
Program Product

SH2G-90G3-2

Customer Information
Control SystemNirtual
Storage (CICSNS)
Application Programmer's
Reference Manual
Program Numbers S740-XX1 (CICS/OS/VS)

S746-XX3 (CICS/DOS/VS)

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

Third Edition (March 197 S)

I This edition, as amended by technical newsletter SN20-9086, applies to Version 1,
Modification Levell, Release 1, of the program product Customer Information Control
System/Virtual Storage (CICS/VS), program numbers 5740-XXl and 5746-XX3, and to all
subsequent versions and modifications until otherwise indicated in new editions or
technical newsletters.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using this publication, consult
the latest IBM System/360 and System/370 Bibliography, GA22-6822, and the technical
newsletters that amend the bibliography, to learn which editions and technical newsletters
are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

A form for readers' comments has been provided at the back of this publication. If the
form has been removed, address comments to IBM United Kingdom Laboratories Ltd.,
Publications Department, Hursley Park, Winchester, Hampshire, S021 2JN, England.
Comments become the property of IBM.

© Copyright International Business Machines Corporation 1974, 1975

PREFACE

Page of SH2o-9003-2
Revised May 22, 1975
By TNL SN2o-9086

This publication contains detailed information necessary to design
and prepare application programs to execute under either of two IBM
program products: CICS/OOS/VS (5746-XX3) and CICS/OS/VS (5740-XX1).
It is intended for use by application programmers, system programmers,
syst~m analysts, and system administrators. The manual contains both
tutorial and reference material, as follows:

The first two chapters are tutorial in nature. They explain the
general approach to application programming under CICS/VS. The next
three chapters provide reference information concerning use of symbolic
storage definitions in Assembler-language, American National Standard
(ANS) COBOL, and PL/I application programs.

Chapter 6 is a tutorial explanation of the data management and
supervisory services provided by CICS/VS. The CICS/VS macro
instructions by which these services are requested are 'briefly
identified. Chapter 7 contains reference information--the detailed
formats of these CICS/VS macro instructions.

Chapter 8 provides tutorial and reference information concerning
system monitoring services available under CICS/VS. The format
established for reference material in the preceding chapter is
maintained for reference material in this chapter. Chapter 9 begins
with a tutorial introduction to built-in functions provided within
CICS/VS and concludes with explanations of the detailed formats of
macro instructions used to invoke these functions.

A tutorial discussion of application programming considerations
(Chapter 11) is followed by a chapter containing both tutorial and
reference information for programmers utilizing DL/I services. The
appendices contain reference summaries of CICS/VS control areas,
mnemonics, macro instructions, and translate tables, and
Assembler-language, ANS COBOL, and PL/I sample programs.

For further information concerning CICS/VS and related subjects
discussed in this manual, the reader is referred to the publications
listed in the Bibliography. A glossary of certain terms applicable to
CICS/VS .is provided in the CICS/VS General Information Manual.

.Preface

CONTENTS

CHAPTER 1. INTRODUCTION ••
Programming Techniques • • • • • • • • •
Application program packing. •
Quasi~Reentrance • • • • • •
CICS/vS Macro Instructions •

Coding Aids. • • • • •
Storage Definition • • • • • • •
program Initialization • •
Restrictions • • • • • • ••

American National Standard (ANS) COBOL
PL/I • • • • • • • • • • • •
Link-Edi ting • • • • • • • • • • •

considerations for a Virtual Storage Environment
Assembly-Time service. • • • • • • • • • • •

CHAPTER 2. STORAGE DEFINITION •
Symbolic Storage Definitions •
Required Storage Areas • •

Common System Area (CSA) • • • • • • •
Common Work Area (CWA) • • • • • • •

Task Control Area (TCA) ••••
Transaction Work Area (TWA) ••

. . .
CHAPTER 3. COPYING STORAGE DEFINITIONS - ASSEMBLER LANGUAGE • •
static Storage Definition. • • • • • • • • • • •

Common System Area (CSA) • • • • • • • • • • •
Terminal Control Table Terminal Entry (TCTTE).

Dynamic Storage Definition • • • • •
Task Control Area (TCA). • • • • •
Terminal Input/Output Area (TIOA).
File Input/Output Area (FIOA) •••
Fi le Work Area (FWA) • • • • • • •
VSAM Work Area (VSWA). • • • • • •
Transient Data Input Area (TDIAl • • •
Transient Data Output Area (TDOA).
Temporary Storage Input/Output Area (TSIOA).
storag e Accounting Area (SAA). • • • • • • • •
Journal control Area (JCA) • • • • • • • • • •

Example of CICS/VS Assembler-Language Application Program. •

CHAPTER 4. COPYING STORAGE DEFINITIONS - ANS COBOL.
static Storage Definition. • • • • • • • • • • •

Common system Area (CSA) • • • • • • • • • • •
Terminal Control Table Terminal Entry (TCTTE).

Dynamic Storage Definition • • • • •
Task Control Area (TCA) ••••••
Terminal Input/Output Area (TIOA).
File Input/Output Area (FIOA) •••
File Work Area (FWA) • • • • • • •
VSAM Work Area (VSWA) •••••••
Transient Data Input Area (TDIA) •
Transient Data Output Area (TDOA).
Temporary Storage Input/OUtput Area (TSIOA). •
Storage Accounting Area (SAA). • • • • • • • •
Journal Control Area (JCA) • • • • • • • • • •

Additional Guidelines ••••••••••
Example of CICS/VS ANS COBOL Application Program

CHAPTER 5. COPYING STORAGE DEFINITIONS - PL/I •

1
6
9

10
10
12
12
13
14
14
14
15
15
17

19
19
24
24
25
25
29

31
31
31
31
32
32
33
33
34
34
35
35
36
36
37
37

39
40
40
40
40
41
41
42
42
43
43
43
44
44
45
45
48

51

Contents i

Page of SH2o-9003-2
Revised May 22, 1975
By TNL SN2o-9086

static storage Definition. • • • • • • • • • • •
Common System Area (CSA) • • • .' • • • • • • •
Terminal Control Table Terminal Entry (TCTTE).

Dynamic storage Definition •••••
Task Control Area ~CA) ••••••
Terminal Input/Output Area (TIOA).
File Input/Output Area (FIOA). • •
Fi Ie Work Area (FWA), • • • • • • •
VSAM Work Area (VSWA) •••••••
Transient Data Input Area (TDIA) •
Transient Data Output Area (TDOA).
Temporary Storage Input/OUtput Area (TSIOA) ••
storage Accounting Area (SAA) •••••••
Journa I Control Area (JCA) • • • • • • • • • •

Example of CICS/VS PL/I Application Program. • •

CHAPTER 6. SERVICE INVOCATION • • •
Terminal Services. • • • • • • • • •

write Data to a Terminal (WRITE)
Read Data from a Terminal (READ) • • • • • • • • • • • • •
Synchronize Terminal Input/Output for a Transaction (WAIT)
Converse with a Terminal (CONVERSE). • • • •••••
Disconnect a Switched Line (DISCONNECT). • • • • •••••
Examples • • • • • • • • • • • • •

File Services. • • • • • • • • • • •
Randomly Retrieve Data from a Data Set (GET)

Random Read-Only Retrieval • • •
Random Retrieval for Update.. • • • • •
Random Retrieval through Indirect Access • •

Randomly Update or Add Data to a Data Set (PUT) ••
Randomly Delete Data from a Data Set (DELETE).
Obtain a File Work Area (GETAREA) •••
Release File Storage (RELEASE) • • • • • • • •
Browsing • • • • • • • • • • • • • • • • • •

Initiate sequential Retrieval (SETL)
Retrieve Next Sequential Record (GETNEXT). •
Terminate Sequential Retrieval (ESETL) • • •
Reset Sequential Retrieval (RESETL) •••••••••

Test Response to a Request for File Services •
Transient Data Services. • •

Di spos e of Data (PUT). • • • • • • • • •
Acquire Queued Data (GET). • • • • • • • •

51
51
52
52
52
52
53
54
54
54
55
55
56
56
57

59
59
62
65
66
66
66
66
61
69
11
73
714
76
78
19
80
82
83
86
90
91
93
91
99

101
Control the Processing of an Extrapartition Data
Purge Intrapartition Data (PURGE) ••••••••

Set (FEOV) •• 1014

Test Response to a Request for Transient Data Services
Temporary Storage Services • • • • • • • • • • •

store or Update Temporary Data (PUT or PUTQ) • • •
Retrieve Temporary Data (GET or GETQ) •••••••
Free Temporary Data (RELEASE or PURGE) • • • • • •
Test Response to a Request for Temporary Storage Services.

Storage services • • • • • • • • • •
Obtain and Initialize Main Storage (GETMAIN) •••
Release Main Storage (FREEMAIN). .' • • • • • • • •

Program Services • • • • • • • • • • • • • • • • • •
Pass Program Control Anticipating Return (LINK) ••
Transfer Program Control (XCTL) ••
Load a Program (LOAD) •••••••
Return Program Control (RETURN) ••
Delete a Loaded Program (DELETE) •
Abnormally Terminate a Transaction (ABEND) • • • •
Activate, Cancel, or React1vate an Exit for Abnormal
Termination Processing (SETXIT or RESETXIT) • • •

Convert Symbolic Label to Address (COBADDR) ••••
Test Response to a Request for Program Services ••

Time Services. • • • • • • • • • • • • • • • • •

ii CICS/VS Application programmer's Reference Manual

105
105
101
109
111
112
113

• 116
116
118
119
120
121
122
123
124
125

126
127
121
130

Page of SH2o-9003-2
Revised May 22,1975
By TNL SN2o-9086

Time-of-Day Services (GETIME). •• • • • • • • • •
Time-Or'dered Task Synchronization (WAIT or POST) •

Delay the Processing of a Task (WAIT). • • • • •
Signal the Expiration of a Specified Time (POST)

Automatic Time-Ord'ered Task Initiation (INITIATE or PUT)
Task Initiation without Data (INITIATE). • • •••
Task Initiation with Data (PUT). • • • •••••

Retrieve Time-Ordered Data (GET) • • • • • •
Time-Ordered Request Cancellation (CANCEL)

Cancel an Interval Control POST Request.
Cancel an Interval Control WAIT Request.
Cancel an Interval Control INITIATE or PUT Request •

Input/Output Error Retry Capability (RETRY) ••
~est Response to a Request for Time Services •

Task Services. • • • • • • • • • • •
Initiate a Task (ATTACH) •••••
Reschedule a 3650 Task (SCHEDULE).
Change Priority of a Task (CHAP) •
Synchronize a Task (WAIT) •••••

Synchronize a Task with a Single Event •
Synchronize a Task with One of a List of Events.
Relinquish Control to a Task of Higher Priority.

Single-Server Resource Synchronization (ENQ/DEQ) •
Declare the Purgeability of a Task on System Overload

(PURGE/NOPURGE) • • • • • • • • • • • • •
Journal Services • • • • • • • • • • • • • • •

Acquire the Journal Control Area (GETJCA). •
Create a Journal Record and Wait for Output (PUT).
Create a Journal Record for Asynchronous Output (WRITE). •
Synchronize with the output of a Journal Record (WAIT)
Test Response to a Request for Journal services. •

P,ecovery /Restart Services. • • • • • • • • • • • • • • •

CHAPTER 7. SYSTEM MANAGEMENT MACRO INSTRUCTIONS - GENERAL
FORMATS. • • • • • • •

DFHTC Macro Instruction.
Input Operations • • •
output Operations. • •
Miscella~eous Operations •

DFHFC Macrd Instruction.
Randomly Retrieve Data from a Data Set
Randomly Update or Add Data to a Data Set.
Randomly Delete Data from a Data Set (VSAM Only) •
Obtain a File Work Area. • • '. • • • • • •
Release File Storage • • • • • • • • • • • • • • •
Initiate sequential Retrieval (BrOwsing) •
Retrieve Next sequ~ntial Record. • • • • •
Terminate Sequential Retrieval (Browsing).
Reset sequential Retrieval • • • • • •
Test Response to a Request for File Services •

DFHTD Macro Instruction. • • • • • • • • • •
Dispose of Data. • • • • • • • • •
Acquire Queued Data. • • • • • • • •

'. .

Control Processing of Extrapartition Data set (Magnetic
Tape Only). • • • • • • • • • • • • • •

Purge Intraparti tion Data. • • • • • •• • • • • •
Test Response to a Request for Transient Data Services • •

DFHTS Macro Instruction. • • • • • • • • • • • • • • • •
Store Temporary Data as a Single Unit of Information •
Store Data to a Temporary storage Message Set.
Retrieve a Single Unit of Temporary Data •• •
Retrieve Data from a Temporary Storage Message Set
Release a Single Unit of Temporary Data.
Purge a Temporary Storage Message Set. • • •
Test Response to a Request for Temporary Storage Services.

131
132
132
134

• 136
136
137

• 139
1q1
141
142
142
142
142
144
145

• 148
• • 149

150
• • 150

• 151
152

• • 152

155
156
157
159
161

• 165
• • 167

169

171
171
171
177

• 186
188
188
191
192
194
195
1-96
199
200
200

• • 202
• • 206

207
207

208
• 208

209
• • 210

• 210
• • 211
• • 213
• • 214

216
• • 216
• • 217

Contents iii

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

DFHSC Macro Instruction. • • • • • •
Obtain and Initialize Main storage ••
Release Main storage • • • • • • •

DFHPC Macro Instruction. • • • • • •
Pass Program Control Anticipating Return •
Transfer Program Control •
Load a Program • • • • • • • • •. •
Return Program Control • • • • • •
Delete a Loaded Program. • • • • •
Abnormally Terminate a Transaction
Activate or Cancel an Exit for Abnormal Termination
Processing. •

Reactivate an Exit for Abnormal Termination Processing
Convert Symbolic Label to Address. • • • • • • • •
Test Response to a Request for Program Services. •

DFHIC Macro Instruction. • •
Time-of-Day Updating • • • • • • •
Delay Processing of a Task ••• •
Signal Expiration of a Specified Time.
Initiate a Task. • • • • • •
Task Initiation with Data •••••
Retrieve Time-Ordered Data • • • •
Cancel a Request for Time Services
I/O Error Retry. • • • • •
Test Response to a Request for Time services •

DFHKC Macro Instruction.
Initiate a Task. • • • •••
Reschedule a 3650 Task • •
Change priority of a Task. •
Synchronize a Task • • • • • •
Enqueue upon a Resource. • •
Dequeue upon a Resource. • • •
Declare a Task to be Purge able
Declare a Task to be Nonpurgeable.

DFHJC Macro 'Instruction. • • • • • •
Acquire the Journal Control Area (JCA)
Create a Journal Record and Wait for output.
Create a Journal Record.. • • • • • • • • • •
Wait for Output of a Journal Record. • • • • •
Test Response to a Request for Journal Services. •

DFHSP Macro Instruction. • • • • • • • • • • • •

CHAPTER 8. PROGRAM TESTING AND CEBUGGING. •
sequential Terminal support. •
Trace services • • • • • • • •

Trace ON Function. •
Trace OFF Function • •
Trace ENTRY Function •
Trace Table. • •

Dump Services. • • • • •
Dump Transaction storage (TRANSACTION) • • • •
Dump CICS/VS Storage (CICS). • • • ••
Dump Transaction Storage and CICS/VS storage (COMPLETE) ••
Dump Partial Storage (PARTIAL) • • • •

CHAPTER 9. CICS/vS BUILT-IN FUNCTIONS •
Table Search • • • • •
Phonetic Conversion. • • • • • •
Verification of a Data Field
Editing of a Data Field.
Bi t Ma ni pula tion • • •
Input Formatting • • • •

Fixed Format • • •
positional Format.
Keyword Format • •

. .

iv CICS/VS Application Programmer's Reference Manual

218
218

• • 220
220
220
221
222
222
223
223

224
225

• 225
226
226
226
228

• • 230
231
233
235

• • 236
237

• • 238
239
239
240
240
240
241
242
242
243
243
243
244
246
248
249

• • 250

251
251

• • 2-53
254
255
257

• • 259
• • 287
• • 288
• • 289

289
290

295
295
295
296
296
296
296

• • 296
297
297

Combination Input.
Weighted Retrieval
DFHBIF Macro Instructions.

DFHBFTCA Macro Instruction •
Table Search •

Returned Values.
Example - separate Tables.
Example - Complex Table.

Phonetic Conversion.
Returned Value •
Phonetic Coding Method •
Examples
Phonetic Conversion subroutine •

Field Verify
Returned Values.
Example.

Field Edit •
Returned Value •
Example.

Bit Manipulation
Returned Values.
Examples

Input Formatting •
Storage Definition •
DFHBIF TYPE=DEFLDNM Macro Instruction.
Required Delimiters.
DFHBIF TYPE=INFORMAT Macro Instruction •
Returned Values.
Examples

Weighted Retrieval •
Initiate Weighted Retrieval.
Returned Values.
Establish Selection Criteria
Retrieve Selected Records.
Returned Values.
Release Weighted Retrieval Storage Areas
Test Response to a Request for weighted Retrieval.
Example.

CHAPTER 10. BASIC MAPPING SUPPORT.
BMS Advantages

Device Independence.
Format Independence.

BMS Techniques
Data Mapping and Formatting.
Terminal Paging.
Message Routing.

Programming Considerations •
Specifying Maps for Basic Mapping support.
Implied READ/WRITE •
Map Definition •

Input Mapping.
output Mapping •
Input/Output Mapping •

Offline Map Building •
DFHMSD Macro Instruction •
DFHMDI Macro Instruction •
DFHMDF Macro Instruction •

Online Map Use •
Establishing Addressability to User-Supplied Data.
DFHBMS Macro Instruction • •

Input Operations •
Output Operations.

Cumulative Page Building with Mapping.
PAGEBLD Overflow Processing.

Contents

298
298
302
302
303
306
306
301
308
308
309
309
309
310
311
312
312
313
313
313
315
315
315
316
316
311
311
318
318
320
320
323
323
326
327
321
328
330

333
333
333
333
334
334
335
336
331
338
338
339
339
340
341
341
341
346
350
360
360
361
361
363
364
310

v

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

Cumulative Page Building without Mapping
Non-Cumulative Page Building ••
Terminating a Logical Message. •

BMS Me ssage Recovery • • • • • • • • • • •
Abnormally Terminating a Logical Message •
Message Routing. • • • • • • • • • • • • •

Disposition and Message Routing. • • • •
Test Response to a Request for BMS Services. •
Terminal Code (TC) Table • • • • • • • • • • •
status Flag Byte in User-Supplied Route List •
Standard Attribute List and Printer Control Characters

(DFHBMSCA). • • • • • • • • • • • • • • • • •
standard Attention Identifier List (DFHAID). •
BMS TIOA Specification • • • • • • • • • •
Programming Considerations for Paging Commands on
video Devices • • • • • • • •

Examples of the Use of BMS • • • • • •

CHAPTER 11. APPLICATION PROGRAMMING CONSIDERATIONS.
Terminal-Oriented Task Identification. • • • • •
programmable Device Considerations •

3735 Considerations. • • • • • • •
3735 Transactions - Autoanswer •
3735 Transactions - Autocall

3740 Considerations. • • • • •
Batch Mode Applications. • •
Inquiry Mode Applications. •

System/7 Considerations. • • • • • • •
Non- Programmable Device Cons iderations •

2260/2265 Programming Considerations •
3270 Operating in 2260 Compatibility Mode.
2770/2780 Programming Considerations •
2980 Programming considerations ••

Passbook Control • • • •
Segmented writes control • • • •
Da ta Handling. • • • • • • • • •
Writing High-Level-Language Programs

7770 Programming considerations. • ••
27q1 Read Attention and Write Break Support.

Read Attention (CICS/OS/VS or CI,CS/DOS/VS)
Write Break (CICS/OS/vS) • • • • • • • •

3270 Print Function. • • • • • • • • • • •
Teletypewriter Programming Considerations.

Message Format • • • •• • •
Message Length • • • •• • •

Asynchronous Transaction Processing.
Data Base Considerations

segmented Records. • • • • • •
segmented Record Formats
Segment Indicators • • • • •

• II

373
• • 378

384
• • 388
• • 388
• • 388

393
394
399
400

401
402
403

405
• • 405

415
415
q16
417
418
418
418
418
419
419
421
421
422
423
423
423
424
425
425

• • 429
430

• • 430
431
431

• • 432
432

• 432
• • 432

• 432
• 433

• • 434
• 435

437 Main storage Processing of Segmented Records • •
Segment Sets • • • • • • • • • • • • • • 438

Indirect Accessing • • • • •
Duplicate Records. • • • • • •
Record Identification Field. •
Updating Nonkeyed DAM Data Sets. •
Adding Records to DAM Data Sets ••

CHAPTER 12. REQUESTING DATA LANGUAGE/I SERVICES
Quasi-Reentrant Considerations with Regard to DL/I •
Obtaining Addresses of Program Communication Blocks.

DFHFC Macro Instruction (CICS/OS/vS) •
DL/I CALL Statement (CICS/DOS/VS).

Building Segment Search Arguments.
Acquiring an I/O Work Area • • • •

vi CICS/VS Application Programmer's Reference Manual

439
• 441

444
446
446

449
• 449
• 450

450
451
452
453

Issuing the DL/I CALL. • • • • • • • • • • • • • •
DFHFC Macro Instruction (CICS/OS/vS) • • • • • •
DL/I CALL statement (CICS/OS/vS or CICS/OOS/VS).

Releasing a PSB in the CICS/VS Application Program • •
DFHFC Macro Instruction (CICS/OS/VS) • • • • • •
DL/I CALL Statement (CICS/DOS/VS) ••••••••

Checking the Response to a Request for DL/I Services •

• • 454
• • 454

456
457

• • 451
458
459

DL/I Requests in an Assembler-Language program (CICS/OS/VS). • 462
464 DL/I Requests in an ANS COBOL Program (CICS/OS/vS)

DL/I Requests in a PL/I Program (CICS/OS/VS) •

APPENDIX A. EXECUTABLE CICS/vS SAMPLE PROGRAMS.

APPENDIX B. SUMMARY OF CICS/vS STORAGE AREAS. •

APPENDIX C. EXPLANATIONS OF MNEMONICS.

APPENDIX D. CICS/VS MACRO INSTRUCTIONS.
Terminal Services. • • •• • • • • •
File Services. • • • • • •
Transient Data Services ••
Temporary Storage Services •
Storage Services •
Program Services •
Time Services. •
Task Services. • • • • •
Journal Services • • • • • •
Restart/Recovery Services.
Trace Services •
Dump Services. • • • • • • •
Built-In Functions • • • • •
Basic Mapping Support Services •
CICS/VS-DL/I Interface services •••••

APPENDIX E. TRANSLATE TABLES FOR THE 2980

BIBLIOGRAPHY •

INDEX. • • • •

• • 466

469

• • 481

• • 497
• • 497
• • 482

485
486

• • q88
• • 489
• • q90
• • 492

q93
• • 49q
• • q95
• • 496
• • q91

518
• • 522

• • 523

533

535

Contents vii

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

FIGURES

1-1 •
1-2.
1-3.
1-4.
1-S.
1-6.
2-1 •
2-2.

2-3.
3-1.

4-1.
S-1.
6-1.
6-2.
6-3~
6-4.
6-S.
6-6.

6-7.
6-8.
6-9.
6-10.
8-1 •
8-2.
8-3.
8-4.
8-S.
8-6.
8-7.
8-8.
8 -9.
8-10.
8-11.
8-12.
8-13.
8-14.
8-15.
8-16.

8-17.

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.

conventional Batch Processing • •
Transaction Processing of CICS/VS • •
CICS/VS Data Base concept • • • •
CICS/VS Transaction Flow. • • • • • • • •
A Comparison of Batch and Online Environments
Register Usage Under CICS/vS. • • • • • • • •
CICS/VS Storage Areas • • • • • • • • • • • •
Symbolic Names and Base Addresses of CICS/VS
Storage Areas • • • • • • • • • •
Chaining of CICS/VS storage Areas
Example of CICS/VS Assembler-language
Application program • • • • • • • • •
Example of CICp/VS ANS COBOL Application Program.
Example of CICS/VS PL/I Application Program •
File Control Response Codes • • •
Use of DFHTD TYPE=PUT • • • • •
Use of DFHTD TYPE=GET • • • • •
Transient Data Control Response Codes
Temporary Storage Control Response Codes.
Communication and Logical Relationships Among
Application Programs. • • • • • • • •
Program Control Response Codes. • • •
Interval Control Response Codes • • •
Task Synchronization Under CICS/vS ••
Journal Control Response Codes. • • •
Trace Table Entry for Task Control ••
Trace Table Entry for Storage Control • •
Trace Table Entry for Program Control
Trace Table Entry for Interval Control. •
Trace Table Entry for Dump Control ••••
Trace Table Entry for File Control. • •
Trace Table Entry for Transient Data Control.
Trace Table Entry for Temporary Storage Control •
Trace Table Entry for CICS/VS-DL/I Interface.
Trace Table Entry for Journal Control • • • •
Trace Table Entry for Basic Mapping Support •
Trace Table Entry for Built-In FUnctions. •
Trace Table Entry for VTAM Terminal Control •
Trace Table Entry for Trace Control • • • • •
Trace Table Entry for sync Point Program. • •
Trace Table Entry for Field Engineering (FE) Type
of Entry. • • • • • • • • • • • • • • •
Trace Table Entry for Task Control (During Auxiliary

1
2
3
6
8

13
19

22
23

38
48
57
95

100
• • 102

104
114

120
128
143

• 148
168

• • 261
• • 262

264
265
267

• • 268
270

• • 271
272
273

• • 274
276

• 278
• 285

2865

286

Trace Only) • • • • • • • • • • • • • • 286
Selection of records by Weighted Retrieval. • • • 300
Table Search Response Codes • • • • • • • 301
Field Verify Function Response Codes. • • 312
Bit Manipulation Response Codes • • • 315
INFORMAT Response Codes • • • • • • • 319
Weighted Retrieval Response Codes • • • • 330
Use of Trailer Maps in PAGEBLD Mapping Operations • • 371
Overflow Processing by Application Programs Under BMS • • 372
BMS Response Codes. • • • • • 398
BMS Terminal Code Table • • • • • • • • • • • • • • • 399
BMS Status Flags.. • • • • • • • • • • • • • • • • 400
3270 Field Attributes and Printer Control Characters. 402
3270 Attention Identifiers and Functions. • • • • • • 402
Symbolic Storage Definition Input •••••••••••• 406
Symbolic Storage Definition Using LANG=ASM,MODE=INQUT • • 401

viii CICS/VS Application Programmer's Reference Manual

10-10.
10-11.
10-12.
10-13.
10-1q.
10-15.
10-16.
10-17.
11-1.
12-1.

Symbolic Storage Definition Using LANG=ASM,MODE=IN. • • • q08
symbolic Storage Definition Using LANG=ASM,MODE=OUT ••• Q09
Symbolic Storage Definition Using LANG=COBOL,MODE=INOUT • Q10
symbolic Storage Definition Using LANG=COBOL,MODE=IN. Q11
Symbolic Storage Definition Using LANG=COBOL,MODE=OUT •• 412
Symbolic Storage Definition Using LANG=PLI,MODE=INOUT •• Q13
Symbolic Storage Definition Using LANG=PLI,MODE=IN. • Q1Q
Symbolic Storage Definition Using LANG=PLI,MODE=OUT • Q1Q
CICS/VS terminal-oriented task identification •• Q16
CICS/VS-DL/I Interface response codes • • • • • • • • Q60

Contents ix

SUMMARY OF AMENDMENTS

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

This Technical Newsletter (SN20-9086) discusses the following
enhancements for the CICS/VS application programmer:

• Data recovery for Interval Control

The application programmer now has the option of keeping or
releasing Interval Control records for temporary storage.

• DL/I recovery

A sync point request for a DL/I resource implies the release of
that resource.

• IBM 3275 Display Station, dial

CICS/vS support is extended to 3215 dial.

• IBM 3650 Retail Store System

The application programmer can use CICS/VS functions, including
BMS, to converse with the 3650.

• Teletypewriter Support (World Trade only)

CICS/vS support is extended to the Teletypewriter (for World Trade
countries only).

• BMS message recovery

CICS/vS provides message recovery for logical BMS message that are
stored on temporary storage.

• Auxiliary Trace

CICS/vS enables the user to write trace records to an auxiliary
data set.

significant changes in the text of the manual are marked with a
vertical bar in the margin to the left of the changed section.

Summary of Amendments xi

Chapter 6 Chapter 7

TERMINAL SERVICES DFHTC

FI LE SERVICES DFHFC

TRANSIENT DATA SERVICES DFHTD

TEMPORARY STORAGE SERVICES DFHTS

STORAGE SERVICES DFHSC

PROGRAM SERVICES DFHPC

TIME SERVICES DFHIC

TASK SERVICES DFHKC

JOURNAL SERVICES DFHJC

RESTART/RECOVERY SERVICES DFHSP

CHAPTER j. INTRODUCTION

The IBM Customer Informaticn Control System/Virtual storage (CICS/vS)
is a transaction-oriented data base/data corrmunication system. It can
be applied to most online IBM System/370 systems, since it offers
terminal facilities for many applications: message switching, inquiry,
data collection, order entry, and conversational and batched data entry.

CICS/VS works with either the Disk Operating System/Virtual Storage
(DOS/VS) or the Operating System/Virtual Storage (OS/VS1 or OS/VS2) •
It can be thought of as an extension of the operating system or as an
interface between the operating system and the user's application
programs. The system is modular: at system generation or
initialization, an installation can select the com~onents it needs to
tailor a CICS/VS system for a given application.

In conventional batch processing (see Figure 1-1), like transactions
are grouped for processing, and the application ~rogrammer plans a
series of runs to edit input transactions, update data sets, or write
output reports. Because the programmer concentrates on carefully
manipulating data fer most efficient handling of each transaction type,
the data in batch processing becemes closely tied to the program logic
and has little value for other applications.

One
Application

Figure 1-1. Conventional Batch Processing

Card Reader
Input

Printer
Output

Real-time data base/data communication (DB/DC) differs from batch
processing primarily in the number and types of activities taking place
in the system concurrently. A batch-processing system schedules each
application independently and provides data base support unique to each
application. A DB/DC system controls many random nonscheduled
transactions for many applications and provides one integrated data
base supporting all the applications on the system (see Figure 1-2).

Chapter 1. Introduction 1

Data

Base

Figure 1-2. Transaction Processing of CICS/VS

The CICS/VS program product (either CICS/OS/VS or CICS/DOS/VS)
performs numerous functions essential to success in real-time data
base/data communications. Its major responsibilities can be summarized
as follows:

• Provides rapid response to simultaneously active online terminals

• Controls a telecommunication network of mixed devices

• Concurrently manages a wide mixture of transactions being serviced
by a variety of programs

• Controls access to a data base

• Effectively manages system resources, such as dynamic storage, to
keep the system in continuous operation

• Assigns priorities to optimize the use of the CPU processing
facility

with these system functions assumed by CICS/VS, application
programmers can concentrate cn their particular applications.
Programming takes less time, debugging is easier, and implementation
time and costs are reduced accordingly. .

A key consideration in selecting a data base/data communication
system is its adaptability to present and future needs. CICS/VS is a
family of systems that provides a DB/DC interface to IBM System/370 at
most levels of the product line, offering a clear path for growth or
migration of an installation.

2 CICS/VS Application Programmer's Reference Manual

Figure 1-3 shows how the CICS/VS data base supports the information
needs of multiple applications, independently and concurrently.

USER.

DEVICE

CICS/VS

ApPLICATION

PROGRAMS

CICS/VS

DATA BASE

Figure 1-3.

FILE INQUIRY FILE CHANGE REPORT REQUEST

PROGRAM A PROGRAM B PROGRAM C

f~------~1~-------~l
(I (I (~
I DATA I I DATA I I DATA I
I I I I I I
I SET I I SET I I SET I
I I I I I
I A t I B: I C I
l) l ~ l j ---

CICS/VS Data Base Concept

Although application programmers need not be concerned with details
of CICS/VS structure or performance, they should have a general
understanding of how CICS/VS components interact to perform essential
processing steps. CICS/VS consists of six major components, explained
in greater detail in the customer Information Control System (CICS/VS)
General Information Manual.

Chapter 1. Introduction 3

• System management

• System services

• System monitoring

• system reliability

• System support

• Application services

Each of these components is divided into functions which provide
services to CICS/VS users. ~e components that most directly affect
the application programmer are system rranagement, system monitoring,
and system reliability. To help the application programmer understand
some of the ways in which CICS/VS assists him, the system management
functions are summarized belcw (see Chapter 6 for further details).

• Terminal management - provides for communication between terminals
and user-written application programs through the terminal central
program. This facility supports automatic task initiation to
process new transactions. The testing of application programs is
accommodated by the simulaticn of terminals through sequential
devices such as card readers, line printers, or tape units, or disk
storage units.

• File management - provides a data base facility using direct access,
indexed sequential, and virtual storage data management. This
function sup~orts updates, additions, random retrieval, and
selective retrieval (browsing) of logical data on BDAM, ISAM, and
VSAM data base data sets. Additional capabilities provided for
only VSAM data sets include record deletion, skip-sequential
processing, key-ordered mass insertion, relative byte addressing,
search key high/equal, generic key, and locate mode processing for
read-only requests. Optional access to the Data Language/I (DL/I)
facility of the IBM Information Management System/Virtual Storage
(IMS/vS) is provided under CICS/OS/vS. Such use of DL/I requires
installation of the IBM program ~roduct IMS/VS Data Base System
(5740-XX2) •

Note: Users of CICS/DOS/vS can interface with the IBM program
product DOS/VS DL/I (5746-XX1) through DOS/VS DL/I CALLs, but
CICS/vS file control macro instructions cannot be utilized.

• Transient data management - provides the optional queuing facility
for the management of data in transit to and from user-defined
destinations. This function facilitates message switching and data
colI ection.

• Temporary storage management - provides the optional general-purpose
"scratch pad" facility. This facility is intended for video display
paging, broadcasting, data collection suspension, conservation of
dynamic storage, retention of control information, and similar
functions. Where multiple records are used and random access to
those records is necessary, this function also provides a queuing
facility.

• Storage management - controls dynamic storage allocated to CICS/VS.
Storage acquisition,disrosition, initialization, and request
queu~ng are among the services and functions performed by this
component of CICS/VS.

• Program management - provides a multiprogramming capability through

4 CICS/vS Application Programmer's Reference Manual

dynamic program management while offering a real-time program fetch
capability.

• Time management - provides control of various task functions (for
example, runaway task control, task synchronization, and system
stall detection) based on specified intervals of time or the time
of day.

• Task management - provides the dynamic multitasking facilities
necessary for effective, concurrent transaction processing.
Functions associated with this facility include priority scheduling,
transaction synchronization, and control of serially reusable
resources. This function controls activities within the CICS/VS
partition or region and is in addition to the multitasking or
multiprocessing capabilities of the host operating system.

• Journal management - provides facilities for creating and managing
special-purpose sequential data sets, called journals, during
real-time execution of CICS/VS. Journals are intended for recording
(in chronological order) any data that the user may need in
subsequent reconstruction of data or events. Examples of such data
sets are an audit trail, a change-file of data base updates and
additions, and a record of system transaction-activity (often called
a log).

• Sync point management - works in conjunction with other CICS/VS
components, such as transient data management and file management,
to provide the facilities needed for an emergency restart of CICS/VS
after abnormal termination. The CICS/VS transaction backout program
(DFHTBP) or user programming can accomplish changes to data base
data sets or transient data intrapartition queues for tasks
"in-flight" at time of failure on the basis of system information
recorded on a system log during online execution of CICS/VS.

In addition to these supervisory and data management functions,
CICS/VS provides dump management and trace management, which are
especially valuable to the application programmer in program debugging.
CICS/VS basic mapping support (BMS) facilitates information display on
a wide variety of terminals and provides device independence, terminal
paging, and message routing capabilities. Numerous built-in functions
are available for use by application programs. CICS/VS also provides
system service programming to identify terminal operators, to give
dynamic control of the entire system to a master terminal, to display
real-time system statistics, to intercept abnormal conditions not
handled directly by the operating system, and to end operation by
gathering summary statistics, closing data sets, and returning control
to the operating system.

To achieve its objective of providing rapid response to ~erminal
users, CICS/VS executes in a multitasking mode of operation within its
own partition or region. Such multitasking within one partition or
region is analogous to multiprogramming within the total DOS/VS or
OS/VS environment. Generally, tasks are initiated as a result of
transactions entered at terminals. Whenever one task is forced to wait
for completion of an I/O operation, availability of a resource, or same
other cause of delay, processing of another task within the system is
initiated or continued.

The interrelationships of, and services performed by, various CICS/VS
system Management functions in the processing of a trans-action (task)
are shown in Figure 1-4. Some general characteristics of application
programs to be run under CICS/VS and the use of other functions that
it provides are explained in subsequent sections of this manual.

Chapter 1. Introduction 5

~
7 I I r 7

PROGRAM (I DATA
(I MESSAGE I LIBRARY BASE LOG

\ \ \ \ \

f \ ~ ~
TERMINAL TASK PROGRAM USER STORAGE FILE JOURNAL
CONTROL CONTROL CONTROL PROGRAM CONTROL CONTROL CONTROL

T RANSLATE MSG

+ NITIATE TASK-II VALIDAU
TRANSACTION

t
REQUEST

WORK STORAGE GET STtRAGE

SCHED NEW TASK

DISPAT+ TASK

SELECTPGM

WAIT

,
LOA,PGM

BUILD DATA
SET SEARCH
KEY I REQUEST

GET ST10RAGE

INPUTtREA

READ FILE

WAIT -

RECOjD

REQUEST ",
TERMINAL ARI:A

~GET
STORAGE

BUILD TERMINAL r
OUTPUT,

BUILD ACTIVITY
RECORD l PUT ACTIVITY

RECORD TO

AIT
LOG I

r--- ------ ------ REQUEST I

I
TERMINAL WRITE

I t
I TERMINATE

RET~RN

I TRANS1CTION
I FREE

I TRANSACTION

I TERMINATE
STORAjE

I TASK~ ,
SCHEDULE
WRITE

Figure 1-4. CICS/VS Transaction Flow

PROGRAMMING TECHNIQUES

Programs to be run under CICS/VS may be coded in Assembler language,
American National standard (ANS) COBOL, or PL/I. Writing a program to
be run under CICS/VS is not significantly different from writing a
program to be run on any of numerous computing systems. However, the

6 CICS/vS Application Programmer's Reference Manual

CICS/VS user should be aware that CICS/vS is an online system and that
programs running under CICS/VS operate in an online environment. Some
of the basic differences between online systems and the traditional
batch-processing environment are summarized in Figure 1-5.

Single threading is the execution of a program to process inputs to
completion, sequentially. Processing of one input is completed before
another input is acted upon. In contrast, multithreading is the
capability of using various sections of a single program concurrently.
Under CICS/vS, for example, the first section of an application program
may be executing to process One transaction. When that section is
completed (in general, signaled by executing a CICS/VS macro instruction
that causes a wait), processing of another transaction using a different
section of code in the same ~rogram may ensue. Just as there is not
usually cne clearly superior, correct way to solve a problem, so there
is not usually one correct way to write a program to implement that
solution. Nevertheless, there are good and bad techniques of
programming under CICS/VS. How much time and thought should be given
to programming style when writing a program? The answer depends largely
on the expected usage of the program. Will it be used once a day or
once a year? When used, will it run for two minutes or five hours?
The frequency and length of use are important factors to consider when
deciding how much time to spend on programming techniques (that is, to
devising the optimum solution to a problem).

Some of the basic characteristics of applicaticn programs to be run
under CICS/vS are summarized below. These characteristics should be
viewed as essential to successful operation under CICS/VS (although
some are not mandatory, they are highly advisable) •

1. Programs must be quasi-reentrant (see "Quasi-reentrance" in this
chapter) •

2. CICS/VS macro instructions (rather than programming-language
statements such as READ, GET, PUT, or WRITE) are included to
control numerous functions required in application programs.
(see "CICS/VS Macro Instructions" in this chapter.)

3. Input/output areas, temporary storage areas, and work areas are
not included in an apJ;lication program. Allor portions of
these areas are defined outside of application programs. The
application programmer must work with CICS/VS system programmers
in defining these areas by means of tables within CICS/VS. (See
"Storage Definition" in this chapter and Chapter 2.)

4. Files are not defined within application programs. As in item
4, the application programmer works with CICS/vS system
progrrummers in establishing these definitions. (See the CICS/vS
System Programmer's Reference Manual and applicable OS/VS or
DOS/VS publications.)

5. The application programmer must establish addressability in his
program to CICS/VS storage areas accessed by his program.

6. Working storage should not be tied up, for example, awaiting a
reply from a terminal user.

7. Programs should be as efficient as possible, without
overemphasizing this goal, to work with CICS/VS in providing
rapid response to terminals.

Chapter 1. Introduction 7

Batch Processing

Generally sequential
from cards, tape, or a
qirect aCcess storage
device (DASD); sUbmitted
as groups of related
data, edited, and
verified

Sequential, generally
single-thread, with
updating of sequential
master files

Generally in the form of
updated master files and
printed reports

start
Read transaction:J
Read master
Process

Signaled by last
transaction

Predictable, known
before run

Applications "own"
master files on tape or
DASD; placed online when
required for run

Varies widely; usually
involves manual
procedures

Characteristic

Input

Processing

Output

Sequence of
operations

End of job

Amount of
activity

Master fi Ie s/
data sets

Response
time

Online Application

Random, multiple,
concurrent but un
related entries from
terminals; immediate
edit and verification
of each entry

Random, multithread
ing, as one aspect of
multitasking within a·
partition or region;
for inquiry or updat
ing purposes or both

Messages to terminals
updated files, and
system log of
activities

System initialized
then transactions pro
cessed as occur, with
data rather than pro
gram as driver

Generally, end of
shift or day

Not predictable, tend
to fluctuate widely

Files accessible to
multiple, authorized
applications; must be
online; are on DASD

Measured in seconds;
generally occurs ~s
message to terminal

Figure 1-5. A Comparison cf Batch and Online Environments

8 CICS/vS Application Programmer's Reference Manual

The general structure of a CICS/VS application program can be
summarized as follows:

• Storage definition statements - see "Storage Definition" in this
chapter and Chapters 2 through 5

• Program initialization statements - see "Program Initialization"
in this chapter and requirements
for establishing address ability in
Chapters 2 through 5

• Processing statements - see "CICS/VS Macro Instructions" in this
chapter and Chapters 6 and 7; refer

,to Chapters 8, 9, 10, and 12 if
additional functions are desired

• Termination statements - see "CICS/vS Macro Instructions" in this
chapter and Chapters 6 and 7

No attempt is made in this text to teach the use of typical
programming-language statements or general programming techniques within
Assembler language, ANS COBOL, or PL/I. Documentation for these
languages should be consulted for such information (see the
Bibliography) •

APPLICATION PROGRAM PACKAGING

Application design for a virtual environment is both similar and
different from application design in a real environment. The system
should have all modules resident so that code on un-referenced pagels)
need not be paged in. If the program is dynamic, the entire program
must be loaded across adjacent pages before execution begins. Dynamic
programs can be purged from storage if not currently in use and an
unsatisfied storage request exists. TO,allow sufficient dynamic area
to prevent the purging is mo~ expensive than making them resident
since a dynamic program will not share unused space on a page with
another program.

The reference pattern of the application should touch the fewest
concurrent pages during its execution.

1. The main line execution should be as straight a line as possible.
The ideal program executes sequentially with no branch logic
referencing beyond a small range of address space.

2. Literals and subroutines should be coded as close to their use
as possible. This would include LTORG statements at appropriate
locations in the program. Place single used constants near its
code. Executed instructions should be near the EX instruction.
perform and GO TO routines should be placed near the caller.

3. Avoid use of COBOL EXAMINE or VARIABLE MOVE operations since
these expand into subroutine executions.

4. Do not alter anything within the program module. An unchanged
module is reentrant and is not paged out.

5. Use the TWA for changeable data during execution, i.e., counters,
switches, parameter passing, basic mapping support output area
(use BMS SAVE).

6. DO few or no user GETMAINS to minimize the task's reference
pattern.

Chapter 1. Introduction 9

7. Do not modularize for the sake of size as was recommended for
pre-Vs systems. Consider duplicate code in line as opposed to
subroutines or separate modules.

8. Avoid LINKs since it will cause a GETMAIN for a RSA and will
search the PPT.

9. Try to keep the execution path straight line by using XCTL.

QUASI-REENTRANCE

Application programs must be coded so that they are" serially
reusable" between entry and exit points of the program. A serially
reusable portion of an application program is executed by only one
transaction at a time, and must initialize and/or restore any
instructions or data that it alters within itself during execution.
(It is recommended, however, that all applications be truly reentrant
to minimize paging.) Entry and exit points coincide with the use of
CICS/VS macro instructions, since an application program loses control
only upon execution of a CICS/VS macro instruction.

This required quality of application programs written to run under
CICS/VS is called "quasi-reentrance," since the programs need not meet
System/370 specifications fer true reentrance. Quasi-reentrance allows
a single copy of a user-written application program to be used to
process several transactions concurrently, thereby reducing the number
of copies of a program that rrust be in main storage.

Intermediate exits may be taken during execution of an application
program. Such exits constitute a transfer of control from the program.
All switches, data, and intermediate results needed upon Subsequent
return to the program must be retained in a unique storage area such
as the transaction work area (TWA)·. The application programmer must
provide that unique intermediate storage area by symbolically defining
it in his program (as described under "Symbolic storage Definitions"
in Chapter 2).

A serially reusable application program that has no intermediate
exits also has the quality of quasi-reentrance.

CICS/VS MACRO INSTRUCTIONS

As stated earlier, application programs to be executed under CICS/VS
can be written in Assembler language, American National standard CANS)
COBOL, or PL/I.. Regardless of the language used, it is strongly
recommended that the application programmer allow CICS/VS to perform
all supervisory and data management services for his applications by
using CICS/VS macro instructions to invoke the desired services. He
should use similar macro instructions to request dump and trace
facilities when testing or debugging his programs. Although the
application programmer is not precluded from direct communication with
the operating system, the results of such action are unpredictable and
performance may be affected. Such action also has a limiting effect
on migration from CICS/DOS/vS to CICS/OS/vS, a growth path that may
become highly advisable for the CICS/DOS/VS user.

10 CICS/VS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

CICS/VS macro instructions are written in Assembler language in the
following format:

r----------r---------------r---, I Name , operation I Operands comments,
1---------------------------------------_·_----------------------------1 I blank t DFHxxxxx lone or more operands comments for I
I or t I separated by commas program documen-I
I symbol I I tation I
L--~

The name field of a CICS/VS macro instruction must not contain a
label if the macro instruction is used in an ANS COBOL or PL/I program;
if a label is desired for the macro instruction, it may be placed on
the line preceding the macro instruction. For COBOL programs, the
first six positions may contain a sequence number.

The operation field of a CICS/vS macro instruction must begin before
column 16 and must contain the three-character combination "DFH" in
the first three positions of the operation field. Up to five additional
characters can be appended to DFH to complete this symbolic name for
the appropriate program or table. Since DFH is reserved for CICS/VS
macro instructions, no other statement may begin with this
three-character combination.

The operand field of a CICS/VS macro instruction is used to specify
the services and options to be performed. The following general rules
apply:

1. Operands that are written in uppercase letters (for example,
TYPE=INITIAL) are to be coded exactly as shown.

2. Operands that are written as a combination of uppercase and
lowercase letters separated by an equal sign are to be coded
with the keyword on the left as it appears and an appropriate
substitution for the general class of elements on the right.
For example, if the format description contains NORESP=symbolic
address, the user may code NORESP=NORMROUT.

3. Commas and parentheses are coded as shown. However, the
parentheses are required only when multiple operand entries are
used. For example, the following coding is correct:

TYPE=READ
TYPE=(READ,WAIT)

The commas are used as separators, but no comma should precede
the first operand entry or follow the last one inside
parentheses. Similarly, no comma should follow the last operand
coded for a particular macro instruction.

4. Since a blank character indicates the end of the operand field,
the operand field must not contain blanks except after a comma
on a continued line or after the last operand of the macro
instruction. The first operand on a continuation line must
begin in column 16.

5. When a CICS/VS macro instruction is coded on more than one line,
each line containing part of the macro instruction (except the
last one) must contain a nonblank character (for example, an
asterisk) in column 12 indicating that the macro instruction
has been continued on the next line.

Chapter 1. Introduction 11

CODING AIDS

Throughout this manual, wherever a CICS/vS macro instruction is
presented, the symbols {}, " [], and ••• are used in defining the
instruction format. These symbols are not part of the macro instruction
and are not coded by the programmer. Their purpose is to indicate how
the macro instruction may be written, they should be interpreted as
follows:

1. Braces { } are used to denote grouping. An example is:

SEGSET={SymbOliC addreSS}
YES
ALL

The vertical stacking indicates that a choice is to be made.
The above example indicates that the coding SEGSET= must be
followed by a programmer-selected symbolic address, the keyword
YES, or the keyword ALL.

2. The vertical stroke 1 indicates that a choice is to be made.
It is the same as the use of the word "or." For example,

means that either the INTRVAL operand or the TIME operand, but
not both, can be specified in the macro instruction. That is,
INTRVAL and TIME are mutually exclusive operands.

3. Square brackets [] denote options. Anything enclosed in
brackets mayor may not be coded, depending on whether or not
the associated option is desired. An example is:

[MODE= { ~:TE}]

If a default value is assumed by CICS/VS in the case of an
omitted operand, that default value is indicated by underlining
(see ~ above).

4. An ellipsis (three dots •••) denotes that the immediately
preceding unit may appear one or more times in succession in
the macro instruction.

Chapter. 6 explains how CICS/VS macro instructions are used to request
supervisory and data management services. All CICS/VS macros the
application programmer may use are fully defined in Chapter 7 and
summarized in the listing of Appendix D.

STORAGE DEFINITION

The macro library supplied with CICS/VS contains symbolic storage
definitiOns of CICS/VS control areas, work areas, and I/O areas. It
is strongly recommended that the application programmer use these
definitions rather than develop actual or direct displacements in his
program. This protects the application program in the event of any
relocation of CICS/vS.

The Assembler-language programmer includes symbolic storage
definitions in his program by means of Assembler-language COPY
statements. For the PL/I programmer, the macro library contains
numerous BASED structures that describe CICS/vS control areas. These
dummy sections are available to the user through use of IINCLUDE

12 CICS/VS Application Programmer's Reference Manual

statements. The ANS COBOL programmer uses similar definitions through
COPY statements in the Linkage Section of the Data Division of his
application program. These definitiOns are discussed in Chapter 2.

PROGRAM INITIALIZATION

In the initialization section of the application program, the
Assembler-language programmer must establish a symbolic base address
for his program because this is not done by CICS/vS prior to entry.
In doing so, he identifies a base register. Register 12 is reserved
by CICS/VS for the address of the task c(>ntrol area (TCA) for this
task. Register 13 is reserved for the address of the common system
area (CSA). These registers are initialized by CICS/VS prior to entry
and must be preserved throughout executiom of the program. For ANS
COBOL and PL/I, this reservation of registers is resolved by CICS/VS
and is of nO concern to the application programmer.

Registers 15 through 11 are available to the user and are kept intact
when a CICS/VS macro instruction is issued; the contents of register
14 are destroyed whenever a CICS/vS macro instruction is issued.

CICS/VS macro instructions that can be issued to transfer control
from or to an application program are listed in the left-hand column
of Figure 1-6. The status of all registers upon program entry or upon
return to a program is as shown in the remaining columns.

Note: Even though register 14 contains the program entry address, it
is not advisable to use register 14 as the base register since it is
used by CICS/VS to service requests for CICS/VS supervisory and data
management services.

Registers

At program entry
because of: 15 through 11 12 13 14

Initial Unknown TCA CSA User-program
Program Entry address

LINK Registers of TCA CSA User-program
program issuing address
the LINK

XCTL Registers of TCA CSA User-program
program i ssui ng address
the XCTL

FollOWing
execution of:

LOAD Unchanged TCA CSA Next sequential
instruction

RETURN (issued Unchanged (from TCA CSA Next sequential
by a linked-to point-of-view instruction
program) program issuing

the LINK)

Figure 1-6. Register Usage under CICS/vS

Chapter 1. Introduction 13

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

RESTRICTIONS

There are certain language considerations that the application
progranuner should be aware of when writing programs to be run under
CICS/vS.

COBOL

The use of CICS/vS macro instructions in an American National
Standard (ANS) COBOL application program precludes the use of the
following ANS COBOL features:

1. Environment and Data Division entries normally associated with
data management services.

2. File Section of the Data Division.

3. Special features: STRING, UNSTRING, SORT, REPORT WRITER,
SEGMENTATION, EXHIBIT, TRACE, DISPLAY, and ACCEPT. For
CICS/OS/VS, any feature that should require an OS/VS GETMAIN is
precluded. (DISPLAY and ACCEPT can be used ip conjunction with
the system console.)

4. Options that may lead to the issuance of a STXIT (AB) SVC or
S~E SVC: FLOW, STATE, STXIT, or SYMDMP for CICS/DOS/VS; FLOW
or STATE for CIes/os/vs.

5. ANS COBOL statements: READ, WRITE, OPEN, CLOSE.

6. QUOTE option, which signifies that literals are to be delineated
by quote marks (for example, "74"). Because CICS/VS macro
instructions generate COBOL code using apostrophes to delineate
literals (for example, '74'), the APOST option must be in effect.

7. The CICS/DOS/VS system does not include support for object code
provided by the optimizing option of the ANS COBOL V3 compiler.

In addition, SERVICE RELOAD coding must be added as described under
"Additional Guidelines" in Chapter 4 if compiling is accomplished using
the ANS COBOL V4 Compiler (5734-CB2), OS/VS COBOL COmpiler (5740-CB1),
or the DOS/vS COBOL COmpiler (5746-CB1) with the optimizing feature.

CICS/VS macro instructions should not be coded within anANS COBOL
statement, since each ANS COBOL statement generated by a CICS/VS macro
instruction is terminated by a period.

CICS/VS macro instructions generate COBOL statements which use an
apostrophe (') to delineate literals. Code written by the application
programmer cannot utilize quotes (") to delineate literals.

Any CIeS/VS macro instruction operand which defines a name or label
of a storage area or routine should comply with the Assembler language
restrictions of eight characters or less. This requirement is a result
of preprocessing by the Assembler before COBOL statements are generated.

Any COBOL program that is to run under CICS/vS must contain at least
one CICS/vS macro instruction (for example, DFHPC TYPE=RETURN) for
proper operation.

PL/I

The use of CICS/VS macro instructions in a PL/I application program
precludes the use of the follOWing PL/I features:

14 CICS/VS' Application Programmer's Reference Manual

3. The PLII statements: READ, WRITE, GE~, PUT, OPEN, CLOSE,
DISPLAY, SORT, DELAY, ON, REWRITE, LOCATE, DELETE, REVERT, SIGNAL
UNLOCK, STOP, HALT, EXIT, and, for the PL/I Optimizing Compiler,
FETCH and RELEASE.

4. The use of floating-point operations; that is, the attribute
FLOAT cannot be declared or implied by default. CICS/VS does
not save and restore floating-pcint registers, dump the contents
of floating-point registers, or provide for handling of exception
conditions that occur during fl ca ting-point operations,.

The use of CICS/VS macro instructions in a PL/I optimizing compiler
application program also precludes the use of the following options:

1. REPORT, FLOW, GONUMEER, GOSTMT.

An application program written in PLII must consist of an external
(MAIN) procedure. Internal t:rocedure CALLs are 'allowed in a PL/I
program to be run under CICS/VS, but external CALLs are not.

Any CICS/VS macro instruction operand which defines a name or label
of a storage area or routine should comply with the Assembler language
restrictions of eight characters or less. This requirement is a result
of preprocessing by the Asserrbler before PL/I statements are generated.

LINK-EDITING

separate ANS COBOL routines cannot be link-edited together. Neither
can separate PL/I routines. Assembler-language routines may be
link-edited, but called routines must conform to CICS/VS application
program requirements. Facilities comparable to link-editing are
provided under CICS/VS through LINK and XCTL (transfer control) macro
instructions, which the application programmer can use to set up
communication between programs.

CONSIDERATIONS FOR ~ VIRTUAL STORAGE ENVIRONMENT

CICS/VS operates in a virtual storage environment. The key objective
of programming techniques in a virtual storage system is the reduction
of page faults--those cases in which a program refers to an instruction
or data that does not reside in real storage. When this occurs, the
page in virtual storage that contains the referenced instruction or
data must be paged into real storage. The more paging required, the
lower the overall system performance.

The application programmer who writes programs to be run in a virtual
environment should understand the following concepts:

• locality of reference - the consistent reference, during a program's
execution, to instructions and data within a relatively small number
of pages (compared to the total number of pages in a program) for
relatively long time periods

• working set - the number and combination of pages of a program
needed for satisfactory performance (lOW paging rate) during a
given time period

In general, the application programmer should use techniques to
improve a program's locality of reference and to minimize the size of
its working set at any time during execution of the program. Some
guidelines are given below:

Chapter 1. Introduction 15

1. To achieve locality of reference, processing should be sequential
for both code and data, insofar as possible.

a. Initialize data as close as possible to its first use.

b. Define new data items as close as possible to the items that
use them.

c. Define arrays or other data structures in the order in which
they will be referred to; refer to elements within structures
in the order in which they are stored, for example, rowwise
rather than columnwise when using PL/I.

d. Separate error-handling or unusual-situation routines from
the main section of a ~rogram; they should be subprograms.

e. Subprograms that are short and used only once or twice (other
than those in d above) should be coded inline in the calling
program.

2. To achieve minimum use of real storage, the amount of storage
that a program refers to in a given time ~eriod should be as
lew as possible. A program should have small working sets.

a. Write highly modular code and then structure that code
according to frequency and anticipated time of reference.

b. Use separate subprograms whenever the flow of your program
suggests that execution will not be sequential.

3. Use techniques to ensure validity of reference, which means to
ensure that few storage references retrieve useless data.

a. Avoid long searches for data.

b. Use data structures that can be addressed directly, such as
arrays, rather than structures that must be searched, such
as chains.

c. Avoid indirect addressing and any methcds that simulate
indirect addressing.

When all page frames in a real storage environment are filled and
another page must be loaded into storage, a page replacement operation
is required. The operating system replaces first those pages that have
not been referred to for the longest period of time. If a page to be
replaced has been modified, that page must be paged out onto virtual
storage before the required page can be read in. The more page-out
operations required, the lower the overall performance of the system.

To avoid the necessity for page-out operations, the application
programmer can code his program so that page-out operations are not
required when a page containing a portion of his program must be
replaced in real storage. He need only avoid modifying instructions
or data within his program. A program in which neither instructions
nor data is modified is said to be truly reentrant. As noted earlier,
programs to be run in a CICS/vS environment must be quasi-reentrant.
For performance reasons, it may be wise to take a further step: to
make them truly reentrant programs.

The CICS/VS application programmer should not attempt to use
overlays, that is, to incorporate paging techniques within his programs.
System paging is automatic and works better anyway.

16 CICS/VS Application Programmer's Reference Manual

ASSEMBLY-TIME SERVICE

In addition to knowing the execution-time considerations discussed
in this chapter, the application programmer should be aware of an
assembly-time (or compile-time) service available under CICS/VS. The
DFHCOVER macro instruction can be issued to request that the assembler
or compiler in use print a cover page on each of two consecutive pages.
This ensures that the application Frogram listing may be torn off with
one of the cover pages face up. Pertinent information (program name,
date, time of assembly, remarks, and so on) may then be written on the
cover page.

The DFHCOVER macro instruction requires no operands and nothing else
should appear on the same coding line.

If the DFHCOVER macro instruction is coded as part of an
Assembler-language applicaticn program, it should be coded as the first
instruction in the program. If desired, however, this macro instruction
may be coded after anything that is not vital to the listing (such as
the TITLE line).

If the DFHCOVER macro instruction is coded as Fart of an ANS COBOL
application program, it should precede the IDENTIFICATION DIVISION
statement.

The first card of a PL/I source deck is printed as a header on each
page of the source listing. This means that when the DFHCOVER macro
instru(~ion is part of a PL/I apFlication program, the first card should
be a comments card containing information that the application
prograrr~er wants printed as a header. The second card should contain
the DFHCOVER macro instruction. The actual PL/I code should begin on
the third card of the source deck.

Since column 1 is used by the DFHCOVER macro for line and page
spacing under PL/I, column 1 must be defined as reserved for control
characters and columns 2-12 must be defined as available for data.
This is accomplished through the *PROCESS card for CICS/DOS/VS and the
EXEC card for CICS/OS/VS. For further informaticn concerning PL/I
compile-·time services, see the POS PLII optimizing Compiler Programmer's
Guide, 9s PL/I (!) Programmer's Guide, and OS PL/I Optimizing Compiler
Programmer's Guide.

The examples in Appendix A show how the DFHCOVER macro instruction
is used.

Chapter 1. Introduction 11

CHAPTER~. STORAGE DEFINITICN

SYMBOLIC STORAGE DEFINITIONS

CICS/VS provides symbolic storage definitions (dummy sections) to
describe the layouts of control sections of a number of storage areas.
These storage definitions are contained in the CICS/VS libraries and
can be copied into applicaticn programs. When combined with
user-defined layouts of the user's sections of the storage areas, they
provide symbolic addressing to the storage areas.

The storage areas for which symbolic storage definitions are provided
are of three types:

1. Centrol areas
2. Work areas
3. Input/output areas

Some of the storage areas are statically created by CICS/VS during
system initialization, and others are dynamically acquired and released
during execution of the system. Some of the areas are acquired or
created by CICS/VS; some are acquired directly by the application
program; and some are acquired by either CICS/VS or the application
program. Figure 2-1 lists the CICS/VS storage areas of interest to
the application programmer, indicating which are centrol areas, which
are work areas, and which are I/O areas; it also indicates which are
acquired by the user and which are acquired by CICS/VS.

Acq'd Acq'd
Control Work I/O by by
~ Areas Areas ~ CICS/VS

Common System Area (CSA) X X X
Common Work Area (CWA) X X
Task Control Area (TCA) X X
Transaction Work Area (TWA) X X
Journal Control Area (JCA) X X X
File Work Area (FWA) X X X
VSAM Work Area (VSWA) X X X
Storage Accounting Area (SAA) X X X
Terminal I/O Area (TIOA) X X X
Transient Data Input Area (TelA) X X
Transient Data Output Area (TDOA) X X
Temporary Storage I/O Area (TSIOA) X X X
File I/O Area (FIOA) X X
Terminal Control Table

Terminal Entry (TCTTE) X X

Figure 2-1. CICS/VS Storage Areas

All CICS/VS storage areas, with the exception of the terminal control
table terminal entry (TCTTE), the journal control area (JCA), and VSAM
work areas (VSW~s), consist of two logical and unique sections. The
control section is used primarily by CICS/VS; the user's section is
defined and used exclusively by the application ~rogram. This logical
division exists whether the storage is statically created (for example,
the common system area) or dynamically acquired (fer example, a terminal
input/output area).

Chapter 2. storage Definition 19

A storage accounting field is built by CICS/VS for every. dynamic
storage area acquired for the user. Eight bytes at the front and eight
bytes at the back of each dynamic storage area are used by CICS/VS for
control information. The user should take particular care not to alter
or destroy either of these fields. If one of these areas has been
altered or destroyed, CICS/vS may be abnormally terminated.

Two centrol areas, the common system area (CSA) and the task control
area (TCA), must be symbolically defined in every application program;
the other control areas (TCTTE and JCA), the work areas, and the I/O
areas are sele,cted at the option of the user. It is the user's
responsibility to copy symbolic storage definitions into his program
for the requir:ed control areas as 'Well as for any other storage areas
used by his program. (CICS/VS storage areas are summarized in tabular
form in Appendix B.)

The identifiers CSA, TCA, and so on in Figure 2-1 are used throughout
this manual. They are also used in symbolic names, or labels, within
CICS/VS modules and must be used by the application programmer to refer
to the data that they represent. Fields within a storage area often
begin with the characters of the label for that area. For example,
TCA stands for Task Control Area, TCAFCAAA is a field in the TCA that
points to a Facility Control Area, TCASCSA is a field in the TCA that
points to a storage Control Storage Area, and so on. The application
programmer becomes familiar with these labels through repetitive use.
He should assume that when labels of this type appear in this manual
they must be used as indicated in application programs. For the
reader's convenience, CICS/vS labels in common use are summarized in
Appendix C.

Depending on the programming language used, a statement of one of
the forms shown below is required to copy a symbolic storage definition
into an application program.

1. Assembler-language COpy statement of the form:

COpy name

2. ANS COBOL COpy statement of the form:

01 name COpy name.

specified in the Linkage Section of the Data Division.

3. PL/I preprocessor statement of the form:

%INCLUDE (name);
or

%INCLUDE name;

For example, assume that one or more terminal input/output areas
(TIOAs) are to be acquired during program execution. One of the
statements below must be included, depending on whether the program is
written in Assembler language, ANS COBOL, or PL/I, respectively.

Assembler: COPY DFHTIOA

ANS COBOL: 01 DFHTIOA COpy DFHTIOA.

PL/I: %INCLUDE (DFHTIOA);;

20 CICS/VS Application Programmer's Reference Manual

This statement copies the storage definition as a description or
map of a particular area. It does not reserve the storage area. As
pointed out above, sometimes CICS/VS acquires the area; in other cases,
the user acquires it. In either situation, the application programmer
must effectively map the storage definition that he has copied into
his program over the storage area acquired. He does so by moving the
address of the area (stored in a particular location by CICS/VS) into
what effectively becomes a base locator for that area. Addressability
through this base locator is limited to 4096 (0 through 4095) bytes
for any CICS/vS provided storage definition. Depending on the
programming language, a statement of one of the following forms must
be used to establish addressability to the area:

1. Assembler-language statement of the form:

L base-locator, lccation-containing-address

2. ANS COBOL statement of the form:

MOVE location-containing-address TO base-locator.

3. PI/I based pointer variable of the form:

base-locator = location-containing-address;

For example, assume that a terminal input/output area (TIOA) has
been acquired during program execution. TCASCSA is a four-byte field
in the TCA that contains the address of the dynamic storage area that
was acquired. TIOABAR is the TICA base address register. One of the
statements below must be executed, depending on whether the progr'am is
written in Assembler language, ANS COBOL, or PL/I, respectively.

Assembler: L TIOABAR,TCASCSA

ANS COBOL: MOVE TCASCSA TO TIOABAR.

PL/I: TIOABAR=TCASCSA;

Figure 2-2 contains the names used in copying CICS/VS-provided
symbolic storage definitions of control sections into an application
program and the names that represent base addresses used in establishing
aqdressability. (See also Appendix B.)

Chapter 2. Storage Definition 21

CICS/VS Storage Area

Common System Area

Common Work Area

Task Control Area

Transaction Work Area

File Work Area

Storage Accounting Area

Terminal
Input/Output Area

File Input/Output Area

Transient Data Input Area

Transient Data Output Area

Temporary Storage
Input/Output Area

Journal Control Area

VSAM Work Area

Terminal Control Table
Terminal ~ntry

Application Program
Storage

Abbreviation

CSA

CWA

TCA

TWA

FWA

SAA

TIOA

FIOA

TDIA

TDOA

TSIOA

JCA

VSWA

TCTTE

Symbolic Names
For

Defined Storage

DFHCSADS

User-defined

DFHTCADS

User-defined

DFHFWADS

DFHSAADS

DFHTIOA

DFHFIOA

DFHTDIA

DFHTDOA

DFHTSIOA

DFHJCADS

DFHVSWA

DFHTCTTE

Base Locator
Or

Base Address Register

CSACBAR

CSACBAR

TCACBAR

TCACBAR

FWACBAR

SAACBAR

TIOABAR

FIOABAR

TDIABAR

TDOABAR

TSIOABAR

JCABAR

VSWABAR

TCTTEAR

User-defined

*Any register except 12, 13, and 14 which are utilized by CICS/VS, and 0 which
cannot be used as a base or an index register.

Assembler-Language
General-Purpose

Register Assignment

13

13

12

12

Figure 2-2. Symbolic Names and Ease Addresses of CICS/VS Storage Areas

All storage acquired by the a~plication program through CICS/VS
storage management is controlled by a technique that chains together
all storage associated with a particular transaction. This feature
allows CICS/VS to release all storage associated with a transaction,
either upon request from the user or when the transaction is terminated,
normally or abnormally.

The common system area (CSA) is the head of the chain. Its address
is provided by CICS/VS. The CSA points to the task control area (TCA)
which in turn points to several other storage areas. Figure 2-3
illustrates the chaining of CICS/VS storage areas and indicates the
symbolic base address used to locate each storage area.

22 CICS/VS Application Programmer's Reference Manual

CICSIVS-CSACBAR

COMMON

SYSTEM

AREA

DFHCSADS

COMMON

WORK

AREA

(

POINTERS TO CICSIVS
MANAGEMENT
MODULES

CSACDTA __ _t_'--

~ CWA·

I..-

FACILITIES CONTROL

ASSOCIATED AREA

ADDRESS

STORAGE CONTROL

STORAGE ADDRESS

FILE CONTROL

AREA ADDRESS

TRANS lENT DATA

AREA ADDREss

TEMPORARY STORAGE

DATA AREA

TRANSACTION WORK AREA

,
,

I TWA

I
I
~
I
L--

ITcTIEiiA-I---~_ TIOABAR

!~
Lll=2~BIT~E=S~I~ __________ ~~

FWACBAR

1~
.... ' '-__ 16_BY_TE_S_~_--"-----'.'--__ -Av---l

FIOABAR

l DFHFIOA

1 OOt~S ----I I
.... O;;...O:;..;S,,-IV;...;S_-8.;..;O....;B'-Y...;.T;;:;ES'---'-:: ___ =-:.=-"---->.~

(
16o BYTE FILLER DEFINED)

BY USER FOR OSIVS ISAM

OF HVSWA

I~~
ExTRAPARTITION GET

• THIS AREA IS DEFINED AFTER THE DFHxxxxx. THE Pl/I AND COBOL

PROGRAMMER MUST COMPLETE THE BASED STRUCTURE (SYMBOLIC STORAGE

DEFINITIONS) BY WRITING STATEMENTS WITH A LEVEL NUMBER GREATER

THAN L THE ASSEMBLER LANGUAGE PROGRAMMER MUST WRITE DS

STATEMENTS.

•• TCAFCAA. TCATDAA. AND TCATSDA ARE NOT STORED IN SEPARATE WORDS

(ALL THREE POINTERS ARE STORED IN THE SAME WORD)

Figure 2-3. Chaining of CICS/VS storage Areas

Chapter 2. Storage Definition 23

REQUIRED STORAGE AREAS

At least two storage area definitions, namely, those which define
the CSA and the TCA, are required in every application program to be
run under CICS/VS. The following sections describe these areas. The
fields of special significance for the application programmer are
discussed in detail. Services performed by CICS/VS components (recall
the list of components in the preceding section of this manual) are
mentioned as necessary. Some tables that are basic to CICS/VS operation
are also mentioned. These tables are explained in greater detail in
the CICS/vS System Programmer's Reference Manual.

COMMON SYSTEM AREA (CSA)

The CSA is an area of static storage that contains areas and da'ta
required for the operation of CICS/vS. It also contains a user-defined
common work area (CWA) that can be referred to by application programs.

Data in the CSA that is required for operation of CICS/VS includes:

• CICS/VS save areas

• Addresses of CICS/VS management programs

• Control system and user statistics accumulators

• Addresses of CICS/VS system control tables

• Common system constants

• System control parameters

The fields of the C,SA that are of particular significance to the
application programmer are as follows:

CSACTODB: This four-byte binary field contains the time of day in
hundredths of a second. The tiroe of day is updated
periodically during task dispatching and reset at midnight;
its accuracy depends on the ~ask mix and the frequency of
task switching.

CSATODP: This four-byte packed decimal field contains the time of
day in the form HEMMSSt+, that is, eXfres sed to tenths 0:[
a second. The time of day is updated periodically during
task dispatching and reset at midnight; its accuracy dept:nds
on the task mix and the frequency of task switching.

CSAJYDP: This four-byte packed decimal field contains the Julian date
in the form YYDDD+. (The left-most byte is binary zeros.)
The value is changed at midnight.

CSAWABA: This field represents the beginning of the common work area
(CWA) and ensures doubleword storage alignment for it.

CSAOPFLA: This four-byte field contains the address of the CSA optional
features list. This list contains various pointers used by
the journal contrcl program, the built-in functions progz"am,
and so on. The field need not be referred to explicitly in
an Assembler-language or PL/I application program but must
be used to establish addressability for the CSA optional
features list in an ANS COBOL applicaticn program.

24 CICS/VS Application Programmer's Reference Manual

Common Work Area (CWA)

The CWA is an area within the CSA that can be used by application
programs for the retention of temporary data, the accumulation of
statistics, the passin~ of parameters, and so on. The size of this
area is determined by the user installation at system generation. It
is initially set to binary zeros. Its contents can be accessed and
altered by any number of tasks during CICS/vS operation.

Addressability for the CWA is provided when copying the CICS/VS
storage definition for the CSA. However, addressability is limited to
a combined total of 4096 (0 through 4095) bytes for the CSA and CWA.
Addressability for any portion of the CWA extending beyond the 4095-byte
limit is the responsibility of the user.

Since the CWA is available to any task while it has control of the
system, it is not advisable for an application program to
indiscriminately use this area for retention of data when requesting
CICS/vS services. Another transaction may get control and destroy the
data. However, if the user designs his application programs to expect
and maintain a common, user-established format within the CWA, there
is no reason why the area cannot be shared by severa 1 ta sks,. For
example, a statistics accumulator within the CWA can be updated by more
than one transaction.

TASK CONTROL AREA (TCA)

The TCA is an area of main storage acquired dynamically by CICS/VS
when the task (transaction) is originated by task control. Once
acquired, the TCA exists until the task is terminated. It is used to
represent the current status of the task and its relative dispatching
priority. During execution of the task, the user has the capability
of changing the priority through task management services; further
processing of the task is scheduled accordingly.

The TCA provides the fcllowing items for its associated task:

• Register save areas

• Unique fields (parameter areas) for communicating requests to
CICS/VS

• Address of the related Facility Control Area (FCA)

• Task storage chain addresses

The TCA provides no space for any residual data such as statistics.
However, the TCA can be extended to include a transaction work area
(TWA), the size of which is determined by the user to meet the needs
of the transaction. (See "Transaction Work Area. ")

The TCA consists of three logical sections:

• CICS/vS system control section

• Communication section

• Transaction Work Area (optional)

The CICS/VS system control section contains control addresses and
data needed by CICS/VS to control the task. Access to this section is
limited to CICS/VS management programs, CICS/VS service programs, and
user-written service programs.

Chapter 2. Storage Definition 25

The communication section is used by CICS/VS and by user-written
application programs for communication between the task and CICS/VS
management programs and service programs.

The optional transaction work area is reserved for the exclusive
use of the task.

In those cases in which a task is initiated from a terminal (nearly
always the case), CICS/VS places into the TCA the address of the
terminal control table terminal entry (TCTTE) associated with the
terminal. The TCTTE, in turn, contains the address of the terminal
inpUt/output area (TIOA).

The fields of the TCA that are of particular significance to the
application programmer are as follows:

TCAFCAAA: This four-byte field contains the address of the facility
control area associated with the facility that initiated
the transaction. This field can contain the address of a
terminal control table terminal entry, a destination control
table entry, or an automatic task initiator control area.
This field can also be used to pass the address of a
user-defined area whenever one task attaches another
nonterminal-oriented task. It can contain any meaningful
communication between two asynchronous tasks. When used
for such purposes, the high-order byte ef the field must
conta in zeros.

If the user's application program is to communicate with
the terminal, TCAFCAAA must contain the address of the
appropriate terrrinal control table terminal entry (TCTTE).
This allows the applicaticn program to refer to any data in
the TCTTE.

(The following fields are contained in the Cowmen Control
Communication Area of the TCA. This means that the contents of these
fields will not necessarily be maintained during any CICS/VS service
request.)

TCAPCPI:

TCAPCAC:

This eight-byte field contains the identification of the
requested program. The program identification is
left-justified and must meet label requirements of the
operating system in use. The CICS/VS processing program
table (PPT) must also contain this pregram identification.

This field (TCAPCPI) can be filled prior to issuing a program
control (DFHPC) macro instruction. (See "Program services"
in Chapter 6.) If the application program places the program
identification in TCAPCPI prior to the execution of the
macro instruction, the PROGRAM=name operand should be omitted
from the macro instruction. For exam~le, the program
identification can be placed in TCAPCPI prior to issuing a
DFHPC TYPE=LINK macro instruction when an application program
is testing to determine to which program to link. On the
basis of the test, the application program should place the
program identification in TCAPCPI and then execute a DFHPC
TYPE=LINK macro instruction without the PROGRAM=name operand.
With this teChnique, ene macro instruction can be issued
repetitively to link to many different programs.

This four-byte field contains the termination code for the
DFHPC TYFE=ABEND macro instruction. The termination code
must be left-justified and must be the user's termination
code.

26 CICS/VS Application Programmer's Reference Manual

TCASCSA:

TCADCNB:

TCASCNB:

TCASCIB:

TCAFCDI:

This field (TCAPCAC) can be filled by the application program
prior to issuing the DFHPC TYPE=ABEND macro instruction; in
this case, the ABOODE=YES operand should be coded if a dump
is requested. Generally, the application program places
the termination code in TCAPCAC prior to the execution of
the DFHPC TYPE=ABEND macro instruction when testing to
determine which type of termination is desired.

This four-byte field contains the address of the storage
obtained after the execution of a DFHSC TYPE=GETMAIN macro
instruction; it must also contain the address of the storage
to be released prior to execution of a DFHSC TYFE=FREEMAIN
macro instruction. (See "Storage Services" in Chapter 6.)
The application programmer must remember that the first
eight bytes at this address are always the storage accounting
field used by CICS/VS storage management. Care should be
taken never to alter the contents of a storage accounting
field.

The address of the storage obtained from a DFHSC TYPE=GETMAIN
macro instruction is automatically placed in TCASCSA except
when a conditional GETMAIN request (COND=YES) has been issued
and storage is not available. In this case, CICS/VS storage
management places binary zeros in this field and returns
contrel to the application program. The application program
should specify a symbolic base address for the storage area
obtained and reove the storage address returned in TCASCSA
to this symbolic base address.

This two-byte field contains the length (in bytes) of the
main storage area to be dumped by CICS/VS dump management.
(See "Dump Services" in Chapter 8.) The application program
can place a hexadecimal representation of the number of
bytes requested into this field prior to execution of the
DFHDC TYPE=PARTIAL macro instruction.

This two-byte field contains the number of bytes of storage
to be obtained by CICS/VS storage management. This field
can be filled by the application program with a hexadecimal
representation of the number of bytes requested prior to
execution of the DFHSC TYPE=GETMAIN macro instruction. If
the application program places a value in this field prior
to execution of a DFHSC TYPE=GETMAIN macro instruction, the
NUMBYTE=value operand must be omitted. When the storage is
obtained, TCASCNB is overlaid with a portion of the address
of the storage obtained.

This one-byte field contains the bit configuration used for
the initialization of dynamically acquired storage. The
field can be filled by the application program with the
desired bit configuration prior to execution of a DFHSC
TYPE=GETMAIN macro instruction, in which case the INITIMG=YES
operand must be coded.

This eight-byte field contains the symbolic data set
identification for the data set to which a record is to be
written or from which a record is to be retrieved. This
identification must correspond exactly with the
ident~fication of the required data set placed in the file
control table by the system programmer at system generation.
It must be left-justified in TCAFCDI. The application
program can place the data set identification in this field
prior to execution of a file control DFHFC TYPE=GET or
TYPE=SETL macro instruction. (See "File Services" in Chapter

Chapter 2. storage Definition 27

TCAFCRI:

TCAFCSI:

6.) If this field is filled prior to execution of the DFHFC
macro instruction, the DATASET=name operand must be omitted.

This four-byte field contains the address of the user's
record identification field when making a request for CICS/VS
file management services. The application program can place
the address in this field prior to execution of a DFHFC
TYPE=GET, DFHFC TYPE=PUT,TYPOPER=NEWREC, or DFHFC TYPE=SETL
macro instruction. The RDIDADR=symhol operand should be
omitted if TCAFCRI is filled prior to execution of the macro
instruction.

This eight-byte field contains the symbolic segment set
identification. This identification must match the
identification of the requested segment set placed in the
file control table by the system programmer at system
generation. It must be left-justified in TCAFCSI.

The application program can place the segment set
identification in this field prior to issuing the DFHFC
TYPE=GET, DFHFC TYPE=PUT, DFHFC TYPE=SETL, or DFHFC
TYPE=GETNEXT macro instruction. If this field is filled
prior to execution of the DFHFC TYPE=GET or DFHFC TYPE=PUT
macro instruction, the SEGSET=YES operand must be coded as
part of the macro instruction.

TCAFCAI: This eight-byte field contains the symbolic identification
of the first index data set to be searched in an indirect
accessing hierarchy. The application program can place the
desired indirect access identification (as previously
established in the file control table by ~he system
programmer at system generation time) in the field prior to
execution of a DFHFC TYPE=GET macro instruction. When the
application program places the identification in TCAFCAI,
it must be left-justified and the INDEX=YES operand must be
coded as part of the macro instruction.

TCAFCAA: This four-byte field contains the address of the file
input/output area (FIOA), file work area (FWA), or VSAM work
a rea (VSWA).

TCAFCNRD: This two-byte field contains a count of the number of records
deleted upon return to the application program after
completion of a DFHFC TYPE=DELETE macro instruction in which
a generic key is specified.

TCAFCURL: This two-byte field contains the length of an undefined
record being written to a DAM data set. The value must be
placed in this field by the application program prior to
issuing the DFHFC TYPE=PUT,TYPOPER=NEWREC macro instruction
that requests the write of the undefined recorq.

TCAFCTR: This one-byte field contains the type of file control
request/response. Request codes are set by issuing the
DFHFC macro instruction. Responses are automatically placed
in TCAFCTR by file management after completion of the event
requested.

TCATDTR: This one-byte field contains the type of transient data
control request/response. (See "Transient Data Services"
in Chapter 6.) Request codes are set by issuing the DFHTD
macro instruction. Responses are automatically placed in
TCATDTR by transient data management after completion of a
transient data event.

28 CICS/VS Application Programmer's Reference Manual

TCATSTR:

TCAICTR:

This one-byte field contains the temporary storage control
request/response. Request codes are set by issuing the
temporary storage macro instruction (DFHTS). Responses are
automatically placed in TCATSTR by temporary storage
management after completion of a temporary storage event.

This one-byte field contains the interval control
request/response. (See "Time Services" in Chapter 6.)
Request codes are set by issuing the interval control macro
instruction (DFHIC). Responses are automatically placed in
TCAICTR by time management after completion of an interval
control service request.

Transaction Work Area (TWA)

The TWA is an extension of the TCA and is created at the option of
the user to provide a work area for a given transaction (task). The
TWA can be used for the accumulation of data and intermediate results
during the execution of the transaction. It can also be used when the
amount of working storage for a transaction is relatively static, when
data must be passed between user-written application programs, or when
data must be accessed by different programs during transaction
processing. During multiple entries of data for a transaction, the
application programs might retain the data in TWA. This approach cannot
be used for multiple transactions; the TWA is released automatically
at task termination.

The size of the TWA for the transaction must be specified in the
program control table by the system programmer at system generation
time. The application programmer should work with the system programmer
in determining the amount of storage required. He must then define
the storage area immediately following the definition of the TCA in
his application program. The size of TWAs within the system can vary
according to specific transaction needs. (For a discussion of
establishing the TWA, see the explanation of the program control table
in the CICS/VS system Programmer's Reference Manual.)

Addressability of the TWA is provided when cOFyin9 the CICS/vS
storage definition for the TCA. However, addressability is limited to
a combined total of 4096 (0 through 4095) bytes for the TCA and TWA.
Addressability for any portion of the TWA extending beyond the 4095-byte
limit is the responsibility of the user.

Chapter 2. storage Definition 29

CHAPTER 1. COPYING STORAGE DEFINITIONS - ASSEMBLER LANGUAGE

The Assembler-language ~rogrammer must define storage for the CICS/vS
control areas and any other storage areas required for the processing
of his program. He accomplishes this by using the Assembler-language
COpy statement to (1) copy the appropriate symbolic storage definitions
into his program and (2) specify the names of the storage areas being
defined. All registers are at his disposal, except registers 12, 13,
and 14 (which are used by CI~S/VS) •

All programs must contain statements to copy the symbolic storage
definitions for the common system area (CSA) and the task control area
(TCA). CICS/vS macro expansions resulting from roacro instructions that
the application programmer uses refer to fields within these areas, so
their locations must be identified. Whether additional definitions
must be copied depends on the processing requirements (storage areas
and macro instructions used) of the application ~rogram.

STATIC STORAGE DEFINITION

During CICS/VS initialization, the CSA is statically allocated as
part of the CICS/VS nucleus. For each terminal with which communication
is to occur, the terminal control table terminal entry (TCTTE) is
included in the statically allocated terminal contxol table (TCT).
These constitute the static storage areas for which COPY statements
may be required.

COMMON SYSTEM AREA (CSA)

The statement

COpy DFHCSADS

copies the symbolic storage definitions for the CSA and the CSA optional
features list (CSAOPL) and assigns register 13 as the base register.

If CICS/VS was generated to support a common work area (CWA) within
the CSA, the application programmer may wish to include his own symbolic
definition for that area following the copy DFHCSADS statement. For
example:

COpy
BUCKET 1 DS
BUCKET 2 CS
TEMPNAME DS

DFHCSAI:S
F
F
CL8

TERMINAL CONTROL TABLE TERMINAL ENTRY (TCTTE)

The statement

COpy DFHTCTTE

copies the symbolic storage definition for the TCTTE. This symbolic
storage definition is necessary when the user desires to obtain the
address of the current terminal I/O area (the current terminal control
table terminal entry data address, or TCTTEDA) or to request a terminal
control service via the DFHTC macro instruction. The user must code
an EQU statement to set up a base register for the TCTTE, equating the

Chapter 3. Copying stcrage cefinitions - Assembler Language 31

label TCTTEAR to a general-purpose register. He must also establish
addressability for the TCTTE by loading the address at TCAFCAAA into
TCTTEAR. The following is an example of the coding required:

TCTTEAR EQU 5
COpy DFHTCTTE

L TCTTEAR,~CAFCAAA

DYNAMIC STORAGE DEFINITION

During initiation and execution of a transaction (task), the TCA,
TIOA, and other storage areas required by the transaction are
dynamically allocated by CICS/VS storage management, upon request from
either the application program or a CICS/VS management function. The
application programmer must provide symbolic storage definitions for
these storage areas by using COPY statements as described below.

TASK CONTROL AREA (TCA)

The statement

COPY DFHTCADS

copies the symbolic storage definition for the TCA (excluding the
CICS/VS control section) and assigns register 12 as the base register.
If the user's application program uses a transaction work area (TWA),
DS statements for that storage area must immediately follow the COpy
statement. The following is an example of the coding required to
symbolically'define storage for both the TCA and TWA:

NAME
S'IREET
CITY
STATE

COpy
DS
DS
DS
DS

DFHTCADS
CL20
CL20
CL10
CL3

If it is necessary for the Assembler-language programmer to access
the CICS/vS system control section of the TCA, a copy of the symbolic
storage defin;tion for the entireTCA can be obtained by using the
CICS/VS macro in~tructiori

DFHTCA CICSYST=YES

in place of the statement COpy DFHTCADS. Addressabili ty to the
communication section of the TCA and to the transaction work area (TWA)
is provided automatically by CICS/VS through register 12.
Addressability t9 the C~CS/VS system control section must be provided
by the 'application programmer; for example:

L WRKREG,TCASYAA
USING DFHSYTCA,WRKREG

DROP WRKREG

32 CICS/VS Application Programmer's Reference Manual

TERMINAL INPUT/OUTPUT AREA (TIOA)

The statement

COpy DFHTIOA

cepies the symbelic sterage definitien fer the CICS/VS centrel sectien
.of the TIOA. This sterage definitien sheuld precede the user's
definitien .of a terminal input .or .output message. The user must cede
an EQU statement te set up a base register fer the TIOA, equating the
label TIOABAR te a general-purpese register. He can then request an
actien that requires a TIOA. Fer example, he can issue a DFHSC
TYPE=GETMAIN macre instructien requesting CICS/VS sterage centrel te
.obtain dynamic sterage fer a TIOA fer his pregram, as illustrated here:

TIOABAR EQU
COpy

NAME DS
STREET DS

DS

9
DFHTIOA
CL20"
CL20
CL5

DFHSC TYPE=GETMAIN,NUMBYTE=XXX,CLASS=TERMINAL
L TIOABAR,TCASCSA

For additienal infermation about GETMAIN, see "Obtain and Initialize
Main sterage (GETMAIN)" under "Storage Services" in Chapter 6.

FILE INPUT/OUTPUT AREA (FIOA)

The statement

COPY DFHFIOA

cepies the symbolic sterage definition fer the CICS/VS centrel sectien
.of the FIOA. This sterage definition sheuld precede the user's defined
layeut .of a file input .or .output area when reading an unblocked recerd
wi theut updating .or segmenti:pg, .or when reading DAM blecked' recerds
witheut deblecking. If desired, the user can identify. the area returned
in respense te a user file request as a FIOA, rather than a FWA" .or
VSWA, by testing FIOAM fer a mixed cenditien at label FIOAIND. The
user must cede an EQU statement te set up a base register fer the FIOA,
equating the label FIOABAR to a general-purpese register. The FIOA is
autematically acquired by CICS/VS file management whenever ~ request
is made by the user to access a data base data set. If data is
retrieved using the Indexed sequential Access Methed (ISAM) " under
CICS/OS/VS, a 16-byte filler must be defined prier te the user's data
definition. The user must establish addressability fer an FIOA acquired
in respense te a oFHFC macre instruction befere referring 'te the FIOA.
See the example belew which alse shews the eptienal test fer FIOA
identificatien.

FIOABAR EQU
COpy
DS

NAME OS
STREET OS

L
TM
BM

7
DFHFIOA
16X
CL20
CL5

FIOABAR,TCAFCAA
FIOAINo,FIOAM
GOTFIOA

OS/VS ISAM FILLER

WAS A FIOA RETURNED?
YES

Chapter 3. Cepying Sterage Definitiens - Assembler I.anguage 33

FILE WORK AREA (FWA)

The statement

COPY DFHFWADS

copies the symbolic storage definition for the CICS/VS control section
of the FWA. This storage definiticn should ~recede the user's defined
layout of a file record area when reading or updating an existing
blocked or segmented record, when adding a new record to a file, or
when retrieving records using the browse feature. If desired, the user
can identify the area returned in response to a user file request as
a FWA, rather than a FIOA or VSWA, by testing FWAM for a ones condition
at label FWAIND. The user must code an EQU statement to set up a base
register for the FWA, equating the label FWACBAR to a general-purpose
register. He must also establish addressability for an FWA acquired
in response to a DFHFC macro instruction prior to any reference to the
FWA. The following example illustrates the coding required, as well
as the optional test for FWA identification:

FWACBAR

'NAME
STREET
ZIPCODE

EQU
COpy
DS
DS
DS

L
TM
BO

VSAM WORK AREA (VSWA)

The statement

COPY DFHVSWA

7
DFHFWADS
CL20
CL30
,CL5

FWACBAR,TCAFCAA
FWAIND,FWAM
GOTFWA

WAS FWA RETURNED?
YES

copies the symbolic storage definition for the CICS/VS control section
of the VSAM work area (VSWA) and must be present in all programs using
locate mode I/O. (See "File Services" in Chapter 6.) If desired, the
user can identify the area returned in response to a user file request
as a VSWA, rather than a FIOA or FWA, by testing VSWAM for a zero
condition at label VSWAID. The user must code an EQU statement to set
up a base register for the VSWA, equating the label VSWABAR to a
general-purpose register. After a VSWA is acquired by CICS/VS in
response to a DFHFC macro instruction utilizing lccate mode I/O, the
user must establish addressability for the VSWA prior to any reference

'I to that area. The following example illustrates the coding required,
as well as the optional test for VSWA identification:

EQU 7
COpy DFHVSWA

L
TM
BZ

VSWABAR,TCAFCAA
VSWAID,VSWAM
GOTVSWA

WAS VSWA RETURNED?
YES

3q CICS/VS Application Programmer's Reference Manual

TRANSIENT DATA INPUT AREA (TelA)

The statement

COPY DFHTDIA

copies the symbolic storage definiticn for the CICS/VS control section
of the intrapartition TDIA. This storage definition should precede
the user's defined layout of the message area used for data obtained
from an intrapartition destination by means of a DFHTD TYPE=GET macro
instruction. (See "Acquire Queued Data (GET)" under "Transient Data
Services" in Chapter 6.) The user must code an EQU statement to set up
a base register for the TDIA, equating the label TDIABAR to a
general-purpose register. He must also establish addressability for
the TDIA following a DFHTD macro instruction. The following is an
example of the coding required:

TDIABAR EQU
COPY

NAME DS
STREET DS

L

9
DFHTDIA
CL20
CL20

TDIABAR,TCATDAA

TRANSIENT DATA OUTPUT AREA (TOOA)'

The statement

COpy DFHTOOA

copies the symbolic storage definition for the CICS/VS control section
of the intrapartition TDOA. For consistent documentation of the
application program, this storage definition should precede the user's
defined layout of the message area for transient data to be directed
to an intrapartition or extrapartition destination by means of a DFHTD
TYPE=PUT macro instruction. (See "Dispose of Data (PUT)" under
"Transient Data Services.") The user must code an EQU statement to set
up a base register for the TDOA, equating the label TDOABAR to a
general-purpose register. The address of the length field labeled
TDOAVRL must be given to transient data control either through the
TDADDR operand of the DFHTD reacro instruction or by placing it in
TCATDAA. The following is an example of the coding required:

TOOABAR EQU 9
COpy DFHTDOA

TIME DS CL4
DATE DS PL3
INTERM DS CL4
OUTTERM DS CL4

DFHSC TYPE=GETMAIN,CLASS=TRANSDATA,NUMBYTE=XX
L TDOABAR,TCASCSA

DFHTD TYPE=PUT,DESTID=POST,TDADDR=TDOAVRL

TEMPORARY STORAGE INPUT/OUTPUT AREA (TSIOA)

Chapter 3. Copying Storage Definitions - Assembler Language 35

The statement

COpy DFHTSIOA

copies the symbolic storage definition for the CICS/VS control section
of the TSIOA. This storage definition should precede the user's defined
layout of input/output work areas for temporary storage. The user must
code an EQU statement to set up a base register fer the TSIOA, equating
the label TSIOABAR to a general-purpose register. The address of the
length field labeled TSIOAVRL must be given to temporary storage control
either through the TSDADDR o~erand of the DFHTS macro instruction or
by placing it in TCATSDA. The following is an example of the coding
required:

TSIOAEAR EQU
COPY

6
DFHTSICA
PL2 PAGENO

TITLE
LINE1

DS
DS
DS

CL30
CL70

DFHTS TYPE=GET
L TSIOABAR,TCATSDA
SH TSIOABAR,=H'S'

Upon execution of the DFH'IS TYPE=GET instruction above, CICS/VS
returns the data portion (LLbb field) of the address of the obtained
storage area in TCATSDA. To establish addressability to the TSIOA
(that is, to use the DFHTSIOA DSECT), the application programmer must
subtract eight from this add~ss to point to the storage accounting
field of the storage area acquired by CICS/vS. If the TSDADDR operand
is included in the DFHTS TYPE=GET macro instruction, this is not
required.

STORAGE ACCOUNTING AREA (SAA)

The statement

COPY DFHSAADS

copies the symbolic storage definition for the SAA. This storage
definition should precede the user's defined laycut of a unique work
area that he uses within his application program. The user must code
an EQU statement to set up a base register for the SAA, equating the
label SAACBAR to a general-purpose register. The following is an
example of the coding required:

SAACBAR

SYMBLA
NAME
S'IREET
SYMBLB

EQU 9
copy DFHSAAI:S
EQU *
DS CLSO
DS CL1S
EQU *-SYMBLA

DFHSC TYPE=GETMAIN,INITIMG=OO,NUMBYTE=SYMBLB,
CLASS=USER

L SAACBAR,TCASCSA

36 CICS/VS Application Programmer's Reference Manual

Having copied the symbolic storage definition for the SAA, the
application programmer can write a DFHSC TYPE=GETMAIN instruction
requesting CICS/VS storage control to obtain main storage for use by
his program. He should move the address returned by CICS/VS in TCASCSA
to SAACBAR, the base address register for the SAA.

JOURNAL CONTROL AREA (JCA)

The statement

COpy DFHJCADS

copies the symbolic storage definition for the CICS/VS control section
of the journal ccntrol area (JCA) and must be present in all programs
requesting journal services. (See "Journal services" in Chapter 6.)
The user must code an EQU statement to set up a base register for the
JCA, equating the label JCABAR to a general-purpose register. The
following is an example of the coding required:

JCAEAR EQU 9
COPY DFHJCA[S

A JCA is acquired dynamically by means of a DFHJC TYPE=GETJCA macro
instruction. Addressability to the JCA is automatically provided
through the macro expansion, which loads the JCA address into JCABAR.

EXAMPLE OF CICS/VS ASSEMBLER-LANGUAGE APPLICATION PROGRAM

Figure 3-1 is an Assembler-language program written to run under
CICS/vS. The program asks a question of the terminal operator, receives
a reply, dynamically acquires some storage" and sends the operator's
message back to the terminal. In effect, an echo test is performed.
(The line numbers in the figure are not part of the program.)

A discussion of the significance of each of the lines of Figure 3-1
follows.

Line Number

01
02-03

04-05

06-07

08-09

10
11-13

14
15
16
17

18

Description

Assigns base register for program.
Assigns base registers for TCTTE and
TIOA symbolic storage definitions.
Copies CSA and TCA symbolic stor,age
definitions.
Defines fields in TWA as save areas to
provide for quasi-reentrance.
Copies TCTTE and TIOA symbolic storage
definitions.
Defines message area in TIOA.
Begins program; establishes addressability
for program.
Establishes addresssability for TCTTE.
Establishes addressability for TIOA~
Moves message to output area of TIOA.
Moves length of message to data length
field of TIOA.
CICS/VS mac~ instruction that writes message

Chapter 3. Copying Storage Definitions - Assembler Language 37

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

19

20-21

22-25

26

27
28

29

30

31

32-33

BASEREG EQU
TCTTEAR EQU
TIOABAR EQU

COpy
COpy

LENGTH DS
MESSAGE DS

COpy
COPY

MESSG DS
CSECT
BALR
USING
L
L
MVC
MVC
DFHTC
L
MVC
MVC
DFHSC

L
ST
MVC
MVC
DFHTC
DFHPC
LTORG
END

to terminal, waits for operator's reply,
and reads o~erator's re~ly.
Establishes addressability for new TIOA,
using address in TCTTE.
Saves the message and the length of the
message in the TWA save areas.
CICS/VS macro instruction that requests 32 bytes
of terminal type storage initialized to blanks.
Establishes addressability for new TIOA
(address of newly acquired storage area is
in TCASCSA field of the TCA).
Places address of new TIOA in TCTTE.
Moves the message from TWA save area to
new TIOA.
Moves the message length to data length
field of new TIOA.
CICS/VS macro instruction that writes message
to terminal.
CICS/VS macro instruction that returns control
to CICS/VS and terminates this task.

2
11
10
DFHCSADS
DFHTCADS
H
CL32
DFHTCTTE
DFHTICA
CL32

Required for Assembler language.

BASEREG,O
*,BASEREG
TCTTEAR,TCAFCAAA
TIOAEAR,TCTTEDA
MESSG,=C'WHAT LANGUAGE AM I CODED IN'
TIOATDL,=H' 27'
TYPE= (WRI 'IE, READ, WA IT)
TIOAEAR,TCTTEDA
LENGTH,TIOATDL
MESSAGE,MESSG
TYPE=GETMAIN,
CLASS=TERMINAL,
INITIMG=40,
NUMBYTE=32
TIOABAR,TCASCSA
TIOABAR,TCTTEDA
MESSG,MESSAGE
TIOATDL,LENGTH
TYPE=WRITE
TYPE=RETURN

*
*
*

Figure 3-1. Example of CICS/VS Assembler-Language Application Program

38 CICS/VS Application Programmer's Reference Manual

CHAPTER 4. COPYING STORAGE DEFINITIONS - ~ COBOL

The application programmer who uses American National Standard (ANS)
COBOL must define storage for the CICS/VS control areas and any other
storage areas required for the processing of his program. He
accomplishes this by using (1) the COpy statement in the Linkage Section
of the Data Division to copy the symbolic storage definitions into his
program and specify the namee of the storage areas being defined, and
(2) the MOVE statement in the Frocedure Division to establish
addressability by moving symbolic storage addresses from one location
to another.

The working storage section of an ANS COBOL program should contain
only data constants. Variable data should be placed in the CICS/VS
transaction work area (TWA) or in an area of dynamic storage acquired
by a DFHSC TYPE=GETMAIN macro instruction. (See "obtain and Initialize
Main Storage (GETMAIN)" under "Storage Services" in Chapter 6 to learn
more about this capability.)

The statement

01 DFHBLLDS COpy DFHBLLDS.

must be the first statement in the linkage section of the Data Division
of an ANS COBOL program that is run under CICS/VS. This sta tement
copies the symbolic storage definition for the linkage section base
locator (BLL), which provides the means by which an ANS COBOL program
can request dynamically acquired CICS/VS storage areas. Included in
this definition are the symbolic base addresses for the common system
area (CSA), common system area optional features list (CSAOPL), and
task control area (TCA). Symbolic storage definitions for these areas
must be copied into every ANS COBOL program.

If the ANS COBOL programmer deeires to use CICS/VS storage areas in
addition to the CSA and TCA, the COPY statement for the BLL must be
followed immediately by statements of the form

02 name PICTURE S9(8) USAGE IS COMPUTATIONAL.

where name is the symbolic base address 'used to locate a specific
storage area. There must be cne of these statements for each additional
type of storage needed by the application program. Furthermore, these
02-level statements must be coded in the same order as the corresponding
01-level COpy statements coded subsequently to copy the symbolic storage
definitions for the areas into the application prcgram~

If the user is going to communicate with the system by means of a
terminal, he needs a terminal input/output area (TIOA) and a terminal
control table terminal entry (TCTTE). Assuming that only the required
control areas (CSA and TCA), TIOA, and TCTTE are needed for a particular
application, the following example shows coding required in the linkage
section of the Data Division:

01 DFHBLLDS COpy DFHBLLDS.
02 TCTTEAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHCSArS COPY DFHCSADS.
01 DFHTCADS COPY DFHTCADS.
o 1 DFHTCTTE COPY DFHTCI'TE.
01 DFHTIOA COpy DFHTICA.

Chapter 4. Copying Storage Definitions - ANS COBOL 39

STATIC STORAGE DEFINITION

During CICS/VS initializatibn, the common system area (CSA) is
statically allocated as part of the CICS/VS nucleus. For each terminal
with which communication is to occur, the terminal control table
terminal entry (TCTTE) is included in the statically allocated terminal
control table (TCT). The ANS COBOL programmer must provide symbolic
storage definitions for the CSA and TCTTE (if needed) as follows.

COMMON SYSTEM AREA (CSA)

The statement

01 DFHCSADS COPY DFHCSADS.

copies the symbolic storage definition for the CSA. Addressability
for the CSA is included.

If CICS/vS was generated to sup~ort a common work area (CWA) within
the CSA, immediately following the COPY statement in the linkage section
the application programmer can define the record layout of the CWA.
The following is an example of the coding required:

01 DFHCSADS COpy DFHCSADS.
02 CWA.

03 FIELD1 PICTURE X(4) •

TERMINAL CONTROL TABLE TERMINAL ENTRY (TCTTE)

The statement

01 DFHTCTTE COPY DFHTCTTE.

copies the symbolic storage definition for the TCTTE and must be present
in all programs requesting communication with a terminal. The user
must code the statement

MOVE TCAFCAAA TO TCTTEAR.

in the appropriate place in the Procedure Division to establish
addressability for the TCTTE. TCAFCAAA contains the address of the
facility that initiated the transaction. TCTTEAR is the terminal
control table terminal entry address register.

DYNAMIC STORAGE DEFINITION

During initiation and execution of a transaction (task), the task
control area (TCA), the terminal input/output area (TIOA), and other
storage areas required by the transaction are dynamically allocated by
CICS/vS storage management, upon request from either the application
program or a CICS/VS management function. The ANS COBOL programmer
must provide symbolic storage definitions for these storage areas as
follows.

40 CICS/VS Application Programmer's Reference Manual

TASK CONTROL AREA (TCA)

The statement

01 DFHTCADS COpy DFBTCADS.

copies the symbolic storage definitions for the CSA optional features
list and the TeA. The user must code the statements

MOVE CSACDTA TO TCACBAR.
MOVE CSAOPFLA TO CSAOPBAR.

at the appropriate place in the Procedure Divisicn to establish
addressability for the TCA and the CSA optional features list. C SAC DTA /
contains the address of the storage area obtained for the TCA (the \
common system area currently dispatched task address). This address ~
is stored in TCACBAR, the TCA control base address register.

If the user desires to append a transaction work area (TWA) to the
TCA, immediately following the COpy statement in the Linkage Section
he must define the record layout of the TWA. The following is an
example of the coding required:

01 DFHTCABS COPY DFETCADS.
02 TWA PICTURE X(40).

TERMINAL INPUT/OUTPUT AREA (TIOA)

The statement

01 DFHTIOA COpy DFHTIOA.

copies the symbolic storage definition for the CICS/VS control section
of the TIOA and must be present in all programs that use terminal input
records or that provide output records to a terminal. The following
is an example of the coding requi~ed to define the record(s) in the
TIOA:

01 DFHTIOA COPY DFHTIOA.
02 TRANSID PICTURE XXXX.
02 TIOAMSG PICTURE X(20) •

The user must establish addressability for the TIOA in the Procedure
Division by coding in the ap~ropriate place either the statement

MOVE TCTTEDA TO TIOABAR.

or the statement

MOVE TCASCSA TO TIOABAR.

The former statement is used to establish addressability to a TIOA
acquired dynamically by CICS/vS for data entered from a terminal. The
latter statement is used to establish addressability for a new TIOA
acquired dynamically through use of a DFHSC TYPE=GETMAIN macro
instruction and should be coded on the line immediately following the
last operand of that macro instruction.

Chapter 4. Copying Storage Definitions - ANS COBOL, 41

FILE INPUT/OUTPUT AREA (FIOA)

The statement

01 DFHFIOA COPY DFEFIOA.

copies the symbolic storage definition for the CICS/VS control section
of the FIOA and must be present in all programs requesting a read of
an unblocked record without updating or segmenting, or a read of blocked
records without deblocking. If desired, the user can identify the area
returned in response to a file request as a FIOA, rather than a FWA or
VSWA, by testing FIOAM. If data is retrieved using the Indexed
Sequential Access Method (IS~) under CICS/OS/VS, a 16-byte filler must
be defined prior to the user's data definition. The following is an
example of the coding required to define the record(s) in the FIOA:

01 DFHFIOA COPY DFEFIOA.
02 FILLER PICTURE X(16).
02 KEYF PICTURE X(6) •
02 NAME PICTURE X(20) •
02 FIOAREC PICTURE X(74).

The user must code the statement

MOVE TCAFCAA TO FIOABAR.

NOTE OS/VS ISAM FILLER.

prior to any reference to the FIOA following a DFHFC macro instruction
in the Procedure Division to establish addressability for the FIOA.

To identify the area returned as a FIOA, the following instruction
can be used:

IF FIOAM, GO TO GOT-A-FIOA.

FILE WORK AREA (FWA)

The statement

01 DFHFWADS COpy DFHFwADS.

copies the symbolic storage definition for the CICS/VS control section
of the FWA and must be present in all programs performing file operation
with the exception of a "read without update" from an unblocked,
unsegmented data set. If desired, the user can identify the area
returned in response to a file request as a FWA, rather than FIOA or
VSWA, by testing FWAM. The following is an exam~le of the coding
required to define the record(s) in the FWA:

01 DFHFWADS COPY DFHFWADS.
02 KEYF PICTURE X(6) •
02 NAME PICTURE X(20).
02 FWAREC PICTURE X(24).

The user must code the statement

MOVE TCAFCAA TO FwACBAR.

42 CICS/VS Application Programmer's Reference Manual

prior to any reference to the FWA following a DFHFC macro instruction
in the Procedure Division to establish addressability for the FWA.

To identify the area returned as a FWA, the following instruction
can be used:

IF FWAM, GO TO GOT-A-FWA.

VSAM WORK AREA (VSWA)

The statement

01 DFHVSWA COPY DFHVS~.

copies the symbolic storage definition for the CICS/VS control section
of the VSAM work area and must be present in all programs using locate
mode I/O. (see "File servic es" in Chapter 6.) If desired, the user
can identify the area returned in response te a file request as a VSWA,
rather than a FIOA or FWA, by testing VSWAM. ~he user must code the
statement

MOVE TCAFCAA TO VSWABAR.

prior to any reference to the VSWA acquired by CICS/VS in response to
a DFHFC macro instruction utilizing locate mode I/O.

To identify the area returned as a VSWA, the following instruction
can be used:

IF VSWAM, GO TO GOT-A-VSWA.

TRANSIENT DATA INPUT AREA (TCIA)

The statement

01 DFHTDIA COPY DFHTDIA.

copies the symbolic storage definition for the CICS/VS control section
of the intrapartition TDIA and must be present in all programs requiring
a message area fer transient data obtained by issuing a DFHTD TYPE=GET
macro instruction that references an intrapartition destination. (See
"Acquire Queued Data (GET)" under "Transient Data services" in Chapter
6.) The following is an example of the coding required to define the
record(s) in the TDIA:

01 DFHTDIA COpy DFHTDIA.
02 MESSAGE PICTURE X(25)

The user must cod€ the statement

MOVE TCATDAA TO TDIABAR.

prior to any reference to the TDIA following a DFHTD macro instruction
in the Procedure Division to establish addressability for the TDIA.

TRANSIENT DATA OUTPUT AREA (TDOA)

The statement

01 DFHTDOA COpy DFH~DOA.

Chapter 4. Copying Storage Definitions - ANS COBOL 43

copies the symbolic storage definition for the CICS/VS control section
of the intra partition TDOA and should be present in all programs issuing
a DFHTC TYPE=PUT macro instructicn to provide transient data as output.
(See "Dispose of Data (PUT)" under "Transient Data Services.") The
following is an example of,the coding required tc define the record(s)
in the TOOA:

o 1 DFHTDOA COPY DFHTDOA.
02 MESSAGE PICTURE X(20) •

The user must code the statement

MOVE TCASCS~ TO TDOABAR.

prior to any reference to the TDOA following a DFHSC macro instruction
in the Procedure Division to establish addressability for the TDOA.

TEMPORARY STORAGE INPUT/OUTPt1r AREA (TSIOA)

The statement

01 DFHTSIOA COpy DFHTSIOA.

copies the symbolic storage definition for the CICS/VS control section
of the TSIOA and should be present in all programs using temporary
storage. The following is an example of the coding required to define
the record(s) in tpe TSIOA:

01 DFHTSIOA COPY DFHTSIOA.
02 DATA PICTURE X(IO).

To establish addressability for the TSIOA, the user must code the
statements

MOVE TCATSDA TO TSICAEAR.
S UETRACT 8 FROM TSIOAEAR.

if the request is a GET or GETQ fram temporary storage and the TSDADDR
operand is not specified. The subtraction of eight ensures that
TSIOABAR points to the storage accounting field (that is, to the
beginning) of the storage area acquired by CICS/VS. He must code the
statement

MOVE TCASCSA TO TSIOAEAR.

if he has dynamically acquired an I/O area. In the case of a PUT or
PUTQ, the symbolic' address of th~ data is located at TSIOAVRL. Either
statement must appear in the appropriate place in the'Proce9ure Division
of the ANS COBOL program.

STORAGE ACCOUNTING A:REA (SAA)

The statement

01 DFHSAADS COpy DFHSAADS.

copies the symbol~c storage definition for the SAA. This storage
definition should pregede the definition of user storage acquired
through the DFHSC TYPE=GETMAIN,CIASS=USER macro instruction~ . The
following is an example of ,the coding r~quired to define the record(s)
in the SAA: "

44 CICS/VS Application programmer's Reference Manual

01 DFHSAADS COpy DFHS~ADS.
02 NAME PICTURE X(20).
02 SAAREC PICTURE X(lO).

The user must code the statement

MOVE TCASCSA TO SAACBAR.

prior to any reference to theSAA following a DFHSC macro instruction
in the Procedure Division to establish addressability for the SAA.

JOURNAL CONTROL AREA (JCA)

The statement

01 DFHJCADS COpy DFHJCADS.

copies the symbolic storage definition for the CICS/VS control section
of the journal control area (JCA) and must be present in all programs
requesting journal services. (See "Journal services" in Chapter 6.)

A JCA is acquired dynamica~ly by means of a DFHJC TYPE=GETJCA macro
instruction. Addressability to the JCA is provided automatically
through the macro expansion, which loads the address of the area into
JCABAR.

ADDITIONAL GUIDELINES

If the ANS COBOL programmer wishes to access a series of chained
storage are~s (each area contains a pointer to the next area in the
chain), he must establish addressability to each new storage area in
the chain by inserting a paragraph name immediately following any MOVE
statement that establishes addressability. For example:

LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 USERPTR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCACS COPY DFHTCAD5.
02 TWAFIELD PICTURE X(4).

01 USERAREA.
02 FIELD PICTURE X(4).
02 NEXTAREA PICTURE 59(8) USAGE IS COMPUTATIONAL.

PROCEDURE DIVISION.

MOVE NEXTAREA TO U5ERPTR.
ANYNAME.

Chapter 4. Copying storage Definitions - AN5 COBOL 45

MOVE FIELD TO TWAFIELD.

In this example, storage areas mapped or defined by USERAREA are
chained. The first MOVE instruction establishes addressability to the
next area in the chain. The second MOVE instruction moves data from
the newly addressed area, but only because the paragraph name precedes
the second MOVE instruction; in the absence of the paragraph name, data
is moved from the previously addressed area rather than from the new
area. Note that a paragraph name is not needed if addressability to
an area is obtained through a field in some other area (for example,
the TCA) •

If the object of an OCCURS DEPENDING ON clause is defined in the
linkage section, s~ecial consideration is required to ensure that the
correct value is used at all times. In the following example,
FIELD-COUNTER is defined in the linkage section. The MOVE FIELD-COUNTER
TO FIELD-COUNTER statement is needed to ensure that unpredictable
results do not occur when referencing DATA.

LINKAGE SECTION.
01 DFHFWADS COpy CFSFWACS.

02 FIELD-COUNTER PIC 9(4) USAGE IS COMPUTATIONAL.
02 FIELDS PIC X(5) OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-COUNTER.
02 DATA PIC X(20).

PROCEDURE DIVISION.

DFHFC TYPE=GET, etc.
MOVE TCAFCAA TO FWACBAR.
MOVE FIELD-COUNTER TO FIELD-COVNTER.
MOVE DATA 'IO TM-FIELD.

The MOVE statement referring to FIELD-COUNTER causes ANS COBOL to
reestablish the value it uses to compute the current number of
occurrences of FIELDS and ensures that it can correctly determine the
displacement of DATA.

If an area greater than 4095 bytes is defined in the linkage section,
special considerations arise: An additional 02-level statement under
DFHBLLDS and an ADD statement following the MOVE statement to establish
addressability to the area are required for each additional 4096 bytes.
For example, if a file work area (FWA) exceeds 4095 bytes, the following
code can be used.

LINKAGE SECTION.
01 DFHBLLDS COpy DFHBLLDS.

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 FWABR1 PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHFWADS COPY DFHFwADS.
02 FIELD1 PICTURE X(4000) •
02 FIELD2 PICTURE X(1000).

46 CICS/VS Application Programmer's Reference Manual

02 FIELD3 PICTURE X(400).

PROCEDURE DIVISION.

DFHFC TYPE =GET , *

MOVE TCAFCAA TO FW]\CBAR.
ADD 4096 TO FWACEAR GIVING FWABR1.

If an application program is to be compiled for execution under
CICS/OS/VS using the full ANS COBOL V4 Compiler (5734-CB2) , the OS/VS
COBOL Compiler (5740-CB1) , or the DOS/VS COBOL Compiler (5746-CB1) with
the optimization (OPT) feature, a special compiler control statement
must be inserted at appropriate places within the program to ensure
addressability to a particular area defined in the Linkage section.
This control statement has the form:

SERVICE RELOAD fieldname.

where fieldname is the symbolic name of a specific storage area, and
is also defined in an 01-level statement in the linkage section. The
first four statements of the Procedure Division must be

SERVICE RELOAD DFHBLLDS.
SERVICE RELOAD DFHCSACS.
MOVE CSAOPFLA TO CSAOPEAR.
SERVICE RELOAD CSAOPFL.

Statements such as

or

MOVE TCAFCAAA TO TCTTEAR.
SERVICE RELOAD DFHTCTTE.

SUBTRACT 8 FROM TCASCSA GIVING TSIOABAR.
SERVICE RELOAD DFHTSICA.

can be used to establish addressability for a particular storage area.
(Note that the SERVICE RELOAC statement must be used following each
statement which modifies addressability to an area defined in the
linkage section, that is, whenever an address is moved to a f1eld named
in an 02-level statement under 01 DFHBLLDS or the address in the
02-level statement is changed in any way.)

To establish addressability to the TeA, the following statements
must be coded:

MOVE CSACDTA TO TCACBAR.
SERVICE RELOAD DFHTCA.

Note that the RELOAD statement specifies DFHTCA, not DFHTCADS.

Certain ANS COBOL features cannot be used in an application program
to be run under CICS/vS. Generally, these features are replaced by
CICS/vS services. They are identified under "Restrictions" in the
first chapter of this manual.

Chapter 4. Copying storage Definitions - ANS COBOL 47

EXAMPLE OF CICS/VS ANS COBOL APPLICATION PROGRAM

Figure 4-1 is an ANS COBOL program written to run under CICS/VS.
The program asks a question cf the terminal cperatcr, receives a reply,
dynamically acquires some storage, and sends the operator' 5',' message
back to the terminal. In effect, an echo test is performed. (The line
numbers are for discussion purposes only; they are not part of the
program.)

01
02
03
04
05
06
01
08
09
10
11
12
13
14
15
16
11
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
31
38

IDENTIFICATION DIVISION.
PROGRAM-I D.

'CBLSPRB' •
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.

02 TCTTEAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHCSADS COpy DFHCSADS.
01 DFHTCACS COpy DFH!'CADS.

02 SAVE-LENGTH PICTURE S9(8) USAGE IS COMPUTATIONAL.
02 SAVE-MESSAGE PICTURE X(32).

01 DFHTCTTE COpy DFHTCTTE.
01 DFHTIOA COpy DFHTIOA.

02 TIOAMSG PICTURE X(32).
PROCEDURE DIVISION.

MOVE CSACDTA TO TCACBAR.
MOVE CSAOPFLA TO CSAOPEAR.
MOVE TCAFCAAA TO TCTTEAR.
MOVE TCTTEDA TO TIOABAR.
MOVE 'IS THIS A COBOL OR A PLII PROGRAM' TO TIOAMSG.
MOVE 33 TO TIOATDL. '6

DFHTC TYPE=(WRITE,REA[,WAIT)
MOVE TCTTEDA TO TIOABAR.
MOVE TIOATDL TO SAVE-LENGTH.
MOVE TIOAMSG TO SAVE-MESSAGE.

DFHSC TYPE=GETMAIN,
NUMBYTE=32,
INITIMG=40,
CLASS=TERMINAL

MOVE TCASCSA TO TICABAR.
MOVE T IOABAR TO TCTTEDA".
MOVE SAVE-MESSAGE TO TIOAMSG.
MOVE SAVE-LENGTH TO TIOATDL.

DFHTC TYPE=WRITE
DFHPC TYPE=RETURN

GOBACK.

Figure 4-1. Example of CICS/VS ANS COBOL Application Program

A discussion of the Significance of each of the lines of Figure 4-1
follows.

Line Number

01-05
06
01

08-09

10
11

48 CICS/VS

Description

Required for ANS COBOL.
Start of linkage section.
Copies symbolic storage definition for BLL;
contains addresses of CICS/VS storage areas.
Adds addresses for TCTTE and TIOA (required
for statements 14 and 15).
Copies symbolic storage definition for CSA.
Copies symbolic storage definitions for TeA

Application Programmer's Reference Manual

*
*
*

12-13

14
15
16
17

18-21

22
23

24

25

26
27

28-31

32

33

33
35
36

37

38

and CSA optional features list.
Defines save areas in TWA to ensure quasi
reentrance (SAVE-LENGTH and SAVE-MESSAGE
are used to save operator's reply).
copies symbolic storage definition for TCTTE.
Copies symbolic storage definition for TIOA.
Defines message area in TIOA.
Required for ANS COBOL (start of Procedure
Division) •
Establishes addressability for TCA r CSA optional
features list, TeTTEr and TIOA (CICS/VS establishes
addressability for ELL and CSA).
Moves message to output area of TIOA.
Moves length of message to data length field of
TIOA.
CICS/VS macro instruction that writes message to
terminal r waits for operator's replYr and reads
opera tor's reply.
Establishes addressability for new TIOA using
a ddre ss in TCTTE.
Saves length of message in TWA.
Saves message in TWA.
CICS/VS macro instruction that requests 32 bytes
of terminal storage initialized to blanks
(terminal storage is chained to terminal control
table) •
Establishes addressability for ne~ TIOA (address
of ne~ly acquired storage area is in TCASCSA
field of the TCA) •
Places address of new TIOA in terminal control
table.
Moves message to output area (TIOA).
Moves length of message to output area (TIOA).
CICS/VS macro instruction that writes message to
terminal.
CICS/VS macro instruction that returns control
to CICS/VS.
ANS COBOL statement that «arks the end of the
program.

Chapter 4. Copying Storage Definitions - ANS COBOL 49

CHAPTER.2. COPYING STORAGE DEFINITIONS - PL/I

The PLII programmer must define storage for the CICS/VS control
areas and any other storage areas required ,for the processing of his
program. He accomplishes this by using a statement of the form

%INCLUDE (na1Jle);
or

%INCLUDE name;

to (1) copy the appropriate symbolic storage definition into his program
at the place where the %INCLUDE statement appears, and (2) specify the
name of the storage area being defined.

The source code provided by CICS/VS in response to %INCLUDE
statements is in the form cf based structures. These structures
describe the attributes of the storage areas and include pointer
variables that provide the addresses of the actual locations in storage
that the structures describe.

All programs must contain statements to copy the symbolic storage
definitions for the common system area (CSA) and task control area
(TCA). CICS/VS macro expansions resulting from macro instructions that
the application programmer uses refer to fields within these areas, so
their locations must be identified. Whether additional storage
definitions must be copied depends on the processing requirements
(storage areas and macro instructions used) of the application program.

A PLII program to be run under CICS/vS must contain the REENTRANT
option in the initial PROCEDURE statement to satisfy the CICS/VS
requirement that code be quasi-reentrant. See "Restrictions" in the
first chapter of this manual for a listing of PL/I features that cannot
be used.

STATIC STORAGE DEFINITION

'During CICS/VS initialization, the common systerr, area (CSA) is
statically allocated as part of the CICS/VS nucleus. For each terminal
with which communication is to occur, the terminal control table
terminal entry (TCTTE) is included in the statically allocated terminal
control table (TCT). The PL/I programmer must provide symbolic storage
definitions for the CSA and TCTTE (if needed) as follows.

COMMON SYSTEM AREA (CSA)

The statement

%INCLUDE (DFHCSADS);

copies the based structures that symbolically define the CSA and the
CSA optional features list. Addressability for both areas is included.

If CICS/VS was generated to support a common work area (CWA) within
the CSA, the PL/I programmer can provide, imrrediately following. the
%INCLUDE (DFHCSADS) macro instruction, coding such as the f9llowing:

Chapter 5. Copying Storage Definitions - PL/I 51

DECLARE 1 DFHCSAWK BASED (CSACBAR),
2 CSAFILL CHAR(512),
2 USERLBL1 attributes,

2 USERLBLn attributes;

TERMINAL CONTROL TABLE TERMINAL ENTRY (TCTTE)

The statement

~INCLUDE (DFHTCTTE);

copies the based structure that symbolically defines the TCTTE and must
be present in all programs requesting communication with a terminal.
Addressability for the TCT'IE is included.

DYNAMIC STORAGE DEFINITION

During initiation and execution of a transaction (task), the task
control area (TCA), terminal input/output area (TIOA), and other storage
areas required by the transaction are dynamically allocated by CICS/VS
storage management, upon request from either the application program
or a CICS/VS management function. The PL/I programmer must provide
symboiic definitions for these storage areas as follows.

TASK CONTROL AREA (TCA)

The statement

~INCLUDE (DFHTCADS);

copies the based structure that symbolically defines the TCA and
establishes addressability.

The latter part of the ba sed s'tructure consists of a CECLARE
statement that is not terminated by a semicolon. The user must complete
the declaration of the TCA structure by supplying an ending (for
example, a semicolon) or, if a transaction work area (TWA) i~ desired,
by supplying further declaration. The following is an example of the
coding required:

%INCLUDE (DFHTCADS);
2 TWA CHAR(40);

TERMINAL INPUT/OUTPUT AREA (TIOA)

The statement

%INCLUDE (DFHTIOA);

copies the based structure that symbolically defines the CICS/VS control
section of the TIOA and establishes addressability. This statement
must be present in all programs that use terminal input records or that
write output records to a terminal. The applicaticn programmer must
complete the declaration of the TIOA structure by supplying an ending
(for example, a semicolon) or by supplying further declaration of the

52 CICS/VS Application Programmer's Reference Manual

input/output area. He can then request an action that requires a TIOA.
For example, he can issue a DFHSC TYPE=GETMAIN macro instruction
requesting CICS/VS storage contrel to obtain dynamic storage for a TIOA
for his program. The following is an example of the coding required:

%INCLUDE (DFHTIOA);
2 NAME CHAR(20) ,
2 STREET CHAR(20);

DFHSC TYPE=GETMAIN, *
NUMBYTE=XX, *
CLASS=TERMINAL

TIOABAR=TCASCSA; /* TCASCSA FIELD OF TCA CONTAINS ADDRESS
OF NEWLY ACQUIRED STORAGE */

For additional information about GETMAIN, see "Obtain and Initialize
Main Storage (GETMAIN)" under "Storage Services" in Chapter 6.

FILE INPUT/OUTPUT AREA (FIOA)

The statement

%INCLUDE (DFHFIOA);

copies the based strUcture that symbolically defines the CICS/VS control
section of the FIOA and must be present in all programs requesting a
read of an unblocked record ~ithout updating or segmenting, or a read
of blocked records without deblocking. If desired, the user can
identify the area returned in response to a file request as a FIOA,
rather than a FWA or VSWA, by testing FIOAIND for a bit value of 01.
The application programmer must complete declaration of the FIOA. He
must establish addressability for the FIOA using the statement

FIOABAR=TCAFCAA;

following the DFHFC macro instruction. If data is retrieved using the
Indexed sequential Access Method (ISAM) under CICS/OS/VS, a 16-byte
filler must be defined prior to the user's data definition. The
following example illustrates the coding required, as well as the
optional coding for FIOA identification:

%INCLUD~ (DFHFIOA);
2 FILL CHAR (16) ,
2 NAME CHAR(20),
2 AD DR CHAR(20) ;

FIOABAR=TCAFCAA;

/*OS/VS ISAM FILLER*/

IF FIOAIND='01'B THEN GO TO GOT_A_FIOA;

Chapter 5. Copying Storage Definitions - PL/I 53

FILE WORK AREA (FWA)

The statement

%INCLUDE (DFHFWADS) i

copies the based structure that symbolically defines the CICS/VS control
section of the FWA. This statement should precede a user-declared file
record area when reading or updating an existing blocked or segmented
record, when adding a new record to a data set, or when retrieving
records using the browse technique. If desired, the user can identify
the area returned in response to a file request as a FWA, rather than
a FIOA or ,VSWA, by testing FWAIND for a bit value of 11. The user must
complete d~claration of the FWA. He must establish addressability for
the FWA using the statement

FWACBAR=TCAFCAAi

following a DFHFC macro instruction. The following example illustrates
the coding required, as well as the optional test for FWA
identification:

%INCLUDE (DFHFWADS) i
2 NAME CHAR(20),
2 ADDR CHAR (20);

FWACBAR=TCAFCAAi
IF FWAIND='11'B THEN GO TO GOT_A_FWA;

VSAM WORK AREA (VSWA)

The statement

%INCLUDE (DFHVSWA);

copies the based structure that symbolically defines the CICS/VS control
section of the VSAM work area and must be present in all programs using
locate mode I/O. (See "File services" in Chapter 6.) If desired, the
user can identify the area returned in response to a file request as
a VSWA, rather than a FIOA or FWA, by testing VSWAID for a bit value
of 00000000. The user must establish addressability for the VSWA using
the statement

VSWABAR=TCAFCAAi

following the DFHFC macro instruction utilizing lecate mode I/O which
causes CICS/VS to acquire the VSWA.

To identify the area returned as a VSWA, the following instruction
can be used:

IF VSWAID='OOOOOOOO'B THEN GO TO GOT_A_VSWA;

TRANSIENT DATA INPUT AREA (TDIA)

The statement

54 CICS/VS Application Programmer's Reference Manual

%INCLUDE (DFHTDIA);

copies the based structure that symbolically defines the CICS/VS control
section of the intrapartition TDIA and must be present in all programs
requiring a message area for transient data obtained by issuing a DFHTD
TYPE=GET macro instruction that references an intrapartition
destination. (See "Acquire Queued Data (GET)" under "Transient Data
services" in Chapter 6.) The user must complete declaration of the
TDIA. He must establish address ability for the TDIA using the statement

TDIABAR=TCATDAA;

following a DFHTD macro instruction. The following is an example of
the coding required:

~INCLUDE (DFHTDIA);
2 MSG CHAR (40) ;

TDIABAR=TCATDAA;

TRANSIENT DATA OUTPUT AREA (~DOA)

The statement

%INCLUDE (DFHTDOA);

copies the based structure that symbolically defines the CICS/VS control
section of the intra partition TDOA and should be present in all programs
issuing a DFHTC TYPE=PUT macro instruction to previde transient data
as output. (See "Dispose of Data (pur)" under "Transient Data
services".) The user must complete declaration of the TDOA. He must
establish addressability for the TDOA using t~e statement

TDOABAR=TCASCSA;

following a DFHSC macro instruction. The following is an example of
the coding required:

%INCLUDE (DFHTDOA);
2 TIME CHAR (2) ,
2 DATA CHAR (3) ,
2 INTERM CHAR (4) ,
2 OUTTERM CHAR(4);

DFHSC TYPE=GETMAIN,
NUMBYTE=XX,
CLASS=USER

TDOABAR = TCASC SA;

TEMPORARY STORAGE INPUT/OUTPUT AREA (TSIOA)

The statement

Chapter 5. Copying Storage Definitions - PL/I 55

*
*

IINCLUDE (DFHTSIOA);

copies the based structure that symbolically defines the CICS/VS control
section of the TSIOA and must be present in all Frograms using temporary
storage. The ap~lication programmer must complete declaration for the
TSIOA. He must establish addressability for the TSIOA using coding
such as:

DCL TSIOABAA FIXED BIN(30) BASED(TSIOABAB);
TSIOAEAR=TCATSDA;
TSIOABAB=ADDR(TSICABAR) ;
TSIOABAA=TSIOABAA - 8;

if the request is a GET or GETQ frcm temporary storage and the TSDADDR
operand is not specified. The subtraction of eight ensures that
TSIOABAA points to the storage accounting field (that is, to the
beginning) of the storage area acquired by CICS/VS. He must code the
statement

TSIOABAR=TCASCSA;

if he has dynamically acquired the I/O area. In the case of a PUT or
PUTQ, the symbolic address of the data is located at TSIOAVRL.

STORAGE ACCOUNTING AREA (SAA)

The statement

%INCLUDE (DFHSAADS);

copies the based structure that symbolically defines the SAA and must
be present in all program~ requesting storage through use of the DFHSC
TYPE=GETMAIN,CLASS=USER macro instruction. This statement must precede
the definition of user storage. The application programmer must
complete declaration for the SAA and establish addressability for the
SAA using the statement

SAACBAR=TCASCSA;

The following example illustrates the coding required:

%INCLUDE (DFHSAADS);
2 MSG CHAR (40) ;

DFHSC TYPE=GETMAIN,
NUMBYTE=60,
CLASS=USER

SAACBAR=TCASCSA;

JOURNAL CONTROL AREA (JCA)

The statement

IINCLUDE (DFHJCADS);

*
*

copies the based structure that symbolically defines the CICS/VS control
section of the journal control area (JCA) and must be present in all
programs requesting journal services. (See "Journal Services" in
Chapter 6.)

56 CICS/VS Application Programmer's Reference Manual

A JCA is acquired dynamically by means of a DFHJC TYPE=GETJCA macro
instruction. Addressability to the JCA is provided automatically
through the macro expansion, which loads the address of the area into
JCABAR.

EXAMPLE OF CICS/VS PL/I APPLICATION PROGRAM

Figure 5-1 is a PLII program written to run under CICS/VS. The
program asks a question of the terminal operator, receives a reply,
dynamically acquires some storage, and sends the operator's message
back to the terminal. In effect, an echo test is performed. (The line
numbers are for discussion purposes only; they are not part of the
program.)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

PL1PROG: PROCEDURE OPTIONS (MAIN, REENTRANT) ;
%INCLUDE (DFHCSADS);
%INCLUDE (DFHTCADS);

2 SAVE LENGTH BINARY FIXED (15),
2 SAVE-MSG CHAR (32);

~INCLUDE (DFHTCTTE);
%INCLUDE (DFHTIOA);

2 TIOAMSG CHAR (32) ;
TIOAMSG='IS THIS A COBOL OR A PL/I PROGRAM';
TIOATDL=33;
DFHTC TYPE=(WRITE,REAr,WAIT)
TIOABAR=TCTTEDA;
SAVE LENGTH=TIOATDL;
SAVE=MSG=TIOAMSG;
DFHSC TYPE=GETMAIN,

NUMBYTE=32,
INITIMG=40,
CLASS=TERMINAL

TIOABAR=TCASCSA;
TCTTEDA=TIOABAR;
TIOAMSG=SAVE MSG;
TIOATDL=SAVE=LENGTH;
DFHTC TYPE=WRITE
DFHPC TYPE=RETURN
END;

Figure 5-1. Example of CICS/VS PL/I Application Program

A discussion of the significance of each of the lines of Figure 5-1
. follows.

Line Number

01

02

03

04-05

06

07

Description

Required for FL/I. REENTRANT option
specified to meet requirement of CICS/VS that
code be quasi-reentrant.
Retrieves symbolic storage definitions for CSA
and CSA optional features list and establishes
addressability.
Retrieves symbolic storage definition for TCA
and establishes addressability.
Defines the T~A and terminates the DECLARE
statement. SAVE MSG and SAVE LENGTH are used
to preserve the operator's reply.
Retrieves symbolic storage definition for
TCTTE and establishes addressability.
Retrieves symbolic storage definition for TIOA

Chapter 5. copying Storage Definitions - PL/I 57

*
*
*

Line Number

08

09

10

11

12

13-14

15-18

19

20

21-22

23

24

25

Description

and establishes addressability.
Describes I/O area for terminal message and
terminates the DECLARE statement.
Places message to be sent to operator in the
TIOA.
Places the message length in the terminal. data
length field of the TIOA.
writes the message to the terminal, waits for
the operator's reply, and reads the operator's
reply.
Reestablishes addressability for the TIOA
using address in the TCTTE.
Saves the operator's message and message length
in the TCA.
CICS/VS macro instruction that requests 32 bytes
of terminal storage initialized to blanks
(terminal storage is chained to terminal control
table).
Establishes addressability for the new TIOA
(the address of the newly acquired storage is
in the TCASCSA field of the TCA).
Places address of new TIOA in terminal control
table.
Moves message and length of message to output
area (TIOA).
CICS/VS macro instruction that sends operator's
message back to the terminal.
CICS/VS macro instruction that returns
control to CICS/VS.
PL/I statement that marks the end of the
procedure.

58 CICS/VS Application ,Programmer's Reference Manual

CHAPTER &. SERVICE INVOCATION

The CICS/VS system management com~onent provides the following
supervisory and data management services:

• Terminal services - Terminal Management/Terminal Control program

• Fil~ services - File Management/File Contrel ~rogram

TERMINAL

• Transient data services - Transient Data Management/Transient Data
Control program

• Temporary storage services - Temporary Storage Management/Temporary
Storage Control program

• Storage services - Storage Management/Storage Control program

• Program services - Program Management/Program Control program

• Time services - Time Management/Interval Control program

• Task services - Task Management/Task Control program

• Journal services - Journal Management/Journal Control program

• Restart/recovery services - sync Point Management/Sync Point program

Each program performs the following basic steps:

1. Analyzes a specific service request issued by an application
program or another CICS/VS program

2. Performs the requested service by communicating with the
operating system, as necessary, through macro instructions

3. Retains the status of each service request until the service is
provided

4. Maintains statistical information that can be used to evalulate
system performance

This chapter, building On the introduction of Chapter 1, explains
these services and how the applicaticn programmer uses macro
instructions to request them. When preparing programs for CICS/VS,
however, the programmer should refer to the discussions of specific
macro instru.ctions in Chapte r 7.

TERMINAL S ERVI CES

Terminal management provides for communication between terminals
and user-written applica ticn ~rograms through terminal control.
Terminal control is responsible for the polling and addressing of
terminals, code translation, transaction initiation, task and line
synchronization, and the line control necessary to read from or write
to a terminal. The user-written application program is thus relieved,
as much as possible, from having to control the physical terminal
environment.

Requests for terminal services are communicated directly to terminal
control through CICS/vS macro instructions. Individual application

Chapter 6. Service Invocation 59

programs thus interface with a terminal both logically and symbolically.
Before issuing a DFHTC macro instruction, the application programmer
must make sure that TCAFCAAA contains a terminal centrol table terminal
entry (TCTTE).

Terminal control operates as a system-provided task, under control
of its own TCA. It contends for system resources .ith user-provided
tasks in the system, but it is the highest-priority task in CICS/vS.
Terminal control is always the first task to be dispatched by CICS/VS;
it scans the service request indicators in theTCT and performs
requested services.

In providing for communication between user terminals and
user-written application programs, CICS/VS uses standard access methods
available with the host c~erating system (DOS/VS or OS/VS). The Basic
Telecommunications Access Method (PrAM) ,is used by CICS/VS for terminal
management of most start-sto~ and BSC terminals. As an option for
OS/VS, the Telecommunications Access Method (TCAM) can be specified.
The Sequential Access Method (SAM) is used where key-driven terminals
are simulated by sequentia I devices such as ca'rd readers and line
printers. The Virtual Telecommunications Access Method (VTAM) is used
for terminal management of system network architecture (SNA) terminal
systems.

Note: The last data character in each logical in~ut record from a
sequential device must be followed immediately by a character defined
as an end-of-block (EOB) character by the system ~rogrammer. For
sequential devices, the last entry in the input stream should be CSSF
(control system sign-of,f) GOODNIGHT or CSOT RECV to provide a logica I
close. If end of data (EOD) is encountered, all subsequent reads are
treated as errors and only writes are processed. There may be multiple
logical records on a single ~hysical record (multiple EOD characters
on a single card). For users of CICS/OS/VS having blocked SYSIN or
SYSOUT, overriding DD statements rrust be ~rovided to specify unblocked
for CICS/VS data sets used to sirrulate terminals.

The terminal management macro instruction (DFHTC) is used to request
any of a wide variety of services. Among them are same services of
interest to users at terminals of most, if not all, terminal types
supported by CICS/VS. These include:

• Write data to a terminal

• Read data from a terminal

• Synchronize terminal input/output for a transaction

• Converse with a terminal

• Read or write multiple records to a card reader, disk data set,
magnetic tape unit, or line ~rinter defined by the system programmer
as a card-reader-in-line-printer-out (CRLP) terminal.

For additional informatio~ concerning the last of these services,
see "sequential Terminal Sup~ort" in Chapter 8.

Other services performed in res~onse to DFHTC macro instructions
are applicable to specific terminal types. Since many types of
terminals are supported by CICS/VS, many special services are provided.
(FOr a list of terminals sup~orted by CICS/vS, see the CICS/VS General
Information Manual.) The list below is representative of the
terminal-oriented input/output services available:

• Read the entire contents of a buffer (3270 Information Display
System)

60 CICS/VS Application Programmer's Reference Manual

• Read a message containing both uppercase and lowercase data (3210
Information Display System)

• Print out the contents of an information display buffer on a printer
(3270 Information Display System)

• Transmit a message to a common buffer (2980 General Banking System)

• Read or write data in transparent mode, that is, without translation
(System/7, System/370, system/3, 2710 Data Communication System,
2180 Data Transmission Terminal, 31~0 Data Entry System, 3180 Data
Communication Terminal).

• Use the Attention key to interrupt a write operation or signal a
read attention request (27~1 communications Terminal)

2260-compatibility su~port by means of the 3210 Information Display
System allows the user to run 2260-based transactions developed for
preceding versions of CICS from a 3210. To make this support available,
an installation need only request that 2260 compatibility be included
during CICS/VS system generation. ~his generates the code necessary
to convert 2260 data streams from user-written application programs to
the appropriate 3270 data stream format, or 3210 to 2260. A task using
this capability is operating in compatibility mode.

The general form of the terminal management macro instruction (DFHTC)
resembles that of other CICS/vS macro instructions. One or more keyword
parameters are specified, separated by commas. Whereas most CICS/vS
macro instructions use only one entry following the keyword TYPE, the
DFHTC macro instruction may contain several. For example, the

DFHTC TYPE=(WRITE,REA£)

macro instruction causes a write to the terminal, a wait for that write
to be completed (an implied wait), and a read from the terminal to
which data has just been written.

As another example, the

DFHTC TYPE=(WRITE,ERASE,READ,WAIT)

macro instruction causes an erase and then a write to a terminal,
followed by an implied wait, followed by a read and a requested wait.
This latter wait ensures that the read is complete before control is
returned to the application ~rogram.

The order in Which operand entries are specified is not significant.
That is, the

DFHTC TYPE=(ERASE,WRITE,WAIT,READ)

macro instruction has the same effect as the example above. Each entry,
independent of its position, affects the setting of an associated bit
in the terminal control" table terminal entry (TCTTE) for the terminal
from which the macro instruction is entered. Therefore, the order in
which entries are specified has no effect on their meaning. The
application programmer cannot request a read and then a write by means
of one DFHTC macro instruction, but he can easily set up two DFHTC
macro instructions to do so.

AS in other CICS/VS macro instruction operands, if only one entry
is given in the TYPE operand, no parentheses are necessary. For
example, the

Chapter 6. Service Invocation 61

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

DFHTC TYPE=READ

macro instruction is used to request that data be read from a terminal.

The application programmer must determine the combination of keywords
that follows TYPE=, depending on the terminal (and sometimes, access
method) used and the operation(s) to be performed. Additional operands
may be required or desired, again depending on the terminal and access
method used. Some common input/output requests are discussed below.
(For full details of DFHTC, see Chapter 7; for specific terminals, see
Chapter 11; for further VTAM considerations, see the CICS/VS Advanced
Communication Guide, SH20-9049.)

Before terminal services can be requested by means of the DFHTC
macro instruction, the application programmer must provide instructions
that do the following:

1. Symbolically define the TCTTE and TIOA by copying the appropriate
storage definitions (DFHTCTTE and DFHTIOA) provided by CICS/VS.
(It is assumed that the storage definitions for the CSA and TCA
have already been copied, as described in Chapters 2 through
5.)

2. Establish addressability for the TCTTE and TIOA by specifying
a symbolic base address for the TCTTE and TIOA, respectively.
The Assembler-language or American National Standard (ANS) COBOL
application programmer must obtain the base address of the TCTTE
from TCAFCAAA and place it in TCTTEAR; with PL/I, addressability
for the TCTTE is established automatically. After addressability
to the TCTTE has been established, the application programmer
must obtain the base address of the TIOA from TCTTEDA and place
it at TIOABAR. Any field in the TCTTE or TIOA can then be
accessed by field name.

CICS/VS allows one or more TIOAs to be associated with a terminal
at a given time. If a TIOA is obtained through the DFHSC
TYPE=GETMAIN,CLASS=TERMINAL macro instruction, the address of the ~IOA
is automatically placed in TCASCSA. The application programmer must
set up a base register for this TIOA and place the address at TCASCSA
into the base register.

The length of the data to be read or written into a given TIOA is
found in TIOATDL. On a read operation, this two-byte binary value is
placed in TIOATDL by terminal control and represents the number of
bytes actually read. On a write operation, the application programmer
must place the number of bytes to be written in TIOATDL prior to issuing
th~ DFHTC TYPE=WRITE macro instruction.

TIOAs and terminal control macro instructions are used by CICS/VS
basic mapping support (BMS) in response to application-program requests
for BMS services. However, for BMS operations that use mapping, the
application programmer need not be concerned with providing the length
of the data in TIOATDL prior to output; note that this does not apply
to the DFHBMS TYPE=TEXTBLD macro instruction, because it does not
involve mapping. After a BMS input operation, TIOATDL contains zeros.

Note: All TIOAs have a 12-byte prefix for storage accounting and
terminal control and a one-byte terminating suffix. The value at
TIOATDL does not include these 13 bytes.

WRITE DATA TO A TERMINAL (WRITE)

The application programmer can request that data be written to a
terminal by issuing the

62 CICS/VS Application Programmer's Reference Manual

DFHTC TYPE=WRITE

macro instruction. Before issuing this macro instruction, the address
of the TIOA from which data is to be written must be placed into TCTTEDA
and the length of the data to be written into TIOATDL. (Of course,
the CSA, TCA, and TCTTE must also be symbolically defined and, with
Assembler language orANS COBOL, addressability established for the
TCTTE.)

When the write is completed by terminal control, the TIOA is released
to a dynamic storage pool (unless SAVE is specified). Any subsequent
reference to this TIOA by the application program is logically in error
and produces unpredictable results.

A TIOA can be reusedc by the application program after a write it
the request to write data to a terminal is made through the

DFHTC TYPE=(WRI~E,SAVE,WAIT)

macro instruction. In this case the TIOA is not released by terminal
control. The WAIT parameter is needed to ensure that the write of the
TIOA is complete before the area is reused.

Note: To ensure a dump of the TIOA following a terminal control write,
the application programmer must issue a SAVE and WAIT with the DFHTC
TYPE=WRITE macro ins1::,ruction that precedes the DFHDC macro instruction.-

As pointed out earlier, the application programmer can specify a
write followed by a read operation in a single request by issuing the

DFHTC TYPE=(WRITE,REAC)

macro instruction. A typical use for this macro instruction occurs in
a conversational environment in which the application program writes
a question to the terminal, waits for a response, and then reads the
response. Since the SAVE parameter is not specified, terminal control
may reuse the TIOA from which data is written as a TIOA for the input
data. However, a new TIOA is obtained for the read operation and its
address placed in TCTTEDA when certain devices are involved or when
certain conditions exist. For example:

• Local 3270 terminals.

• PSEUDOBIN is specified with READ,WRITE.

• The TIOA length for the WRITE instruction is less than that
specified in the DFHTCT TYPE=TERMINAL,TIOAL=length specification
(binary synchronous terminals) or in the DFHTCT TYPE=LINE,
INAREAIFlength specification (all other terminals) by the system
programmer.

• certain error conditions.

• A 3270 terminal is used in 2260 compatibility mode.

Thus the user shouldaJ.ways reload TIOABAR from TCTTEDA following the
(WRITE, READ) macro instruction.

Note: In the case of a terminal connected to the 7770 Audio Response
Unit, a read request that does not include the WRITE parameter causes
the "ready" message defined in the terminal control table by the system
programmer to be written to the terminal before the read operation
occurs.

Chapter 6. Service Invocation 63

If both a write and a read operation are specified in a single
request by issuing the

DFHTC TYPE= (WRITE,REAJ.:, SAVE)

macro instruction, the TIOA used for writing is saved; a new TIOA is
then dynamically acquired by terminal control for the read. If the
saved TIOA is reused later for either writing or reading, the
application programmer must place the address of the TIOA into TCTTEDA
prior to issuing the request to use the area.

The manner in which the a ddre ss of a TIOA is "remembered" is a
responsibility of the application programmer. Generally, the address
should be in the TWA.

Upon completion of a (WRITE,REAB, SAVE) , the application programmer
must place the. value contained at TCTTEDA into TIOABAR to establish
addressability for the newly acquired TIOA.

Note: If a (WRITE,READ,SAVE) is issued,CICS/VS dynamically acquires
a TIOA for the read. The size of that TIOA is determined by system
programmer specifications for the terminal control table terminal entry
for the terminal (rather than on the size of the TIOA used for the
write) •

If a write to a 3270 terminal (operating in 2260 compatibility mode)
is specified by issuing the

DFHTC TYPE=(WRITE,ERASE)

macro instruction, the screen is erased and the cursor is returned to
the upper left corner of the screen before writing occurs. If the
ERASE parameter is omitted, writing begins wherever the cursor is
located at the time the write is issued. To simply erase the screen,
the application programmer might (1) place at TCTTEDA the address of
a TIOA, (2) place at TIOATDL a data length of 0, and (3) issue a DFHTC
T¥PE=(WRITE,ERASE) macro instruction. If operating in 2260
compatibility mode, the TIOA should only contain a start symbol and
the data length in TIOATDL should be set to 1 before issuing the DFHTC
TYPE= (WRITE, ERAS E) •

sometimes it is desirable that information displayed on the screen
of a 3277 or 3275 be written out on a printer (provided as "hard copy")
as well. If print request support is generated into CICS/VS, the
application programmer can issue a

DFHTC TYPE=PRINT

macro instruction to cause the data currently displayed on a 3211 or
3215 to be printed out on an eligible 3284 or 3286 terminal. SUch a
terminal is eligible only if FEATURE=PRINT was specified by the system
programmer in setting up the TCTTE. (For additional considerations,
s~e "3210 Print Function" in Chapter 11 rand the CICS/VS System
Programmer's Reference Manual.)

If 2141 write break support is generated into CICS/OS/VS, the
application programmer can permit a 2141 terminal operator to terminate
the receiving of a message by pressing the ATTN (attention) key. TO
provide for such action, the programmer issues a

DFHTC TYPE=WRITE,
WRBRK=symbolic address

macro instruction, where symbolic address is the label of a routine to
which control is transferred if the terminal operator presses the ATTN

64 CIC S/VS Application Programmer's Reference Manual

*

key while a message is being received. (Write Break support is not
available under CICS/DOS/VS. For additional information, see "2741
Read Attention and Write Break Support.")

READ DATA FROM A TERMINAL (READ)

The application programmer can request that data be read from a
terminal by issuing the

DFHTC TYPE=READ

macro instruction. Before this macro instruction is issued, the address
of the TIOA can be placed into TCTTEDA.

If a TIOA is not provided by the application program, terminal
control attempts to use an existing TIOA attached to the TCTTE. If no
TIOA is attached, terminal control acquires a new TIOA. If the length
of the existing TIOA or of the TIOA provided by the application program
is not adequate, or if other conditions exist that make the TIOA
unusable, terminal control acquires a new TIOA for the read. When
terminal control acquires a new TIOA, the previous TIOA is freed, and
the application program must place the value contained at TCTTEDA into
TIOABAR following completion of the read to ensure addressability to
the correct TIOA.

A new TIOA is acquired by terminal control for the read when the

DFHTC TYPE=(READ,SAVE)

macro instruction is issued. All TIOAs currently chained off the TCTTE
are retained and may be subsequently reused; a new TIOA is dynamically
acquired for this read (according to the length specified in the TCTLE)
and is added to the chain.

Upon completion of a (REAL,SAVE), the application programmer must
place the value contained at TCTTEDA into TIOABAR to establish
addressability for the newly acquired TIOA. The number of bytes read
is provided by CICS/VS at TICATDL.

A write followed by a read operation can be specified in a single
request as discussed under "~rite Data to a Terminal (WRITE).n

When input is to be received from a terminal of the 3270 Information
Display System, the application programmer can use

or
DFHTC TYPE=(READ,TEXT)

DFHTC TYPE=READ
DFHTC TYPE=TEXT
DFHTC TYPE=WAIT

to request a temporary override of the uppercase translation features
of CICS/VS, thus allOWing a message containing both uppercase and
lowercase data to be received from a terminal.

If 2741 read attention support is generated into CICS/VS, the
application programmer can permit a 2741 terminal operator to signal
Read Attention by pressing the ATTN key after typing a message. To
provide for such action, the programmer issues a

DFHTC TYPE=READ,
RDATT=symbolic address

Chapter 6. Service Invocation 65

*

Page of SH2Q-9003·2
Revised May 22,1975
By TNL SN2Q-9086

macro instruction, where symbolic address is the label of a routine to
which control is returned if the terminal operator terminates the input
by pressing the ATTN key. (See "2741 Read Attention and write Break
Support" in Chapter 11.)

SYNCHRONIZE TERMINAL INPUT/OUTPUT FOR A TRANSACTION (WAIT)

In a task under which more than one terminal operation is performed,
the application programmer must ensure that a current terminal operation
is complete before another begins. This can be done by issuing the

DFHTC TYPE=WAIT

macro instruction, where the WAIT parameter is coded separately, as
shown, or in combination with READ and/or WRITE. A PUT can be coded
in place of a (WRITE,WAIT); a GET can be coded in place of a
(READ,WAIT). A wait should be issued for each read request to ensure
that the data has been transferred into the TIOA.

A wait may cause execution of a task to be suspended. If suspension
is necessary, control is returned to CICS/VS. Execution of the task
is resumed after the write and/or read is posted complete.

A wait need not be coded for a write if the write is the last
terminal operation of the transaction. The TIOA is retained until it
is written, even if the transaction and its associated storage are
deleted from the system before. the write occurs.

CONVERSE WITH A TERMINAL (CONVERSE)

The application programmer can request a conversational mode of
communication with the terminal by issuing the

DFHTC TYPE=CONVERSE

macro instruction, where CONVERSE (or CONV) is the same as
(WRITE,READ,WAIT). The execution of this instruction is always in the
sequence: WRITE, implied wait, READ, WAIT. In the case of a 3270
terminal (operating in 2260 compatibility mode), the screen is not
erased and writing begins wherever the cursor is located when this
macro instruction is issued.

DISCONNECT A SWITCHED LINE (CISCONNECT)

The application programmer can use the

DFHTC TYPE=DISCONNECT

macro instruction to break a line connection between a terminal and a
computer; this applies only to switched lines.

EXAMPLES

The following examples show the coding required to (1) acquire
storage for use as a terminal input/output area through the DFHSC macro
instruction, (2) place the address of the acquired area into TCTTEDA,
(3) place the length of the data to be written into TIOATDL, (4) issue
a terminal control macro instruction to a 3270 terminal, causing eraSing
of the screen, returning of the cursor to the upper left corner of the
screen, writing to the terminal, and reading from the terminal (allowing

66 CICS/VS Application programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

terminal control to manage storage for the TIOA), and (5) establish
addressability to the TIOA into which the data was read.

Chapter 6. Service Invocation 66.1

For Assembler language:

L TCTTEAR,TCAFCAAA ESTABLISH ADDRESSABILITY FOR TCTTE
DFHSC TYPE=GETMAIN, OBTAIN TIOA FOR OUTPUT DATA *

NUMBYTE=80,
CLASS=TERMINAL

L TIOABAR,TCASCSA
ST TIOABAR,TCTTEDA
MVC TIOADBA(80) ,DATA
MVC TIOATDL,=H' 80'

· · ·

ADDRESS OF TIOA
PLACE OUTPUT ADDRESS IN TCTTE
PLACE DATA IN TIOA
PLACE DATA LENGTH IN TIOATDL

*

DFHTC TYPE=(WRITE,ERASE, ISSUE WRITE TO TERMINAL *
REA~,WAIT)

L TIOABAR,TCTTEDA

!2!: ANS COBOL:

ERASE BEFORE WRITE, THEN READ
ESTABLISH ADDRESSABILITY FOR TIOA

NOTE EST ADDRESSABILITY FOR TCTTE. MOVE TCAFCAAA TO TCTl'EAR.
DFHSC TYPE=GETMAIN,

NUMBYTE=80,
CLASS=TERMINAL

MOVE TCASCSA TO TIOABAR.

OBTAIN TIOA FOR OUTPUT DATA *

MOVE TIOABAR TO TCTTEDA.
MOVE DATA TO TIOADATA.

MOVE 80 TO TIOATDL.

DFHTC TYPE=. (WRITE, ERASE,
READ, WAIT)

MOVE TCTTEDA TO TIOABAR.

For PL/I:

TCTTEAR=TCAFCAAA;
DFHSC TYPE=GETMAIN,

NUMBYTE=80,
CLASS=TERMINAL

TIOABAR=TCASCSA;
TCTTEDA=TIOABAR;
TIOADATA=DATA;

TIOATDL=80;

DFHTC TYPE=(WRITE,ERASE,
READ, WAIT)

TIOABAR=TCTTEDA;

FILE SERVICES

NOTE ADDRESS OF TIOA.
NOTE PLAC E ADDR 0 F TIOA IN TCTTE.
NOTE PLACE DA"IA IN TIOA (TIOADATA IS
USER-DEFINED) •
NOTE PLACE DATA LENGTH IN TIOATDL.

ISSUE WRITE TO TERMINAL
ERASE BEFORE WRITE, THEN READ
NOTE EST ADDRESSABILITY FOR TIOA.

/*EST ADDRESSABILITY FOR TCTTE*/
OBTAIN TIOA FOR OUTPUT DATA

/*ADDRESS OF TIOA*/
/*PLACE ADDR OF TIOA IN TCTTE*/
/*PLACE DATA IN TIOA (TIOADATA IS
USER-DEFINED)*/
/*PLACE DATA LENGTH IN TIOATDL*/

ISSUE WRITE TO TERMINAL
ERASE BEFORE WRITE, THEN READ
/*EST ADDRESSABILITY FOR TIOA*/

File management provides the capability, through the file control
program, to process fixed- or variable-length, blocked or unblocked,
undefined, or segmented recozds of a direct access data set.

File control uses standard access methods of the host operating
system (OS/VS or DOS/VS), namely:

Chapter 6. Service Invocation 67

*

*

*
*

*

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

• Direct Access Method (DAM)

• Indexed sequential Access Method (ISAM)

• Virtual storage Access Method (V SAM)

All data sets to be processed by file control must be described in
the file control table (FCT). Application programs can access DAM data
sets on a logical record level, deblocking services being provided by
file control. If an ISAM data set is converted to a VSAM data set
organization, using VSAM data set conversion utilities, no alteration
to application programs that access the data set is necessary, but the
file control table must be changed.

Through the file control macro instruction (DFHFC), an application
program can perform file inquiry, which means, in effect, read a record
from an existing data set on a direct access storage device; update an
existing record in a data set; or add a new record to a data set. That
program can also obtain a main storage area to create a new record or
release a main storage area that has been acquired. File management
also provides a single or grcup record deletion capability exclusively
for VSAM key-sequenced data sets.

The application program can browse a data set. This browsing is
comparable to a visual, sequential search of a file. File control
macro instructions are used to specify a starting point for the browse,
request each succeeding record, reset the starting point for the browse
(if desired), and terminate the browse.

General file-handling capabilities available to application programs
include indirect access to data sets, handling of "duplicates" data
sets, and use of segmented records. The application programmer must
work with the system programmer responsible for setting up the file
control table (FCT) when planning to use any of these capabilities.
For additional information, see "Data Base Considerations" in Chapter
11.

Optional aCcess to the Data Language/I (DL/I) facility of the IBM
Information Management System/Virtual storage (IMS/vS, Program Product
5740-XX2) is provided under CICS/OS/VS. CICS/DOS/VS interfaces to DL/I
DOS/VS (Program Product 5746-XX1). see Chapter 12 for information
concerning the use of DL/I in a CICS/vS application program.

All buffers and work areas needed for data set operations are
acquired by file control in accordance with the data set descriptions
supplied in the FCT by the system programmer. All data sets and all
segment sets referenced in DFHFC macro instructions must have been
defined in the FCT. The application programmer may work with the system
programmer in setting up these data set descriptions. However, the
application program need be concerned only with logical records; it is
not directly involved with other characteristics of the data set.

Note that while file management supports the user's data base,
transient data management supports sequential data sets.

An application program always operates on DAM or ISAM data in one
of two main storage areas: (1) a file input/output area (FIOA) or (2)
a file work area (FWA). A FIOA is required to handle records that are
read-only, unsegmented, and unblocked. A FWA is required to handle
records that are new, segmented, blocked, or to be updated. In
addition, a FWA is always used in a browse operation. For a VSAM data
set, all data is read into or written from a FWA with one exception:
a locate mode read-only (inquiry) request is entered for a non segmented
record. In this case, the retrieved record is not moved to a FWA. A
VSAM work area (VSWA) is established by CICS/vS, and the address of

68 CICS/VSApplication Programmer's Reference Manual

o

Page of SH2U-9003-2
Revised May 22, 1975
By TNL SN20-9086

the retrieved record, as it is positioned in the VSAM buffer, is made
available to the application program at VSWAREA within the VSWA. The
application programmer must provide a symbolic storage definition for
this area (for example, an Assembler-language DSECT) and establish
addressability to it. The record remains in the VSAM buffer, and care
must be taken to ensure that it is not modified. It is possible for
the user to determine which area (FIOA, FWA, or VSWA) 1S returned in
response to a file request. Refer to the specific area under "Storage
Definitions" for details.

Note: CICS/VS permits the sharing of VSAM resources. Resources to be
SEared are identified in the DFHFCT TYPE=SHRCTL macro instruction as
explained in the CICS/VS System Programmer's Reference Manual. When
a task requires resources in several VSAM data sets at the same time
and these data sets are sharing resources, the possibility of a lockout
increases. '

File control executes at the priority of the requesting program,
under control of the TCA of the requesting program, saving and restoring
registers from this TCA. The application programmer can check the
CICS/VS response to a request for file services as explained under
"Test Response to a Request for File Services." Contrpl can be routed
to any of various user-written exception-handling routines based on
the outcome of the file operation.

The application programmer must specify parameter values when using
the file control macro instruction, in either of two ways:

• By including the parameters in operands of the DFHFC macro
instruction by which file services are requested, or

• By coding instructions that place the parameter values in fields
of the TCA prior to issuing the DFHFC macro instruction.

The second of these approaches provides flexibility in that the
parameter values of a single DFHFC macro instruction can vary, to meet
the logic needs of the application program.

File services that can be requested through the file control macro
instruction are explained in the following paragraphs. Programming
considerations related to each type of request (DFHFC TYPE=keyword
operand) are discussed. For additional coding details, the application
progranuner should refer to "DFHFC Macro Instruction" in Chapter 7.

RANDOMLY RETRIEVE DATA FROM A DATA SET (GET)

The application programmer can randomly retrieve data from a data
set by issuing the

DFHFC TYPE=GET, *

macro instruction. This macro instruction is used for random read-only
(inquiry) or update (DFHFCTYPE=GET, TYPOPER=UPDATE) operations. The
requested data record is returned in (1) a file input/output area (FIOA)
for read-only operations with unsegmented, unblocked records from a
DAM or I~ data set; (2) a file work area (FWA) for update operations,
read-only operations with segmented or blocked records, or for read-only
operations with a VSAM data set; or (3) in a VSAM buffer area for locate
mode read-only operations on nonseqmented records of a VSAM data set.

Chapter 6. Service Invocation 69

Before file services are requested in an application program by
means of the DFHFC TYPE=GET macro instruction, the application
programmer must provide instructions that symbolically define any
required FIOA, FWA and/or VSWA by (1) copying the appropriate CICS/vS
control section storage definitions (DFHFIOA, DFHFWADS, and/or DFHVSWA)
provided by CICS/vS, and (2) providing his own storage definitions for
the user's section of the FIOA, FWA, and/or the user's record in the
VSAM buffer.

Note: Under CICS/OS/vS, if ISAM data is to be placed in a FIOA, a
16-byte filler must be defined following the statement that copies
DFHFIOA and ahead of the user's data definition.

CICS/VS performs the following services in response to a DFHFC
TYPE=GET macro instruction:

1. Acquires the main storage area required to read a record

2. Reads the requested data

3. Locates the requested logical record

To communicate to CICS/VS the identity of the record required in an
input/output operation, the application program must ·utilize a record
identification field for the data set. The format of this field, as
required for the various access methods, is described under "Record
Identification Field" in Chapter 11. When a DAM data set is referenced,
the desired record is accessed on the basis of the block reference
field. An ISAM data set is referenced on the basis of the logical
record key. For VSAM data sets, a record can be accessed with either
a relative byte address or a logical record key. A search by key may
be for a key exactly equal to the search key, or for one equal to or
greater than the search key. A search may also be for a partial key
(the first two bytes, or any number specified by the programmer), which

may serve as a generic key. The generic or partial key search may,
again, be either for an equal key or for an equal or greater key, but
only the number of bytes specified will be compared. A protected,
key-sequenced VSAM data set can be updated only on the bas~s of the
full key equal search. Because CICS/vS application programs must have
the quality of quasi-reentrance, the record identification field should
be contained in a task-related storage area, but that area should not
be within the application program.

In addition, CICS/vS can perform the following services, depending
on the o~erands included in the DFHFC TYPE=GET macro instruction:

• Retrieve a record indirectly

• segment a record for inquiry (read-only) and return the requested
segments in a work area

• Acquire a file work area of the same length as the requested record
when the record is to be updated or when records are blocked or
segmented

• Unpack a segmented record into a work area of the same length as
the requested record

When a nonsegmented record of a VSAM data set is accessed in response
to a read-only request, the application programmer may specify either
move mode or locate mode processing. Under move mode, the record is
handled as any DAM or ISAM record. Under locate mode, the retrieved
record is made available to the application program in the VSAM buffer.
The application programmer must have copied the CICS/VS symbolic storage

70 CICS/VS Application Programmer's Reference Manual

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

definition for the VSAM work area (OFHVSWA) and must also provide a
symbolic storage definition for the record that is retrieved.

After requesting file services, the programmer must establish
addressability for any required FIOA or FWA. The address of the area
involved, provided by CICS/vS at TCAFCAA, must be placed at FIOABAR or
FWACBAR. When locate mode is used, the address of the VSAM work area
(VSWA) is in TCAFCAA and must be placed in VSWABAR. The address of
the area that holds the requested record is at VSWAREA within VSWA and

Chapter 6. Service Invocation 70.1

must be moved to the base locator that the programmer has established
for the symbolic storage definition of the area.

When retrieving variable-length records from a VSAM data set in move
mode, the file centrol program creates a conventional LL~~ length field
and places it before the record in the FWA. In locate mode, the length
is not included in the record itself but is placed at VSWALEN in the
VSWA.

When a VSAM record is retrieved for update, VSAM maintains exclusive
control of the control interval containing that record. If there is
an attempt to retrieve another record from the same interval before
the previous one is updated by a DFHTC TYPE=INPUT or before the
operation is terminated by a DFHFC TYPE=RELEASE, a lockout condition
may exist.

The application programmer should issue a DFHFC TYPE=RELEASE macro
instruction to free an FIOA or FWA acquired in res~onse to a request
for file services. A DFHFC TYPE=RELEASE macro instruction should be
issued to release a VSWA established for a VSAM read-only request using
locate mode I/O. CICS/VS frees any of these areas that are not freed
by the application program u~on task termination.

Random Read-Only Retrieval

The following examples show how to do a randorr read-only (inquiry)
operation on a record of master data set, assuming blocked or segmented
records.

For Assembler language:

COPY DFHTCADS
KEYF OS CL8
FWACBAR EQU 7

COPY DFHFWAI:S
RECORD DS OCL350

MVC KEYF,ACCTNO
READREC DFHFC TYPE=GET,

DA'IASET=MASTERA,
RDIDADR=KEYF

L FWACBAR,TCAFCAA

For ANS COBOL:

COpy TCA SYMBOLIC ST:~G DEFN
RECORD IDENT FIELD IN TWA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECO~D LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET

ESTABLISH ADDRESS ABILITY FOR FWA

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
NOTE DEFINE BASE REGISTER FOR FWA.

*
*

01 DFHT CADS COPY DFHTCADS.
02 KEYF PICTURE X(8) •

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

01 DFHFWADS COpy DFHFWADS.
02 RECORD PICTURE X(350).

PROCEDURE DIVISION.

NOTE COpy SYMEOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

Chapter 6. Service Invocation 71

MOVE CSACDTA TO TCACBAR. NOTE ESTABLISH TCA ADDRESSABILITY.

MOVE ACCTNO TO KEYF. NOTE MOVE RECORD IDENT TO KEY.
READREC.

DFHFC TYPE=GET,
DA~ASET=MASTERA,

RDIDADR=KEYF
MOVE TCAFCAA TO FWACBAR.

GET RECORD FROM MASTER DATA SET *

For PL/I:

%INCLUDE DFHTCADS;
02 KEYF CHAR(8);

%INCLUDE DFHFWADS;
02 RECORD CHAR (350) ;

KEYF=ACCTNO;
READREC:

NOTE ESTABLISH FWA ADDRESSABILITY.

/*COpy SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*ASSIGN RECORD IDENT TO KEY FIELD*/

*

DFHFC TY PE=G EI' ,
DA~ASET=MASTERA,

RDIDADR=KEYF
FWACBAR=TCAFCAA;

GET RECORD FROM MASTER DATA SET *

/*ESTABLISH ADDRESSABILITY FOR FWA*/

The following examples show how to retrieve a record from a VSAM
data set using locate mode I/O. If the record being retrieved is of
variable length, the traditional LL~~ field will not be part of the
record. The length of the record can be found in VSWALEN in the VSWA.

For Assembler language:

COpy DFHTCADS COpy TCA SYMBOLIC STORAGE LEFN
KEYF DS CL8 DEFINE KEY FIELD IN TWA
VSWABAR EQU 7 ASSIGN BASE REGISTER FOR VSWA
RECBAR EQU 8 ASSIGN BASE REGISTER FOR RECORD

COPY DFHVSWA COPY VSWA SYMBOLIC DEFN
RECDS DSECT DUMMY SECTION FOR RECORD

USING *,RECBAR MAKE RECORD ADDRESSABLE
RECORD DS OCL350 DEFINE RECORD LAYOUT

MVC KEYF,ACCTNO MOVE RECORD ,IL ~O KEY FIELD
READREC DFHFC TYPE=GET, GET A RECORD FROM MASTER

DATASET=MASTVSAM, VSAM DATA SET USING
RDIDADR=KEYF, LOCATE MODE
MODE=LOCATE

L VSWABAR, TCAFCAA ESTABI1ISH VSWA ADDRESSABILITY
L RECBAR, VSW AR EA ESTABLISH RECORt ADDRESSABILITY
L 3,VSWALEN LeAD RECORD LENGTH INTO WORK REG

For ANS COBOL:

02 VSWABAR PICTURE 89(8) COMPUTATIONAL.
NOTE DEFINE BASE REGISTER FOR VSWA.

02 RECBAR PICTURE S9(8) COMFUTATIONAL.

*

*
*
*

NOTE DEFINE BASE REGISTER FOR RECORD.

72 CICS/VS Application Programmer's Reference Manual

01 DFHTCADS COpy DFHTCADS. NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
02 KEYF PICTURE X(8). NOTE DEFINE KEY FIELD IN TWA.
02 RECLEN PICTURE S9(8) COMFUTATIONAL.

01 DFHVSWA COPY DFHVSWA.
01 RECDS SYNCHRONIZED.

02 RECORD PICTURE X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACEAR.

MOVE ACCTNO TO KEYF.
READREC.

DFHFC TYPE=GEI',
DA~ASET=MASTVSAM,

RDIDADR=KEYF,
MODE=LOCATE

MOVE TCAFCAA TO VSWAEAR.
MOVE VSWAREA TO RECBAR.
MOVE VSWALEN TO RECLEN.

For PL/I:

%INCLUDE DFHTCADS;
02 KEYF CHAR (8) ,
02 RECLEN FIXED BINARY(31) ;

%INCLUDE DFHVSWA;
DEFINE 01 RECDS EASED (RECEAR),

02 RECORD CHAR(350);

KEYF=ACCTNO;
READREC:

DFHFC TYPE=GEI',
DA~ASET=MASTVASM,

RDIDADR=KEYF,
MODE=LOCATE

VSWABAR=TCAFCAA;
RECBAR=VSWAREA;
RECLEN=VSWALEN;

Random Retrieval for Update

NOTE DEFINE RECORD LENGTH WORK AREA.

NOTE COPY SYMBOLIC STRG DEFN FOR VSWA.
NOTE DEFINE SYMBOLIC STRG DEFN FOR RECORD.
NOTE DEFINE RECORD LAYOUT.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE RECORD ID TO KEY FIELD.

GET A RECORD FROM t-iASTER
VSAM DATA SET USING
LOCATE MODE

*
*
*

NOTE ESTABLISH VSWA ADDRESSABILITY.
NOTE ESTAELISH RECORD ADDRESSABILITY.
NOTE MOVE RECORD LENGTH TO WORK AREA.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*DEFINE RECORD LENGTH WORK AREA*/
/*COPY SYMBOLIC STRG DEFN FOR VSWA*/
/*DEFINE SYMBOLIC STRG DEFN FOR REOORD*/
/*DEFINE RECORD LAYOUT*/

/*MOVE RECORD Ie TO KEY FIELD*/

GET A RECORD FROM MASTER
VSAM DATA SET USING
LOCATE MODE

*
*
*

/*ESTABLISH ADDRESSABILITY FOR VSWA*/
/*ESTABLISH ACDRESSABILITY FOR RECORD*/
/*MOVE RECORD LENGTH TO WORK AREA*/

The following examples shew hew to randomly retrieve a record on
the master data set for update.

For Assembler language:

COpy
KEYF DS
FWACBAR EQU

COPY
RECORD DS

DFHTCAOS
CL8
7
DFHFWAeS
OCL350

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

Chapter 6. Service. Invocation 73

MVC KEYF,ACCTNC
READREC DFHFC TYPE=GET,

DATAS ET=MAST ERA,
RDIDADR=KEYF,
TYPOPER=UPDATE

L FWACBAR,TCAFCAA

For ANS COBOL:

MOVE RECORD IDENT TO KEY FIELD
GET RECORD FROM MASTER DATA SET
FOR UPDATE

ESTABLISH ADDRESS ABILITY FOR FWA

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
• NOTE DEFINE B~SE REGISTER FOR FWA.

*
*
*

01 DFHTCADS COPY DFHTCADS.
02 KEYF PICTURE X(8) •

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

01 DFHFWADS COpy DFHFWADS.
02 RECORD PICTURE X(350).

NOTE COpy SYMEOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

PROCEDURE DIVISION.
MOVE CSACDTA TO TcACBAR. NOTE ESTABLISH TCA ADDRESSABILITY.

MOVE ACCTNO TO KEYF. NOTE MOVE RECORI: IDENT TO KEY.
READREC.

DFHFC TYPE=GET, GET RECORD FROM MASTER DATA SET *
DATAS FI'=MAST ERA,
RDIDADR=KEYF,
TY POPER=UPDATE

MOVE TCAFCAA TO FWACBAR.

For PL/I:

~INCLUDE DFHTCADS;
02 KEYF CHAR (8) ;

~INCLUDE DFHFWADS;
02 RECORD CHAR (350) ;

KEYF=ACCTNO;
READREC:

NOTE ESTABLISH FWA ADDRESSABILITY.

/*COPY SYMSOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*ASSIGN RECORD IDENT TO KEY FIELD*/

*
*

DFHFC TYPE=GET,
DATASET=MASTERA,
RDI DACR=KEYF,
TYPOPER=UPDATE

GET RECORD FROM MASTER DATA SET *

FWACBAR=TCAFCAA; /*ESTABLISHADDRESSABILITY FOR FWA*/
.,

Random Retrieval through Indirect Access

The following examples show how to randomly retrieve a record for
update when the key for the desired record is ~nknown. A cross-index
data set containing the master key is available, making it possible to
access the record indirectly. (See "Indirect Accessing" in Chapter 11
to learn more about this capability.)

74 CICS/VS Application Programmer's Reference Manual

*
*

For Assembler language:

COpy DFHTCADS
KEYF DS CL25
FWACBAR EQU 7

COPY DFHFWADS
RECORD DS OCL350

· · MVC KEYF,INDEXA
READING DFHFC TYPE=GET,

DATAS ET=MAST ERA,
RDIDADR=KEYF,
TYPOPER=UPDATE,
INDEX=INDIRECT

L FWACBAR,TCAFCAA

For ANS COBOL:

02 FWACBAR PICTURE S9 (8)

·
01 DFHl'CADS COPY DFHTCADS.

02 KEYF PICTURE X(25) •

01 DFHFWADS COpy DFHFWADS.
02 RECORD PICTURE X(350).

FROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE PARTNAME TO KEYF.
READREC.

DFHFC TYPE=GET,
DATASET=MASTERA,
RDI I:ACR=KEYF,
TYPOPER=UPDATE,
INDEX=INDEXAB

MOVE TCAFCAA TO FWACBAR.

~INCLUDE DFHTCADS;
02 KEYF CHAR (25) ;

%INCLUDE DFHFWADS;
02 RECORD CHAR (350) ;

KEYF=PARTNAME;
READREC:

DFHFC TYPE=GET,·
DATASEr=MASTERA,
RDIDADR~KEYF,
TYPOPER=UPDATE,
INDEX=INDEXAB

FWACBAR=TCAFCAA;

COpy TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

MOVE INDEX IDENT TO KEY FIELD
GET RECORDFRCM MASTER DATA SET *
BY FIRST ACCESSING A CROSS-INDEX *
DATA SET NAMED INDIRECI' *

*

ESTABLISH ADDRESSABILITY FOR FWA

USAGE IS COMPUTATIONAL.
NOTE DEFINE BASE REGISTER.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NCTE ESTABLISH TCA ADDRESSABILITY.

NOTE MOVE INDEX IDENT TO KEY.

GET RECORD FROM MASTER DATA SET *
BY FIRST ACCESSING A CROSS-INDEX *
DATA SET NAMED INDEXAB *

NOTE ESTABLISH FWA ADDRESSABILITY.

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*ASSIGN INDEX IDENT TO KEY FIELD*/

*

GET RECORD FROM MASTER DATA SET *
BY FIRST ACCESSING A CROSS-INDEX *
DATA SEl' NAMED INDEXAB *

*
/*ESTABLISH ADDRESSABILITY FOR FWA*/

Chapter 6. Service Invocation 75

RANDOMLY UPDATE OR ADD DATA TO A DATA SET (PUT)

The application programmer can randomly update or add data to a data
set by issuing the

DFHFC TYPE=PUT,

macro instruction. This macro instruction is used to (1) update an
existing record that has been retrieved through the DFHFC
TYPE=GET,TYPOPER=UPDATE macro instruction, (2) add a new record to an
existing data set, or (3) update an existing record in a nonkeyed DAM
data set without first reading the record for update. A DFHFC TYPE=PUT
macro instruction must never be issued without first issuing a DFHFC
TYPE=GET, TYPOPER=UPDATE or DFHFC TYPE=GETAREA macro instruction,
because the results of such action are unpredictable.

*

When a VSAM key-sequenced data set is being processed, the
application programmer also has a deletion capability. A DFHFC
TYPE=PUT,TYPOPER=DELETE macro instruction can be used to delete a record
previously retrieved by a DFHFC TYPE=GET,TYPOPER=UPDATE macro
instruction.

A file work area (FWA) is used to contain the record or segments to
be written or updated. The first 16 bytes of this work area are the
CICS/VS control section, which is followed by the actual record or
segments to be written to a data set.

CICS/VS performs the follcwing services in response to a DFHFC
TYPE=PUT macro instruction:

1. Writes updated or new records on user-defined data sets

2. Acquires or loca tes the main storage and control blocks required
to write the record

3. Releases all data set sto~age associated with the request to
write

• Packs a segmented record, depending on the data set organization
and the operands included in the DFHFC TYPE=PU~ macro instruction

Before file services can be requested by means of the DFHFC TYPE=PUT
macro instruction, the application programmer must provide instructions
that do the following:

1. Symbolically define the FWA by (1) copying the appropriate
CICS/VS control section storage definition (DFHFWA~S), and (2)
providing a storage definition for the user's section of the
FWA.

2. Establish address ability for the new FWA by specifying a symbolic
base address for the FWA.

3. Place the address of the FWA in TCAFCAA. (This address was made
available to the application ~rogram by CICS/VS in response to
the DFHFC TYPE=GET or DFHFC TYPE=GETAREA request by which the
FWA was acquired. It must have been stored by the application
program at that time, and should be moved to TCAFCAA immediately
preceding the DFHFC TYPE=PUT request, with no intervening
requests that could cause the contents of TCAFCAA to be altered.)

76 CICS/VS Application Programmer's Reference Manual

If the records being written to a data set are undefined, the
application programmer must place the length of the record being written
in TCAFCURL.

For records written to a variable-length VSAM data set, the length
of the record should be placed in an L~~ field in the beginning of
the record. This field is used by CICS/VS to determine the length of
the record and is not written to the data set.

VSAM does not allow addition of a record to a control interval fram
which a record has already been retrieved for update. If an application
program attempts to add a record to such a control interval before the
previous record is updated by a DFHFC TYPE=PUT or the update is
terminated by a DFHFC TYPE=RELEASE, a lockout condition exists.

The programmer who is adding records to a DAM data set should also
refer to "Adding Records to DAM Data Sets" in Chapter 11.

The following examples show how to randomly retrieve a record for
updating and then return that record to the data set.

For Assembler language:

COPY DFHTCADS
KEYF DS CL8
FWACBAR EQU 7

COPY DFHFWADS
RECORD DS OCL350

READUPD DFHFC TYPE=GET,
DATASET=MASTERE,
RDIDADR=KEYF,
TYPOPER=UPDATE

L FWACBAR, TCAFCAA

(update record)

ST FWACBAR,.TCAFCAA
WRITEUP DFHFC TYPE=PUT

For ANS COBOL:

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TwA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

PEAL RECORD FeR UPDATE

ESTABLISH ADDRESS ABILITY FOR FWA

PLACE FWA ADDRESS IN TCA
WRITE THE UPDATED RECORD

02 FWACBAR. PICTURE S9(8) USAGE IS COMPUTATION~~.
NOTE DEFINE BASE REGISTER FOR FWA.

*
*
*

01 DFHTCADS COPY DFHTCADS.
02 KEYF PICTURE X(8).

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
NOTE D~FINE KEY FIELD IN TWA.

01 DFHFWADS COpy DFHFWADS.
02 RECORD PICTURE X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

Chapter 6. Service Invocation 77

READUPD.
DFHFC TYPE=GET,

DATASET=MASTERB ,
RDI r:ADR=KEYF,
TYPOPER=UPDATE

REAr: RECORD FOR UPDATE *

MOVE TCAFCAA TO FWACBAR.

(upda te record)

MOVE FWACBAR TO TCAFCAA.
WRITEUP.

DFHFC TYPE=PUT

For PL/I:

%INCLUDE DFHTCADS;
02 KEYF CHAR (8) ;

%INCLUDE DFHFWADS;
02 RECORD CHAR (350) ;

READUPD:

NOTE ESTABLISH FWA ADDRESSABILITY.

NOTE MOVE ADDRESS OF FWA TO TCA.

WRITE THE UPDATED RECORD

/*COPY SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORe LAYOUT IN FWA*/

*
*

DFHFC TYPE=GET,
DATASET=MAST ERB,
RDIDADR=KEYF,
TYPOPER=UPDATE

READ RECORD FOR UPDATE *

FWACBAR=TCAFCAA;

(upda te record)

TCAFCAA=FWACBAR;
WRITEUP:

DFHFC TYPE=PUT

/*ESTABLISH ADDRESSABILITY FOR FWA*/

/*PLACE ADDR OF WORK AREA IN TCA*/

WRITE THE UPDATED RECORD

RANDOMLY DELETE DATA FROM A DATA SET (DELETE)

When processing a VSAM key-sequenced data set, the application
programmer can delete single records Or groups of records at random
from the data set. Single records can be deleted in either of two
ways: (l) by'specifying TYPOPER=DELETE in a PUT macro instruction for
a record previously retrieved for update (see the preceding discussion
of PUT), or (2) by issuing a DFHFC TYPE=DELETE macro instruction. To
delete groups of records, the seccnd of these methods, a

DFHFC TYPE=DELETE, *

macro instruction must be used.

*
*

When a single record is to be deleted by means of a DFHFC TYPE=DELETE
macro instruction, that record can be searched for by key or by relative
byte address. When the record is accessed by key, the complete key
can be used as a search argument, or only a partial key (the length of
which is specified by the ap~lication pro.grammer) can be used. In the
latter case, all records whose keys begin with the search argument are
deleted. CICS/vS returns a count of the number of records deleted at
TCAFCNRD.

Neither a FIOA nor a FWA is required for ,a delete operation.

78 CICS/VS Application Programmer's Reference Manual

OBTAIN A FILE WORK AREA (GET AREA)

The application programrrer can obtain an area of main storage in
which to create a new record for a data set by issuing the

DFHFC TYPE=GETAREA,

macro instruction. The new main storage area is a file work area (FWA)
and can be obtained only thrcugh a DFHFC TYPE=GE~AREA request. (A
storage control DFHSC TYPE=GETMAIN request cannot be used for file
operations.)

CICS/VS performs the follcwing services in response to a DFEFC
TYPE=GETAREA macro instruction:

1. Acquires main storage (an FWA) for the creation of a new record

*

2. Includes and initializes the FWA control fields (a 16-byte prefix
to the FWA) required by file control

If the application programmer intends to add several new logical
records whose keys are in ascending sequence to a VSAM data set, he
can write a DFHFC TYPE=GETAREA,TYPOPER=MASSINSERT macro instruction.
In this case, the FWA is retained and made available to the application
program after each DFHFC TYPE=PUT macroinstruction adding a record to
the data set. If storage initialization is specified in the DFHFC
TYPE=GETAREA m'acro instruction, the FWA is reinitialized before each
return to the application program. A mass insert operation is
terminated by issuing a DFHFC TYPE=RELEASE macro instruction.

When the DFHFC TYPE=GETAREA macro instruction is used, the
application programmer must ~rovide instructions that do the following:

• Symbolically define the FWA by (1) copying the appropriate CICS/VS
control section storage definition (DFHWADS), and (2) providing a
storage definition for the user's section ~f the FWA •

• Establish addressability for the new FWA by specifying a symbolic
base address for the FWA. (~he address of the area involved,
returned by CICS/VS at TCAFCAA, must be placed in FWACBAR.)

The following examples show how to obtain a FWA, build a new record
in the FWA, and then write the record to a data set.

For Assembler

COPY
KEYF DS
FWACBAR EQU

COPY
RECORD DS

NEWREC DFHFC

L

ST
WRIT NEW DFHFC

language:

DFHTCADS
CL8
7
DFHFWAJ:S
OCL350

TYPE=GETAREA,
DATASET=MASTERC
FWACBAR,TCAFCAA

(build new record)

FWACBAR,TCAFCAA
TY PE= Pt1I' ,

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

OBTAIN A FWA TO CREATE A NEW *
RECORD FOR A DATA SET
ESTABLISH ADDRESSABILITY FOR FWA

PLACE ADDR OF NEW RECORD IN TCA
WRITE THE NEW RECORD *

Chapter 6. Service Invocation 79

For !lli2 COBOL:

TYPOPER=NEWREC,
RDIDADR=KEYF *

02 FWACBAR PICTURE S9(8) USAGE IS COMFUTATIONAL.

01 DFHTCADS CO~Y DFHTCADS.
02 KEYF PICTURE X(8).

01 DFHFWADS COPY DFHFWADS.
02 RECORD PICTURE X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

NEWREC.
DFHFC TYPE=GETAREA,

DATASET=MASTERC
MOVE TCAFCAA TO FWACBAR.

(build new record)

MOVE FWACBAR TO TCAFCAA.
WRITNEW.

DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEYF

For~:

%INCLUDE DFHTCADS;
02 KEYF CHAR (8) ;

%INCLUDE DFHFWADS;
02 RECORD CHAR(350) ;

NEWREC:
DFHFC TYPE=GETAREA,

DATASET=MASTERC
FWACBAR=TCAFCAA;

(build new record)

TCAFCAA=FWACBAR;
WRITNEW:

DFHFC TYPE=PUT,
TYPOPER=NEWREC,
RDIDADR=KEYF

RELEASE FILE S'IDRAGE (RELEASE)

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FIELD IN TWA.

NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEfINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

OBTAIN A FWA TO CREATE A NEW *
RECORD FOR A DAT A S El'
NOTE ESTABLISH FWA ADDRESSABILITY.

NOTE ADDRESS OF NEW RECORD TO TCA.

WRITE THE NEW RECORD

/*COPYSYMBOLIC' STRG DEFNFOR TCA*/
/*DEFINE KEY FIELD IN TWA*/
/*COPY SYMBOLIC STRG DEFN' FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

*
*

OBTAIN A FWA TO CREAT E, A NEW *
RECORD FOR A DATA SET
/*ESTABLISH ADDRESSABILITY FOR FWA*/

/*PLACE ADDR OF NEW RECORD IN TCA*/

WRITE THE NEW RECORD *

*

The application programmer can release the storage areaS acquired
for file centrol operations by issuing the

80 CICS/VS Application Programmer's Reference Manual

DFHFC TYPE=RELEASE,

macro instruction. This macro instruction is used when (1) a record
has been retrieved for update, (2) it is determined that the update
should not occur, and (3) it is desired to release all encumbrances
associated with the update operation (these may include FWA~ ~IOA, and
exclusive control, which prevents other application programs from
accessing the data to be updated). A DFHFC TYPE=RELEASE macro
instruction is also used to release the storage occupied by a FWA or
FIOA used for a read operation.

Before the DFHFC TYPE=RELEASE macro instruction is executed, the
application programmer must ensure that the address of the FWA, FIOA,
or.VSWA to be released has been placed at TCAFCAA. Any associated
areas are also released.

The application programmer should not expect to find an FIOA address
at TCAFCAA in the case of a DSIDER, SEGIDER, INVREQ, or NOTOPEN
condition, because CICS/VS does not acquire an FIOA if one of these
conditions occurs.

A mass insert operation on a VSAM data set (initiated by a DFHFC
TYPE=GETAREA,TYPOPER=MASSINSERT macro instruction, which is followed
by DFHFC TYPE=PUT,TYPOPER::i:NEWREC macro instructions referring to the
data set) is terminated by a DFHFC TYPE=RELEASE macro instruction. A
DFHFC TYPE=RELEASE macro instruction should also be used to release
the VSWA established by CICS/vS in response to a read-only request for
a VSAM data set record retrieved under locate mode. Failure to release
the VSWA may cause significant performance degradation or task
suspension if subsequent accesses are made to the file.

The DFHFC TYPE=RELEASE macro instruction should not be specified if
the DFHFC TYPE=PUT,TYPOPER=UPDATE macro instruction is used to perform
a successful write of an updated record back to a data set. CICS/VS
automatically releases all storage associated with the write operation.
If an error condition occurs, preventing successful completion of the
write, however, a DFHFC TYPE=RELEASE macro instruction should be issued
to release the storage. DFHFC TYPE=RELEASE must be specified if a
DUPREe (duplicate record) indication is returned in response to a DFHFC
TYPE=PUT macro instruction to an ISAM data set. Refer to the
description of the DUPREC operand of the DFHTC TYPE=CHECK macro
instruction in Chapter 7 for more information on DUPREC.

CICS/VS perfor.ms the follOWing services in response to a DFHFC
TYPE=RELEASE macro instruction:

• Releases a FWA, FIOA, and/or VSWA

• Releases exclusive control of a record retrieved for update (if
applicable)

Any FWAs, FIOAS, and VSWAs acquired during execution of a task are
automatically released at termination of the t.ask, if not released
earlier in response to to a DFHFC TYPE=RELEASE macro instruction.

The following examples show how to request the release of a FWA.

Chapter 6. Service Invocation 81

*

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

For Assembler language:

FWACBAR EQU 7
COPY DFHFWADS

RECORD DS OCL350

· · · ST FWACBAR,TCAFCAA
RLSEREC DFHFC TYPE=RELEASE

For ANS ~:

ASSIGN BASE REGISTER FOR FWA
SYMBOLICALLY DEFINE FWA
RECORD LAYOUT FOLLOWS CONTROL
FIELD AND HAS SAME BASE REGISTER

ADDRESS OF FWA TO BE RELEASED
IN TCA AND ISSUE RELEASE REQUEST

02 FWACBAR PICTURE S9 (8) USAGE IS COMPUTATIONAL.
• NOTE DEFINE BASE REGISTER FOR FWA.

01 DFHTCADS COPY DFHTCADS.
02 RECORD PICTURE X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE FWACBAR TO TCAFCAA.
RLSEREC.

DFHFC TYPE=RELEASE

For PL/I:

~INCLUDE DFHTCADS;

IINCLUDE DFHFWADS;
02 RECORD CHAR (350) ;

TCACBAR=CSACDTA;

TCAFCAA=FWACBAR;
RLSEREC:

DFHFC TYPE=RELEASE

BROWSING

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE ADDR OF FWA TO BE RELEASED.

ISSUE RELEASE REQUEST

/*COPY SYMBOLIC STRG DEFN FOR TCA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*ESTABLISH ADDRE.SSABILITY FOR TCA*/

/*ADDRESS OF FWA TO BE RELEASED*/

ISSUE RELEASE REQUEST

Four DFHFC macro instructions are designed to facilitate browse
(sequential search) operations against a direct access data set. The
TYPE operand entries for these macro instructions are SETL, GETNEXT,
RESETL, and ESETL. The capabilities associated ~ith each are summarized
below. Keyword operands to request checking of a CICS/vS response can
be specified with these macro instructions as with other DFHFC macro
instructions (see "Test Response to a Request for File Services").
Specific operands are discussed in detail, for each macro instruction,
in Chapter 7.

82 CICS/VS Application Programmerts Reference Manual

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

When accessing a VSAM data set, the browse facility can be used to
perform random skip-sequential processing. The following steps are
required:

Chapter 6. service Invocation 82.1

1. Group several random requests into ascending key sequence.

2. Issue a DFHFC TYPE=SE~L macro instruction which positions to
the first required record. TO achieve this, the record
identification field pointed to by the RDIDADR operand should
be initialized to the key of the required record.

3. Prior to each DFHFC TYPE=GETNEXT macro instruction, place the
key of the next required record into the record identification
field.

This procedure allows quick random access to a VSAM data set by
reducing index search time. When the record having the highest key
has been retrieved, an ESETL or RESETL should be issued to terminate
or reset the operation.

Initiate Sequential Retrieval (SETL)

The application programmer initiates a browse operation on a data
set by issuing the

DFHFC TYPE=SETL,

macro instruction. This macro instruction is used to establish the
position within the data set where the browse operation is to begin.
It must be issued before any DFHFC TYPE=GETNEXT macro instruction. No
data is available until a DFHFC TYPE=GETNEXT is used.

Recall that an application prcgram communicates to CICS/VS the
identity of a specific record required in an input/output operation by
means of a record identification field established for the data set.
(See "Record Identification Field" in Chapter 11.) For an ISAM data
set, the browse operation begins at the first record with a key equal
to or greater than the key provided in the record identification field
for the data set. This key rray be either a specific (com~lete) key or

*

a generic (partial) key. For example, a complete key of D642BR17 causes
sequential processing to begin at the first record with a key equal to
or greater than that key. A generic key is one in which the application
programmer supplies only the significant characters of a desired group
of keys, padding the remainder of the key field with blanks or binary
zeros. A generic key of D6420000 causes sequential processing to begin
at the first record with a key whose first four characters are equal
to or greater than D642xxxx, regardless of the character represented
by each x. A key field of all binary zeros causes sequential processing
to begin at the first logical record of the data set.

For a DAM data set, the record identification field must contain a
specific block reference (for exam~le, TTR or MBBCCHHR as explained in
Chapter 11) which conforms to the addressing method defined for that
data set. Processing begins with the specified block and continues
wi th each subsequent block until the browse operation is termina'ted.
If the DAM data set ~ontains blocked records, processing begins at the
first logical record of the first block and continues with each
subsequent logical record.

For a VSAM data set, the contents of the record identification field
may be either a key or a relative byte address. If the field contains
a relative byte address, the browse operation begins Qt the location
identified. If the fieldcor.tains a key, it may be either specific or
generic. If the key is generic, the length of the partial key is
specified in the first byte of the record identification field. In

Chapter 6. service Invocation 83

either case, the application programmer can specify that the browse
operation is to begin at the first record having a key (1) equal to
the key in the record identification field (for generic, compared on
only the number of bytes specified), or (2) equal to or greater than
the key in the record identification field (again, for generic, compared
on only the bytes specified) •

When the DFHFC TYPE=SETL macro instruction is used, the application
programmer must provide instructions that do the following:

• Symbolically define the FWA by (1) copying the appropriate CICS/VS
control section storage definition (DFHFWADS), and (2) providing
his own storage definiticn for the user's section of the FWA •

• Establish addressability for the FWA by specifying a symbolic base
address for the FWA, typically following the DFHFC macro
instruction. (The address of the FWA, provided by CICS/VS at
TCAFCAA, must be placed at FWACBAR upon normal return from execution
of the SETL macro instruction.)

In most cases, records retrieved during a browse operation are
returned to the application ~rogram in a file work area (FWA). In
locate mode the addresses of the logical record are passed in the VSWA.
The FWA allocated by CICS/VS following a SETL request is unique for
the duration of that particular browse operation. If the application
program issues another SETL request, for the same or another data set,
a different FWA is created by CICS/vS. Thus it is possible for a single
application program to concurrently browse the same data set at several
different locations.

Note that during a browse operation on a segmented data set, the
original FWA (that is, the one allocated by CICS/VS in response to the
SETL request) may be replaced with a different FWA if a segment set
specified in a GETNEXT request requires a larger FWA than the segment
set specified in the SETL request. In this situation, the application
programmer should not assume that the same FWA is used for all GETNEXT
requests. The address of the utilized FWA is available at TCAFCAA upon
return from a GE~NEXT request.

CICS/VS performs the follcwing services in response to a DFHFC
TYPE=SETL macro instruction:

1. Acquires the main storage I/O areas and work areas to be
associated with this browse operation

2. Preserves the segment set name (if any) as the default segment
set name to be used if none is specified in subsequent GETNEXT
requests

3. Returns the address of the allocated FWA in TCAFCAA for other
than locate-mode nonsegmented VSAM data set processing; returns
the address of the allocated VSWA that will contain the VSAM
buffer-area address of each retrieved record for locate-mode
nonsegmented VSAM data set processing

The information supplied by the user in the record identification
field is preserved by CICS/vS for use When GETNEXT requests are issued.
Since CICS/VS places into this field the identification of each record
retrieved in response to a subsequent GETNEXT request, the field should
not be released by the application program.

The information placed into the record identification field by
CICS/VS is always in a form which completely identifies the record.
For example, assume a browse operation is to start with the first
logical record of a blocked, key~d DAM data set. E~fore issuing the

84 CICS/VS Application Programmer's Reference Manual

DFHFC TYPE=SETL macro instruction, the application programmer should
place the TTR (assuming that is the addressing method) of the first
block into the Record Identification field. After executing each DFHFC
TYPE=GETNEXT macro instruction, CICS/vS places the complete logical
record identification into the record identification field. After the
first GETNEXT, the record identification field might contain

X'00010504'

where 0001 represents the TTF value, 05 represents the block key, and
04 represents the record key.

As another example, if the application prograrr is browsing a blocked,
nonkeyed DAM data set and the second logical record from the second
physical block on the third relative track is read in response to a
GETNEXT request, the record identification field contains

X'00020201'

upon return to the applicaticn program, where 0002 represents the track,
02 represents the block, and 01 represents the logical record within
the block.

The following examples show how to initiate a browse operation.

For Assembler language:

COPY
KEYF DS
FWACBAR EQU

COPY
RECORD DS

CSECT

MVC
XC

START DFHFC

L

ERROR DS

For ANS COBOL:

DFHTCADS
CL8
7
DFHFWADS
OCL350

KEYF(5) ,=C'JONES'
KEYF+5 (3) , KEYF+5
TYPE=SETL,
DATASET=MASTER ,
RDIDADR=KEYF,
NOTOPEN= ERROR
FWACBAR,TCAFCAA

OH

COpy TCA SYMBOLIC STORAGE DEFN

ASSIGN BASE REGISTER FOR FWA
DEFINE CONTROL SECTION OF FWA
RECORD LAYOUT

INITIALIZE KEY FIELD
INITIATE BROWSE

CHECK FOR ERRORS
ESTAELISH ADDRESSABILITY FOR FWA

ENTRY TO ERROR ROUTINE

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COpy DFH'lX."!ADS.
02 KEYF PICTPRE X(8) •

01 DFHFWADS COPY DFHEWADS.
02 RECORD PICTURE X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
NOTE DEFINE KEY FI ELD IN TWA.
NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

Chapter 6. Service Invocation 85

*
*
*

r----------- --- -- -- -- ---- ---- ---- -- -- - -

MOVE 'JONES' TO KEYF.
START.

DFHFC TYPE=SETL,
DATAS ET=MAST ER ,
RDIDADR=KEYF,
NOTOPEN=ERROR

MOVE TCAFCAA TO FWACBAR.

ERROR.

For PL/I:

%INCLUDE DFHTCADS;
02 KEYF CHAR (8) ;

%INCLUDE DFHFWADS;
02 RECORD CHAR (350) ;

KEYF='JONES' ;
START:

DFHFC TYPE=SETL,
DATAS ET=MAST ER ,
RDIDADR=KEYF,
NOTOPEN=ERROR

FWACBAR=TCAFCAA;

ERROR:

INITIATE BROWS E

CHECK FOR ERRORS

/*COPY SYMBOLIC STRG DEFN FOR TCA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*'/
/*DEFINE RECORD LAYOUT IN FWA*/

INITIATE BROWS E

CHECK FOR ERRORS

Retrieve Next sequential Record (GETNEXT)

Once the application programmer has issued a DFHFC TYPE=SETL macro
instruction to initiate a browse operation, the next (or first)
sequential record can be obtained by issuing the

DFHFC TYPE=GETNEXT,

macro instruction. When the first GETNEXT request is issued following
a SETL request for an ISAM data set, CICS/VS acquires the first logical
record with a key equal to or greater than the key presented by a
previous SETL; for a DAM data set, CICS/VS acquires the first logical
record specified by the user. Each subsequent GETNEXT request, whether
for an ISAM or a DAM data set, causes CICS/vS to acquire the next
logical record in sequence.

When VSAM is used, the application programmer can specify that a
browse operation begin at a particular relative byte location or with
a record identified by a key. In the former case, the first GETNEXT
request retrieves that record. Each succeeding GE~EXT retrieves the
next logical record in sequence.

86 CICS/VS Application Programmer's Reference Manual

*
*
*

*
*
*

*

If a key is specified fer a VSAM data set, it may be either specific
or generic, and the application Frogrammer can specify that the search
begin (1) at a record having a key equal to the specific or generic
key, or (2) at a record having a key equal to or greater than the
specific or generic key. The effects of GETNEXT macro instructions
are as described below.

Before issuing the DFHFC 'IYPE=GETNEXT macro instruction, the
application programmer must place the address of the FWA associated
with the particular operation in TCAFCAA. If the application program
has initiated multiple browse operations, it must keep track of the
FWA associated with each operatien and refer to a specific FWA when
requiring services related to that browse. Similar requirements apply,
but pertain to the address of a specific VSWA when locate-mode
processing of VSAM nonsegmented records is utilized.

CICS/VS performs the following services in response to a DFHFC
TYPE=GETNEXT macro instruction referring to an ISAM, VSAM, or DAM data
set:

1. Retrieves the next sequential record and places it in the FWA
specified by the user at TCAFCAA

2. Places the record identification (key, block identification, or
the like) of the record just retrieved into the record
identification field specified in the DFHFC TYPE=SETL request
initiating the browse

If the user issues a DFHFC TYPE=GET,TYPOPER=UPDATE request on the
record returned in response to a DFHFC TYPE=GETNEXT request, the address
of the record identification field can be specified in the DFHFC
TYPE=GET request.

The first DFHFC TYPE=GETNEXT macro instruction referring to a VSM1
data set retrieves the record located in response to the DFHFC TYPE=SETL
instruction initiating the browse. On a subsequent GETNEXT, CICS/VS
checks the contents of the record identification field set aside for
records of the data set. If this field contains the. identification of
the record previously received, CICS/vS retrieves the next logical
record in sequence and places the identification of that record in the
record identification field. sequential retrieval such as described
above for ISAM and DAM data sets then occurs.

It is possible, however, when using VSAM data sets, for the
application programmer to utilize a skip-sequential processing
capability. All that is needed is to place the identification of the
next record desired into the record identification field prior to
issuing a GETNEXT request. If, upon checking this field, CICS/vS
determines that its contents haVE been changed by the application
program, CICS/VS accesses the record having the identification currently
stored in the record identification field. This record need not be
the next sequential record in the data set. This skip-sequential
processing capability is available only for VSAM data sets.

When VSAM skip-sequential processing is used, the record
identification placed in the record identification field before issuing
the GETNEXT request must be of the same form as that specified in the
SETL or last RESETL request for this browse operation. That is, if
the SETL or last RESETL specified a generic key, then the new record
identification must be a generic key. It need not be the sanle length
as that specified in the SETL or last RESETL. If the SETL or last
RESETL specified an RBA, the new identification must be an RBA. Note
that if the SETL or last RESETL specified an equal search (FKEQ or
GKEQ), a GETNEXT request using skip-sequential processing may result
in a NOTFND (record not found) condition.

Chapter 6. Service Invocation 87

In addition, CIC8/VS can perform the following services, depending
on the operands included in the DFHFC TYPE=GETNEXT macro instruction.

1. Present the user with segments as specified in the GE~NEXT
request.

2. Present the user with segments as specified in the SETL request
if no segment set is specified in the GETNEXT request.

3. If the FWA is not large enough to process a segment set specified
in the GETNEXT request, dispose of the old FWA and acquire a
new one large enough to process the new request.

The following examples shew how to initiate a browse operation and
retrieve selected segments from successive records of the data set.
(For more about segmented records, see "Segmented Records" in Chapter
11 and the explanation of the SEGSET operand under "DFHFC Macro
Instruction" in Chapter 7.)

For Assembler language:

COpy
KEYF DS
FWACBAR EQU

COPY
RECORDA DS

CSECT
MVC

INITIAL DFHFC

L

DFHTCADS
8X
7
DFHFWADS
OCL350

KEYF (8) ,=8X' 00'
TYPE=8 F!'L,
DATASET=MASTER,
SEGSET=A,
RDIDADR=KEYF

FWACBAR,TCAFCAA

ST FWACBAR,TCAFCAA
DFHFC TYPE=GETNEXT
L FWACBAR,TCAFCAA .

I

~

ST FWAC13AR~TCAFCAA
DFHFC TYPE=GETNEXT,

SEGSET=B
L FWACBAR,TCAFCAA

f2!: ANS COBOL:

COpy TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN FWA BASE REGISTER
COPY CICS/VS CONTROL SECTION OF FWA
DEFINE RECORD LAYOUT IN FWA.

START AT BEGINNING OF DATA SF!'
INITIATE BROWSE

SET DEFAULT SEGMEN~ SET

ESTABLISH FWA BASE REGISTER

RESTORE FWA ADCRESS
GET NEXT SEQUENTIAL RECORD
ASSURE ADDRESSABILITY IF SEGMENTED

RESTORE FWA ADCRESS
GET NEXT RECORD
WITH SEGMENT B
ASSURE ADDRESSABILITY IF SEGMENTED

02 FWACBAR PICTURE S9(8) USAGE IS COMFUTATIONAL.
NOTE DEFINE BASE REGISTER FOR FWA.

01 DFHTCADS COpy DFHTCADS. NOTE COPY SYMBOLIC STRG DEFN FOR TCA.
02 KEYF PICTURE 89(18) USAGE IS COMPUTATIONAL.

NOTE DEFINE KEY FIELD IN TWA.

88 CICS/VS Application Programmer's Reference Manual

*
*
*

*

01 DFHFWADS COPY DFHFWADS.
02 RECORD PICTURE X(350).

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE 0 TO KEYF.

INITIAL.
DFHFC TYPE=SETL,

DATASET=MASTER,
SEGSET=A,
RDIDAl)R=KEYF

MOVE TCAFCAA TO FWACBAR.

MOVE FWACBAR TO TCAFCAA.
DFHFC TYPE=GETNEXT

MOVE FWACBAR TO TCAFCAA.
DFHFC TYPE=GETNEXT,

SEGSET=B
MOVE TCAFCAA TO FWACBAR.

For PL/I:

%INCLUDE DFHTCADS;
02 KEYF BINARY FIXED(8,0) ;

%INCLUDE DFHFWADS;
02 RECORD CHAR(350) ;

KEYF=O;

INITIAL:
DFHFC TYPE=SETL,

DATASET=MASTER,
SEGSET=A,
RDIDADR=KEYF

FWACBAR=TCAFCAA;

TCAFCAA=FWACBAR;
DFHFC TYPE=GETNEXT

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD LAYOUT IN FWA.

NOTE ESTABLISH TCA ADDRESSABILITY.

NOTE START AT BEGINNING OF DATA SET.

INITIATE BROWSE

SET DEFAULT SEGMENT SET

NOTE ESTABLISH FWA ADDRESSABILITY.

GET NEXT SEQUENTIAL RECORD.

GET NEXT RECORD
WITH SEGMENT B
NOTE POSSIBLE NEW FWA.

/*copy SYMBOLIC STRG DEFN FOR TCA*/
/*DEFINE KEY FIELD IN TWA*/

/*COPY SYMBOLIC STRG DEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*START AT BEGINNING OF DATA SET*/

INITIATE BROWSE

SET DEFAULT SEGMENT SET

/*ESTABLISH,FWA ADDRESSABILITY*/

GET NEXT SEQUENTIAL RECORD

Chapter 6. Service Invocation 89

*
*
*

*

*
*
*

TCAFCAA=FWACBAR;
DFHFC TYPE=GETNEXT,

SEGSFI'=B
FWACBAR=TCAFCAA;

GET NEXT RECORD
WITH SEGMENT B
/*POSSIBLE NEW FWA*/

Terminate sequential Retrieval (ESETL)

The application programmer can terminate a browse operation by
issuing the

DFHFC TYPE=ESETL, *

macro instruction. Before the macro is issued, the programmer must
ensure that TCAFCAA contains the address of the file work area (FWA)
associated with the browse operation he wishes to terminate. When
locate-mode processing of VSAM nonsegmented records is utilized, TCAFCAA
must contain the address of the VSAM work area (VSWA) associated with
the browse operation being terminated. In response to an ESETL request,
CICS/vS releases all I/O and work areas associated with the browse
operation.

The following examples show how to terminate two concurrent browse
operations.

For Assembler

COpy
FWAC ELL 1 DS

* FWACELL2 DS

* FWACBAR EQU
COpy

RECORD DS

CSECT

language:

DFHTCADS
A

A

7
DFHFWADS
OCL350

COPY TCA SYMBOLIC STRG DEFN
CONTAINS ADDR OF FWA USED
FOR FIRST BROWSE OPERATION
CONTAINS ADDR OF FWA USED
FOR SECOND BROWSE OPERATION
ASSIGN FWA BASE REGISTER
DEFINE FWA SYMEOLIC STORAGE DEFN
DEFINE RECORD

MVC TCAFCAA, FWACELL 1 MOVE BROWSE 1 FWA ADDR TO TCA
ISSUE ESETL MACRO INSTRUCTION
MOVE BROWSE 2 FWA ADDR TO TCA
ISSUE ESETL MACRO INSTRUCTION

DFHFC TYPE=ESETL
MVC TCAFCAA, FCACELL2
DFHFC TYPE=ESETL

For ANS COBOL:

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COPY DFHTCADS.
02 FWACELL 1 PICTURE S 9 (8)
02 FWACELL2 PICTURE S9(8)

01 DFHFWADS COPY DFHFWADS.
02 RECORD PICTURE X(350).

NOTE DEFINE BASE REGISTER FOR FWA.

NOTE COpy SYMBOLIC STRG DEFN FOR TCA.
USAGE IS OOMPUTATIONAL.
USAGE IS COMPUTATIONAL.

NOTE COPY SYMBOLIC STRG DEFN FOR FWA.
NO'IE DEFINE RECORD LAYOUT IN FWA.

90 CICS/VS Application Programmer's Reference Manual

MOVE FWACELL1 TO ':OCAFCAA.
DFHFC TYPE=ESETL

MOVE FWACELL2 TO TCAFCAA.
DFHFC TYPE=ESETL

For PL/I:

%INCLUDE DFHTCADS;
02 FWACELL1 POINTER;
02 FWACELL2 POINTER;

%INCLUDE DFHFWADS;
02 RECORD CHAR(350) ;

TCAFCAA=FWACELL1;
DFHFC TYPE=ESETL

TCAFCAA= FWACELL2 ;
DFHFC TYPE=ESETL

NOTE PREPARE TO END FIRST BROWSE.
TERMINATE FIRST BROWSE.

NOTE PREPARE TO END 2ND BROWSE.
TERMINATE SECOND BROWSE.

/*CCPY SYMBOLIC STRG DEFN FOR TCA*/

/*COPY SYMBOLIC STRG CEFN FOR FWA*/
/*DEFINE RECORD LAYOUT IN FWA*/

/*MOVE BROWSE1 FWA ADDR TO TCA*/

/*MOVE BROWSE2 FWA ADDR TO TCA*/

Reset sequential Retrieval (RESETL)

Once a browse operation has been initiated, the application
programmer may, at any time ~rior to issuing an ESETL request for the
browse, reset the search argument to some record other than the next
sequential record in the data set. The default segment set name and
(for a VSAM data set) the type of search argument used in retrieving
records can also be reset by issuing the

DFHFC TYPE=RESETL,

macro instruction. Prior to issuing the request, the application
programmer should place the address of the appro~riate FWA into TCAFCAA
and the new record identification in the record identification field
specified in the original SETL request.

The use of the RESETL macro instruction allows the application
programmer to avoid issuing an ESETL request followed by another SETL
request, and causes CICS/vS to use the same I/O and work area. Upon
return from the RESETL request, TCAFCAA contains the address of a new
FWA which the user can use far the browse operation.

The RESETL request allows the user to "skip" through his data set
in a browse operation with minimal oveIhead. A similar capability is
also available to VSAM users through the GETNEXT instruction.

The following examples show how to reset the search argument and
the default segment set for ·a brcwse operation. (For more about
segmented records, see "segmented Records" in Chapter 11 and the
explanation of the SEGSET operand under nDFHFC Macro Instruction" in
Chapter 7.)

Chapter 6. Service Invocation 91

*

For AsseIl'bler

COPY
KEYF DS
FWACBAR EQU

COPY
RECORD 1 OS

ORG
RECORD2 DS

CSECT
MVC
DFHFC

L

ST
MVC
DFHFC

L

For ANS COBOL:

language:

DFHTCADS
D
7
DFHFWADS
OCL~50

RECORD 1
OCL250

KEYF(S),=SX'OO'
TYPE=SETL,
DATAS El'=MAST ER ,
RDIDADR=KEYF,
SEGSET=A
FWACBAR,TCAFCAA

FWACBAR, TCAFCAA
~EYF(8),=CLS'SMITH'
TYPE=RESETL,
SEGSET=B
FWACBAR,TCAF-CAA

COPY TCA SYMBOLIC STRG DEFN
DEFINE KEY FIELD IN TWA
ASSIGN FWA BASE REGISTER
C9PY FWA DSECT
DEFINE RECORD WITH SEGSET A

DEFINE RECORD WITH SEGSEl' B

INITIALIZE KEY FIELD
ISSUE INITIAL SETL MACRO *
FOR DATA SE'! "MASTER" *
INITIAL SEARCH ARG=O *
fOR SEGSE'I=A
ESTABLISH ADDRESSABILITY TO FWA

STORE FWA ACDR IN TCA
ESTABLISH NEW SEARCH ARGUMENT
ISSUE RESETL MACRO *
NEW SEGSET ID
ESTABLISH ADDRESSABILITY TO FWA

02 FWACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

NOTE DEFINE BASE REGISTER FOR FWA.

01 DFHTCADS COPY DFHTCADS. NOTE COPY SYMEOLIC STRG DEFN FOR TCA.
02 KEYF PICTURE 89(18) USAGE IS COMPUTATIONAL.

02 FILLER REDEFINES KEYF.
03 KEYC PICTURE X(8) •

01 DFHFWADS COPY DFHFWADS.
02 FECORD1 PICTURE X(350) •

01 DFHFWA REDEFINES DFHFWADS.
02 CICS/vS/VS~ART PICTURE X(*).
02 RECORD2 PICTURE X(250).

MOVE 0 TO KEYF.
DFHfC TYPE=SETL,

DATASET=MASTER,
RDIDADR=KEYF,
SEGSET=A

MOVE TCAFCAA TO FWACBAR.

MOVE FWACBAR TO TCAFCAA.
MOVE 'SMITH' TO KEYC.
DFHFC TYPE=RESETL,

SEGSET=B
MOVE TCAFCAA TO FWACBAR.

NOTE DEFINE KEY FIELD IN TWA.

NOTE COpy SYMBOLIC STRG DEFN FOR FWA.
NOTE DEFINE RECORD WITH SEGSET A.

NOTE CREATE S'IRG DEFN FOR FWA.
NOTE FLACE LENGTH OF ~A HERE.

NOTE DEFINE RECORD WITH~SEGSET B.

ISSUE INITIAL SETL MACRO INSTR *
FOR DATA SET "MASTER" *
INITIAL SEARCH AR~=O *
FOR SEGSET=A
NOTE ESTA~ISH ADPRESSABILITY TO FWA.

NOTE STQRE FWA ADDRESS IN TCA.
NOTE ESTABLISH NEW'SEARCij ~RGUMENT.
ISSUE RESETL MACRO INSTRUCrIO~ *
NEW SEGSET ID
NOTE E~TAELISH ADDRESSABI~ITY TO FWA.

92 CICS/VS Application Programmer's Reference Manual

For ~:

~INCLUDE PFHTCADS; /*COPY SYMBOLIC STRG DEFN FOR TCA*/
02 KEYF BINARY FIXED(8,0) ; /*DEFINE KEY AS BINARY*/

DECLARE 01 DFHXTCA BASED(TCACBAR),
02 FILL CHAR(*), /*PLACE LENGTH OF TCA HERE*/
02 KEYC CHAR(8); /*DEFINE KEY AS CHARACTER*/

~INCLUDE DFHFWADS; /*COPY SYMBOLIC STRG DEFN FOR FWA*/
02 RECORD1 CHAR (350) ; /*DEFINE RECORD WITH SEGSET A*/

DECLARE 01 DFHXFWA BASED (FWACBAR) ,
02 FILL CHAR(*), /*PLACE LENGTH OF FWA HERE*/
02 RECORD2 CHAR (250) ; /*DEFINE RECORD WITH SEGSET B*/

KEYF=O;
DFHFC TYPE=SETL,

DATASET=MASTER,
RDIDADR=KEYF,
SEGSET=A

FWACBAR=TCAFCAA;

TCAFCAA=FWACBAR;
KEYC='SMITH';

DFHFC TYPE=RESETL,
SEGSET=B

FWACBAR=TCAFCAA;

/*SET KEY VALUE TO ZERO*/
ISSUE INITIAL SFTL MACRO INSTR *
FOR DATA SET "MASTER" *
INITIAL SEARCH ARG EQUALS ZERO *
FOR SEGSET A
/*ESTABLISH A~DRESSABILITY FOR FWA*/

/*STOFE FWA AtDR IN TCA*/
/*ESTABLISH N:E:W SEARCH ARGUMENT*/
ISSUE RESETL ~ACRO INSTRUCTION *
NEW SEGSET ID
/*ESTAELISH ADDRESSABILITY TO FWA*/

TEST RESPONSE TO A REQUEST FOR FILE SERVICES

When, the application ~rogrammer issues a request for file services,
the CICS/vS response can be used to determine subsequent processing.
A preliminary step is to specify the symbOlic addresses of user-written
exception-handling routines, any of which may be executed as a result
of the check. The programmer can do this in any of three ways:

1. Include the symbolic addresses in operands of the DFHFC macro
instruction by which the file service is requested.

2. Include the symbolic addresses in ~perands of a

DFHFC TYPE=CHECK,

macro instruction immediately following the DFHFC macro
instruction by which the service is requested.

*

3. Include instructions immediately following the DFBFC macro
instruction that examine the response code set automatically by
CICS/VS when reaking the response, and transfer control to an
appropriat~ user-written exception-handling routine accordingly.

Under either of the first two methods above, CICS/VS checks the
response code that it sets and transfers control to the
exceptibn-handling routine named in the operand associated with the
condition that has occurred (if that operand has been specified). The
application programmer need not be concerned with which response code

Chapter 6. Service Invocation 93

corresponds to which condition. It is only necessary to understand
the keyword operands and be sure that all conditions that may occur
have been provided for.

When the third approach above is used, the application programmer
must know (1) the CICS/VS response codes and their meanings, and (2)
the symbolic label by which be can refer to the response cod'es. If
the Assembler-language or PL/I programmer elects to check for a
particular response-code bit pattern, he can access the response code
at TCAFCTR. The American National standard (ANS) COBOL programmer who
elects to check for a particular response-code bit pattern, can access
the response code at TCAFCRC. The possible response codes and the
conditions to which they correspond are identified in the right-hand
columns of ,Figure 6-1. DFHFC macro instructions for which the
conditions are'applicable are shown at the left.

Note: Because the multipunch codes to be checked in an ANS COBOL
program commonly correspond to unprintable characters, an alternative
facility is provided in CICS/vS for use by the ANS COBOL programmer.
He can simply refer to the response code by means of a label, formed
as a two-character identification of the CICS/VS management module
providing the requested service followed by the keyword for the
condition being checked (for example, FCNORESP). Use of this approach
is illustrated in the examples at the end of this discussion.

If the application programmer does not provide for the checking for
a particular response to a file service request, and if the exception
condition corresponding to that response occurs, program flow proceeds
to the instruction following the file service request in the application
program.

The keyword operands that can be used to request tests of the
response to a particular request for file services (that is, a
particular DFHFC macro instruction) are identified in the discussions
of the instruction format and operands under "DFHFC Macro Instruction."
The condition expressed by each keyword is explained in detail and
should be referred to by the application programmer when using any of
the checking methods described above.

Note: When certain exception conditions occur during a read-only
operation, an FIOA or VSWA containing the address of the FCT data set
entry that produced the exception condition is retained. Its address
is available to the application program. Before issuing other file
control requests, the application programmer should free the storage
occupi~d by the FIOA or VSWA through use of the DFHFC TYPE=RELEASE
macro instruction. (For details see DFHFC TYPE=CHECK in Chapter 1.)

The following examples show how to examine the response code provided
by CICS/VS at TCAFcrR (for Assembler language or PL/I) or TCAFCRC (for
ANS COBOL) and transfer control to an appropriate user-written
error-handling routine. The alternative approach available to ANS
COBOL programmers is also exemplified.

94 CICS/VS Application Programmer's Reference Manual

File Services
Request by
DFHFC Macro
Instruction

ALL.

GET, DELETE, GETAREA,
SETL, CHECK

GET, SETL, GETNEXT,
RESETL, CHECK

ALL

GET, CHECK

GET, PUT, DELETE,
GETAREA, SETL,GETNEXT,
RESETL, CHECK
GETNEXT, CHECK

GET, DELETE, SETL,
GETNEXT, RESETL,
CHECK
PUT, CHECK

PUT, CHECK

GET, PUT, DELETE,SETL,
GETNEXT, RESETL,CHECK

GET, PUT, DELETE, SETL,
GETNEXT, RESETL,
CHECK

ALL

NOTES:

Condition

NORESP
(Normal Response)

DSIDER
(Data Set Identification
Error)

SEGIDER
(Segment Set Identification
Error)

INVREQ
(Invalid Request)

DUPDS
(Duplicate Data Set)

NOTOPEN
(Data Set Not Open)

ENDFILE
(End of File during Browse)

NOTFND
(Record Not Found)

DUPREC
(Duplicate Record)

NOSPACE
(No DASD Space for Adding
Record)

IOERROR
(All Not Covered Above)

ILLOGIC
(VSAM Only; Error Not
Covered Above)

ERROR
(Any Response Other Than
NORESP)

r:--DELETE is valid only for VSAM files.

Response Code

Assembler ANS COBOL

X' 00' 12-0-1-S-9
(FCNORESP)

X'Ol' 12-1-9
(FCDSIDER)

X'04' 12-4-9
(FCSEGIDER)

X'OS' 12-S-9
(FCINVREQ)

X'OA' 12-2-S-9
(FCDUPDS)

X'OC' 12-4-S-9
(FCNOTOPEN)

X' OF' 12-7-S-9
(FCENDFILE)

X'Sl' 12-0-1
(FCNOTFND)

X'S2' 12-0-2
(FCDUPREC)

X'S3' 12-0-3
(FCNOSPACE)

X'80' 12-0-1-S
(FCIOERROR)

X'02' 12-2-9
(FCILLOGIC)

See Note S See Note S

2. The SEGIDER condition can occur only when the SEGSET operand is specified.
3. The DUPDS condition can occur only when the INDEX operand is specified.
4. The NOTFND condition can occur for SETL, GETNEXT, or RESETL only when

SRCHTYP=FKEQ or SRCHTYP=GKEQ.
5. The NOSPACE condition can occur only when TYPOPER=NEWREC is specified.
6. The ILLOGIC condition can occur only when processing VSAM files.

PLjI

00000000

00000001

00000100

00001000

00001010

00001100

00001111

10000001

10000010

10000011

10000000

00000010

See Note S

7. The names enclosed in parentheses in the ANS COBOL column indicate the SS-level
definitions provided by CICSjVS. These names may be used in testing for the
respective conditions in a COBOL program.

S. The test for the ERROR response is satisfied by a not equal condition; that is,
not X'OO', not 12-0-1-S-9, or not 00000000 for Assembler~NS COBOL, and
PLjI, respectively.

Figure 6-1. File Control Response Codes

Chapter 6. Service Invocation 95

For Assembler language:

DFHFC TYPE=GET,

NORMAL RESPONSE

I/O ERROR

CLI
BE
CLI
BE
CLI
BE

DAT AS EI'=MASTER,
RDIDADR=KEYF
TCAFCTR,X' 00'
GOOD
TCAF'CTR,X' SO'
ERROR
TCAFCTR,X'OS'
ERROR

INVALID REQUEST

GOOD DS OH

ERROR DS OH
DFHPC TYPE=ABEND

For ANS COBOL:

GOOD.

ERROR.

DFHFC TYPE=GET,
DATASET=MASTER,
RDI CADR=KEYF

IF TCAFCRC=' , THEN GO TO GOOD.
IF TCAFCRC=' , THEN GO TO ERROR.
IF TCAFCRC=' , THEN GO TO ERROR.

DFHPC TYPE=ABEND

NOTE 12-0-1-S-9 NORESP.
NOTE 12-0-1-8 IOERROR.
NOTE 12-S-9 INVREQ.

where the value specified wi thin single quotation marks is an
unprintable multipunch code for the required hexadecimal value. For
example, a hexadecimal 00 has a multipunch code of 12-0-1-S-9.

The alternative approach to response code checking, which is
available to ANS COBOL programmers as described earlier, is generally
a coding convenience and provides concise code documentation. When
this approach is used, the IF statements above are replaced by
statements of the form shown below:

IF FCNORESP THEN GO TO GOOD.
IF FCIOERROR THEN GO TO ERROR.
IF FCINVREQ THEN GO TO ERROR.

For PL/I:

*
*

*
*

DFHFC TYPE=GET, *
DATASEI'=MASTER, *
RDIDADR=KEYF

IF TCAFCTR='OOOOOOOO'E THEN GO TO GOOD; /* NORMAL RESPONSE */
IF TCAFCTR='10000000'B THEN GO TO ERROR; /* I/O ERROR */

'----- -------- --- --- --------- ------ .-'--- -----
96 CICS/VS Application Programmer's Reference Manual

IF TCAFCTR='00001000'B THEN GO TO ERROR; /* INVALID REQUEST */

GOOD:

ERROR:
DFHPC TYPE=ABEND

TRANSIENT DATA SERVICES

Transient data management provides, through transient data control,
a generalized queuing facility. Data can be queued (stored) for
subsequent internal or external processing. Selected units of
information, as specified by the application programmer, can be routed
to or from predefined symbolic destinations, either intra~artition or
extrapartition. The definitions for the destinations must be contained
in a destination control table (nCT) established by the system
programmer at system generation.

Intrapartition destinations are queues of data on direct access
storage devices developed for input to one or more programs running
asynchronously (concurrently) as separate tasks; they are internal to
the CICS/VS partition/region. nata directed to or from these internal
destinations is called intrapartition data and must consist of
variable-length records. Intrapartition destinations can be associated
with either a terminal or an out~ut data set. Intrapartition data may
be ultimately transmitted upon request to a destination terminal or
retrieved sequentially from the output data set. Typical uses of this
facility involve message switching, broadcasting, data base access and
routing of output to multiple terminals (for example, for order
distribution), queuing of data (for example, for assignment of order
numbers or priority by arrival), and data collection (for example, for
hatched input from 2780 Data Transmission Terminals). If generated
within the system, the CICS/VS asynchronous transaction processing
(ATP) facility can be used to transfer data to or frcm an intrapartition
destination. (See "Asynchronous Transaction Processing" in Chapter
11.)

An intrapartition queue is reusable. The systerr programmer can
indicate, by symbolic destination, whether (1) transient data space
management is to control the reuse of tracks associated with a
particular destination identification (DESTID), or (2) the releasing
of track space is to be controlled through use of the transient data
PURGE macro instruction. If transient data space rranagement is not
used, an intrapartition queue continues to grow, irrespective of whether
the data has been read, until the application programmer purges it.

Extrapartition destinations are queues (data sets) external to the
CICS/VS partition/region, residing on any sequential device (DASD,
tape, printer, and so on). In general, sequential extrapartition
destinations are used for storing data external to the CICS/VS
partition/region or for retrieving data from outside the
partition/region. For example, one task may read data from a remote
terminal, edit the data, and write the results to a data set for
subsequent processing in another partition/region. Logging data,
statistics, and transaction error messages are examples of data that
can be written to extrapartition destinations. In general,
extrapartition data created by CICS/VS is intended for subsequent
batched input to non-CICS/VS programs. Data can also be routed to an
output device such as a line printer. The CICS/VS asynchronous

Chapter 6. Service Invocation 97

TRANSIENT

DATA

transaction processing (ATP) facility can be used when reading or
writing extrapartition data sets.

Data directed to or from an external destination is called
extrapartition data and consists of sequential records that are fixed
or variable-length, blocked or unblocked. The record format for a
particularextrapartition destination must be described by the system
programmer when setting up the destination control table (see the
CICS/VS system Programmer's Reference Manual).

Intrapartition and extrapartition destinations can be used as
indirect destinations, which are symbolic references to still other
destinations. This facility provides some flexibility in program
maintenance in that data can be routed to a destination known by a
different symbolic name, without. t.he necessity of recompiling existing
programs that use the original name. only the destination control
table need be changed. The application programs can route data to the
destination using the previous symbolic name; however, the previ0us
name is now an indirect destination that refers to the new symbolic
name. Since indirect destinations are established by means of
destination control table entries, the application programmer usually
need not be concerned with how this is done. Further information is
available in the CICS/VS System Programmer's Reference Manual.

For intrapartition destinations, CICS/VS provides the option of
automatic task initiation. A basis for automatic task initiation is
established by the system programmer by specifying a nonzero trigger
level for a particular intrapartition destination in the DCT. (See
discussion of the CFHDCT TYPE=INTRA macro instruction in the CICS/VS
system Programmer's Reference Manual.) When the number of entries
(PUTs from one or more programs) in the queue (destination) reaches
the specified level, a transaction specified in the definition of the
destination is automatically initiated. Control is passed to a program
that processes the data in the queue; the prograrr RUst issue repetitive
GETs to deplete the queue.

Once the queue has been depleted, a new automatic task initiation
cycle begins. That is, a new task is scheduled for initiation when
the specified trigger level is again reached, whether or not execution
of the prior task has terminated.

If an automatically initiated task does not deplete the queue, access
to the queue is not inhibited. The task may be normally or abnormally
terminated before the queue is emptied (that is, before a QUE ZERO
response is returned in response to a DFHTD TYPE=GET macro instruction).
If the destination is a terminal, the same task is reinitiated
regardless of the trigger level. If the destination is a data set,
the task is not reinitiated until the specified trigger level is
reached. If the trigger level of a queue is zero, no task is
automatically initiated. To ensure that termination of an automatically
initiated task occurs when the queue is empty, the application program
should test for a QUEZERO condition rather than for some
application-dependent factor such as an anticipated number of records.
It is the QUEZERO condition only that indicates a depleted queue.

Requests for transient data services are communicated to transient
data control through CICS/VS macro instructions. Transient data control
then executes as a service program under control of the TCA of the
requesting program. It runs at the priority of the requesting program
and saves and restores registers from its TCA. After the requested
transient data service has been provided (or attemFted), control is
returned to the next executable instruction in the requesting program.

The transient data managerrent macro instruction (~FHTD) is used to
request any of the following services:

98 CICS/VS Application Programmer's Reference Manual

1. Direct data to a predefined symbolic destination which references
a data set or a terminal

2. Acquire data from a predefined symbolic source which references
a data set or a terminal

3. Control the processing of an extrapartition data set

4. Purge data associated with an intrapartition data set

5. Check the response to a request for transient data services

The application programmer must specify the parameters required when
requesting transient data services. Parameters can be specified in
two ways: (1) by including the parameters in operands of the DFHTD
macro instruction by which the service is requested, or (2) by coding
instructions that move the required parameters to fields of the TCA
prior to issuing the DFHTD macro instruction. The latter approach
provides some degree of flexibility in that a single DFHTD macro
instruction can be tailored according to current logic needs within
the application program.

The application programmer can check the CICS/VS response to a
request for transient data services as described under "Test Response
to a Request for Transient Data services." The operands that can be
specified in DFHTD macro instructions are explained in detail under
"DFHTD Macro Instruction" in Chapter 7.

CICS/VS routes a variety of messages generated by CICS/VS programs
or tasks to transient data control. For example, terminal control
detects a line or terminal problem (not related to a user-provided
task) and routes control to the CICS/vS terminal abnormal condition
program (DFHTACP). DFHTACP then generates a message to the control
system terminal log (CSTL) and/or to the control system master terminal
(CSMT) •

Destination definitions for all user and CICS/VS destinations must
be included in the destinaticn control table (DCT). Lack of a
destination definition leads to an IDERROR (identification error)
response to a DFHTD macro instruction.

DISPOSE OF DATA (PUT)

The application programmer can direct transient data to a predefined
symbolic destination by issuing the

DFHTD TYPE=PUT,

macro instruction. Destinations are intrapartition if associated with
a facility allocated to the CICS/vS partition/region and extrapartition
if the data is directed to same destination that is external to ~e
CICS/vS partition/region. If intrapartition data is to be placed in
the transient data output area, the symbolic storage definition for
this area (DFHTDOA) should be copied in the application program. All
references to the output area should be made through the use of a
register (TDOABAR) which points to the beginning of the area.

*

The application programmer must specify the address of the output
area containing data to be written, either by specifying the symbolic
label of the area in the DFHTD TYPE=PUT macro instruction, or by placing
the address in TCATDAA prior to issuing the macro instruction. For

Chapter 6. Service Invocation 99

variable-length records and intrapartition data, the first four bytes
of the output area must contain the length of the record. The format
of this length field is LL~~, where LL is a two-byte binary length (the
value of which includes the length of the data plus the four bytes for
the length field) and ~~ should be two bytes containing binary zeros.
Transient data centrol does not release this area after the data is
written as output.

The use of the DFHTD TYPE=PUT maero instrueticn is summarized in
Figure 6-2.

Macro Destination Pointer Output Record Acquired Released
Type (see note 1) Area Format by by

(see note 2)

PUT

PUT

Notes:

Extra-
partition

Intra
partition

First data
byte (LLbb
if variable-
length recs)

LLbb field

Any Fixed- or
variable-

length

TDOA (or
any) (see Variable-
note 3) length

Application
program

Application
program

1. TDADDR specified in PUT macro instruction points to the
data to be written.

DFHSC TYPE=FREEMAIN
or task termination

DFHSC TYPE=FREEMAIN
or task termination

2. DFHSC TYPE=FREEMAIN should be used only if area acquired
via DFHSC TYPE=GETMAIN.

3. If the output area is other than TDOA and the system is
DOS/VS, an eight-byte storage accounting field must be
provided by the application program before the LLbb field.
These eight bytes are used by DOS/VS during an intra
partition put and should not be used by the application
program.

Figure 6-2. Use of DFHTD TYPE=PUT

The following examples shew how to write data to a predefined
symbolic destination, in this case, the control system message log
(CSML). The address of TDOAVRL, the four-byte length field at the
beginning of the transient data output area (TDOA), is a pointer to
the start of the variable-length data to be written.

For Assembler language:

TDOABAR

DATA

EQU
COpy
DS

1
DFHTDOA
CL10

MVC TDOAVRL,LENGTH

-- --- --- --- --- --- --- ---- --- --- --- -- --

100 CICS/vS Application Progra·mmer's Reference Manual

--- ---- ----- ------- -------- --- --- --- -

MVC DATA, MESSAGE
MVC TCATDDI,=C'CSML'
DFHTD TYPE=PUT,

TDADDR=TDOAVRL

01 DFHTDOA COpy DFHTDOA.
02 DATA X (10) •

02 TDOABAR PICTURE S 9 (8) USAGE IS COMPUTATIONAL.

MOVE LENGTH TO TDOAVRI.
MOVE MESSAGE TO DATA.
MOVE 'CSML' TO TCATDDI.
DFHTD TYPE=PUT,

For PL/I:

%INCLUDE DFHTDOA;

TDADDR=TDOA \iRL

2 DATA CHAR (10) ;

TDOAVRL=LENGTH;
DATA=MESSAGE;
TCATDDI= , CSML' ;
DFHTD TYPE=PUT,

TDACDR=TDOAVRL

ACQUIRE QUEUED DATA (GET)

The application programmer can acquire transient data from a
predefined symbolic source by coding the

DFHTD TYPE=GET,

macro instruction. The address of the data acquired is returned at
TCATDAA.

If the data is extrapartition, TCATDAA points to the first word of
the data area. For variable-length records, the first four bytes of
this area contain the length (LLbb) as specified for variable-length
data sets.

If the data is intrapartition, the symbolic storage definition for
the transient data input area (DFHTDIA) must have been copied in the
application program. TCATDAA points to a CICS/VS input area defined
by DFHTDIA. TDIAIRL contains the length (data length plus the length
of the length field) of the area.

Chapter 6. Service Invocation 101

*

*

*

*

Transient data (either intrapartitian or extrapartition) must be
moved from the input area before it can be used in any other
input/output operation.

If the application prograrrmer issues a DFHTD 'IYPE=GET macro
instruction, the input area acquired for the previous GET is reused if
it is long enough to contain the input record. If it is not, CICS/vS
acquires a new input area of sufficient length and releases the input
area previously used. If the application programmer issues a DFHTD
TYPE=PUT macro instruction, the input area acquired for a previous GET
may also be changed or released. The application programmer should
always move data to be .saved from the input area to a user area to
ensure that it is not overlaid with new data. Addressabi1ity to the
area should also be reestablished following each GET.

The application programmer should not attempt to free storage
acquired by the transient da ta centro1 program in response to a DFHTD
TYPE=GET macro instruction. This storage is freed by CICS/vS in the
case of intrapartition data, or by the operating system in the case of
extrapartition data. An attempt to free storage acquired for
extrapartition data may result in an abnormal termination of CICS/VS,
since the storage area address returned by transient data control pOints
to storage that is not part of the CICS/VS dynamic storage subpoo1.

The use of the DFHTD TYPE=GET macro instruction is summarized in
Figure 6 -3.

Macro Destination Pointer Input Record Acquired Released
Type Area Format by by

TCATDAA Access- Fixed- or Operating Operating
GET Extra- method variable- system system

partition area length OPEN

GET Intra- TCATDAA TDIA Variable- CICS/VS CICS/VS
partition length

Note: CICS/VS moves pointer to input data to TCATDAA after GET. For
extrapartition, points to LLbb if variable-length. For intra-
partition, points to TDIA.

Figure 6-3. Use of DFHTD TYPE=GET

The following examples show how to read a variable-length record
from an intrapartition data set specified prior to issuing the DFHTD
TYPE=GET macro instruction. In these examples, the data set is the
control system message log (CSML).

~F:r Assembler language: J
TDIABAR EQU 7

---------_ .. -
102 CICS/vS Application Programmer's Reference Manual

---------- ---------- ------ --- ----
COpy DFHTDIA

MVC
DFHTD
L

TCATDDI,=C'CSML'
TYPE=GET
TDIABAR,TCATDAA

For ANS COBOL:

02 TDIABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTDIA COpy DFHTDIA.

MOVE 'CSMI.' TO TCATDDI.
DFHTD TYPE=GET

MOVE TCATDAA TO TDIABAR.

For PL/I:

~INCLUDE DFHTDIA;
2 DUMMY CHAR(1) ;

TCATDDI= 'CSML ' ;
DFHTD TYPE=GET
TDIABAR=TCATDAA;

Assume that, in the above examples, the variable-length record is
read from an extrapartition data set. The address placed at TCATDAA
by CICS/VS is the address of the length (LLbb) field that precedes the
actual data. Since the DFHTDIA symbolic storage definition is being
used, the addres s must be ad justed to pOint to the CICS/VS control
section preceding the actual data. Therefore, an instruction to adjust
the address should be inserted immediately following the instruction
that moves the contents of TCATDAA to TDIABAR. The following examples
apply to CICS/OS/vS but are applicable to CICS/DOS/vS if '36' is
replaced by '8'.

For Assembler language:

SH TDIABAR,=H'36'

£:2.! M!2 COBOL:

SUBTRACT 36 FROM TDIAEAR.

Chapter 6. Service Invocation 103

DCL TDIABAA FIXED BIN(30) BASED (TDIABAB) ;
TDIABAB=ACDR(TDIABAR) ; /* OVERLAY POINTER */
TDIABAA=TtIABAA - 36; /* DO POINTER ARITHMETIC */-

Since these examples deal with variable-length records, the first
byte of the data is assumed to be the length field (LLbb). If the
examples dealt with fixed-length records, appropriate values would be
40 and 12 for CICS/OS/VS and CICS/DOS/VS, respectively.

Note: These values are subject to change in future versions of CICS/vS,
because this DSECT is intended only for intrapartition data sets. No
DSECT is provided for extrapartition data. Each user should define
the extrapartition DSECT so as not to use the absolute values in the
above example.

If an extrapartition data set is blocked, alignment requirements
are the user's responsibility. CICS/VS assumes that the LLbb field of
a variable-length record or the first data byte of a fixed-length record
is positioned on a doubleword boundary.

CONTROL THE PROCESSING OF AN EXTRAPARTITION CATA SET (FECV)

The application programn:er can create a "forced end of volume"
situation on an extrapartition magnetic tape data set by issuing the

DFHTD TYPE= FEOV ,

macro instruction. This macro instruction is used to cause the
rewinding and unloading of a magnetic tape reel. Output labels are
created as required and new input labels are verified according to host
operating system forced-end-of-volume processing. The next tape reel
must then be loaded.

Note: This facility should be used with caution, since CICS/VS
operation is halted until the new tape reel has been loaded.

The following examples show how to create a "forced end of volume"
situation on an extrapartition magnetic tape data set.

For Assembler language:

MVC TCATDDI,=C'CSML'
DFHTD TYPE=FEOV

For ANS COBOL:

MOVE 'CSML' TO TCATDDI.

*

__________ . ------I

104 CICS/VS Application programmer's Reference Manual

r--- -- --- --- ------ --- ---------------
DFHTD TYPE=FEOV

TCATDDI=' CSML';
DFHTD TYPE=FEOV

PURGE INTRAPARTITION DATA (PURGE)

When transient data associated with a farticular intrapartition
destination (queue) is no longer needed, the application frogrammer
can purge the data associated with that destination by issuing the

DFHTD TYPE=PURGE,

macro instruction, which causes all storage associated with the
destination to be freed (deallocated).

The DFHTD TYPE=PURGE macro instruction must be used to free storage
associate6 with a destination designated as nonreusable in the
destination control table. otherwise, the storage remains allocated

*

to the destination; the data and amount of storage associated with the
destination continue to grow whenever a DFHTD TYPE=PUT macro instruction
refers to the destination.

TEST RESPONSE TO A REQUEST FeR TRANSIENT" DATA SERVICES

When the application programmer issues a request for transient data
services, he can check the CICS/VS response to his request to determine,
in a deliberate manner, subsequent processing that should be carried
out. One step in doing so is to specify the symbclic addresses of
user-written exception-handling routines, any of which may be executed
as a result of the check. The available methods for doing so are very
similar to those used in checking the response to a request tor tile
services (see "Test Response to a Request for File Services" in this
chapter). They are:

• Include the symbolic addresses in operands of the DFHTD macro
instruction by which the transient data service is requested •

• Include the symbolic addresses in operands of a

DFHTD TYPE=CHECK, *

macro instruction immediately follOWing the DFHTD macro instruction
by which the service is requested.

Chapter 6. Service Invocation 105

• Include instructions immediately following the DFHTD macro
instruction that test the response code set automatically by
CICS/VS, and transfer control to an exception-handling routine
accordingly.

The discussion of these methods given for file services is also
applicable to transient data services. However, the Assembler-language
or PL/I programmer accesses transient data response codes at TCATDTR;
the American National Standard (ANS) COBOL programmer accesses these
response codes at TCATDRC. In addition, the ANS COBOL programmer can
refer to the response codes ty means of symbolic labels (TDNORESP,
TDQUEZERO, and so on) to cause specific response code patterns to be
checked without specifying those patterns in the program. (See the
examples at the end of this discussion.) The possible response codes
and their meanings are shown in Figure 6-4.

Transient Data Response Code
Request by
DFHTD Macro
Instruction Condition Assembler ANS COBOL

ALL NORESP X' 00' 12-0-1-8-9
(Normal Response) (TDNORESP)

GET, CHECK QUE ZERO X'Ol' 12-1-9
(Queue Is Zero) (TDQUEZERO)

ALL IDERROR X'02' 12-2-9
(Identification Error) (TDIDERROR)

PUT, GET, CHECK IOERROR X'04' 12-4-9
(Input/Output Error) (TDIOERROR)

PUT, GET, FEOV, NOTOPEN X'08' 12-8-9
CHECK (Destination Not Open) (TDNOTOPEN)

PUT, CHECK NOSPACE X'10' 12-11-1-8-9
(No Space on Intrapartition (TDNOSPACE)
Queue, or write Not
Serviceable)

NOTE: The names enclosed in parentheses in the ANS COBOL column indicate the
88-1eve1 definitions provided by CICS/VS. These names may be used in testing
for the respective conditions in a COBOL program.

Figure 6-4. Transient Data Centrol Response Codes

If the application programmer does not check for a particular
response to a service request, and if the exception condition
corresponding to that respcnse occurs, program flow proceeds to the
next sequential instruction in the application program.

The keyword operands that can be used to request tests of the
response to a particular request for transient data services (that is,
a particular DFHTD macro instruction) are identified in the discussions
of the instruction format and operands under "DFHTD Macro Instruction."
The condition expressed by each keyword is explained in detail and
should be referred to by the application programmer when using any of
the checking methods described above.

106 CICS/vS Application Programmer's Reference Manual

PL/I

00000000

00000001

00000010

00000100

00001000

00010000

The following examples show how to -examine the response code provided
by CICS/VS and transfer control to the appropriate user-written
exception-handling routine.

For Assembler language:

GOOD

GOOD.

DFHTD

CLI
BE
DFHPC
DS

TYPE=GET,
DESTID=CSML
TCATDTR,X'OO'
GOOD
TYPE=ABEND
OH

DFHTD TYPE=GET,
DESTID=CSML

IF TCATDRC=' , THEN GO TO GOOD.
DFHPC TYPE=ABEND

NORMAL RESPONSE

lNOTE 12-0-1-8-9 NORESP.

where the value specified within single quotation marks is an
unprintable multipunch code for the required hexadecimal value. For
example, a hexadecimal 00 has a multipuncjh code of 12-0-1-8-9.

*

*

The alternative approach to response c()de checking available to ANS
COBOL programmers is generally a coding cctnvenience and provides concise
code documentation. When this approach is: used, the IF statement above
is replaced by a statement of the form shown below:

GOOD:

IF TDNORESP THEN GO TO GOOD.

DFHTD TYPE=GET,
DESTID=CSML

IF TCATDTR=' 00000000' E THEN GO '10 OOO,D; /* NORMAL RESPONSE */
DFHPC TYPE=ABEND I

)

TEMPORARY STORAGE SERVICES

*

Temporary storage management provides the facility, through temporary
storage control, that enables user-written app~lication programs to
store temporary data in main storage or on auxjLliary storage on a direct
access storage device. Temporary data is storE'd, retrieved, and
released using a symbolic· name (up to eight cha racters) assigned to
the data by the originating task. (~he symboli,c name cannot consist
solely of binary zeros.) The data may be a sin~lle u~it of information

TEMPORARY
STORAGE

Chapter 6. service Invoca tion 107

or information retrieved from or added 1to a tempcrary storage message
set. The former provides a typical "sc:ratch pad" facility. The latter
is designed primarily for terminal pag~ng. It is used in conjunction
with basic mapping support (see Chapter. 10) and page supervision
programs to achieve random access to ge:neral-purpose storage files.
In general, the paging facility cf temporary storage should be used
only when multiple records are involved and random access to those
records is necessary. This queuing of message sets should not be used
for sequential data. transient data ma.nagement provides facilities
for efficient handling of sequential dCJlta sets.

Data placed in temporary storage call remain intact beyond the time
that the originating task is active in the system. That is, even after
the originating task is terminated and its transaction storage released,
data placed in temporary storage can be accessed by other tasks through
references to the symbolic name under which it was stored. Temporary
data remains intact until released by the originating task or by any
other task. Prior to release, it can be accessed any number of times.

When temporary data is released, tile space that it occupied is
reusable. If the data was in rna in storage, the storage area becomes
part of available dynamic storage. I:f the data was on auxiliary
storage, the physical space that the ldata occupied becomes available
and can be reused for other data.

Temporary data can be retrieved by the originating task or by any
other task using the symbolic name a~;signed to it. The name assigned
to a single unit of information must be unique. All information moved
to or from a tempera ry storage messa1qJe set is referred to by a unique
name assigned to the message set. SJ~ecific entries (logical records)
within a message set are referred to by relative position numbers. To
avoid conflicts caused by duplicate names, a naming convention should
be established and followed by all progranuners. For example, the
operator identification, terrrinal ic1entification, or transaction
identification could be appended as a prefix or suffix to each
programmer-supplied symbolic name.

Temporary data can be stored in ·either main Or auxiliary storage.
Generally, main storage should be u.sed if the data is needed for only
short periods of time; auxiliary st:orage should be used if the data
must be kept for extended periods of time.. Another consideration is
that data stored on auxiliary storcige is maintained after CICS/vS
termination and can be recovered iJn a subsequent restart. No attempt
is made to recover temporary data in main storage. Main storage might
be used to pass data from task to task or for unique storage that allows
programs to meet the requirement elf CICS/VS that they be quasi-reentrant
(serially reusable between entry clnd exit points of the program) •

Some uses of the page queuing 'facility follow:

1 • Terminal paging. A task c~ould retrieve a large master record
from a direct access data set, format it into several screen
images, store the screen ~Lmages on temporary storage auxiliary
storage, and then ask the terminal operator which "page" (screen
image) is desired. The a pplication programmer can provide coding
(as a generalized routine! or unique to a single application) to
advance page by page, ad"ance or back up a relative number of
pages, and the like.

2. A suspend data set. Assume a data collection task is in progress
on a certain terminal. The task reads in one or more units of
input and then allows tIle terminal operator to interrupt the
process. If no interru]ption occurs (some kind of coded input),
the task repeats the da,"ta collection process.

108 CICS/vS Application Pro~ra~mer's Reference Manual

If the operator interrupts the data collection stream with coded
input, the data collection task writes its "incom~lete" data to
temporary storage ar.d terrrinates the task. The terminal is now
free for entry of a different transaction (perhaps a
high-priority inquiry). When the terminal is available to
continue the data collection operation, the operator initiates
the task in a "resurre" mode, causing the task to recall its
suspended data from temporary storage and continue as though it
had not been interrupted.

3. An application that accepts input data to be written as output
on a preprinted form.

The temporary storage management macro instruction (DFHTS) is used
to request any of the follOWing services:

• Acquire data from main or auxiliary storage

• send data to main or auxiliary storage

• Update data in main or auxiliary storage

• Free temporary data in main or auxiliary storage

• Check the response to a request for temporary storage services

The application programmer must specify parameter values when using
the DFHTS macro instruction. Parameters can be specified in either of
two ways:

• By including the parameters in operands of the bFHTS macro
instruction by which tem~orary storage services are requested, or

• By coding instructions that place the parameter values in fields
of the TCA prior to issuing the CFHTS macro instruction

The second of these a~proaches provides flexibility in that the
parameters of a single DFHTS macro instruction can vary to meet the
logic needs of the applicaticn program.

The application programmer can check the CICS/VS response to a
request for temporary storage services as explained under "Test Response
to a Request for Temporary Storage Services." If the programmer does
not check for a particular response, and if the condition corresponding
to that response occurs, program flow proceeds to the next sequential
instruction in the applicaticn program. All operands that can be
included in the DFHTS macro instruction are discussed in detail under
"DFHTS Macro Instruction" in Chapter 7.

STORE OR UPDATE TEMPORARY DATA (FUT OR PUTQ)

The application programmer can send temporary data to main or
auxiliary storage by issuing either the

DFHTS TYPE=PUT,

, .
or

Chapter 6. Service Invocation 109

*

DFHTS TYPE=PUTQ,

macro instruction. PUT causes data to be written to temporary storage
as a single unit of information (logical record). PUTQcauses a unit
of information to be written to a message set, or queue, in temporary
storage. The unit is written in a relative position that is one beyond
the last entry written to the message set. Following a PUTQ request,
the relative record number is returned to the user in TCATSRN, a
two-byte field~

Temporary data may be written from a temporary storage input/output
area (TSIOA) or from another main storage area identified by the
application programmer. It must have the standard variable-length
format, with the data length specified in the first four bytes. These
bytes should contain LL~~, where LL is a two-byte binary length field
(the value of which includes the length of the data plus the four bytes
for the length field) and ~~ is a tWO-byte field of binary zeros. The
maximum temporary storage record size is based on user-specified data
set characteristics. (See "Temporary storage Data set" in the
CICS/OS/VS Operations Guide or CICS/OOS/VS Operations Guide.)

Existing temporary storage data can be updated by adding the
TYPOPER=REPLACE operand to the PUT or PUTQ request. A PUT with
TYPOPER=REPLACE causes the current data identified by DATAID to be
released and replaced with the data provided. If the DATAID cannot be
found, the PUT operates as a normal PUT without ~YPOPER=REPLACE. A
PUTQ with TYPOPER=REPLACE also requires coding of the ENTRY operand.
The specified ENTRY within the message set is released and replaced
with the data provided. If the DATAID cannot be found, the PUTQ
operates as a normal PUTQ without TYPOPER=RELEASE.

The following examples shew how to write a single record of
information to temporary storage.

For Asserr.bler language:

'I'SIOABAR

DATA

EQU
COPY
DS

7
DFHTSIOA
CL10

*

MVC
MVC
DFHTS

TSIOAVRL,LENGTH
DATA, MESSAGE
TYPE=PUT,
DATAID=UNIQNME,
TSDADDR=TSIOAVRL

*
*

02 TSIOABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
01 DFHTSIOA COpy DFHTSIOA.

02 DATA PICTURE X(10) •

MOVE LENGTH TO TSIOAVRL.
MOVE MESSAGE TO DATA.

1-___ .. ___ . _____ _ --- ------ --- ---
110 CICS/VS Application Programmer's Reference Manual

DFHTS TYPE=PUT,
DATAID=UNIQNME,
TSDADDR=TSIOAVRL

For PL/I:

%INCLUDE DFHTSIOA;
2 DAT A CHAR (1 0) ;

TSIOAVRL=LENGTH;
DATA=MESSAGE;
DFHTS TYPE=PUT,

DATAIC=UNIQNME,
TSADDR=TSIOAVRL

RETRIEVE TEMPORARY DATA (GET OR' GETQ)

The application programmer can retrieve teffiporary data from main or
auxiliary storage by issuing either the

DFHTS TYPE=GE'I,

or

DFHTS TYPE=GETQ,

macro instruction. The former causes a single unit of information

*
*

*
*

*

*

(logical record) to be retrieved. The latter causes an entry previously
written to a temporary storage message set, or queue, to be retrieved.
The particular record to be retrieved from a queue is identified by
means of an ENTRY parameter in the DFHTS TYPE=GE~Q macro instruction,
which indicates its relative position within a queue. The relative
position of an entry is determined by chronological order of creation.
Data written to temporary stcrage by means of a DFHTS TYPE=PUT macro
instruction must be retrieved by a DFHTS TYPE=GET macro instruction.
Data written by means of DFHTS TYPE=PUTQ must be retrieved by means of
DFHTS TYPE=GETQ.

Data retrieved from temporary storage is placed in a storage area
identified by the application programmer or in a temporary storage
input/output area (TSIOA) acquired by temporary sterage control. The
application programmer can request in a DFHTS TYPE=GET macro instruction
that temporary data be released after it is retrieved. If he does not,
the data is retained until it is released by another task or until
CICS/VS is terminated •.

The following examples show how to read a single record of
information from temporary storage. In these examfles, the data is
moved to the area identified in the TSDADDR operand of the DFHTS
TYPE=GET macro instruction by the application programmer. If the

Chapter 6. Service Invocation 111

TSDADDR operand is omitted, the data is moved into a storage area
obtained by temporary storage control, and the address of the data is
returned at TCATSDA to the applicaticn program.

For Assembler language:

TSIOABAR EQU
COPY

7
DFHTSIOA

DFHTS TYPE=GET,
DATAID=UNIQNME

L TSIOABAR,TCATSDA
SE TSIOABAR,=E'S'

For ANS COBOL:

02 TSIOABAR PICTURE S9(S) USAGE IS COMPUTATIONAL.

01 DFHTSIOA COpy DFHTSIOA.

DFHTS TYPE=GET,
DATAID=UNIQNME

MOVE TCATSDA TO TSIOABAR.
SUBTRACT S FROM TSIOABAR.

For PL/I:

%INCLUDE DFHTSIOA;
2 DAT A CHAR (1 0) ;

DFHTS TYPE=GET,
DATAID=UNIQNME

DCL TSIOBAA FIXED BIN (30) BASED (TSIOA BAB);
TSIOABAR=TCATSDA;
TSIOBAB=ADDR(TSIOABAR);
TSIOBAA=TSIOBAA-8;

FREE TEMPORARY DATA (RELEASE OR PURGE)

*

*

*

The application programmer can free a storage area used for temporary
data by issuing either the

DFHTS TYPE=RELEASE, *

or

112 CICS/vS Application Pr<Xjrarnmer' s Reference Manual

DFHTS TYPE=PURGE,

macro instruction. The former causes the main or auxiliary storage
area used for a single record of temporary data (created by means of
a DFHTS TYPE=PUT macro instruction) to be freed. The latter causes
all existing entries in a temporary storage queue (created by means of
DFHTS TYPE=PUTQ macro instructions) to be freed. There is no way to
release selected records froIT a temporary storage message set; in
particular, a DFHTS TYPE=RELEASE macro instruction cannot be used to
release a record that is part of a message set created by means of
DFHTS TYPE=PUTQ.

If temporary data named in a ~FHTS TYPE=RELEASE or DFHTS TYPE=PURGE
macro instruction was in main storage, the area that it occupied is
freed and returned to the available dynamic storage area. If the data
was in auxiliary storage, the space is made available for reuse.

Temporary data should be released at the earliest possible time to
avoid using excessive amounts of storage for this purpose.

The following examples show how to release a single record from
temporary storage.

For Assembler language:

MVC TCATSDI,=C'UNIQNME'
DFHTS TYPE=RELEASE

For ANS COBOL:

MOVE 'UNIQNME' TO TCATSDI.
DFHTS TYPE=RELEASE

For PL/I:

T CATS DI= 'UNIQNME'·;
DFHTS TYPE=RELEASE

TEST RESPONSE TO A REQUEST FOR TEMPORARY STORAGE SERVICES

After issuing a request for fer temporary storage services, the
application programmer can check the CICS/VS response to the request
to determine subsequent processing that should be carried out. One
step in performing this check is to specify the symbolic addresses of
user-written exception-handling routines, any of which may be executed
as a result of the check. This can be accomplished in any of three
ways:

1. Include the symbolic addresses in operands of the DFHTS macro
instruction by which the temporary storage service is requested.

2. Include the symbolic addresses in operands of a

DFHTS TYPE=CHECK, *

Chapter 6. Service Invocation 113

*

macro instruction immediately following the DFHTS macro
instruction by which the service is requested.

3. Include instructions immediately following the DFHTS macro
instruction that examine the response code set automatically by
CICS/VS and transfer control to an exception-handling routine
accordingly.

The general discussion under "Test Response to a Request for File
services" applies to temporary storage services as well. The
Assembler-language or PL/I programmer can access temporary storage
response codes at TCATSTR; the ANS COBOL programmer can access temporary
storage response codes at TCATSRC. In addition, the ANS COBOL
programmer can refer to the response codes by means of symbolic labels
(TSNOFESP, TSIDERROR, and so on) to cause specific response code
patterns to be checked without srecifying those patterns in his program.
(See the examples at the end of this discussion.) The possible response
codes and the conditions to which they correspond are identified in
the right-hand columns of Figure 6-5. DFHTS macro instructions for
which the conditions are applicable are shown at the left.

Temporary Storage
Request by
DFHTS Macro
Instruction

ALL

GET, GETQ, RELEASE,
PURGE, CHECK

PUT, PUTQ, GET,
GETQ, CHECK

All

PUTQ, GETQ, CHECK

PUT, PUTQ

Condition

NORESP
(Normal Response)

IDERROR
(Identification Error)

IOERROR
(Input/Output Error)

INVREQ
(Invalid Request)

ENERROR
(Entry Error)

NOSPACE
(No Space on
Auxiliary
Storage)

Response Code

Assembler ANS COBOL

X'OO' 12-0-1-8-9
(TSNORESP)

X' 02' 12-2-9
(TSIDERROR)

X'04' 12-4-9
(TSIOERROR)

X' 20' 11-0-1-8-9
(TSINVREQ)

X'Ol' 12-1-9
(TSENERROR)

X' 08' 12-8-9

PL/I

00000000

00000010

00000100

00100000

00000001

00001000

All ERROR See Note 2 See Note 2 See Note 2

NOTES:

(Any of Above but
Unspecified)

~he names enclosed in parentheses in the ANS COBOL column indicate the
88-level definitions provided by CICS/VS. These names may be used in
testing for the respective conditions in a COBOL program.

2. The test for the ERROR response is satisfied by a not equal condition;
that is, not X' 00', not 12-0-1-8-9, or not OOOOO,OO(ffor Assembler,
ANS COBOL, and PL/I, respectively.

Figure 6-5. Temporary storage Control Response Codes

114 CICS/VS Application Programmer's Reference Manual

If the application prograrrmer does not check for a particular
response to a service request, and if the exception condition
corresponding to that response occurs, prograrr flcw ~roceeds to the
next sequential instruction in the application program.

The following examples show how to examine the response code provided
by CICS/VS and transfer control to the appropriate user-written
exception-handling routine.

For Assembler language:

GOOD

GOOD.

DFHTS

CLI
BE
DFHPC
DS

TYPE=GET,
DATAIJ>:UNIQNME,
TSDADDR=YES
TCATSTR,X' 00'
GOOD
TYPE=ABEND
OH

DFHTS TYPE=GET,
DATAID=UNIQNME,
TSDADDR=YES

IF TCATSRC=' , THEN GO TO GOOD.
DFHPC TYPE=ABEND

NORMAL RESPONSE

NOTE 12-0-1-8-9 NORESP.

where the value specified within single quotation marks is an
unprintable multipunch code for the required hexadecimal value. For
example, a hexadecimal 00 has a multipunch code of 12-0-1-8-9.

*
*

*
*

The alternative approach to response code checking available to ANS
COBOL programmers is generally a coding convenience and provides concise
code documentation. When this approach is used, the IF statement above
is replaced by a statement of· the form shown below:

IF TSNORESP THEN GO TC GOeD.

For PL/I:

GOOD:

DFHTS TYPE~GET, *
DATAID=UNIQNME, *
TSDADDR=YES

IF TCATSTR='OOOOOOOO'B THEN GO TO GOOD; /* NORMAL RESPONSE */
DFHPC TYPE=ABEND

Chapter 6. Service Invocation 115

STORAGE SERVICES

storage management controls all dynamic main stcrage for C~CS/VS
and for user-written application programs. Requests to acquire or
release main storage are communicated to CICS/VS storage control by
means of the storage management macro instruction (DFHSC).

CICS/VS management prograrrs issue requests for main storage to
provide input/output areas, program load areas, and user-defined work
areas needed to process a transaction. An application program can
issue requests for main storage to provide intermediate work areas and
any other main storage not automatically provided by CICS/VS but needed
to process a transaction. Any main storage acquired by an application
program can be initialized tc any bit configuration the user desires.
For example, binary zeros or EBCCIC blanks are a common choice.

All main storage associated with a transaction is controlled and
accounted for by CICS/VS. This allows CICS/VS to release all main
storage associated with a transaction upon request or when the
transaction is normally or abnormally terminated. Main storage is
accounted for as follows:

• Task control areaS (TCAs) are accounted fOr through pOinters in
the dispatch control areas (DCA). The DCAs are chained from the
common system area (CSA).

• Transaction storage is chained off the task control area (TCA).

• Terminal storage is chained off the TCTTE (the TCTTESC field is
the origin of the terminal input/output area (TIOA) chain; the
TCTTEDA field contains the address of the current TIOA regardless
of the position of that TIOA on the chain).

• Program storage is accounted for in the program processing table
(PPT) •

• Suspended tasks are accounted for by the suspending CICS/VS
management program (task control, storage control, Or temporary
storage control).

If there is insufficient rrain storage to satisfy a storage
acquisition request, TCASCSA is filled with binary zeros. All activity
within the task is suspended until sufficient dynamic storage becomes
available and its address is placed in TCASCSA, unless the application
programmer has specified in his request that control is to be returned
to the application program. No storage will cause a short-on-storage
condition. The initiation of new tasks is restricted by CICS/VS until
the short-on-storage condition is alleviated. Normally, this occurs
as a result of some other task releasing storage currently reserved
for it. (See "Purge a Task on System OVerload (PURGE/NOPURGE) II for
corrective action that can be taken if the short-on-storage condition
contin ue s.)

OBTAIN AND INITIALIZE MAIN STORAGE (GETMAIN)

Requests for wain storage are made by issuing the

DFHSC TYPE=GETMAIN,

macro instruction. This instruction is used by the application
programmer to obtain main storage of a specified size and class and,

116 CICS/vS Application Programmer's Reference Manual

*

optionally, to initialize that storage to a bit configuration the
application programmer desires. The address of the storage area
obtained upon execution of this instruction is placed in TCASCSA by
CICS/VS; the obtained storage is doubleword-aligned.

When using the DFHSC TYPE=GETMAIN macro instruction, the application
programmer should:

• Specify the class of storage desired in the DFHSC TYPE=GETMAIN
macro instruction.

• Calculate the nurrber of bytes required and either specify that
amount in the DFHSC macro instruction, or place it in TCASCNB before
issuing the DFHSC macro instruction. A zero data length is not
allowed for a DFHSC TYPE=GETMAIN macro instruction.

• Specify a symbolic base address for the storage area.

• Move the storage address located at TCASCSA to the symbolic base
address. (This address ~oints to the storage accounting area of
the storage area.)

• Copy the symbolic storage definition for the a~propriate
input/output area or storage accounting area Frior to the symbolic
definition of the user's program storage area.

The following example shows how to request a 1024-byte area of main
storage:

DFHSC TYPE=GETMAIN,
INITIMG=OO,
NUMBYTE=1024,
CLASS=TERMINAL

OBTAIN NEW STOR~GE AREA
INI'I'IALIZE WITH BINARY ZEROS
SIZE OF STORAGE REQUESTED
CLASS OF STORAGE REQUESTED

The following examples shew how to specify the size of a required
storage area and the value to which it is to be initialized and then
request that the storage be acquired.

!Q! Assembler language:

MVI
MVC

DFHSC

CLC
BE
L

TCASCIB,B'O'
TCASCNB,=H' 1024'

TYPE=GETMAIN,
INITIMG=YES,
COND=YES,
CLASS=TERMINAL
TCASCSA,=F'O'
NOSTRG
TIOABAR,TCASCSA

!2.! ~~:

MOVE ' • TO TCACSIB.
MOVE 102~ TO TCASCNE.

DFHSC TYPE=GETMAIN,
INITIMG=YES,
COND=YES,
CLASS=TERMINAL

INI~IALIZE WITH EINARY ZEROS
SIZE OF STORAGE REQUESTED

OFI'AIN NEW STORAGE AREA
INI~IALIZE WITH BINARY ZEROS
RETURN CONTROL IF NO STORAGE
CLASS OF STORAGE REQUESTED
WAS STORAGE AVAI~ABLE?
BRANCH IF NOT
LOA!: REGISTER IF STORAGE FOUND

NOTE INITIALIZE WITH BLANKS
NOTE SIZE OF STORAGE REQUESTED.

OBTAI N NEW STORAGE AREA
INI~IALIZE WITH BIANKS
RETUR N CONTROL IF NO STORAG E
CLASS OF STORAGE REQUESTED

*
*
*

*
*
*

*
*
*

----- ------ ______________________ -----....1

Chapter 6. Service Invocation 117

STORAGE

IF TCASCSA EQUAL 0 GO TO NOSTRG.
MOVE TCASCSA TO TIOABAR.

!2!: ~:

TCASCIB=O;
TCASCNB= 1024;

DFHSC ~YPE=GETMAIN,
INITIMG=YES,
COND=(NO,NOSTRG),
CLASS=TERMINAL

IF TCASCSA = 0 THEN GO TO
TIOABAR=TCASCSA;

RELEASE MAIN STORAGE (FREEMAIN)

/*INITIALIZE WITH BINARY ZEROS*/
l'*SIZE OF STORAGE REQUESTED*/

OBTAIN NEW STORAGE AREA
INITIALIZE WITH BINARY ZEROS
RETURN CONTROL IF NO STORAGE
CLASS OF STORAGE REQUESTED
NOSTRG;
/*LOAr REGISTER IF STORAGE FOUND*/

Previously acquired main storage is released by issuing the

DFHSC TYPE=FREEMAIN,

macro instruction. If the task itself does not release acquired
storage, the storage is released by CICS/VS upon termination of the
task.

*
*
*

If using the DFHSC TYPE=FREEMAIN macro instruction to release a
single storage area, the application programmer must place the address
of that area in TCASCSA frior to execution of the DFHSC TYPE=FREEMAIN
macro instruction. If all terminal storage acquired by means of DFHSC
TYPE=GETr~IN,CLASS=TERMINAL macro instructions in the application
program or by CICS/VS on behalf of the task is to be released, the
RELEASE=ALL operand can be coded in the DFHSC TYPE=FREEMAIN macro
instruction to achieve that result; in this case, it is not necessary
to place an address in TCASCSA.

*

The following example shows hew to release all main storage currently
allocated to a specific terminal:

DFHSC TYPE=FREEMAIN,
RELEASE=ALL RELEASE ALL TERMINAL STORAGE

The following examples shew how to release a single main storage
area, placing the address of the area to be released in TCASCSA before
issuing the release request.

For Assembler language:

ST TIOABAR,TCASCSA PLACE STORAGE AREA ADDRESS IN TCA

DFHSC TYPE=FREEMAIN RELEASE STORAGE AREA

MOVE TIOAEAR TO TCASCSA. NOTE PLACE STRG AREA ADDR IN TCA.

*

'---- ------------------ ---- ------- -_.-
118 CICS/vS Application Programmer's Reference Manual

- --- --- ------ --- --- --- -- --- --- --- --- -----,

DFHSC TYPE=FREEMAIN RELEASE STORAGE AREA

For PL/I:

TCASCSA=TIOABAR; /*PLACE STORAGE AREA ADDRESS IN TCA*/

DFHSC TYPE=FREEMAIN RELE..~SE STORAGE AREA

PROGRAM SERVICES

All program communication within CICS/VS is accom~lished by program
management. The program management macro instruction (DFHPC) is used
to request any of the following services:

• Link one user-written ap~lication program to another, anticipating
subsequent return to the requesting program.

• Transfer control from one user-written application program to
another, anticipating no return to the requesting program.

• Load a designated ap~lication program, table, or map (generally,
for use with basic mapping support) into main storage and return
control to the requesting prcgram.

• Return central from one user-written application program to another
or to CICS/VS.

• Delete a previously loaded application program from main storage.

• Abnormally terminate a transaction and its related task.

• Activate, cancel, or reactivate an exit that ~ermits user-written
abnormal termination processing.

• Convert a symbolic label in an ANS COBOL application progrfu~ into
an address (returned in TCAPCLA) •

Application programs running under CICS/VS are executed at various
logical levels. For exa~ple, where one user-written application program
is linked to another, the linked-to program is considered to reside at
the next lower logical level. Where control is simply transferred from
one application program to another, the two programs are considered to
reside at the same logical level. A program control DFHPC TYPE=LINK
macro instruction is used for the former; a DFHPC TYPE=XCTL macro
instruction (where XCTL means transfer control) is used for the latter.
Figure 6-6 illustrates this difference between program linkage and
transfer of program control. Each of the prograrrs shown in this figure
may have been written in any of the CICS/VS-supported languages
(Assembler language, ANS COBOL, or PL/I). Use of LINK, XCTL, RETURN,
and ABEND is explained in greater detail below.

Transactions can share the use of common work areas. However, each
transaction requires the use of a unique intermediate storage area,
such as the transaction work area (TwA), to retain information needed
upon subsequent return to that transaction. The application programmer
must provide addressability to that intermediate storage area by
symbolically defining it in his ~rogram.

Parameters can be passed from one program to ancther through
user-defined storage areas, for example, the transaction work area
(TWA), the terminal input/output area (TIOAl, the terminal control
Table terminal entry (TCTTE), or the file work area (FWA).

Chapter 6. Service Invocation 119

PROGRAM

CICS/VS automatically saves program control infcrmation and
general-purpose registers, when applicable, in the task control area
(TCA). CICS/VS automatically restores general-purFose registers, as
necessary, to return control to a program. The name of any program
referenced in a request for program services must have been placed in
the processing program table (PP~) prior to execution of CICS/VS.

t
CICS/VS

Program

Control

I
t

Application
LINK

~ Program

A

-

"... ~ RETURN XCTL

" •
Application Application LINK
Program --.. Program

B C

r-- ~

/" RETURN XCTL

"

Application

Program

0
I--

Figure 6-6. Communication and Logical RelationshiFs among
Application Programs

PASS PROGRAM CONTROL ANTICIPATING RETURN (LINK)

•
Application

Program

E
~

RETURN

Program control is passed from a user-written application program
at one logical level to a user-written application program at the next
lower logical level in response to the

120 CICS/vS Application Programmer's Reference Manual

DFHPC TYPE=LINK,

macro instruction. When the DFHPC TYPE=RETURN macro instruction is
executed in the linked-to program, control is returned to the program
initiating the linkage at the next sequential (executable) instruction.

The application programmer must specify the name (identification)
of the program to which control is passed in the DFHPC TYPE=LINK macro
instruction or in a single instruction that places the program name in
TCAPCPI prior to issuing the DFHPC TYPE=LIN~ macro instruction.

The following example sho~s hcw to request a link to a particular
application program:

DFHPC TYPE=LINK,
PROGRAM=PROG1

The following examples show how to link to an application program
specified dynamically by an instruction executed ~rior to DFHPC
TYPE=LINK.

For Assembler language:

MVC TCAPCPI,=CL8'FROG1' PLACE LINKED-TO PROGRAM NAME IN TCA

· · · DFHPC TYPE=LI.NK LINK TO PROGRAM AT NEXT LOWER LEVEL

For ANS COBOL:

MOVE 'PROG1 ' TO TCAPCPI. NOTE LINKED-TO PROGRAM NAME TO TCA.

· · · DFHPC TYPE=LINK LINK TO PROGRAM AT NEXT LOWER LEVEL

For ~:

*

TCAPCPI='PROG1'; /*PLACE LINKED-TO PRGM NAME IN TCA*/

· · · DFHPC TYPE=LINK LI NK TO PROGRAM AT NEXT LOWER LEVEL

TRANSFER PROGRAM CONTROL (XCTL)

Program control is transferred from one user-written application
program to another at the same logical level in response to the

DFHPC TYPE= XCTL ,

macro instruction. The prcgram from which control is transferred is
released. Any return from the transferred-to program is to a program
from which there was an exit at the next higher logical level. If
there is no user-written application program at the next higher logical
level, centrol is returned to CICS/VS.

-Chapter 6. Service Invocation 121

*

*

The application programmer must specify the name (identification)
of the program to which control is transferred in the DFHPC TYPE=XCTL
macro instruction or in a single instruction that ~laces the program
name in TCAPCPI prior to issuing the DFHPC TYPE=XC~L macro instruction.

The following example shows how to request a transfer of control to
a particular application program:

DFHPC TYPE=XCTL,
PROGRAM=PROG2 *

The following examples show how to transfer control to an application
program specified dynamically by an instruction executed prior to DFHPC
TYPE=XCTL.

!.2!: Assembler language:

MVC TCAPCPI,=CL8'PRGG2' PLACE TRANSFERRED-TO PRGM NAME IN TCA

· · · DFHPC TYPE=XCTL TRANSFER PROGRAM CONTROL

For ANS~:

MOVE 'PROG2' TO TCAPCPI. NOTE TRANSFERRED-TO PRGM NAME TO TCA.

· · · DFHPC TYPE=XCTL TRANSFER PROGRAM CONTROL

For PL/I:

TCAPCPI= , PROG2' ; /*PLACE PROGRAM NAME IN TCA*/

· · · DFHPC TYPE=XCTL TRANSFER PROGRAM CONTROL

LOAD A PROGRAM (LOAD)

Programs, tables, or maps are fetched from the library where they
reside and loaded into main storage in response to the

DFHPC TYPE=LOAD,

macro instruction, which identifies the program to be loaded. This
facility is used to (1) load a program that will be used repeatedly,
thereby reducing system overhead through a one-time load, (2) load a
table to which control is not to be passed, or (3) load a map to be
used in a mapping operation (see Chapter 10). CICS/VS returns the
address of the leaded program in TCAPCLA.

*

The loaded program remains in main storage until the DFHPC
TYPE=DELETE macro instruction is issued or until the task that issued
the DFHPC TYPE=LOAD is terminated, either normally or abnormally (unless
LOADLST=NO was specified). If the LOADLST=NO operand is used, the
loaded program remains resident until it is deleted by the user.

122 CICS/VS Application Programmer's Reference Manual

The application programmer muet provide the name (identification)
of the program to be loaded in the DFHPC TYPE=LOAC macro instruction
or in a single instruction that ~laces the prograrr name in TCAPCPI
prior to issuing the DFHPC TYPE=LOAD macro instruction.

The following example sho~s hew to load a particular user-written
application program:

DFHPC TYPE=LOAD,
PROGRAM=PROG3

The following examples show how to load an application program
specified dynamically by an instruction executed prior to DFHPC
TYPE=LOAD.

For Assembler language:

MVC TCAPCPI,=CLS'PROG3' PLACE PROGRAM NAME IN TCA

· · · DFHPC TYPE=LOAD LOAC THE SPECIFIED PROGRAM

For ANS COBOL:

MOVE 'PROG3' TO TCAPCPI. NOTE PLACE PRGM NAME IN TCA.

· · · DFHPC TYPE=LOAD LOAD THE SPECIFIED PROGRAM

For PL/I:

TCAPCPI=' PROG3' ; /*PLACE PROGRAM NAME IN TCA*/

· · · DFHPC TYPE=LOAD LOAD THE SPECIFIED PROGRAM

RETURN PROGRAM CONTROL (RETURN)

*

Program control is returned from an applicaticn program to a program
at the next higher lcgical level in response to the

DFHPC TYPE=RETURN,

macro instruction. When this macro instruction is executed in a lower
level (linked-to) program, it restores the registers of the higher
level (linked-from) program to their contents at the time the 'DFHFC
TYPE=LINK was issued and releases save areas for the lower-level
program. In general, the program to which control is returned must
have relinquished control by execution of a DFHPC TYPE=LINK macro
instruction and must reside one logical level higher than the program
returning control. Upon normal termination of transaction processing,
control is returned to CICS/VS.

If no default transaction code has been assembled into the terminal
control table terminal entry (TCTTE) for a particular terminal, the
application programmer can specify the transaction identification for

Chapter 6. Service Invocation 123

*

the next program to be associated with that terminal in either- of two
ways: (1) by including the desired transaction identification in the
DFHPC TYPE=RETURN macro instruction, or (2) by coding a single
instruction that places the desired transaction identification in
TCANXTID prior to issuing the DFHPC ~YPE=RETURN macro instruction. By
doing so, the programmer ensures that subsequent unsolicited input can
be entered from the terminal without the specification of a transaction
identification. A flexible means of starting the next transaction
(task) is provided. Any higher-level program specification of
transaction identification overrides a specification by a lower-level
~rogram.

DELETE A LOADED PROGRAM (DELETE)

A program previously leaded through use of the DFHPC TYPE=LOAD macro
instruction with or without the LOADLST=NO operand is deleted (released)
by the

DFHPC TYPE=DELETE,

macro instruction. If the DFHPC TYPE=LOAD macro instruction contained
LOADLST=NO, the loaded program is deleted only in response to a DFHPC
TYPE=DELETE macro instruction. If LOADLST=NO was not specified, the
loaded program can be deleted by a DFHPC TYPE:DEIETE request, or it

*

will be automatically deleted when the task that issued the load request
is terminated.

The application programmer must specify the name (identification)
of the program to be deleted in the DFHPC TYPE=DELETE macro instruction
or in an instruction that ~laces the program name in TCAPCPI prior to
issuing the DFHPC TYPE=DELETE macro instruction.

The following example shows how to delete a user-written application
program loaded in response to a DFHPC TYPE=LOAD macro instruction.

DFHPC TYPE=DELETE,
PROGRAM=PROG4

*

The following examples show how to dynamically delete an application
program loaded in response to a DFHPC TYPE=LOAD macro instruction.

For Assembler language:

MVC TCAPCPI,:CLS'PROG4' PLACE PROGRAM NAME IN TCA

DFHPC TYPE:DELETE DELETE THE SPECIFIED PROGRAM

For ANS COBOL:

MOVE 'PROG4' TO TCAPCPI. NOTE PLACE PRGM NAME IN TCA.

DFHPC TYPE=DELETE DELETE THE SPECIFIED PROGRAM

124 CICS/vS Application Programmer's Reference Manual

TCAPCPI='PROG4'; /*PLACE PROGRAM NAME IN TCA*/

DFHPC TYPE=DELETE DELETE THE SPECIFIED PROGRAM

ABNORMALLY TERMINATE A TRANSACTION (ABEND)

The application programmer can cause a transaction and its related
task to be terminated abnormally by issuing the

DFHPC TYPE=ABEND,

macro instruction. If a task is attached by another task, only the

*

task that issues the ABEND is terminated. The ~~in storage associated
with the terminated transaction is released. If CANCEL=YES is
specified, all exits establi.shed by DFHPC TYPE=SETXIT macro instructions
at any level in the task arE'~ canceled.

The application programmer can request a dump of main storage related
to the terminated transaction. The request must st:ecify a
four-character abnormal termination code that dumt: control will place
in the formatted storage dumI= to identify the ABEND condition. This
code can be specified in two ways.

1. It can be specified in the ~YPE=ABEND macro instruction, as
follows.

DFHPC TYPE=ABEND,
ABCODE=1234 *

2. It can be placed in TCAPCAC before issuing the macro instruction,
as follows.

For Assembler language:

MVC TCAPCAC,=CL4'1234'

DFHPC 'rYPE=ABEND,
ABCODE=YES

For ANS COBOL:

MOVE '1234' TO TCAPCAC.

DFHPC TYPE=ABEND,
ABCODE=YES

TCAPCAC=' 1234';

PLACE TERMINATION CODE IN TCA

TERMINATE PGRM, TRANS, & TASK
USE ABCODE ALREADY SPECIFIED

NOTE TERMINATION CODE TO TCA.

TERMINATE PGRM, TRANS, & TASK
USE ABCODE ALREADY SPECIFIED

/*PLACE TERMINATION CODE IN TCA*/

*

*

~-- --- --- ------- --- ----------------------

Chapter 6. Service Invocation 125

DFHPC TYPE=ABEND,
ABCODE=YES

TERMINATE PGRM, 'IRANS, & TASK
USE ABCODE ALREADY SPECIFIED

ACTIVATE, CANCEL, OR REACTIVATE AN EXIT FOR ABNORMAL TERMINATION
PROCESSING (SETXIT OR RESETXIT)

During abnormal terminaticn of a task" a program-level ABEND exit

*

is provided in CICS/VS program control sO that a user-written exit
routine can be executed if desired. One example of a function performed
by such a routine is the "clean-up" of a program that has started but
not completed normally. The exit is activated in response to the

DFHPC TYPE=SETXIT,

*

macro instruction. If an abnormal termination condition occurs while
this macro instruction is in effect, program control transfers control
to the user's exit routine.

The application programmer must specify the name of the program or
the address of the routine to be given control in the DFHPC TYPE=SETXIT
macro instruction or in an instruction that places the program name in
TCAPCPI or the routine address in TCAPCERA prior to issuing the DFHPC
TYPE=SETXIT macro instruction.

only one exit to a user-written exit routine can be active at a
time. A DFHPC TYPE=SETXIT macro instruction in which a program or
routine name is specified cverrides (effectively, replaces) any
preceding DFHPC TYPE=SETXIT macro instruction. To Simply cancel a
previously established exit, the application programmer can issue a
DFHPC TYPE=SETXI'I' macro instruction in which neither the program name
nor the routine name operand is specified.

To prevent recursive ABENDs in an exit routine, CICS/VS deactivates
an exit upon entry to the exit routine. If attemfting a retry of the
operation, the programmer can branch to a point in the program that
was in control at the time of the ABEND and issue the

DFHPC TYPE=RESETXIT

macro instruction to reactivate the exit. The user can also use this
macro instruction to reactivate an exit that was canceled previously
as described above. No additional parameters are required.

Upon entry to an exit program, no addressability can be assumed
other than that normally assumed for an application program coded in
the language. If the exit lcgic is in the form of a routine, the amount
of addressability varies with the source language, as detailed under
"Creating a Task ABEND Exit" in the CICS/VS System Programmer's
Reference Manual. For additional information concerning preparation
of the exit routine, see that manual.

The following example shows hew to establish a program as an exit:

DFHPC TYPE=SETXIT ,
PROGRAM=EX ITPGM

The following examples show how to establish a routine as an exit
by dynamically storing the address of the routine frior to executing
the DFHPC TYPE=SETXIT macro instruction.

126 CICS/VS Application Prograremer's Reference Manual

*

For Assembler language:

LA 14,EXITRTN
ST 14,TCAPCERA

· · · DFHSC TYPE=SETXIT,
ROU'IINE=YES

For ANS COBOL:

DFHPC TYPE=COBADDR,
LABEL=EXITRTN

MOVE TCAPCLA TO TCAPCERA

· · · DFHPC TYPE=SETXIT,
ROU'IINE=YES

For PL/I:

TCAPCERA=ADDR(EXITRTN);

· · · DFHPC TYPE=SETXIT,
ROUTINE=YES

CONVERT SYMBOLIC LABEL TO ADDRESS (COBADDR)

The ANS COBOL programmer can request that program control convert
a symbolic label to an address by issuing the

DFHPC TYPE=COEADDF,

macro instruction. The address is returned in TCAPCLA by program
control.

A comparable facility is available within both PL/I and Assembler
language; this macro instruction is designed to previde the capability
for ANS COBOL programmers. ANS COBOL support must have been generated
within CICS/VS to support ANS COEOL programs.

TEST RESPONSE TO A REQUEST FOR PROGRAM SERVICES

*

•

*

*

When the application prcgrammer issues a DFHPC TYPE=LINK, TYPE=LOAD,
or TYPE=SETXIT request, the CICS/VS response can be checked to determine
subsequent processing that should be carried out. One step in doing
so is to specify the symbolic addresses of user-written
exception-handling routines, any of which may be executed as a result
of the check. The addresses can be specified in three ways:

1. Include the symbolic addresses in operands of the DFHPC macro
instruction by which the program service is requested.

2. Include the symbclic addresses in operands of a

Chapter 6. Service Invocation 127

DFHPC rYPE=CHECK,

macro instruction i~~ediately following the DFHPC macro
instruction by which the service is requested.

*

3~ Include instructions immediately following the DFHPC macro
instruction which examine the response code set automatically
by CICS/VS and transfer control to an exception-handling routine
~ccordingly.

Under either of the first two methods above, CICS/VS checks the
response code that is set and transfers control to the
exception-handling routi~e named i~ the operand associated with the
condition that has occurred (if that operand has been specified). The
application programmer need not be concerned with which response code
corresponds to which copdition. It is only necessary to understand
the keyword operands and be sure that he has provided for all conditions
that· may occur •.

When the third approach is used, the application programmer must
know (1) the CICS/VS respons e codes and their meanings, and (2) the
symbolic label by which· he can refer to tpe response code. If the
Assembler-iangua,ge or PL/I programmer elects to check for a particular
response-code bit pattern, he can access the response code at TCAPCTR.
The ANS COBOL programmeF who elects to check for a particular
response-code bit pattern can access the response code at TCAPCRC. The
possible response codes· and the conditions to which they correspond
are identified in the right-hand columns o~ Figure 6-7. DFHPC ~acro
instructions for which the conditions are applicable are shown at the
left.

Program Services Response Code Request by
DFHPC Macro
Instruction Condition Assembler ANS COBOL

LINK, LOAD NORESP X'OO' 12-0-1-8-9
SETXIT, CHECK (Normal Response) (PCNORESP)

LINK, LOAD PGMIDER X'Ol' 12-1-9
SETXIT, CHECK (program Identification Error) (PCPGMIDER)

NOTE: The names enclosed in parentheses in the ANS COBOL column ind~cate the
88-level definitions provided by CICS/VS. These names may be used in testing
for the respective conditions in a COBOL program.

Figure 6-7. Program Control Response Codes

Note: Because the multipunch codes to be checked in an ANS CQBOL
program commonly correspond to unprintable characters, an alternative
facility is provided in CICS/vS for use by the ANS COBOL programmer.
In CO~OL the response code can simply be referred to by means of a
label, . formed as a two-character identification of the CICS/VS
management module providing the requested service, followed by the
keyword for the condition being checked (for exarrple, PCNORESP). Use

128 CICS/VS Application Programmer's Reference Manual

PL/I

00000000

00000001

of this approach is illustrated in the examples at the end of this
di scussi on.

If the application programmer wishes to provide for the possibility
of failure to find a requested program in the processing program table
(PPT) or finding a disabled program in response to DFHPC TYPE=LINK or
TYPE=LOAD, the COND operand must be included in the request. This
operand causes control to be passed to the user-specified
exception-handling routine if the error occurs. If the COND operand
is not specified and the error occurs, the requesting program is
abnormally terminated with ar. APCT ABEND code.

The keyword operands that can be used to request tests of the
response to a particular request for program services (that is,
particular DFHPC macro instruction) are identified in the discussions
of the instruction format and operands under "DFHPC Macro Instruction"
in Chapter 1. The condition expressed by each keyword is explained in
detail and should be referred to by the application programmer when
using any of the checking methods described above.

The following examples show how to examine the response code provided
by CICS/VS at TCAPCTR (for Assembler language or PL/I) or TCAPCRC (for
ANS COBOL) and transfer control tc an appropriate user-written
error-handling routine. The alternative approach available to ANS
COBOL programmers is also exemplified.

For Assembler language:

DFHPC TYPE=SETXIT, * PROGRAM=MYPROG
CLI TCAPCTR,X' 00' NORMAL RESPONSE
BE GOOD
DFHPC TYPE=ABEND

GOOD OS OH

For ANS COBOL:

OFHPC TYPE=SETXIT, *

GOOD.

PROGRAM=MYPROG
IF TCAPCRC=' ';THEN GO TO GOOD. NOTE 12-0-1-8-9 NORESP.
DFHPC TYPE=ABEND

where the value specified within single quotation marks is an
unprintable multipunch code for the required hexadecimal value. For
example, a hexadecimal 00 has a multipunch code of 12-0-1-8-9.

The alternative approach to response code checking, which is
available to ANS COBOL programmers as described earlier, is generally
a coding convenience and'provides concise code documentation. When
this approach is used, the IF statement above is replaced by a statement
of the form shown below:

IF PCNORESP THEN GO TC GOCD.

Chapter 6. Service Invocation 129

For~:

DFHPC TYPE=SETXIT, *
P ROGRAM= MY PRO G

IF TCAPCTR='OOOOOOOO'B THEN GO TO GOOD; /* NORMAL RESPONSE */
GOOD:

TIME SERVICES

CICS/VS maintains the current time of day in two fo~ats: binary
form at CSACTODB, and packed decimal form at CSATODP. The binary value
is updated automatically during task dispatching to reflect the time
of day maintained by the operating system. The packed value is updated
each time control returns from an operating system WAIT'. The accuracy
of these values at a given mcment de~ends upon the task mix and the
frequency of task switching operations.

since the time of day m~intained by the operating system is changed
by the operating system at midnight, tICS/VS must recognize the
situation where a "negative" change in the time of day has occurred,
and must adjust expiration times maintained by CICS/VS accordingly.

If the optional time adjustment feature of CICS/vS time management
is not included in CICS/VS, any change to the operating system
time-of-day involving midnight is represented by CICS/VS as a value
larger than the previous value (for example, 1: 00 a.m. is represented
as 2500 hours). If the optional time adjustment feature is included
in CICS/VS, any change to the operating system time of day is
automatically reflected in the expiration times ~aintained by CICS/vS.

When the operating system time of day is set to zero at midnight
(and the time adjustment feature has been included in CICS/VS), CICS/vS
adjusts the expiration times of day it maintains and then resets its
time of day to zero. The optional time adjustment feature thus makes
it possible for CICS/VS to be operated on a continuous round-the-clock
basis.

Time management provides the capability, primarily through interval
control and interaction with task control, to control various task
functions based on the time of day or on intervals of time. Time
services include:

1. Establish the partition/region exit time interval, which is the
maximum length of time that CICS/VS voluntarily relinquishes
control to the operating system.

2. Provide system stall detection and corrective action based on
the expiration of a user-~rovided time interval, in conjunction
with other symptoms of a system stall condition.

3. Provide runaway task detection and corrective action
capabilities. A task is considered to be runaway (in an apparent
loop) if it executes application program instructions for a
user-specified period of time without issuing a request for
CICS/VS services that causes transfer of control to the CICS/VS
dispatcher, a part of CICS/VS task management.

4. Provide the time of day in binary or packed decimal
representation.

130 CICS/vS Application Programmer's Reference Manual

5. Provide task synchronization based on time-dependent events.

6. Provide automatic time-ordered task initiation with associated
data retention and recovery support.

The services enumerated in items 1 through 3 are CICS/VS system
services and require no action on the part of the application
programmer. The services enumerated in items 4 through 6 are available
to the application programmer through use of the interval control macro
instruction (DFHIC).

The application programmer must specify parameter values when using
the DFHIC macro instruction. The values can be specified in either of
two ways:

• By including the parameters in operands of the DFHIC macro
instruction by which time services are requested, or

• By coding instructions that place the parameter values in fields
of the TCA prior to issuing the CFHIC macro instruction.

The second of these approaches provides flexibility in that the
parameter values of a single DFHIC macro instruction can vary to meet
the logic needs of the applicaticn program.

The application programmer can check the CICS/VS response to a
request for time services as explained under "Test Response to a Request
for Time Services." If the programmer does not check for a particular
response, and if the condition corresponding to that response occurs,
program flow proceeds to the next sequential instruction in the
application program. All operands that can be included in the DFHIC
macro instruction are discussed in detail under "DFHIC Macro
Instruction" in Chapter 7.

TIME-OF-~AY SERVICES (GETIME)

In the course of normal operation, CICS/VS maintains the current·
time of day in binary form at CSACTODB and in packed decimal form at
CSATODP. The binary representation is expressed as a four-byte positive
value in hundredths of a second. The packed decimal r~presentation is
expressed as a four-byte positive signed value of the form HHMMSSt+
where the seconds are truncated to tenths of a second. The binary
value is updated periodically during task dispatching, and the packed
decimal value is updated when returning from an operating system WAIT.
The accuracy of these values at any given moment depends on the task
mix and the frequency of task switching operations.

The application programmer can ensure that one cr both of these
time-of-day values are updated to a current setting by issuing the

DFHIC TYPE=GETIME,

macro instruction. This macro instruction causes one or both forms of
the time of day to be updated in the CSA and, optionally, places the
requested form of the time of day in a four-byte field specified by
the application programmer. When the programmer wants the time of day
to be returned in a field other than those of the CSA. either the
symbolic label of the four-byte field must be specified in the DFHIC
TYPE=GETn~E macro instruction or the address of the field must be placed
in TCAICDA prior to issuing the DFHIC TYPE=GETIME macro instruction.

Chapter 6. Service Invocation 131

TIME

Note: For performance reasons, it should be recognized that lengthy
conversion routines must be executed whenever updating of the packed
decimal representation of tirre of day is requested.

The following example shows how to request that the time of day be
placed at the storage locations represented by the symbolic label CLOCK.

DFHIC TYPE=GETIME,
FORM=PACKED,
TIMADR=CLOCK

REQUEST CURRENT TIME-OF-DAY *
PACKED DECIMAL FORM *
SYMBOLIC ADDRESS FOR RESPONSE

The following examples show hcw to request that the time of day be
placed in a field selected prior to (and independent of) execution of
the DFHIC TYPE=GFTIME macro instruction.

For Assembler language:

MVC TCAICDA,=A(CLOCK) MOVE ADDR FOR RESPONSE TO TCA

· · · DFHIC TYPE=GETIME, REQUEST CURRENT TIME-OF-DAY
FORM= PACKED, PACKED DEC~ FORM
TIMADR=YES RESPONSE ADDRESS GIVEN

For ANS COBOL:

MOVE CLOCKADR TO TCAICDA. NOTE MOVE ADDR FOR RESP TO TCA.

· · · DFHIC TYPE=GETIME, REQUEST CURRENT TIME-OF-DAY
FORM=PACKED, PACKED DECIMAL FORM
TIMADR=YES RESPONSE ADDRESS GIVEN

For PL/I:

TCAICDA=ADDR(CLOCK) ; /*MOVE ADDR FOR RESP TO TCA*/

· · · DFHIC TYPE=GETIME, REQUEST CURRENT TIME-OF-DAY
FORM=PACKED, PACKED DECIMAL FORM
TIMADR=YES RESPONSE ADDRESS GIVEN

TIME-ORDERED TASK SYNCHRONIZATION (WAIT OR POST)

The task synchronization feature of CICS/VS time management provides
the capability to either delay the processing of a requesting task
until a specified time occurs or to signal the requesting task when a
specified interval of time has elapsed. It also supports the
cancellation of a pending tine-ordered synchronization event by another
task. (See "Time-Ordered Request Cancellation (CANCEL)" later in this
section.)

Delay the processinq of ~ Task (WAIT)

The application programmer can request that the processing of a task
be suspended until a specified time of day or for a specified interval
of time by issuing the

132 CICS/vS Application Programmer's Reference Manual

*
*

*
*

*
*

DFHIC TYPE=WAIT,

macro instruction. This macro instruction causes the requesting task
to temporarily suspend processing, and to resume control at a specified
time of day or after a specified interval of time has elapsed. It
supersedes and cancels any previously initiated £FHIC TYPE=POST request
for the task.

A numeric value specified in the DFHIC TYPE=WAIT macro instruction
(or before this macro instruction is issued) is used by CICS/VS to
calculate the time of day the requested time service is to be provided.
If the calculated time of day is the same as the current clock time,
or up to and including six hours preceding the current clock time, the
specified time is considered to have elapsed (occurred) and the
requested service is provided immediately. If the calculated time of
day is in advance of the current clock time, the requested service is
provided when the specified time occurs. If the calculated time of
day precedes the current clock time by more than six hours, the
requested service is provided the next day at the specified time.

*

As a means of symbolically identifying the request and any data
associated with it, a unique request identification is assigned to each
time-ordered request. The application programmer can specify a request
identification to be assigned to his DFHIC TYPE=WAIT request. If none
is assigned by the programmer, CICS/VS assigns a unique request
identification. A request identification should be specified by the
application programmer if he wishes to provide another task with the
capability of canceling the unexFired WAIT request. (See the discussion
of the DFHIC TYPE=CANCEL macro instruction.)

The following example shows how to temporarily suspend the processing
of a task for a specified Feriod of time:

DFHIC TYPE=WAIT,
INTRVAL=500,
REQID=GXLBZQMR

DELAY TASK PROCESSING,
WAIT 5 MINUTES 0 SECONDS
UNIQUE REQUEST ID

The following examples show how to request the suspension of a task
until the time of day stored previously in TCAICRT is reached. A
request identification previously selected by the user is stored in
TCAICQID as a unique identifier for this request for time service.

For Asserrbler language:

MVC TCAICRT,=PL4'124500'
MVC TCAICQID,UNIQCODE

DFHIC TYPE=WAIT,
TIME=YES,
REQIO=YES

For ANS COBOL:

MOVE 124500 TO TCAICR~.
MOVE UNIQCODE TO TCAICQID.

MOVE 12:45 TO TCA
UNIQUE REQUEST ID TO TCA

DELAY TASK PROCESSING
EXPIRATION TIME GIVEN
UNIQUE 10 GIVEN

NOTE MOVE 12:45 TO TCA.
NOTE UNIQUE REQUEST ID TO TCA.

-------------------------- ---------
Chapter 6. Service Invocation 133

*
*

*
*

DFHIC TYPE=WAIT,
TIME=YES,
REQID=YES

TCAICRT= 124500;
TCAICQID=UNIQCODEi

DFHIC TYPE=WAIT,
TIME=YES,
REQID=YES

DELAY TASK PROCESSING
EXPIRATION TIME GIVEN
UNIQUE ID GIVEN

/*MOVE 12:45 TO TCA*/
/*u~IQUE REQUEST ID TO TCA*/

DELAY TASK PROCESSING
EXPIRATION TIME GIVEN
UNIQUE ID GIVEN

Signal the Expiration of ~ Specified Time (~)

The application programmer can request that CICS/VS indicate to the
requesting task when a given time has expired by issuing the

DFHIC TYPE=POST,

macro instruction. In response to this macro instruction, CICS/VS
makes a timer event control area available to the user for testing.
This four-byte storage area is initialized to binary zeros and its
address is returned to the requesting task in TCAICTEC.

When CICS/VS determines that the time specified in a CFHIC TYPE=POST
macro instruction has expired, byte 0 of the timer event control area
is set to a hexadecimal 40 and byte 2 is set to a hexadecimal 80. This
form of posting is compatible with the completion code postings
performed by the operating systems. The timer event control area can
be used as the event contrel area referred to in a DFHKC TYPE=WAIT
macro instruction. (See the discussion of task synchronization under
"Task services.")

The timer event control area ~rovided to the user is not released

*
*

*
*

*

or altered (exceft as described above) until one of the following events
occurs:

• The task issues a subsequent DFHIC TYPE=WAIT, DFHIC TYPE=POST,
DFHIC TYPE=INITIATE, or DFHIC TYFE=PUT macro request.

• The task issues a DFHIC TYPE=CANCEL macro request to nullify the
DFHIC TYPE=POST request (this releases the storage area occupied
by the timer event contrel area).

• The task terminates, normally or abnormally.

A task can have only one LFHIC TYPE=POST request active at any given
time. Any DFHIC TYPE=WAIT, DFHIC TYPE=POST, DFHIC TYPE=INITIATE, or
DFHIC TYPE=PUT request supersedes and cancels a previously issued DFHIC
TYPE=POST request by the task.

Note: The expiration of any CICS/VS time-ordered event is determined
by CICS/VS when it is performing its task dispatching function.
Therefore, for II posting" to occur, the application programmer must
ensure that the task relinquishes control of CICS/VS before each testi'ng
of the timer event control area. This can be done directly by issuing
the DFHKC TYPE=WAIT or DFHKC TYPE=CHAP macro instruction (see the
discussion of task synchronization under "Task Services") or indirectly

134 CICS/VS Application Programmer's Reference Manual

by requesting a CICS/VS service which in turn initiates a task service
on behalf of the task.

A numeric value specified in or before issuing the DFHIC TYPE=POST
macro instruction is used by CICS/VS to calculate the time of day at
which the requested time service is to be provided. If the calculated
time of day is the same as the current clock time, or up to and
including six hours preceding the current clock time, the specified
time is considered to have elapsed (occurred) and the requested service
is provided immediately. If the calculated time of day is in advance
of the current clock time, the requested service is provided when the
specified time occurs. If the calculated time of day precedes the
current clock time by more than six hours, the requested service is
provided the next day at the specified time.

The application programmer can specify a request identification to
be assigned to a posting request. If not, CICS/VS assigns a unique
request identification, which is returned to the application program
in TCAICQID in the form "DFHNNNNN". In either case, the request
identification provides a means of symbolically identifying the request.

The following example shows how to request that CICS/VS provide a
signal for the task when a specified interval of time has elapsed:

DFHIC TYPE=POST,
INTRVAL=30

SIGNAL WHEN INTERVAL PASSES
INTERVAL IS 30 SECONDS

The following examples shew how to dynamically request that CICS/VS
provide a signal for the task when the time of day previously stored
in TCAICRT is reached. Since no request identification is specified
by the application programmer, CICS/VS automatically assigns one and
returns it to the application program at TCAICQID .•

For Assembler language:

MVC TCAICRT,PACKTIME STORE CALCULATED EXPIR TIME

· · OFHIC TYPE=POST, SIGNAL WHEN TIME OCCURS
TIME=YES EXPIRATION TIME GIVEN

MVC UNIQCODE,TCAICQIO SAVE CICS/VS UNIQUE REQUEST ID

For ANS COBOL:

MOVE PACKTIME TO TCAICRT. NOTE STORE CALC EXPIR TIME.

· · DFHIC TYPE=POST, SIGNAL WHEN TIME OCCURS
TIME=YES EXPIRATION TIME GIVEN

MOVE TCAICQID TO UNIQCODE. SAVE CICS/vS UNIQUE REQUEST ID

For PL/I:

T CAICRT= PACKT IME; /*STORE CALCULATED EXPIR TIME*/

· · DFHIC TYPE=POST, SIGNAL WHEN TIME OCCURS
TIME=YES EXPIRATION TIME GIVEN

UNIQCOOE=TCAICQID; SAVE CICS/vS UNIQUE REQUEST 10

Chapter 6. Service Invocation 135

*

*

*

*

AUTOMATIC TIME-ORDERED TASK INITIATION (INITIATE OR PUT)

This feature of time management allows a task to initiate another
task at some future time and, optionally, to pass data to that task.

Task Initiation without Data (INITIATE)

The application programmer can request that another task be initiated
at some future time by issuing the

DFHIC TYPE=INITIATE,

macro instruction. Through this macro instruction, the application
programmer provides the transaction identificaticn of the task to be
initiated at some future time and other information pertaining to the
task. CICS/VS queues the request until the specified time occurs.
Then, as soon as all necessary resources are available (for example,
a terminal), the task is initiated. Only one task is initiated if
multiple DFHIC TYPE=INITIATE requests for the sarre transaction and
terminal expire at the same time cr ~rior to terminal availability.
No data can be passed to the future task by means of the DFHIC
TYPE=INITIATE macro instruction. (TO do so, see "Task Initiation with
Data (PUT)," which follows.) This request supersedes and cancels any
previously initiated DFHIC TYPE=FOST request by the initiating task.

A numeric value specified in or before issuing the DFHIC
TYPE=INITIATE macro instruction is used by CICS/VS to calculate the
time of day at which the requested time service is to be provided. If
the calculated time of day is the same as the current clock time, or
up to and including six hours preceding the current clock time, the
specified time is considered to have elapsed (occurred) and the
requested service is provided immediately. If the calculated time of
day is in advance of the current clock time, the requested service is
provided when the specified time occurs. If the calculated time of
day precedes the current clock time by more than six hours, the
requested service is provided the next day at the specified time.

As stated earlier, a unique request identification is assigned to
each time-ordered request as a means of symbolically identifying the
request and any data associated with it. The application programmer
can specify an identifier for his initiation request, or he can let
CICS/VS assign one, in which case it is returned to the application
program in TCAICQID in the form "DFHNNNNN".

The application programmer must specify the transaction
identification of the future task, either in the BFHIC TYPE=INITIATE
macro instruction or by placing it in TCAICTI before issuing the macro
instruction. CICS/VS validates the transaction identification by
scanning the program control table (PCT). If the specified identifier
is not found in the table, CICS/VS does not provide the requested
service; a response code is placed at TCAICTR (for Assembler language
or PL/I) or at TCAICRC (for ANS COBO~ to indicate that the transaction
identification is not valid.

If the future task must communicate with a terroinal, the application
programmer must also specify a terminal identification, either in the
macro instruction or by placing it beforehand in TCAICTID. If it fails
to locate the terminal identification in the TCT, CICS/VS validates
the terminal identification ~ scanning the terminal control table
(TCT), providing a response code at TCAICTR (for Assembler language or
PL/I) or at TCAICRC (for ANS COBOL) without servicing the request.

136 CICS/vS Application Programmer's Reference Manual

*

The following example shows how to request autcmatic initiation of
a specified task not associated with a terminal:

OFHIC TYPE=INITIATE,
INTRVAL=10000,
TRANSIO=TRNL

REQUEST TASK INITIATION
IN ONE HOUR
TRANSACTION IDENTIFICATION

The following examples show how to dynamically request automatic
initiation of a task associated with a terminal. The task initiation
time, transaction identification, and terminal identification are moved
to fields of the TCA before the DFHIC TYPE=INITIATE macro instruction
is issued. Since no request identification is specified by the
application programmer, CICS/vS automatically assigns one and returns
it to the application program at TCAICQID.

For Assembler language:

MVC TCAICRT,=PL4'10000', MOVE ONE HOUR TO TCA
MVC TCAICTI,=CL4'TRN1' TRANSACTION ID TO TCA
MVC TCAICTIO,=CL4'STA5' TERMINAL ID TO TCA

· · · DFHIC TYPE=INITIATE, REQUEST TASK INITIATION
INTRVAL=YES , INTERVAL OF TIME GIVEN
TRMIDNT=YES TERMINAL ID GIVEN

MVC UNIQCODE,TCAICQID SAVE CICS/vS UNIQUE REQUEST ID

For ANS COBOL:

MOVE 10000 TO TCAICR!'. NOTE MOVE ONE HOUR TO TCA.
MOVE 'TRN1' TO TCAICTI. NOTE TRANSACTION ID TO TCA.
MOVE 'STASi TO TCAICTID. NOTE TERMINAL ID TO TCA.

· · · DFHIC TYPE=INITIATE, REQUEST TASK INITIATION
INTRVAL=YES, INTERVAL OF TIME GIVEN
TRMIDNT=YES TERMINAL ID GIVEN

MOVE TCAICQID TO UNIQOODE. SAVE CICS/vS UNIQUE REQUEST ID

For PL/I:

TCAICRT=10000; /*MOVE ONE HOUR TO TCA*/
TCAICTI=' TRN1 • ; /*TRANSACTION 10 TO TCA*/
TCAICTID= 'STAS' ; /*TERMINAL 10 TO TCA*/

· ..
·

*
*

*
*

*
*

DFHIC TYPE=INITIATE, REQUEST TASK INITIATION *
INTRVAL=YES, I~TERVAL OF TIME GIVEN
TFMIDNT=YES TERMINAL ID GIVEN

UNIQCODE=TCAICQID; SAVE CICS/vS UNIQUE REQUEST ID

Task Initiation with ~ (PUT)

The application programme~ can pass data to another task that is to
be initiated at some future time by issuing the

Chapter 6. Service Invocation 131

*

DFHIC TYPE=PUT,

macro instruction. This macro instruction is used to provide the
transaction identification, the location of the data to be stored, and
other information applicable to the task to be initiated. CICS/VS
stores the data and queues the request until the specified time occurs.
As soon as all necessary resources are available (for example, a
terminal), the task is initiated. CICS/VS temporary storage management
facilities support this facility of time management.

The DFHIC TYPE=PUT macro instruction is used only when data is to
be passed to a task to be initiated at some future time. It supersedes
and cancels any previously initiated DFHIC TYPE=POST request of the
task. If only task initiation at a future time is needed, the DFHIC
TYPE=INITIATE macro instruct'ion should be used.

*

If the task to be initiated is associated with a terminal, the
initial DFHIC TYPE=PUT request causes the task to be initiated at the
specified time. Subsequent PUTS with the same terminal identification,
transaction identification, and expiration time are used to store data
for subsequent retrieval by the initiated task. If the task to be
initiated is not associated with a terminal, each DFHIC TYPE=PUT request
results in a task being initiated at the specified time. That is, only
one physical data record can be passed to a task not associated with
a terminal. (See "Retrieve Time-Ordered Data. It)

Most operands of the DFHIC TYPE=PUT macro instruction are analogous
to similar operands of the DFHIC TYPE=INITIATE· macro instruction. The
discussions of time calculation, request identification, transaction
identification, and terminal identification given under "Task Initiation
without Data (INITIATE)" apply to DFHIC TYPE=PUT in the same manner as
they apply to DFHIC TYPE=INITIATE (see the preceding subsection of this
manual). In addition, because the DFHIC TYPE=PUT macro instruction
permits data to be passed, the application programmer must specify the
symbolic address of the field containing the data. The label may be
provided as a parameter of the macro instruction or move the address
to TCAICDA prior to issuing the macro instruction.

The data passed to an initiated task must have the standard
variable-length format, with the first four bytes containing L~~. LL
is a two-byte binary length field (the value of which includes the
length of the data plus the first four bytes), and ~~ is a two-byte
f·ield containing binary zeros.

The following example shows hew to request automatic task initiation
and/or request that time-ordered data be made available to a task
associated with a terminal:

DFHIC TYPE=PUT.
TIME=173000,
TRANSID=TRN2,
TRMIDNT=STA3,
ICDADDR=DATAFLD

REQUEST TASR INITIATION
TIME IS 5:30 PM
TRANSACTION IDENTIFICATION
TERMINAL IDENTIFICATION
DATA ADDRESS

*
*
*
*

The following examples shew ~ow to dynamically request automatic
task initiation and/or request that time-ordered data be made available
to a task associated with a terminal. Values for time, request
identification, transaction identification, and terminal identification,
as well as the address of data to be passed, are moved to appropriate
fields of the TCA before issuing the DFHIC TYPE=PUT macro instruction.

138 CICS/VS Application Programmer's Reference Manual

For Assembler language:

MVC TCAICRT,PACKTIME CALCULATED EXPIR TIME TO TCA
MVC TCAICQID,UNIQCODE UNIQUE REQUEST ID TO TCA
MVC TCAICTI,=CL4'TRN2' TRANSACTION ID TO TCA
MVC TCAICTID,=CLq'STA3' TERMINAL 11: TO TCA
MVC TCAICDA,=A (DATAFLD) ADDRESS OF DATA TO TCA

· · · DFHIC TYPE=PUT, REQUEST TASK INITIATION *
TIME=YES, EXPIRATION TIME GIVEN *
TRMIDNT=YES, TERMINAL ID GIVEN *
REQID=YES, UNIQUE REQUEST 10 GIVEN *
I CDADDR=YES DATA ADDRESS GIVEN

For ANS COBOL:

MOVE PACKTIME TO TCAICRT. NOTE CALC EXPIR TIME' TO TCA
MOVE UNIQCODE TO TCAICQID. NOTE UNIQUE REQUEST 10 TO TCA.
MOVE 'TRN2' TO TCAICTI. NOTE TRANSAcrION 10 TO TCA.
MOVE 'STA3' TO TCAICTID. NOTE TERMINAL ID TO TCA.
MOVE DATADDR TO TCAICDA. NOTE ADDRESS OF DATA TO TCA.

· · · DFHIC TYPE=PUT, REQUEST TASK INITIATION *
TIME=YES, EXPIRATION TIME GIVEN *
TRMIDNT=YES, TERMINAL ID GIVEN *
REQID=YES, UNIQUE REQUEST ID GIVEN *
ICDADDR=YES DATA ADDRESS GIVEN

For PL/I:

TCAICRT=PACKTIME; /*CALC EXPIR TIME TO TCA*/
TCAICQID=UNIQCODE; /*UNIQUE REQUEST ID TO TCA*/
TCAICTI=' 'IRN2' ; /*TRANSACTION ID TO TCA*/
TCAICTID= 'STA3' ; /*TERMINAL ID TO TCA*/
T CAICDA=A CDR (DATAFLD) ; /*ADDRESS OF DATA TO TCA*/

· · · DFHIC TYPE=PU'I, REQUEST TASK INITIATION *
TIME=YES, EXPIRATION TIME GIVEN *
TRMIDNT=YES, TERMINAL II: GIVEN *
REQID=YES, UNIQUE REQUEST ID GIVEN *
ICDADDR=YES DATA ADDRESS GIVEN

RETRIEVE TIME-ORDERED DATA (GET)

Tasks can retrieve expired time-ordered data by issuing the

DFHIC TYPF=GET, *

macro instruction. Only dat a fr.om an expired DFHIC TYPE=PUT request
can be accessed using the DFHIC ~YPE=GET macro instruction. To retrieve
data stored by use of a DFHIC TYPE=PUT request, the DFHIC TYPE=GET
macro instruction must be used.

Chapter 6. Service Invocation 139

When time-ordered data is to be retrieved by means of a DFaIC
TYPE=GET macro instruction, the application programmer may specify the
address of a sto~age area into which the data is to be placed. Th~
address is specified either by including the address in the macro
instruction or by storing it in TCAICDA prior to issuing the macro
instruction. In either case, the storage area must be large enough to
contain the four-byte length tielq(LL}5~) at the bf;ginning of"tbedata
record as well as the data portion of the record. If the application
programmer does not select a storage area, CICS/VS automatically
acquires an area of sufficient size and returns the address of that
area in TCAICDA. .

Each originating DFHIC TYPE=PUT request provides the transaction
identification of the task to receive the d~ta, and if applicable,
symbolically identifies the terminal associated ~ith the task's
operation. When CICS/VS services a PF~IC TYPE=PUT request~ it does so
in two steps; it first queues the request fqr autorratic task initiation
at a specified time and then stores the data. When the specified time
occurs, the task is ready to be initiated, and the stored data'is then
available for retrieval.

A task not associated with a terminal that is initiated as a result
of an expired DFHIC TYPE=PUT request can access only the single physical
data record associated with the original request. It does this by
issuing one DFHIC TYPE=GET'macro instruction. The storage occupied by
the data associated with the task is released upon execution of the
DFHIC TYPE=GET request, or upon termination of the task (norwally or
abnormally) if no DFUIC TYPE=GET macro instruction is executed prior
to termination.

A task associated with a terminal that is initiated as the result
of an expired DFHIC TYPE=PUT request, or that is active at the time of
expiration of a DFHIC TYPE=PUT request, can access all data records
associated with expired DFHIC TYPE=PUT macro requests having the same
transaction· identification and terminal identification. Therefore, a
task associated with a terminal can retrieve all data made available
to the terminal and the task up to the current time by issuing
consecutive DFHIC TYPE=GET requests. Expired data records are presented
to the task upon request in expiration time sequence. The storage
occupied by the single data record associated with a DFHIC TYPE=PUT
request is released after the data has been retrieved by a DFHIC
TYPE=GET request or upon termination of the program if the task
terminates (normally or abnormally) without retrieving the data. Data
passed in subsequent expired DFHIC TYPE=PUT requests specifying the
same terminal identification and transaction identification can be
retrieved in response to DFHIC TYPE=GET requests by the same task if
that task is still active at their expiration times. Otperwise, such
a DFHIC TYPE=PUT request causes a new ~sk to be initiated.

When all passed data for which specified times have expired has been
retrieved, CICS/VS provides an end-of-data response at TCAICTR (for
Assembler language or PL/I) or TCAICRC (for ANS CO~L) in response to
a DFHIC TYPE=GET macro instruction.

The following example shows how to reques~ retrieval of a
time-ordered data record inte a data area sp~cified in tpe r~uest:

DFHIC TYPE=GET,
ICDADDR=DATAFLD

RETRIEVE TIME-ORDERED DATA
US~-PROVIDED DATA '~EA

The following examples shew how to dynamically request r~trieval of
a time-ordered data record. The address of the storage area reserved
for the data record is placed in TCAICDA ~rior to ~e issuance of the
DFHIC'TYPE=GET macro instruction.

140 CICS/vS Application Programmer's Reference Manual

*

For Assembler language:

MVC T CAl CDA, = A (DATAFL D) DATA FIELD ADDR TO TCA

· · · DFHIC TYPE=GET, RETRIEVE TIME-ORDERED DATA
ICDADDR=YES DATA FIELD ADDRESS GIVEN

For ANS COBOL:

MOVE DATADDR TO TCAICDA. NOTE DATA FIELD ADDR TO TCA.

· · · DFHIC TYPE=GET, RETRIEVE TIME-ORDERED DATA
ICDADr:R=YES

For PL/I:

TCAICDA=ADDR(DATAFLD) ; /*DATA F'IELD ADDR TO TCA*/

· · · DFHIC TYPE=GET, RETRIEVE ~IME-ORDERED DATA
ICDADDR=YES

TIME-ORDERED REQUEST CANCELLATION (CANCEL)

The application programmer can request that a ~reviously issued
time-ordered service request (DFHIC "TYPE=WAIT, DFHIC TYPE=PoST, DFHIC
TYPE=INITIATE, or DFHIC TYPE=PUT) be canceled by issuing the

DFHIC TYPE=CANCEL,

macro instruction. The effect of the cancellation is dependent on
whether a request identification is specified for the DFHIC TYPE=CANCEL
request and on the type of service request being canceled.

Cancel ~ Interval Control POST Reguest

A DFHIC TYPE=POST request can be canceled by the originating task
or by another task through use of the DFHIC TYPE=CANCEL macro
instruction.

*

*

*

*

When the originating task cancels a DFHIC TYPE=POST request, no
request identification should be specified for the cancellation request.
This canc~llation request can be made either befcre or after expiration
of the originai request. In either case, the storage reserved for the
timer event control area is released, and all references to the original
request are removed from the system.

When a task other than the originating task cancels a DFHIC TYPE=POST
request, the request identification of that request must be specified.
The effect of the cancellaticn is the same as an early expiration of
the original DFHIC TYPE=POST request. That is, the timer event control
area 'tor the originating task is posted as though the original
expiration time had been reached.

Chapter 6. Service Invocation 1q1

Cancel ~ Interval Control ~ Request

A DFHIC TYPE=wAIT request can only be canceled prior to its
expiration, and only by a task other than the task that issued the
DFHIC TYPE=WAIT (the originating task is suspended for the duration of
the request). The request identification of the suspended task must
be specified. The effect of the cancellation is the same as an early
expiration of the original DFHIC TYPE=WAIT or DFHKC TYPE=CHAP request.
That is, the originating task resumes control (based on its normal
dispatching priority) as though the original expiration time had been
reached.

Cancel ~ Inte:rval Control INITIATE .2!: PUT Reguest

A request identification must be specified when the DFHIC TYPE=CANCEL
macro instruction is used to cancel a DFHIC TYPE=INITIATE or DFHIC
TYPE=PUT request. The effect of the cancellation is to remove the
original request from the system, treating the original request as
though it had never been made. The cancellation request is effective
only prier to expiration of the original request.

INPUT/OUTPUT ERROR RETRY CAPABILITY (RETRY)

When the response to a DFHIC TYPE=GET macro instruction indicates
an I/O error, the application programmer can issue the

DFHIC TYPE=RETRY,

macro instruction, requesting that CICS/VS retry the retrieval
operation. CICS/VS attempts to retrieve the data record whose symbolic
eight-character identification is specified at TCAICQID, and place it
into the data area specified at TCAICDA. These fields are preset by
CICS/VS at the time the. I/O error response was returned to the
application program.

TEST RESPONSE TO A REQUEST FOR TIME SERVICES

*

After issuing a request for time services, the application programmer
can check the CICS/VS response to determine subsequent processing that
should be carried out. One step in doing so is to specify the symbolic
addresses of user-written exception-handling routines, any of which
may be executed as a result of the check. The addresses can be
specified in any of three ways:

• Include the syrrbolic addresses in operands of the DFHIC macro
instruction by which time service is requested.

• Include the symbolic addresses in operands of a

DFHIC TYPE=CHECK

macro instruction immediately following the DFHIC macro instruction
by which the service is requested.

• Include instructions immediately following the DFHIC macro
instruction that examine the response code set automatically by

142 CICS/vS Application Programmer's Reference Manual

CICS/VS and transfer control to an exception-handling routine
accordingly.

The general discussion under "Test Response to a Request for File
Services" applies to time services as well. The Assembler-language or
PL/I programmer can access time response codes at TCAICTR; the American
National Standard (ANS) COBOL programmer can access time response codes
at TCAICRC. The pcssible response codes and the conditions to which
they correspond are identified in the right-hand columns of Figure 6-8.
In addition, the ANS COBOL programmer can refer to the response codes
by means of symbolic labels (ICNORESP, ICEXPIRD, and so on) to cause
specific response code patterns to be checked ~ithout specifying those
patterns in his program. (See the examples at the end of this
discussion.) DFHIC macro instructions for which the conditions are
applicable are shown at the left.

Time Services
Request by
DFHIC Macro
Instruction Condition

Response Code

Assembler ANS COBOL PL/I

ALL NORESP X'OO' 12-0-1-8-9 00000000

GET, CHECK

PUT, GET, RETRY,
CHECK

INITIATE, PUT, CHECK

INITIATE, PUT, CHECK

GET, CHECK

WAIT, POST, CHECK

GET, CANCEL, RETRY,
CHECK

(Normal Response)

ENDDATA x'Ol'
(End of Data Condition)

IOERROR X'04'
(Input/Output Error)

TRNIDER X'll'
(Transaction Identification
Error)

TRMIDER X'12'
(Terminal Identification
Error)

TSINVLD X'14'
(No Temporary Storage
Support)

EXPIRD X'20'
(Expired)

NOTFND X'81'
(Not Found)

(ICNORESP)

12-1-9 00000001
(ICENDDATA)

12-4-9 00000100
(ICIOERROR)

11-1-9 00010001
(ICTRNIDER)

11-2-9 00010010
(ICTRMIDER)

11-4-9 00010100
(ICTSINVLD)

11-0-1-8-9 00100000
(ICEXPIRD)

12-0-1 10000001
(ICNOTFND)

ALL INVREQ X'FF' 12-11-0-7-8-9 11111111
(Invalid Request) (ICINVREQ)

ALL ERROR See Note 2 See Note 2
(Any Response Other
Than NORESP)

NOTES:
r:--The names enclosed in parentheses in the ANS COBOL column indicate the

88-1evel definitions provided by CICS/VS. These names may be used in
testing for the respective conditions in a COBOL program.

2. The test for the ERROR response is satisfied by a not equal condition;
that is, not X'OO', not 12-0-1-8-9, or not OOOOOOOo-ior ASSembler,
ANS COBOL, and PL/I, respectively.

Figure 6 -8. Interval Control Response Codes

If the application prcgrammer does not check for a particular
response to his service request, and if the exception condition
corresponding to that response occurs, program flew proceeds to the
next sequential instruction in the application program.

See Note 2

The keyword operands that can be used to request tests of the
response to a particular request for time services (that is, a
particular DFHIC macro instruction) are identif1ed in the discussions
of the instruction format and operands under "DFHIC Macro Instruction."
The condition ex~ressed by each keyword is explained in detail and

Chapter 6. Service Invocation 143

should be referred to by the application programmer when using any of
the checking methods described above.

The following examples show how to examine the response code provided
by CICS/VS at TCAICTR (for Assembler language or PL/I) or TCAICRC (for
ANS COBOL) and transfer control to the appropriate user-written
exception-handling routine. The alternative approach available to ANS
COBOL programmers is also exemplified.

For Assembler language:

GOOD

GOOD

DFHIC

CLI
BE
DFHPC
OS

TYPE=GET,
ICDADDR=DATAFLD
TCAICTR, X' 00'
GOOD
TYPE=ABEND
OH

DFHIC TYPE=GET,
ICDADDR=DATAFI.D

NORMAL RESPONSE

IF TCAICRC=' , THEN GO TO GOOD. NOTE 12-0-1-8-9 NORESP.
DFHPC TYPE=ABEND

where the value specified within single quotatio~ marks is an
unprintable multipunch code for the required hexadecimal value. For
example, a hexadecimal 00 has a multipunch code of 12-0-1-8-9.

The alternative approach to response code checking available to ANS
COBOL programmers is generally a coding convenience and provides concise
code documentation. When this approach is used, the IF statement above
is replaced by a statement of the form shown below:

IF ICNORESP THEN GO TO GOOD.

For PL/I:

GOOD:

DFHIC TYPE=GET,
ICDADDR=DATAFLD

IF TCAICTR=' 00000000' B THEN GO TO GOOD;/*NORMAL RESPONSE*/
DFHPC TYPE: ABEND

~ SERVICES

Task management provides the capability to process transactions
(tasks) concurrently. Transactions are scheduled, through task control,
and processed according to priorities assigned by the user. Control

144 CICS/vS Application programmer's Reference Manual

of the central processing unit (CPU) is given to the highest priority
task that is ready to be processed. Control of the CPU is returned to
the operating system when no further work can be done by CICS/VS or by
user-written application programs.

When a transaction is initiated in CICS/VS, task control dynamically
allocates storage for the task centrol area (TCA), places the task on
the dispatching priority queue, obtains the program identification of
the program initially required to process the task from the program
control table (PCT), and transfers control to program control.

The Task Management macro instruction (DFHKC) is used to request
any of the following services:

• Initiate a task

• Change the priority of a task

• Synchronize a task

• Synchronize the use of a resource by a task

• Purge a task on system overload

The application programmer must specify parameter values ~hen using
the DFHKC macro instruction. The values Can be specified in either of
two ways:

• By including the parameters in operands of the DFHKC macro
instruction by which task control services are requested, or

• By coding instructions that place the parameter values in fields
of the TCA prior to issuing the DFHKC macro instruction

The second method adds flexibility by letting the programmer vary the
parameter values of a single DFH~C macro instruction to meet the needs
of a given program.

INITIATE A TASK (ATTACH)

Task initiation within CICS/VS is invoked by issuing the

DFHKC TYPE=ATTACH, *

macro instruction. This macro instruction causes task control to obtain
the task control area (TCA) for a task and insert the task in the
dispatching priority queue according to the overall transaction
processing priority of the task. This macro instruction is intended
to be used by other CICS/VS control modules, but it is also available
for use by the application programmer to initiate additional tasks.
Any additional tasks initiated by the application programmer must
terminate themselves through use of the program control DFHPC
TYPE=RETURN macro instruction.

Note: Here and elsewhere in this chapter, the general format of the
macro instruction is not printed in full. The general format and all
operands are explained in detail in Chapter 7.

Most tasks running under CICS/VS are initiated (attached) at a
terminal and are thus associated with a terminal. Tasks initiated by
CICS/vS management programs (for example, automatic task initiation by
transient data control) mayor may not be associated with a terminal.

Chapter 6. Service Invocation 145

TASK

The contents of TCAFCAAA varies depending upon whether the attached
task is associated with a terminal, as discussed in "task control area
(TCA)" of Chapter 2.

The number of tasks that can be active within the system at a given
time is limited by the availability of main storage and/or by the
"maximum number of tasks" control established by the system programmer
at system generation or initialization. A new task is not initiated
by CICS/VS unless sufficient main storage is available to process it.
Instead, the request to initiate a task is queued (stored) until
sufficient main storage becomes available. Tasks initiated by CICS/VS
management modules (for examfle, terminal control) are subject to the
maximum number of tasks limitation. Application program requests for
attachment of tasks are not subject to this limitation and therefore
are allowed to exceed the rraximum.

If the OFHKC TYPE=ATTACH macro instruction is used by the application
programmer, he must provide the facility control area address and
transaction identification required by CICS/VS to initiate a new task.
The address and identification can be specified in two ways.

1. By coding two instructions that assign a facility control area
address to TCAKCFA and a transaction identification to TCAKCTI
prior to issuing the DFHKC 'IYFE=ATTACH macro instruction, or

2. By including the FCADOR=symbolic address oferand and
TRANSIO=symbolic name operand in the DFHKC TYPE=ATTACH macro
instruction, which then stores the assigned values in TCAKCFA
and TCAKCTI, respectively.

For all transactions associated with a terminal, the facility control
area address in TCAKCFA is the address of the TCTTE for the terminal.
This address provides access to control information necessary for
communication between the frog ram and the terminal. The first byte is
an X·01'. If the attaching task owns a terminal, ownership of that
terminal (but of no other terminal) may be passed in TCAKFCA.

If a task is not associated with a terminal, the facility control
area address can serve as a pointer to additional facility control
information required for execution of the task. For example, it can
be the address of an entry in the destination control table (OCT) that
is associated with a hardware resource (for example, a data set) •

The transaction identification is used only for the current ATTACH;
it is not carried in the TCA for the duration of the task.

The specified task is not attached if the transaction identification
is not in the PCT or the program name is not in the Processing Program
Table (PPT). If this situation exists or the attached task ABENOs, a
message is sent to the terminal operator, but the attaching task is
not notified of the condition. Therefore, the OFHKC TYPE=ATTACH macro
instruction must be used with extreme caution by the application
prog ramm er •

Although the application programmer has the capability of attaching
a t.ask directly to a terminal by means of the DFHKC TYPE=ATl'ACH macro,
this procedure is not recommended. Rather, any of the following
approaches should be used:

• Automatic task initiation through transient data management

• Automatic task initiation through time management (interval control
program)

146 CICS/vS Application Programmer's Reference Manual

Page of SH2o-9003-2
Revised May 22,1975
By TNL SN20-9086

• Identification of the transaction identification to be used with
the next input message from the terminal by means of a DFHPC
TYPE=RETURN macro instruction.

The flowchart in Figure 6-9 shows Task A attaching Task Band
synchronizing the processing steps of both tasks through use of the
facility control address passed to the newly created task at attach
time. Since Task B is a nonterminal-oriented task, it is unable to
use terminal control macro instructions. FCADDR specifies the address
of Task A's TCA; ECB1 and ECB2 are fields in the TWA for Task A.

Figure 6-9 includes steps labeled "POST ECB". Posting an ECB entails
setting on the appropriate bit in the ECB, which is a q-byte field.
In OS/VS, the bit to be set on (that is, set to '1') is bit 1 of byte
0; in DOS/VS, it is bit 0 of byte 2. The following examples show how
to set bits on for each programming language. These examples set on
both the bit required for OS/Vs and that required for DOS/VS, so they
may be used for OS/VS and DOS/VS systems.

For Assembler language:

ECB1 DC F'O'
MVC ECB1(3),=X'q00080'

E2.!: ANS COBOL:

77 ECB1 USAGE COMPUTATIONAL PICTURE S9(8) VALUE IS ZERO.

PROCEDURE DIVISION.
COMPUTE ECB1 = 2 ** 15 + 2 ** 30.

For ~:

DCL ECB1 BIT(32) ALIGNED INIT('O'B);
ECB1 = '01000000000000001 'B;

The DFHPC TYPE=RETURN macro instruction can be used to terminate
any tasks initiated by the applicaticn programmer through. use of the
task control DFHKC TYPE=ATTACH macro instruction.

The following example illustrates the coding required to statically
provide a facility control area address and transaction identification:

DFHKC TYPE=ATTACH,
FCADDR=FACCTL,
TRANSID=TRN1

INITIATE NEW 1ASK
USER'S FCA ADDRESS
TRANSACTION IDENTIFICATION

The following examples illustrate the coding required to dynamically
provide a facility control area address and transaction identification.

For Assembler language:

MVC TCAKCTI,=CLq'TRN1'
MVC TCAKCFA,=A(FACCTL)

TRANSACTION IDENTIFICATION
USER'S FCA ADDRESS

Chapter 6. Service Invocation - 147

*
*

---------------------.-------

DFHKC TYPE=ATTACH

For ANS COBOL:·

MOVE 'TRN1' TO TCAKCTI.
MOVE FACADR TO TCAKCFA.

DFHKC TYPE=ATTACH

!2!: ~:

TCAKCTI=' TRN1';
TCAKCFA=FACADR;

DFHKC TYPE=ATTACH

INITIATE NEW TASK

NOTE TRANSACTION IDENTIFICATION.
NOTE USER'S FCA ADDRESS.

INITIATE NEW ~ASK

/*TRANSACTION IDENTIFICATION*/
/*USER'S FCA ADDRESS*/
/*FACADR IS A POINTER VARIAELE*/

INITIATE NEW TASK

148 CICS/vS Application Programmer's Reference Manual

If Task 'B' is higher
in priority it becomes
active here.

TASK A

Attach Task B
and Point FCADDR

toTCA

Wait on ECB1
(Note 1)

If Task 'B' is lower
- in priority it becomes

active here.

Task' A' is aware if
- - - - - - Task 'B' completed

Processing Step 1.

Processing Step 2

Post
ECB2

Give Up Control

By a Wait or PC Return

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

Task 'B' is aware
of completion

TASK B

Obtain Address of
ECB1 and ECB2 by

Use of Address
Now in TCAFCAAA

, ..

Processing Step 1

"

Post ECB1 to Make
Task 'A' Dispatchable

Wait on ECB2
(Note 2)

Task 'B' gives up
control here.

of both Step 1
and Step 2. Task 'B' regains

control here.

Processing Step 3

Note: If Task B is not attached
(e.g. Trans I D not in PCT),
or if Task B ABEND, ECB 1
may never be posted.

Note 2: If Task A ABEND, ECB2
may never be posted.

Figure 6-9. Task Synchronization under CICS/vS

RESCHEDULE A 3650 TASK (SCHEDULE)

During operation with a 3650 system, it may be necessary to
reschedule an autamatic- or time-initiated task rejected because of

Chapter 6. Service Invocation 148.1

Page of SH2D-9003-2
Revised May 22,1975
By TNL SN20-9086

insufficient resources in the 3651. Such a task can be rescheduled
for operation by issuing the

DFHKC TYPE=SCHEDULE

macro instruction. This macro instruction causes the task to be
rescheduled and another attempt is made to initiate execution.

CHANGE PRIORITY OF A TASK (CHAP)

The overall transaction processing priority of a task is the sum of
related transaction, terminal, and operator priorities as specified or
established by default at system generation. This priority determines
the position of the task in the dispatching priority queue and,
therefore, its scheduling under CICS/vS. The priority of an existing
task can be changed by issuing the

DFHKC TYPE=CHAP,

macro instruction. The specified priority value must be in the range
from 0 through 255, where 255 represents the highest priority. This
task is placed below all other tasks of equal or higher priority in
the dispatching priority queue.

The application programmer can include the PRTY=priority value
operand in the DFHKC TYPE=CHAP macro instruction to assign a new
dispatching priority to a task. Alternatively, the programmer can
assign a priority value to the dispatching priority field (TCATCDP)
prior to issuing the DFHKC TYPE=CHAP macro instruction.

A task can voluntarily relinquish control to all tasks of equal or
higher priority by issuing a

DFHKC TYPE=CHAP

macro instruction. No priority value is specified, and the current
priority value of the task as stored in TCATCDP is not changed.
However, the fact that the macro instruction is issued permits control
to be transferred from the task issuing the instruction to an equal or
higher priority task within CICS/VS. This capability is designed
particularly for compute-bound tasks which, by continually demanding
inordinate amounts of CPU time, can significantly affect overall system
performance.

The following example shows how to statically assign a new task
dispatching priority value:

*

DFHKC TYPE=CHAP,
PRTY=255

CHANGE PRIORITY OF THIS TASK
NEW PRIORITY VALUE *

The following examples illustrate the coding required to assign a
dynamically selected priority value. This value can be specified as
a binary, decimal, or hexadecimal number, depending on the programming
language used.

~ Assembler language:

MVI TCATCDP,XIFF' ASSIGN NEW PRIORITY VALUE

Chapter 6. Service Invocation 149

r--- - DFH'KC TY~CHAP---- CHANGE PRIORITY OF THIS TASK -- ---.-

For ANS COBOL:

MOVE '*' TO TCATCDP. NOTE ASSIGN NEW PRIORITY VALUE.
, *. IS A MULTIPUNCH 12-11-0-7- 8- 9.

DFHKC TYPE=CHAP CHANGE PRIORITY OF THIS TASK

For PL/I:

TCATCDP=255; /*ASSIGN NEW PRIORITY VALUE*/

DFHKC TYPE=CHAP CHANGE PRIORITY OF THIS TASK

SYNCHRONIZE A TASK (WAIT)

The application programmer can synchronize a task with the completion
of an event or one of a list of events initiated by the same task or
by another task, or voluntarily relinquish control to a task of higher
dispatching priority, by issuing the

DFnKC TYPE=WAIT,

macro instruction. In the first case, this macro instruction provides
a method of directly relinquishing control to some other task until
the event being waited on is comFleted. In the latter case, the task
remains dispatchable. That is, execution of the task is resumed if no
task of higher priority is ready to be processed.

*

The application programmer must specify the circumstances under
which synchronization of a task is to occur by including the DCI=keyword
operand (dispatch control indicator) in the DFHKC TYPE=WAIT macro
instruction.

If the task is to be synchronized with the completion of a single
event or an event of a list of events, the application programmer must
specify the symbolic address of either the single event control area
or the list of" event control areas. The address can be specified by
including the ECADDR=symbolic address operand in the DFHKC TYPE=WAIT
macro instruction, or by coding a single instruction that places the
event control address in TCATCEA prior to issuing the DFHKC TYPE=WAIT
macro instruction. In either case, the referenced event control area(s)
must conform to the format and standard posting conventions associated
with the operating system (for example, ECBs in VS1 or VS2, CCBs in
DOS/VS). An event control area can also be the timer event control
area referred to in a DFHIC TYPE=POST macro instruction. (S~e the
discussion of task synchronization under "Time Services.")

Synchronize ~ Task with ~ Single Event

The DFHKC TYPE=WAIT,DCI=SINGLE macro instruction is used by the
application programmer to synchronize a task with the completion of a
single event initiated by the same task or by another task.

150 CICS/VS Application Programmer's Reference Manual

Page of SH20-9003·2
Revised May 22,1975
By TNL SN20-9086

The following example shows how to synchronize a task with a single
event, statically providing the symbolic address of the appropriate
event control area:

DFHKC TYPE=WAIT,
DCI=SINGLE,
ECADDR=EVENTCTL

RELINQUISH CON~ROL OF CICS/VS
WAIT ON SINGLE EVENT
ADDRESS OF EVENT CONTROL AREA

The following examples show how to synchronize a task with a Single
event, dynamically providing the symbolic address of the appropriate
event control area.

*
*

Chapter 6. Service Invocation 150.1

!Q! Assembler language:

ST SINGADDR,TCATCEA PLACE SYMBOLIC ADDRESS IN TCA

· · · DFHKC TYPE=WAIT, RELINQUISH CONTROL OF CICS/VS
DCI=SINGLE WAIT ON SINGLE EVENT

~ ANS COBOL:

MOVE SINGADDR TO TCATCEA. NOTE PLACE SYMBOLIC ADDR IN TeA.

· · · DFHKC TYPE=WAIT, RELINQUISH CONTROL OF CICS/VS
DCI=SINGLE WAIT ON SINGLE EVENT

For PL/I:

TCATCEA=SINGADDR; /*PLACE SYMBOLIC ADDRESS IN TCA*/

· /*SINGADDR IS A POINTER VARIABLE*/

· · DFHKC TYPE=WAIT, RELINQUISH CONTROL OF CICS/VS
DCI=SINGLE WAIT ON SINGLE EVENT

Synchronize ~ Task with One of ~ List of Events

The DFHKC TYPE=WAIT,DCI=LIST macro instruction is used by the
application programmer to synchronize a task with the completion of
one event of a list of events. This list consists of a series of
contiguous four-byte fields, each field containing the symbolic address
of a single event control area. The last four-byte field of the list
contains binary ones, hexadecimal Fs, or the card code (multipunch)
12-11-0-1-8-9.

The following example shows how to synchronize a task with one of
a list of events, statically providing the symbolic address of the
appropriate list of events:

DFHKC TYPE=WAIT,
DCI=LIST,
ECADDR=TOPOLIST

RELINQUISH CONTROL OF CICS/VS
WAIT ON A LIST OF EVENTS
ADDRESS OF LIS!]: OF EVENTS

The following examples show how to synchronize a task with one of
a list of events, dynamically providing the symbolic address of the
appropriate list of events.

For Assembler language:

ST LISTADDR,TCATCEA

DFHKC TYPE=WAIT,
DCI=LIST

PLACE SYMBOLIC ADDRESS IN TCA

RELINQUISH CONTROL OF CleS/VS
WAIT ON A LIST OF EVENTS

Chapter 6. Service Invocation 151

*

*

*

*
*

*

For ANS COBOL:

MOVE LISTADDR TO TCATCEA. NOTE PLACE SYMBOLIC ADDR IN TCA.

DFHKC TYPE=WAIT,
DCI=LIST

TCATCEA=LISTADDR;

DFHKC TYPE=WAIT,
DCI=LIST

RELINQUISH CONTROL OF CICS/VS
wAIT ON A LIST OF EVENTS

/*PLACE SYMBOLIC ADDRESS IN TCA*/
/*LISTADDR IS A POINTER VARIABLE*/

RELINQUISH CONTROL OF CICS/VS
WAIT ON A LIST OF EVENTS

Relinquish Control to ~ Task of Higher priority

The DFHKC TYPE=WAIT,DCI=DISP macro instruction is used by the
application programmer to voluntarily relinquish centrol to a task of
higher dispatching priority. Control is returned to the task issuing
the macro instruction if no other task of a higher priority is ready
to be processed.

When binary synchronous communication lines are part of the user's
configuration, these lines may time out if excessive CPU time is
required by an application program. One way to avoid this condition
is to include one or more DFHKC TYPE=WAIT,DCI=DISP macro instructions
in the application program to voluntarily relinquish control before
the line time-out can occur.

The following example shows how to voluntarily relinquish control
to a task of higher dispatching ~riority:

DFHKC TYPE=WAIT,
DCI=DISP

RELINQUISH CONTROL OF CICS/VS
AND REMAIN DISPATCHABLE

*

*

*

Note: The DFHKC TYPE=WAIT macro instruction differs from a TYPE=CHAP
macro instruction that does not indicate a priority in that the former
relinquishes control to only a task of higher priority, while the latter
may relinquish control to a task of either equal or higher priority.

SINGLE-SERVER RESOURCE SYNCHRONIZATICN (ENQ/DEQ)

In the CICS/VS environment, where tasks are processed concurrently,
it is sometimes desirable to protect a given resource from concurrent
use by multiple tasks. In effect, the resource can be treated as
serially reusable. To provide this resource protection, an installation
convention must be established for all application programmers to
follow. The convention is based on use of the .

DFHKC TYPE: ENQ,

macro instruction, identifying the resource by a symbolic address or
a character-string argument. When executed, this macro instruction
causes further execution of the task issuing the instruction to be
synchronized with the availability of the specified resource; control
is returned to the task when the resource is available. When all

152 CICS/VS Application Programmer's Reference Manual

*

programs accessing a resource adhere to the convention of enqueuing
upon the resource, the resource is afforded "single-server" protection.

When a single-server resource is being used by a task and other
tasks concurrently enqueue upon the same resource, the first task to
issue the DFHKC TYPE=ENQ macro instruction receives the resource when
it becomes available. The other tasks obtain the resource, in turn,
in the order in which they enqueue upon it.

The application programmer can release a resource currently enqueued
upon by the task from single-server protection request for a resource
by issuing the

DFHKC TYPE=DEQ,

macro instruction. If a task enqueues upon a resource but does not
dequeue it, task control automatically dequeues the single-server
protection request upon termination of the task.

When issuing the DFHKC TYPE=ENQ macro instruction, the application
programmer must identify the single-server resource he is enqueuing
upon by one of the following methods:

• Specify a symbolic main storage address that represents the
single-server resource. The application programmer must provide
the symbolic main storage address in the DFHKC TYPE=ENQ macro
instructio~ or by coding instructions (prior to issuing the DFHKC
TYPE=ENQ macro instruction) that place the address in the low-order
three bytes of TCATCQA, a four-byte field. He must place binary
zeros in the high-order byte •

• specify a symbolic main storage address that ccntains a unique
character-string argument (for example, an employee name) that
represents the single-server resource. The unique argument may be
up to 255 bytes in length, beginning at the location pointed to by
the contents of the specified address. The application programmer
must provide the symbolic main storage address and the length in
the DFHKC TYPE=ENQ macro instruction or by coding instructions
(prior to issuing the OFHKC TYPE=ENQ macro instruction) that place
the symbolic address in the low-order three bytes of TCATCQA, a
four-byte field, and the length (in bytes) in the high-order byte.
CICS/vS task control makes a copy of this pointer in its storage
for use in controlling the resource.

When issuing the DFHKC TYPE=DEQ macro instruction, the application
programmer must identify the resource he is dequeuing by the method
that waS used in enqueuing. The ANS COBOL programmer may find it
convenient to use the program control DFHPC TYPE=COBADDR macro
instruction (see below) if preloading of the address is desired.

The following examples show how to enqueue upon a single-server
resource using method 1, above.

For Assembler language:

COpy DFHCSADS
CSAWABA DS F

*

DFHKC TYPE~ENQ, ENQ ON SINGLE-SERVER RESOURCE *
_______ Q~DR=CSAWABA ___ ~CIFY SYMBOLI.£.,2\DDRESS __

Chapter 6. Service Invocation 153

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN2o-9086

...------.. __ ._--_._----_._----_. __ ._. __ . __ ._-------_. ----_.-
OR

LA WORKREG,CSAWABA
ST WORKREG,TCATCQA

DFHKC TYPE=ENQ

For ANS COBOL:

01 DFHCSADS COPY DFHCSADS.
02 CSAWABA PICTURE X(50).

MOVE ZEROS TO TCATCQA
DFHKC TYPE=ENQ,

QARGADR=CSAWABA

OR

DFHPC TYPE=COBADDR,
LABEL=CSAWABA

MOVE TCAPCLA TO TCATCQA.

DFHKC TYPE=ENQ

For PL/I:

IINCLUDE DFHCSADS;

ENQ ON SINGLE-SERVER RESOURCE
SPECIFY SYMBOLIC ADDRESS

DECLARE 1 DFHEXCSA BASED (CSACBAR),
2 FILLER CHAR (512),
2 CSAWABA CHAR (50);

DFHKC TYPE=ENQ,
QARGADR=CSAWABA

OR

TCATCQA=ADDR(CSAWABA) ;

DFHKC TYPE=ENQ

ENQ ON SINGLE-SERVER RESOURCE
SPECIFY SYMBOLIC ADDRESS

*

*

*

The following examples show how to enqueue upon a single-server
resource using method 2. The resource to be enqueued upon is identified
by the nine-character social security number in a field labeled
SOCSECNO. Task control makes a copy of this field for its use in
controlling the resource.

For Assembler language:

DFHKC TYPE=ENQ,
QARGADR=SOCSECNO,
QARGLNG=9
OR

15q CICS/VS Application Programmer 1 s Reference Manual

*
*

~-- -------------- --- ------- --- ---- -- -
LA WORKREG,SOCSECNO
ST WORKREG,TCATCQA
MVI TCATCQA,X'09'

DFHKC TYPE=ENQ

DFHKC TYPE=ENQ,
QARGADR=SOCSECNO,
QARGLNG=9

DFHKC TYPE=ENQ,
QARGADR=SOCSECNO,
QARGLNG=9

OR

IINCLUDE DFHTCADS;
DECLARE 1 DFHEXTCA BASED (TCACBAR),

2 FILLER CHAR (20),
2 TCATCQAL BIT(S) ;

TCATCQA=ADDR(SOCSECNO);
TCATCQAL='00001001'E;

DFHKC TYPE=ENQ

*
*

*
*

Substituting "DEQ" for "ENQ" in these examples illustrates the ways
in which the application programmer can release single-server protection
from a resource prier to termination of the associated task.

DECLARE THE PURGEABILITY OF A TASK ON SYSTEM OVERLOA£ (PURGE/NOPURGE)

Certain overload conditions, where all of a given system resource
(for example, main storage) has been allocated and where each task
requires still more of that Desource, can occur in CICS/VS. The result
is a situation in which no task is able to continue processing and no
new task can be initiated; the system stalls.

CICS/VS has the capability to detect certain system stall conditions
and take corrective action. Corrective action consists, in part, of
purging (deleting) the lowest priority task in the system that i's
designated as stall purgeable.

A task is initially defined as purgeable or not purgeable in the
program control table (PCT) entry associated with the transaction
identification for that task. This entry is established by the system
programmer at system generation. The application programmer can
dynamically change the purgeability status of a task by issuing the

DFHKC TYPE=PURGE

Chapter 6. Service Invocation 155

macro instruction to indicate that the task is purgeable, or the

DFHKC TYPE=NOPURGE

macro instruction to indicate that the task is not purgeable. The
designated status remains in effect for that task until another change
is initiated or until the task is terminated. For example, a
long-running task may issue a DFHKC TYPE=NOPURGE macro instruction
prior to critical processing, then issue a DFHKC TYPE=PURGE macro
instruction after that processing is completed. This ensures that the
task is not stall-purged during the critical processing.

JOURNAL SERVICES

Journal management provides facilities for creating and managing
special-purpose sequential data sets, called 'journals,' during
real-time CICS/VS execution. Journals may contain any and all data
the user needs, to facilitate subsequent reconstruction of events or
data changes. For example, a journal might act as an audit trail, a
change-file of data-base updates and additions, or a record of
transactions passing through the system (often called a 'log').

In addition to the output services described in this section, journal
management also provides sup~ort for:

• Operational control and dispOSition of volumes (see the CICS/VS
Operations Guide [DOS/VS] or the CICS/VS Operations Guide rOS/VS 1)

• requests to switch volumes and/or read journal data sets during
real-time CICS/VS execution (see the CICS/VS System Programmer's
Reference Manual)

Requests for journal output services are made by issuing the journal
control macro instruction (DFHJC), either directly from a user task or
from a CICS/VS management program on behalf of a user task. Data may
be directed to any journal data set specified in the journal control
table (JCT), which defines the journals available during a particular
CICS/VS execution. The JCT may define one or more journals on tape or
direct access storage. Each journal is identified by a number known
as the journal file identification. This number may range from 2 to
99; the value of 1 is reserved for a journal known as the system log.

All buffer space and other work areas needed for journal data set
physical operations are acquired and managed by the journal control
program (JCP). The user task supplies only the address and length of
the data to be output. The data is moved to journal buffer space by
JCP when building a journal record. The user task retains the use and
control of the data and its CICS/VS storage area.

Journal output requests are serviced by JCP. Journal records are
built into blocks compatible with standard variable-blocked format.
JCP uses the host operating system's sequential access method to write
the blocks to external storage devices.

Each logical journal record begins with the standard fullword length
field, a user-specified identifier, and a system-supplied prefix. This
data is followed in the journal record by any user-supplied prefix data
(optional), and finally by the user-specified data. Journal control
is designed so that the application programmer requesting output
services need not be concerned further with the detailed layout and
precise contents of journal ~cords. He needs to know only which
journal to use, what user data to specify, and what unique
user-identifier to supply. Normally, he obtains this information from
the application system analyst or the person(s) responsible for programs

156 CICS/vS Application Programmer's Reference Manual

for reading journal data sets.
Reference Manual.)

(See the CICS/VS System Programmer's

JCP builds journal records for output requests at the priority of
the requesting program, under control of the TCA of the requesting
program. However, the TCA is not used to communicate requests and to
save/restore registers. Instead, a separate control area called a
journal control area (JCA) is used; this area must be acquired by the
task before any journal output requests are issued.

If no other event is in-process to the journal, output to a journal
data set is also initiated under the requestor's TCA. However, output
event completion is always processed under a different TCA--that of a
high-priority journal task associated with the journal data set.
Journal tasks are activated when CICS/VS execution begins, but are
suspended when there are no output events outstanding. In a heavy load
situation, where ,many user tasks request journal output while one output
is in-process, a journal task initiates more out~ut immediately after
completion of the in-process output event.

The application programmer may specify parameter values for journal
control requests in either of two ways:

• By including the parameters in operands of the DFHJC macro
instruction by which journal services are requested, or

• By coding instructions that place the parameter values in fields
of the JCA prior to issuing the DFHJC macro instruction

The second of these methods provides greater economy, in that the
parameter values can be varied to meet the logic needs of the
application, but only a single DFHJC macro instruction need be coded.

Journal outrut services that rray 'be requested through the journal
control macro instruction are introduced and explained in the following
paragraphs. For detailed reference material, see "DFHJC Macro
Instruction" in Chapter 7.

ACQUIRE THE JOURNAL CONTROL AREA (GETJCA)

If any journal output services are Dequested in an application
program through DFHJC macro instructions, the application ~rogrammer
must provide the symbolic definition of the journal control area (JCA)
by copying the CICS/VS storage area ma~ DFHJCADS. The JCA must be
acquired for the task prior to any journal output requests by issuing
the rna cro in stru.ction:

DFHJC TYPE=GETJCA

The JCA may be acquired separately, as shown above, in which case
no other operands are needed. Alternatively, the JCA may be acquired
by and with the program's first journal output request; for example:

DFHJC TYPE=(GETJCA,PUT),

If the latter approach is chosen, then it is not possible to place
additional parameter values for the output request directly into the
JCA prior to the request, because the JCA does not exist prior to this
request. Macro warning messages are issued and the request is not
processed if any such request is attempted.

*

JOURNAL

Chapter 6. Service Invocation 157

In addition to acquiring the JCA for the task, the DFHJC TYPE=GETJCA
macro instruction establishes addressability to the area by moving the
contents of the JCA address field (TCAJCAAD) to JCABAR, the base locator
specified for the area. Once acquired for the task, the JCA is reused
for all subsequent journal requests issued by or on behalf of the task.
Subsequent TYPE=GETJCA requests only cause J~BAR to be reloaded with
the same value. The JCA may not be released by the user.

The following examples show how to acquire the journal control area
(JCA) for the task:

For Assembler language:

COPY DFHTCADS

JCABAR EQU 10
COPY DFHJCADS

GETJCA DFHJC TYPE=GETJCA

For ANS COBOL:

COpy TCA SYMBOLIC DEFINITIONS

ASSIGN BASE REGISTER FOR JCA
COPY JCA SYMBOLIC DEFINITIONS

REQUEST ACQUISITION OF THE JCA

02 JCABAR PICTURE S 9 (8) U SAGE IS COMPUTAT IONAL.
• NOTE DEFINE BASE LOCATOR FOR JCA.

01 DFHTCADS COPY DFHTCADS. NOTE COpy TCA SYMBOLIC DEFINITIONS.

01 DFHJCADS COpy DFHJCADS. NCTE COPY JCA SYMBOLIC DEFINITIONS.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR. NOTE LOAD TCA BASE LOCATOR VALUE.

GETJCA.
DFHJC TYPE=GETJCA REQUEST ACQUISITION OF THE JCA

For PL/I:

~INCLUDE DFHTCADS; /*COPY TCA SYMBOLIC DEFINITIONS*/

%INCLUDE DFHJCADS; /*COPY JCA SYMBOLIC DEFINITIONS*/

GETJCA:
DFHJC TYPE=GETJCA REQUEST ACQUISITION OF THE JCA

158 CICS/vS Application Programmer's Reference Manual

CREATE A JOURNAL RECORD AND WAIT FOR OUTPUT (PUT)

The application programmer may request journal output services by
issuing the macro instruction:

DFHJC TYPE=PUT, *

A journal record is created and written as output immediately. The
requesting task waits until the output has been ccmpleted. By using
this DFHJC macro instruction, the application programmer ensures that
the journal record is written on the external storage device associated
with the journal before processing continues; the task is said to be
'synchronize~' with the output event. Most CICS/VS-provided data output
service is performed in a synchronous manner.

The application programmer may request synchronous journal output
services either by a DFHJC TYPE=PUT macro instruction as above, or by
specifying DFHJC TYPE=(WRITE,WAIT). In both cases, certain additional
keyword operands are mandatory. These keywords are JFILEID (the journal
data set to receive data), JCDADDR (the address of the user data to be
included in the journal record), JCDLGTH (the length of the user data),
and JTYPEID (the two-byte user-specified hexadecimal identifier for
the journal record). optional accompanying keywords are PFXADDR (the
address of user prefix data for inclusion in the journal record) and
PFXLGTH (the length of the user prefix data); the application programmer
may also include keyword operands to direct control to
exception-handling routines in the program. (See "Test Response to a
Request for Journal Services" in this chapter.)

The following examples show how to request and wait for journal output
service.

For Asserrbler language:

JCABAR

FWACBAR

RECORD
KEYDATA
ACCNTNO
AMOUNT
NAME
ADDRESS

COpy DFHTCAts

EQU
COpy

EQU
COPY
OS
DS
OS
DS
OS
DS

10
DFHJCACS

9
DFHFWADS
OCL90
OCL8
PLq
PLq
CL20
CLqO

DFHJC TYPE=PUT,
JFILEID=2,
JCDADDR=KEYDATA,

COpy TCA SYMBOLIC DEFINITIONS

ASSIGN BASE REGISTER FOR JCA
COPY JCA SYMBOLIC DEFINITIONS

ASSIGN BASE REGISTER FOR FWA
COPY FWA SYMBOLIC DEFINITIONS

REQUEST SYNCHRONOUS OUTPUT
TO JOURNAL ID 2,
OF THE 'KEY' DATA,

1--___________________________________ _

Chapter 6. Service Invocation 159

*
*
*

r---- -- --- --- --- --- --- --- --- -----

OK DS

JCDLGTH=8,
JTYPEID=OFO 1,
NORESP=OK

OH

OF LENGTH=8 BYTES.
(IDENTIFIER FOR JOURNAL RECORD)
BRANCH ADDR FOR GOOD RESPONSE

02 JCABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COpy DFH'ICADS.

01 DFHJCADS COpy DFHJCADS.

01 DFHFWADS COPY DFHFWADS.
02 RECORD.

03 KEYDATA PICTURE X(8).
03 NAME PICTURE X (20) •
03 ADDRESS PICTURE X(20) •

PROCEDURE DIVISION.

OK.

MOVE CSACDTA TO TCACBAR.

DFHJC TYPE=PUT,
JFILEID=2,
JCDADDR=KEYDATA,
JCDLGTH=8,
JTYP EID= OFO 1,
NORESP=OK

%INCLUDE DFHTCADS;

%INCLUDE DFHJCADS;

%INCLUDE DFHFWADS;
02 RECORD,

NOTE DEFINE BASE LOCATOR FOR JCA.

NOTE COpy TCA SYMBOLIC DEFINITIONS.

NOTE COpy JCA SYMBOLIC DEFINITIONS.

NOTE COpy FWA SYMBOLI C DEFINITIONS.

NOTE LOAD TCA BASE LOCATOR VALUE.

REQUEST SYNCHRONOUS OUTPUT
TO JOURNAL ID 2,
OF THE 'KEY' DATA,
OF LENGTH=8 BYTES.
(IDENTIFIER FOR JOURNAL RECORD)
BRANCH ADDR FOR GOOD RESPONSE

/*COPY TCA SYMBOLIC DEFINITIONS*/

/*COPY JCA SYMBOLIC DEFINITIONS*/

/*COPY FWA SYMEOLIC DEFINITIONS*/

*
*

*
*
*
*
*

'-------------------------- ----------
160 CICS/VS Application Programmer's Reference Manual

OK:

03 KEYDATA CHAR (8),
04 ACCNTNO CHAR (4),
04 AMOUNT CHAR (4),

03 NAME CHAR (20),
03 ADDRESS CHAR (40),

DFHJC TYPE=PUT,
JFILEID=2,
JCDADDR=KEYDATA,
JCDLGTH=8,
JTYPEID=OF01,
NORESP=OK

REQUEST SYNCHRONOUS OUTPUT
TO JOURNAL ID 2,
OF THE 'KEY' ~ATA,
OF LENGTH=8 BY~ES.
(IDENTIFIER FOR JOURNAL RECORD)
ERANCH ADDR FOR GOOD RESPONSE

CREATE A JOURNAL RECORD FOR ASYNCHRONOUS OUTPUT (WRITE)

The application programmer may also request journal output services
by issuing the macro instruction:

DFHJC TYPE=WRITE,

This request causes a journal record to be created in the journal
buffer area, but allows the requesting task to retain control and thus
to continue with other processing. The task may check and wait for
output completion (that is, synchronize) at some later time. If that

*
*
*
*
*

*

is intended, the requesting program should save the event control number
(four bytes) returned in JCAECN after a successful TYPE=WRITE request.

Additional keyword operands applicable to TYPE=WRITE requests are
as described above under "Create a Journal Record and Wait for Output,"
together with two further keywords, STARTIO and COND. To understand
the use of these keywords, which apply only to asynchronous journal
output requests, it is necessary to understand how journal control
buffer management and output management are performed.

The basic process of building journal records in the buffer space
of a given journal continues until such time as cne of the following
situations occurs:

• A request is made for synchronous output of a journal record.

• A request is rejected because of insufficient journal buffer space.

• The available buffer space is reduced below a user-specified level
(see the CICS/VS system Programmer's Reference Manual).

At that time, all journal records present in the buffer--including any
'deferred' output resulting from asynchronous requests--are written to
external storage, as one block.

If a task creates deferred output and delays synchronizing, the
deferred output may be written 'for free' along with ether requests;

Chapter 6. Service Invocation 161

when the task attempts to synchronize, there will be no need for it to
wait. Thus, the advantages that may be gained by deferring journal
output are: (1) transactions may get better res~onse times by waiting
less, (2) the load of physical I/O requests on the host system may be
reduced, and (3) journal data sets may contain fewer but larger blocks
and so better utilize external storage devices.

However, these advantages are achievable only at the cost of more
buffer space and greater programming complexity. It is necessary to
plan and program to control synchronizing with jcurnal output.
Additional decisions which depend on the data content of the journal
record and how it is to be used must be made in the application program.
In any case, the full benefit of deferring journal output is obtained
only when the load on the journal data set is high.

The STARTIO keyword governs whether output is to be initiated (YES)
or not (NO); in either case, control returns directly to the requesting
program. The default optian of NO should be used whenever possible
because, if every journal request uses STARTIO=YES, no improvement over
synchronous output requests, in terms of reducing the number of physical
I/O operations and increasing the average block size, is possible.

The COND keyword governs what happens if the journal buffer space
available at the time is not sufficient to contain the journal record
for the request. If the default option COND=NO is taken, the requesting
task loses control. The contents of the current buffer are written
out, and the journal record for this request is built in the resulting
freed buffer space before cor.trol returns to the requesting task.

If the requesting task is not willing to lose cantrol--for example,
if some housekeeping must be performed before other tasks get
control--then COND=(YES,symbclic address) should be specified. If
butfer space is momentarily insufficient, no journal record is built
for the request, and control is returned directly to the requesting
program at the location identified by symbolic address. The requesting
program can perform any housekeet:ing needed before reissuing the journal
output request.

The following example shows hcw to request deferred journal output,
but ensure that the requesting task retains contr.ol to perform
housekeeping, if necessary.

For Asserrbler language:

COPY DFHCSADS
COMDATA DS CL10

COPY
SAVEDATA DS
MYDATA DS

DFHTCADS
CL10
CL10

JCABAR EQU 10
COPY DFHJCADS

MVC
MVC

SAVEDATA,COMDATA
COMDATA, MYDAT A

COpy CSA SYMBOLIC DEFINITIONS
AND COMMON WORK AREA

COPY TCA SYMBOLIC DEFINITIONS
SAVE AREA FOR COMMON DATA
AREA FOR MY DATA

ASSIGN BASE REGISTER FOR JCA
COPY JCA SYMBOLIC DEFINITIONS

SAVE COMMON DATA
REPLACE BY MY DATA FOR WORKING

162 CICS/VS Application Programmer's Reference Manual

--- --- ---- --- ---- --- --- ----- -

OK

RETRY

DFHJC TYPE=WRITE,
JCDADDR=COMDATA,
JCDLGTH= 1 0,
JFILEID=SYSTEM,
JTYPEID=0101,
START IO=NO,
COND=(YES,RETRY) ,
NORESP=OK

DS

DS
MVC
MVC
DFHJC

OB

OH
MYDATA,COMDATA
COMDATA,SAVEDATA
TYPE=WRITE,
JCDADDR=MYDATA,
JCDLGTH= 10,
JFILEID=SYSTEM,
JTYPEID=0101,
COND=NO,
STARTIO=NO,
NORESP=OK

For ANS COBOL:

REQUEST ASYNCHRONOUS OUTPUT *
OF COMMON DATA AREA, *
LENGTH=10 BYTES, *
TO SYSTEM LOG. *
(IDENTIFIER FOR JOURNAL RECORD) *
REQUEST DEFERRED OUTPUT, *
BUT RETAIN CONTROL IF BUFFER FULL. *
BRANCH ADDR FOR GOOD RESPONSE

HOUSEKEEPING:
MOVE DATA, THEN
RESTORE COMMON DATA.
REQUEST ASYNCHRONOUS OUTPUT
OF rATA,
LENGTH=10 BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)
IF BUFFER FULL, WE'LL WAIT.
DEFER OUTPUT.
BRANCH ADDR FOR GOOD RESPONSE

*
*
*
*
*
*
*

02 JCABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHCSADS COPY DFHCSADS.
02 COMDATA PICTURE X (10) •

01 DFHTCADS COPY DFHTCADS.
02 SAVEDATA PICTURE X(10) •
02 MYDATA PICTURE X(10).

01 DFHJCADS COPY DFHJCADS.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

MOVE COMDATA TO SAVEDATA.
MOVE MYDATA TO COMDATA.

DFHJC TYPE=WRITE,
JCDADDR=COMDATA,
JC1)LGTH= 10,
JFILEID=SYSTEM,
JTYPEID= 0101,

NOTE DEFINE BASE LOCATOR FOR JCA.

NOTE COPY CSA SYMBOLIC DEFINITIONS.
NOTE DEFINE COMMON DATA AREA.

NOTE COpy TCA SYMBOLIC DEFINITIONS.
NOTE SAVE AREA FOR COMMON D~TA.
NOTE AREA FOR MY DATA.

NOTE COPY JCA SYMBOLIC DEFINITIONS.

NOTE LOAD TeA EAS E LOCATOR VALUE.

NOTE SAVE COMMON DATA.
NOTE REPLACE COMMON WITH MI NE FOR WORK.

REQUEST ASYNCHRONOUS OUTPUT
OF COMMON DATA AREA,
LENGTH=10 BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)

Chapter 6. serv~ce Invocation 163

*
*
*
*
*

OK.

STARTIO=NO,
COND=(YES,RETRY) ,
NORESP=OK

RETRY.
MOVE COMDATA TO MYDATA.
MOVE SAVEDATA TO COMDATA.

DFHJC TYPE=WRITE,
JCDADDR=MYDATA,
JCDLGTH= 10,
JFILEID=SYSTEM,
JTYPEID=O 1 01,
STARTIO=NO,
COND=NO,
NORESP=OK

For .E!!a:

%INCLUDE DFHCSADS;
02 COMDATA CHAR (10);

%INCLUDE DFHTCADS;
02 SAVEDATA CHAR (10),
02 MYDATA CHAR (10),

~INCLUDE DFHJCADS;

SAVEDATA=COMDATA;
COMDATA=MYDATA;

DFHJC TYPE=WRITE,
JCDADDR=COMDATA,
JCDLGTH=10,
JFILEID=SYSTEM,
JTYPEID=0101,
STARTIO=NO,
COND=(YES,RETRY) ,
NORESP=OK

OK:

RETRY:
MYDATA=COMDATA;
COMDATA=SAVEDATA;

DFHJC TYPE=WRlTE,
JCDADDR=MYDATA,
JCDLGTH=10,

REQUEST DEFERRED OUTPUT, *
BUT RETAIN CONTROL IF BUFFER FULL. *
ERANCE ADDR FOR GOOD RESPONSE

NOTE DO HOUSEKEEPING, THEN RETRY.
NOT E MOVE DATA, THEN.
NOTE RESTORE CCMMON DATA.
REQUEST ASYNCHRONOUS OUTPUT
OF MY DATA,
LENGTH=10 BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)
REQUEST DEFERRED OUTPUT,
BUT IF BUFFER FULL, WE CAN WAIT.
BRANCH ADCR FCR GOOD RESPONSE

/*COPY CSA SYMBOLIC DEFINITIONS*/
/*AND COMMON WORK AREA*/

/*COPY TCA SYMBOLIC DEFINITIONS*/
/*SAVE AREA FOR COMMON DATA*/
/*AREA FOR MY DATA*/

/*COPY JCA SYMBOLIC DEFINITIONS*/

/*SAVE COMMON DATA*/
/*REPLACE BY MY DATA F'OR WORKING*/

REQUEST ASYNCHRONOUS OUTPUT
OF COMMON DATA AREA,
LENGTH=10 BYTES,
TO SYSTEM LOG.
(IDENTIFIER FOR JOURNAL RECORD)
REQUEST DEFERRED OUTPUT,
BUT RETAIN CONTROL IF BUFFER FULL.
BRANCH ADDR FOR GOOD RESPONSE

/*HOUSEKEEPING:*/
/*MOVE DATA, THEN*/
/*RESTORE COMMON DATA.*/
REQUEST ASYNCHRONOUS OUTPUT
OF MY DATA,
LENGTH=10 BYTES,

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
* -- --- --- --------- --- --'----------- --

164 CICS/VS Application Programmer's Reference Manual

JFILEID=SYSTE.."'1,
JTYPEID=0101,
STARTIO=NO,
COND=NO,
NORESP=OK

TO SYSTEM LOG.
(IDENTIFIE~ FeR JOURNAL RECORD)

REQUEST DEFERRED OUTPUT,
BUT IF BUFFER FULL, WE CAN WAIT.
ERANCH ADDR FOR GOOD RESPONSE

SYNCHRONIZE WITH ~HE OUTPUT OF A JOURNAL RECORD (WAIT)

If the application prcgrammer creates a journal record for deferred
(asynchronous) output, he may subsequently ensure that the record has
been written (that is, synchronize) by issuing the macro instruction:

*
*
*
*

DFHJC TYPE=WAIT, *

If the journal record output has already been completed (see
discussion above under "Create a Journal Record for Asynchronous
output") , then control returns directly to the requesting task. If
not, the output is initiated and the requesting task waits until the
operation has been completed.

Before issuing a synchronizing request, the task must ensure that
the event control number (four bytes) corresponding to the journal
record in question is in field JCAECN of the JCA. An event control
number is returned in JCAECN after every successful journal output
request. Since the JCA is used for every journal request issued by
the task (or by CICS/vS on its behalf) , the requesting program must
save the event control numbe~ immediately after an asynchronous output
request if it is to be used later. This is necessary because the
particular event control number may be overwritten during reuse of the
JCA.

If the JCA is not reused between the output request and the
synchronize request, the requesting program need not save and restore
the event control number. It is the user's responsibility to determine
whether or not he needs to save and restore it.

If the requesting program has made a succession of successful
asynchronous output requests to the same journal data set, it is only
necessary to synchronize on the last of these requests to ensure that
all of the journal records have reached the external storage device.
This may be done either by issuing a stand-alone DFHJC TYPE=WAIT
request, or by making the last output request itself synchronous--a
DFHJC TYPE=PUT or TYPE=(WRITE,WAIT).

The following examples shew a typical sequence of instructions to
request to synchronize with the output of a journal record.

For Assembler language:

COpy
SAVEDECN DS
JDATA DS

JCABAR EQU
COpy

DFHTCADS
CLQ
CI.36

10
DFHJCADS

COpy TCA SYMBOLIC DEFINITIONS
SAVED EVENT CONTROL NUMBER
DATA TO WRITE TO JOURNAL

ASSIGN BASE REGISTER FOR JCA
COPY JCA SYMBOLIC DEFINITIONS

----------- --- ---
Chapter 6. Service Invocation 165

r---- -------- ------ ------------ --- --- --- ---

OK1

OK2

DFHJC TYPE=WRITE,
JCDADDR=JDATA,

DS
MVC

NORESP=OK1

OH
SAVEDECN,JCAECN

MVC JCAECN,SAVEDECN
DFHJC TYPE=WAIT,

NORESP=OK2

DS OH

For ANS COBOL:

REQUEST ASYNCHRONOUS OUTPUT
OF DATA AT JDATA,
ETC.

BRANCH TO OK1 IF GOOD RESPONSE

SAVE EVENT CONTROL NUMBER

RESTOFE EVENT CONTROL NUMBER,
AND SYNCHRONIZE WITH OUTPUT.
BRANCH TO OK2 IF GOOD RESPONSE

02 JCABAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

01 DFHTCADS COPY DFH'ICADS.
02 SAVEDECN PICTURE X(4).
02 JDATA PICTURE X(36).

01 DFHJCADS COPY DFHJCADS.

PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.

OK1.

DFHJC TYPE=WRITE,
JCDADDR=JDATA,

NORESP=OK1

MOVE JCAECN TO SAVEDECN.

MOVE SAVEDECN TO JCAECN.

NOTE DEFINE BASE LOCATOR FOR JCA.

NOTE COpy TCA SYMBOLIC DEFINITIONS.
NOTE SAVED EVENT CONTROL NUMBER.
NOTE DATA TO WRITE TO JOURNAL.

NOTE COPY JCA SYMBOLIC DEFINITIONS.

NOTE LOAD TCA BASE LOCATOR VALUE.

REQUEST ASYNCHRONOUS OUTPUT
OF DATA AT JDATA,
ETC.

BRANCH TO OK 1 IF GOOD RES PONS E

NOTE SAVE EVENT CONTROL NUMBER.

NOTE RESTORE EVENT CONTROL NUMBER.

*
*
*
*
*

*

*
*
*
*
*

DFHJC TYPE=WAIT,
NORESP=OK2

AND SYNCHRONIZE WITH OUTPUT. *
BRANCH TO OK2 IF GOOD RESPONSE.

--- --------'-- ------ ------ --- ---- --
166 CICS/vS Application Programmer's Reference Manual

r---- ------------- --- ------ --- ------ -------

OK2.

For PL/I:

~INCLUDE DFHTCADS;
02 SAVEDECN CHAR (4),
02 JDATA CHAR (36);

%INCLUDE DFHJCADS;

OK1 :

DFHJC TYPE=WRITE,
JCDACDR=JDATA,

NORESP=OK1

SAVEDECN=JCAECN;

JCAECN=SAVEDECN;

OK2:

DFHJC TYPE=WAIT,
NORESP=OK2

//*OOPY TCA SYMBOLIC DEFINITIONS*/
/*SAVED EVENT CONTROL NUMBER*/
/*DATA TO WRITE TO JOURNAL*/

/*COPY JCA SYMEOLIC DEFINITIONS*/

FEQUEST ASYNCHRONOUS OUTPUT
OF DATA AT JDATA,
E'IC.

ERANCH TO OK1 IF GOOD RESPONSE

/*SAVE EVENT CONI'R.0L NUMBER*/

/*RESTORE EVENT CONTROL NUMBER,*/
AND SYNCHRONIZE WTTH OUTPUT.
BRANCH TO OK2 IF GOOD RESPONSE

TEST RESPONSE TO A REQUEST FeR JOURNAL SERVICES

Following processing of a request for journal serVices, a response
code is provided in the JCA; this code indicates that the request was
successfully executed or that one of several exception (or error)
conditions occurred. The requesting program can check the response
code and pass control to an appropriate exception-handling routine in
t~e program. This may be accomplished in any of three ways:

1. Include the symbolic addresses of the program's
exception-handling routines in keyword operands within the DFHJC
journal output macro request.

2. Include the symbolic addresses in keyword operands within a

DFHJC TYPE=CHECK,

Chapter 6. Service Invocation 167

*
*
*
*
*

*

*

macro instruction immediately following the DFHJC journal output
macro request.

3. Provide separate instructions to test the response code
immediately following the DFHJC journal output macro request.

Under either of the first two methods above, the application
programmer need not be concerned with the precise setting of the
response code. He need only understand the keyword operands and be
sure to provide for all conditions that can occur. Valid keywords are
NORESP, INVREQ, IDERROR, LERROR, IOERROR, and NOTOPEN; these keywords
are described in detail under "DFHJC Macro Instruction" in Chapter 7.

When the third method above is used, the application programmer must
know the actual settings of the response code, which is returned at
JCAJCRC. The possible response codes and the requests, conditions,
and keyword operands to which they correspond are identified in Figure
6-10.

Journal Response Code
Request by
DFHJC Macro
Instruction Condition Assembler ANS COBOL

PUT, WRITE, NORESP X'~~' 12-0-1-8-9
WAIT, CHECK (Normal Response) (JCARCNR)

PUT,WRITE, IDERROR X'~1' 12-1-9
WAIT, CHECK (Journal Identification (JCARCID~

Error)

PUT, WRITE, LERROR X' ~6' 12-6-9
CHECK (Journal Record Length (JCARCLE)

Error)

PUT, WAIT, IOERROR X'~7' 12-7-9
CHECK (Output I/O Error) (JCARCIOE)

. PUT, WRITE NOTOPEN X' ~5' 12-5-9
WAIT, CHECK (Journal Not Open) (JCARCNOE)

PUT, WRITE, INVREQ X'~2' 12-2-9
WAIT, CHECK (Invalid Request) (JCARClRE)

NOTE: The names enclosed in parentheses in the ANS COBOL column indicate the
88-level definitions provided by CICS/VS. These names may be used in testing
for the respective conditions in a COBOL program.

Figure 6-10. Journal Control Response Codes

If the application programmer does not provide for checking a
particular response code and the corresponding condition occurs, program
execution resumes at the instruction immediately following the DFHJC
macro instruction which requested the journal service.

168 CICS/vS Application programmer's Reference Manual

PL/I
'~

00000000

00000001

00000110

00000111

00000101

00000010

RECOVERY/RESTART SERVICES

Sync point management works in conjunction with other CICS/VS
components, such as transient data management and file management, to
provide the user with facilities needed for an emergency restart of
CICS/VS after an abnormal termination of CICS/VS. In an emergency
restart, changes made in protected resources (that is, in transient
data intrapartition queues) can be backed out for tasks that were "in
flight" at the time of failure. This backout is based upon information
about the tasks recorded on a system log during execution.

Each synchronization point marks the completion of a logical unit
of work. By definition, a logical unit of work (LUW) is an application
programmer-defined unit of work that performs a complete processing
function. One task may perform one LUW, or several LUWs, generally,
delimited by conversational terminal o~erations (a terminal write,
followed by a terminal read). The completion of a logical unit of
work, or sync point, can be explicitly requested by the application
program by means of a

DFHSP TYPE=USER

macro instruction. A sync point is always requested by CICS/VS at
termination of a task.

The completion of a logical unit of work indicates to CICS/VS that:

• All updates or modifications performed by the task are logically
complete, and should not be backed out if a system failure occurs.

• Functions requested prior to the synchronization point, but deferred
until the end of the logical unit of work, are to be processed,
even if a subsequent system failure occurs. An example of such an
operation is a purge of a transient data intrapartition queue, as
requested by the application program.

• All resources protected automatically on behalf of the task up to
this point are to be released. An example of such a resource may
be a transient data intrapartitiondestination that is logically
associated with the task or a resource previously enqueued by the
user.

• All resources previously enqueued by the user are dequeued.

The location of a sync point for a task on the system log data set,
relative to other logged activity for that task, determines the extent
to which CICS/VS (or user programs) may need to provide transaction
backout. Generally, sync points are not needed for short-quration
tasks.

Sync points are also used by CICS/vS to delimit the extent to which
user data set modifications may need to be backed out for a task.
During emergency restart, CICS/VS collects all user data set
modifications for tasks that were engaged in a LOW at the time of
uncontrolled shutdown and copies them in a restart data set. The
modifications can then be read by the CICS/vS transaction backout
program or by user-written programs executed during the
post-initialization phase of restart.

Through these facilities, sync point management not only permits
emergency restart but also provides the means by which the activity
required for such restart can be controlled by the user. The functions
performed by other CICS/VS programs involved in sync point/uncontrolled
shutdown/emergency restart activities are explained in greater detail

RESTART
RECOVERY

Chapter 6. Service Invocation 169

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

in the CICS/VS System Programmer's Reference Manual and CICS/vS
System/Application Design Guide.

A sync point request for a task that is scheduled to use a DL/I
resource implies the release of that resource. This means that if,
after issuing a DFHSP TYPE=USER macro instruction, access to a DL/I
data base is required, the desired PSB must be rescheduled through the
DFHFC TYPE=(DL/I,PSB) macro instruction. The previous position of that
data base has been lost.

170 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

CHAPTER 7. SYSTEM MANAGEMENT MACRO INSTRUCTIONS - GENERAL FORMATS

The general formats of CICS/VS macro instructions used to request
supervisory and data management services are presented in this chapter.
This material is designed primarily for reference purposes and is
ordered to coincide with the tutorial information presented in the
preceding chapter. Since a functional organization is used in
presenting the tutorial information, the macro formats are also
presented under functional headings. For each macro, the following
are indicated:

• Available operands and their formats and meanings

• Whether operands are required or optional

• Defaults, if any

• Mutually exclusive or dependent operands, if any

• Special considerations, if any

The notation used within the boxes in this chapter is explained
under "Coding Aids" in the first chapter of this manual.

DFHTC ~ INSTRUCTION

The terminal control macro instruction (DFHTC) is used to request
any of a wide variety of terminal services. Some operands may be
applicable to any of numerous terminals supported by CICS/VS. Others
are applicable to only specific devices. Meaningful combinations of
DFHTC operands for the various terminals (or for the logical units that
are the VTAM equivalent of physical terminals) are provided in this
section along with explanations.

Note: GET, PUT, PAGE, and CONVERSE are additional keyword parameters
provided for coding convenience; they are combinations of other
parameters and may be substituted where the others appear as follows:

• GET - same as READ, WAIT

• PUT - same as WRITE, WAIT

• CONVERSE - same as WRITE, READ, WAIT

• PAGE - same as ERASE, WRITE, READ, WAIT for 3270 or for 3270 in
2260 compatibility mode

This section includes discussions of the CICS/VS macro instruction
used to communicate with VTAM-supported terminals. Refer to the CICS/VS
Advanced Communication Guide for additional information on using CICS/VS
to communicate with these devices.

INPUT OPERATIONS

TCAM-Supported Terminals (CICS/OS/VS Only)

Input operations for terminals supported by TCAM use the same
operands applicable to the terminals for other access methods. with

Chapter 7. System Management Macro Instructions 171

DFHTC

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

exception of READB for the 3270, all operands applicable for input
operations are supported by CICS/VS-TCAM support.

VTAM-supported Logical Units

TYPE=

IOTYPE=

DFHTC TYPE= (READ(,WAIT][, SAVE])
rIOTYPE= {lMMED}]

DELAY
[,EODS=symbclic address]

describes the logical unit operations required.

READ
indicates that data is to be read from the logical unit.

WAIT
ensures that the logical unit operation requested in this
macro instruction is completed before subsequent processing
is carried out. WAIT can be coded separately from a READ
(with IOTYPE=IMMED) to accomplish overlapping of logical
unit I/O operations.

Note: When ANS COBOL is used, a WAIT must be included with
every READ in a program.

SAVE
indicates that the TIOA used in a previous logical unit
operation is not to be used as an input area for the read
operation. A new TIOA is to be acquired.

specifies when the read operation is to be started.

IMMED
causes the read operation to be started immediately (as soon
as the request is given to the logical unit control
management module). This parameter enables overlapping of
logical unit I/O operations with application program
processing by coding a WAIT separately from the READ.

DELAY
causes the read operation to be started only when a WAIT is
encountered. If this operand is omitted, IOTYPE defaults
to the transaction option specified by TIOTYPE in the DFHPCT
TYPE=ENTRY macro instruction. A task using deferred write
or message protection always defaults to DELAY regardless
of the PCT specification.

EODS=syrnbolic address
indicates the label of a user~ritten routine to receive control
if end-of-data-set is received from a 3650 interpreter logical
unit. The TIOA contains the EODS indicators.

This parameter applies only to 3650 interpreter logical units.

172 CICS/vS Application Programmer's Reference Manual

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

System/7

DFHTC TYPE= (REAl:{ .WAIT][. SAVE] [. {TRANSPARENTI])
PSEUDO BIN

TYPE=
describes the terminal operations required.

READ
indicates that data is to be read from a terminal.

Chapter 1. system Management Macro Instructions 172.1

WAIT
ensures that the terminal operation requested in this macro
instruction is corrpleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every READ in a program.

SAVE
indicates that the TIOA used in a previous terminal operation
is not to be used as an input area for the read operation.
A new TIOA is to be acquired.

TRANSPARENT
indicates that the data being read is not to be translated.

PSEUDOBIN
indicates that the data being read is tc be translated from
systerr/7 pseudobinary representation to hexadecimal. (For
further informaticn concerning System/7 programming
considera tions, see "System/7 Con siderations" in Chapter
11.)

2260 Display Station

TYPE=

DFHTC TYPE=({READ }[,WAIT][,SAVE]
READL

describes the terminal operations required.

READ
indicates that data is to be read from a terminal.

READL
indicates that the keyboard is to remain locked at the
completion of a data transfer. This ~arameter is applicable
only to CICS/OS/vS, but may be used on a CICS/DOS/VS
application if coropatibility with CICS/OS/vS is desired.

WAIT

SAVE

ensures that the terminal operation requested in this macro
is completed before subsequent processing is carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every REA£ and READL in the program.

indicates that the TIOA used in a previous terminal operation
is not to be used as an input area for the read operation.
A new TIOA is to be acquired.

2741 Communication Terminal

DFHTC TYP E= (READ[, WAIT])
,RDATT=symbclic address

Chapter 7. System Management Macro Instructions 173

TYPE=
describes the terminal operations required.

READ

WAIT

indicates that data is to be read from a terminal.

ensures that the terminal operation requested in this macro
instruction is corrpleted before subsequent processing is
carried out.

Note: When ANSCOBOL is used, a WAIT must be included with
every READ in a program.

RDATT=symbolic address
is the symbolic address to which control is transferred if a
read operation in res~onse to this DFHTC TYPE=READ macro
instruction is terminated by pressing of the Attention (ATTN)
key rather than the Return key.

Note: This operand is meaningful only if 2741 Read Attention
support has been generated in the CICS/VS system. see "2741
Read Attention and Write Break support" in Chapter 11.

3270 Information Display system

TYPE=

DFHTC TYPE= ({READ }[,WAIT][,SAVE][,TEXT])
READL
READE

describes the terminal operation required.

READ
indicates that data is to be read from a terminal.

READL
indicates that the keyboard is to remain locked at the
completion of data transfer. This parameter is meaningful
only for a 3270 operating in 2260 compatibility mode and is
applicable only to CICS/OS/VS. However, the parameter may
be used in a CICS/DOS/VS application program if upward
compatibility with CICS/OS/VS is a consideration.

READB
reads the contents of the 3270 buffer, beginning at buffer
location 0 and continuing until all contents of the buffer
have been read. All character and attribute sequences
(including nulls) appear in'the input data stream in the
same order that they appear in the 3270 buffer. READB cannot
be specified for TCAM-supported terminals.

Note: Because of the relatively long transmission times
required to transrrit the entire contents of a remote 3270
buffer, the READB parameter should be .used primarily for
test and diagnostic purposes; the COpy parameter, which
permits a selective transfer of buffer contents (see "output
operations" later in this chapter), should be used where
possible in all other cases.

174 CICS/VS Application Programmer's Reference Manual

WAIT
ensures that the terminal operation requested in this macro
instruction is conpleted before subsequent processing is
carried out.

~: When ANS COBOL is used, a WAIT must be included with
every READ, READL, or READE in a progran.

SAVE
indicates that the TIOA used in a previous terminal operation
is not to be used as an input area for the read operation.
A new TIOA is to be acquired.

TEXT
is meaningful only when used in conjunction with a READ
request and specifies a temporarY override of the uppercase
translation feature of CICS/vS to allow this task to receive
a message containing both uppercase and lowercase data.

3735 Programmable Buffered Terminal

TYPE=

DFHTC TYPE= (REAIl ,WAIT][,SAVE])
(,EOF=symbolic address]

describes the terminal operations required.

READ

WAIT

SAVE

indicates that data is to be read from a terminal.

ensures that the terminal operation requested in this macro
instruction is completed before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every READ in a program.

indicates that the TIOA used in a previous terminal operation
is not to be used as an input area for the read operation.
A new TIOA is to be acquired.

EOF=symbolic address
is the symbolic address of the routine to receive control when
end of file is encountered on batch input. This operand can be
used in a special initialization macro instruction, DFHTC
EOF=symbolic address, to test for the end-of-file condition upon
initial connection to a 3735. It must be included in the
initialization section of the '3735' transaction (that is, of
the application program to handle 3735 input), preceding other
DFBTC macro instructions.

Note: When the EOF condition occurs, TIOATDL is set to binary
zeros to indicate that the TIOA for the input operation contains
no valid data.

Chapter 7. System Management Macro Instructions 175

3740 Data Entry system

TYPE=

DFHTC TYPF=(READ[,WAIT][,SAVE)
[,ENDFILE=symbolic address]
[,ENDINPT=symbolic address]

describes the terminal operations required.

READ
indicates that data is to be read from a ter~inal.

WAIT

SAVE

ensures that the terminal operation requested in this macro
instruction is corrpleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every READ in a program.

indicates that the TIOA used in a previous terminal operation
is not to be used as an input area for the read operation.
A new TIOA is to be acquired.

ENDFILE=symbolic address
is the symbolic address of the routine to receive control when
end-of-file is encountered.

ENDINPT=symbolic address
is the symbolic address of the routine to receive control when
end-of-input is reached.

All Other CICS/VS-supported Terminals

TYPE=

DFH~ TYPE= (READ[,WAIT][,SAVE])

describes the terminal operations required.

READ
indicates that data is to be read from a terminal.

WAIT
ensures that the terminal operation requested in this macro
instruction is corrpleted before subsequent proceSSing is
carried out. .

SAVE

Note: When ANS COBOL is used, a WAIT must be included with
ev~ry READ in a program.

indicates that the TIOA used in a previous terminal operation
is not to be used as an input area for the read operation.
A new TIOA is to be acquired.

176 CICS/VS Application Prcgrammer's Reference Manual

OUTPUT OPERATIONS

TCAM-Supported Terminals (CICS/OS/VS only)

TYPE=

DEST=

DFHTC TYPE=(WRITE(,other optional parameters])
[,DEST={~~~bCliC addreSS}]

[,terminal dependent operands]

describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

other optimal parameters
indicates that other parameters may be coded by the user
for the specific terminal being written to. Any parameter
applicable to the terminal for other access methods may also
be coded for TCAM operations. For example, LAST could be
coded for a VTAM terminal or TRANSPARENT for System/3.

indicates that the output message is to be sent to a TCAM
destination other than the source TCAM terminal. This operand
is meaningful only for terminals for which DEVICE=TCAM has been
specified in the DFHTCT TYPE=SDSCI macro instruction.

symbolic name

YES

is the symbolic name of the TCAM destination to which the
message is to be sent.

indicates that the application program has placed the
four-byte message destination in TCTTEDES before issuing
the WRITE. This roethod allows dynamic selection of the
message destination.

terminal dependent operands
indicates that other operands applicable to the specific
terminals for other access methods may also be coded for TCAM
operations. For example, IOTYPE for VTAM terminals, WRBRK for
the 21Q1, or LINEADR for the 3270.

VTAM-supported Logical Units

DFHTC TYPE=(WRITE(,WAIT](,SAVE][,LAST])
tIOTYPE= {IMMED}]

DELAY

fLOC
= {~~:noniC}J

f FMH= {~~s}J

Chapter 7. System Management Macro Instructions 177

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

TYPE=

IOTYPE=

LDC=

FMH=

describes the logical unit operations required.

WRITE
indicates that data is to be written to a logical unit.

WAIT
ensures that the logical unit operation requested in this
macro instruction is corrpleted before subsequent processing
is carried out.

~: When A~S COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

SAVE
indicates that the TIOA whose address is in TCTTEDA is not
to be released upon completion of the write operation.

LAST
signals CICS/VS that this WRITE is the last output for a
transaction and, therefore, the end of a bracket operation.

specifies when the write operation is to be started.

IMMED
causes the write operation to be started immediately (as
soon as the request is given to the logical unit control
program). This parameter enables overlapping of logical
unit I/O operations with application program processing by
coding a WAIT separately from the WRITE.

DELAY
causes the write operation to be started only when a WAIT
is encountered.

If this operand is omitted, IOTYPE defaults to the transaction
option specified by TIOTYPE in the DFHPCT TYPE=ENTRY macro
instruction. A task using deferred write or message protection
always defaults to DELAY regardless of the PCT specification.

specifies the mnemonic to be used by CICS/VS to determine the
logical device code (LDC) that is to be transmitted in the
function management header to the logical unit. This operand
is used only for the 3601 logical unit (but not for the 361q
even if attached to the 3601).

mnemonic

YES

is the two-character mnemonic used to determine the
appropriate LDC numeric value. The mnemonic represents a
LDC entry in the DFHTCT TYPE=LDC macro instruction.

indicates that the application program has placed the
mnemonic in TCATPLDM.

indicates whether the function management header (FMH) has been
placed in the TIOA by the application program. If this operand
is omitted, NO is assumed. This operand is used only for the
3601 logical unit (but not for the 3614 even if attached to the
3601), 3650 host conversational (3270) logical units, and 3790
logical units.

178 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

For the 3601 and 3790 logical units, an FMH is required and is
provided as described below. For the 3650 host conversational
(3270) logical unit, the FMH is required if outboard maps are
to be used; the FMH in such cases can be provided by BMS, if
BMS is being used, or otherwise, by the application program.

NO

YES

indicates that the application program has not placed the
FMH in the TIOA. For the 3601 and 3790 logical units,
CICS/VS is responsible for placing the FMH in the TIOA; if
NO is specified, space must be reserved in the TIOA for the
FMH. For the 3650 host conversational (3210) logical unit,
CICS/VS does not build an FMH, and the data is trnasmitted
unmodified to the 3651 by CICS/VS. Refer to the CICS/VS
Advanced Communication Guide for size and format of the FMH
for a specific terminal-.----

indicates that the application program has placed the FMH
into the TIOA.

System/3, system/370, 2110, 2780, ~ 3780

TYPE=

TYPE=(WRITE[,WAIT][,SAVE][,TRANSPARENT])

describes the terminal operation required.

WRITE

WAIT

SAVE

indicates that data is to be written to a terminal.

ensures that the terminal operation requested in this macro
instruction is completed before subsequent processing is
carri ed out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

indicates that the TIOA used in the terminal operation is
not to be released upon completion of the write operation.

TRANSPARENT
indicates that output is to be sent in transparent mode
(with no recognition of control characters and accepting
any of the 256 possible combinations of eight bits as valid
transmittable data).

System/7

DFHTC TYPE= (WRITE[,WAIT][,SAVE] t {TRANSPARENT}])
PSEUDOBIN

Chapter 1. System Management Macro Instructions 119

TYPE=
describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

WAIT

SAVE

ensures that the terminal operation requested in this macro
instruction is completed before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

indicates that the TIOA whose address is in TCTTEDA is not
to be released upon com~letion of the write operation.

TRANSPARENT
indicates that the data being written is not to be
translated.

PSEUDOBIN
indicates that the data being written is to be translated
from hexadecimal to System/7 pseudobinary representation.
(For further information concerning system/7 programming
considerations, see "System/7 Considerations" in Chapter
11.)

2260 Display station

TYPE=

DFHTC TYPE= ({WRITE }[,WAIT][,SAVE][,ERASE])
WRITEL t LINEADDR= {~~~ber}]

describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

WRITEL
indicates that the keyboard is to remain locked if locked
previously, or to remain unlocked if unlocked previously,
at the completion of data transfer. If DFHTC macro
instructions are issued in the following sequence, the
keyboard is locked or unlocked as indicated:

READ L
WRITEL L
READL L
READL L
WRITEL L
WRITEL L
WRITE U
WRITEL U
WRITEL U
READL L
WRITE U

180 CICS/VS Application Programmer's Reference Manual

WAIT

READL L
READ L
WRITEL L

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

ensures that the terminal operation requested in this macro
instruction is completed before subsequent processing is
carri ed out.

Note: When ANS COBOL is used, a wait must be included with
every WRITE and WRITEL except the final WRITE in a program.

Chapter 1. System Management Macro Instructions 180.1

S~E
indicates that the TIOA whose address is in TCTTEDA is not
to be released upon ccm~letion of the write o~eration.

ERASE
is meaningful only when used in conjunction with either
WRITE or WRITEL and causes the screen tc be erased and the
cursor returned to the upper left corner of the screen before
writing occurs.

Note: To simply erase the screen, (1) place the address of
a TIOA into TCTTECA, (2) place a data length of 1 in TIOATDL,
and (3) issue a DFHTC TYPE=(WRITE,ERASE) macro instruction.
The TIOA should contain only a start symbol.

LINEADDR=
specifies that writing is to begin on a specific line of the
2260 screen.

number
is the hexadecimal equivalent of the starting line number.
X'FO' through X'FE' correspond with the line numbers 1
through 12 respectively.

indicates that the hexadecimal equivalent of the line number
has been placed in TIOALAC.

2741 Communication Terminal

TYPE=

DFHTC TYPE=(WRITE[,WAIT][,SAVE])
,WRBRK=symbolic address

describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

WAIT

SAVE

ensures that the terminal o~ration requested in this macro
instruction is corrpleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

indicates that the TIOA whose address is in TCTTEDA is not
to be released upon com~letion of the write operation.

WRBRK=sy~bolic address
is the symbolic address to which control is transferred if a
write operation started in response to this DFHTC TYPE=WRITE
macro instruction is interrupted by the terminal operator
pressing the Attention (ATTN) key.

Note: This operand is meaningful only if 2741 Write Break
support has been generated into the system, an option available

Chapter 7. System Management Macro Instructions 181

only under CICS/OS/VS. See "2141 Read Attention and. Write Break
Support. "

2980 General Banking Terminal

I I
DFHTC TYPE= CEUFF

PASSBR

TYPE=
describes the terminal operations required.

CBUFF
is a stand-alone parameter used to place a message in the
common buffer of the 2912 terminal control Unit; the 2912
associated with the current TCTTE receives the output
message. Both write and wait are implied.

~:. The output message is translated according to the
model of 2980 described by the current TCTTE,. If more than
one model is attached to a 2912 Terminal Control Unit, the
contents of the common buffer are intelligible only to the
model for which the message was translated. Since shift
characters are added to the message by CICS/VS during
translation, the length of the message is dependent upon
the contents of the message. Up to 23 characters, including
shift characters, can be transmitted.

PASSBK
is a stand-alone parameter used to cause output to be printed
on a banking passbook. Both WRITE and WAIT are implied.
If a passbook is not present, no printing occurs. An error
message can be sent to the operator of the terminal
associated with the requesting task.

3210 Information Displav System

TYPE=

DFHTC TYPE= (lWRITE r ,WAIT](,SAVE][,ERASE])
wRITEL
COpy
PRINT
ERASEAUP

['LINEADR=I~erl]
[,CTLCHAR= ~~~adecimal nUmber}]

describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

WRITEL
indicates that the keyboard is to remain locked if locked
previously, or to remain unlocked if unlocked previously,

182 CICS/VS Application Programmer's Reference Manual

COpy

at the coropletion of data transfer. This operand is
meaningful only for a 3270 operating in 2260 compatibility
mode.

If DFHTC macro instructions are issued in the following
sequence, the keyboard is locked or unlocked as indicated:

READ L
WRITEL L
READL L
READL L
WRITEL L
WRITEL L
WRITE U
WRITEL U
WRITEL U
READ L
WRITE U
READL L
READ L
WRITEL L

is used to copy the format and data contained in the buffer
of another terminal attached to the same 3271 control unit
into a buffer of this terminal. The terminal from which
data is to be copied can be identified in either of two
ways:

• TIOATDL is set to a value of 1 and the first
byte of the output data area (TIOADBA) is set
to the physical address of the terminal to be
copied; or

• TIOATDL is set to a value of 4 and the first
four bytes of the output data area (TIOADBA)
are set to the terminal identification of the
terminal to be copied. If the terminal
identification is less than four bytes in length,
it must be left-justified with blank padding on
the right.

The copy control character (CCC), which controls and defines
the copy function to be performed, must be supplied in the
CTLCHAR operand of this DFHTC macro instruction. Neither
WRITE, ERASE, nor ERASEAUP can be specified in a DFHTC macro
instruction that includes the COPY parameter.

PRINT
specifies that the data currently displayed on a 3277 or
3275 is to be printed on an eligible 3284 or 3286 printer.

ERAS EAU P
is used to issue an "erase all unprotected" command and
causes the follOWing functions to be performed:

1. All unprotected fields are cleared to nulls (X' 00') •

2. The modified data tags (MDTs) in each unprotected field
are reset to zero.

3. The cursor is positioned to the first unprotected field.

4. The keyboard is restored.

Chapter 7. System Management Macro Instructions 183

Neither WRITE, ERASE, nor COpy can be specified in a DFHTC
macro instruction that includes the ERASEAUP parameter. No
data stream is supplied. This operand is not meaningful
for a 3270 operating in 2260 compatibility mode.

WAIT
ensures that the terminal operation requested in this macro
instruction is corrpleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE, WRITEL, COPY, and ERASEAUP except the final
WRITE in a program.

SAVE
indicates that the TIOA whose address is in TCTTEDA is not
to be released upcn completion of the write operation.

ERASE

LINEADR=

is meaningful only when used in conjunction with either
WRITE or WRITEL and causes the screen to be erased and the
cursor returned to the upper left corner of the screen before
wri ting occurs.

~: To simply erase the screen, (1) place the address of
a TIOA into TCTTEDA, (2) place a data length of 0 into
TIOATDL, and (3) issue a DFHTC TYPE=(WRITE, ERASE) macro
instruction. If operating in 2260 compatibility mode, the
TIOA should contain only a start symbol and the data length
in TIOATDL should be set to 1 before issuing the DFHTC
TYPE=(WRITE,ERASE).

specifies that writing is to begin on a specific line of a
2260/2265 screen simulated on a 3270 operating in 2260
compatibility mode.

number

YES

CTLCHAR=

is the hexadecimal equivalent of the starting line number.
For the 2260, X'FO' through X'FBI correspond with line
numbers 1 through 12 respectively. For the 2265, X'FO'
through X'FE' correspond with line numbers 1 through 15
respectively.

indicat€s that the hexadecimal equivalent of the line number
has been placed in TIOALAC.

is used (1) in a DFHTC TYPE=WRITE macro instruction to provide
the hexadecimal representation of the write control character
(WCC) that controls the requested write operation, or (2) in a

DFHTC TYPE=COPY macro instruction to provide the hexadecimal
representation of the copy control character (CCC) that controls
and defines the copy function to be performed.

hexadecimal number

YES

is the hexadecimal representation of the WCC or CCC required
for the operation specified in the TYPE= operand of this
DFHTC macro instruction.

indicates that the appropriate bit configuration has been
placed in TIOACLCR.

184 CICS/VS Application Programmer's Reference Manual

For DFHTC TYPE=WRITE, if only the functions defined by the wee
are to be performed (that is, no data stream is to be supplied),
TIOATDL must contain zero. If the CTLCHAR operand is omitted,
all modified data tags are reset to zero, and the keyboard is
restored. For DFHTC TYPE=COPY, if the CTLCHAR operand is
omitted, the contents of the entire buffer (including nulls)
are copied and the start printer flag is not on.

3735 Proqramable Buffered Terminal

TYPE=

DFHTC TYPE=(WRITE[,WAIT][,SAVE][,NOTRANSLATE])

describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

WAIT

SAVE

ensures that the terminal oFeration requested in this macro
instruction is cowpleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

indicates that the TIOA whose address is in TCTTEDA is not
to be released upon ccmFletion of the write operation.

NOI'RANSIATE
prevents translation of form description program (FDP)
records which are to be transmitted to a 3735 using ASCII
transmission code. (For further information, see "3735
Considerations" in Chapter 11.)

3740 Data Entry System

TYPE=

DFHTC TYPE=([WRITE][,WAIT][,SAVE][,ENDFILE][,ENDOUTPUT]
[, TRANSPARENT])

describes the terminal operations required.

WRITE
indicates that data is to be written to a terminal.

WAIT
ensures that the terminaloFEration requested in this macro
instruction is corr.pleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

Chapter 7. S¥stem Management Macro Instructions 185

SAVE
indicates that the TIOA whose address is in TCTTEDA is not
to be released upcn completion of the write operation.

ENDFILE
indicates that an end-of-file record is to be written to
the terminal.

ENDOUTPUT
indicates that an end-of-output record is to be written to
the terminal.

TRANSPARENl'
indicates that output is to be sent in transparent mode
(with no recognition cf control characters and accepting
any of the 256 possible combinations of eight bits as valid
transmittable data).

All Other CICS/Vs-supported Terminals

TYPE=

DFHTC TYPE=(WRITE[,WAIT][,SAVE])

describes the terminal operations required.

WRITE

WAIT

indicates that data is to be written to a terminal.

ensures that the terminal operation requested in this macro
instruction is corrpleted before subsequent processing is
carried out.

Note: When ANS COBOL is used, a WAIT must be included with
every WRITE except the final WRITE in a program.

SAVE
indicates that the TIOA whose address is in TCTTEDA is not
to be released upcn completion of the write operation.

MISCELIANEOUS OPERATIONS

Line Control

I I
DFHTC TYPE={RESET }

DISCONNECT

TYPE=
describes the operation to be performed.

RESEl'
applies only to binary synchronous devices and is used to
relinquish use of a communication line; the next BTAM type

186 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

of operation will be a read or write initial. RESET is not
supported by CICS/VS-TCAM support.

DISCONNECT
applies only to switched lines and is used to break the line
connection between the terminal and the com~uter; if the
terminal is a buffered device, the data in the buffer(s) is
lost. CICS/VS does not automatically disconnect a 3275 at
the end of a transaction. A disconnection occurs at the
request of a terminal operator, at the request of the
application program (through this macro instruction), or
after a specified number of time-outs are encountered by
DFHTEP for the terminal. (Refer to the CICS/VS System
Programmer's Reference Manual for information on DFHTEP.)

3650 Program Request

DFHTC TYPE=PROGRAM
,PRGNAME=name
{ , VALID=addre ss]
[,NONVAL=address]
[,CONNECT= {ACTIVATE}]

CONVERSE
{ , NORESP=address]

The DFHTC TYPE=PROGRAM macro instruction is specified only when a
connection is being initiated from the host CPU with a 3650 application
program. Refer to the CICS/VS Advanced Communication Guide for details
on communicating with a 3650 application program.

TYPE=PROGRAM
is used to request the loading of a 3650 application program.
If the program is loaded, control is returned to the next
sequential instruction following the DFHTC TYPE=PROGRAM macro
instruction unless NORESP=program is specified. Otherwise,
control is returned to an address specified by one of the other
operands of the macro instruction as listed below.

PRGNAME=name
indicates the name the 3650 application program. This name
information (UP to eight characters) is transmitted to the 3651
for verification by the 3650 control program.

VALID=address
indicates the label of a user-coded routine to receive control
if the name specified in the PRGNAME operand is valid but
sufficient resources are not available in the 3651 to initiate
the 3650 application program. This routine can determine whether
a DFHKC TYPE=SCHEDULE macro instruction is to be issued in order
to restart the 3650 applicaticn program later.

NONVAL=address

CONNECT

indicates the label of a user-coded routine to receive control
if the name specified in the PRGNAME operand is invalid.

specifies the type of connection to be established.

Chapter 7. System Management Macro Instructions 187

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

ACTIVATE
specifies that the 3650 application program will not
communicate with the host cpu.

CONVERSE
specifies that the 3650 application program will communicate
with the host cpu.

NORESP=address
indicates the label of a user-coded routine to receive control
if there is a no error response.

EODS for 3650 Interpreter Logical Units

/DFHTC TYPE=EODS

TYPE=EODS
causes an end of data set function management header (FMH) to
be sent on behalf of the task. An I/O area need not be supplied
by the CICS/VS application programmer.

Refer to the CICS/VS Advanced Communication Guide for details
on communicating with a 3650 application program.

DFHFC MACRO INSTRUCTION

The file control macro instruction (DFHFC) is used to request file
services as explained below.

RANDOMLY RETRIEVE DATA FROM A DATA SET

The general format of the DFHFC macro instruction to randomly
retrieve data from a data set is as follows:

188 CICS/VS Application programmer's Reference Manual

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

r------r-------r---, , I
DFHFC I , , ,

I :
I

I

TYPE=GET
[,DATASET=symbolic name]
[,RDIDACR=symbolic address]

[,SEGSET={!~bOliC na~J

[,INDEX= {~~~bOliC nameB

[,TYPOPER=UFDATE]
[,RETMETH={~:iRECn~·~------------DAM

[,ARGTYP= {~~!}J

[' SRCHTYP= {§ID
VSAM

[,MO. DE= {MOV~ }]
LOCATE

[,NORESP=symbolic address]
[,ERROR=symbolic address]
[,DSIDER=symbolic address]
[,SEGIDER=symbolic address]
[,NOTFND=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,DUPDS=symbolic address]
[,NOTOPEN=sy.rnbolic address]
(, ILLOGIC=s y.rnbolic address] 1---- VSAM

1 ,
I
I

L------L-------L---J
where:

TYPE=GET
indicates that retrieval of a record is required.

DATASET=symbolic name
is the symbolic name of the primary data set to be accessed.
When indirect accessing is involved, this is the name of the
target data set (see "Indirect Accessing" in Chapter 11). The
name must appear in the file control table (FCT). If this
operand is omitted, the symbolic name is assumed to be in
TCAFCDI.

RDIDADR=symbolic address

SEGSET=

is the symbolic address of the user's record identification
field that contains the key of the record to be retrieved (for
ISAM), the block reference field (for DAM), or the key or
relative byte address (for VSAM). If this operand is omitted,
the symbolic address is assumed to be in TCAFCRI. (For further
details, see "record identification Field" in Chapter 11.)

indicates that the data set specified in the DATASET operand
contains segmented records and identifies the segment set to be
retrieved.

DFHFC

Chapter 7. System Management Macro Instructions 188.1

INDEX=

symbolic name

YES

ALL

is the symbolic name of the segment set to be retrieved.
The name must have been defined in the associated segment
control section of the FCT.

indicates that the symbolic name of the segment set to be
retrieved has been placed in TCAFCSI.

is used when reading a segmented record to indicate that
the entire logical record in an unpacked and aligned format
is desired. SEGSET=ALL is assumed by CICS/VS when updating
a segmented record; the entire logical record is unpacked
and returned to the application program.

If this operand is omitted, and the DFHFC TYPE=GET macro
instruction refers to a data set containing segmented records,
the logical record is returned in its packed unaligned format.

indicates that indirect accessing is to be used and specifies
the symbolic name of the highest level index data set to be
used. (This index data set is the first data set accessed in
the hierarchy.)

symbolic name

YES

is the symbolic name of the highest level index data set to
be accessed. The name must have been defined in the FCT.

indicates that the symbolic name of the highest level index
data set has been placed in TCAFCAI.

If the data set identified by this operand is a DAM data set,
it cannot be blocked.

TYPOPER=UPDATE
indicates that a record is to be obtained for updating, or, if
a VSAM key-sequenced data set is referred to, for either updating
or deletion. If records in a protected VSAM keyed-sequential
data set are to be updated or deleted, ARGTYP=KEY must be
specified and SRCHTYP must be FKEQ. If the record is from a
blocked DAM data set, the RETMETH operand must be specified.
If TYPOPER=UPDATE is omitted, a read-only operation is assumed.

l88~2 CICS/VS Application Programmer's Reference Manual

-------~--~--~-----.--

DAM Data Set

RETMETH=
applies only t~ blocked DAM data sets and is used to specify
the argument type (retrieval method) for deblocking the data
sets.

RELREC

KEY

specif~es that retrieval is to occur by relative record,
with the first to be record in a block considered to be
record ze ro.

specifies that retrieval is to occur by key.

If TYPOPER=UPDATE is specified for a DAM data set, this operand
is· required. If this operand is omitted and a request to read
a blocked DAM data set is issued, the entire ~hysical record
(bloCk) is returned in the FIOAto the application program. The
user's block reference field, required by DAM, contains the
criteria for deblocking the data set. If a retrieved record is
"undefined," the application ~rogram must determine the length
of the record.

VSAM Data Set

ARGTYP=
describes the contents of the record identification field of a
VSAM data set.

KEY

RBA

SRCHTYP=

indicates that the recozd identification field contains a
search key.

indicates that the record identification field contains a
relative byte addzess.

specifies. how the search key in the record identification field
is to be used when locating VSAM records. This operand is
meaningful only when ARGTYP=KEY is specified or implied by
default.

FKEQ

FKGE

indicates that the search key is a full key and that only
a record with an equal key satisfies the search.

indicates that the search key is a full key and that the
first record with a key equal to or greater than the search
key satisfies the search.

GI<EQ.
indicates th~t the search key is a generic (partial) key"
the. binary length of which is specified in the first byte
of the record identification field. The search is satisfied
when a record wpose key is equal to the search key (compared
on only the number of bytes specified in the first byte of
the record identification field) is found.

Chapter 7. System Management Macro Instructions 189

MODE=

GKGE
indicates that the search key is a generic key and that the
first record with a key equal to or greater than the search
key (compared on only the number of bytes specified in the
first byte of the record identification field) satisfies
the search.

is used to specify the processing mode for a read-only request
to a VSAM data set.

MOVE
specifies move mode processing. Upon return to the
application program, TCAFCAA contains the address of the
FIOA or FWA acquired for the read-only operation. If the
data set referred to contains variable-length records, the
t.raditional LLIS)J length field is included as part of the
logical record.

LOCATE
specifies locate mode processing. Upon return to the
application program, TCAFCAA contains the address of a VSWA.
The address of the retrieved record is at VSWAREA. If the
data set referred to contains variable-length records, the
traditional LLIS)J length field is not retrieved as part of
the logical record; instead, the length of the record is
placed in VSWALEN. This parameter cannot be specified, if
TYPOPER=UPDATE is specified and/or segmented records are
being retrieved.

NORESP, ERROR, DSIDER, SEGIDER, NOTFND, INVREQ, IOERROR, DUPDS, NOTOPEN,
and ILLOGIC (VSAM only)

are used to test the CICS/vS response to this request for record
retrieval. These operands can be specified in this macro
instruction or in a DFHFC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for File services" in this chapter.

190 CICS/vS Application Programmer's Reference Manual

RANDOMLY UPDATE OR ADD DATA ~O A DATA SET

The general format of the DFHFC macro instruction to randomly update
or add data to a data set is as follows:

r------r-------r---,
I I
I I DFHFC TYPE=PUT

[,RDIDADR=symbolic address]
[,SEGSET=YES]

I I
I I
I I

[
,TYPOPER={NEWREC}]

UPDATE I I DELETE t--.o----VSAM

[• ARGTYP= {~!i}] • I I I
I I
I I [,NORESP=symbolic address]

(,ERROR=symbolic address]
(,DUPREC=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOSPACE=symbolic address]
[,NOTOPEN=symbolic address]
[,ILLOGIC=symbolic address]..-VSAM

I I
I I

I f
I I
I I
I I
I I L ______ L _______ L ______________________________________ -----------------~

where:

TYPE=PUT
indicates that updating of a record or addition of a record is
required.

Note: For records written to a variable length VSAM data set,
the length of the record should be placed in an 'LLH~' field in
the beginning of the record. This field is used by CICS to
determine the length of the record and is not written to the
data set.

RDIDADR=
is the symbolic address of the user's record identification
field that contains the key (as required for ISAM), the block
reference field (for DAM), or the key or relative byte address
(for VSAM) of the record to be written. If this operand is
omitted, the symbolic address is assumed to be in TCAFCRI. This
field is used when adding a new record or when updating an
existing record in a nonkeyed DAM data set without previously
reading it for update. Note that thi s operand must not refer
to a field in the FWA because the F~ might be freed before the
write occurs.

Note: The DFHFC TYPE=PUT,TYPOPER=NEWREC macro instructions of
a VSAM mass-insert operation may specify the same record
identification field or different record identification fields.

SEGSET=YES
indicates that the data set to be added to or updated contains
segmented records. If this operand is omitted, file control
does not perform its normal packing operation on segmented
records (see "Segmented Records" in Chapter 11).

TYPOPER= .
describes the file operation to be performed.

Chapter 7. $Ystem Management Macro Instructions 191

NEWREC
indicates that a new record is to be added to an existing
data set.

UPDATE
indicates that an existing record retrieved previously by
a DFHFC TYPE=GET,TYPOPER=UPDATE instruction is to be updated
(in effect, rewritten to the data set).

DELETE

ARGTYP=

is valid only when a VSAM key-sequenced data set is being
accessed and indicates that a record previously retrieved
for update by a DFHFC TYPE=GET,.TYPOPER=UPDATE request is to
be deleted from the data set.

is used to describe the contents of the record identification
field when adding a record to a VSAM data set (TYPOPER=NEWREC).

KEY

RBA

indicates that the record identificaticn field contains a
searc·h key.

indicates that the record identification field contains a
relative byte address.

Note: If the add request is part of a mass-insert operation,
the ARGTYP parameter specified in the DFHFC TYPE=GETAREA macro
instruction initiating the mass insert cannot be overridden.

NORESP, ERROR, DUPREC, INVREC, IOERROR, NOSPACE, NOTOPEN, and ILLOGIC
(VSAM only)

are used to test the CICS/vS response to this request for file
services. These operands can be specified in this macro
instruction or in a DFHFC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for File Services" in this chapter.

RANDOMLY DELETE DATA FROM A r:ATA SET (VSAM ONLY)

The general format of a the DFHFC macro instruction to delete a
record or group of records from a VSAM key-sequenced data set is as
follows:

r------r-------r---,
DFHFC TYP E=DELETE

[,DATASET=symbolic name]
[,RDIDADR=symbolic address]

[,ARGTYP= {~:i}J

[,SRCHTYP={~~~§}J
[,NORESP=symbolic address]
[,ERROR=symbolic address]
[, DSIDER=symbolic address]
[,NOTFND=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=sy.mbolic address]
[,ILLOGIC=symbolic address]

L------L-------L--------------------------____________ ----_____________ ~

192 CICS/vS Application Programmer's Reference Manual

where:

TYPE=DELETE
indicates that deletion of a record or group of records from a
VSAM key-sequenced data set is required.

DATASET=symbolic name
is the symbolic name of the data set to be accessed. The name
must appear in the file centrol table (FCT). If this operand
is omitted r the symbolic name is assumed to be in TCAFCDI.

RDIDADR=symbolic address

ARGTYP=

is the sy~bolic address of the user's record identification
field that contains the key or relative byte address of the data
to be deleted. If this operand is omitted r the symbolic address
is assumed to be in TCAFCRI. (For further details r see II record
identification Field" in Chapter 11.)

describes the contents of the record identification field of
the data set.

KEY

REA

indicates that the record identification field contains a
search key.

indicates that the record identification field contains a
relative byte address.

SRCHTYP=
specifies how the search key in the record identification field
is to be used and is meaningful only when ARGTYP=KEY is specified
or implied by default.

FKEQ

GKEQ

indicates that the search key is a full key and that only
a record with an equal key satisfies the search.

indicates that the search key is a generic (partial) keYr
the binary length of which is specified in the first byte
of the record identification field. All records whose keys
begin with the search key are to be deleted. CICS/VS returns
a count of the nurrber of records deleted in TCAFCNRD.

NORESP r ERROR r DSIDERr NOTFND. INVREQ. IOERROR r NOTOPEN. and ILLOGIC
are used to test the CICS/vS response to this request for record
deletion. These operands can be specified in this macro
instruction or in a DFHFC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for File Services" in this chapter.

Chapter 7. System Management Macro Instructions 193

OBTAIN A FILE WORK AREA

The general format of the DFHFC macro instruction to obtain a file
work area (FWA) is as fellows:

r------r-------r---,
I

DFHFC I

I
I

I

I
I

TYPE=GETAREA
[,DATASET=symbolic name]

[,INITIMG={~~~ue}J
[,TYPOPEF=MASSINSERT]~.~-----VSAM

[,ARGTYP={~~}J~.~ ______ _

[,NORESP=symbolic address]
[,ERROR=symbolic address]
[, DSIDER=symbolic address]
[,INVREQ=symbolic address]
[,NOTOPEN=symbolic address]

L--____ L _______ L ______________________________________ -----------------~

where:

TYPE=GET AREA
indicates that CICS/vS is to acquire a FWA for the application
program.

DATASET=symbolic name
is the symbolic name of the data set to be accessed. The name
must appear in the file control table (FCT). If this operand
is omitted, the symbolic name is assumed to be in TCAFCDI.

INITIMG=
specifies a one-byte (two-digit) hexadecimal initialization
value for the FWA.

value

YES

is a two-digit hexadecimal numeral to be used as the
ini ti aliz ation value.

indicates that the hexadecimal initialization value has been
placed in TCASCIB.

If this operand is omitted, the FWA is initialized to EBCDIC
blanks (X'40').'

TYPOPER=MASSINSERT

ARGTYP=

is applicable to only VSAM data sets and specifies that the
acquired FWA is to be used for a mass-insert operation. This
ensures that the same FWA is used for subsequent DFHFCTYPE=PUT
macro instructions adding new logical records with keys or
relative byte addresses in ascending sequence to the data set.
The FWA is made available to the application program after each
DFHFC TYPE=PUT macro instruction. If storage initialization is
specified in this DFHFC TYPE=GETAREA macro instruction, the FWA
is reinitialized before each return to the application program.
A mass-insert operaticn is terminated by a DFHFC TYPE=RELEASE
macro instruction.

is applicable only when TYPOPER=MASSINSERT is specified and
describes the contents of the record identification field(s)

194 CICS/vS Application Programmer's Reference Manual

that will be presented by the DFHFC TYPE=PUT macro instructions
of this mass-insert operation.

KEY

REA

indicates that the record identification field(s) contain
a search key.

indicates that the record identification field(s) contain
a relative byte address.

NORESP, ERROR, DSIDER, INVREQ, and NOTOPEN
are used to test the CICS/VS response to this request for file
services. These operands can be specified in this macro
instruction or in a DFHFC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for File Services" in this chapter.

RELEASE FILE STORAGE

The general format of the DFHFC macro instruction to release the
storage areas acquired for file control operations is as follows:

r------r-------r---,
I I I I
I I DFHFC I TYPE=RELEASE I
I I I [,NORESP=symbolic address] I
I I I [, ERROR=symtolic address] I
I I I [,INVREQ=symbolic address] I
I I I [,IOERROR=symbolic address] I
I I I [,ILLOGlC=symbolic address]~ VSAM I
I I I I
L------L-------L---~

where:

TYPE=RELEASE
indicates that the FWA, FIOA, and/or VSWA acquired for file
centrol operations and any exclusive control encumbrances are
to be reI eased.

NORESP, ERROR, I NVREQ, IOE'FROR, and ILLOGIC (VSAM cnly)
are used to test the CICS/vS response to this request for release
of exclusive control, data set encumbrances, and/or storage.
These operands can be specified in this macro instruction or in
a DFHFC TYPE=CHECK macro instruction. The rreaning of each
operand is di scussed in detail under "Test Response to a Request
for File Services" in this chapter.

Chapter 1. System Management Macro Instructions 195

INITIATE SEQUENTIAL RETRIEVAL (BROWSING)

The general format of the DFHFC macro instruction to initiate a
browse operation on a data set is as follows:

r------r-------r---,
DFHFC TYPE=SETL

[,DATASE~=symbolic name]
[,RDIDADR=sy.mbolic address]
[.SEGSET={~~bOliC name}]
[,RETMETH={~~REC}]~.~---------DAM

[,ARGTYP={~:}]

['SRCHTYP={~!~}J
[,MODE={~ }]

LOCATE
[,NORESP=symbolic address]
[,ERROR=symbolic address]
[,DSIDER=symbolic address]
(,SEGIDER=symbolic address]
[,NOTFND=symbolic address]

VSAM

[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=sy.mbolic address]
[,ILLOGIC=symbolic address]~VSAM

L------L-------L---~

where:

TYPE=SEI'L
indicates that a browse operation is to be initiated.

DATASET=symbolic name
is the symbolic name of the data set to be accessed. The name
must appear in the file control table (FCT). If this operand
is omitted, the symbolic name is assumed to be in TCAFCDI.

RDIDADR=symbolic address
is the symbolic address of the user's record identification
field that contains the specific or generic key as required by
I SAM, the block reference as required by DAM, or the specific
or generic key or relative byte address as required by VSAM.
If this operand is anitted, the symbolic address is assumed to
be in TCAFCRI. (For further details, see "record identification
Field" in Chapter 11.)

SEGSET=
indicates that the data set specified in the DATASET operand
contains segmented records and specifies the default segment
set to be retrieved during a browse operation if no segment set
name is specified in a subsequent DFHFC TYPE=GETNEXT macro
instruction. This· segment set name is used as the default
segment set name throughout the browse operation unless altered
by a DFHFC TYPE=RESETL macro instruction.

196 CICS/VS Application Programmer's Reference Manual

symbolic name

YES

ALL

is the symbolic name of the default segment set. The name
must have been defined in the associated segment control
section of the FCT.

indicates that the symbolic name of the default segment set
has been placed in TCAFCSI.

indicates that the entire logical record in an unpacked and
aligned format is desired.

If this operand is omitted, and the DFHFC TYPE=SETL macro
instruction refers to a data set containing segmented records,
the logical record is returned in its packed unaligned format.

DAM Data set

RE'IMETH=

ARGTYP=

applies only to blocked DAM data sets and is used to specify
the format of the logical record identification that is placed
in the user's record identification field by CICS/VS each time
the next logical record is retrieved in a browse operation.

RELREC

KEY

indicates that a one-byte binary relative record number is
provided.

is valid only when records have embedded keys and indicates
that the logical xecord key is to be provided.

VSAM Data Set

describes the contents of the record identification field of a
VSAM data set.

KEY

RBA

is valid only when records have embedded keys and indicates
that the logical record key is to be ~rovided.

indicates that the record identificaticn field contains a
relative byte addzess.

SRCHTYP=

FKEQ

FKGE

specifies how the search key in the reccrd identification
field is to be used in locating VSAM records. This operand
is meaningful only when ARGTYP=KEY is specified or implied
by default.

indicates that the search key is a full key and that only
a record with ar. equal key satisfies the search.

indicates that the search key is a full key and that the
first record with a key equal to or greater than the search
key satisfies the search.

Chapter 7. System Management Macro Instructions 197

MODE=

GKEQ
indicates that the search key is a generic (partial) key,
the binary length of which is specified in the first byte
of the record identification field. A record whose key is
equal to the search key (compared on only the number of
bytes specified in the first byte of the record
identification field) satisfies the search.

GKGE
indicates that the search key is a generic key and that the
first record with a key equal to or greater than the search
key (compared on only the number of bytes specified in the
first byte of the record identification field) satisfies
the search.

is use to specify the processing mode for the browse operation.

MOVE
specifies move mode processing. Upon return to the
application program, TCAFCAA contains the address of the
FWA acquired for the browse operation. If the data set
referred to contains variable-length records, the traditional
LLM~ length field is included as part of each logical record
retrieved during the browse.

LOCATE
specifies locate mode processing. Upon return to the
application program, TCAFCAA contains the address of VSWA.
The address of each record retrieved during the browse is
placed at VSWAREA. If the data set referred to contains
variable-length records, the traditional LL~M length field
is not retrieved as part of the logical record; instead,
the length of the record is placed in VSWALEN. This
parameter cannot be specified if the data set contains
segmented records.

NORESP, ERROR, DSIDER, SEGIDER, NOTFND, INVREQ, IOERROR, NOTOPEN, and
ILLOGIC (VSAM only)

are used to test the CICS/VS response to this request for file
services. These operands can be specified in this macro
instruction or in a DFHFC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for File Services" in this chapter.

198 CICS/VS Application Programmer's Reference Manual

RETRIEVE NEXT SEQUENTIAL RECORD

The general format of the DFHFC macro instruction to retrieve the
next sequental record during a browse operation is shown below. This
instruction can also be used to perform skip-sequential processing upon
a VSAM data set (see "Retrieve Next Sequential Record (GETNEXT)" in
Chapter 6).

r------r-------r---,
DFHFC TYPE=GETNEXT

[,SEGSET={!~bOliC name}]
[,NORESP=symbolic address]
[,ERROR=symbolic address]
[,SEGIDER=symbolic address]
[,NOTFND=symbolic address]
[,INVREQ=symbolic addre ss] .
[,IOERROR=symbolic address]
(,NOTOPEN=sy.mbolic address]
[,ENDFILE=symbolic address]
[, ILLOGIC=s ymbolic address] ~--VSAM

L------L-------L---~
where:

TYPE =GETNE XT
indicates that the next record in sequence is to be retrieved
during a browse operation.

SEGSET=
specifies the symbolic name of the segment set to be retrieved
from the next record in sequence.

symbolic name

YES

ALL

is the symbolic name of the segment set to be retrieved.
The name must have been defined in the associated segment
control section of the FCT.

indicates that the symbolic name of the segment set has been
placed in TCAFCSI.

indicates that the entire logical record in an unpacked and
aligned format is desired.

If this operand is omitted and if the SEGSET operand was
specified in the DFHFC TYPE=SETL macro instruction initiating
the browse, the eight-character default segment set name, as
specified in that instruction, is taken as the segment set name
and returned at TCAFCSI u~on normal completion of the GETNEXT.

If this operand is omitted both here and in the DFHFC TYPE=SETL
request and the browse operation is against a data set containing
segmented records, the logical record is returned in its packed
unaligned format.

Note: If MODE=LOCATE was specified in the DFHFC TYPE=SETL
macro instruction initiating the browse operation, inclusion of
this operand is not permissible; an INVREQ (invalid request)
condition occurs.

Chapter 7. System Management Macro Instructions 199

NORESP. ERROR, SEGIDER, NOTFND, INVREQ. IOERROR, NOTOPEN. ENDFILE, and
ILLOGIC (VSAM only)

are used to test the CICS/vS response to this request for file
services. These operands can also be specified in a DFHFC
TYPE=CHECK macro instruction. and are discussed in detail under
"Test Response to a Request for File services" below.

TERMINATE SEQUENTIAL RETRIEVAL (BROWSING)

The general format of the DFHFC macro instruction to terminate a
browse operation on a data set is as follows:

r------r-------f---,
I I I I
I I DFHFC I TYPE=ESETL , I
'I I I [,NORESP=symbolic address] I

I I [. ERROR=symboli c address] I
I I I [,INVREQ=symbolic address] I
I I I [,ILJ.OGIC=symbolic address]. VSAM I
I I I I L--- ___ L _______ L _____________ ~ ________________________ -----------------~

where:

TYPE=ESETL
indicates that a browse operation is to be terminated.

NORESP, ERROR, ~INVREQ. and ILLOGIC (VSAM only)
are used to test the cics/Vs response to this request to
terminate a browse operation. These operands can also be
specified in a DFHFC TYPE=CHECK macro instruction and are
discussed in detail under "Test Response to a Request for File
Services" below.

RESET SEQUENTIAL RETRIEVAL

The general format of the DFHFC macro instrpction to reset the search
argument, default segment set name, and/or type of search argument
(VSAM only) for a sequential retrieval (browse) operation is as follows:

r------r-------r---,
I
I DFHFC

I
I , ,
I
I

I
I
I

I
I ,
I ,

TYPE=RESETL

[.SEGSET={r~bOliC name}]
[,ARGTYP= {~:}]

['SRCHTYP={~~}]
[,NORESP=symbolic address]
[.ERROR=symbolic address]
[.SEGIDER=symbolic address]
[, NOTFND=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=symbolic address]

VSAM

[.ILLOGIC=symbolic address] !----VSAM

L--- ___ L _______ L ______________________________________ -----------------~

200 CICS/vS Application Programmer's Reference Manual

where:

TYPE=RESETL
indicates that the search arginnent, default segment set,name,
and/or type of search argument (VSAM only) establiShed for a
browse operation is to be changed.

SEGSET=
specifies a new default segment set name to be used in this
browse operation.

symbolic name

YES

ALL

is the symbolic name of the default segment set. The name
must have been defined in the associated segment control
section of the FCT.

indicates that the symbolic name of the default segment set
has been placed in TCAFCSI.

indicates that the entire logical record in an unpacked and
aligned format is desired.

If this operand is omitted, the segment set name specified in
a preceding SETL or RESETL macro instruction for this browse
operation continues to be the segment set name.

VSAM Data Set

ARGTYP=
describes the contents of the record identification field of a
VSAM da ta set.

KEY

RBA

SRCHTYP=

indicates that the record identification field contains a
search key.

indicates that the record identification field contains a
relative byte address.

specifies how the search key in the record identification field
is to be used in locating VSAM records. This operand is
meaningful only when ARGTYP=KEY is specified or implied by
default.

FKEQ
indicates that th~ search key is a full key and that only
a record with an 'equal key satisfies the search.

FKGE;

GKEQ

indicates that the search key is a full key and that the
first record with a key equal to or greater than the search
key satisfies the search.

indicates that the search key is a generic (partial) key,
the binary length of, which is specified in the first byte
of the record identification field. A record whose key is
equal to the search key (compared on only the number of

Chapter 7. System Management Macro Instructions 201

GKGE

bytes specified in the first byte of the record
identification field) satisfies the search.

indicates that the search key is a generic key and that the
first record with a key equal to or greater than the search
key (compared on only the number of bytes specified in the
first byte of the record identification field) satisfies
the search.

NORESP, ERROR, SEGIDER, NOTFND, INVREQ, IOERROR, NOTOPEN, and ILLOGIC
(VSAM only)

are used to test the CICS/vS response to this request for file
services. These operands can be specified in this macro
instruction or in a DFHFC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for File Services" (below).

TEST RESPONSE TO A REQUEST FOR FILE SERVICES

The general format of the DFHFC macro instruction to test the CICS/VS
response to a preceding DFHFC request for file services is as follows:

r------r-------r------------------------------------~------------------,

DFHFC TYPE=CHECK
[,NORESP=symbolic address]
[,ERROR=symbolic address]
[,DSIDER=symbolic address]
[,SEGIDER=symbolic address]
[,NOTFND=symbolic address]
[,DUPREC=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,DUPDS=symbolic address]
[,NOSPACE=symbolic address]
[,NOTOPEN=symbolic address]
[,ENDFILE=symbolic address]
[,ILLOGIC=symbolic address]~.~---VSAM

L------L-------L-----------------______________________________________ ~
where:

TYPE=CHECK
indicates that -the- CICS/VS response to a request for file
services is to be checked.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no error occurs on a file operation.
NORESP signifies "normal response."

The field TCAFCAA in the TCA of the task contains:

• The address of an FIOA after a read-only unsegmented
GET against an unblocked data set or a blocked DAM data
set if deblocking is not requested

202 CICS/vS Application Programmer's Reference Manual

• The address of an FWA after a GET against a blocked data
set, a GET segmented, a GET for update, a GETAREA, SETL,
GEl'NEXT, or RESETL

• The address of a VSWA after a locate-mode GET or SETL
against a VSAM data set and after a GETNEXT or RESETL
for a browse operation initiated by a locate-mode SETL

• Meaningless information after a PUT, DELETE, RELEASE,
or ESETL

ERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if any error occurs on a file operation.
The CICS/VS response code should be further interrogated in this
user-written routine. The contents of the field TCAFCAA are as
described below for specific error conditions.

DSIDER=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the data set specified by the DATASET
operand (at TCAFCDI) cannot be located in the FCT. The error
also occurs if the data set specified in the INDEX operand of
a DFHFC TYPE=GET macro instruction (available at TCAFCAI), or
any of the lower-level data sets in the indirect accessing
hierarchy, cannot be found in the FCT. DSIDER signifies "data
set identification error." The contents of TCAFCAA are not
meaningful.

SEGIDER=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the segment set specified by the
SEGSET operand (at TCAFCSI) cannot be located for this data set
in the FCT. SEGIDER signifies "segment set identification
error."

The field TCAFCAA contains:

• Zero for GET, SETL, or RESETL

• The address of the FWA for GETNEX'I

For RESETL, the browse operation will have been terminated.

NOTFND=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an attempt to retrieve or delete a
record based on the search argument provided is unsuccessful.
NOTFND signifies "record not fOlmd."

TCAFCAA contains:

• The address of an FIOA if the request was a GET against
an ISAM or a DAM data set

• The address of a VSWA if the request was a GET, DELETE,
SETL, RESETL, Or GETNEXT request using skip-sequential
against a VSAM data set

The application programmer should be aware of the following
considerations:

• Except for RESETL or GETNEXT, the area returned should
be released using DFHFC TYPE=RELEASE when any
interrogation of the area is complete.

Chapter 7. System Management Macro Instructions 203

• For SETL, the browse operation was not initiated.

• For RESETL or GETNEXT, the browse operation is still
active, but the position of the data set has been
destroyed. A RESETL should be issued to reestablish
the position in the data set. If move mode was specified
or implied in the SETL request initiating the browse
operation, the FWA representing the browse must be used
for the RESETL; if locate mode was specified in the SETL
request, the VSWA must be used.

CUPREC=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an attempt is rrade to add a record
to a data set in which a record with the same key already exists.
DUPREC signifies "duplicate record."

TCAFCAA contains:

• The address of an FIOA if the PUT request is against an
ISAM or DAM data set

• The address of a VSWA if the PUT request is against a
VSAM data set

The FWA will have been released. After any interrogation of
the area returned is complete, the area should be released using DFHFC
TYPE=RELEASE.

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the attempted file operation is not
provided for or allowed according to the data set entry
specification in the FeT. INVREX;;? signifies "invalid request ...

TCAFCAA contains:

• The address of the appropriate FCT data set entry if
the request is not allowed according to that FCT entry

• Zero if the request is truly invalid or if the code to
support the request has not been generated into the
CICS/VS file centrol program

IOERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an unusual event occurs during a file
operation. When an I/O event error code is not covered by one
of the CICS/VS error classes (for example, by NOSPACE or NOTFND),
it is considered to be an I/O error.

TCAFCAA contains:

• The address of an FIOA if the request is against an ISAM
or a DAM data set

• The address of a VSWA if the request is against a VSAM
data set

The application programmer should be aware of the following
condi tions:

• For an ISAM or DAM data set, the actual error codes may
be checked in the FIOA by the user's routine (FCFIOEX
for ISAM and FCFIOBEX for DAM). Because of access method

204 CICS/VS Application Programmer's Reference Manual

and operating system dependencies, checks for these
codes may have a limiting effect on the usability of an
application program in varying environments, particularly
if migration from CICS/OOS/VS to CICS/OS/VS becomes
desirable.

• For a VSAM data set, the actual error codes may be
checked in the request parameter list (RPL) located at
VSWARPL. The error code is at VSWAERRC, and the return
code is at VSWARTNC. Because of access method and
operating system dependencies, checks for these codes
may have a limiting effect on the usability of an
application program in varying environments, particularly
if migration from CICS/OOS/VS to CICS/OS/VS becomes
desirable.

• For RESETL or "GETNEXT the browse operation is still
active. A RESETL using the record identification for
the next record required should be issued to reestablish
the position in the data set. If move mode was specified
or implied in the initiating SETL request, the FWA
representing the browse operation must be used for the
RESETL; if locate mode was specified in the SETL request,
the VSWA must be used.

• For PUT, the FWA will have been released.

After any interrogation of the area returned is complete, the
area should be released using DFHFC TYPE=RELEASE.

DUPDS=symbolic address
specifies the entry label of the user-written routine to which
control is to be transferred if the record retrieved on an
indirect access is from a duplicates data set rather than from
the primary data set. The user's routine can include provisions
for processing the du};:licate record. DUPDS signifies "duplicates
data set."

TCAFCAA contains:

• The address of an FlO A if the duplicates data set is
unblocked

• The address of an FWA if the duplicates data set is
blocked

NOSPACE=symbolic address
specifies the entry label of the user-written routine to which
control is to be transferred if no direct access space is
available for adding records to a data set. This error condition
is not applicable when adding records to a fixed-length DAM data
set that does not contain keys. TCAFCAA contains the address
of an FWA containing the record to be added. This FWA may be
at a different storage location than the FWA passed with the
PUT request.

NOTOPEN=symbolic address
specifies the entry label of the user-written routine to which
control is to be transferred if the requested data set is not
open. This error condition can occur in response to any file
service request except RELEASE and ESETL, because a data base
data set can be closed dynamically at any time without regard
to outstanding activity on the data set. The contents "Of TCAFCAA
are not meaningful.

Chapter 7. System Management Macro Instructions 205

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

ENDFILE=symbolic address
specifies the entry label of the user-written routine to which
control is to be transferred if an end-of-file condition is
detected during the sequential retrieval (browse) of records in
a data set. This condition can occur only in response to a
GETNEXT request. TCAFCAA contains the address of the FWA for
the browse operation if move mode was specified or implied in
the SETL request. TCAFCAA contains the address of the VSWA that
represents the browse if locate mode was specified.

VSAM Data Set

ILLOGIC=symbolic address
specifies the entry label of the user-written routine to which
control is to be transferred if a VSAM error that does not fall
within one of the other CICS/VS response categories occurs.
TCAFCAA contains the address of a VSWA. The user's routine may
check the actual logical error codes in the RPL which is at
VSWARPL. The error code is at VSWAERRC, and the return code is
at VSWARTNC.

After an interrogation of the area returned, this area should
be freed by means of a DFHFC TYPE=FELEASE macro instruction.

DFHTD MACRO INSTRUCTION

The transient data macro instruction (DFHTD) is used to request
transient data services for an intrapartition or extrapartition data
set as explained below.

DISPOSE OF DATA

The general format of the DFHTD macro instruction to direct transient
data to a predefined symbolic destination is as follows:

r------r-------r---, I , , I
, ., DFHTD' TYPE=PUT ,
1 , , [, DESTID= symbol ic name] ,
, I , [,TDADDR=symbolic address] I
, , , [,NORESP=symbolic address] I
1 I , [,IDERROR=symbolic address] ,
, I , [,IOERROR=symbolic address] ,
, I I [,NOTOPEN=symbolic address] ,
, I , [, NOSPACE=symbolic address] I
, I I , L------L-------L-------------------------_---------------______________ ~
where:

TYPE=PUT
indicates that data is to be written to an intrapartition or
extrapartition data set.

DESTID=symbolic name
specifies the symbolic name of the destination to which the data
is to be routed and queued. This name must appear in the
destination control table (DCT). If this operand is omitted,
the symbolic name of the destination is assumed to be in TCATDDI.

206 CICS/vS Application Programmer's Reference Manual

TDADDR=symbolic name
specifies the symbolic name of the output area containing data
to be written (for intrapartition data and variable-length
extrapartition data, the first four bytes of this area must
contain the length of the record). If this operand is omitted,
the address of the output area is assumed to be in TCATDAA.

NORESP, IDERROR, IOERROR, NOTOPEN, and NOSPACE
are used to test the CICS/vS response to this request for
transient data output. These operands can be specified in this
macro instruction or in a DFHTD TYPE=CHECR macro instruction.
The meaning of each operand is discussed in detail under "Test
Response to a Request for Transient Data Services" in this
chapter.

ACQUIRE QUEUED DATA

The general format of the DFHTD macro instruction to acquire queued
data on an extrapartition or intrapartition destination is shown below.
The address of the data acquired is returned at TCATDAA.

r------r-------r---, I I I ,
I I DFHTD I TYPE=GET I
I I I [,DESTID=symbolic address] I
I I I [, QUEBUSY=symbolic address] III CICS/OS/VS only I
I I I [,NORESP=symbolic address] I
I I I [,QUEZERO=symbolic address] I
I I I [,IDERROR=symbolic address] I
I I I (,IOERROR=symbolic address] I
I I I (, NOTOPEN=symbolic address] I
I I I I L- _____ L _______ L ______________________________________ -----------------~

where:

TYPE=GET
indicates that data is to be read from an intrapartition or
extrapartition data set.

DESTID=symbolic name-
specifies the symbolic name of the destination from which queued
data is to be read. The name must appear in the destination
control table (DCT). If this operand is omitted, the symbolic
name is assumed to be in TCATDDI.

QUEBUSY=symbolic address
specifies the symbolic address of the routine to receive control
if the input request attempts to access a record on an input
intrapartition queue that has been enqueued upon for output.
If this operand is not specified, the task issuing the request
waits until the queue is no longer being used for output.

NORESP, QUEZERO, IDERROR, IOERROR, and NOTOPEN
are used to test the CICS/VS response to this request for queued
data. These operands can be specified in this macro instruction
or in a DFHTD TYPE=CHECR macro instruction. The meaning of each
operand is discussed in detail under "Test Response to a Request
for Transient Data services" in this chapter.

Chapter 7. System Management Macro Instructions 207

DFHTD

CONTROL PROCESSING OF EXTRAPARTITION DATA SET (MAGNETIC TAPE ONLY)

The general format of the DFHTD macro instruction to create a "forced
end of volume" situa tion on an extraparti tion magnetic tape data set
is as follows:

r------r-------r---,
I I I I
I I DFHTD I TYPE=FEOV I
I I I [,DESTID=symbolic name] I
, I I [,NCRESP=symbolic address] I
I I I [,IDERROR=symbolic address] I
, I I [,NOTOPEN=symbolic address] t
I I I I L--____ L _______ L ______________________________________ -----------------~

where:

TYPE=FEOV
indicates that a magnetic tape reel is to be rewound and
unloaded; output labels are to be created as required and new
input labels verified according to host operating system
forced-end-of-volume processing. CICS/VS operation is, halted,
and the next tape reel must be loaded before CICS/VS operation
is resumed.

DESTID=symbolic name
specifies the symbolic name of the destination against which
"forced end of volume" is to be applied. The name must appea r
in the destination control table (DCT). If this operand is
omitted, the symbolic name is assumed to be in TCATDDI.

NORESP, IDERROR, and NOTOPEN
are used to test the CICS/vS response to this request for
transient data services. These operands can be specified in
this macro instruction or in a DFHTD TYPE=CHECK macro
instruction. The meaning of each operand is discussed in detail
under "Test Response to a Request for Transient Data services"
in this chapter.

PURGE INTRAPARTITION DATA

The general format of the DFHTD macro instructicn to purge all data
associated with a particular intrapartition destination (queue) is as
follows:

r--~---r-------r-~---~---~--~----------~----~----------------~---------,
I I I
I I DFHTD I
I I I
I I I
I I I

TY PE= PURGE
(,DESTID=symbolic name]
[,NORESP=symbolic address]
[,IDERROR=symbolicaddress]

I I I I
L------L-------L--~--~

where:

TYPE=PURGE
indicates that all storage associated with a particular
intrapartition destination is to be deallocated.

DESTID=symbolic name
specifies the symbolic name of the destination associated with
the data tQ be purgede The name must appear in the destination

208 CICS/vS Application programmer's Reference Manual

control table (OCT). If this operand is emitted, the symbolic
name is assumed to be in TCATDDI.

NORESP and IDERROR
are used to test the CICS/vS response to this request for
transient data services. These operands can be specified in
this macro instruction or in a DFHTD TYPE=CHECK macro
instruction. The meaning of each operand is discussed in detail
under "Test Response to a Request for Transient Data Services"
in this chapter.

TEST RESPONSE TO A REQUEST FCR TRANSIENT DATA SERVICES

The general format of the DFHTD macro instruction to test the CICS/VS
response to a request for transient data services is as follows:

r------r-------r---,
I I I I
I I DFHTD I TYPE=CHECK I
, I I [, NORESP=symbolic address] I
I I I (,QUEZERO=symbolic address] I
I I I [,IDERROR=symbolic address] I
I I I [,IOERROR=symbolic address] I
I I I [,NOTOPEN=symbolic address] f
I I I [, NOSPACE=symbolic address] I
I I t I
L------L-------L---~

where:

TYPE=CHECK
indicates that the CICS/VS response to a preceding DFHTO macro
instruction is to be checked.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no error occurs during a data set
(file) operation. NORESP signifies "normal response."

QUEZERO=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed when the destination (queue) accessed
by a DFHTD TYPE=GET macro instruction is empty.

IOERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the symbolic destination referred to
by a DFHTD macro instruction cannot be found.

IOERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an input/output error occurs on a
data record and the data record in error is skipped. Transient
data returns an IOERROR indication as long as the queue can be
read; a QUEZERO resFonse is returned when the queue cannot be
read, in which case, the user may attempt a restart.

NOTOPEN=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if a destination is closed.

NOSPACE=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no more space exists on a particular

Chapter 7. System Management Macro Instructions 209

intrapartition queue or if the write request cannot be serviced.
If the NOSPACE response is received, no more data should be
written to the queue, because it may be lost.

DFHTS MACRO INSTRUCTION

The temporary storage macro instruction (DFHTS) is used to request
temporary storage services as explained below.

STORE TEMPORARY DATA AS A SINGLE UNIT OF INFORMATION

The general format of the DFHTS macro instruction to store a single
unit of information as temporary data on main or auxiliary storage
(that is, as though using a "scratch pad") is as follows:

r------r-------r---1 , I I
DFHTS I TYPE=PUT I

I [,TYPOPER=REPLACE] I
I (,DATAID=name] I I [,TSDADDR={~~bOliC addreSS}] I
I [,STORFAC={~~~LIARY}] ,

I [,COND=YES] ,
[,NOSPACE=symbolic address

I [,NORESP=symbolic address] I
I [,IOERROR=symbolic address] I
I [,INVREQ=symbolic address] I
I [,ERROR=symbolic address] I
I I

L------L-------L---~

where:

TYPE=PUT
indicates that a single unit of information is to be placed in
temporary storage.

TYPOPER=REPLACE
indicates that the current data is to be released and replaced
with the data provided. If current data does not exist (DATAID
cannot be found), the data provided is placed in temporary
storage as in a normal PUT without TYPOPEF=REPLACE specified.

DATAID=name
specifies the unique alphameric name, up to eight characters in
length, to be assigned to the temporary data to be stored. If
this operand is omitted, the name is assumed to be in TCATSDI.

Note: The application program should not construct a DATAID
beginning with any of the hexadecimal characters FA through FF.
Use of these characters for this purpose is reserved for CICS/VS.

TSDAPDR=
specifies the symbolic address of the data portion (including
the LL~~ field) of the area in which the temporary data is
stored.

symbolic address
is the symbolic address of the data portion of the storage
area that contains the temporary data.

210 CICS/VS Application Programmer's Reference Manual

YES
indicates that the symbolic address of the data portion of
the storage area has been placed in TCATSDA by the
application programmer.

If this operand is omitted, the appropriate symbolic address is
assumed to be in TCATSDA.

STORFAC=
specifies the type of storage to be used for the temporary data.

AUXILIARY

MAIN

indicates that the data is to be placed in auxiliary storage
on a direct access storage device.

indicates that the data is to be placed in main storage.

If this operand is omitted, AUXILIARY is assumed.

COND=YES
indicates that control is to be returned to the application
program when the request cannot be satisfied immediately because
sufficient space is not available on the temporary storage data
set. If this operand is omitted, the requesting task is
suspended when no s~aoe is available and is resumed when the
space becomes available. Space becomes available as it is
released by other tasks in the system.

NOSPACE, NORESP, IOERROR, INVREQ, and ERROR
are used to test the CICS/VS response to this request for storage
of temporary data. These operands can be specified in this
macro instruction or in a DFHTS TYPE=CHECK macro instruction.
The meaning of each operand is discussed in detail under "Test
Response to a Request for Temporary storage Services" in this
chapter.

STORE DATA TO A TEMPORARY STORAGE MESSAGE SET

The general format of the DFHTS macro instruction to cause an entry
to be written to a temporary storage message set is as follows:

r------r-------r---,
DFHTS TYPE=PUTQ

(,TYPOPER=REPLACE]
[,DATAID=name]
[,TSDADDR={~~bOliC address}]

[,STORFAC={~~LIARY}J

[,ENrRY= {~es}]
[,COND=YES]
[,NOSPACE=sy.rnbolic address]
[,NORESP=symbolic address]
[,IOERROR=sy.rnbolic address]
[,INVREQ=symbolic address]
[,ENERROR=symbolic address]
[,ERROR=symbolic address]

L------L-------L--------------------------------______ -----------------J

Chapter 7. system Management Macro Instructions 211

DFHTS

where:

TYPE=PUTQ
indicates that a logical record is to be written to a temporary
storage message set.

TYPOPER=REPLACE
indicates that the specified ENTRY within the message set is to
be released and replaced with the data provided. Whenever
REPLACE is specified, the ENTRY operand must also be coded. If
the message set does not exist (DATAID cannot be found), the
data provided is placed in temporary storage as in a normal PUTQ
without TYPOPER=REPLACE specified.

DATAID=name
specifies the unique alphameric name, up to eight characters in
length, of the temporary storage message set to which this record
is to be written. If this operand is omitted, the name is
assumed to be in TCATSDI.

Note: The applicaticn program should not construct a DATAID
beginning with any of the hexadecimal characters FA through FF.
Use of these characters for this purpose is reserved for CICS/vS.

TSDADDR=
specifies the symbolic address of the data ~ortion (including
the LL~~ field) of the area in which the temporary data is
stored.

symbolic address

YES

is the symbolic address of the data portion of the storage
area that contains the temporary data.

indicates that the symbolic address of the data portion of
the storage area has been placed in TCATSDA by the
application programmer.

If this operand is omitted, the appropriate symbolic address is
assumed to be in TCATSDA.

STORFAC=

ENTRY=

specifies the type of storage used for the temporary storage
message set.

AUXILIARY

MAIN

indicates that the temporary storage message set is on
auxiliary storage on a direct access storage device.

indicates that the temporary storage rressage set is in main
storage.

If this operand is omitted, AUXILIARY is assumed.

specifies the number, relative to one, of the logical record to
be updated from the message set.

n
is a decimal numeral to be taken as the relative number of
the logical record to be updated. This number may be the
number of any entry that has been written to the temporary
storage message set.

212 CICS/VS Application Progran~er's Reference Manual

YES
indicates that the number of the logical record to be updated
is in TCATSRN, a two-byte binary field.

The ENTRY operand must always be specified whenever
TYPOPER=REPLACE is specified and vice versa.

COND=YES
indicates that control is to be returned to the application
program when the request cannot be satisfied immediately because
sufficient space is not available on the temporary storage data
set. If this operand is omitted, the requesting task is
suspended when no space is available and is resumed when the
space becomes available. Space becomes available as it is
released by other tasks in the system.

NOSPACE, NORESP, IOERROR, INVREQ, ENERROR, and ERRCR
are used to test the CICS/vS response to this request for storage
of temporary data. These operands can be specified in this
macro instruction or in a DFHTS TYPE=CHECK macro instruction.
The meaning of each operand is discussed in detail under "Test
Response to a Request for Temporary Storage services" in this
chapter.

RETRIEVE A SINGLE UNIT OF TEMPORARY DATA

The general format of the DFHTS macro instruction to retrieve a
single unit of temporary data is as follows:

r------r-------r---,
I
I DFHTS
I
I

I
I

I
I
I
I
I

TYPE=GET
[, DATAID=name]
[, TSDADDR={ ;~~bCliC address}]

[,RELEASE={~S}J
[,NORESP=symbolic address]
[,IDERROR=symbolic address]
[,IOERROR=symbolic address]
[,INVREQ=symbolic address]
[,ERROR=symbolic address]

L ______ L _______ L _______________ ~---------------------------------------~

where:

TYPE=GET
indicates that a single unit of information is to be retrieved
from temporary storage.

DATAID=name
specifies the name assigned to the temporary data at the time
it was placed in temporary storage. If this operand is omitted,
the name is assumed to be in TCATSDI.

TSDADDR=
indicates that the application frogrammer has selected a storage
area in which the temfOrary data is to be placed and identifies
it.

symbolic address
is the symbolic address of the application-programmer
selected storage area in which the data is to be placed.

Chapter 7. System Management Macro Instructions 213

YES
indicates that the symbolic address of the storage area to
be used for the retrieved data has been placed in TCATSDA
by the application programmer.

If this operand is omitted, temporary storage control obtains
a storage area, moves temporary data into the area, and returns
the address of the data moved into the area (beginning with the
LL~~ field) in TCATSDA to the application program. To determine
the address of the storage area, a value of 8 should be
subtracted from the address in TCATSDA.

RELEASE=
specifies the disposition of the temporary data following the
move operation.

YES

NO

the data and storage area used for the data are to be
released after this operation.

the data is to be retained, available for subsequent similar
reference.

NORESP, IDERROR, IOERROR, INVREQ, and ERROR
are used to test the CICS/VS response to this request for
acquisition of temporary data. These operands can be specified
in this macro instruction or in a DFHTS TYPE=CHECK macro
instruction. The meaning of each operand is discussed in detail
under "Test Response to a Request for Temporary Storage services"
in this chapter.

RETRIEVE DATA FROM A TEMPORARY STORAGE MESSAGE SET

The general format of the DFHTS macro instruction to retrieve a
logical record from a temporary storage message set is as follows:

r------r-------r---,
I
I DFHTS
I
I
1
I ,
I
I
I
I
I
I
I

TYPE=GETQ
[,DATAID=name]
[,TSDADDR={~~bOliC addreSS}]

[,ENrRY= {~s}]
[,NORESP=symbolic address]
[,IDERROR=symbolic address]
[,IOERROR=symbolic address]
[,INVREQ=symbolic address]
(,ENERROR=symbolic address]
(,ERROR=symbolic address]

L------L-------L---~

where:

TYPE=GEl'Q
indicates that a logical record is to be retrieved from a
temporary storage message set.

DATAID=name
specifies the name assigned to the temporary storage message
set from which the record is to be retrieved. If this operand
is omitted, the name is assumed to be in TCATSDI.

214 CICS/vS Application progra~merts Reference Manual

TSDADDR=

ENTRY=

indicates that the application programmer has selected a storage
area for the logical record to be retrieved and identifies it.

symbolic a6dress

YES

is the symbolic address of the application programmer
selected storage area in which the record is to be placed.

indicates that the symbolic address of the storage area into
which the logical record is to be moved has been placed in
TCATSDA by the application programmer.

If this operand is omitted, temporary storage control is
responsible for selection of the storage area for the logical
record to be retrieved. One logical record is moved from the
temporary storage message set to this area. The address of the
data moved. to the area (beginning with the LLiJJ!S field) is
returned in TCATSDA to the application program. To determine
the address of the storage area, a value of 8 should be
subtracted from the address in TCATSDA.

specifies the number, relative to one, of the logical record to
be retrieved from the message set.

n

YES

is a decimal numeral to be taken as the relative number of
the logical record to be retrieved. This number may be the
number of any entry that has been written to the temporary
storage message set.

indicates that the number (in binary) of the logical record
to be retrieved is in TCATSRN, a two-byte field.

If this operand is omitted, CICS/VS retrieves (1) the first
logical record from the message set, for the first retrieval
request, or (2) the next sequential logical record following
the last-retrieved record, for other than the first request.
In the latter case, the relative record number is returned in
TCATSRN.

NORESP, IDERROR, IOERROR, INVREQ, ENERROR, and ERROR
are used to test the CICS/vS response to this request for
temporary data. These operands can be specified in this macro
instruction or in a DFHTS TYPE=CHECK macro instruction. The
meaning of each operand is discussed under "Test Response to a
Request for Temporary Storage services" in this chapter.

Chapter 7. System Management Macro Instructions 215

RELEASE A SINGLE UNIT OF TEMFORARY DATA

The general format of the DFHTS macro instruction to release a single
unit of data placed in temporary storage by means of a DFHTS TYPE=PUT
macro instruction is as follows:

r------r-------r---,
I I I I
I I DFHTS I TYPE=RELEASE I
I I I [,DATAID=nam~] I
I I I [,NORESP=syrrbolic address] I
, I I [,IDERROR=symbolic address] I
I I I [,INVREQ=symbolic address] I
I I I [,ERROR=symbolic address] I
I I I I L- _____ L _______ L ______________________________________ -------~---------J

where:

TYPE=RELEASE
indicates that a single unit of temporary data is to be released.

DATAID=n arne
specifies the name assigned to the temporary data at the time
it was placed in terrporary storage. If this operand is omitted,
the name is assumed to be in TCATSDI.

NORESP, IDERROR, INVREQ, and ERROR
are used to test the CICS/vS response to this request for
temporary storage services. These operands can be specified in
this macro instruction or in a DFHTS TYPE=CHECK macro
instruction. The meaning of each operand is discussed in detail
under "Test Response to a Request for Temporary Storage Services"
in this chapter.

PURGE A TEMPORARY STORAGE MESSAGE SET

The general format of the DFHTS macro instruction to release data
saved as a temporary storage message set (that is, in response to DFHTS
TYPE=PUTQ macro instructions) is as follows:

r------r-------r---,
I I I I
I I DFHTS I TYPE=PURGE I
I I I [, DATAID=name] I
I I I [, NORESP=symbolic address] I
I , I [,IDERROR=symbolic address] I
I I I [, INVREQ=symbolic address] I
I I I [,ERROR=symbolic address] I
I I I I
L------L-------L---J
where:

TYPE=PURGE
indicates that a temporary storage message set is to be released.

DATAID=name
specifies the name assigned to the temporary storage message
set and used when logical records were added to the set. If
this operand is omitted, the name is assumed to be in TCATSDI.

216 CICS/vS Application Programmer's Reference Manual

NORESP, IDERROR, INVREQ, and ERRCR
are used to test the CICS/VS response to this request for
temporary storage services. These operands can be specified in
this macro instruction or in a DFHTS TYPE=CHECK macro
instruction. The meaning of each operand is discussed in detail
under "Test Response to a Request for Temporary storage services"
(below).

TEST RESPONSE TO A REQUEST FeR TEMPORARY STORAGE SERVICES

The general format of the DFHTS macro instruction to test the CICS/VS
response to a request for temporary storage services is as follows:

r------r-------r---,
I I I I
I I DFHTS I TYPE=CHECK I
I , I [,NOSPACE=symbolic address] I
I I I [,NORESP=symbolic address] t
I I I [,IDERROR=symbolic address] I
I I I (,IOERROR=symbolic address] I
ttl (,INVREQ=symbolic address] I
I I I [,ENERROR=symbolic address] I
I I I [,ERROR=symbolic address] I
I I I I L- _____ L _______ L ______________________________________ -----------------~

where:

TYPE=CHECK
indicates that the CICS/VS response to a preceding DFHTS macro
instruction is to be checked.

NOSPACE=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed when insufficient space is available on
the temporary storage data set to contain the data in a PUT or
PUTQ request. The user-written NOSPACE routine is passed control
only if COND=YES is also specified in the PUT or PUTQ request.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no errors occur during temporary
storage processing. NORESP signifies "normal response."

IDERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the symbolic destination
identification referred to by a GET, GETQ, RELEASE, or PURGE
request cannot be found in either main storage or auxiliary
storage.

IOERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an unrecoverable input/output error
occurs.

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if (1) a PUT or PUTQ request refers to
data whose length is equal to zero or greater than the control
interval size of the auxiliary data set minus 32, or (2) the
request is otherwise determined to be invalid.

Chapter 7. System Management Macro Instructions 217

ENERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the entry number specified or implied
is invalid (that is, not within the limits of the message set).

ERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an error occurs and the corresponding
specific error routine operand (for example, IDERROR) has not
been specified.

DFHSC MACRO INSTRUCTION

The storage control macro instruction (DFHSC) is used to obtain and
initialize main storage, or to release main storage, as explained below.

OBTAIN AND INITIALIZE MAIN STORAGE

The general format of the DFHSC macro instruction to obtain main
storage and initialize the area obtained, if desired, is as follows:

r------r-------r---,
I

DFHSC I
I

I
I
I

I
I

TYPE=GETMAI N
tINITIMG={~~ber}J
[,NUMBYTE=number]

r
COND={YES }] (YES,symbolic address)

(NO, symbolic address)
'CLASS={TERMINAL or TERMl

USER
TRANSDATA or TD
TEMPSTRG or TS

L------L-------L---------------------------------------________________ ~
where:

TYPE=GETMAIN
indicates that a main storage area is to be acquired.

INITIMG=
is an optional operand that can be used to initialize the
acquired storage area to the bit configuration desired.

number

YES

is a two-digit hexadecimal numeral indicating the bit
configuration desired.

indicates that the desired bit configuration is in TCASCIB.

NUMBYTE= number
is a decimal numeral up to 65520 (65515 when CLASS=TERMINAL)
indicating the size, in bytes, of the storage area being
requested; if omitted, the number of bytes is assumed to be
stored in binary form in TCASCNB. A zero data length is not
allowed for a DFHSC TYPE=GETMAIN macro instruction.

Note: Depending upon the class of storage specified (see the
CLASS operand below), CICS/VS storage management automatically
increments the amount of storage requested to allow for the

218 CICS/VS Application Programmer's Reference Manual

COND=

CLASS=

storage accounting field and other control information. For
CLASS=USER and CLASS=TERMINAL (TIOA) storage, the exact number
of bytes required should be specified. For CLASS=TRANSDATA
(TDIA and TDOA) and CLASS=TEMPSTRG (TSIOA) storage, the amount
requested must include four additional bytes to allow for a
portion of CICS/VS control information, namely, the length (LL~~)
field at the beginning of the area.

is an optional.operand that ensures that control is returned to
the application program, whether or not the requested storage
area is acquired.

YES
indicates that control is to be given to the instruction
immediately following the macro expansion for the DFHSC
TYPE=GETMAIN macro instruction in the application program.
To determine whether the requested storage area was acquired,
the application program must examine TCASCSA, which is set
to binary zeros if the request cannot be satisfied.

(YES, symbolic address)
causes a branch to the location specified by the symbolic
address if the requested storage was acquired; otherwise,
control is returned to the instruction immediately follOWing
the macro expansion for the OFHSC TYPE=GETMAIN macro
instruction in the application program.

(NO, symbolic address)
causes a branch to the location specified by the symbolic
address if the requested storage was not acquired; otherwise,
control is returned to the instruction immediately follOWing
the macro expansion for this macro instruction in the
application program.

specifies the class of the storage to be acquired.

TERMINAL or TERM
indicates that the storage area is to be used as a terminal
input/output area (TIOA), which is chained to the terminal
control table terminal entry (TCTTE). All requests for
storage related to terminal input/output must specify this
class.

USER
indicates that the storage area is to be associated with
the application program and used by that program. This area
is chained to the TCA associated with the requesting task.

TRANS DATA or TD
indicates that the storage area is to be used for transient
data record storage (a TDIA or TOOA). This area is chained
to the TCA associated with the requesting task and is used
by transient data control.

TEMPSTRG or TS
indicates that the storage area is to be used as a temporary
storage input/output area (TSIOA). This area is chained to
the TCA associated with the requesting task and is used by
temporary storage control.

Nqte: USER, TRANSDATA, and TEMPSTRG specifications have
essentially the same effect. The advantage of using
CLASS=TRANSDATA or CLASS=TEMPSTRG when either is appropriate is

DFHSC

Chapter 7. System Management Macro Instructions 219

page of SH20-9003-2
Revised May 22,1975
ay TNL SN20-9086

that the specification serves as documentation both in the
program and in the class code of the storage accounting field
for the area.

RELEASE MAIN STORAGE

The general foxmat of the DFHSC macro instruction to release main
storage is a s follows:

r------r-------r~-----------------~------------------------------------,

, I I ' I I DFHSC TYPE=FREEMAIN I
I I I [,RELEASE=ALL] I
I I ,
L----~-L-----~-L-~~~~--~--~----~--~-~-------~--------------------------~

where:

TYPE=FREEMAIN
indicates that previously acquired main storage is to be
released.

RELEASE=ALL
indicates that all main storage acquired by means of DFHSC
TYPE=GETMAIN,CLASS=TERMINAL macro instructions is to be released.

The use of the RELEASE=ALL operand is restricted during basic
mapping support (BMS) output operations that have an OUT
disposition; this restriction preserves the terminal storage
used by BMS. Once a DFHBMS macro instruction with an OUT
disposition has been issued, the application program muSt not
issue a DFHSC TYPE=FREEMAIN,RELEASE=ALL macro instruction until
either a DFHBMS TYPE=PAGEOUT or DFHBMS TYPE=PURGE macro
instruction has been issued.

If this operand is not specified, only one storage area can be
released by a DFHSC TYPE=FREEMAIN macro instruction; the address
of that area must be in TCASCSA and must be the main storage
address returned as a result of a previously issued DFHSC
TYPE=GET~AIN macro instruction.

DFHPC MACRO INSTRUCTION

The program control macro instruction (DFHPC) provides fOr program
communication within cxes/vs as explained below.

PASS PROGRAM CONTROL ANTICIPATING RETURN

The general format of the DFHPC macro ins.truction to pass program
control to anapplic.ation program at the next lower logical level is
as follows:

r---~--r---~---r-~---~----~--------------------~-------------------~--~ I , f ,
, I DFHPC TYPE=LINK I
I I [,PROGRAM=name] I
I [, COND=YES J I
" [,NORESP=symbolic address]
" [, PGMIDER=symbolic address] I
I I ,
L------L-___ - __ L--__ ---_ .. ----.. -----.1

220 CICS/vS Application Programmer's Reference Manual

where:

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

TYPE=LINK
indicates that program control is to be passed to an application
program at the next lower logical level and subsequently returned
to the application program issuing this macro instruction.

PROGRAM=name
is the identification of the program to which control is to be
passed; if omitted, the identification is assumed to be in
TCAPCPI. TCAPCPI is an eight-character field; identifications
less than eight characters must be padded right with blanks.

COND=YES
indicates that control is to be returned to the program issuing
this macro instruction if the requested program cannot be found
in the PPT. If this operand is omitted and the requested program
cannot be found or is disabled, the transaction is abnormally
terminated with an APCT ABEND code.

NORESP and PGMIDER
are used to test the CICS/VS response to this request for program
management services. These operands can be specified in this
macro instruction or in a DFHPC TYPE=CHECK macro instruction.
The meaning of each operand is discussed in detail under "Test
Response to a Request for Program Services."

TRANSFER PROGRAM CONTROL

The general format of the DFHPC macro instruction to pass (transfer)
program control to an application program at the same logical level is
as follows:

r------r-------r---,
I I DFHPC I TYPE= XCTL ,
, ~, I [, PROGRAM= name] I
, 1 I L--- ___ L _______ L _______________________________________ ----------------J

where:

TYPE=XCTL
indicates that program control is to be transferred to an
application program at the same logical level and that no
subsequent return to the program requesting the transfer is
required; the program from which this request is issued is
released.

PROGRAM=name
is the identification of the program to which control is to be
passed; if omitted, the identification is assumed to be in
TCAPCPI. TCAPCPI is an eight-character field; id·entifications
less than eight characters must be padded right with blanks.
If the requested program cannot be found or is disabled, the
task is abnormally terminated with an APCT ABEND code.

Chapter 1. system Management Macro Instructions 221

LOAD A PROGRAM

The general format of the DFHPC macro instruction to load a program,
table, or map from its location in a CICS/VS program library is as
follows:

r------r-------r---,
1 , I I
, DFHPC I TYPE=LOAD I
1 I I [.,PROGRAM=name] ,
I I '[, LOADLST=OO] I
I I '[,COND=YES] I
I I I [, NORESP=symbolic address] ,
, , I [,PGMIDER=symbolic address] I
, I I I
L------L-------L---~

where:

TYPE=LOAD
indicates that a program, table, or map is to be loaded into
main storage from a CICH/VS program library.

PROGRAM=name
is the identification of the program, table, or map to be loaded;
if omitted, the identification is assumed to be in TCAPCPI.
TCAPCPI is an eight-character field; identifications less than
eight characters must be padded right with blanks.

LOADLST=NO
indicates that the loaded module is not to be deleted when the
task issuing the load request is terminated; that ts, the loaded
module remains resident until deleted at the request of this
task or of another task.

COND=YES
indicates that control is to be returned to the program issuing
this macro instruction if the requested program cannot be found
in the PPT or is disabled. If this operand is omitted and the
requested program cannot be found or is disabled, the task is
abnormally terminated with an APCT ABEND code.

NORESP and PGMIDER
are used to test the CICS/vS response to this request for program
management services. These operands ca·n be specified in this
macro instruction or in a DFHPC TYPE=CHECK macro instruction.
The meaning of each operand is discussed in detail under "Test
Response to a Request for Program Services."

RETURN PROGRAM CONTROL

The general format of the DFHPC macro instruction to return control
from an application program to the program at the next higher logical
le~el is as follows:

r------r-------r---,
I I, I I
, , DFHPC I TYPE=RETURN I 'I [, TRANSID= transact ion code] ,
, I L_---__ L _______ L ______________________________________ -----------------~

where:

222 CICS/vS Application Programmer's Reference Manual

TYPE=RETURN
indicates that program control is to be returned to a program
at the next higher logical level.

TRANSID=transaction code
is the transaction identification to be used with the next input
message entered frorr: the terminal with which this requesting
task has been associated prior to this request for return of
control.

DELETE A LOADED PROGRAM

The general format of the DFHPC macro instruction to delete a
previously loaded program is as follows:

r------r-------r---,
1 1 1 I
, I DFHPC I TYPE=DELETE I
, I I (, PROGRAM= name] ,
, , , 1
L------L-------L-----------------------.-------------------------------J
where:

TYPE=DELETE
indicates that a previously loaded program, table, or map is no
longer required.

PROGRAM=name
is the identification of the program to be deleted; if omitted,
the identification is assumed to be in TCAPCPI. TCAPCPI is an
eight-character field; identifications less than eight characters
must be padded right with blanks.

ABNORMALLY TERMINATE A TRANSACTION

The general format of the DFHPC macro instruction to abnormally
terminate a transaction (task) is as follows:

r------r-------r---, , I I ,
, , DFHPC I TYPE=ABEND ,
I I "ABCODE= value ,
, " YES I
, , '(,CANCEL=YES] ,
I , , ,
L------ L------- L---------------------------------.----------------------J
where:

TYPE=ABEND

ABCODE

indicates that a transaction is to be terroinated abnormally.

indicates that main storage related to the transaction is to be
dumped and provides a four-character abnormal termination code
to identify the output du~p.

value
is a combination of four alphabetic, nurreric, and/or special
characters to be printed as the abnormal termination code.

Chapter 7. System. Management Macro Instructions 223

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

YES
indicates that the abnormal termination code has been placed
in TCAPCAC.

Note: If a dump is requested, any information in the common
ccntrol area of the application program communication section
of the TCA is likely to be different in the dump because of the
issuance of this macro instruction. If it is necessary to look
at information in this area, it should be saved elsewhere prior
to issuing this macro instruction.

CANCEL=YES
indicates that all exits established by DFHPC TYPE=SETXIT macro
instructions at any level in the task are to be canceled; in
effect, they are ignored.

ACTIVATE OR CANCEL AN EXIT FOR ABNORMAL TERMINATION PROCESSING

The general format of the DFHPC macro instruction to activate or
cancel an exit to a user-written routine or program to be executed u~on
abnormal termination of a transaction (task) is as follows:

r-----r-------r---, , , , I
t I DFHPC, TYPE=SETXIT ,
, , ',PROGRAM: name ,ROUTINE= symbolic address I
I I I YES YES I

. I f I (,NORESP=symbolic address] I
I I I (, PGMIDER= symbclic address] I
1 I I t L------L-------L-------------------___________________ -----------------J
where:

TYPE=SETXIT
indicates that a user exit is to be

1. Activated if the PROGRAM or ROUTINE operand is specified in
this DFHPC TYPE=SETXIT macro instruction

2. Canceled if no additional operands are specified in this
DFHPC TYPE=SETXIT macro instruction

PROGRAM=
identifies the program to receive control if abnormal termination
occurs.

name

YES

ROUTINE=

is the program name as specified in the processing program
table (PPT).

indicates that the name of the program to receive control
has been placed in TCAPCPI. TCAPCPI is an eight-character
field; identifications less than eight characters must be
padded right with blanks.

identifies the routine to receive control if abnormal termination
occurs. (This parameter ap~lies to Assembler and COBOL programs
only.)

symbolic address
is the symbolic address of the routine to receive control.

224 CICS/vS Application Programmer's Reference Manual

YES
indicates that the address of the program to receive control
has been placed in TCAPCERA.

NORESP and PGMIDER
are used to test the CICS/vS response to this request for program
management services. These operands can be spe~ified in this
macro instruction or in a DFHPC TYPE=CHECK macro instruction.
The meaning of each operand is discussed in detail under "Test
Response to a Request for Program services."

REACTIVATE AN EXIT FOR ABNORMAL TERMINATION PROCESSING

The general format of the DFHPC macro instruction to reactivate an
exit to a user-written routine or program to be executed upon abnormal
termination of a transaction (task) is as follows:

r------r-------r----------------~--------------------------------------,
I I I I
I I DFHPC I TYPE=RESETXIT I
I I I I L---_--L---____ L ______________________________________ -----------------~
where:

TYPE=RESEl'XIT
indicates that an exit to user-written abnormal termination
processing is to be reactivated after a preceding application
program cancelation or CICS/VS cancelation upon execution of
the exit routine.

CONVERT SYMBOLIC LABEL TO AD£RESS

The general format of the DFHPC macro instruction to convert a
symbolic label appearing in an American National Standard CANS) COBOL
program to an address is as follows:

r------r-------r---,
I I I I
I I DFHPC I TYPE= COBA [DR I
I I I ,LABEL=syrnbolic label t
I I I
L------L-------L---~

where:

TYPE=COBADDR
indicates that the address of the location represented by a
symbolic label is to be returned in TCAPCLA to the application
program.

LABEL=symbolic label
is the symbolic label that represents the location in the ANS
COBOL program for which the address is required.

Chapter 7. System Management Macro Instructions 225

TEST RESPONSE TO A REQUEST FOR PROGRAM SERVICES

The general format of the DFHPC macro instruction to test the CICS~VS
response to a request for ~rogram management services is as follows:

r------r-------r---,
I I I I
I I DFHPC I TYPE=CHECK I
I I I [,NORESP=symbolic address] J
I I I (, PGMIDEF=symbolic address] I
I I I I
L------L-------L---~

where:

TYPE=CHECK
indicates that the CICS/VS response to a preceding DFHPC macro
instruction is to be checked.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no errors occur during program control
processing. NORESP signifies "normal response."

PGMIDER=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the requested program cannot be found
in the PPT or is disabled. This operand is applicable to a
DFHPC TYPE=LINK or TYPE=LOAD macro instruction in which the COND
operand is specified, and to a DFHPC TYPE=SETXIT macro
instruction in which the PROGRAM operand is specified.

DFHIC MACRO INSTRUCTION

The interval control macro instruction (DFHIC) is used to request
time services as explained below.

TIME-OF-DAY UPDATING

The general format of the DFHIC macro instruction to request updating
of CICS/VS-maintained time-of-day values is as follows:

r------r-------r---,
I I I t
I I DFHIC I TYPE=GETIME I
I I I r,FORM={EINARY}] I
, I I [PACKED I
I I I r,TIMADR={Symbolic address}] I
I I I [YES I
I I I [,NORESP=symbolic address] I
I I I [, INVREQ=symbolic address]
I I I [,ERROR=symbolic address] I
I I I t
L------L-------L---~

where:

TYPE =GET IME
indicates that one or both time-of-day values maintained by
CICS/VS are to be updated to the current clock time.

226 CICS/vS Application Programmer's Reference Manual

FORM=
indicates which time-of-day representation is desired.

BINARY
specifies that a binary representation of time of day (a
four-byte positive value in hundredths of a second) is to
be updated and retained in CSACTODB.

PACKED
specifies that the binary representation of time of day
(described above) and the packed decimal representation (a
four-byte positive value of the form HHMMSSt+ where seconds
are truncated to tenths of a second) are to be updated and
retained in CSACTODB and CSATODP respectively.

~: ANS COBOL and PL/I programmers should be aware that
the zone portion of the lew-order byte of this positive
number contains hexadecimal F rather than C or D.

TIMADR=
is used when the time of day is to be returned in an application
programmer-selected four-byte field. For FORM=BINARY, the binary
representation is returned; for FORM=PACKED, the packed decimal
representation is returned.

symbolic address

YES

is the symbolic address of the field in which the time of
day is to be made available to the application program.

indicates that the symbolic address of the field for the
time of day is in TCAICDA.

If this operand is omitted, the fields of the CSA are updated,
but the time of day is not placed in another field for reference
by the application progra~.

NORESP, INVREQ, and ERROR
are used to test the CICS/vS response to this request for
updating of CICS/VS-maintained time-of-day values. These
operands can be specified in this macro instruction or in a
DFHIC TYPE=CHECK macro instruction. The meaning of each operand
is discussed in detail under "Test Response to a Request for
Time Services" in this chapter.

Chapter 7. System Management Macro Instructions 227

DFHIC

Page'of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

DELAY PROCESSING OF A TASK

The general format of the DFHIC macro instruction to delay processing
of a task until a specified time occurs is as follows:

r------r-------r---, , I I
, t DFHIC TYPE=WAIT I
: : [, INTRVAL= {~~~eric ValUe}] r~TIME= {~~~eric ValUe}] 1

I f ['REQID={~~~e . 1] ,
'I 'prefl.x' f
, , (,NORESP=symbolic address] I
I I [,INVREQ=symbolic address] I
1 I (,EXPIRD=symbolic address] I
I 1 [,ERROR=symbolic address] I
, I I
L------L-------L---~

where:

TYPE=WAIT
indicates that task synchronization, in the form of delay until
a specified time occurs, is desired.

INTRVAL=

TIME=

specifies the interval of time that a task is to be suspended.

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59. This numeric value is added to the
current clock time by CICS/VS when the DFHIC TYPE=WAIT
instruction is executed to calculate the time of day (clock
time) when processing of the task is to be resumed.

indicates that the interval of time (in packed decimal form,
HHMMSS+) has been placed in TCAICRT.

If this operand is specified, the TIME operand cannot be
specified.

specifies the time of day at which processing of the task is to
be resumed. If the specified time of day is the same as the
current clock time or up to and including six hours preceding
the current clock time, the specified time is considered to have
occurred and the task is not delayed.

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59.

indicates that the time of day (in packed decimal form,
HHMMSS+) has been placed in TCAICRT.

228 CICS/vS Application Programmer's Reference Manual

REQID=

Page of SH2Q-9003·2
Revised May 22, 1975
By TNL SN2Q-9086

If this operand is specified, the INTRVAL operand cannot be
speci fied.

is an optional operand used to assign a unique request
identification to this request, as a means of symbolically
identifying the request. It should be used if the application
programmer wishes to provide another task with the capability
of canceling an unexpired WAIT request (see the discussion of
DFHIC TYPE=CANCEL). The data is put in temporary storage with
this identification.

name

YES

is a unique identifier, up to eight characters in length,
selected for this request by the application programmer.

indicates that an eight-character request identification
has been placed in TCAICQID by the application program.

'prefix'
is a two-character (including blanks) prefix to be affixed
to the Request Identification generated by CICS/vS. If
REQID=" is specified, the prefix is assumed to be in the
two-byte field TCAICQPX.

If this operand is omitted, CICS/VS generates a unique request
identification in the form "DFHNNNNN"i the prefix is DF.

NORESP, INVREQ, EXPIRD, and ERROR
are used to test the CICS/vS response to this request for task
synchronization. These operands can be specified in this macro
instruction or in a DFHIC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for Time Services" in this chapter.

Chapter 1. system Management Macro Instructions 229

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN2G-9086

SIGNAL EXPIRATION OF A SPECIFIED TIME

The general format of the DFHIC macro instruction to request that
CICS/VS indicate when a specified time has expired is as follows:

r------r-------r---,
I I

DFHIC I TYPE=POST I
, ~INTRVAL={numeric.vaIUe}Jlr,TIME={nUmeric ValUe}] I
1 L YES [. YES ,

I FREQID={~:e. }] ,

I L ,~~~' t
I [,NORESP=symbolic address] ,
I (,INVREQ=syrobolic address] ,
I [,EXPIRD=symbolic address] ,
1 [,ERROR=symbolic address] ,
, 1

L------L-------L---J
Where:

TYPE=POST
indicates that ctCS/VS is to make a four-byte timer event control
area available to the application program for testing. The area
is initialized to binary zeros, and its address is returned in
TCAICTEC to the application program. This area is available to
the application program for the duration of the task. This area
is overridden if the application program issues another DFHIC
request of the following types: POST, WAIT, PUT, or INITIATE.

INTRVAL=

TIME=

specifies the interval of time that is to elapse before CICS/VS
posti ng is to occur.

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59. This numeric value is added to the
current clock time by CICS/VS when the DFHIC TYPE=POST
instruction is executed to calculate the time of day (clock
time) when posting is to occur.

indicates that the interval of time (in packed decimal form,
HHMMSS+) ,has been placed in TCAICRT.

If this operand is specified, the TIME operand cannot be
specified.

specifies the time of day at which posting is to occur. If the
specified time of day is the same as the current clock time or
up to and including six hours preceding the current clock time,
the specified time is considered to have occurred and posting
occurs immediately.

numeric value
is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59.

230 CICS/vS Application programmer's Reference Manual

REQID=

YES

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

indicates that the time of day (in packed decimal form,
HHMMSS+) has been placed in TCAICRT.

If this operand is specified, the INTRVAL operand cannot be
specified.

is an optional operand used to assign a unique request
identification to this request, as a means of symbolically
identifying the request.

name

YES

is a unique identifier, up to eight characters in length,
selected for this request by the application programmer.

indicates that a unique eight-character request
identification has been placed in TCAICQID by the application
program.

, prefix'
is a two-character (including blanks) prefix to be affixed
to the Request Identification generated by CICS/vS. If
REQID=' , is specified, the prefix is assumed to be in the
two-byte field TCAICQPX.

If this operand is omitted, CICS/VS generates a unique request
identification, which is returned in TCAICQID to the application
program; the prefix is DF.

NORESP, INVREQ, EXPIRD, and ERROR
are used to test the CICS/vS response to this request for
posting. These operands can be specified in this macro
instruction or in a DFHIC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for Time Services" in this chapter.

INITIATE A TASK

The general format of the DFHIC macro instruction to request that
CICS/vS initiate a task at ·some future time is as follows:

r------r-------r---, , I 1 I I DFBIC I
1 I I , , I

I I I
, , I
1 , I
, I ,

I , I

TYPE=INITIATE
fINTRVAL={~~eriC value}]lrTIME={~:eric ValUe}]

FREQID={~:e. }]
L 'pref1x'
[,TRANSID=name]
f TRMIDNT= {~:e}]
[,NORESP=symbolic address)
[,INVREQ=symbolic address]
[,TRNIDER=symbolic address]
[,TRMIDER=symbolic address]
[,ERROR=symbolic address]

1.------L------- L---~
where:

Chapter 7. Syst~ Management Macro Instructions 231

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

TYPE=INITIATE
indicates that CICS/vS is to initiate a task at some future
time.

INTRVAL=

TIME=

REQID=

specifies the interval of time that is to elapse before CICS/VS
initiates a task.

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59.

indicates that the interval of time (in packed decimal form,
HEMMSS+) has been placed in TCAICRT.

This numeric value is added to the current clock time by CICS/VS
when the DFHIC TYPE=INITIATE macro instruction is executed to
calculate the time of day (clock time) when the task is to be
initiated. If the specified interval is zero or if both the
INTRVAL and the TIME operands are omitted, the task is initiated
immediately.

If this operand is specified, the TIME operand cannot be
specified.

specifies the time of day at which CICS/VS is to initiate a
task. If the specified time of day is the same as the current
clock time or up to and including six hours preceding the current
clock time, the specified time is considered to have occurred
and the task is initiated immediately.

numeric value

YES

is of the form HHMMSS, where HH repre'sents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59.

indicates that the time of day (in packed decimal form,
HHMMSS+) has been placed in TCAICRT.

If this operand is specified, the INTRVAL operand cannot be
specified.

is an optional operand used to assign a unique request
identification to this request, as a means of symbolically
identifying the request.

name

YES

is a unique identifier, up to eight cha~acters in length,
selected for this request by the application programmer.

indicates that a unique eight-character request
identification has been placed in TCAICQID by the application
program.

, prefix'
is a two-character (including blanks) prefix to be affixed
to the Request Identification generated by CICS/vS. If
REQID=" is specified, the prefix is assumed to be in the
two-byte field TCAICQPX.

232 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

If this operand is omitted, CICS/VS generates a unique request
identification, which is returned in TCAICQID to the application
program; the prefix is DF.

TRANSID=name
is the symbolic transaction identification of the task to be
initiated. If this operand is anitted, the transaction
identification is assumed to be in TCAICTI.

TRMIDNT=
is the symbolic terminal identification of the terminal
associated with the task to be initiated. This operand is
required when the task to be initiated must communicate with a
terminal; it should be omitted otherwise.

name

YES

is the symbolic terminal identification of the terminal
associated with the task to be initiated.

indicates that the symbolic terminal identification has been
placed in TCAICTID.

NORESP, INVREQ, TRNIDER, TRMIDER, and ERROR
are used to test the CICS/vS response to this request for
automatic task initiation. These operands can be specified in
this macro instruction or in a DFHIC TYPE=CHECK macro
instruction. The meaning of each operand is discussed under
"Test Response to a Request for Time Services" in this chapter.

TASK INITIATION WITH DATA

The general format of the DFHIC macro instruction to request
automatic task initiation and/or request that data be made available
to a task is as follows:

r--~~~~r~~~~-~~r----------~----------~-------------~--~---~--~--~--~--~,
1 I I
I DFHI~ I TYPE=PUT I
: I ~.INTRVAL= {~:eric ValUe}] I [r TIME= {~~~eric ValUe}] 1

I I FREQID={~:~e. }] I
I L· pr ef l.X • I
, [,TRANS ID=n ame] ,
\ fTRMIDNT={~~e} I
, ~ICDADDR= {;:bOliC address}] I
I [,NORESP=symbolic address] "

[,INVREQ=symbolic address]
, [,TRNIDER=symbolic address] ,
t (,TRMIDE~=symbolic address] ,
, [,IOERROR=symbolic address] I
, [,ERROR=symbolic address] ,
, I I ,
L----.~L-.----~L~~---~-~------~------~----~~------------~-~-~----------~

where:

Chapter 7. System Management Macro Instructions 233

Page of SH2()'9003-2
Revised May 22, 1975
By TNL SN20-9086

TYPE=PUT
indicates that CICSIVS is to initiate a nonterminal-oriented
task at some future time and makes one data record available to
that task, or provides time-ordered data to be made available
to a terminal-oriented task that is to be initiated at some
future time.

INTRVAL=

TIME=

REQID=.

specifies the interval of time that is to elapse before CICS/VS
initiates a task.

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59.

indicates that the interval of time (in packed decimal form,
HHMMSS+) has been placed in TCAICRT.

This numeric value is added to the current clock time by CICS/vS
when the DFHIC TYPE=PUT macro instruction is executed to
calculate the time of day (clock time) when the task is to be
initiated or the data record made available. If the specified
interval is zero or if both the INTRVAL and the TIME operands
ar~ omitted, the task is initiated immediately.

If this operand is specified, the TIME operand cannot be
specified.

specifies the time of day at which CICS/vS is to initiate a
task. If the specified time of day is the same as the current
clock time or up to and including six hours preceding the current
clock time, the specified time is considered to have occurred,
and the requested service is provided immediately.

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59.

indicates that the time of day (in packed decimal form,
HHMMSS+) has been placed in TCAICRT.

If this operand is specified, the INTRVAL operand cannot be
specified.

is an optional operand used to assign a unique request
identification to this request, as a means of symbolically
identifying the request and any data associated with it.

name

YES

is a unique identifier, up to eight characters in length,
selected for this requEst by the application programmer.

indicates that a unique eight-character request
identification has been placed in TCAICQID by the application
program.

234 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

, prefix'
is a two-character (including blanks) prefix to be affixed
to the Request Identification generated by CICS/vS. If
REQID=" is specified, the prefix is assumed to be in the
two-byte field TCAICQPX.

If this operand is omitted, CICS/VS generates a unique request
identification, which is returned in TCAICQID to the application
program; the prefix is DF.

TRANSID=name
is the symbolic transaction identification of the task to be
initiated. If this operand is omitted, the transaction
identification is assumed to be in TCAICTI.

TRMIDNT=
is the symbolic terminal identification of the terminal
associated with the task to be initiated. This operand is
required when the task to be initiated must communicate with a
terminal; it should be omitted otherwise.

name

YES

ICDADDR=

is the symbolic terminal identification of the terminal
associated with the task to be initiated.

indicates that the symbolic terminal identification has been
placed in TCAICTIL.

specifies the location of the data to be stored for the task to
be initiated at some future time.

symbolic address

YES

is the symbolic address of the storage area containing the
data to be made available to the task.

indicates that the symbolic address of the storage area
containing the data has been placed in TCAICDA.

If no data is to be passed, DFHIC TYPE=INITIATE rather than
DFHIC TYPE=PUT should be used.

NORESP, INVREQ, TRNIDER, TRMIDER, IOERROR, and ERROR
are used to test the CICS/VS response to this request for time
services. These operands can be specified in this macro
instruction or in a DFHIC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for Time Services" in this chapter.

RETRIEVE TIME-ORDERED DATA

The general format of the DFHIC macro instruction to retrieve data
stored by a DFHIC TYPE=PUT macro instruction (issued by another task
prior to initiation of this task) is as follows:

Chapter 7. System Management Macro Instructions 235

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

r------r-------r---, I , I
I , DFHIC I TYPE=GET
, I I t ICDADDR= {~:bOliC addreSS}]
I , I

I I J

[,RELEASE=NO]
(,NORESP=symbolic address]
[,INVREQ=syrnbolic address]
(,NOTFND=syrobolic address]
[,ENDDATA=symbolic address]
[,IOERROR=symbolic address]
[,TSINVLD=symbolic address]
[,ERROR=symbolic address]

I , ,
I I I
, I I
I I 1
1 I I
I I ,
I I I
L------L-------L---J
where:

TYPE=GET
indicates that data stored by a preceding DFHIC TYPE=PUT macro
instruction issued by another task is to be retrieved.

ICDADDR=
is an optional operand used to specify the location of the
storage area selected by the application programmer for the
retrieved data.

symbolic address

YES

is the symbolic address of the storage area into which the
retrieved data is to be placed.

indicates that the symbolic address of the storage area to
be used for the data is in TCAICDA.

It this operand is omitted, CICS/VS acquires a storage area
large enough to contain the four-byte length field (LL~~) and
data record. The address of the area is returned in TCAICDA to
the application program.

RELEASE=NO
indicates that CICS/vS is not to delete the record from temporary
storage after obtaining the record for the application program.

Upon completion of a successful DFHIC TYPE=GET,RELEASE=NO
request, CICS/vS places the identification of the
temporary-storage record in TCAICQID. This record is then
available to the' user through the DFHTS macro instruction. Using
the DFHTS macro instruction, the user can retrieve or release
the record, but the record is not available to any subsequent
DFHIC TYPE=GET requests.

NORESP, INVREQ, NOTFND, ENDDATA, IOERROR, TSINVLD, and ERROR
are used to test the CICS/vS response to this request to retrieve
data. These operands can be specified in this macro instruction
or in a DFHIC TYPE=CHECK macro instruction. The meaning of each
operand is discussed in detail under "Test Response to a Request
for Time Services" in this chapter.

CANCEL A REQUEST FOR TIME SERVICES

The general format of the DFHIC macro instruction to cancel a DFHIC
TYPE=WAIT, DFHIC TYPE=POST, DFHIC TYPE=INITIATE, or DFHIC TYPE=PUT
request is as follows:

236 CICS/vS Application Programmer's Reference Manual

r------r-------r---, I , , I

l
' , DFHIC 1 TYPE=CANCEL I

I

I , , ~ REQID= {~:e}] I
I 1 I

[,NORESP=symbolic address] I
(,INVREQ=symbolic address] 1

II , , [,NOTFND=symbolic address]
I , I [,ERROR=symbolic address] 1

L------L-------L---__ ~
where:

TYPE=CANCEL

REQID=

indicates that a request of one of the following types is to be
acted upon as follows:

1. DFHIC TYPE=WAIT issued by another task (now suspended) is
to be treated as though ~xpired.

2. DFHIC TYPE=POST issued by this task is to be removed from
the system.

3. DFHIC TYPE=POST issued by another task is to be treated as
though expired.

Q. DFHIC TYPE=lNITIA TE is to be removed from the system.

S. DFHIC TYPE=PUT is to be removed from the system.

is the unique request identification of the request to be
canceled. This operand is required for cases 1, 3, Q, and S
described under TYPE=CANCEL above; it should not be specified
when a DFHIC TYPE=POST request is canceled by the task that
issued the request.

name

YES

is a unique identifier, up to eight characters in length,
tnat was assigned to the request to be canceled.

indicates that the unique eight-character request
identification of the request to be canceled has been placed
in TCAICQID by the application program.

NORESP, INVREQ, NOTFND, and ERROR
are used to test the CICS/vS response to this request for request
cancelation. These operands can be specified in this macro
instruction or in a DFHIC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detai 1 under "Test
Response to a Request for Time Services" in this chapter.

I/O ERROR RETRY

. The general format of the DFHIC macro instruction to retry an
operation reque$ted by a DFHIC TYPE=GET macro instruction when an I/O
error occurs is as follows:

Chapter 7. System Management Macro Instructions 237

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---,
I I 1 I
1 " DFHIC , TYPE=RETRY I
, , I {,RELEASE=NO] I
, , , [,NORESP=symbolic address] ,
, , I [,INVREQ=symbolic address] I
I , I [, NOTFND=symbolic address] I
1 , I [,IOERROR=symbolic address] I
, , , (,ERROR=symbolic address] I
, I , I
L------L-------L---~

where:

TYPE=RETRY
specifies that CICS/VS is to retry the retrieval operation
requested by a DFHIC TYPE=GET macro instruction.

RELEASE=NO
indicates that CICS/vS is not to release the record from
temporary storage after obtaining the record for the application
program.

Upon completion of a successful DFHIC TYPE=GET,RELEASE=NO
request, CICS/vS places the identification of the
temporary-storage record in TCAICQID. Using this identification,
the user can retrieve or release the record from temporary
storage trough the DFHTS macro instruction; the record is not
available to any subsequent DFHIC get requests.

This operand is valid only for a retry of a DFHIC TYPE=GET
request.

NORESP, INVREQ, NOTFND, IOERROR, and ERROR
are used to test the CICS/vS response to this request for a
retrY,of a retrieval operation. These operands can be specified
in this macro instruction or in a DFHIC TYPE=CHECR macro
instruction. The meaning of each operand is discussed in detail
under "Test Response to a Request for Time services" (below).

238 CICS/vS Application Progranmer's Refer~ence Manual

Page of SH2o-9003-2
Revised May 22, 1975
By TNL SN2o-9086

TEST RESPONSE TO A REQUEST FOR TIME SERVICES

The general format of the DFHIC macro instruction to test the CICS/VS
response to a request for time services is as follows:

r------r-------r---, t ,
, I DFHIC TYPE=CHECK

(,NORESP=symbolic address]
(,INVREQ=syrrbolic address]
(,EXPIRD=symbolic address]
(,TRNIDER=symbolic address]
(,TRMIDER=symbolic address]
[,NOTFND=symbolic address]
[,ENDDATA=symbolic address]
{,IOERROR=sy.mbolic address]
(,TSINVLD=symbolic address]
[,ERROR=symholic address]

, I
, I
, I
I 1
I I
I I

I I I ,
t ,
, I
L------L-------L---~

where:

TYPE=CHECK
indicates that the CICS/VS response to a preceding DFHIC macro
instruction is to be checked.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no error occurs. NORESP signifies
"normal response."

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an invalid type of request was
received for processing by the interval control program.

EXPIRD=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the time specified in a DFHIC
TYPE=POST or DFHIC TYPE=WAIT request has expired at the time
the request is issued.

TRNIDER=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the symbolic transaction
identification specified in a DFHIC TYPE=INITIATE or DFHIC
TYPE=PUT request cannot be found in the program control table.

TRMIDER=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the symbolic terminal identification
specified in the DFHIC TYPE=INITIATE or DFHIC TYPE=PUT request
cannot be found in the termirial control table (TCT).

NOTFND=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the request identification specified
in a DFHIC TYPE=CANCEL macro instruction fails to match an
unexpired time-ordered request. It is also applicable to DFHIC
TYPE=GET or DFHIC TYPE=RETRY requests and signifies that the
time-ordered data stored for retrieval through the DFHIC TYPE=PUT
macro instruction cannot be located using the unique request
identification contained in TCAICQID at the time of this request.
This condition occurs on a retrieval operation if some prior

Chapter 7. System Management Macro Instructions 238.1

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

task retrieved the data stored under the request identification directly
through temporary storage facilities and then released the data area.
It also occurs if the request identification associated with the
original DFHIC TYPE=PUT request fails to remain a unique identification.

ENDDATA=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if no more data is stored for the task
issuing a DFHIC TYPE=GET request. It can be considered a normal
Qnd-of-file response when retrieving sequential time-ordered
data records.

IOERROR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if an input/output error occurs during
a DFHIC TYPE=GET or DFHIC TYPE=PUT operation on auxiliary
storage. The DFHIC TYPE=RETRY macro instruction can be used in
the routine for handling CFHIC TYPE=GET input/output errors.

TSINVLD=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if the CICS/VS temporary storage program
does not support a DFHTS TYPE=GET request issued by the CICS/VS
interval control program. This situation can occur when a dummy
temporary storage program is included in the current CICS/vS
system in place of a functional temporary storage program.

ERROR=symbolic address
specifies the entry label of the user-written routines to which
control is to be passed if any of the response conditions other
than NORESP occurs.

DFHKC MACRO INSTRUCTION

The task control macro instruction (DFHKC) is used to request the
following services, as explained below:

1. Initiate a task (ATTACH)

2. Reschedule a 3650 task

3. Change the priority ot a task (CHAP)

4. Synchronize a task (WAIT)

5. Synchronize the use of a resource by a task (ENQ and DEQ)

6. Purge a task on system overload (PURGE and NOPURGE)

IN~TIATE A TASK

DFHKC

The general format of the DFHRC macro instruction to initiate a task
is as follows:

r------r-------r---, I , I I
I , DFHKC , TYPE=ATTACH I
, , I [,FCADDR=symbolic address] I
I I , [, TRANSID=name] 1
, , I I
L------L-------L---~

Chapter 1. System Management Macro Instructions 239

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

where:

TYPE=ATTACH
indicates that a task is to be initiated.

FCADDR=symbolic address
is the symbolic address of the facility control area (FCA)
associated with this task; if omitted, the address is assumed
to be in TCAKCFA.

TRANSID=name
is the transaction identification for the task; if omitted, the
transaction identification is assumed to be in TCAKCTI.

RESCHEDULE A 3650 TASK

The general format of the DFHKC macro instruction to reschedule a
3650 task is as follows:

r------r-------r---,
I I I I
I I DFHKC , TYPE=SCHEDULE I
I I I I
L------L-------L---J
where:

TYPE=SCHEDULE
indicates that a 3650 task, rejected because 3651 resources were
not available to load the 3650 application program, is to be
rescheduled later.

Refer to the CICS/vS Advanced Communication Guide for 3650
programming considerations.

CHANGE PRIORITY OF A TASK

The general format of the DFHKC macro instruction to change the
dispatching priority of a task is as follows:

r------r-------r---,
I I I I
, I DFHKC I TYPE=CHAP I
I I I [, PRTY=prio ri ty value] I
I , I I
L------L-------L---J
where:

TYPE=CHAP
indicates that the dispatching priority of a task is to be
changed.

PRTY=priority value
is a decimal numeral in the range from 0 through 255 to be taken
as the priority value for this task; if omitted, the priority
value is assumed to be in TCATCDP.

SYNCHRONIZE A TASK

The general format of the DFHKC macro instruction to synchronize
the execution of a task with the completion of an event, or to

240 CICS/vS Application programmer's Reference Manual

Page of Sli2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

voluntarily relinquish control to a task of higher priority, is as
follows:

r------r-------r---, t I I I , I DFHKC , TYPE=WAIT ,
, , I , DCI={SINGLE } I
I I , LIST I
1 I I DISP I
f I I [,ECADDR=symbolic address] ,
, , I 1
L--~--~L-~-~---L-~---~---~----~--~--~~----~--------~--~----------------~

where:

TYPE=WAIT

DCI=

indicates that execution of the task is to be synchronized.

specifies the circumstances under which synchronization is to
occur.

Chapter 7. System Management Macro Instructions 240.1

SINGLE
indicates that the task is to be synchronized with the
completion of a single event.

LIST

DISP

indicates that the task is to be synchronized with the
completion of one event in a list of events.

indicates that the task wishes to give up control to any
higher priority task that is ready to be processed; if none
exists, control is to be returned to this task.

ECADDR=symbolic address
is used with DCI=SINGLE or DCI=LIST to specify the symbolic
address of the single event control area or list of event control
areas identifying the event with which this task is to be
synchronized; if omitted when SINGLE or LIST is specified, the
address is assumed to be in TCATCEA.

ENQUEUE UPON A RESOURCE

The general format of the DFHKC macro instruction to enqueue upon
a resource, causing execution of a task to be synchronized with the
availability of that resource, is as follows:

r------r-------r---,
I I I I
I I DFHKC I TYPE=ENQ I
I I I [,QARGADR=symbolic address] I
I I I [,QARGLNG=number] I
, I I I
L------L-----~-L---~

where:

TYPE=ENQ
indicates that execution of this task is to be synchronized with
the availability of a specific resource.

QARGADR=symbolic address
is either the symbolic address of the resource to be enqueued,
or the symbolic address of a location that contains a unique
argument (for example, an employee name) that represents the
resource. If this operand is omitted, the address is assumed
to be in the three low-order bytes of TCATCQA, a four-byte field.

QARGLNG=number
is the length, in bytes, of the resource to be enqueued upon.
This operand is needed only if the QARGADR operand is a unique
argument that represents the resource to be enqueued. If omitted
in such a case, the contents of the high-order byte of TCATCQA
are assumed to be the length of the argument.

Chapter 7. System Managem~nt Macro Instructions 241

DEQUEUE UPON A RESOURCE

The general format of the DFHKC macro instruction to dequeue upon
a resource (effectively, to revoke a preceding enqueue request upon
that resource) is as follows:

r------r-------r---,
I I I I
I I DFHKC I TYPE=DEQ I
I I I [,QARGADR=symbolic address] I
I I I [,QARGLNG=number] I
I I I I
L------L-------L---~

where:

TYPE=DEQ
indicates that a preceding enqueue request upon a· specific
resource is to be revoked.

QARGADR=symbolic address
is either the symbolic address of the resource to be dequeued,
or the symbolic address of a location that contains a unique
argument (for example, an employee name) that represents the
resource. If this operand is omitted, the address is assumed
to be in the three low-order bytes of TCATCQA, a four-byte field.

QARGLNG= numb er
is the length, in bytes, of the resource to be dequeued. This
operand is needed only if the QARGADR operand is a unique
argument that represents the resource to be dequeued. If omitted
in such a case, the contents of the high-order byte of TCATCQA
are assumed to be the length of the argument.

If the QARGLNG operand is specified in a DFHKC TYPE=ENQ macro
instruction enqueuing upon a resource, the QARGLNG operand must
also be specified in the DFHKC TYPE=DEQ macro instruction for
that resource, and the values of these operands must be the
same.

DECLARE A TASK TO BE PURGEABLE

The general format of the DFHKC macro instruction to declare that
a task may be purged if a system stall condition occurs is as follows:

r------r-------r---,
I I I I
I I DFHKC I TYPE=PURGE I
I , I I L------L-------L---____________ ~
where:

TYPE=PURGE
indicates that the task issuing this instruction may be purged
from the system if a system stall condition occurs. (See
programming note 1 below for the relationship between DFHKC
TYPE=PURGE and the SPURGE option of the DFHPCT TYPE=ENTRY macro.

242 CICS/VS Application Programmer's Reference Manual

DECLARE A TASK TO BE NONPURGEABLE

The general format of the DFHKC macro instruction to declare that
a task cannot be purged if a system stall condition occurs is as
follows:

r------ r------- r-------------------------------·------------------------,
I I I I
I I DFHKC I TYPE=NOPURGE I
I I I I L ______ L _______ L ______________________________________ -----------------J

where:

TYPE=NOPURGE
indicates that the task issuing this macro instruction cannot
be purged from the system if a system stall condition occurs.
(see programming note 1 below for the relationship between DFHKC
TYPE=NOPURGE and the SPURGE option of the DFHPCT TYPE=ENTRY
macro.)

Programming Note:

1. The PURGE and NOPURGE options of the DFHKC macro are intended
to be used as temporary overrides to the SPURGE specification
in the DFHPCT TYPE=ENTRY macro for a task. For example, if a
DFHKC TYPE=NOPURGE macro is issued in a program for a task, the
task cannot be purged even though SPURGE=YES is specified in
the DFHPCT TYPE=ENTRY macro for the task at system generation.
Refer to the publication CICS/VS system Programmer's Reference
Manual for details on the SPURGE option of the DFHPCT TYPE=ENTRY
macro.

DFHJC MACRO INSTRUCTION

The application programmer requests journal services by issuing
DFHJC macro instructions. The formats of the various types of journal
requests are explained below.

ACQUIRE A JOURNAL CONTROL AREA (JCA)

The general format of the DFHJC macro instruction to acquire a
journal control area (JCA) is as follows:

r------r-------r---,
I I I I
I I DFHJC I TYPE=GETJCA I
I '- I I
L------L-------L---~

where:

TYPE=GETJCA
indicates that a communication area to be used for communication
between the application program and the CICS/VS journal control
program is to be acquired. The address of the JCA is returned
in TCAJCAAD to the application program.

Chapter 7. System Management Macro Instructions 243

CREATE A JOURNAL RECORD AND WAIT FOR OUTPUT

The general format of the DFHJC macro instruction to create a journal
record, initiate its output, and wait for completion is as follows:

r------r-------r---, , I
TYPE={PUT } I DFHJC I

I I (WRITE,WAI~)
, I 'JFILEID={nn }
I f SYSTEM
I I Y~

~JTYPEID={~~nl] I I , I
~JCDADDR={~~b01iC addreSS}] I I , I
rJCDLGTH={~~ima1 valuel]

rPFXADDR={~~bOliC addreSS}]

tPFXLGTH={~~~imal valuel]

(,NORESP=symbo1ic address]
(,IDERROR=symbo1ic address]
[,LERROR=symbo1ic address]
(,IOERROR=sy.mbolic address]
(,NOTOPEN=symbo1ic address]
(,INVREQ=symbolic address]

I I
I
I
1
I
I
I

I
I
I
I
I

L------L-------L---J
where:

TYPE=

JFILEID

indicates the journal operations required.

pm
indicates that a journal record is to be created in the
journal buffer area and then written out; the requesting
task will wait until the physical record has been written.

(WRITE, WAIT)
implies, and is equivalent to, TYPE=PUT.

is the one-byte identification of the journal file (data set)
referred to in' this journal operation.

nn
is a decimal value in the range from 2 through 99 to be
taken as the journal file identification.

SYSTEM
indicates that the system log data set is the journal for
this operation.

indicates that the journal file identification has 'been
placed in JCAJFID prior to issuing this macro instruction.

JTYPEID=
is an identifier to be placed in the journal record to identify
its 'origin.

244 CICS/vS Application Prograrrmer's Reference Manual

nnnn

YES

JCDADDR

is a one- to four-character hexadecimal value to be taken
as the identifier for the journal record; if fewer than four
characters are specified, padding with zeros occurs on the
right.

indicates that the journal record identification has been
placed in JCAJRTID prior to issuing this macro instruction.

is the address of the user data to be built into the journal
record.

symbolic address

YES

JCDLGTH=

is the symbolic address of the user data.

indicates that the address of the user data has been placed
in JCAADATA prior to issuing this macro instruction.

is the length of the user data to be built into the journal
record. (See programming note 1 below for the relationship
between JCDLGTH and PFXLGTH.)

decimal value

YES

PFXADDR=

is a decimal nurreral in the range from 1 to 32000 (or a
lower maximum, because of the journal buffer size),
indicating the length, in bytes, of the user data.

indicates that the length, in binary, of the user data has
been placed in JCALDATA prior to issuing this macro
instruction.

is the address of user prefix data to be included in the journal
record.

symbolic address

YES

PFXLGTH=

is the symbolic address of the user prefix data.

indicates that the address of the user prefix data has been
placed in JCAAPRFX prior to issuing this macro instruction.

is the length of the user prefix data to be included in the
journal record. (See programming note 1 below for the
relationship between PFXLGTH and JCDLGTH.)

decimal value

YES

is a decimal numeral in the range from 1 to 32000 (or a
lower maximum, because of the journal buffer size),
indicating the length, in bytes, of the user prefix data.

indicates that the length, in binary, of the user prefix
data has been placed in JCALPRFX prior to issuing this macro
instruction.

NORESP, IDERROR, LERROR, IOERROR, NOTOPEN, and INVREQ
are used to test the CICS/vS response to this request for journal
services. These operands can be specified in this macro

Chapter 7. System Management Macro Instructions 245

DFHJC

instruction or in a DFHJC TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request f or Journal services" in this chapter.

programming Note:

1. Because the maximum buffer length that can be used to write a
journal record is 32,767 bytes, the combined length specified
by JCDLGTH and PFXLGTH (or stored in JCALDA~ and JCALPRFX,
respectively) cannot exceed 32,767.

CREATE A JOURNAL RECORD

The general format of the DFHJC macro instruction to create a journal
record for subsequent output is as follows:

r------r-------r---,
I I
, DFHJC I TYPE=WRlTE , ,

'JFlLElD={nn } ,
I
I
I
I
I
I
I ,

SYSTEM
YES

rJTYPElD={~~n}]
rJCDADDR={~~bOliC address}]

rJCDLGTH={~~~imal value}]

tPFXADDR=l~~bOlic addreSS}]

tPFXLGTH= ~~~imal value}]

t STARTlO= ~~S}]

rCOND= {(~~S ,symbolic addreSS)}]

(,NORESP=symbolic address]
[,lDERROR=symbolic address]
(,LERROR=symbolic addr~ss]
[,NOTOPEN=symbolic address]
(,lNVREQ=symbolic address]

L------L-------L--------------------------------______ -----------------~
where:

TYPE=WRITE
indicates that a journal record is to be created in the journal's
buffer area, and control is to be returned to the requesting
task immediately. (See programming note 1.)

JFlLElD, JTYPEID, JCDADDR, JCDLGTH, PFXADDR, and PFXLGTH
are used in this macro instruction as in the DFHJC macro
instruction described in the section entitled "Create a Journal
Record and Wait for Output," which immediately preced-es this
discussion.

STARTlO=
specifies whether output of the journal record is to be initiated
immediately.

YES
indicates that output of the journal record is to be
initiated.

246 ClCS/vS Application Programmer' s Refer.ence Manual

COND=

NO
indicates that no output operation is required at this time.

specifies whether control is to be returned to the application
program if the request cannot be satisfied immediately because
insufficient journal buffer space is available. If control is
to be returned, the point of return must be specified as a second
parameter of this operand.

(YES, symbolic address)

NO

indicates that control is to be returned to the location
represented by symbolic address in the application program
if the request cannot be satisfied immediately. No journal
record will.have been created for the request.

indicates that the contents of the current buffer are to be
written out.and the requesting task placed in a wait state
until its request has been satisfied (by the building of a
record in buffer space freed by the write operation).

NORESP, IDERROR, LERROR, NOTOPEN, and INVREQ
are used to test the CICS/vS response to this request for journal
services. These operands can be specified in this macro
instruction or in a DFHJC TYPE=CHECK macro instruction. The
meaning of each opera nd is di scussed in detail under "Test
Response to a Request for Journal Services" in this chapter.

programming Note:

1 •. At some later time, the task may wish to ensure that the journal
record has been written. If the JCA is to be used for any other
journal requests, that task should save the event control number
(four bytes) returned in JCAECN after a journal record is
successfully created in response to the DFHJC TYPE=WRITE request.
The event control number must be restored to the JCA immediately
before the DFHJC TYPE=WAIT request used to check and wait for
output. If the JCA is not used in the interim for any other
journal requests for the task, there is no need to sa ve and
restore the event control number.

However, restoring the event control number prior to issuing a
DFHJC TYPE=WAIT macro is a good programming practice. CICS/VS
management modules also use the JCA of the task for journal
requests. For example, automatic journaling is used in the file
control program, and logging can be performed for recovery
purposes at the user's option.

Chapter 7. System Management Macro Instructions 247

WAIT FOR OUTPUT OF A JOURNAL RECORD

The general format of the DFHJC macro instruction to wait for output
of a previously created journal record is as follows:

r------r-------r--------------------------~----------------------------, , I I
I DFHJC I TYPE=WAIT I
, I 'JFILEID={nn } I , I SYSTEM I
I I YES I
, 1 [,NOREsP=symbolic address] I
I I [,IDERROR=symbo1ic address] I
I I [,IOERROR=symbo1ic address] I
, I (,NOTOPEN=symbo1ic address] I
I I (, INVREQ=symbolic address] I
, I I L------L-------L--____________________________________ -----------------~
where:

TYPE=WAIT
indicates that the requesting task is to be placed in a wait
state until the block containing a journal record has been
written as output (that is, the journal operation is to be
synchronized with continued execution of the task issuing the
journal write request). If the block containing the journal
record has not been written, the physical write is initiated
and the requesting task is placed in a wait state until the
write is completed (see programming note 1 under "Create a
Journal Record" aboVe).

JFEEID
is the one-byte identification of the journal file (data set)
referenced in this journal operation.

nn
is a decimal value in the range from 2 through 99 to be
taken as the journal file identification.

SYSTEM

YES

indicates that the system log data set is the journal
for this operation.

indicates that the journal file identification has been
placed in JCAJFID prior to issuing this macro instruction.
The operand can be specified if the user has restored the
event control number (see programming note 1 under "Create
a Journal Record" above), since JCAJFID is part of the event
control number.

NORESP, IDERROR, IOERROR, NOTOPEN, and INVREQ
are used to test the CICS/VS response to this request for
journal services. These operands can be specified in this
macro instruction or in a DFHJC TYPE=CHECK macro instruction.
The meaning of each operand is discussed in detail under
"Test Response to a Request for Journal Services" (below).

2qa CICS/vS Application Programmer's Reference Manual

TEST RESPONSE TO A REQUEST FOR JOURNAL SERVICES

The general format of the DFHJC macro instruction to check the
CICS/vS response to a request for journal services is as follows:

r------r-------r---,
I I I I
, , DFHJC I TYPE=CHECK I
, I I [, NORESP=symbolic address] I
, , I [,ID~RROR=symbolic address]
, I I [, LERROR=symbol ic address] ,
I I I [,IOERROR=symbolic address] I
I , I [,NOTOPEN=symbolic address] I
I I I [,INVREQ=symbolic address] I
, , I I
L------L-------L---~

where:

TYPE=CHECK
indicates that the ctCS/VS response to a preceding DFHJC
TYPE=PUT, TYFE=WRITE, TYPE=WAIT, or TYPE= (WRITE, WAIT) request
is to be checked.

NORESP=symbolic address
is the address to which control is to be returned if the
requested operation was performed successfully.

IDERROR=symbolic address
is the address to which control is to be returned if the
specified journal file identification does not exist in the
journal control table (JCT).

LERROR=syrnbolic address
is the address to which control is to be returned if the computed
length for the journal record exceeds the total buffer space
allocated for the journal data set, as specified in the JeT
entry for the data set.

IOERROR=symbolicaddress
is the address to which control is to be returned if the physical
output of ~ journal record was not accomplished because of an
unrecoverable I/O error. This operand is, applicable only to
requests that may cause a wait for completion of output, that
is, to TYPE=PUT, TYPE=(WRITE,WAIT), or TYPE=WAIT.

NOTOPEN=symbolic address
is the address to which control is to be returned if the journal
request cannot be satisfied because the specified journal data
set has been disabled and is not available.

INVREQ=syrnbolic address ,
is the address to which' control is to be returned if the TYPE
o~erand is invalid.

Chapter 7. Sys.tem Management Macro Instructions 249

DFHSP

DFHSP MACRO INSTRUCTION

The application programmer uses the sync point macro instruction to
divide a task (usually, a long-running one) into smaller units, known
as logical units of work. Each sync point macro instruction indicates
that a logical unit of work is to be completed and that all resources
owned by the task up to this point are to be released (dequeued).

The format of the sync point macro instruction is as follows:

r------r-------r---,
1 , DFHSP I TYPE=USER ,
I I I I L--____ L _______ L ______________________________________ -----------------~

TYPE=USER
causes an application-program-defined sync point to be
established, marking the completion of a logical unit of work.

250 CICS/vS Application Programmer's Reference Manual

CHAPTER~. PROGRAM TESTING ~ CEBUGGING

CICS/VS user-written application ~rograms execute in an interactive,
information system environment. Testing programs in such an environment
has always been difficult. The intormation system, including the
operating system, CICS/VS, and a~plication programs, must be responsive
currently to many factors. The equi~ment configuration includes many
lines and terminals through which requests tor varied services are
entered on a random, nonschedUled basis. The precise relationship ot
all programs and data set (file) activity generated trom the terminal
inputs differs trom one moment to the next.

Because of the complexity ot this situation, numerous aids to program
testing and debugging have been included within CICS/VS. Sequential
terminal support is provided primarily to serve as a tool in the testing
environment. The CICS/VS system monitoring component (introduced in
the first section of this manual) comprises two tunctions which provide
important services to application ~rograms:

• Trace Management - Provides a trace table containing entries that
retlect the execution ot various CICS/VS macro instructions by
user-written applicaticn ~rograms and CICS/VS management tunctions •

• Dump Management - Provides a facility to aSSist in analysis ot
programs and transactions undergoing developrrent or mOditication.
specified areas of main storage are dumped onto a sequential data
set, either tape or disk, tor subsequent ottline tormatting and
printing using a CICS/VS utility program.

Testing of programs and monitoring ot activities are continuous
processes. Neither is completed when a given program or set ot programs
is up and running smoothly. As existing programs are upgraded, and
new applications are added, testing and monitoring cycles must be
repeated to ensure that the complete system continues to tunction in
an uninterrupted, efficient manner.

SEQUENTIAL TERMINAL SUPPORT

Even at the simplest level ot program testing, the implementer taces
problems. It is not efficient to test a program from a terminal it
all test data must be keyed into the system trom that terminal tor each
test shot. The programmer cannot easily retain a backlog of proven
test data and quickly test programs through the key-driven terminal as
changes are made.

CICS/VS allows the applic~tion programmer to begin testing his
programs without the use ot ~ telecommunication device. It is possible
to specify through the terminal control table that sequential devices
be used as terminals. These sequential devices rr,ay be card readers,
line printers, disk units, or magnetic tape units. In fact, a terminal
control table can include combinations ot sequential devices such as:
card reader and line printer, one or more disk or tape data sets as
input, one or more disk or t ape data sets as output. A table that
contains references to these card-reader-in-line-printer-out (CRLP)
terminals can also include references to other terrrinals on the system.

The input data submitted trom a sequential device must be prepared
in the torm that it would come from a telecommunications device. A
one- to tour-character transaction identification only, or it data is
included, a one- to four-character transaction identitication (followed

Chapter 8. Program Testing and Debugging 251

by a system-defined transaction code delimiter or a blank it less than
tour) must appear in the tirst one to tour positions of the tirst input
tor a transaction. If a sequential device is being used as a terminal,
an end-of-data indicator, a 0-2-8 punched card code (X'EO') or the
equivalent as specified at system generation, must tollow the input
message or the system-detined data termination character. The input
is processed sequentially and must be unblocked. The sequential Access
Method (SAM) is used to read and write the necessary inputs and outputs.
The operating system utilities can be used to create the input data
sets and print the output data sets.

Using this approach, it is possible to prepare a stream ot
transaction test cases to do the basic testing ot a program module.
As the testing progresses, the user can generate additional transaction
streams to validate the multiprogramming capabilities ot his programs
or to allow transaction test cases to be run concurrently.

At some pOint in testing, it is necessary to use telecommunication
devices to ensure that the transaction tormats are satisfactory, the
terminal operational approach is satisfactory, and the transactions
can be processed on the terminal. The terminal control table can be
altered to contain more and different devices as the testing
requirements change.

When the testing has ~roven that multiple transactions can be
processed concurrently and the necessary data sets (actual or duplicate)
for online operation have been created, the user begins testing in a
controlled environment with the telecommunication devices. In this
controlled environment, the transaction test cases should represent
all functions of the eventual system, but on a smaller, measurable
scale. For example, a company whose intormation system will work with
15 district offices may select one district oftice for the controlled
test. During the controlled test, all transactions, data set activity,
and output activity trom the system should be measured closely.

Requests for input or output from a sequential terminal are expressed
by means of terminal control macro instructions (DFHTC), just as other
requests for input/output operations.

In response to a DFHTC ~YFE=READ, where the terminal has been
described in the terminal control table as a CRLP, DISK, or TAPE
terminal, data is read from the input data set until any ot the
following occurs:

• An end-of-data indicator is detected in the in~t stream. (The
indicator must be defined by the user at system generation time.)

• Sufficient input has been read to fill the input area associated
with the line used for transmission. It an end-ot-data indicator
is not detected before the input area is filled, all further data
preceding an end-of-data indicator is bypassed and treated as a
system error, which is passed to the user-installation terminal
error program (DFHTEP).

• End of file (EOF) is detected. The READ is considered complete.
Any subsequent READ is tneated as a system error, which is passed
to the user-installation terminal error program (DFHTEP) with a
response code of 4. (Under CICS/DOS/VS, EOF applies to a card
reader only.)

In response to a DFHTC TYPE=WRITE ~rom a CRLP terminal, multiple
lines are written in print forma t as follows:

• If there is no new-line (X'1S') character within the number of
characters contained in one print line of the specified line size

252 CICS/VS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

(as found in TCTTELPL, a field in the TCTTE), the output is written
in fixed-length lines of the size specified.

• If new-line characters are encountered, a new line is begun for
each one. Writing of output continues until the end of the terminal
input/output area (TIOA) is reached.

For additional information concerning DFHTC macro instructions, see
"Terminal Services" and "DFHTC Macro Instruction" in this manual.

TRACE SERVICES

The CICS/VS trace facility is designed as a debugging aid for
application programmers and IBM Field Engineering,. This facility makes
use of a trace table conSisting ef standard and nonstandard entries
produced by requests for trace control services. In a debugging
environment, the application programmer can locate the trace table in
primary storage. Register 13 pOints to the beginning of the CSA. The
address of the first entry in the trace table header is available at
the contents of register 13 plus X'11C' (the CSA field identified by
the symbolic label CSTRTEA). As explained under "Trace Table" in this
chapter. The first three words of the trace table contain the sub
header HEADER AT and the fourth ~ord contains the address of the trace
table header. The first ~ord in the trace table header is the address
of the last-used entry, which the ap~lication programmer can refer to,
to determine wha~ was ha~pening when a problem occurred. The second
word contains the address of the start of the trace table itself.
Because entries are made to the trace table in order of occurrence,
the programmer can work backward in the trace table to determine prior
activity. The meanings of trace table entries are explained in detail
under "Trace Table."

If the CICS/VS auxiliary trace is active, trace entries written to
the Trace Table, which is in main storage, are also written to the
auxiliary-trace data set. Trace entries written to this data set do
not wrap around as do those in the trace table. The CICS/VS trace
utility program can be used to process and print the trace records
written to the trace data set. This utility can be used to print all
entries on the data set or only selected entries.

Standard entries are recorded in the CICS/vS trace table each time
one of the following CICS/VS macro instructions is issued by an
application program or by a CICS/VS management or service program:

• DFHKC (Task Control)
• DFHSC (storage Control)
• DFHPC (Program Control)
• DFHIC (Interval Control)
• DFHDC (Dump Control)
• DFHFC (File control)
• DFHTD (Transient Data Centrol)
• DFHTS (Temporary Storage Control)
• DFHJC (Journal control)
• DFHBMS (Basic Mapping SUpport)
• DFHBIF (Built-In Functions)
• DFHTC (Terminal Control for VTAM-Supported Terminals Only)
• CICS/VS-DL/I I'nterface

Each standard entry contains a unique trace identification from 240
through 255 (X'FO' through XIFF') and information to aid the application
programmer in determining where the macro instruction was issued and
what type of request was made to the management program. The

Chapter 8. Program Testing and Debugging 253

application programmer need code no additional instructions to use this
tool as an aid in the debugging process.

The trace identification numbers 200 through 229 (X'CSI through
X'ES') are reserved for CICS/vS system trace entries. The application
programmer can make direct, nonstandard entries in the trace table by
using the DFHTR macro instruction. A trace identification number from
o through 199 (X'OO' through X'C7') and accompanying data is assigned
for each trace entry. Thus, by defining several unique trace entries,
the programmer can trace the logical paththrougb a particular
application or group of application programs.

An additional trace function, the field engineering (FE) class trace,
is normally inhibited but may be activated by the user or IBM Field
Engineering for debugging. The trace identification numbers 230 through
239 (X'E6' through X'EF') have been set aside for this purpose. Entries
in this class are produced by the terminal abnormal condition program,
provided that such entries have been requested by means of a DFHTR
mac~o instruction in the application program. X'E6' is documented in
the trace table below. X'E7' through X'EF' are reserved for field
engineering use.

Trace control is branched to by the requesting program and executes
as a service routine under the RCA of the requesting program. Registers
are saved and restored. Return after the requested service has been
performed is to the next sequential instruction in the requesting
program.

The trace control macro instruction (DFHTR) is used to request any
of the following services:

1. Dynamically allow the trace facility to begin logging appropriate
entries into the trace table.

2. Dynamically cause the trace facility to stop logging entries
into the trace table.

3. Dynamically cause a specified entry to be logged into the trace
table.

The general format of each trace table entry is described under
"trace table" in this section. A detailed explanation of trace table
entries for CICS/VS management programs is provided. The application
programmer should refer to the introductory description of the general
format before reading the discussion of the DFHTR macro instruction,
which follows.

TRACE ON FUNCTION

The ON function of trace control is used to dynamically allow the
trace facility to begin logging appropriate entries into the trace
table. The application programmer invokes it by use of the DFHTR
TYPE=ON macro instruction. Thefor.mat of this macro instruction is as
follows:

2S4 CICS/VS Application Prograrrmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---,
I I I I

i I DFHTR I [~~~~;~~{ili::m symbo11[,sys ••• 1) .}] 1
I I I SYSTEM I
I I I ~ I I I FE I
I I I I L------L-------L-----------------------------_________ ~----------------~
where:

TYPE=ON
initiates the logging function of the trace facility.

Chapter 8. Program Testing and Debugging 254. 1

STYPE=
indicates the type of entries to be logged,.

SINGLE

ALL

specifies that the trace capability is to be turned on tor
user entries ot the single transaction issuing the DFHTR
macro instructicn tor the duration ot the task.

specities that all tracing tacilities are to be activated.

(system symbol1(, sys •••])
specities one or more system symbols to selectively turn on
appropriate system macro trace tacilities. The valid system
symbols are as follows:

Symbol

KC
SC
PC
IC
DC
FC
TO
TS
JC
BM
BF
TC

Meaning

Task Control (OFHKC)
storage Control (BFHSC)
Program Control (OFHPC)
Interval Control (DFHIC)
Dump Control (OFHDC)
File Control (DFHFC)
Transient Data Control (DFHTD)
Temporary Storage Control (DFHTS)
Journal Control (OFHJC)
Basic Mapping Support (DFHBMS)
Built-In· Functions (DFHBIF)
Terminal Control (DFH~C)

SYSTEM

USER

FE

specifies that the trace capability is to be turned on tor
CICS/VS. This operand turns on the system master trace tlag
which must be on in addition to the individual system trace
tlags before tracing ot any system macros occurs.

specifies that the trace capability is to be turned on tor
all user entries tor all current transactions; that is,
causes the trace facility to begin logging user entries to
the trace table tor all transactions currently active in
the system.

specifies that the trace capability is to be turned on tor
all Field Engineering (FE) entries,. ~'his parameter is valid
for only Assemb Ie r-Ianguage programs.

If this operand is omitted, USER is assumed.

TRACE OFF FUNCTION

The OFF function of trace control is used to dynamically cause the
trace facility to stop logging entries into the trace table. The
application programmer invokes this function by issuing the OFHTR
TYPE=OFF macro instruction. The tormat ot this macro instruction is
as follows:

Chapter 8. Program Testing and Debugging 255

r------r-------r---,
I I I I

I i DFHTR ! [~~~~;~!IF~~::m symbol1 [, sys •••]) I] 1
, I I S~T~ I
I I I USER I
I , I FE I
I I I ' I
L------L-------L---~

where:

TYPE=OFF

STYPE=

indicates that the logging of certain types ot entries into the
trace table is to be stopped.

indicates the type of entries tor which logging is to be
discontin ued.

SINGLE

ALL

specifies that the tracing of user entries is to be
terminated tor the single transaction issuing this macro
instruction.

Note: This is the only parameter that overrides a preceding
DFHTR TYPE=ON,STYPE=SINGLE macro instruction issued by this
transaction.

specifies that all tracing facilities are to be deactivated.

(system symbo11(,sys •••])
indicates the system macro trace tacilities to be deactivated
in the same manner as in the DFHTR TYPE=ON macro instruction
above.

SYSTEM

USER

FE

specifies that the trace capability is to be turned ott tor
all entries made trom within CICS/VS.

specifies that the trace capability is to be turned ott for
all user entries for those transactions tor which the
capability was invoked by means of a DFHTR TYFE=ON,STYPE=USER
macro instruction.

specifies that the tracing of Field Engineering (FE) entries
is to be terminated tor all transactions. This parameter
is valid tor only Assembler-language programs.

256 CICS/vS Application Programmer's Reference Manual

TRACE ENTRY FUNCTION

The ENTRY function of trace control is used tc dynamically cause a
specified entry to be logged into the trace table it the trace facility
has been turned on tor that type of entry. The ap~lication programmer
invokes this function by issuing the DFHTR TYPE=ENTRY macro instruction.
The tormat of this macro instruction is as tollows:

r------r-------r---,
DFHTR TYPE=ENTRY

lSTYPE={~~~~EM}J
,ID=number

[, DATA 1= 5 symbOl tJ
1 (symbolH

r, DATA2= 5 symbol tJ

[

L,DATA 1T1!lS~:~I) ~ l
FEIN
CHAR
PACK

[

DATA2TP=li~~:TERl
FEIN
CHAR
PACK
POINTER

[,RDATA1=5regi~er tJ
1 (reg1ster) 5

[
,RDATA2= ~regi~er tJ

1 (reg1ster) 5

L------L-------L---~

where:

TYPE=ENTRY

STYPE=

indicates that logging ot a particular entry to the trace table
is required at this pCint.

indicates the type of the entry to be logged.

SYSTEM
identifies the entry as a CICS/VS entry.

USER

FE

identifies the entry as an application ~rogram entry.

identities the entry as a Field Engineering entry. This
parameter is valid for only Assembler-language programs.

ID=nurnber
specifies the trace identification number for this entry (byte
o of the trace table entry) and must be coded as a self-defining
term. A value from 0 through 199 may be specified when
STYPE=USER; a value from 200 through 229 may be specified when
STYPE=SYSTEM; and a value from 230 through 239 may be specified
when STYPE=FE. (The trace identification number 230 is included
in all entries produced by the terminal abnormal condition
program.) Numbers 240 through 253 (X'FO' through X'FD') are
reserved tor system macro instruction trace entries. The numbers
254 (X'FE') and 255 (X'FF') indicate TYPE =ON and TYPE=OFF
entries, respectively.

Chapter 8. Program Testing and Debugging 257

DATAl =

RDATA1=

DATA 2=

RDATA2=

specifies the address of the data to be placed in the first data
field (bytes 8 to 11) ot the trace table entry.

symbol
is the symbolic address ot the data to be placed in the
first data field ot the table entry.

(symbol)
is. the symbolic address of an area that contains the address
ot the data to be placed in the first data field.

When this macro instruction is issued in a high-level language
program, it DATAl is specified, DATA1TP is required.

specifies the register whose contents are to be placed in the
first data field of the trace table entry. This parameter is
valid tor Assembler language only.

register
the number of the register whose contents are to be placed
in the first data field ot the table entry.

(register)
the number of the register whose contents are the address
of the data to be placed in the first data field.

is similar to DATAl except that it is used tor the second data
field (bytes 12 to 15) ot the trace table entry.

When this macro instruction is issued in a high-level language
program, if DATA2 is specified, DATA2TP is required.

is similar to RDATAl except that it is used tor the second data
field of the trace table Entry. This parameter is valid tor
Assembler language only.

DATA1TP=
specifies the tormat of the data to be placed in the first data
field ot the trace table entry. The meanings ot the keyword
parameters are as stated below:

sEecification Data Format Field Detinition

DATA lTP=HBIN Haltword, binary COBOL: 9 (4) COMP
PL/I: BIN FIXED(15)

DATA 1 TP=FBIN Fullword, binary COBOL: 9 (8) COMP
PL/I: BIN FIXED (31)

DATAl TP=CHAR 1 to 4 characters COBOL: X (4)
PL/I: CHAR (4)

DATA lTP=PACK 1 to 4 bytes, COBOL: 9 (1) COMP-3
packed decimal PL/I: DEC FIXED (1)

DATAl TP=POINTER PL/I pointer PL/I: POINTER
variable

This operand is valid only tor American National Standard (ANS)
COBOL and PL/I programs. If omitted, the default is FBIN.

258 CICS/VS Application Programmer's Reference Manual

DATA2TP=
is similar to DATA1TP except that it is used for the second data
field of the trace table entry.

TRACE TABLE

The CICS/VS trace table consists of a trace header and a variable
number of· fi~ed-length entries used to trace the logical flow of
transaction activity through the system. Following generation, the
trace feature may be invoked during system initialization by specifying
the number of trace table entries to be other than zero. Optionally,
the trace feature can be initially disabled during system initialization
by the numbers of trace table entries (other than zero) that are to be
off. These numbers are specified in the same initialization parameter.
The master terminal facility can be used to turn specified traces On
during CICS/VS execution. If a nonzero number of entries in the trace
table is specified, the address of the trace header is placed at
CSATRTBA •.

Each entry in the trace table is 16 bytes in length and aligned on
a double-doubleword boundary. The table is used in a wraparound manner
so that when the last entry is used, the next entry is placed at the
beginning of the table. The first three words of the table contain
HEADER AT and the fourth word contains the address of the trace table
header. The header format is:

Bytes

0-3
4-1
S-11

12-1S

contents

Address of the last-used entry
Address of the beginning of the table
Address of the end of the table
Reserved

The format of each succeeding entry in the trace table is:

Bytes

o
1-3

_-S

contents

Trace identification of entry.

If byte 0 contains other than one of the values trom
X'FO' through X'FB', these bytes contain the contents
of register 14 at entry to the trace control program.
If byte 0 contains a value from X'FO' through X'FC',
these bytes contain the contents of register 14 at entry
to the CICS/vS management or service program involved.

If byte 0 contains one of the values for X'FO' through
X'FC' (that is, if the trace identification is one of
these values) , this field generally contains the type
of request code as it relates to the CICS/VS management
or service program involved.

Program

Task control
storage Control

Program control
Interval control
Dump control
File control
Transient data control
Temporary storage control

Trace
Identification

X'FO'
X'F1', X'CS'
X'Cg', X'CA'
X'F2'
X·'F3'
X'F4'
X'FS'
X'F6'
X'F1'

Chapter S. Program Testing and Debugging 2S9

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN2D-9086

6-7

8-11

12-15

CICS/VS-DL/I interface
Journal control
Basic mapping sup~ort

Built-in functions
Terminal control
Sync point

X'F8'
X'F9'

X'CD',X'FA'
X'CF'
X'FB'
X'FC'
X'D8'

For user entries, bytes 4 and 5 are unused.

Transaction identification as found in TCAKCTTA, a field
in the system control section of the TCA. This
identification is either a user t'ask sequence number
from 1 to 999, assigned by CICS/VS and stored, in packed
decimal form in the rightmost (low-order) bytes, or the
system task identification (KC for task control, TC for
terminal control, or JC forjorunal control) stored in
the leftmost bytes.

Data field 1.

Data field 2.

The contents of bytes 0, 8 to 11, and 12 through 15 of application
program-requested entries are determined by DFHTR 'I'YPE=ENTRY macro
instructions. The contents of trace table entries for the CICS/VS
~rograms listed above are described in detail in Figures 8-1 through
8-13, which follow.

If consecutive, duplicate entries for the trace table are generated,
the first entry has the fo~ of a standard entry. Rather than creating
multiple similar entries, however, a special trace control entry with
trace identification X'FD' is created, and a count of the number of
times the previous entry is repeated is stored therein (see Figure
8-14). Trace control entries with trace identification X'FE' or X'FF'
indicate the turning on or turning off of the trace facility,
respectively.

Some of the functions required for recovery/res,tart as available
under CICS/OS/VS are performed by the sync pointpz:ogram. The trace
table entry for this program is described in Figure 8-15.

An entry with a trace identification in the range from X'E6' through
X'EF' is a special Field Engineering (FE) entry. The trace
identification X'E6' is included in all entries produced by the terminal
abnormal condition program. The contents and format ,of these entries
are described in Figure 8-16.

If the entry is written to the auxiliary-trace data ,set, a 4-byte
prefix is appended to the entry. This prefix contains the time that
the entry was written to that data set. Auxiliary trace'}.:W:rites the
time, to the data set, in units of 128 micro seconds. Th)~D\trace utility
program converts this time to hours: minutes: seconds, wh~1l formatting
the auxiliary trace output.

Note: The contents of any fields characterized as "Not used" in the
descriptions that follow should be ignored during the analysis of a
trace table entry.

260 CICS/VS Application Prograrrmer's Reference Manual

~---,
I I 1 TRACE TABLE ENTRY FOR TASR CONTROL I
, 1
1--1
1 I I I I I I
I I I TYPE I I I ,
,TRACE, I OF I TRANS I I ,
1 10 I REGISTER 1 q I REQUEST I 10 I FIELD A I FIELD B I L----------------_____________________________________ -________________ ~

X'CS', X'C9', X'CA': See Storage Control
X'CF': See Basic Mapping SU~port
X'DS': See Sync Point program
X'E6': See Field Engineering

X'FO •

Request Code
(second byte not used)

X' 0" (ENQ)

X' 02' (DEQ)

X' 03' (DEQALL)

X' Oq' (SUSPEND)

X' 08' (RESUME)

X' 10' (ATl'ACH)

X'll' (Conditional
A'ITACH)

X'12' (SCHEDULE)

X' 1 'P (AVAIL)

X' 20' (CHAP)

X' 40' (WAIT)

X' 80' (DETACH)

Queue name Not used
address TCATCQA

Queue name Not used
address TCATCQA

Not used Not used

Not used Not used

TCA address Not used
ot resumed
transaction

Facility con
trol address

Facility con
trol address

Terminal 10 or
AID address
TCAKCTA

Facility con
trol address

New priority
TCA'ICDP

Dispatch con
trol indicator
TCATCDC

Not used

Transaction
10 TCAKCTI

Transaction
ID TCAKCTI

T ransacti on
10 TCAKCTI

Not used

Not used

Event control
address
TCATCEA

Not used

Figure 8-1. Trace Table Entry tor Task Control

Chapter 8. Program Testing and Debugging 261

r--,
I I
I TRACE TABLE ENTRY FOR STORAGE CON~ROL I
I I
1--1 " , I I I 1 1 1 I TYP E , I , 1
,TRACEI I OF I TRANS , , ,
, ID ,REGISTER 1ql REQUEST I ID 1 FIELD A 1 FIELD B I L-----------------------------------__________________ -----------------J

X'Fl'

Request Code
(second byte not used)

Bit Condi ti on

o

1

l=GETMAIN

l=FREEMAIN
it bit 0=0

l=Initialize
storage it
bit 0=1

Byte

It GETMAIN -
o Not used

1 Initiali
zation byte
tor GETMAIN

2-3 Requested
number ot
bytes

It FREEMAIN -
o Not used

1-3 Address ot
area to be
treed

2 l=Release all 1-3 Not used it
terminal strg RELEASE=ALL
it bit 0=0
and bit 1=1

1 =Condi tional
GETMAIN if
bit 0=1

l=Cushion change
it bit 0=0
and bit 1=0

3-7 Storage class

00000 lWD
00001 DCA
00010 QEA
00011 TQA

0-3 Faci.lity
address

0-3 Facility
address

Figure 8-2 (Part lot 2). Trace Table Entry for storage Control

262 CICS/VS Application Programmer's Reterence Manual

X'C8'

X'C9 '

X'CA'

3-7 Storage class (continued)

00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10001
10010
10011
10100
10110
10111
11000
11001
11010
11011
11101
11110

LINE
'IERMINAL
ICE
AID
PROGRAM
RSA
TCA
LLA
USER
TRANSDATA
TEMPSTRG
FILE
WRE
ECA
SHARED
CONTROL
TACLE
'ISMAIN
TSTABLE
MAP
ALIGNED
JCA
r:WE
MAFCCPY

Note: Many ot these types ot storage are used only
by CICS/VS. The storage content is signiticant to
system programmers and others who maintain CICS/VS.

Not used 0-3 Address ot Storage
main storage accounting
acquired

Not used. 0-3 Address ot Storage
main storage accounting
released

Not used 0-3 Address ot Address in
active TCA storage
when storage control where
control storage
recovery was violation was
entered encounte red·

Figure 8-2 (Part 2 of 2). Trace Table Entry for Storage Control

Chapter 8. Program Testing and Debugging 263

r--,
I I
I TRACE TABLE ENTRY FeR PROGRAM CONTROL I
I I 1--1 1 I I I I I 1
I I 1 TYPE I I I I
1 TRACE 1 I OF I TRANS I I I
I ID IREGISTER 141 REQUEST I ID I F'IELD A I FIELD B I L---------------------------------_____________________________________ ~

Reguest ~

X'F2' X'Ol00' (LINK) Program name trom TCAPCPI

X'0200' (XCTL) Program name trom TCAPCPI

X'0400' (LOAC) Prograrr name trom TCAPCPI

X'OSOO' (DELETE) Prograrr name tram TCAPCPI

X' 1000' (RETURN) Program name trom TCAPCTA

X'2000' (SETXIT, Not used Not used
CANCEL)

X'200l' (SETXIT, Program name trom TCAPCPI
PROGRAM)

X'2002' (SETXIT, Routine address Not used
ROUTINE) trom TCAPCERA

X'2004' (BLDL) Program name tram TCAPCPI

X'200S' (RESETXIT) Not used Not used

X'2400' (LOAL, Program name tram TCAPCPI
LOADLST= NO)

X'4000' (ABEND Not used Not used
without dump)

X'4l00' (ABEND, NOt used Not used
CANC EL=Y ES)

X'6000' (ABEND ABEND code Not used
with dump) trom TCAPCAC

X'6l00' (ABEND with ABEND code Not used
dump, tram TCAPCAC
CANCEL=YES)

X'Sl00' (Cond LINK) Program name trom TCAPCPI

X'S200' (LOCATE) Program name tram TCAPCPI

X'S400' (Cond LOAD) Program name tram TCAPCPI

X'A400' (Cond LOAD, Program name tram TCAPCPI
LOADLST=NO)

Figure S-3. Trace Table Entry for Program Control

264 CICS/VS Application Programmer's Reterence Manual

r--,
I I
I TRACE TAELE ENTRY FOR INTERVAL CONTROL I
I I 1--1 1 I I I 1 I 1
I I I TYPE I I I I
I TRACE I I OF I TRANS 1 1 I
I 10 IREGISTER 141 REQUEST I 10 I FIELD A 1 FIELD B I L--________________ J

X'F3'

Request Code
(s econd byte not used)

X' lx' (GETIME)

where "x" consists
of the lew-order
tour bits:

Bit Condition

Q,5 Always zero
6 O=Refresh CSA

time only
l=Return time

to user
7 O=Binary fOImat

1=Packed format

X'2x' (WAIT)

X • 3x • (POST)

where "x" consists
of the I cw-order
four bits:

Bit Condition

Return time to Not used
user address
TCAICr;A

INTRVAL or
TIME value
(TCAICRT)

INTRVAL or
TIME value
(TCAICRT)

Not used

Not used

4 O=INTRVAL parameter
provided

1=TIME parameter
provided

5 O=No request
10 provided

1=User-provided
request ID

6,7 Always zero

X' 4x' (INITIATE) INTRVAL or
TIME value
(TCAICRT)

Transaction
ID (TCAICTI)

Figure 8-4 (Part 1 of 2). Trace Table Entry tor Interval Control

Chapter 8. Program Testing and Debugging 265

Request Code
(second byte not used)

X'5x' (pur)

where "x" consists
of the lew-order
four bits:

Bit Condi ti on

INTRVAL or
TIME value
(TCAICRT)

4 O=INTRVAL parameter
provided

1 =TIME parameter
provided

5 O=No request
ID provided

1 =User-provided
request ID

6 Always zero
1 O=Nanterminal

destina tion
1=Terminal

destination

X' 8x' (GET)

where "x" consists
of the lew-order
four bits:

Bit Condition

Q,5 Always zero
6 O=User-~rovided

data address
l=Return data

add,ress to user
1 Always zero

X' 90' (RETRY)

X' AO' (RESET)

X' Fx • (CANCEL)

where "x" conSists
of the lew-order
tour bits:
Bit Condition

4 Always zero
5 O=No request

ID provided
1 =U ser-~rovided

request ID
6,7 Always zero

User-provided
data address

Request ID

Not used

Request ID

Transaction
ID (TCAICTI)

Not used

(TCAICQID)

Not used

(TCAICQID)

Figure 8-4 (Part 2 of 2). Trace 'Iable Entry tor Interval Control

266 CICS/vS Application Programmer's Reference Manual

r--,
I I
I TRACE TABLE ENTRY FOR DUMF CONTROL I
I I 1--1 1 I I I I 1 I
I I I TYPE I 1 I I
I TRACE I I OF I TRANS I I I
I ID IREGISTER 141 REQUEST I ID I FIELD A I FIELD B I
L-------------------------------------~--------------------------------~

Request Code

X'F4' X'FEOO' TRANSACTION Not used Dump code

X'OOFF' CICS Not u~ed

X'FEFF' COMPLETE Net used Dump code

PARTIAL

X'0100' SEGMENT Not used Dump code

X'0400' TRANSACTION Not used Dump code

X'0800' TERMINAL Not used Dump code

X'20000' PROGRAM Not used Dump code

Figure 8-5. Trace Table Entry tor DumF Control

Chapter 8. Program Testing and Debugging 261

~---,
I I
I TRACE TABLE ENTRY FOR FILE CONTROL I
t I 1--1 I' I I I I 1
1 I I TYPE I I I I
ITRACE(I OF I TRANS I I (
I ID IREGISTER 141 REQUEST I ID 1 FIELD A I FIELD B (
L--~

X'F5'

Request Code

X'SO' GET may also
include:

X' OS' Segmented
X' 04' Update
X'02' Indirect access
X'Ol' Deblock direct

access
X'SO' Deblock by

Data set name trom TCAFCDI
or FCT entry (tor all
except RELEASEr OPEN,
CLOSE, and LOCATE).

key (see note 1)
X'40' Deblock by

X'40'

X'08'
X'04'
X' 0"

X'20'

X'08'

X' 04'

X' 10'

X'Ol'

X'OO'

X'AO'

X'08'

X'A4'

X'OS'

X'BO'

X'08'

X'll'

X'CO'

re la ti ve record
(see note 1)

PUT may also
include:
Segmented
New record
Delete

GETAREA may also
include:
Initialize
storage
Mass insert

RELEASE Area address
from TCAFCAA

DELETE

System RELEASE Area address
from TCAFCAA

SEn.. may also
include:

Segmented

RESETL may also
include:

Segmented

GE'INEX'I may also
include:
Segmented

ESETL

OPEN POinter to list

Not used

Not used

List

Figure 8-6 (Part 1 at 2). Trace Table Entry tor File Control

268 CICS/VS Application programmer's Reterence Manual

Request Code

X'EO' CLOSE POinter to list List

X' FO' LOCATE Pointer to list List

Notes:

1. Contents of second byte; applies only to deblock direct access data
sets.

2. If the first byte of the request code is X'80', X'qQ', X'20', X'11',
X'10', X'Ol', X'AO', X'A4', or X'BO', and a VSAM data set is being
processed, the second byte of the request code contains one ot the
following:

X'80'
X' 40'

X' 20'

X'10'

Figure 8-6 (Part 2 ot 2).

Argument is RBA
Argument is
generic key
Search greater
than or equal to
Locate mode

Trace Table Entry tor File Control

Chapter 8. Program Testing and Debugging 269

r--,
1 1
I TRACE TABLE ENTRY FOR TRANSIENT DATA CONTROL 1
I I
I---~--1
I I I I I 1 I
I' I TYPE I I I I
I TRACE 1 I OF I TRANS I I I
I ID I REGISTER 141 REQUEST I ID I F"IELD A t FIELD B I L----------------------------__ ~

X' F6'

Figure 8-7.

Request Code
(s~cond byte not used)

X'04' (PURGE)

X' 10' (LOCATE)

XI 20' (FEOV)

X'40' (PUT)

X, 48' (PUT)

X' 80' (GET)

X'88' (GET)

Not used

Not used

Not used

Data address
tram TCATDDA

De stina tion ID
trom TCATDDI

Not used

Destination ID
trom TCATDDI

Destination ID
tram TCATDDI

Issued by the asynchronous
transaction control program
(DFHATP); see PUT above

Not used Destination ID
trom TCATDDI

Issued by the asynchronous
transaction control program
(DFHATP); see GET above

Trace Table Entry tor Transient Data Control

270 CICS/VS Application Prograrrmer's Reterence Manual

r--,
I I
I TRACE TABLE ENTRY FOR TEMPORARY STORAGE CONTROL I
I I 1--1 1 I I I I I 1
1 I 1 TYPE I I I I
1 TRACE I I OF t TRANS I I 1
I IO IREGISTER lql REQUEST I ID I FIELD A 1 F"IELO B I
L--~

X' F1'

Request Code
(second byte not used)

X'80'

X'20'
X' 10'

X'08'

X'04'

X'Ol'

X'lO'

X'08'
X'04'
X'02'

X'Ol'

X' 20'

X'Ol'

X'02'

(GET) may
also include:
(RELEASE)
Entry number
supplied on
GETQ
Input area
address
supplied
Exclusive
control
Queue-type
request
(GETQ)

(PUT) may
also include:
Condi tional
request
Main storage
Replace
System
request
Queue-type
request (PU'IQ)

(RELEASE) may
also include:
Queue-type
request
(PURGE)
Butter flush
request

Data identitication
trom 'ICATSDI

Figure 8-8. Trace Table Entry tor Temporary Storage Control

Chapter 8. Program Testing and Debugging 211

r------------------------------~---------------------------------------, , I
I TRACE TABLE ENT~Y FOR CICS/VS-DL/I IN'I'ERFACE I
, I
I---------------~--1
I' I I I 1 I
I I I TYPE I I I I
I TRACE I I OF I 'I'RANS I I I
, 10 ,REGISTER 141 REQUEST I 10 ,FIELD A ,FIELD B ,
L--------------------------~-~--------------------------------------~--J

I X' F8'

Figure 13-9.

Request ~

Not used DL/I Function PCB address
code

Trace Table Entry tor CICS/VS-OL/I Intertace

272 CICS/VS Application Programmer's Reterence Manual

r~~----~-------~-~-W-----.---------~-------------~-----~-~------------~,
I I TRACE TABLE ENTRY FOR JOURNAL CONTROL I

1--1
'I 1 I I I I 1 I I TYPE I I I
I TRACE I I OF I TRANS I I I I ID IREGISTER 141 REQUEST ID FIELD A FIELD B
L------------------------------~------------~~----------------------~--J

Request Code
(not used as
request codel Bytes

FIELD A:

contents

X'F9' o
1
2-3

Journal file ID
Not used
Type of request

No~e: Byte 3 is the Byte 3 Byte 2
maJor control; byte 2 X' 0 l' WRITE
further identifies X'01' COND=YES
the condition. X'02' STARTIO=YES

X'Oq' User prefix
specified

X'10' USING clause passes
data address
(COBOL)

X'SO' CICS/VS request

X' 02' WAIT
X'02' STARTIO=YES

X'03' PUT
Same as WRITE

X' Oq' OPEN
X'01' Output
X'02' Input
X'Oq' VOL=FIRST (output) or

VOL=PREVIOUS (input)
X'OS' VOL=NEXT
X'10' VOL=CURRENT or

SIVOL=YES (VOL=NEXT)

X' OS' CLOSE
X'01' LEAVE=YES

X'10' NOTE
X' 20' POINT
X' 40' GETF
X'SO' GETB

FIELD B:

4-7 Address of JCA

Figure S-10. Trace Table Entry for Journal Control

Chapter S. Program Testing and Debugging 273

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

r~~~-~-----------~---~-----------------------~--~---~~---~---~----~~~--,
I I I TRACE TAELE ENTRY FOR BASIC MAPPING SUPPORT I

1--1
I I I I I I I
I I I TYPE I_ I I
I TRACE I I OF T-RANS I I I
I 1D IREGISTER 1q REQUEST ID I FIELD A I FIELD B I
L-----~----------~---------------------___________ .--~ ___________ ~_~_~_~
X'CD' Not used

Note: The X'CD' trace occur
when BMS receives an IDERROR
from Tem~orary storage. This
trace can be used by Field
Engineering_

Bytes 0-3 of
Temporary
storage data
identification
(TCATS):I)

Bytes q-7 of
Temporary
Storage data
identification
(TCATSDI)

Figure 8-11 (Part 1 of 3). 7race Table Entry for Basic Mapping support

27q CICS/VS Application prograrrmer's Reference Manual

X'FA' Not used Request Code

FIELD A:

Byte <l Meaning
(from TCAMSTR 1)
X'SO' TYPE=ROUTE

Page of SH2G-9003-2
Revised May 22,1975
By TNL SN2G-9086

X'40' ERRTERM=ORIG
X'20' ERRTERM=termid
X'10' INTERVAL=numeric
X'OS' TIME=numeric
X'04' LIST=ALL
X'02' LIS~=symbolic address
X'01' OFCLASs=operator class

Byte 1 Meaning
(f rom TCAMS~R2)
X'SO' TITLE=symbolic address
X'01' TYFE=PURGE

Byte 2 Meaning
(from TCAMSTR3)
X'20' TYPE=TEXT
X'10' CURSOR=number
X'OS' C~RL=any 3270 WCC
X'04' MAP=map name
X'02' MSETADR=symbolic address
X'Ol' MAPSET=map set name

Byte 3 Meaning
(from TCAMS'IR4)
X' CO' DATA=YES
X'40' DATA=NO
X' 20' TYPE=SAVE
X'10' MAPADR=symbolic address
X' OS' TYPE=WAIT
X' 04' TYPE=MAP
X'02' TYPE=ERAS E
X'Ol' TYPE=IN

FIELD B:

Bvte 4 Meaninq
(from TCAMSTRS)
X'SO' TYPE=PAGEBLD
X' 40 ' OFL~=symboli c address
X'04' TYFE=OUT
X' 02' TYPE: STORE
X'Ol' TYPE=RETURN

Figure S-11 (Part 2 of 3). Trace Table Entry for Basic Mapping Support

Chapter S. Program Testing and Debugging 274.1

X'CF' Not used

Page of SH2o-9003-2
Revised May 22, 1975
By TNL SN2o-9086

Request £29.!

Byte 5 Meaning
(from TCAMSTR6)
X'80' TYPE=PAGEOUT
X'40' C~RL=AUTOPAGE
X'20' CTRL=PAGE
X'10' CTRL=RETAIN
X'OS' CTRL=RELEASE
X'Oq' WRERR=CURRENT
X'02' WRBRK=ALL
X'01' EODPURG=OPER

Byte 6 Meaning
(from TCAMSTR7)
X'SO' TYPE=TEXTBLD
X'40' HEACER=symbolic address
X'20' TRAILER=symbolic address
X'10' JUSTIFY specified
X' 0 l' TYPE=NOEDIT

Byte 7
Not used

FIELD A:

Byte 0
Response code from TCAMSRC1:
X'SO'

X'40'

X' 20'
X' OS'
X'Oq'
X' 02'
X'01'
X' 00'

Byte 1

Route failed - no
resolutions
Route worked - some
resolutions
Invalid error terminal
Mal;: too large
I/O area cannot be mapped
Page returned
Invalid request
Normal response

Response code from TCAMSRC2:
X'SO' Temporary storage I/O

error

Byte 2
Response code from TCAMSRC3:
X'01' PAGEBLD overflow

Byte 3
Terminal code from TCAMSRI1 when
TCAMSRC1 contains X'OS'

FIELD B:

When TCAMSRC3 contains X'01',
the first two bytes of this field
contain the current page number
(from TCAMSPGN) and the last two
bytes contain the overflow control
number (from TCAMSOCN).

I Figure 8-11 (Part 3 of 3). ~race Table Entry for Basic Mapping support

Chapter S. program Testing and Debugging 275

r--,
I I
I TRACE TABLE ENTRY FOR BUILT-IN FUNC'!IONS I
I I
1--1
" , TYPE , I f I I TRACE I I OF J TRANS I I 1
1 ID IREGISTER 141 REQUEST 1 ID 1 FIELD A J FIELD B I
L--~

Request Code
(second byte not used)

X'FB' X' 0 l' BITES'!

X '02' DEEDI'!

X'03' INFORMAT

X'04' PHONE'!IC

X'OS' CHECK

TSEARCH

Byte Contents

FIELD A includes bytes 0-3;
FIELD B includes bytes 4-7.

o
1

2
3

0-1
2-3

0
1

2-3

Not used Byte address
Function type
X'80' BITSETON
X'40' BITSETOFF
X' 20' B.ITFLIP
X'10' BITEST
Bit pattern
Not used

Field length Field address
Not used

Not used List address
Name list indicator
X'OO' No list
TIOA size

Bytes 0-7 of the name

0-1 Field length Field address
2-3 Not used

o Not used Arg. address
1 Function code

X'OO' EBCDIC
X'Ol' Target address
X'10' Descending order
X'20' Ascending order
X'40' Range

2-3 Number of entries
in arg. table

Figure 8-12 (Part 1 of 2). Trace Table Entry for Built-In Functions

276 CICS/VS Application Programmer's Reference Manual

Request Code
(second byte not used) Byte Contents

X'07' w'IRETST 0 Not used Key address
1 SETL indicator
2-3 Max. number ot

records

X'OS' WTR'IPARM 0-1 Not used VSWA address
2-3 FIELD1 - second

operand

X'09' W'IRETGET Same as WTRETST VSWA address

X'OA' WTRETREL Same as WTRETST VSWA address

Figure S-12 (Part 2 ot 2). Trace Table Entry for Built-In FUnctions

Chapter 8. Program Testing and Debugging 277

r--,
I I
I TRACE TABLE ENTRY FOR VTAM TERMINAL CONTROL I
, I
1--1
I I I I I I I
ITRACEI I MODULE I TRANS I I 1
I ID IREGISTER 14 I ID I ID I FIELD A I FIELD B I
L--~

X'PC'

Module II:

X' 0.0'

X' 0 l'
X'02'
X'03'
X'04'

X'OS'
X'06'
X'01'
X'OS'
X'09'
X'OB'

X'OC'

X'OD'

X'22'

X'23'
X'24'
X'25'
X'26'
X'21'
X'29'
X'31'
X'32'
X'34'
X' 40'
X'SO'
X'CO'

Exit tracE
entry
Send DFSYN
Send DFASY
S End response
Receive
s~ecitic
SIMLOGON
OPNDS'I
SESSIONC
CLSDST
RESETSR
A~pl request

Receive any
completion
CTYPE and
request
Auto task
initiation
Start-up-task
DWE process
Resync
Resp logger
NACP
NACP
Auto queueing
Detach
Locate
Attach
GETMAIN
FREEMAIN

Contents are
residual
Format A1
Format Al
Format Al
Format Al

Format A 1
Format A1
Format A 1
Format A 1
F'ormat A1
Format A2

Format A 1

Format A 1

Format Al

Format Al
Format Al
Format Al
Format Al
Format A3
Format A4
Format Al
Format Al
Format A 1
Format Al
Format Al
Format Al

Field !!

Format Bl

Format Bl
Format Bl
Format Bl
Format Bl

Format B1
Format B1
Format B1
Format B1
Format B1
Format B2 it
byte 0 ot
tield A is
X'OO', other
wise not used.
Format B1

Format B1

Format B1

Format Bl
Format Bl
Format Bl
Format Bl
Format Bl
Format Bl
Format Bl
Format Bl
Format Bl
Format Bl
Format B1
Format B1

FORMAT A1

Byte 0

X '0 l'

X '02'

X'OS'

X' 10'
X'20'
X'40'
X'SO'

Meaning

Task created by
avail (ATI)
Input journal
required flag
Resynch/r ecovery
in progress
NACP in progress
ATI bid in progress
Data in progress
Command in progress

Figure S-13 (Part 1 of 1). Trace Table Entry tor VTAM Terminal Control

21S CICS/VS Application Programmer's Reference Manual

Byte 1

X' 0 l'

X'02'

X'04'
X'OS'

X'10'
X'20'

X'40'

X'SO'

Byte 2

X' 01 '

X'02'

X'04'

X'08'
X'10'

X'20'

X'40'

X'SO'

Byte 3

X'OS'
X' 10'
X'20'
X'40'

X'SO'

FORMAT A2

Meaning

Resynchronization
required
Previous session
ABEND
Emergency restart
Bracket protocol
required
overlength data
Mode (CS=X' 20' ,
CA=Not X' 20')
CICS quiesced by
node
Node quiesced by
CICS

Meaning

Detinite resp sent
in progress
Bid to be retried
indicator
Log 1st input
atter sync
Not used
Awaiting positive
response
DeterJ:ed write
pending
pending FME
response
pending RRN
response

Meaning

End bracket sent
Begin bracket sent
RTR pending state
Begin bracket
pending state
In bracket state

Byte 0 Meaning

X'OO' I/O request type

Figure 8-13 (Part 2 ot 1). Trace Table Entry tor VTAM Terminal Control

Chapter S. Program Testing and Debugging 27Y

Byte 1

x '0 l'
X'02'
X'Oq'

X'OS'
X' 10'
X'20'

X'QO'

X'80'

Byte 2

Byte 3

X'01'
X'02'
X'OZ'
X'OQ'
X'08'
X'10'
X'20'
X' QO'

X'80'

Meaning

Write request
Converse request
Synchroni.zation
request
Disconnect request
Read request
Line addressing
request
Save terminal
storage request
Erase request

Not used

Meaning

Pseudo binary mode
Notranslate request
Transparent mode
Print request
copy request
Read lock request
Write lock request
Erase all. unpro
tected
Read butter request

Byte 0 Meaning

X'01' Locate request

Byte 1

X'OO'
X '0 l'
X'02'

Meaning

Addre ss request
ID request
Next request

Bytes 2-3 Not used

Byte 0 Meaning

X'02' Auto task initiation
request

Bytes 1-3 Not used

Byte 0 Meaning

X'Oq' status request

Byte 1

X' 01'
X'02'

X'Oq'

Meaning

Acquire
Resynchronization
override
Release

Figure 8-13 (Part 3 of 7). ~race Table Entry tor VTAM Terminal Control

280 CICS/VS Application Programmer's Reference Manual

Byte 2

X' 01'
X'02'
X'O'"
X'OS'
XIOS'
X '10'
X'10'
X'20'
X'''O'
X'SO'

Byte 3

Meaning

out of service
In service
Transaction
Auto initiate
Transceive
No poll
Receive
Input
Auto page
Page

Not used

Byte 0 Meaning

X'OS' L~C request

Byte 1 contains the logical
device code

Bytes 2-3 Not used

Byte 0 Meaning

X'lO' Detach request

Bytes 1-3 Not used

Byte 0 Meaning

X'20' Sync-point request

Bytes 1-3 Not used

Figure S-13 (Part" of 7). Trace Table Entry for VTAM Terminal Control

Chapter S. program Testing and Debugging 2S1

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

FORMAT A3

Byte 0

X'10'
X'11'
X'13'
X '1 q'
X'1S'

X'19'
X'1A'
X'1D'

X'20'
X'qq'
X'Sg'
X '60'
X' 6S'
X'73'
X'74'
X'7S'
X '7S'
X'SO'
X'S1'
X'S2'
X'S3'
X'Sq'

X'SS'
X'Sg'
X'90'
X '91'
X'92'
X'93'
X'gq'
X'9S'
X'96'
X'97'
X'9S'
X'gg'
X'A l'
X'A3'
X'AS'
X'A7'
X'AS'
X'A9'

X'E1'
X'B2'
X'B3'
X'BS'
X'BA'
X'BB'
X 'Cl'
X'Cq'
X'CS'
X'CE'
X'CC'
X'CD'

Meaning

NODE not activated
Session bind failure
VTAM halting
Logic error detected
Permanent channel error or
NCP shutdown
Terminate self from NODE
Apparent VTAM error
VTAM inactive to application or
TCE ABEND
VTAM inactive
Exception response received
Record outstanding at shutdown
Unsupported command detected
Invalid resJ;onse requested
Read only terminal
Unsupported command
Unsupported command
Response request error
Temp VTAM storage problem
Exception response received
Unknown command received
ATI no longer requested
Invalid normal response
to bid
Invalid CID detected
Unknown symbolic name
ZCP logic error detected
Invalid R'I¥PE specified
Send DFSYN req incomplete
CA mode and task attached
Input status error
TIOA length incorrect
RPL missing (receive specific)
TIOA missing (receive specific)
No task on terminal to resume
No TIOA available for send
Invalid read request
Bracket state error
Message exceeds input maximum
NODE bracket protocol error
FMB 1 ength > data 1 ength
Receive specific in receive any
failed
RPL is active
Invalid command setting
No RPL exists for opera~ion
Unknown command
Exception response
Unknown command in RPL
Unknown error code from VTAM
Dummy TCTTE identifier
NCP restarted
Terminal CLSDST'D
Clear was issued
Exception in chain

Figure S-13 (Part S of 7). Trace Table Entry for VTAM Terminal Control

2S2 CICS/VS Application Programmer's Reference Manual

Byte 1

X'SO'
X'qO'
X'20'
X'OS'
X'Oq'

X'02'
X '0 l'

Byte 2

X'SO'
X'qO'
X'20'

X' OS'

X'Oq'

Byte 3

X'01'
X'02'
X'Oq'
X'20'
X'qO'
X'SO'

Meaning

VTAM recovered NODE
NODE unrecoverable
NODE recovery in progress
Request recovery record
Unsupported command
received
CICS released by node
CICS quiesced by node

Meaning

Catastrophic error
Exception req received
Request shutdown record -
task active
Negative response record
to a definite resp send
Exception response reg

Meaning

Release request received
Shutdown sent by CICS
Committed log pending
Start data trattic sent
Session bind
Node is logged on

FORMAT Aq

Byte 0

X'20'
X'qO'
X'SO'

Byte 1

X'20'
X'qO'
X'SO'

Byte 2

x '0 l'
X'02'

Byte 3

x '0 l'
X'02'
X'Oq'
X'OS'
X '10'

X'20'
X'qO'
X'SO'

Meaning

Print TCTTE
Print RPL
Print action tlags

Meaning

ABEND task
ABORT VTAM receiVE
ABORT VTAM send

Meaning

Terminate session
Keep node out ot service

Meaning

Definite resp send
Bid to be retried
Log first inp~t
O=positive 1=negative
Awaiting positive
response
Deterred write pending
pending FME response
Pending RRN response

Figure S-13 (Part 6 of 7). ~race Table Entry for VTAM Terminal control

Chapter S. Program Testing and Debugging 2S3

FORMAT Bl

Byte 0

X'OO'

X'E2'
X'E3'
X'E4'
X'E5'
X'E6'
x 'E7'
X'ES'
X~E9'
X'Fl'
X'F2'
X'~3'
X'F4'
X'FS'
X'F6'
X'F~'

Meaning

NO exit since last
trace entry
DFASY exit·
S ESSION,C exit
SESSIONC input exit
LOSTERM exit
TPEND exit
Release request exit
LERAD exit
SYN,f\D ~xit
Send DFSYN exit
send DFASY exit
ResponSje exit
Receivespecitic exit
LOGON ·exit·
OPNDST exit
CLSDST exit

Bytes 1-3 Contain the address
ot the TCTTE

FORMAT B2

Byte 0

X'Ol'

X'02'

X'04'

X'OS'

X'10'

X'20'

Meaning

Wait request with
operation
Qverride sync
operation
Override async
operation
Last write trom
task
FMH provided with
data
LDC mnemonic
present

Bytes 1-3 Contain the address
ot ·the TCTTE

Figure 8-13 (Part 7 of 7). Trace Table Entry tor VT~ Terminal Control

2S4 CICS/vS Application Programmer's Reter~nce Manual

r--,
i 1
1 TRACE TABLE ENTRY FOR TRACE CONTROL 1
I 1
I-----~--1
I' I 1 I 1 1
1 I 1 TYPE I 1 , t
I TRACE I , OF. I TRANS 1 , 1
I ID IREGISTER 141 REQUEST I ID I FIELD A I FIELD B 1
L-~-------------------------~----------- ______________ -________________ ~

X'FO'

ReqUest Code

Not used Number ot repeated entries
(packed decimal) in trace
table

Byte Contents Byte Contents

X'FE' (Trace turn on) o
1
2
3

CSATRMF1
CSATRMF2
CSATRMF3
1:CATRMF

o
1
2
3

TCATRTR
Reserved

Reserved
Reserved

X'FF' (Trace turn off)

Figure 8-14. Trace Table Entry tor Trace Control

r--,
I I
I TRACE TABLE ENTRY FOR SYNC POINT FROGRAM I
I.. I
I----------~--------------------------------~--------------------------1

I I I , , I 1
1 , 1 I TYPE 1 I I I
I TRACE I ,OF I 1:RANS I 1 I
I ID I REGISTER 141 REQUEST I ID I FIELD A I FIELD B 1 L---------------______________________________________ -----------------~

X'D8'

Figure 8-15.

Request Code

Not used Bytes Bytes
(trom TCASPl'R) (trom TCADWLBA)
o Type ot request 0-3 POinter

X'01' PSER to tirst
X'02' SINGLE Deterred work

1-3 Not used element (DWE)

Trace Table Entry tor sync POint Program (CICS/OS/VS
oniy)

Chapter 8. Program Testing and Debugging 285

r--, 1 1
1 TRACE TABLE ENTRY FOR FIELD ENGINEERING 1
, I
1--1
I I I I I I 1
I 1 1 TYPE I I I I
I TRACE I I OF I TRANS I I I
I IO IREGISTER 141 REQUEST I ID I FIELD A I FIELD B I
L--~-------------------~

X'E6'

Request Code

X'0100'
(from TCATRID 1)

~ contents

0,1 Op code trom tield TCTLETOP ot
terminal control table line
entry (TCTLE) tor
communicatiOn line

2 Tele~rocessing code trom
TCTLETPO

3 Action ~lags from
TCTLEECB+1 (set by
abnormal termination
condition program)

4-7 Terminal identification

Note: This trace occurs in the terminal abnormal condition program
(DFHTACP) just prior to transferring control to the user's terminal
error program (DFHTEP).

X'0200'
(from TCATRID 1)

o
1

2
3
q
5
6
7

Corr~letion code trom TCTLEECB
BTAM return code trom
TCTLEECB+3
Error tlags trom TCTLEPLF
Action flags from TCTLEECB+1
Command code trom TCTLECC
Status byte from TCTLESF
First sense byte trom TCTLESB
Second sense byte from
TC'lLESB+1

~: This trace occurs in DFHTACP just atter returning trom DFHTEP.
X'E7' through X'EF'; Reserved for field engineering.

Figure 8-16. Trace Table Entry for Field Engineering (FE) Type ot
Entry

286 CICS/vS Application Programmer's Reference Manual

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

r--,
I I
1 _________________ :::1~~~~;~:~~~~~~:~::~~~~~~~~~~ ___________________ 1

I I I I I I
I TYPE I I I I
fTRACE OF I TRANS I I I ID IREGISTER 14 REQUEST ID FIELD A FIELD B
L--____________ J

Request ~

X'DO' (second byte not used)
X'OS' Task dispatched Not used Not used

X'06' Task created Facility ID Transaction

X'07' Task terminated Not used Not used

This trace entry is only created if auxiliary trace is active.

Figure 8-17. Trace Table Entry for Task Control (During Auxiliary
Tracing Only)

Chapter 8. Program Testing and Debugging 286.1

ID

DUMP SERVICES

Dump management provides the capability, through dump control, to
dump specified areas ot main storage onto a sequential data set, either
tape or disk. This data set contains only the intormation pertinent
to the user's transaction or application program, and is subsequently
tormatted and printed otfline (or while the dump data set is closed)
using a CICS/VS dump utility program (DFHDUP).

Requests tor dump services are communicated to dump centrol through
CICS/VS macro instructions. Dum~ control executes at the priority ot
the requesting program, under control of the TCA ot the requesting
program. saving and restoring registers trom this TCA. Atter a
requested dump service has been ~rovided, control is returned to the
next executable instruction in the requesting ~rogram.

Dump control operates as a serially reusable ~rogram resource. Only
one service request is processed at a time. If additional requests
tor dump services are made while a dump is in progress, the tasks
associated with those service requests are delayed (suspended) and
placed in a "hold" status until the dump is completed. Remaining dump
requests are serviced on a tirst-in first-out (FIFO) basiS.

The dump management macro instruction (DFHDC) is used to request
any of the following services:

• Dump main storage areas related to a transaction and its associated
task (or any other main storage areas)

• Dump the following CICS/VS centrol tables: ~rogram control table
(PCT) , program processing table (PPT), system initialization table
(SIT), terminal control table (TCT), file control table (FCT), and
destination control table (DCT)

• Dump transaction-oriented sterage areas .!!!.2 CICS/VS control tables

• Dump selected main storage areas related to the requesting task

Notes:

1. To ensure a dump of the TIOA follOwing a terminal control write
that precedes a DFHDC macro instruction, the application programmer
must issue a SAVE and WAIT with the DFHTC TYPE=WRITE macro
instruction.

2. If the purpose ot the DFHDC macro instruction is to inspect the
contents ot the common centrol area ot the a~plication program
communication section of the TCA used tor a CICS/VS service request,
the application program must acquire 2q words of storage (or use
a portion of the TWA) prior to issuing the DFHDC macro instruction
in which to save this intormation. Since the communication area
in the TCA ot the requesting task is used by dump control, the
information in that area prior to the dump is overlaid during the
dump.

3. CICS/VS control tables will be dumped only it the CICSDMP=YES
operand is specitied in the DFHSG PROGRAM=DCF macro instruction at
system generation. (see the CICS/VS System programmer's Reterence
Manual.)

I q. Every dump request will include the TCA, CSA, and TRT.

Chapter 8. Program Testing and Debugging 281

DUMP TRANSACTION STORAGE (TRANSACTIO~

The application programmer can request a dump ot a~~ main storage
areas related to a transaction and its associated task by issuing the
DFHDC TYPE=TRANSACTION macro instruction. This dump is normally used
during the testing and debugging ot user-written app~ication programs.
(CICS/VS automatically provides this service it the re~ated task is
abnormally terminated.)
The format of this macro instruction is:

r------r-------r---,
I I I I
I I DFHDC I TYPE=TRANSACTION I
I I I , DMPCODE=j value t I
I I I 1 YES ~ I
I I I I
L------L-------L---~

where:

TYPE=T RANS ACTION
indicates that the fo~~owing storage areas are to be dumped:

1. Task control area (TCA) and, if applicable, the transaction
work area (TWA)

2. Common system area (CSA), inc~uding the user's portion ot
the CSA (CWA)

3. Trace tab~e

q. Contents ot genera~-~urpose registers upon entry to dump
control from requesting task

5. Either the termina~ control table terminal entry (TCTTE) or
the destination contro~ table entry associated with the
requesting task

6. All transaction storage areas chained ott the TCA storage
accounting field

7. All program storage areas containing user-written app~ication
program(s) active on behalf of the requesting task

8. Register save areas (RSAS) indicated by the RSA chain off
the TeA

9. All terminal input/output areas (TIOAs) chained ott the
terminal control table terminal entry (TCTTE) tor the
terminal associated with the requesting task (it any)

Whenever the TCTTE is dum~ed (see 5 above), the termina~ control
table user area (if any) and the message control blocks (it any)
associated with the TCTTE are dumped. The ~atter are used by
basic mapping support.

DMPCODE=
is a four-character dump code to be printed out with the
requested dump to identify it; this code shou~d be unique so
that it is intormative concerning the condition that caused the
dump.

value
is a combination ot tour alphabetic, numeriC, and/or special
characters to be printed as the dump code.

288 CICS/VS Application Programmer's Reterence Manual

YES
indicates that the dump code has been placed in TCADCDC.

Example

The tollowing example illustrates the coding required to request a
dump ot transaction storage:

DFHDC TYPE=TRANSACTION,
DMPCODE=D010

DUMP CICS/VS STORAGE (CICS)

REQUEST TRANSAC~ION STORAGE DUMP
USER-SPECIFIED ~UMF CODE *

The application programmer can request a dum~ ot PCT, PPT, TCT, FCT,
and OCT by issuing the DFHDC T¥PE=CICS macro instruction. This tacility
is available if the CICSDMP=YES operand is specitied in the DFHSG
PROGRAM=DCP macro instruction at system generation (see the CICS/VS
system Programmer's Reterence Manual). This dum~ is typically the
first dump taken in a testing situation in which the base ot the test
must be established; subsequent dumps are usually ot the TRANSACTION
type.
The format of this macro instruction is:

r------r-------r---,
I I I I
I I DFHDC I TYPE=CICS I
I I I ,DMPCODE=j valuet I
I I I 1 YES) I
I I I I
L------L-------L---~

where:

TYPE=CICS
indicates that PCT, PPT, SIT, TCT, FC~', and DCT are to be dum~ed.

DMPCODE=

Example

is a tour-character dump code to be printed out with the
requested dump to identity it; this code should be unique so
that it is informative concerning the condition that caused the
dump.

value

YES

is a combination of tour alphabetic, nurr.eric, and/or special
characters to be ~rinted as the dump code.

indicates that the dump code has been ~laced in TCADCDC.

The following example illustrates the coding required to request a
dump of PCT, PPT, SIT, TCT, FCT, and DCT:

DFHDC TYPE=CICS,
DMPCODE=D020

REQUEST CICS/VS STORAGE DUMP
USER-SPECIFIED DUMP CODE

DUMP TRANSACTION STORAGE AND CICS/VS STORAGE (COMPLETE)

The application programmer can request a dump ot both
transaction/task-related storage and PCT, PPT, SIT, TCT, FCT, and OCT

Chapter 8. Program Testing and Debugging 289

*

by issuing the DFHDC TYPE=COMPLETE macro instruction. The PCT, PPT,
SIT, TCT, FCT, and DCTwill be dumped if CICSDMP=YES was specitied in
the DFHSG PROGRAM=DCP macro instruction at systerr generation (see the
CICS/VS System Programmer's Reterence Manual).
The format ot this macro instruction is:

r------r-------r---,
I I I I
I I DFHDC I TYPE=COMPLETE I
I I I ,DMPCODE=~valuet I
I I I I YES f I
I I I I
L------L-------L---~

where:

TYPE=COMPLETE
indicates that transaction/task-related storage and PCT, PPT,
SIT, TCT, FCT, and OCT are to be dumped.

DMPCODE=
is a tour-character dump code to be printed out with the
requested dump to identity it; this code should be unique so
that it is informative concerning the condition that caused the
dump.

value

YES

is a combination of tour alphabetic, numeric, and/or speCial
characters to be ~rinted as the dump code.

indicates that the dump code has been placed in TCAOCDC.

To request a complete dum~ is sometimes appropriate during execution
of a task, but this macro instruction should not be used excessively.
CICS/VS control tables are primarily static areas; therefore, requesting
one CICS dump and a number ot TRANSACTION dumps is generally more
efficient than requesting a comparable number of COMPLETE dumps.

Example

The following example illustrates the coding required to request a
dump of both transaction storage and PCT, PPT, SIT, TCT, FCT, and OCT:

DFHDC TYPE=COMPLETE,
DMPCODE=D030

DUMP PARTIAL STORAGE (PARTIAL)

REQUEST COMPLETE STORAGE DUMP
USER-SPECIFIED DUMP CODE

The application programmer can request a dump ot selected main
storage areas related to the requesting task by issuing the DFHDC
TYPE=PARTIAL macro instruction. This type of dump can be used during
the testing and debugging of user-written application programs. It
includes only the storage areas specified.

290 CICS/VS Application programmer's Reference Manual

The tormat of this macro instruction is:

r------r-------r---,
I' I I I
I I DFHDC I TYPE=PARTIAL I
I I I LIST= ([TERMINAL][rPROGRAM][rTRANSACTION][rSEGMENT]) I
: : : rDMICODE= ~;~ue ~ \

I I I I
L------L-------L---~

where:

TYPE=PARTIAL

LIST=

indicates that a dump ot selected main stcrage areas is required.

identities specific areas to be dumped.

TERMINAL
indicates that all storage areas associated with the terminal
are to be dumped. These storage areas are as tollows:

1. Task control area (TCA) and r it applicable r the
transaction work area (TWA)

2. Common system area (CSA)r including the user's portion
of the CSA (CWA)

3. Trace table

4. All terminal input/output areas (TIOAS) chained ott the
terminal control table terminal entry (TCTTE) tor the
terminal associated with the requesting task

5. Contents of general-purpose registers upon entry to dump
centrol from the requesting task

6. Either the terminal control table terminal entry (TCTTE)
or the destination control table entry associated with
the requesting task

Whenever the TCTTE is dumped, the terminal control table
user area (it any) and the message control blocks (it any)
associated with the TCTTE are dumped. The latter are used
by basic mapping support.

PROGRAM
indicates that all program storage areas associated with
this task are to be dumped. These storage areas include:

1. Task control area (TCA) and r it applicable r the
transaction work area (TWA)

2. common system area (CSA)r including the user's portion
of the CSA (CWA)

3. Trace table

4. All program storage areas containing user-written
application program(s) active on behalt ot the requesting
task

5. Register save areas (RSAS) indicated by the RSA chain
otf the TCA

Chapter 8. Program Testing and Debugging 291

6. Contents of general-purpose registers upon entry to dump
control from the requesting task

7. Either the terminal control table terminal entry (TCTTE)
or the destination control table entry associated with
the requesting task

Whenever the· TCTTE is dumped, the terminal control table
user area (it any) and the message control blocks (it any)
associated with the TCTTE are dumped.

TRANSACTION
is typically used in combination with other types ot PARTIAL
dumf requests to include all transaction storage areas
associated with the task. These areas include:

1. Task control area (TCA) and, it applicable, the
transaction work area (TWA)

2. Common system area (CSA), including the user's portion
ot the CSA (CWA)

3. Trace table

4. contents of general-purpose registers upon entry to dump
control from the requesting task

5. All transaction storage areas chained ott the TCA storage
accounting tield

6. Either the terminal control table terminal entry (TCTTE)
or the destination control table entry associated with
the requesting task

Whenever the TCTTE is dumped, the terminal control table
user area (it any) and the message control blocks (it any)
associated with the TCTTE are dumped.

SEGMENT
is used to include in the PARTIAL dumI= any area ot main
storage specitied (see Programming Note). In addition to
the selected area, the contents ot the tollowing storage
areas are displayed:

1. Task control area (TCA) and, it aI=flicable, the
transaction work area (TWA)

2. Common system area (CSA), including the user's portion
ot the CSA (CWA)

3. Trace table

4. Contents of general-purpose registers upon entry to dump
centrol from the requesting task

5. Either the terminal control table terminal entry (TCTTE)
or the destination control table entry associated with
the requesting task

Whenever the TCTTE is dumped, the terminal control table
user area (if any) and the message control blocks (it any)
associated with the TCTTE are dumped.

These parameters are not mutually exclusive.
specified in any combination and any order.

They can be
The parentheses

292 CICS/VS Application Programmer's Reference Manual

are optional when only one parameter is specitied. At least
one parameter is required. No storage area is dumped more than
once as a result ot a single BFHDC TYPE=PARTIAL request. Thus,
for example, if DFHDC TYPE=PARTIAL,LIST=(TERMINAL,TRANSACTION)
is specified, the contents ot the TCA and CSA are displayed only
once.

DMPCODE=
indicates that a tour-character dump code is to be printed out
with the dump to identity iti this code should be unique so that
it is informative concerning the condition that caused the dump.

value
is a combination at tour alphabetic, numeric, and/or special
characters to be printed as the dump code.

YES
indicates that the dump code has been placed in TCABCDC.

Programming Note:

If SEGMENT is specitied, the application ~rcgrammer must code
two instructions that place the address ot the main storage area
to be dumped into TCA[CSA and the length (in binary) ot the area
to be dumped into TCADCNB prior to execution ot the DFHDC
TYPE=PARTIAL macro instruction. The maxinum length that can be
specitied in TCADCNB is 32,767 bytes. The speCitied area must
be a valid area, that is, storage allocated by the operating
system within the CICS/VS region/partition boundaries.

Examples

The following example illustrates the coding required to request a
PARTIAL storage dump that includes, along with all program storage
areas, all transaction storage areas associated with this task:

DFHDC TYPE=PARTIAL,
LIST=(TRANSACTION,
PROGRAM),
DMPCODE=DT&P

REQUEST PARTIAL STORAGE DUMP •
AREAS ASSOCIA~ED WITH TRANSACTION •
PROGRAM STORAGE AREAS •
USER-SPECIFIED DUMP CODE

The preceding example is applicable to Assembler language, ANS COBOL,
or PL/I programs. All values passed to CICS/VS are specitied in the
DFHDC macro instruction. AS noted above, when SEGMENT is specitied,
certain values must be stored in fields of th~ TeA prior to execution
of the DFHDC macro instruction. The programmer can. also store the dump
code in the TCA prior to execution ot the macro instruction. ThUS,
the fOllowing examples show how to request a PARTIAL dump ot a selected
main storage area, using either Assembler language, ANS COBOL, or PL/I.

!Q! Assembler language:

ST
MVC
MVC
DFHDC

RS,TCADCSA
TCADCNB,=H'1638q'
TCADCDC,=CLq'AB12'
TYPE=PARTIAL,
LIST=SEGMENT,
DMPCODE=YES

For ANS COBOL:

MOVE RS TO TCADCSA.
MOVE 1638q TO TCADCNB.

PLACE STORAGE ACCRESS IN TCA
PLACE LENGTH OF AREA IN TCA
PLACE DUMP CODE IN TCA
REQUEST PARTIAL STORAGE DUMP
BUMP AREA PREVIOUSLY SPECIFIED
DUMP CODE PREVIOUSLY SPECIFIED

NOTE PLACE STRG ADDRESS IN TCA.
NOTE PLACE LENGTH OF AREA IN TCA.

• •

Chapter 8. program Testing and Debugging 293

MOVE 'AB12' TO TCADCDC.
DFHDC TYPE=PARTIAL,

LIST=SEGMENT,
DMPCODE=YES

For PL/I:

TCAOCSA=R5 ;
TCADCNB=16384;
TCADCDC=' AB 12' ;
DFHDC TYPE=PARTIAL,

LIST=SEGMENT,
DMPCODE=YES

NOTE PLACE DUMP CODE IN TCA.
REQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
DUMP CODE PREVIOUSLY SPECIFIED

/*PLACE STORAGE ADDRESS IN TCA*/
/*PLACE LENGTH OF AREA IN TCA*/
/*PLACE DUMP CODE IN TCA*/
REQUEST PARTIAL STORAGE DUMP
DUMP AREA PREVIOUSLY SPECIFIED
DUMP CODE PREVIOUSLY SPECIFIED

294 CICS/VS Application Programmer's Reterence Manual

*
•

* •

CHAPTER 1. CICS/VS BUILT-IN FUNCTIONS

Several commonly used tunctions are available to the application
programmer through CICS/VS macro instructions. These are tunctions
which, in the past, have generally had to be coded as separate
subroutines by the programmer. 'these tunctions, referred to as bUilt-in
functions, provide the following services:

• Table search
• Phonetic conversion
• Verification of a data tield
• Editing of a data field
• Bit manipulation
• Input formatting
• Weighted retrieval

Requests for these services are communicated to the CICS/VS built-in
functions program (DFHBFP) through DFHBIF macro instructions. DFHBFP
then executes, at the priority ot the requesting program, under control
of the requesting program's TCA common control communication area
(TCACCCA). Normally, control is returned to the next sequential
instruction following the rracro expansion in the requesting program;
however, the application programmer can specity conditional branch
options in the macro request it desired. Since DFHBFP uses the TCACCCA,
the application program must issue the DFHBFTCA ~acro instruction to
copy the symbolic storage definition tor the DFHBFP TCACCCA and store
any required information therein before issuing the DFHBIF macro
instruction.

The available DFHBFP services are summarized brietly in the tollowing
paragraphs. The formats and parameters of DFHBIF macro instructions
used to request these services are explained in detail in the reterence
portion of this chapter.

TABLE SEARCH

The table search built-in function provides the application
programmer with the means of conveniently searching a table tor a
particular entry and having a corresponding value within that table or
a second table, the address of the corresponding value, and the index
of the selected entry (relative to one) returned. A specitied search
argument is compared on a byte-tor-byte basis against a specitied tield
of entries in the table being searched. The programmer can elect to
have a default value returned in lieu of a corresponding value it the
searched-for entry is not tound. If an index was requested, but the
entry is not found, an index value ot zero is returned to the
application program.

PHONETIC CONVERSION

The phonetic conversion built-in function provides the application
programmer with the capability ot converting a naroe into a key, whiCh
can then be used to access data in a data base data set. The key that
is generated is based upon the phonetic sound ot the name; hence, names
that sound alike, even though spelled ditterently, produce identical
keys. For example, the names SMITH, SMYTH, and SMYTHE produce a
phonetiC key of S530. In addition to the phonetiC conversion built-in
function, a CICS/VS subroutine that pertorms Similar conversion ot ~eys
is available for use by offline user-written programs. Together,. these

Chapter 9. CICS/VS Built-In Functions 295

facilities allow the CICS/VS user to organize his file according to
name (or any similar alphabetic key) and access the tile using search
arguments that may be misspelled or misunderstood to retrieve required
data.

VERIFICATION Qf ~ ~ ~

The field verity function eriables the application programmer to
determine whether the contents of a data field is:

• Entirely alphabetic: blanks or A-Z

• Entirely EBCDIC numbers, with or without trailing sign: 0-9 (X'FO'
through X'F9')

• Entirely packed decimal (COMFUTATIONAL-3 in American National
Standard (ANS) COBOL or FIXED BECIMAL in PL/I)

A branch is made to an appropriate user-written routine accordingly.

EDITING OF ~ ~ ~

The field edit function is a means of removing alphabetic arid/or
special characters from an EBCDIC data field. The remaining, numeric
characters are right-justified with zero padding at the lett as
necessary. If the field ends with a minus sign or 'CR', a negative
zone is placed over the low-order byte.

BIT MANIPULATION

The bit manipulation function enables the application programme+ to
check,specific bits in a byte tor a bit-on or bit-ott condition, or to
change,the state of specific bits in a byte. The application programmer
specif1e~ the eight-bit mask (bit pattern) to be applied against the
byte containing bits to be operated on. The mask can be described by
a single ~BCDIC character within single quotation marks: for example,
'5' or ~M!. Alternatively, the symbolic address of a one-byte field
containing the mask can be specified. If desired, control can be
transferred to a specified location it all affected bits (or all bits
in the byt~) are on, or if all affected bits (or all bits in the byte)
areeff, after completion of the bit manipulation. This tunction is
p~rticulariy useful for ANS OOBOL programs, which are otherwise unable
to carry out bit manipulation.

INPUT FORMATTING

The input formatting function is provided to assist the application
programmer in designing his ~ogram to handle tree-fermat input entered
from a tetminal. Input formatting allows the application programmer
to convert the free-format terminal input into a predetined fixed format
to be processed by the application program. By rreans of this function,
th~ application program can be coded to accept any of three torms of
input fram the terminal. These forms are discussed in order of
increased flexibility below.

FIXED FORMAT

This is the simplest case, but it requires a rigid adherence to
form. The input transaction must be identical in format to the tixed
internal format established by statements in the application program.

296 CICS/vS Application Programmer's Reference Manual

For example, assume the tixed internal tormat tor data consisting ot
a transaction identitication; last name, tirst name, and middle initial;
and identitication number is as follows:

1- 4

TRANS)J)J LAST
10 NAME

.!211

IS)J FIRST
NAME

l))J M
I

ISIS 10
NO

II

EOB

The input transaction must be formatted as shown by the tollowing
example:

INQR HUGHES JOHN Q OY6556 EOB

Each input tield must be entered ~ith the terminal operator in the
positions established tor it in the tixed internal tormat.

POSITIONAL FORMAT

This option allows the terminal operator to enter a system-programmer
selected field-separator character to indicate the end ot a tield or
the absence of a field. The order of the tields on input must be the
same as the order established tor the tixed internal tormat; the tield
lengths need not be the sarre. It other fields tollow, the end ot a
tield or the absence ot a tield within the input must be indicated by
a tield-separator character.

Assume that input consisting of a transaction identitication; last
name, first name, and middle initial; and identitication number is to
be entered from a terminal. Further assume that the input tormatting
tunction is invoked by the application program to process this input,
recognizing the slash (/) as a field-separator character. The following
examples show permissible tree-tormat ~ositional input. Each input
transaction is terminated by an end~ot-block (EOB) character.

• Complete input
INQR/HUGHES/JOHN/Q/096556 EOB

• ~ddle initial unknown
INQR/HUGHES/JOHN//096556 EOB

• Middle initial and identitication number unknown
INQR/HUGHES/JOHN EOB

KEYWORD FORMAT

The keyword format provides an even greater degree of tlexibility
in that terminal input can be entered in any orde~. The terminal
operator need only be familiar with the keyword identitiers that the
application programmer has established for the- input tields,. Each
keyword identifier consists ot up to tour characters selected by the
application programmer. The keyword identitier must be preceded by ~
one-character field-name start character and tollowed by a one-character
field-separ~tor character, both ot which must be specitied at system
initialization by the system programmer.

Chapter 9. CICS/VS Built-In Functions 291

As an example, assume that keyword identifiers are established as
follows:

LN last name field
FN first name field
MI middle initial field
ID identification number

Further assume that the period has been specified as the tield-name
start character and the equal sign has been specified as the
tield-separator character. The following examples show permissible
tree-format keyword input.

• Complete input
INQR.FN=JOHN.MI=Q.ID=096556.LN=HUGHES EOB

• First name unknown
INQR.LN=HUGHES.MI=Q.ID=096556 BOB

• First name and identification number unknown
INQR.LN=HUGHES.MI=Q EOB

t
The first entry in each ot these examples is the transaction

identification. Since CICS/VS expects this identification, it must be
tirst and no keyword identifier is required for it. Succeeding data
fields are entered in any order. The input is terminated by the
end-of-block (EOB) character.

COMBINATION INPUT

CICS/VS .DFHBIF macro instructions can be included in an application
program to permit a combination of fixed, positional, and keyword input.
For example, the following variations may be allowed.

• Complete input
INQR.LN=HUGHES.FN=JOHN/Q/096556 EOB
INQR.FN=JOHN.LN=HUGHES.MI=Q/096556 EOB
INQR/HUGHES/JOHN/Q 096556 EOB

• First name unknown
INQR.LN=HUGHES//Q/096556 EOB
INQR/HUGHES//Q.IDC096556 EOB
INQR HUGHES//Q 096556 EOB

• First name and identification number unknown
INQR.LN=HUGHES//Q EOE
INQR/HUGHES.MI=Q EOB
INQR HUGHES.MI=Q EOB

WEIGHTED RETRIEVAL

The weighted retrieval function allows the application programmer
to search a group of records on a VSAM data set, selecting only those
records that satisfy or are closest to selection criteria he provides.
Each record with a specified partial key (beginning with the first one,
or with the one having a specified relative number) is examined to see
whether entries in certain other fields of the record match the values
specified for those fields as selection criteria. Matching may be on
exact comparison or within a given range.

298 CICS/VS Application Programmer's Reference Manual

Differentiating among individuals is one example ot an area in which
weighted retrieval processing is advantageous. In tederal and state
governments, the banking industry, and many other application areas
dealing with large populations, name alone does not provide unique
identification. A number of people may have the same name, so
additional identifying characteristics are required. Such attributes
as sex, race, birth date, address, relatives, and em~loyment tend to
permit unique identitication. A basic example showing weighted
retrieval on the basis ot last name, first initial, and mother's maiden
name is given in the reference section ot this chapter, atter the
detailed formats of the DFHBIF macro instructions tor weighted retrieval
have been described.

Each comparison that is performed during weighted retrieval
processing causes a match value to be added to a current total counter
maintained automatically by CICS/vS. It the comparison yields a match,
the match value is also added to a weighted counter. It the compared
fields do not match, the no-match value is subtracted trom the weighted
counter. Fields in the search criteria or in a record being examined
that contain a predefined null character may be ignored (not included
in the search) if desired.

When all fields to be considered in the selection process have been
examined, a weighted qualification percentage (WQP) is calculated tor
the record. It this percentage is within the limits of acceptability
established in the application program, the percentage and complete
key of the record are saved in a key-save storage blcck.

After all records with the speCified partial key have been examined,
the saved keys are sorted into descending percentage-value order. Under
normal proceSSing, the records whose keys have been saved are retrieved
one- at a time and made available to the application program in order
of decreaSing acceptability. A further judgment as to acceptability
or verification ot identifiers is then made-by the application program,
which may involve the terminal o~erator in the tinal selection process.

If the number ot saved keys exceeds a maximum established in the
application ~rogram (say, n), all keys having a weighted qualitication
percentage (WQP) equal to or lower than that ot the "n+l"th .key are
dropped. If this dropping causes less than the application
program-specified maximum number of keys to be saved but some keys are
saved (as in Figure 9-1), no indication is given to the application
program. However, it all percentages are the sarre so that all keys
are dropped thereby, control is passed to an overtlow routine (it one
is specified in the application ~rogram). It the amount of storage
required tor saved keys exceeds the amount of storage available tor
keys, an overflow also occurs, and the application program is notitied.
An alternative, lower maximurr can be established by the application
program. The maximum number ot records that can be retrieved is
restricted by the maximum size of a key-save block (6qK). This maximum
is calculated as storage size. divided by saved key length plus one.

Chapter 9. CICS/VS Built-In Functions 299

NRECDS=maximum number of records to be made available to
application program, say, N

WQP

INPUTNO=maximum number of records to be evaluated
from the data set, say, I

N

rN
+

l

of these records is WQP of these WQP of these records
greater than that records (in- is less than

of N+l eluding N) is that of N+l
equal to that

of N+l

I

1

o 10 20 30 40 50 60 70 80 90

~---------y----------~'~----------------v----~-----)
keys of records made keys dropped

\ available to application)
~ program / ----y,,------

keys of
records evaluated
by Weighted Retrieval

Figure 9-1 Selection ot Records by Weighted Retrieval

Notes:

1. Because of the potential ettect ot weighted retrieval operations
on system performance, this tunction should not be used
indiscriminately. The arrount ot tile accessing and the use ot
internal storage should be taken into account.

2. The computations applied by CICS/VS in weighted retrieval processing
can be expressed as tollows:

Let MV = match value
NMV = no-match value

a. The weighted counter (WC), which holds the sum ot all match
values that had a match minus the sum ot all no-match values
that had no match:

WC = (MV + MV + ••• + MV) - (NMV + NMV + ••• + NMV)

b. The sum ot all match values specified in WTRTPARM macro
instructions for the weighted retrieval o~eration; the potential
count (PC):

PC = MV + MV + ••• MV

300 CICS/VS Application Programmer's Reterence Manual

c. The sum ot all match values generated by the record comparisons
(excludes those comparisons bypassed because the null character
is present); the current total counter (CTC):

CTC = MV + MV + ••• + MV n~k

d. The weighted potential (WF)

WP = PC + CTC
2

e. the weighted qualification percentage (WQP):

WQP = WC
WP

An overall etfect of this method ot computation is to provide a
minimum weighting penalty tor records having absent tields but yet
prevent them trom being chosen in preference to records that have
all identifiers present.

Chapter 9. CICS/VS Built-In FUnctions 301

OFHBIF MACRO INSTRUCTIONS

DFHBFTCA MACRO INSTRUCTION

When CICS/VS bUilt-in functions (BI~ are utilized in an application
program, the symbolic storage definition for the TCACCCA used by BIF
must be copied in the application program. This copying is achieved
by means of a DFHBFTCA macro instruction, which must immediately tollow
the statement that copies the TCA and the user's definition of a TWA,
if any. The general tormat ot this macro instruction is as tollows:

r------r--------r--,
I I I I
I IDFHBFTCAI [OPTION=5BASICtJ I
, I I ~WTRET~ I
I I I I
L------L--------L--~

where:

OPTION=
indicates which BIF are to be utilized.

BASIC
is required if any of the following functions are requested:
table search, phonetiC conversion, field verify, field edit,
bit manipulation, or input tormatting.

WTRET
is required if weighted retrieval is utilized.

One of these parameters may be specitied in the DFHBFTCA macro
instruction. If the OPTION operand is omitted, both BASIC and
WTRET are assumed.

Examples

Statements to copy the symbolic storage definitions referenced by
BIF, positioned as required, are shown below.

For Assembler language:

NAME
STREET
CITY
S'IATE

For ANS~:

COpy DFHTCAD S
DS CL20
DS CL20
OS CL10
OS CL3
OFHBFTCA

01 OFHTCACS COPY DFHl'CADS.
02 NAME PICTURE X(20).
02 STREET PICTURE X(20).
02 CITY PICTURE X(10).
02 STATE PICTURE XP).
DFHBFrCA

302 CICS/VS Application programmer's Reference Manual

For PL/I:

~INCLUDE (DFHTCADS);
2 NAME CHAR (20) ,
2 STREET CHAR (20) ,
2 CITY CHAR (10) ,
2 STATE CHAR (3) ;
DFHBFTCA

TABLE SEARCH

The application programmer can search a table by issuing the
following macro instruction:

r------ ---,
I

DFHBIF TYPE=TSEARCH
[,ARG=symbol ic address]
[,TARGET=symtolic address]

[

,ATABLE= ([symbolic address1] ~ ~~i~bOliC addreSS2G]
[,numeric valuel] ~ ~~~~eric value2n

[,numeric value3])

['FTABLE=(O~bOliC addressl0 t~~~~bOliC addreSS20]

[, ~ ~~~eric valuel~J t ~ ~~~eric value2 n)
[

, ORDER= j ASCENDING lJ
1 DES CENDING 5

[
, SUBST= S symboli c addreSS t] [, NOMA'ICH=symbolic

1 'literal value' 5
address]1

[,INDEX=symbclic address]
[,RANGE=YES]
[,ERROR=symbclic address]

I
I
I
I
I L----------------------__ ~

where:

TYPE=TSEARCH
indicates that the ta ble search tunction is required,.

ARG=symbolic address
is the symbolic address of the field that contains the search
argument; it omitted, the address is assumed to be in TCATSA1,
a fullword field.

TARGET=symbOlic address

ATABLE=

is the symbclic addresS ot the tield in which the function value
is to be returned to the application program. The address ot
the function value is placed in TCATS~5, a tullword field,
regardless of whether TARGET is specitied.

is a description of the table to be searched (the argument
table) •

symbOlic address1
is the address of the first entry in the argument table; it
omitted, the address is assumed to be in TCATSA2, a tullword
field.

Chapter 9. CICS/VS BUilt-In Functions JOJ

FTABLE=

symbolic address2 or YES
is the address of the tield in the tirst entry ot the
argument table to be compared with the search argument. It
YES is specitied, the tield address is assumed to be in
TCATSA4, a tullword tield. It this operand entry is omitted,
symbolic address2 is assumed to be the same as symbolic
address1. It s~ecitied, the address represented by symbolic
address2 must be equal to or greater than the address
represented by syrrbolic address1. If it is not, bit 4 ot
TCATSRC is set on and no search is made.

numeric value1
is the length of each entry in the argument table (including
any other tields in the entry or slack bytes required tor
boundary alignment). A value in the range from 1 through
32767 may be specitied. It this operand entry is omitted,
the length is assumed to be in TCATSH2, a haltword tield.

numeric value2 or YES
is the length ot the field in the argument table to be
compared with the search argument. It YES is specitied,
the length is assumed to be in TCATSAF, a one-byte tield.
If this operand entry is omitted, numeric value2 is assumed
to be the same as numeric value1. It s~ecitied, the value
must be between 1 and 255 inclusive. It numeric value1 is
not within this range, numeric value2 must be specitied.

numeric value3
is the maximurr. number of entries to be searched. A value
in the range from 1 through 32761 may be specified. It this
operand entry is emitted, the numeric value is assumed to
be in TCATSH1, a halfword tield.

It one or more of these operand entries are omitted, but other
operand entries follo~, the comma that ordinarily tollows an
omitted entry must be included in the operand.

is a description of the table trom which a value is to be
retrieved (the function table). If no function value is to be
retrieved (for example, it only the index of a matching argument
table entry is needed), this operand can be omitted. If this
operand is specified, but same entries are emitted, the values
of the corresponding entries in the ATABLE operand are assumed
to apply.

If a complex table (where each table entry contains both an
argument and a functicn value) is being searched, the argument
table and function table, as defined for this macro instruction,
are actually within the same table in storage. Alternatively,
two separate tables--one containing search tields and one
containing function values--may be used.

symbolic address1 or YES
is the address of the tirst function table entry. If YES
is specified, the address is assumed to be in TCATSA3, a
fullword tield.

symbolic address2 or YES
is the address of the function tield within the first
function table entry. If YES is specified, the address is
assumed to be in TCATSAS, a fullword field,. This address
must be equal to or greater than symbolic address1. If it
is not, bit 5 ot TCATSRPC is set on and no search is made.

304 CICS/VS Application Programmer's Reference Manual

ORDER=

SUBST=

numeric value1 or YES
is the length of each entry in the tunction table (including
any other fields in the entry or slack bytes required tor
boundary alignment). A value in the range trom 1 through
32161 may be specified. It YES is specitied, the value is
assumed to be in TCATSH3, a haltword field.

numeric value2 or YES
is the length ot the tield to be retrieved trom the function
table. If YES is specitied, the length is assumed to be in
TCATSFF, a one-byte tield. The length rrust be betlr.leen 1
and 255 inclusive. Note that it this operand is omitted,
the default is the corresponding entry in the ATABLE, or
its default if the corresponding entry is not specitied in
the ATABLE. The deta ul t for this operand is not numeric
value1 above.

describes the sequence used in ordering the entries ot the
argument table and is optional it RANGE is not specitied. The
sequence must be EBCDIC; packed, fullword and haltword binary,
and floating-point tables cannot be searched,. When this
parameter is specified, a quick binary search is used (rather
than a sequential search).

ASCENDING
indicates that table entries are organized in ascending
order according to the entries in the tield to be compared
with the search argument.

DESCENDING
indicates that table entries are organized in descending
order according to the entries in the tield to be compared
with the search argument.

In either case, the field values are interpreted as EBCDIC
representations. If this operand is not specitied, the argument
table is assumed to be unordered and is searched sequentially.

is an optional operand that specities a value to be stored in
TARGEt' if no entry matching the search argument is tound in the
argument table.

symbolic address
is the address of a field that contains the value to be
stored.

'literal value'
is the value to be stored; Single quotation marks must
enclose the value in this specification but are not stored
as part of the data.

If this operand is specified, the TARGET operand must be
specified, and the NO~ATCH operand cannot be specitied.

INDEX=symbolic address
is an optional operand that identities a haltword tield in which
an index'value relative to one, identifying the matching
argument-table entry, is to be returned to the application
program. In addition, the index value is placed in TCATSH4, a
halfword field, whether or not the INDEX operand is specitied.
Both fields contain zero it no matching entry is tound.

Chapter 9. CICS/VS Built-In Functions 305

PANGE=YES
is an optional operand indicating that, it no tield compared
with the search argument is an exact match, an existing table
entry that would be adjacent to such an entry is to be taken as
the function value. When this operand is specitied, ORDER must
be specitied; otherwise, a sequential search ot the table is
made.

ERROR=symbolic address
is the address to which control is to be transterred it an error
occurs. This branch is taken, for example, it the address
specitied for the function tield to be examined is lower than
the address specified for the first tunction table entry.

NOMATCH=symbolic address
is the address to which control is to be transterred it no table
entry matching the search argument is found. It this operand
is specified, the SUBST operand cannot be specitied.

Returned Values

An entry in the argument table that matches the search argument
satisfies the table search tunction. It such an entry is found, the
address of the corresponding entry in the function table is returned
in TCATSA5, a tullword tield. It the TARGET operand is specitied in
the DFHBIF TYPE=TSEARCH macro instruction, the function value is
returned in the location identitied by that operand. It the tunction
table contains more than one matching entry, the address (and the
tunction value, it requested) ot the tirst matching entry encountered
during the search is returned. The index of the matching entry is
returned in TCATSH4 and in the field identitied by the INDEX operand
if specified.

If the RANGE=YES operand is specified, a matching entry satisfies
the search as described above. It no matching entry is tound, the
search is satisfied in an alternative manner:

• If ORDER=ASCENDING is specified, the argument table entry having
the largest argument value less than the search argument satisties
the search •

• If ORDER=DESCENDING is specitied, the argument table entry having
the smallest argument value greater than the search argument
satisfies the search.

Figure 9-2 defines the conditions that may occur during a table
search and defines the possible return codes.

306 CICS/VS Application Programmer's Reterence Manual

ResEonse ~

Condition Assembler ~ COBOL ~

Match Found X'OO' 12-0-1-8-9 00000000
(TCATSMH)

ATABLE Field Address < Entry Address X'04' 12-4-9 00000100
(symbolic address2 < symbolic address1) (TCATSER2)

FTABLE Field Address < Entry Address X'OS' 12-8-9 00001000
(symbolic address2 < symbolic address1) ('ICATSER1)

No Match Found X'FO' • 0' • O·

~: The names enclosed in parentheses in the ANS COBOL column
indicate the 88-level definitions provided by CICS/VS. These names
may be used in testing tor the respective conditions in a COBOL program.

Figure 9-2. Table Search Response Codes

Example - Separate Tables

The following example shows how the OFHBIF TYPE=TSEARCH macro
instruction can be used in an Assembler-language program. A
tour-character argument is matched against tields in a seven-entry
argument table. If the search is satisfied, the address ot a
two-character corresponding tield in the function table is placed in
TCATSA5 and the index value of the matching entry is placed in TCATSH4.
If no matching entry is found, a branch to BR1 occurs.

ERROR1

BR1

ATBL

AFLD

FTBL

FFLD

ARG1

DFHBIF TYPE=TSEARCE,

OS OXL9
DS XL5
DS XL4
DS 6XL9
OS OXL5
DS XL3
DS XL2
DS 6XL5
DS XL4

ARG=ARG1,
ATABLE=(ATBL,AFLD,9,4,1),
FTABLE= (FTBL, FFLD ,5 ,2) ,
ERROR=ERROR 1,
NOMATCH=BR1

FIRST ENTRY OF ARG TABLE

FIRST ARGUMENT FIELD
SPACE FOR SIX MORE ENTRIES
FIRST ENTRY OF FUN TABLE

FIRST FUNCTION FIELD
SPACE FOR SIX MORE ENTRIES
SEARCE ARGUMENT

Chapter 9. CICS/VS Built-In Functions 301

'"
'" '"
'" *

Example - Complex Table

Both the argument values and the tunction values may be in the same
table, in which case, the table is referred to as a complex table. The
search is similar to that above, except that only one table is
described.

ERROR 1

BR1

TBL1
FLDA
FLOF

ARG1

DFHBIF TYPE=TSEARCH,

OS OCLS
OS CL2
OS CL3
OS 2CLS
OS CL2

ARG=ARG1,
ATABLE=(TBL1,FLDA,S,2,3),
FTABLE=(TEL1,FLDF,S,3),
ERROR=ERROR 1 ,
NOMATCH=BR1

FIRST ENTRY OF ARG/FUN TAELE
FIRST ARGUMENT FIELD
FIRST FUNCTION FIELD
SPACE FOR TWO MORE ENTRIES
SEARCH ARGUMENT

PHONETIC CONVERSION

The application programmer can request that a 16-byte tield ot data
be phonetically encoded by issuing the tollowing macro instruction:

*
*
*
*
*

r--,
I I I I
I I DFHBIFI TYPE=PHONETIC I
I I I [,FIELD=symbclic address] I
I I I [, ERROR=symbclic address] I
I I I I
L---------------------------------------~------------------------------~

where:

TYPE=PHONETIC
indicates that the phonetic Conversion function is required.

FIELD=symbolic address
is the symbolic address ot the 16-byte tield conta~ning the data
to be phonetically encoded. The tirst character otthis tield
must be alphabetic (one ot the letters trom A throughZ, in
either upper- or lowercase). If it is not, TCAPHNR, a one-byte
field, is set to X'SO' and no phonetic conversion is made. It
this operand is omitted, the data to be ccnverted is assumed to
be in TCANAME, a 16-byte field.

~: For ANS COBOL, TCAPHNR may be tested tor X'SO' by using
the aa-level definition (TCAPINN) provided by CICS/VS.

ERROR=symbolic address
is the symbolic address to which control is transterred it the
first character ot the 16-byte tield to be converted is
ncnalphabetic.

30a CICS/VS Application Programmer's Reterence Manual

Returned Value

The returned value is placed at TCAPHON. This value is the tour-byte
phonetic equivalent of the data passed to the tunction. It consists
of the tirst character ot the data and three EBCDIC numbers representing
the characters in the remainder at the data.

Phonetic Coding Method

The application programmer need not be familiar with the CICS/VS
method of phonetic coding to use the phonetic conversion tunction. It
is summarized here for informational purposes only. Remember that the
tirst character of the tield to be coded is not changed; it becomes
the first character of the returned value. Three digits are selected
to represent the remaining characters in accordance with the tollowing
rules:

Original Character

B. p. F. V
C. G. J. K. Q, s, x. z
0, T
L
M, N
R
A, E, H, I. 0, Y, W, u,

blanks, and nonalphabetic
characters

Code Value

1
2
3
q
5
6

Bypassed, no
code value

• Lowercase letters are translated to uppercase tor purpose at
conversion.

• Double letters are coded as a single letter.

• Two or more adjacent letters with the same value are coded as a
single letter.

• It more than three EBCDIC numbers can be computed trom the data,
only the first three are used.

• If fewer than three numbers can be computed trom the name, the
result is padded on the right with EBCDIC zeros to torm a tour-byte
result.

Examples

OFHBIF TYPE=PHONETIC,
FIELD=NAME

where NAME is a 16-byte tield, yields results as tollows:

LEHMICKE
WONG
SOO

yields
yields
yields

Phonetic Conversion Subroutine

L520
W520
SOOO

•

A CICS/VS subroutine that performs phonetic conversion ot
16-character names in the same manner as the phonetic conversion
built-in function is available for use by oftline user-written programs.
The subroutine can be called by a program running under any ot the
operating systems under which CICS/VS can be run. A 16-character name

Chapter 9. CICS/VS Built-ln Functions 309

to be converted is provided as input to the subroutine; the tour-byte
phonetic equivalent of that name is returned as a result. The rules
given above under "Phonetic Coding Method" are applied in the conversion
process.

The general forms of the macro instruction to invoke the subroutine
are as tollows:

For Assembler language:

CALL DFHPHN, (lang,name,phon)

CALL 'DFHPHN' USING lang name phon.

CALL DFHPHN (lang,name,phon)

where:

lang

name

phon

is the symbolic address ot a one-character code indicating the
programming language being used: X'FO' indicates ANS COBOL or
Assembler language; X'F1' indicates PL/I. It an error occurs
during processing ot this request, X'50' is returned in this
location. It no error occurs, X'OO' is returned, and the
location must be reset to indicate the programming language
before the location can be reused.

is the symbolic address ot the tield that contains the
16-character name to be converted.

is the symbolic address ot the tield in which the tour-b¥te
phonetic equivalent ot the name passed to the subroutine is
returned to the calling program.

FIELD VERIFY

The application programmer can check whether a tield is entirely
alphabetic, EBCDIC numeric, or packed decimal (COMP-3 in ANS COBOL or
FIXED DECIMAL in PL/I) by issuing the following macro instruction:

r--,
I I I I
I I DFHBIFI TYPE=FVERIFY I
I I 1[, FIELD=symbolic address] I
I I I [,LENGTH= S sYIflbolic address tJ I
I I I tnumeric value 5 I
I I 1[,ALPHA=symbclic address] I
I I 1[,NUMERIC=symbolic address] I
I I I [,PACKED=symbolic address] I
I I I I
L--~

310 CICS/VS Application Programmer's Reference Manual

where:

TYPE=FVERIFY
indicates that the field verity function is required.

FIELD=symbolic address
is the symbolic address of the field to be veritied; if omitted,
the field address is assumed to be in TCACKFD, a fullword tield.

LENGTH=
gives the length, in bytes, ot the tield to be veritied.

symbolic address
is the address of a halfword field containing the length ot
the field to be verified.

numeric value
is the length ot the field to be veritied.

The maximum length that can be specified is 321b1. It this
operand is omitted, the length is assumed to be in TCACKLN, a
haltword tield.

ALPHA=symbolic address
is the address to which control is transterred it the tield
consists entirely ot alphabetic characters ~ through Z) and/or
blanks.

NUMERIC=symbolic address
is the address to which control is transterred it the tield
consists entirely of EBCDIC numbers (X'FO' through X'F9') with
an optional trailing minus sign or ·CR'.

PACKED=symbolic address
is the address to which control is transterred it the tield
consists entirely of packed decimal characters, tbat is, of
half-bytes with hexadecimal values trom 0 through 9, except for
the rightmost halt-byte, which must contain a hexadecimal C, D,
E, or F.

The ALPHA, NUMERIC, and PACKED operands may be specitied in any
combination or order, but at least one ot them must be specitied. The
conditions specified are tested upon request in the order ALPHA,
NUMERIC, PACKED, irrespective of the order ot the operands. It none
of the test conditions is met, control goes to the instruction fOllowing
the DFHBIF TYPE=FVERIFY macrc instruction in the application program.

Returned Values

The purpose of the tield verity function is to determine what kind
ot data must be processed and cause control to be transferred to an
appropriate routine in the a~plication program accordingly. The
application programmer can test the results ot the verity function by
testing the response code at TCACHKR. Figure 9-3 indicates the
conditions and response codes.

Chapter 9. CICS/VS BUilt-In Functions 311

ResEonse Code

Condition Assembler ANS COBOL fla

Packed field X'20' 11-q-9 00100000
(TCACKPK)

Numeric field XI" 0' No punches 01000000
(TCACKNM)

Alphabetic field X'SO I 12-0-1-S 10000000
(TCACKAL)

Mixed field X'EO' 0-2-S 11100000
(TCACKMX)

Note: The names in parentheses in the ANS COBOL column indicate the
SS-level definitions provided by CICS/VS. These names may be used in
testing for the respective conditions in a COBOL program.

Figure 9-3. Field Verify FUnction Response Codes

Example

DFHBIF TYPE=FVERIFY,
FIELD=CONT,
LENGTH= 16,
ALPHA=MYROUT

*
*
*

Execution of the DFHBIF macro instruction above causes the contents
of CONT, a 16-byte field, to be checked to determine whether it contains
only alphabetic characters and/or blanks. It it does, control is
transferred to MYROUT. Otherwise, control returns to the instruction
following this DFHBIF instruction in the applicaticn program.

FIELD EDIT

The application programmer can request that alphabetic and/or special
characters be removed from an EBCDIC data field by issuing the following
macro instruction:

r--,
I I I I
I I DFHBIFI TYPE=DEEDIT I
I I f[,FIELD=symbclic address] I
, I I [, LENGTH= 5 symbolic address ~J I
I I I 1 numeric value f I
I I I I
L--~

where:

TYPE=DEEDIT
indicates that the field edit function is required.

FIELD=symbolic address
is the symbolic address of the field to be edited; if omitted,
the field address is assumed to be in TCAF'LD, a tullword tield.

312 CICS/VS Application Programmer's Reference Manual

LENGTH=
gives the length, in bytes, ot the tield to be edited.

symbolic address
is the address of a haltword tield containing the length ot
the tield to be edited.

numeric value
is the length of the tield to be edited.

The maximum length that can be specitied is 32161. It this
operand is omitted, the length is assumed to be in TCAFLN, a
haltword field.

Returned Val ue s

All bytes (except the rightmost byte) containing other than EBCDIC
numeric characters are deleted trom the data tield. The remaining
characters are right-justified in the tield with zero padding at the
left as necessary. If the field ends with a minus sign or a 'CRt, a
negative zone (X'D') is placed over the rightmost (low-order) byte.
The zone portion of the rightmost byte may contain any hexadecimal
character from X'A' through X'F'. The digit portion ot this byte may
contain one of the hexadecimal digits from X'O' through X'9'. Where
this is the case, the rightmost byte is returned unaltered (see the
example below). This permits the aPflication program to operate on a
zoned numeric field. In any case, the returned value is in the tield
that initially contained the unedited data.

Example

DFHBIF TYPE=DEEDIT,
F IELD=CONTG ,
LENGTH=9

Execution ot this macro instruction removes all characters other
than EBCDIC numbers trom CONTG, a nine-byte field, and returns the
edited result in that field to the application program. Say, tor
example, the field contains 14-6104/B betore the DFHBIF TYPE=DEEDIT
macro instruction is issued. After editing, it contains 00146104B.

BIT MANIPULATION

The application programmer can test or change the s~ate ot specitic
bits in computer storage by issuing the following macro instruction:

•
*

r------ ---, ,
I
I
I
I
I
I ,
I
I

I I
DFHBIFI[TYPE={BITSETON ~J I I BITSE'IOFF I

I Bft~D I
I BITEST I
I [, FIELD=symbolic address] I
1[,BIT=~SymbOliC address~J I
I 1value) I
,.[,BI'ION=symbclic address] I
1[,BITOFF=symbolic address] I

, I I
L--~

Chapter 9. CICS/VS Built-In Functions 313

where:

TYPE=
indicates that the bit manipulation function is requested and
identities the action required.

BITSETON
ensures that all bits selected by a specified bit pattern
are on atter execution ot this macro instruction.

BITSETOFF
ensures that all bits selected by a specified bit pattern
are off atter execution ot this macro instruction.

BITFLIP
causes the state of each bit selected by a specified bit
pattern to be changed.

BITEST
causes the state of each bit selected by a specified bit
pattern to be tested and an indicator to be set accordingly.

FIELD=symbolic address

BIT=

is the symbolic address ot the byte containing bits to be
operated on; it omitted, the address is assumed to be in TCABITF,
a fullword field.

specifies the bit pattern (mask) to be applied to the specitied
byte.

symbolic address
is the address of a byte that contains the bit pattern.

value
is a single EBCCIC character enclosed in single quotation
marks.

It this operand is omitted, the bit pattern is assumed to be in
TCABITV, a one-byte field •.

BlTON=symbolic address
is the symbolic address to which control is transterred if--

• For BITSETON, EITSETOFF, or BITFLIP:
All bits in the specitied byte are on after the operation
is completed

• For BITEST:
All bits that are on in the bit pattern are on in the field
that is tested

BlTOFF=symbolic address
is the symbolic address to which control is transterred it--

• ForBITSETON, BITSETOFF, or BITFLIP:
All bits in the specified byte are off after the operation
is completed

• For BITEST:
All bits that are on in the bit pattern are off in the field
that is tested

314 CICS/VS Application Prcgranmer's Reference Manual

Returned Values

For BITSETON, BITSETOFF, or BITFLIP, the returned value is the
contents ot the byte specified in the FIELD operand, with selected bits
modified as required. For BITEST, the result ot the test is returned
in TCABITR as shown in Figure 9-4. If BITON, BITOFF, or both BlTON
and BITOFF are specitied, and it certain conditions are met as described
in the explanaticns of these operands, control is transterred.

ResEonse ~

Condition Assembler ANS COBOL PL/I

Tested Bits Are Oft X'OO' 12-0-1-8-9 00000000
(TCABIFOF)

Tested Bits Are On X'FO' 10' , O'
(TCABIFON)

Note: The names enclosed in ~arentheses in the ANS COBOL column
indicate the 88-level detinitions provided by CICS/VS. These names
may be used in testing for the respective conditions in a COBOL program.

Figure 9-4. Bit Manipulation Response Codes

Examples

The macro instruction

DFHBIF TYPE=BITSETON,
FIELD=DATAF,
BIT=PATERN,
BITON=ELAE EL

PATERN DC XIFF'

ensures that all bits of the one-byte tield DATAF are set on and causes
a branch to BLABEL.

The macro instruction

DFHBIF TYPE=BITEST,
BIT='A',
BITOFF=CLABEL

*
* •

*
*

causes a bit pattern ot 11000001 to be applied to the one-byte tield
whose address is stored in TCABITF. It all tested bits are ott, control
is transterred to CLABEL.

INPUT FORMATTING

The application programmer can write a program to handle tree-format
input entered from a terminal. ~he tree-tormat input may be either
positional or keyword-oriented, or both, and may be entered in
combination with fixed-format input, as explained earlier in this
section under "input formatting. It Exam~les are:

INQRlHUGHES/JOHN/Q/096556 EOB
INQR.FN=JOHN.MI=Q.ID=096556.LN=HUGHES EOB

positional
keyword-oriented

Chapter 9. CICS/VS Built-In Functions 315

Any task that issues DFHBIF macro instructions to provide input
formatting must be attached to a terminal.

Storage Definition

As a first step in detining storage, the programmer must copy the
CICS/VS control section ot the terminal input/out~ut area (TIOA) into
his program. Detinitions ct the tields tor which input data may be
entered should tollow the detinition ot the CICS/VS control section.
For example, the Assembler-language programmer may write the tollowing
code:

COpy DFHTIOA

* BEGINNING OF TIOA
TIOAIN OS CL4 TRANS 10
TIOALN OS CL1S LAST NAME
TIOAFN OS CL9 FIRST NAME
TIOAMI OS CLl MIDDLE INITIAL
TIOAID DS CL6 IDENTIFICATION

TIOADBA is the CICS/VS-established name representing the tirst byte
ot the user's section of the TIOA for Assembler language only.
Succeeding names are application-programmer-selected identitiers ot
the input fields. (TO review the instruct10ns tor copying ot symbolic
storage definitions, see preceding sections ot this manual.)

DFHBIF TYPE=DEFLDNM Macro Instruction

If tree-format keyword-oriented input is desired, the application
programmer can issue a DFHBIF macro instruction of the tollowing tormat
to define the keywords that the terminal user may specity. It this
macro instruction is used by an ANS COBOL programmer, it must appear
in the Working Storage section ot his program. It must appear with
other data definitions in an Assembler-language or PL/I program. This
macro instruction is not needed it only tree-tormat positiQnal input
is to be handled by a program.

r--,
I I I I
I I DFHBIFI TYPE=DEFLDNM I
I , I , NAMES= (keyword[,keyword, •• •]) I
I I I , LABEL=symbclic address , I
I , I I
L--~

where:

TYP E=DEFLDNM

indicates that this macro instruction provides detinitions of
field names that rray appear as keywords in tree-tormat input.

NAMES=(keyword[,keyword, •••])
is a list ot the tield names that may appear as keywords entered
by the terminal user to indicate which tields are to receive
input data. Each keyword may be from one to tour characters in
length. Any combination ot alphabetic, nuweric, and/or special
characters may be specitied. The keywords must be specified in
this macro instruction in the same order as the corresponding
fields that will hold the data are defined in the tixed-tormat
TIOA.

316 CICS/vS Application Programmer's Reference Manual

LABEL=symbolic address
is the label to be assigned to the list ot tield names. This
label must be unique ~ithin the application program and may be
t rom one to eight characters in length..

For example, a DFHBIF TYPE=DEFLDNM macro instruction detining
keywords that the user can enter to refer to tields ot the TIOA is:

DFHEIF TYPE=DEFLDNM,
NAMES=(TRAN,LN,FN,MI,ID) ,
LABEL=DEFI

Use of similar names within the DFHBIF macro instruction and the
TIOA definition is wise programming practice, but not a requirement.
Thus, the following macro instruction is also acceptable.

DFHEIF TYPE=DEFLDNM,
NAMES=(TR,LAST,FIR,MID,IDEN),
LABEL=MYIN

Reguired Delimiters

When providing free-tormat keyword-oriented input capabilities to
terminal users, the application programmer, working with system
programmers, must define a field-name start character and a
tield-separator character tor the system betore initialization. (see
the CICS/vS system Programmer's Reterence Manual tor details.)

DFHBIF TYPE=INFORMAT Macro Instruction

Data entered as free-format input is read into a TIOA in the same
manner as other data entered trom a terminal. CICS/VS places the
address of the TIOA into TCTTEDA (as it must be tor a tormatting
operation). To provide tor the formatting ot this tree-tormat input,
the application programmer issues a DFHBIF TYPE=INFORMAT macro
instruction. The DFHBIF TYPE=INFORMAT instruction should be issued
immediately following the terminal control (DFHTC) macro instruction
that causes data to be moved into the TIOA. to make sure that the
address of the TIOA containing data to be tormatted is in TCTTEDA.

The input formatting tunction retrieves the input data trom the
input TIOA and reformats that data in a CICS/Vs-acquired TIOA as
indicated in the application programmer's detinition ot the storage
area. The address of the fixed-format TIOA is returned in TCTTEDA to
the application program. The application programmer should establish
addressability to this TIOA immediately, just as for any TIOA used in
the program. (see the instructions tor copying symbolic storage
definitions in this manual.)

The format of this macro instruction is as follows:

•
•

*
*

r--, , I . I I
I I DFHBIFI TYPE=INFORMAT I
I , I ,FIELDS=(symbolic address [,symbolic address, •••]) I
, I ,[,NAMES=jSymbOliC addressO I
I I I tYES \J I
I , I [,LENGTH= jsymbOlic address tJ I
I I I tnumeric value \ I
I I I [, ERROR=symbolic address] I
I I I I
L------~-------~---~

Chapter 9. CICS/VS Buiit-In Functions 311

where:

TYFE=INFORMAT
indicates that formatting of terminal input is required.

FIELDS=(symbolic address[,syrrbolic address, •••])

NAMES=

LENGTH=

are the labels of fields defined within the internal fixed-format
TIOA to which the input data is to be transterred. The tields
must be narned in the order that they appear in the TIOA, and
there must be a one-to-one correspondence between the tield
names in this macro instruction and the fields in the TIOA. The
length of each field is determined by calculations based on the
location represented ~ the symbolic address of the following
field. Each tield should be at least one byte in length. For
positional input, each field for which data may be entered (that
is, each position in the receiving area of storage) must be
defined.

indicates that field names may be present as keywords in the
input data stream.

symbolic address

YES

is the LABEL parameter specified in a DFHBIF TYPE=DEFLDNM
macro instruction in which the keywords that may be specitied
are detined.

indicates that the label specitied in the DFHBIF TYPE=DEFLDNM
macro instruction defining the field names is in TCAINA2,
a tullword tield.

specifies the size of the TIOA to be acquired for the internal
fixed-tormat representation at the data. This length must be
sufficient to accommodate all fields specitied. in the FIELDS
operand of this macro instruction. It is used in determining
the length of the last field.

symbolic address
is the address ot a haltword field that contains the length
value.

numeric value
is the length, in bytes, ot the area required tor the TIOA.

If this operand is omitted, the length is assumed to be a
TCAINH1, a haltword field.

ERROR=symbolic address
is the symbolic address to which control is transferred if an
error condition occurs (see "Returned Values" below).

Note: If the DFHBIF TYPE=INFORMAT macro instruction is issued
immediately following the read instruction, the address of the TIOA
containing the data to be tormatted will be stored in TCTTEDA. It any
intervening macro instructions are issued, the application programmer
is responsible for saving and restoring the contentsot TCTTEDA. For
ANS COBOL, TIOABAR must be loaded before a DFHBI~ because the expansion
will contain "Call DFHCBLI using fields."

318 CICS/VS Application Programmer's Reference Manual

Returned Values

The address of the tixed-format TIOA containing the retormatted data
is available in TCTTEDA. This address must be loaded into TIOABAR,
the base register tor the area.

certain error conditions may be detected during execution ot the
DFHBIF TYPE=INFORMAT macro instruction. In such cases, an error
indication (response code) is returned to the application program in
TCAINRC, a one-byte tield. The error conditions that may occur and
the response code tor each are shown in Figure 9-5. For error
conditions other than X'Fq', no retormatted data is returned; that is,
TCTTEDA does not contain the address ot a tixed-tormat TIOA containing
the reformatted data.

ResEonse ~

Condition ~ssembler

No Error X'OO'

The input data does not contain field- X'20'
name start or field-separator
characters. (Such data may not be
erroneous, if deliberately entered in
this manner.)

The input data contains t~o tield- X'Fl'
name start characters with no tield
separator character between them.

The input data contains an invalid X'F2'
name.

A tield name is specified in the X'F3'
input data, but no DFHBIF TYPE=DEFLDNM
macro instruction is contained in the
application program.

The length of an input data tield X'Fq'
exceeds the internal field size detined

ANS COBOL

12-0-1-8- 9
(TCAINNOE)

11-0-1-8-9
(TCAINALS)

, 1 '
(TCAI NF;R 1)

'2'
(TCAINER2)

'3'
(TCAINER3)

'q'
(TCAINER4)

PL/I

00000000

00100000

, 1 '

, 2'

'3'

~: The names enclosed in parentheses in the ANS COBOL column
indicate the S8-level detinitions provided by CICS/vS.. These names
may be used in testing tor the respective conditions in a COBOL program.

Figure 9-5. INFORMAT Response Codes

~: Application programmers and terminal operators should be aware
that if fixed-format input is provided to an application program
deSigned to accept free-tormat input, field overrun (X'F4') errors are
apt to occur.

Examples

Assume th'e TIOA definition and the first DFHBIF TYPE=DEFLDNM macro
instruction above. FUrther assume that the periOd has been established
as the field-name start character and the equal sign and the slash as
field-separator characters.

Chapter 9. CICS/VS Built-In Functions 319

The tree-format positional input

INQRlHUGHES/JQHN/Q/096556 EOB

can be processed by issuing the following macro instruction:

DfHBlf TYPE=INFORMAT,
FIELDS;: (~IOAIN ,TIOALN,TIOAFN,TIOAMI,TIOAID)

The free-format ke~ofd input

INQR.FN=JOHN.MI=Q.ID=096556.LN=BUGHES EOB

can be processed by issuing the toll owing macro instruction:

DFHBIF TYPE=INFORMAT,
FIELDS=(TIOAIN,TIOALN,TIOAFN,TIOAMI,TIOAID) ,
NAMES=PEFI

A mixture of free-format positional and keyword input can be handled
by tni~ ~atter form of DFHBIF TYPE=INFORMAT macro instruction. For
example, ,

INQR.LN=BUGHES//Q/096556 EOB

will be handled correctly.

WEIGHTED RETRIEVAL

The application programmer can request that a VSAM data set be
scanned and those records meeting certain selecticn criteria be made
available to the application program. In general, a series ot DFHBIF
macro instructions is inv.olved.

1 • A DFHBIF TYPE=WTRETST mac r9 instruction indicates the start ot
a weighted retr~eval operation.

2. One or more DFHBIF TYPE=WTRTPARM macro instructions provide the
specifications to be used by CICS/VS in the weighted retrieval
process •.

3. One or more DFHBIF TY PE=WTRETGET macro instructions retrieve
one or more selected records.

4. A DFHBIF TYPE=WTRETREL macro instruction releases the VSAM work
area (VSWA) and other main storage used tor the weighted
retrieval process.

5. A DFHBIf 'I'YPE=WTRETCHI< macro instruction pertorms a check on
th~ success ot a phase ot the weighted retrieval ~rocess.

Each of these macro instructions is discussed more tully be~ow.

Note: Because ot the potential etfect of weighted retrieval operations
on system performance, this tunction should not be used
indiscriminately. The amount ot file accessing and the use ot internal
storage should be taken into acco~t.

Initiate weighted Retrieval

To indicate the start ot a weighted retrieval operation, the
application programmer issues a DFHBIF macro instruction ot the
fol~owing format:

320 CICS/VS Application Programmer's Re£erence Manual

*

*
*

r------ ---,
I

DFHBIF TYPE=WTRETST
(,DATASET=symbOlic name]
[,RDIDADR=syrnbolic address]

['INPUTNO={SymbO~iC addreSS}]
numerl.C value
YES

['INPUTST={SymbO~iC addreSS}]
numerl.C value
YES

[,INPUTPC=([suboperand1][,suboperand2])]

['NRECDS={SymbO~iC addreSS}]
numerl.C value
YES

[,NORESP=symbolic address]
[,DSIDER=symbolic address]
[,NOTOPEN=symbolic address]
[,NOTFND=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,OFLOW=symbclic address]
[,ILLOGIC=symbolic address]

L--~

where:

TYPE=WTRETST
indicates that a weighted retrieval operation is to be initiated.

DATASET=symbolic name
is the one- to eight-character da:taset identification ot'the
VSAM data set troIr. which the retrieval is to be made;' if omitted,.
the data set identifier is assumed to be in TCAWTDI, an
eight-byte tield.

RDIDADR=symbolic address
is the symbolic address ot the record identification field that
contains the partial key of the record at which the dataset is
to be positioned prior to the retrieva1 process; it oIPitted',
the address is assumed to be in TCAWTRI, a tu1lword t:i.eld. (The
format of the record identification tie1d ter a VSAM data set
is described under "record identification Field" in Ch~pteJ:' 11.)

INPUTNO=
indicates the maximum number of records that can be examined.
A value from 1 to 32161 may be specified.

symbolic address
is the address of a halfword field that contains the maximum
number of recqrds that can be examined.

numeric value

YES

is a decimal numeral indicating the maximum number of records
that can be exarrined.

indicates that the maximum number ot records to be examined
has been placed in TCAWTH1, a halfword field.

If this operand is omitted, a default va1ue ot 512 is placed in
TCAWTH1.

Chapter 9. CICS/VS Built-In FUnctions 321

I NPUTST=
indicates the number of records with the specified partia~ key
to be skipped before examination ot records begins. The maximum
value that can be specified is 32767.

symbolic address
is the address of a haltword field that contains the re~ative
number of the record that is to be examined first.

numeric value

YES

is a decimal nuneral indicating the re~ative number ot the
record that is to be examined first.

indicates that the relative number of the desired record
has been placed in TCAWTH2, a ha~tword fie~d.

If this operand is omitted, a default value of 0 is placed in
TCAWTH2. The weighted retrieval begins with the tirst record
having the specified partia~ key.

INPUTPC=

NRECDS=

specifies the percentages to be used by the weighted retrieval
function to determine the limits of acceptabi~ity.

suboperand1
specifies the maximum percentage, a va~ue from 0 to 100;
this value can be indicated by the symbolic address ot a
halfword field containing the maximum value, a decimal
numeral, or YES, which indicates that the value has been
placed in TCAWTH3. If omitted, the maximum percentage is
assumed to be 100.

~uboperand2
specifies the minimum percentage, a va~ue from 0 to 100;
this value can be indicated by the syrobclic address ot a
halfword field containing the minimum value,. a decima~
numeral, or YES, which indicates that the value has been
placed in TCAWTH4. If omitted, the minimum percentage is
assumed to be o.

It the first suboperand is omitted, but the second is specitied,
the comma that otherwise to~lows the first suboperand must be
included. If only one suboperand is given, it is assumed to be
the first sub operand (the maximum percentage, 100).

indicates the maximum number of records to be made available to
the application program. A value from 1 to 32767 can be
specified.

symbolic address
is the address of a haltword field that contains the maximum
number of records.

numeric value

YES

is a decimal nurreral indicating the maximum number of
records.

indicates that the maximum number has been placed in
TCAWGCNT, a haltword field.

If this operand is omitted, a default value ot 200 is assumed.

322 CICS/VS Application Programmer's Reference Manua~

NORESP, DSIDER, NOTOPEN, NOTFND, INVREQ, IOERROR, OFLOW, and ILLOGIC
are used to test the response ot CICS/VS to this request tor
initiation ot the weighted retrieval tunction. These operands
can be specified in this macro instruction or in a DFHBIF
TYPE=WTRETCHK macro instruction. The meaning ot each operand
is discussed under "Test Response to a Request tor weighted
retrieval. II

Returned Values

The address of a VSAM work area (VSWA) to be used by weighted
retrieval throughout this series ot weigbted retrieval o~erations is
returned in TCAWRAA, a four-byte field. Since any CICS/VS macro
instruction issued within the application program may cause the contents
of TCAWRAA to be changed, the ap~lication programmer should save this
address. It must be restored in TCAWRAA prior to any sUbsequent DFHBIF
macro instruction included in this series of weighted retrieval
operations. A response code indicating how CICS/VS has responded to
this request is returned in 'ICAW'IRC, a one-byte tield (see "Test
Response to a Request tor weighted retrieval").

Establish Selection Criteria

The application programmer passes selection criteria to CICS/VS by
means of DFHBIF TYPE=WTRTPARM macro instructions. One ot these macro
instructions must be coded for each tield that is to be examined during
the selection process. Match and no-match values are established
separately for each field. Then, during weighted retrieval proceSSing,
the applicable match and no-match values tor examined tields ot a record
are used to determine a weighted qualification percentage tor the
record. The format ot each DFHBIF TYPE=W'IRTPARM macro instruction is
as follows:

r--,
I

DFHBIFI TYPE=WTRTPARM
1[,FIELD1=([symboliC address][,nurreric value][,char])]
1[,FIELD2=([symboliC address1][,symbolic address2])]
,[,NULL={SyrnbClic addreSS}] I character value
I YES
1 [,MATCH= 5symbo~ic addresstJ
I· 1 numerl.C val ue ~
1[,NOMATCH=5Symbo~iC addreSStJ
I 1numerl.c value ~
1[,RANGE=(suboperand1,suboperand2[,Suboperand3])]
1 L ___ -----------------~

where:

TYPE=WTRTPARM

FIELD 1=

indicates that return parameters tor a weighted retrieval
operation are beingspecitied.

specifies the characteristics of the search field to be compared
against a corresponding tield in records ot the data set on
which the weighted retrieval function is to operate.

Chapter 9. CICS/VS Buil t- In Functions 323

FIELD2=

symbolic address
is the symbolic address of the tield. It omitted, the
address of the tield is assumed to be in TCAWPA1, a tour-byte
field.

numeric value
is the length ot the tield in bytes and may range trom 1 to
32767. It omitted, the length ot the tield is assumed to
be in TCAWPH1, a haltword field.

char
is one character indicating the format ot the data in the
field as tollows:

Character

C
Z
P
H
F

Data Format

EBCDIC characters
Zoned decimal numbers
Packed decimal numbers
Haltword binary

·Full.word binary

If this parameter is omitted, the character is assumed to
be in TCAWPB1, a one-byte tield.

It one of these operand entries is omitted but succeeding operand
entries follow, the ccmma that otherwise toll.ows the entry must
be included in the operand.

Notes:

1. The application programmer must ensure that the integrity
of FIELD1 is not destroyed prior to the first DFHBIF
TYPE=W'IRETGET macro instruction. These values are used by
the built-in tunctions program (DFHBFP) at that time. In
particular, it is not advisable to utilize an area within
a TIOA for this value.

2. The largest decimal number that can be contained in a zoned
decimal (Z) or packed decimal (P) tield cannot exceed 16
digits, including the sign.

specities the location of the data in the field ot each record
of the dataset involved in the comparison with the search data
in FIELD 1 •

symbolic address1
is the symbolic address (label) ot the first byte ot the
storage area that will contain the record to be examined.
If omitted, the address of the main storage area is assumed
to be in TCAWPA3, a four-byte field.

symbolic address2
is the symbolic address (label) of the field within the
storage· area identified by symbolic address1 to be used in
the weighted retrieval comparison. If-omitted, the address
of the tield is assumed to be in TCAWPAq, a four-byte field.

If the tirstoperand entry is omitted but the second is
specified, the comma that otherwise tollows the first entry must
be included in the operand.

32q CICS/VS Application Programmer's Reterence Manual

NULL=

MATCH=

specifies a one-byte "null character" which, if present in either
FIELD1 or FIELD2, indicates that no corrparison is to be
performed.

symbolic address
is the symbolic address of a one-byte field containing the
null character.

character value

YES

is a single EBCDIC character within single quotation marks.

indicates that the null character has been placed in TCAWPNL,
a one-byte field.

The null character cannot be a binary zero (that is, X'QQ');
such a specification is ignored.

specifies a value to be added to the current total counter it
the comparison is performed and to the weighted counter it the
compared fields are equa1. The value may range from -3216ij
through + 32161.

symbolic address
is the symbolic address ot a haltword tield containing the
value.

numeric value
is a decimal nurreral in the range stated above.

It this parameter is omitted, the va1ue is assumed to be in
TCAWPH2.

Note: All match and no-match values specitied tor a weighted
retrieval operation must have like signs.

NOMATCH=

RANGE=

specities a value to be subtracted from the weighted counter it
the compared fields are not equal. The value may range trom
-32168 through +32761.

symbolic address
is the symbolic address of a haltword tield containing the
value.

numeric value
is a decimal nurreral in the range stated above.

If this parameter is emitted, the value is assumed to be in
TCAWPH3.

Note: All match and no-match values specified tor a weighted
retrieval operation must have like signs.

indicates that the compared tields are to be considered equal
if FIELD2 falls within a given range of FIELD1.

suboperand1
specifies the type of range used in the comparison. This
entry can be a single character or YES, which indicates that
the single character specifying type has been placed in

Chapter 9. CICS/VS Built-In Functions 325

TCAWPTR. The valid characters are as tollows:

suboperand2

Character

P
U
V

Type of Range

percentage
Units
Value

specifies the upper limit, exceeding the value in FIELD1,
which is to be considered a match. This entry can be a
positive numeric value up to 32767 or YES, which indicates
that the upper limit has been placed in TCAWPHq.

suboperand3
specifies the lower limit, below the value in FIELD1, which
is to be considered a match. This entry can be a positive
numeric value up to 32767 or YES, which indicates that the
lower limit has been ~laced in TCAWPH5.

It suboperand3 is omitted, suboperand2 is assumed to apply both
above and below the value in FIELD1. For example, it the value
in FIELD1 is 165 and RANGE=(U,5) is specified, then any value
trom 160 through 170 is considered a match. It RANGE= (U,5, 10)
is specified, then any value between 155 and 170 is considered
a match. It RANGE=(P,20) is specit~ed, then any value between
132 and 198 {165*(1±20%)} is acceptable. It RANGE=(V,190,160),
then any value between 160 and 190 is acceptable. If the data
field contains EBCDIC characters (that is, C is specified in
the FIELDl operand), the RANGE operand is ignored.

Note: The upper bound and lower bound values are computed using
the following formulas (where K is the value of FIELD1):

1. For p-type range, specified (P,x,y) or (P,x):

UB = K * (1 + x/l00) UB = K * (1 + x/ 1 00)
or

LB = K * (1 - y/l00) LB = K * (1 - x/l00)

2. For U-type range, specified (U,x,y) or (U,x):

UB = K + x UE = K + x
or

LB = K - Y LB = K - x

3. For V-type range, specified (V,x,y):

UB = x

LB = Y

Retrieve Selected Records

To retrieve one record that has been saved by the weighted retrieval
function, the application programmer issues a DFHBIF TYPE=WTRETGET
macro instruction. Before issuing the instruction, the programmer must
ensure TCAWRAA contains the address ot the VSAM work area (VSWA) used

326 CICS/VS Application Prograffroer's Reterence Manual

in this series ot weighted retrieval operations. The tormat ot the
DFHBIF TYPE=WTRE~GET macro instruction is as follows:

r--,
I I I I
I I DFHBIFI TYPE=W~RETGET I
I I I [, NORESP=symboli c address] I
I I '[,ENDFILE=symbolic address] I
I I I [, NOTOPEN=symbolic address] I
I I 1[,NOTFND=symbolic address] I
I I ~[,INVREQ=symbOlic address] I
I I I [, IOERROR=syrnbolic address] I
I I 1[,OFLOW=symbclic address] I
I I I [,ILLOGIC=symbolic address] I
I I I I
L--~

where:

TYPE=WTRETGET
indicates that retrieval ot the next record saved by weighted
retrieval (as ordered according to decreasing weighted
qualification percentage) is desired.

NORESP, ENDFILE, NOTOPEN, NOTFND, INVREQ, IOERROR, OFLOW, and ILLOGIC
(VSAM only)

are used to test the response of CICS/VS to this request tor
record retrieval. These operands can be specified in this macro
instruction or in a DFHBIF TYPE=WTRETCHK rracro instruction. The
meaning ot each operand is discussed in detail under "Test
Response to a Request tor. weighted retrieval."

Returned Values

One record that was saved as the result of weighted retrieval is
returned to the application program. The address ot this record is
contained in VSWAREA within the VSWA provided by the WTRETST macro
instruction. The length of the record is returned in VSWALEN.

In addition, the contents ot several haltword tields are signiticant.
TCAWGH1 contains the highest percentage ot acceptability tor this
weighted retrieval operation, TCAWGH2 contains the lowest percentage
of acceptability for this weighted retrieval operation, TCAWGH3 contains
the percentage of acceptability of this record, and TCAWGH4 contains
the number of records left to be presented to the user. Atter the
first DFHBIF TYPE=WTRETGET macro instruction, TCAWGH5 contains a count
of any records dropped to remain within the maximum specified in the
NRECDS operand ot the WTRETST macro instruction. On succeeding
WTRETGETs, TCAWGH5 contains zero. The tull key ot the returned record
is returned at the location specitied in the RDIDADR operand ot the
DFHBIF TYPE=WTRETST macro instruction initiating this weighted retrieval
operation.

TCABFTR, a one-byte field, contains the response code that describes
the CICS/vS response to this DFHEIF TYPE=WTRETGET macro instruction.
This response code can be interrogated as described under "Test Response
to a Request for weighted retrieval."

Release Weighted Retrieval storage Areas

After a series of weighted retrieval processing steps is completed,
the application programmer must ensure that the VSWA established when
the DFHBIF TYPE=wTRETST macrc instruction is issued and the main storage

Chapter 9. CICS/VS Built-In Functions 321

used for saving the records is released. The programmer does so by
issuing a DFHBIF TYPE=WTRETREL macro instruction. Its tormat is:

r--,
, I I I
I I DFHBIFI TYPE=WTRETREL I
I I 1[,NORESP=symbolic address] I
, I 1[,INVREQ=symtolic address] I
I I I [, ILLOGIC=symbolic address] I
, I I I
L--J
where:

TYPE=WTRETREL
indicates that the VSwA and other storage used by weighted
retrieval are to be released.

NORESP, INVREQ, and ILLOGIC (VSAM only)
are used to test the CICS/VS response to this request. These
operands can be specitied in this macro instruction or in a
DFHBIF TYPE=WTRETCHK macro instruction. 'Ihe meaning ot each
operand is discussed under "Test the Response to a Request tor
weighted retrieval."

Test Response to ~ Request for weighted Retrieval

When the application prog rammer issue s a request tor the weighted
retrieval tunction, he can check the response to his request to
determine, in a deliberate manner, subsequent processing that should
be carried out. One step in doing so is to specify the entry-point
names (symbolic labels) of user-written exception-handling routines,
any of which may be executed as a result ot the check. This can be
done in any of three ways:

1. Include the entry-point names in operands ot the DFHBIF macro
instruction by which the weighted retrieval tunction is
requested.

2. Include the entry-point names in operands ot a

DFHBIF TYPE=WTRETCHK,

macro instruction immedia tely tollowing the DFHBIF macro
instruction by which the service is requested.

3. Include instructions immediately fOllowing the DFHBIF macro
instruction that examine the response code set automatically by
CICS/VS when making the response, and transfer control to an
appropriate user-written exception-handling routine accordingly.

Under either of the first two methods above, CICS/VS checks the
response code that it sets and transfers control to the
exception-handling routine named in the operand associated with the
condition that has occurred (if that operand has been specitied). The
application programmer need not be concerned with which response code
corresponds to which condition. It is only necessary to understand
the keyword operands and be sure that there is some provision tor all
conditions that may occur.

.328 CICS/vS Application Programmer's Reference Manual

*

The general format ot the DFHBIF TYFE=WTRETCHK macro instruction is
as follows:

r--,
I

DFHBIFI TYPE=WTRETCHK
1(,NORESP=symbolic address]
I [,tSIDER=symtolic address]
1[,NOTOPEN=symbolic address]
1(,NOTFND=symtolic address]
1[,INVREQ=symtOlic address]
1[,ENDFILE=syrrbolic address]
1[,IOERROR=symbolic address]
I [,OFLOW=symbclic address]
1(,ILLOGIc=symbolic address]
I L------ ---~

where:

TYPE=WTRETCHK
indicates that checking ot the response to a weighted retrieval
request is desired.

NORESP, DSIDER, NOTOPEN, NOTFND, INVREQ, ENDFILE, IOERROR r OFLOW, and
ILLOGIC (VSAM only)

are optional operands that test tor specific CICS/VS responses
to a preceding DFHBIF macro instruction. In each case, the
symbolic address identifies the location to which control is
transferred it the specified condition has occurred. Each
keyword operand above is summarized in Figure 9-6.

When the third approach above is used, the ap~lication ~rogrammer
must know the CICS/VS response cOdes and their meanings. (The response
code is available to the application program at 'ICAWTRC.) The possible
response codes and the conditions to which they correspond are
identified in the right-hand columns of Figure 9-6. DFHBIF macro
instructions tor wh'ich the condi tions are applicable are shown at the
left.

If the application programmer does not provide for the checking for
a particular response to a weighted retrieval macro instruction, and
if the exception condition corresponding to that response occurs,
program tlow proceeds to the instruction tollowing the weighted
retrieval macro instruction in the application program.

Chapter 9. CICS/VS Built-In Functions 329

Response Code
Weighted Retrieval
Request by DFHBIF
Macro Instruction Condition Assembler

ANS COBOL
and PL/I

WTRETST, WTRETGET,
WTRETREL, WTRETCHK

NORESP X'~~' 12-~-1-8-9

WTRETST, WTRETCHK,

WTRETST, WTRETGET,
WTRETCHK

WTRETST, WTRETGET,
WTRETCHK

WTRETGET, t'·JTRETCHK,

WTRETST, WTRETGET,
WTRETREL, WTRETCHK

WTRETST, WTRETGET,
WTRETCHK

WTRETST, WTRETGET,
WTRETCHK,

WTRETST, WTRETGET,
WTRETREL, WTRETCHK

~

(Normal Response)

DSIDER X'Cl'
(Data Set Identification Error)

NOTOPEN X'C2'
(Data Set Not Open)

NOTFND X'C8'
(Record Not Found)

ENDFILE X'C4'
(End of File)

INVREQ X'C3'
(Invalid Request; see note 1)

IOERROR X'CS'
(Input/Output Error)

OF LOW X'C6'
(Overflow; see note 2)

ILLOGIC X'C7'
(VSAM Error; see note 3)

1. If the data set is not a VSAM file, the field TCAWRAA is set to zero. CICS/VS file
control handles other errors of this type, in which case, TCAWRAA contains the
address of the FCT entry for the data set.

'A'

IB'

'H'

'D'

'C'

'E'

'F'

'G'

2. For WTRETST, this response indicates that the system-defined maximum storage G~TMAIN
(64K) is insufficient to hold all retrieved record keys and these records have the same
percentage of acceptability. In this case, the terminal operator must specify a rela
tive record number (the relative position of the first record to be retrieved among
the retrieved records) and a number of records (NRECDS) to be presented. For WTRETGET, this
response means that no records were returned because all had identical percentages of
match and not all could be returned because of the limit specified in NRECDS.

3. This response indicates that a VSAM error that does not fall into one of the above
categories has occurred. The VSWA contains the VSAM request parameter list that
contains the VSAM logical error.

Figure 9-6. Weighted Retrieval Re~ponse Codes

Example

Assume that, tor purposes of state welt are applications, a VSAM tile
labeled SRCHFILE is maintained on rragnetic disk. SRCHRECD is an area
of storage that holds individual records retrieved trom the tile. The
tile is to be searched to retrieve up to 100 records that satisty (or
come closest to satisfying) the criteria: last name = SMITH, tirst
initial = J, and mother's name = MARY.

LNAME
FINIT
MOM

COPY DFHTCADS
DS CL18
DS CLl
DS CL1
DFHBFTCA OPTION=WTRET

SRCHRECD DSEcr
USING * ,RCDBASE

330 CICS/vS Application programmer's Reference Manual

LAST
FIRST
MOTHER

STARTOK

WRGET

GETOR

DS CL18
DS CL1
DS CL1

DFHBIF TYPE=WTRETST,
DATASET=SRCHFILE,
RDIDADR=KEY FL D,
I NPUTNO=1 00,
I NPUTST= 10,
INPUTPC=(100,80),
NRECDS=50,
NORESP=STARTOR

(error processing)

DS OH
L VSWABAR,TCAWRAA
DFHBIF TYPE=WTRTPARM,

FIELD1=(LNAME,18,C) ,
FIELD2=(SRCHRECD,LAST) ,
MATCH =5 0

DFHBIF TYPE=WTRTPARM ,
FIELD1=(FINIT,1,C),
FIELD2= (SRCHRECD, FIRST) ,
MATCH =3 0

DFHBIF TYPE=WTRTPARM,
FIELD1=(MOM,1,C),
FIELD2=(SRCHRECD,MOTHER),
MATCH =2 0

OS OH
ST VSWABAR,TCAWRAA
DFHBIF TYPE=WTRETGEr ,

NORESP=GETOK,
ENDFILE=ENDPROC

(error processing)

OS OH
L RCDBASE,VSWAREA GET ADDRESSABILITY TO RECORD

(on first WTRETGET, check to see whether too many
records have been skipped, enough records returned,
acceptable range ot , returned, and the like)

(process retrieved record)
B WRGET

ENDPROC DS OH

ST VSWABAR,TCAWRAA
DFHBIF TYPE=WRETREL

Chapter 9. CICS/VS Built-In Functions 331

• •
•
• • •
•

•
•
•
•
• •
• • •

•
•

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

CHAPTER lQ. BASIC MAPPING SUPPORT

The basic mapping support (BMS) f~ction provides the CICS/VS
application programmer with reany vital formatting services to assist
in preparing output data streams and interpreting input data streams
for the terminal network. These formatting services are provided by
BMS modules that interface between the application program and the
CICS/vS terminal control program.

The application program passes data to BMS and receives data from
BMS in a standard non-device-dependent format,. BMS macro instructions
are issued by the application program to control formatting of the data
and to initiate input from a terminal or output to one or multiple
terminals.

BMS ADVANTAGES

Two principal advantages are realized by using the formatting
services of BMS: device independence and format independence.

DEVICE INDEPENDENCE

Device independence permits the application program to provide data
to a ter«inal or to receive data from a terminal without regard to the
physical characteristics of the terminal type,. Under BMS, the terminal
may be any of the following devices: 1050, 2740, 2741, 2770, 2780,
3780, 2980 Models 1 and 2,2980-4 (keyboard and printer only), 3270,
TWX, tape, disk, CRLP (a device declared to have card-reader-in-line
printer-out characteristics), or TCAM' terminals defined by TRMTYPE=TCAM
in the DFHTCT TYPE=TERMINAL macro instruction. In addition, BMS also
supports the VTAM-supported 3600 or, 3650 (host conversational ana
interpreter logical units only). The descriptions of the macro
instructions used for BMS include VTAM-supported terminals. Refer to
the CICS/vS Advanced Communication Guide, for details of BMS programming
considerations unique to VTAM-Suppo~terminal systems.

With BMS, a CICS/VS installation with multiple terminal types need
only provide one program for each application transaction to support
all terminal types in the installation. BMS identifies which terminal
type is requesting use of the application program and provides for the
conversion of the device-dependent data stream to and from the standard
non-device-dependent data foxmat used by the application program. A
CICS/vS installation using a single terminal may wish to use the
formatting services of BMS to facilitate the addition of other terminal
types or the conversion to another terminal type in the future.

FORMAT INDEPENDENCE

Format independence permits the application program to provide data
to one or more terminals or to receive data from a terminal without
regard to the physical place«ent of fields within the data stream or
on a terminal.

All references to data by the application program are through
symbolic field names. The placement of fields within the data stream
is accomt:lished by BMS through the use of information stored in data
format tables called maps. A CICS/vS installation in which BMS is used
may rearrange the fields to be included in a terminal message by simply

Chapter 10. Basic Mapping Support 333

Page of SH20-9003-2
Revised May 22,1975
By TNL SN2o-9086

changing some values stored in the map that defines the format of the
message. The application program that Causes the message to be written
need not be modified. The programming maintenance requirements can be
considerably less than they rr.ight be if BMS were not used.

Format independence also ~ermits certain constant information such
as headings, field-identifying keywords, and 3270 screen formats to be
stored in maps. These constants can be modified sim~ly by changing
their values in the maps. Any programs that refer to the maps benefit
from the changes, but none of the programs themselves need be modified.

The format independence provided by BMS may be compared with the
independence provided by DL/I for data bases. Both remove from the
application program the requirement to know the physical placement of
fields within the data record or message. Fields reay be physically
rearranged, removed, or added without necessitating program maintenance
on all application programs using the record or message.

~ TECHNIQUES

The primary techniques by which BMS provides formatting services
are: data mapping and formatting, terminal paging, and message routing.

DATA MAPPING AND FORMATTING

Data mapping is the technique used by BMS to convert the standard
non-device-dependent data for.rnat, ~hich the application program uses,
to and from the device-dependent data stream required for the particular
terminal type in use. Device-dependent control characters are embedded
or removed by BMS during this processing.

The application program may select either of three standard data
formats in which to provide or accept data from EMS: field data format,
block data format, and text data format.

When field data format is used, data is provided to BMS as separate
fields. Each field is given a symbolic field name by the application
programmer. This name is used when passing data to, or retrieving data
from, BMS. Each field consists of a two-byte length (used by BMS on
input), a one-byte attribute (for 3270 output operations), and the
field data area. A map describing the field pOSition, data l~ngth,
and other information about each field is created to control the mapping
function.

When block data format is used, data is provided to BMS as line
segments. Fields positioned within the line segments may be given
symbolic field names to aid the application program in positioning the
fields. Each field provides for a one-byte attribute and the field
data area. A gap consisting of several blanks may separate consecutive
fields in the line segment. A map is used to describe the number and
lengths of line segments, the field positions, data lengths, and other
necessary information.

When text data format is used, output data conSisting of a data
stream with optional neW-line (X'lS') characters is provided to BMS.
Device independence divides the data stream into lines no longer than
those defined for the particular terminal to which the data stream is
related. Character strings (non-blanks, X'40) or words which overlap
lines are placed unbroken on the next available line. If new-line
characters are included in the data stream to further define line
lengths, they are honored. CICS/VS inserts the appropriate leading
characters, carrier returns, and idle characters, and eliminates

334 CICS/VS Application Frogrammer's Reference Manual

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

trailing blanks from each line. If tab control characters are contained
in the data stream, the user should also supply

Chapter 10. Basic Mapping Support 334.1

all of the necessary new-line characters. No ma~s are used with text
data format.

Field data tormat is the rrost common standard data tormat tor both
video and hardcopy terminals. Block data tormat may be used with both
video and hardcopy terminals, but it is more useful for input operations
on hardcopy terminals. Text data format is used with both video and
hardcopy terminals and is especially convenient when programming to
handle data not divided into fields. When text data tormat is used
with a 3270 device, an attribute byte appears on the 3270 as a blank
at the beginning of each line and in tront ot each new piece ot data.

TERMINAL PAGING

Terminal paging permits the application program to (1) combine
several small ma~ped data areas into one or more ~ages of output, or
(2) prepare more output than can be contained in one page ot output.
By definition, a ~ is the physical area ot a terminal on which data
can be displayed or printed at one time. The size ot the area (in
numbers of lines and columns) is specified for the particular terminal
in the CICS/VS terminal control table by the system programmer.

Since a page ot output may be constructed by BMS trom several small
maps, it is convenient to generate these maps together in a map set.
By definition, the map set is a collection ot ma~s generated and stored
together in the CICS/VS program library. A reference to one map in
the map set causes the entire map set to be loaded into storage tor
the duration of the task or until another map set is referred to by
the task. DFHMSD, DFHMDI, and DFBMDF macro instructions, described
later, in this chapter are used in constructing the map set.

At execution time, the application ~rogram issues DFHBMS TYPE=PAGEBLD
macro instructions to map and position portions of an out~ut page. It
all data to be mapped cannot be contained on one page, BMS recognizes
the overflow condition and can transfer control to an overtlow routine
within the application program. This routine normally causes the
current page to be written tc temporary storage, a new page to be
started, a heading to be placed on the new page, and the data causing
the overflow to be mapped on the new page. As each page of the output
message is completed, the page is written to tew~oIary storage to await
completion of the multi~le pages of the output. The result of one or
more BMS requests tor output serVices, all of which have the same
disposition (OUT, STORE, or RETURN, as explained later in this chapter),
is known as a logical message. To cause the logical message to be
completed, the a~plication program issues a DFHBMS TYPE=PAGEOUT macro
instruction. Alternatively, the logical message is completed upon
termination of the application program unless a short on storage
condition exists, in which case the logical message is purged.

Terminal paging provides the additional function of building a
logical message without the use of maps. A DFHBMS TYPE=TEXTBLD macro
instruction is issued to request this type of page building,. The data
is provided to BMS as text data, which BMS places on succeeding lines
(and pages, it necessary) without reference to mal's.. A word is not
split between lines; any word that cannot tit on the remaining portion
of a line is placed on the next line. The formatting ot the logical
message can be controlled through the data itself by embedding new-line
characters (X'lSt) within the text data. To cause the TEXTBLD logical
message to be completed, the application program issues a DFHBMS
TYPE=PAGEOUT macro instruction or terminates execution.

DFHBMS TYPE=TEXTBLD and TYPE=PAGEELD macro instructions cannot be
used to build portions of the same logical message. The process of
building a logical message can be discontinued by means of a DFHBMS

Chapter 10. Basic Mapping support 335

TYPE=PURGE macro instruction. This instruction purges the portions ot
the message already built in main storage or on temporary storage.

MESSAGE ROUTING

Message routing permits an ap~lication program to concurrently build
and route a logical message to one terminal or to multiple terminals.
The message is automatically scheduled tor each designated terminal,
to be delivered as soon as the terminal is available to receive messages
or at some future time.

The terminal paging facility ot BMS is used tor message routing so
the design of application ~rcgrams is very similar tor the two
facilities. In fact, Message Routing may be considered as a "one macro
instruction enhancement" to terminal paging.

To initiate a routing operation, the application program issues a
DFHBMS TYPE=ROUTE macro instruction toll owed by DFHBMS TYPE=PAGEBLD or
TYPE=TEXTBLD instructions to build the logical message to be routed.
A DFHBMS TYPE=PAGEOUT macro instruction terminates the page building
and causes the message to be routed. A routed logical message may be
one or more pages in length.

A parameter of the DFHBMS TYPE=ROUTE macro instruction points to a
list of terminals to receive the routed logical message. The list may
contain the terminal identitication and operator identitication ot each
terminal designated to receive the message. It only a terminal
identification is specified, the message is routed to that terminal,
regardless of who is Signed on at the terminal. It both the terminal
identification and the operator identitication are specitied, the
message is routed to the terminal but delivered only when the specitied
operator is Signed on. It only the operator identitication is
specified, BMS scans the terrrinal control table and delivers the message
to the tirst terminal at which the operator is signed on.

Another parameter of the DFHBMS TYPE=ROUTE macro instruction is a
specific operator class code. If specified, only an operator signed
on with that class code may receive the routed message. One to
twenty-four class codes may be assigned to operators in the CICS/VS
sign-on table.

The DFHBMS TYPE=ROUTE macro instruction turther designates whether
the logical message is to be delivered as soon as possible or at a
specific time or some interval ot time in the tuture. It the routed
logical message cannot be delivered within a specitied length ot time,
an error message may be returned to the terminal sending the message
or to some designated alternative terminal. The logical message may
be purged, or it may be retained indetinitely -- until delivered or
until deliberately purged by an operator at the receiving terminal.

If a logical message is to be routed to more than one terminal type,
BMS builds the message tor each terminal type. Each message is stored
on temporary storage until all terminals ot the related terminal type
have received the message. It a terminal is scheduled to receive a
message but is not eligible, the message is preserved until one ot the
following conditions occurs:

• The terminal operator requests display ot the rressage •

• A change in terminal status allows the message to be sent.

336 CICS/VS Application Programmer's Reterence Manual

• A time period (specitied at system generation) has elapsed, causing
the message to be purged •

• The message is purged through the destination terminal.

Since maps unique to a terminal
routing, the arrangement ot tields
from one terminal type to another.
various messages, although a single
build and route the messages.

type may be used with message
and headings or constants may ditter
This permits some tailoring ot the
application program is used to

Another consideration ot routing to ditterent terminal types is the
handling of overtlow conditicns. Since ditferent terminal types may
have difterent page sizes, the overt low condition is apt to occur at
different times in page building. BMS not only can return control to
an overflow routine in the applicaticn program, but also can indicate
which terminal type caused the overflow and how many pages have been
created tor that terminal type.

The message routing tacility of BMS is an ideal tool tor developing
message switching and broadcasting applications. CICS/VS provides a
generalized message switching application program that uses the message
routing facility of BMS (see the CICS/VS System Administrator's Guide).

PROGRAMMING CONSIDERATIONS

As a preparatory step to using the EMS mapping tunction in a
particular application, two types of maps are assembled ottline through
use of CICS/VS macro instructions: (1) a physical map used by CICS/VS
to convert native-mode data into the format desired by the application
programmer, and (2) a symbolic description ma~ used by the application
programmer to symbolically reter to the data in the terminal bufter.
The physical map is a table ot information about each tield which is
stored in the CICS/VS program library to be loaded by BMS at execution
time. The symbolic description ma~ is a set ot source statements whiCh
are cataloged into the appro~riate source library (AsSembler, American
National Standard (ANS) COBOL, or PL/I) and copied into the application
program when it is assembled or compiled.

The user defines and provides names for tields and groups ot tields
that may be written to and received tram the devices supported by EMS.
The symbolic description map can be copied into each application program
that uses the associated physical map. Data is passed to and trom the
application program under the field names in the symbolic description
map. Since the application ~rogram is written to manipulate the data
under the field names, altering the map tormat by adding new tields or
rearranging old fields does not necessarily alter the program logic.

If the map format is altered, it is necessary in most cases to make
the appropriate changes to the macro instructions that describe the
map and then reassemble both the physical map and the symbolic
description map. The new symbolic description ma~ must then be copied
into the application program and the program reassembled. There are
certain map alterations that ,can be made without neceSSitating
reassembly of the symbolic description map.

An application program has access to the input and output data tields
using the names supplied to the fields when the ma~s were generated.
The application logiC should be dependent upon the named fields and
their contents but should be independent of the relative positions ot
the data fields within the terminal fonnat. It it becomes necessary
to reorganize or add to a map tormat, the existing application program
must be reassembled to gain access to the new positions of these data

Chapter 10. Basic Mapping Support 331

fields. Reprogramming is not necessary to account tor new tields or
for the changed terminal tormat ot those fields.

By using BMS to construct and interpret data streams, application
programmers can insulate application programs trom the device-dependent
considerations required to handle the data streams. It necessary, the
application ~rogram has the tacility to temporarily modity the
attributes or the initial data ot any named tield in an output map. A
collection of named attribute combinations is supplied within BMS so
that the application program remains essentially independent ot the
data stream format.

The ability to progressively add to map detinitions without
obsoleting existing application programs permits the design and
implementation of systems in a modular tashion with a progressive
expansion of the screen tormats. Design and programming ot the tirst
stages of applications can begin before later stages have been designed.
These early implementations are protected trom updates in the terminal
fonnats.

Note: To use pre-vs applications requ1r1ng the BMS mapping tunction
on terminals other than the 3270 Intormation Display system, the
application programs, physical maps, and symbolic description maps must
be reassembled.

SPECIFYING MAPS FOR EASIC MAPPING SUPPORT

A map to be used for input or output operations must be specified
for BMS. After the user has detined all maps related to a particular
application, he can group the maps into a map set. This grouping
technique permits the formatting ot a page ot output consisting ot one
or more of the maps in the map set. If the map set has been placed in
the CICS/vS program library, the user must use the MAPSET=map set name
and MAP-=map name specitications in any DFHBMS macro instruction
requesting an operation in which the map is required. It preterred,
the user may place the seven-character name of the map set at TCAMSMSN
and specify MAPSET=YES and place the name of the map at TCABMSMN and
specify MAP=YES in the DFHBMS macro instruction.

An Assembler-language programmer may "hard code" a map set in a
program, place the address ot the map set at TCAMSMSA, and code
MSETADR=YES. It desired, the user may code MSETACR=symbolic address,
where symbolic address is the label ot the hard-coded map set. The
MAP=map name specification must also be provided with the MSETADR
parameter to locate a specific map within the hard-coded map set.

Map sets placed in the CICS/VS ~rogram library are accessed by BMS
through program control DFHPC TYPE=LOA[macro instructions. Theretore,
each map set name must be entered in the proceSSing program table (PPT)
by the system programmer. Any device-dependent roa~ sets must be placed
in the CICS/VS program library. They must be identified by the
device-dependent suffixed name (see programming note 1 under "DFHMSD
Macro Instruction"), and a corresponding entry ot the same name must
appear in the PPT. The application ~rogrammer should realize that when
a map set is specitied, BMS scans the PPT at least once, and perhaps
twice, for each device-de~endent map set that is to be used by the
program.

IMPLIED READ/WRI~E

Input and output requests result in a terminal control READ and
WRITE, respectively. Therefore, the user is not required to code any
terminal control (DFHTC) macro instructions.

338 CICS/vS Application Programmer's Reterence Manual

Nothing prevents the user trom alternately coding native-mode and
BMS operations. A MAP-only operation can be requested to cause BMS to
map a native-mode input TIOA. It a MAP operation is requested tor
input trom a nonformatted 3270 butter, mapping is not performed and a
nonformatted native-mode TIOA is returned to the application program.

Note: The read that contains the transaction code and causes initiation
of the transaction is a native-mode data stream. The MAP request may
be used to convert this TIOA to a mapped TIOA.

MAP DEFINITION

Input Mapping

Input maps are defined using the DFHMSD, DFHMDI, and DFHMDF macro
instructions during offline map generation. All maps related to a
particular application are grouped to tODn a map set (see "Oftline Map
Building") •

The maximum data length and the starting positicn ot each tield to
be read must be detined. This operation produces a map and a symbolic
storage definition of data placed into a TIOA by BMS during execution
ot a CICS/VS application program. The physical map is used by BMS to
construct the TIOA as defined by the symbOlic storage detinition. The
data returned to an application ~rogram trom an input mapping operation
is in TIOA format.

The TIOA symbolic storage detinition contains an area tor the length
of each input data tield, followed by a tlag byte and an area tor the
data read. Space is reserved tor the maximum number ot bytes detined
for each field.

The length specified for a field may ditter trorr the number ot
characters that are entered for the tield at program execution time.
(The maximum length allowed for a field is 256 characters.) If more
data is keyed than specified in the map, the data is truncated on the
right to the number of characters specified. The length that is
returned to the application ~rogram is. the truncated length. It less
data is keyed than specitied, the remaining character poSitions are
filled with blanks or zeros and the length ot the keyed data is returned
in the length field.

Any fields that are entered as input but are not detined by the
symbolic description map are discarded. The length and data areas of
any tield defined but not keyed are set to nulls (X'OO'). An X'SO' is
placed in the first byte (attribute byte) ahead of the data area ot
any tield that has been modified to all nulls (tor example, by an erase
EOF key). The length area is set to zeros.

One byte is reserved for a pen-detectable tield. This byte contains
a hexadecimal 'FF' if the tield is selected or a hexadecimal '00' if
the field is not selected. The length area ot a pen-detectable tield
contains a binary one if selected or a binary zero it not selected.

The program can access the length, flag, and data ot any tield by ~

symbolic labels. The length area is a haltword binary field and is
addressed by the name "tieldname.L" or "groupname.L". The tlag is a
one-byte field and is addressed by the name "tieldname.F" or
"groupname.F". The data portion ot each tield (or group of fields) is
contiguous with the length and flag areas. A group ot fields, or a
Single field not within any grou~ ot tields, has cne data portion
addressed by the name "groupname.I" or "tieldname.I". For tields
contained within a group, there are no intervening length or tlag areas

Chapter 10. Basic Mapping Support 339

(only "groupname.L" exists) but each field can be addressed by a name
"fieldname.I". '

Note that "." is a concatenation symbol used here tor documentational
purposes; it should not be used when reterring to either the data or
the data length. For example, in the case ot field name XYZ, the data
is referenced as XYZI; the data length is reterenced as XYZL; and the
flag is referenced as XYZF.

Output Mapping

Output maps, like input maps, are created oftline during map
generation using the DFHMSD, DFHMDI, and DFHMDF macro instructions (see
"ott line Map Building"). Each field to be d.isplayed must be defined
as to starting location, length, field characteristics, and default
data (if desired).

When defining tields, the user may provide a name for any field that
be desires to refer to at execution time. Such names are associated
with the fields in the symbolic storage definition of the TIOA to allow
symbolic references to be made to them. The user may specify not only
the characteristics of the field but also the default data to be written
as output for a field when no data is supplied tor that tield by an
application program. This tacility ~ermits the specitication ot titles,
headers, and so forth, for output maps. The user may temporarily
override the field characteristics, the data, or both tield
characteristics and data ot any field tor which he has specitied a
name. The desired changes are simply inserted into the TIOA under the
has been specified tield name in the symbolic storage detinition
(symbolic description map) in the program.

~: Output field data, whether initial map data or data supplied by
the program, must not begin with a null character (X·OO·). In order
for displayable data to be mapped into the output data stream, blank
characters (XI401) must be used to position the data in the field.

The fields of an output map are assigned names as specified in the
DFHMDF macro instruction. The characteristic or attribute byte is
named Itt ieldname. A" or "grou~name. A". For a field contained within a
group, the data area is given the name "tieldname.O", but there is no
separate attribute byte tor the field. (Only the group name has the
attribute byte.) For a group name, or a field not contained within a
group, the data area is given the name "groupname.O" or "tieldname.O."
A field not contained within a group is treated as a group containing
one field entry. An unused two-byte length field precedes each
attribute byte and data field to provide a format Similar to an input
symbolic storage description TIOA. Application programs written to
use pre-VS data tormats are source compatible it all references to TIOA
data are symbolic.

Note that "." is a concatenation symbol used here tor documentational
purposes; it should not be used when reterring to either the data or
the data attributes. For example, in the case ot tield name XYZ, the
data is referred to as XYZO; the attribute byte is reterred to as XYZA.

Pen-detectable fields should be "auto skip" to ~revent data trom
being keyed into them. Because of the nature ot pen-detectable tields,
in most instances, they should not be moditied. If the data field is
modified, the application program must ensure that the tirst character
is a "1", ")", or blank character; otherwise, the tield is no longer
pen- detectable.

Fields that can be keyed should be delineated by a stopper tield to
ensure that all the data keyed and transmitted can be mapped.

340 CICS/VS Application Programmer's Reference Manual

Input/Output Mapping

Input/output (INOUT) ma~s combining all the functions of input and
output maps can be created offline during map generation using the
DFHMSD, DFHMDI, and DFHMDF macro instructions, as explained below.

OFFLINE MAP BUILDING

Offline map building is accom~lished through use of three types of
macro instructions: DFHMSD macrO instruction, which defines a map set;
~FHMDI macro instruction, ~hich defines a map ~ithin a map set; DFHMDF
macro instruction, which defines a field within a map.

The general formats of these macro instructions are shown below;
representative ceding and syrrbo1ic storage definitions generated from
these are shown in Figures 10-8 through 10-17 at the end of this
chapter.

Note: Pre-VS versions of CICS BMS provided offline map generation
support for the 3270 Information Display System through ~FHMDI and
~FHMDF macro instructions. For compatibility, DFHMDI and DFHMDF macro
instructions written to use this sup~ort will be assembled correctly
under CICS/VS BMS.

DFHMSD Macro Instruction

Because a page of output can be constructed from several maps, it
is convenient te group these maps into a map set. BMS generates and
stores map sets in the CICS/VS program library under the names selected
by the app1icatien programmers. A reference to one map in the map set
causes the entire map set to be loaded into storage for the duration
of the task, or until another map set is referred to by the task.

Information pertaining to an. entire map set is specified in the
DFHMSD macro instructions ~hich a1~ays appears at the beginning and
end of each map set generaticn. The one at the beginning indicates
whether ~hysical maps or symbolic description ma~s are being generated;
the one at the end indicates the end of the map' set generation.

All operands other than the TYPE operand of a DFHMSD macro
instruction are the same for a physical map generation run and for the
corresponding symbolic description map generation run. The application
programmer should specify TYFE=MAP for the former, and TYPE=DSECT for
the latter. The format of the DFHMSD macro instruction is as follows:

Chapter 10. Basic Mapping Support 341

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

mapset I DFHMSD I [TYPE= {~!~CT}]
'['MODE=F!!~~ }]
, INOUT

'l ' LANG= ~~~OL}]
I PLI
I , BASE=name]
1[,TERM=terminal type] I [' CTRL= I[PRI Nr T { iiLoM U ' FREERE][, ALARM][, FRSET 1]
l [' DATA= {~~~i}] I ,OBFMT={~~S}]
I ,TIOAPFX={~~S}J

L------L-------L---~

where:

mapset

TYPE=

is the one- to seven-character name of this map set, to be
specified in the MAPSET operand of any DFBBMS macro instruction
that refers to this map set. The name must begin with an
alphabetic character and, if the map is to reside in the CICS/vS
program library, must differ from other map names or program
names (see programming note 1, following).

indicates the generation function of the wacro instruction.

DSECT

MAP

indicates that this is a symbolic description map generation
run to create the list of field names to be copied into an
application program. If a single map set is to be used by
application programs written in different languages, a
separate DFHMSD TYPE=I:SECT macro instruction must be written
for each language to put the table of field names into the
copy library of the language.

indicates that this is a physical map generation run to
create the control infonnation block used by EMS to perform
mapping. This physical map is stored in the CICS/VS
real-time relocatable program library and loaded as required
by EMS. The Asserr.bler-language application programmer can
generate the map in his program and pass the address of the
map to EMS instead of using this facility to generate and
store the map beforehand in the CICS/VS program library.

FINAL
must be coded as part of the last macro instruction of a
map definition.. If other parameters are coded in the DFHMSD
TYPE=FINAL macro instruction, they are ignored.

342 CICS/VS Application prograrrmer's Reference Manual

MODE=

LANG =

IN

OUT

indicates an input map generation.

indicates an output map generation.

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

INOUT
indicates that the map definition is to be used for both
input and output wapping operations.

Note: Input mapping is not available for VTAM-supported 3600
terminals. However, lNOUT may be specified for map generation.
The map can then be used as a dummy input map for input
operations using the CFHBMS TYPE=IN macro instruction.

specifies the language in which the application program referring
to a symbolic description map is written and, hence, is
applicable for only a DFHMSD TYPE=DSECT maCDD instruction.

ASM
indicates that the symbolic description map is to be referred
to by an Assembler-language program.

COBOL

PLI

indicates that the syrobolic description map is to be referred
to by an ANS COBOL program.

indicates that the symbolic description map is to be referred
to by a PL/I program.

BASE=name
is used to group symbolic description maps under one name,
specified in this DFHMSD TYPE=DSECT macro instruction and in a
similar macro instruction for any other symbolic description
map to be included in the group. This operand is valid for
symbolic description maps generated for use in an ANS COBOL or
a PL/I program; it is not applicable for Assembler-language
programs (see programming note 3).

TERM=terminal type

CTRL=

where terminal type is one of the following:

1050, 2740, 2741, 2770, 2780, 3780, 2980-4, 2980, TAPE, DISK,
T~X, CRLP, 3270-1, 3270-2, 3270, 3601, 3653, 3650UP, 3650/3270,
A~ ---

indicates the type of output device related to this map set.
Use CRLP or ALL for TCAM terminals. A suffix is appended to
the map set name to indicate the terminal type specified (see
programming note 1). If no terminal type is speCified, 3270 is
assumed. (See programming note 2.)

The 3650 TERM speCifications are defined as follows: 3653 for
the host-conversational (3653) logical unit, 3650UP for the
interpreter logical unit, and 3653/3270 for the
host-conversational (3270) logical unit.

is used to specify device characteristics related to terminals
of the 3270 Information Display System. CTRL=ALARM is valid
for VTAM-supported terminals; all other parameters for CTRL=
are ignored.

Chapter 10. Basic Mapping Support 343

DATA=

PRINT
must be specified if the printer is to be started; if
omitted, the data is sent to the printer buffer but is not
printed. This operand is ignored if the map set is used
with 3275s without the Printer Adapter feature or with 32778.

L40, L64, L80, HONEOM
are mutually exclusive options that control the line length
on the printer. L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respectively. HONEOM causes the printer to honor all
new-line (NL) characters and the first end-of-message (EM)
character that appear in displayable fields of the data
stream. If the latter option is specified, the application
program must insert the NL and EM characters into the data
stream. If the NI character is omitted, a carrier
return/line feed occurs at the physical end of the carriage.
If the EM character is omitted, printing stops at the end
of the 3270 buffer.

FREEKB
specifies that the keyboard should be unlocked after this
map is written out. If omitted, the keyboard remains locked;
further data entry from the keyboard is inhibited until this
status is changed.

ALARM
activates the 3270 audible alarm feature. For a VTAM
terminal ALARM Signals EMS to set the alarm flag in the
function management header.

FRSET
indicates that the modified data tags (MDTs) of all fields
currently in the 3270 buffer are to be reset to a
not-modified condition (that is, field reset) before any
map data is written to the buffer. This allows the DFHMDF
ATTRB specificaticn for the requested map to control the
final status of any fields written or rewritten in response
to a DFHBMS macro instruction.

speCifies the format of the data as seen by the application
program.

FIELD
indicates that the data is passed as contiguous fields in
the following format:

ILLIAldata fieldlLLIAldata field ILLIAfetc.
L-~~----------~-~-----~--~-~--~-~ ... --~-~-~-~-~

LL is two bytes specifying the length of the data as input
from the terminal (this field is ignored in output
processing). A is a byte into which the programmer may
place an attribute to override that specified in the map
used to process this data (see "Standard Attribute List and
Printer Control Characters (DFHBMSCA)").

BLOCK
indicates that the data is passed as a continuous stream
which is processed as line segments of the length specified
in the map used to process this data set. The data is in
the form that it appears on the terminal; that is, it
contains data fields and interspersed blanks corresponding
to any spaces that are to appear between the fields on

344 CICS/vS Application Programmer's Reference Manual

OBFMT=

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

output. The first byte of each line is the att~ibute byte;
it is not available for data.

I A Idata fieldlspacel A Idata fieldlspacel A Idata fieldletc.
L-------------------~-~-~-~---~-~-~ ___ ~ ... --------------~--__ _

See programming note 4.

specifies whether outboard formatting is to be used. This
o~erand is available only for 3650 logical units. Refer to the
CICS/VS Advanced Communication Guide for details on 3650 logical
units and on outboard formatting.

YES

NO

indicates that all maps within this mapset are eligible for
use in outboard formatting, except those for which OBFMT=NO
is specified in the DFHMDI macro instruction.

indicates that no maps within this mapset are eligible for
use in outboard formatting, except those for which OBFMT=~ES
is specified in the DFHMDI macro instruction.

TIOAPFX=
specifies whether BMS should include a filler in the symbolic
TIOA description(s) to allOW for the unused TIOA prefix. If
this operand is coded, the sam~ storage address may be used for
TIOABAR and the map base.

YES

NO

indicates that the filler should be included in the symbolic
TIOA description(s). This operand is ignored unless
TYPE=DSECT and LANG=COBOL or PLI is coded. If TIOAPFX=YES
is coded, all maps within the mapset have the filler, except
when TIOAPFX=NO is coded on the DFHMDI macro instruction.

is the default and indicates that the filler is not to be
included. The filler may still be included for a specific
map if TIOAPFX=YES is coded on the DFHMDI macro instruction.

programming Notes:

1. A suffix based on the terminal type specified in the TERM operand
of a DFHMSD macro instruction is appended to the map set name
at assembly time. When a mapping operation is requested by
means of a DFHBMS macro instruction in an application program,
CICS/VS automatically appends a similar suffix to the map set
name specified in that instruction. This enables CICS/VS to
locate a device-dependent map set for a requested operation but
maintains device independence in the application program. The
suffix appended by CICS/VS is one of the following:

Terminal
Type

CRLP
TAPE
DISK
TWX
1050
27'10
2741

Map Set
Suffix

A
B
C
D
E
F
G

Chapter 10. Basic Mapping Support 3'15

Page of SH2o-9003-2
Revised May 22,1975
By TNL SN2o-9086

2770
2780
3780
3270-1
3270-2
2980 (except ~odel 4)
2980-4
3270
360'1
3653
3650UP
3650/3270
ALL (of the above)

I
J
1<
L
~
Q
R

blank
U
V
W
X

blank

The map set suffix for CRLP or ALL (whichever was defined by
the TERM operand in the DPB~SD macro instruction) is appended
for TCAM terminals.

2. The application programmer who specifies ALL in the TERM operand·
must be certain that device-dependent characters are not included
in the map set and must ensure that format characteristics such
as page size are suitable for all input/output operations (and
all terminals) in which the map set will be applied. For
example, the 3270-1 terminal is limited to 480 bytes; the 3270-2
terminal is limited tc 1920 bytes; the 3604 is limited to six
lines of 40 characters each. Within these guidelines, use of
ALL· can offer important advantages.. Since an assembly run is
required for each map generation, a specification of ALL,
indicating that one map is to be used for multipl.e terminals,
can result in significant time and storage savings.

3. The BASE operand of a DFBMSD macro instruction is applicable
only for symbolic description maps to be referred to by macro
instructions in an ANS COBOL or a PL/I application program. As
an example, assume that the following DFBMSD macro instructions
are used to generate symbolic description maps (symbolic storage
definitions) for two nap sets.

MAP 1 DFBMSD TYPE=DSECT,
TERM=2780,
LANG=COBOL,
BASE=DATAREA1,
MODE=IN

MAP2 DFHMSD TYPE=DSECT,
TERM=3270,
LANG=CCBOL,
BASE=DATAREA 1,
MODE=OUT

The symbolic storage definitions of this example might be
referred to in an ANS COBOL application program as follows:

LINI<AGESECTION.
01 DFBBLLDS COPY DFBBI.LDS.

02 TIOABAR PICTURE S9(8) COMPUTATIONAL.
02 MAPBASE1 PICTURE S9 (8) COMPUTATIONAL.

01 DFH'l'IOA COpy DFH'I"ICA.
01 DATAREA1 PICTURE X(1920).
01 name COPY MAP1.

346 CICS/vS Application Progranmer's Reference Manual

*
*
*
*

*
*
*
*

01 name COpy MAP2.

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

MAP1 and MAP2 multiply redefine DATAREA1i only one 02 statement
is needed to establish addressability. Ho~ever, the program
can only use the fields in cne of the symbolic map areas at a
time.

If BASE=DATAREA1 is deleted frorr this example, an additional 02
statement is needed to establish addressability for MAP2i the
01 DATAREA1 statement is not needed. The program can refer to
fields concurrently in both symbolic map areas.

In PL/I application programs, the name specified in the BASE
operand is used as the narre of the pointer variable on which
the symbolic storage definition is based. If this operand is
omitted, the default name (EMSMAPBR) is used for the pOinter
variable. The PL/I programmer is responsible for establishing
addressability for the based structures.

q. The data type associated with any map is affected by the DATA
specifications, or lack thereof, in both the DFHMSD and DFHMDI
macro instructions. If a specification is Ir.ade in:

• DFHMSD but not in DFHMDI, then the specification in the
DFHMSJ: holds.

• DFHMDI whether or not DFHMSB is specified or whether or not
there is a DATA specification in the £FHMSD, then the
specification in tFHMDI holds.

• Neither DFHMSD nOl: DFHMDI, then DATA=FIELD is the default.

DFHMDI Macro Instruction

The DFHMDI macro instruction is used to define a specific map. It
tells the size of the data to be mapped and its position within the
input or output. When defining multiple maps ~ithin a map set, multiple
DFHMDI macro instructions must be used. If the maps are for use in an
ANS COBOL program, they must be specified in descending size sequence
(the largest map first, the smallest map last). The format of the
CFHMDI macro instruction is as follows:

Chapter 10. Basic Mapping Support 346.1

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN2Q-9086

r~-~~-~r----~~~r-~---~---~------------~--~---·~----·---.--~----~--~~---,

II map DFHMDI I [SIZE: (line, coluJl'n)]

[,LINE: {:iE er }]

I r'ODLUMN~{~:ierl]

I It, JUSTIFY- C[{~:BT DE {~~~ I JIJ
[, HEADER=YES]

I
[,TRAILER=YESJ
[,DATA= {PIELJ::]

ELOCR
.1 [,OBFMT= {~~S }] I 1['TIOAPFX={~~SIJ

L~-----L--~----L-----~----~-------------~--------------~--~------------~

where:

map

SIZE=

LINE=

is the one- to seven-character name of this map, to be specified
in the MAP operand of any DF'HEMS macro instruction that refers
to this map.

gives the dimensions of a map in terms of length and width.

line
is a value from 1 to 240, indicating the length of a map as
a number of lines.

cQlumn
is a value from 1 to 240, indicating the width of a map as
a number of characters per line. Space for the attribute
byte should be included in the column specification.

The SIZE operand is requi~ed in the following cases:

• A POS=(line,column) specification is given in a DFHMDF macro
instruction defining a specific field within this map.

• This map is to be referred to in a DFEEMS TYPE=PAGEBLD macro
instruction.

• This map is to be .used when referring to input data from
other than a 3210 terminal in a DFHBMS TYPE=IN or DFHBMS
TYPE=MAP macro instruction.

specifies the starting line on a pag~ in which data for a map
is to be formatted.

number
is a value from 1 to 240, indicating a starting line number.
A request to map data on a line and column that has been
formatted in response to a preceding request causes the
current page to be treated as thougb cOJrplete. The new data
is for.matted at the requested line and column on a new page.

Chapter 10. Basic Mapping Support 347

NEXT
indicates that formatting of data is to begin on the next
available com~letely em~ty line.

SAME
indicates that fozmatting of data is to begin on the same
line as that used for a preceding DFHBMS request. If the
data does not fit on the same line, it is placed on the next
available com~letely-empty line.

See programming note 1 for a summary of LINE and JUSTIFY
relationships.

COLUMN=
s~ecifies the column in a line at which the map is to be placed,
that is, it establishes the left or right map margin. The
JUSTIFY specification controls whether lI'a~ and page margin
selection and column counting are to be done with reference to
the left or right side of the page. The columns between the
specified map margin and the page margin are not available for
subsequent use on the page for any lines included in the map.

number
is the column froIl' the left or right page margin where the
left or right map margin is to be established.

NEXT
indicates that the left or right I1'.ap margin is to be placed
in the next available column from the left or right on the
current line.

SAME
indicates that the left or right map margin is to be
established in the saree column as the last map used that
specified COLUMN=number and the same JUSTIFY parameters as
this macro instruction.

See programming note 1 for a summary of COLUMN and JUSTIFY
relationships.

JUSTIFY=
describes the margins on a ~age in which a map is to be
formatted.

LEFT
indicates that the map is to be positioned starting at the
specified column from the left margin on the specified line.

RIGHT
indicates that the map is to be positioned starting at the
specified column from the right margin on the specified
line.

FIRST
indicates that the map is to be positioned as the first map
on a new page. Any partially formatted page fram preceding
DFHBMS requests is considered to be ccm~lete,. This operand
can b.e specified for only one map per page.

LAST
indicates that the map is to be positioned at the bottom of
the current page. This operand can be specified for multiple
maps to be placed on one ~age. However, maps other than
the first map for which it is specified must be able to be

348 CICS/VS Application Programmer's Reference Manual

positioned horizortally without requiring that more lines
be used.

LEFT and RIGHT are mutually exclusive, as are FIRST and LAST.
If neither LEFT nor RIGHT is specified, LEFT is asswned. If
nei ther FIRST nor LAS'l is specified, the data is mapped at the
next avaliable position as determined by other parameters of
the map definition and the current mapping operation. FIRST
and LAST are ignored unless PAGEBLD is specified, since otherwise
only one map is placed on each page.

See programming note 1 for a summary of JUSTIFY, LINE, and COLUMN
relationships in controlling ~ap pOSitioning.

HEADER=YES
allOWS this map to be used during PAGEBLD overflow without
terminating the overflow condition (see "PAGEBLD Overflow
Processing" in this chapter). This operand may be specified
for more than one map in a map set.

TRAILER=YES

DATA=

allows this map to be used during PAGEBLD overflow without
terminating the overflow condition (see "PAGEBLD Overflow
Processing") • This operand may be specified for more than one
map in a map set. If a trailer map is used other than in the
overflow environment, the space normally reserved for overflow
trailer maps is not reserved while mapping the trailer map.

specifies the format of the data as seen by the application
program.

FIELD
indicates that the data is passed as contiguous fields in
the following for«at:

ILLIAldata fieldlLLIAldata field ILLIAletc.
L~-~~------~---~-~--------~-~---- ... ----~_~_.~_

LL is two bytes specifying the length of the data as input
from the terminal (this field is ignored in output
proceSSing). A is a byte into which the programmer may
place an attribute to o~erride that specified in the map
used to process this data. (See "Standard Attribute List
and Printer Control Characters (DFHBMSCA) .")

BLOCK
indicates that the data is ~assed as a continuous stream
which is processed as line segments of the length specified
in the map used to process this data set. The data is in
the form that it appears on the terminal; that is, it
contains data fields and interspersed blanks corresponding
to any spaces that are to appear between the fields on
output. The first byte of each line is the attribute byte;
it is not available for data.

, A I data field I space I A I data field I space I A I data field I etc. L----------------________________________________ ... __ -_________________ _

A DATA specification in a DFHMDI macro instruction overrides

Chapter 10. Basic Mapping Support 349

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

OBFMT=

any DATA specification in a DFHMSD macro instruction setting up
characteristics for maps within a map set.

specifies whether outboard formatting is to be used. This
o~erand is available only for 3650 logical units. Refer to the
CICS/VS Advanced Communication ~ for details on 3650 logical
units and on outboard formatting. .

If OBFMT is not coded in the DFHMDI maCrO instruction, the OBFMT
specification in the ~FHMSD macro instruction is used~

YES

NO

NO

indicates that this map is to be used with outboar~
formatting.

indicates that this map is not to be used with outboard
forma tting.

indicates that this map is not to be used with outboard
formatting.

TIOAPFX=
specifies whether Or not EMS should include a filler in the
symbolic TIOA description tc allow for the unused TIOA prefix.
If this operand is coded, the same storage address may be used
for TIOASAR and the map base.. If this operand is not coded,
the TIOAPFX specification derived from the DFHMSD macro is used.
There is no default for this operand on the DFHMDI macro.

YES

NO

indicates that the filler should be included in the symbolic
TIOA description for this map. This operand is ignored
unless TYPE=DSECT and LANG=COBOL or PLI is coded on the
DFHMSD macro instruction.

indicates the filler is not to be included for this map.

350. CICS/vS Application Programner's Reference Manual

programming Notes:

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN20-9086

1. Map positioning on a page is controlled jOintly by the LINE,
COLUMN, and JUSTIFY s~ecifications,. The effects of these
s~ecifications, taken together, can be summarized as follows:

r----------------~---~------------------~~---~-~~~---~-------~-----,

I __ ~~~:_:~:~:~~~ ___ I 1 __ ~~~::2:~~~ ____ ,--~~~~::~:---1--~:~~:~~~---1
I JUSTIFY=FIRST I I Line number onl TOp of I Top of I

1------------------1 I--~:~-~:~:------I--~~~-~~~:----I--~:~-~~~:----I
I--::::::~:~:----f'l I--;~:~~~~-------I--;~:~~~-----I--;~:~;~-----I I Neither Line number I Same line I Next I I I I I full line I
L----------------------~-----------~--------~----~-----------------~

r----~-----------------~---------~--------------------------~------, I Column Position I j COLUMN=1-240 I COLUMN=~ I COLUMN=NEXT I
I--;~;;~;;:~;;;----I I--~~i~~-;;~~--I--;;~~-~~i~~-I--;~;;-~~i~~-'
I II left I from left I from left I
I--;~;;~;;:;~~;;---I I--~~i~~-;;~~--II--~;~;-~~~~~~-I--;~;;-~~i~~-I
1 I I right from right I from right j

L----------------~-------------~--------------------~---------~----~

I--:~:-~~~:~:~---II--;~;;i;;:;i;;;-------------------------------1
I I, LINE=nn,COLUMN=nn in formatted .area I

, Map won't fit on remainder of page I
L--------~------~--------~---------~-~---~-~-~---------------------~

2. If the line and column specifications in the DFHMDI macro
instruction cannot be satisfied during a particular operation,
default action is as follows:

r--------------~-~---------------------------~---------------------, I Line I 1-240 SAME or NEXT I
I I

I--:~~~~------I----------------------- ---------------------------1
'1-240, I Current page is t Data is mapped on the I
I SAME, I completed; data is I next available full line I
I or I mapped on the next I at the column specified.

I NEXT page at the line and

I column specified. I I
I I I
L----~---------------------------------~---~~~--______ ---~---------~
DFHMDF Macro Instruction

The DFHMDF macro instruction is used to define a specific field of
a map. One DFHMDF macro instruction is required for each field, giving
information such as symbolic field name, field pOSition, field length,
attribute byte (for 3270 terminals), initia1 constant data,
justification of input, and ANS COBOL or PLII data picture. The format
of this macro instruction is as follows:

Chapter 10. Basic Mapping Support 350.1

r------r-------r---,
[tId] DFHMDF

[pos={nUmber }]
(line,column)

[,ATTRB= ([1 ~E~T!] [,NLM] ['J E~!] [,DET][,Ie][,FSETll]
(,LENGTH=number]

[, JUSTIFY= ([{~~~~T}] ~ {.~~~K}])]

(,INITIAL='any user information']
(,GRPNAME=group name]
(,OCCURp=number]
[, PICIN='value']
[,PICOUT='value']

L------L-------L---~

where:

tId

POS=

ATTRB=

is the one- to seven-character name ot this tield used as a
symbolic reterence to the specitic area ot a map by the
application program (see programming note 1 below).

Note: Although specitication ot a tield name is not required
for a field within a map, a tield name must be specitied tor at
least one tield ot any map to be compiled under ANS COBOL or
PL/I.

is used to specity the individually addressable character
location in a map at which the attribute byte that precedes this
field is positioned (see programming note 2). specitication ot
the DFHMDF macro instruction must be sequenced by the POS operand
except for output map~ing operations using DATA=FIELD.

For all fields, otner than the first, within the same group
name, the POS operand must specify the last position ot the
previous field.

When a position number is coded which represents the last
character position (q79 or 1919) in the 3270, then two special
rules apply:

•

•

The Ie attribute should not be coded on that DFHMDF macro •
The cursor may be set to location zero by using the cursor
operand of the DFHBMS macro.

If the field is to be used in an output mapping operation
with the data=only specification, an attribute byte for that
field must be supplied in the TIOA by the application
program. t~

number
is an absolute displacement (relative to zero) trom the
beginning of the map being defined.

(line, column)
are line and column specitications (relative to one) within
the map being defined.

is applicable only to fields to be displayed on a 3270 and
specifies device-dependent characteristics and attributes, such

Chapter 10. Basic Mapping support 351

as the capability of a field to receive data or the intensity
to be used when the field is output. It the ATTRB operand is
specified within a group of fields, it must be specified in the
first field entry. A group ot fields appears as one tield to
the 3270. Therefore, the ATTRB specification refers to all of
the fields in a group as one field rather than as individual
fields.

ASKIP
indicates that data cannot be keyed into the tield and causes
the cursor (current location pointer) to automatically skip
over the tield.

PROT
is similar to ASKIP, but no automatic skipping of the field
by the cursor occurs.

UNPROT

NUM

indicates that data can be keyed into the field.

ensures that the data entry keyboard is set to numeric shitt
for this tield unless the operator presses the alpha Shift
key, and prevents entry ot nonnumeric data it the Keyboard
Numeric Lock feature is installed.

specifies that a high-intensity display ot the tield is
required.

NOOM

DRK

D~

IC

specifies that the tield intensity is to be normal.

specifies that the field is nonprint/nondisplay.

specifies that the tield is potentially pen-detectable (see
programming note ~.

indicates that the cursor is to be placed in the first
position of this field. The IC attribute tor the last field
for which it is specified in a map is the one that takes
effect. If not specified tor any tields in a map, the
default location is zero. Specifying IC with ASKIp· or PROT
causes the cursor to be placed in an unkeyable field.

FSET
specifies that the modified data tag (MDT) for this field
should be set when the tield is sent to a terminal (see
programming note 4).

Either of two sets of defaults may apply when a field to be
displayed on a 3270 is being detined but not all parameters are
specified. If no ATTRB parameters are specified, ASKIP and NORM
are assumed. If any parameter is specified, UNPROT and NORM
are assumed for that field unless overridden by a specified
parameter.

If the ATTRB operand is specified when tields are combined under
a group name, it must be included in the first DFHMDF macro
instruction tor the group. A group of tields appears as one
field to BMS; therefore, the attribute byte refers to all of

352 CICS/VS Application Programmer's Reterence Manual

the fields in a group as one field rather than to each field
individually.

LENGTH=number
indicates the length (from 1 to 256 bytes) of this field. This
s~ecified length should be the maximum length required for
application-program data to be entered into the field; it should
not include the one-byte attribute indicatcr appended to the
field by CICS/vS for use in subsequent processing. LENGTH can
be omitted if PIC IN or PICOUT is specified but is required
otherwise. (See also programming note 5.)

JUSTIFY=
indicates the field justifications for in~ut opera~ions. This
o~erand is ignored for VTAM-sup~orted 3600 termina.ls, as input
mapping is not available.

LEFT
specifies that the data in the input field is left-justified.

RIGHT
specifies that the data in the input field is
right-justified.

BlANK
specifies that blanks are to be inserted in any unfilled
positions in an input field.

ZERO
specifies that zeros are to be inserted in any unfilled
positions in an input field.

LEFT and RIGHT are mutually exclusive, as are BLANK and ZERO.
If certain parameters are specified but others are not,
assumptions are made as follows:

Specified
LEFT
RIGHT
BLANK
ZERO

Assumed
BLANK
ZERO
LEFT
RIGHT

If the JUSTIFY operand is omitted, but the NUM attribute is
specified, RIGHT and ZERO are assumed. If JUSTIFY is omitted,
but attributes other than NUM are specified, LEFT and BLANK are
assmned.

~: If a field is initialized by an output map or contains
data from any other scurce, data that is keyed as input may not
be justified and the additional data may remain in the field.

INITIAL='any user information'
is used to specify constant or default data for an output field.
For fields with the DFT attribute, initial data that begins with
a blank character, ">", or "1" should be supplied. The number
of characters that can be specified in the INITIAL operand is
restricted to the continuation limitation of the assembler to
be used or to the value specified in the LENGTH operand
(whichever is the saaller).

GRPNAME=group name
is the one- to seven-character name used to generate symbolic
storage definitions and tc combine specific fields under one
group name. The fields composing a group must be contiguous,
and the same group name must be specified for each field that

Chapter 10. Basic Mapping support 353

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

is to belong to the group. A field name must be specified for
every field that belongs to the group, and the FOS operand must
also be specified to ensure the. fields are contiguous. If this
oferand is specified, the OCCURS operand (below) cannot be
specified. (see programming note 6.)

OCCURS=number
Sfecifies that the indicated number of entries for the field
are to be generated i r. a rraf and that the map def inition is to
be generated in such a way that the fields are addressable as
entries in a matrix or an array. This permits several data
fields to be addressed by the same name (subscripted, of course)
without generating a unique name for each field (see programming
note 6). OCCURS and GRPNAME are mutually exclusive; that is,
OCCURS cannot be used when fields have been defined under a
group name. If this eperand is omitted, a value of 1 is assumed.

PICIN='value'
specifies a picture to be applied to an input field in an IN or
INOOT map; this picture serves as an editing specification which
is passed to the apflicatien frogram, thus permitting the user
to exploit the editing capabilities of ANS COBOL or PL/I (see
programming note 7). BMS checks 'value' to ascertain that the
specified characters are valid for input for the language of
the map. However, no validity checking of the input data is
performed by EMS or the high-level language when the map is
used, so any desired checking must be performed by the
application program. The length of the data associated with
'value' should be the same as that specified in the LENGTH
operand if LENGTH is specified. If both FICIN and PICOUT (see
below) are used, an error message is produced if their calculated
lengths de not agree; the shorter of the two lengths is used.
If PICIN or PleOUT is not coded for the field definition, a
character definition of the field is automatically generated
regardless of other operands that are coded, such as ATTRB=NUM.

PICOUT='value'
is similar to PICIN, except that a picture to be applied to an
output field in the OUT or INOUT map is generated.

Programming Notes:

1 •

2.

If no name is specified fer a field, an application program
cannot access the field map to change its attributes or alter
its contents. For an output map, omitting the field name may
be appropriate when the INITIAL operand is used to specify field
contents. If a field name is specified and the map that includes
the field is used in a mapping operation, any data supplied by
the user overlays data supplied by initialization (unless DATA=NO
is specified or assumed by default).

The POS operand defines the locat~on of fields in a map. The
location of data on the output medium is dependent on DFHMDI
macro parameters as well.

For each field definition (DFHMDF macro instruction), the first
position is reserved for an attribute byte. When supplying data
for input mapping frorr non-3270 devices, the actual input data
must allow space for this attribute byte. Input data must not
start in column 1 but may start in column 2.

3. The first character of a 3270 pen-detectable field must be a
"1", ">", or blank. If the first character is a blank, the
field is a light pen attention field. (See 1l1Q Information

354 CICS/vS Application Prograrrmer's Reference Manual

Page of SH2o-9003-2
Revised May 22,1975
By TNL SN2o-9086

Display §ystem Component tescription for the functions of the
other characters and for ether requirements of pen-detectable
fields.) A field for which BRT is specified is potentially
pen-detectable to the 3270 but is not recognized as such by BMS
unless DE~ is also specified. DET and DRR are mutually exclusive
options. For input map fields, DET and NUM are the only valid

Chapter 10. Basic Mapping Support 354.1

options; all others are ignored. A one-byte reserved area ot
each input DET field is set to X'OO' when tbe tield is
unselected, or to X'FF' when the tield is selected. No other
data is supplied.

~. specification of FSET causes the 3210 to treat the tield as
though it has been moditied. On a subsequent read trom the
terminal, this field is read, whether or not it has been
modified. The MDT remains set until the tield is rewritten
without ATTRB=FSET or an output mapping request (tor example,
DFHMSD CTRL=FRSET or BFHBMS CTRL=FRSET) causes the MDT to be
reset.

5. The map dimensions specified in the SIZE operand ot the DFHMDI
macro instruction detining a map may be smaller tban the actual
page size or screen size as defined tor the terminal,. The LENGTH
specification in a DFHMDF macro instruction cannot ca use the
map-detined boundary on the same line to be exceeded. That is,
the length declared tor a tield cannot exceed the number ot
positions available trom the starting position ot the tield to
the final position of the map-detined line. For example, given
an 80-position page line, the following map detinition and tield
definition are valid:

DFHMDI SIZE= (2,40) , •••
DFHMDF POS=22,LENGTH=11, •••

But the following definitions are not acceptable:

DFHMDI SIZE= (2,40) " •••
DFHMDF POS=22,LENGTH=30, •••

6. As an example, assume the following map detinition (where X in
LANG=X is ASM, COBOL, or PLI, and XX in DA'IA=XX is FIELD or
BLOCK, as detailed below) :

MAPX
MAP
F1
F2
F3
F4
F5

DFHMSD
DFHMDI
DFHMDF
DFHMDF
DFHMDF
DFHMDF
DFHMDF
DFHMSD

TYPE=DSEC~,MODE=INOUT,LANG=X,DATA=XX

LINE= 1, COLUMN = 1 ,SIZE= (12,80)
POS=0,LENGTH=80
POS=100,LENGTH=10,OCCURS=10
POS=220,LENGTH=80
POS::o 50, L ENGTH= 2 0, GRP.NAME=GRP 2
POS=610,LENGTH=20,GRPNAME=GRP2
TYPE=FINAL

For Assembler language:

If LANG=ASM and DATA=FIELD, the tollowing DSECT is generated:

MAPI OS OC • INPUT MAP ORIGIN
MAPO DS OC • OUTPUT MAP ORIGIN

F1L DS H INPUT DATA FIELD LENGTH
F1F DS OC • DATA FIELD FLAG
F1A DS C • DATA FIELD ATTRIBUTE
F1I DS OCL80 • INPUT DATA FIELD
F10 OS CL80 • OUTPUT DATA FIELD

F2D DS OC • FIRST OCCURRING FIELD
F2L DS H INPUT DATA FIELD LENGTH
F2F OS OC • DATA FIELD FLAG
F2A DS C • DATA FIELD ATTRIBUTE
F2I OS OCL10 • INPUT DATA FIELD
F20 DS CL10 • OUTPUT DATA FIELD

Chapter 10. Basic Mapping support 355

F2N EQU *
ORG F2D+10* (3+10)

F3L
F3F
F3A
F3I
F30

DS
DS
DS
DB
DS

* START NEW
GRP2L DS
GRP2F DS
GRP2A DS
GRP2I DS
GRP20 DS

F4I
F40

F5I
F50

DS
DS

DS
OS

H
OC •
C •
OCLBO •
CLBO •

DATA GROUP
H
OC •
CLl •
OC •
OC •

OCL20 •
CL20 •

OCL20 •
CL20 •

MAPE EQU *
ORG

MAPXT EQU *

GRP2

* * * END OF MAP DEFINITION * * *

NEXT OCCURRING FIELD
ALLOCATE OCCURRING FIELD SPACE

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT GROUP FIELD LENGTH
GROUP FIELD FLAG
GROUP FIELD ATTRIBUTE
INPUT GROUP FIELD ORIGIN
OUTPUT GROUP F~ELD ORIGIN

INPUT DATA FIELD
OUTPUT DATA FI ELD

INPUT DATA FIELD
OUTPUT DATA FIELD

END OF MAP DEFINITION

END OF MAP SET DEFINITION

If LANG=ASM and DATA=BLOCI<, the following DSECT is generated:

MAPI
MAPO

F1F
F1A
F1I
FlO

F2D
F2F
F2A
F2I
F20
F2N

F3F
F3A
F3I
F30

os OC •
OS OC •

OS OC •
OS C •
OS OCLBO •
DS CLBO •

DS CL19
DS OC •
DS OC •
DS C •
OS OCL10 •
DS CL10 •
EQU * ORG F2D+ 1 0* (1 +1 0)

DS CL10
OS OC •
OS C •
DS OCL80 •
DS CL80 •

OS CL349
* START NEW DATA GROUP GRP2
GRP2F OS OC •
GRP2A OS CL1 •
GRP2I OS OC •
GRP20 OS OC •

F4I
F40

F5I

OS
DS

os

OCL20 •
CL20 •

OCL20 •

INPUT MAP ORIGIN
OUTPUT MAP ORIGIN

DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA F'IELD

FIRST OCCURRING FIELD
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

NEXT OCCURRING FIELD
ALLOCATE OCCURRING FIELD SPACE

DATA F'IELD FLAG
DATA FIELD ATTRIBUTE

INPUT DATA FIELD
OUTPUT DATA FIELD

GROUP FIELD FLAG
GROUP FIELD ATTRIBUTE
INPUT GROUP FIELD ORIGIN
OUTPUT GROUP FIELD ORIGIN

INPUT DATA FIELD
OUTPUT DATA FIELD

INPUT DATA FIELD

356 CICS/VS Application Programmer's Reference Manual

F50 DS CL20 • OUTPUT DATA FIELD

MAPE EQU * END OF MAP DEFINITION
ORG

MAPXT EQU * END OF MAP SET DEFINITION
* * * END OF MAP DEFINITION * * *

For ~ COBOL:

It LANG=COBOL and DATA=FIELD, the tollowing DSECT is generated:

01

I 01

MAPI.
02 F1L CCMP PIC S9(q).
02 F1A PICTURE X.
02 FILLER REDEfINES FlA.

03 F1F PICTURE X.
02 Fl1 PIC X(80).
02 F2D OCCURS 10 TIMES.

03 F2L COMP PIC S9(Q).
03 F2A PICTURE X.
03 F21 PIC X (10) •
03 FILLER PIC X.

02 F'3L COMP PIC S9(Q).
02 F3A PICTURE X.
02 FILLER REDEFINES F3A.

03 F3F PICTURE X.
02 F31 PIC X(80).
02 FILLER PIC X.
02 GRP2L COMP PIC S9(Q).
02 GRP2A PICTURE X.
02 FILLER REDEFINES GRP2A.

03 GRP2F PICTURE X.
02 GRP2I.

03 F51 PIC X(20).
03 FQI PIC X(20).
03 FILLER PIC X.

MAPO REDEFINES MAPI.
02 FILLER PICTURE X(3).
02 FlO PIC X(80).
02 FILLER PIC X.
02 DFHMS1 OCCURS 10 TIMES.

03 FILLER PICTURE X(2).
03 F2F PICTURE X.
03 F 20 PI C X (1 0) •
03 FILLER PIC X.

02 FILLER PICTURE X(3).
02 F30 PIC X(80).
02 FILLER PICX.
02 F'ILLER PICTURE X (3) •
02 GRP20. '

03 FQO PIC X(20).
03 F50 PIC X (20) •

If ~NG=COBOL and DATA=BLOCK, the tollowing DSECT is generated:

01 MAPI.
02 F1A PICTURE X.
02 FILLER R~D~FINES FlA.

03 F1F PICTURE X.
02 F11 PIC X(80)~
Q2 FILLER PICTUR~ X(19) •
02 F2D OCCURS 10 TIMES.

03 F2A . PICTURE X.

Chapter 10. Basic Mapping Support 351

03 F2I PIC X(10).
02 FILLER PICTURE X(10) •
02 F3A PICTURE X.
02 FILLER REDEFINES F3A.

03 F3F PICTURE X.
02 F3I PIC X(80).
02 FILLER PICTURE X(3q9).
02 GRP2A PICTURE X.
02 FILLER RE:CEFINES GRP 2A.

03 GRP2F PICTURE X.
02 GRP2I.

03 FqI PIC X(20).
03 F5I PIC X(20).

01 MAPO REDEFINES MAPI.
02 FILLER PICTURE X(1).
02 F10 PIC X(80).
02 FILLER PICTURE X(19) •
02 DFHMS2 OCCURS 10 TIMES.

03 F2F PICTURE X.
03 F20 PIC X(10).

02 FILLER PICTURE X (11) •
02 F30 PIC X(80).
02 FILLER PICTURE X(350).
02 GRP20.

03 FQO PIC X(20).
03 F50 PIC X (20) •

For PLI:

If LANG=PLI and DATA=FIELB, the tollowing DSECT is generated:

DECLARE 1 MAPI BASED (BMSMAPER),
, 2

2
2
2

2
2
2
2
2
2

2
DECLARE

2
2
2
2

2
2
2
2
2
2

F1L FIXED BINARY (15,0),
F1A CHARACTER (1),
F1I CHARACTER (80),
F2D (10) ,

3 F2L FIXED BINARY (15,0),
3 F2A CHARACTER (1),
3 F2I CHARACTER (10),

F3L FIXED BINARY (15,0),
F3A CHARACTER (1),
F3I CHARACTER (80),
GRP2L FIXED BINARY (15,0),
GRP2A CHARACTER (1),
GRP2I,

3 FQI CHARACTER (20),
3 F5I CHARACTER (20),

FILL0230 CHARACTER (1);
1 MAPO BASED (BMSMAPBR),
DFHMS3 FIXED BINARY (15,0),
F1F CHARACTER (1),
F10 CHARACTER (80),
DFHMSQ (10) ,

3 DFHMS5 FIXED BINARY (15,0),
3 F2F CHARACTER (1),
3 F20 CHARACTER (10),

DFHMS6 CHARACTER (2),
F3F CHARACTER (1),
F30 CHARACTER (80),
DFHMS1 FIXED BINARY (15,0),
GRP2F CHARACTER (1),
GRP20,

3 F40 CHARACTER (20),
3 F50 CHARACTER (20),

358 CICS/VS Application Programmer's Reference Manual

2 FILL0230 CHARACTER (');
/* END OF MAP DEFINITION */

If LANG=PLI and DATA=BLOCK, the tollowing DSECT is generated:

DECLARE 1 MAPI BASED (BMSMAPBR),
2 F1A CHARACTER (1),
2 F1I CHARACTER (80),
2 DFHMS9 CHARACTER (19),
2 F2D (10) ,

2
2
2
2
2
2

2

3 F2A CHARACTER (1),
3 F2I CHARACT,ER (10),

DFHMS12 CHARACTER (10),
F3A CHARACTER (1),
F3I CHARACTER (80),
DFHMS14 CHARACTER (349),
GRP2A CHARACTER (1),
GRP2I,

3 F4I CHARACTER (20),

DECLARE
2
2
2

3 F5I CHARACTER (20),
FILL0243 CHARACTER (1);
1 MAPO BASED (BMSMAPER),
DFHMS8 CHARACTER (0),
F1F CHARACTER (1),
F10 CHARACTER (80),
DFHMS10 CHARACTER (19),
DFHMS 11 (10) ,

/*

2
2

2
2
2
2
2
2

2
END

7.

3 F2F CHARACTER (1),
3 F20 CHARACTER (10),

DFHMS13 CHARACTER (10),
F3F CHARACTER (1),
F30 CHARACTER (80),
DFHMS15 CHARACTER (349),
GRP2F CHARACTER (1),
GRP20,

3 F40 CHARACTER (20),
3 F50 CHARACTER (20),

FILL0243 CHARACTER (1);
OF MAP DEFINITION */

As an example, assume the following map detinition is created
for reference by an ANS COBOL application program:

MAPX
MAP
Fl
F2
F3

DFHMSD
DFHMDI
DFHMDF
DF'HMDF
DFHMDF
DFHMSD

TYPE=D5EC~,LANG=COBOL,MODE=INOUT

LINE= 1, CO LUMN = 1 ,SIZE= (1,80)
POS=0,LENGTH=30
POS=4 0,LENGTH=1 0, PICO UT= , $$$,$$0. 00'
POS=60,LENGTH=6,PICIN='9999V99',PICOUT='ZZ9.99'
TYPE=FINAL

The following DSECT is generated:

01 MAPI.
02 F1L
02 F1A
02 FILLER

03 F1F
02 F1I
02 FILLER
02 F2L
02 F2A
02 FILLER

03 F2F

COMP PIC 59 (4) •
PICTURE X.

REDEFINES FlA.
PICTURE X.
PIC X (30) •
PIC X.
COMP PIC S9(4) •
PICTURE X.

REDEFINE3 F2A.
PICTURE x.

Chapter 10. Basic Mapping support 359

02 F2I PIC X(10).
02 FILLER PIC X.
02 F3L CCMPFICS9(4).
02 F3A PICTURE X.
02 FILLER REDEFINES F3A.

03 F3F PICTURE X.
02 F3I PIC 9999V99.
02 FILLER PIC X.

01 MAPO REDEFINE S MAPI.
02 FILLER PICTURE X(3) •
02 FlO PIC X~O).
02 FILLER PIC X.
02 FILLER PICTURE X(3).
02 F20 PIC $$$,$$0.00.
02 FILLER PIC X.
02 FILLER PICTURE X(3) •
02 F30 PIC ZZ9.99.
02 FILLER PIC X.

ONLINE MAP USE

Online mapping operations are requested by issuing the DFHBMS macro
instruction. Parameters provided by the application program indicate
whether an input or an output operation is needed, the name ot the map
to be used by BMS, and other intormation to control the mapping
function. Control is passed to EMS, which pertorms any required
input/output o~erations through terminal control.

Terminal input, which causes a task to be initiated, is stored in
the initial TIOA ot the task as a native-mode data stream. By
requesting a MAP operation through DFHBMS, the application program is
given the capability to map this TIOA into a particular input format.
The tormat of this initial input data must correspond to that ot the
requested map. Input data to be map~ed trom a 3270 must contain 3270
device-dependent code (in ~articular, the data stream must contain an
SBA). The data returned from an input ma~ping o~eration is in TIOA
format; the address of this TIOA is in TCTTEDA.

For an output map~ing oferation, if data is to be passed trom the
TIOA of an application ~rogram, the application program must have
obtained, through storage control, a TIOA large enough to contain the
symbolic storage definition ot the map being used. Any tields tor
which data is not to be passed to the mapping operation must be set to
nulls (X'OO'); this is best achieved through use ot the INITIMG=OO
operand of the DFHSC TYPE=GETMAIN macro instruction. The first position
of a field to be sent must net contain a nUll; however, it it does,
the field will be ignored.

Establishing Addressability to User-Supplied Data

Before iSSuing the DFHBMS macro instruction, addressability must be
established for the data to be passed. It the data is being passed in
a TIOA by a terminal-oriented task, the address ot this TIOA may be
placed at TCTTEDA, or placed in TCAMSIOA and binary zeros placed in
TCTTEDA. If the data is being passed by a terminal-oriented task but
not in a TIOA, the address at the TIOA-like area ot this data must be
placed in TCAMSIOA and binary zeros placed in TCTTEDA. It the data 1S
being passed by a nonterminal-oriented task, the address ot the
TIOA-like area ot this data must be placed in TCAMSIOA. TCTTEDA cannot
be referred to, because there is no TCTTE associated with this task.
If a task attempts to pass addresses in both TCTTEDA and TCAMSIOA, the
address in TCTTEDA is used. Since TCTTEDA is altered by BMS, the user
should not assume that its contents are unchanged.

360 CICS/VS Application Programmer's Reterence Manual

Terminal-oriented tasks nEed not use actual TIOAs. Any task may
pass data to BMS in any portion of dynamically acquired storage which
looks like a TIOA in all res~ects, with two possible exceptions:

• The storage cl~ss need not be terminal •

• The storage chain address neEd not refer to a TCTTE or other
terminal storage

DFHBMS Macro Instruction

Regardless of the programming language used (Assembler language,
American National Standard (ANS) COBOL, or PL/I), the same form ot the
DFHBMS macro instruction is used to request a mapping operation. In
the case of ANS COBOL and PL/I, the CICS/VS preprccessor resolves the
macro instruction and expands it into the statements required to invoke
the mapping function. A wide variety of options is available with BMS,
and a corresponding variety of parameters may be s~ecitied in a DFHBMS
macro instruction. General usages of the DFHBMS macro instruction are
summarized below.

INPUT OPERATIONS

To request BMS services for input operations, a DFHBMS macro
instruction of the following format is used:

r------r-------r---,
DFHBMS TYPE=<{IN }[,SAVE][,TEXT])

MAP
[,MAP= {~~~ name}] I r~APADR={~~~bOliC address}]

[,MAPSET={~~~ set name}] ~MSETAJ:R= {~:bOliC addreSS}]

[,RDATT=symbolic address]
[,NORESP=symbolic address]
[,MAPFAIL=symbolic address]
[,INVMPSZ=symbolic address]
(,ERROR=symbolic address]

L------L-------L---~

where:

TYPE=
indicates the BMS service to be performed.

IN

MAP

specifies an input map~ing operation. Input is accepted
from the terminal through a terminal control READ/WAIT
request. The input data is then mapped into the TIOA and
made available to the application program by placing the
TIOA address at TCTTEDA. The fields entered as part of the
input data stream are available to the application program
under the field names specified in the DFHMDF macro
instructions by which they are detined, suftixed with the
letter Ito correspond to the name generated by CICS/VS in
the definition ct the area. Data trom a VTAM-supported
terminal is not mapped, but is left in the TIOA unaltered.

specifies an input ma~~ing operation similar to IN, except
that a terminal control READ/WAIT is not performed. The

Chapter 10. Basic Mapping support 361

MAP=

MAPADR=

application program must have placed the address ot an input
TIOA containing data to be mapped into TCTTEDA or TCAMSIOA.
The data in the TIOA is positioned into a new TIOA using
the map specitied in the MAP operand ot this DFHBMS macro
instruction, but no terminal I/O operation occurs. An
example ot such a TIOA is the initial TIOA given to a
transaction upon entering a transacticn code. Ix data is
included with the transaction code, the screen must have
been formatted previously by another transaction, or the
data is not mapped. For a VTAM-supported terminal, mapping
is not performed, and the input TIOA is returned unaltered.

SAVE
specities that the user-supplied data area (address at
TCTTEDA or TCAMSIOA) is not to be altered, and a new TIOA
is to be acquired. tor the operation. 'Ihe address ot the
new TIOA is returned to the application program in the
location in which the original data area was specitied
(TCTTEDA or TCAMSIOA) •

TEXT
can be specified with IN to indicate that uppercase and
lowercase characters are contained in the input data stream.
This parameter is not valid with MAP, because the input data
has already been read into a TIOA.

~: This parameter is used to override a FEATURE=UCTRAN
specitication in the DFHTCT macro instruction set up by the
system programmer tor the input terminal. (See the CICS/VS
System Programmer's Reference Manual.)

specifies the name of the map to be used when mapping formatted
pages.

map name

YES

is the one- to seven-character name ot the map within a map
set.

indicates that the application programmer has placed the
name of the map. in TCABMSMN prior to issuing this DFHBMS
macro instruction. The name must be lett-justitied and
padded with trailing blanks to eight characters.

If no map set (MAPSET or MSETADR operand) is specified in this
DFHBMS macro instruction, the specitied map name is taken as
the name of the map set.

specifies the address of the map to be used when mapping
formatted pages.

symbolic address

YES

is the one:" to seven-character syrrbolic label that has been
assigned to a map coded within an Assembler-language
application program.

indicates that the application programmer has placed the
address of the map in TCABMSMA prior to issuing this DFHBMS
macro instruction.

If MAPADR is specified, neither MAP, MAPSET, nor MSETADR should
be used.

362 CICS/VS Application Programmer's Reterence Manual

Page of SH2Q-9003·2
Revised May 22,1975
By TNL SN20·9086

MAPSET=
specifies the name cf the map set to be used in the mapping
o~eration.

map set name

YES

is the one- to seven-character name of the ma~ set.

indicates that the ap~lication programmer has placed the
name of the map set in TCAMSMSN prior tc issuing this DFHBMS
macro instruction. The name must be left-justified and
padded with trailing blanks to eight characters.

The map set established by this operand must reside in the
CICS/VS program library, and a corres~onding entry for the map
set must exist in the processing program table (PPT).

If MAPSET is specified, MAP is required.

MSETADR=

RDATT=

s~ecifies the address of the map set to be used in the mapping
o~eration.

symbolic address

YES

is the one- to eight-character symbolic label that has been
assigned to the map set coded within the Assembler-language
program.

indicates that the ap~lication progranmer has placed the
address of the ma~ set in TCAMSMSA prior to issuing this
DFHBMS macro instruction.

MAPSET and MSETADR are mutually exclusive operands. If MSETADR
is specified, MAP is required.

specifies the address of a routine to receive control if the
operator ~resses the ATTN key on a 2141 when input is being
entered from the terminal in response to a DFHBMS TYPE=IN
request. This operand can be s~ecified only if 2141 Read
Attention support, an optiop available under either eleS/DOS/VB
or CleS/OS/vS, has been generated into the system (see "2141 .
Read Attention and write Ereak Support" in Chapter 11) ••

NORESP, MAPFAIL, INVMPSZ, and ERROR
are used to test the respcnse of BMS to this request for BMS
services. These operands can be Specified in this macro
instruction or in a DF'HBMS TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for BMS Services."

OUTPUT OPERATIONS

The result of one or more requests for BMS out~ut services is a
logical Ir.essage. By definition, a logical message is the output
produced from a sequence of EMS output requests, all of which have the
same dis~osition (OUT, STORE, or RETURN), either inplied or specified.
A logical message is terminated by the occurrence of anyone of the
following:

Chapter 10. Basic Mapping Support 363

• A change in disposition

• A DFHBMS TYPE=PAGEOUT request

• Termination of the applicaticn program

Cumulative Page Building ~ MaEPing

To request BMS services for output mapping operations, the
application program issues a DFHEMS TYPE=PAGEBLD macro instruction.
This causes the data in the area defined by a specified symbolic
description map to be mapped according to the physical map. The mapped
data is positioned within an area large enough to contain one page of
output. The application programmer issues another DFHBMS TYPE=PAGEBLD
macro instruction to map and position the next portion of the output
page. This mapping operation continues until the application program
has completed the message' to be sent to the terminal.

Because of CICS/VS terminal paging facilities, the application
programmer need not keep track of when a page is full. It is only
necessary to include the OFLCW o~erand in the DFHBMS TYPE=PAGEBLD macro
instructions to cause BMS to transfer control to an overflow routine
(which the programmer must provide) when a page of data cannot contain
the data to be mapped.

The format of the DFHBMS ~YPE=PAGEBLD macro instruction is as
follows:

364 CICS/VS Application Progranmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---,
DFHBMS

I
I
I

I

TYPE= (PAGEBLD ['I OUT[, WAIT] }] [, SAVE][,ERASE][,LAST])
S'IOFE
RETURN

[
,IO'IYPE={IMMED]

DElAY
[,LDC={~~~mOnic }J
[,DATA=G:iy}]

[,MAP={~~~ name}]

[,MAPSET= I~~set name lJl[/,MSFrADR= ;:bOliC address lJ
[CTRL= ([PRINT T{ ~iLoJJ' FREEKEI ,ALARMI ,FRSET ll]

I [,OFLOW=symho11C address]
I [,PROPT=NI.ECM] I [,CURSOR={ ~:ber } J
I [,REQID= {'~~~fiX' }]

[,FMHPARM= {i:~ameter } J
[,WRBRK=symbolic address] CICS/OS/VS only
[,NORESP=symbolic address]
[,TSIOERR=symbolic address]
[,INVREQ=syrebolic address]
[,INVLDC=syrrbolic address]
[,RETPAGE=symbolic address]
[,INVMPSZ=symbolic address]

I I

[,IGREQID=symbolic address]
[,ERROR=symbclic address]

L------L-------L--------------------------------------_________________ J

where:

Chapter 10. Basic Mapping Support 364.1

TYPE=

}>age of SH2D-9003-2
Revised May 22, 1975
By TNL SN2D-9086

indicates the general output functions required.

Corrbining of Output

PAGEBLD
indicates that cne page of data is to be accumulated and
formatted from data submitted through multiple PAGEELD
requests. In each PAGE:ELI; request, a map defines the number
of lines and columns that the data is tc occupy on the page.
when a page is cOJr.plete, as defined by one or more maps, it
is written according to an OUT, STORE, or RETURN disposition
(see below).

If neither PAGEBLD nor TEXTBLD (explained below) is specified
in an output request, data is processed and written as output
in a single operationi no combining of data is performed.

OUT

Dispcsition

indicates that the output is to be written to the originating
terminal when the page is com~lete, if the originating
terminal is to receive the output.

The application program may issue DFHSC TYPE=FREEMAIN, RELEASE=ALL
requests when using DFHBMS TYPE=OUT only under the fcllowing conditions:

• Prior to any DFHBMS requests

• Between a DFHBMS TYPE=PAGEOUT and a subsequent BMS request

• After a DFHBMS TYPE=PURGE request

WAIT
indicates that EMS is to wait until all output operations
are complete before returning control to the application
program. WAIT must be specified with every output request
except the following:

• The last output request prior to task termination

• The last output request prior to an input operation

• The last output request prior to issuing a DFHBMS
TYPE=FAGEOUT rracro instruction that precedes task
termination or an input operation

STORE
indicates that the output is to be placed in temporary
storage to be displayed in response to paging commands
entered by the terminal operator (for more information about
these commands, see the CICS/VS Terminal operator's Guide).
If STORE is specified, with a REQID that is defined in the
Temporary storage Table (TST), CICS/VS provides message
recovery for logical messages if the task has reached logical
end.

RETURN
indicates that the complete pagels) is to be returned to
the application programmer (see programming note 1). The

Chapter 10. Basic Mapping Support 365

IOTYPE=

LDC=

application program regains control (1) immediately following
the BMS instruction if the current page is not yet completed,
or (2) at an alternative entry pOint specified through the
RETPAGE operand of this macro instruction if one or more
pages have been ccmpleted.

If no disposition is specified, the output is sent to the
originating terminal. Once the disposition has been established
for a logical message, it is not necessary to repeat the
disposition for that logical message. Any change of disposition
specified while in the process of building a logical message
forces that logical message to completion with its original
disposition. Then a new logical message is started with the
new disposition. The disposition parameter is handled
differently under DFHEMS 'IYPE=ROUTE (see "Disposition and Message
Routing") •

SAVE
specifies that the user-supplied data area (address at
TCTTEDA or TCAMSIOA) is to be saved. The contents of these
areas are not restored and must be reset for subsequent BMS
requests.

ERASE
specifies that a 3210 buffer or 3604 screen is to be erased
before this page of output is displayed. A 3284/3286 buffer
would contain meaningless data from prior messages if all
positions are not filled with current data.

Note: If CTRL= is not specified in a request for a 3210,
an-ippropriate wce for the 3210 must be placed in TIOACLCR
before the request is issued.

LAST
signals CICS/VS that this is the last output for a
transaction and, therefore, the end of a bracket operation.
This operand is meaningful only for VTAM-supported terminals
and is applicable only when OUT is the specified disposition.

specifies when the output operation is' to be started. This
o~erand is meaningful only for VTAM-supported terminals and is
applicable only when OUT is the specified disposition.

IMMED
causes the output operaticn to be started immediately. In
cases where WAIT nay be coded separately from DFHBMS
TYPE=PAGEBLD, overlap of terminal I/O operations is possible
by using IMMED and coding the WAIT separately.

DELAY
can cause the output operation to be started only when TCP
is next dispatched.

If this operand is omitted, IOTYPE defaults to the transaction
option specified by TIOTYFE in the DFBPCT TYPE=ENTRY macro
instruction. A task using deferred write or message protection
will override this parameter and not be done until sync point
(DFHSP) or task terminated.

specifies the mnemonic to be used by CICS/VS to determine the
logical device code that is to be used for the PAGEBLD operation

366 CICS/vS Application Prograrrmer's Reference Manual

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

and transmitted in the function management header (FMH) to the
logical -unit. This operand is meaningful only for VTAM-supported
terminals with LDC su~port.

mnemonic
is the two-character mnemonic used to determine the

Chapter 10. Basic Mapping Support 366.1

DATA=

MAP=

MAPSET=

YES

appropriate LDC numeric value. The mnerfonic represents a
LDC entry in the DFHTCT TYPE=LDC macro instruction,.

indicates that the ap~~ication prograrr has p~aced the LDC
mnemonic in TCAMSLDM.

If this operand is omitted tor a VTAM-supported termina~, a
default Lec is chosen. This detault LDC is the tirst in the
local LDC tab~e for that logical unit. The numeric value tor
this LDC is inserted into the FMH. The system table is scanned
to find the page size, page status, and device type associated
with the default LDC; BMS then uses these values to tormat the
message. If no local table exists, a null value (X'OO') is
inserted into the FMH; the page size used by BMS is the value
specified in the PGESIZE operand of the DFHTCT TYPE=TERMINAL
macro instruction, and a detault device type ot 360Q is assumed.
The page size specitied in this macro instruction applies as a
default to all terminals belonging to the logical unit. It the
PGESIZE operand is omitted, a detault ot (1,QO) is assumed.

indicates one of the fo~lcwing three output mapping data
selection modes.

NO

YES

specifies that only defau~t data is to be written from the
selected map.

indicates that default data trom the selected map is to be
merged with data placed in the TIOA by the application
program.

ONLY
specities that only application-prograro-supp~ied data is to
be written.

This operand is valid only when mapping is used. It it is
omitted¥ DATA=NO is assumed.

specities the name of the map to be used when mapping tormatted
pages.

map name

YES

is the one- to seven-character name ot the map within a map
set.

indicates that the application prograrrmer has placed the
name of the map in TCABMSMN prior to issuing this DFHBMS
macro instruction. The name must be lett-justified and
padded with trailing b~anks to eight characters.

specifies the name at the map set to be used in the mapping
operation.

map set name

YES

is the one- to seven-character name ot the map set.

indicates that the application programmer has placed the
name of the map set in TCAMSMSN prior to issuing the DFHBMS

Chapter 10. Basic Mapping support 361

macro instruction. The name must be lett-justitied and
padded with trailing blanks to eight characters.

The map set established by this operand must reside in the
CICS/VS program library, and a corresponding entry tor the map
set must exist in the processing program table (PPT).

MSETADR=

CTRL=

specifies the address of the map set to be used in the mapping
operation.

symbolic address

YES

is the one- to eight-character syrrbolic label that has been
assigned to the map set coded within the Assembler-language
application program.

indicates that the ap~lication programmer has placed the
address ot the map set in TCAMSMSA prior to issuing this
DFHBMS macro instruction.

MAP SET and MSETADR are mutually exclusive operands.

is used to specity device characteristics related to terminals
of the 3270 Intormaticn Display System. CTRL=ALARM is valid
also for VTAM terminals; all other parameters tor CTRL= are
ignored. "

PRINT
must be specitied if the printer is to be started; it
omi tted, the data is sent. to the printer Dutter but is not
printed. Thi s . operand is ignored t'or3.215s, without the
Printer Adapter teature and tor 3277s.

L40,L64,L80,HONEOM
are mutually excluSive options that contr,olt:he line length
on the printer. L40, L64, and L80 torc.e a ca.rrier
return/line teed atter 40, 64, or 80 characters.,
respectively. HONEOM causes the printer tohoDor all
new-line (NL) charaGters and the first end-ot-message (EM)
character that appear in displayable tields.otthe data
stream. If the latter option isspeci±iedi ,the application
program must insert the NL and EM characters into the data
stream. It the NL character is omitted, a carrier
return/line teed occurs at the physical end ot the carriage.
If the EM character is omitted, printing stops at the end
of the 3270 butter.' '

FREEKB
specities that the keyboard should be unlocked atter this
map is written out. It omitted, the keyboard r~mains locked;
further data entry tram the keyboard is inhibited'until this
status is changed.

ALARM
activates the 3210 audible alarm teature. For VTAM terminals
supporting tuncticnal map headers (FMH), ALARM signals BMS
to set the alarm flag i~ the FMH.

FRSET
indicates that the moditied data tags (MOTS) ot all tields
currently in the 3270 butter are to be reset to a
not-moditied condition (that is, tield reset) betore any
map data is written to the butter. This allow.s the DFHMDF'

368 CICS/VS Application programmer's Reterence Manual

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN2Q-9086

ATTRB specification for the requested map to control the final status
of any fields written or rewritten in response to a DFHBMS macro
instructi~n.

OFLOW=symbolic address
specifies the symbolic address of a routine to which control is
to be transferred if the wapped data does not fit on the current
page (see "PAGEBLD Overflew Processing").

PROPT=NLEOM

CURSOR=

is applicable to output to 3284, 3286, and 3275 with the printer
adapter feature. This parameter is restricted to assembler
language ~rograms. If it is to be used, it must be coded with
the first DFHEMS request for a logical message .•

When this parameter is used, data for these terminals is built
with new line characters, as with any other hard copy device.
An end-of-message character (EOM) is placed at the end of the
data. AS the data is printed a new line character in the data
terminates printing of a line, and the EOM character terminates
printing of the data.

If this parameter is not used and one of the CTRL parameters
L40, L64, L80, or HONEOM is not used, the data is printed without
regard to the presence of new line or EOM characters in the
data; the entire buffer is printed in lines the width of the
printer.

The following restrictions apply when using this parameter:
Buffer updating and attribute modification of fields previously
written into the buffer are not allowed. BMS issues an ERASE
with every write to the terminal.

The new line character occupies a buffer position. A number of
buffer positions, equivalent to the value of the PGESIZE
parameter of the DFHTCT macro for that terminal, is unavailable
for data. This may cause data to wrap around in the buffer; if
this occurs, it is necessary to reduce the page size
specifications in the TCT for the terminal .•

is used to position the cursor upon completion of 'a write
operation to a 3270 device.

number

YES

is an integer indicating a particular position relative to
zero on the screen; the range of values that may be specified
depends upon the screen size of the 3270 being used.

indicates that a value indicating the desired cursor position
has been placed in TCABMSCP.

An alternate method may be used to dynamically position the cursor
on the output screen. This nethed is called symbolic cursor pOSitioning
(SCP). SCP allows a field in the TIOA to be marked, symbolically, such
that the cursor is placed under the first data byte of the field on
the output screen.

Requirements for SCP use are as follows:

• MODE=INOUT must be specified on the DFHMSD macro for maps and DSECTs
which will be used with SCP.

Chapter 10. Basic Mapping Support 369

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

• CURSOR=YES must be specified on the DFHBMS macro.

• Field TCABMSCP must be initialized with hexadecimal Fs; for exam~le.
mc TCABMSCP,=X'FFFF'.

• The length field, suffix "L", associated with the field under which
the cursor is to be ~laced must be initialized with hexadecimal
Fs. For example, MVC FIELD3L,=X'FFFF'.

The remainder of the TICA may be built as desired by the user. SCP
is operable only for devices ~hich allow cursor ~lacement to be
performed independent of data placement; for exam~le, 3604 and 3270.
SCP specification is ignored for other devices.

REQID=
specifies the prefix to be used with the Temporary Storage
identification.. The identification (including the prefix) is
used by CICS/VS when atte«~ting message recovery.

BMS message recovery is provided for a logical message only if
the STORE operand is specified in the BMS output request and if
the logical end of task has been reached.

Only one prefix can be specified for each logical message. If
the REQID operand is not s~ecified, CICS/VS assigns the prefix
** (two asterisks).

'~refix'

YES

indicates the alphanu«eric ~refix to be used as the first
two characters of a Temforary Storage identification.

indicates that the prefix has been stored at TCAMSRID.

FMHPARM=
specifies information to be included in a function management
header (FMH) being transmitted to a 3650 logical unit. Refer
to the CICS/VS Advanced Ccmmunication Guide for details on the
FMH and on 3650 logical units.

This operand applies cnly tc 3650 logical units with outboard
formatting. it specifies the name of the map to be used with
this BMS request.

parameter

YES

specifies the eight-character name of the map.

indicates that the maf name has been stored in the
eight-character TCAMSFMP field .•

WRBRK=syrobolic address
specifies the symbolic address of the routine to receive control
when the ATTN key on a 2741 is ~ressed during the actual write
to the terminal. This operand is operative when 2741 Write
Break support has been generated into CiCS/VS (available only
under OS/VS) and when the task would have normally regained
centrol. It is not o~erative when TYPE=STORE or TYPE=RETURN is
s~ecified.

NORESP, TSIOERR, iNVREQ, INVLDC, RETPAGE, INVMPSZ, IGREQID, and ERROR
are used to test the EMS response to this request for BMS
services. These operands can be specified in this macro
instruction or in a DFHBMS TYPE=CHECK macro instruction. The

370 CIes/vs Application Prcgra«mer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

meaning of each oI'=erand is discussed in detail under "Test
Response to a Request for BMS Services."

Programming Note:

1. Whenever one or more ~ages have been completed and the programmer
has specified TYPE=RE~URN, TCAMSRLA contains the address of a
list of completed pages. Since more than one page of output
may result from a single EMS output request, there may be more
than one entry in the list for a given terminal type. The
multiple entries for a terminal type immediately follow one
another in the list. The list is laid out as follows:

I TC I Page Buffer TC I Page Buffer I X'FF ••• FF' I
L--~

4 bytes 4 bytes 4 bytes

TC = Terminal code (see "'Ierminal Code (TC) Table")

The page buffer pointer pcints to an area of USER-type storage
which has a 12-byte prefix sirrilar to that of a terminal
input/output area (TICA):

I CICS/VS Storage Acctng I Buffer Length I Reserved Data
L---------------------.

8 bytes 2 bytes 2 bytes x bytes

At this point, page buffers are on the user's storage chain and
are disassociated frorr BMS control blocks: it is therefore the
user's responsibility to release page buffers when they are no
lenger needed. The storage containing the list of buffers should
not be freed by the prograrr.mer; it is the intention of BMS to
reduce processing time by reusing the list. This list will be
altered by the next BMS request. Therefore, the programmer must
save the contents before issuing the next EMS request.

When terminals of the 3210 Information Display System are used,
the write control character (~CC) containing the CTRL
specification can be found at TIOACLCR in the page buffer after
addressability to the area has been established. (TIOACLCR is
a defined field in DFBTIOA and is addressable if TIOABAR is
loaded into the buffer address.)

PAGEBLD Overflow Processing

overflow occurs when the number of lines in the requested map plus
the number of lines in the largest trailer map in the map set (if there
are any trailer maps) is greater than the number of lines remaining in
the page being built for the terminal involved in an output operation.
For VTAM terminals having LDC sUfport, pages are accumulated
individually by LDC mnemonic. Therefore, overflow may occur at end of
page for each different LDC rrnemcnic used in different BMS requests.
The LDC mnemonic is passed to the user's overflow routine in TCAMSLDM,
and the LDC numeric value is passed in TCAMSLDC. PAGEBLD overflow can
occur on a logical message being built for a ROU~E environment. If
the ROUTE environment was created with a route list containing more
than one LDC mnemonic, then the returned LDC mnemonic and numeric value
is the first LDC mnemonic resolved in the route list.

The routine to which control is transferred must be in the
application program, but no special considerations apply. The data

Chapter 10. Basic Mapping Support 370.1

which was to have been mapped, but which caused the overflow, is not
mat:ped by EMS and remains unaltered in the TIOA .•

If a DFHBMS TYPE=ROUTE rracro instruction bas not been previously
issued, there is only one destination. If a DFHEMS TYPE=ROUTE macro
instruction has been issued, the logical message is probably being
built for a multiple-destination environment. Since the application
programmer has the capability of concurrently building pages for
terminals that have different-sized output, overflow may occur at
different times for different terminal groups. ~he overflow routine
gets control every time any ~ of the destinaticns or groups of
destinations encounters an overflow condition. The application program
overflow routine must determine which destination or group of
destinations has encountered the overflow.

Upon return to the application Frogram from a DFHBMS TYPE=ROUTE
macro instruction, a count (relative to one) of the number of
destinations or groups of destinations is available in TCAMSOCN.. This
overflow control count tells the application programmer how many
overflow control areas (for examFle, accumulators) he may want to keep.
Whenever the overflo~ routine gets control, TCAMSOCN indicates the
relative overflow ccntrol number of the destination that has encountered
the overflow. This number indicates which control area should be
output, perhaps through one cr more trailer reaps. In addition to the
relative control count, BMS returns the current page number for the
destination that has encountered the overflow. ~his page number is
located at TCAMSPGN.

To place trailer data on a page, the programmer codes DFHBMS
TYPE=PAGEBLD request(s) to process the trailer data. The map(s) used

370.2 CICS/vS Application Frograrrmer's Reference Manual

to format the data must contain TRAILER=YES so that the amount ot space
on the page to reserve tor overt low can be calculated. More than one
trailer rrap may be placed on a page. There should be a dummy trailer
map (not otherwise used) in the 1rap set specifying the number of iines
to be reserved fer trailer data if no single trailer map extends over
the total number of lines required tor trailer data (see Figure 10-1).
Maps used to map trailer data may contain JUSTIFY=LAST to torce their
placement at the bottom of the page. If the programmer tries to place
more lines ot trailer data on the page than are available, that trailer
data is placed on a separate page by itselt. still another page is
built to continue mapping with or without a header map.

TR2 I r-:::I
~

TRAILER 1
TRAILER 1

TR 2 I ,--I _T_R_3-...J

No dummy trailer required. Dummy trailer is required.

Figure 10-1. Use of Trailer Ma~s in PAGEBLD Mapping Operations

To place header data on a page, the programmer codes DFHBMS
TYPE=PAGEBLD request(s) to process the header data. The map(s) used
to map header data must specify JUSTIFY=FIRST to complete processing
of the previous page it that has not been done, and to begin a new
page. (JUSTIFY=FIRST is ignored if EMS is positioned at the top ot a
new page.) It the programmer tries to place more header data on the
page than the page can contain, multiple pages are created.

When all trailer and/or header data has been processed, the
programmer must reissue the tFBBMS request that caused the overflOW,
since this data has not yet been mapped for all destinations.

It is important to recognize that BMS maintains the overflow
environment for as long as the application program issues BMS requests
using maps defined as headers or trailers. The first use of a map that
is not defined as a header or trailer terminates overtlow processing.
Presumably, this coincides with reissuing the request that caused the
overflow.

If the user does not speCify an overt low routine while issuing
PAGEBLD requests, no overflo~ occurs and new pages will be torced
automatically. If a header is to be placed on the first page and a
trailer on the last, the OFLCW parameter would not be used.

A general overview of overtlow processing is given in the flowchart
in Figure 10-2.

Chapter 10. Basic Mapping support 311

Application program
prepares & issues a
PAGEBLD request and
includes an OFLOW
routine address

DFHBMS macro expansion I

BALRs to BMS program

BMS programs
process the request

I
DFHBMS macro expansion
checks to see if an
overflow occurred

YES $id
overflow >---~--~------~

occur
?

NO

DFHBMS macro expansion
has returned control
to application program
and the PAGEBLD re
quest has been mapped
for all of the desti
nations.

The application pro
gram updates all over
flow control areas to
reflect the last
PAGEBLD request
(which mayor may not
have caused an
overflow) •

I

7 APPLICATION PROGRAM'S
OVERFLOW ROUTINE

1) Save sufficient
information to be
able to reissue the
request that just
caused an overflow.

2) Using the overflow
control number in
TCAMSOCN, determine
the appropriate con
trol area to map its
contents via PAGEBLD
requests, specifying
trailer map(s).

3) The current page
number is available
at TCAMSPGN and could
be supplied with the
data to be mapped by
the trailer map(s) ;
and/or this page number
could De incremented and
supplied with the data
to be mapped by header
map (s) •

4) At this point, do not
update any control--
areas to reflect the
original PAGEBLD re
quest that caused the
overflow.

5) Do reinitialize the
control areas that just
supplied the data for
overflow processing.

6) Do return to the logic
T@) that issued the
originalPAGEBLDre
quest and reissue that
request.

Figure 1 0-2. overtlow processing by Application Programs· under BMS

372 CICS/VS Application Programmer's Reterence Manual

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN20-9086

Cumulative Page Euildinq without MaPFing

To request the building of pages of data without the use of maps,
the application ~rogram issues DFHBMS TYPE=TEXTBLD macro instructions.
These macro instructions cause BMS terminal paging to create pages
containing application-program-supplied text data. The length of the
data each macro instruction is to process must be supplied in TIOATDL,
prior to issuing the macro instruction. Completion of a logical message
is signaled by a DFHBMS TYPE=PAGEOUT macro instruction. The beginning
and ending of pages are handled by BMS and need be of no concern to
the application ~rogram.

The format of the DFHBMS TYPE=TEX'IBLD macro instruction is as
follows:

r------r-------r---,

where:

TYPE=

I
DFHBMS TYPE: (TEX'IBLD [, { OUT[, WAIT] }] [, SAVE][, ERASE]

STOFE
RETURN

[,LAST])
[, IOTYPE= {~~~ }]

[, LDC= {~~:roonic }]

[,HEADER= {~~~bOliC address}]

[, TRAILER= {~isbOliC address }]

, JUSTIFY={FIRST}] LAST
nnn
YES

,CTRL= «(PUNT 1 [{ ~!EOM ~(, PREEKB X ,ALARM 1]
[,PROPT=NLECM]
[,CURSOR={~~ber }]

[,REQID= {'~~:fiX' }]

[,FMHPAFM={~~~ameter }]

[,WRBRK=symbolic address] CICS/OS/VS only
[,NCRESP=syrrbolic address]
[,TSIOERR=symbolic address]
[,INVREQ=syrrbolic address]
(,INVLDc=syrrbolic address]
[,RETPAGE=symbolic address]
[,IGREQID=symbolic address]
[,ERROR=symbolic address]

indicates the general output functions required.

Chapter 10. Basic Mapping Support 373

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

Corr,bining of output

TEXTBLD
indicates that (1) one ~age of output is to be formed from
data submitted through multiple TEXTBLD requests, or (2)
multi~le ~ages of out~ut are to be formed from one TEXTBLD
request. When TEXTBLD is specified, no map is used. When
no more aata can fit en a page, the page is written according
to the OUT, STORE, or RETURN disposition (see below), and
another page is started if necessary.

If neither TE~TBLC nor PAGEE1D (explained earlier) is specified
in an out~ut request, data is processed and written as output
in a single operation; no combining of data is performed.

OUT

Dis~esition

indicates that the output is to be written to the originating
terminal "-lhen the page is com~lete if the originating
terminal is to receive the output.

The application program may issue DFHSC TYPE=FREEMAIN, RELEASE=ALL
requests when using CFHBMS TYPE=OUT only under the following conditions:

• Prior to any DFHEMS requests

• Between a DFHBMS TYPE=PAGEOUT and a subsequent BMS request

• After a DFHBMS TYPE=PURGE request

WAIT
indicates that BMS is te wait until all output operations
are complete before returning control to the application
program. WAIT must be specified with every output request
except the following:

• The last output request prior to task termination

• The last output request prior to an input operation

• The last output request prior to issuing a DFHBMS
TYPE=FAGEOUT macro instruction that precedes task
terminatien 'or an input operation

STORE
indicates that the output is to be placed in temporary
storage to be dis~layed in response to paging commands
entered by the terminal operator (for more information about
these commands, see the CICS/VS Terminal Operator's Guide).
If STORE is s~ecified with a REQID that is defined in the
Temporary Storage Table (TST), CICS/VS provides message
recovery for logical messages if the task has reached logical
end.

RETURN
indicates that the corrplete pagels) is to be returned to
the application programmer (see programming note 1 under
"Cumulative Page Euilding with Mapping"). The application
program regains centrel (1) immediately following the BMS

374 CICS/VS Application Prograrrmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN2o-9086

instruction, or (2) at an alternative entry point specified
through the RETFAGE o~erand of this macro instruction.

If no disposition is specified, the output is sent to the
originating terminal. Once the disposition has been established
for a logical message, it is not necessary to repeat the
disposition for that logical message. Any change of disposition
specified while in the process of building a logical message
forces that logical message to completion with its original
disposition. Then a new logical message is started with the
new disposition. The dis~osition parameter is handled
differently under DFHEMS TYPE=ROUTE (see "Disposition and Message
Routing") •

Chapter 10. Basic Mapping Support 374.1

SAVE
specifies that the user-supplied data area (address at
TCTTEDA or TCAMSIOA) is to be saved.

ERASE

LAST

specifies that a 3270 buffer or 3604 screen is to be erased
before this page of output is displayed. The 3284/3286
buffer may contain meaningless data it all positions are
not filled with current data.

signals CICS/VS that this is the last cut put tor a
transaction and, theretore, the end ot a bracket operation.
This operand is meaningtul only tor V~-supported terminals
and is applicable only when OUT is the specified disposition.

IOTYPE=

LDC=

HEADER=

specifies when the output operation is to be started,. This
o~erand is meaningtul only for VTAM-supported terminals and is
applicable only when OUT is the specitied disposition.

IMMED
causes the output operation to be started immediately. In
cases where WAIT may be coded separately trom DFHBMS
TYPE=TEXTBLD, overlap ot terminal I/O operations is possible
by using IMMED and coding the WAIT separately.

DELAY
can cause the output operation to be started when TCP is
next dispatched.

If this operand is omitted, IOTYPE defaults to the
transaction option specitied by TIOTYPE in the DFHPCT
TYPE=ENTRY macro instruction. A task using deferred write
or message protection always detaults to DELAY regardless
of the PCT specification.

specifies the mnemonic to be used by CICS/VS to determine the
logical device code that is to be used tor the TEXTBLD operation
and transmitted in the tunction management header to the logical
unit. This operand is meaningtul only tor VTAM terminals with
LDC support.

mnemonic

YES

is the two-character mnemonic used to determine the
appropriate LDC numeric value. The mnerr.onic represents a
LDC entry in the DFHTCT TYPE=LDC macro instruction.

indicates that the application prograrr has placed the LDC
mnemonic in TCAMSLDM.

If this operand is omitted tor a VTAM-supported terminal, a
default LDC is chosen as described tor the DFHBMS TYPE=PAGEBLD
macro instruction.

specifies that header data is to be placed at the beginning ot
each output page and ~oints to that data (see programming note
2).

Chapter 10. Basic Mapping support 375

symbolic address

YES

is the symbolic address ot the header record that will be
used to place header information at the beginning ot each
page.

indicates that the application_prograrrroer has placed the
address of the header record in TCAMSHDR prior to issuing
this DFHBMS macro instruction.

It this parameter is used in a DOS COBOL program the label must
not be longer than eight characters.

TRAILER=
specifies that trailer data is to be placed at the bottom of
each page and pOints to that data (see programming note 3).

symbolic address
is the symbolic address of the trailer record that will be
used to place trailer data at the bottom ot each page.

If this parameter is used in a DOS COBOL program the label must
not be longer than eight characters.

YES
indicates that the application programmer has placed the
address ot the trailer record in TCAMSTRL prior to issuing
this DFHBMS macro instruction.

JUSTIFY=

CTRL=

describes the positioning of the text data,.

FIRST

LAST

nnn

YES

indicates that this TEXTBLD data is to be positioned at the
top ot the page. Any partially formatted page trom preceding
DFHBMS requests is considered to be complete. It the HEADER
operand is specified, the header precedes the TEXTBLD data.

indicates that this TEXTBLD data is to be positioned at the
bottom ot the page. If the TRAILER operand is specitied,
the trailer appears after the TEXTBLD data. The page is
considered to be complete after the request is processed.

indicates that this TEXTBLD data is to be positioned at line
nnn of the page.

indicates that the application programmer has placed a binary
value from 1 to 255 in TCAMSJ prior to issuing this DFHBMS
TYPE=TEXTBLD macro instruction. A value in the range trom
1 through 240 represents a line number; 254 represents FIRST;
and 255 represents LAST. The values trom 241 through 253
are reserved and should not be specitied.

is used to specify device characteristics related to terminals
ot the 3270 Informaticn Display system.

PRIm'
must be specitied it the printer is to be started; it
Omitted, the data is sent to the printer butter but is not
printed. This operand is ignored tor 3275s without the
Printer Adapter feature and tor 3277s.

376 CICS/VS Application Prograrrmer's Reterence Manual

L40,L64,L80,HONEOM

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

are mutually exclusive cptions that control the line length
on the printer. L40, L64, and LBO force a carrier
return/line feed after 40, 64, or BO characters,
respectively. HONEOM causes the printeL to honor all
new-line (NL) characters and the first end-of-message (EM)
character that appear in displayable fields of the data
stream. If the latter option is specified, the application
program must insert the NL and EM characters into the data
stream. If the NL character is omitted, a carrier
return/line feed occurs at the physical end of the carriage.
If the EM character is omitted, printing stops at the end
of the 3270 buffer.

FREEKB
specifies that the keyboard should be unlocked after this
data is written out. If emitted, the keyboard remains
locked; further data entry from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible alarm feature. For VTAM terminals
supporting functicnal map headers (FMH), ALARM signals BMS
to set the alarm flag in the FMH.

PROPT=NLEOM

CURSOR=

is applicable to output to 3284, 3286, and 3275 with the printer
adapter feature. This parameter is restricted to assembler
language programs. If it is to be used, it must be coded with
the first DFHBMS request for a logical message.

When this parameter is used, data for these terminals is built
with new line characters, as with any other hard copy device.
An end-of-message character (EOM) is. placed at the end of the
data. As the data is printed a new line character in the data
terminates printing of a line, and the EOM character terminates
printing of the data.

If this parameter is not used and one of the CTRL parameters
L40, L64, LBO, or NONEOM is not used, the data is printed without
regard to the presence of new line or EOM characters in the
data; the entire buffer is printed in lines the width of the
printer.

The following restrictions apply when using this parameter:
Buffer updating and attribute modification of fields previously
written into the buffer are not allowed,. BMS issues an ERASE
with every write to the terminal.

The new line character occupies a buffer position. A number of
buffer positions, equivalent to the value of the PGESIZE
parameter of the DFHTCT macro for that terminal, is unavailable
for data. This may cause data to wrap arcund in the buffer; if
this occurs, it is necessary to reduce the page size
specifications in the TCT for the terminal.

is used to position the cursor upon completion of a write
operation to a 3270 device.

number
is an integer indicating a particular position on the screen
relative to zero the range of values that may be specified
depends upon the screen size of the 3270 being used.

Chapter 10. Basic Mapping Support 377

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

REQID=

YES
indicates that a value indicating the desired cursor position
has been placed in TCABMSCP.

specifies the prefix to be used with the Temporary Storage
identification. ~he identification (including the prefix) is
used by CICS/VS when attem};ting message recovery.

BMS message recovery is provided for a logical message only if
the STORE operand is specified in the BMS output request and if
the logical end of task has been reached.

Only one prefix can be specified for each logical message. If
the REQID operand is not specified, CICS/VS assigns the prefix
** (two asterisks).

'prefix'

YES

indicates the alphanun.eric prefix to be used as the first
two characters of a Temporary Storage identification.

indicates that the prefix has been stored at TCAMSRID.

FMHPARM=
specifies information to be included in a function management
header (FMH) being transmitted to a 3650 logical unit. Refer
to the CICS/VS Advanced Communication Guide for details on the
FMH and on 3650 logical units.

This operand applies only to 3650 logical units with outboard
formatting. It specifies the name of the map to be used with
this BMS request.

parameter

YES

specifies the eight-character name of the map.

indicates that the map name has been stored in the
eight-character TCAMSFMP field.

WRBRK=symbolic address
specifies the symb~lic address of the routine to receive control
when the ATTN key on a 2741 is };ressed during the actual write
to the terminal. This operand is operative when 2741 Write
Break support has been generated into CICS/VS (available only
under OS/VS) and when the task woul.d bave normally regained
control. It is not o~rative when TYPE=STORE or TYPE=RETURN is
specified.

NORESP, TSIOERR, INVREQ, INVLDC, RETPAGE, IGREQID, and ERROR
are used to test the response of EMS to this request for
services. These operands can be specified in this macro
instruction or in a DFHBMS TYPE=CHECK macro instruction. The
'meaning of each operand is discussed in detail under "Test
Response to a Request for BMS Services

Programming Notes:

1. See programming note 1 under "Cumulative Page Building with
Mapping," above.

2. The data area pointed to by the HEADER operand has the following
format: .

318 CICS/vS Application progranmer's Reference Manual

I

Page of SH2Q-9003-2
Revised May 22,1975
By TNL SN20-9086

I L I LIP I C I DATA I PIP , PIP I P t DATA I
L- _____ ~ ______ ~ __ ~ _______________ ~ _________ ~----______ -----------------~

where:

LL

P

C

is a two-byte field containing the length of the data.

is a one-byte field indicating the content of any byte in
the user data area that BMS is to recognize as a page number
locator byte. The following values are reserved and cannot
be used: X'OC', X'1s', X'17', and X'26'. If automatic page
numbering is not desired, this byte must contain a blank.

is a reserved one-byte field.

PPPPP

DATA

is up to five page number locator bytes, each of which
contains the value specified for a page number locator byte.
Page numbering up to 32,767 is possible. Consecutive page
numbers are inserted automatically by BMS on each page of
output. A DFHBMS TYPE=PAGEOUT request or a change in
disposition causes the ~age number to be reset to 1.

is header information (constant data) to be placed at the
beginning of each page of output. Embedded new-line
characters (X'1sl) may be used to provide multiple heading
lines.

3. The format of trailer infcrmation is the same as the format of
header information, described above. Page numbering can be
accomplished automatically as witb header data.

Noncumulative Page Building

An output request in which neither TEXTBLL nor FAGEBLD is specified
can be issued by the application ~rogram. Such a request may cause
multiple pages to be written as output, but multiple requests cannot
be issued to accumulate and format data within one page. One map may
be used to format data on one page, and, as in pre-VS BMS, that page
may be written directly to the terminal (TYPE=OUT). The rules governing
this type of output are as follows:

• Multiple requests cannot be accumulated to build one page, whether
mapped or unmapped.

• When using maps, one request cannot build more than one page.

• When not using maps, a single request can result in more than one
page.

• If the disposition is STORE, multiple requests can cause multiple
pages (each request starting a new page) to be included in one
logical message.

• For both mapping and nonrrapped operations, if the disposition is
STORE, a DFHBMS TYPE=PAGEOUT request must be issued to terminate
the logical message.

Chapter 10. Basic Mapping Support 378.1

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

r~-----r-------r-~-~-~-~---------------~-------~~-~~-----~----------~--,

DFHBMS' TYPE= L{ OUT[,WAIT]}] [, NO EDIT](,SAVE][ERASE][,LAST])
S'IOFE
RETURN

[,IOTYPE={IMMED}]
DELAY

[,LDC={~~:monic}]

['DATA=G~iY }]
[,MAP={ ~~~ name}] I[{,MAPADR= ~i~bOliC address}]

[, MAPSET= {~~~set name}] I [{ ,MSETADR= ~:bOliC address}]

[CTRL= ([Pro: NT T { ~~EOM ~[, FREEKE)[,ALARM][,FRSET])]

[,PROPT=NIECM] .
[,CURSOR={~~ber }]

[,FMHPARM={~~~ameter}J
[,WRBRK=symbolic address] CICS/OS/VS only
[,NORESP=syrrbolic address]
[,TSIOERR=symbolic address]
[,INVREQ=syrrbolic address]
[,INVLDC=syrrbolic address]
[,RETPAGE=symbolic address]
[,INVMPSZ=symbolic address]
[,IGREQID=symbolic address]
(,ERROR=symbolic address]

L------L-------L--------------------------_----------------------------~

where:

TYPE=
indicates the general out~ut functions required.

OUT
Disposition

indicates that the output is to be written to the originating
terminal at once if that terminal is to receive it.

The a~plication program may issue DFHSC TYPE=FREEMAIN, RELEASE=ALL
requests when using DFHBMS TYPE=OUT only under the following conditions:

• Prior to any DFHBMS requests

• Between a DFHBMS TYPE=PAGEOUT and a subsequent BMS request.

• After a DFHBMS TYPE=PURGE request

WAIT
indicates that EMS is to ~ait until all output operations
are complete before returning control to the application
program. WAIT must be specified with every output request
except the following:

Chapter 10.. Basic Mapping Support 379

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

• the last output request prior to task termination

• the last output request prior to an input operation

• the last out'put request prior to issuing a DFHBMS
TYPE=PAGEOUT nacro instruction that precedes task
termination or an input operation

STORE
indicates that the output is to be placed in temporary
storage to be displayed in response to paging commands
entered by the terminal operator (for mere information about
these commands, see the CICS/VS Terminal Operator's Guide).
If STORE is specified, with a REQID that is defined in the
Temporary Storage Table (TS~). CICS/VS provides message
recovery for logical messages if the task has reached logical
end.

RETURN
indicates that the corrplete pagels) is to be returned to
the application programmer (see programming note 1 under
"CUmulative Page Euilding with Mapping"). The application
program regains control (1) immediately following the BMS
instruction, or (2) at an alternative entry pOint specified
through the RETPAGE operand of this macro instruction.

If no disposition is specified, the output is sent to the
originating-terminal. Once the disposition has been established
for a logical message, it is not necessary to repeat the
disposition for that logical message. Any change of disposition
specified while in the process of building a logical message
forces that logical message to completion with its original
disposition. Then a new logical message is started with the
new disposition. The disposition parameter is handled
differently under DFHEMS 'IYPE=ROUTE (see "Disposition and Message
Routing") •

NOEDIT

SAVE

specifies that CICS/VS need not insert device-dependent
control characters (carrier return, line feed, idle
chara,cters, and se on) into the output data stream. The
application program, therefore, assumes responsibility for
providing any required control characters. This parameter
is ignored for all output operations specifying maps.

specifies that the user-supplied data area (address at
TCTTEDA or TCAMSIOA) is to be saved.

ERASE

LAST

specifies that a 3270 buffer or 3604 screen is to be erased
before this page cf output is displayed. The 3284/3286
buffer would contain meaningless data from prior messages
if all positions are not filled with current data.

signals CICS/VS that this is the last output for a
transaction and, therefore, the end of a bracket operation.
This operand is meaningful only for BMS-supported VTAM
terminals and is applicable only when OUT is the specified
disposition.

380 CICS/VS Application Prograrrmer's Reference Manual

IOTYPE=

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

specifies when the output operation is to be started. This
oJ;erand is meaningful only for VTAM-supported terminals and is
applicable only when OUT is the specified disposition.

IMMED
causes the output operation to be started immediately. In
cases during which WAIT may be coded in a separate DFHBMS

Chapter 10. Basic Mapping support 380.1

LDC=

DATA=

MAP=

macro instruction, overla~ ot terminal I/O operations is
possible by using IMMED and coding the ~IT separately.

DELAY
can cause the output operation to be started ~hen TCP is
next dispatched.

It this operand is omitted, IOTYPE detaults to the transaction
option specitied by TIOTYPE in the DFHPCT TYPE=ENTRY macro
in~truction. A task using deterred write or message protection
will override this parameter and not be done until sync point
(DFHSP) or task termination.

specities the mnemonic to be used by CICS/VS to determine the
logical device code that is to be used tor the operation and
transmitted in the function management header to the logical
unit. This operand is meaningful only tor Vl'AM-supported
terminals with LDC su~port.

mnemonic

YES

is the two-character mnemonic used to determine the
appropriate LDC nUmeric value. The mnemonic represents a
LDC entry in the DFHTCT TYPE=LDC macro instruction.

indicates that tHe ap~lication program has placed the LDC
mnemonic in TCAMSLDM.

If ttl~s operahd is o~itted tor a VTAM-supported terminal, a
default LDc is chosen (see the description ot the DFHBMS
TYPE=PAGEBLD macro instruction).

indicates one ot three out~ut mapping data selection modes.

NO

YES

specifies that only detault data is to be written trom the
selected reap.

indicates that detault data trom the selected map is to be
merged with data ~laced in the TIOA by the application
program.

This operand is valid only when mapping is used. It it is
omitted, DATA=NO is assumed.

s~ecifies the name of the map to be used when map~ing tormatted
pages.

map name

YES

is the One- to seven-character name ot the map within a map
set.

indicates that the ap~licationprogrammer has placed the
name ot the map in TCABMSMN prior to issuing this DFHBMS
macro instruction. The name must be lett-justitied and
padded with trailing blanks to eight characters.

Chapter 10. Basic Mapping Support 381

MAPADR=

If no map set (MAPSET or MSETADR operand) is specitied in this
DFHBMS macro instruction, the specitied map name is taken as
the name of the map set.

specifies the address of the map to be used when mapping
formatted pages.

symbolic address

YES

is the one- to seven-character symbolic label that has been
assigned to the map ceded within the Assembler-language
application program.

indicates that the ap~lication programmer has placed the
address ot the ma~ in TCABMSMA prior to issuing the DFHBMS
macro instruction.

MAPSET=
specifies the name ot the map set to be used in the mapping
operation.

map set name

YES

is the one- to seven-character name ot the map set.

indicates that the application prograrrmer has placed the
name of the map set in TCAMSMSN prior to issuing the DFHBMS
macro instruction. The name must be lett-justitied and
padded with trailing blanks to eight characters.

The map set established by this operand must res~de in the
CICS/VS program library, and a corresponding entry tor the map
set must exist in the processing progr·am table (PPT).

IF MAP SET is specitied,MAP is required.

MSETADR=

CTRL=

specifies the address ot the map set to be used in the mapping
operation.

symbolic address

YES

is the one- to eight-character symbolic label that has been
assigned to the map set coded within the Assembler-language
application program.

indicates that th·e ap~lication programmer has placed the
address ot the map set in TCAMSMSA prior to issuing this
DFHBMS macro instruction.

MAPSET and MSETADR are mutually exclusive o~erands. It MSETADR
is specified, MAP is required.

is used to specify device characteristics related to terminals
of the 3210 Information Display System.

PRINT
must be specified it the printer is to be started; if
Omitted, the data is sent to the printer butter but is not
printed. This operand is ignored for 3215s without the
Printer Adapter feature and tor 3211s.

382 CICS/VS Application Programmer's Reference Manual

L40, L64, L80, HONECM

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

are mutually exclusive cptions that control the line length
on the printer. L40, L64, and L80 force a carrier
return/line feed after 40, 64, or 80 characters,
respectively. HONEOM causes the printer to honor all
new-line (NL) characters and the first end-of-message (EM)
character that appear in displayable fields of the data
stream. If the latter option is specified, the application
program must insert the NL and EM characters into the data
stream. If the NL character is omitted, a carrier
return/line feed occurs at the physical end of the carriage.
If the EM character is emitted, printing stops at the end
of the 3270 buffer.

FREEKB
specifies that the keyboard should be unlocked after this
map is written out. If omitted, the keyboard status remains
locked; further data entry from the keyboard is inhibited
until this status is changed.

ALARM
activates the 3270 audible alarm feature. For VTAM terminals
supporting functicnal map headers (FMH), ALARM signals BMS
to set the alarm flag in the FMH.

FRSET
is valid only when mapping is used and indicates that the
modified data tags (MDTS) of all fields currently in the
3270 buffer are to be reset to a not-modified condition
(that is, field reset) before any map data is written to
the buffer. This allcws the DFHMDF ATTRB specification for
the requested map to centrol the final status of any fields
written or rewritten in response to a DFHBMS macro
instruction.

If this operand is specified in the DFHBMS macro instruction,
it is taken as a total replacement for any CTRL specification
in a DFHMSD macro instruction used to create a referenced map
set.

PROPT=NLEOM
is applicable to output to 3284, 3286, and 3275 with the printer
adapter feature. This parareeter is restricted to assembler
language programs. If it is to be used, it must be coded with
the first DFHBMS request for a logical message.

When this parameter is used, data for these terminals is built
with new line characters, as with any other hard copy device.
An end-ot-message character (EOM) is placed at the end of the
data. As the data is printed a new line character in the data
terminates printing of a line, and the EOM character terminates
printing of the data.

If this parameter is not used and one of the CTRL parameters
L40, L64, L80, or NONEOM is not used, the data is printed without
regard to the presence of new line or EOM characters in the
data; the entire buffer is printed in lines the width of the
printer.

The following restrictions apply when using this parameter:
Buffer updating and attribute modification of fields previously
written into the buffer are not allowed. BMS issues an ERASE
with every write to the terminal.

Chapter 10. Basic Mapping Support 383

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

The new line character occupies a buffer position. A number of
buffer positions, equivalent to the value of the PGESIZE
parameter of the DFHTCT macro for that terminal, is unavailable
for data. This may cause data to wrap around in the buffer; if
this occurs, it is necessary to reduce the page size
specifications in the TCT for the terminal.

CURSOR=
is used to pOSition the cursor upon completion of a write
operation to a 3270 device. This operand is valid in this macro
instruction only when maps are used.

number

YES

is an integer indicating a particular pcsition relative to
zero on the screeni the range of values that may be specified
depends upon the screen size of the 3270 being used.

indicates that a value indicating the desired cursor position
has been placed in TCABMSCP.

An alternate method may be used to dynamically position the cursor
on the output screen. This nethod is called symbolic cursor pOSitioning
(SCP). SCP allows a field in the TIOA to be marked, symbolically, such
that the cursor is placed under the first data byte of the field .on
the output screen.

Requirements for SCP use are as follows:

• MODE=INOUT must be specified on the DFHMSD macro for maps and DSECTs
which will be used with SCP.

• CURSOR=YES must be specified on the DFHBMS macro.

• Field TCABMSCP must be initialized with hexadecimal FSi for example,
MVC TCABMSCP,=X'FFFP'.

• The length field, suffix liLli, associated with the field under which
the cursor is to be placed must be initialized with hexadecimal
Fs ~ For example, MVC FI ELD3L, =X 'FFFF' •

The remainder of the TIOA may be built as desired by the user. SCP
is operable only for devices which allow cursor placement to be
performed independent of data placement; for examJ;:le, 3604 and 3270 .•
SCP specification 1S ignored for other devices.

REQID=
specifies the prefix to be used with the Temporary Storage
identification. The identification (including the prefix) is
used by CICS/VS when attem~ting message recovery.

BMS message recovery is provided for a logical message only if
the STORE operand is specified in the BMS output request and if
the logical end of task has been reached.

Only one prefix can be specified for each logical message. If
the REQIDoperand is not specified, CICS/VS assigns the prefix *. (two ast~risks).

, prefix'
indicates the alphanuIr!eric pref;tx to be used as the first
two characters of a Temporary Storage identification.

384 CICS/vS Application PrograIrlDerlS Reference Manual

YES

FMHPARM=

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

indicates that the prefix has been stored at TCAMSRID.

specifies information to be included in a function management
header (FMH) being transmitted to a 3650 logical unit. Refer
to the CICS/VS Advanced Communication Guide for details on the
FMH and on 3650 logical units.

This operand applies only to 3650 logical units with outboard
formatting. It specifies the name of the map to be used with
this BMS request.

parameter
specifies the eight~character name of the map.

YES
indicates that the map name has been stored in the
eight-character TCAMSFMP field.

WRBRR=symbolic address
specifies the symbolic address of the routine to receive control
when the ATTN key on a 2741 is pressed during the actual write
to the terminal. This operand is operative when 2141 Write
Break support has been generated into CICS/VS (available only
under OS/VS) and when the task would have normally regained
control. It is not o~erative when, TYPE=S~ORE or TYPE=RETURN is
specified.

NORESP, TSIOERR, INVREQ, INVLDC, RETPAGE, INVMPSZ, IGREQID, and ERROR
are used to test the response of BMS to this request for
services. These operands can be specified in this macro
instruction or in a DFHBMS TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for BMS Services."

Terminating ~ Logical Message

When the combining of pieces of data to form a logical message has
been ~equested by means of DFHBMS TYPE=PAGEBLD or TYPE=TEXTBLD macro
instruction(s), such combining must be terminated ~ means of a DFHBMS
TYPE=PAGEOUT macro instruction. A logica~ message created by means of
one or ~ore noncumulative output requests with STORE disposition must
be terminated by a DFHBMS TYFE=PAGEOUT macro instruction. The 'format
of this nacro instruction is as follows:

Chapter 10. Basic Mapping Support 384.1

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

I
DFHBMSI TYPE=(PAGEOUT(,LAST])

I [
,CTRL= ([{FAGE }]r.{RETAIN }])J

AUTO PAGE L RELEASE
1[,TRAILER={~i~bOliC address)]

1
[,TRANSID=transaction code]

[
,WRERR={SymtoliC addreSS}]

I
CURFENT
ALL

[,EO tPURG= {A uro }.]
I OFER
I [,REQID= {' prefix' }.]
I YES
,["FMHPARM={parameter }J
Ii YES
f[,NORESP=symJ::olic address]
l[,TSIOERR=synbolic address]
I [,RETPAGE=syn.bolic address]
1[,IGREQIC=syrobolic address]
1[,ERROR=symbelic address]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J

I
I

I I I L------L~~---~-L~~ _______ ~ ___ ~ __ ~ __________ ~ _____ ~_~-_~ ____________ ~ ___ ~
where:

TYPE=
indicates the output functions to be perforned.

PAGEOUT

LAST

specifies the termination of a logical message. No data is
formatted in respense to this request. Any remaining d·ata
in the page buffer is processed according to the OUT, STORE,
or RE'IURN described in the previous macro instruction. If
a logical message is being built for a routing environment,
PAGEOUT completes the legical message under route. An
additional PAGEOU~ macro instruction is required to complete
a logical message to tile originating terminal.

If an error occurs during PAGEOUT processing, control is
returned to the applicatien program, and the RETAIN or
RELEASE specifications are ignored. The logical message is
not considered conplete. The application program should
either retry the PAGEOUT operation or FURGE the message.

signals CICS/VS that this is the last output for a
transaction and, therefore, the end of a bracket operation.
If RELEASE is specified, LAST is assumed, unless the PAGEOUT
is terminating a _~oute operation •• This operand is
me.aningful only fer VTAM-supported terminals.

384.2 CICSI'VS Appl4.cation Prcgramner's Reference Manual

CTRL=
specifies how pages are to be displayed at the terminal (when
the disposition is OUT or STORE) and whether or not control is
to be returned to the application program.

PAGE
specifies that pages are to be paged one at a time to the
terminal. BMS writes the tirst page to the terminal when
the terminal becomes available or upon request ot the
,operator. All subsequent pages are written to the terminal
in response to a terminal operator request (see the
description ot paging ccmmands in the CICS/VS Terminal
operator's Guide). It automatic paging was specitied for
the terminal at system generation, this specitication
overrides the automatic paging for this logical message.
For VTAM-supported terminals, PAGE applies to all LDC page
sets accumulated within the logical message.

AUTOPAGE
specifies that pages are to be paged automatically to the
terminal. BMS writes each page ot the logical message to
the terminal when it becomes available. It paging upon
request was specitied for the terminal at system generation,
this specification overrides tor this logical message,
provided that the terminal is not a 3210 video terminal
(AUTOPAGE cannot be specified for a 3210 video terminal) •
For VTAM-supported terminals, AUTOPAGE ap~lies to all LDC
page sets accumulated in the logical message.

A specification of PAGE for 3284 or 3286 devices is ignored.
That is, AUTOPAGE is assumed tor these devices. It neither PAGE
nor AUTOPAGE is specified, the paging status specified tor the
terminal at system generation determines how pages are to be
written to the terminal. For VTAM-supported terminals with LDC
support, paging status for each LDC is obtained from the system
LDC table.

RETAIN
indicates that BMS is to return control to the application
program tor turther processing atter it has written the
page(s) to the terminal and has received data other then a
purge, copy, or paging command trcm the operator. (See
programming note 4.)

RELEASE
indicates that control is to be returned to the program at
.the next higher logical level after BMS has written the
page(s) to the terminal. When RELEASE is specitied, LAST
is assumed for VTAM-supported terminals, except when the
PAGEOUT is tor a route operation.

It neither RETAIN nor RELEASE is specified, and STORE is the
disposition for the logical message, a new task is scheduled by
CICS/VS taSk control tor writing the pages to the terminal, and
control is returned to the application program at this time
rather than atter the pages are written. Atter the application
program has terminated, the pages will be written to the terminal
in response to terminal operator requests (see the description
of paging commands in the CICS/VS Terminal operator's Guide) •
If pages are being routed, a specification ot either RELEASE or
RETAIN is ignored. .

To ensure that a logical message appears at the receiving
terminal at once, before any messages that may have been routed
to it, crRL=RELEASE should be specitied. This is especially

Chapter 10. BasiC Mapping Support 385

true if this transaction is chained to a previous transaction
(see "Message Chaining" in the CICS/VS Terminal Operator's Guide
for a discussion ot chaining).

TRAILER=
specifies that trailer data is to be placed at the bottom of
the last page and pcints to that data (see programming notes 2
and 3 under "Cumulative Page Building without Mapping") •

symbolic address

YES

is the symbolic address of the trailer record that will be
used to place trailer data at the bottom ot the last page.
If this parameter is used in a DOS COBOL program the label
must not be longer than eight characters.

indicates that the ap~lication programmer has placed the
address ot the trailer record in TCAMSTRL prior to issuing
this DFHBMS macro instruction.

This operand is invalid when the logical message being terminated
by this PAGEOUT request was built using PAGEBLD requests. If
this is the case, BMS returns an INVREQ return code.

TRANSID=transaction code

WRBRK=

specifies a one- to four-character transaction identification
to be used with the next input message entered from the terminal
to which this task is attached.

This operand is valid only when CTRL=RELEASE is specified.

is used to specify the action that is to occur it the ATTN key
on a 2741 is pressed while data is being written to the terminal.

symbolic address
specifies the symbolic address of the routine to receive
control when the ATTN key on a 2741 is pressed during the
actual write to the terminal. This o~erand is operative
when 2741 Write Break su~port has been generated into CICS/VS
(available only under OS/VS) and when the task would normally
have regained ccntrol. It is not valid when CTRL=RELEASE
is specified.

CURRENT

ALL

specifies that transmission ot the current page to the
terminal is to cease, but, if autopaging has been requested,
transmission of the next page (it any) begins.

specifies that transmission of the current page to the
terminal is to cease and that no additional ~ages are to be
transmitted. The logical message is purged.

Both CURRENT and ALL are meaningful only if Write Break support
has been generated into CICS/VS (available only under OS/VS),
and it TYPE=STORE was specified in preceding DFHBMS requests,
or data has been sent to terminals other than the originating
terminal. In these cases, data has been placed in temporary
storage and is being displayed by a program other than the one
associated with the originating terminal. As tor the symbolic
address parameter, 2741 Write Break support must have been
generated into the system.

386 CICS/VS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

EODPURG=

REQID=

specifies the manner in which CICS/VS deletes the current
message.

AUTO
specifies that CICS/VS is to delete the message automatically
if the operator enters a transaction that is not a paging
command. Alternatively, the operator may delete the message
with a purge command (see the CICS/VS Terminal Operator's
Guide)._

OPER
specifies that CICS/vS is not to delete the message until
the terminal operator explicitly requests deletion with a
purge command.

~: If temporary storage is reinitialized, all messages a+e
lost, regardless of any other specifications.

specifies the prefix to be used with the ~emporary Storage
identification. The identification (including the prefix) is
used by CICS/VS when atterr~ting message recovery.

BMS message recovery is provided for a logical message only if
the STORE operand is specified in the BMS output request and if
the logical end of task has been reached.

Only one prefix can be specified for each lcgical message. If
the REQID operand is not specified, CICS/VS assigns the prefix
** (two asterisks).

• prefix'

YES

indicates the alphanurreric prefix to be used as the first
two characters of a Temporary Storage identification.

indicates that the prefix has been stored at TCAMSRID.

FMHPARM=
specifies information to be included in a function management
header (FMH) being transmitted to a 3650 logical unit. Refer
to the CICS/VS Advanced Communication Guide for details on the
FMH and on 3650 logical units.

This operand applies cnly to 3650 logical units with outboard
formatting. It specifies the name of the map to be used with
this BMS request.

parameter

YES

specifies the eight-character name of the map.

indicates that the map name has been stored in the
eight-character TCAMSFMF field,.

NORESP, TSIOERR, RETPAGE, IGFEQID, and ERROR
are used to test the EMS response to this request for BMS
services. These operands can be specified in this macro
instruction or in a DFHBMS TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for BMS Services."

Chapter 10. Basic Mapping Support 381

Programming Notes:

1, 2, 3. See programming notes 1, 2, and 3 under "Cumulative Page
Bui~~ing with Map:t:ingtl and "Cumulative Page Building without
Mapping."

4. RETAIN is intended to be used for a combination of page display
from the :t:age file (lcgical message built using the STORE
disposition) and operator data entry. BMS issues a GET to the
terminal after writing the appropriate pagels) to the terminal.
BMS issues the GET only if the logical message was built with
STORE disposition. If the logical message was BQ! built with
STORE disposition, EMS returns control to the application program
after the last page is written to the terroinal, and without
issuing a GET to the terminal.

The operator may enter any page, purge, or copy commands that
are valid for the particular message. Any other entered data
is passed back to the application program after the current
message is purged. The address of the newly acquired TIOA is
in TCTTEDA. A chaining command is not valid at this point
because it requests the creation of a new task for the terminal
to which a task is already attached.

388 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22,1975·
By TNL SN20-9086

ABNORMALLY TERMINATING A LOGICAL MESSAGE

To discontinue the process of building a.logical message, a DFHBMS
TYPE=PURGE macro instruction is issued. This instruction causes the
portions of the message already built in main storage or on temporary
storage to be deleted and returns control to the application program
at the instructicn following the DFHBMS TYPE=PURGE macro expansion.
(The TYPE=PURGE instruction is not to be used if TYPE=RETURN was used
in the BMS PAGEBLD or TEXTBLC request.) The format of the macro
instruction is as follows:

r------r-------r---,
I I DFHBMSI TYPE=PURGE ,
I I I I
L------L-------L---~
where:

TYPE=PURGE
specifies that all data prepared for a logical message but not
yet transmitted to a terminal is to be purged from the system.

BMS MESSAGE RECOVERY

BMS provides message recovery for routed and non-routed messages.
These recoverable messages must satisfy the following requirements:

• The DFHBMS TYFE=STORE operand must have been specified on the
BMS output requests that built the logical message.

• The BMS default REQID (**) or the specified REQID for the logical
message must have been identified to Temporary Storage Program
(via the TST) as recoverable.

• The task that built the message must have reached its logical
end of task.

• The Temporary Storage Program (TSP) and the Interval Control
Program (ICP) must also support recovery.

MESSAGE ROUTING

A DFHBMS TYPE=ROUTE request defines the terminal and/or operator
environment to receive the message created by subsequent DFHBMS output
requests. Routing implies definition of the envircnment to receive a
logical message, but it does not irrply transmission of the message.
The message may be directed to any or all BMS-suppcrted terminals. A
DFHBMS TYPE=PAGEOUT request causes the logical message to be completed
and terminates the effect of this.CFHBMS TYPE=ROUTE macro instruction.

If a ROUTE request followed by one or more BMS output requests is
not terminated by a PAGEOU'!' request before. a subsequent ROUTE request
is issued or before the application program terminates, the message is
forced to completion. Since the application program did not issue the
PAGEOUT request, BMS applies the PAGEOUT defaults to the message. A
ROUTE request may be issued immediately following another ROUTE request.
In this case, the first ROUTE request is nullified, and the second one
determines the routing environment.

A message is considered undeliverable to a destination if it cannot
be delivered within a certain interval after the requested delivery
time. This interval is specified in the PRGDLAY operand of the DFHSG

Chapter 10. Basic Mapping Support 388.1

PROGRAM=BMS macro instruction by the system programmer. If the PRGDLAY
operand is not included, no action is taken for undelivered messages
and the message awaits delivery indefinitely. If PRGDLAY is specified,
the transient data destinaticn CSMT is notified of the number of
undeliverable messages purged for a destination; the application
programmer can ensure that additional documentation is provided for an
undeliverable message by including the ERRTERM operand (see below) in
the DFHBMS TYPE=ROUTE macro instruction. Examples of situations causing
undeliverable messages might occur, for example, when a message is
routed to a terminal that is out of service, or when an operator
identification is specified ~ith a terminal identification and that
operator is not signed on that terminal at the tirre the message is to
be delivered.

388.2 CICS/VS Application Prograrrmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

The format of the DFHEMS 'IYPE=ROUTE macro instruction is as follows:

r~-~---r-------r-------~---~-------~-~---~------~---------~~-----~-----,
I

DFHEMSI TYPE=ROUTE
I [,LDc={mnemonicl]
I YES
1['LIST={~~bCliC addreSS}]
I [,INTRVAL= {~:eric value}]I[,TIME= {~~~eric value}]

1[,OPCLASS={~:~imal value, ••• 1]
1[,TITLE={~~toliC address }]

I [,ERRTERM={termid}] I OFIG
I YES

I [,PROPT=NLECM]
I [,RFQID= {'i~:fiX' }]

I [,NORESP=symbolic address]
I [,INVET=symtolic address]

I [,RTEFAIL=symbolic address]
[,R'IESOME=symboli"c address]

I [,IGREQID=sy.mbolic address] I [,ERROR=symbolic address]

L------L-------L---__ ~
where:

TYPE=ROUTE

LDC=

LIST=

specifies the initiation of an output page routing operation.

specifies the mnemonic to be used by CICS/VS to determine the
logical device code that is to be used for the ROUTE operation
and transmitted in the function management header (FMH) to the
logical unit. The mnemonic provided by the LDC= operand
overrides any LDC mnemonic specified in a route list
(LIST=symbolic address or YES). This operand is meaningful only
for VTAM-supported terminals with LDC support.

mnemonic

YES

is the two-character mnemonic used to determine the
appropriate LDC numeric value. Tbe mnemonic represents a
LDC entry in the DFHTCT TYPE=LDC macro instruction.

indicates that the application program has placed the LDC
mnemonic in TCAMSLDC.

If this operand is omitted and a route list is specified
(LIST=symbolic address or YES), the L~C mnemonic in the
route list entry is used. If the route list entry contains
no LDC mnemonic or no route list is specified, a default
LDC is chosen as described for the DFHBMS TYPE=PAGEBLD macro
instruction.

specifies the terminals and/or operators to which paged data is
to be directed.

Chapter 10. Basic Mapping Support 389

symbolic address

YES

ALL

is the label of a list of terminals and/or operators to
which data is to be directed (see programming note 1). If
this parameter is used on a DOS COBOL program the label must
not be longer than eight characters.

indicates that the address of the list cf terminals and/or
operators to which data is to be directed has been placed
in TCAMSRLA prior to issuing the DFHBMS TYPE=ROUTE macro
instruction.

indicates that all terminals supported by BMS are to receive
the.paged data.

INTRVAL=

TIME=

specifies the interval of time after which data being routed to
the page file is to be transmitted to the terminal(s).

numeric value

YES

is of the form HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and SS represents
seconds from 00 to 59. The minimum value that can be
specified is one second.

indicates that the interval of time has been placed in packed
decimal form (OHHMMSS+) in TCAMSRTI prior to issuing the
DFHBMS TYPE=ROUTE macro instruction.

specifies the time of day at which data being routed to the page
file is to be transmitted to the terminal(s).

numeric value

YES

is of the ~orm HHMMSS, where HH represents hours from 00 to
99, MM represents minutes from 00 to 59, and S8 represents
seconds from 00 to 59.

indicates that the time of day has been placed in packed
decimal form (OHHMMSS+) in TCAMSRTI prior to issuing the
DFHBM8 TYPE=ROUTE macro instruction.

OPCLASS=
specifies the operator class(es) to which data is to be routed
(see programming note 2).

decimal value, •••

YES

consists of one ~r more decimal values in the range from 1
through 24, separated by commas, specifically identifying
the operator class(es).

indicates that values identifying operator classes have been
placed in TCAMSOC (three-byte field) prior to issuing the
DFHBMS TYPE=ROUTE macro instruction.

Note: A bit position corresponding to each value from 1 through
24 is established in a three-byte field which is matched against
the three-byte operator class field in the CICS/vS terminal.
cont~ol table terminal entry (TCTTEOCL) for a terminal. At
least one pair of corresponding bits must match in ord~r for
the message to be routed to the terminal. The value in TCTTEOCL

390 ctCS/VS Application programmer's Reference Manual

TITLE=

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

is set during sign-on according to the OPCLASS operand of the
D~HSNT TYPE=ENTRY macro instruction specified by the system
programmer.

specifies the symbolic address of a record that contains a title
to be associated with the logical message created under this
routing environment (see programming note 3).

symbolic address

YES

is the symbolic address of the title length field that
precedes the title in the title record. If this parameter
is used in a DOS COBOL program the label must not be longer
than eight characters.

indicates that the address of the title length field in the
title record has been placed in TCAMSTA prior to issuing
the DFHBMS TYPE=ROUTE macro instruction.

ERRTERM=
indicates the terminal to be notified if the message is purged
because it is undeliverable. The message number, title
identification, and destination of the message are indicated.

termid
is the terminal identification of the terminal to be
notified.

ORIG

YES

indicates that the originating terminal is to be notified.

indicates that the terminal identification of the terminal
to be notified has been placed in TCAMSTI prior to issuing
the DFHBMS TYPE=ROUTE macro instruction.

This operand is operative only if the PRGDLAY operand was
specified in the CFESG PROGRAM=BMS macro instruction by the
system programmer. If PRGDLAY was not specified, this operand
has no effect.

PROPT=NLEOM
is applicable to output to 3284, 3286, and 3275 with the printer
adapter feature. This parameter is restricted to assembler
language programs. If it is to be used, it must be coded with
the first DFHEMS request for a logical message~

When this parameter is used, data for these terminals is built
with new line characters, as with any other hard copy device.
An end-of-message character (EON) is placed at the end of the
data. As the data is printed a new line character in the data
terminates printing of a line, and the EOM character terminates
printing of the data.

If this parameter is not used and one of the CTRL parameters
L40, L64, L80, or NCNEOM is not used, the data is printed without
regard to the presence of new line or EOM characters in the
data; the entire buffer is printed in lines the width of the
printer.

The following restrictions apply when using this parameter:
Buffer updating and attribute modification of fields previously
written into the buffer are not allowed. EMS issues an ERASE
with every write to the terminal.

Chapter 10. Basic Mapping Support 391

Page of SH20-9003-2
Revised May 22, 1975
Bv TNL SN20-9086

REQID=

The new line character occupies a buffer position. A number of
buffer positions, equivalent to the value of the PGESIZE
parameter of the DFHTCT macro for that terminal, is unavailable
for data. This may cause data to wrap around in the buffer; If
this occurs, it is necessary to reduce the page size
specifications in the TCT for the terminal.

specifies the prefix to be used with the Temporary Storage
identification. The identification (including the prefix) is
used by CICS/VS when atterr.~ting message r~covery.

BMS message recovery is provided for a logical message only if
the STORE Operand is specified in the BMS output request and .if
the logical end of task has been reached.

Only one prefix can be specified for each lcgical message. If
the REQID o~erand is not specified, CICS/VS assigns the prefix
** (two asterisks).

• prefix'
indicates the alphanurreric prefix to be used as the first
two characters of a Temporary Storage identification.

YES
indicates that the prefix has been stored at TCAMSRID.

NORESP, INVET, RTEFAIL, RTESCME, IGREQID, and ERROR
are used to test the EMS response to this request for BMS
services. These o~erands can be specified in this macro
instruction or in a DFHBMS TYPE=CHECK macro instruction. The
meaning of each operand is discussed in detail under "Test
Response to a Request for BMS Services."

Programming Notes:

1. The list of destination terminals and/or o~erators consists of
16-byte entries as follows:

Bytes

1-4

5-6

7-9

10

11-16

Contents

contain a four-character (including trailing
blanks) terminal or logical unit identification,
or blanks

contain the two-character LDC mnemonic for
VTAM-supported terminals with LDC support, or
blanks

contain the operator identification, or blanks

serve as a status flag for the route entry (see
status flag byte in user-su~plied route list)

reserved; must contain blanks

The end of the list is designated as follows:

Assembler: DC AL2 (-1)
ANS COBOL: COMPUTATIONAL S9(4) VALUE -1.
PL/I: DECLARE fIXED BINARY (15) INITIAL (-1);

It may be necessary for the application program to supply this
list of destinations in noncontiguous areas called segments.

392 CICS/vS Application Progranmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

If the list is su~plied in segments, every segment exce~t the
last is terminated with (at least) an eight-byte entry as
fcllows:

Bytes
1-2

Assembler:
ANS COBOL:
PL/I:

3-4

5-8

contents

DC A12 (-2)
COMPUTATIONAL 59(4) VALUE -2.
DECLARE FIXED BINARY (15) INITIAL (-2);

reserved

contain the chain address to the first entry of
the next segment

The end of the list is designated as described above for an
unsegmented list.

If, tor any entry in the list,

a. The terminal identification is specified but the operator
identification is omitted, the data is routed to that
terminal without regard to operator identification.

b. The of era tor identification is specified but no terminal
identification is given, the data. is routed to the 'first'
terminal at which the of era tor is signed on under the
specified operator identification. The 'first' is determined
by the physical lccation of the terminal entry in the CICS/VS
terminal control table. If no operator is signed on under
the specified of era tor identification when the DFHBMS
TYPE=ROUTE macro instruction is executed, the route list
entry is ignored.

c. Both terminal identification and operator identification
are specified, the data is routed to that terminal.

For either b or c above, the data is displayed only if the
operator with the specified identification is signed on at the
terminal when the data is ready to be dis~layed, or when the
Of era tor signs on after the data is ready to be displayed.
Entries of all three types may be included in one segmented or
unsegmented list~

It should be noted that the status flag in each route list entry
is used to notify the applicaticn program of certain status
conditions for that requested destination. Therefore, if the
route list is contained within the application program and BMS
alters the status flag, the application program can no longer
be considered reentrant.

Chapter 10. Basic Mapping Support 392.1

2. If data is to be routed tc an operator class, the application
programmer may do one of the toll owing:

a. Specify OPCLASS and omit LIST. Data is routed to each
terminal at which an operator is signed on with the specified
OPCLASS at the time the DFHBMS macro instruction is issued.

b. Specify OPCLASS and LIST=ALL. Data is routed to all
terminals.

In both cases, the data is not displayed on a terminal until an
operator is signed on with the specitied OPCLASS. In general,
LIST=ALL is specified with OPCLASS only when it is anticipated
that someone will eventually sign on with the specitied OPCLASS
at every supported terminal.

It,the application I=rcgrawmer specities OPCIASS and LIST=symbOlic
address, and the list contains operator identifications, a
specified operator identitication overrides OPCLASS tor that
entry.

3. The titie pOinted to by tbe TITLE operand is displayed with the
logical message ID when the terminal paging query command is
entered (see the CICS/VS Terminal operator's Guide). This title
serves as an additional message identitier, displayed upon
request with the rressage 10, not on the logical message. The
value in the two-byte length tield preceding the title includes
the bytes used for the length field. The length tield and title,
in total, may be up to 6q bytes long. For example:

IX'001A'IMONTHLY~INVENTORY~REPORTI
L----------------------------____ ~

2-byte
length
field

2Q-byte
title field

Disposition and Message Routing

A routed iogical message can be built using either of two
dispositions: STORE or RETURN. The tirst BMS output request issued
following the ROUTE request (with some exceptions noted below)
determines the dispOSition of the logical message. This tirst request
may specify ,STORE. or RETURN; if neither is specitied, the detault is
STORE. Once established, the'disposition remains unchanged until,the
logical message is completed (PAGEOUT). It need not be repeated tor
subsequent r~quests. An output request specifying a disposition that
is not in effect results in a return code ot INVREQ.

A disposition of STORE is the normal disposition and tinally results
in the message either being delivered or purged. A disposition of
RFl'URN causes the rdut1ed logicai message to be returned to the
application program. It is the responsibility of the application
program to deliver the logical message.

A task can converse with the terminal to whiCh it is currently
attached (assuming the task is terminal-oriented) during the time that
it is building the logical message. That attached terminal is known
as the direct terminal; a terminal to which the message is to be routed
is known as a routing terminal. It any input requ~sts (DFH~MS TYPE=IN
or TYPE=MAP) are encountered while the message is being built, they
are processed as usual. To transmit output to the direct terminal
while the routed logical message is being built, the task can issue
non-TEXTBLD, non-PAGEBLD requests with an explicit disposition of OUT.

Chapter 10. Basic Mapping Support 393

The disposition of OUT isolates the output request to tne direct
terminal from the requests that are building the routed logical message.

The following pOints summarize rules tor conversation with the direct
terminal while a routed logical message is being built:

• OUT must be specified in any output request that is to go to the
direct terminal.

• TEXTBLD and PAGEBLD requests with a disposition ot OUT are invalid
and result in a return code of INVREQ.

• The direct terminal may be included in the routing environment
without impairing the ability to converse with it while under ROUTE.
Data routed to the direct terminal will be delivered as though the
ROUTE had been issued tram another terminal.

A list of "abridged" requests, in order of execution, is given below.
The action taken by BMS for each is indicated.

Request

DFHBMS TYPE=OUT

DFHBMS TYPE=ROUTE

DFHBMS TYPE=OUT

DFHBMS TYPE=IN

DFHBMS TYPE=TEXTBLD

DFHBMS TYPE=OUT

DFHBMS TYPE=TEXTELD,RETURN

DFHBMS TYPE=TEXTBLD

DFHBMS TYPE=PAGEBLD,STORE

DFHBMS TYPE=PAGEELD,OUT

DFHBMS TYPE=TEXTELD,STORE

DFHBMS TYPE=PAGEOUT

DFHBMS TYPE=OUT

Action Taken by BMS

Transmit to direct terminal.

EstabliSh routing environment.

Transmit to direct terminal.

Receive from direct terminal.

First output request eligible tor routing
establishes detault disposition of STORE
and TEXTBLD as mode ot page building.

Transmit to direct terminal.

INVREQ - routed logical message has
already established a disposition ot
STORE.

Continue bUilding routed logical message.

INVREQ - routed logical message being
built with TEXTBLD requests cannot
tolerate PAGEBLD request.

INVREQ - cannot issue PAGEBLD or TEXTBLD
request to direct terminal while building
a routed logical message.

Continue building rcuted logical message.

Terminate routed logical message and
routing operation.

Transmit to direct terminal.

TEST RESPONSE TO A REQUEST FOR BMS SERVICES

When issuing a request tor EMS services, the ap~lication programmer
can check the response of EMS to determine subsequent processing that
should be carried out. One step in dOing so is to specity the
entry-point names (symbolic addresses) of user-written

394 CICS/VS. Application Programmer's Reterence Manual

Page of SH20-9003-2
Revised May 22,1975
By TNl· SN20-9086

exception-handling routines, any of which may be executed as a result
of the check. The addresses can be specified in any of three ways:

1. Include the entry-point names in operands of the DFHBMS macro
instruction by which the EMS service is requested.

2. In.clude the entry-point narres in operands of a DFHBMS TYPE=CHECK
macro instruction immediately following the DFHBMS macro
instruction by which the EMS service is requested.

3. Include instructior.s immediately following the DFHBMS macro
instruction that examine the response codes set automatically
by EMS when roaking the response, and transfer control to an
a~propriate user-written exceftion-handling routine accordingly.

Under either of the first two methods above, CICS/VS checks the
response codes that it sets and transfers control to the
exception-handling routine named in the operand associated with the
condition that has occurred (if that operand has been specified). The
application programmer need not be concerned with which response code
corresponds to which conditien. It is only necessary to understand
the keyword operands and provide for all conditions that may occur.

The keyword operands that are applicable in various forms of the
DFHBMS macro instruction are noted in the explanations of the macro
instruction formats earlier in this chapter. The format of the DFHBMS
TYPE=CHECK macro instruction is as follows:

where:

TYPE=CHECl(
(,NCRESF=syrrbolic address]
[,TSIOERR=symbolic address]
[,INVREQ=syrrbolic address]
[,RETPAGE=symbolic address]
[,MAPFAIL=symbolic address]
[,INVET=symbolic address]
[,INVLDC=syrrbolic address]
[,RTEFAIL=symbolic address]
[,R'IESOME=symbolic address]
[,INVMPSZ=symbolic address]
[,IGREQID=symbol~c address]
[,ERROR=symbolic address]

TYPE=CHECK
indicates that the EMSrespense to a request for BMS services
is to be checked.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
centrol is passed if none of the other response conditions
(whe~her checked for or not) occurs. NORESP signifies "normal
response."

TSIOERR=symbolic address
specifies the entry label of the user-written routine to which
control is to be passed if ar. unrecoverable temporary storage
input/output error occurs.

Chapter· 10. Basic Mapping Support 395

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

INVREQ=symtolic address
s~eciries the entry label of the user-written routine to which
control is passed if the request for BMS services is invalid.
This response may be caused by any of the following conditions:

• Changing the disposition of a routed lcgical ffessage prior
to its completion# through DFHBMS TYPE=PAGEOUT

• Issuing a separate TYFE=TEXTBLD or TYPE=PAGEBLD request to
the direct (originating) terminal while in the process of
building a routed logical message

• Mixing TYPE='IEX'IBI.D and 'IYPE=PAGEELC requests when building
a logical message

• specifying NOEDIT with a 'IYPE=PAGEBLD or TYPE=TEXTBLD request

• Specifying the 'IR~ILEF operand with TYPE=PAGEOUT when
terminating a logical message built using TYPE=PAGEBLD
requests

• Issuing a DFHEMS request with DATA=YES or DATA=NO and
specifying a ma~ with no field specifications

• Issuing a DFHEMS request with TYPE=STORE from a CICS/VS
application program ccmrrunicating with a host conversational
(3653) logical unit.

RETPAGE=symbolic address
specifies the entry label of' the user-written routine to which
control is passed if cne or more completed pages are returned
to the application prograrr. 'Ihis response can occur only if
TYPE=RETURN is specified in the DFBEMS macro instruction (see
the description of TYFE=RETURN for further inf.ormation.).

MAPFAIL=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the data to be mapped has a length of zero
or does not contain a SBA (start. buffer address) sequence. This
response can occur cnly if 'I'YPE=IN or TYPE=MAP is specified and
data is mapped from a 3270 device. For TYPE=IN, the> address of
the erroneous TIOA is available at TCTTEDA. For TYPE=MAP, this
address is wherever the user placed it prior to the request
(either in TCTTEDA or TCAMSIOA) •

INVET=syrobolic address
specifies the entry label of the user-written routine to which
control is passed if the terminal identification specified by
the ERRTERM operand of a DFHBMS TYPE=ROUTE macro instruction is
invalid or is assigned to a terminal of a type not supported
under BMS.

INVLDC=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the LDC mnemonic specified by the LDC
operand does not appear in the LDC list associated with the
TCTTE.

RTEFAIL=symbolic address
specifies the entry label of the user-written routine to which
control is passed if a DFBBMS TYPE=ROUTE request results in a
null routing environment (that is, the message will be sent, by
default, to only the originating terminal). (To determine why
route list entries were skipped, refer to "Status Flag Byte in
User~supplied Route List.")

396 CICS/vS Application prcgrarrmer's Reference Manual

RTESOME=symbolic address

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

specifies the entry label of the user-written routine to which
control is passed if (1) seme of the entries in the
user-specified route list named in the LIST operand of a DFHBMS
TYPE=ROUTE macro instruction are excluded from the routing
environment, or (2) LIST=ALL is specified and not all of the
entries in the terminal central table are included in the routing
environment. (TO determine why seme route list entries were
skipped, refer to "Status Flag Eyte in User-Supplied Route
List. It)

INVMPSZ=symbelic address
specifies the entry label of the user-written routine to which
control is to be passed if (1) the specified map is too wide
for a receiving terminal, or (2) OFLOW has been requested and
the specified map is too long for the receiving terminal. Upon
entry to the user-written routine, TCAMSRI1 contains a terminal
code that further identifies the receiving terminal (see
"Terminal Code (TC) Table").

IGREQID=symbolic address
specifies the entry label ef a user-coded routine to which
centrol is to be passed if the prefix specified is different
from the established (via a previous specification or default)
REQID for this logical message.

ERROR=symbolic address
specifies the entry label of the user-written routine to which
control is passed if any of the response eonqitions except NORESP
occurs.

Some response codes may appear in combination with other response
codes. These combinations are: R'IEFAIL and INVET, and R'IESOME and
INVET. The order used by EMS in checking for all conditions that the
application programmer specifies is as follows: NCRESP, TSIOERR,
INVREQ, RETPAGE, MAPFAIL, RTEFAIL, RTESOME, INVE'I, INVMPSZ, and ERROR.
Thus, if the application programrrer has specified INVET and RTEFAIL
and both of these responses apply, BMS transfers control to the
user-written exception-handling routine identified in the RTEFAIL
operand. In this situation, the INVE~ operand is not acted upon.

If the application programmer does not provide for the checking for
a particular response to a BMS request, and if the exception condition
corresponding to that response occurs, program flew proceeds to the
instruction following the DFHBMS macro instruction in the application
program.

When the third approach identified at the beginning of this
discussion is used, the application programmer must know the BMS
response codes and their meanings. For this approach, the application
programmer can access the response code(s) at TCAMSRC1 and TCAMSRC2.
The possible response codes and the conditions to which they correspond
are identified in the right-hand columns of Figure 10-3. DFHBMS service
requests for which the conditions are applicable are shown at the left.
The keywords are explained in detail in the discussion of DFHBMS
TYPE=CHECK.

Chapter 10. Basic Mapping Support 397

DFHBMS Response Code Response
Service Code
Request Condition Assembler ANS COBOL PL/I Location

INPUT, OUTPUT, NORESP X'OO' 12-0-1-8-9 00000000 TCAMSRCl and
ROUTING, CHECK (Normal Response) TCAMSRC2

OUTPUT, CHECK INVREQ X'Ol' 12-1-9 00000001 TCAMSRCl
(Invalid Request)

OUTPUT, CHECK RETPAGE X' 02' 12-2-9 00000010 TCAMSRCl
(Return Page)

INPUT, CHECK MAPFAIL X'04' 12-4-9 00000100 TCAMSRCl
(Mapping Attempt Failure)

INPUT, OUTPUT, INVMPSZ X'08' 12-8-9 00001000 TCAMSRCl
CHECK (Invalid Map Size)

ROUTING, CHECK INVET X'20' 11-0-1-8-9 00100000 TCAMSRCl
(Invalid Error Terminal)

ROUTING, CHECK RTESOME X'40' no punches 01000000 TCAMSRCl
(Routing to Only Some Terminals)

ROUTING, CHECK RTEFAIL X'80' 12-0-1-8 10000000 TCAMSRCl
(Routing Failure)

INPUT, OUTPUT, ERROR See Note See Note See Note TCAMSRCl
ROUTING, CHECK (Any Response Other Than NORESP) TCAHSRC2

OUTPUT, CHECK TSIOERR X'80' 12-0-1-8 10000000 TCAMSRC2
(Temporary Storage I/O Error)

~ote: The test for the ERROR response is satisfied by a not ~qual condition; that
~not X'OO', not 12-0-1-8-9, or not 00000000 for Assembler, ANS COBOL, and PL/I,
respectively.

Figure 10-3. BMS Response Codes

The following examples shew how to examine the response code provided
by BMS at TCAMSRC1 and TCAMS~C2 and transfer control to the appropriate
user-written routine accordingly.

!2! Asserebler language:

DFHBMS
CLI
BNE
CLI
BE

ERROR DS
DFHPC

GOOD DS

TYPE=(TEXTBLD,STOFE)
TCAMSRC1 ,X100'
ERROR
TCAMSRC2,X'00'
GOOD
OH
TYPE=ABENC
OH

BUILD OUTPUT
ANY UNUSUAL CONDITIONS, TEST 1
• • YES, GO 'IERMINATE THE TASK
•• NO, ANY UNUSUAL CONDITIONS, TEST 2
•• NO, GO CONTINUE PROCESSING
YES, TERMINATE THE TASK
TERMINATE THE TASK

398 CICS/vS Application Progra«~er's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

I2.! ~~:

DFHBMS TYPE=(TEXTELD,STORE) BUILD OUTPUT
IF TCAMSRC1 NOT = , , THEN GO TO ERROR.
IF TCAMSRC2 = , , THEN GO TC GOOD.

ERROR.
DFHPC TYPE=ABEND TERMINATE THE TASK

GOOD.

where the value specified within the single quotation marks is an
unprintable multipunch code for the required hexadecimal value. For
example, a hexadecimal 00 has a multipunch code of 12-0-1-8-9.

~ PL/I:

ERROR:

GOOD:

DFHBMS TYPE=(TEXTEL~,STORE) BUILD OUTPUT
IF TCAMSRC1 ~= 'OOOOOOOO'E THEN GO TO ERROR;
IF TCAMSRC2 ='OOOOOOOO'B 'IHEN GO TO GOOD;

DFHPC TYPE:ABEND TERMINATE THE TASK

TERMINAL CODE (TC) TABLE

A terminal code table is established within BMS for reference in
servicing EMS-supported terminals. ~here is one entry in this table
for each terminal supported under BMS. The terminal codes that appear
in the table are given in Figure 10-4. This code appears in the list
of completed pages available at TCAMSRLA when the application programmer
bas specified that pages of output be returned (that is, RETURN is the
disposition parameter in the output request). The code is available
at TCAMSRI1 when an invalid map size (INVMPSZ) response is returned.

Code
Character

A
B
C
D
E
F
G
H
I
J
K
L
M
Q
R
U
V
W
X

Terminal
Type

CR1F or TBMTYPE=TCAM terminals
Magnetic Tape
sequential Disk
TwX Model 33/35
1050
2740 Models 1 and 2 (Without Buffer Receive)
2741
2140 Model 2 (With Buffer Receive)
2770
2780
3780
3270 Model 1
3270 Model 2
2980 Models 1 and 2
2980 Model 4
3601
Host Conversational (3653)
3650 User Program
3650/3270 Host Conversational (3270)

Figure 10-4. BMS Terminal Code Table

Chapter 10. Basic Mapping Support 39~

STATUS FLAG BYTE IN USER-SUP FLIED ROUTE LIST

Each route list entry contains a status flag byte used by BMS to
indicate to the application program the status of the destination at
the time the DFHBMS TYPE=ROU'IE macro instruction was issued. Upon
return, the application program can investigate the status byte for
each route list entry and take a~~ropriate action.

The status flag byte settings are shown in F'igure 10-5. Their
meanings are explained in greater detail in the text that follows.

Status Flag

Condition Assembler ANS COBOL PUI
(See explanation below.)

ENTRY SKIPPED X'80' 12-0-1-8 10000000

INVALID TERMINAL X'40' no punches 01000000
IDENTIFICATION

TERMINAL NOT SUPPORTED X'20' 11-01-8-9 00100000
UNDER .BMS

OPERATOR NOT X '1 0' 12-11-1-8-9 00010000
SIGNED ON

OPERATOR SIGNED ON X'08' 12-8-9 00001000
UNSUPPORTED 'I'ERMINAL

INVALIB LDC MNEMONIC X'04' 12·4-9 00000100

Figure 10-5. BMS Status Flags

ENTRY SKIPPED A route list entry that is flagged as skipped was not
included in the resolved routing environment. If an
entry has been skipped, another flag indicating why the
entry was skipped may be on in the. status byte. This
second flag could be ~ of the following:

• INVALID TERMINAL IDENTIFICATION

• TERMINAL NOT SUFPORTED UNDER EMS

• OPERATOR NOT SIGNED ON - only an operator
identification was specified in the route list entry
and that operator was not Signed on anx terminal

• OPERA'IOR SIGNED ON UNSUPPORTED TERMINAL

• INVALID LDC MNEMONIC

If only the ENTRY SKIPPED flag is on, neither a terminal
identification nor an operator identification was
specified in the route list entry.

INVALID TERMINAL IDENTIFICATION
This flag indicates that the terminal identification
specified in the route list entry does not have a
corresponding TCT'IE in the terminal control table. This
entry is also flagged as ENTRY SKIPPED.

400 CICS/vS Application Prograremer's Reference Manual

TERMINAL NOT SUPPORTED UNDER BMS

Page of SH2Q-9003-2
Revised May 22, 1975
By TNL SN20-9086

This flag indicates that the terminal identification
specified in the route list entry is for a terminal type
that is not supported under BMS or the terminal table
entry indicated that the terminal identification was
not eligible for routing. This entry is also flagged
as ENTRY SKIPPED.

OPERATOR NOT SIGNED ON
This flag indicates that the specified operator is not
signed on. Anyone of the following conditions causes
this flag to be set:

1. An operator identification was specified with a
terminal identification, but the specified operator
was not Signed on the terminal. This entry is not
skipped.

2. An operator identification was specified without a
terminal identification, and the operator was not
signed on any terminal. This entry is also flagged
as ENTRY SKIPPED.

3. The OPCLASS o~erand was specified with the DFBBMS
TYPE=ROUTE macro instruction and a terminal
identification was specified in the route list entry,
but the op!ratorsigned on the terminal did not
qualify under OPCLASS. This entry is not skipped.

OPERATOR SIGNED ON UNSUPPORTED TERMINAL
This flag indicates ·that only an operator identification
was specified in the route list entry, and that operator
was Signed On a terminal not supported byBNS. This
entry is also flagged as ENTRY SKIPPED. The unsupported
terminal identification is returned in that route list
entry at URLTRMID for informational purposes only.

INVALID LDC MNEMONIC
This flag indicates that one of the following conditions
occurred:

1. The LDC mnemonic specified in the route list does
not appear in the LDC list associated with the TCTTE.

2. The device type generated in the system LDC table
for the specified or implied LDC mnemonic is not
the same as the device type for the first LDC
specified in the route environment.

A symbolic storage definition of the user-supplied route list is
available on the source library(s) under the member name DFHURLDS.
This symbolic storage definition can be used as an aid in building the
route list, and if necessary, in testing the status flag byte for each
entry upon return from a DFBBMS TYPE=ROUTE request that refers to a
list. The symbolic base register is URLBAR.

STANDARD ATTRIBUTE LIST AND PRIN~ER CONTROL CHARACTERS (DFHBMSCA)

The applicaticn programaer can obtain a set of commonly used 3270
field attributes and printer control characters by copying DFHBMSCA
into his program. For American National Standard ~NS) COBOL, this
definition must be copied into the Working storage section. DFBBMSCA
consists of a set of EQU statements in the case of Assembl~r language,

Chapter 10. Basic Mapping Support 401

a set of 01 statements in the case of ANS COBOL, and DECLARE statements
defining elementary character variables in the case of PL/I. One
possible use for DFHBMSCA is for the purpose of temporarily changing
attribute characters in a rraF .•

The field attributes/printer control characters and corresponding
symbolic names are listed in Figure 10-6. These attributes cannot be
combined by the application Frogrammer in any manner. If any
combinations other than those listed are required, the application
programmer must either use the A~TRB operand of the DFHMDF macro
instruction to obtain the desired combinations or generate new attribute
combinations offline.

Symbolic Name Field Attribute/Printer Control Character

DFHBMPEM 3270 Printer end of message
DFHBMPNL 3270 Printer new-line character
DFHBMASK Autoskip
DFHBMUNP Unprotected
DFHBMUNN Unprotected and numeric
DFHBMPRO Protected
DFHBMBRY High intensity
DFHBMDAR Dark, nonFrint
DFHBMFSE MJ:T on
DFHBMPRF Protected and MDT on
DFHBMASF Autoskip and MDT on
DFHBMASB Autoskip and high intensity

Figure 10-6. 3270 Field Attributes and Printer Ccntrol Characters

STANDARD ATTENTION IDENTIFIER LIST (J:FHAID)

To test the method of initiating an incoming READ from the 3270
Information Display System, the application programmer is provided with
a set of 3270 attention identifiers (single-character variables called
AIDS) that can be used to test the value at TCTTEAID. He can obtain
this set of attention identifiers by copying DFHAIJ: into his program.
For ANS COBOL, this definition must be copied into the Working Storage
section.

DFHAID consists of a set of EQU statements in the case of Assembler
language, a set of 01 statements in the case of ANS COBOL, and DECLARE
statements defining elementary character variables in the case of PL/I.
The symbolic names for the attention identifiers and the corresponding
3270 functions are given in Figure 10-7.

402 CICS/VS Application Prograrrmerts Reference Manual

SE!!bolic

DFBENTER
o FBCL EAR
DFBPEN
DFBPA1
DFBPA2
DFHPA3
DFBPF1

· · · DFHPF12

Figure 10-7.

li!!!!! 1l1.Q Function

Enter key
Clear key
I Jrmediately detectable field
PA1 key
PA2 key
PA3 key
PF1 key

· · · PF12 key .
3270 Attention Iden~ifiers and Functions

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

Chapter 10. Basic Mapping Support 402.1

BMS TIOA SPECIFICATION

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

Depending on the programming language used, the BMS symbolic storage
definition of the TIOA must be provided in the application program as
shown in the following examples. Note that ~apsetname1, mapsetname2,
and mapsetname3 in these exarrples are the names cf members that contain
the assembly of a BMS symbolic storage definition (TYPE=DSECT).

1. Assembler-language COFY statements.

COpy DFHTIOA
COpy mapsetname1
COpy Illa~setname2

COpy mapsetname3

2. ANS COBOL COpy statements for each symbolic storage definition.
Note that mapname1, mapname2, and mapname3 in this exam~le are
the names of the first ma~s in the map sets.

LINKAGE SECTION.
01 DFHBLLDS COpy DFHBILDS.
02 TIOABAR PICTURE 59(8) CaMP.

01 DFHCSACS COPY DFHCSADS.
01 DPHTCADS COPY CFHTCACS.
01 DFHTIOA COPY DFHTICA.
01 ma~name1 COpy rrapsetname1.
01 mapname2 COpy rrapsetname2.
01 ma~name3 COpy rrapsetname3.

3. PL/I ~INCLUDE statements.

IINCLUDE DFHTIOA;;
~INCLUDE mapsetname1;
%INCLUDE mapsetnarr,e2;
IINCLUDE mapsetnarr.e3;

In addition to providing the BMS symbolic storage definition for
the TIOA, the application prograremer must establish addressability for
this storage definition. De~ending on the programming language used,
this is accomplished as follows:

1. Assembler-language ORG statement immediately preceding the
symbolic storage defiriticn for each map, starting with the
second map. For exam~le:

COpy DFHTIOA
COpy ma~setname1
COPY mapsetname2
COpy mapsetname3

Chapter 10. Basic Mapping Support Q03

DFHSC TYPE:GETMAIN, *
NUMBYTE=mapname.E-TIOADBA, *
CLASS=TERMINAL, *
INITIMG=OO

L TIOABAR,TCASCSA ESTABLISH TIOA ADDRESSABILITY

~: BMS appends an E and hyphen to each application programmer
selected Rapname or T to each selected mapsetname to create a
label at the end of the map descripticn or map set description.
The Assembler-language programmer can refer to that label as in
the example above to request cnly the awount of storage required.

2. ANS COBOL 02 level statements immediately following the COPY
statement for the Linkage Section Base Locator (BLL). These 02
statements must be coded in the same order as the corresponding
01 statements coded previously. For exam~le:

LINKAGE SECTION.
01 DFHBLLDS COPY CFHBLLCS.

02 TIOABAR PICTURE S9 (8) COMPU'IATIONAL.
02 MAPBASE1 PICTURE S9" (8) CCMPUTATIONAL.
02 MAPBASE2 PICTURE S9(8) COMPUTATIONAL.
02 MAPBASE3 PICTURE S9(8) COMPUTATIONAL.

01 DFHTIOA COPY DFHTIOA.
01 mapname1 COpy rrapsetname1.
01 mapname2 COpy rrapsetname2.
01 mapname3 COpy rrapsetname3.

PROCEDURE DIVISION.

DFHSC TYPE=GETMAIN, *
NUMBYTE=120, *
CLASS=TERMINAL, *
INITIMG=OO

MOVE TCASCSA TC TICABAR.
ACD 12 TICABAF GIVING MAPBASE1. MAPEASE2, AND MAPBASE 3.

3. PLII based pointer variable (EMSMAPBR). For example:

DCL TIOABAA FIXED BINARY(31,0) BASED (TIOABAB) ;

IINCLUDE DFHTIOA;;
IINCLUDE mapsetname1;
%INCLUDE mapsetnaroe2;
IINCLUDE mapsetnarne3;

DFHSC TYPE=GETMAIN,
NUMBYTE= 120 ,
CLASS=TERMINAL,
INITIMG=OO

TIOABAR=TCASCSA;
TIOABAB=ACDR(TICABAR) ;
TIOABAA=TIOABAA+12;
BMSMAPBR=TIOABAR;

/*EACH OF THESE MAPS IS*/
/*BASED ON THE SAME POINTER*/
/*VARIABLE - BMSMAPBR*/

/*TIOABAA NOw OVERLAYS TIOABAR*/
/*IN EFFECT, ADDS 12 TO TIOABAR*/

404 CICS/vS Application Prcgrarrmer's Reference Manual

*
*
*

PROGRAMMING CONSIDERATIONS FOR PAGING COMMANDS ON VIDEO DEVICES

The commands used by terminal operators to communicate witb CICS/VS
BMS are collectively known as terminal paging commands, or simply as
paging commands. Their tormat and use are discussed in detail in the
CICS/VS Terminal Operator's Guide.

The application programrrer need not recall all details ot these
commands. However, it should be clearly understood that use ot BMS at
map definition time and in executable programs can have a signiticant
eftect on terminal operator Frocedures.

Cursor placement is an im~ortant consideration in programming tor
paging commands. Any ot the tollowing items can cause a paging command
not to be the first data read by CICS/VS and theretore not to be
interpreted as a paging command.

• After a print operation on a 3275 Display Station, the cursor is
set to position zero. A paging command entered at this location
is not recognized unless the last position ot the butter contains
an attribute byte or the butter has been cleared.

• A field sent with DATA=ONLY and no attribute byte in the TIOA is
written into the butter without an attribute byte.. It the
application ~rogrammer places the cursor in this tie1d and the
operator keys a paging command beginning at the cursor location,
the paging command is not recognized.

Since the tie1d has no attribute byte, the hardware considers the
data to be an extension ot the previous1y detined tield. When the
operator keys into the middle ot the hardware-recognized tield and
presses the enter key, the tie1d is transmitted trom the beginning
of the previous1y defined tield. The data at the beginning ot the
tie+d is examined tor a paging command and responded to accordingly.

• Cursor specitication in the DFHBMS macro instruction can adversely
aftect operator action it the cursor is not set at the beginning
of a fieid~ Paging commands entered at a cursor 10cation that is
not the beginning of a tield are not recognized by BMS because data
transmission starts at the beginning ot the tie1d it the tie1d is
not set to nu1ls X'OO'.

EXAMPLES OF THE USE OF BMS

The examples in this section are based on a tair1y sim~1e screen
exercising problem and are intended to show the resu1ts ot generating
BMS symbolic storage definitions.

In the examp1es, input and output symbolic storage detinitions are
illustrated for each ot the programming languages supported by CICS/VS.
Each of tpese examp1es is generated from the screen detinition ot the
tirst ex~ple; only the initia1 DFHMSD entry is Changed. (See Figures
10-8 through 10-~1.)

Chapter 10. Basic Mapping Support 405

SAMPLE
MAP

NAME

MONTH
DAY
YEAR

BLUE
RED
AMBER

ERROR

DFHMSD TYPE=DSECT,LANG=ASM,MOI:E=INOUl',TERM=3210,CTRL=FREEKB
DFHMDI LINE=1,COLUMN=1,SIZE=(4,80)
DFHMDF POS=O, LENGTH=11, INIT.IAL= 'ENTER YOUR NAME--'
DFHMDF POS=18,LENGTH=18,ATTRB=(IC,UNPROT)
DFHMDF POS=31,LENGTH=2
DFHMDF POS=40,LENGTH=11,INITIAL='WHAT IS THE DATE1'
DFHMDF POS=58,LENGTH=2,INITIAL='MM',GRPNAME=DATE
DFHMDF POS=60,LENGTH=2,INITIAL='DD',GRFNAME=DATE
DFHMDF POS=62,LENGTH= 2, INITIAL=' YY' ,GRPNAME=DATE
DFHMDF POS=31,LENGTH=lS
DFHMDF POS=80,LENGTH=26,INITIAL='SELECT YOUR FAVORITE COLOR'
DFHMDF POS=120,LENGTH=9 ,AT'IRB=DET ,INITIAL=' 1.i5BLUE1UUS'
DFHMDF POS=131,LENGTH=8,ATTRB=DET,INITIAL=·1.i5RED.i5~~'
DFHMDF POS=141,LENGTH=10,AT'IRE=DET,INITIAL='1~AMBE~~~'
DFHMDF POS=160,LENGTH=19,ATTRB=(PROT,ERT) ,

INI~IAL='NOW HI'! A PF KEY ••• '
DFHMDF POS=240,LENGTH=19,ATTRE=DRK,

INITIAL='SORRY, TRY AGAIN ••• •
DF'HMS D TYPE=F INAL

Figure 10-8. Symbolic Storage Detinition Input

406 CICS/VS Application Programmer's Reference Manual

*

*

MAPI -DS OC • INPUT MAP ORIGIN
MAPO DS OC • OUTPUT MAP ORIGIN

NAMEL DS H INPUT DATA FIELD LENGTH
NAMEF DS OC • DATA FIELD FLAG
NAMEA DS C • DATA FIELD ATTRIBUTE
NAMEI DS OCL18 INPUT DATA FIELD
NAMEO DS CL18 · OUTPUT DATA FIELD

* START NEW DATA GROUP DATE
DATEL DS H INPUT GROUP FIELD LENGTH
DATEF DS OC • GROUP FIELD FLAG
DATEA DS CLl · GROUP FIELD ATTRIBUTE
DATEI DS OC • INPUT GROUP FIELD ORIGIN
DATEO DS OC • OUTPUT GROUP FIELD ORIGIN

MONTHI DS OCL2 • INPUT DATA FIELD
MONTHO DS CL2 · OUTPUT DATA FIELD

DAYI DS OCL2 · 'INPUT DATA FIELC
DAYO DS CL2 • OUTPUT DATA FIELD

YEAR I DS OCL2 · INPUT DATA FIELC
YEARO DS CL2 • OUTPUT DATA FIELD

BLUEL DS H INPUT DATA FIELD LENGTH
BLUEF DS OC • DATA F'IELD FLAG
BLUEA DS C • DATA FIELD ATTRIBUTE
BLUE I DS OCL9 · INPUT DATA FIELD
BLUEO DS CL9 • OUTPUT DATA FIELD

REDL DS H INPUT DATA FIELD LENGTH
REDF OS OC • DATA FIELD FLAG
REDA OS C • DATA FIELD ATTRIBUTE
REDI OS OCL8 · .iNPUT DATA F'IELD
REDO DS CL8 · OUTPUT DATA FIELD

AMBERL DS H INPUT DATA FIELD LENGTH
AMBERF DS OC • DATA FIELD FLAG
AMBERA DS C • DATA FIELD ATTRIBUTE
AMBERI DS OCL10 . INPUT DATA FIELD
AMBERO DS CL10 · OUTPUT DATA FIELD

ERRORL DS H INPUT DATA FIELD LENGTH
ERRORF DS OC • DATA FIELD FLAG
ERRORA DS C • DATA FIELD ATTRIBUTE
ERRORI OS OCL19 . INPUT DATA FIELD
ERRORO DS CL19 · OUTPUT DATA FIELD

MAPE EQU * END OF MAP DEFINITION
ORG

SAMPLET EQU * END OF MAP SET DEFINITION
* * * END OF MAP DEFINITION * * *

Figure 10-9. Symbolic Storage Detinition using LANG=ASM.MODE=INOUT

Chapter 10. Basic Mapping Support Q01

MAPI

NAMEL
NAMEF

NAMEI

DS

DS
DS
DS
DS

OC •

H
OC •
C •
CL18 •

* START NEW DATA GROUP DA'I'E
DATEL DS H
DATEF DS OC •

DS C •
DATE I DS OC •

MONT HI DS

DAY I DS

YEARI DS

BLUEL DS
BLUEF DS

DS
BLUEI DS

REDL DS
REDF DS

DS
REDI DS

AMBERL DS
AMBERF DS

DS
AMBER I DS

ERRORL DS
ERRORF DS

DS
ERRORI DS

CL2 •

CL2 •

CL2 •

H
OC •
C •
CL1 •

H
OC •
C •
CL1 •

H
OC •
C •
CL1 •

H
OC •
C •
CL19 •

ORG
SAMPLET EQU *
* * * END OF MAP DEFINITION * * *

MAP ORIGIN

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA F'IELD A'I"IRIBUTE

DATA FIELD

INPUT GROUP FIELD LENGTH
GROUP FIELD FLAG
GROUP FIELD A'ITRIBUTE
GROUP FIELD ORIGIN

DATA FIELD

DATA FIELD

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD AT'IRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

DATA FIELD

INPU'I DATA FIELD
DATA FIELD FLAG
DATA FIELD AT'IRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD FLAG
DATA FIELD ATTRIBUTE

DATA FIELD

END OF MAP SET DEFINITION

Figure 10-10. Symbolic Storage Detinition using LANG=ASM,MODE=IN

408 CICS/VS Application Programmer's Reterence Manual

MAPO

NAMEA
NAMEO

DS

DS
DS
rs

OC •

H
C •
CL18 •

* START NEW DATA GROUP DATE
DS H

DATEA OS CL1 •
DATEO DS OC •

MONTHO DS

DAYO OS

YEARO OS

DS
BLUEA IS
BLUEO IS

DS
REDA DS
REDO DS

DS
AMBERA DS
AMBERO OS

DS
ERRORA DS
ERRORO rs

CL2 •

CL2 •

CL2 •

H
C •
CL9 •

H
C •
CL8 •

H
C •
CL10 •

H
C •
CL19 •

MAP ORIGIN

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT GROUP F'IELD LENGTH
GROUP FIELD ATTRIBUTE
GROUP FIELD ORIGIN

DATA FIELD

DATA FIELD

DATA FIELD

INPUT DATA F'IELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

INPUT DATA FIELD LENGTH
DATA F'I ELD ATTR I BUT E

DATA FIELD

INPUT DATA F'IELD LENGTH
DATA FIELD ATTRIBUTE

DATA FIELD

MAPE EQU * END OF MAP DEFINITION
ORG

SAMPLET EQU * END OF MAP SET DEFINITION
* * * END OF MAP DEFINITION * * *

Figure 10-11. Symbolic Storage Definition using LANG=ASM,MODE=OUT

Chapter 10. Basic Mapping Support ~09

01 MAPI.
02 NAMEL COMP PIC S9 (4) •
02 NAMEA PICTURE X.
02 FILLER REDEFINES NAMEA.

03 NAMEF PICTURE X.
02 NAME I PIC X (1S) •
02 FILLER PIC X.
02 DATEL COMP PIC S9 (4) •
02 DATEA PICTURE X.
02 FILLER REDEFINES DATEA.

03 DATEF PICTURE X.
02 DATEI.

03 MONTH I PIC X (2) •
03 DAYI PIC X (2) •
03 YEARI PIC X (2) •
03 FILLER PIC X.

02 BLUEL COMP PIC S9 (4) •
02 BLUEA PICTURE x.
02 FILLER REDEFINES BLUEA.

03 BLUEF PICTURE X.
02 BLUEI PIC X(9) •
02 REDL COMP PIC S9 (4) •
02 REDA PICTURE X.
02 FILLER REDEFINES REDA.

03 REDF PICTURE X.
02 REDI PIC X (S) •
02 FILLER PIC X.
02 AMBERL COMP PIC S9 (4) •
02 AMBERA PICTURE X.
02 FILLER REDEFINES AMBERA.

03 AMBERF PICTURE X.
02 AMBERI· PIC X (1 0) •
02 FILLER PIC X.
02 ERRORL COMP PIC S9 (4) •
02 ERRORA PIcrURE X.
02 FILLER REDEFINES ERRORA.

03 ERRORF' PICTURE X.
02 ERRORI PIC X (19) •

01 MAPO REDEFINES MAPI.
02 FILLER PICTURE X(3).
02 NAMEO PIC X (1S) •
02 FILLER PIC X.
02 FILLER PICTURE X(3).
02 DATEO.

03 MONTHO PIC X (2) •
03 DAYO PIC X(2).
03 YEARO PIC X (2) •
03 FILLER PIC X.

02 FILLER PICTURE X (3) •
02 BLUEO PIC X (9) •
02 FILLER PICTURE X(3).
02 REDO PICX(S).
02 FILLER PIC X.
02 FILLER PICTURE X(3).
02 AMBERO PIC X(10).
02 FILLER PIC X.
02 FILLER PICTURE X(3).
02 ERRORO PIC X(19).

Figure 10-12. Symbolic Storage Definition using LANG=COBOL, MODE=INOUT

410 CICS/VS Application Programmer's Reterence Manual

01 MAPI.
02 NAMEL COMP PIC 89 (4) •
02 NAMEF PICTURE x.
02 NAME I PIC X (18) •
02 FILLER PIC X.
02 DATEL COMP PIC 89 (4) •
02 DATEF PICTURE X.
02 DATEI.

03 MONTH I PIC X (2) •
03 DAY I PIC X (2) •
03 YEARI PIC X (2) •
03 FILLER PIC X.

02 BLUEL COMP PIC 89 (4) •
02 BLUEF PICTURE X.
02 BLUE I PIC X(1).
02 REDL COMP PIC 89 (4) •
02 REDF PICTURE x.
02 REDI PIC X (1) •
02 AMBERL COMP PIC 89 (4) •
02 AMBERF PICTURE X.
02 AMBERI PIC X (1) •
02 ERRORL COMP PIC 89 (4) •
02 ERRORF PICTURE X.
02 ERRORI PIC X (19) •

Figure 10-13. Symbo1ic Stor age Definition using LANG=COBOL,MODE=IN

Chapter 10. Basic Mapping 8upport 411

01 MAPO.
02 FILLER PICTURE X(2).
02 NAME A PICTURE x.
02 NAMEO PIC X(1S).
02 FILLER PIC X.
02 FILLER PICTURE X(2).
02 OATEA PICTURE X.
02 OAT EO.

03 MONTHO PIC X(2).
03 DAYO PIC X(2).
03 YEARO PIC X(2).
03 FILLER PIC X.

02 FILLER PICTURE X(2).
02 BLUEA PICTURE X.
02 BLUEO PIC X(9).
02 FILLER PICTURE X(2).
02 REDA PICTURE X.
02 REDO PIC X(8).
02 FILLER PIC X.
02 FILLER PICTURE X(2).
02 AMBERA PICTURE X.
02 AMBERO PIC X(10).
02 FILLER PIC X.
02 FILLER PICTURE X(2).
02 ERRORA PICTURE X.
02 ERRORO PIC X(19).

Figure 10-14. Symbolic Storage Detinition using LANG=COBOL,MODE=OUT

412 CICS/VS Application Programmer's Reterence Manual

DECLARE
2

1 MAPI
NAMEL
NAME A:

BASED (BMSMAPER),
FIXED BINARY (15,0),
CRARACT Ef{ (1),

CHARACTER (18),
2
2
2
2
2

NAME I
DATEL
DATEA
DATEI,

FIXED BINARY (15,0),
CHARACTER (1),

3 MONTHI CHARACTER (2),
3 DAY I CHARACTER (2),
3 YEAR I CHARACTER (2),

2 BLUEL FIXED BINARY (15,0),
2 BLUEA CHARACTER (1),
2 BLUEI CH~RACTER (9),
2 REDL FIXED BINARY (15,0),
2 REDA CHARACTER (1),
2 REDI CHARACTER (8),
2 AMBERL FIXED BINARY (15,0),
2 AMBERA CHARACTER (1),
2 AMBERI CHARACTER (10),
2 ERRORL FIXED BINARY (15,0),
2 ERRORA CHARACTER (1),
2 ERRORI CHARACTER (19),
2 FILL0271 CHARACTER (1);

DECLARE 1 MAPO BASED (BMSMAPER),
2 DFHMS16 FIXED BINARY (15,0),
2 NAMEF CHARACTER, (1),
2 NAMEO CHARAcrER (18),
2 DFHMS17 FIXED BINARY (15,0),
2 DATEF CHARACTER (1),
2 DATEO,

3 MONTHO CHARACTER (2),
3 DAYO CHARACTER (2),
3 YEARO CHARACTER (2),

2 DFHMS18 FIXED BINARY (15,0),
2 BLUEF CHARACTER (1),
2 BLUEO CHARACTER (9),
2 DFHMS 19 FIXED BINARY (15 ,0) ,
2 REDF'CHARACTER (1),
2 REDO CHARACTER (8),
2 DFHMS20 FIXED BINARY (15,0),
2 AMBERF CHARAcrER (1),
2 AMBERO CHARACTER (10),
2 DFHMS21 FIXED BINARY (15,0),
2 ERRORF CHARACTER (1),
2 ER~ORO CHARACTER (19),
2 FILL0271 CHARACTER (1);

/* END OF MAP DEFINITION */

Figure 10-15. Symbolic Storage Detinition using LANG=PLI,MODE=INOUT

Chapter 10. Basic Mapping Support q13

DECLARE
2
2
2
2
2
2

1 MAPI
NAMEL
NAMEF
NAMEI
DATEL
DATEF
DATEI,

BASED (BMSMAPBR),
FIXED BINARY (15,0),
CHARACTER (1),

CHARACTER (18),
FIXED BINARY (15,0),
CHARACTER (1),

3 MONTHI CHARACTER (2),
3 DAY I CHARACTER (2),
3 YEARI CHARACTER (2),

2 BLUEL FIXED BINARY (15,0),
2 BLUEF CHARACTER (1),
2 BLUEI CHARACTER (1),
2 REDL FIXED BINARY (15,0),
2 REDF CHARACTER (1),
2 REDI CHARACTER (1),
2 AMBERL FIXED BINARY (15,0),
2 AMBERF CHARACTER (1),
2 AMBERI CHARACTER (1),
2 ERRORL FIXED BINARY (15,0),
2 ERRORF CHARACTER (1),
2 ERRORI CHARACTER (19),
2 FILL0292 CHARACTER (1);

/* END OF MAP DEFINITION */

Figure 10-16. Symbolic storage Definition using LANG=PLI,MODE=IN

DECLARE
2
2
2
2
2
2

1 MAPO BASED (BMSMAPER),
DFHMS22 FIXED BINARY (15,0),
NAMEA CHARACTER (1),
NAMEO CHARACTER (18),
DFHMS23 FIXED BINARY (15,0),
DATEA CHARACTER (1),
DATEO,

3 MONTHO CHARACTER (2),
3 DAYO CHARACTER (2),
3 YEARO CHARACTER (2),

2 DFHMS24 FIXED BINARY (15,0),
2 BLUEA CHARACTER (1),
2 BLUEO CHARACTER (9),
2 DFHMS25 FIXED BINARY (15,0),
2 REDA CHARACTER (1),
2 REDO CHARACTER (8),
2 DFHMS26 FIXED BINARY (15,0),
2 AMBERA CHARACTER (1),
2 AMBERO CHARACTER (10),
2 DFHMS27 FIXED BINARY (15,0),
2 ERRORA CHARACTER (1),
2 ERRORO CHARACTER (19),
2 FILL0320 CHARACTER (1);

/* END OF MAP DEFINITION */

Figure 10-17. Symbolic storage Definition using LANG=PLI,MODE=0UT

414 CICS/VS Application Programmer's Reference Manual

CHAPTER 11. APPLICATION PROGRAMMING CONSIDERATIONS

TERMINAL-oRIENTED ~ IDENTIFICATION

When CICS/VS receives input from a terminal to which no task is
attached, the system has to determine which task should be initiated.
The methods by which the user can specify the task to be attached and
the sequence in which the system checks these specifications is as
follows (see also Figure 11-1).

a) Is this terminal of a type supported by the basic mapping
support terminal paging facility?

b) Is the input a paging command? (~he terminal operator
enters paging commands as specified by the PGRET,
P GCHA IN , PGPURGE,' and PGCOPY operands of the DFHSIT
macro instruction by the system programmer. See the
CICS/VS System Programmer's Reference Manual.)

If yes, task attached: the task identified by transaction
identification CSPG, to process paging commands.

Is a task specified by the TRANSID operand of the DFHTCT
macro instruction creating a terminal control table entry
for the terminal?

If yes, task attached: the task specified by the TRANSID operand
used in the creation of the terminal control table entry.

Is a task specified by the TRANSID operand of a DFHPC
TYPE=RETURN macro instruction (or by the application program.
moving the task name into TCANXTID)?

If yes, task attached: the task specified by the TRANSID operand
of the last DFHPC TYPE=RETURN. macro instruction containing a TRANSID
operand that was issued by the task.

a)
b)

C)

Is the terminal a 3270?
Is the input a PA key, PF key, or LPA (light pen
attention)?
Is this input (PAn, PFn, or LPA) specified by the
operand of a DFHPCT TYPE=ENTRY macro instruction?
the CICS/VS System Programmer's Reference Manual.)

TASKREQ
(See

If yes, task attached: the task specified by the TASKREQ operand
of same DFHPCT TYPE=ENTRY macro instruction.

Is a valid transaction identification specified by the first
one to four characters of the terminal input?

If yes, task attached: the task whose transaction identification
is specified in the terminal input.

If none of the above tests is met, an invalid transaction
identification exists. Message DFH2001 is sent to the terminal.

Note: The 3735 Programmable Buffered Terminal takes exception to this
sequenpe when operating in inquiry mode. The test of input from the
terminal (item 5 above) is given first priority.

Chapter 11. Application Programming COnsiderations 415

Yes

Yes

Yes

Yes

Attach
Named
Task

Attach
Specified

Task

Yes

Yes

Attach
CSPG

Yes

Attach Attach
Task Spec. Task Spec.

by Terminal by DFHPCT
Input PROGRAM

Figure 11-1. CICS/VS Terminal-Oriented Task Identification

PROGRAMMABLE DEVICE CONSIDERATIONS

When BTAM is used by CICS/vS for programmable binary synchronous
communication line management, CICS/VS initializes the communication
line with a BTAM' read initial (TI); the terminal response must be a
write initial (TI) or the equivalent. If a user-written application
program then issues a read, CICS/VS issues a read continue (TT) to that
line; if the application program then issues a write, CICS/VS issues
a read interrupt (RVI) to that line. If end of transmission (EOT) is
not received on the RVI, CICS/VS issues a read continue (TT) until the
EOT is received.

The programmable terminal res~onse to a read interrupt must be "end
of transmis~ion" (EOT), except that the EOT response may be preceded
by writes to exhaust the contents of output buffers so long as the
inpUt buffer size (specified by the systemprogramrner during preparation
of the terminal'control table) is not exceeded by this data. CICS/VS
issues a read continue; until it receives an EOT, or until the input
message exceeds the size of the input buffer (which is an error
condition) • '

416 CICS/vS Applic~tion Programmer's Reference Manual

After rece1v1ng an EOT, CICS/VS issues a write initial (TI) or the
equivalent (depending on the type of line). The programmable terminal
response must be a read initial (TI) or the equivalent.

If another write is issued by the application pIOgram, CICS/vS issues
a write continue (TT) to that line. If the application program issues
a read after it has issued a write, CICS/VS turns the line'around with
a write reset (TR). (CICS/vS does not recognize a read interrupt.)

To ensure that binary synchronous terminals (for example, System/370,
1130, 2780) remain coordinated, CICS/VS processes the data collection
or data transmission transaction on a line to corr-pletion be~ore it
polls other terminals on that line.

The programmable terminal actions required for the activity sequence
just discussed, with the corresponding user application program macro
instructions and CICS/VS actions, are summarized below.

Application Program

DFHTC TYPE=READ

DFHTC TYPE=WRITE (note 2)
(note 3)

DFHTC TYPE=WRITE

DFHTC TYPE=READ (note 4)

Notes:

CICS/VS (note 1)

Read initial (TI)

Read continue (TT)

Read interrupt (RVI)
Read continue (TT)

Write initial (TI)

Write continue (TT)

Write reset (TR)
Read initial (TI)

Progr amma bl e
Termin~l Prog ram

Write initial (TI)

Write continue (TT)

Write reset (TR), or
Write continue
Wr~te reset
Read initial (TI)

Read continue (TT)

Read continue (TT)
Write initial (TI)

1. CICS/vS issues the macro instruction shown, or, if the line is
switched, the equivalent. The user-written programmable terminal
program must issue the equivalent of the BTAM operation shown.

2. An RVI sequence is indicated by the DECFLAGS field of the data
extent control block (DECB) being set to X'02' and a completion
code of X'7F' being returned to the event control block (ECB).

3. The read continue is issued only if the EOT character is not
received on the read interrupt.

4. write reset is i~sued only for point-to-point terminals.

Input data is deblocked to ETX, ETB, RS, and US characters. These
characters are moved with the data to ,the TIOA but are not included in
the data length (TIOATDL). The CICS/VS ~pplication programmer should
be aware that charact~rs such as NL, CR, LF, and EM are passed in the
TIOA as data.

3735 CONSIDERATIONS

The 3735 Programmable Buffered Terminal may be serviced by CICS/VS
in response to terminal-initiated input, or as a result of an automatic
or time-initiated transaction. Both are explained belQw.

Chapter 11. Application Programming Con sider at. ions 417

3735 Transactions - Autoanswer

The 3735 transaction is attached by CICS/VS upon receipt of input
from a 3735. Data is passed to the application program in 476-byte
blocks; each block (one buffe:t") may contain multiple logical records.
The final block may be shorter than 476 bytes; however, zero-length
final blocks are not passed to the application program. If the block
contains multiple logical records, the application program must perform
any necessary deblocking functions and the gathering of partial logical
records from consecutive reads.

It is recommended that the user spool input data from a 3735 to an
intermediate data set (for example, an intrapartition destination) to
ensure that all data has been captured before deblocking and processing
that data.

The application program must follow 3735 conventions and read to
end-of-file before attempting to write FDPs (form description programs)
or data to the 3735. For this reason, the EOF=symbolic address operand
must be used with each DFHTC TYPE=READ request. When the !OF branch
is taken, the user may begin to write FOPs or data to the 3735, or,
optionally, request CICS/VS to disconnect the line.

It is possible that the 3735 will transmit the end-of-file condition
immediately upon connection of the line. For this reason the user must
code the initialization request (DFHTC EOF=symbolic address) before
issuing any other terminal control requests.

The user is responsible for formatting all special message headers
for output to the 3735 (for example, SELECTRIC, POWERDOWN). If FDPs
are to be transmitted to a 3735 with ASCII transmission code, the
NOTRANSLATE operand must be included in the DFHTC TYPE=WRITE request
for each block of FDP records.

The user must issue a DFH~ TYPE=DISCONNECT macro instruction when
all output has been transmitted to the 3735. If the application program
ends during batch write mode prior to issuing the DISCONNECT request,
CICS/VS forces a 3735 "receive abort" condition and all data just
tr~nsmitted is ignored by the 3735.

3735 Transactions - Autocall

In automatic and time-initiated transactions, all considerations
stated above except use of the DFHTC EOF=symbolic address macro
instruction apply when CICS/VS dials a 3735. The DFHTC EOF=symbolic
address macro instruction is not used.

CICS/VS connects the line and allows the user to indicate the
direction of data transfer by means of the first terminal contvol
request. If this first request is a WRITE and the 3735 has data to
send, the 3735 causes the line to be disconnected.

3740 CONSIDERATIONS

The 3740 Data Entry System may be serviced by CICS/VS as a batch or
inquiry mode application. Considerations for both modes are described
in the following paragraphs.

Batch Mode Applications

In batch mode, the 3740 sends multiple files of data to CICS/VS
during a single transmission. All input data files must be sent to

418 CICS/vS Application Programmer's Reference Manual

CICS/vS before the 3140 is able to receive data from CICS/VS. When
able to receive, the 3140 accepts multiple files of data in a single
transmission. To communicate in this manner, a means is provided in
the DFHTC macro instruction for identifying end-of-file, end-of-input,
and end-of-output conditions.

The ENDFILE=symbolic address operand in the DFHTC TYPE=READ macro
instruction provides the means for the CICS/VS application program to
determine the boundaries for each file received from the 3140. When
the end-of-file condition occurs (defined by receipt of ETX), control
is passed to the address specified. The TIOA contains no valid data
at this time.

The ENDINPT=symbolic address operand in the DFH~C TYPE=READ macro
instruction provides the means for the application program to determine
when the 3740 has completed transmission of all data. When end-of-input
(EOT) is received, control is passed to the address specified. The
TIOA contains no valid data at this time. Once end-of-input is
received, the application program must not issue any additional READs.
An end-of-input condition may exist upon entry to the application
program. Therefore, a DFHTC TYPE=READ with ENDINPT=symbolic address
should always be issued before attempting any terminal operations.

When sending data to the 3740, the DFHTC TYPE=ENDFILE macro
instruction must be issued after each file to signal the end-of-file
(ETX) condition to the 3140. The DFHTC TYPE=ENDOUTPUT macro instruction
should be issued after all data has been sent to the 3740 (EOT) and
must be immediately preceded by a DFHTC TYPE=ENDFILE macro instruction.
Once end-of-output is signalled in this manner, no additional WRITEs
should be issued. The WRITE, ENCFILE, and ENDOU'IPUT parameters may be
combined in the DFHTC macro instruction. For example, a DFHTC
TYPE=(WRITE, ENCFILE) causes a write operation followed by an
end-of-file signal. A DFH~ TYPE=(WRITE, ENCFILE, ENDOUTPUT) causes
a write operation, an end-of-file signal, and then an end-of-output
signal. A DFHTC TYPE=(ENDFILE, ENDOUTPUT) causes an end-of-file signal
followed by an end-of-output signal. The placement of the parameter
within the macro instruction has no effect on the sequence.

The DFHPC TYPE=RETURN macro instruction with 'IRANSID=transaction
code may be used in batch mode to return program control. It may not
be used in batch write mode.

Inquiry Mode Applications

In inquiry mode, the application program must send a block of data
to the 3140 for each block of data received; otherwise, the 3740 appears
similar to the 2141 for inquiry applications. The DFHTC parameters
discussed under "Ea tch Mode Applications" do not apply to inquiry mode
operations.

SYSTEM/7 CONSIDERATIONS

The implementation of System/7 support treats the System/1 as any
other programmable terminal. Transactions are normally initiated from
the System/1 by issuing a four-character transaction code as in the
following example:

Chapter 11. Application Programming Considerations 419

TRNID

*
*
*
*
*
*
* TRAN

CHECK

(1)XMIT
PBER
PLEX

iIOLT
IOLT

PEQU
PDC
PDC

PEQU

TRNID
ERROR

3,CHECK,/0000,TRAN,2

3,

CHECK,
/0000,
TRAN,
2

* /A6D2
/CAOE

*

TRANSMIT TRANSACTION CODE
BRANCH IF CONDITION ERROR CODE
WAIT FOR COMPLETION

GENERATE I/O LIST
RETURN CONTROL ON INTERRUPT
LEVEL 3
RETURN CONTroL AT LOCATION CHECK
TRANSMIT MESSAGE IN BCD MODE
MESSAGE LOCATED AT TRAN
MESSAGE TWO WORDS LONG
TRANSACTION ID
= 'TR'
='N7'

TEST FOR SUCCESSFUL COMPLETION

In this example, the transaction identification is transmitted in
BCD mode. Pseudobinary mode can be used only while communicating with
an active CICS/VS transaction; it cannot be used to initiate the
transaction. Note that the message length is given as the number of
words to be transmitted (not as the number of characters).

When a tr\ansaction is initiated on a System/7, CICS/VS services only
that System/7 for the duration of the transaction; to ensure efficient
use of the line, any other systeml7s on the same line are locked out
for the duration of the transaction. Therefore, CICS/VS application
programs for the multipoint System/7 should be designed so that their
execution is of short duration.

It is an MSP/7 standard that the first word (two characters) of
every message received by the System/7 be an identification word. Note,
however, that all identification words beginning with "(1)" (X'20') are
reserved for future use by CICS/VS.

When the PSEUDOBIN parameter is specified as part of an input
request (for example, DFHTC TYPE=(READ,PSEUDOBIN», the length of the
TIOA provided by the application program must be at least twice that
of the data to be read. For example, if twenty System/7 words (40
bytes) are to be read, the data area of the TIOA must be at least 80
bytes in length.

When the PSEUDOBIN parameter is specified as part of an output
request, terminal control always obtains a new TIOA and frees the old
TIOA unless SAVE was specified. Therefore, on a DFHTC
TYPE=(WRITE,READ,PSEUDOBIN) request, the application program must reload
the TIOA address (from TCTTEDA) to access the input data from the
system/? •

In the case of a System/7 on a dial-up (switched) line, the System/7
application program must initially transmit a four-character terminal
identification. (This terminal identification is generated during
preparation of the TCT through use of the DFHTCT TYPE=TERMINAL,
TRMIDNT=parameter specification.) CICS/vS responds with either a "ready"
message, indicating that the terminal identification is valid and that
the Systeml7 may proceed as if it were on a'leased line, or an INVALID
TERMINAL IDENTIFICATION message, indicating that the terminal

420 CICS/vS Application Programm~r's Reference Manual

identification sent by the System/7 did not match the TRMIDNT=parameter
specification.

Whenever CICS/VS initiates the connection to a dial-up System/7,
CICS/vS writes a null message consisting of three idle characters prior
to starting the transaction. BTAM error routines cause a data check
message to be recorded on the CICS/VS (host) system console if there
is no program resident in the System/7 capable of supporting the
Asynchronous Communication Control Adapter (ACCA). This is normal when
the task to be initiated by CICS/VS is to IPL the System/7. Although
the data check message is printed, CICS/VS ignores the error and
continues normal processing. If a program capable of supporting the
ACCA is resident in the System/7 at the time of this message
transmission, no data check occurs.

When a disconnect is issued to a dial-up System/7, the 'busy' bit
is sometimes left on in the interrupt status word of the ACCA. If the
line connection is reestablished by dialing from the System/7 end, the
'busy' condition of the ACCA prevents message transmission from the
System/7. To overcome this problem, the system/7 program must reset
the ACCA after each disconnect and before message transmission is
attempted. This can be accomplished by issuing the following
instruction:

PWRI 0,8,3,0 RESET ACCA

This procedure is not necessary when the line is reconnected by CICS/VS
(that is, by an automatically initiated transaction).

NONPROGRAMMABLE-DEVICE CONSIDERATIONS

This section presents factors to be considered by the application
programmer who designs applications for nonprogrammable terminals.

2260/2265 PROGRAMMING CONSIDERATIONS

The following is an example of the coding required to write data to
a 2260/2265 terminal and specify the screen line address at which the
write is to begin:

DFHTC TYPE=WRITE,
LINEADR=10

WRITE DATA TO A TERMINAL SCREEN
STARTING AT THIS SCREEN LINE *

The LINEADR operand is used to specify that writing is to begin on
a specific line of a 2260 or 2265 screen. It is the responsibility of
the application programmer to provide the hexadecimal equivalent of a
line number in the range 1-12 (FO-FB) for the 2260 or 1-15 (FO-FE) for
the 2265. He can accomplish this in either of two ways: (1) by
including the LINEADR=number operand in the DFHTC macro instruction,
or (2) by coding a single instruction, prior to issuing the DFHTC macro
instruction, that places the line number in the ~IOALAC field of the
current TIOA. If the latter method is used, the LINEADR=YES operand
must be included in the DFHTC macro instruction.

The following are examples of the coding required to write data to
a 2260/2265 terminal and dynamically determine the screen line address
at which the write is to begin.

Chapter 11. Application Programming COnsiderations q21

For Assembler language:

MVI TIOALAC,X'FO'

DFHTC TYPE=WRITE,
LINEADR=YES

For ANS ~:

MOVE 240 TO TIOALAC.

DFHTC TYPE=WRITE,
LINEADR='YES

For .E!L!.:

TIOALAC=2 40;

DFHTC TYPE=WRITE,
LINEADR=YES

WRITE STARTING AT SCREEN LINE 1

WRITE DATA TO A TERMINAL SCREEN
STARTING LINE ~LREADY SPECIFIED

NOTE PLACE STARTING LINE IN TIOA.

WRITE DA'IA TO A 'IERMINAL SCREEN
STARTING LINE ~LREADY SPECIFIED

/*START WRITE AT SCREEN LINE 1*/

WRITE DATA TO A TERMINAL SCREEN
STARTING LINE ALREADY SPECIFIED

3270 OPERATING IN 2260 COMPATIBILITY MODE

The following example shows how to write data to a 3270 terminal
operating in 2260 compatibility mode, and how to specify the screen
line address at which the write is to begin:

DFHTC TYPE=WRITE,
LINEADR=10

WRITE DATA TO A 'IERMINAL SCREEN
STARTING AT THIS SCREEN LINE

*

*

*

*

The following examples shew how to write data to a 3270 terminal
operating in 2260 compatibility mode, beginning at a screen line address
placed in TIOALAC prior to issuing the write request.

For Assembler language:

MVI TIOALAC,X'FO'

DFHTC TYPE=WRITE,
LINEADR=YES

For ANS COBOL:

MOVE 240 TO TIOALAC.

DFHTC TYPE=WRITE,
LINEADR=YES

WRITE STAR'I'ING AT SCREEN LINE 1

WRITE DATA TO A TERMINAL SCREEN
STARTING LINE ALREADY SPECIFIED

NOTE PLACE STARTING LINE IN TIOA.

WRITE DATA 'lO A TERMINAL SCREEN
STARTING LINE ALREADY SPECIFIED

422 CICS/VS Application Programmer's Reference Manual

*

*

For PL/I:

TIOALAC=240;

DFHTC TYPE=WRITE,
LINEADR=YES

/*START WRITE AT SCREEN LINE 1*/

WRITE DATA TO A TERMINAL SCREEN
STARTING LINE PLREADY SPECIFIED

2110/2180 PROGRAMMING CONslDERATIONS

*

The 2110 Data Communication System and 2180 Data Transmission
Terminal recognize a read interrupt and respond by transmitting the
contents of the I/O buffer. After the contents of the buffer have been
transmitted, the 2110 or 2180 responds to the next read continue with
an EOT. If the I/O buffer is empty, the 2110 or 2180 transmits an EOT.
CICS/VS issues a read interrupt and read continue to relinquish use of
the line and to enable the application program to write to the 2110 or
2180.

Input from a 2110 or 2180 consists of one or more logical records.
CICS/vS provides one logical record for each read request to the
application program. Note that the size of a logical record cannot
exceed the size of the I/O buffer. If the input spans multiple buffers,
multiple reads must be issued by the application program.

output to a 2180 requires that the application Frogrammer insert
the appropriate "escape sequence" for component selection associated
with the output message. (For programming details, see the publication
Component Description: ~ 2180 ~ Transmission Terminal.)

The 2265 component of the 2110 Data Communication System is
controlled by data stream characters, not BTAM macro instructions.
Therefore, the user should provide the appropriate screen control
characters in the TIOA. The DFHTC TYPE=ERASE parameter and LINEADR
operand do not apply.

For 2110 and 2180 input, data is deblocked to ETX, ETB, RS, and US
characters. These characters are moved with the data to the TIOA but
are not included in the data length (TIOATDL). The application
programmer should be aware that such characters as NL, CR, and LF are
passed in the TIOA as da ta.

2980 PROGRAMMING CONSIDERATIONS

CICS/VS provisions for support of the 2980 General Banking Terminal
system are described in the following paragraphs. Fields that contain
information of interest to the application program are pointed out.

Passbook Control

Two one-byte fields of the terminal control table terminal entry
(TCTTE) may be interrogated by an application program servicing passbook
requests from the 2980. These fields are:

• TCTTETAB, which contains the binary representation of the number
of tabs necessary to position the print element to the correct
passbook area •

• TCTTEPCF, which contains the indicators (flags) necessary for
passbook control operations. The indicators TCTTEPCR and TCTTEPCW
indicate whether or not the passbook is present on a read or a

Chapter 11. Application Programming COnsiderations 423

write operation, respectively. The same indicators are used to
indicate the presence of the Auditor key on the 2980 Model 2.

By testing indicators TCTTEPCR and TCTTEPCW, the application program
can maintain positive control with regard to the absence or presence
of a passbook during an update operation. However, care must be taken
not to alter these indicators because unpredictable results may occur.

If the passbook is present on a read (entry) operation, the TCTTEPCR
indicator is turned on (set to a binary one) by CICS/VS. In this case,
the application program generally issues a write operation back to the
passbook area to update the passbook. After the write operation, the
application program must check the TCTTEPCW indicator to ensure that
the passbook was present at the time the write occurred. If the
TCTTEPCW indicator is off (set to a binary zero), the passbook was not
present and the write operation did not occur. However, the data sent
to the terminal (and not printed because of the "no passbook" condition)
is returned to the application program in its original form for
subsequent retransmission.

When the "no passbook" condition occurs on a write, CICS/VS allows
an immediate write to the terminal. The application program should
generally write an error message to the journal area of the terminal
informing the 2980 operator of this error condition. To allOW the
operator to insert the required passbook, CICS/VS automatically causes
the transaction to wait 23.5 seconds before continuing execution.

After regaining control from CICS/VS following the writing of the
error message, the applicaticn program can attem~t another write to
the passbook area after ensuring that the print element is pOSitioned
correctly in the passbook area. This is generally accomplished by
issuing two carrier returns followed by the number of tabs required to
move the print element to the correct position. (The correct number
of tabs can be acquired from TCTTETAB.)

If the TCTTEPCW indicator is off following the second attempt to
write to the passbook area, the application prograrr can send another
error message or take some alternative action (for example, place the
terminal "out of service").

In summary, all writes to the passbook area are conditional. That
is, a passbook must be present before a write can be executed
successfully. Therefore, a read operation cannot be combined with a
passbook write. For example, a DFHTC TYPE=(WRITE,READ,WAIT) macro
instruction is an invalid request for 2980 terminal services involving
the passbook area. A DFHTC TYPE=PASSBK macro instruction is permissible
because it implies only WRITE, WAIT.

~: The application programmer should not insert shift characters
in output data, since this is done automatically by CICS/VS. CICS/VS
removes shift characters from input data.

segmented Writes Control

Segmented writes are supported for both the journal area and the
passbook area. Journal area segmented writes are limited in length by
the hexadecimal halfword value that the user stores in TIOATDL.
Passbook segmented writes are limited to a one-line logical write to
ensure positive control when spacing (indexing) past the bottom of the
passbook.

For example, consider a 2972 buffer length of 48 and a 2980 Model
4 logical write (print) area of 100 characters per line. The
application program can write a logical record (DFHTC TYPE=PASSBK) of

424 CICS/vS Application Programmer's Reference Manual

100 characters to this area; CICS/VS automatically segments the record
to adjust to the buffer size. The application program must insert the
passbook indexing character (X'2S') as the last character written in
one logical write to the passbook area. Thrs-Is done to control
passbook indexing and thereby achieve positive control of passbook
presence.

If the message contains embedded passbook index characters and
segmentation is necessary because of the logical length of the message,
the write terminates if the passbook spaces past the bottom of the
passbook; the remaining segments are not printed.

Data Handling

SHIFT CHARACTERS: Shift characters are handled by the terminal control
program and are of no concern to the application ~rogrammer. They are
stripped from input messages and added to output messages as required.
Data can be written in any mix of uppercase, lowercase, or special
characters. (See the 2980 Translate Tables in Appendix E.)

JOURNAL INDEXING: Journal indexing is the responsibility of the
application programmer. Carriage returns (X'1S') may be inserted
anywhere in the logical message.

PASSBOOK INDEXING: Passbook indexing necessitates special consideration
by the application programw€r to control bottom-line printing on the
passbook. (See "Passbook Control" and "segmented Writes Control. lI)

TAB CHARACTERS: The tab character (X'OS') is also controlled by the
application programmer. As stated above, the nu~ber of tabs required
to position the print element to the first position of the passbook is
available at TCTTETAB. This value is specified by the system programmer
when generating the terminal control table and may be unique to each
terminal. Other tab characters are inserted as needed to control output
format.

MISCELLANEOUS CHARACTERS: Turn page, message light, openchute, and
special banking characters can be used by the ap~lication programmer
as needed. (see the 2980 Translate Tables in Appendix E.)

AUDITOR KEY MODEL 2: Presence of the Auditor key is controlled through
use of the DFHTC TYPE=PASSBK macro instruction and may be used in a
manner similar to that for passbook control. (See "Passbook Control. lI)

2980 MODEL NUMBER: TCTTETM contains the 2980 model number expressed
as a hexadecimal value (X'01', X'02', X'04'). Since CICS/VS uses the
model number to select the correct translate table for each of the 2980
models, the application program should not alter this field.

COMMON BUFFER: Common buffer writes (DFHTC TYPE=CBUFF) are translated
to the receiving TCTTE model character set. If more than one 2980
model type is connected to the 2972 Control Unit, the lengths are
automatically truncated if they exceed the buffer size.

Writing High-Level-Language Programs

The high-Ievel-language application programmer must be concerned
with the following fields of the DFHTCTTE structure when writing
programs to run on a 2980 General Banking Terminal system:

Chapter 11. Application Programming COnsiderations 42S

Field Meaning

TCl'TETAB
TCTTEPCF
TCl'TESID
TCTTETID

Number of tab characters (binar~
Passbook control field
Station identification
Model 4 teller identification

As discussed under "Passbook Control," the application program is
expected to examine TCTTETAB to determine the correct number of tab
characters to place in output data. The following examples show how
this can be done in ANS COBOL and PL/I programs.

For ANS~:

DATA DIVIS ION.
WORKING-STORAGE SECTION.
01 DFH2980 COpy DFH2980.

LINKAGE SECTION.
01 DFHBLLDS COpy DFHBLLDS.

02 TCTTEAR PICTURE S9 (8) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(S) USAGE IS COMPUTATIONAL.

01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COpy DFHTIOA.

02 DATA PICTURE X(20).
02 FILLER REDEFINES DATA.

03 TAB1-1 PICTURE X.
03 DATA1 PICTURE X (19) •

02 FILLER REDEFINES DATA.
03 TAB1-2 PICTURE X.
03 TAB2-2 PICTURE X.
03 DATA2 PICTURE X(1S).

PROCEDURE DIVISION.

IF TCTTETAB = TAB-ONE GO TO ONETBCH.
IF TCTTErAB = TAB-TWO GO TO TmTBCH.

ONErBCH.
MOVE TABCHAR TO TAB1-1.
MOVE TOTAL TO DATA 1.

TWOTBCH.
MOVE TABCHAR TO TAB1-2, TAB2-2.
MOVE 'roTAL TO DATA2.

426 CICS/vS Application programmer's Reference Manual

For PL/I:

IINCLUDE DFHTIOA;
2 DATA CHAR (20);

DECLARE 1 USERTIOA 1 BASED (TIOABAF),
2 TIOAFILL CHAR (12),
2 TAB 1 1 CHAR (1),
2 DATAl CHAR (19);

DECLARE 1 USERTIOA 2 BASED (TIOABAR) ,
2 TIOAFILL CHAR (12),
2 TAB 1 2 CHAR (1),
2 TAB2-2 CHAR (1),
2 DATA2 CHAR (18);

~INCLUDE DFH2980;

IF (TCTTETAB = TAE ONE) THEN GO TO ONETBCH;
IF (TCTTETAB = TAB:TWO) THEN GO TO TWOTECH;

ONETBCH:

TWOTBCH:

TAB 1 1 = TABCHAR;
DATAl = AMOUNT;

TABl 2 = TAECHAR;
TAB2-2 = TABCHAR;
DATA2 = AMOUNT;

In the ANS COBOL example, the structure DFH2980 is copied in the
Working Storage section; in the PL/I example, DFH2980 is included
following the ~INCLUDE statements for the based structures. DFH2980
contains constants that may be used when writing application programs
for the 2980.

The application program is also expected to test the TCTTEPCF field
to determine whether a passbook was present on a read or write.
TCTTEPCR and TCTTEPCW are located in DFH2980 to aid in this testing.

To test the TCTTEPCF field in ANS COBOL, statements such as the
following might be used:

MOVE TCTTEPCF TO HOLDPCF.
IF HOLDPCFB ~ (HOLDPCFB / TCTTEPCW) * TCTTEPCW
THEN GO TO BOOK-FOR-PRESENT-WRITE.

substituting TCTTEPCR for TCTTEPCW allows the ANS COBOL programmer to
test for the presence of a passbook on a read. (HOLDPCF and HOLDPCFB
are also part of DFH2980.)

To test the TCTTEPCF field in PL/I, statements such as the following
might be used:

IF (TCTTEPCF I TCTTEPCW) THEN GO TO
BOOK_PRESENT_WRITE;

Chapter 11. Application Programming COnsiderations 427

substituting TCTTEPCR for TCTTEPCW allows the PL/I programmer to test
for the presence of a passbook on a read.

To test the station identification and to determine whether the
normal station or_alternate station is being used, values of the forms
shown be.low are pred ef ined in DFH2 980:

STATION-#-~ OR STATION-#-N (for ANS COEO~

STATION_#_A OR STATION_#_N (for PL/I)

where # is an integer (0 through 9) and A and N signify alternate and
normal stations. The values are one-byte character values and can be
compared to TCTTFSID in an IF statement.

To test the teller identification on a 2980 Model 4, the TCTTETID
field is defined' as a one-~yte character value. It can be tested in
an IF statement.

Thirty special characters are defined in DFH2980. TWenty-three of
these can be referred to by the name SPECCHAR-X or SPECCHAR_X (for ANS
COBOL or PLlI) where X is an integer (0 through 23). The seven other
characters are defined with names tpat imply their usage, for ~a~ple,
TABCHAR. For further information on these thir.ty characters, see
Appendix E. : ,.

Th~ na~es defined in DFH2980 for ANS COBOL follow:

STATION-O-N
STATION-O-A
STATION-1-N
STATION-1-A
STATION- 2- N
STATION-2-A
STATION-3-N
STATION-3-A
STATION-4- N
STATION-4-A
STATION-5-N
STATION-5-A
STATION-6-N

STATION-6-A
STAT:J:ON-7-N
STATION-7-A
STAT ION-8-N
STATION-8-A
STAT ION-9-N
STATION-9-A
TAB-ZERO
TAB-ONE
TAB-TWO
r:tAB-THREE
TAB-FOUR
TAB-FIVE

TAB-SIX
TAB-SEVEN
TAE-EIGHT
TAE-NINE
HOLDPCFB
DFHFILL
HOI.OPCF
TCTTEPCR
TCTTEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR

MSGL:J:TE
BCKSPACE
TRNPGE
SPECCHAR-1
SPECCHAR-2
SPECCHAR-3
SPECCHAR-4
SPECCHAR-5
SPECCHAR-6
sl?ECCHAR-7
SP~CCHAR-8
SPECCHAR-9
$PECCHAR-10

428 CICS/vS Application Programmer's Reference Manual

SPECCHAR-11
SPECCHAR-12
SPECCHAR-13
SPECCHAR-14
SPECCHAR-15
SPECcHAR-16
SPECCHAR-17
SPECCHAR-18
SPECCHAR-19
SPECCHAR-20
SPECCHAR-21
SPECCHAR-22
SPECCHAR-23

The names defined in DFH2980 for PL/I follow:

STATION 0 N
STAT ION-O-A
STATION~i-N
STATION-1-A
STAT ION-2-N
STATION-2-A
STAT ION-3-N
STAT ION-3-A
STAT ION-4-N
STATION-q-A
STAT ION-S-N
STATION-S-A
STAT ION-6-N
STATION-6-A
STAT ION:t:N

STATION 7 A
STAT I ON-8-N
STATION-8-A
STAT ION-9-N
STAT ION-9-A
TAB_ZERO -
TAE ONE
TAB-TWO
TAB:THREE
TAB FOUR
TAB-FIVE
TAB-SIX
TAB-SEVEN
TAB-EIGHT
TAB:NINE

TCCTEPCR
TC'ITEPCW
TABCHAR
OPENCH
JRNLCR
PSBKCR
MSGLITE
BCKSPACE
TRNPGE
SPECCHAR 1
SPECCHAR-2
SPECCHAR-3
SPECCHAR-4
SPECCHAR-S
SPECCHAR:6

7770 PROGRAMMING CONSIDERATIONS

SPECCHAR 7
SPECCHAR-a
SPECCHAR-9
SPECCHAR -10
SPECCHAR -11
S PECCHAR -12
SPECCHAR-13
SPECCHAR-1LJ
SP~CHAR-1S
SPECCHAR:16
SPECCHAR 17
SPEC CHAR -'8
SPECCHAR -19
SPECCHAR-20
SPECCHAR:21

SPECCHAR 22
SPECCHAR:23

Even though CICS/VS does not distinguish between special codes
(characters) entered at an audio terminal (for example, the 2721
Portable Audio Terminal), an application program is not precluded fram
performing special functions upon encountering these cddes. For
example, the following special hexadecimal codes may be entered from
a 2721 Portable Audio Terminal:

Key

CALL END
CNCL
t
VERIFY
RPI'
EXEC
F1
F2
F3
FLJ
FS
00
000
I DENT

Code

37**
18
3E** or 7B
20
3D
26**
B1
B2
B3
B4
BS
AO
3E** or BO
11, 12, 13, or 1LJ plus two other characters

For further information concerning the 2721, see the publication
l1l1 Portable Audio Terminal Component Description.

The following special hexadecimal codes may be entered from a
Touch-Tone l telephone:

* t
AO
3E** or BO

The * and # characters of a Touch-Tone telephohe correspond to the 00
and 000 characters, respectively, on a 2721 Portable Audio Terminal.

lTrademark of the American Telephone & Telegraph Co.

Chapter 11. Application Programming Considerations 429

The codes denoted by a double asterisk above cause a hardware
interrupt and are in the terminal input/output area (TIOA) immediately
following the data; the codes are not included in the data length.

Note: The I and 000 characters cause an end-of-inquiry (EOI) hardware
interrupt (X'3B') unless the EOI Disable feature (t3SqO) is installed
on the 7770 Audio Response Unit Model 3. In this case, at the option I

of the user, either or both of the # and 000 characters do not cause
a hardware interrupt, are presented in the TIOA along with the rest of
data, and are included in the data length.

If, after receiving at least one character from a terminal, no other
characters have been received by the 7770 for a period of five seconds,
the 7770 automatically generates an EOI hardware interrupt that ends
the read operation.

27q1 READ ATTENTION AND WRITE BREAK SUPPORT

Read Attention support may be generated in any CICS/OS/vS or
CICS/DOS/VS system to permit response to terminal operator pressing of
the Attention key (rather than the Return key) on a 27q1 Communications
Terminal after typing a message, or without typing a message if no data
is to be entered. Write Break support may be generated in any
CICS/OS/VS system to permit response to terminal o~erator pressing of
the Attention key on a 27q1 ~hile receiving a message. The following
features must be installed on the 27q1:

• For Read Attention: Transmit Interrupt (7900)

• For Write Break: Receive Interrupt (Q708)

Read Attention

If the terminal operator presses the Attention key on the 27Q1 after
typing a message, it is recognized as a Read Attention if:

• Read Attention support is generated into the system (CICS/OS/VS or
CICS/DOS/VS)

• The message is read by a DFHTC TYPE=READ,RDATT=symbolic address
macro instruction (which has an implied WAIT)

When this occurs, control is transferred to a CICS/VS read attention
exit routine, if generated into the system. This routine is a skeleton
program that can be tailored by the system programmer to perform actions
such as the following:

• Perform some data analysis or modication on a Read Attention.

• Return a common response on a Read Attention to the terminal
operator.

• Return a response and request additional input that can be read
into the initial input area or into a new area.

• Request new I/O without requiring a return to the task to request
additional input.

When the Read Attention exit routine has completed its execution,
control is returned to the application program at the address specified
in the DFHTC TYPE=READ macro instruction. The return is made ~enever
one of the following occurs:

Q30 CICS/vS Application Programmer's Reference Manual

• The exit routine issues no more requests for input.

• The exit routine issues a DFHTC TYPE=READ macro instruction and
the operator terminates the input with a carriage return. (If the
operator terminates the input with an Attention, the exit routine
is reentered and is free to issue another READ.)

Note that terminal operator pressing of the Attention key on a read
is recognized as a read attention only if read attention support is
generated and the application programmer has included the RDATT=symbolic
address operand in the DFHTC macro instruction requesting the input.
If one or both of these conditions do not exist, the Attention key is
treated as a normal read completion, that is, as if the Return key had
been pressed.

Write Break (CICS/OS/vS)

If the terminal operator presses the Attention key on the 2141 while
a message is being received, it is recognized as a Write Break if:

• Write Break support is generated into the system (available only
in CICS/OS/vS) •

• The write was initiated by a DFHTC TYPE=WRITE,WRBRK=symbolic address
macro instruction (which has an implied WAIT).

When this occurs, the remaining portion of the message is not sent
to the terminal. The write is terminated as though it were successful,
and a new-line character (X'15') is sent to cause a carrier return.
Control is returned to the application program at the address specified
in the DFHTC TYPE=WRITE macro instruction.

If the Attention key is pressed and the Write Break feature is
generated in CICS/OS/vS but the DFHTC TYPE=WRITE macro instruction does
not have the WRBRK=symbolic address operand, the write break is treated
as an I/O error. The same is true if the Attention key is pressed but
the Write Break feature is not generated in CICS(OS/VS. A write is
interruptible only if both conditions identified above are satisfied.

Note: TYPE=WAIT and/or SAVE can be coded with READ and/or WRITE, but
only RDATT or WRBRK (not both) can be specified in one DFHTC macro
instruction.

3210 PRINT FUNCTION

The 3210 Print Request facility allows either the application program
or the terminal operator to request a printout of data currently
displayed on the screen of a 3211 or 3215. One or both of these
capabilities can be generated into the CICS/VS system through system
generation macro instructions specified by the system programmer (see
the discussions of the terminal control program and DFHTCT TYPE=TERMINAL
macro instruction in the CICS/VS System Programmer's Reference Manual).

When these options are generated into CICS/VS, the terminal operator
invokes the facility by pressing a specified Program Attention key
(PA1, PA2, or PA3). The application program requests the facility by

means of a DFHTC TYPE=PRINT macro instruction (see "DFHTC Macro
Instruction").

For a 3211, this macro instruction causes the data currently
displayed on the screen of the 3211 to be printed on the first available
print-request-eligible printer (3284 or 3286) on the same 3211 or 3212"
control unit. For a printer to be available, it must be in service

Chapter 11. Application Programming Considerations 431

rage of SH20-9003-2
~evised May 22, 1975
13y TNL SN20-9086

and not currently attached to a task. For a printer to be eligible,
it must be on the same control unit, have a buffer capacity equal to
or larger than the 3277, and FEATURE=PRINT must be specified for it by
the system programmer.

For a 327S, this macro instruction causes the data currently in
the 321S display buffer to be printed on the 3284 Model 3 printer
attached to the 327S.

If an eligible printer is not available when a DFHTC TYPE=PRINT
macro instruction is executed, or if an error occurs during data
transfer, the data in the display buffer is captured. The CICS/VS
terminal abnormal condition program (DFHTACP) notifies the CICS/VS
master terminal operator of the condition and passes control to a
user-written terminal error program, which the user installation must
provide to take action when this situation occurs.

TELETYPEWRITER PROGRAMMING CONSIDERATIONS

The teletypewriter (World Trade only) uses two different control
characters for print formatting:

< carriage return, (X'22' in ITA2 code or X'lS' in EBCDIC)

= line feed, (X'28' in ITA2 code or X'2S' in EBCDIC)

The application programmer should always use < first; that is <= or
<===, but never =<, otherwise following characters (data) may be printed
while the type bar basket is moving to the left.

Message Format

Message Begin: To start a message on a new line at the left margin,
always begin the message text with X'lS11' (EBCDIC). CICS/VS, in this
case, recognizes the X'11' and changes it to X'2S' (X'17' is an IDLE
character).

Message Body: To write several lines with a single transmission,
separat~ the lines by X'lS2S', or if multiple blank lines are required,
separate by X'lS2S25 ••• 2S'.

Message End before Next Input: To allow input of the next message on
a line at the left margin, the preceding message should end with
X'lS17'. CICS/VS recognizes X'lS' and changes the following character
to X'2S'.

Message End before ~ Output: In case of two or more successive
output messages, the message begin and the message end look the same,
that is X'lS11', except for the last message (see above). To make the
message end of the preceding message distinguishable from the message
begin of the next message, the next to the last character of the message
end must not be X'lS'.

Message Length

As a recommended practice for teletypewriter terminals, a message
should not exceed a length of about 3000 bytes or approximately 300
words.

432 CICS/vS Application programmer's Reference Manual

ASYNCHRONOUS TRANSACTION PROCESSING

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

Typically, a task to be run under CICS/VS is initiated from a
terminal and processed at regular intervals until completion, according
to system service patterns established for CICS/VS. This mode of"
operation is sometimes referred to as synchronous,transaction
processing, because the task has complete control of the terminal which
initiated it.

support for asynchronous transaction processing can also be generated
into a CICS/VS system. This capability is designed primarily to permit
a type of batch processing within CICS/vS. A task is initiated from
a terminal as described above, but the specified transaction code causes
a CICS/Vs-provided asynchronous transaction processing program to read
the data to an intrapartition data set (see "Transient,Data Services").
In effect, data collection from a device such as the 2780 Data
Transmission Terminal is possible. When the data has been read, the
device is freed for other activity. An application program processes
the data, and, upon operator request, output is queued for subsequent
transmission to a specified terminal. If the automatic task-initiation
feature is generated into CICS/VS, that application program can be
initiated automatically when a specified trigger level is reached (that
is, when a specified number of inputs have been entered in the
intrapartition data set).

The asynchronous transaction processing (ATP) facility is designed
specifically for handling input from batch terminals like the 2780 and
2770. Generally, ATP can also be used for other, interactive terminals
like the 2741. However, ATP is not intended for, and will not support,
input from the 3270, 2980, or 3735. Another consideration is that
application programs intended to execute under control of ATP must not
contain basic mapping support (BMS) macro instructions requesting BMS
terminal paging facilities.

Additional information concerning the creation of user exits for
asynchronous transaction processing and the coding of the exit routines
is given in the CICS/vS System Programmer's Reference Manual. The
initiation of ATP by means of terminal commands is described in the
CICS/vS Terminal Operator's Guide.

~ BASE CONSIDERATIONS

Use of segmented records, indirect accessing, duplicates data sets,
the user's record identification field, and special considerations for
DAM data sets are discussed below.

Chapter 11. Application Programming COnsiderations 432.1

SEGMENTED RECORDS

An optional feature of CICS/VS file management allows the user to
create and define a data set containing segmented records. A segmented
record is one in which the components of the record have been identified
(symbolically) and then grouped according to some logical relationship
such as function or frequency of use.

The identifiable groups are called segments. A segment is one or
more adjacent fields within a record. Some segments appear in all
records (for example, segments containing identification or major record
control fields), while other segments apply to, and appear in, only
certain records. If the application programmer plans to use segmented
records in a program, the structure and individual segments of the data
set must be defined in the file control table by the system programmer.

Segmented records offer numerous advantages. Having organized and
defined the segments of a data set, the user can group them into segment
sets and retrieve any set (or group) of segments by symbolically
identifying that set. Since an individual segment can be a member of
any number of segment sets, the user gains a high degree of flexibility
in the retrieval process. Because only a part (a segment set) of a
logical record is requested on a read-only operation, CICS/VS can
extract only the requested segments, pass them to the application
program, and free the main storage required for the entire logical
record or block at the earliest possible time.

A saving in DASD space can be realized when segmenting is used with
variable-length record format, since CICS/VS file management always
compresses (packs) a segmented record before writing it to direct access
storage. The space normally required for missing segments is thus
eliminated, as are any.slack bytes created when aligning segments in
main storage.

With fixed-length records, compression does not save DASD space but
it causes unused space to be consolidated at the ends of records. For
example:

• Logical record as defined in the file control table

I ROOT I SEG2 I SEG3 I SEG4 I SEG5 I SEG6 I
• Logical record as it appears on DASD with missing segments

The following general rules apply to the use of segmented records:

1. Segmented records can be used with VSAM, ISAM, or DAM data sets.

2. segmented records can be used with any record format (that is,
fixed, fixed blocked, variable, undefined) but are primarily
advantageous when processing variable-length records.

3. A data set that contains segmented records cannot be an index
data set in an indirect accessing hierarchy. The two CICS/VS
features are mutually exclusive for anyone data set. However,
the primary (target) data set in an indirect accessing hierarchy
may contain segmented records.

4. Every segment that may appear in a record, whether or not it
actually exists in a ~articular record, must be defined in the
file control table.

Chapter 11. Application Programming COnsiderations 433

segmented Record Formats

The user must describe all segments within a logical record of a
segmented data set. As with any other data set, each segmented data
set is first described in the file control table. That is, its basic
characteristics (for example, block size, logical record length, and
key length) must be described so that CICS/vS file management can
physically access it. As an addendum to this basic data set
description, the user must describe the segmented structure of the data
set.

Every segment that may exist in a logical record of a segmented data
set must be defined. While every logical record need not contain every
segment, every logical record must contain at least the root (control)
segment.

The root segment is a uniquely defined segment that must appear at
the beginning of each logical record. It contains as a minimum:

1. The length of the record, if variable-length records are being
used. This is a fullword (four bytes) of the form LL~~, where
LL is the record length and ~~ are two bytes reserved for system
use.

2. Segment indicators, which indicate the presence or absence of
each segment in the record as discussed in greater detail below.

In addition, the root segment may contain any other information
essential to processing of the record by the user (for example, a major
control field such as an account numbe~ •

The following is an example of a segmented record and the root
(control) segment.

LOGICAL RECORD __ ------------------------------------~A~-----------------------------~
SEGMENT 3 SEGMENT 4

The sequence of the segments within a logical record must be fixed.
That is, a segment cannot change position in relation to other segments
of the record. Each segment can be fixed or variable in length. If
the segment is variable in length, then the first byte must contain
the length, in binary, of the segment, not including the length byte.
Thus the maximum data length of a variable-length segment is 254
adjacent bytes; the maximum data length of a fixed-length recozd is
255 adjacent bytes. The number of bytes in a fixed-length segment or
the maximum length of a variable-length segment is supplied to CICS/VS
file management as part of the segment definition in the file control
table.

Each segment has its own characteristics and these can differ from
the characteristics of other segments. The length of each segment can
differ from the lengths of other segments, and, if the segment is
defined as variable-length, can change as a result of an update.
segments may be added or deleted; CICS/vS file managerrent compresses
and expands the record accordingly.

CICS/VS file management permits the user to specify the alignment
requirements of each segment when that segment is brought into main

434 CICS/vS Application Programrner*s Reference Manual

storage. This alignment may be on a one-byte, two-byte, four-byte, or
eight-byte boundary. (The default alignment is on a one-byte boundary.)
When the segmented record is written to direct access storage, any
residual space (slack bytes) caused by alignment is eliminated by
CICS/VS file management through the compress (packing) function.

Segment Indicators

Segment indicators are the means by which CICS/VS file management
and the application program specify, and determine, the presence or
absence of specific segments within a logical record. Two types of
indicators are available to the user: bit-type segment indicators and
displacement-type segment indicators. The application programmer must
choose one of these types and define data sets accordingly. Regardless
of the type of indicator, the following general rules apply to the use
of segment indicators in processing a segmented record:

1. Segment indicators are always located in contiguous bytes within
the root (control) segment. Every logical record contains a
root segment and that root segment is always a part of any
segment set brought into main storage. Therefore, the segment
indicators are always accessible to the application program.

2. The location of the indicators within the root segment is defined
in the file control table as some displacement from the beginning
of the root segment.

3. There must be one indicator for each segment other than the root
segment. The position of an indicator determines which segment
it represents. Since the root segment does not require an
indicator, the first indicator represents the first segment
following the root (segment 2), the second indicator represents
the second segment following the root (segment 3), and so on.

4. When retrieving segment sets, the application program must test
appropriate indicators to determine whether requested segments
are present. The program should never assume that a segment is
present because it was requested as part of a segment set.

5. When adding or deleting segments from a record, the application
program must set or reset appropriate indicators in the root
segment of the record to reflect the change.

BIT-TYPE SEGMENT INDICATORS: With the bit-type indicator, each segment
is represented by a bit position in the segment indicator field. One
byte of indicators must be provided within the root segment for each
eight segments in the logical record. If a given bit indicator is on
(binary 1), the corresponding segment is present in the logical record.
If a given bit indicator is off (binary 0), the corresponding segment
is absent from the logical record. The following are examples of
bit-type segment indicators:

Chapter 11. Application programming Considerations 435

Fixed-Length
Segments

Variable
Length
Segments

Fixed-Length
Segments

Missing
Segment

ROOT (CONTROL) SEGMENT 1 .. ,--- DATA SEGMENTS----~.~I

1111100001 ISEG2 SEG3 5EG4 SEGSI

1 Byte of
Bit Indicators

ROOT SEGMENT -------t.~II f---- DATA SEGMENTS "I
111110000 I ILISEG21LISEG31LISEG41LISEGSI

ROOT SEGMENT --------~~----
10110000

DISPLACEMENT-TYPE SEGMENT INDICATORS: With the displacement-type
indicator, each segment is represented by one halfword (aligned) in
the segment indicator field. In any given halfword indicator, a value
of zero indicates that the corresponding segment is absent from the
logical record. A nonzero value (binary) in any given halfword
indicates that the corresponding segment is present and represents the
displacement of the segment from the beginning of the logical record
when the segments are packed.

Any displacement value placed in the halfword indicators when
building a new record or adding and deleting segments from an existing
record may be modified by CICS/VS file management when it compresses
(packs) the segments before writing the record to direct access storage.

Whenever CICS/VS packs segmented records, it places the displacement
value of each segment into the corresponding halfword indicator (if
displacement-type indicators are being used). However, CICS/VS file
management does not change these displacement values when unpacking
segmented records or when extracting selected segments of a segment
set.

The application program should not rely on displacement values when
accessing segments retrieved in a segment set; they should be used only
as zero/nonzero indicators to determine whether or not a requested
segment is present. (See "Main Storage Processing of Segmented
Records. ")

The following example illustrates the basic concepts and
considerations when using displacement-type segment indicators.

1. The following segmented record to be added to a segmented data
set has been built in main storage by the user:

20 Bytes 10 Bytes 8 Bytes 8 Bytes S Bytes
.-----------"---..--'-... ..--'-... ..--'-... ..--'-...

CONTROL
INFORMATION

ROOT
SEGMENT

DATA DATA EMPTY

SEGMENT2 SEGMENT3 SEGMENT4 SEGMENTS
,

2 Bytes

The user has placed data in three of the four defined segments
and indicated their presence by placing a ncnzero value in the

436 CICS/vS Application Programmer's Reference Manual

corresponding halfword displacement indicators. Any nonzero
value may be used (the 1 is only an example).

2. Before writing the record to the direct access data set, CICS/vS
file management comFresses the segments and modifies the
displacement indicators. The above record appears as follows
before it is written to DASD:

CONTROL
INFORMATION

8 Bytes
~

DA'IA

5 Bytes 8 Bytes
~~
DATA EMPTY

ROOT
SEGMENT

SEGMENT2 SEGMENT3 SEGMENT5

3. When a segment set is retrieved from the abcve record, the root
segment is included as part of the segment set without
modification. If the application program were to request a
segment set (consisting of the zoot segment and segment 3) from
the above record, the data might appear as follows:

8 Bytes
CONTROL
INFORMATION I 20 I 30 I 0 I 38 I DATA

ROOT SEGMENT SEGMENT3

Main Storage Processing of Segmented Records

When a segment set is requested from a segmented data set, the data
is placed into a file work area (FWA). CICS/vS file management
automatically calculates the amount of storage required and acquires
the FWA through CICS/vS storage management. A CICS/VS-provided symbolic
storage definition (DFHFWADS) can be used in conjunction with a
user-defined layout to map the FWA.

The FWA consists of control fields (used by CICS/VS management
functions) and a data area into which the requested segments are placed
by file management. The format of the retrieved segments within the
data portion of the FWA is fixed; space is provided in the FWA and
alignment requirements are met for each segment in the requested segment
set, even though a segment may be missing. (For variable-length
segments, the maximum space is provided.) As noted earlier, the
application program must test appropriate segment indicators to
determine whether specific segments are present in a requested segment
set of a particular record. An update request on a segmented data set
causes CICS/VS file management to use the universal segment set ALL
when retrieving the record.

The following illustrations will help clarify the various
considerations discussed thus far concerning main storage processing
of segmented records.

1. Logical record as defined in the file contrel table:

ROOTSEG SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9

Chapter 11. Application Programming Considerations 437

2. Logical record as it appears on DASD (assume variable-length
records and bit-type segment indicators):

LL)f15 11010100 SEG2 SEG3 SEG5 SEG7

ROOT SEGMENT

3. Logical record as it appears in the FWA after retrieval of a
segment set (read-only) which includes the root segment, followed
by segments 2, 6, 1, and 8.

11010100

ROOT SEGMENT SEG2 SEG6 SEG1 SEG8

4. Logical record as it appears in the FWA after a retrieval for
update (SEGSET=ALL):

1101 0100

ROOT SEGMENT SEG2 SEG3 SEG4 SEG5 SEG6 SEG1 SEG8 SEG9

5. Logical record as it appears in the FWA after the application
program has added segments 4 and 8 and deleted segment 3. The
indicators have been adjusted by the application program to
reflect the change.

10110110

ROOT SEGMENT SEG2 SEG3 SEG4 SEG5 SEG6 SEG1 SEG8 SEG9

6. Logical record as it appears on DASD after packing:

segment Sets

ILL151511011 0110 I DATAl DATAl DATAl DATAl DATAl

ROOT SEGMENT SEG2 SEG4 SEG5 SEG1 SEG8

Once each segment has been defined (name and attributes specified) ,
the user can specify as many segment sets as he desires. A segment
set is a grouping of the root segment and at least one or more
individual segments. Like the individual segments, the segment set is
given a symbolic name which is used by the application program when
processing a segmented data set. Any retrieval from a segmented data
set is always by segment set.

Assume a logical record in a segmented data set has been defined as
containing the following segments:

ROO TSEG
SEGMENT2
SEGMENT3
SEGMENT4
SEGMENTS
SEGMENT6

438 CICS/vS Application Programmer's Reference Manual

The user might wish to define the following segment sets:

Segment ~ ~

SEGSETA

SEGSETB

Segments

ROOTSEG
SEGMENT2
SEGMENT4

ROOTSEG
SEGMENT3
SEGMENT4
SEGMENTS

Whenever a segmented data set is defined in the file control table,
a universal segment set is automatically generated which includes all
segments defined for that data set. The symbolic identification of
this universal segment set is ALL, and is automatically used by CICS/vS
file management whenever the application program requests a "read for
update" from a segmented data set. In other words, an update operation
on a segmented data set always causes all segments to be presented to
the application ~rogram, regardless of the segment set specified.

INDIRECT ACCESSING

Indirect accessing, an optional data base facility in CICS/VS,
provides for the use of cross-index data sets to access another data
set. The data set that is accessed by an index data set is known as
the primary or target data set. This facility allows the user to
furnish the search argument for an index data set along with the
identification of the primary data set. CICS/VS, utilizing the
user-defined index structure, carries out the search, involving as many
levels (index data sets) as defined by the user, and ultimately
retrieves the primary data set.

The following general rules apply to the indirect accessing facility:

1. A primary data set can have any number of index data sets. This
is useful when multiple cross references to a master record
exist.

2. Any data set can be both an index and a primary data set. The
logical record content of any data base data set is user-defined
and constructed, and therefore may contain certain master record
information as well as a search argument for another data set.

3. There is no logical limit to the number of index levels (data
sets) that the user may define in an index hierarchy. For
example, data set A is an index to data set B, which is an index
to data set C, and so on.

4. An index hierarchy can be any combination of VSAM, ISAM, and
DAM data sets.

S. An index data set cannot contain segmented records. The two
CICS/VS services are mutually exclusive for anyone data set.
However, a primary data set, which an index data set accesses,
can have segmented records if it is not defined also as an index
data set.

6. An index data set cannot reference more than one primary data
set unless the index data set is multiply defined in the file
control table.

Chapter 11. Application Programming Considerations 439

7. If the index data set is a EDAM data set, it cannot be defined
as blocked. However, the primary data set can be defined as
blocked BeAM.

. The foilowing example shows a simple two-level index hierarchy for
indirect accessing. The retrieval search begins with the index data
set CATLOG#. The primary data set being accessed (and from which data
is to be returned to the application program) is PARTNO. The search
argument to be used in accessing the index data set (CATLOGt) is CN222.
The contents of the record lccated by the search of the index data set
(CATLOG#) contains the search argument for the next data set (123q5
for search of PARTNO). The primary data set (PARTNO) is searched and
the data record returned to the requesting program.

TRANSACTION
PROCESSING
PROGRAM

DFHFC TYPE=GET,
INDEX= CATLOG# ,
DATASET=PARTNO,

RDIDAD:J

FIOA or FWA

CATLOG#

PARTNO

An installation must create and maintain all data sets in its data
base, and define all data sets (both index and primary) in the file
contr01 table. Each data set, whether index and/or primary, is first
described as a primary data set. That is, its basic physical
characteristics (BLKSIZE, LRECL, KEYLEN, and so on) are defined so that
CICS/VS file management can access it. If the data set is to be used
as an index data set, the following information must also be specified:

1. The primary data set for which this data set is an index.

2. The location of the search argument, within the logical record
of this data set, to be used for accessing the primary data set
(or the next index data set).

If the user creates and defines an index hierarchy for indirect
accessing, CICS/VS file management services any request requiring use
of that hierarchy, provided the requesting application program adheres
to the following general rules and considerations:

1. The symbolic name of the first index data set to be searched in
the retrieval process must be specified through the INDEX operand
of the DFHFC macro instruction. This data set can be any index
data set in a hierarchy of indexes, not necessarily the highest
level index data set. It can also be the primary data set being
accessed without the use of an index data set. However, in the
latter case, the DATASET operand must be used instead of the
INDEX operand.

2. The symbolic name of the primary data set from which data is to
be ultimately retrieved and returned to the requesting program
must be specified through the DATASET operand of the DFHFC macro

qqO CICS/VS Application Programmer's Reference Manual

instruction. Any number of intervening data sets ~an be used
in the search; however, the user specifies only the first and
the last data set. The user can limit a search to only a portion
of an index hierarchy; that is, it is not necessary to search
an entire index hierarchy, because the user can specify that
the search begin at other than the highest-level index. Indexing
levels cannot be omitted from within the hierarchical chain.

3. The search argument to be used by CICS/VS file management to
access the first referenced data set must be specified through
the RDIDACR operand of the DFHFC macro instruction. This operand
points to a record identification field containing a VSAM key
or relative byte address, an ISAM key, or DAM block reference
information. (See "File services" for additional details
concerning search arguments that can be specified for,file
processing.) If multiple levels of index data sets are involved,
CICS/VS file management acquires a search argument for the next
data set from the logical record of each successive data set.

When stepping through a series of index data sets, CICS/VS file
management uses the requesting prcgram's record identification field
(specified in the RDIDADR operand) to store the ~earch argument for
each successive data set to be searched. The application programmer
must ensure that this field is as large as the largest search argument
that may be used in any given retrieval operation.

The following is an example of the above consideration in a
three-level index hierarchy for indirect access~ng. The search argument
provided by the processing program is used to access the first index
data set (CATLOG#) that provides the search argument for a second index
data set (PARTNO) that provides the search argument for the primary
data set (VENDOR) from which the data record is retrieved and returned
to the application program. Since the search argument retrieved from
the second index data set (PARTNO) is eight bytes in length (V0000996),
the record identification field (RCIDADR) must be at least eight bytes
in length, even though it initially contains only the five-byte search
argument (CN222) for the first index data set.

TRANSACTION PROCESSING
PROGRAM

DFHFC TYPE=GET,
INDEX=CATLOG # ,
DATASET=VENDOR,
RDID~

CN222

FIOA or FWA

DUPLICATE RECORDS

CATLOG#

PARTNO

VENDOR

An optional feature of the indirect accessing approach to data base
retrieval is the capability to indicate that a search argument in an
index data. set, which normally refers to the primary data set, instead
refers to a "duplicates" data set. The need for or use of duplicates
data sets may best be described as follows.

Chapter 11. Application Programming Considerations 441

Assume that the application program requires access to an index data
set organized by street address to obtain the name of the occupant at
that address. The occupant's naroe is then used to access a primary
data set organized by name.

For single occupancy, no problem exists. However, if multiple
occupancy is possible, the index data set cannot directly equate a
street address to a primary data set record. In this case, the search
argument field in the index record must indicate that multiple occupants
(duplicates) exist and that the search argument refers to a duplicates
da ta set rather than the prirr.ary data set.

CICS/VS file management retrieves the referenced record from the
duplicates data set and returns it to the application program with a
response code indicating a duplicate record. The duplicate record may
contain further information, which the application program can use to
more accurately retrieve the appropriate record from the primary data
set.

If an index data set is to indicate that there can be duplicate keys
for entries in the primary data set to which it refers, this information
must also be noted in the file control table entry which describes the
index data set. The index data set record must contain a unique
one-byte duplicates indicator (user-defined) in the first byte of the
search argument field. Care must be taken to ensure that this indicator
is a unique code; it cannot be the same as the first byte of a normal
search argument for the primary data set.

The rest of the search argument field contains the search argument
used by CICS/VS file management to retrieve a record from the duplicates
data set. This record may contain user-defined and user-constructed
information that the applicabion program can use to select the
appropriate primary data set record. The following is an example of
a search argument field in an index record that reflects duplicates:

SEARCH ARGUMENT FOR
DUPLICATES RECORD

OR
SEARCH ARGUMENT FOR
NEXT LEVEL OF INDEX

The search argument for the duplicates data set must meet the same
search argument format requirements as a normal cress-index data set.
The length of the search a~ument used to access a duplicates data set
is one byte smaller than a normal search argument because of the
duplicates indicator.

The following is an example of an index hierarchy that includes a
duplicates data set. The application program begins the retrieval by
accessing the index data set (PARTNAM) and ultimately accesses the
primary data set (PARTNO). The search argument (GISMO) provided by
the application program is a valid one for the index data set (PARTNAM),
but it provides a record containing a duplicates flag. When the
duplicates indicator is detected, CICS/vS file management uses the new
search argument (from the PARTNAM data set) to access the duplicates
data set (DUPLNAM), returning the duplicates record to the application
program.

In this example, the part name (GISMO) is not unique since there
are several types of GISMOs in the part number (PARTNO) data set. The
requesting program must provide qualifying data that indicates which
GISMO is desired.

442 CICS/vS Application Programmer's Reference Manual

TRANSACTION PROCESSING
PROGRAM

DFHFC TYPE=GET,
INDEX=PARTNAM,
DATASET=PARTNO, RDID?
GISMO

FIOA or FWA

PARTNAM PARTNO

The record retrieved from the duplicates data set in the example
might appear as follows:

GISMO LARGE
PARTNAM DESC

9123
PARTNO

MED
DESC

9872
PARTNO

SMALL
DESC

9944
PARTNO

The application program might formulate a message to be routed to
the inquiring terminal asking the terminal operator to make a choice.
For examt:le:

PART NAME REQUESTED HAS MULTIPLE ENTRIES

PLEASE SELECT SPECIFIC PART NUMBER

PART NAME DESCRIP

GISMO LARGE

MED

SMAIL

PART NUMBER

9123

9872

Once the terminal operator has made a selection, the program can
make a direct retrieval frcm the primary (PARTNO) data set.

If the index record in the above example had not contained a
duplicates indicator, CICS/vS file management would have used the search
argument to access the primary data set (PARTNO) and retrieve the
requested data.

Chapter 11. Ap~lication Programming Considerations 443

RECORD IDENTIFICATION FIELD

The record identification field is used by the application program
to communicate to CICS/VS file control the identity of a specific record
required in an input/output operation. This field is identified by
the RDIDADR operand of the DFHFC macro instruction. If multiple browse
operations are performed ccncurrently by a single application program,
a unique record identification field must exist for each operation.
It is the application programmer's responsibility to provide the storage
area for the record identification field. Generally, this storage is
within the transaction work area (TWA) portion of the task control area
(TCA), or some area acquired dynamically by the application program.
It is not advisable to set up the record identification field within
the application program.

For an ISAM data set, the record identification field is relatively
simple in structure. It contains the key of the logical record.

For a VSAM data set, the record identification field contains either
the logical record key or the relative byte address of the desired
record. If the generic key option is used, the first byte of the field
must contain the key length, in binary, and the remainder of the field
must contain the generic key. For example:

5 ALPHA I
L---L---------------J

The application programmer should understand that a partial key may
be used as a search argument in a browse operaticn referring to either
an ISAM or a VSAM data set. The ISAM partial key is an implied generic
key, recognized as such because of padding with binary zeros in
insignificant positions of the key. In contrast, a VSAM generic key
is defined to be a generic key, with its length explicitly specified
in the first byte of the record identification field. The ISAM implied
generic key applies only to browse operations. The VSAM-defined generic
key can be specified in numerous DFHFC macro instructions.

For a DAM data set, the record identification field structure is
somewhat complex. The applicaticn program must supply the block
reference information, physical key (if keyed data sets are being used),
and the deblocking argument (if blocked data sets are being used).

The record identification field for DAM data sets is really a
concatenation of three subfields, identified as follows:

1. Block reference

The physical identifier for the data set in the DAM block is
specified by the RELTYPE operand of the file control table and
may be one of the following:

a. Relative block (CICS/OS/vS only) three-byte binary
fRELTYPE= ELK)

b. Relative track and record - two-byte ~T, one-byte R
(RELTYPE=HEX)

c. Relative track and record (zoned decimal format) Six-byte
TTTTTT, two-byte RR (RELTYPE=DEC)

d. Actual address - eight-byte MBBCCHHR (RELTYPE omitted)

444 CICS/vS Application Programmer's Reference Manual

2.

EXAMPLE

BYTE 0 1 2 3 " 5 6 7 8

RELBLK # I Relative block (OS/VS only)
(binary)

T T R I Relative track and record

T T T T T T R RI Relative track and record
(zoned decimal)

M E B C C H H RI Actual address

Physical key

The physical key is required only if the data set being accessed
is written with recorded keys. This key must be the same length
as specified in the BLKKEYL operand for the file control table
entry which defines the data set. It must immediately follow
the block reference information, which can be any of the above.

EXAMPLE

BYTE 0 1 2 3 q 5 6 7 8 . .
RELBLK# KEY ••• (CICS/OS/vS only)

T T R KEY •••

T 'I T T T T R R KEY •••

M B B C C H H R KEY •••

3. Deblocking argument

The deblocking argument is required only if the data set contains
blocked records and specific logical records are to be retrieved
from within a block. It is not mandatory that every physical
record of a blocked data set be deblocked. If the application
programmer does not specify a deblocking argument, an entire
block is read into an FIOA. The deblocking argument may be
either a key or a relative record number. The user's choice is
specified in the RETMETH (retrieval method) operand of the DFHFC
macro instruction. If present, the deblocking argument must
immediately follow the physical key (if present) or the block
reference (if the physical key is not present).

If the deblocking argument is a key, it must be the same length
as specified in the KEYLEN operand of the file control table
entry which describes the data set. The key used for deblocking
need not be the same size as the physical record key (BLKKEYL).
If the deblocking argument is a relative record number, it is
represented by a one-byte binary number, with a value of zero
representing the first logical record of a block.

Chapter 11. Application Programming Considerations qq5

EXAMPLE (physical key = 6 bytes, deblocking key = 3 bytes)

BYTE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RELBLR (ctCS/OS/VS only) Search by relative block;
deblock by relative record

RELBLR (CICS/OS/VS only) Search by relative block;
deblock by key

T T R REY REY Search by relative track
and record and key;
deblock by key

M B B C C H H RRN Search by actual address;
deblock by relative record

T T T T T T R R REY REY
Search by zoned decimal
relative track and record
and key; deblock by key

T T R Search by relative track
record; deblock by key

UPDATING NONREYED DAM DATA SETS

Records in a nonkeyed DAM data set may be updated using either of
two methods. One method is to issue a DFHFC TYPE=GET,TYPOPER=UPDATE
to read the record, change the data in the FWA, and issue a DFHFC
TYPE=PUT to physically update the record. This is the normal way that
records are updated and should be used when portions of the record are
to be changed and the actual contents of the record are unknown.

An alternative method may be used when the contents of the record

and

to be updated are known, or when the entire record is to be changed,
regardless of its contents. A DFHFC TYPE=GETAREA macro instruction is
used to acquire an FWA, the record is built in the FWA, and a DFHFC
TYPE=PUT,TYPOPER=UPDATE is issued to write the data at the location
specified in the record identification field, destroying whatever was
previously recorded at that location. This approach requires that both
DAM update and DAM add capabilities be generated into the CICS/vS file
control program (see the CICS/VS system Programmer's Manual) •

ADDING RECORDS TO DAM DATA SETS

When adding new records to DAM data sets, the application programmer
should be aware of the following considerations and restrictions:

1. When adding undefined or variable-length records (keyed or
nonkeyed), the application programmer must indicate the track
on which each new record is to be added. If space is available
on the track, the new record is written following the last
previously written record, and the record number is placed in
the "R" portion of the record identification field of the record.
The track specification may be in any of the acceptable formats
except relative block. If zoned decimal relative format is
used, the record number is returned as a two-byte zoned decimal
number in the seventh and eighth positions of the record
identification field.

446 CICS/vS Application Programmer's Reference Manual

In the CICS/DOS/VS system, an attempt to add a variable-length
or undefined record is limited to the single track specified by
the application programmer. If insufficient space is available
on that track, a "no space available" error is returned, and
the application programmer may then try to add the recovd on
another track. Under these circumstances, the record is returned
to the application program in an FWA, the address of which is
at TCAFCAA. The programmer need only modify the track
identification and issue another DFHFC TYPE=PUT,TYPOPER=NEWREC
macro instruction to add the record on another track.

In the CICS/OS/VS system, the extended search option allows the
record to be added to another track if no space is available on
the specified track. Under these circumstances, the location
at which the record was added is returned to the application
program.

2. The addition of keyed fixed-length records to DAM data sets
requires that the data set first be formatted with dummy records
or "slots" into which new records may be added. (A dummy record
is signified by a key of hexadecimal FFS; in CICS/OS/VS, the
first byte of data contains the record-number.)

3. For nonkeyed, fixed-length records, the exact phySical block
reference must be given in the record identification field. The
data in the new records is written in the exact location
specified, destroying the previous contents of that location.

4. For keyed, fixed-length record additions, only the track
information is used a s a starting location for the search of a
dummy key and record. When a dummy key and record are found,
the new key and record replace it. The exact location at which
the new record is located is returned to the application program
in the block reference subfield of the record identification
field.

For example, suppose a user wishes to add a keyed, fixed-length
record to a DAM data set. First, some algorithm determines that
the search is to start at relative track 3. The record
identification field of the new record might appear as follows:

o 3 0 ALPHA

T T R KEY

When control is returned to the application program, the record
identification field might reflect the fact that the record was
added on relative track 4, record 6.

o 4 6 ALPHA

T T R KEY

5. When adding records of undefined length, the length of the
physical record must be placed in two-byte binary format at
TCAFCURL. When an undefined record is retrieved, the application
program must determine its length.

6. When making additions to a EDAM data set containing
variable-length blocked or unblocked records, the application
programmer must inClude a block record descriptor field (RDF)
which contains the length (LL~~) of the entire block to be
written. For each logical record within that block, an RDF must
be included which contains the length cf the logical record.

Chapter 11. Application Programming Considerations 441

Effectively, this allows the application to add a block
containing multiple logical records. For example:

FWA 1 PREFIX i 96 1 54 1 ~~ --50-~"124~20-114r-lO~
t t t t

BLOCK LOG LOG LOG
RDF REC REC REC

RDF RDF RDF

If only a single logical record is to be added, the block RDF is
still required. For example:

FWA 1 PREFIX 1lO811041~ 100
t t

BLOCK LOG
RDF REC

RDF

BLOCK RDF BLOCK RECORD DESCRIPTION FIELD
LOG REC RDF = LOGICAL RECORD RECORD DESCRIPTION FIELD

448 CICS/vS Application Programmer's Reference Manual

.. I

CHAPTER 1£. REQUESTING ~ LANGUAGE/I SERVICE

The CICS/OS/VS application programmer can request Data Language/I
(DLlI) services under CICS/OS/VS through a CALL written according to
DL/I specifications or by issuing a DFHFC macro instruction. In
response to such a request, control is passed to a CICS/VS-DL/I
interface routine that acts as an interface between the CICS/OS/VS
application program and the DL/I request handler in a DL/I task (which
is an OS/VS subtask of CICS/OS/vS). This routine performs validity
checks on the CALL list, sets up DL/I to handle this particular request,
and passes control and the CALL list to DL/I. When the CICS/VS-DL/I
interface routine regains control, it returns to the calling prograID
unless a DL/I pseudo-ABEND has occurred, in which case the CICS/OS/vS
transaction (task) is abnormally terminated.

Online access to DL/I data bases is also available under CICS/DOS/vS.
The CICS/DOS/VS application programmer can request DLII DOS/VS services
through CALLs written according to DL/I DOS/VS specifications.

The CICS/VS-DL/I interface is capable of concurrently processing
more than one DL/I request. This multithread capability enables the
CICS/VS user to utilize DL/I in a more efficient manner and thus
increase performance.

DL/I OS/VS and DL/I DOS/vS CALLs are similar in format and function.
Therefore, the discussion of CALL formats and related considerations
in this chapter applies to both CICS/OS/VS and CICS/OOS/VS.

The CICS/DOS/VS application programmer cannot issue CICS/VS DFHFC
macro instructions to access a DL/I DOS/VS data base. Therefore, the
following discussion of use of the DFHFC macro instruction to access
DL/I data bases applies only to CICS/OS/VS.

QUASI-REENTRANT CONSIDERATIONS ~ REGARD TO ~ (CICS/OS/VS)

Under CICS/VS, two or more transactions (tasks) may require the same
application program at any given time during system operation. To
avoid having to load multiple copies of the same pIOgram into main
storage, CICS/VS application programs are required to be quasi-reentrant
(see "Quasi-Reentrance"). Therefore, DL/I areas that may be modified
under CICS/OS/VS (such as PCB pointers, I/O work areas, and segment
search arguments) should not be placed in either static storage or
working storage. storage for such data must be obtained from CICS/VS
dynamic storage by each transaction using the program.

Four steps must be performed by an application program requesting
DL/I data base services. These steps are listed below and explained
in the paragraphs that follow.

1. Obtain addresses of program communication blocks (PCBs) used by
the application program.

2. Acquire storage for segment search arguments (SSAs) if they are
to be used in the CALL.

3. Acquire I/O work areas for DL/I segments processed by the
program.

4. Issue the DL/I CALL.

Chapter 12. Requesting DL/I services 449

Page ofSH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

OBTAINING ADDRESSES ~ PROGRAM COMMUNICATION BLOCKS

An application program that uses the CICS/VS-DL/I interface accesses
data bases by means of program communication blocks (PCBS). One PCB
for each data base is included in the program specification block (PSB)
for the program. TO successfully process DL/I CALLs within a CICS/vS
transaction, the PSB for the transaction must be scheduled and the PCB
addresses obtained before any DL/I CALLs are made. If they are not
obtained, an INVREQ (invalid request) indicator is returned in response
to any DL/I CALL within the ~rogram. For CICS/OS/VS, the scheduling
process gives the transaction exclusive control of the PSB. This
prevents other transactions from updating segment types that this
transaction is updating. For CICS/DOS/vS, the DL/I interface gives
control to the application program through "Intent Scheduling." For
a further discussion of this process, consult the DL/I DOS/vS
Application Programming Reference Manual. ----

A transaction may schedule only one PSB at a time. An attempt to
schedule a second PSB while one is still scheduled causes the INVREQ
indicator to be returned.

A sync point request (refer to the DFHSP macrO instruction in Chapter
7) by a task that is scheduled to use DL/I resources implies the release
of those resources. This means that if, after issuing a DFHSP TYPE=USER
macro instruction, access to a DL/I data base is required, the desired
PSB must be rescheduled through the DFHFC TYPE=(DL/I,PSB) macro
instruction. The previous position of that data base has been lost.

DFHFC MACRO INSTRUCTION (CICS/OS/VS)

To schedule the desired PSB and obtain PCB addresses, the CICS/OS/VS
application programmer uses a special form of the DFHFC macro
instruction:

r------r-------r---,
I I I
, I DFHFC I
I I ,
1 I ,
I , I

t I I , , I

: : I , , ,
I I ,

F~~: {(~~~~~~:~ }]
L ~~~bOliC address

[,NORESP=symbolic address]
[,DLINA=sym'bolic address]
(,PSBSCH=symbolic address]
(,PSBNF=symbolic address]
(,PSBFAIL=sy.mbolic address]
[, INVREQ=symbolic address]

L------L-------L---__ ~
where:

TYPE= (DL/I ,PCB)

PSB=

indicates that PCB addresses are to be acquired.

Note: DL/I in the TYPE= operand may also be coded as DLI or
DL1.

specifies the name of the PSB to be scheduled for the
transaction.

'psbname'
is the name of the PSB to be used.

450 CICS/vS Application Programmer's Reference Manual

Page of SH2o-9003.2
Revised May 22,1975 .
By TNL SN2o-9086

symbolic address

YES

is the symbolic address of an eight-byte field containing
the name of the PSB, padded to the right with blanks.

indicates that the name of the PSB has been placed in
TCADLPSB by the application program.

Chapter 12. Requesting DL/I services 450.1

If this operand is omitted, the name of the program associated
with the transaction in the CICS/VS program control table (PCT)
is used as the PSB name.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the PSB is located and the PCB addresses
are returned. NORESP signifies "normal response." If this
operand is omitted, but a described condition applies, processing
continues with the next sequential instruction in the application
program.

DLINA=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the CICS/VS-DLII interface is inactive.

~SBSCH=symbolic address
specifies the entry label of the user-written routine to which
control is passed if a PSB is already scheduled for this task.

PSBNF=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the PSB cannot be found in the PSB
directory.

PSBFAIL=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the PSB fails to initialize.

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is passed if: (1) a DLINA, PSBSCH, PSBNF, or PSBFAIL
condition occurs and the associated operand is omitted, or (2)
some other condition making the request invalid is detected.

If an INVREQ condition occurs and the INVREQ and an associated
expansion operand(s) are both omitted, proceSSing continues with
the next sequential instruction in the application program.

If the PSB has been located, ~CADLPCB contains the address of a list
of PCB addresses in the sequence in which the PCB addresses were
specified during the PSBGEN of this PSB. If the PSB cannot be found,
TCADLPCB contains zero. If the PSB pool or DMB pool is too small to
hold the requested blocks even when no other PSBs or DMBs are in their
pools, the transaction is terminated with the ADLA ABEND code.

DL/I CALL STATEMENT (CICS/DOS/VS)

Upon receiving control from CICS/DOS/VS, a CICS/DOS/VS application
program must issue a DL/I call to perform scheduling before attempting
to access DL/I data bases. If the scheduling call is successful, the
address of the PCB list~, is returned in the field TCADLPCB and TCAFCTR
is set to zeros. If the call is unsuccessful, TCADLPCB contains zeros
and TCAFCTR contains a one-byte return code. Before continuing with
subsequent DL/I calls, it is the application programmer's responsibility
to test these indicators to determine whether scheduling was successful.

The general format of the CALL statement to request scheduling is
as follows:

Chapter 12. Requesting DL/I Services 451

For Assembler language:

CALLDLI ASMTDLI, ([parmcount,]function,psb)
CBLTDLI

EQ!:~ ~:

CALL 'CBLTDLI' USING (parmcount,]function,psb.

For PL/I:

CALL PLITDLI ([pa rmcount,]function, psb) ;

where:

parmcount
is the name of a binaxy fullword containing the parameter count
(value of one or tw~. This parameter is optional.

function

psb

is the name of the field containing the four-character function
'PCBJS' •

is the name of the field containing the one- to seven-character
PSB generation name which the application program accesses.
This parameter is optional. If it is omitted, the PSB name is
assumed to be the first PSB name associated with the application
program name in the D1/I application control table generation.

For a more detailed discussion of the CALLDLI macro instruction,
consult the ~ DOS/VS Application Programming Reference Manual.

BUILDING SEGMENT SEARCH ARGUMENTS

Both CICS/OS/VS and CICS/OOS/VS application programmers can use
segment search arguments (SSAs) in a DLII CALL to identify a specific
segment, or, if qualified, to identify the range of values within which
a segment exists. In addition, the CICS/OS/VS programmer can specify
SSAs in a DFHFC TYPE=DL/I macro instruction. If used, SSAs must be
built by the application programmer before a DL/I CALL is issued.
(CICS/OS/VS application programmers should see the IMS/VS Application
Programming Reference Manual for information concerning how to build
an SSA; CICS/DOS/VS users should refer to the ~ DOS/VS Application
programming Reference Manual.)

In a DL/I application program, SSAs are built in fixed storage within
the program. In a CICS/VS application program, SSAs must be built in
dynamic storage to maintain the quasi-reentrance of the program.

The storage acquired to build the SSAS is addressed as follows:

• FOr Assembler-language programs, the address should be placed in
the register that establishes addressability for the SSA dynamic
storage •

• For ANS COBOL programs, the address is moved to the ELL pOinter
for this storage. The BLL pointer is defined under the COpy
DFHBLLDS statement in the Linkage Section and must be in the same
relative position in the BLL list as the 01 statement for the SSA
dynamic storage is among the 01 statements in the Linkage Section.

452 CICS/vS Application Programmer's Reference Manual

• For PL/I, the address is stored in the variable upon which the SSA
dynamic storage is based.

Afte~ the storage has been acquired and the SSAs built, OL/I CALLs
in which the SSAs are used can be issued by the application program.
The names of the SSAs to be used, if any, are specified in the parameter
list of the CALL. Under CICS/OS/vS, a OFHFC TYPE=DL/I macro instruction
can also be used. In a DFHFC TYPE=DL/I macro instruction, the
application programmer can specify the number and names of the SSAs in
diff~rent ways:

1. SSAS=NO indicates that there are no SSAs in this CALL.

2. SSAS=(ssacount,ssa1,ssa2, •••), Where ssacount is optional,
represents either the fixed-point number of SSAs in the CALL or
the symbolic address of the fu1lword that contains the number
of SSAs. Specifying a field to contain the number of SSAs
provides the application programmer with flexibility in writing
one DFHFC statement to be used in many different CALLs. ssa1,
ssa2, ••• , are the symbolic names of the SSAs.

3. SSALIST=YES indicates that the application programmer has built
a list of fullwords, cptionally containing the number of SSAs
(which may be zero) in the first word, and the addresses of the
SSAs in the following words, and that he bas stored the address
of this list at TCADLSSA.

4. SSALIST=symbolic address indicates that the address of an SSA
list built by the application programmer as indicated in item
3 is at the location specified.

In Assembler-language programs, ssacount,ssa1.ssa2, ••• , can be
contained in registers if the specifications are enclosed in
parentheses.

ACQUIRING AN !LQ ~ ~

When issuing a request for DL/I services, the address of a work
area, either that in which a current segment is contained or that in
which DL/I is to place the segment in a retrieval CALL, is required.
This area must be specified by the CICS/OS/vS or CICS/OOS/VS programmer
who issues a DL/I CALL. It may be provided by the interface, if the
programmer desires, for a retrieval-type DFHFC macro instruction.

If the CICS/OS/VS application programmer knows the address of the
work area to be used in the DFHFC macro instruction, including the case
for which storage is acquired for a retrieval-type (Gxxx) request, he
specifies the name of the pointer to that storage in the WRKAREA=name
operand, or he places the address of the storage in TCADLIO before
issuing the request and specifies WRKAREA=YES.

If the application programmer wishes to allow the interface to obtain
the work area for a retrieval-type request, he does not include the
WRKAREA operand in the DFHFC macro request. If the request was serviced
successfully, the address of an acquired I/O work area is in TCADLIO.
The address at TCADLIO is the address of the storage accounting area
(SAA) preceding the retrieved data. The area becomes the responsibility
of the programmer and is not freed until he frees it or until the
transaction terminates. If the application programmer elects to free
the work area. he must use a DFHSC TYPE=FREEMAIN macro instruction.

Note: The address of the I/O area is specified as the address of the
storage accounting area preceding the data when a DFHFC macro

Chapter 12. Requesting DL/I Services 453

instruction is used; the address of the first byte of the data area is
required when a DL/I CALL is used.

ISSUING THE DL/I CALL

The application program request for DL/I services may be either a
CICS/vS DFHFC macro instruction (CICS/OS/VS) or a DL/I call (CICS/OS/vS
or CICS/OOS/VS).

DFHFC MACRO INSTRUCTION (CICS/OS/vS)

The general format of the DFHFC macro instructicn to request that
a particular DL/I function be performed is as follows:

r------r-------r---,
DFHFC I

I
I
I
I

I

TYPE= (DL/I [, function])

[
, PCB= {symb ~l i c address}]

(reg l.ster)

[,WRKAREA={~~b~liC addreSS}]

[

,SSAS={NO (regl.ster) }]
Tf ssacount][, ssa 1](,ssa 2, •••])

[

, SSALIS~~1(~~~ister 1)][, (reg

1J

ister2) , •••])

~mb~l ic address
(regl.ster)

[,NORESP=symbolic address]
[,NOTOPEN=symbolic address]
[,DLINA=symbolic address]
[,FUNCNS=symbolic address]
[,INVREQ=symbolic address]

L------L-------L---~

where:

TYPE= (DL/I [, function])

PCB=

specifies the two- to four-byte name of the function to be
performed. If the function is not specified, it is assumed to
be in TCADLFUN.

Note: DL/I in the TYPE= operand may also be coded as DLI or
DL1.

specifies the field that contains the address of the PCB.

symbolic address
is the symbolic address of the field containing the address
of the PCB.

(register)
is valid only when Assembler language is used and is the
number of a register that contains the address of the PCB.

WRKAREA=
specifies the address of the work area to be used.

454 CICS/vS Application Programmer's Reference Manual

SSAS=

symbolic address

YES

is the symbolic address of a field that contains a pointer
to the work area.

indicates that the address of the work area to be used has
been placed in TCADLIO by the application program.

(register)
is valid only when Assembler language is used and is the
number of a register that contains the address of the work
area.

If this operand is omitted and a Gxxx function is to be
performed, the CICS/VS-DL/I interface acquires storage for
the work area and returns the address of the work area at
TCADLIO. The application program must save this address
upon return. If any other type of function is requested,
the application program must provide the work area. (See
programming note 1.)

indicates whether or not segment search arguments are used in
this request and, if so, identifies them.

NO
indicates that no SSAs are used in this request.

([ssacount][, ssa 1][, s sa 2, •••])
specifies the names of segment search arguments used in this
request (thereby creating an SSA list). The ssacount
parameter specifies the number of SSAs to be used; it is
the address of a fullword containing the count, or, in the
case of Assembler language, may be expressed as a numeric
value. Each ssa specification represents an element of the
SSA list (see programming note 2).

([(register1)][, (regi ster2) , •••])
is interpreted as described above; that is, register1
contains a count of the SSAs in the list or is the first
list entry, register 2 is the first or second list entry
(depending on whether a count has been specified), and so
on.

If this operand is specified, SSALIST cannot be specified.

SSALIST=
indicates whether or not segment search arguments are used in
this request and if so, identifies the list containing these
arguments.

YES

NO

indicates that a list of segment search arguments is used
and that the address of the list has been placed in TCADLSSA
by the application program.

indicates that no SSA list is used in this request.

symbolic address
is the symbolic address of a field that contains the address
of the SSA list.

Chapter 12. Requesting DL/I Services 455

(register)
is valid only when Assembler language is used and is the
number of a register that contains the address of the SSA
list.

If this operand is specified, SSAS cannot be specified.

NORESP=symbolic address
specifies the entry label of the user-written routine to which
control is passed when the application program regains control.
The CICS/VS-DL/I interface must have been able to pass control
to DL/I and a DL/I pseudo-ABEND of the transaction cannot have
occurred. The user must check the return code in the PCB to
determine whether DL/I was able to service the request. If this
o~erand is omitted, control is passed to the next sequential
instruction in the application ~rogram.

NOTOPEN=symbolic address
specifies the entry label of the user-written routine to which
control is passed if this data base is logically (not necessarily
physically) closed. The PCB does not contain a DL/I AI status
code.

DLINA=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the CICS/VS-DL/I interface is inactive.

FUNCNS=symbolic address
specifies the entry label of the user-written routine to which
control is passed if a DL/I functional request (a request other
than PCB or TERM) is made and the task does not have a PSB
scheduled.

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is passed if: (1) a DLINA or FUNCNS condition occurs
and the associated operand is omitted, or (2) some other
condition making the request invalid is detected. If an INVREQ
condition occurs and the INVREQ and an associated expansion
operand(s) are both omitted, processing continues with the next
sequential instruction in the application ~rogram.

programming Notes:

1. A work area whose address is specified in a DFHFC macro
instruction or placed at TCADLIO prior to execution of the DFHFC
macro instruction includes the CICS/VS storage accounting area
prefix. A work area specified in a CALLDLI or CALL statement
does not.

2. The first element of an SSA list, or it may point to a fullword
containing this count; the remaining elements represent addresses
of SSAs. If the first element of an SSA list is not a count,
all elements of the SSA list are assumed to be addresses of
SSAs; the high-order bit of the last element of the list must
be set on to indicate the end of the list.

DL/I CALL STATEMENT (CICS/OS/vS OR CICS/DOS/VS)

DLII data base services are available to CICS/VS application programs
through CALL statements. The CALL statement formats for American
National Standard (ANS) COBOL and PL/I are similar. For
Assembler-language application programs, a CALLDLI macro instruction
is used. The general formats of the DLII calls are as follows:

456 CICS/vS Application Programmer's Reference Manual

For Assembler language:

CALLDLI ASMTDLI (,([parmcount,]function,pcb,workarea[,ssa, •••])]
CBLTDLI

For ANS COBOL:

CALL 'CBLTDLI' USING [parmcount,]function,pcb,workarea[,ssa, •••].

CALL PLITDLI (parmcount,function,pcb,workarea{,ssa, •••]);

where:

parmcount
is the name of a binary fullword containing the parameter count
or argument count of the arguments which follow; this is optional
for Assembler language and ANS COBOL.

function

pcb

is the name of the field containing the four-character DL/I
input/output CALL function desired.

is the program communication block (PCB) name (or DSECT name if
Assemble:t:) •

workarea
is the name of the I/O work area.

ssa1 to ssan

Notes:

are the names of the segment search arguments (SSAs); these are
optional.

1. If no parameters are specified in an Assembler-language CALLDLI
macro instruction, register 1 is assumed to contain the address of
a parameter list.

2. In Assembler language, an alternative format may be used:

CALLDLI ASMTDLI ,MF=(E, (register) or address)
CBLTDLI

where:

address is the address of the parameter list, or register contains
the address of the parameter list.

RELEASING ~ PSB ~ THE CICS/VS APPLICATION PROGRAM

DFHFC MACRO INSTRUCTION (CICS/OS/vS)

To reduce pool and intent contention, the CICS/OS/VS application
program can release the PSB after a DL/I service has been requested.

It is recommended that conversational programs release the PSB before
writing to a terminal so that other transactions can use the PSB while
the conversational program is waiting for an operator response.

Chapter 12. Requesting DL/I Services q51

Page OfSH2o-9003-2
Revised May 22, 1975
By TNL SN2o-9086

To ensure data-base integrity, a request to release a PSB implies
the end of a logical unit of work for the entire task. This means that
a DFHSP TYPE=USER is issued on behalf of a task that is releasing a
PSB. .'

To release a PSB for use by other transactions, the CICS/OS/vS
application programmer issues a macro instruction of the following
format:

r------r-------r------------------------~------------------------------,
I I I I I' 'DFHFC TYPE: (DL/I, { ~ERM}) ,

, , I [, DLINA=s,ym boli c addres s] I
I I I [,TERMNs=symbolic address] f
, I I [, INVREQ=symbolic address] ,
I I 1 I L------L--_____ L ______________________________________ -----------------~

where:

TYPE=(DL/I,TERM)
specifies that the PSE is to be released for use by other
transactions, or, if not required, its pool space and associated
DMB pool space may be released for other purposes.

Notes:

1. DL/I in the TYPE= operand may also be coded as DLI or DL1.

2. TERM may be abbreviated as T.

DLINA=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the CICS/VS-DL/I interface is inactive.

TERMNS=symbolic address
specifies the entry label of the user-written rQutine to which
control is passed if a termination request is made and the task
has no PSB scheduled.

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is given if: (1) a DLINA or TERMNS condition occurs
and the associated operand is omitted, or (2) sOme other
condition making the request invalid is detected. If an INVREQ
condition occurs and the INVREQ and an associated expansion
operand(s) are both omitted, processing continues with the next
sequential instruction in the application program.

Before issuing any other DL/I CALLs or DFHFC macro instructions
requesting DL/I access to a data base; the application programmer must
again issue a schedule-type DFHFC macro instruction. All positioning
in data bases referred to by the transaction is lost when the PSB is
released. Thus, if the program was processing a hierarchy through GNxx
requests before releasing the PSB, it is necessary to explicitly
reposition the data bases after issuing another schedule-type DFHFC
macro instruction, to continue the GNxx requests.

DL/I CALL STATEMENT CCICS/OOS/VS)

If the CICS/DOS/vS application program desires to relinquish control
of the PSB, it must issue a terminal call to PL/,I. The general format
of the CALL statement to request termination is as follows:

458 CICS/vS Application Programmer's Reference Manual

For Assembler language:

CALLOLI ASMTOLI, ([parmco~nt,]function)
CBLTDLI

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

Chapter 12. Requesting OUI Services 458.1

For ANS COBOL:

CALL 'CBLTDLI' USING (parmcount,]function.

For ~:

CALL PLITDLI «(parmcount,]function) ;

where:

parmcount
is the name of a binary fullword containing the parameter count
value of one.

function
is the name of the field containing the four-character function
'TERM' or 'T~~~·.

When a termination call is issued for a previously scheduled PSB,
the resources acquired for the task are released, and tasks awaiting
the resources are given an opportunity to be scheduled.

CHECKING ~ RESPONSE !Q ~ REQUEST fQE ~ SERVICES

When the application programmer issues a request for CICS/VS-DL/I
interface operations, he can check the reponse to his request to
determine subsequent processing that should be carried out. One step
in doing so is to specify the entry-point names (symbolic labels) of
user-written exception-handling routines, any of which may be executed
as a result of the check. He can do this in any of three ways:

1. Include the entry-point names in operands of the DFHFC macro
instruction by which the service is requested.

2. Include the entry-point names in operands of a

DFHFC TYPE=CHECR,

macro instruction immediately following the DFHFC macro
instruction by which the service is requested.

3. Include instructions immediately following the DFHFC macro
instruction that examine the response code set automatically by
CICS/VS and transfer control to an exception-handling routine
according ly •

When the third approach above is used, the application programmer
must know the CICS/VS response codes and their meanings. If the
Assembler-language or PL/I programmer elects to use this approach, he
can access the response codes for NORESP, INVREQ, and NOTOPEN at
TCAFCTR; the response codes for all other conditions can be accessed
at TCADLTR. The ANS COBOL programmer can access the response codes
for NORESP, INVREQ, and NOTOPEN at TCAFCRC; the response codes for all
other conditions can be accessed at TCADLTR. The possible response
codes and the conditions to which they correspond are identified in
the right-hand column of Figure 12-1. CICS/VS-DL/I interface requests
for which the conditions are applicable are shown at the left.

Chapter 12. Requesting DL/I Services QS9

*

DL/I Interface Request by Response Code
DFHFC Macro Instruction Condition Assembler ANS COBOL PL/I

(DL/I,PCB) , (DL/I NORESP X'OO' 12-0:-1-S-9 00000000
[,function]),CHECK (Normal (FCNORESP)

Response)

(DL/I[,function]),CHECK NOTOPEN X'OC' 12-q-8-9 00001100
(Not open) (FCNOTOPEN)

All INVREQ X' 08' 12-8-9 00001000
(Invalid (FCINVREQ)
Request)

INVREQ Expansl.on Codes at TCADLTR

(DL/I,PCB) ,CHECK PSBNF X' 01' 12-1-9 00000001
(PSB Not (DLPSBNF)
Found)

CHECK TASKNA X' 02' 12-2-9 00000010
(Task Not (DLTASKNA)
Authorized)

(DL/I,PCB) ,CHECK PSBSCH X' 03' 12-3-9 00000011
(PSB AI- (DLPSBSCH)
ready Sche-
duled

CHECK LANGCON X·Oq· 12-4-9 00000100
(Language (DLLAl'GCON)
Conflict)

(DL/I,PCB) ,CHECK PSBFAIL X'OS' 12-5-9 00000101
(PSB Ini- (DLPSBFAIL)
tiali za tion
Failed)

CHECK PSBNA X' 06' 12-6-9 00000110
(PSB Not (DLPSBNA)
Authorized)

(DL/I,T) ,CHECK TERMNS X' 07' 12-7-9 00000111
(Termina- (DLTERMNS)
tion Not
Scheduled)

(DL/I[,function]), FUNCNS X'OS' 12-8-9 00001000
CHECK (Funtion (DLFUNCNS)

Not Sche-
duled)

DLINA X'FF' 12-11-0- 11111111
(DL/I Not 7-S-9
Active) (DLINA)

Notes:

1. The TASKNA, LANGCON, and PSBNA conditions apply only to CICS/OOS/vS.

2. The names enclosed in parentheses in the ANS COBOL column indicate
the 8S-level definitions provided by CICS/VS. These names may be
used in testing for the respective conditions in a COBOL program.

Figure 12-1. CICS/VS-DL/I Interface Response Codes

460 CICS/vS Application Programmer's Reference Manual

The operands that are appropriate for the forms of the DFHFC macro
instruction used to request CICS/VS-DL/I interface processing are
explained in the preceding discussion. A complete discussion of the
DFHFC TYPE=CHECK macro instruction is gi ven earlier under "Test Response
to a Request for File services. II The operands that are appropriate for
checking the CICS/VS-DL/I interface response and their meanings are
summarized below:

r------r-------r---,
I I
, DFHFC I
, I
I I
I I
I I
I I
I I
I I , I
, I
I I

I I

TYPE=CHECR
[,NORESP=symbolic address]
[,DLINA=symbolic address]
(, PSBSCH=symbol ic address]
(,PSBNF=symbolic address]
(,PSBFAIL=symbolic address]
(,FUNCNs=symbolic address]
(,TERMNS=symbolic address]
[,LANGCON=symbolic address]
[,TASKNA=symbolic address]
(,PSBNA=symbolic address]
[,INVREQ=symbolic address]
(,NOTOPEN=symbolic address]

CICS/DOS/VS only
CICS/DOS/VS only
CICS/OOS/VS only

L------L-------L---~

where:

TYPE=CHECK
indicates that the CICS/VS-DL/I interface response is to be
checked.

NORESP=symbolic address
specifies the entry label of a user-written routine to which
control is passed upon normal execution of the request.

DLINA=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the CICS/VS-DL/I interface is inactive.

PSBSCH=symbolic address
specifies the entry label of the user-written routine to which
centrol is passed if a PSB is already scheduled for this task.

PSBNF=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the PSB cannot be found in the PSB
directory.

PSBFAIL=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the PSB fails to initialize.

FUNCNS=symbolic address
specifies the entry label of the user-written routine to which
control is passed if a DL/I function request (a request other
than PCB or TERM) is made and the task has no PSB scheduled.

TERMNS=symbolic address
specifies the entry label of the user-written routine to which
control is passed if a termination request is made and the task
has no PSB scheduled.

Chapter 12. Requesting DL/I Services 461

LANGCON=symbolic address (CICS/DOS/vS only)
specifies the entry label of the user-written routine to which
control is passed if the calling program is in a different source
language than the called PSB.

TASKNA=symbolic address (CICS/DOS/VS only)
specifies the entry label of the user-written routine to which
control is passed if the calling task is not authorized to access
DLII data bases.

PSBNA=symbolic address (CICS/DOS/vS only)
specifies the entry label of the user-written routine to which
control is passed if the task is not authorized to access this
PSB.

INVREQ=symbolic address
specifies the entry label of the user-written routine to which
control is passed if: (1) a DLINA, PSBSCH, PSBNF, PSBFAIL,
FUNCNS, TERMNS, LANGCON, TASKNA, or PSBNA condition occurred
and the associated operand was omitted, or (2) some other
condition making the request invalid is detected. If an INVREQ
condition occurs and the INVREQ and an associated expansion
operand(s) are both omitted, processing continues with the next
sequential instruction in the application program.

NOTOPEN=symbolic address
specifies the entry label of the user-written routine to which
control is passed if the data base specified in the PCB used in
this request is logically (not necessarily physically) closed.
The PCB does not contain a DL/I AI status code.

The application programmer may use the DFHFC TYPE=CHECK macro
instruction following a CALLDLI, CALL, or DFHFC TYPE=(DL/I[,function])
macro instruction. This macro instruction does not check the DL/I
return codes in the PCB. If DL/I issues a pseudO-ABEND during
processing of the request, control is not returned to the application
program. The transaction is terminated with CICS/VS ABEND code ADLA.
For CICS/DOS/VS, if DL/I issues a pseudo-ABEND during a call, the
transaction is terrnina ted with a Dnnn ABEND code where nnn is the DL/I
pseudo-ABEND code.

If the application programmer does not provide for the checking of
a particular response, and if the exception condition corresponding to
that response occurs, program flew proceeds to the instruction following
the DFHFC macro instruction in the application program.

DL/I REQUESTS IN AN ASSEMBLER-LANGUAGE PROGRAM (CICS/OS/VS)

The application programmer must first get the addresses of the PCB.
When CICS/OS/vS returns from servicing the PCB request, if the
programmer loads register 1 from TCADLPCB, his program is in the same
state as after an ENTRY DLITCBL statement has been executed in an IMS/VS
DL/I application program.

The examples that follow show the options available to the
application programmer in a few of the acceptable combinations. Note
that, the application program must be quasi-reentrant. Note also that,
if a DFHFC macro instruction is issued, the PCB and WRKAREA operands
are used to specify the addresses of pointers to fields rather than
the addresses of fields desired.

COPY DFHTCADS

* PSBNAME DC CL8 'PSBNAME'

COPY TeA DEFINITION - INCLUDES
DL/I FIELIS
Nl'.ME OF P SB TO BE USED

462 CICS/vS Application Programmer's Reference Manual

PCBFUN DC CL4'PCBb'
PCBPTRS DSECT

* PCB1PTR DS F
PCB2PI'R OS F

WORKAPTR OS

*
F

PCBl DSECT

PCB2 DSECT

WRKAREA DSECT
DS 2F

WORKAl DS CL40
SSAREA OSECT

DS 2F
SSAl DS CL40
SSA2 DS CL20

DFHFC TYPE= (DL/I , FeB)
DFHFC TYPE: (DLlI, PCB) ,

PSB='PSB14'
DFHFC TYPE=(DLlI,PCB),

PSB=psbname
MVC TCAOLPSB,=CLS'PSBA'
DFHFC TYPE=(OLlI,PCB),

PSB=YES
L R1,TCAOLPCB
USING PCBPTRS,R1

PCB FUNCTION
PCB POINTERS RETURNED BY
INTERFACE
STORAGE FOR PCB POINTERS

STORAGE FOR POINT ER IN I/O WORK
AREA
PCB DSECT

PCB DSECT

DL/I WORK AREA DSECT
STORAGE PREFIX
WORK AREA
SSA DSECT
STORAGE PREFIX
SSA1 LAYOUT
SSA2 LAYOUT

USE PSB FOR THIS PROGRAM
GET PCB'S IN 'PSB14'

GET PCB'S IN SPECIFIED PSB

PUT PSB NAME IN TCA
GET PCB'S OF PSB NAMED IN TCA

GET ADDRESS OF PCB ADDR LIST
REG 1 IS BASE OF PCB POINTERS

*
*

*

* USER MUST PROVIDE ADDRESSABILITY

* TO PCB'S WHEN USING THEM
* ISSUE A PCB REQUEST VIA CALLDLI

CALLDLI CBLTDLI, (PCBFUN) USE PSB FOR THIS PROGRAM
CALLDLI CBLTDLI, (PCBFUN,PSBNAM~GET PCB'S IN SPECIFIED PSB
L Rl,TCADLPCB GET ADDRESS OF PCB ADDRESS LIST

* ACQUIRE STORAGE FOR WORK AREA
DFHSC TYPE=GETMAIN, •••
L R2,TCASCSA
USING WRKAREA,R2

* ACQUIRE STORAGE FOR SSA'S
DFHSC TYPE=GETMAIN, •••
L R3, TCAS CSA
USING SSAREA,R3

*

GET STORAGE FOR WORK AREA
REG 2 IS BASE FOR WORK AREA
TELL ASSEMBLER

GET STORAGE FOR SSA'S
REG 3 IS BASE FOR SSA'S
INDICATE TO ASSEMBLER

CALLDLI CBLTDLI, (function,PCB1,WORKA1,SSA1,SSA2)

* * CALL DLII VIA DFHFC MACRO -- VARIOUS EXAMPLES

* * EXAMPLE 1

*

*

DFHFC TYPE=(DLlI,function),
PCB=PCB1PTR,
WRKAREA=WORKAPTR,
SSAS=(2,SSA1,SSA2),
NORESP=GOOD1

* EXAMPLE 2

PCB IS POINTED TO
WORK AREA IS POINTED TO
SSA COUNT AND SSAS SPECIFIED
NORMAL RESPONSE BRANCH

Chapter 12. Requesting DLII Services 463

*
*
*
*

*
MVC
LA
ST
DFHFC

*

* EXAMPLE 3

* MVC
DFHSC
L
LA
LA
ST
LA
ST
ST
01
DFHFC

L
*

TCADLPCB,PCB1PTR
RO, WRKAREA
RO,TCADLIO
TYPE=(DL/I,DLET),
WRKAREA=YES,
SSAS=NO

TCACLFUN,=CL4 'GU'
TYPE=GETMAIN, •••
R4,TCASCSA
R4,8(R4)
RO,1
RO,0(R4)
RO,SSA1
RO, 4 (R4)
R 4 , TCAD~SSA
4 (R 4) , X ' 8 0 •
TYPE=DL/I,
PCB=PCB1PTR,

SSALIST=YES
R3,TCADLIO

PRELOAD PCB POINTER
PICK UP WORK AREA ADDRESS
STORE IN 'ICA
FUNCTION SPECIFIED *
WORK AREA ADDRESS PRE LOAD ED *
NO SSAS

PRELOAD FUNCTION
GET STORAGE FOR SSA LIST
PICK UP STORAGE ACDRESS
BYPASS PREFIX
GET COUNT OF SSA'S
S~ORE IN SSA LIST
GET ADDRESS OF·· 'SSA l'
STORE IN SSA LIST
STOR~ LIST ADDRESS IN TCA
SET ON THE END-OF-LIST BIT
DL/I CALL, FUNCTION PRELOADED *
POINTER TO PCB TO BE USED *
INTERFACE WILL PROVIDE WORK AREA*
PROBLEM PROGRAM PROVIDES SSA LIST
PICK UP ACDRESS OF SUPPLIED
WORK AREA

DL/I REQUESTS IN AN ANS COBOL PROGRAM (CICS/OS/VS)

Upon program entry, the ANS COBOL programmer should obtain PCB
addresses by issuing a DFHFC TYPE=(DL/I,PCB) request. After CICS/OS/vS
returns control, the programmer moves the contents of TCADLPCB to the
BLL pointer which is the base for the layout of the PCB pointers in
the Linkage Section. He then moves the addresses of the PCBs to their
BLL pointers to provide the base addresses for the PCBs. When this is
done, the program is in the same state as after an ENTRY 'DLITCBL'
USING PCB1,PCB2 statement ha s been executed in an IMS/VS DL/I
application program.

For an explanation of how BLL pOinters to 01 statements in the
Linkage section are defined, see the discussion of ANS COBOL application
programming in Chapter 4.

Examples showing how to write DL/I requests are given below. Only
some combinations of operands are shown, but other combinations are
acceptable. Note that, in a DFHFC request, BLL ~ointers to the PCB
and work area are used rather than actual field names. This is the
only way the addresses can be passed to DL/I.

WORKING-STORAGE SECTION.
11 PSBNAME PICTURE X(8) VALUE 'PSENAME'.
11 PCB-FUNCTION PICTURE X(4) VALUE 'PCB~'.
11 FUNCTION-1 PICTURE X(4) VALUE'DLET'.
71 SSA-COUNT PICTURE 9 (8) COMPUTATIONAL VALUE +2.
LINKAGE SECTION.
01 DFHBLLDS COpy DFHBLLDS

02 NOTE POINTERS TO OTHER CICS/vS
* AREAS NEEDED

02 B-PCB-PTRS PICTURE 9 (8) COMPUTATIONAL.
02 B-PCB1 PICTURE 9(8) COMPUTATIONAL.
02 B-PCB2 PICTURE 9(8) COMPUTATIONAL.
02 B-WORKAREA PICTURE 9 (8) COMPUTATIONAL.
02 B-SSAS PICTPRE 9(8) COMPUTATIONAL.

01 DFHCSADS COPY DFHCSADS~

464 CICS/vS Application Programmer's Reference Manual

01 DFHl'CADS COPY DFHTCADS.
NOTE TWO DEFINITIONS.
NOTE OTHER AREA DEFINITIONS.

o 1 PCB- PTRS •
02 PCB1-PTR PICTURE 9(8) COMPUTATIONAL.
02 PCB2-PTR PICTURE 9(8) COMPUTATIONAL.

01 PCB1.

01 PCB2.

01 WORKAREA.
02 FILLER PICTURE X(8).
02 WORKA1 PICTURE X(40) •

01 SSAREA.
02 FILLER PICTURE X(8).
02 SSA1 PICTURE X(40).
02 SSA2 PICTURE X(60).

PROCEDURE DIVISION.
* GET PCB ADDRESSES

NOTE STORAGE PREFIX.

DFHFC TYPE=(DL/I,PCB) GET PSB FOR THIS PROGRAM
* GET PCB ADDRES SES VIA CALL

CALL 'CBLTDLI' USING PCB-FUNCTION,PSBNAME.
NOI'E GET PCB'S FOR SPECIFIED PSB.

* SAVE PCB ADDRESSES IN BLL TABLE SO PCB'S CAN BE ADDRESSED
MOVE TCADLPCE TO B-PCB-PTRS.
MOVE PCB1-PTR TO B-PCB1.
MOVE PCB2-PTR TO B-PCB2.

* OPTIONALLY, ACQUIRE STORAGE FOR WORK AREA
DFHS C TYPE=GFI'MAIN, •••
MOVE TCASCSA TO B-WORKAREA.

* OPTIONALLY, ACQUIRE STORAGE FOR SEGMENT SEARCH ARGUMENTS
DFHSC TYPE=GETMAIN, •••
MOVE TCASCSA TO B-SSAS.

* CALL DL/I VIA CALL
CALL 'CBLTDLI' USING FUNCTION-1,PCB1,WORI<A1,SSA1,SSA2.

* EXAMPLE 1 OF DFHFC MACRO INSTRUCTION
DFHFC TYPE=(DL/I,GHU), FUNCTION *

PCB=B-PCB1, PCB POINTER *
WRKAREA=B-WORKAREA, WORK AREA POINI'ER *
SSAS=(SSA-COUNT,SSA1,SSA2) SSA COUNT AND NAMES

* EXAMPLE 2 OF DFHFC MACRO INSTRUCTION
MOVE 'GNP' TO TCADLFUN. NOTE PRELOAD FUNCTION.
MOVE B-PCB1 TO TCADLPCB. NOI'E PRELOA£ PCB ADDRESS.
DFHFC TYPE=DL/I, FUNCTION PRELOADED *

SSAS=NO PCB ADDRESS PRELOADED *
WORK AREA TO EE ACQUIRED *
NO SSA'S

MOVE TCADLIO to B-WORKAREA. NOTE SAVE ACQUIRED WORK AREA ADDR.

Chapter 12. Requesting DL/I services 465

DL/I REQUESTS IN ~ E!L! PROORAM (CICS/OS/vS)

Upon entry to his program, the PL/I application programmer should
get PCB addresses through a DFHFC TYPE=(DL/I,PCB) statement. When
CICS/VS returns, the base address of a structure of PCB pointers is in
TCADLPCB. The PL/I programmer must move the value from TCADLPCB to
the based variable for his declared structure of PCB pointers. He then
loads the pointers to all PCBs from this structure. When this has been
done, the program is in the same state as an IMS/vS DL/I application
program in which the

DLITPLI: PROCEDURE (pctnamel, •••) OPTIONS (REENTRANT,MAIN);

statement has been executed.

The PL/I programmer may then make DLII requests, either through
CALLs or DL/I DFHFC macro instructions. Note that the PCB and WRKARFA
operands in a DFHFC request specify the addresses of pOinters !2 fields
rather than of the fields desired.

~INCLUDE DFHCSADS;
~INCLUDE DFHTCADS;

/* CSA ~EFINITION */
/* TCA DEFINITION - INCLUDES */
/* DL/I FIELDS */

DECLARE 1 PCB POINTERS BASED (B PCB PTRS),
2 PCBl PTR POINTER, - -
2 PCB2:PTR POINTER;

DECLARE 1 PCBl BASED (BPCB1), /* PCB DEFINITIONS */
2 •••
2 ••• ;

DECLARE 1 PCB2 BASED (BPCB2),
2 ••• -
2 ••• ;

DECLARE 1 DLI IOAREA BASED (BDLIIO), /* DL/I I/O AREA */
2 STORAGE PREFIX CHAR(S) ,
2 IOKEY CHAR(6),
2 ••• ;

DECLARE 1 DLI SSADS BASED (BSSADS), /* DL/I S~ LIST */
2 STORAGE PREFIX CHAR(S) ,
2 SSA1, -

3 SSA1KEY CHAR (6) ,
3 •••

2 SSA2,
3 •••
3 ••• ;

DECLARE PSBNAME CHAR(S) INIT ('PSBNAME');
DECLARE PCB FUNCTION CHAR(S) INIT ('PCB I);

/* OBTAIN PCB POINTERS */
DFHFC TYPE=(DL/I,PCB) GET PSB FOR THIS PROGRAM

/* OBTAIN PCB POINTERS VIA CALL */
CALL PLITDLI (PARM CT,PCB FUNCTION,PSBNAME): /* GET SPECIFIED PSB */

/* SAVE POINTERS IN PCB BAS ES */
B PCB PTRS=TCADLPCB;
BPCB1;;"PCB1 PTR;
BPCB2=PCB2-PTR;

/* ACQUIRE STORAGE FOR DL/I I/O AREA */
DFHSC TYPE=GETMAIN,CLASS=USER, •••
BDLIIO=TCASCSA;

/* OPTIONALLY, ACQUIRE STORAGE IN WHICH TO BUILD SSA'S */
DFHSC TYPE=GETMAIN,CLASS=USER, •••
BSSADS=TCASCSA;

/* OPTIONALLY, BUILD SEGMEN~ SEARCH ARGUMENTS */

466 CICS/vS Application Programmer's Reference Manual

SSA1KEY=TERMKEY;

/* CALL DL/I */
CALL PLITDLI(PARM CT,DLI FUNCTION,PCB1,IOKEY,SSA1,
SSA2) ; --

/* EXAMPLE 1 OF DFHFC MACRO INSTRUCTION */
DFHFC TYPE=(DL/I,ISRT), *

PCB=BPCB1, PCB POINTER *
WRKAREA=BDLIIO, WORK AREA POINTER *
SSAS=(2,SSA1,SSA2) SSA COUNT AND NAMES

/* EXAMPLE 2 OF DFHFC MACRO INSTRUCTION */
TCADLPCB=BPCE1 ;
DFHFC TYPE=(DL/I,GU), PCE PRELOAEED *

SSAS=(SSA_COUN~,SSA1,SSA2) WORK AREA TO BE ACQUIRED *
SSA COUNT AND NAMES

BDLIIO=TCADLIO; /* SAVE WORK'AREA ADDRESS */
/* EXAMPLE 3 OF DFHFC MACRO INSTRUCTION */

TCADLFUN='GN'; /* PRELOAD FUNCTION */
TCADLIO=BDLIIO; /* PRELOAD WORK AREA ADDRESS */
DFHFC TYPE=DL/I, FUNCTION PRELOADED *

PCB=BPCB1, PCB POINTER *
WRKAREA=YES, WORK AREA ADDRESS PRELOADED *
SSAS=NO NO SSA'S

When using the PL/I optimizer, all SSAs used in DFHFC calls and all
parameters used in CALLs must be defined as elementary items. This
can be done by defining structures based on the same pointers as the
structures containing the nonelementary definitions.

DECLARE 1 DLI_CALL_SSADS EASED (BSSADS),
2 S~ORAGE PREFIX CHAR(8),
2 CALL SSA1 CHAR(•••),
2 CALL-SSA2 CHAR (•••);

/* SET UP SSA 1 AND USE IN CALL */
SSA1KEY=SEARCH KEY;
DF HFC TYPE=DLiI,

SSAS=(SSA COUNT, CALL SSA1)
CALL PLITDLI (PARM_CT,FUNCTION,PCB1,IOKEY,CALL_SSA1);

Chapter 12. Requesting DL/I Services 467

APPENDIX ~ EXECUTABLE CICS/vS SAMPLE PROGRAMS

This appendix contains an executable applicaticn program that
performs a limited message s~tching function; that is, data collection,
message entry, and message retrieval. The program is shown in each of
the languages supported under CICS/VS: Assembler language r American
National Standard (ANS) COBOL, and PL/I.

ASS E M B L ERE X AMP L E PRO B L E M

* TITLE 'CICS/vS MESSAGE SWITCHING PROGRAM EXAMPLE' *

DFHCOVER

* * * * A P P L I CAT ION PRO G RAM * * * *

* * * DUM M Y SEC T ION S * * *

COpy DFHCSADS COpy COMMON SYSTEM AREA DSECT
EJECT LISTING CONTROL CARD - EJECT
COPY DFHTCADS COPY TASR CONTROL AREA DSECT

TWATSRL DS H TEMPORARY STORAGE RECORD LENGTH
DS H

TWATDDI DS CL4 DESTINATION IDENTIFICATION
TWAREAI OS CL4 RETRIEVE ALL INDICATOR
TWAQEMCI DS C QUEUE EMPTY MESSAGE CONTROL IND

EJEcr LISTING CONTROL CARD - EJECT
TCTTEAR EQU 11 TERM CONT TABLE TERM ENT ADR RG

COpy DFHTCTTE COpy TERM CONT TABLE TERM ENTRY
TIOABAR EQU 10 TERM I/O AREA BASE ADDR REG

COPY DFHTIOA COpy TERMINAL I/O AREA DSECT
TIOADATA DS OCL80 DATA AREA
TIOATID DS CL4 TRANSACTION IDENTIFICATION

DS C DELIMITER
TIOARRI DS OCL6 RESUME REQUEST IDENTIFICATION
TIOARAI1 DS OCL3 RETRIEVE ALL INDICATOR 1
TIOADID DS CL4 DESTINATION IDENTIFICATION
TIOASSF DS OCL4 SUSPEND STORAGE FACILITY IDENT

DS C DELIMITER
TIOAMBA DS OC TERMINAL MESSAGE BEGINNING ADDR
TIOARAI2 OS CL3 RETRIEVE AIL INDICATOR 2

SPACE 8 LISTING CONTROL CARD - SPACE 8
TDIABAR EQU 9 TRANS DATA IN AREA BASE ADDR RG

COpy DFHTDIA COpy TRANS DATA INPUT AREA
EJEcr LISTING CONTROL CARD - EJECT

* * * * A P P L I CAT ION PRO G RAM * * * *.

CICSATP CSECT CONTROL SECTION - APPL ~EST PGM

USING *,3 USING REGISTER 3 AT *
LR 03,14 LOAD PROGRAM BASE REGISTER
B ATPIPIN GO TO INIT PROG INSTR ENTRY

EJEcr LISTING CONTROL CARD - EJECT

* * * DEC L A RAT I V E S * * *

MCPDIEM DC Y(MCPDEML-4) TERMINAL MESSAGE LENGTH

DC H'O'

Appendix A. Executable CICS/VS Sample Programs 469

DC X'1S' NEW LINE SYMBOL CONSTANT
DC 08X'17' HARDCOPY TERM IDLE CHARACTERS
DC C'DESTINATION IDENTIFICATION ERROR - PLEASE RESUBMIT'
DC X'1S' NEW LINE SYMBOL CONSTANT

MCPDEML EQU *-MCPDIEM TERMINAL MESSAGE TOTAL LENGTH

* D A ~ A COL L E C T ION *

Y (L' DCPDCAMD)
H' 0'

DATA COLL ACKNOWLEDGMENT LEN DCPDCAML DC
DC

DCPDCAMD DC C' DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BE*
GIN DATA COLLECl'ION ACKNOWLEDGMENT

DCPEODML DC
DC

DCPEODMD DC

Y(L'DCPEODMD) END OF DATA MESSAGE LENGTH
H'O'
C' THE DATA HAS BEEN RECEIVED AND DISPATCHED TO THE DESI*
GNATED DESTINATION END OF DATA MESSAGE

DCPEOVML DC Y(L'DCPEOVMD)
DC H'O'

DCPEOVMD DC C' END OF VOLUME REQUEST HAS BEEN RECEIVED
DCPSRAM DC Y(DCPSRAL-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X' 15'
DC 08X'17'
DC C'DATA COLLECTION
DC X' 1S'

DCPSRAL EQU *-DCPSRAM
DCPRRAM DC Y(DCPRRAL-4)

DC H'O'

NEW LINE SYMBOL CONSTANT
HARD COpy TERM IDLE CHARACTERS

SUSPENSION HAS BEEN REQUESTED'
NEW LINE SYMBOL CONSTANT
TERMINAL MESSAGE TOTAL LENGTH
TERMINAL MESSAGE LENGTH

DC X'1S' NEW LINE SYMEOL CONSTANT
DC 08X'17' HARDCOPY TERM IDLE CHARACTERS
DC C'DATA COLLECTION RESUMPTION HAS BEEN REQUESTED AND IS '
DC C'ABOUT TO BEGIN'
DC X'1S' NEW LINE SYMBOL CONSTANT

DCPRRAL EQU *-DCPRRAM TERMINAL MESSAGE TOTAL LENGTH

SPACE 4 LISTING CONTROL CARD - SPACE 4

* M E S SAG E E N TRY *

MEPMEAML DC Y(L'MEPMEAMD) MSG ENTRY ACKNOWLEDGMENT LNGTH

DC H'O'
MEPMEAMD DC C' YOUR MESSAGE HAS BEEN RECEIVED AND DISPATCHED TO THE *

DESIGNATED DE STINATION ' MESSAGE ENl'RY ACKNOWLEDGMENT

SPACE 4 LISTING CONTROL CARD - SPACE 4
******************************~**
* M E S SAG ERE T R I E V A L *

MRPNMMM DC Y(MRPNMML-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X'1S' NEW LINE SYMBOL CONSTANT
DC 08X'17' HARDCOPY TERM IDLE CHARACTERS
DC C'THERE ARE NO MORE '
DC C' MESSAGES QUEUED FOR THIS DESTINATION'
DC X'1S' NEW LINE SYMBOL CONSTANT

MRPNMML EQU *-MRPNMMM TERMINAL MESSAGE TOTAL LENGTH
MRPNMQM DC Y(MRPNQML-4) TERMINAL MESSAGE LENGTH

DC H'O'
DC X'1S' NEW LINE SYMBOL CONSTANT
DC 08X'17' HARDCOPY TERM IDLE CHARACTERS
DC C'THERE ARE NO MESSAGES QUEUED FOR THIS DESTINATION'
DC X'1S' NEW LINE SYMBOL CONSTANT

MRPNQML EQU *-MRPNMQM TERMINAL MESSAGE TOTAL LENGTH

470 CIC S/VS Application PrCXJrammer' s Reference Manual

EJECT LISTING CONTROL CARD - EJECT

* * * I M FER A T I V E S * * *

* * * * ***

DS OD STORAGE ALIGNMENT - DOUBLEWORD
DC CL32'MESSAGE CONTROL FROG RAM ,

ATPIPIN DS OD INITIAL PROGRAM INSTRUCTION ENT
L TCTTEAR,TCAFCAAA LOAD TERM CONT AREA ADDR REG
L TIOABAR,TCTTEDA LOAD TERM I/O AREA ADDR REG
CLC =C'DSOC' ,TIOATID COMPARE TRANSACTION IDENT
BE ALPDCPN GO TO DA~A COLLECTION PROG IF =
CLC =C'DSME',TIOATID COMPARE TRANSACTION IDENT
BE ALPMEPN GO TO MESSAGE ENTRY PROG IF =
CLC =C'DSMR',TIOATID COMPARE ~ANSACTION IDENT
BE A LPMRPN GO TO MESSAGE RETRIEVAL PROG
DFHPC TYPE=ABEND, *

ABCODE=XAPT
EJEcr LISTING CONTROL CARD - EJECT

* * A P P L I CAT ION LOG I C * *

* * D A T A COL L E C T ION * *

DC CL32'DATA COLLECTION PROGRAM'

ALPDCPN OS OH DATA COLLECTION PROGRAM ENTRY

CLC =C'RESUME',TIOARRI COMPARE FOR RESUME REQUEST
BNE DCPRRBN GO TO RESUME REQUEST BYPASS
MVC TIOATDL(DCPRRAL),DCPRRAM MOVE TERMINAL MESSAGE TO OUTPUT
MVC TCATSDI(4),=e'DSDC' MOVE TEMP STRG DATA IDENT
MVC TCATSDI+4 (4), TCTTFl'I MOVE TEMP STRG DATA IDENT
DFHTS TYPE=GET, *

TSDADDR=TWATSRL, *
NORESP=DCPRRNR, *
RELEASE=YES

DFHPC TYPE=ABEND,
AECODE=XDCR

DCPFEOV EQU * FORCED END OF VOLUME ROUTINE
DFHTD TYPE=FEOV ISSUE TRANSIENT DATA MACRO
MVC TIOATDL«4+L'DCPEOVMD)},DCFEOVML
DFHTC TYPE= (WRITE)
B RETURN

DCPRRBN EQU * RESUME REQUEST BYPASS ENTRY

MVC TWATDDI,TIOADID MOVE DESTINATION IDENTIFICATION
MVC TCATDDI,TWATDDI
CLC TIOAMBA(4),=C'FEOV' CHECK FOR FORCED END OF VOL REQ
BE DCPFEOV BRANCH TO END OF VOLUME ROUTINE
MVC TIOATDL«4+L'DCPDCAMD)} ,DCPDCAML

DCPRRNR EQU * RESUME REQUEST NORMAL RESPONSE
DFHTC TYPE=(WRITE)
DFHTC TYPE: (READ)

SPACE 4 LISTING CONTROL CARD - SPACE 4

DCPTEWN DS OH TERMINAL EVENT WAIT ENTRY
DFHTC TYPE=(WAIT)
L TIOABAR,TCTTEDA
CLC =C'DUMP',TIOATID
BE DCPDPTS
CLC =C'EOD',TIOADBA
BE DCPEXIT
CLC =C'SUSPEND' ,TIOADBA
BNE DCPSRBN

LOAD TERM I/O AREA ADDR REG

GO TO DUMP TRANSACTION STORAGE
COMP DATA FOR EOD INDICATION
GO TO EX IT I F EQUAL
COMPARE iOR SUSPEND REQUEST
GO TO SUSPEND REQUEST BYPASS

Appendix A. Executable CICS/vS Sample programs 411

*

DCPSRMB

DCPSRAB

MVC
MVC
MVC
CLC
BNE
DFHTS

B
EQU
DFHTS

EQU
DFHTS

DFHPC

TWATSRL,=H' 32 '
T CATS DI (4),=C'DSDC'
TCATSDI+4(4) ,TCTTETI
=C'MAIN',TIOASSF
DCPSRMB
TYPE=PUT,
TSDADDR=TWATSRL,
STORFAC=MAIN
DCPSRAB

* TYPE=PUT,
TSDAODR=TWATSRL,
STORFAC=AUXILIARY

* TYPE=CHECK,
NORESP=DCPSRNR
TYPE=ABEND,
ABCODE=XDCS

MOVE TEMP STRG RECORD LENGTH
MOVE TEMP STRG DATA IDENT
MOVE TEMP STRG DATA IDENT

GO TO MAIN STRG FACILITY BYPASS

GO TO AUX STRG FACILITY BYPASS
MAIN STORAGE FACILITY BYPASS

AUX STORAG E FACILITY BYPASS

*
*

*
*

*
*

DC PS RNR EQU
MVC
DFHTC
B

* SUSPEND REQUEST NORMAL RESPONSE
TIOATDL(DCPSRAL),DCPSRAM MOVE TERMINAL MESSAGE TO OUTPUT

DCPSRBN EQU
MVC
XC
DFHTC
LH
LA
STH
DFHTD

TYPE= (WRITE)
RETURN

* TCATDDI,TWATDDI
T Cl'TEDA, TCTTEDA
TYPE= (READ)
14,TIOATDL
14,4(0,14)
14,TIOATDL
TYPE=PUT,
TDADDR=TIOATDL,
NORESP=DCPNRCN,
IDERROR=DCPDIEN

DFHPC TYPE=ABEND,
AECODE=XDCP .

GO TO RETURN ENTRY
SUSPEND REQUEST BYPASS ENTRY
MOVE DESTINATION IDENTIFICATION
RESET TERMINAL DATA ADDRESS

LOAD TERMINAL DATA LENGTH
INCREMENT TERMINAL DATA LENGTH
STORE TERMINAL DATA LENGTH

DCPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS

ST TIOABAR,TCASCSA STORE TERM I/O AREA ADDRESS
DFHSC TYPE=FREEMAIN
B DCPTEWN GO TO TERM EVENT WAIT ENTRY

SPACE 4 LISTING CONTROL CARD - SPACE 4

DCPDPTS EQU * DUMP TRANSACTION STOR ROUTINE

DFHDC TYPE=TRANSACTION,CMFCODE=TRAN
XC T Cl'TEDA, TCTTEDA CLEAR TERMINAL DATA AREA ADDR
DFHTC TYPE=(READ)
B DCPNRCN RETURN TO MAINSTREAM LOGIC

'**
SPACE 4

DCPEXIT EQU * EXIT

MVC TIOATDL«4+L'DCPEODMD» ,DCPEODML
DFHTC TYPE= (WRITE)
B RETURN GO TO RETURN ENTRY

EJECT LISTING CONTROL CARD - EJECT

*** * MESSAGE ENTRY *

DC CL32'MESSAGE ENTRY PROGRAM'

ALPMEPN OS OH MESSAGE ENTRY PROGRAM ENTRY

MVC TCATDDI,TIOADID MOVE DESTINATION IDENTIFICATION
MVC TIOATID,TCTTETI MOVE SOURCE IDENTIFICATION

472 CICS/VS Application programmer's Reference Manual

*
*
*
*

LH 14,TIOATDL LOAD TERMINAL DATA LENGTH'
LA 14,4(0,14) INCREMENT TERMINAL DATA LENGTH
STH 14,TIOATDL STORE TERMINAL DATA LENGTH
DFHTD TYPE=PUT, *

TDADDR=TIOATDL, *
NORESP=MEPNRCN, *
IDERROR=MEPDIEN

DFHPC TYPE=ABEND, *
AECODE=XMEP

MEPNRCN DS OH NORMAL RESP CODE ENTRY ADDRESS

MVC TIOATDL((4+L'MEPMEAMD» ,MEPMEAML
DFHTC TYPE: (WRITE)
B RETURN GO TO RE~UFN ENTRY

EJECT LISTING CONTROL CARD EJECT

*** * M E S SAG ERE T R I E V A L *

DC CL32'MESSAGE RETRIEVAL PROGRAM'
**.

SPACE 4 LISTING CONTROL CARD - SPACE 4

ALPMRPN DS OH MESSAGE RETRIEVAL PROGRAM ENTRY

MVC TWAREAI,TIOARAI2 MOVE RETRIEVE ALL INDICATOR
MVC TWATDDI, TCTTETI MOVE DES~'INATION IDENTIFICATION
CLC =C'ALL' ,TIOARAI1 COMPARE ALL INDICATOR FOR ALL
BNE MRPAI1B
MVC TWAREAI , TIOARAI 1 MOVE RETRIEVE ALL INDICATOR
B MRPDEBN

MRPAl1B OS OH ALL INDICATOR 1 BYPASS
CLC =CL4' ',TIOADIO COMPARE DEST IDENT TO BLANKS
BE MRPOEBN GO TO DEST ID = BL IF EQUAL
MVC TWATDDI,TIOADID MOVE DESTINATION IDENTIFICATION

MRPDEBN OS OH DESTINATION IDENT EQUALS BLANKS

SPACE 4 LISTING CONTROL CARD ~ SPACE 4

MRPGTDN DS OH GET TRANSIENT DATA ENTRY

MVC TCATDDI,TWATDDI MOVE DESTINATION IDENTIFICATION
DFHTD TYPE: GEl' , *

NORESP=MRPNRCN, *
QUEZERO=MRPQERN, *
IDERROR=MRPDIEN

DFHPC TYPE=ABEND, *
ABCODE=XMRP

SPACE 2 LISTING CONTROL CARD - SPACE 2

MRPNRCN OS OH

L TDIABAR,TCATDAA
DFHTC TYPE: (WAIT)
MVC MRPMTDI+1 (1),TDIAIRL+1

MRPMTDI MVC TIOATDL(O),TDIAIRL
LH 14,TIOATDL
SH 14,=H'4'
STH 1 4, TI OATDL
DFHTC TYPE: (WRITE,

SAVE)
CLC =CL3'ALL' ,TWAREAI
BNE RETURN
MVI TWAQEMCI,X'FF'
B MRPGTDN

NORMAL RESP CODE ENTRY ADDRESS
LOAD TRANS DATA AREA ADDRESS

MOVE DATA LENGTH TO MOVE INSTR
MOVE TRANS DATA TO TERM AREA
LOAD TERMINAL DATA LENGTH
SUBTRACT 4 FROM LENGTH
STORE TERMINAL DATA LENGTH

COMP ARE RETRI EVE ALL I NO TO ALL
GO TO RETURN ENTRY IF NOT EQUAL
MOVE MESSAGE CONTROL INDICATOR
GO TO GET TRANSIENT DATA ENTRY

Appendix A. Executable CICS/VS Sample Programs 413

*

SPACE 4 LISTING CONTROL CARD - SPACE 4

MRPQERN OS OH DESTINATION QUEUE EMPTY ENTRY

CLI TWAQEMCI,X'FF' COMPARE MESSAGE CONTROL IND
BE MRPNMQMB GO TO NO MSG QUEUED MSG BYPASS
MVC TIOATDL(MRPNQML) ,MRPNMQM MOVE TERMINAL MESSAGE TO OUTPUT
B MRPWRCS GO TO WRITE & RETURN TO C S

MRPNMQMB DS OH NO MESSAGES QUEUED MSG BYPASS
DFHTC TYPE=(WAIT)
MVC TIOATDL(MRPNMML),MRPNMMM MOVE NO MORE MESSAGE TO T 0 A

MRPWRCS OS OH WRITE AND RETURN TO CONT SYS

DFHTC TYPE=(WRITE)
B RETURN GO TO RETURN ENTRY

EJECT LISTING CONTROL CARD - EJECT

* * * * ***
DCPDIEN DS OH DESTINATION IDENT ERROR ENTRY

ST TIOAEAR, TCTTEDA STORE TE1<M I/O AREA ADDRESS
MEPDIEN DS OH DESTINATION IDENT ERROR ENTRY
MRPDIEN DS OH DESTINATION IDENT ERROR ENTRY

MVC TIO~DL(MCPDEML),MCPDIEM MOVE TERMINAL MESSAGE TO OUTPUT
DFHTC TYPE=(WRITE)

SPACE 4 LISTING CONTROL CARD - SPACE 4

RETURN OS OH RETURN TO CONTROL SYSTEM
DFHPC TYPE= RETURN

LTORG * LITERAL ORIGIN AT *

END CICSATP END OF ASSEMBLY - APPL TEST PGM

474 CICS/VS Application Programut"er's Reference Manual

A N S COB 0 LEX AMP L E PRO B L E M

DFHCOVER
IDENTIFICATION DIVISION.
PROGRAM-ID.

'CICSATP' •
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MESSG1.

02 MCPDIEM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 60.
02 FILL1 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO.
02 MESSAGE1.

03 FILL2 PICTURE X VALUE IS ' '.
03 FILL3 PICTURE XeS) VALUE IS ALL' ,
03 FILL4 PICTURE X(50) VALUE IS

'DESTINATION IDENTIFICATION ERROR - PLEASE RESUBMIT'.
03 FILLS PICTURE X VALUE IS ' '.

01 MCPDEML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 64.
01 DCPDCAML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 5S.
01 DCPDCAMD PICTURE X(5S)' VALUE IS

, DATA COLLECTION HAS BEEN REQUESTED AND IS ABOUT TO BEGIN '
01 DCPEODML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 73.
01 DCPEODMD PICTURE X(74) VALUE IS ' THE D~A HAS BEEN RECEIVED

'AND DISPATCHED TO THE DESIGNATED DESTI~TION •
01 MEPMEAML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 77.
o 1 MEPMEAMD PICTURE X (77) VALUE IS 'YOUR MESSAGE HAS BEEN RECEIV

'ED AND DISPATCHEC TO THE DESIGNATED DESTINATION •
01 MESSG2.

02 MRPNMMM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 64.
02 FILL11 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO.
02 MESSAGE2.

03 FILL21 PICTURE X VALUE IS • '.
03 FILL31 PICTURE XeS) VALUE IS ALL' '.
03 FILL41 PICTURE X(54) VALUE IS 'THERE ARE NO MORE MESSAG
'ES QUEUED FOR THIS DESTINATION I •

03 FILL51 PICTURE X VALUE IS ' I.

01 MRPNMML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 6S.
01 MESSG3.

02 MRPNMQM PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 59.
02 FILL12 PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS ZERO.
02 MESSAGE3.

03 FILL22 PICTURE X VALUE IS ' I.

03 FILL32 PICTURE XeS) VALUE IS ALL' '.
03 FILL42 PICTURE X(49) VALUE IS

'THERE ARE NO MESSAGES QUEUED FOR THIS DESTINATION'.
03 FILL52 PICTURE X VALUE IS I t.

01 MRPNQML PICTURE 99 USAGE IS COMPUTATIONAL VALUE IS 63.
LINKAGE SECTION.
o 1 DFHBLLDS COpy DFH BLLDS.

02 TCTTEAR PICTURE S9(S) USAGE IS COMPUTATIONAL.
02 TIOABAR PICTURE S9(S) USAGE IS COMPt1I'ATIONAL.
02 TDIABAR PICTURE S9(S) USAGE IS COMPUTATIONAL.

01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COPY DFH'ICADS.

02 TWATDDI PICTURE X(4) •
02 TWAREAI PICTURE X(4).
02 TWAQEMCI PICl'URE S9 USAGE IS COMPUTATIONAL.

01 DFHTCTTE COPY DFH'ICTTE.
01 DFHTIOA COPY DFBl'IOA.

02 TIOADATA.
03 FILLER PICTURE X(SO) •

02 FILLER REDEFINES TIOADATA.

Appendix A. Executable CICS/VS Sample Programs 475

03 EODTEST PICTURE X(3).
02 FILLER REDEFINES TIOADATA.

03 TIOATID PICTURE X(q).
03 FILLER PICTURE X.
03 TIOADID.

Oq FILLER PICTURE X(q) •
03 FILLER REDEFINES TIOADID.

Oq TIOARAI1 PICTURE X(3) •
03 FILLER PICTURE X.
03 TIOARAI2.

Oq FILLER PICTURE X(3).
03 FILLER REDEFINES TIOARAI2.

Oq TIOAMBA PICTURE X.
o 1 DFHTDIA COpy DFHT DIA •.

02 TDIADBA P~CTURE X(80).
PROCEDURE DIVISION.
ATPIPIN.

MOVE CSACDrA TO TCACBAR.
MOVE 'ICAFCAAA TO TCTTEAR.
MOVE TCTTEDA TO TIOABAR.
IF TIOATID = 'BSDC' GO TO ALPDCPN.
IF TIOATIB = 'BSME' GO TO ALPMEPN.
IF TIOATID = ~BSMR' GO TO ALPMRPN.

DFHPC TYPE=: ABEND,
ABCODE=XAPT

NOTE DATA COLLECTION PROGRAM ***.
ALPDCPN. MOVE TIOADID TO TwATDOI.

MOVE DC~DCAML TO TIOATDL.
MOVE DCPDCAMD TO·· 'l'IOADATA.

DFHTC TYPE~ (WRITE,READ, WAIT)
DCPTEWN.

MOV E TCT'r EDA TO T IOABAR.
iF EODTEST= IEOP' GO TO DCPEXIT.
MOVE TWATDDI TO TCATDDI.
MOVE ZEROES TO TCTT~DA.

DFHTC TYPE= (READ, WAIT)
ADD 4 TO TIOATDL.

DFHTD TYPE=PUT,
TDADDR=TIOATDL,
NORES P= DCPNRCN,
IDERROR=DCPDIEN

DFHPC TYPE=ABEND,
ABCOD~=XDCP

DCPNRCN.
MOVE TIOABAR TOTCASCSA.

DFHSC TYPE=FREEMAIN
GO TO DCPT~WN.

DCPEXIT.
MOVE DCPEODML TO TIOATDL.
ADD q TO TIOATDL.
MOVE DCPEODMD TO TIOADATA.

DFHTC TYPE=WRITE
GO TO RETURN1.
NOTE MESSAGE ENTRY PROGRAM ***.

ALPMEPN.
MOVE TIOADID TO TCATDDI.
MOVE TCTTETI TO TIOATID.
ADD q TO TIOATDL.

DFHTD TYPE=PUf ;
TDADD~TIOATDL,

NORESP=ME PNRC N,
IDERROR=MEPDIEN

DFHPC TYPE=ABEND,
AECODE=XMEP

MEPNRCN.

q76 CICS/vS Application Programmer's Reference Manual

*

*
*
*
*

*
*
*
*

MOVE MEPMEAML TO TIOATDL.
ADD 4 TO TIOATDL.
MOVE MEPMEAMD TO TIOADATA.

DFHTC TYPE=WRITE
GO TO RETURN1.
NOTE MESSAGE RETRIEVAL PROGRAM ***.

ALPMRPN.
MOVE TIOARAI2 TO TWAREAI.
MOVE 'ICTTETI TO T~TDbI.
IF.TIOARAI1 NOT EQUAL 'ALL' GO TO MRPAI1B.
MOVE TIOARAIll TO TWAREAI.
GO TO MRPDEBN.

MRPAI lB.
IF TIOADID EQUAL ' , GO TO MRPDEBN.
MOVE TIOADID TO T~TDDI.

MRPDEBN.
MRPGTDN.

MOVE TWATDDI TO TCATDDI.
DFHTD TYPE=GET,

NORESP=MRPNRCN,
QUEZERO=MRPQERN,
I DERROR=MRPDI EN

DFHPC TYPE=ABEND,
ABCODE=XMRP

MRPNRCN.
MOVE TCATDAA TO TDI~BAR.
MOVE TDIAIRL T9 TIOATDL.
MOVE TDIADBA TO T IOADATA.
SUBTRACT 4 FROM TIOATDL.

DFHTC TYPE=(WRITE,WAIT,SAVE)
IF TWAREAI NOT EQUAL 'ALL' GO TO RETURN1.
MOVE 255 TO TWAQEMCI.
GO TO MRPGTDN •.

MRPQERN.
IF TWAQEMCI EQUAL 255 GO TO MRPNMQMB.
MOVE MRPNMQM TO TIOATDL.
MOVE MESSAGE3 TO TIOADATA.
GO TO MRPWRCS.

MRPNMQMB.
MOVE MRPNMMM TO TIOATDL.
MOVE MESSAGE2 TO TIOADATA.

MRPWRCS.
DFHTC TYPE=WRITE

GO TO RETURN 1 •
DCPDIEN.

MOVE TIOABAR TO TCl'TEDA.
MEPDIEN.
MRPDIEN.

MOVE MCPDIEM TO TIOATDL.
MOVE MESSAGE1 TO TIOADATA.

DFfITC TYPE=WRITE
RETURN1.

DFHPC TYPE=RETURN

Appendix A. Executable CICS/VS Sample Programs 477

*
*
*
*

P L / I E X AMP L E PRO B L E M

/* PL/I EXAMPLE PROBLEM */

DFHCOVER
CICSATP: PROCEDURE OPl'IONS (MAIN,REENTRANT);

IINCLUDE DFHCSADS;
'INCLUDE DFHTCADS;

2 TWATDDI CHAR (4),
2 TWAREAI CHAR (4),
2 TWAQEMCI BINARY FIXED (8) ;

IINCLUDE DFHTCTTE;
~INCLUDE DFHTIOA;

2 TIOADATA CHAR (80);
DECLARE 1 TIOAl BASED (TIOABAR),

2 FILL1 CHAR (12),
2 TIOATID CHAR (4),
2 FILL2 CHAR (1),
2 TIOARAIl CHAR (3),
2 FILL3 CHAR (2),
2 TIOAMBA CHAR (1);

DECLARE 1 TIOA2 BASED (TIOABAR),
2 FILLl CHAR (12),
2 EODTEST CHAR (3),
2 FILL2 CHAR (2),
2 TIOADID CHAR (4),
2 FILL3 CHAR (1),
2 TIOARAI2 CHAR (3);

IINCLUDE DFHTDIA;
2 TDIADBA CHAR (80);

DECLARE 1 MCPDEML BINARY FIXED (15) INITIAL (60);
DECLARE 1 MCPDIEM CHAR(60) INITIAL (' DESTINATION IDENTIFI
CATION ERROR - PLEASE RESUBMIT ');
DECLARE 1 DCPDCAML BINARY FIXED (15) INITIAL (59);
DECLARE 1 DCPDCAMD CHAR (59) INITIAL (' DATA COL~ECTION HAS BEEN RE
QUESTED AND IS ABOUT TO BEGIN ');
DECLARE 1 DCPEODML BINARY FIXED (15) INITIAL (74);
DECLARE 1 DCPEODMD CHAR (74) INITIAL (, THE DAT A HAS BEEN RECEIVED
AND DISPATCHED TO THE DESIGNATED DESTINATION ');
DECLARE 1 MEPMEAML BINARY FIXED (15) INITIAL (77);
DECLARE 1 MEPEAMD CHAR(77) INITIAL (' YOUR MESSAGE HAS BEEN RECEIV
ED AND DISPATCHED TO THE DESIGNATED DESTINATION ');
DECLARE 1 MRPNMML BINARY FIXED (15) INITIAL (64);
DECLARE 1 MRPNMMM CHAR (64) INITIAL (' THERE ARE NO MORE ME
SSAGES QUEUED FOR THIS DESTINATION '):
DECLARE 1 MRPNQML BINARY FIXED (15) INITIAL (59);
DECLARE 1 MRPNMQN CHAR (59) INITIAL (' THERE ARE NO MESSAGE
S QUEUED FOR THIS DESTINATION '):

ATPIPIN: TcrTEAR = TCAFCAAA:
TIOABAR = TCTTEDA;
IF (TIOATID = 'PSOC') THEN 00 'IO ALPDCPN;
IF (TIOATID = 'PSME') THEN GO TO ALPMEPN;
IF (TIOATID = 'PSMR') THEN GO TO ALPMRPN;

DFHPC TYPE=ABEND, *
ABCODE=XAPT

/* DATA COLLECTION PROGRAM */
ALPDCPN: TWATDDI = TIOADID;

TIOATDL = DCPDCAML;
TIOADATA = DCPDCAMD;

DFHTC TYPE= (WRITE, READ, WAIT)
DCPTEWN:

TIOABAR = TCTTEDA;
IF (EODTEST = 'EOO') THEN GO TO DCPEXIT;
TCATDDI = TWATDDI;

478 CICS/VS Application Programmer's Reference Manual

UNSPEC (TCTTEDA) = 0;
DFHTC TYPE=(READ,WAIT)

TIOATDL = TIOATDL + q;
DFHTD TYPE=PUT,

TDADDR=TIOATDL,
NORESP=DCPNRCN,
I DERROR= DCPDI EN

DFHPC TYPE=ABEND,
AECODE=XDCP

DCPNRCN: TCASCSA = TIOABAR;
DFHSC TYPE= FREEMAIN

GO TO DCPTEWN;
DCPEXIT: TIOATDL = DCPEODML;

TIOADATA = DCPEODMD;
DFHTC TYPE=WRITE

GO TO RETURN;
/* MESSAGE ENTRY PROGRAM */
ALPMEPN: TCA TDDI = TIOADID;

T IOAT ID = TCTTETI;
TIOATDL = TIOATDL + q;

DFHTD TYPE= PUT,
TDADDR=TIOATDL,
NORES P=MEPNRCN,
IDERROR=MEPDI EN

DFHPC TYPE=ABEND,
ABCODE=XMEP

MEPNRCN: TIOATDL = MEPMEAML; TIOACATA = MEPEAMD;
DFH~ TYPE=WRITE

GO TO RETURN;
/* MESSAGE RETRIEVAL PROGRAM */
ALPMRPN: TWAREAI = TIOARAI2; TWATDDI = TCTTETI;

IF (TIOARAI 1 #' ALL') THEN GO 'ID MRPAI 1B;
TWAREAI = TIOARAI1;
GO TO MRPDEBN;

MRPAI1B: IF (TIOADID =' ') THEN GO TO MRPDEEN;
TWATDDI = TIOADID;

MRPDEBN: MRPGTDN: TCATDDI = TWATDDI;
DFHTD TYPE=GET,

NORES P=MRPNRCN,
QUEZERO=MRPQERN,
I DERROR=MRPDI EN

DFHPC TYPE=ABEND,
AECODE=XMRP

MRPNRCN: TDIABAR = TCATDAA;
TIOATDL = TDIAIRL - q;
TIOADATA = TDIADBA;

DFHTC TYPE= (WRITE,WAIT, SAVE)
IF (TWAREAI # 'ALL ') THEN GO TO RETURN;
TWAQEMCI = '11111111'B;
GO TO MRPGTDN;

MRPQERN: IF (TWAQEMCI = '11111111'B) THEN GO TO MRPNMQMB;
TIOATDL = MRPNQML;
TIOADATA = MRPNMQN;
GO TO MRPWRCS;

MRPNMQMB: TIOATDL = MRPNMML; TIOADATA = MRPNMMM;
MRPWRCS :

DFH~ TYPE=WRITE
GO TO RETURN;

DCPDIEN: TCTTEDA = TIOABAR;
MEPDIEN: MRPDIEN: TIOATDL = MCPDEML;

TIOADATA = MCPDIEM;
DFHTC TYPE=WRITE

RETURN:
END;

Appendix A. Executable CICS/VS sample Programs 479

*
*
*
*

*
*
*
*

*
*
*
*

APPENDIX~. SUMMARY OF CICS/VS STORAGE AREAS

CICS/VS areas are summarized on the charts on the following pages.
The CSA and the TCTTE are in the CICS/VS nucleus; all other areas are
in dynamic storage. As shewn on the first chart, each area other than
the VSWA consists of a control section and a user's section. The VSWA
includes only a control section. Some areas are acquired by CICS/VS,
some by the user (application program), and some by either CICS/VS or
the application program. Assembler-language statements to obtain areas
and establish addressability are shown on the first chart. Equivalent
American National Standard (ANS) COBOL and PL/I statements a re suggested
below. For additional details, see Chapters 2 through 5 of this manual.

All CICS/VS pointers (areas containing addresses) are four ~tes in
length. CICS/VS uses lengths stored in two bytes; thus, the characters
LL~~ represent a two-byte length area followed by two bytes containing
blanks.

The second chart is an expansion of the contrel sections that appear
on the first chart. Symbolic labels that the application programmer
may need to know are shown on this chart, and brief explanations of
them are provided. All symbolic labels appearing on the first chart
are shown in a similar manner in Appendix D. Labels on the second
chart that also appear on the first chart or elsewhere in this manual
are repeated in Appendix D.

The letters A through G on the first chart are keys to the
following notes:

A Assembler language only.

B The TCAFCAAA may point to the address of a OCT entry or to the
address of an automatic initiate descriptor (AID).

CANS COBOL equivalent:

PL/I equivalent:

D EOB = End of Block.

01 DFHTCTTE COpy CFHl'CTTE.
01 MOVE TCAFCAAA TO TCTTEAR ..

';INCLUDE DFHTCTTE;

E TCAFCAA, TCATSDA, and TCATDAA: The same location (TCASCSA)
within the TCA is used for these three pointers, only one of
which is current a t any given time.

F TCASCSA may also point to an area to be released by a DFHSC
TYPE=FREEMAIN macro instruction.

G After a DFHPC TYPE=LOAD macro instruction, TCAPCLA points to
the beginning address of the loaded program.

Appendix E. Summary of CICS/VS Storage Areas QSl

TIOABAR

TIOA Terminal Input/Output Area (DFHTIOA)

MESSAGE DATA
X'SS' WORD HALFWORD BYTE BYTE

TIOASCA TlOATDL TIOADBA EOB

f18~bt8R
TIOAWCI

TlOABAR - TIOA Base Address Register TIOASAL - TIOA Storage Accounting - area Length
TlOACLCR - TIOA Control write - Line or Copy Request (same as TIOALAC) TIOASCA - TIOA Storage Chain Address
TIOADBA - TlOA Data Begin Address TlOATDL - TIOA Terminal - message Data Length
TIOALAC - TlOA Line Address Control (same as TIOACLCR) TlOAWC: - TIOA Write Control Indicator

FIOABAR

FIOA File Input/Output Area (DFHFIOA)

storage accounting control information

1-1 -f~-FC-F-I-OL-R..:.;::..::O:.:..:R=D--....LI-il : ~ORD X'SF' TWO WORDS

FCFIOLRA - FCFIO Logical Record Address FIOABAR - File Input/Output Area Base Address Register
FCFIOxxx - File Control File Input/Output xxx
FCFIOFCT - FCFIO File Control Table - entry address

FIOADBA - File Input/Output Area Data Begin Address (DOS)
FCDS01D - File Control Data - area (OS variable)

FWACBAR

FWA File Work Area (DFHFWADS)

OATAJ
X'SF' TWO WORDS WORD WORD

~=========s=to=ra=ge=a=cc~o~un=t=ing=a=re=a==========~F~C~U:PD=R~A~~~--t:FC:U~F:C~TA~~~---tF:C:U~WA
FWACBAR - File Work Area Control Base Address Register
FCUFCTA - File Control Update File Control Table Address

FCUPDRA - File Control UPDate Record Address
FCUWA - File Control Update Work Area (data begin address)

t
VSWABAR J

VSWA VSAM Work Area (DFHVSWA)

x'sF,1 TWO WORDS I I WORD I I WORD DATA
L..---"------------yl I ~ I 1-1 -I~-V-SW-A-L-E-N-----I--il

VSWABAR - VSAM Work Area Base Address Register
VSWAREA - VSAM Work Area REcord Address
VSWALEN - VSAM Work Area Record LENgth

SAACBAR

SAA Storage Accounting Area (DFHSAADS)

BYTE
X'SC' WORD

SAASACA

SAACBAR - SAA Control Base Address Register
SAASACA - SAA Storage Accounting Chain Address
SAASACI - SAA Storage Accounting Class Identification

DATA

SAASAFI - SAA Storage Accounting Format Identification
SAASAD - SAA Storage Accounting Displacement (length)

TSIOABAR ~
TSIOA Temporary Storage Input/Output Area (DFHTSIOA)

~X~'~SE~'~_~~~~-f-__ ~W~O~R~D~ __ ~~~:.:..:c::~~~~1-_____ ~ DATA

TSIOASCA

TSIOABAR - TSIOA Base Address Register
TSIOADBA - TSIOA Data Begin Address
TSIOASAL - TSIOA Storage Accounting - area Length

TSIOADBA

TSIOASCA - TSIOA Storage Chain Address
TSIOAVRL - TSIOA Variable Record Length (LLo15)**

TDOABAR ~
TDOA Transient Data Output Area (DFHTDOA)

~X~'~SD~'~_~~~~-I-__ ~W~O~R~D ___ ~~~_~~~~~-I-_____ ~DATA
TDOASCA

TDOABAR - TDOA Base Address Register
TDOADBA - TDOA Data Begin Address
TDOASAL - TDOA Storage Accounting - area Length

TDOADBA

TDOASCA - TDOA Storage Chain Address
TDOAVRL - TDOA Variable Record Length (LLoli)**

TDIABAR

TDIA Transient Data (nput Area (DFHTDIA) I
I--.-.L-X'SD' ~W,-=-=--ORD ~==-t-----.! DATA ~

TDIASCA

TDIABAR - TDIA Base Address Register
TDIADBA - TDIA Data Begin Address
TDIAIRL - TDIA Intrapartition Record Length (LLoo)**

* Length is "Message Data" only
(does not include TlOATDL itself, or the EOB byte).

** Length includes LLbb and data.

TDIADBA

TDiASAL - TDIA Storage Accounting - area Length
TDIASCA - TDIA Storage Chain Address

CICS/VS AR EAS - CONTROL SECTIONS

CICS/VS Application programmer's Reference Manual

CSA COpy OF HCSAOS

Control Section
Pointers to CICS/VS Modules and Tables, Save Areas.
Statistics. Constants. Parameters, Time of Day

CWA . Common Work Area· User', Section
Allocated at sy'gen.
Default - 512, Maximum:c 3584.
Initially binary zeroS.

-C-CSACBAR (REG. 13)

TCA
TCACBA: (REG, 12)

CSACOTA
(current task)

Exists for duration of CICSIVS.
Usable by multiple tasks for statistics. to pass data, etc.

-CCSAWABA
I CICS/VS- acquired

~ COPY DFHTCADS TCTTE
COPY DFHTCTTE ®
L TCTTEAR, TCAFCAAA

Control Section
Program Co.ntrol Information,
Task Priority, RSA
Pointers, etc.

®y ControlS.ction
Controllnfor.mation
Operatorld.
Security Keys I

User's S~ctio~ - 1 per terminal
TCTTEOA Size deflOed 10 TCT. I Use comparable to CWA.

I CICS/VS· acquired T LTCTTECIA
~ ________J COpy DFHTlOA

~
TIOA L TlOABAR, TCTTEDA

_~ TCAFCAAA _______ ~ Terminal input or output messages. 0 Control I~ liE
I------------l 12 bytes Size defined in TeT, and obtained as needed by CICS/VS. Also obtainable through B

DFHSC TYPE = GETMAIN, CLASS = TERMINAL (dala lenglh onlyl. @
LTIOABAR LTIOAOBA I CICS/vS-oruser-acquired

COPY DFHFIOA

FIOA L FIOABAR, TCAFCAA

TCAFCAA CD
L FIOABAR L FIOADBA I CICS!VS· acquired

COPY DFHFWADS
FWA L FWACBAR, TCAFCAA

TCAPCLA @
-[= I ~~~r;~I:~~!~r~s. Size defined in FCT, and acquired by FCP, as required, or through

16 bytes OFHFC TYPE::: GETAREA. Records moved here from FIOA or VSAM buffer for:
Inquiry, Blocked; Updating; Browse; Segmented. Also, new records assembled here.

L FWACBAR ---c FCUWA I CICS/VS· or user· acquired

COPY DFHVSWA
VSWA L VSWABAR, TCAFCAA

Y Control Section for VSAM 110
96 bytes for basic 110 and 136 bytes + key length for browse 1/0.
Automatically acquired by FCP as required, and passed to user only for locate mode operations.

L VSWABAR L VSWAREA L VSWALEN I CICS!VS· acquired

COpy DFHSAADS

SAA L SAACBAR, TCASCSA

r Control 1 User's Section

I--_T_CA_S_CS_A ____ -_ --t.-!'--~----..ll ~ I ~:~'rOUgh DFHSC TYPE = GETMAIN, CLASS = USER (data length only).

~ LSAACBAR LSAASACA
I User· acquired

COPY DFHTSIOA

TSIOA L TSIOABAR, TCATSDA

GET or PUT'''-..r ;;;.::~ I ~;~:o~:~~i~;orage 110 area.
TCATSDA@ -t=c....:.:."-l.:._--l 1~12~b~vtes Automatically acquired by TSP on DFHTS TYPE = GET, or by user through

I------=-----l T incl ;.tLbb DFHSC TYPE = GErMAIN, CLASS = TEMPSTRG (data + 4 bytes for LLbb).

LTSIOABAA L TSIOAOBA I CICS/VS- or user-acquired

TDOA ~~DYO~~~~~~~ATDAA
TCATDAA CD

T PUT l-l;;;t::~ I ~:~;a~:~~~onnoutPUI only. V/L records only. User·specified area. May be obtained

1
..---------1 W I 12 bytes through DFHSC TYPE = GETMAIN, CLASS = TRANSDATA (data + 4 bytes for LLbb),

~ T incl J,bb

~--~----------------l~ '·~~-.T-D-OA-B-AR~'-~--T-D-OA-D-B-A--------------------~I-U-se-r,-aC-qU-ire-d~
~~: ;::t7::

tioo
Work Area - A

Size defined in PCT.
Delaul'=O.

Work area;
task duration only_

I CICS/VS· acquired

TDIA
COpy DFHTDIA
L TDIABAR, TCATDAA

~
Control r User's Section
~ Intrapartition input only_ V/L records only. Size::: size of largest record in queue.

GET OS: 40 bytes Automatically acquired by TOP, as required.
DOS: 12 bytes
incl LLbb

LTOIABAR L TOIAOBA L CICS/VS· acquired

CICS/VS AREAS

Appendix B. Summary of CICS/VS Storage Areas 483

APPENDIX £. EXPlANATIONS OF MNEMONICS

CICS/VS documentation contains frequent references to programs,
tables, and data areas used within CICS/VS. For most of these, a
shortened form of reference, or mnemonic, is established for common
use. Thus, TCT stands for terminal control table, TCTTE stands for
terminal control table terminal entry, and so on.

Symbolic labels are used, in a similar manner in CICS/VS modules to
refer to fields that contain addresses or data used by application
programs. The same labels must be used in application programs
referring to these fields. The labels are also designed to be
mnemonics, memory aids indicating what values are represented h¥ them.
Thus, TCABMSMA refers to the task control area basic mapping support
map address, TIOABAR refers to the terndnal input/output area base
address register, and so on.

The mnemonics referred to in the main body of this manual and apt
to be encountered by application programmers writing programs to be
run under CICS/VS are listed in alphabetic order in this appendix. For
each, a brief explanation of the CICS/VS entity or field represented
by the mnemonic is provided. Capital lett~rs are us~d in the
explanations to point out how the mnemonics are derived. Some of these
mnemonics (and additional ones) also appear on the charts given in
Appendix B. The reader should understand that this appendix is not an
attempt to list all symbolic labels used within CIOS/VS.

BSAM

BTAM

CCB

CCC

CRDR

CRLP

CSA

CSACBAR

CSACDTA

CSAC TO DB

CSAJYDP

CSAOBAR

CSAOPFLA

CSATODP

Basic Sequential Access Method (os/VS); in this manual,
used interchangeably with SAM

Basic Telecommunications Access Method

Command Control Block

Copy Control Character

CICS/VS-provided Input Processor that transfers data to
CICS/VS when the asynchxonous transaction processing
facility is used

Card-Reader-in-Line-Printer-out terminal

Common System Area

Common System Area Contxol Base Address Register

Common System Area curren~ly Dispatched Task Address

Common System Area CUrrent Time of Day in Binary format

Common System Area Julian Year/Day in Packed decimal
format (four bytes)

Common System Area optional Features List Base Address
Register

Common System Area Optional Features List Address

Common system Area Time of Day in Packed decimal format
(four bytes)

Appendix C. Explanations of Mnemonics 485

CSATRTBA

CSAWABA

CSML

CSMT

CSSL

CSTL

CWA

CWTR

OCT

ECB

FCA

FCFIOBEX

FCFIOEX

FCT

FCUWA

FIOA

FIOABAR

FWA

FWACBAR

I SAM

JCA

JCAADATA

JCAAPRFX

JCABAR

JCAECN

JCAJCRC

JCAJFID

JCAJRTID

Common System Area TRace TaBle Address

Common System Area Work Area Beginning Address

Control System Message Log

Control System Master Terminal

Control System System Log

Control System Terminal Log

Common Work Area

CICS/VS-provided Output Processor that transfers data
from CICS/VS When the Asynchronous Transaction processing
facility is used

Destination Control Table

Event Control Block

Facility Control Area

File Control File Input/Output BDAM Error Code (four
bytes)

File control File Input/Output ISAM Error Code (four
bytes)

file control table

File Control Update Work Area (data begin address)

File Input/OUtput Area

File Input/output Area Base Address Register

file work area

file work area Control Base Address Register

Indexed Sequential Access Method

Journal Control Area

Journal Control Area Address of DATA to be written to
j oumal data set

Journal Control Area Address of user-PReFiX data

Journal Control Area Base Address Register

Journal Control Area Event Control Number (four bytes)

Journal Control Area Journal Control Response Code (one
byte)

Journal Control Area Journal File IDentification (one
byte)

Journal Control Area Journal Record Type IDentification
(two bytes)

486 CICS/vS Application Programmer's Reference Manual

JCALDATA

JCALPRFX

JCARCIDE

JCARCIOE

JCARCIRE

JCARCLE

JCARCNOE

JCARCNR

JCT

PAM

PCB

PCT

PPT

PSB

RBA

RSA

SAA

S AAC BAR

SAASACA

SAM

SRT

SSA

TCA

TCABFTR

TCABITF

TCABITR

TCABITV

Journal Control Area Length of DATA to be written to
journal data set (two bytes)

Journal Control Area Length of user PReFiX (two bytes)

Journal Control Area Response code IDentification Error
(ASsembler only; one byte, X'01')

Journal Control Area Response Code Input/Output Error
(ASsembler only; one byte, X'01')

Journal Control Area Response Code Invalid Request Error
(ASSembler only; one byte, X'02')

Journal control Area Response Code Length Error
(Assembler only; one byte, X'06')

Journal control Area Response Code data set Not Open
Error (Assembler only; one byte, X'OS')

Journal Control Area Response Code Normal Response
(Assembler only; one byte, X'OO')

Journal control Table

Page Allocation Map

Program Control Block

Program Control Table

Processing Program Table

Program Specification Block

Relative Byte Address

Register save Area

Storage Accounting Area

Storage Accounting Area Control Base Address Register

storage Accounting Area storage Accounting Chain Address

sequential Access Method (DOS/VS); in this manual, used
interchangeably with ESAM

System Recovery Table

Segment Search Argument

Task Control Area '

Task Control Area Built-in Function Type of Request (one
byte)

Task Control Area BIT Manipulation address of one-byte
bit Field to be operated on

Task Control Area BIT Manipulation Result of BITEST
operation (on e byte)

Task Control Area BIT Manipulation address of bit pattern
(mask) to be applied to a specified byte

Appendix C. Explanations of Mnemonics 487

TCABMSCP

TCABMSMA

TCABMSMN

TCACBAR

TCACCCA

TCACKFD

TCACKLN

TCADCDC

TCADCNB

TCADCSA

TCADCTR

TCADLECB

TCADLFUN

TCADLIO

TCADLPCB

TCADLPSB

TCADLSSA

TCAFCAA

TCAFCAAA

TCAFCAI

TCAFCDI

TCAFCNRD

TCAFCRC

TCAFCRI

TCAFCSI

Task Control Area basic mapping SUIl=°rt Cursor Position
(two bytes)

Task Control Area basic mapping support Map Address

Task Control Area basic mapping support Map Name (eight
bytes)

Task Control Area Contro~ Base Address Register

Task Control Area common/Control Conmunication Area
/

Task Control Area Field/ Verify address of FielD to be
ChecKed

Task Control Area Field Verify LeNgth of field to be
ChecKed (two bytes)

Task Control Area Dump Control Durrp Code (four bytes)

Task Control Area Dump Control Number of Bytes in area
to be dumped (two bytes)

Tas~ Control Area Dump Control storage Address of area
to be dumped

Task Control Area Dump Control Type of Request (Assembler
or PL/I; two bytes)

Task Control Area DL/I Event Control Block

Task Control Area DL/I FUNction (four bytes)

Task Control Area DL/I Input/Output area address

Task control Area DL/I program Contro I Block address

Task Control Area DL/I program specification block name
(eight bytes)

Task Control Area DL/I address of segment search argument
list

Task Control Area File Control Area Address

Task Control Area Facility Control Area Associated
Address

Task control Area File Control indirect Access data set
Identification (eight bytes)

Task Control Area File Control Data set Identification
(eight bytes)

Task Control Area File Control Number of Records Deleted
(two bytes binary)

Task Control Area File COntrol Response Code (ANS COBOL)

Task Control Area File Control record identification
(eight bytes)

Task COritrol Area File Control Segment Identification
(eight bytes)

488 CICS/vS Application Programmer's Reference Manual

TCAFC'l!R

TCAFCURL

TCAFLD

TCAFLN

TCAICDA

TCAICQID

TCAICQPX

TCAICRC

TCAICRT

TCAICTEC

TCAICTI

TCAICTID

TCAICTR

TCAINA1

TCAINA2

TCAINH1

TCAINRC

TCAJCAAD

TCAKCFA

TCAKCTA

TCAKCTI

TCAKCTTA

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

Task Control Area File Control Type of Request/Response
(Assembler or PL/I; one byte)

Task Control Area File Control Undefined Record Length
(two bytes)

Task Control Area Field Edit address of FieLD to be
edited

Task Control Area Field Edit LeNgth of Field to be edited
(two bytes)

Task Control Area Interval Control Data Area

Task Control Area Interval Control reQuest IDentification
(eight bytes)

Task Control Area Interval control reQuest Prefix (two
bytes)

Task Control Area Interval Control Response Code (ANS
COBOL)

Task Control Area Interval Control Request Time (four
bytes)

Task Control Area Interval Control Timer Event Control
area address

Task Control Area Interval Control Transaction
Identification (four bytes)

Task Control Area Interval Control Terminal
IDentification (four bytes)

Task Control Area Interval Control Type of
Request/Response (Assembler or PL/I; one byte)

Task Control Area INput Formatting Address of list of
offsets for the internal fixed-format TIOA

Task Control Area INput Formatting Address of list of
field names that may appear in input stream

Task Control Area INput Formatting length of the TIOA
to be acquired for tQe internal fixed-format
representation of data (Halfword field)

Task Control Area INput Formatting Response Code (one
byte)

Task Control Area Journal Control Area ADdress

Task Control Area Task Control (KCP) Facility control
area Address

Task Control Area Task COntrol (KCP) TCA Address

Task Control Area Task Control (KCP) Transaction
Identification (four bytes)

'Task. Control Area Task Control (KCP) (three bytes; only
two low-order bytes are used for transaction
identification)

Appendix C. Explanations of Mnemonics 489

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

TCAMSFMP

TCAMSHDR

TCAMSIOA

TCAMSJ

TCAMSMSA

TCAMSMSN

TCAMSOC

TCAMSPGN

TCAMSRC1-
TCAMSRC3

TCAMSRID

TCAMSRI1

TCAMSRLA

TCAMSRTI

TCAMSTA

TCAMSTI

TCAMSTRL

TCAMSTR1-
TCAMSTR7

TCANAME

TCANXTID

TCAPCAC

TCAPCERA

TCAPCPI

TCAPCTA

Task Control Area Mapping Support Function Management
Parameter

Task Control Area Mapping Support HeaDeR address (four
bytes)

Task Control Area Mapping Support Input/Output Area
Address

Task Control Area Mapping support Justification (one
byte)

Task Control Area Mapping Support Map Set Address

Task Control Area Mapping Support Map Set Nam~ (eight
bytes)

Task Control Area Mapping Support Operator Class (three
bytes)

Task Control Area Mapping Support PaGe Number (current
page; two bytes binary)

Task Control Area Mapping Support Response Code (one
byte each)

Task Control Area Mapping Support Request IDentification

Task Control Area Mapping Support Return Information
(one byte)

Task Control Area Mapping Support Routing List Address,
or Returned page List Address

Task control Area Mapping Support Routing Time or Time
interval Indicator (four bytes packed decimal)

Task Control Area Mapping Support Title Address

Task Control Area Mapping Support error Terminal
Identification (four bytes)

Task COntrol Area Mapping Support TRaiLer address (four
bytes)

Task Control Area Mapping Support Type Request (one
byte ea,ch)

Task Control Area Phonetic Conversion 16-byte field
containing data (NAME) to be phonetically encoded

Task Control Area NeXt Transaction IDentification (four
bytes)

Task Control Area program Control ABEND Code (four bytes)

Task Control Area Program Control Exit Routine Address

Task Control Area Program Control program Identification
(eight bytes)

Task Control Area Program Control program Processing
Program Table Address of currently executing program

490 CICS/VS Application programmer's Reference Manual

TCAPHNR

TCAPHON

TCASCIB

Page of SH20·9003·2
Revised May 22,1975
By TNL SN2Q-9086

Task control Area PHoNetic Conversion errOr Response
indicator (contains X'54' if invalid name was
encountered; one byte)

Task Control Area PHONetic conversion 4-byte returned
value

Task Control Area storage Control Initialization Byte

Appendix C. Explanations of Mnemonics 490.1

TCASCNB

TCASCSA

TCATCDC

TCATCDP

TCATCEA

TCATCQA

TCATDAA

TCATDDI

TCATDRC

TCATDTR

TCATSAF

TCATSAl

TCATSA2

TCATSA3

TCATSA4

TCATSA5

TCATSDA

TCATSDI

TCATSFF

TCATSBl

TCATSH2

Task Control Area storage Control Number of Bytes of
storage requested (two bytes)

Task Control Area storage Control Storage Address of
area acquired or to be freed

Task Control Area Task Control Dis~atcher Control
indicator (one byte)

Task Control Area Task Control Dispatching Priority (one
byte)

Task Control Area Task Control Event control area Address
(ECB or CCB or list)

Task Control Area Task Control enQueued resource length
(high-order byte) and Address (three low-order bytes)

Task Control Area Transient Data Area Address

Task Control Area Transient Data Destination
Identification (four bytes)

Task Control Area Transient Data Response Code (ANS
COBOL)

Task Control Area Transient Data Type of Request/Response
(ASsembler or PL/I; one byte)

Task Control Area Table Search length of Field in
Argument table entry to be compared with search argument
(one byte)

Task Control Area Table Search Address of search argument

Task Control Area Table search Address of first entry
in argument table

Task Control Area Table Search Address of first function
table entry

Task Control Area Table Search Address of field in first
entry in argument table to be compared with search
argument

Task Control Area Table Search Address of (1) function
field within first function table entry, on input, or
(2) function field within function table entry Which
contained value retrieved, on output

Task control Area Temporary Storage Data Address

Task Control Area Temporary Storage Data Identification
(eight bytes)

Task Control Area Table Search length of Field in
Function table entry to be retrieved (one byte)

Task Control Area Table Search maximum number of entries
to be searched (halfword)

Task Control Area Table Search length of each argument
table entry (halfword)

Appendix C. Explanations of Mnemonics 491

TCATSH3

TCATSH4

TCATSRC

TCATSRN

TCATSRPC

TCATSTR

TCAWGAA

TCAWGCNT

TCAWGH1

TCAWGH2

TCAWGH3

TCAWGH4

TCAWGH5

TCAWPA1

TCAWPA3

TCAWPA4

TCAWPB1

TCAWPH1

TCAWPH2

TCAWPH3

Task Control Area Table Search length of each function
table entry (halfword)

Task Control Area Table Search index value (relative to
1) identifying the matching argument table entry returned
to application program; if zero, no matching entry was
found (ha lfwo rd)

Task Control Area Temporary Storage Response Code (ANS
COBOL)

Task Control Area Temporary storage Record Number

Task Control Area Table Search ResPonse Code

Task Control Area Temporary Storage Type of
Request/Response (Assembler or PL/I; one byte)

Task Control Area WeiGhted Retrieval VSWA pointer

Task Control Area weighted Retrieval count of maximum
number of records to be made available to application
program; NRECDS parameter (halfword field)

Task Control Area weiGhted Retrieval highest percentage
of acceptability for a weighted retrieval function
(halfword)

Task control Area WeiGhted Retrieval lowest percentage
of acceptability for a weighted retrieval function
(halfword)

Task Control Area WeiGhted Retrieval percentage of
acceptability of this record saved as the result of a
weighted retrieval operation (Halfword field)

Task Control Area WeiGhted Retrieval number of records
left to be presented to user (Halfword field)

Task Control Area WeiGhted Retrieval number of records
dropped to remain within user-specified maximum (NRECDS)
(Halfword field)

Task Control Area Weighted Retrieval Address of search
argument

Task Control Area Weighted Retrieval Address of area
containing record to be examined

Task Control Area Weighted Retrieval Address of field
within area containing record to be examined

Task Control Area Weighted Retrieval character indicating
format of search argument (one byte)

Task Control Area Weighted Retrieval length of search
argument (halfword)

Task Control Area Weighted Retrieval match value
(halfword)

Task Control Area Weighted Retrieval no match value
(halfword)

492 CICS/VS Application Programmer's Reference Manual

TCAWPH14

TCAWPH5

TCAWPNL

TCAWPTR

TCAWRAA

TCAWTDI

TCAWTH1

TCAWTH2

TCAWTH3

TCAWTH14

TCAWTRC

TCAWTRI

TCT

TCTLE

TCTTE

TCTTEAID

TCTTEAR

TCTTECIA

TCTTEDA

TCTTELPL

TCTTEDS

TCTTEPCF

Task Control Area Weighted Retrieval upper limit of
comparison range (halfword)

Task Control Area Weighted Retrieval lower limit of
comparison range ~halfword)

Task Control Area Weighted Retrieval NulL character (one
byte)

Task Control Area Weighted Retrieval Type of Range (one
byte)

Task Control Area Weighted Retrieval VSWA painter

Task Control Area Weighted ReTrieval Data Identification
(eight bytes)

Task Control Area Weighted ReTrieval maximum number of
records to be retrieved (halfword)

Task Control Area Weighted ReTrieval relative number of
record with same partial key to be examined first
(halfword)

Task Control Area Weighted ReTrieval maximum percentage
of acceptability for retrieved records (halfword)

Task Control Area Weighted ReTrieval minimum percentage
of acceptability for retrieved records (halfwor~

Task Control Area Weighted Retrieval Response Code (one
byte)

Task Control Area Weighted ReTrieval address of partial
key of Record at which retrieval is to begin (fullword)

Terminal Control Table

Terminal Control Table Line Entry

Terminal Control Table Terminal Entry

Terminal Control Table Terminal Entry Attention
IDentifier (used with the 3270 InfoDnation Display
System, particularly, under CICS/VS basic mapping
support; one byte)

Terminal Control Table Terminal Entry Address Register

T ermina 1 Control Table Terminal Entry Control Information
Area pointer

Terminal Control Table Terminal Entry Data Address

Terminal cont rol Table Terminal Entry Line pri~ter Length
(two bytes)

Terminal Control Table Terminal Entry External Operation
status (for example, READ, WRITE, WAIT request being
serviced 'by TCP; one byte)

Terminal Control Table Terminal Entry Passbook Control
Field (2980 General Banking Terminal system; one byte)

Appendix C. Explanations of Mnemonics 493

TCTTEPCR

TCTTEPCW

TCTTESID

TCTTETAB

TCTTETID

TCTTETM

TCTTETT

TDIA

TDIABAR

TDIADBA

TDIAIRL

TDOA

TDOABAR

TDOADBA

TDOAVRL

TIOA

TIOABAR

TIOACLCR

TIOADBA

TIOALAC

TIOATDL

TSIOA

TSIOABAR

TSIOADBA

Terminal Control Table Terminal Entry Passbook Control
Read indicator (2980 General Banking Terminal System;
one byte)

Terminal Control Table Terminal Entry Passbook Control
write indicator (2980 General Banking Terminal System;
one byte)

Terminal Control Table Terminal Entry Station
IDentification (2980 General Banking Terminal. system;
one byte)

Terminal Control Table Terminal Entry TABs needed to
position print element (2980 General Banking Terminal
System; one byte)

Terminal Control Table Terminal Entry Teller
IDentification (2980 General Banking Terminal; one byte)

Terminal contzol Table Terminal Entry Terminal Model
(one byte)

Terminal Control Table Terminal Entry Terminal Entry
Terminal Type (used by CICS/VS basic mapping support;
one byte)

Transient Data Input Area

Transient Data Input Area Base Address Register

Transient Data Input Area Data Begin Address

Transient Data Input Area Intrapartition Record Length
(two bytes)

Transient Data output Area

Transient Data Output Area Base Address Register

Transient Data OUtput Area Data Begin Address

Transient Data Output Area Variable Record Length (two
bytes)

Terminal Input/Output ~rea

Terminal Input/Output Area Base Address Register

Terminal Input/Output Area ControL CharacteR (same as
TIOALAC; one byte)

Terminal Input/Output Area Data Begin Address

terminal input/output area Line Address Control (same
as TIOACLCR; one byte)

Terminal Input/Output Area Transmission Data Length (two
bytes)

Temporary Storage Input/Output Area

Temporary Storage Input/Output Area Base Address Register

Temporary Storage Input/Output Area Data Begin Address

494 CICS/vS Application Programmer's Reference Manual

TSIOAVRL

TWA

TWACOBA

TWANXREC

TWAREC

TWAWA

TWAXTR'IN

VSAM

VSWA

VSWABAR

VSWALEN

VS WARE A

VTAM

WCC

Temporary storage Input/Output Area Variable Record
Length (two bytes)

Transaction Work Area

Transaction Work Area Cammon Origin Beginning Address

Transaction Work Area address of Next RECord (CWTR exit
routine)

Transaction Work Area address of RECOrd to be processed
(CRDR or CWTR exit routine)

Transaction Work Area Work Area (CRDR or CWTR exit
routine)

Transaction Work Area exit ReTurN (CRDR or CWTR exit
routine)

Virtual storage Access Method

VSAM Work Are a

VSAM WOrk Area Base Address Register

VSAM Work Area record LENgth (four bytes)

VSAM Work Area REcord Address

Virtual Telecommunication's Access Method

write Control Character

Appendix C. Explanations of Mnemonics 1495

APPENDIX~. CICS/VS ~ INSTRUCTIONS

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

The general formats of CICS/VS macro instructions as presented in
this manual are summarized in this appendix. The formats are shown in
the same order that they appear in preceding sections of the manual.

TERMINAL SERVICES

INPUT OPERATIONS

VTAM-Supported Terminals

DFHTC

System/7

TYPE= (READ(,WAI TIT' SAVE])
[,IOTYPE= {IMMEC

DELAY
[,EODS=symbolic address]

TYPE= (READ[,WAIT][, SAVE] r, {TRANSPARENT}])
L PSEUDOEIN

2260 Display station

TYPE=({READ }[,WAIT][,SAVE])
READ!.

2741 Communication Terminal

TYPE= (READ(,WAIT])
,RDATT=symbclic address

3270 Information Display System

DFHTC TYPE= (rEAD } [, WAIT](,SAVE][,TEX'l'])
READL
READE

Appendix D. CICS/vS Ma"cro Instructions 497

3735 Programmable Buffered Terminal

TYPE= (READ[,WAIT][, SAVE])
[,EOF=symbolic address]

l1!Q Data Entry System

DFHTC TYPE= (READ(,WAIT][, SAVE])
[,ENDFILE=symbolic address]
[,ENDINPT=symbolic address]

All Other CICS/VS-Supported Terminals

IDFHTC I TYPE=(READ(,WAIT](,SAVE])

OUTPUT OPERATIONS

TCAM-Supported Terminals

DFHTC TYPE=(WRITE[,other optional parameters])
[,DEST= {~:boliC name}]

[,terminal dependent operands)

VTAM-Supported Terminals

DFHTC TYPE= (WRITE(, WAIT)(,SAVE)(,LAST])

fIOTYPE= {~::~}]

fLOC
= \~~~oniCJJ

['FMH= ~~S}]

System/3, System/370, 2770, 2180, ~ 3780

IDFHTC TYPE=(WRITE(,WAIT](,SAVE)(,TRANSPARENT])

498 CICS/vS Application Programmer's Reference Manual

System/7

I DFHTC TYPE: (WRITE[,WAIT][,SAVE] r, {TRANSPARENT}]
l PSEUDOBIN

~ Display station

DFHTC TYPE= ({WRITE} [,WAIT][, SAVE][,ERASE])
WRITEL

rLIN~DR= {:;ber}]

11!! Communication Terminal

DFHTC TYPE=(WRITE[,WAIT][,SAVE])
,WRBRR=symbolic address CICS/OS/VS Only

~ General Banking Terminal

IDFBTC TYPE={CBUFF }
PASSBR

3270 Information Display System

DFHTC TYpE=({~rrE }('WAIT]('SAVE]('E~SE])
WRIT!L
COPY
PRINT
ERASFAUP

fLINEADR= {=ber}]
number}] ~CTLCHAR= ~~adecimal

3735 Programable Buffered Terminal

TYPE=(WRITE(,WAIT][,SAVE][,NOTRANSLATE])

Appendix D. CICS/vS Macro Instructions 499

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

3140 ~ Entry system

TYPE=([WRITE][,WAIT][,SAVE][,ENDFILE][,ENDOUTPUT]
[,TRANSPARENT])

All Other CICS/Vs-supported Terminals

DFHTC TYPE=(WRITE[,WAIT][,SAVE]

MISCELLANEOUS OPERATIONS

Line Control

DFHTC TYPE={RESET } binary synchronous lines
DISCONNECT switched lines

3650 Program Request

r------r-------r---,
I I I ,
, For 3650: I
, I I I
, I DFHTCI TYPE=PROGRAM I
I 1 I ,PRGNAME=name ,
, I '[, VALID=address] I

I I I [,NONVAL=address] I
I ,[,CONNECT={ACTIVATE}] I

, , I CONVERSE I
I I '[,NORESP=address] I
, 1 I , L------L-------L--------------------------------------_________________ ~

EODS for 3650 Interpreter Logical Units

r------r-------r---, , , I I
I IDFHTC, TYPE=EODS I
I I I I L------L-------L-----------------------------__________________________ ~

500 CICS/vS Application Programmer's Reference Manual

FILE SERVICES

Page of SH20-9003-2
Revised May 22,1975
By TNL SN2Q-9086

r------r-:::::-r-:~:::::--,

, I I ~ :~~~:::::~~n~ ~:lss] I I I I ,SEGSE"r= {~EbOliC name}]

I
' , [, INDEX= {;~~bOliC name}]

[,TYPOPER=UPDATE]
I ,RJn'METH= {~:REC}] DAM I I ,ARGTYP=l~:!I]
1 'SRCHTYP={~}J }
1 GKEQ VSAM
1 GKGE
J ,MODE={~ l]
I

LOCATE
,NORESP=symbolic address]

[,ERROR=symbolic address]
'I [,DSIDER=symbolic address]

I [,SEGIDER=symbolic address]
[,NOTFND=symbolic address]

I 1 [,INVREQ=symbolic address]

"

I [,IOERROR=symbolic address]
[,DUPDS=symbolic address]

, I [,NOTOPEN=symbolic address] VSAM
1 [,ILLOGIC=~ymbolic address]

I I I ,
k-~~-~.L~--~---L~~~-~-~-~---~~.---~---------------------------~-----~-~~

Appendix D. CICS/vS Macro Instructions 500. 1

r------r-------r---, I I ,

I

'DFHFC TYPE=PUT I
I [,RDIDADR=symbolic address] ,
, [,SEGSET=YES] I
I ,TYPOPER={NEWREC}]
, UPDATE

DELETE • VSAM
,ARGTYP= { ~~!}]

[,NORESP=symbolic address]
(,ERROR=symbolic addressJ
(,DUPREC=symbolic address]
[,INVREQ=symbolic address]
(,IOERROR=symbolic address]
[,NOSPACE=symbolic address]
(,NOTOPEN=symbolic address]
(,ILLOGIC=symbolic address] • VSAM

r------r-------r-----------------------~-------------------------------, I VSAM Only
'DFHFC TYPE=DELETE
I [,DATASET=symbolic name]
I [,RDIDADR=symbolic address]

I [,ARGrYP={~~}]
1 [,SRCHTYP={~}]
, GKEQ
I [,NORESP=symbolic address]
I [,ERROR=symbolic address]
I [,DSIDER=symbolic address]

I [, NOTFND=symbolic address]
[,INVREQ=syrobolic address]

I [,IOERROR=symbolic address]
[,NOTOPEN=symbolic address]

I [,ILLOGIC=symbolic address]
I

r------r-------r-----------~------------------------~------------------,
I I I I
I I DFHFC I TYPE=GETAREA I
I , , [,DATASET=symbolic name] , , I , [, INITIMG= {~:~ue}] I

(' " I [[, TYPOPER=M{ ASS}]INSERT]. VSAM ,
,ARGTYP= ~:i I

, , f [,NORESP=symbolic address] . , I I

"

(,ERROR=symbolic address]
(,DSIDER=symbolic address] " I I (,INVREQ=symbolic address]- "
(,NOTOPEN=symbolic address]

, I I
~-----r-------r---, , I I I
I , DFHFC I TYPE=RELEAS E I , I (,NORESP=symbolic address] I
I (,ERROR=symbolic address] I

I I 'I (,INVREQ=symbolic address] I,
(,IOERROR=symbolic address] , I I [,ILLOGIC=symbolic address] ~--VSAM I

L------L-------L---~

Appendix D. CICS/vS Macro Instructions 501

r------r-------r---,
I
I DFHFC

I ,
,
I
I
I ,

TYPE=SETL
[,DATASET=symbolic name]
[,RDIDADR=symbolic address]

[.SEGSET={~~bOliC name}]
[,RETMETH={~~~REC}]~.~--------------------DAM

['ARGTYP={~~}]

['SRCHTYP={~~}] VSAM

[,MODE={~ }]
LOCATE

[,NORESP=symbolic address]
(,ERROR=symbolic address]
(,DSIDER=symbolic address]
[,SEGIDER=symbolic address]
[,NOTFND=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=symbolic address]
[,ILLOGIC=symbolic address]~.~------VSAM

r------r-------r--.----------,
DFHFC TYPE=GETNEXT

[.SEGSET={!~bOliC name}]
[,NORESP=symbolic address]
[,ERROR=symbolic address]
(,SEGIDER=symbolic address]
[,NOTFND=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=symbolic address]
[,ENDFILE=symbolic address]
(,ILLOGIC=symbolic address]~.~------VSAM

r------r-------r---,
I I I I
I I DFHFC I TYPE=ESETL I

1
I I [,NORESP=symbolic address] II
, (,ERROR=symbolic address]

I I I [,INVREQ=symbolic address] I
, I I [,ILLOGIC=symbolic address]. VSAM 1
I I I I
~-----L------~L---------------------------------~---------------------~

502 CICS/vS Application Prograromer's Reference Manual

r------r-------r---,
DFHFC TYPE=RESETL

[,SEGSET={r~bOliC name~

[,ARGTYP= {~:i}] I
['SRCBTYP={~~}] VSAM
[,NORESP=symbolic address]
[,ERROR=symbolic address]
[,SEGIDER=symbolic address]
[,NOTFNO=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=symbolic address]
[,ILLOGIC=symbolic address]- VSAM

r------r-------r---,
DFHFC TYPE=CHECK

[,NORESP=symbolic address]
[,ERROR=symbolic address]
[, DSIDER=symbolic address]
[,SEGIDER=symbolic address]
[,NOTFND=symbolic address]
(,DUPREc=symbolic address]
[,INVREQ=symbolic address]
[,IOERROR=symbolic address]
[,DUPDS=symbolic address]
[,NOSPACE=symbolic address]
[,NOTOPEN=symbolic address]
[,ENDFILE=symbolic address]
[,ILLOGIC=symbolic address]~ VSAM

L-- __ -_L _______ L ______________________________________ -----------------~

TRANSIENT DATA SERVICES

r------r-------r---, I , I I
I I DFHTD I TYPE=PUT I
I , [,DESTID=symbolic name] I
I I I (,TDADDR=symbolic address] I
, I I [,NORESP=symbol ic addre ss] I
I I I (, IDERROR=symbolic address] I
1 I I [,IOERROR=symbolic address] ,
I I I (,NOTOPEN=symbolic address] 1
, I , (,NOSPACE=symbolic address] I
, , I I
r------r-------r---, , t I I
I , DFHTD I TYPE= G.ET I
, I , (,DESTID=symbolic address] I
I I I (, QUEBUSY=symbolic address] - VSAM I
I I I [, NORESP=symbolic addre ss] I
I I 1 [,QUEZERO=symbolic address] I " I I [,IDERROR=symbolic address] 'I

[,IOERROR=symbolic address]
, , I (, NOTOPEN=symbolic address] I
I I , I L ______ L _______ L ______________________________________ -----------------~

Appendix D. CICS/VS Macro Instructions 503

r------r-------r---,
I I I I
I I DFHTD I TYPE=FEOV I
I , I [,DESTID=symbolic name] I
I I I [,NORESP=symbolic address] I
I I I [,IDERROR=sy.mbolic address] I
I I I [,NOTOPEN=symbolic address] I
, I I I
r------r-------r---~-----------,
I I I I
I I DFHTD I TYPE=PURGE I
I I I [,DESTID=symbolic name] I
I I I [,NORESP=symbolic address] I , I I [, IDERROR=symbolic address] I
I I I
r------r-------r---,
I I I I I I DFHTD TYPE=CHECK I
I I I [, NORESP=symbolic address] I
I I I [,QUEZERO=sy.mbolic address] I
I I I [, IDERROR=symbolic address] ,
I I I [,IOERROR=sy.mbolic address] I
I I I [,NOTOPEN=symbolic address] I
I I I [,NOSPACE=symbolic address] I
I I I I
L------L-------L--------------------.----------------------------------~

504 CICS/VS Application Programmer's Reference Manual

TEMPORARY STORAGE SERVICES

r------r-------r---,
DFHTS TYPE=PUT

[,TYPOPER=REPLACE]
[, DATAID=name]
[,TSDADDR={~bOliC address}]

[,STORFAC={~~lIARY}J
[, COND=YES]
[,NOSPACE=sy.mbolic address]
[,NORESP=symbolic address]
[,IDERROR=sy.mbolic address]
(,IOERROR=symbolic address]
[,INVREQ=symbolic address]
[,ERROR=symbolic address]

r------r-------r---, I ,
I DFHTS I TYPE=PUTQ

"

I' [,TYPOPER=REPLACE]
[,DATAID=name]

I I [,TSDADDR={SYmbOliC address}]
I , YES
I , [,STORFAC={AUXILIARY}]
, I MAIN

: I [,ENTRY={~ES}]
, I [,COND=YES] ,

I
[,NOSPACE=symbolic address]
[,NORESP=symbolic address]

, [,IOERROR=symbolic address]
I I [, INVREQ= symbol ic address]

I , I [,ENERROR=symbolic address]
, , [,ERROR=symbolic address]
L------L-------L---~

,------r-:::::-r-::::::::---~
[, TYPOPER=EXCL]
[, DATAID=name]
[,TSDADDR={~bOliC address}]

[,RELEASE={~S}] .

[,NORESP=symbolic address]
[,IDERROR=symbolic address]
[,IOERROR=sy.mbolic address]
[,INVREQ=symbolic address]
[,ENERROR=symbolic address]
[,ERROR=symbolic address]

r------r-------r---, , I I I
, , DFHTS I TYPE=GETQ I

I I , , [,TYPOPER=EXCL] I
, , I [,DATAID=name] I
, , I [,TSDADDR={symbolic address}] I
, I I YES I
I , I [,ENTRy={n }] ,
I I I YES I
I I [, NORESP=symbolic address] 1

[,IDERROR=Sy.mbolic address] I

Appendix D. CICS/vS Macro Instructions 505

I
[,lOERROR=symbolic address]
[,INVREQ=symbolic address]
[,ENERROR=symbolic address]
[,ERROR=symbolic address]

, I I
r------r-------r---,
, I I I I I DFHTS TYPE=RELEAS E I
I I [, DATAl D=na me] ,
I I , [,.NORESP=symbolic address] I
, , I [,lDERROR=symbolic address] ,
, I I [,lNVREQ=symbolic address] I
I I I [,ERROR=syrni;lolic address] I , , , ,
r------ r------- 'r---,

" I I " DFHTS TYPE=PURGE

"
I I [,DATAlD=name] "

[,NORESP=symbolic address]

I " I [,lDERROR=symbolic address] I,

[,lNVREQ=symbolic address]
I , I [,ERROR=symbolic address] I
I I I I
r---~--r-------r---, , , I I
I I DFHTS I TYPE=CHECK I
, I [,NOSPACE=symbolic address] ,
, I I [, NORESP=symbolic address] I , I [,lDERROR=symbolic address] I

I [,lOERROR=symbolic address] I
, I I [,lNVREQ=symbolic address] I
, I I [,ENERROR=s ymbolic address] I I , I [, ERROR=symbolic address] I
L------L-------L---~

STORAGE SERVICES

r------r-------r---,
I , DFHSC , TYPE=GETMAI N , , I flNITIMG={~~ber}]
1 , I [,NUMBYTE=number]

I I FCOND={~;~'SyrnbOliC addreSS)}]
f , f l (NO, symbolic address)
I I I 'CLASS={TERMINAL or TERM}

I ' I USER I TRANSDATA or TD
, I I TEMFSTRG or TS
I , ,
r------r-------r---, I , I I
, 1 DFHSC I TYPE=FREEMAlN I
I , I [,RELEASE=ALL] ,
I I I L------L-------L-------------------___________________ -________________ ~

506 ClCS/VS ApPlication Programmer's Reference Manual

PROGRAM SERVICES

r------r-------r---,
I I I I
II DFHPC I TYPE=LINK I
I I I [,PROGRAM=name] I
I I (,COND=YES] I
, I '[,NORESP=symbolic address] , I I (, PGMIDER= symbolic address] ,
, , I
r------r-------r---, , I I I
I I DFHPC I TYPE=XCTL I

I I '[, PROGRAM= name] I
I I I

r------r-------r---,
I I I I
I, " DFHPC 1 TYPE=LOAD "

[, PROGRAM= name]
, , I { ,LOADLST=NO] I
I I '[,COND=YES] ,
, ' I [, NORESP=s ymboli c address] I

I I [, PGMIDER=symbclic address] I
I I I I
r------r-------r---, , , , ,
, I DFHPC I TYPE=RETURN ,
, 1 I [, TRANSID=transaction code] ,
I I I
r~"'''--- r-"'----- r-.. - ... -- _ ... --.... ---...... .-, ... --- ----....... --- - ---- -- -~,
I I , ,
, I DFHPC I TYPE=DELETE J
f I 'I [· PROGRAM: name] I
r------r-------r---,
, 1 I I
1 I DFHPC, TYPE=ABEND 1
1 I ,r ,ABCODE= {:~ue}] I
I I I t,cANCEL=YES] ,
, I I
r------r-------r---, I , I I
I I DFHPC, TYPE=SETXIT ,
, I 1 r ,PROGRAM= {~~~e }]I[, ROUTINE: { ;:boliC addreSS}] I
, I I t , NORESP=symbolic address] I
I 1 [,PGMIDER=symbolic address] I
I , I I
r ... -----r-------r-----... --~--~-... -... -----~---~----~~------~~-~-~-~---------,
, I I I
1 , DFHPC t TYPE=RESETXIT t
I I t I
r------r-------r--~

l I I J
I DFHPC t TYPE=COBADDR I

I I I ,LABEL=symbolic label I
, , I I
L------L-------L--___________ ~

Appendix D. CICS/vS Macro Instructions 507

r

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---,
I I I I
I , DFHPC I TYPE=CHECK ,
, I t [,NORESP=syrnbolic address] ,
1 , '(, PGMIDER=symbolic address] I
, I I , L------L------_L ______________________________________ ----------.------~

TIME SERVICES

r------r-------r---,
I I I I
, , OFHIC I TYPE=GETIME I

I I I rFORM
= {:!~~:}] I

: , , FTlMADR={~~~boliC addreSS)] I

, t , ~ ,NORESP=symbolic address] I
I , , [,INVREQ=symbolic address] ,
, , I (,ERROR=symbolic address] I
I , , ,
r------r-------r---,

I I
DFHIC I TYPE=WAIT ,

, t,INTRVAL= {~~~e.riC value}]I[,TIME= {~:eric ValUe}] I

"

REQID={~:e IJ "
'prefix'

I [,NORESP=symbolic address] "
[,INVREQ=symbolic address]

, [,EXPIRD=symbolic address] ,
, [,ERROR=syrnbolic address] ,
I I

r------r-------r---, , I , I " I DFHIC I TYPE=POST "
, , tINTRVAL= {~:eriC value}]I[' TIME= {:~eriC value I] ,
I I I rREQ1D= {¥E:iJJ . I
, I t [,NORESP=symbolic address] ,
1 I I [,INVREQ=symbolic address] 1
I , , [,EXPI-RD=syrobolic address] ,
, 1 , [,ERROR=symbolic address] ,
I , , I
r------r-------r---, I I , ,

"

I' DFHIC, TYPE=INITIATE I
fINTRVAL= {~:eric value}]I[' TIME= {:~eric value }]

I I I fREQID= {~:e . lJ I
I I I , ~ , pr ef l.X ' 1

, , 1 [,TRANSID=name] I
I I , ~TRMIDNT= {~:e~ J ' I , I [,NOREsp=symboll.C address] I
, I I (,INVREQ=symbolic address] ,
t I , [, TRNIDER=symbolic address] I
, I , [,TRMIDER=symbolic address]
, I I [,ERROR=symbolic address] I L_---__ L _______ L ______________________________________ -----------------~

508 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---, I , I
I t DFHIC I
, I ,
, I I
I , ,
, , I , , ,
I 1 I
I I ,
I I ,

I I I , ,
I , ,

: : I , I ,

TYPE=PUT
r INTRVAL= {~:eric value }JI[{' TIME=

FREQID={~:e . }]

L • prefl.x·
[,TRANSID=name]

rTRMIDNT=\~:~e}]
r ICDADDR= ;isbOliC address}]

[,NORESP=symbolic address]
[(INVREQ=symbolic address]
[,TRNIDER=symbolic address]
[,TRMIDER=symbolic address]
(,IOERROR=symbolic address]
[,ERROR=symbolic address]

numeric ValUe}]
YES

r------r-------r---, I I ,
, , DFHIC I
I I ,
, I ,

, 1 I
, 1 ,
, , I , , ,
I 1 ,
I , ,
, I I
, 1 I

TYPE=GET
rICDADDR={;~bOliC addreSS}]

[,RELEASE=NO]
[,NORESP=symbolic address]
[,INVREQ=symbolic address]
[,NOTFND=symbolic address]
[,ENDDATA=symbolic address]
[,IOERROR=symbolic address]
[,TSINVLD=symbolic address]
[,ERROR=symbolic address]

r------r-------r---, I I , ,
, , DFHIC, TYPE=CANCEL I
: I I EREQID= {~:e}] I
I, , I t ,NORESP=symbolic address] "

(,INVREQ=symbolic address]
, , , [,NOTFND=symbolic address] ,
I , I [,ERROR=symbolic address] I
1 I , 1
r------r-------r---, I , I I
I I DFHIC , TYPE=RETRY ,
, , [,RELEASE=NO] 1
, I t (,NORESP=symbolic address] ,
, I I [,INVREQ=symbolic address] I
, , I (, NOTFND=symbol ic a ddre ss] ,
I I (,IOERROR=symbolic address] I
, , I (,ERROR=symbolic address] I
J lIt L ______ L _______ L ______________________________________ -----------------~

Appendix D. CICS/VS Macro Instructions 509

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---,
I I I I
I I DFHIC I TYPE=CHECR I
, I , (,NORESP=symbolic address] I
, I I (,INVREQ=symbolic address] I
, , ' [,EXPIRD=symbolic address] ,
I, , " (,TRNIDER=symbolic address] II

(,TRMIDER=symbolic address]
, t I [,NOTFND=symbolic address] I
, I 1,(,ENDDATA=SymbOliC address] I
, , (,IOERROR=symbolic address] ,
I , I (,ERROR=symbolic address] I
I I , [,TSINVLD=symbolic address] ,

L------L-------L---J
TASK SERVICES

r------r-------r---, I I , ,
, , DFHKC , TYPE=ATTACH ,
, , , (,FCADDR=symbolic address] I
, I , (, TRANSID=name] I
, I , ,
r------r-------r---,
t I I I
I , DFHKC I TYPE=CHAP ,
, , I (, PRTY=prio ri ty value] ,
, , , I
r------r-------r---,
I I I I
, , DFHKC , TYPE=WAIT I
I I I ,DCI={SINGLE} I
1 I i LIST I
, , 1 DISP I , I ' [, ECADDR=symbolic address] ,
, I ,
r------r-------r---, , I I I
I , DFHKC I TYPE=ENQ ,
, I I [,QARGADR=symbolic address] ,
, I t [, QARGLNG=number] I , , , ,
r------r-------r---,
I I I I
, , DFHKC I TYPE=DEQ I
., , , [,QARGADR=symbolic address] I
, , , (,QARGLNG=number] 1
1 I , I
r------r-------r---, I I I ,
I I DFHKC , TYPE=PURGE I
, I , ,
r------r-------r---, , I I ,
I 1 DFHKC I TYPE=NOPURGE , , , , ,
L------L-------L---J

510 CICS/VS Application Programmer's Reference Manual

JOURNAL SERVICES

r------r-------r---~---------------------~-----------------------------,
I I I I
I I DFHJC I TYPE=GETJCA 1
I I I I
r------r-------r---,

DFHJC TYPE={PUT }
(WRITE, WAIT)

,JFILElD={nn }
SYSTEM
YES

E JTYPEID= {~~n}]
EJCDADDR= 1;:boliC addreSS}]

r JCDLGTH= ~:~imal ValUe}]

~ PFXADDR= {;:bOliC addreSS}]

t PFXLGTH= {~:~imal valuel]

[,NORESP=symbolic address]
[,IDERROR=symbolic address]
[,LERROR=symbolic address]
[,IOERROR=symbolic address]
[,NOTOPEN=symbolic address]
[,INVREQ=symbolic address]

r------r-------r---,
DFHJC I TYPE=WRITE \

I ,JFILEID={nn } I
SYSTEM

I Y~ t
, ~JTYPEID={~:n}]

I ~JCDADDR={~~bOliC addreSS}] I f JCDIJiTH= I ~: imal val ue \J
r PFXADDR= {~~bOliC addreSS}]

rPFXIbTH= {~:imal ValUe}]

t STARTlO= {~~S}]

rCONO= {(~~S ,f;3ymbolic addreSS)}]

[,NORESP=symbolic address]
[,IDERROR=symbolicaddress]
[,LERROR=symbolic address]
[,NOTOPEN=symbolic address]
[,INVREQ=symbolic address]

L------L-------~---~

Appendix D. CICS/vS Macro Instructions 511

r------r-------r---,
, I DFBJC I TYPE=WAIT I
I I ',JFILEID={nn} I
I I I SYSTEM I
I I YES I " " I [,NORESP=symbolic address]. "

[,IDERROR=symbolic address]
I , , [,IOERROR=symbolic address] I
I , , [,NOTOPEN=symbolic address] I
, , , [,INVREQ=symbolic address] I
I I I ,
r------r-------r---, I I I ,
, , DFBJC f TYPE=CHECK I
I , I [,NORESP=symbolic address] I
I , , [,IDERROR=symbolic address]

I I "
[,LERROR=symbolic address] "
(,IOERROR=symbolic address]

, , I [,NOTOPEN=symbolic address] ,
I , , [,INVREQ=symbolic address] I
, I I I
L------L-------L--------------------~----------------------------------~

RESTART/RECOVERY SERVICES

r--
I , -------r·--~ ,

DFBSP , TYPE=USER
, , I I
L------L-------L---~

512 CICS/vS Application programmer's Reference Manual

TRACE SERVICES

r------r-------r---,
I I I I
I I DFHTR I TYPE=ON I
, , I ,STYPE= SINGLE I
I , I AU I
I I , (system symbol1 [, sys •••]) I
I I , SYSTEM I
, , I ~

, liFE I
I I I I
r------r-------r---,
, , DFHTR I TYPE=OFF \
I I I , STYPE= SINGLE I
I I I ALL I
, I I (system symbo11[,sys •••]) I
I I I SYSTEM I
, I I ~ I
I I I FE I
, , I I
r------r-------r---,

'DFHTR TYPE=ENTRY

[.STypE={~i~~M}]
,ID=number

f
' DATA 1= {Symbol}] r,RDATA 1 = {regi~er }]

(symbol) L (reg1ster)
, DATA2= rymbol }] rRDATA2= {regi~er }]

['DATA1TP!~~1) Il (reg1ster)

['DATA2TP=I~5f~ II
POINTER

L--~

Appendix D. CICS/vS Macro Instructions ?13

~ SERVICES

r------r-------r---,
I , 1 I I I DFHDC TYPE=TRANSAcrION I
I I , DMFCODE={ValUe} I
I I f YES I
I I f I
r------r-------r---,
I I I I I , DFHDC , TYPE=CICS I , , . I ' DMPCODE= {~:~ue} I
I \ t I I
r------r-------r---,
I I I I I , DFHDC , TYPE=COMPLETE I
f f f , DMFCODE={Value} I
I 'I YES I
, I , I
r------r-------r---, , I I I
I I DFHDC I TYPE=PARTIAL f
, I f LIST= ([TERMINAL][,PROGRAM][, TRANSACTION][,SEGMENT]) I
I I I , DMPCODE={ValUe} I
, l ' YES I
I I I , L--- ___ L _______ L _________________________________ ~---------------------~

514 CICS/vS Application Programmer's Reference Manual

BUILT-IN FUNCTIONS

r------r--------r--,
I I I I
I I DFHBFTCA'[OPTION={EASIC}] ,
I I I wrRET I
I I , , L------L--------L------------------------_____________ --_______________ ~

TABLE SEARCH

r--,
I

DFHBIF TYPE=TSEARCH
[,ARG=symbolic address]
[,TARGET=symbolic address]

[

,ATABLE= ([symbolic address1] [, {ri~OliC addr. eSS2}]]

[,numeric value 1] [, {~:eric VaIUe2}]

[,numeric val ue3]) •

[

,FrABLE=([{~~bOliC addres.s1}J r{~~bOliC addreSS2}]]

[, {~~eric.valUe1}] ~{~~~eric VaIUe2}]>,

[
,ORDER= {ASCENDING I]

DESCENDING

[
, SUBST= {SymbOliC addreSS}] I [,NOMATCH=symbolic address] I

, Ii teral value' "
[,INDEX=symbclic address] I
[,RANGE=YES] I
[,ERROR=symbolic address] I

. I L----~-----~-----_---~-~_~ ________________ ~ ___________ -______ ~ _________ ~

PHONETIC CONVERSION

r--,
I I I I
I I DFHBIFI TYPE=PHONETIC I
I I I [,FIELD=symbolic address] I
I I I [, ERROR=symbolic address] I
I I I I L----------___ -_~--------------~

FIELD VERIFY

r---.-----------,
I I I I

I DFHBIFI TYPE=FVERIFY I

I I I [, F'IELD=symbolic address] I
[

,LENGTH={SYmbOliC addreSS}] I
I I , numeric value I
I I 1[,ALPHA=symbolic address] I
I I I [,NUMERIC=symbolic address] I
I If[, PACKED=symbolic address] I
I I I I L- ___ ~-------________________ ~

Appendix D. CICS/VS Macro Instructions 515

FIELD EDIT

r--,
I I I I
I 'DFHBIFI TYPE=DEEDIT I
, , I (,FIELD=symbolic address] I
, I [,LENGTH={symbOlic addreSS}] I
I , I numeric value I
, , I I L ___ -----------------~

BIT MANIPULATION

r--, , I I I
I I DFHBIFI TYPE={BITSETON } I , , I BITSETOFF ,
, I I BITFLIP I
, I , BITEST I , , I (,FIELD=symbclic address] I
I , [,BIT={SymbOlic addreSS}] I
, I , value I
, I I (,BITON=symbolic address] I
I I I (,BITOFF=symbolic address] I
, , I I
L--_________________ ---~

INPUT FORMATTING

r--,
I I I . I , I DFHBIFI TYPE=DEFLDNM I
, I I , NAMES= (keyword(, keyword, • • •]) I
, , I ,LABEL=symbclic address I
I , , I
r--, , I I I
, I DFHBIFI TYPE=INFORMAT I
I I I , FIELDS= (symbolic address (,symbolic address, •••]) I
, , '[' NAMES= {SymbOliC addreSS}] I
1 , I YES I
, I ,[,LENGTH={SymbOlic addreSS}] I
, t , numeric value I
, , , (, ERROR=symbolic address] I
, I I I L ___ -----------------~

516 CICS/vS Application Programmer's Reference Manual

WEIGHTED RETRIEVAL

r--,
I I I
I 'DFHBIF TYPE=WTRETST
I , [,DATASET=symbolic name]
I I [,RDIDADR=symbolic address]
I I [,INPUTNO= {SymbO~iC addreSS}]
I! numer~c value
I I YES
I I [,INPUTST= {SymbO~iC addreSS)] 'I numer~c value
'I Y~ , I (,INPUTPC=([suboperand1][,suboperand2])]
1 , [,NRECDS= {SymbO~iC addreSS}]
I I numer1C value
'I DS
I I (,NORESP=symbolic address]
, I 1[,DSIDER=symbolic address]
, I ![,NOTOPEN=symbolic address]
I I 1[,NOTFND=symbolic address]
, , I[,INVREQ=symbolic address]
, I I [,IOERROR=symbolic address]
, I 1[,OFLOW=symbclic address]
I I I[,ILLOGIC=symbolic address]
I I I r--,
I I t
, I DFHBIF·I TYPE=WTRTPARM
, I I [,FIELD1= ([symbolic address][,numeric value][,Char])]
I I I(,FIELD2=([symbolic address1][,symbolic address2])]

I I 1['NULL={~~~~~~ra~I:~S~
I I I ,MATCH= {SymbOliC address}n
, 1 I numeric value J
1 I , [,NOMATCH= {SymbOlic addreSS}]
, I I numeric value
I I 1[,RANGE=(suboperand1,suboperand2[,suboperand3])]
, I I
r--,

I I I
I DFHBIFI TYPE=WTRETGET I
I '(,NORESP=symbolic address] I
I H , ENDFILE=syrobolic add, ress] I
I 1(,NOTOPEN=symbolic address] ,
I I(,NOTFND=symbolic address] I
, ,[,INVREQ~symbolic address] ,
I I (,IOERROR=symbolic addres,s] I
I 1(,OFLOW=symbclic address] I
I I[,ILLOGIC=symbolic address] I
I , I

r--,
I I I I
1 I DFHBIFI TYPE=WTRETREL ,
, I I[,NORESP=symbolic address] I
I I I(,INVREQ=symbolic address] I
, , I(,ILLOGIC=syrobolic address] t
1 I , ,
L--~

Appendix D. CICS/VS Macro Instructions 517

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r--,
I I , I
, 'DFHBIFI TYPE=WTRETCHK
, , '[,NORESP=symbolic address] I
I , H , DSIDER=symbolic address] ,
t I t(,NOTOPEN=symbolic address] r
I 1 I[,NOTFND=symbolic address] I
I I 1[,INVREQ=symbolic address] I
I , I [, ENDFILE=symbolic address] r
, I 1 [,IOERROR=symbolic address] ,
, , I (,OFLOW=symbolic address] I
I I I(,ILLOGIC=symbolic address] I
I I , I
L--~

BASIC MAPPING SUPPORT SERVICES

r------r-------r---, , I I t
, ma p set, DFHMSD '[TYPE= {DS ECT}~ , I MAP
I 'FINAL

I I , MODE= {IN }~ I 'OUT
I 1 INOUT

1 I[,LANG={~~:OL}~
I I PLI J
I '(,BASE=name]
t 1[,TERM=terminal type]

1,1 r'CTRL= ([PRINT], ~i~ [,FREEKB][,ALARM]['FRSET]J

HONEOM
, , DATA= {FIELD}]
, BLOCK

: [,OBFMT={~~S}J
I [TIOAPFX={~S}J

I
r------r-------r---, I , I
I map IDFHMDI I [SIZE= (line,colurrn)]

1 I I [,LINE= {~~:er}]
1 I SAME

I 'J ['COLUMN={~~:er}]
I , SAME

I I [, JUSTI FY= ([{~~~~T)] t {i~~~T}J)
, I [,HEADER=YES]
I I[,TRAILER=YES]
J I [,DATA= {FIELD}]
1 I BLOCK

I l[,OBFMT={~~S}]

I I[TIOAPFX=I~SD
I I

L--~

518 CICS/vS Application Programmer's Reference Manual

Page of SH20-9003-2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---,
H fld] I DFHMDF [,POS= {number I] ,
1 I (line ,column) I , I [,ATTRB= ([{~~~P n [,NUM] rr{~~~ln [, DET][,IC][,FSET])] I
I I UNPROTfJ l DRK J I
, , [,LENGTH=number] I

1 I [,JUSTIFY= ([{LEFT 1][' {BLANK }] 51 I
'I RIGHT ZERO J I
, , [,INITIAL= 'any user information'] I
I , (,GRPNAME=group name] ,
, , [, OCCURS=num ber] ,
I I [, PICIN= 'val ue'] ,
, I [, PICOUT=' va lue'] ,

r------r-------r---,
, IDFHBMS I TYPE=({IN } (,SAVE](,TEXT]) I
1 I , MAP I , I I [,MAP= {~~~ name}] I rMAPADR= {~~~bOliC address}] ,

, , 1 [,MAPSET= {~:~ set name}l r MSETADR= {~~~bOliC address}] :

, I I [,RDATT=symbolic address] I
I I I [,NORESP=symbolic address] I
, I , [,MAPFAIL=S ymbolic address] I , I ' [,INVMPSZ=symbolic address] I
I I [,ERROR=symbolic address] ,

r------r-------r---,
DFHBMS TYPE= (PAGEBLD l {OUT[, WAIT]}] (,SAVE](,ERASE] ,

STORE ,
RETURN ,

[,LAST]) ,

(IOTYPE= ~~~~}J I
rLDC={~~~mOnicD I
, DATA={ ~~S l] 1

ONI.Y

MAP= {~:~ name}]

MAPSET= {~:~set nameD , rMSETADR= {~~~bOliC addreSS}]

[CTRL= ([PRINT] [{ilU [, FREEKB][,ALARM]['FRSET]J

(,OFLOW=symbolic address]
(PROPT=NLEOM]

[,CURSOR={~:ber}]

[,REQID= ~~~efix'D

[,FMHPARM={~~ameter}]

[,WRBRK=symbolic address] CICS/OS/VS only
(,NORESP=symbolic address]
[,TSIOERR=symbolic address]
[,INVREQ=symbolic address]
(,RETPAGE=symbolic address]
[,INVLDC=symbolic address]
[,INVMPSZ=symbolic address]
[,IGREQID=symbolic address]

I [,ERROR=symbolic address] I
L------L-------L---J

Appendix D. CICS/VS Macro Instructions 519

Page of SH2o-900~2
Revised May 22, 1975
By TNL SN20-9086

r------r-------r---, I f DFHBMsl TYPE= (T~TBLD U~E::IT]~ [,SAVE][,ERASE] I
, , I [,LAST]) I
I ~ IOTYPE= {IMMED}] f 1 , , DELAY J I
I I , ,LDC= {mnemOnic}] ,
, I I YES I
t I I fHEADER= {~~bOliC addreSS}] ,

, I , rTRAILER={symbOliC addreSS}] I
, , , YES ,

J I I ,JUSTIFY={FIRST} I , I I LAST I
I I I nnn I
I I YES I I II e~RL= ([PRINr] , {~LJ [, FREERB]['AlARM]J I

It . (PROPT=NLEOM J ,
.. ,' , [;CURSOR= {~:ber}] I
f I [,REQID= {~~~efix'}] 1
11 [,FMHPARM= {~~~ameter}] I
1 I [,WRBRK=symbolic address] CICS/OS/vS only ,
t [,NORESP=symbolic address] I
1 I [,TSIOERR=symbolic address] ,
I [,INVREQ=symbolic address] I
I I [,INVLDC=symbolic address] ,

I 1 , f :~:~cii~:::~~ii~ :~::::j I
I I [,ERROR=symbolic address] ,
I I I

520 CICS/vS Application Programmer's Reference Manual

Page of SH2o-9003=2
Revised May 22, 1975
By TNL SN2o-9086

r-----·[-:::r-::::::riii~::::~ji---;::::~;:::::~;:::~--------,

"
t ,LAST n . I

I ~IOTrPE= I:~l] ,
, , fLDc={~~:moni. C] I I DATA: {~S }] 1
\

ONLY . I
tMAP= {~:~ name}] I fMAPADR= {~:bolie addreSS}]

RL= ([PRINt'] r{LIJO I (, IREER! I ,ALARM][,FRSET n]
1 . L61J . I
, Lao. I I HONEOM

I , PROPT=NLEOM]
1 , CORSOR= {~:ber}] I

I
, ,R~ID= I~~efix'l] I
'I ,FMHPARM= {~~ameter}] I

,WRBRK=symbolic address 1 CICS/OS/VS only I
(,NORESP=symbolic address]

I
I [, TStOERR=s ymbolie address] I

[,INVREQ=symbolic address] ,
I [,INVLDC=symbolie address]

J

[,RETPAGE=S~bOlic address] I
[,INVMPSZ=symbolic address] ,

, [,IGREQID=symbolic address]
, , I (,E~OR=symbolic address] I
r~~~~~~r~-~--~~r-~~-------~~~--~~--~~~~~-~-~~~-~~-~~·~-~~-~~~~~-~-~~-~~,

, I I . I

1 , DFHBMSI~~~~:=J~A[G{:~:['.LAST}]])t,{RETAI. N }])] : , I I AU'lOPAGE RELEASE ·1
, I I ,TRAILER= {;:bOliC ad ess}]. I
, 1 I ,TRANSID=transaction code]

I I ,WRBRK={SymtOliC addreSS}]CICS/OSIVS only
, I I CURREN'!'
'I ALL
1 I I ,EODPURG={~~~}]

II I I ' REQIII= f;gefiX' }]
, I . ,FMHPARM={~~~ameter}l
I I ,NORESP=symbolic ad~eSS]
I [,TSIOERR=symbolic address]
, , I[,RETPAGE=symbolic address]

t I I I [,IGREQIO=symbolic address]
, I ., [, ERROR=symbclic address]
t I I
r~~-~·-r--~~~-~r~~--~-~--~~~~~~~--~---~~-~-~-~~~~~~~~-~~---~~~~~~-----~,

: I DFHl3MS I TYPE=PURGE I
l I I I

Appendix D. CICS/vS Macro Instructions 521

Page of SH2()"9003-2
Revised May 22,1975
By TNL SN2()"9086

r ... - -~ r----- - r----..... .;..~ ------.. --... -----.. .-,-'-'-.. -----.... --...... - .. --·--------.,

, I I I ., I DFHBMS TYPE=ROUTE .1
, 1 I t LDC= {;~:mOni C}] ,

, I I ILIST={;rsbOliC addreSS}] I
I I , ALL . . , , I I INTRVAL={~:eriC ValUe}] I rTIME={~:eriC ValUe}] ,

I I opcLAss= {~:imal value, ° 0 on '
I. I TITLE= {;rsbOliC addreSS}]

I I FERRTERM={~~~~id}n '. ,

1, I L YES U ,
[PROPT=NLEOM] I I I [,REQID={~~~efiX'}] ,

"

J [,NORESP=symbolic address] It
[,INVET=symbolic address]

I
I [,RTEFAIL=symbolic address] J

I
[,RTESOME=symbolic address] "
[,IGREQID=symbolic address]

'I [,ERROR=symbolic address 1 I
I ,. I , r -----r-~---~-r-----------~~--~~-~----- .. ~-----~-~---~------~--- .. ~---~-, , , , t
, 'DFHBMS I TYPE=CHECR I.
t I I [,NORESP=symbolic address] ,

, [,TSIOERR=symbolic address] J
, 1 [,INVREQ=symbolic address] J
, I [,RETPAGE=symbolic address] I
I 1 [,MAPFAIL=symbolic address] •

I " [,INVET=symbolic address] ,
[,INVLDC=symbolic address]

, I [,RTEFAIL=symbolic address] I
, I [,RTESOME=symbolic address] I

'

1 I [,INVMPSZ=~ymboliC address] I
[,IGREQID=symbolic address]
[,ERROR=symbolic address]

I 1 I
L ... -- - L-... ---- L---.. _ ... - _-_ -----... -- .. --- --....... - - -.-.. - .. ------~ ..

522 CICS/VS Application Programmer's Reference Manual

CICS/VS-DL/I INTERFACE SERVICES

Page of SH2()"9003·2
Revised May 22,1975
By TNL SN2()"9086

r------r-------r---,
I I
I DFHFC I
I ,
\ ,
I I I ,
1 I
I I
l I

TYPE=- (DL/I, PCB)
FPSB={'PSbname' }~ L ;:bOliC address

U
[,NORESP=symbolic address]
[,DLINA=symbolic address]
[,PSBSCH=symbolic address]
[,PSBNF=syrnbolic address]
[,PSBFAIL=syrnbolic address)
[,INVREQ=symbolic address]

r------r-------r---,
, I 1
I I DFHFC t
, I ,
I I I
, I 1

I I ,
I
I
I
I ,
I
I ,

TYPE= (DL/I [, function)

[
,PCB={symbolic addressn

(reg ister) U

['WRKAREA={;,~~b~liC addreSS}~ ,(reg~ster) U
,SSAS= {NO }~ «ssacount][, ssal][,ssa2, •••])

(((regist~r1)][, (register2l , •••])

,SSALIST={YES 1]
~~mb~liC address
(reg~ster)

,NORESP=symbolic address]
[,NOTOPEN=syrnbolic address)
[,DLINA=syrnbolic address)
[,FUNCNS=symbolic address)
[,INVREQ=symbolic address]

--,
I DFHFC
I

TYPE=(DL/I,{~ERM})

[,DLINA=syrnbolic address]
[,TERMNs=symbolic address] I f I , 1 , [, INVREQ=symbolic address] 1

I----~-!-------!---f , I , 1
~ 1 DFHFC I TYPE=-CHECK
, , , [,NORESP=symbolic address]
I I I [,DLINA=symbolic address] , I 1 [,PSBSCH=symbolic address]
1 t [,PSBNF=symbolic address]
I , I (, PSBFAIL=s yrnbolic address]
, I I [,FUNCNS=symbolic address]
I J I [,TERMNS=symbolic address]
I , I (,LANGCON=symbolic address)
, 1 , (,TASKNA=symbolic address]
t I I [,PSBNA=syrnbolic address]
1 1 , [,INVREQ=symbolic address]
I I I [,NOTOPEN=syrnbolic address]
, I I

CICS/DOS/VS only
CICS/DOS/VS only
CICS/DOS/VS only

L------L-------L---~

Appendix D. CICS/VS Macro Instructions 522.1

APPENDIX §. TRANSLATE TABLES FOR !!!! 2980

This section contains translate tables for the following components
of the 2980 General Banking ~rminal System:

1. 2980 Teller Station Model 1
2. 2980 Administrative Station Model 2
3. 2980 Teller Station Model 4

The line codes and CPU codes listed in these tables are unique to
CICS/VS and are represented as standard EBCDIC characters.

Appendix E. Translate Tables for the 2980 523'

1 of 3

2980-1 CHARACTER SET/TRANSLATE TABLE

ENGRAVING PRINTING LINE CPU CODE
High

KEY Level
No. Top(LC) Front (UC) Numeric(LC) Alpha (UC) Code Numeric (LC) Alpha (UC) Lang. 10

0 :·iSC. 1 ! 1 Fl AA Fl 1
ACK

i SEND Q R Q 08 09 [)g
AGAI r1

t.. CORr< A C A C1 C3 C1

3 HOLD 2 H 2 F2 C8 F2
OVERR IDE

4 VOID Z V Z E9 ES E9

5 ACCT ~J Q ~J E6 08 E6
II:Q

6 ACCT S T S E2 AB E2 2 F

TFR

7 CIF 3 ~ 3 F3 AC F3 3

8 MI~C X ;~ X E7 AD E7 4

9 CLSD E X E C5 E7 C5
ACCT

10 :w D ~ D C4 AE C4 5
BOOK

11 r·IORT 4 M 4 F4 AF F4 6
LOAN

12 C -t- C C3 BO C3 7

13 i'~nJ R A R C9 B1 D9 8
ACCT

14 bOOK F 0 F C6 B2 C6 9 r.
GAL

15 I :~ST 5 [5 F5 B3 F5 10
LOAr~

16 SPEC V s p V E5 B4 E5 11

BAN

17 SAV T B T E3
BOND E3 B5

I
12

524 CICS/VS Application Programmer's Reference Manual

2 of 3

2980-1 CHARACTER SET/TRANSLATE TABLE

KEY ENGRAVING PRINTING LINE
High

CPU CODE Level
No. Top (LC) Front (UC) Numeric (LC) Aloha (UC) Code Numeric(LC) , Alpha (UC) Lang. ID

18 SAV G ~ G C7 B6 C7 13

19 XMAS 6 C 6 F6 B7 F6 14
CLUB

20 . B ~ C2 4B C2

21 DDA Y 0 y E8 B8 Ea IS

22 1!51 H 012 H C8 B9 C8 16

23 t·10N 7 ~1 7 F7 BA F7 17 (;

ORD

24 0 N 0 N 05 FO D5

25 7 U 7 U E4 F7 E4

26 4 J 4 J 01 F4 01

27 CSHR 8 ! 8 F8 BB F8 18
CHK

28 1 til 1 M 04 FI D4

29 8 I 3 I C9 F8 C9

30 5 K 5 K [;2 FS D2

31 CASH 9 C 9 F9 Be F9 19
RECD

32 2 , 2 , 68 F2 6B

33 9 0 9 0 D6 F9 06

34 6 L 6 L ll3 F6 [03

Appendix E. Translate Tables for the 2980 525

3 of 3

2980-1 CHARACTER SET/TRANSLATE TABLE

High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top(LC) Front (UC) Numeric{LC) Alpha (UC) Code Numeric(LC> Aloha (Ue) Lang. ID

35 UTIL 0 U 0 FO E4 FO
BILL

36 3 . 3 41} F3 40

37 OEP P + P D7 4E D7
+

38 ~~I TH $ - $ 5B 60 58
-

39 FEES - F - 60 C6 60

40 TOn / T / 61 E3 61

41 CASH -;'(i ..,'(5C BD 5C 20
Iii

42 CASH # ~ # n BE 7B 21 ;v
CIIK

43 VAL &. A-K & 50 STATION 50
ID

44 TAB 05 05 05 TABCHAR

45 ALPHA 36
ENTRY

46 i~Ur':ER Ie 06
ENTRY

;

47 SEND 26-ETB
03-ETX

:

48 RETURN 15 15 15 i JRNLCR

49 i'lur'IERIC 06
ENTRY

50 SPACE 40 40 40
\

58 MSGLIGIRT 17 17 17 MSGLITE

526 CICS/VS Application Programmer's Reference Manual

1 of 2

2980-2 CHARACTER SET/TRANSLATE TABLE

High
KEY ENGRAVING PRINTING LINE CPU CODE Level

No. Top (LC) Front (UC) Numeric (tC) Alpha (UC) Code Numeric (LC) Alpha (UC) Lang. ID

=
0 1 1 = Fl Fl (1) 7E (=)

1 Q q Q 08 98 (q) 08 (Q)

2 A a A C1 81 (a) Cl (A)

3 2 2 < F2 F2 (2) 4C «)

4 Z z Z E9 A9 (z) E9 (Z)

5 \.J C,.')
w ~J E6 AG (\'J) E6 (w) z -

>
6 S <t:

5 S E2 A2 (5) E2 (s) 0:::

;
C,.')
z

7 3 L.:.J 3 F3 F3 (3) 5E (;) ;
I-

8 X
g

x X E7 A7 (x) E7 (X) c::
u..
>-

9 E u.J e E C5 85 (e) C5 (E) ~

':>

10 0 z: d 0 C4 84 (d) C4 (D)
:

11 4 4 : F4 F4 (4) 7A (:)

12 C e C C3 83 (e) (;3 (e)

13 R r R D9 99 (r) D9 (R)

14 F f F CG 86 (f) C6 (F)
% C,.')

15 5 z 5 % F5 F5 (5) 6C (;~) -
>
<t:

16 V 0::: v V E5 AS (v) ~5 (V) C,.')
z
u.J

17 T l- t T E3 A3 (t) U (t)
z
0

18 G c.:: g G C7 87 (g) C7 (G) u..
I >-

u.J

19 6 ~ 6 I F6 F6 (6) 70 (')
0

20 B
z b B C2 82 (b) C2 (B)

21 Y y Y E8 AS (y) E8 (y)

22 H h \I C8 88 (h) C8 (H)

>
23 7 7 > F7 F7 (n 6E (»

24 N n N D5 95 (n) 05 (N)

25 lJ u U E4 A4 (u) E4 (u)

Appendix E. Translate Tables for the 2980 527

2 of 2

2980-2 CHARACTER SET/TRANSLATE TABLE

High
KEY ENGRAVING PRINTING LINE CPU CODE Level
No. Top (LO) Front (UC) Numeric (LC) Alpha (UC) Code Numeric (LC) Alpha (UC) Lang. II>

26 J j J Dl 91 (j) Cl (J)

.'.
8 8 F8 (8) (~':) 27 8 F8 5C

28 r'4 III M [)4 94 (m) 04 (~;)

29 I i I C9 89 (i) C9 (I)

30 K k K 02 92 (k) 02 (K)

31 (9 (F9 F9 (9) 4lJ (()
9 (!)

z -I 32 > , I 6B 68 (,) 4F (I) c::(,
c::::
(!)

33 0 z: 0 0 D6 96 (0) D6 (0) w
.-

34 L z 1 L D3 93 (1) 03 (L) a
ex:

) LL.

35 >- 0) FO Fa (0) 5D (» a L.:J
:..:: ...
a ... (.) (...) 3G z 48 48 SF

37 P p P 07 97 (p) 07 (p)

38 !
~ ! 58 58 (:;;) SA (!)

$

39 - - - GO 60 (-) GO (-) -
40

?
/ ? 61 61 (f) 6F (?) i (!)

z -
$ 41 > @ ¢ 5C 7C un 4A (¢) c::(

ex: .. (!)

42 z # .. 713 7B (#) 7F (..)
w

+
.-

43 z & + 50 50 (&) 4E (+)
Cit a

ex:
LL.

44 TAB >- as as as w
:..::

45 LOCK a 36 36 36 z

46 SHIFT 06 06 06

47 BACKSPACE 16 10 16 BCKSPACE

48 RETURN 15 15 15

49 SHI FT 06 06 06

50 (SPACE) 40 40 40

53 SEND ~6-ETB
3-ETX

528 CICS/VS Application Programmer's Reference Manual

1 of 3

2980-4 CHARACTER SET/TRANSLATE TABLE

ENGRAVING PRINTING LINE CPU CODE
High

KEY Level

No. TopCLC} Front (UC) Numeric (I.C) Alpha (UC) Code Numeric(LC) Aloha (Ue) Lang. ID

0 CK - ~ - D9 BC 60 19
$

1 Q L Q 03 D3 08

2 A A A C1 C1 C1

3 CK 0 C 0 C9 B7 C9 14

4 Z Z E9 4B E9

5 W * W E6 5C E6

6 S $ S [2 5B E2

7 IMO 1 1 1 58 4F Fl

2

8 X u X E7 AE E7 5
8

9 E E E C5 C5 C5

10 0 ? 0 C4 6F C4

11 li'lD 2 M 2 4B 04 F2
1

12 C C C C3 C3 C3

13 R - R 60 60 09

14 F F F CG C6 C6

15 CODE 3 r 3 E8 BB F3 18

1e V 'il V E5 AO E5 22

17 T /::; T E3 Al E3 23

Appendix E. Translate Tables for the 2980 529

2 of 3

2980-4 CHARACTER SET/TRANSLATE TABLE

ENGRAVING PRINTING
High

KEY LINE CPU CODE Level
No. Top(LC) Front (UC) Numeric'(LC) Alpha (UC) Code Numeric(LC) Aloha (UC) Lang. ID

18 G G G Ci' C7 C7

19 AI·1T 4 $ 4 5C BE F4 21

20 I) B 6 C2 C2 C2

21 y / y 61 61 E8

22 H P H 07 07 C8

23 OB 5 a 5 08 B2 F5 9 8

24 N N N 05 05 05

25 0 M U E4 AF E4 6

26 J J J 01 01 01

27 ACCT 6 # 6 Cg 7B F6

28 N X til 04 E7 G4

29 I 0 I 06 06 C9

30 K K K 02 D2 02

31 7 7 7 7 F7 F7 F7

---32 -- - , , 6B BLANK 6B

33 4 0 4 0 F4 F4 06

34 1 L 1 L Fl Fl 03

530 CICS/VS Application Programmer's Reference Manual

3 of 3

2980-4 CHARACTER SET/TRANSLATE TABLE

High
CPU CODE KEY ENGRAVING PRINTING LINE Level

No. ToolLC) Front (UC) Numeric(I..C) Alpha (UC) Code Numeric(LC) Aloha (UC.l Lang. ID

35 8 8 g 8 F8 F8 F8

3G 0 0 FO FO 40

37 5 P 5 P FS FS 07

38 2 ... 2 $ F2 F2 5B ..;.

39 9 9 9 9 F9 F9 F9

40 --- --- 4- . 7B BO 7B 7

41 6 * 6 * F6 F6 SC

42 3 # :5 # F:5 n 7B

43 VAL & A-K & 50 50 50

44 TAB 05 05 05

45 ALPHA 36

46 NUr-'ER I C 06

47 SEND 26-ETB
O:5-ETX

48 RETURN 1~ 15 15

49 NUMER I C 06

50 SPACE 40 40 40

51 FEED 04 OPENCH
OPEN

Appendix E. Translate Tables for the 2980 531

532 CICS/VS Application Programmer's Reference Manual

BIBLIOGRAPHY

Page of SH20-9003-2
Revised May 22,1975
By TNL SN20-9086

For further information concerning the customer Information Control
System/Virtual Storage (CICS/vS), the reader of this manual is referred
to the following IBM CICS/VS publications:

Customer Information Control System/Virtual Storage (CICS/VS):

General Information Manual (GH20-1280)
Installation Guide - CICSIDOS/vS (SH20-9051)
System/Application Design Guide (SH20-9002)
System Programmer's Reference Manual (SH20-9004)
Advanced Communication Guide (SH20-9049)
Terminal Operator's Guide (SH20-9005)
System Administrator's Guide (SH20-9006)
Messages and Codes Manual (SH20-9008)
Operations Guide (OS/VS) (SH20-9011)
Operations Guide (DOS/vS) (SH20-9012)
Program Logic Manual (OS/VS) (LY20-8006)
Program Logic Manual (DOS/VS) (LY20-8001)

A summary of CICS/VS debugging information is provided in CICS/VS
Reference Summary: Program cebugging (SX26-3101).

A summary of CICS/vS master-terminal commands is provided in the
CICS/vS Reference Summary: Master Terminal Operator (SX26-3100).

The reader of this manual may also want to refer to the following
IBM pUblications,:

IBM System/360 Disk Operating system:

Subset American National Standard COBOL Compiler ~ Library
Programmer's Guide (SC28-6439)

Full American National Standard COBOL compiler and Library,
Version ~, Programmer's Guide (SC28-6441)

Full American National Standard COBOL Programmer's Guide
(GC28-6398)

~ System/360 Operating system:

Full American National Standard ~ Compiler ~ Library,
--version !, Programmer's Guide (SC28-6456)
Full American National Standard ~ Compiler and Library,
--version ~, Programmer's Guide (SC28-6431)
Full American National Standard COBOL Compiler and Library,
--version 1, Programmer's Guide (GC28-6399)

DOS/vS ~ compiler and Library Programmer's Guide (SC28-6418)
OS/VS COBOL Compiler and Library Programmer's Guide (SC28-6483)
OS ~ Optimizing Compiler Programmer's Guide (SC33-0006)
OS DOS PL/I Optimizing Compiler Programmer's Guide (SC33-0008)
IBM System/360 Operating system PL/I (E) Programmer's Guide (GC28-6594)

IMS/vS Application Programming Reference Manual (SH20-9026)

Bibliography 533

~ DOS/VS Application programming Reference Manual (SH12-SQ11)
DL/I DOS/VS Utilities and Guide for the System Programmer (SH12-S412)
IBM 3270 Information Display system Component Description (GA27-2749)
Component Description: ~ 2721 Portable Audio Terminal (GA27-3029)
IBM 2780 Data Transmission Terminal component Description (GA27-3035)

AVAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its ~ key, which
is the first letter in the order number. The use keys and their
meanings are:

G Generally available: Provided to users of IBM systems,
products, and services without charge, in quantities to meet
their normal requirements. Can also be purchased by anyone
through IBM branch offices.

S sold: Can be purchased by anyone through IBM offices.

L Licensed material, property of IBM: Available only to
licensees of the related program products under the terms
of the license agreements.

534 CICS/vS Application Programmer's Reference Manual

ABCODE operand 223
ABEND

code 223
operand 223
TCA field 26
termination code 26

Abnormal termination
activate ABEND exit 126
cancel ABEND exit 126
code 223
reactivate ABEND exit 126
transaction 125

Addressability
application program ,12
BMS operation 360
common system area (CSA)

ANS COBOL 40
assembler language 31
PL/I 51

common work area (CWA)
ANS COBOL 40
assembler language 31
PL/I 51

file input/output area (FIOA)
ANS COBOL 42
assembler language 33
PL/I 53

file work area (FWA)
ANS COBOL 42
assembler language 34
PL/I 54

journal control area (JCA)
ANS COBOL 45
assembler language 37
PL/I 56

storage accounting area (SAA)
ANS COBOL 44
assembler language 36
PL/I 56

storage area 21
task control area (TCA)

ANS COBOL 41
assembler language
PL/I 52

32

temporary storage input/output
(TSIOA)
ANS COBOL 44
assembler language
PL/I 55

36

area

terminal control table terminal entry
(TCTTE)
ANS COBOL 40
assembler language
PL/I 52

31

terminal inputloutput area (TIOA)
ANS COBOL 41
assembler language
PL/I 52

33

transaction work area (TWA)
ANS COBOL 41
assembler language 32

INDEX

Addressability (Continued)
transaction work area (TWA) (Continued)

PL/I 52
transient data input area (TDIA)

ANS COOOL 43
assembler language 35
PL/I 54,54

transient data output area (TDOA)
ANS COOOL 43
assembler language 35
PL/I 55

VSAM work area (VSWA)
ANS COOOL 43
assembler language 34
PL/I 54

ALPHA operand 311
ANS COBOL

addressability of storage areas 21
COPY statement 20
data constant location 39
DEPENDING ON clause usage 46
guidelines 45
link-editing 15
multipunch codes 94
program example

abnormally terminate a
transaction 125

acquire the journal control area 157
asynchzonous journal output 162
automatic task initiation 138
BMS examples 405
EMS map definition 355
BMS response codes 398
BMS TIOA specification 403
browse operation 85
building a new record 79
change priority of a task 148
copying storage definitions 47
copying storage referred by BIF 302
delete a program 124
DL/I requests 464
establish program exit 126
examine TCTTETAB 426
executable CICS/VS sample program 475
file control response codes 94
forced end of volume 104
freeing temporary storage 113
journal record synchronization 165
linking programs 121
loading a program 123
multiple events task

synchronization 151
obtain and initialize main
storage 117

obtaining a FWA 79
program control response codes 128
random read-only operation 71
random retrieval for update 73
random retrieval via indirect
access 74

random update or add data 77

Index 535

ANS COBOL (Continued)
program example (Continued)

read ~ariable-Iength record
release main storage 118
releasing a FWA 81

102

relinquish control to higher priority
task 152

reset sequential retrieval 91
retrieval of time-ordered data
retrieve temporary data 111
signal for time expired 135
single event task synchronization
single-server resource
synchronization 153,154

store temporary data 110
suspend task processing 133
synchronous journal output 159
temporary storage response codes
terminal services 66
terminate sequential retrieval

140

150

114

90
time of day services 131
time-ordered task initiation
time service response codes
transfer of program control
transient data response codes
VSAM locate mode I/O 72
weighted retrieval 330

137,138
144
122

107

write data - predefined symbolic
destination 100

register usage 13
restrictions 14
special compiler control statements
storage definitions 39
transfer of control 13
variable data location
WAIT requirement 172
work area size 46

Appendix A. 469
Appendix B. 481
Appendix C. 485
Application programs

addressability 13
basic characteristics 7
ClCS/VS macro instruction
coding aids 12
communication and logical
relationships 120

39

10

considerations of virtual storage
deleting a 124
general structure
initialization 13
languages 6
link-editing 15
loading an 122
packaging 9

7

programming considerations
programming techniques 7
quasi-reentrance 9
reference pattern 9
register usage 13
restrictions 14,15
system environment
techniques 15
testing and debugging
transfer of control

ARG operand 303

6

251
13

415

15

47

ARGTYP operand
DFHFC 'IYPE=DELETE 193

195.
DFHFC TYPE=GET 189
DFHFC TYPE=GETAREA
DFHFC TYPE=PUT 191
DFHFC TYPE=RESETL 201
DFHFC 'I'YPE=SETL 197

Assembler language
addressability of storage areas
addressability requirement 13
COPY statement 20

21

link-editing 15
program example

abnormally terminate a
transaction 125

acquire the journal control area
asynchronous journal output 162
automatic task initiation 138
BMS examples 405
BMS map definition 355

403
BMS response codes 398
BMS 'IIOA specification
browse operation 85
building a new record 79
change priority of a task 148
copying storage definitions 37
copying storage referred by BlF
delete a program 124
DL/I requests 462
establish program exit
examine TCTTETAB 426
executable ClCS/VSsample

programs 469

126

file control response codes
forced end of volume 104

94

freeing temporary storage 113
journal record synchronization
linking programs 121
loading a program 123
multiple events task

synchronization 151
obtain and initialize main

storage 117
obtaining a FWA 79
program control response codes
random read-only operation 71
random retrieval for update 13
random retrieval via indirect
access 74

random update or add data
read variable-length record
release main storage 118
releasing a FWA 81

77
102

157

302

165

128

relinquish control to higher priority
task 152

reset sequential retrieval 91
retrieval of time-ordered data

88
retrieve temporary data 111
retrieving selected segments
signal for time expired 135
single event task synchronization
single-server resource
synchronization 153,154

store temporary data 110
suspend task processing 133
synchronous journal output 159

140

150

536 CICS/VS Application Programmer's Reference Manual

Assembler language (Continued)
program example (Continued)

table search using complex table 308
table search using separate
tables 306

temporary storage response codes 114
terminal services 66
terminate sequential retrieval 90
time of day services 131
time-ordered task initiation 137
time service response codes 144
transfer of program control 122
transient data response codes 107
VSAM locate mode I/O 72
weighted retrieval 330
write data - predefined symbolic
destination 100

register usage 13
storage definitions 31
transfer of control 13

Assembly-time service 17
Asynchronous journal output 161
Asynchronous transaction processing

(ATP) 432
ATABLE operand 303
ATI (see automatic task initiation)
ATP (asynchronous transaction

processing) 432
ATTACH operand 239
Attaching tasks 146
Attention 181
ATTRB operand 351
Automatic task initiation (ATI) 98

Base addresses 22
BASE operand 343
Basic mapping support (BMS)

abnormally terminating a logical
message 388

advantages 333
basic mappi~g support entry 274
block data format 334
data mapping and formatting 334
disposition and message routing 393
establishing addressability 360
examples of use 405
field data format 334

·implied read/write 338
input mapping 339
input operations 361
input/output mapping 341
introduction to 333
message routing 336,388
non-cumulative page building 318 11

offline map building 341
online map use 360
output mapping 340
output operations 364
page building with mapping 364
page building· without mapping 373
PAGEBLD overflow processing 370
paging commands on video devices 405
physical map 337
printer control characters 401

Basic mapping support (BMS) (Continued)
programming considerations 337
response codes 398
specifying maps 338
standard attention identifier list 402
standard attribute list 401
status flag byte 400
symbolic description map 337
terminal code table 399
terminal paging 335
terminating a logical .message 384
test response 394
text data format 334
TIOA specification 402
trace table entry 274
trailer maps 371

BASIC operand 302
Batch mode application 418
Binary synchronous devices 186
Bit manipulation

macro instruction 313
operation 296
returned values 315

BIT operand 314
BITEST operand 314
BITFLIP operand 314
BlTOFF operand 314
BlTON operand 314
BITSETOFF operand 314
BlTSETON operand 314
BMS (see basic mapping support)
Browsing

description of 68
examples 85
operation 82
r~set 91
sequential retrieval 83
skip-sequential processing 82
terminate 90

Built-in functions
bit manipulation 296,313
copying storage referred by BIF 302
field edit 312
field verify 296,310
input formatting 296,315
listing of 295
macro instruction 295
phonetic conversion 295,308
priority of 295
requests for 295
table search 295,303
trace table entry 276
weighted retrieval 298,320

CANCEL operand
DFHIC macro instruction 236
DFHPC TYPE=ABEND 223

Cancel POST request 141
Card-reader-in-line-printer-otit

(CRLP) 251
CBUFF operand 182
Chaining of storage areas 23
CHAP operand 240
CHECK operand

Index 537

CHECK operand (Continued)
DFHBMS TYPE=CHECK 396
DFHFC macro instruction 202
DFHIC macro instruction 237
DFHJC macro instruction 248
DFHPC macro instruction 225
~FHTD macro instruction 209
DFHTS macro instruction 216

CICS operand 289
CICS/VS storage dump 289
CLASS operand 219
OOBADDR operand 225
COLUMN operand 348
Common system area (CSA)

addressability of
ANS COBOL 40
assembler language 31
PL/I 51

contents of 24
CWA 25
fields of 24
storage definition

ANS COBOL 40
assembler language 31
PL/I 51

Common work area (CWA)
addressability of

ANS COBOL 40
assembler language 31
PL/I 51

shared 25
size 25
storage definition

ANS COBOL 40
~ssembler language 31
PL/I 51

uses of 25
COMPLETE operand 290
COND operand

DFHJC TYPE=WRITE 246
DFHPC TYPE=LINK 221
DFHPC TYPE=LOAD 222
DFHSC TYPE=GETMAIN 218
DFHTS TYPE=PUT 211
DFHTS TYPE=PUTQ 212

Conversational mode 66
CONVERSE operand 171
Convert label to address 127
Copy control character (CCC) 183
copy function 183
COpy operand 183
Copying storage definitions (see storage
def ini tions)

CRLP
(card-reader-in-line-printer-out) 251

CSA (see common system area)
CSACTODB 24
CSAJYDP 24
CSAOPFLA 24
CSATODP 24
CSAWABA 24
CTLCHAR operan d 184
CTRL operand

DFHBMS TYPE=OUT 382
DFHBMS TYPE=PAGEBLD 368
DFHBMS TYPE=PAGEOUT 384

CTRL operand (continued)
DFHBMS TYFE=RETURN 382
DFHBMS TYPE=STORE 382
DFHBMS TYPE=TEXTBLD 376

CURSOR operand
DFHBMS TYFE=OUT 383
DFHBMS TYPE=PAGEBLD
DFHBMS TYPE=RETURN
DFHBMS TYPE=STORE
DFHBMS TYPE=TEXTBLD

369
383

383
377

customer information control system/virtual
storage (CICS/VS)

assembly-time service 11
built·in functions 295
data base concept 3
dump services 281
execution mode 5
in troducti on 1
macro instruction summary 491
macro instructions 10
major components 3
maJor responsibilities 2
online environments 8
sample programs 469
sequential terminal support 251
storage areas 481
system management functions 4
system monitoring component 251
transaction flow 6
transaction processing 2
virtual storage environment 15

CWA(see canmon work area)

DAM data set
adding records
browse operation
random retrieval
retrieval method
updating nonkeyed

446

Data base concept 3

191
188
188, 197

446

Data base considerations 432
Data base/data communication (DB/DC)
Data Language/I (DL/I)

acquiring an I/O work area 453
building setment search arguments
call statement 451,456,458
DL/I requests 462,464,466
issuing the DL/I call 454
macro instruction 450
program communication blocks (PCB)
quasi-reentrant considerations 449
releasing a PSB 457
requesting services of
requirements for 68
response codes 460
services 272
test response 459
trace table entry 212

449

1

452

450

Data mapping and formatting (BMS)
DATA operand

334

DFHBMS TYPE=OUT 381
DFHBMS TYPE=PAGEBLD
DFHBMS TYPE=RETURN
DFHBMS TYPE=STORE

367
381

381

538 CICS/VS Application Programmer's Reference Manual

DATA operand (Continued)
DFHMDI macro instruction 346,349

.Data set name
DATASET operand 187
TCA field 28

DATAID operand
DFHTS TYPE=GET 213
DFHTS TYPE=GETQ 214
DFHTS TYPE=PURGE 216
DFHTS TYPE=PUT 210
DFHTS TYPE=PUTQ 211
DFHTS TYPE=RELEASE 215
restriction 210

DATASET operand
DFHBIF TYPE=WTRETST 321
DFHFC TYPE=DELETE 193
DFHFC TYPE=GET 187
DFHFC TYPE=GETAREA 194
DFHFC TYPE=SETL 196

DATA1 operand 258
DATA1TP operand 258
DATA2 operand 258
DATA2TP operand 258
DCI operand 240
OCT (see destination control table)
DEEDIT operand 312
Deferred journal output 161
DEFLDNM operand 316
Delay task 132
Delete a program 124
DELETE operand

DFHFC macro instruction 193
DFHPC macro instruction 223

DEQ operand 241
DESTID operand

DFHTD TYPE=FEOV 208
DFHTD TYPE=GET 207
DFHTD TYPE=PURGE 208
DFHTD TYPE=PUT 206

Destination control table 26
Destination control table (DCT) 97,99
DFHBFTCA macro instruction

general format 302
operands 302
operation of 302

DFHBIF macro instruction
~rerequisites 295
priority of 295
TYPE=BITSETON

general format 313
operands 313
operation of 313
returned values 315

TYPE=DEEDIT
general format 312
operands 312
operation of 312
returned value 313

TYPE=DEFLDNM
general format 316
operands 316
operation of 316
required delimiters 317

TYPE=FVERIFY
general format 310
operands 310

DFHBIF macro instruction (Continued)
TYPE=FVERIFY (Continued)

operation of 310
returned values 311

TYPE=INFORMAT
error condition
general format
operands 317
operation of
returned values

TYPE=PHONETIC

319
317

317
319

308 general format
operands 308
operation of 308
phonetic coding method
returned value 309

TYPE=TSEARCH
complex table
general format
operands 303
operation of
returned values
separate tables

TYPE=W'l'RETCHK
general format
operands 329
operation of

TYPE=WTREI'GET

308
303

303
306
306

329

329

general format 327
operands of 327
operation of 327
returned values 327

TYPE=WTREl'REL
general format
operands 328
operation of

TYPE=WTRETST
general format
operands 320
operation of
returned values

328

328

320

320
323

323
TYPE=WTRTPARM

general format
operands 323
operation of 323

DFHBMS macro instruction
TYPE=CHECK

general format
operands 395
operation of

TYPE=IN
general format
operands 361
operation of

TYPE=MAP
general format
operands 361
operation of

TYPE=OUT
general format
operands 379
operation of

TYPE=PAGEBLD
general format
operands 364
operation of

395

395

361

361

361

361

379

379

364

363

309

360

Index 539

DFHBMS macro instruction (Continued)
TYPE=PAGEBLD (Continued)

programming notes 369
TYPE=PAGEOUT

general format 384
operands 384
operation of 384
programming notes 386

TYPE=PURGE
general format 388
operation of 388

TYPE=RETURN
general format 319
operands 319
operation of 379

TYPE=ROUTE
general format 389
operands 389
operation of 388
programming notes 391

TYPE=STORE
general format 379
operands 379
operation of 379

TYPE=TEXTBLD
general format 373
operands 373
operation of 373
programming notes 377

DFECOVER macro instruction
placement of 17
use of 17

DFHDC macro instruction
listing of services 287
operation of 287
requirements 287
TYPE=CICS

format of 289
operands 289
operation of 289

TYPE=COMPLETE
format of 290
operands 289
operation of 289

TYPE=PARTIAL
format of 291
operands 291
operation of 291

TYPE=TRANSACTION
format of 288
operands 288
operation of 288

DFEFC macro instruction
file control request/response 28
segmented records 188
TYPE= (DL/I [,function])

general format 454
operands 454
operation of 454
programming notes 456

TYPE= (DL/I,PCB)
general format 450
operands 450
operation of 450

TYPE=(DL/I,T)
general format 457

DFHFC macro instruction (Continued)
TYPE=(DL/I,T) (Continued)

operation of 457
TYPE=CEECK

DL/1 services 461
general format 202,461
operands 202,461
operation of 93,459
response codes 95,460

TYPE=DELETE
general format 192
operands 192
operation .of 78

TYPE=ESETL
general format 200
oper ands 200
operation of 90

TYPE=GET
CICS/VS services for 70
data set name 187
general format 187
index identification 188
operandS 187
operation of 69
prerequisites 69
record identification 187
segment set identification 188

TYPE=GFrAREA
CICS/VS services for 79
general format 194
operands 194
operation of 78
prerequisites 79

TYPE=GETNEXT
CICS/VS services for 87
general format 198
oper ands 200
operation of 87
prerequisites 86

TYPE=PUT
CICS/VSservices for 76
general format 190
operands 190
operation of 76
prerequisites 76

TYPE=RELFASE
CICS/vS services for 81
general format 195
operands 195
operation of 80
prerequisites 81

TYPE=RESETL
general format 200
operands 200
operation of 91

TYPE=SETL
CICS/VS services for 84
general format 196
operands 196
oper at ion of 83
prerequisites 84

DFHICmacro instruction
interval control request/response 28
listing of services 130
TY PE= CANCEL

general format 236

540 CICS/VS Application Programmer's Reference Manual

DFHIC macro instruction (Continued)
TYPE=CANCEL (Continued)

operands 236
operation of 141

TYPE=CHECK
general format 237
operands 237
operation of 142
response codes 147

TYPE=GET
general format 235
operands 235
operation of 139
requirements for 140

TYPE=GETIME
general format 226
operands 226
operation of 131

TYPE= INITIAT E
general format 231
operands 231
operation of 136
requirements for 136

TY PE= POST
general format 229
operands 230
operation of 134
requirements for 134

TYPE=PUT
general format 233
operands 233
operation of 138

TYPE=RETRY
general format 236
operands 237
operation of 142

TYPE=WAIT
general format 226
operands 226
operation of 132

DFHJC macro instruction
TYPE=CHECK

general format 248
operands 248
operation of 167
response codes 168

TYPE=GEI'JCA
general format 243
operands 244
operation of 157

TYPE=PUT
general format 244
operands 244
operation of 159

TYPE=WAIT
general format 247
operands 247
operation of 165

TYPE=WRITE
general format 246
operands 246
operation of 161

DFHKC macro instruction
ILLOGICAL 205
listing of services 145
TYPE=ATTACH

DFHKC macro instruction (Continued)
TYPE=ATTACH (Continued)

caution of use 146
general format 239
operands 239
operation 145
requirements for 146

TYPE=CHAP
general format 239
operands 239
operation of 149

TYPE=DEQ
general format 241
operands 241
operation of 152
requirements for 153

TYPE=ENQ
general format 240
operands 241
operation of 152

TYPE=NOPURGE
general format 242
operands 242
operation of 155

TYPE=PURGE
general format 242
operands 242
operation of 155

TYPE=WAIT
general format 240
operands 240
operation of 150,151,152
requirements for 150

DFHMDF macro instruction
general format 351
operands 351
operation of 351
programming notes 354

DFHMDI macro instruction
general format 346
operands 346
operation of 346
programming notes 350

DFHMSG macro instruction
general format 341
operands 341
programming notes 345

DFHPC macro instruction
listing of services 119
TYPE=ABEND

general format 223
operands 223
operation of 125
termination code 26

TYPE=CHECK
general format 225
operands 225
operation of 127
requirements for 128
response codes 128

TYPE=COBADDR
general format 225
operands 225
operation of 127

TYPE=DELETE
general format 223

Index 541

DFHPC macro instruction (Continued)
TYPE=DELETE (Continued)

operands 223
operation of 124
requirements for

TYPE=LINK
124

220 general format
operand 220
operation of 120
requirements for

TYPE=LOAD
general format
operands 222
operation of
prerequisi tes

TYPE=RESETXIT
general format
'operands 224
operation of

TYPE=RETURN

121

222

122
122

224

126

223 general format
operands 223
operation of 123
requirements for 123

TYPE=SETXIT
general format
operands 224
operation of
prerequisites

TYPE=XCTL

223

126
126

general format 220
operation of 121
requirements for 121

DFHSC macro instruction
TYPE=FREEMAIN

general format
operands 220
operation of
prerequisites

TYPE=GETMAIN
general format

220

118
118

218
27 number of bytes

operands 218
operation of 116
prerequisites 117
requirements for 117
storage address returned

DFHSP macro instruction
format 250
operand 249
operation of 169

DFHTC macro instruction
address of a TIOA 64
addressability of 60
conversational mode 66
data length 62
dump requirements
examples of 66,67
general format 171

63

input operations 171
list of services 60,61
operands 172
order of operands 61
output operations 177
prerequisites of 62,63
program testing and debugging

26

252

DFHTC macro instruction (Continued)
saving a TIOA 65
synchronizing terminal input/output
TCAM-supported terminals 171
uses of 63,64,65
VTAM-supported logical units 172

DFHTD macro instruction
listing of. services 98
transient data control
request/response 28

TYPE=CHECK
general format 209
operands 209
operation of 105
response codes 106

TYPE=FEOV
general format 207
operands 207
operation of 104

TYPE=GET
general format 207
operands 207
operation of 101
use of 102

TYPE=PURGE
general format 208
operands 208
operation of 105

TYPE=PUT
general format 206
operands 206
operation of 99
requirements of 99
use of 100

DFHTR macro instruction
listing of services 254
TYPE=ENTRY

format of 257
operands 257

TYPE=OFF
format of 256
operands 256

TYPE=ON
format of 254
operands 254
operation of 254

DFHTS macro instruction
listing of services 109
temporary storage control
request/response 28

TYPE=CHECK
general format 216
operands 216
operation of 113
response codes 114

TYPE=GET
general format 213
operands 213
operation of 111

TYPE=GETQ
general format 214
operands 214
operation of 111

TYPE=PURGE
general format 216
operands 216

542 CICS/VS Application Programmer's Reference Manual

66

DFHTS macro instruction (Continued)
TYPE=PURGE (Continued)

operation of 112
TYPE=PUT

general format 210
operands 210
operation of 109

TYPE=PUTQ
general format 211
operands 211
operation 'of 109

TYPE=RELEASE
general format 215
operands 215
operation of 112

DISCONNECT operand 186
DL/I (see Data Language/I)
DL/I operand

function parameter 454
PCB parameter 450
T parameter 457

DL/I,PCB operand 450
DLINA operand 451,461
DMPCODE operand

DFHDC TYPE=CICS 289
DFHDC TYPE=COMPLETE 290
DFHDC TYPE=PARTIAL 291
DFHDC TYPE=TRANSACTION 288

DSECT operand 342
DSIDER operand

DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETST 321
DFHFC TYPE=CHECK 203
DFHFC TYPE=DELETE 194
DFHFC TYPE=GET 190
DFHFC TYPE=GETAREA 195
DFHFC TYPE=SETL 198

Dump services 287
CICS/vS storage dump 289
dump control 287
dump management 287
introduction to 287
macro instruction 287
operation of 287
partial storage dump 291
requests for 287
trace table entry 267
transaction and CICS/vS storage

dump 289
transaction storage dump 288

DUPDS operand
DFHFC TYPE=CHECK 204
DFHFC TYPE=GET 190

DUPREC operand
DFHFC TYPE=CHECK 203
DFHFC TYPE=PUT 191

ECADDR operand 240
ENDDATA operand

DFHIC TYPE=CHECK 238
DFHIC TYPE=GET 235

ENDFILEoperan d
DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327

ENDFILE operand (Continued)
DFHFC 'IYPE=CHECK 205
DFHFC TYPE=GETNEXT 200

ENERROR operand
DFHTS TYPE=CHECK 211
DFHTS ~YPE=GETQ 215

ENQ operand 241
ENTRY operand

DFHTR macro instruction 251
DFHTS TYPE=GETQ 215

EOB 60
EODPURG operand 386
EOF operand 175
ERASE operand

DFHBMS TYPE=OUT 381
DFHBMS TYPE=PAGEBLD 361
DFHBMS TYPE=RETURN 381
DFHBMS TYPE=STORE 381
DFHBMS TYPE=TEXTBLD 374
DFHTC macro instruction 183

ERASEAUP operand 183
ERROR operand

DFHBIF TYPE=INFORMAT 311
DFHBIF TYFE=PHONETIC 308
DFHBIF TYFE=TSEARCH 308
DFHBMS TYFE=CHECK 397
DFHBMS TYPE=IN 364
DFHBMS TYPE=MAP 364
DFHBMS TYFE=OUT 383
DFHBMS TYPE=PAGEBLD 369
DFHBMS TYFE=PAGEOUT 386
DFHBMS TYPE=RETURN 383
DFHBMS TYFE=ROUTE 391
DFHBMS TYFE=STORE 383
DFHBMS TYFE=TEXTBLD 377
DFHFC TYPE=CHECK 203
DFHFC TYPE=DELETE 194
DFHFC TYPE=ESETL 200
DFHFC TYPE=GET 190
DFHFC TYPE=GETAREA 195
DFHFC TYPE=GETNEXT 200
DFHFC TYPE=PUT 191
DFHFC TYPE=RELEASE 195
DFHFC TYPE=RESETL 202
DFHFC TYPE=SETL 198
DFHIC TYPE=CANCEL 236
DFHIC TYPE=CHECK 238
DFHIC TYPE=GET 235
DFHIC TYPE=GETIME 226
DFHIC TYPE=INITIATE 232
DFHIC TYPE=POST 231
DFHIC TYPE=PUT235
DFHIC TYPE=RETRY 231
DFHIC TYPE=WAIT 229
DFHTS TYPE=CHECK 217
DFHTS TYPE=GET 214
DFHTS TYPE=GETQ 215
DFHTS TYPE=PURGE 216
DFHTS TYPE=PUT 211
DFHTS TYPE=PUTQ 212
DFHTS TYPE=RELEASE 215

ERRTERM operand 391
ESETL operand 200
Examples of programs

abnormally terminate a transaction 125
acquire the journal control area 157

Index 543

Examples of programs (Continued)
asynchronous journal output 162
automatic task initiation 138
EMS examples 405
BMS map definition 355

403
EMS response codes 398
BMS TIOA specification
browse operation 85
building a new record 79
change priority of a task 148
copying storage definitions 37,47,57
copying storage referred by BIF 302
delete a program 124
DL/I requests 462,464,466
establish program exit 126
examine TCTTETAB 426
executable CICS/VS sample programs
file control response codes 94
forced end of volume 104

469

freeing temporary storage 113
journal record synchronization
linking programs 121
loading a program 123
multiple events task
synchronization 151

165

obtain and initialize main storage
obtaining a FWA 79

117

128 program control response codes
random read-only operation 71
random retrieval for update 73
random retrieval via indirect access
random update or add data 71
read variable-length record 102
release main storage 118
releasing a FWA 81
relinquish control to higher priority
task 152

reset sequential retrieval 91
retrieval of time-ordered data 140

88
retrieve tem~orary data 111
retrieving selected segments
signal for time expired 135
single event task synchronization
single-server resource
synchronization 153,154

store temporary data 110

150

74

suspend task processing 133
synchronous journal output 159
table search using complex table
table search using separate tables
temporary storage response codes
terminal services 66

308
306

114

90 terminate sequential retrieval
time of day services 131
time-ordered task initiation
time service response codes
transfer of program control
transient data response codes
VSAM locate mode I/O 72
weighted retrieval 330

131,138
144
122

write data - predefined symbolic
destination 100

Executable CICS/VS sample programs
Expiration of specified time 134
EXPIRD operand

DFHIC TYPE=CHECK 238

107

469

EXPIRD operand (Continued)
DFHIC TYPE=POST 231
DFHIC TYPE=WAIT 229

Extrapartition
alignment requirements 104
control processing 104
data 91
indirect destinations 98
queue 91

Facility centrol area
address of . 26

FCADDR operand 239
FEOV operand 201
Field edit

macro instruction
operation 296
returned value 313

26

312

Field engineering (FE) class trace
FIELD operand

DFHBIF TYPE=BITSETON
DFHBIF TYF E= DEED IT
DFHBIF TYPE=FVERIFY
DFHBIF TYPE=PHONETIC

Field verify

313
312

310
308

310 macro instruction
operation 296
returned values 311

FIELDS operand 318
FIELD1 operand 323
FIELD2 operand 324
File control request/response

setting the 28
TCA field 28

File I/O area (FIOA)
address of 28
addressability of

ANS COOOL 42
assembler language
PL/I 53

storage definition
ANS COOOL 42
assembler language
PL/I 53

use in file services
File services

access methods 61
accessing a record
browsing 82

68

61

10

data work areas
delete data 19
file control 68
file management
introduction to
macro instruction
mass insert 81

61
181

obtain a file work area
priority of 69
random retrieval 69

33

33

68

read-only retrieval 11
release file storage 80
reset sequential retrieval
response codes 95
retrieval for update 13

19

91

544 CICS/VS Application Programmer's Reference Manual

254

File services" (Continued)
retrieval via indirect access 74
retrieve next sequential record 86
sequential retrieval 83
summary of 4
terminate sequential retrieval 90
test response 93
trace table entry 268
update or add data 76

File work area (FWA)
address of 28
addressability of

ANS COBOL 42
assembler language 34
PL/I 54

obtain a file work area 79
release file storage 80
storage definition

ANS COBOL 42
assembler language
PL/I 54

use in file services
FINAL operand 342
FIOA (see file I/O area)
FORM operand 227
FREEMAIN operand 220
FTABLE operand 304
FUNCNS operand 461
FVERIFY operand 311
FWA (see file work area)

GET operand
DFHIC macro instruction
DFHTC macro instruction
tFHTD macro instruction
DFHTS macro instruction

GETAREA operand 194
GETIME operand 226
GETJCA operand 244
GETMAIN operand 218
GETNEXT operand 200
GETQ operand 214
GRPNAME operand 353

HEADER operand

34

68

235
171,187
207
213

"DFHBMS TYPE=TEXTBLD 374
DFHMDI macro instruction 349

ICDADDR operand
DFHIC TYPE=GFI'
DFHIC TYPE=PUT

ID operand 257
IDERROR operand

DFHJC TYPE=CHECK
DFHJC TYPE=PUT
DFHJC TYPE=WAIT
DFHJC TYPE=WRITE
DFHTD TYPE=CHECK
DFHTD TYPE=FEOV
I:FHTD TYPE=PURGE

235
234

248
245

248
247
209

208
208

IDERROR operand (Continued)
DFHTD 'IYPE=PUT 206
DFHTS ~YPE=CHECK 217
DFHTS TYPE=GET 214
DFHTS ~YPE=GETQ 215
DFHTS TYPE=PURGE 216
DFHTS ~YPE=RELEASE 215

ILLOGIC operand
DFHBIF TYFE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETREL 328
DFHBIF TYFE=WTRETST 321
DFHFC TYPE=CHECK 205
DFHFC ~YPE=DELETE 194
DFHFC TYPE=ESETL 200
DFHFC TYPE=GET 190
DFHFC ~YPE=GETNEXT 200
DFHFC TYPE=PUT 191
DFHFC ~YPE=RELEASE 195
DFHFC TYPE=RESETL 202
DFHFC TYPE=SETL 198

IN operand 361
Index identification 168

INDEX operand 188
setting the 28
TCA field 28

INDEX operand
DFHBIF TYPE=TSEARCH 305
DFHFC ~YPE=GET

Indirect accessing
duplicate records 441
general rules 439
index hierarchy considerations 440
information required 440
programming considerations 439

INFORMAT operand 318
INITIAL operand 353
INITIATE operand 231
INITIMG operand

DFHFC ~YPE=GETAREA 194
DFHSC ~YPE=GETMAIN 218

Input formatting
combination input 298
fixed format

error condition 319
macro instruction 317
operation 296
returned values 319

keyword format
macro instruction 316
operation 297
required delimiters 317

positional format 297
storage definition 316
weighted retrieval

initiate 320
operation 298
release storage areas
response codes
returned values 323,327
selection criteria 323
test response 328

Input mapping (BMS) 339
Input/output mapping (BMS) 341
INPUTNO operand 321
INPUTPC operand 322

Index 545

INPUTST operand 322
Inquiry mode application 419
Interval control request/response

addressability of
ANS COBOL 44
assembler language 36
PL/I 56

setting the 28
storage definition

ANS COBOL 44
asse~bler language
PL/I 56

TCA field 28
Intrapartition

data 97
indirect destinations
purge 105
queue 97

INTRVAL operand

36

98

389
226

231

DFHBMS TYPE=ROUTE
DFHIC TYPE=GETIME
DFHIC TYPE=INITIATE
DFHIC TYPE=POST 230
DFHIC TYPE=PUT 233

Invalid LDC mnemonic
INVET operand

DFHBMS TYPE=CHECK
DFHBMS TYPE=ROUTE

INVMPSZ operand

401

396
391

DFHBMS TYPE=CHECK 397
DFHBMS TYPE=IN 364
DFHBMS TYPE=MAP 364
DFHBMS TYPE=OUT 383
DFHBMS TYPE=PAGEBLD
DFHBMS TYPE=RETURN
DFHBMS TYPE=STORE

369
383

383
59 Invoking services

INVREQ operand
DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETREL 328
DFHBIF TYPE=WTRETST 321
DFHBMS TYPE=CHECK 396
DFHBMS TYPE=OUT 383
DFHBMS TYPE= PAGEBLD 369
DFHBMS TYPE=RETURN 383
DFHBMS TYPE=STORE 383
DFHBMS TYPE=TEXTBLD 377
DFHFC TYPE=(DL/I [,function])
DFHFC TYPE=(DL/I,PCB) 451
DFHFC TYPE=CHECK 203,462
DFHFC TYPE=DELETE 194
DFHFC TYPE=ESETL 200
DFHFC TYPE=GET 190
DFHFC TYPE=GETAREA
DFHFC TYPE=GETNEXT

195
200

DFHFC TYPE=PUT 191
DFHFC TYPE=RELEASE 195
DFHFC TYPE=RESETL 202
DFHFC TYPE=SETL 198
DFHIC TYPE=CANCEL 236
DFHIC TYPE=CHECK 238
DFHIC TYPE=GET 235
DFHIC TYPE=GETIME 226
DFHIC TYPE=INITIATE 232
DFHIC TYPE=POST 231

456

INVREQ operand (Continued)
DFHIC TYPE=PUT 235
DFHIC TYPE=RETRY 237
DFHIC TYPE=WAIT 229
DFHJC 'IYPE=CHECK 249
DFHJC TYPE=PUT 245
DFHJC TYPE=WAIT 248
DFHJC TYPE=WRITE 247
DFHTS TYPE=CHECK 217
DFHTS 'IYPE=GET 214
DFHTS TYPE=GETQ 215
DFHTS TYPE=PURGE 216
DFHTS 'IYPE=PUT 211
DFHTS TYPE=PUTQ 212
DFHTS TYPE=RELEASE 215

IOERROR operand
DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETST 321
DFHFC TYPE=CHECK 203
DFHFC TYPE=DELE~E 194
DF HFC TYPE=GET 190
DFHFC TYPE=GETNEXT 200
DFHFC TYPE=PUT 1 91
DFBFC TYPE=RELEASE 195
DFHFC TYPE=RESETL 202
DFBFC TYPE=SETL 198
DFHIC TYPE=CHECK 238
DFHIC TYPE=GET 235
DFHIC TYPE=PUT 235
DFHIC TYPE=RETRY 237
DFHJC TYPE=PUT 245
DFHJC TYPE=WAIT 248
DFHTD TYPE=CHECK 209
DFHTS TYPE=CHECK 217
DFHTS TYPE=GET 214
DFHTS TYPE=GETQ 215
DFHTS TYPE=PUT 211
DFHTS TYPE=PUTQ 212

IOTYPE operand 366,375,380

JCA (see journal control area)
JCDADDR operand

DFHJC TYPE=PUT 244
DFHJC TYPE=WRITE 246

JCDLGTH operand
DFHJC TYPE=PUT 244
DFHJC TYPE=WRITE 246

JCP (journal control program) 156
JCT (journal control table) 156
JFILEID operand

DFHJC TYPE=PUT 244
DFHJC TYPE=WAIT 248
DFHJC TYPE=WRITE 246

Journal control area (JCA)
addressability of

ANS COOOL 45
assembler language 37
PL/I 57

storage definition
ANS COBOL 45
assembler language 37
PL/I 56

Journal control program (JCP) 156

546 CICS/VS Application Programmer's Reference Manual

Journal control table (JCT) 156
Journal record 245"
Journal services

acquire the journal control area
asynchronous journal output 161
create a journal record 159,161
deferred journal output 161
introduction to 156
journal management 156
journal record 156
journal record synchronization
macro instruction 243
priority of 156
requests for 156
response codes 168
summary of 5
synchronous journal output 159
test response 167
trace table entry 273

JTYPEID operand
DFHJC TYPE=PUT 244
DFHJC TYPE=WRITE 246

JUSTIFY operand
DFHBMS TYPE=TEXTBLD 376
DFHMDF macro instruction 353
DFHMDI macro instruction 348

LABEL operand
DFHBIF TYPE=DEFLDNM
DFHPC TYPE=COBADDR

LANG operand 343
LANGCON operand 462

316
225

LDC operand 366,375,381
LENGTH operand

DFHBIF TYPE=DEEDIT 312
DFHBIF TYPE= FVERIFY 311
DFHBIF TYPE=INFORMAT 317
DFHMDF macro instruction

LERROR operand
DFHJC TYPE=CHECK
DFHJC TYPE=PUT
DFHJC TYPE=WRITE

249
245

247
LINE operand 347
LINEADR operand 184
Link-editing 15
LINK operand 220
Linking programs
LIST operand

121

389
291

DFHBMS TYPE=ROUTE
DFHDC TYPE=PARTIAL

LLbb field 214,235
LOAD operand 222
Loading a program
LOADLST operand
Locate mode 70

123
222

Logical unit of work (LUW)
LUW (logical unit of work)

Macro instructions'
DFHBFTCA macro instruction
DFHBIF macro instructions
DFHBMS macro instruction

352

169
169

302
302

361

157

165

Macro instructions (Continued)
DFHDC macro instruction 287
DFHFC macro
instruction 190,203,450,454,457,461

DFHIC macro instruction 130,226
DFHJC macro instruction 157,243,246
DFHKC macro instruction 145,239
DFHMDF macro instruction 350
DFHMDI macro instruction 346
DFHMSD macro instruction 341
DFHPC macro instruction 119,220
DFHSC macro instruction 116,218
DFHSP macro instruction 169,250
DFHTC macro instruction 61,171,187
DFHTD macro instruction 98,206
DFHTR macro instruction 254
DFHTS macro instruction 109,210
general format 10
name field restriction
operand field 11
operation field 10
summary of 497

MAP operand

11

DFHBMS TYPE=IN 361,361,363
DFHBMS TYPE=MAP 363
DFHBMS TYPE=OUT 381
DFHBMS TYPE=PAGEBLD 367
DFHBMS TYPE=RETURN 381
DFHBMS TYPE=STORE 381
DFHMSD macro instruction

MAPADR operand
DFHBMS TYPE=IN 363
DFHBMS TYPE=MAP 362
DFHBMS TYPE=OUT 382
DFHBMS TYPE=RETURN
DFHBMS TYPE=STORE

382
382

MAPFAIL operand
DFHBMS TYPE=CHECK 396
DFHBMS TYPE=IN 364
DFHBMS TYPE=MAP 364

MAPSET operand
DFHBMS TYPE=IN 363
DFHBMS TYPE=MAP 363
DFHBMS TYPE=OUT 382
DFHBMS TYPE=PAGEBLD
DFHBMS TYPE=RETURN
DFHBMS TYPE=STORE

368
382

382
Mass insert 81
MATCH operand 325
Message routing

342

description of 388
disposition and message routing
macro instruction 38"8
programming notes 391
status flag byte 400

Mnemonics 485
MODE operand

DF HFC rr"YPE=GET
DFHFC TYPE=SETL
DFHMSD TYFE=DSECT

189
198

342
Move mode 70
MSETADR operand

DFHBMS TYPE=IN 363
DFHBMS TYPE=MAP 363
DFH~MS TYPE=OUT 382
DFHBMS TYPE=PAGEBLD 368

393

Index 547

MSETADR operand (Continued)
DFHBMS TYPE=RETURN 382
DFHBMS TYPE=STORE 382

Multiple events task synchronization
Multithreading 7

NAMES operand
DFHBIFTYPE=DEFLDNM 316
DFHBIF TYPE= INFORMAT 317

NOEDIT operand 381
NOMATCH operand

DFHBIF TYPE=TSEARCH 303
DFHBIF TYPE=WTRTPARM 325

NOPURGE operand 242
NORESP operand

DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETREL 328
DFHBIF TYPE=WTRETST 321
DFHBMS TYPE=CHECK 396
DFHBMS TYPE=IN 364
DFHBMS TYPE=MAP 364
DFHBMS TYPE=OUT 383
DFHBMS TYPE=PAGEBLD 369
DFHBMS TYPE=PAGEOUT 386
DFHBMS TYPE=RETURN 383
DFHBMS TYPE=ROUTE 391
DFHBMS TYPE=STORE 383
DFHBMS TYPE=TEXTBLD 377
DFHFC TYPE=(DL/I [,function]) 456
DFHFC TYPE=(DL/I,PCB) 451
DFHFC TYPE=CHECK 202,461
DFHFC TYPE=DELETE 194
DFHFC TYPE=ESETL 200
DFHFC TYPE=GET 190
DFHFC TYPE=GETAREA 195
DFHFC TYPE=GETNEXT 200
DFHFC TYPE=PUT 191
DFHFC TYPE=RELEASE 195
DFHFC TYPE=RESETL 202
DFHFC TYPE=SETL 198
DFHIC TYPE=CANCEL 236
DFHIC TYPE=CHECK 237
DFHIC TYPE=GET 235
DFHIC TYPE=GETIME 226
DFHIC TYPE=INITIATE 232
DFHIC TYPE=POST 231
DFHIC TYPE=PUT 235
DFHIC TYPE=RETRY 237
DFHIC TYPE=WAIT 229
DFHJC TYPE=CHECK 248
DFHJC TYPE=PUT 245
DFHJC TYPE=WAIT 248
DFHJC TYPE=WRITE 247
DFHPC TYPE=CHECK 225
DFHPC TYPE=LINK 221
DFHPC TYPE=LOAD 222
DFHPC TYPE=SETXIT 224
DFHTD TYPE=CHECK 209
~FHTD TYPE=FEOV 208
DFHTD TYPE=PURGE 208
DFHTD TYPE=PUT 206
DFHTS TYPE=CHECK 217
DFHTS TYPE=GET 214

151

NORESP operand (Continued)
DFHTS TYPE=GETQ 215
DFHTS TYPE=PURGE 216
DFHTS TYPE=PUT 211
DFBTS TYPE=PUTQ 212
DFHTS TYPE=RELEASE 215

NOSPACE operand
DFHFC TYPE=CHECK 2Q3
DFHTD 'IYPE=CHECK 209
DFHTD TYPE=PUT 206
DFHTS TYPE=CHECK . 216
DFBTS TYPE=PUT 211
DFHTS TYPE=P~TQ 212

NOTFND operand
DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETST 321
DFHFC TYPE=CHECK 203
DFHFC 'IYPE=DELETE 194
DFHFC TYPE=GET 190
DFHFC TYPE=GETNEXT 200
DFHFC TYPE=RESETL 202
DFHFC TYPE=SETL 198
DFHIC TYPE=CANCEL 236
DFHIC TYPE=CHECK 238
DFHIC TYPE=GET 235
DFHIC TYPE=RETRY 237

NOTOPEN operand 462
DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETST 321
DFHFC TYPE=(DL/I [,function]) 456
DFHFC TYPE=CHECK 205,461
DFHFC TYPE=DELETE 194
DFHFC TYPE=GET 190
DFHFC TYPE=GETAREA 195
DFHFC TYPE=GETNEXT 200
DFHFC TYPE=PUT 1 91
DFHFC TYPE=RESETL 202
DF HFC TYPE=SETL 198
DFHJC TYPE=CHECK 249
DFHJC TYPE=PUT 245
DFHJC TYPE=WAIT 248
DFHJC TYPE=WRITE 247
DFBTD TYPE=CHECK 209
DFHTD TYPE=FEOV 208
DFHTD TYPE=PUT 206

NOTRANSLATE operand 185
.NRECDS operand 322
NULL operand 325
NUMBYTE operand 218
NUMERIC operand 311

OCCURS operand 354
Offline map building (BMS) 341
OFLOW operand

DFHBIF TYPE=WTRETCHK 329
DFHBIF TYPE=WTRETGET 327
DFHBIF TYPE=WTRETST 321
DFHBMS TYFE=PAGEBLD 369

ON operand 254
Online map use (BMS) 360
OPCLASS operand 390
OPTION operand 302

548 CICS/VS Application Programmer's Reference Manual

optional features list (CSA) 24
ORDER operand 305
OUT operand

DFHBMS TYPE=OUT 379
DFHBMS TYPE=PAGEBLD 365
DFHBMS TYPE=TEXTBLD 374

Output mapping (BMS) 340
Override of uppercase 175

PACKED operand
Page building

311

abnormally terminating a logical
message 388

message routing
non-cumulative
operation 335

388
378

overflow processing 370,372
paging commands on video devices 405
terminating a logical message 384
trailer maps 371
with mapping 364
without mapping 373

PAGE operand 171
Page queuing facility
PAGEBLD operand 365
PAGEOUT operand 384

108

Paging commands on video devices
PARTIAL operand 291
Partial storage dump
PASSBK operand 182
Passing program control
PBSBNA operand 462

291

120

405

PCB (program communication blocks)
PCB operand 454

450

PFXADDR operand
DFHJC TYPE=PUT
DFHJC TYPE=WRITE

PFXLGTH operand
DFHJC TYPE=PUT
DFHJC TYPE=WRITE

PGMIDER operand
DFHPC TYPE=CHECK
DFHPC TYPE=LINK
DFHPC TYPE=LOAD
DFHPC TYPE=SETXIT

245
246

245
246

225
221
222

224
Phonetic converstion

macro instruction 308
. operation 295
phonetic coding method
returned value 309
subroutine 309

308
337

PHONETIC operand
Physical map (BMS)
PICIN operand 354
PICOUT operand 354
PL/I

~INCLUDE 20

309

addressability of storage areas
link-editing 15
program example

abnormally terminate a
transaction 125

21

acquire the journal control area
asynchronous journal output 162

157

PL/I (Continued)
program example (Continued)

automatic task initiation
EMS examples 405
EMS map definition 355

403
BMS response codes 398
BMS TIOA specification
browse operation 85
building a new record 79

138

change priority of a task 148
copying storage definitions 51
copying storage referred by BIF
delete a program 124
DL/I requests 466
establish program exit
examine TCTTETAB 426

126

executable CICS/VS sample program
file control response codes 94
forced end of volume 104
freeing temporary storage 113
journal record synchronization
linking programs 121
loading a program 123
multiple events task
synchronization 151

obtain and initialize main
storage .117

obtaining a FWA 19
program control response codes
random read-only operation 71
random retrieval for update 13
random retrieval via indirect
access 74

random update or add data
read variable-length record
release main storage 118
releasing a FWA 81

11
102

302

478

165

128

relinquish control to higher priority
task 152

88

reset sequential retrieval 91
retrieval of time-ordered data
retrieve temporary data 1"11
retrieving selected segments
signal for time expired 135
single event task synchronization
single-server resource
synchronization 153,154

store temporary data 110

140

150

suspend task processing 133
synchronous journal output 159
temporary storage response codes
terminal services 66

114

terminate sequential retrieval
time of day services 131
time-ordered task initiation
time service response codes
transfer of program control
transient data response codes
VSAM locate mode I/O 72
weighted retrieval 330

90

131,138
144
122

101

write data - predefined symbolic
destination 100

register usage 13
restrictions 15
storage definitions
transfer of control

51
13

Index 549

POS operand 351
POST operand 230
PPT (processing program table) 26
PRINT operand 183
Print request support 64
Printer control characters (BMS) 401
Priority of a task 148
Processing program table (PPT) 26
Program communication blocks 450
Program initialization 13
PROGRAM operand

DFHDC TYPE=PARTIAL 291
DFHPC TYPE=DELETE 223
DFHPC TYPE=LINK 221
DFHPC TYPE=LOAD 222
DFHPC TYPE=SETXIT 224
DFHPC TYPE=XCTL 222

Program services
abnormally terminate a transaction 125
communication and logical
relationships 120

convert label to address 127
delete a program 124
introduction to 119
load a program 122
logical levels 119
macro instruction 220
pass control-anticipating return 120
program management 119
response codes 128
return program control 123
summary of 4
test response 127
trace table entry 263
transfer control 121

Program testing and debugging
built-in fun~tions 295
card-reader-in-line-printer-out

(CRLP) 251
dump management 251
dump services 287
input data for 251
introduction to 251
sequential terminal support 251
trace management 251
trace services 253

programmable device considerations 416
Programming considerations

asynchronous transaction processing 432
data base considerations

adding records to DAM data sets 446
duplicate records 441
indirect accessing 439
record identification field 444
segmented records 433
updating nonkeyed DAM data sets 446

non-programmable device considerations
2260/2265 considerations 421
2741 considerations 430
2770/2780 considerations 423
2980 considerations 423
3270 operating in 2260 compatibility

mode 422
3270 print function 431
7770 considerations 429

programmable device considerations

Programming considerations (Continued)
programmable device considerations

(Continued)
System/7 considerations
3735 considerations 417

419

terminal-ori en ted ta sk
identification 415

PRTY operand 24.0
PSB (program specification blocks)
PSB operand 450
PSBFAIL operand 451,461
PSBNF operand 451,461
PSBSCH operand 451,461
PSEUDOBIN operand 173
PURGE operand

DFHBMS TYPE=PURGE 388
DFHKC macro instruction
DFHTD macro instruction
DFHTS macro instruction

PUT operand
DFHFC macro
DFHIC macro
DFHTC macro
DFHTD macro
DFHTS macro

instruction
instruction
instruction
instruction
instruction

PUTQ operand 211

QARGADR operand
DFHKC TYPE=DEQ
DFHKC TYPE=ENQ

QARGLNG operand
DFHKC TYPE=DEQ
DFHKC TYPE=ENQ

Quasi-reentrance
QUEBUSY operand
QUEZERO operand

DFHTD TYPE=CHECK
DFHTD TYPE=GET

Random

241
241

241
241
9

207

209
207

data retrieval 69
delete data 78
read-only retrieval 71

242
208
216

190
233
171
206
210,210

retrieval for update 73
retrieval via indirect access 74
update or add data 76

RANGE operand
DFHBIF TYPE=TSEARCH 303
DFHBIF TYPE=WTRTPARM 325

RDATA1 operand 258
RDATA2 operand 258
RDATT operand

DFHBMS TYPE=IN 364
DFHBMS TYPE=MAP 364
DFHTC macro instruction 174

RDIDADR operand
DFHBIF TYFE=WTRETST 321
DFHFC TYPE=DELETE 193
DFBFC TYPE=GET 187
DFHFC TYPE=PUT 190
DFHFC TYPE=SETL 196

Read attention support

450

550 CICS/VS Application Programmer's Reference Manual

Read attention support (Continued)
operation 65
programming considerations

READ operand
DFHTC macro instruction
saving a TIOA 65
uses of 65

READB operand 174
READL operand 183
Record identification

address of 28,187,191
ARGTYP operand 189
field structure 444
programming considerations
RDIDADR operand 187
TCA field 28

Recovery/restart services
macro instruction 250
summary of 5

171

sync point management
Register usage 13
RELEASE operand

169

DFHFC macro instruction
DFHSC TYPE=FREEMAIN 220
DFHTS macro instruction
DFHTS TYPE=GET 213

195

215

430

444

Relinquish control to higher priority
task 152

REQID operand
236
226

232

DFHIC TYPE=CANCEL
DFHIC TYPE=GETIME
DFHIC TYPE=INITIATE
DFHIC TYPE=POST 230
DFHIC TYPE=PUT 234

RESET operand 186
RESETL operand 200
RESETXIT operand 224
Response codes

BMS 398
DL/I services 460
file control 95
interval control 143
journal control 168
program control 128
temporary storage control 114
transient data control 106

Restrictions
ANS COBOL 14
link-editing
PL/I 15

15

RETFAIL operand
DFHBMS TYPE=CHECK
DFHBMS TYPE=ROUTE

RETMETH operand
DFHFC TYPE=GET
DFHFC TYPE=SETL

RETPAGE operand

396
391

188
197

DFHBMS TYPE=CHECK 396
DFHBMS TYPE=OUT 383
DFHBMS TYPE=PAGEBLD
DFHBMS TYPE=PAGEOUT
DFHBMS TYPE=RETURN
DFHBMS TYPE=STORE
DFHBMS TYPE=TEXTBLD

369
386

383
383

377
data Retrieve time-ordered

RETRY operand 237
139

RETURN operand
DFHBMS TYPE=PAGEBLD
DFHBMS TYPE=RETURN
DFHBMS TYPE=TEXTBLD
DFHPC 'IYPE=RETURN

Return program control
ROUTE operand 389
ROUTINE operand 224
RTESOME operand

DFHBMS TYFE=CHECK
DFHBMS TYPE=ROUTE

367
379

374
223

123

397
391

SAA (storage accounting area) 20
sample programs 469
SAVE operand

DFHBMS TYPE=IN 361
DFHBMS TYPE=MAP 361
DFHBMS TYPE=OUT 381
DFHBMS TYPE=PAGEBLD 367
DFHBMS TYPE=RETURN 381
DFHBMS TYPE=STORE 381
DFHBMS ~YPE=TEXTBLD 374
DFHTC macro instruction 171

SEGIDER operand
DFHFC TYPE=CHECK 203
DFHFC TYPE=GET 190
DFHFC TYPE=GETNEXT 200
DFHFC TYPE=RESETL 202
DFHFC TYPE=SETL 198

SEGMENT operand 292
Segment set identification

SEGSET o~erand 188
setting the 28
TCA field 28

segmented records
defined 433
formats 434
general rules 433
indicators 435
main storage processing of 437
programming considerations 433
root segment 434
search arguments 452
sequence of 434
sets 438

SEGSET operand
DFHFC TYPE=GET 188
DFHFC TYPE=GETNEXT 200
DFEFC 'IYPE=PUT 191
DFHFC TYPE=RESETL 201
DFHFC TYPE=SETL 196

Sequential
reset sequential retrieval 91
retrieval 83
retrieve next sequential record
skip-sequential processing 82
terminal support 251
terminate sequential retrieval

service invocation
file services 68
journal services 156
listing of services 59
oVE;!rvie~ 59
program services 119

86

90

Index 551

service invocation (Continued)
recovery/restart services 169
storage services 116
task services 145
temporary storage services 107
terminal services 60
time services 130
transient data services 97

SETL operand 196
SETXIT operand 224
Single event task synchronization 150
Single-server resource
synchronization 152

Single threading 7
SIZE operand 347
Skip-sequential processing 82,87
SRCHTYP operand

DFHFC TYPE=DELETE 193
DFHFC TYPE=GET 189
DFHFC TYPE=RESETL 201
DFHFC TYPE=SETL 197

SSALIST operand 455
SSAS operand 455
standard attention identifier list

(BMS) 402
Standard attribute list (BMS) 401
STARTIO operand 246
Storage accounting area (SAA) 19
Storage areas

addressability of (see addressability)
base addresses 22
chaining 23
definitions (see storage definition)
list of 19
required 24
summary of 481
symbolic names 22
types of 19

Storage definition
addressability 21
base addresses 22
chaining of storage areas 23
common system area (CSA)

ANS COBOL 40
assembler language 31
PL/I 51

common work area (CWA)
ANS COBOL 40
assembler language 31
PL/I 51

file input/output area (FIOA)
ANS COBOL 42
assembler language 33
PL/I 53

file work area (FWA)
ANS COBOL 42
assembler language 34
PL/I 54

journal control area (JCA)
ANS COBOL 44
assembler language 37
PL/I 56

recommendation 13
required storage areas
storage accounting area

ANS COBOL 44

24
(SAA)

Storage defir~tion (Continued)
storage accounting area (SAA) (Continued)

assembler language 36
PL/I 56

storage accounting field 20
summary of CICS/VS storage areas 481
task control area (TCA)

ANS coroL 41
assembler language 32
PL/I 52

temporary storage input/output area
(TSIOA)
ANS coroL 43
asserrbler language 36
PL/I 55

terminal control table terminal entry
(TCTTE)
ANS coroL 40
assembler language
PL/I 52

31

terminal input/output area
ANS caroL 41
assembler language
PL/I 52

33

transaction work area (TWA)
ANS COBOL 41
assembler language 32
PL/I 52

(TIOA)

transient data input area (TDIA)
ANS coroL 43
PL/I 54

transient data output area (TDOA)
ANS caroL 43
assembler language 35
PL/I 55

VSAM work area (VSWA) 34
ANS caroL 42
assembler language 34
PL/I 54

Storage services
accounting for storage 116
activate ABEND exit 126
cancel ABEND exit 126
introduction to 116
macro instruction 218
obtain and initialize main storage 116
reactivate ABEND exit 126
release main storage 118
storage control 116
storage management 116
summary of 4
trace table entry 262

STORE operand 374
DFHBMS TYPE=PAGEBLD 367
DFHBMS TYPE=STORE 379
DFHBMS TYPE=TEXTBLD 374

STORFAC operand
DFHTS TYPE=PUT 210
DFHTS TYPE=PUTQ 212

STYPE operand
DFHTR TYPE=ENTRY 257
DFHTR 'IYPE=OFF 256
DFHTR TYPE=ON 254

SUBST operand 305
Summary of CICS/VS storage areas 481
Suspend data set 108

552 CICS/VS Application Programmer's Reference Manual

switched lines disconnect 186
Symbolic description map (BMS) 337
Symbolic storage definitions (see storage
def ini tion)

Sync point management
macro instruction
summary of 5
sync point 169

250

trace table entry 285
Synchronize a task 148,150
Synchronizing terminal input/output
Synchronous journal output 159
System management functions

file services 67
journal services 156
macro instructions 171
program services 119
recovery/restart services
storage services 116
summary of 4,5
task services 144
temporary storage services
time services 130
transaction flow 6
transient data services

system monitoring component
System/7

data translation 173
programming considerations
transparent mode 179

Table search
complex table 308
macro instruction 303
operation 295
returned values 306
separate tables 307

TARGET operand 303
Task control area (TCA)

addressabili ty
ANS COBOL 41
assembler language 32
PL/I 52

contents of 25
fields of 26
logical sections 25
storage definition

ANS COBOL 41
assembler language 32
PL/I 52

Task services
attaching tasks 146

169

107

97
251

418

change priority of a task 148
initiate a task 144
listing of 145
macro instruction 239
multiple events task
synchronization 151

66

relinquish control to higher priority
task 152

single event task synchronization 150
single-server resource
synchronization 152

summary of 5

Task services (Continued)
synchronize a task 150
task centrol 144
task management 144
task purgeability on system
overlead 155

task synchronization 148
trace table entry 261

Task synchronization 132
TASKNA operand 462
TCA (see task control area)
TCADCNB 27
TCAFCAA 28
TCAFCAAA 26
TCAFCAI 28
TCAFCDI 27
TCAFCNRD 28
TCAFCRI 28
TCAFCSI 28
TCAFCTR 28
TCAFCURL 28
TCAICTR 29
TCAM-supported terminals

input operations 171
output operations 177

TCAPCAC 26
TCAPCPI 26
TCASCIB 27
TCASCNB 27
TCASCSA 27
TCATDTR 28
TCATSTR 29
TCTTE (see terminal control table terminal

entry)
TOADDR operand 206
TDIA (see transient data input area)
TOOA (see transient data output area)
Temporary storage control request/response

setting the 28
TCA field 28

Temporary storage I/O area (TSIOA)
addressability of 35

ANS COOOL 44
assembler language 35
PL/I 55 .

obtaining a 219
storage definition

ANS COBOL 44
assembler language
PL/I 55

35

Temporary storage services
free temporary data 112
introduction to 108
macro instruction 210
page queuing facility
response codes 114
retrieve temporary data
storage temporary data
summary of 4

108

111
109

temporary storage control
temporary storage management

107
107

test response 113
trace table entry 271

TERM operand 343
Terminal code table 399
Terminal control table terminal

(TCTTE)
entry

Index 553

Terminal control table terminal entry
(TCTTE) (Continued)
address of 26
addressability of

ANS COBOL 40
assembler language 32
PL/I 52

storage definition
ANS COBOL 40
assembler language 31
PL/I 52

Terminal I/O area (TIOA)
addressability of

after a read 65
ANS COBOL 41
assembler language 33
PL/I 52

EMS 403
obtaining a 219
prefix 62
storage definition

ANS COBOL 41
assembler language 33
PL/I 52

Terminal-oriented task identification 415
Terminal paging

BMS 335,364
temporary storage services 107

Terminal services
access methods 60
compatibility mode 63
conversational mode 66
examples of 66,67
macro instruction 171
operating mode 60
read data from a terminal 65
requests for 60
requirement for sequential devices 60
summary of 4
synchronizing terminal input/output 66
terminal control 60
terminal management 60
write data to a terminal 64

Termination code (ABEND) 26
TERMNS operand 461
Test response

BMS services 394
DL/I services 459
file service 202
file services 69,93
journal services 167
program services 127
temporary storage services 113
time services 142
transient data services 105
weighted retrieval 328,330

TEXT operand
DFHBMS TYPE=IN 361
DFHBMS TYPE=MAP 361
DFHTC macro instruction 175

TEXTBLD operand 373
TIMADR operand 227
Time of day 130
TIME operand

DFHBMS TYPE=ROUTE 390
DFHIC TYPE=GETIME 226

TIME operand (Continued)
DFHIC TYPE=INITIATE 232
DFHIC TYPE=POST 230
DFHIC TYPE=PUT 234

Time services
cancel INITIATE or PUT 142
cancel POST request 141
cancel WAIT request 142
delay task 132
expiration of specified time 134
introduction to 130
listing of 130
macro instruction 226
response codes 143
retrieve time-ordered data 139
retry capability 142
summary of 5
task initiation with data 142
task initiation without data 136
task synchronization 132
test response 142
time adjustment feature 130
time of day format 130
time of day services 131
time-ordered cancellation 141
time-ordered data 139
time-ordered task initiation 136
trace table entry 264

TIOA (see terminal I/O area)
TIOATDL 175
TITLE operand 390
Trace services

function of 253
introduction to 253
macro instruction 254
trace control 253
trace entry format 258
trace entry function 257
trace off function 255
trace ON function 254
trace system symbols 255
trace table

built-in functions 276
CICS/VS-DL/I interface entry 272
dump control entry 267
duplicate entries 260
field engineering (FE) entry 286
file control entry 268
interval control entry 264
journal control entry 213
location of 253
prograrr. control entry 263
storage control entry 262
sync pOint program entry 285
task control entry 261
temporary storage control entry 271
trace control entry 285
trace entry general format 259
trace header 259
transient data control entry 270
VTAM terminal control 278

Trace system symbols 255
TRAILER operand

DFHBMS TYPE=PAGEOUT 385
DFHBMS TYPE=TEXTBLD 376
DFHMDI macro instruction 349

554 CICS/VS Application Programmer's Reference Manual

Transaction
asynchronous processing 432
flow 6
processing 2

Transaction and CICS/vS storage dump
TRANSACTION operand

DFHDC TYPE=PARTIAL 291
DFHDC TYPE=TFANSACTION 288

Transaction storage dump 288
Transaction work area (TWA)

addressability of
ANS COBOL 41
assembler language 32
PL/I 52

description of 29
size of 29
storage definition

ANS COBOL 41
assembler language 32

,PL/I 52
Transfer of control 13,122
TRANSID operand

DFHBMS TYPE=PAGEOUT 385
DFHIC TYPE=INITIATE 232
DFHIC TYPE=PUT 234
DFHKC TYPE=ATTACH 239
DFHPC TYPE=RETURN 223

Transient data control request/response
setting the 28
TCA field 28

Transient data input area (TDIA)
addressability of

ANS COBOL 43
assembler language
PL/I 54

obtaining a 219
storage definition

ANS COBOL 43
assembler language
PL/I 54

34

34

Transient data output area (TDOA)
addressability of

ANS COBOL 43
assembler language
PL/I 55

obtaining a 219
storage definition

ANS COBOL 43
assembler language
PL/I 55

Transient data services

35

35

acquire queued data 101
automatic task initiation (ATI)

98
104

98
97

dispose of data 99
extrapartition data
forced end of volume
indirect destinations
intrapartition data
introduction to 97
macro instruction 206
purge intrapartition data
response codes 106
summary of 4
test response 105
trace table entry 270
transient data control 97

105

98

289

Transient data services (Continued)
transient data management 97

Translate tables for the 2980 523
Transparent mode 179
TRANSPARENT operand 179
TRMIDER operand

DFHIC TYPE=CHECK 238
DFHIC TYPE=INITIATE
DFHIC TYPE=PUT 235

TFMIDNT operand
DFHIC TYPE=INITIATE
DFHIC ~YPE=PUT 234

TRNIDER operand
DFHIC TYPE=CHECK 238
DFHIC TYPE=INITIATE
DFHIC TYPE=PUT 235

TSDADDR operand
DFHTS TYPE=GET
DFHTS TYPE=GETQ
DFIn'S TYPE=PUT
DFHTS TYPE=PUTQ

TSEARCH operand
TSINVLD operand

213
214

210
212

303

DFHIC TYPE=CHECK 238
DFHIC TYPE=GET 235

232

232

232

TSIOA (see temporary storage I/O area)
TSIOERR operand

DFHBMS TYPE=CHECK 396
DFHBMS TYPE=OUT 383
DFHBMS TYPE=PAGEBLD 369
DFHBMS TYPE=PAGEOUT 386
DFHBMS TYPE=RETURN 383
DFHBMS TYPE=STORE 383
DFHBMS TYFE=TEXTBLD 377

TWA (see transaction work area)
TYPO PER operand

DFBFC TYPE=GET 188
DFHFC TYPE=GETAREA
DFHFC TYPE=PUT 191

.USER operand 250

Virtual storage
concepts 15
techniques 9,15

VSAM data set

194

browse operation 197,201
mass insert 191
random retrieval 189
variable-length records 71

VSAM work area (VSWA)
address of 28
addressability of

ANS COBOL 43
assembler language 34
PL/I 54

storage definition
ANS COroL 42
assembler language 34
PL/I 54

VSWA (see VSAM work area)
VTAM-supported logical units

Index 55'5

VTAM-supported logical units (continu~d)
input operations 172
output operations 111

VTAM trace table entry 278

WAIT operand
DFHBMS TYPE=OUT 319
DFHBMS TYPE=RETURN 319
DFHBMS TYPE=STORE 319
DFHBMS TYPE=TEXTBLD 374
DFHIC macro instruction
DFHJC macro instruction
DFHKC macro instruction
DFHTC macro instruction
uses of 66

Weighted retrieval
initiate 320
macro instruction 320
operation 298

226
247
240
111

release storage areas 321
response codes 330
rest response 328

326 retrieve selected records
selection criteria 323
selection of records 300
weighted qualification percentage

(WQP) 299
WQP (weighted qulification

percentage) 299
WRBRK operand

DFHBMS TYPE=OUT 383
DFHBMS TYPE=PAGEBLD 369
DFHBMS TYPE=PAGEOUT 387
DFHBMS TYPE=RETURN 383
DFHBMS TYPE=STORE 383
DFHBMS TYPE=TEXTBLD 377
DFHTC macro instruction

write break support
operation 64
programming considerations

WRITE operand
DFHJC macro instruction
DFHTC macro instruction
uses of 63,64

WRITEL operand 183
WRKAREA operand 454
WTRET operand 302
WTRETCHK operand 329
WTRETGET operand 327
WTRETREL operand 328
WTRETST operand 321
WTRTPARM operand 323

XCTL operand 222

181

246
171

2260 compatibility mode (3270)
erasing the screen 64
input operations 174
output operations 183
print request support 64

431

2260 compatibility mode (3270) (Continued)
programming considerations 423

2260 display station
input operations 113
output operations 180

2260/2265 terminals 421
2741 communication terminal

attention 181
input operations 113
programming considerations 430
read attention support 65,174
write break support 64,181

2710 data communication system
output operations 119
programming considerations 423

2780 data transmission system
output operations 179
programming considerations 423

2980 general banking terminal system
common buffer message 182
data handling 425
high-level-language programs 425
passbook control 423
printing a passbook 182
programming considerations 182,423
segmented writes control 424

3270 information display system
copy fUnction 183
erase screen 183
erasing the screen 64
input operations 114
locking the keyboard 183
output operations 182
override of uppercase 175
override of uppercase translation 65
print function 431
print request support 64
programming considerations 431
write control character (WCC) 184
2260 compatibility mode 174,174,183,422

3735 programmable buffered terminal
autoanswer 418
autocall 418
end of file 175
EOF condition 175
form description program (FDP) 185
input operations 175
output operations 185
programming considerations 417

3140 considerations 418
3140 data entry system

input operations 116
output operations 185

3780 data communications 179

7710 audio response unit
programming considerations
ready message 63

429

556 CICS/VS Application Programmer's Reference Manual

o
C
-f
»
r o
Z
G)

o o
-f
-t
m

,0

'C
Z
m

Customer Information
Control System/Virtual
Storage (CI CS/VS)
Application Programmer's
Reference Manual

SH20-9003-2

Your views about this publication mIly help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes 0
No 0

Job Title: __________________ _
Addre~: ____________________ __

______ ~---------- Zip _____________ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SH20-9003-2

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and opera tors of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

fold fold

..

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813 HP .
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

..

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

fold

SH20-9003-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza. New York. New York 10017
(International)

	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066.0
	066.1
	067
	068
	069
	070.0
	070.1
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082.0
	082.1
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148.0
	148.1
	149
	150.0
	150.1
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172.0
	172.1
	173
	174
	175
	176
	177
	178
	179
	180.0
	180.1
	181
	182
	183
	184
	185
	186
	187
	188.0
	188.1
	188.2
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238.0
	238.1
	239
	240.0
	240.1
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254.0
	254.1
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274.0
	274.1
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286.0
	286.1
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334.0
	334.1
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346.0
	346.1
	347
	348
	349
	350.0
	350.1
	351
	352
	353
	354.0
	354.1
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364.0
	364.1
	365
	366.0
	366.1
	367
	368
	369
	370.0
	370.1
	370.2
	371
	372
	373
	374.0
	374.1
	375
	376
	377
	378.0
	378.1
	379
	380.0
	380.1
	381
	382
	383
	384.0
	384.1
	384.2
	385
	386
	387
	388.0
	388.1
	388.2
	389
	390
	391
	392.0
	392.1
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402.0
	402.1
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432.0
	432.1
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450.0
	450.1
	451
	452
	453
	454
	455
	456
	457
	458.0
	458.1
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490.0
	490.1
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500.0
	500.1
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522.0
	522.1
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	replyA
	replyB
	xBack

