataloged in the source statement
library, for the programmer's use.

Both types of aaps can be generated using one set of DPH!SD, DPH!DI,
and Dr81Dr aacro instructions. The maps can then be assembled and
cataloged io one job stream using the SYSP1BB option as the following
steps indicate:

Chapter 3.5. Preparation of Application Programs 213

1. Catalog the BMS source statements into the source statement library
under the name DU!MY!AP.

2. Assemble the BMS source statements to create the physical map by
specifying SYSPARM='SApt.

3. Link-edit and catalog the physical map into the core image library.

4. Assemble the BHS source statements to create the symbolic
description map by specifying SYSPAR!='DSECT'.

5. Catalog the symbolic storage definition into the source statement
library.

6. Delete DUMMYMAP from the source statement library.

Figures 3.5-17 and 3.5-18 are job control examples of how to catalog
BMS maps, using a disk or a tape as intermediate storage, respectively.
Note that the names in the PHASE cards are the same as specified in the
application program:

1. in the INCLUDE/COPY statements that include the symbolic
description maps:

2. in the !APSET option of the SEND and RECEIVE HAP commands.

214 CICS/DOS/yS-ELS User's Guide

// JOB CICSBSS
• CICSjDOS/VS ASSEKBLE AND CATALOG BSS KAPS
• ASSIGN PRIVATE LIBRARIES IF NEEDED
/ / EXEC KAINT

CATALS A.DUKMYKAP
BKEND

source defining BMS map

• DO NOT INCLUDE THE KAP END STATEMENT
BKEND

/*
// OPTION CATAL,NODECK,SYSPARK='SAP'

PHASE XDFflCKA,.
// EXEC ASSEMBLY,SIZE=64K

COpy DUKKYKAP
END

/*
// EXEC LNKEDT
// DLBL IJSYSPH,'KAP DSECT',O
// EXTENT SYSPCH,,1,O,2698,19

ASSGB SYSPCH,DISK,VOL=CICSCS,SHR
// OPTION DECK,SYSPARK='DSECT'
// EXEC ASSEKBLY,SIZE=64K

PUNCH' CATALS XDFHCKA'
COpy DUMlI!Y~AP

END
/*
// RESET SYSPCH
// DLBL IJSYSIN,'lI!AP DSECT',O
// EXTENT SYSIPT

ASSGN SYSIPT,DISK,VOL=CICSCS,SHR
/ / EXEC KAINT
/*
// RESET SYSIPT
// EXEC KAINT

/*
/&

DELETS A.DU!MY~AP

STEP 1

(map set name=XDFHCSA)
STEP 2

STEP 3

(sample extent)
(assgn SYSPCH to DASD)

STEP 4
(map set name=XDFHCKA)

('cuu' from SYSPCH in STEP 4)
STEP 5

STEP 6

Figure 3.5-11. Cataloging Maps using DASD Intermediate Storage

Chapter 3.5. Preparation of Application Programs 215

// JOB CICSB!!S
* CICS/DOSjVS ASSEMBLE ARD CATALOG BSS SAPS
* ASSIGN PBIVATE LIBBARIES IF RBEDBD
// EXBC !I AI IT

CArALS A.DU!I!lYftAP
BKBND

source defining BftS map

STEP 1

* DO NOT INCLUDE THE !lAP END STATBSENT
BKEND

/*
// OPTION

PHASB
// EXBC

COPY
END

/*
// BXEC
// ASSGN
// OPTION
// EXEC

/*

PUNCH
COpy
END

// !lTC
// liTe
// BESET
// ASSGN
// EXEC
/*
// l!TC
// BESET
// EXEC

/*
/&

DELETS

CATAL,NODECK,SYSPAB!I='!lAP'
XDFBC!lB,* (map set name=XDFBC!B)
ASSEftBLY,SIZE=64K STEP 2
DU!lftYIIAP

LNKEDT
SYSPCB,X'cuu'

DBCK,SYSPAB!I='DSECT'
ASSElIBLY,SIZE=64K
• CATALS C.XDFBC!lB'
DU!ll!Y!lIP

WTM,SYSPCH,2
BEW,SYSPCH
SYSPCH
SYSIPT ,X'cuu'
!lIINT

BEW,SYSIPT
SYSIPT
MIINT

A .DUl!!YMAP

STEP 3
(assign SYSPCH to tape)

STEP 4
(map set name=XDPBC!lB)

cuu' from SYSPCB in STEP 4)
STEP 5

STEP 6

Figure 3.5-18. Cataloging Saps using Tape as Intermediate Storage

216 CICS/DOS/VS-ELS User's Guide

Chapter 3.6. Entry-Level System Execution,

This chapter, which assumes that the system has been brought up as
described earlier in Chapter 3.3, lists the startup override parameters
that can be specified during system initialization, and provides a guide
for operating the system. Operating procedures are given for console
operations, master terminal operations, and user terminal operations.

Startup Override Parameters

Where a choice of different options may be made at startup time, startup
override parameters are used, for example to specify the file access
method used, or to specify a choice of tables where more than one table
has been generated. Default values are applied when override parameters
are not specified.

The parameters can be specified either on SYSIPT or directly from the
system console. The choice of either or both of these methods is made
through the VSE UPSI job control card. If the UPSI card turns on bit
zero, the paraaeters can be read from SYSIPT; if it turns on bit two,
they can be entered from the console. Thus, for example, // UPSI 101
would establish both modes of communication.

In console mode, the message

DFH1500 - PARA8ETEB CHANGES REQUIRED

appears at the console. Valid operator responses are:

')1)1' (BOB)
'N '

No override parameters
No override parameters

'SI' Override parameters from SYSIPT
'CN' Override parameters follow from system console

The override parameters are separated by commas, and one or more may
be entered in each 80-byte fixed-length record, start'ing in column 1.
The end of the list of overrida parameters is indicated by $END.

The override parameters that may be issued for the entry level system
are as follows, the default values being indicated by underscores where
applicable.

APPLID= (VTA! only)
specifies a one- to eight-character application name, defined
to VTA! during VTAM system definition, which identifies
CICS/DOS/VS-ELS to VTA! as an application program. This
override must be used if APPLID=name is not specified in the
DFHTCT TYPE=INITIAL macro instruction.

BSCODE=ASCII
specifies that the ASCII communication code is to be supported
for terminals, in addition to BBCDIC. If this override is not
specified, only EBCDIC may be used.

Chapter 3.6. Entry Level System Execution 217

BTAII=

DATFOR!=

DCT=

DL1=

DU!PDEV=

DUKPDS=

specifies that BTA! is to be used as a terminal access method,
and specifies whether support is required for local terminals,
remote terminals, or both.

LOCAL
------- locally attached terminals

RE!OTE
-- remotely attached terminals

(LOCAL, REKOTE)
-- both locally and remotely attached terminals

specifies the format to be used for the date in messages issued
by CICS/VS. Valid parameters are:

K!tDDYY

DDK!! II

YIl!l!DD

specifies the destination control table suffix (see Chapter
3.4), or "NO" (the default) if transient data. support is not
required.

indicates whether Data Language/I (DL/I) data bases are to be
accessed during execution of CICS/DOS/VS-ELS. This parameter
appli&s only to DL/I DOS/VSE.

DL/I will not be used.

YES
DL/I will be used.

specifies the device type to be used for transaction dump
output.

2314

3330

3340

3350

FBA

tape, Which must use logical unit SYS010.

specifies which dump data set is to be used first.

A
-- the data set to be used first is DFHDl!PA

218 CICS/DOS/VS-ELS User's Guide

EXTRA=

PCT=

PDU!P=

PERS=

PILE=

INTRA=

B
-- the data set to be used first is DPBDKPB

specifies whether transient data extrapartition support is
required.

NO

specifies the file control table suffix (see Chapter 3.4), or
"NO" (the default) if file control support is not required.

specifies the type of dump that is to be produced if
CICSjDOS/VS-ELS terminates abnormally or CEKT SNAP (see "Kaster
Terminal Operations," later in this chapter) is issued. Por an
abnormal termination, CICS/DOS/VS-ELS terminates after the dump
is complete; for CEKT SNAP, it continues normally.

lQllAT
-- a formatted dump of the major control blocks, arranged
in logical order.

PIRTH

PULL

HO

-- a dump of the CICS/DOS/VS-ELS partition (DOS/VS PDUKP).

both of the above types of dump.

-- a dump of both the supervisor and the partition, but
only for abnormal termination; no dump will be produced for
CEMT SNAP.

Indicates whether the PACILITY ERROR RECOGNITION SYSTEM (PERS)
is to be used to log BTA! terminal errors.

NO

specifies which file access methods are to be used.

~~

VSAK

(ISAM,VSAl!)

specifies whether transient data intrapartition support is
required, and whether this is to be via DAft or VSAK.

Chapter 3.6. Entry Level System Execution 219

MSGLVL=

MIT=

NSD=

PCT=

PPT=

PRINT=

!!.Q

OAK

VSAM

specifies a message level, which controls the generation of
messages to the console during system initialization.

2

1

o

indicates that all messages are to be printed on SYSLST and
SYSLOG.

indicates that all messages are to be printed on SYSLOG.

indicates that only critical I/O errors or interactive
messages are to be printed.

specifies the maximum number of tasks that may be executed
concurrently. No new tasks are initiated while the number of
concurrent tasks is at the specified maximum. The range is
from 2 through 999, 5 being the default.

specifies the maximum number of nonsequential disk extents that
will exist for any data set involyed in the execution of ELS.
ELS initialisation uses this value to determine how much
storage to reserve at the beginning of the partition for label
processing when the data sets are opened. The presence of this
operand makes it unnecessary to supply a DOS LBLTYP job control
statement in the ELS execution deck. The minimum value that
may be specified is 1 which is also the default.

specifies the program control table suffix (see Chapter 3.q).

specifies the processing program table suffix (see Chapter
3 .q) •

specifies how print requests from 3270 terminals will be
initiated ..

YES

PA2

-- print requests from the ISSUE PRINT command.

-- print requests from the PAl key and from the ISSUE PRINT
com.and.

-- print requests from the PA2 key and from the ISSUE PRINT
command.

220 CICS/DOS/VS-ELS User's Guide

TCT=

PA3
-- print requests from the PA3 key and from the ISSUE PRINT
command.

specifies the terminal control table suffix (see Chapter 3.4) •

TRACE=(size,type,device)

VTAM=

WRKAREA=

specifies the main or auxilary trace facilities required.

size

type

is a d~ckmal value specifying the number of entries to be
provided in the CICS/DOS/VS-ElS main trace table; the
default is 500.

specifies the type of trace required:

no trace facilities required.

MAIN
switches on main trace.

AUX
switches on auxiliary trace.

device
specifies the typ~ of device to be used for auxilary trace
output:

TAP~
tape, which must use logical unkt SY5009

2314

3330

::S350

FBA

specifies whether VTA~ is to be used as a terminal access
method.

YES

spec~I1es the SiZ8 of the common worK area. The range is from
o (the default) through 3584.

Chapta£ 3.6. Entry Level System Execution 221

Console Operator Procedures

This section contains guidelines for the console operator. It is '
recommended that the console operator have at hand all the information
presented in this section, a listing of the job control statements
required to initiate the system, and the publication CICStVS Messages
and Codes.

Before CICS/DOS/VS-ELS can be executed, it must be installed as
described in Chapter 3.3. The system, tables, application programs, and
maps must be cataloged. (See also Chapters 3.4 and 3.5.)

CICS/VS STARTUP

The general procedure for activating CICS/VS is:

• Ready all required devices and files.

• Choose the startup job stream to be executed. There may be one job
stream if startup is always the same, or several job streams
containing alternative label sets if log and dump files are to be
saved in the event of an abnormal termination. (These jobstreams .
could be cataloged in the procedure library.)

• Execute the startup job stream in the correct partition, as shown
in Figures 3.6-1, 3.6-2, and 3.6-3.

Operator bits the external interrupt key
BG ••••••• enter ASSGN SYSIH,X'cuu' (sequential device)

,
I
I
I

If the SISIN file is correct, CICS/VS will take control. I
l

Figure 3.6-1. CICS/VS Startup in a Background Partition using a
Sequential SYSIH Device

I •
I Operator hits ATTN key I
I AR enter BATCH F1 I
I Fl enter 155GB SISIN,X'cuu' (sequential device) I
I
I If the SISIN file is correct, CICS/VS will take control.

Figure 3.6-2. CICS/VS Startup in a Foreground Partition using a
Sequential SYSIN Device

222 CICS/DOS/VS-ELS User's Guide

t
I

Operator hits ATTN key
BATCH F1 AR ••••••• enter

F1 ••••••• enter
F1 ••••••• enter
F1 ••••••• enter

II DLBL IJSYSIN,'CICS JOB STREAK'
II EXTENT SYSIN
1SSGB SISIN,DISK,VOL=CICSCS,SHR (disk
drive)

If the SYSIN file is correct, CICS/VS will take control.

Figure 3.6-3. CICS/VS Startup in a Foreground Partition using a DASD
SISII Device

CICS/VS TERMINATION

CICS/VS can be terminated by the master terminal operator or may be
abnormally terminated by the operating system. The primary
consideIation in both instances is to save information on SYSLST, the
dump file, and the log files. On an abnormal termination, there is also
the possibility that any ISAK files that permit the ADD function might
have to be recreated.

If the system is to be restarted immediately and SYSLST, the dump
file, and the log files are to be saved, an alternative startup job
stream should be used to provide a different set of extents. As soon as
feasible, SYSLST should be printed, the dump utility program (DFHDUP)
should be used to format and list the dump file, and the data on the old
log file should be added to a consolidated log file with a user-written
batch program. These files are then available for the next CICS/VS
startup. In addition, the trace utility program should be used to print
the contents of the auxiliary trace data set if applicable.

Figures 3.6-4, 3.6-5, and 3.6-6 are job control examples of how to
print the CICS/VS SYSLST file from disk and the CICS/VS dump file from
tape and froll disk. Figure 3.6-1 shows the job control statements
required to consolidate the log file. Figures 3.6-8 and 3.6-9 are job
control examples of printing the auxiliary trace data set from tape and
disk.

II JOB PRINT
II 155GB SYS001,DISK,VOL=CICSCS,SBR
II ISSGN SYS002,X'OOE'
II DLBL OUTPR,'CICS PRINTER FILE'
II EX?ENT SYSOO 1
II EXEC xxxxxxxx
IS

PRINT CICS PRINTER FILE
(See Note)
(See Note)
(See Note)
(See Note)
USER-WRITTEN UTILITY

~: The device must match the requirements of the
user-written program.

Figure 3.6-4. Job Stream Used to Print the CICS/yS SYSLST File

Chapter 3.6. Entry Level System Execution 223

// JOB CICSDUP
// ISSGN SYSOll,X'180'
// EXEC DPHDUP

/*
/&

DEVICE=TAPE

TAPE UNIT ADDRESS

~: SYS011 is required for the tape unit.

Figure 3.6~5~ Job Stream Used to Print a CICS/VS Damp Pile from Tape

// JOB CICSDUP
// AsSGB SYS011,DISK,VOL=CICSCs,SHR DASD DEVICE
// DLBL DTP3330,'DUMP PILE',0,SD,CISIZE=2048
/ / EXTENT SYSO 11

,DU!? FILE-ID EXA!PLE

// EXEC DFHDUP

/*
/&

DEVICE=3330

Note: The file name is DTP3330 for a 3330, DTP2314 for a 2314,
DTF3340for a 3340, DTF3350 for a 3350 or DTFPBA for an
FBA device.

The file identification is the same as that used for the primary
or alternative dump file when CICS/VS was active.

Figure 3.6-6. Job Stream Used to Print a CICs/VS Dump pile from DAsD

// JOB LOGFILE
// DLBL LOG,'LOG FILE'
// EXTENT SYS011
// ASSGN SYS011,DISK,VOL=CICSCS,SHR
// DLBL CONSLOG,'CONSOLIDATED LOG FILE'
// EXTENT sYS012

LOG FILE-ID EXAMPLE

DAsD DEVICE
(See Note)
(See Note)
(See Note) // 155GB sYs012,X'151'

// EXEC xxxxxxxx USER-WRITTEN CONSOLIDATE PROGRAM
/*
/&

Note: The file and the symbolic unit must match the requirements
of the user-written program.

Pigure 3.6-7. Job Stream Used to Consolidate the Log Pile

224 CICS/DOS/VS-ELS User's Guide

II JOB PTRACE
II ASSGB SYS009,X'180'
II TLBL DFHAUXT,'AUXILI1RY TRACE'
II EXEC DFHTUP,SIZE=30K
1*
1&

TAPE UNIT ADDRESS

Note: SYS009 must be assigned to the tape unit

Figure 3.6-8. Job Stream Used to Print the Auxiliary Trace Data Set
from Tape

II JOB PTRACE
II ASSGB SYS009,DISK,VOL=CICSCS,SHR
II DLBL DFHAUXT,IAUXILI1RY TRACE',O,SD
II EXTENT SYS009, •••
II EXEC DFHTUP,SIZE=30K

1*
1&

DEVICE=3330 (See Bote)

Note: DEVICE may be 231ij, 3330, 3340, 3350, or FBi.
It is always required for disk data sets

Figure 3.6-9. Job Stream Used to Print the Auxiliary Trace Data Set
from DASD

PROCESSOR CONSOLE AS CICS/VS TERMINAL

The processor console can be used as a CICS/VS terminal for the CICS/VS
master terminal transaction (CE!T), which .ay be entered to control and
monitor the CICS/VS system. If this is required, the terminal control
table must have a TR!IDNT=CNSL entry (see Chapter 3.ij).

To initiate the CEKT transaction on the console:

• In the background partition, press the external interrupt key (see
Figure 3 .. 6-10) •

• In a foreground partition, press the attention key. In reply to
the attention routine statement 'READY FOR COMMUNICATIONS', enter
MSG Fn (Fn is the partition number: F1~ F2, F3, or F4) to request
communication with the CICS/VS partition (see Figure 3.6-11).

When the system responds with the partition number (BG or Fn) ,
enter the CEMT transaction code and data. Up to 80 characters of
upper or lower case data, including the transaction code, may be
entered. The cancel key may be used to cancel any entered data.
CICS/VS·processes the transaction and sends the response back to
the console, preceded by the partition number ~G or Fn).

Chapter 3.6. Entry Level System Execution 225

Operator hits the external interrupt key
BG ••••••• enter CE!T PERPOR! SHUTDOWN
BG DPH1701 C.I.C.S. IS BEING TER!INATED
BG DPH1799 - TERMINATION OP CICS IS CO!PLETE

Hote: Use of master terminal transaction (CE!T) is discussed in
the section "!aster Terminal Operations" later in this
chapter.

Pigure 3.6-10. Console as a Terminal in the Background Partition

Operator hits ATTN key
AR
AR ••••••• enter MSG Fl
P1 ••••••• enter CEMT PERFORM SHUTDOWN
Fl DFH1701 - C.I.C.S. IS BEING TERMINATED
P1 DFH1799 - TERMINATION OF CICS IS COMPLETE

Figure 3.6-11. Console as a Terminal in a Foreground Partition

As the console is shared by all partitions, the lines of output from
a CICS/VS transaction may be interspersed with messages from other
partitions or from VSE.

The display operator console (DOC) is limited to six lines displayed
at a time. Any transactions entared on the display operator console
should not require more than six lines of terminal output.

Master Terminal Operations

I The master terminal transaction enables the user to modify CICS/VS
I control parameters, and the operational status of terminals, files,
I programs, and transactions:vhile CICS/VS is operating. It is also the
I means for terminating CICS/VS. The master terminal transaction may be
I entered at any terminal, but its use .should be limited to the master
I terminal operator by sign-on/sign-off and a security key. The master
I terminal operator must have a thorough understanding of the CICS/VS
I system and each of the master terminal functions that are described in
I this section.

A "Master Terminal Operator's Guide" should be established and a
reference copy kept at the master terminal. The guide should contain
this section, "Master Terminal Operations", and the following:

A list of terminals grouped according to pbysical location.
The terminal identification and the terminal priority, as
specified by the TR!IDNT and TR!PRTY operands in the terminal
control table, should be included.

226 CICS/DOS/VS-ELS User's Guide

A list of transactions grouped according to functional area.
A brief description and the transaction identification, as
specified in the TRAISID operands of the program control table,
should be included.

A list of programs grouped according to program identification and
function.

The program identification is the one specified in the PROGRAM
keyword of the processing program table. Each program should
include a list of all transactions that invoke it, so that, if
a program is disabled, all of its transactions can also be
disabled.

A list of files sequenced by file name as specified in the DATASET
operand of the file control table.

A list of all transactions that cause access to each file
should be included so that, if a file is disabled, all of its
transactions can be disabled.

A list of transient data files sequenced by destination identification,
as specified in the DBSTID operand of the destination control table.

A list of all transactions that cause access to each
destination should be included so that, if a destination is
disabled, all of its transactions can be disabled. In an
online file-maintenance environment, it is critical that all
transactions posting to a log file be disabled if the file is
disabled for any reason.

The master terminal transaction is initiated by entering a CICS/VS
request which begins with the transaction identifier "CEMT". It
continues executing until the operator terminates it by pressing program
function key 3 (PF3).

This chapter contains a simplified list of the requests required to
control and monitor CICS/VS components. The complete range of CEST
requests is described in the CICSL!S Operator's Guide.

If an operator makes an error when typing a request, the transaction
will prompt him for a correct request. The master terminal operator for
an entry level system is not expected to use this prompting facility,
and should clear the screen and retype the request.

PROGRAM FUNCTION KEYS

When CEMT is executing, the lower part of the display contains a list of
IBM 3270 PF keys, and descriptions of the key functions.

CEST responds to seven function keys. The keys and their functions
are as follows:

PF1

PF3

PF7

PF8

Help. Produces a list of PF keys and their functions.

End session. The operator terminates the CEMT transaction.
Other CICS/VS transaction codes can then be entered.

Scroll up half.

Scroll down half.

Chapter 3.6. Entry Level System Execution 227

PF9

PF10

PF11

Expand messages. If several messages have been generated in
response to a request, the operator can display all of the. by
pressing PF key 9.

Scroll up.

Scroll down ..

SCROLLING

A plus (+) sign at the beginning or end of a data display indicates that
there is more data above or below the current display. Scrolling back
reveals data above, and scrolling forward reveals data below. A whole
screen ~F10 or PP11) or half a screen (PF7 or PP8) can be scrolled.

TASKS

List All CICS/VS Tasks

CEMT INQUIRE TASK

Abnormally Terminate a Task

CEMT SET TASK PURGE

Inquire about the maximum number of CICSlVS tasks.

CEMT INQUIRE MAXTASKS

I £hange the maximum number of CICSlVS~~§
I
I CEMT SET MAXTASKS(x) (x = new maximum number of tasks)
I
I Note§:

1. The maximum number of tasks cannot be raised above that specified
in the MXT startup override, described earlier in this chapter.

2. INQUIRE or SET requests for MAXTASKS will produce a list of system
parameters and their status.. The ELS operator should ignore all
parameters except MAXTASKS.

228 CICS/DOS/V5-ELS User's Guide

I
I
I
I

TR1CE PROGRA!

Turn Trasce On

CE!T SET TRACE ON

Turn Tra~e Off

CE1!T SET TRACE OPP

DUPlP PROGR1!

Initiate Partition Dump

CE!T PERPOR! SNAP PARTITION

Initiate Pormatted Dump

CE!T PERFOR! SNAP POR!AT

(Por further information, see the CICSIYS Problem Determination
§.uide.)

Chapter 3.6. Entry Level System Execution 229

CICS/VS SHUTDOWN

To shut CICS/VS down, the master terminal operator enters one of the
following commands:

Let Tasks End - No Dump

CEMT PERFORM SHUTDOWN

Let Tasks End - Dump

CEMT PERFORM SHUTDOWN DUMP

Immediate Shu£dow~ ~ No Dump

CEMT PERFORM SHUTDOWN YES

Immediate Shutdown ~Dump

CEM~ PE~FO~M SHUTDOWN YES DUMP

!~: Operators should not normal~y perform immediate shutdowns.

TERMINALS

In .the following commands, "termid" represents the 4-character name
which identifies a particular terminal.

Inquire About One or More Individual Terminals

CEMT INQUIRE TERMINAL~ermia[, •••)

I~uire About all Terminals

CEMT INQUIRE TERMINAL

Set One or More Individual Terminals in Service

CEMT SET TERMINAL (termid[, •••]) INSERVICE

Set all Terminals in Service

CEMT SET TERMINAL INSERVICE

230 ;CICS/D()S/VS-ELS Us~r's Guide

Set a Terminal Out of Se~vige

CEMT SET TERMINAL(termid[, •••]) OUTSERVICE

CEMT SET TERMINAL(termid(, •••]) TTl NOATI

Place one or more individual terminals into transceive mode

CEaT SET TERMIN!L(termid[, •••]) TTl ATI

Transaction Mode: A terminal in transaction mode receives no messages
without a terminal request.

Transceive Mode: A terminal in transceive mode receives messages that
are sent automatically, as well as those initiated by a terminal
request.

Receive Mode: A terminal in receive mode may receive messages but
cannot send them. This mode is equivalent to BOTTI ATI.

~: Sign-off GOODNIGHT places the terminal in receive mode to prevent
unauthorized use. The terminal must be returned to transaction or
transceive mode by the master terminal operator before it can be used
again.

CONTROL UNITS

If a control unit is placed out of service, no terminal on the control
unit can be used. To reference a control unit, specify the TEBMXD of
any terminal on the control unit.

Inquire About One or More Individual Control Units

CEaT INQUIRE CONTROL (ctid[,])

Place a Control Untt in Service

CEMT SET CONTROL IN SERVICE

Place a Control Unit Out of service

CEMT SET CONTROL OUT SERVICE

Chapter 3.6. Entry Level System Execution 231

LINES

If a line is placed out of service, no ter.inal on that line can be
used. To reference a line, specify the TERBID of any terminal on the
line.

Inquire About One or Bore Individual 'Lines

CE!T INQUIRE LINE (lineid[,~ ••])

Place a Line in Service

CE!T SET LINE INSERVICE

CE!T SET LINE OUTSERVICE

DITI BASE PILES

Data bases may be enabled or disabled when required. To prevent
transaction ABERDs 1 all transactions that cause reference to a file
should be disabled before the file is disabled, and enabled after the
file has been enabled.

Ifileid l is the file name specified in the DATASET keyword of the
file control table.

Inquire About One or More Individual Data Base File§

CE!T IRQUIRE DATASET(fileid[, •••])

En.able a Data Base Pile

CEBT SE~ DATASET (fileid[, •••]) ENABLED

Disable a Data Base pile

CE!T SET DATASET (f ileid[,]) DISABLED

232 CICS/DOS/VS-BLS User1s Guide

DU!P DATA SE!

CICS/yS dump data sets may be opened or closed as required. If there
are two CICS/VS dump dat~ sets, the SWITCH function closes-the current
dUllP data set and opens the other one.

switch Dump Data sets

CEST DUl!P SWITCH

ORen Dump Data Sets

CEST SET DUMP OPEN

Close Dump Data Sets

CRST SET DUMP CLOSED

TRANSIENT DATA PILE

t The DESTID is the destination identification specified in theDESTID
I keyword of the destination control table. All transactions referencing
I the log file should be disabled before it is disabled, and enabled after
I it has been enabled.

Enable a Transient Da~~

CE!T SET QUEUE (guident) ENABLED

I Disable a Transient Data Queue
I
I CE!T SET QUEUE(quident) DISABLED
I

PROGRAKS

Programs should be disabled if t hey are not working properly.

The pgrmid is the prograll identification· specified in the PROGRA!
keyword of the processing program table. One or more pgrmids may be
specified whenever IIpqrmid[; •••]1t is shown.

Inquire About One or Sore Programs

CEKT INQUIRE PROGRA!(pgrmid[, •••])

Chapter 3.6. Entry Level System Execution 233

Inguire About all Programs

CEMT INQUIRE PROGRAM

I Disable One or More programs
I
I CEMT SET PROGRAM (pgrmid[,]) DISABLED
I

Enable One or More Programs

CEMT SET PROGRAM(pgrmid[, •••) ENABLED

I Enable all Programs
I
I CEMT SET PROGRAM ALL ENABLED
I

TRANSACTIONS

I Transactions should be disabled whenever the files or programs that are
I used by the transactions are disabled. When the files or programs are
I returned to service (ENABLE), the transaction should be enabled. tranid
I is the transaction identification specified by the .TRANSID keyword of
I the program control table. One or more tranids may be entered whenever
I "tranid=tranid[, •••]11 is specified.

Disab!e One or More Individual Transactions

CEMT SET TRANSACTION (tranid[, •••]) DISABLED

!nable One or More Individual Transactions

CEKT SET TRANS·ACTION (tranid[, •••]) ENABLED

Enable all Transact10ns

CEKT SET TRANSACTION ALL ENABLED

User ~erminaLOperations

Terminal operators must be trained in the use of CICS/VS sign-on/sign
off procedures if these are required by the installation. They must
also be trained' in the use of installation transactions, and must have
access to all documentation related to terminal. operations and
transaction execution.

It is suggested that each installation establishes a run book, which
should include:

234 CICS/DOS/VS El.S, User's Guide

• Sign-on/Sign-off Procedure

• 3270 Print Procedure

• CiTO Transaction

• User Transaction Requirements

• Transaction Error Recovery Procedures

• CICS/VS Termination Procedure

Each of these ite.s is described below.

SIGN-ON/SIGB-OFF PROCEDURE

The terminal operator must enter the correct password and operator name,
as established by the system programaer in the sign-on table. Only
transactions that are assigned one of tne current operator security keys
may be initiated after sign-on.

Sign-on Procedure

Enter: CSSN

Receive:

r--~ PLEASE SUPPLY PERSONAL DETAILS

NArtE=

PASSWORD=

NEWPASSWORD=

sign-on is performed by positioning the cursor to the "RAIlB" and
"PASSWORD" entry fields, and typing the operator's name and password.
The NEWPASSWORD field is ignored by ELS.

The password entry field is a "dark" field. This means that text
types into the field remains invisible. Care should be taken when
typing into the field, as the text cannot be checked visually.

A nalle can be up to 20 characters long, and a password can be up to
eight characters long.

Note: The name must be entered exactly as it appears in the sign-on
table, including blanks, commas, and other punctuation.

Chapter 3.6. Entry Level System Execution 235

Sign-off Procedure

!Snter: CSSF
CSSF GOODNIGHT

sign off, leave in transaction mode
Sign off, change to ~eceive~nly mode

Receive: DFH3506 SIGN OFF IS COMPLETE

If CSSF GOODNIGHT is used, the terminal remains signed off nntil the
master terminal operator returns it to the transaction or transceive
mode.

3270 paINT PROCEDURE

To print a 3270 display screen, the operator must depress the PA
(program access) key specified during system initialization (or PA 1 if
defaulted) '. When the data has been captured by the CPU or the remote
COpy has been completed, the keyboard is freed and the data is printed,
if, for a BTAM system, there is a printer available on the same control
unit and line group. For a VTAl! system, the data may be printed on an
alternative printer on a different control unit/line group.

Each terminal attached to an IBM 3274 or 3276 control unit has a
local print key which can cause the contents of the screen to be
printed, without host interaction.

CiTO TRANSACTION

The WRITE TO OPERATOR function gives the terminal operator the ability
to send messages to the processing unit console operator.

Iro send the message, the terminal operator enters the transaction
identification "CWTO" followed by the message.

Enter: CWTO -message to be sent-

Receive: MESSAGE HAS BEEN SENT

!Q~:

• The ENTER key can be used to insert blank lines in the message.

• The terminal and operator identifications are appended to the
message.

The write-to-operator transaction can be canceled by entering:

Enter: CANCEL as the last six characters of the input.

Receive: TERl!IN1TED BY OPERATOR

If the terminal operator initiates the CWTO transaction without a
message text, the program becomes conversational:

236 CICS/DOS/VS-ELS User's Guide

Enter: CWTO

Receive: ENTER MESSAGE

Enter: good morning (message to be sent)

Receive: MESSAGE BAS BEEN SENT

USER TRANSACTION REQUIREMENTS

The terminal operator run book should include a list of all valid
transaction codes with a narrative describing the transaction, input
data, CICS/VS messages, and corrective action to be taken.

TRANSACTION ERROR RECOVERY PROCEDURES

The ter_inal operator run book should describe the actions to be taken
by an operator if the terminal becomes inoperable.

All critical add, delete, or update transactions should be listed.

The recovery procedures to be followed, if a terminal becomes
inoperative while a critical transaction is being processed, should be
described.

Chapter 3.6. Entry Level System Execution 237

Chapter 3.7. Servicing

Proper servicing of the CICS/VS system is essential. IBM distributes
fixes to CICS/VS program errors as an APAR (Authorized Program Analysis
Report) fix and later to customers on a preventive service (PUT) tape.

t Authorized Program Analysis Report (AP AR) Fixes
I

An APAR fix is intended for corrective, not preventive, maintenance.
When a CICS/VS error is found, an APAR describing the probliem in detail
is submitted to IBM by the customer via the IB~ support center. IBft
analyzes the problem and, if valid, provides a fix which is tested by
the customer who reported the problem. A record of the problem and its
solution is kept by the IBM support center in case the same problem
occurs at other customers' installations. APAR fixes should only be
applied to a particular system if the problem exists, or if it is
reasonably certain that the problem will occur.

APAR fixes are applied to the distributed version of CICS/VS using
the VSE/Advanced Functions Maintain System History Program ~SHP). For
information on using MSHP refer to the 'SE/Advanced Functions Maintain
System History Program User's Guide.

DFHGEN Macro

The APAR response lists the entry level system programs that have to be
reassembled (if any) after a source fix has been applied. To reassemble
the programs, use the DFHGEN macro, which has to be coded and assembled
with the CICS/DOS/VS primary source library assigned. In 'the example
shown after the list of operands, the COpy DFHSTSG copies in the source
used by CICS/VS to generate the E~S core-image library (known as Stage 1
source).

The assembly will punch out a jobstream, which must be run with both
the primary source library and the entry level system core-image library
permanently assigned.

The format of the DFHGEN macro is as follows:

DFHGEN MOD=(program[,suffix] ••• [,program[,suffix]]
TYPE=type,
CICS=EL2,/FULL,
DLI=YES/NO,
VSAM=YEVNO,
VTAM=YE2./NO

...) , *
*
*
*
*

Chapter 3.1. Servicing 239

program

suffix

TYPE=

CICS=

DLI

VSl!=

-- the name of the entry level system program -- without the
"DFH" -- to be reassembled (for example, RCP)

-- a two-character suffix, which may be used to distinguish
between different versions of one entry level system program.
(Certain programs have a number of versions; the choice between
these is determined at startup time by the startup overrides
specified.)

The recommended procedure is to reassemhle all versions of a
program when applying a fix, in which case "ALL" should be
specified instead of a two-character suffix; but you may, if
you so wish, reassemble only the versions you are currently
using by specifying the appropriate suffixes. Appendix A
provides, under "Core Image Library,'" a list of those modules
having more than one version, and relates suffixes to startup
overrides. You should specify "ALL" for any program not listed
in Appendix A as having more than one version.

-.- deterlBines whether an APAR fix is to be applied permanently
or temporarily, or removed from the core image library. Valid
param at ers are:

PERM

RE!

FIX

-- corresponds to a PER APIR response. It puts a new
version of the module into the core image library without
saving the old one.

corresponds to a fix test APAR response. It puts a new
version of the module into the core image library, after
first saving t.he old module. by' renaming it.

-- removes a previously applied fix by deleting the latest
version and reinstating the superseded version, which must
have been saved by an earlier run specifying TYPE=TEKP.

-- makes a previous TEMP fix into a permanent fix by
deleting the saved superseded version from the core image
library.

This operand does not have to be coded, as the default is the
correct option for the BLS user.

-- indicates whether DL/I support is to be generated for the
affected modules. This will override the Stage 1
specification.

-- indicates whether VSAM support is to be generated for the
affected modules. This will override the Stage 1
specification.

240 CICS/DOS/VS-ELS User's Guide

VTA!!=
-- indicates whether VTA! support is to be generated for the
affected modules. This will override the stage 1
specification.

The following example shows the use of the DPHGBI macro.

//JOB PIXKCP
//BXBC ASSB!BLY

/*
/&

DPBGBI VTA!=NO,VS1!=IO,DLI=IO,
!OD= (KCP,A LL)

COpy DPHSTSG
BND

Preventive Service (PUT) Tape

*

The preventive service (PUT) tape, distributed to customers on a monthly
basis, contains maintenance fixes for all programs for which the
customer holds a license, and will include CICS/DOS/VS service. These
fixes are tested and should be installed as soon as possible. The
contents of the PUT tape should be examined to ensure that all APAR
fixes that were previously applied are included. Any APAR fixes not
included should be reapplied after the PUT tape has been installed. A
customer should apply the current PUT tape immediately if he intends to
change his data base structure, code new applications, or introduce new
system functions.

Preventive service tapes are installed using the VSE/Advanced
Punction Maintain System History Program (!SHP). Por information in
using MSHP refer to the VSElAdvanced Punction !aintain System History
Program User's Guide.

A.record of APlR fixes and PUT tapes applied to the CICS/VS system
can be automatically generated in the !SSP history file.

Chapter 3.1. Servicing 241

Chapter 3.8. Performance

During the system design process, the required level of performance of
the system should be considered, and the system designed with these
performance criteria in mind. After a system has been successfully
designed and implemented, its performance can be monitored and the
system tuned to ensure that efficiency is maintained as changes in the
workload occur.

CICSjDOS/YS-ELS is designed to give optimum performance when only one
transaction is being processed in the system at anyone time. If this
criterion is not met, performance may be degraded, and in more complex
situations CICS/DOS/VS may out-perform CICSjDOS/VS-ELS.

This chapter discusses the performance aspects of CICS/DOS/YS-ELS.
The main topics are:

• Design criteria for CICS/DOS/VS-ELS

• Operating system design from a performance viewpoint

• CICS/VS system design from a performance viewpoint

• Application program design

• Use of CICS/VS statistics.

Design Criteria

In an online system such as CICS/VS, certain areas of code will be
executed thousands of times at comparatively regular intervals. For any
installation, there is a fairly well-defined set of program code, data
areas, and control blocks that are always in use. This is called the
"working set .. of the system. To achieve the best response, enough real
storage should be available to accommodate the working set. The aim of
the system designer should be to ensure that the working set is small
enough to reside in real storage, allowing VSE to page in non-working
set parts of CICS/VS as necessary.

Consider carefully the implications of frequent use of optional
CICS/VS functions, because they will increase the size of the working
set. The following is a list of application program functions that
utilize code that is not considered part of the minimum CICSjDOS/VS-ELS
working set.

• Temporary storage

• Interval Control

• Dump Control

• Trace Control

• Intrapartition Transient Data

• VSAM for FCT entries

Chapter 3.8. Performance 243

• VTA! support for terminals

Operating System Design from a Performance Viewpoint

The performance objectives in generating a YSE system are to ensure that
the supervisor generated occupies the minimum amount of real storage and
executes with the minimum pathlengths.

Detailed discussion of the sizes and functions of the various VSE
facilities is contained in the DOSLIS System Generation manual. The
discussion in this chapter is l.imited to those functions that could have
significant effect in a CICS/VS environment.

SUPERVISOR GENERATION

Job Accounting (JAl

Job accounting can increase processor usage by up to one tenth, so the
need to use this facility should be carefully evaluated against cost.

Fast CCW Translate (FASTTR)

Specification of FAST'lR=YES can result in a significant reduction in
processor usage in heavily loaded systems. However, for the entry level
system user with a lightly loaded system, FASTTR is unlikely to provide
such a reduction.

Rotational Position Sensing (BPS}

This option is useful only when the channel is heavily loaded and
causing delays - an anusua! condition in small systems. Selection of
rotational position sensing carries an overhead in that the PCT has to
contain two ISAI.'! logic modules instead of one, thus increasing the
working set by SK.

TPBAL CO!MAND

If CICS/DOS/VS-ELS and a batch partition are running concurrently, TPBAL
can be used to bias the system towards the CICS/VS partition. This will
release page frames for use by the CICS/VS partition, and reduce the
amount of page I/O, thus improving CICS/VS response.

The TPBAL command issued from the processor console is
the operating system to recognize TPIN and TPOUT macros~
are issued by CICS/VS when it becomes active and when it
long WAIT. TPIN will deactivate the batch partition, if
and TPOUT will reactivate it.

244 CICS/DOS/VS-ELS User's Guide

used to tell
Tnese maCros

goes into a
there is one,

It is recollmended that the TPBAL command is issued when a CICS/VS
partition is running concurrently with a batch partition. Do not use TP
balancing (that is, issue TPBAL=O) when CICS/VS is running in a
dedicated processing unit or when there is sufficient real storaqe to
allow the system to run witho~t causing significant page I/O.

BISIC TELECOft!UNICATIONS ACCESS 4ETHOD (BTA!)

The BTl! load mod~le and control blocks form part of the CICS/VS
Terminal Control Table and are loaded into the CICS/VS partition. These
areas are fixed in real storage while there is any I/O outstanding.
Except at the very lowest transaction rate, this effectively lIeans the
areas are permanently fixed. These storage requirements are explicitly
listed in the QQ~!2~em Generation manual.

If BTl! is used it is necessary to make an allowance when deciding on
the number of copy blocks required (specified by the BUFSIZE operand of
the VSTAB macro instruction during VSE system generation). As a general
guide, four blocks should be allocated for each simultaneous I/O
operation to remote devices and three blocks for local devices. The
number of simultaneous operations cannot exceed the number of
comaunication lines.

DATA BASE ACCESS !ETHODS (151M AND VSAM)

There are two aain goals to aim for in making efficient use of the
access method chosen. The first is to try and ensure that the physical
I/O operations are performed as efficiently as possible. Two important
aims in achieving this are:

1. To equalize the I/O rate ~t peak load) across the various I/O
devices, by careful positioniag of the various files. This helps
reduce the time spent waiting for a particular device.

2. Position the datasets on a particular device so that seek times,
which are proportional to the distance the disk arm has to move,
are lIiniaized. (For example, datasets consistently used by the
same transaction could be grouped together.)

The second major consideration is to minimize of the number of
physical I/O operations necessary. This is not really practicable for
VSA! ESDS files; but for ISA! or VS1M KSDS files, th'ej:"e are two ways of
minimizing the number of physical I/O operations.

1. The most effective way of decreasing the number of physical I/O
operations that occur for any particular dataset is to maintain the
most heavily used part of the dataset in main storage. Where an
indexed access aethod is used, (ISAM, VSAM KSDS), this can be
achieved by having in-core indexes.

2. The other method is to increase the size of the physical record in
a data, set with respect to the logical record ~locking factor).

In both these" cases however, there is a trade-off.
case, more real storage is necessary; lack of storage
page faults, which could offset the advantage gained.
case, high blocking factors could result in increased
channel utilization.

In the first
required may cause
In the second

reponse time and

Chapter 3.8. Performance 245

In genera.l, these considerations apply to all the I/O access methods,
including those for DL/1. The parameters that control the changes
described above are set either when a dataset is created, or else when
CICS/VS tables are created. (These are discussed further in the section
that follows.)

CICS/VS System Design from a Performance Viewpoint

This section outlines the performance impact of options that can be
specified when CICS/VS tables are generated, and of override parameters
that can be specified at system initialization.

DFHFCT TYPE=DATASET, (FOR IS1M files)
INDAREA=,INDSIZE=

Use the cylinder index in virtual storage. This will probably save an
,I/O operation on all calls.

DFHFCT TYPE=DATASET, (for VSAM files)
BUFSP=, BUFND=, BUFNI=, STRNO=

These parameters are used to determine the amount of buffer space
(BUFSP) to be given to VSAM for processing the dataset. The amount
required depends on the type and number of concurrent accesses to the
dataset, the Control Interval size for the data and index buffers, and
to some extent the amount of real storage available.

As a general rule; for KSDS files BUFSP should equal

CI ~ATA) x BUFND + CI(INDEX) x BUFNI

where CI(DATA) and CI(INDEX) are the appropriate Control Interval sizes,
and BUFND and BUFNI are the number of data buffers and index buffers.
The number of index buffers allocated should be at least equal to STBNO,
but performance can be illproved by specifying BUFNI as (at least) equal
to STRNO plus the number of index levels. This will maintain the top
level index in core.

If additional buffers are allocated, they will be used by VSAM in an
attempt to optimize performance. This means that all the allocated
buffer space may become part of the working set, so check that any
optimization by VSAM as a result of having access to more buffers is not
offset by degradation caused by increased page fault activity.

For ESDS files, no indexes are required, and the number of data
buffers should be specified as at least STRNO + 1.

The value of STRNO should be chosen carefully, because if there are
several concurrent requests to, a file, CICSJVS will automatically queue
the number of requests that are in excess of STRNO. This will degrade
performance. On the other hand, excessive allocations for STRNO will
cause extra demands for working set storage, possibly resulting in
greater degradation due to additional page faults. However, if the
storage available is limited, it is often preferable to increase BUFNl
so that the time the STRING is held by VSA! is reduced, which will
reduce the number of simultaneous requests that VSAM is handling, and
this means that STRNO can be reduced.

246 CICS/DOS/VS-ELS Userls Guide

Alternatively, rather than trying to optimize the buffer requirements
for each file separately, use the VSAM shared resources facility. This
will usually allow much better utilization of buffer space and much
easier tuning, since the peaks and troughs of activity on different
datasets will tend not to coincide exactly, and a much smoother
variation of activity with time will occur. Remember however, that if
sufficient real storage is available, better performance can be obtained
by using non-shared resources for VSAM KSDS files.

DFHTCT TYPE=LINE (for BTIM terminals)

The system programmer can impact the response
he sets up the Terminal Control Table (TCT).
recommendations are based on the way CICs/yS
and the way BTA! polls terminals for input.
terminal device· is also necessary.

of the system by the way
The follow ing

scans the terminal table
Some consideration of the

Generally speaking the closer the entry to the start of the TCT the
bett~r the response. For multipoint lines, note that BTAM will still
poll the line for input after receiving an input, and this will continue
until CICS/VS, through BTAM, issues a command to tell the line to stop
sending data and to be prepared to receive data. This causes contention
between the terminals for use of the line, with longer delays for
heavier loads. The best system throughput will be achieved by setting
up the 7CT SO that the heaviest loaded line is the first entry.

This principle should be followed only if all responses are
acceptable. It is possible that some of the lightly loaded lines or
terminals (usually po int-to-point) may always get an unacceptably bad
response. In this case some of the lightly loaded lines should be moved
higher up the TCT. This will alleviate the immediate response problem
but may cause a bottleneck on the heavier loaded lines, in which case
the line capacity should be increased.

SEQUENCE OF ENTRIES IN CICS/VS TABLES

The order of entries in CICS/DOS/VS-ELS tables can affect performance
because the tables are searched sequentially. PPT entries should be
ordered by frequency of usage. Map entries should be coded with the
entry of the first program that uses them; not only does this ensure a
short scan for frequently used programs, but putting maps and programs
togethe~ avoids fragmentation of storage and unnecessary paging. PCT
entries can be coded in any order because the PCT is automatically
merged with the PPT when the entry level system is executed~ Entries in
other tables should be ordered by frequency of usage.

STORAGE REQUIREMENTS FOR EXECUTION (COMMAND LEVEL) DIAGNOSTIC
FACILITY (EOF)

The virtual storage required for EDF, the diagnostic facility described
in Chapter 4.1, are as follows:

1. The total size of programs, tables, and maps is approximately 35K
bytes.

Chapter 3.8. Performance 2Ll7

2. The working storage required for each concurrent EDP session is
approximately 3K bytes.

3. The temporary storage required for each concurrent EDP session is
approximately 14K bytes (assuming that a maximum of 10 displays are
being remembered).

Application Program Design

The entry level system is designed to be most efficient with non
conversational application programs. If' conversational programs are
essential, however, they should be designed to use the pseudo
conversational technique. (See nPseudo-conversationalProgramming" in
Chapter 2.1.)

Separate high-use code and low-use code into separate programs or
pages to improve the working set and paging characteristics.

Use of CICS/vS Statistics

CICS/VS system statistics are automatically recorded by the entry level
system management programs and are printed when CICSjDOS/VS-ELS is shut
down. The statistics can be used by the system programmer to help
monitor the performance of the entry level system. Analysis of CICS/'S
system statistics will 'provide information about usage of the
CICS/DOS/V5-ELS system components, and occurrence of limit conditions.
Details of the statistics produced by the entry level system are
contained in the £ICsLYS_22erator's Guid~.

248 CICS/DOS/VS-ELS User's Guide

Part 4. Program Checkout

Introduction

Thorough testing of application programs is essential to a successful
CICS/VS.installation. If the sa.ple programs described in this manual
are used as programming guides, errors can ba minimized, but testing
remains a necessity. It is recollllended that all testing be in a CICS/VS
test partition to prevent program errors from abnormally terminating the
online CICS/VS system. If facilities for a CICS/VS test partition are
not available, programs should be tested during separately reserved test
houts to prevent destruction of files or uncontrolled abnormal
termination of an operating CICS/VS system.

This part contains two chapters. The first describes the execution
(command-level) diagnostic facility (EDF). which enables the programmer
to carry out comprehensive online tests of application programs. The
second chapter describes the trace and dump facilities.

249

Chapter 4.1. Execution (Command Level) Diagnostic Facility

The Execution ~ommand Level) Diagnostic Pacility (EDP) enables an
application programmer to test an application program online without
making any modifications to the source program or the program
preparation procedure. The facility intercepts execution of the program
at certain points and displays relevant information about the program at
these points. Also displayed are any screen layouts sent by the user
program, so that the programmer can converse with the application
program during checkout just as a user would on the production system.

EDP runs as a CICS/VS transaction. It is started by a transaction
identifier or PP key named in the PCT by the system programmer; also,
the PPT needs to specify the programs and maps that are used by EDP.
EDP uses temporary storage and BMS. It can be used only from a 3210
terminal with a screen width of 80 columns and a screen depth of 2~
lines or more.

Functions of EDF

During execution of a transaction in debug mode, EDF intercepts the
execution of the application program at the following points:

1. At transaction initialization:

After the EXEC interface block (EIB) has been initialized; but

Before the application program is given control.

2. At the start of the execution of every command:

After the initial trace entry has been made; but

Before the requested action has been performed.

3. At the end of the execution of every command (except ABEND, XCTL,
and RETURN):

After the requested action has been performed; but

Before the HANDLE CONDITION mechanism is invoked; and

Before the response trace entry is made.

4. At program termination

5. At normal task termination

6. When an ABEND occurs

1. At abnormal task termination

At these points of interception, EDP displays the current status. In
addition:

1. At point 1, EDP displays the values of the fields in the EIB.

Chapter 4.1. Execution (Command Level) Diagnostic Facility 251

2. At point 2; EDP displays the command, including keywords, options,
and argument values. The command is identified by transaction
identification, program name, the hexadecimal offset within the
program, and, if the program vas translated with DEBUG option, the
line number of the command as given in the translator source
listing.

3. At point 3, EDPdisplays the same as at point 2, plus the response
from com.and execution.

4. At points 6 and 7, EDF displays the values of the fields in the EIB
and the following items:

The abend code;

If the abend code is ASRA (that is, a program interrupt has
occurred), the PSi at the time of interrupt, and the cause of
the interrupt as indicated by the PSi;

If the PSi indicates that the instruction g~v~ng rise to the
interrupt is within the application program, the offset of that
instruction. .

The user is also given the ability to display any of the following:

• The values of the fields in the EIB and DIB ~L/I interface block)

• The program's working storage in hexadecimal and character form.

• The last ten commands executed, including all argument values,
responses, and so on.

• The hexadecimal contents of any address location within the CICS/VS
partition.

At any of these points of interception, the user is allowed to
interact with the application in the following ways:

• If the current com.and is being displayed before it is executed,
the user can modify any argument valua by overtyping the value that
is displayed on the screen. Alternatively, the user can cancel
execution of the command (that is, convert it to a null operation
by overtyping the command verb with HOOP or NOP) •

• If the current com.and is being displayed after it has been
executed, the user can modify any argument value or the response
code by overtyping the displayed value or response with the
~~~ired value or response. 

• The user can modify the program's working storage and most fields 
of the EIB and DIB. 

• The user can switch off debug mode (except at point 2) and continue 
running the application normally. Alternatively, the user can 
force an abend. 

• The user may request that commands are not displayed until one or 
more of a set of specific conditions is fulfilled. These 
conditions may be: 

A specific named command is encountered 

An exceptional condition occurs for which the system action is 
to raise ERROR. 

252 CICS/DOS/VS-ELS User's Guide 



A specific exceptional condition occurs 

The command at a specific offset or on a specific line number 
(assuming the program had been translated with the DEBUG 
option) is encountered 

An abend occurs 

The task terminates normally 

The task terminates abnormally 

Any DL/I error status occurs 

A spe.cific DL/I error status occurs 

Security Rules 

To invoke EDP, the user must have a security key that matches the 
security key defined for EDP in the PCT. In addition, to test a 
particular transaction, the EDP user must have a security key that 
matches the security key for that transaction. If this condition is not 
satisfied, the EDF session is terminated immediately. 

Installing EDF 

To ensure that EDF is available on the test system, the system 
programmer must make one group entry in the PPT and at least one entry 
in the PCT ~ee Chapter 3.4). 

Invoking EDF 

EDF can be run on the same terminal as the transaction requ1r1ng 
checkout, provided that the application does not use extended 
attributes, or on a different terminal. 

For same-terminal checkout, EDP can be invoked either by: 

1. Using transaction CEDF or 

2. Using the appropriate PF key, if one has been defined for EDF. 

The transaction requiring checkout can then be started. 

For different-terminal checkout, EDF is invoked by using the 
transaction identifier CEDF with an argument that specifies the four
character identifier (as defined in the TRaIDNT operand of the DFHTCT 
TYPE=GPENTRY macro) of the terminal on which the transaction requiring 
checkout is being run. For example: 

CEDF L11A 

If a transaction is already running on that terminal, EDF will 
associate itself with that transaction; otherwise it will associate 
itself with the next transaction started at that terminal. 

Chapter 4.1. Execution (Command Level) Diagnostic Facility 253 



The transaction identifier CEDF may be entered from a formatted 
screen, in which case the effect is the same as pressing the PF key; 
that is, the terminal' at which CEDP is entered is put into EDP mode. 
(No message is issued, so that the formatted screen remains intact.) 

The full format of the com.and to initiate or terminate an EDF 
session is: 

CEDF [terminal-id] [, {ONIOFF}] 

If the teminal identifier is omitted, the terminal at which the CEDF 
transaction is initiated is assumed. If ON and OFF are omitted, ON is 
assuiled. 

Using EDF Displays 

An example of a typical EDF display is given in Figure 4.1-1. 

TRANSACTION: CMNO PROGRAM: XDFHINST 
STATUS: COMMAND EXECUTION COMPLETE 
EXEC CICS SEND 
!.'tAP ('XDFBCMA .) 

TASK NUMBER: 0000115 DISPLAY: 00 

FROM,· N.~ •• F •• j&K •• Y& ••••• ~K ••••••• m ••• H ••• DK.zX& •••••••••• * ...•... ) 
TERPlINAL 
ERASE 

OFFSET:X'0003EE' 
RESPONSE: NORMAL 

ENTER: CONTINUE 
PPl UNDEFINED 
PP4 : SUPPRESS DISPLAYS 
PF7 : SCROLL BACK 
PF10: PREVIOUS DISPLAY 

EIBFN=X '1804' 
EIBRCODE=X'OOOOOOOOOOOO' 

PF2 SWITCH HEX/CHAR 
PP5 WORKING STORAGE 
PF8 SCROLL FORWARD 
PF11: UNDEFINED 

PF3 : END EDP SESSION 
PF6 USER DISPLAY 
PF9 STOP CONDITIONS 
PF12: ABEND USER TASK 

Figure 4.1-1. Typical EDF Display 

The five lines at the foot of the screen provide a menu indicating 
the effect of the ENTER and PF keys for that particular display. If the 
terminal does not have PF keys, the same effect can be obtained by 
positioninq the cursor under the required instruction on the screen and 
pressing the ENTER key. The cursor can be correctly positioned by using 
the tab keys. 

Although the menu may change from one display to another, no function 
will move from one key to another as a result of a menu change. 

If the ENTER key is pressed while the cursor is not positioned within 
the menu, the effect is the same as if the cursor had been positioned 
under the ENTER key action. 

254 CICS/DOS/VS-ELS User's Guide 



BDP uses the line immediately above the menu to display messages to 
the user. 

The number at the top right of the screen indicates the current 
display n~mber; it is possible to step back thro~gh previous displays, 
which are numbered -1, -2, and so on. The user cannot overtype this 
number to address a display. Up to ten displays are remembered and can 
be redisplayed later. 

Argument values can be displayed in character or hexadecimal format. 
If character format is requested, numeric arguments are shown in signed 
numeric character format. Each argument value is restricted to one line 
of the display; if the value is too long, only the first few bytes are 
displayed, followed by ..... n to indicate that the value is incomplete. 
If the argument is displayed in hexadecimal format, the address of the 
argument is also displayed. rhis anables the user to display the 
argument value in full by requesting a display of that location and 
scrolling if necessary. 

The user can overtype any screen area at which the cursor stops as 
the tabbing keys are pressed, such as the response field. Thus, for 
example, the response can be changed from "BOR!AL" to "ERROR" or some 
other exceptional condition, so as to test the program's error handling 
at this point in the program. A list of areas that can be overtyped is 
given later under "Overtypinq EDF Displays." 

If the screen is accidentally altered, it can be restored by pressing 
the CLEAR key. 

When a non-function EDF screen is being displayed (for example, one 
that shows the EIB or working storage), the meaning of the ENTER key is 
given as "CURRENT DISPLAY". This means that pressing the ENTER key will 
return the screen to where it was bsfore examination of the other 
screens started. The same applies when a user screen is being displayed 
as a result of an EDF function, such as the USER DISPLAY key. However, 
if· a user screen is displayed on instruction from the application 
program, use of the ENTER key causes EDF to continue execution. 

Terminal Sharing 

When both EDF and the user transaction are sharing the same terminal, 
EDF restores the user transaction's display at the following times: 

• when the transaction requires input from the operator 

• when the transaction's display is changed 

• at the end of the transaction 

• when EDF displays are suppressed 

• when USER DISPLAY isrequested~ 

Thus, when a SEND command is followed by a RECEIVE command, the 
display sent by the SEND command appears twice -- once when the SEND 
cOlllland is executed, and again when.the RECEIVE command is executed. It 
is not necessary to respo,nd to the SEND com~and, but if a response is 
made, EDF will remember it and redisplay it when the screen is restored 
for the RECEIVE command. The response passed to the transaction is that 
which is made to the RECEIVE command. 

Chapter q.l. Execution (Command Level) Diagnostic Facility 255 



When BDF restores the transaction display, it does not sound the 
alarm or affect the keyboard in the same way as the usar transaction. 
Th~ effect of the user transaction options will be seen when the SEID 
cOlllland is· executed, but not when ,the, screen is restored. 

When E.DP restores the transa.ction display, it locks the keyboard 
until the transaction issues a RECEIVE command, at which time EDF frees 
the keyboard. 

If the EDF session is terminated part way through the transaction, 
EDF restores the screen with the keyboard locked if the last 
send/receive to the terminal was in fact a RECEIVE command; otherwise, 
the keyboard is unlocked. This will usually, but not always, match the 
normal behavior of the transaction. 

Function Key Beanings 

The following list explains the effect of each function in the menu: 

ABEND USBR TASK 

CONTINUE 

-- terminates the task. The display will then contain the 
message "ENTER ABEND CODE AND REQUBST ABEND AGAIN." After 
entering the code at the position indicated by the cursor, the 
user must request this function again to actually abend the 
task with a transaction dump identified by the specified code. 
If the user enters "NO" the task will be abended without a 
dump. 

This function cannot be used if anabend is already in progress 
or the task is terminating. 

causes the user transaction to continue unless the screen has 
been modified. If the screen has been modified, EDF redisplays 
the screen, with the modifications incorporated. 

CURRENT DISPLAY 
-- displays the screen that was being displayed before the user 
started examining other displays, such as remembered displays, 
unless the screen has been modifed. If this is the case, the 
modified screen is redisplayed. 

DIB DISPLAY 
shows the contents of the DL/I Interface Block ~IB). 

EIB DISPLAY 
-- shows the contents of the EXEC Interface Block and COftBARBA 
(see Appendix B for a description of the fields in the EIB). 

END EDF SESSION 
-- ends the debugging session, and takes the ter.inal out of 
debug mode. The user transaction continues. 

NEXT DISPLAY 
-- used when exam1n1ng displays, to step on to the next 
remembered display. Repeated use stops at the current display, 
when the "next display" key is no lo.nger available. 

OLDEST DISPLAY 
-- displays the earliest remembered screen, that is, the one 
currently having the lowest display number. 

256 CICS/DOS/VS-ELS User's Guide 



PREVIOUS DISPLAY 
-- shows the latest remembered display. Repeated use stops at 
the earliest remembered display_ Further use merely causes the 
earliest remembered display to be redisplayed. 

RE-DISPLAY 
-- redisplays the current screen to enable confirmation that a 
change entered on the screen has in fact taken place as 
expected. 

If an invalid change is made, it will be ignored and a message 
will be displayed indicating that an error has occurred. 

REGISTERS AT ABEND 
-- displays storage containing the values of the registers in 
the event of an ASRA abend. The layout of the storage is as 
follows: 

a. PSW at abend (8 bytes) 

b. Register values ~ through 15) 

In some (very rare) cases, when a second program check occurs 
in the system before EDF has captured the values of the 
registers, this function will not appear on the menu of the 
aband display. If this happens, a second test run will 
generally prove to be more informative. 

REPlEPlBER DISPLAY 
-- places a display that would not normally be remembered, such 
as an EIB display, in the memory. (Iormally, only the command 
displays are remembered.) The memory can hold up to ten 
displays. All pages associated with the display are remembered 
(and can be scrolled when recalled) except for storage displays 
where only the page currently displayed is remembered. 

I SCROLL BACK 
I scrolls a command or BIB display backwards. A plus sign (+) 
I against the first option or field indicates there are more 
I options or fields preceding~ 

SCROLL BACK FULL 
scrolls a working storage display a full screen backwards, 
displaying lower addresses. 

SCROLL BACK HALF 
scrolls a working storage display half a screen backwards, 
displaying lower addresses. 

I SCROLL FORWARD 
I scrolls a command or BIB display forwards. A plus sign (+) 
I against the last option or field indicates there are more 
I options or fields following. 

SCROLL FORWARD HALF 
scrolls a working storage display half a screen forwards, 
displaying higher addresses. 

SCROLL FORWARD FULL 
scrolls a working storage display a full screen forwards, 
displaying higher addresses. 

Chapter 4.1. Execution (Command Level) Diagnostic Facility 251 



STOP CONDITIONS 
-- displays a skeleton menu with which the user can specify one 
or more conditions that will cause EDF to stop the user 
transaction, and start redisplaying commands, after displays 
have been suppressed by the SUPPRESS DISPLAYS function (see 
below). These functions are used to reduce the amount of 
operator intervention required to check out a program that is 
partly working. 

The transaction can be stopped under the following conditions: 

• when a specified type of command is reached 

• when a specified exceptional or error condition occurs 
during execution of a command 

• when a specified offset or line is reached 

• at transaction abend 

• at normal task termination 

• at abnormal task termination. 

Note that the line number, which will be available on the 
source listing if the program was translated using the DEBUG 
option, must be specified exactly as it appears on the listing, 
including leading zeros, and must be the line on which a 
command starts. 

Note also that the offset specified must be the offset of the 
BALR instruction corresponding to the command. 

The correct line can be determined easily from the translator 
output listing. The offset can be determined from the code 
listing produced by the assembler or compiler. 

For transactions that contain DLI commands" the qualifier CICS 
on the command line can be overtyped with DLI to specify a DLI 
com.and. Also, the transaction can be stopped when a specified 
error status, or any error status, occurs. 

SUPPRESS DISPLAYS 
-- suppresses all EDF displays until the next stop condition 
occurs. 

SWITCH HBX/CHAR 

UNDEFINED 

-- switches the display bet ween hexadecimal and character 
representation. This is a mode switch; all subsequent displays 
will stay in the chosen mode until the next time this key is 
pressed. This switch has no effect on previously-remembered 
displays, stop condition displays, and working storage 
displays. 

-- means that this key is not available with this type of 
display. 

USER DISPLAY 
-- shows what the user would see if the terminal was not in EDF 
mode. Hence, this function is usable only for same-terminal 
checkout. 

258 CICS/DOS/VS-ELS User's Guide 



WORKING STORAGE 
-- displays the program's working storage, in a form similar to 
that of a dump listing, that is, in both hexadecimal and 
character representation. When this key is used, two 
additional scrolling keys are provided, and other PF keys allow 
the EIB (and the DIB if a DL/I command has been processed by 
EDF) to be displayed. 

The meaning of "working storage" depends on the programming 
language of the application program: 

COBOL 

PL/I 

all data storage d~fined in the WORKING-STORAGE section 
of the program. 

-- the dynamic storage area (DSl) of the main procedure. 

Assembler Language 
-- the storage defined in the current DFHEISTG DSECT. 

RPG II 
the entire RPG II module, including both data and code. 

Note that working storage starts with a standard format save 
area, that is, registers 14-12 are stored at offset 12 and 
register 13 at offset 4. 

Working storage can be changed at the screen; either the 
hexadecimal section or the character section may be used. Also, 
the ADDRESS field at the head of the display can be overtyped 
with a hexadecimal address; storage starting at that address 
will then be displayed when ENTER is pressed •. This allows any 
location in the partition to be examined. Further information 
on the use of overtyping is given later under "overtyping EDF 
Displays." 

Chapter 4.1. Execution (Command Level) Diagnostic Facility 259 



If the storage examined is not part of the user's working 
storage (which· is unique to the particular transaction under 
test), the corresponding field on the screen is inhibited to 
prevent the user from overwriting storage that can affect more 
than one invocation of the program. 

If the initial part of a working storage display line is blank, 
the blank portion is not part of working storage. This can 
occur because the display is doubleword aligned. 

At the beginning and end of a task, working storage is not 
available. In these circumstances, EDP generates a blank 
storage display so that the user can still examine any storage 
area in the partition by overtyping the address field. 

As mentioned above, certain areas of a EDP display can be overtyped. 
These areas can be identified by use of the tab keys -- the cursor stops 
only at fields that can be overtyped ~xcluding fields within the menu). 

• The verb of a command, such as the "SERD" in "EXEC CICS SERD", can 
be overtyped with "NOOP" or "NOP" before execution; this supresses 
execution of the command. When the screen is redisplayed with 
NOOP, the original verb line can be restored by erasing the whole 
verb line using the ERASE EOP key. 

• Any argument value can be overtyped, but not the keyword of the 
argument. Overtyping must be in the same representation, 
hexadecimal or character, as the original field, and must not 
extend beyond the argument value displayed. Any aodification that 
is not over typing of the displayed value is ignored (no diagnostic 
message being generated). When an argument is displayed in 
hexidecimal format, the address of the argument location is also 
displayed. 

• lu.eric values always have a sign field, which can be overtyped 
with a minus or a blank only. 

• Every field in the EXEC Interface Block, except the function code 
and the task number, can be overtyped; this also applies to the 
corUllBEI field. 

• The response field can be overtyped with the 
exceptional condition, including EBBOR, that 
current function, or with the word "ROBBAL". 
continues will be that the program will take 
been prescribed for the specified response. 

260 CICS/DOSjVS-ELS User's Guide 

name of any 
can occur for the 

The effect when EDP 
whatever action has 



• The BIBBCODE field, when displayed as part of the EXEC Interface 
Block, can be overtyped with any desired bit pattern. This does 
not apply when the EIBBCODE field is part of a command display. 

Note: When a field representing a data area of a program is overtyped, 
the entered value is placed directly into the application program's 
storage. On the other hand, before execution of a command, when a field 
representing a data value (which may possibly be a constant) is 
overtyped, a copy of the field is used; thus, other parts of the program 
that might use the same constant for some unrelated purpose will not be 
affected by the change. If, for example, the map name is overtyped 
before executing a SEND KAP command, the map actually used temporarily 
is the map with the entered naae; but the map name displayed on response 
will be the original map name. (The "previous display" key can be used 
to display the map name actually used.) 

When an argument is to be displayed in character format, some of the 
characters may not be displayable (including lowercase characters). EDP 
replaces each non-displayable character by a period. When overtyping a 
period, the user must be aware that the storage may in fact contain a 
character other than a period, the user may not overtype any character 
with a period -- if this is done, the change is ignored and no 
diagnostic message is issued. Similarly, when a value is displayed in 
hexadecimal format, overtyping with a blank character is ignored and no 
diagnostic message is issued. 

When storage is displayed in both character and hexadecimal format 
and changes are made to both, the value of the hexadecimal field will 
take precedence should the changes conflict; no diagnostic message is 
issued. 

If invalid data is entered, the result is as follows, regardless of 
the action requested by the user: 

• the invalid data is ignored; 

• a diagnostic message is displayed; 

• the keyboard is locked; 

• the alarm is sounded if the terminal has the alarm feature; 

The user may then reset the keyboard and reenter the data correctly. 

~: EDP does not translate lowercase ,characters to uppercase. If 
uppercase translat~on is not specified for the terminal in use, the user 
must take care to enter only uppercase characters. 

Checking Out Pseudo-Conversational Programs 

On termination of the task, EDP displays a message saying th.at the task 
is terminated and prompting the user to specify whether or not debug 
mode is to continue into the next task. This is to allow realistic 
debugging of pseudo-conversational programs (see "Program Control" in 
Chapter 2.1). If the terminal came out of debug mode between the tasks 
involved, each task would start with fresh BDF settings, and the user 
would not be able, for example, to display screens remembered from 
previous tasks. 

Chapter 4.1. Execution (Command Level) Diagnostic Facility 261 



Program Labels 

Some commands, such as HANDLE CONDITION, require the user to specify a 
program label. The form of the display program labels depends on the 
programming language in use: 

• For COBOL, a null argulient is displayed; for exaliple, ERROR ( 

• For PL/I, the address of the label constant is displayed; for 
example, ERROR (X'001D0016') 

• For Assembler Language, the offset of the program label is 
displayed; for example, ERROR (X'00030C') 

• For RPG II, the address of the label is displayed; for example, 
ERROR (X'0001403S') 

If no label value is specified on a HANDLE CONDITION cOlimand, EDF 
displays the condition name alone. 

262 CICS/DOS/VS~ELS User's Guide 



Chapter 4.2. Trace and Dump Control 

In addition to the execution diagnostic facility, CICSjDOS/VS-ELS 
provides trace and dump facilities that can be used to help test and 
debug application programs. 

ABEND Command 

r------------------------------------------------------------------------~ 
I 
I 
I 
I 
I 
I 

ABEND ABCODE (name) 

The ABEND command is used to abnormally terminate a task, and optionally 
provide a dump of the virtual storage areas related to the taSK. This 
function is useful in program testing, or in live programs where it 
might be used to handle any unmanageable condition. 

The lBCODE(name) option can be used to specify a 1 to 4 character 
name to identify the dump. This name appears at the beginning of the 
dump listing. 

ENTER Command 

ENTER TR1CEID(data-value) 
[FROM (da ta-area) ] 

This command is useful in the deougging of programs because it helps to 
provide a trace of the processing path through a transaction. The trace 
function allows a programmer to insert trace commands at appropriate 
points in a program to determine the routines used, and the sequence of 
execution. Whenever a trace command is encountered during execution of 
a program, an entry is made in a trace table which identifies that trace 
cOliliand, and thus the processing path. The trace command can also nalle 
a data field to be stored in the table entry. Por example, this field 
might contain intermediate results or switch settings from the 
transaction work area. After the table entry is made, control returns 
to the application program following the trace comlland. 

In addition, whenever a CICS/VS command is executed, an entry is 
automatically made in the table, identifying the type of command, such 
as WRITE. The trace entries made by CICS/VS com.ands are often adequate 
to determine the processing path without inserting additional trace 
comllands. 

To print the trace table, dump commands should also be inserted as 
needed along with the trace commands. After inserting trace and dump 
commands, programs must be compiled. When the programs have been 

Chapter 4.2. Trace and Dump Control 263 



debugged, the trace and dump commands should be removed, and the 
programs recompiled. 

The trace identification (TR1CEID operand) must be specified as a 
halfword binary value in the 'range 0 to 199. This value is stored 1n 
byte 0 of the entry in the trace table, to identify the trace com.and. 

The FROB (data~rea) option can be used to specify the name of an 8-
byte field to be stored in bytes 8-15 of the trace table~ 

DUMP Command 

DUMP DU8PCODE(data-value) 

, 
I 
I 
t 
I , 

The DUMP command ca~ses all CICS/VS areas related to a transaction to be 
written to a sequential dump file (disk or tape) for later printing by 
the CICS/VS D~mp utility Program (see Chapter 3.6). 

The DUMPCODE operand is used to specify a 4-character code to 
identify the dump. This code is printed at the beginning of the dump 
listing. 

DUMP commands can be inserted at appropriate points in a program as a 
debugging aid. The program is then compiled. When a dump command is 
executed a transaction dump is written to the dump dataset. The 
transaction dump contains storage areas, the application program(s) 
being used, certain CICS/VS control blocks and tables (in particular, 
the trace table), and user data areas. 

Certain error conditions, such as recoverable I/O errors occurring 
during normal operation, may also be recorded through a dump. These 
dump commands are a permanent part of the program. 

The DUMP com.and provides a printout of the trace table and may 
therefore be useful in conjunction with the trace facility. 

Trace Table Analysis 

The trace table shows the flow of processing through a transaction by 
creating an entry every time a CICS/VS macro instruction is executed in 
a CICS/VS control program, or whenever an EXEC CICS command is 
encountered in an application program. The programmer can follow the 
path of the transaction through the program by using the trace table. 

Further inforaation about the trace table will be found in the 
CICS/VS Problem Determination Guide. 

264 CICS/DOS/VS-ELS User's Guide 



Dump Analysis 

Three types of dump are available to the entry level system programmer: 
an individual transaction dump, a CICS/DOS/yS-ELS formatted dump, and a 
CICS/DOS/VS-BLS partition dump. 

A transaction dump is produced when a CICS/VS transaction terainates 
abnormally, or else when an EXEC CICS DU!P com.mand is encountered in a 
program (see "DU!P Command" earlier in this chapter); it contains only 
those areas directly related to the transaction itself. 

A formattedduap of the CICS/YS system, with details of the contents 
of the major CICS/YS control blocks and data areas at the time of 
failure, is produced if the CICS/DOS/YS-ELS system terminates 
abnormally. A CICS/DOS/YS-BLS partition damp can be produced optionally 
when CICS/YS terminates abnormally (see "Startup Overrides" in Chapter 
3.6 for details). 

Transaction dumps are intended primarily for use by the application 
programmer for debugging purposes. Pormatted dumps and CICS/DOS/yS-BLS 
partition dumps are intended for the system programmerl the entry level 
system application programmer should not normally need to refer to them. 

Detailed information about analyzing CICS/VS dumps is contained in 
the CICS/YS Problem Determination Guide. 

Chapter 4.2. Trace and Dump Control 265 





Part 5. Appendixes 

267 





Appendix A. Entry Level System Summary 

This appendix is a summary of the components furnished with the 
CICS/DOS/VS entry level system. 

Source Statement Libraries 

The contents of the primary source statement library as supplied by IB! 
are as follows: 

l.sublibrary 
-- CICS/DOS/VS programs and source needed to prepare tables, 
applications, and maps. 

C.sublibrary 
-- source needed to prepare COBOL application programs. 

E .sublibrary 
-- edited macros 

P.sublibrary 
-- source needed to prepare PL/I application programs. 

R.sublibrary 
-- source needed to prepare RPG II application programs. 

Z.sublibrary 
-- contains the following source books: 

DFBSTBP 
-- source used to gener~te the sample maps. 

DFBSTLft 
-- source used to generate the VSE logic modules in the 
private relocatable library. 

DFBSTAP 
-- the source used to generate the sample application 
programs ~ome of which are in the CICS/DOS/VS-ELS core 
image library, others of which are only on the full system 
library). 

Relocatable Library 

Certain items, Such as access method~ogic modu~es, must be available on 
a relocatable library when CICS/DOS/VS programs or tables are being link 
edited. The private relocatable library used to generate the private 
core image library contains: 

• The object modules with names of the form, DFHEX!xx, DPHElftxx, 
DFBECftxx, DFHEPftxx, DFBER!xx, DFHEX!F4, and DFBEX!S4 for building 
the CICS/VS command-language translators. 

• The following object modules: 

Appendix A. Entry Level System Su.mary 269 



lJDVZZlW (PRKOD) (note 1) 

lJGYOEZZ (SD80DVO) (note 1) 

lJGFOEZZ (SDMODFO) (note 1) 

lJRZLGZZ (IS80D) (note 1) 

B'lKODH' (note 5) 

B'lMODLt (notes 1 and 2) 

BTMODB' (notes 1 and 2) 

B'lKODK' (notes 1 and 2) 

BTKL32T (notes 1 and 2) 

BTKB32T (notes 1 and 2) 

BTMLB32T (notes 1 and 2) 

DFRlSK!! 

DFHISKNC 

DFHlSKRN 

DFHlSKRC 

DFHEAI (note 3) 

DFHElIO (note 3) 

DFHECI (note 3) 

DFHEPI (note 3) 

DFHERI (note 3) 

DFRDLX (note ~) 

DFBPBN (note 5) 

DFHPL11 (note 5) 

!otee: 
1. These modules are needed when CICS/VS tables are link edited~ 

2. The user may wish to generate other BTlK logic modules, depending 
on his installation's requirements. The procedure is described in 
the CICSIVS System Programmerts Guide roOS/V~. 

3.. DFHEAI (Assembler language), DFBECI (COBOL), DmEPI (PL/I), and 
DFHERI (BPG II) are object modules link edited with application 
programs that use the command-level interface. 

4. These modules are needed when DL/I is used. 

5. These modules should be deleted. The entry level system does not 
need them; they are present because the full CICS/DOS/VS system, 
with which the library is shared, requires them. 

270 CICS/DOS/VS-ELS User's Guide 



Core Image Library 

The following programs in the core image library have more than one 
version, each associated with a different startup override: 

Program Suffix Startup Override 

DPBDCP 1. DUMPDEV=TIPB 
2. DU!PDEV=2314 
3t DUMPDEV=3330 
4' DU!PDEV=3340 
5' DU!PDEV=3350 
Ft DUMPDEV=PBA 

DPBPCP I. PILE=ISI! 
VI PILE=VSIM 
1. PILE=(ISI!,VSlft) 

DPBPCP 1. Used if any of the entries in the PPT (processing 
program table) specify PGftLANG=COBOL 

DPBTCP 

DPHTDP 

DFBTRP 

DFBZCP 

DPBZCX 

2# Used if no PPT entries specify PGKLANG=COBOL 

1. 
2. 
3. 
4. 
5. 
6t 

1. 
2. 
3. 

1. 
2. 
3. 
4. 
5. 
P' 
1. 
7# 

1. 
21 

BTlft=LOC1L 
BTAM=LOCAL 
BTAI!=RE!OTE 
BTAM=REMOTE 
BTA!=(LOCAL,RE!OTE) 
BTAM=(LOCAL,RE!OTE) 

EXTRA=YES 

BSCODE =EBCDI C 
BSCODE=ISCII 
BSCODE=EBCDIC 
BSCODE=ASCII 
BSCODE =EBCDI C 
BSCODE=ASCII 

INTR1=NO 
INTRA=DA! 
INTRA=VSIK 

EXTRA=YES or EXTRA=BO 
EXTRA=YES or EXTRA=NO 

TRACE override includes TAPE 
TRACE override includes 2314 
TRICE override includes 3330 
TRACE override includes 3340 
TRICE override includes 3350 
TRACE override includes PBA 

VTAft=NO 
VTAM=YES 

VTAM=NO 
VTII!=YES 

The remaining entry level system prograBs have only one version in 
the library. 

The Entry Level System Tables 

Tables containing "$" or .,." are reserved for CICS/VS. 

DPHDCT2. 
DPBDCT3t 
DPHDCT41 
DPHDCT5. 
DFBDCTP# 

2314-based Destination Control Table 
3330-based Destination Control Table 
3340-based Destination Control Table 
3350-based Destination Control Table 
PBA extrapartition, VSA! intrapartition 

Appendix A. Entry Level System Summary 271 



DFRFCT1# 
DFQFCT2# 
DFHFCT3. 
DPHFCT4t 

DF9PC'l1# 
DFHPCT2# 
DFHPCT3t 
DFBPCT4. 
DFBPCTS. 

DFRPPT1t 
DFBPPT2t 
DFHPPT3# 
DFBPPT4# 
DFBPPTSt 

DFBTCT1t 
DFHTCT2. 
DFHTCT3t 

212 

VSA! Pile Control Table 
2314-based File Control Table 
3330-based File Control Table 
3340-based File Control Table 

Program Control Table for all sample programs 
Program Control Table for Assembler sample programs 
Program Control Table for COBOL sample programs 
Program Control Table for PL/I sample programs 
Program Control Table for RPG II sample programs 

Processing Program Table for all sample programs 
Processing Program Table for Assembler sample programs 
Processing Program Table for COBOL sample programs 
Processing Program Table for PL/I sample programs 
Processing Program Table for RPG II sample programs 

3270-local Terminal Control Table 
3210-remote Terminal Control Table 
3270~local and 3270-remote Terminal Control Table 

CICS/DOS/VS-ELS User's Guide 



Appendix B. EXEC Interface Block (EIB) 

Each task in a command-level environment has an associated control block 
called the EXEC interface block ~IB). Each application program has 
automatic access by name to the fields within the task EIB. The EIB 
contains information that is useful during the execution of an 
application program, such as the transaction identifier, the time and 
date, and the cursor position on a display device. Furthermore, the EIB 
contains information that is helpful when a dump is being used to debug 
a program. 

This appendix lists the fields of the EXEC interface block (EIB). 
Each application program can access all of the fields in the task's BIB 
by name but must not change the contents of any of them. 

For each field, the contents and format ~or each application 
programming language) are given. (All fields contain zeros in the 
absence of meaningful information.) 

Note: For RPG II, the field names are as listed below except that the 
"IBn is removed; for example, EIBAID would be EIID for RPG II users. 

EIB Fields 

EIBAID 

EIBCALER 

contains the attention ident~ier (AID) associated with the 
last terminal control or basic mapping support (BaS) input 
operation from a display device such as the 3270. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

CLl 
PICTURE X (1) 
CHAR (1) 
character, length 1 

contains the length of the communication area that has been 
passed to the application program from the last program, using 
the COBalREI and LENGTH options. If no communication area was 
passed, this field contains zeros. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

H 
PICTURE 59(4) USAGE COftPUTATIONAL 
FIXED BIR (15) 
halfword binary 

Appendix B. EXEC Interface Block (EIB) 273 



EIBCPOSI 

EIBDATE 

EIBDS 

EISFN 

EIBBCODE 

contains the cursor address (position) associated with the last 
terminal control or basic mapping support (BKS) input operation 
from a display device such as the 3270. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

H 
PICTURE S9(4) USAGE COKPUTATIONAL 
FIXED BII (15) 
halfword binary 

contains the date when the task vas started (and is updated by 
ASKTIME requests). The date is in packed decimal form 
(OOYYDDD+) • 

Assembler: 
COBOL: 
PL/I,: 
RPG II: 

PL4 
PICTURE S9(7) USAGE COHPUTATIONAL-3 
PIX ED DEC(7,0) 
4-byte packed decimal 

contains the symbolic identifier of the last data set referred 
to in a file control request. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

CL8 
PICTURE X (8) 
CHAR (8) 
character, length 8 

contains the encoded representation of the function requested 
by the last CICS/VS commana to be issued by the task (updated 
when the requested function has been completed). See the 
section "EIBFN Codes" later in this appendix. for a cOllplete 
list of the codes used in this field. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

CL2 
PICTUBE . X (2) 
CHAR (2) 
character, length 2 

contains the CICS/VS response code returned after the function 
requested by the last CICS/VS comBand to be issued by the task 
has been comDleted. Almost all of the information in this 
field can be-used within application programs by issuing 
appropriate HANDLE CONDITIO» commands. See the section 
"EIBRCODE Codes" later in this appendix for a complete list of 
the codes used in this field. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

CL6 
PICTURE X (6) 
CHAR (6) 
character, length 6 

274 CICS/DOS/VS-ELS User's Guide 



EIBREQID 

EIBTASKN 

EIBTI!!E 

EIBTRMID 

EIBTRNID 

contains the request identifier assigned to a.n interval control 
request by CICS/YS; this field is not used when the application 
programmer supplies a request identifier .. 

Assellbler: 
COBOL: 
PL/I: 
RPG II: 

CL8 
PICTURE X (8) 
CHAB (8) 
character, length 8 

contains the task number assigned to the task by CICS/V5. This 
nuaber will appear in trace table entries generated while the 
task is in control. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

PL4 
PICTURE 59 (1) U5AGE COMPUTATIONAL-3 
FIXED DEC (1,0) 
4-byte packed decimal 

contains the time when the task was started (and is updated by 
ASKTIME requests)~ The time is in packed decimal form 
(OH8!1I'55+) • 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

PL4 
PICTURE 59(1) U5AGE COftPUTATIONAL-3 
FIXED DEC (1 ,0) 
4-byte packed decimal 

contains the symbolic terminal identifier of the terminal or 
logical unit associated with the task. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

CL4 
PICTURE X (4) 
CHAR (4) 
character, length 4 

contains the symbolic transaction identifier of the task. 

Assembler: 
COBOL: 
PL/I: 
RPG II: 

CL4 
PICTURE X (4) 
CHAR (4) 
character, length 4 

EIBFN Codes 

The hexadecimal codes and the corresponding CIC5jV5 comBand functions 
are shown in Figure B-1. 

Appendix B. EXEC Interface Block (EIB) 215 



Code Com.and Function 

02 02 ADDRESS 
02 04 HINDLE CONDITION 
02 06 HANDLE AID 
04 02 RECEIVE 
04 18 ISSUE ERASEAUP 
04 1C ISSUE PRINT 
06 02 READ 
06 04 WRITE 
06 06 REWRITE 
06 08 DELETE 
06 OA UNLOCK 
06 OC STARTBR 
06 OE READNEXT 
06 12 ENDBR 
06 14 RESETBR 
08 02 WRITEQ TD 
08 04 READQ TD 
08 06 DELETEQ TD 
OA 02 WRITEQ TS 
OA 04 READQ TS 
OA 06 DELETEQ TS 
OE 02 LINK 
OE 04 XCTL 
OE 08 RETURN 
OE OC ABEND 
10 02 ASKTIl!E 
10 08 START 
10 OA RETRIEVE 
10 OC CANCEL 
18 02 RECEIVE MAP 
18 04 SEND !lAP 
1A 04 ENTER 
lC 02 DUMP 

Figure B-1. EIBFN Codes 

EIBRCODE Codes 

The EIBRCODE field is coded in conjunction with the first byte of the 
EIBFN field described in the last section. It is coded so that one or 
more bits in one of the six bytes of the field have a certain meaning 
equivalent to a CICS/VS command-level exceptional condition. Note t.hat 
some of the exceptional conditions are not documented in this manual'; 
they are, however, subsumed by the ERROR condition. For further 
information see the CICS/VS Application Programmer's Reference !lanual 
lCommand Levell. 

The EIBRCODE codes and their meanings are listed in Figure B-2~ Each, 
bit (or group of bits) is listed in hexadecimal format; for example, bit 
7 is listed as 01. Some exceptional conditions can occur in 
combination, so some hexadecimal arithmetic must be done to determine 
the individual bit patterns in the field if a direct meaning for the 
contents of a byte is not listed. The EIBRCODE field can also contain 
information copied from other fields within CICS/VS: these occurrenoes 
are shown in the figure. 

276 CICS/DOS/VS-ELS User's Guide 



r---.-----------------
1 EIBRCODE 
IEIBPN I 
Byte 0 Byte Bit(s) Keaning 

i 

02 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
08 
08 
08 
08 
08 
08 
08 
OA 
OA 
01 
01 
OA 
01 

1 Notes: 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
1 
3 
3 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

EO 
04 
10 
C1 
C2 
E1 
E3 
E4 
ES 
E6 
E7 
E8 
20 
40 
1'6 
1'7 
01 
02 
08 
OC 
OF 
80 
81 
82 
83 
84 
E1 
01 
02 
04 
08 
10 
CO 
E1 
01 
02 
04 
08 
20 
E1 

INVREQ 
EOF 
EODS 
EOF 
ENDINPT 
LENGERR 
WRBRK 
RDATT 
SIGNAL 
TERMIDERR 
NOP1SSBKRD 
NOPASSBKWR 
EOC 
INBFMH 
NOSTART 
NONVAL 
DSIDERR 
ILLOGIC (Note 1) 
INVREQ 
NOTOPEN 
EliDFILE 
IOERR (Note 1) 
NOTFND 
DUPREC 
NOSPACE 
DUPKEY 
LENGERR 
QZERO 
QIDERR 
IOEBR 
NOTOPEN 
HOSPICE 
QBUSY 
LENGERR 
ITEHERR 
QIDERR 
IOERR 
NOSPICE 
INVREQ 
LENGERB 

i 

I EIBRCODE 
IEIBPI I 
Byte 0 Byte Bit(s) Meaning 

OC 
OE 
OE 
10 
10 
10 
10 
10 
10 
10 
10 
10 
14 
14 
14 
14 
14 
14 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
1E 
1E 
1E 
1E 
1E 
1E 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
1 

,1 
2 
2 
2 
o 
o 
o 
o 
o 
1 

E2 
01 
EO 
01 
04 
11 
12 
14 
20 
81 
E1 
FF 
01 
02 
05 
06 
07 
09 
01 
02 
04 
08 
20 
40 
80 
E3 
E4 
10 
80 
01 
04 
08 
10 
04 
08 
OC 
10 
E1 
11 

NOSTG 
PGKIDERR 
INVREQ 
ENDDATA 
IOERR 
TRANSIDERR 
TERMIDERR 
INVTSREQ 
EXPIRED 
NOTFND 
LENGERR 
INVREQ 
JIDERR 
IHVREQ 
NOTOPEN 
LENGERR 
IOERR 
NOJBUFSP 
INVREQ 
RETPAGE 
MAPFAIL 
INVKPSZ (Note 2) 
INVERRTERM 
RTESOME 
RTEFAIL 
WRBRK 
RDATT 
INVLDC 
TSIOERR 
OVERFLOW 
EODS 
EOC 
IGREQID 
DSSTAT 
FUNCERR 
SELBERR 
UNEXPIN 
LENGERR 
EODS 

I 1. When either ILLOGIC or IOERR condition exists during file control operations, 
I further inforllation is provided in the EIBRCODE field as follows: 
1 For ISA! bytes 1 and 2 = ISAft response 
I For VSIM bytes 1 = VSAM return code; byte 2 = VSAM error code 
I 2. When the INVKPSZ condition exists during B!S operations, EIBRCODE byte 3 
1 contains the terminal code character. , 

Pigure B-2. EIBRCODE Codes 

Appendix B. EXEC 'Interface Block (EIB) 277 





Appendix C. CICS/DOS/VS-ELS under VTAM 

In general, the contents of this manual apply to the entry level system 
under both BTl! and VTIB. The differences are: 

1. The VTA!=YES startup override parameter is specified during system 
initialization (see "Startup Override Parameters, It in Chapter 3.6). 
The APPLID startup override parameter is also needed at system 
initialization unless the IPPLID operand is issued with the DPBTCT 
TYPE=IIITIAL macro during table generation (see below). 

2. During terminal control table generation, the DPHTCTlYPB=GPBBTBY 
macro cannot be used. Instead, the DPBTCT ~YPB=TBR!IRAL macro must 
be used (in addition to the DPBTCT TYPB=IIITIAL and DFBTCT 
TYPB=FINAL macros). The DFBTCT macros are fully explained in the 
CICS~SIste!. Programmerl§_Beference !anual. The DPRTCT 
TYPB=SDSCI and DFHTCT TYPB=LIHE macros are not needed. Only the 
following options apply to the entry level system: 

DFBTCT TYPB=IIITIAL 

ICC8BTH=VTA! 

APPLID 

OPRDLI! 

BA!AI 

BI!IN 

RAPOOL 

BATIl'tES 

SUFFIX 

Appendix C. CICS/DOS/VS-ELS Under VTA! 279 



DPSTCT TYPE=TERftIRAL 

ACCftETH=VTA!I 

ALTPAGE 

ALTPRT 

ALTSCRR 

CORNECT 

DEPSCRN 

FEATURE 

GMKSG 

OPERID 

OPERPRI 

OPERSET 

PGESTAT 

PRINTTO 

RELREQ 

RUSIZE 

TCTUAL 

TIOAL 

TRANSID 

TRMIDNT 

TRftPRTY 

TRKSTAT 

TRKTYPE 

280 CICS/DOS/VS~ELS User's Guide 



Appendix D. Printer Authorization Matrix 

The Printer Authorization Katrix allows a 3270 installation employing 
327q controllers to define classes of print devices and to authorize 
display operators to select printers for local copy operations. 
Information on local copy operations and on the format of the printer 
authorization matrix is given in IBM 3270 Information Display System: 
Component Description. 

If 3270 local copy operations are to be supported in a CICS/DOS/VS 
Entry Level system, the CICS/VS user aust prepare a printer 
authorization matrix and provide a transaction to enable it to be 
transmitted to the 3274 control unit. This appendix gives details of 
how this may be done. 

DEFINING THE PRINTER AUTHORIZATION KATRIX 

Basic Kapping Support provides the most convenient way of defining a 
printer authorization matrix for the 3274 control unit. A typical map 
definition is shown in Figure D.1. 

The first two rows of the map do not form part of the printer 
authorization matrix; they are used to present descriptive information 
to the display operator. 

The third row of the map contains a sequential string of attribute 
characters that uniquely identifies the buffer data that follows as a 
printer authorization matrix. The required string of attribute 
characters is X'60', X'Cl', X'D4', X'60'. The first character, X'60', 
is generated by specifying ATTRB=PROT in the DFH8DF macro; the remaining 
characters are specified in the XINIT operand. Bote that each of these 
characters is preceded by the SF (start field) control character X'lD' 
to identify it as an attribute byte. 

The fourth line of the map identifies a printer connected to address 
03, operating in shared mode, and available for local copy operations 
initiated from the terminals with addresses 00, 01, and 02. Further 
printers may be defined as required on succeeding lines. 

The final line of the map contains the string of attribute characters 
that identifies the end of the matrix. 

! Appendix D. Printer Authorization Matrix 281 



*******************'***************************************************** 
PRAM DFHMSD TYPE=ftlP, * 

MODE=INOUT, * 
CTRL= (FREEKB,FRSET) 

PRA!1 DFH!DI SIZE=(12,80) 
DFB!DF POS=(l,l), * 

ATTRB=PROT, * 
LENGTH=79~ * 
INITIAL='SCREEN IS FOR!ATTED TO LOAD PRINT AUTHORIZATION* 

MATRIX' 
DFHMDF POS=(2,l), * 

ITTRB=PROT; * 
LENGTH=19, * 
INITIAL=' HOLD DOWN ILT KEY AND PRESS· EOF KEY' 

DFH!DF P9S=(3,1), * 
ATTRB=PROT; , * 
LENGTH=6, * 
XINIT='lDC11DD41D60' 

* NEXT !ACRO DEFINES PRINTER ON PORT 03 
* OPERATING IN SHARED !ODE 
* NO DEVICE CLASSES ARE SPECIFIED 
* VALID SOURCE DEVICES IRE ON ADDRESSES 00, 01, AND 02 

DFHMDF POS=(4,l), * 
ATTRB=PROT, * 
LENGTH=51, * 
INITIAL='03JXXXXXXXXXXXXXXXX111YYYYYYYYYYYYYYYYYYYYYYYYy* 
yyyyl 

DFH!DF POS= (5, 1) ; . * 
ATTRB=PROT, * 
LEBGTH=6, * 
XINIT=11DC51DD51DC4' 

DFH!SD TYPE=FINAL 
************************************************************************ 

Figure D.l. Map Definition for 'Printer Authorization Matrix 

LOADING THE PRINTER AUTHORIZATION MATRIX 

The CICS/VS user must write a transaction to transmit the printer 
authorization matrix to the 3214 controller. If a map such as that 
shown in figure D.1 is employed, it may be transmitted by a command of 
the form: 

EXEC CICS SEND !APSET(IPRAMI) MAP('PRA!l') !APONLY ERASE 

The transaction must be invoked from a 3216 keyboard-display or from_ 
the terminal at port 0 of a 3274 controller. When the matrix is . 
displayed, the terminal operator loads the matrix by holding down the 
ALT key and pressing the EOP key. 

The display must be operating in 80-column mode to load the matrix. 
This corresponds to alternate screen-size mode for all models of the 
3218 displays; the correct mode may thus be selected by coding 
SCRNSZE=ALTERNATE in the PCT entry for the matrix-load transaction. The 
ERASE option in the EXEC CICS SEND statements shown previously ensure 
that the display is set to the correct mode before the map is displayed. 

282 CICS/DOS/VS-ELSUser's'Guide 



t 
t 

Appendix E. Loading Programmed Symbols 

t The IB!! 3278 and IB!! 3279 displays are supplied with two 191-character 
I sets of symbols. They can also contain additional program symbol store 
I for up to six 191-character, user-defined sy.hol sets. This enables the 
I user to define symbol sets which contain special characters, for example 
I italic lettering or greek symbols. 

Although it is possible to load a symbol set from any application 
program, the user will probably wish to prohibit this, and will allocate 
each program sy.hol store to installation standard symbol sets. His 
start-up procedure should thus include execution of a transaction which 
loads as many as six symbol sets. 

The data to be loaded is stored in a form called a "structured 
field". The user-written application program which loads the structured 
fields will use a SEND command of the following fora: 

EXEC CICS SEND FBO!(data-area) 

FBO! 

LENGTH 

WAIT 

STBFIELD 

LENGTH (data value) 
WAIT 
STRFIELD 

Indicates the name of the data-area from which the symbol set 
is to be taken. The format of this data area is defined in the 
IB! 3270 component description. 

Indicates the length of the data string containing the set of 
programmed symbols. 

Indicates that the application must wait until the set of 
symbols has been loaded. 

Indicates that the data is stored in the form of a structured 
field. 

Appendix E. Loading Programmed Symbols 283 





Appendix F. The Facility Error Recognition System 

The Pacility Error Recognition System (PEBS) records BTAK terminal 
errors, and displays selected error information on request. 

lERS is an inteqral part of CICS/VS-ELS Version 1.5. It will be 
incorporated in the system at startup, unless the user Specifies PERS=BO 
in the startup overrides. 

I PERS is a diaqnostic tool, and is used by IB! CUstomer Engineers to 
I diagnose hardware faults. CICS/VS-ELS users are not expected to use it 
I unaided. Consequently, details of it.s use are not qiven in this quide. 
I For further inforllation see the CICSI!S Operator's Guide. 

Appendix F. The Facility Error Recognition System 285 





Appendix G. Transferring to a Full CICS/DOS/VS System 

The following information is provided as guidance for the entry level 
system user who wishes to implement a full-function CICS/DOS/VS system. 

CICSNS Generation 

A full C!CS/DOS/VS system is produced by a two-stage system generation 
process, which allows the CICS/DOS/VS modules to be tailored to suit the 
requirements of the individual installation. The distribution volume 
includes a dump of a private core-image library that contains 
pregenerated versions of all the full CICS/DOS/VS modules, and these can 
be used as a starting point for installing the full-function system. 
Detailed information about generating full CICS/DOS/VS is contained in 
the CICS/VS System Programmer's Guide mOSIVS). 

Table Generation 

CICS/DOS/VS-ELS tanles are source code compatible with full CICS/DOS/VS, 
but need to be reassembled before thay can be used on a full system. 
Note however, that some options of the PPT and PCT have different 
defaults in the full system. See the CICSl!S~te~~rogrammer'~ 
Reference !anual for information about the PPT and PCT. 

SYSTEM INITIALIZATION TABLE 

For full CICS/DOS/VS, a system initialization table (DFHSIT), containing 
"default" startup overrides, is required. The list of startup overrides 
for the full system is not identical to the list for the entry level 
system. See the CICSIYS System Programmer's Guide mOS/VS}. 

The pregenerated system initialization table DFHSIT4$, provided in 
the private core-image library supplied for the full system, will load a 
full system that is similar in function to the entry level system. See 
the CICS/VS System Program.er's Reference Sanual for details about the 
system initialization table. 

BMS Maps 

BMS maps assembled under the entry level system are object code 
co.patible with full CICSjDOS/VS. 

Application Programs 

Application programs assembled under the entry l~vel syste. are object 
code compatible with full CICS/DOS/VS. 

Appendix G. Transferring to a Full CICS/DOS/VS System 281 





Bibliography 

Additional information about CICSjDOS/VS is available in the following 
IBK CICS/VS publications: 

General Information, GC33-0066 

System Program.er's Guide (DOSI9S), SC33-0070 

System Program.erts Reference Manual, SC33-0069 

Diagnosis Reference, LC33-010S 

!essages and Codes, SC33-0081 

!aster Terminal Operator's Reference Su.mary, SI3l-60ll 

Problem Determination Guide, SC33-0089 

Operator's Guide, SC33-0080 

Application Programmer's Reference Manual ~ommand Level), SC33-0077 

Application Program.erts Reference !anual (RPG-I!lt SC33-0085 

Information about VSE job control and library maintenance is 
contained in the publication VSE/Advanced Functions System controi 
Statement,§, SC33-609S. Other VSE publications are listed in the IB! 
Systea1370 Bibliography, GC20-0001. 

Information about IB! 3270 terminals is available in the following 
publications: 

Operator's Guide for the IBK 3270 Information Display System, GA27-2742 

IB! 3270 Information Display System Component Description, GA27-2749 

IBft 3270 Information Display System: Color and Programmed 
Symbols, GA33-30S6 

Bibliography 289 





Index 

Each page number in this index refers to the start of the paragraph containing the 
indexed item. 

*ENTRY PLIST statement, RPG II 122 

ABEND command 263 
abnormal termination, forcing 263 
access method (files) 

specifying at startup (PILE=) 219 
access to system information 33 

ADDRESS command 34 
CICS/VS storage areas 34 
common work area (CWA) 33 
EXEC interface block ~IB) 34 
terminal control table user's area 

(TCTUA) 33 
transaction work area (TWA) 33 

ACCMETH operand, n~HPCT macro 164 
ADDRESS command 34 
AID (attention identifier) character 

availability 14 
AID (attention identifier) character 
handling 

ALARM option, terminal control 30 
alternate indexes, VSAM 40 
.lLTSCRN operand, DPHTCT macro 184 
ANYKEY option of HANDLE AID command 28 
APOST option 

COBOL 91 
application data area of screen 16 
application design 9 

CICS/VS commands 10 
examples, explanation of use 10 
exceptional condition handling 72 
interval control 65 
program control 58 
temporary storage control 53 
terminal control 14 
transient data control 48 

application programming 9 
assembler language 75 
COBOL 89 
PL/I 105 
pseudo-conversational 61 
RPG II 119 

application programs 
compilation and translation 191 
execution 153 
introduction to CICS/VS logic for 137 
logical levels 58 
preparation 191 

APPLID startup override parameter 
(VTAM) 217 

ASKTIME command 65 
assembler programming 75 

cataloged procedure for assembly 198 
example of use 199 

command syntax 75 
\ description of UPDATE sample program 79 

general rules for 76 
listing of UPDATE sample program and 

maps 81 
register conventions for commands 77 
register conventions on entry 77 

assembler programming (continued) 
restrictions 78 
translated code 16 
translation of programs 191 
use of CALL 19 

ATI (automatic transaction initiation) 49 
attention identification character (AID) 

availability 14 
attention identifier ~ID) 

handling 28 
l~~RB operand, DPRMDP macro 210 
attribute character, 3270 18 

set of named combinations 23 
automatic transaction initiation 49 

transient data control 
(TRANSID ,TRIGLEV) 161 

trigger level 161 
autoskip field (3270 attribute 
character) 18 

auxil iary trace 
DASD space 152 
JeL for printing 225 
specifying at startup 221 

backwards browsing, VSAM 39 
Base co lor 19 
BASE operand, DPHMSD macro 20~ 
basic mapping support (BMS) 21 

cataloging maps 213 
commands 25 
data mapping and formatting 21 
defining maps 201,22 
exceptional conditions 32 
introduction to 200 
introduction to CICS/VS logic 137 
map sets 22 
mapping input data (RECEIVE i!AP) 26 
mapping output data (SEND MAP) 26 
physical map 201 
programming considerations 201 
symbolic description map 201 
using maps 23 

basic telecommunications access method 
(BTA!) 

BUFSIZE operand, VSTAB macro 245 
BLKKBYL op~rand, DFBFCT macro 165 
BLKSIZE operand, DPHDCT macro 158 
BLKSIZE operand, DFHPCT macro 165 
BMS (see basic mapping support) 
bright intensity field (3270 attribute 
character) 18 

bringing up the system 1ij6 
EXEC statement 152 

browsing operations, VSA! 38 
ending (ENDBR) 44 
reading next record (READNEXT) 43 
reading previous record (READPREV) 43 
resetting starting point ~ESETBR) 4ij 
specifying starting point (STARTBR) 42 

BSCODE startup override parameter 217 
BTlM startup override parameter 218 

Index 291 



BUFFERS operand, DFHFCT macro 165 
BUFND operand, DFHFCT macro 165 
BUFNI operand, DFHFCT macro 165 

performance considerations 246 
BUFNO operand, DFHDCT macro 158 
BUPSIZE operand, VSTAB macro 245 
BUFSP operclnd, DPHPCT macro 165 

performance considerations 246 

calling other programs (LINK co.mand) 59 
CANCEL command 68 
canceling interval control requests 

(CANCEL) 68 
cataloged procedures, supplied 197 
ca taloging maps 213 
checkout, program 251 
CICS/VS commands, format 10 
CICS/VS files 

required DASD space 152 
CICS/VS program logic 

introduction to 135 
CICS/VS tables 143 
CLEAR key, handling in program 28 
CLEAR option of HANDLE AID command 28 
COBOL programming 89 

cataloged procedure for assembly 
example of use 199 

cataloged procedure for compilation 198 
command syntax 92 
compilation 193 
description of UPDATE sample program 95 
general rules 92 
listing of UPDATE sample program and 

maps 97 
restrictions 95 

::odes 
EIBPN 275 
EIBRCODE 276 

::ommand languag e 
syntax checker 12 

::ommand language translator 11 
data sets 12 
optional facilities 12 

:ommand level interface 11 
:ommand syntax 

assembler language 75 
COBOL 92 
PL/I 108 
RPG II 120 

:ommands 
ASKTIME 65 
CANCEL 68 
CICS/VS 10 
DELETE (VSA!) 42 
DELETEQ TD 51 
DELET EQ TS 55 
HANDLE lID 28 
HANDLE CONDITION 72 
ISSUE ERASEAUP 27 
ISSUE PRINT 28 
LINK 59 
READ 40 
READQ TD 50 
READQ TS 54 
RETRIEVE 67 
RETURN 60 
REWRITE 41 

292 CICS/DOS/VS-ELS Oser's Guide 

commands (continued) 
START 66 
UlLOCK 41 
WRITE 4 '. 
iRITEQ TD 49 
MRITEQ TS 53 
XCTL 60 

CO!!ARE. option, program control 61,63 
cOllmon work area (CWA) 33 

specifying size at startup 
(WRKAR lSA) 221 

compilation 
cataloged procedures 197 
COBOL programs 193 
PL/I programs 194 
RPG II programs 196 

conditions ~ee exceptional conditions) 
console operator procedures 222 

CICS/VS startup 222 
CICS/VS termination 223 
console used as master terminal 225 

constants 
for examining EIBAID (or EAID) field 30 
for 3270 attributes 23 

control 
exclusive 

VSA! 38 
file 36 
interval 65 
passing without return (lCTL) 60 
passing, anticipating return (LINK) 59 
prograll 58 
returning (RETURN command) 60 
temporary storage 53 
terminal 14 
transient data 48 

control interval (VSA!) 246 
copying symbolic description maps 202 
core image library 271 
CTRL operand, DPH!SD macro 205 
CUADDR operand, DPHTCT macro 184 
CUFEAT operand, DPHTCT macro 184 
CUPOSN operand, DPHTCT macro 184 
CURSOR option, terminal control 30 
cursor positioning, symbolic 25 
CiA 

(see comllon work area) 
CiA option of ADDRESS command 34 
CYLOPL operand, DPHPCT macro 165 

data base opercltions 34 
data communication 

introduction to 3 
data fields on screen 16 
data mapping and formatting 21 
data set control information 

DPHDCT TYPE=SDSCI lIacro 158 
data set description 

DPHPCT TYPE=DAT.ASET macro 164 
DATASET operand, DPHFCT macro 166 
DATASE'r option, file control 450 
date format inCtCS/VS messages 218 
DATPORK startup override parameter 218 
DCT (destination 'control table) 157 
DCT startup override parameter 218 
DEBUG option 

COBOL 90 



DEBUG option (continued) 
PL/I 106 
RPG II 120 

debugging 248 
DECPOS operand, DPB!DP macro (BPG II) 211 
defining maps 22,201 

assembler language examples 86,87 
COBOL examples 101,102 
PL/I examples 116 

defining terminal line group 
DFBTCT TYPE=GPENTRY macro 183 

definition of maps 115 
DELETE command, VSA! ~2 
DELETEQ TO com.and 51 
DELETEQ TS command 55 
deleting 

intrapartition transient data queue 
(DELETEQ TD command) 51 

record 
file control (DELETE) 38 

temporary storage queue (DELE~BQ TS 
command) 55 

VSIM records (DELETE command) 42 
designing 

applications 9 
of system 135 

DESTFAC operand, DPHDCT macro 158 
DESTID operand, DFHDCT macro 159 
destination cont:col table (DCT) 157 

DFBDCT operands 158 
DFHDCT TIPE=8XTRA macro -
extrapartition destinations 158 

DPBDCT TYPE=INDIRECT macro -- indirect 
data destinations 158 

DFBDCT TYPE=INTRI .acro -
intrapartition destinations 158 

DFHDCT TYPE=SDSCI macro -- data set 
control information 158 

example of destination control 
table 162 

startup override para~eter 218 
destinations· 

extrapartition 48 
indirect 49 
intrapartition 48 
system programming (DPHDCT .acro) 157 

DEVADDR operand, DPBDCT lIacro 159 
DEVICE operand, DPHDCT macro 159 
DEVICE operand, DrHPCT macro (ISA! 
only) 166 

DPHAID set of constants 30 
DPHBMSCA set of 3270 attribute 
constants 23 

DPHDCT macro 
operands 158 
TYPE=EXTRA -- extrapartition 
destinations 158 

TYPE=INDIRECT .- indirect data 
destinations 158 

TYPE=INTRA -- intrapartition 
destinations 158 

TYPE=SDSCI -- data set control 
information 158 

DPBDUP 
(see dump utility program) 

DPBPCT macro 
operands 164 

DPHPCT macro (continued) 
TYPE=DATASET -- data set 
description 164 

TYPE=SBRCTL -- 'SA! shared resources 
control 164 

DPHGEN lIacro, servicing aid 239 
DPHJCBLS macro, system bring-up 146 
DFHMDP macro, map field defin1tion 
DrB!DI macro, map definition 208 
DrHBSD macro, map set definition 203 
DPBPCT macro 

operands 172 
TYPE=ENTRY -- transaction control 

information 172 
TYPE=GROUP -- required entries 172 
TYPE=INITIAL 171 

DrBPCT TYPE=INITIAL 
TRANSEC operand 171 

DPB PPT macro 
operands 177 
TYPE=ENTRY -- processing program 
description 176 

TYPE=GROUP -- required entries 176 
DPBSNT macro 

operands 180 
TYPE=ENTRY -- terminal operator 
description 180 

DPHTCT macro 
operands 184 
TYPE=GPENTRY -- terminal line group 
definition 183 

VTA!! restriction 279 
DPHTCT TYPE=LINE 

ERRATT operand 183 
direct access to records 36 
dispatching of tasks 136 
displaying error messages on 3270s 183 
distributed machine-readable material 145 

contents of distribution volumes 145 
processing distribution volumes 146 
program directory 145 

DL/I data bases 34 
DL 1 sta rt up override param,ater 218 
DOS/VS operating system generation 

establishing standard labels 145 
DSCNAKE operand, DFHDcr macro 160 
DSECT type of DPBftSD macro 204 
dUllP 

analysis 265 
identifying 264 
specifying in program (DU!P 

command) 264 
specifying type at startup ~DU!P) 219 
transaction 

data set specification 218 
device type specification 218 

types 265 
DU!P command 264 
dump control 263 

introduction to CICS/VS logic 139 
dump file 

JCL for printing 224 
DUBP option 

RPG II 119 
dump utility program (DFHDUP) 223 

JeL for use 224 
DU!PCODE option, DU!P command 264 
DU5PDEV startup override parameter 218 

. Index 293 



DUMPDS startup override parameter 218 
DUPKEY condition (VSAM) 47 
DUPREC condition 47 

BAlD field 273 
examining contents 30 

ECALEN field 273 
~CPOSN field 274 
BDATE field 274 
gDF ~ee execution diagnostic facility) 
BD S field 274 
~FN field 274 
~IB (see EXEC interface block) 
gIBAID field 273 

examining contents 30 
~IBCALEN field 273 
~IBCPOSN field 274 
~IBDATE field 274 

updating 65 
!!:IBDS field 274 
i!:IBFN codes 275 
iUBFN field 274 
BIBRCODE codes 276 
~IBRCODE field 274 
~IBREQID field 275 
~IBTASKN field 275 
~IBTIME field 275 

updating 65 
~IBTRMID field 275 
&IBTRNID field 275 
~mptying intrapartition queues 
automatically 49 
~NDBR command 44 
~NDDATA condition 70 
sNDFILE condition 41 
~nding browsing operation (ENDBR) 44 
!NTER command 263 
!!:Nr.rER key 

handling in program 28 
!!:NTER option of 3AaDLE AID comaand 28 
::n·t.ry level system 

execution 211 
introduction to 3 

~ntry level system summary 269 
core image library 271 
relocata~le library 269 
source statement libraries 269 

~QUAL option, file control 45 
~rase all unprotected fields 

ISSUE ERASEAUP command 27 
~RASE option, terminal control. 30 
~RASEAUP option, terminal control 30 
~RCODE field 214 
m:EQID fiel{i 215 
mRATT operand 

DFHTCT TYPE=LINE 183 
i!:RROPT operand, DFHDCT .acro 160 
~RRoa exceptional condition 72 
~rror handling 72 
~TASKN field 275 
~TIME field 275 
~T RMID field 275 
~TRNID field 275 
!xamples, table definition 

destination control table 162 
file control table 110 
processing program table 179 

294 CICS/DOS/VS-ELS User's Guide 

examples, table definition (continued) 
program control table 175 
sign-on table 181 
terminal control table 188 

exceptional conditions 72 
basic mapping·support 32 
ERROR 72 
file control 47 
HANDLE CONDITION command 

options 73 
handling of 72 
interval control 70 
list of conditions 73 
program control 64 
temporary storage control 56 
terminal control 32 
transient data control S2 

exclusive control, VSAM 38 
EXEC interface block (EIB) 273 

description 34 
EIBPN codes 275 
EIBRCODE codes 276 
field contents 273 

EXEC statement 
to bring up CICS/VS 152 

execution 
application programs 153 
entry level system 211 

master terminal operations 226 
startup override parameters 217 
user terminal operations 234 

sample programs 146,153 
execution diagnostic facility (EDF) 251 

checking out pseudo-conversational 
programs 261 

displays 
overtyping 260 
use of 254 

functions 251 
installing 253 
invoking 253 
required PCT entry 172,175 
required PPT entry 177,178 
storage requirements 247 

expiration time 65 
Extended color 19 
EXTENT operand, DF.HFCT macro (ISAM 
only) 166 

EXTRA startup override paralleter 219. 
extrapartition destinations 48 

DFHDCT TYPE=EXTRA macro 158 
specifying requirement at startup 

(EXTRA) 219 

F option 
PL/I 105 

facility error recognition system 285 
FCT (see file control table) 
FCT startup override .pa~ameter 219 
PDUMP startup override parameter 219 
FE option 

COBOL 90 
PL/I 106 

FERS (facility error recognition 
system) 285 

FERS startup override parameter 219 
field conce~ts, 3270 17 



file 
identification 36 
VSAft 37 

file control 36 
commands 40 
deleting VSlft records (DELETE) 42 
direct access to records 36 
ending browsing operation ~NDBR) 44 
exceptional conditions 47 
file identification 36 
introduction to CICS/VS logic 138 
options 45 
reading a record (READ) 40 
reading next record when browsing 

(READNEXT) 43 
reading previous record when browsing 

(READPREV) 43 
resetting starting point for browsing 
operation (RESETSR) 44 

sequential access to VS1M records 
(browsing) 38 

specifying starting point for browsing 
operation (STARTBR) 42 

updating record (REWRITE) 41 
VSAM browsing 38 
VSAM files 31 
writing new record (WRITE) 41 

file control table (FeT) 163 
DFHFCT operands 164 
DFHFCT TYPE=DATASET data set 
description 164 

'examples 170 
startup override parameter 219 

file screen examples 
map XDFHAMB 87 
map XDFHCMB 102 
map XDFHPf!B 116 

FILE startup override parameter 219 
FINAL type of DFHMSD macro 204 
FLAG option 

COBOL 91 
PL/I 107 

FH operand, DFHPCT macro 172 
FN operand, DFHPPT macro 177 
formatted dump 265 
formatting CBMS) 21 
FREEKB option, terminal control 31 
FROft option 

ENTER command 263 
file control 45 
interval control 69 
temporary storage control 55 
terminal control 31 
transient data control 51 

FRSET option, terminal control 31 
function key meanings, EDF 256 
functions of execution diagnostic fa,cility 

(EDF) 251 

generation 
of tablas 155 
of VSE supervisor 143 

generic keys, VSAft 37 
GENERIC option, file control 
GPTCU operand, DFHTCr macro 
GPTY2E operand, DFHTCT macro 
GRPNAftE operand, DFH~DF macro 

ij5 
185 
185 

212 

GTEQ option, file control 45 

HANDLB AID comaand 28 
RANDLE CONDITION command 12 

list of exceptional conditions 73 
options 13 

highlighting 19 
BONEOM option, terminal control 31 

IB! 3210 14 
input operations 14 

identification 
file 36 
record 

VSAl! files 31 
INDlREA operand, DFHFCT macro (ISAft 
only) 166 

INDDEST operand, DFHDCT macro 160 
indexes, alternate (VSA!) 40 
indirect destinations 49 
INDSIZE operand, DFHFCT macro (ISAft 

only) 166 
INITIAL operand, DFHMDF macro 212 
initiating transactions 

automatic transaction initiation 49 
by PA or PF key (TASKREQ), PCT 174 
passing data tO'new transactions 67 
START com.and 66 

input operations, terminal control 14 
insert-cursor indicator (3270) 20 
inserteq text, RPG II 121 
installation 

of execution diagnostic facility 
(EDF) 253 

of system, using DFBJCELS macro 1ij6 
interface 

command level 11 
interval control 65 

canceling interval control requests 
(CANCEL command) 68 

exceptional conditions 70 
initiating transaction (START 

command) 66 
introduction to CICS/VS logic 140 
options 69 
requesting current time of day (ASKTI!E 

command) 65 
retrieving data stored for transaction 

(RETRIEVE command) 67 
specifying request identifiers 65 

INTERVAL option, interval control 69 
INTO option 

file control 45 
interval control 69 
tem.porary storage control, 56 
ter~inal control 31 
transient data control 51 

INTRA startup override parameter 219 
intrapartition destinations 48 

DFHDCT rIPE=INTBA macro 158 
specifying requirement at startup 

(INTRA) 219 
introillction 

to CICS/VS program logic 135 
to data base operations 34 
to data communication 3 

Index 295 



introduction (continued) 
to entry level system 3 

IOSIZE operand, DFBFCT macro (1SAM 
only) 167 

ISAM 
INDAREA 246 
INDSIZE 246 

ISSUE ERASEAUP command 27 
ISSUE PRINT command 28 
ITEl! option 56 
ITEMERR condition 56 

job control 
assembling and cataloging maps 215 
assembling application program 1~2 
bringing up syste~ 150 
cat.aloged procedures for assembly and 
compilation 198 

CICS/VS tables 156 
compiling COBOL application 

programs 193 
compiling PL/I application programs 195 
compiling RPG II application 

prog ram s 196 
consolidatinq log file 224 
establishing partition standard 
labels 145 

printing auxi11ary trace file 225 
printing dump file 224 
printing SYSLST file 223 

JUSTIFY operand, DFHKDF macro 212 

key length, maximum 167 
keyboard, unlocking (FREEKB option) 31 
KEYLEN operand, DFHFCT macro 167 
KEYLENGTH option, file control 45 
keys, VSAM 37 
keyword fields on screen 16 

LANG operand, DFH!SD macro 206 
LC option 

PL/I 105 
LENGERR condition 

file control 47 
interval control 70 
temporary storage control 57 
transient data control 52 

LElfGTH operand, DFBl!DF macro 213 
LENGTH option 

file control 46 
interval control 69 
program 'control 63 
temporary storage control 56 
transient data control 51 

levels, application program logical 58 
library 

core image 271 
relocatable 269 
source statement 269 

~ee also source statement 
libraries) 

light pen , 
handling in program 28 

LIGHTPEN option of HANDLE AID command 28 

296 CICS/DOS/V5-ELS User's Guide 

L1NECOUNT option 
PL/I 107 

LINELST operand, DFHTCT macro 185 
LINFEAT operand, DFHTCT macro 185 
LININL operand, DFHTCT macro 186 
LINK command 59 
linking to anotner program anticipating 
return (LINK) 59 

LIST option 
COBOL 91 
RPG II 119 

listing data set 12 
listing of UPDATE sample program and 

maps 81,111 
LIS'lX option 

RPG II 119 
local copy operations 281 
lockout prevention, VSAM 38 
log file 

JCL for consolidating 22q 
logical levels, application program 58 
looping in error-handling routine 
LRECL operand, DFHFCT macro (ISAM 
only) 167 

L40 option, terminal control 31 
L64 option, terminal control 31 
L80 option, terminal control 31 

machine-readable material 145 
macro instructions 

APAR fix application (DFHGEN) 239 
installation (DFHJCELS) 146 
map definition" 203 
table g~neration 155 

MAP option, terminal control 31 
map set 22 
MAP type of DFHMSD macro 204 
map XDFBAaA (menu screen) 86 

m~p definition 86 
menu screen layout 86 

map XDFHAltB (file screen) 87 
file screen layout 87 
map definition 87 

map XDFHCl!A (menu screen) 101 
map definition 101 
menu screen layout 102 

map IDFHCMB (file screen) 102 
file screen layout 102 
map definition 102 

map IDFH?MA (menu screen) 115 
map definition 115 
menu screen layout 116 

map IDFHPMB (file screen) 116 
file screen layout 117 
map definition 116 

l!APFAIL condition, terminal control 32 
mapping 

input data (RECEIVE MAP) 26 
output data (SEND MAP) 26 

maps 
altering format 23 
cataloging 213 
copying symbolic description 202 
defining 22,201 
defining fields within (DFHl!DF 

macro) 209 
defining sets 203 



maps ~ontinued) 
length restriction, RPG II 123 
naming 

DFHMDI macro 208 
in application program (K!P 
option) 31 

physical 201,22 
references to fields, in application 

programs 26 
symbolic description 201,22 
temporary modification of attributes or 
ini tial data 24 

using 23 
MAPSET option, ter~inal control 31 
MAR option 

PL/I 105 
MARGINS option 

FL/I 101 
mass insert operations (VSAM) 38 
MASSINSERT option, file control (VSAM) 46 
master terminal operations 226 

use of console 225 
MDT, modified-data tag 3210 20 

resetting (FRSET option) 31 
menu screen e~aaples 

map IDFHAMA 86 
map XDFHCM l 101 
map XDFHPMA 115 

menu screen layout 
assembler programs 86 
COBOL programs 102 
PL/I programs 116 

message area of screen 17 
messages 

controlling level generated 220 
format of date 218 

MODE operand, DFHMSD macro 206 
modifed-data tag (MDT), 3210 

resetting (FRSET option) 31 
modified-datd tag (~DT), 3210 20 
MODNA~E operand, DFHTCT macro 182 
MSGlVL startup override parameter 220 
MSTIND operand, DFHFCT macro (ISA!! 

only) 161 
multipoint lines 241 
multiprogramming 

introduction to CICS/VS logic 141 
multitasking 

introduction to CICS/VS logic 141 
multithreading 

introduction to CICS/VS logic 141 
MIT startup override parameter 220 

NODUMP option 
RPG II 119 

NOLIST option 
COBOL 91 
RPG II 119 

NOLISTX option 
RPG II 119 

nondisplay field (3210 attribute 
character) 19 

NONUl! option 
COBOL 91 

NOOP3EQUENCE option 
PL/I 108 

NOOPTIONS option 
PL/I 108 

NOP option 
PL/I 105 

normal intensity field (3210 attribute 
character) 18 

NOS option 
PL/I 105 

NOSEQ option 
COBOL 91 

NOSEQUENCE option 
PL/I 108 

NOSOURCE option 
PL/I 108 

NOSPIE opt ion 
assembler language 75 
COBOL 91 
PL/I 101 

NOTFND condition 
file control 41 
interval control 70 

NOXREF option 
COBOL 91 
Pl/I 108 

BRECDS operand, DFHFCT macro (IS!M 
only) 167 

KS option 
PL/I 105 

NSD startup override parameter 220 
NSEQ option 

PL/I 105 
NUM option 

COBOL 91 
numeric-only field (3210 attribute 
character) 18 

NX option 
FL/I 105 

OCCURS operand, DFH!DF macro 213 
OM option 

PL/I 105 
OP option 

PLjI 105 
operations 

input 14 
master terminal 226 
output 15 
user terminal 234. 
VSA! mass insert 38 

operator identification card reader 
handling in program 28 

operator procedures 
console 222 
master terminal 226 
user terminals 234 

OPERID option of BANDLE AID command 28 
OPIDENT operand, DFHSNT macro 180 
OPMARGINS option 

PL/I 108 
OPNA!E operand, DFBSNT macro 180 
OPSEQUENCE option 

PLjI 108 
options 

ADDRESS command 34 
file control 45 
HANDLE CONDITION command 73 
interval control 69 

Index 297 



options (continued) 
program control 63 
temporary storage control 55 
terminal control 30 
transient data control 51 
translator 

assembler 1anguage 75 
COBOL 89 
PL/I 105 
RPG II 119 

VSE supervisor generation 143 
OPTIONS option 

PL/I 108 
OPTIONS(MAIN) specification CPL/I) 109 
OS option 

PL/I 105 
output operations, terminal control 15 
overlaying part of screen 15 
override parameters, startup 217 
overtyping EDF displays 260 

PA options of HANDLE AID command 28 
parameters, startup override 217 
partition standard labels 

DFHJCELS macro 147 
passing control 

anticipating return (LINK) 59 
without return (XCTL) 60 

passing data 
between programs 61 
between transactions 67 

PASSWD operand 
DFHFCT macro (VSAM only) 168 

PASSWRD operand 
DFHSNT macro 181 

PCT (see program cont~ol table) 
performance 243 
PF options of HANDLE AID command 28 
PG~J:LANG operand, DFHPPT macro 179 
physical map 22,201 
PICIN operana, DFH~DF macro 213 
PICOUT opera4d, DFHMDF macro 213 
PL/I programming 105 

cataloged procedure for assembly 
example of use 200 

cataloged procedure for compilation 198 
command syntax 108 
compilation 194 
description of UPDATE sample 

program 110 
general rules for 109 
listing of UPDATE sample program and 

maps 111 
OPTIONS(MAIN) specification 109 
program segments 109 
restrictions 109 

POS operand, DFHMDF macro 210 
PPT (see processing program table) 
preparation of application programs 191 
primary source-statement library 145 
PRINT option, terminal control 32 
print requests 

overriding at startup 220 
printing contents of screen (ISSUE 

PRINT command) 28 
specifying handling rules at 
startup 220 

298 CICS/DOS/VS-ELS User's Guide 

PRINT startup override parameter 220 
printer 

alternative (VTAM only) 28 
authorization matrix 281 
elig ibility, availability 28 
local copy operation, comparison with 

ISSUE PRINT 28 
processing program description 

DFHPPT TYPE=ENTRY macro 176 
processing program table (PPT) 176 

DFHPPT operands 177 
DFHPPT TYPE=ENTRY -- processing program 
description 176 

examp1e 179 
startup override parameter 220 

program attention keys 
handling in program 28 

program control 58 
application program logical levels 58 
exceptional conditions 64 
introduction to CICS/VS 10gic 137 
linking to another program anticipating 
return (LINK) 59 

options 63 
passing data between programs 61 
pseudo-conversational programming 61 
returning program control (RETURN 

command) 60 
transferring program control (ICTL) 60 

program control table (PCT) 171 
DFBPCT operands 172 
DFHPCT TYPE=ENTRY -- transaction 
control information 172 

DFHPCT TYPE=GBOUP --. requ~red 
entries 172 

DFHPCT TYPE=INITIAL 171 
example 175 
startup override parameter 220 

program directory 145 
program function keys 

h~ndling in program 28 
PROGRAM operand 

DPHPCT macro 172 
DFHPPT macro 179 

PROGRAM option 
program control 63 

program segments 
PL/I 109 

Programmed Symbols 20 
loading into program symbol store 283 

programs 
checking out 251 
passing data between 61 

protected field (3270 attribute 
character) 18 

pseudo-conversational programming 61 
program checkout 261 

QUEUE option 
temporary storage control 56 
transient data contro1 52 

queues 
intrapartition, emptying 
automatically 49 

temporary storage 53 
transient data 48 



QUOTE optio n 
COBOL 91 

QZERO condition 52 
use with automatic transaction 
initiation 49 

RBA option, file control (VSAM) 46 
READ command 40 
reading 

data from temporary storage queue 
(READQ TS) 54 

data from transient data queue (RBADQ 
TD) 50 

next record when browsing ~EADNEXT) 43 
previous record during VSAM browsing 
operation (REA DPREV) 43 

record 
file control (READ) 40 

READNEXT command 43 
READPREV command 43 
READQ TD command 50 
READQ TS command 54 
RECEIVE MAP command 26 
receive mode (terminal status) 231 
RECFORM ope rand 

DFHDCT macro 160 
DFHFCT macro 168 

record 
browsing (VSAM) 38 
deleting VS~M 38,42 
direct access to 36 
identification 

VS~M files 37 
reading 

file control (READ command) 40 
next when browsing (READNEXT) 43 
previous when browsing 

(READPREV) 43 
sequential access to (VSAM browsing) 38 
updating 

fi+e control (REWRITE command) 41 
writing new (adding) 

file control (WRITE command) 41 
RECSIZE operand, DFHDCT macro 160 
reduction of response time 

multipoint lines 247 
terminal control table 241 

reduction of working set 
CI size 246 
DFHFCT TYPE=DATASET 246 
VSAM ESDS files 246 
VSAM shared resources 247 

RELOAD operand, DFHPPT macro (RPG II 
only) 119 

relocatable libr&ry 269 
REQID option 

file control (VSAM) 46 
interval control 69 

request identifiers, interval control 65 
required entries in CICS/VS control tables 

DFHPCT TYPE=GROUP 112 
DFHPPT TYPE=GROUP 116 

RESETBR command 4ij 
resetting starting point for browsing 
operation (RES8TBR) 44 

resource sharing (VSAM) 
setting limit (STRNO) 170 

RETRIEVE command 67 
retrieving data stored for transaction 

(RETRIEVE command) 61 
RETURN command 60 
returnin.g program control (E'. ETURN 

command) 60 
REWIND operand, DFHDCT macro 160 
REWRITE command 41 
RIDFLD option, file control 46 
RKP operand, DFHFCT macro (ISAM only) 
RPG II programming 119 

cataloged procedure for assembly 
example of use 200 

cataloged procedure for compilation 
command syntax 120 
compilation 196 
EIB field names 213 
general rules for 121 
listing of VSAM browse sample 

program 123 
restrictions 123 

RPS operand, DFHFCT macro 168 
RRN option, file control (VSAM) 46 
RSCLMT operand, DFHFCT macro 169 
running sample programs 146 
running user applications 153 

S option 
PL/I 105 

sample maps 
map XDFHAMA (menu screen) 86 
map XDFBAMB (file screen) 81 
map XDFHCKA (menu screen) "01 
map XDFHCMB (file screen) 102 
map XDFHPMA (menu screen) 115 
map XDFBPMB (file screen) 116 

sample programs 
assembler language 19 
COBOL 95 
execution of 146,153 
PL/I 110 
RPG II 123 

screen layout 
file 111 

screen layout design 16 
application data area 16 
data fields 16 
input operations 14 
keyword fields 16 
message area 11 
output operations 15 
overlaying part of screen 15 
stopper fields 16 
title area 16 

screen sizes 21 
selection ~CRNSZE), peT 113 

SCRNSZE operand, DF IlPCT macro 113 
SCTYKEY operand, DFHSNT macro 181 
secondary source-statement library 145 
security keys 

EDF 253 
operators (SNT) 181 
transactions (peT) 114 

segments, PL/I program 109 
selector pen 

handling in program 28 

168 

199 

Ind.ex 299 



selector-pen detectable field (3270 
attribute character) 20 

SEND aAP command 26 
SEQ option 

COBOL 9'. 
PL/I 105 

SE QUENCE opt ion 
PL/I 108 

sequential access to VSAM records 
(browsing) 38 

servicing 239 
SERVREQ operand, DPHPCT macro 169 
SET option 46 

file control 46 
interval control 10 
terminal control 32 
transient data control 52 

sharing VSAM resources 39 
performance considerations 241 

sign-on table (SNT) 180 
DFHSNT operands 180 
DFHSNT TYPE=EaTRY -- terminal operator 
description 180 

example 181 
SIZE operand, DFH~DI macro 208 
skip-sequential processing, VSA! 39 
SIT (see sign-on table) 
SOURCE option 

PL/l 108 
source statement libraries 

contents 269 
primary 145 
secondary 145 
servicing 239 

SPACE1, SPACE2, SPACE3 options 
COBOL 91 

standard labels 
partition, DFBJCELS macro 147 
partition, establishing 145 

START command 66 
STARTBR command 42 
starting task (see initiating transaction) 
startup 

alternative job stream 223 
by console operator 222 
override parameters 217 

stopper fields on screen 16 
STORAGE operand, DFHMSD macro 207 
STRNO operand, DFBFCT macro (VSA! 
only) 169,170 

performance considerations 246 
summary 

entry level system 269 
supervisor generation 143 

VSE 143 
symbolic cursor positioning 25 
symbolic description map 22 
symbolic description map (B!S) 201 
symbolic description aaps 

copyinq 202 
syntax checker 12 
syntax notation, explanation 4 
syntax of com.ands 

assembler language 15 
COBOL 92 
PL/I 108 
RPG II 120 

300 CICS/DOS/VS-ELS User's Guide 

SYSLST file 
JCL for printing 223 

system 
control functions 

introduction to CICS/VS logic 142 
design 135 

introduction to CICS/VS program 
logic 135 

execution 217 
JCL to run .150 
programming 135 
servicing 239 

DFHGEN macro 239 
servicing CICS/VS source library 

books 239 
summary 269 
table generation 155 

system information 
access to system information 33 

table 
DCT - destination control 157 
FCT - file control 163 
PCT - program control 171 
PPT - processing program 176 
SNT - sign-on 180 
TeT - terminal control 182 

table qeneration 155 
destination control table (DCT) 157 
FeT - file control table 163 
peT - program control table 171 
performance considerations 247 
PPT - processing program table 176 
SNT - sign-on table 180 
terminal control table (TCT) 182 

task control 
introduction to CICS/VS logic 136 

TASKREQ operand, DFHPCTmacro 174 
tasks 

dispatching 136 
maximum concurrent number 220 
starting 67 

(see also initiating 
transaction) 61 

TCT (see terminal control table) 
TCTUA (terminal control table user's 

area) 33 
TCTUA option of ADDRESS cOllmand 34 
temporary storage control 53 

deleting temporary storage queue 
(DELETEQ TS) 55 

exceptional conditions 56 
introduction to CICS/VS logic 139 
options 55 
queues 53 
reading data from temporary storage 
queue (READO TS) 54 

writing data to temporary storage 
(WRITEQ TS command) 53 

TER!ID option, interval control 70 
terminal control 14 

basic mapping support 21 
commands 25 
erase unprotected fields (ISSUE 

BRASEAUP) 27 
exceptional conditions 32 



terminal control (continued) 
handle attention identifier (HANDLE 

AID) 28 
introduction to CICS/VS logic 136 
map input data (RECEIVE MAP) 26 
map output data (SEND MAP) 26 
options 30 
print (ISSUE PRINT) 28 
table useL's area (TCTUA) 33 
3270 field concepts 17 

terminal control options 30 
terminal control table (TCT) 182,247 

DPBTCT operands 184 
DPRTCT TYPE=GPENTRY -- terminal line 
group definition 183 

examples 188 
startup override parameter 221 
user's area (TCTU!) 33 
VTAM 279 

terminal line group definition 
DFHTCT TYPE=GPENTRY macro 183 

terminal operations 
master 226 
user 234 

terminal operato£ description 
DFBSNT TYPE=ENTRY macro 180 

termination 
by master terminal operator 223 

time of day, requesting (ASKTIME 
command) 65 

TIME option, interval control 70 
time-controlled functions 65 
TIOAPPX operand, DPBMSD macro 207 
title area of screen 16 
TPMARK operand, DFHDCT macro 160 
trace 

specifying at startup 221 
trace control 263 

introduction to CICS/VS logic 139 
TRACE startup override parameter 221 
trace table 

analysis 264 
making antries in (ENTER command) 263 

trace, auxiliary 
JCL for printing 225 
specifying at startup 221 

TRACEID option, EN~ER command 263 
transaction 

control information 
DPHPCT TYPE=ENTRY macro 172 

f~ow in typical application 135 
identifier (TaANSID), PCT 174 
passing data between transactions 67 
security key ~RANSEC), PCT 174 

transaction dump 265 
transaction mode (terminal status) 231 
transaction work area (TWA) 33 
transactions 

initiation (see initiating transactions) 
transceive mode (terminal status) 231 
TRANSEC operand 

DFBPCT TYPE=INITIAL 171 
TRANSEC operand, DPHPCT macro 174 
transferring program control (ICTL) 60 
transferring to full system 287 
TRANSID operand 

DPRDCT macro 161 
DPBPCT macro 174 

TRANSID option 
interval control 70 
program control 64 

transient data control 48 
automatic transaction initiation 

(ATI) 49 
deleting intrapartition transient data 

queue (DELETEQ TD command) 51 
destination name (DESTID) 159 
disposition of tape 160 
exceptional conditions 52 
extrapartition destinations 48 
indirect destination name (INDDEST) 160 
indirect destinations 49 
intrapartition destinations 48 
introduction to CICS/VS logic 138 
options 51 
reading data from transient data queue 

(READQ TD) 50 
type of destination (DESTPAC 

ope rand) 158 
writing data to transient data queue 

(WRITEQ TD command) 49 
translation of application programs 191 
transla tion of assembler language 
programs 191 

transla tor 11 
data sets 

input and output 12 
listing 12 

options 
assembler language 75 
COBOL 89 
PL/I 105 
RPG II 119 

trigger level, automatic transaction 
initiation 49 

TRIGLEV operand, DFHDCT macro 161 
TR!ADDR operand, DFHTCT macro 186 
TRKPEAT operand, DPBTCT macro 186 
TRRIDNT operand, DFBTCT macro 186 
TRRINL operand, DFHTCT macro 187 
TRMMODL operand, DFBTCT macro 187 
TRRPOSN operand, DFBTCT macro 187 
TRKPRTY operand, D1BTCT macro 187 
TRKUAL operand, DFHTCT macro 188 
TWA (tLansaction work area) 33 
TWA option of ADDRESS command 34 
TWASIZE operand, DFHPCT macro 175 
TYPE operand of DFBGEN macro 240 
TYPE operand, DFBMSD macro 204 
TYPEFLE operand, DFHDCT macro 161 

UNLOCK command 41 
unlocking keyboard (FREEKB option) 31 
unprotected field (3270 attribute 
character) 18 

UPDATE option, file control 46 
updating record 

file control (REWRITE command) 41 
us.er applications, executing 153 
user terminal operations 234 
utilities 

DFHDUP (dump) 224 
DFBTUP (auxiliary trace) 225 

Index 301 



Validation 20 
VERIFY operand, DFHFCT macro (ISAft 
only) 170 

virtual telecommunications access method 
(VTAM) 279 

VSAM 
alternate indexes 40 
browse sample program 

description (RPG II) 123 
listing (RPG II) 126 

deleting record (DELETE command) 42 
exclusive control 38 
files 37 

deletion of records 38 
record identification 37 

keys 37 
mass insert operations 38 
quick file access 39 
shared resources control DFHFCT 

TYPE=SHRCTL 164 
sharing resources 39 

performance considerations 247 
skip-sequential processing 39 

VSE supervisor generation 1~3 
options required for CICS/VS 143 

VTAM 279 
startup override parameter 221 

WRITE command 41 
WRITEQ TD command 49 
WRITEQ TS command 53 
writing 

data to temporary storage (WRITEQ TS 
command) 53 

data to transient data queue (WRITEQ TD 
command) 49 

new record (adding) 
file control (WRITE) ~1 

WRKAREA startup override parameter 221 

X option 
PL/I 105 

XCTL comlland 60 
XREF option 

. COBOL 91 
PL/I 108 

3270 14 
attribute character 18 
field concepts 17 
input operations 14 
print procedure 236 
printer authorization matrix 281 
scre en sizes 21 

3270 information display system 
ERRATT operand 

DFHTCT TYPE=LINE 183 

302 CICS/DOS/~S-ELS Us~r's GU1de 





SC33-0086-1 

C": 
C": 
S! 
< 
(f. 

IT 
:::J .... .., 
-< 
r 
CD 
< 
~ 
(f. 
-< 
~ 
CD 
3 
c 
CIl 
CD .., 
CIl 

G 
c 
is 
CD 

'"t .., 
:; .... 
CD 
0 

:; 
C 
(z 

~ 
u, 
C": 
c..: 
c..: 
C: c ------- --- =® 0: - q - ---- - ---- .. - ----------_.-



3l 
:;:, 
Q) 

~ 
Q) 

t 
..: 
c: 
Q) 

E 
9-
:;:, 
tl' 
Q) • 

~ E e-E 
o .~ 
., -!:: ...... 
iii Iii 
E 3l 
~ 2 
(1) Q) 

~ ~ 
:;:, ~ 
(1) Q) 

S ~ ~ ., ~ 
~ 

... 
Q) 

5 is 
e 0 ... 
Q. 0 

~ ~ ::J .... 
11) .t: 
~ ., 
c: ii 11) '? ~ ... ~ 
III :;:, 
a ~ 
~ ~ 
I) Q. 
U ... 
C) 

~ 

::; 

" ! ... 
0 

Q 
OJ 
C 
0 « ... 
::s 

CJ 

I 

I 
I 

Customer Information Control System/Virtual Storage (CICS/VS) 
Entry Level System User's Guide (DOS/VS) 

SC33-0086-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators 
of IBM systems. This form may be used to communicate your view.s about this publication. They will be sent 
to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be 
written in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring 
any obligation whatever. You may, of course, continue to use the information you supply. 
Note: Copies of IBM publications are not stocked at the location to which this fonn is addressed. Please direct 
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative 
or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ......................................... . 

If you want an acknowledgement, give your name and address below. 

Name 

lob Title Company . 

Address. 

Zip 

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, your IBM 
representative or IBM branch office will be happy to forward your comments.) 



SC33-0086-1 

Reader's Comment Form 

I 

I 

. I 
Fold and tape Please do not staple Fold and tape ........................................................................................................ ···········1 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT 40 ARMONK, NEW YORK 

Postage will be paid by addressee: 

International Business Machines Corporation 
Department 812HP 
1133 Westchester Avenue 
White Plains,. New York 10604 

Fold and tape Please do not staple 

==-::. .::® - ----- ---- ~ ------ - - _ .... --------_ .. -

III " I No postage 
necessary 
if mailed 

in the 
United States 

Fold and tape 

Q 
(") 

!Q 
< en 
m 
::J ... 
""' -< 
r 
(I) 

< 
~ 

!f 
~ 
(I) 

3 
c 
~ 
""' VI" 

G> 
c::: 
0: 
(I) 

en 
(") 
w w 
6 o 
CO 
cp 
-" 



Customer Information Control System/Virtual Storage (CICS/VS) 
Entry Level System User's Guide (DOS/VS) 

SC33-0086-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators 
of IBM systems. This form may be used to communicate your views about this publication. They will be sent 
to the author's department for whatever review and action, if any, is deemed appropriate. Comments may be 
written in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring 
any obligation whatever. You may, of course, continue to use the information you supply. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct 
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative 
or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ......................................... . 

If you want an acknowledgement, give your name and address below. 

Name 
/ 

Job Title Company 

Address. 

Zip 

Thank yO\! for your cooperation. No postage stamp is necessary if mailed in the U.S.A. (Elsewhere, your IBM 
representative or IBM branch office will be happy to forward your comments.) 



SC33-0086-1 

Reader's Comment Form 

I 

I 

Fold and tape Please do not staple Fold and tape 
. . . . .. . .. ··········································································································1 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT 40 ARMONK, NEW YORK 

PostagewiJl be paid by addressee: 

International Business Machines Corporation 
Department 1812HP 
1133 Westchester Avenue 
White Plains, New York 10604 

111111 
No postage 
necessary 
if mailed 

in the 
United States 

.............................................................................. III ••••••••••••••••••••••••••••••••••••• 

Fold and tape 

==-= =® ... - --- ---- --- ---- - - --------___ 9_ 

Please do not staple Fold and tape 

Q 
n 
~ 
< 
(J) 

m 
::J 
1'+ ., 
-< 
r 
CD 
< 
~ 
(J) 
-< 
~ 
CD 
3 
c 
~ ., 
VI'" 


