
Installed 
User 
Program 

Licensed Material - Property of IBM 

LY20-0762-0 

SCRIPT/370 
Text Processing Facility 
Under Virtual Machine Facility/370 
(VM/370) 
Systems Guide 

Program Number 5796-PAF 

SCRIPTj370 is an IBM Installed User Program designed 
for use with Virtual Machine Facilityj370. It provides 
text-processing facilities. It executes as a command of the 
Conversational Monitor System (CMS), a component of 
VMj370. This document describes the interface between 
the SCRIPT program and CMS, the program organization 
and structure of SCRIPTj370, and the algorithms for 
text-processing used by it. It is intended for use by pro
grammers who will maintain or modify the system. 



COIiTElTS 

SBCfIOIi 1: IHfBODUCfIOH •••••••••••••••••••••••••••••••••• 3 
Purpose of the SCBIPT Progra ••••••••••••••••• ~ •••••••• 3 
Bnvironmental Characteristics ••••••••••••••••••••••••• 3 
Physical Characteristics •••••••••••••••••••••••••••••• 4 
Operational Considerations •••••••••••••• ' •••••••••••••• 4 

SECTIOR 2: MEfHOD OF OPERATIOR ••••••••••••••••••••••••••• 7 
Initialization •••••••••••••••••••••••••••••••••••••••• 1 
Main Processing Sequence •••••••••••••••••••••••••••••• 7 
List Link Ble.ent For ••••••••••••••••••••••••••••••••• 15 
Right Kargin Justification 1Igorithm •••••••••••••••••• 17 
Control Word Processing ••••••••••••••••••••••••••••••• 19 

Switch Setting ••••••••••••••••••••••••••••••••••••• 21 
Variable Setting ••••••••••••••••••••••••••••••••••• 22 
Special Action Routines •••••••••••••••••••••••••••• 22 
Group 1 processing Page Title ••••••••••••••••••• 25 
Group 2 Processing Page Eject ••••••••••••••••••• 25 
Group 3 processing switch Input File ••••••••• ~ •• 27 
Group 4 Processing sectioning ••••••••••••••••••• 28 
Group 5 processing Status Handling •••••••••••••• 29 
Group 6 processing Symbol processing •••••••••••• 30 
Group 7 processing Ter.inalI/0 ••••••••••••••••• 34 
Group 8 processing Termination •••••••••••••••••• 34 
Group 9 processing Multiple Column •••••••••••••• 36 
Group 10 Processing -- Kiscellaneous ••••••••••••••• 40 

Teraination ••• • _ ..•..•••••.••.••.••..•..•.••.••••....•• q 1 

SECTIOR 3: PBOGR1K OBGABIZ1TIOB ABD DIBECTORY •••••••••••• 42 
Program Organization •••••••••••••••••••••••••••••••••• 42 
Bodule Directory •••••••••••••••••••••••••••••••••••••• 42 

Internal Subroutines of SCSPBT ••••••••••••••••••••• 4'2 

SBCTIOB 4: DIAGBOSTIC lIDS ••••••••••••••••••••••••••••••• 47 
Brror Bandling •••••••••••••••••••••••••••••••••••••••• 47 
Debuggi~g Facilities •••••••••••••••••• · •.•••••••••••••• q7 
Register Use •••••••••••••••••••••••••••••••••••••••••• 48 

SUPPORT PERIOD SERVICES 

During a specified number of months immediately following initial availability of this licensed program, 
designated as the SUPPORT PERIOD, the customer may submit documentation to a designated IBM location 
when he encounters a problem which his diagnosis indicates is caused by an error in this licensed program. 
During this period only, IBM through the program author(s) will, without additional charge, respond to an 
error in the current unaltered release of the licensed program by issuing known error correction information 
to the customer reporting the problem and/or issuing corrected or notice of availability of corrected code. 
However, IBM does not guarantee service results or represent or warrant that all errors will be corrected. Any 
onsite programming services or assistance will be provided at a charge. 

WARRAN1Y 

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WARRANTY OF ANY 
KIND EITHER EXPRESS OR IMPLIED. 

First Edition (November 1972) 

This edition corresponds to'Release 1 'of SCRIPT/370 and to all subsequent modifications until 
otherwise indicated in new editions or Technical Newsletters. 

Oianges are periodically made to the specifications herein; before using the publication in 
connection with the operation of IBM systems, refer to the latest IBM System/360 and System/37{) 
SRL Newsletter, Order No. GN20-0360, for the editions that are applicable and current. 

Requests for copies of IBM publications should be made to your IBM representative or to the 
IBM branch office in your locality. 

Address comments concerning the contents of this publication to IBM Corporation, VM/370 
Publications, 24 New England Executive Park, Burlington, Massachusetts, 01803. 

© Copyright International Business Machines Corporation 1972 

LICENSED MATERIAL - PROPERTY OF IBM 



The SCRIPT program provides the facility to format and print 
a manuscript that has been stored as one or more files in 
the Conversational Monitor System (CMS). The SCRIPT program 
operates as a CMS command. 

The SCRIPT program reads unformatted manuscript text from 
one or more specified files. As the text is read, it is 
inspected for the occurrence of SCRIPT control words which 
say define formatting characteristics. Under the control of 
the default settings or user specified control words, the 
text is formatted and outputted. 

1!!!~!!!!1 £~!RACIERISTICS 

The SCRIPT program is designed for use with CftS. CftS 
operates under the Vft/370 system. SCRIPT is able to operate 
in the minimum configuration required by CftS, though 
addit;~nal configuration facilities may be required to 
support certain SCRIPT features such as upper and lower case 
high-speed printer output, which requires the TN print 
train. 

The SCRIPT program operates in the CftS user's area just like 
typical user programs and other processing programs. The 
interfaces between this program and CMS are: 

• The CMS command line parameter list. 
• CMS file system functions (ERASE, RDBUF, WRBUF, 

FINIS and STATE) 
• Printer I/O function (PRINTR) 
• Console I/O functions (WAITRD and TYPLIN). 
• CMS simulated OS macro instructions (SPIE, GETMAIN, 

FREEMAIN) • 

All files to be processed as input to the SCRIPT program 
must have a filetype of SCRIPT. By virtue of the SCRIPT 
filetype, theze files consist of variable length records 
with a maximum line length of 132 characters (actually 
SCRIPT limits line length to 240 characters, but CMS and CP 
further limit user text lines to 132 characters). 

LICENSED MATERIAL - PROPERTY OF IBH 3 



The SCRIPT program consists of a single CMS load module 
(filetype MODULE). When the user requests the SCRIPT 
command, the CMS Command Processor causes the SCRIPT module 
to be loaded into the user's area, starting at location 
X'20000', and then control is transferred to SCRIPT. Upon 
completion or abnormal termination, SCRIPT returns control 
to the CMS Command Processor. 

The SCRIPT module's instructions and static data areas 
requir& about 36K bytes of main storage. In addition, 
certain SCRIPT functions such- as Save/Restore-status, 
Multiple Column processing, and Set-Symbols, may require 
dynamic main storage assignment via the GETMAIN macro 
instruction. If there is not enough dynamic main storage 
available to satisfy the requirements of such a SCRIPT 
function, an error message is printed and SCRIPT processing 
is terminated. 

The SCRIPT program is invoked via a Command Parameter List. 
When the user enters a command ,to CMS, the CftS Command 
Processor scans the request and converts it to the standard 
format of a CftS Command Parameter List. The parameter list 
consists of a sequence of eight-byte entries, one for each 
word entered as part of the request. See the IB~ Vir!y~! 

~~£hi~ !aci!i!I/310 As§~mbl~£ frqgr~mm~~ Qy!g~, 
GC20-1802, for additional information on parameter list 
format and command invocation. 

When the SCRIPT program is loaded and receives control from 
CMS, register 1 contains the address of the parameter list. 
The parameter list may contain the following information in 
consecutive eight-byte fields: 

• The command name, SCRIPT (required). 

• The filename of the master CMS file to be processed. A 
filetype of SCRIPT is assumed (required). 

• The CENTER option which causes all output to be shifted 
right on the printed page. 

• The CONTINUE option which causes processing to continue 
after detecting and printing any recoverable errors. 

4 LICENSED MATERIAL - PROPERTY OF IBM 



• The DEBUG option which causes the SPIE SVC macro 
instruction to be bypassed, thus allowing the correct 
processing of DEBUG breakpoints. 

• The FILE option which causes the output to be 
to a file instead of the terminal or printer. 
is named Sfilename SCRIPT, where filename is 
of the input master file. 

directed 
The file 
the name 

• The MARK option which causes the beginning of each line 
of the original input to be marked by underlining the 
first character on the output. 

• The NOWAIT option 
immediately without 
adjusted. 

which causes 
waiting for the 

output to 
first page 

start 
to be 

• The NUMBER option which causes the input filename and 
line number to be printed to the left of the formatted 
output line. 

• The OFFLINE option which causes the output to be 
directed to the line printer instead of the terminal. 

• The PAGExxx option which causes output to be suppressed 
until page xxx is reached. 

• The QUIET option which causes the version 
identification information, normally printed on the 
terminal immediately after SCRIPT gets control, to be 
sl'ppressed. 

• The SINGLE option which causes 'processing to terminate 
after printing a single page. 

• The STOP option which causes printing to pause at the 
bottom of each page to allow readjusting or changing of 
the paper. 

• The TRANSLATE option which causes the character 
translate table to be initialized so that lower-case 
letters are printed as upper-case letters. 

• The UNFORMATTED option which causes the master SCRIPT 
file to be printed without any formatting, ignoring all 
control words. 

• ,The 2PASS option 
through the input, 
second pass. 

which causes two processing passes 
with actual output only during the 

The options, if any specified, should be enclosed by left 
and right parentheses. The options, except for PAGExxx, may 

LICENSED MATERIAL - PROPERTY OF IBM 5 



be ~bbreviated by truncation down to two characters. For 
example, CONTINUE may be abbreviated as CONT or CO. 

Output consists of the processed text, diagnostic messages 
and information messages. Output is sent to the terminal by 
use of the CMS TYPLIN function, to the line printer by use 
of the CMS PRINTR function, or to a file by use of the CMS 
WRBUP function. 

1 temporary file named CMSUTl SCRIPT may 
SCRIPT processing. It is automatically 
SCRIPT termination. 

be created during 
erased on normal 

6 LICENSED MATERIAL - PROPERTY OF IBM 



This section describes the logic and operation of the SCRIPT 
program and emphasizes the flow of data and control 
information through buffers and tables (see Method of 
Operation Diagram 1). 

The CMS command processor uses the CMS SVC 202 linkage to 
invoke the SCRIPT program. Control is passed initially to 
the primary SCRIPT control section (SCSPRT). This routine 
starts by performing the following initialization 
operations: (see Method of Operation Diagrams 2 and 3). 

1. Checks the filename specified in the Command 
Parameter List. If it was not specified, prints 
error message and terminates. If it was the single 
character 1, prints the list of SCRIPT options and 
control words, using entry point SPRCWORD in CSECT 
SCSFOR and then terminates. 

2. Analyzes the options specified in the parameter list, 
if any, by means of the PARMROUT internal function. 
Appropriate indicators and variables are set for the 
options specified. 

3. Types the version number· identification (unless 
supressed by the QUIET option) and issues a SPIE SVC 
macro to regain control in case of a program 
interrupt (unless supressed by the DEBUG option). 

4. Sets the variables and counters 
number, page number, etc.} to 
initial values. 

(file name, line 
their appropriate 

5. Transfers control to the main processing loop (label 
MAIN within CSECT SCSPRT). 

The main procezsing loop performs the following operations. 
(see Figure 1 and Method of Operation Diagrams 4a and 4b): 

1. Reads the next data line from the current input file. 

LICENSED MATERIAL - PROPERTY OF IBM 1 



INPUT 
From 
CMS 

PROCESSING SCRIPT/37Q PROGRAM 

Register 1 

Address of CP L 
(Command Parameter List) 

,/ 
,/ 

/ 

SCRIPT command with: 

• Filename 

• Options 

Command ---... 
Processor 

--- -".'" ~-~ 
/' "" 

/' " ./ / 

Input 
file (s) 

Format input text 
under control of: 

• Options. from CPL 
• Control words, 

from input stream 

LEGEND: __ ------------------------------~ 

--> Data Transfer 

==> Control Flow 

---7 Access Data 

METHOD OF OPERATION DIAGRAM 1. PROCESSING OVERVIEW 

ToCMS 
Command 
Processor 

OUTPUT 

o:::J 
or 

Printer 

-...... -
or 

i<: ::::> 

CMS 
File 

....... .-" 



Register 1 

Address of CPL 

SCRIPT 

filename 

• • 
• 

Command 
'Parameter 
List 

} 
Options, 
if any 

FF FF FF FF 

8 Bytes 

From 
CMS 
Command 
Processor 

----

METHOD OF OPERATION DIAGRAM 2. INITIALIZATION 

INITIALIZATION 

Q) Set base register and save area 

@ Test for existance of temporary file (CMSUTl 
SCR IPT); if exists, error exit (SER R) 

@ If filename not supplied, error exit (SERR) 

o If Filename = ?, print list of options and 
control words (SPRCWORD) 

® Initialize switches and filename 

. @ Process parameter list (PARMROUT) 

CD Type version number 

® Initialize link storage (LiNKINIT) 

® Test for existence of input file, if none, 
error exit 

Position output paper 

Set SPIE 

Initialize counters 

@ 

@ 

@ 

@ 
--

Enter main controller loop ---- ..................... 

" "-
"-

Transfer to 
Main Controlled 
Loop (MAIN) 
(See M.O.D. 4) 

WORK AREA 

Switch Settings 

Variable Values 

• • • 



... 
o 

Register 1 

Command 
Parameter 
List 

SCRIPT 

filename 

t Options, 
~ if any 

---,
I 

• • • 
~------------~ 

FF FF FF FF 

-8Bytes--

~--------------------~ 
,) 

It:::/ 
Option Table (PARMTAB) 

Name Flags 

Center 0,0,0 

Continue O,COSWS,O 

Debug DBSWS,O,O 

r 
"... '-' 

I'-' 

FFFF ... F 0,0,0 

,. 
r 

Action 
Routine 

CENTER 

PARMON 

PARMON 

'v 

r--

PARMRET 

'-10 Bytes---3 Byfes--3 Bytes-

/ 
/ 

/ ,
I 
I 
I 
I 
I 
I 

.J 

METHOD OF OPERATION DIAGRAM 3. OPTION PROCESSING 

From Initialization 

Set register 1 to next option 

Does option match any entry in 
option table? If not, error exit 
(SERR). 

Perform appropriate action; go 
to 0 if not last option. 

Return 
after last option 

---, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
r
L_ 

Work Area 

~ Switch Settings 

~ Variable Values 

• 
• 

• 



t"" 
H 
n 
tzj 

z 
en 
tzj 

0 

t:I: 
II>' 
~ 
tzj 

1%1 
H 
II>' 
t"" 

tt:I 
1%1 
0 
tt:I 
tzj 

1%1 
~ 
I< 

0 
"7iI 

H 
tl:t 
t:I: 

File(f) 

Read next input line (READ) 

o If first char is a period, process 
control word (PERIOD) and 

go to CD 

o If first char is blank or tab, 
print residual line (PR INT) 

NOCHARS 

OLDFIRST 

METHOD OF OPERATION DIAGRAM 4a. SCRIPT, MAIN CONTROLLER 

BUFF2 

LlNKPARM 
(Residual line) 

address of BUFFl 

length 

first LLE 

last LLE 

length 

BUFFl 

LlNKAREA 
(List link element area) 



File (s) 

o Convert new line to link 
list form (LlNKPUT) 

® Merge new I ine with 
residual line if any (MERGE) 

® If in concatenate mode and 
primary line not long 
enough yet, go toG) 

(j) If in justifv mode, add 
blanks to primary line to 
right justify (ADJUST) 

@ Print primary line (PRINT) 

@ If residual line longer than 
column length, go to ® 

@ Otherwise go to CD 

-, 
~ 
\ 
\ 
\ 

BUFF2 

address of BUFF2 

'7 ------~----
I \ 

./ .,...., 
/ I 

LlNKPARM 

address of BUF F 1 

BUFF1 

METHOD OF OPERATION DIAGRAM 4b. SCRIPT MAIN CONTROLLER 

LlNKAREA 



MAIN 

START 
1 
1 
V 

I I 

r->lRead next linel<------------------------------------------------------~ 
lfrom file I 

I 
V 

* 
- -*Is * 

I 

-first
*cbarac-* yes 

-ter a pe------------------------------------------~l 
* riod * (control I 

- ? - word) V 

* 
• • 

* * 
• • 
*.*.* 

* * 
- . * Ina 

* • • 
*Is * 

-first
*charac-* 

• ter a • yes , , 
* blank or *------>IPrint and delete 11 

• tab - Iresidential line, I 
* ? * 1 if any. I 
• • 

* * 
• • 

* 
Ina 
1< 
I 
1 

*-*.* 
* * 
* * 
• • 

* 

Figure 1. Main Processing Loop (Part 1 of 2) 

LICENSED MATERIAL - PROPERTY OF IBM 

I , 

ILook for con- 1 
ltrol word in 1 
Itable I 

I 
V 

* f 

• - 1-----
* *yesl---

.Found---I-----
* ? * 1---
•• 1----

* Ina go to 
1 appropriate 

routine 
(error) 

13 



* *-*-* -- * * 
* * * * - - --*-*-* * 

/ I 
I 
I 
v , 

IConvert linel 
Ito LLEF. I 

I 
v 

J 

IMerge with residual 
Iline (if any). If 
Ilonger than column 
Ilength, split into I 
Iprimary and residuall 
Ilines. I 
L 

1<-----' 
V 

* ,---, 
- -I I * * 

* I - -
- - Iyes * CONCA-* 

* * L--_ TENATE 
-Does - * mode * 

*primary* -?-
no -line fill- yes * 

L--* column *--, -_ 
- length - I * 

* 

* ? * I I No _ _ L--) I 

* * I 
- - I 
* 

-

1 printing line causes line to be deleted 
from linked list buffer. 

Figure 1. Main Processing Loop (Part 2 of 2) 

* -

I 
v 
* 

- -* -*JUSTI- * no 
-FICATION --------" 
* mode * 

j 

- ? -* * 
- -* Iyes 

V 

IJustify primary 
Iline by adding 
Iblanks. 

I 
I 
I 
I 

I<,-----~ 
I 
I 
I V 

I 

IPrint primary 
Iline. 

I 
V 

I 
1 I I 

I I 
t 
I 
t 

I I 
IMove residual to I I 
Iprimary line. I--J 
~L ____________________ ~ 

14 LICENSED MATERIAL - PROPERTY OF IBM 



If the end-of-file is reached and the current file 
had been imbedded, resumes reading from next line of 
the file that invoked the current file. If the 
end-of-file condition is reached in the master file, 
processing terminates. 

2. Examines the first character of the input line. If 
it is a period (.), control is transferred to the 
control word processor (label PERIOD in CSECT 
SCSPRT). If the first character of the line is a 
blank or a tab character, any residual line fro. 
previous input is sent to the output device. (This 
is the break function). 

3. The new text line is converted into List Link Element 
Porm (LLEP). The new line is then merged with any 
residual line from previous input. If the aerged 
line's length exceeds the current column length 
setting, it is split into two LLEP lines - a primary 
and a residual line. The split occurs between words 
such that the primary line is equal to or less than 
the specified column length. The primary line is 
sent to the output device after being right-justified 
(if JUSTIPICATION-KODE is in effect). This process 
is repeated starting at step 1 above until the input 
files have all been processed. 

As noted in the description of the main processing sequence, 
the most recent text input, while being manipulated, is 
stored in a list link element form (LLEP). Each character 
of text is physically stored in a separate link block. 
Pointers are used to indicate the order of the characters on 
the line and the occurrence of overprinted characters (e.g., 
underlined characters). All explicit backspace characters 
are removed since they are not necessary in the LLE form. 

Pigure 2 illustrates an example text line in three forms 
(1) as a printed (graphic) line, (2) as a sequence of 
physical bytes as typed at the terminal, and (3) in the link 
list element form. utility routines are incorporated into 
the SCRIPT program to convert text lines between physical 
byte strings and LLE form. 

The list link element form is used for two different 
purposes in SCRIPT: (1) processing of overprinted 
characters on output, and (2) formatting of the line. The 
physical mechanism for producing overprinted characters is 
different for a terminal (i.e., uses character1 - backspace 
- character2 sequence) than for a line printer (i.e., print 

LICENSED MATERIAL - PROPERTY OF IBM 15 



Graphic Character string: A=~~~ 

Physical Character string: A<_=B<_o<¢<_C<_ 
(17 bytes, < represents backspace character) 

Link List: 

f I I j , j , j , 
IA I- I > = I- I >IB I- I >10 I- I >IC I11I 
I 1<-, 1<-, I 1<-, I 1<-, I I 
I 1 I--+-' I 1 I11I I I 1 ,--+-, I 11 1--+-, I I 1 I - I i 

I I I I I , I , 1 I I I I I , I I 
I11111I I I - I L I - I I I I - I I 

, 
+ - I I 

I I I I I t I I I I I I I 
I11111I I 11111I I11111I I I11111I I I11111I I , , 

I J I , 
I I I I I I I 

I I I I 
• I I I i i i J 

I I I I 
I • i I I i I , I I • , 
'->1- I11I L->I_ 1111 '->11 1111 '-> 1- I11I 

I I I I I I I I 
I 1 1111 I 1 111I 11 I--+-' I 1 I11I 
I I I I J I I I I 
1111111 111111I I11111I I 111111I 
I I I I I I I I I 
1111111 tlllill I111111 I I11111I 
I I i I , I I , I 

I 
I 

, 
I 
r I i 
L->I_ I111 

I I 
11 I111 
I I 
I11111I 
I I 
tllllil 
I , 

Figure 2. Example List Link Element Form. 

16 LICENSED MATERIAL - PROPERTY OF IBM 



entire line, and then, without advancing the paper, print 
characters) • Straight-forward algorithms are provided in 
SCRIPT for converting a line in LLE form into the 
appropriate character string(s) needed for either terminal 
or line printer output format. 

In the process of converting the input text into formatted 
output, especially for producing right margin justification, 
it is often necessary to split a line into two parts, merge 
two parts together, or convert a single blank into multiple 
blanks. These tasks are simplified by use of the LLE form 
for representing text lines internally. 

The list link element format is further described and 
discussed in the IBM publication: "SCRIPT: An Online 
Manuscript Processing System" by S. E. Madnick and A. 
Moulton. This report has been published in the IEE~ 

Tran~ac~i~2 Qn ~ngineeri~g !f}~i~g ~nd ~Eg~h, Vol. EWS-4, 
No.2, August 1968, and can be obtained by written request 
to IEEE at 345 East 47th Street, New York, New York 10017. 

BIGHT MAB2!! ~TIPICATION ALGORITHM 

Tvo passes over the primary line are needed to justify the 
left and right margins. During the first pass the primary 
line is scanned up to and including the last complete "word" 
(group of non-blank characters separated by blanks) 
contained within the length desired for justification. The 
number of words is determined along with the number of 
spaces remaining between the last word and the required line 
length. Dividing the number of spaces needed by one less 
than the number of words produces the number of extra spaces 
that should be inserted after each word for correct 
justification. Unfortunately, it is not possible to insert 
fractional spaces. Therefore the fractional components are 
accumulated until at least a half space is accumulated, a 
whole space is inserted into the line and subtracted from 
the accumulated sum of fractions. 

The second pass is required to record 
Each link element contains a mUltiplier 
to one. During the second pass the 
appropriate blank link elements is 
altering the data structure. 

the added spaces. 
field initially set 
multiplier for the 
increased without 

The LLE data structure is also used for a variety of other 
facilities, such as interpreting "tab" characters, and 
converting theffi to the appropriate number of blanks or user-

LICENSED MATERIAL - PROPERTY OF IBM 17 



specified "pad" characters. 

(The character " " . represents a blank.) 

I<---------------------Desired Length--------------------->1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
ABC D E F • G B I J K L M N 0 P R S 

<----> <----> <----> (-------> <-------> <-> 
123 4 5 6 

Desired Line Length = 20 
Number of Complete Words - 1 = 5 
Number of Spaces Needed = 2 
Number of spaces to be inserted between every word = 0 
Number of Extra Spaces per Word = 2/5 or 4/10 

I<---------------------Desired Length ------------------->1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
ABC D E F G H I J K L M 

(4/10) (8/10) (2/10) (6/10) (0) 

Figure 3. Justification Proce~s 

18 LICENSED MATERIAL - PROPERTY OF IBM 



When an input line starting with a period is read by the 
.ain processing loop, control is transferred to the control 
word processing routine (see Method of Operation Diagram 5). 

The control word name, immediately following the period, may 
be in either of two forms: standard abbreviated form or 
un abbreviated (possibly truncated) form. For example, .BC is 
the standard abbreviated form for the Balance-Columns 
control word. On the other hand, • BALANCE-COLUMNS and 
• BALANCE are examples of the unabbreviated form of the 
Balance Columns control word, untruncated and truncated 
respectively. If the un abbreviated form is read, it is 
converted to the standard abbreviated form by the SABBREV 
routine. 

The control word action table is searched, by binary 
look-up, for a match with the abbreviated control word. If 
a match is not found, an error exit is taken and an 
appropriate error diagnostic is printed. If a match is 
found, the action indicated in the table is performed. 

LICENSED MATERIAL - PROPERTY OF IBM 19 



IV 
o 

BUFF2 

METHOD OF OPERATION DIAGRAM 5. 
CONTROL WORD ?ROCESSING 

I I ~rom V';o Pco,,,,;o, Loop 

CD Save original line for 
error processing 

Q) If it is standard 2-character 
control word, go to 0 

® Convert non-abbreviated 
control word to 2-character 
code 

0 Look up control word in 
action table. If not found, 
error exit 

® If control word separator 
(;) in line, separate line by 
saving text to right of 
separator for later 
processing 

® Perform designated control 
word action. (Normally 
return control to main 
processing loop) 

-

"'-

ERRBF 

CONTROL WORD 
ABBREVIATION TABLE 

--~ 5 AP Append -- 14 BC Balance-Columns --
12 BM Bottom-Margin 

, , , , 
~ Word Flags Action 

AP 0,0 AP 
Control 
Word 

BC FF,FF-NBSWS SWOFF Action 

0,0 BM 
Table 

HIDDENBF 



In general, one of three kinds of actions is performed: 

1 • A particular switch (binary variable) is set on or 
off. 

2. A particular variable (or variables) is set to a 
specific value. 

3. A special action routine is invoked. 

In the first two cases the particular switch or variable set 
has its effect by being part of the normal computations of 
the main processing loop. For example, the 
JUSTIFICATION-KODE switch is tested and the COLUMN-LENGTH 
variable is used as part of the formatting illustrated in 
Method of Operation Diagram 4. 

SWITCH SETTING: 

Control words that merely cause switches to be set 2n or 2tt 
are facilitated by means of the action routines SWOH and 
SWOFF. All such switches are contained in the bytes SWITCH 
and/or AUGSW and the particular bits to be turned on or off 
are designated in the flag bytes of the control word action 
tab!e. 

The control words that fit into this category and their 
action are listed in Table 1. 

Control Word Abbreviated Switches 

Balance-Columns BC NBCSWS 
Break BR None 
Comment CM None 
Concatenate-Mode CO NFSWS 
Format-Mode FO NFSWS,NJSWS 
Justification-Mode JU NJSWS 
No-Balance-Columns NB NBCSWS 
No-Concatenate-Mode NC NFSWS 
No-Forma t~-·Mode NF NFSWS,NJSWS 
No-Justification-

Mode NJ NJFSWS 
Single-Space-Mode SS DSSWS 

Table 1. 
Processing of Control Words that 

Set Switches. 

LICENSED MATERIAL - PROPERTY OF IBM 

ON/OFF 

Off 

Off 
off 
Off 
On 
On 
On 

On 
Off 

21 



VARIABLE SETTING: 

Control words that primarily cause a variable to be set have 
separate short action routines. These action routines check 
that the value to be assigned to the variable is allowable. 
For example, the heading margin setting cannot exceed the 
top margin setting. 

The control words that fit into this category and the 
corresponding variable(s) set are listed in Table 2. 

control Word Abbreviated I Variables 
I 

Bottom-Margin BM I BOTMRG 
Center CE CECNT and CERISWS=off 
Column-Length CL CECNT and CERISWS=off 
Control-Word-Separator CW CSTABLE 
Double-Space-Mode DS DSCNT=2 and DSSWS=on 
Footing-Margin FM FTMRG 
Heading-Marging HM HDMRG 
Indent IN INDL, RMARGIN, OFFL, OFFLI 
Literal LI LICNT 
Line-Length LL LLZ (CLZ if CLSWS =off) 
Line-Spacing LS DSCNT and DSSWS =on 
Offset OF INDL, RMARGIN, OFFL, OFFLI 
Page-Length PL PL, PLCT 
Page-Number PN Switches: PAGOFF, PINCRNO, 
Page-Number-Symbol PS PAGENSYM 
Right-Adjust RI CECNT and CERISWS =on 
Terminal-Input TE TECNT 
Top Margin TM TOPMRG 
Un dent UN UNDL, RMARGIN 

Table 2. 
Processing of Control Words that 

set Variables. 

SPECIAL ACTION ROUTINES: 

The remaining 31 SCRIPT control words require 
routines to perform their functions. To 
explanations, these control words can be 
divided into ten groups: 

1. Page titles 
2. Page eject 
3. Switch input file 

special action 
simplify the 
conveniently 

22 LICENSED MATERIAL - PROPERTY OF IBM 

ROMANSV 



4. Sectioning 
5. Status handling 
6. Symbol processing 
7. Terminal I/O 
8. Termination 
9. Multiple Columns 

10. Miscellaneous 

The control words, their corresponding action routines name, 
and their division into these ten groups is illustrated in 
Table 3. 

LICENSED MATERIAL - PROPERTY OF IBM 23 



I Name Group 
Control Word 

Append 
Bottom-Title 
Column-Begin 
Column-Definition 
Conditional-Column-

Begin 
Conditional-Page-

Eject 
Conditional-Section 
Delay-Imbed 
End-of-File 
Even-page-Bottom-Title 
Even-Page-Eject 
Even-Page-Top-Title 
Footing 
Heading 
Imbed 
Odd-Page-Bottom-Title 
Odd-Page-Eject 
Odd-Page-Top-Title 
Page-Eject 
Quit 
Read-Terminal 
Restore-Status 
Revision-Code 
Save-status 
Set-Symbol 
Space-Line 
Substitute-Symbol 
Tab-Setting 
Top-Title 
Translate-Character 
Type-on-Terminal 

Abbreviated of Action Routn 

AP 
BT 
CB 
CD 

CC 

CP 
CS 
DI 
EF 
EB 
EP 
ET 
FT 
HE 
1M 
OB 
OP 
OT 
PA 
QU 
RD 
RE 
RC 
SA 
SE 
SP 
SU 
TB 
TT 
TR 
TY 

Table 3. 

AP 
BT 
CB 
CD 

CC 

CP 
CS 
DI 

EOFSET 
EB 
EP 
ET 
FT 
HE 
1M 
OB 
OP 
OT 
PA 

TRUEEND 
RD 

RESTORE 
RC 

SAVE 
SET 
SP 
SUB 
TB 
TT 
TR 
TY 

processing of Control Words that 
Require Special Action Routines. 

3: Switch input file 
1: Page titles 
9: Multiple column 
9: Multiple column 

9: Multiple column 

2: Page eject 
4: Sections 
10: Miscellaneous 
8: Termination 
1: Page Titles 
2: Page Eject 
1: Page Titles 
1: Page Titles 
1: Page Titles 
3: Switch input file 
1: Page Titles 
2: Page eject 
1: Page Titles 
2: Page Eject 

18: Termination 
17: Terminal I/O 
15: Status 
14: Sections 
15: Status 
16: Symbols 
110: Miscellaneous 
16: Symbols 
110: Miscellaneous 
11: Page Titles 
110: Miscellaneous 
17: Terminal I/O 

24 LICENSED MATERIAL - PROPERTY OF IBM 



control 
.BT 
.EB 
.ET 
.FT 
• HE 
.OB 
.OT 
.TT 

Words: 
Bottom-Title 
Even-Page-Bottom-Tit1e 
Even-Page-Top-Title 
Footing 
Heading 
Odd-Page-Bottom-Tit1e 
odd-page-Top-Tit1e 
Top-Title 

Entry Point 
(BRENTRY) 
(EBENTRY) 
(ETENTRY) 
(BTENTRY) 
(REENTRY) 
(OBENTRY) 
(OTENTRY) 
(TTENTRY) 

The group 1 control words are processed by the STITLE CSECT 
within the SCSlOR module. There are multiple entry-points 
into this CSECT as indicated in the list above (e.g., 
BTENTRY, EBENTRY, etc.). 

There are 12 buffer areas used by these routines. There is 
a set of three separate buffers kept for each odd-page top 
title, odd-page bottom title, even-page top title, and 
even-page bottoll title (i.e. 3 buffers per title x 4 titles 
= 12 buffers). The three buffers per title are used to (1) 
hold the portion of the title to left-adjusted, (2) the 
portion of the title to be centered, and (3) the portion of 
the title to be right-adjusted. The four basic control 
words Even-Page Bottom Title, Even-Page TOP Title, Odd-Page 
Bottom Title, and Odd-Page Top Title each directly fill in 
one of the four buffer sets. The control word Bottom Title 
fills in both the even-page and odd-page bottom title buffer 
sets, and similarly for the TOP Title control word. The 
Headic~ and Footing control words operate similarly but only 
the left-adjusted portion of the title is retained froll the 
control word. There is no centered positions and the 
right-adjusted portion is set to the characters PAGE &. The 
Heading and Footing control words are prillari1y provided for 
compatabi1ity with earlier versions of SCRIPT. 

When the bottom of a page or top of a page are encountered 
during normal SCRIPT text formating, the FORMTITL 
entry-point into the STITLE CSECT is called. It selects the 
appropriate even/odd top/bottom title buffer set, formats 
it, and returns it for outputting. In order to perform this 
operation, FORMTITL is provided with the following 
information: 

• current page number. 
• current line length setting. 
• whether top or bottom title requested. 
• whether arabic or roman numerals are 

to be used for page numbering. 
• whether page numbering is to be supressed 

for the Heading Control Word. 

LICENSED MATERIAL - PROPERTY OF IBM 25 



Control 
.CP 
.EP 
.OP 
.PA 

Words: 
Conditional-Page-E;ect 
Even-Page-Eject 
Odd-Page-Eject 
Page-Eject 

These control words are all variations on the basic 
Page-Eject control word. If the user specified number is 
less than the difference between PLCT (number of lines left 
on page) and BOTMRG (number of lines reserved for a bottom 
margin), a Page-Eject occurs. Otherwise, the control word is 
ignored. 

The Even-Page Eject and odd-Page Eject control 
cause a Page-Eject. They may cause one 
Page-Eject, if necessary, to make PAGEN (the 
number) even or odd, respectively. 

words always 
additional 

current page 

The basic PAGE internal routine is quite important since it 
is also automatically invoked whenever the PLCT becomes less 
than or equal to BOTMRG during normal output formating. 
Each time an output line is produced, the PLCT is 
decremented and this check is made. 

If the Page-Eject control word was used and the new page 
number is explicitly specified, the special entry PAGEZ into 
the PAGE routine is used. Otherwise, the PAGE entry-point 
is used and the new page number counter, NEWPAGEN, is set 
to PAGEN+1. PLCT - BOTftRG + PTMRG blank lines are generated 
to position the output forms to the bottom title location. 
A bottom title, if one had been specified earlier, or a 
blank line is generated. Then, BOTMRG - PTMRG + TOPMRG
HDMRG blank lines are generated to position the output forms 
to the top title location. 

Before printing the top title. on the new page, there are 
several checks made first. If the STOP option has been 
specified, a pause is generated to allow the user to 
manipulate the terminal paper. If the SINGLE page option 
had been specified, processing terminates. If the PAGEXXX 
option had been specified, the new page number is compared 
with the number specified by the user and the no print 
switch, NPSWS, is turned off if the page numbers match. 
Finally, the top title is printed and HDMRG blank lines are 
printed. This leaves the output form position for resuming 
text output on the new page. Control returns to PAGE's 
caller for processing of further control words or text. 

26 LICENSED MATERIAL - PROPERTY OF IBM 



Control Words: 
.AP Append 
.IM Imbed 

These two control words involve very similar processing. 
The Append control word is somewhat simpler and will be 
described first. Before attempting to switch input files, a 
CMS STATE file system function is used to determine if the 
specified file exists. If it doesn't, an error exit is 
taken, otherwise processing continues. If any additional 
arguments, in addition to the file name, are specified, the 
special set symbols &0, &1, &2, etc. are defined via the 
SCSET routine (see Group 6 control word processing). The 
input file name is then changed and the file line number is 
reset. Then, if the Append control word was being 
processed, the old input file is closed and control returns 
to process the next control word or input text. All further 
input requests are directed to the new input file. 

If the Imbed control word is encountered, there are a few 
differences. Imbed maintains a stack, up to 8 levels deep, 
that includes: 

• file name 
• file mode 
• file line number 
• hidden buffer (if additional control 

words or text were entered on the 
same line after the Imbed control word). 

Before calling the common Append routine, Imbed sets aside 
all the necessary stack information. If the Append function 
returns correctly (i.e, there were no errors), the stack is 
updated. 

The difference between Append and Imbed is much more obvious 
when the READ internal function is examined. It is 
responsible for reading the next line from the current input 
file. When it encounters an END-OF-FILE condition on a 
file, the input file is closed. It then examines the Imbed 
stack. If the stack is empty, processing is terminated
this is the normal termination condition. Otherwise, the 
top entry on the stack is removed and becomes the current 
input file and the read operation is retried. The Imbed 
stack operates in a last-in first-out (LIFO) mode. Thus, 
the reversion is to the input file that contained the Imbed 
control word that specified the current input file that has 
been processed. 

LICENSED MATERIAL - PROPERTY OF IBM 27 



control Words: 
.CS Conditional-Section 
.RC Revision-Code 

These tvo control vords are used to delineate a section of 
the- text. In the case of the Conditional-Section control 
vord, the specified section may be included or excluded from 
the output text. In the case of the Revision-Code control 
vord, the specified section may be marked by a designated 
revision code symbol in the left margin. The actual 
processing of these tvo control vords involve numerous 
differences and viII be explained separately. 

The Conditional-Section processing requires the use of tvo 
byte arrays, each 9 bytes long - 1 byte for each of the 9 
possible section codes. The arrays are called CSINCLUD and 
CSCURRON. CSINCLUDen) is X'OO' if section(n) is to be 
included or X'PP' if section(n) is to be ignored. 
CSCURRON(n) is X'PP' if processing is currently 1n 
section en) , othervise it is X'OO'. In addition, there is a 
single bit, called CSSiS, in the svitch byte lUGSW2 that is 
set to B'1' if input text is currently being skipped (that 
is, CSCURRON(n) = X'PP' and CSINCLUD(n)= X'PP' for some 
value of i). 

The .CS n INCLUDE or .CS n IGNORE control vords merely set 
the CSINCLUDE array as described above. The .CS ON or OPP 
control vords start by setting CSCURRONen) = CSINCLUD(n) or 
CSCURRON(n) = X'OO', respectively. Then, if any element of 
CSCURRON is X'PP', CSSiS is set to B'1', othervise it is set 
to B'O'. 

In the main SCRIPT processing cycle all input is ignored 
vhenever the CSSiS is set to B'1', except for subsequent .CS 
n OPP control vords. 

The Revision-Code processing is similar but slightly more 
complex due to the need to handle revision codes. The 
primary data bases used are a reV1S10n code table, RCCDIR, 
and a stack, RCST1CK. ihen a non-blank reV1S10n code 
character is defined, it is placed into the RCCHAR byte 
array. Also, the output is shifted 3 spaces right to allov 
room for the revision code in the left margin. This shift 
is not necessary if there is already a shift in effect due 
to the CENTER or NUMBER options of SCRIPT. 

When a .RC n ON control-vord is processed, any revision code 
currently in affect is saved in the RCSTACK. On the other 

28 LICENSED MATERIAL - PROPERTY OF IBM 



hand, when a .RC n OFF is processed, the previous revision 
code, if any, is reinstated. At any time, RCCURR contains 
the current revision code number in affect or zero if none 
is in effect. Also, RCCHAR(O) is set to the corresponding 
revision code character. In the normal SCRIPT processing, 
whenever an output line is generated by the PRINT function, 
as opposed to lines that are actually skipped, the current 
revision code character, if any, is inserted into the left 
aargin. 

There is a special case that must be handled carefully. A 
very short line may be preceeded and followed by RC ON and 
BC OFF, respectively. In this case, the revision code may 
be turned on and then turned off before the output text line 
is filled and printed. In this case, there would be no 
revision code appearing on the output. To handle this case, 
a special BCSTALL variable is used. If, at the time that an 
BC OFF is processed, there is text stored in the internal 
residual input buffer, RCSTALL is set to the current 
revision code character. When the next line of output is 
generated, the RCSTALL character is placed in the left 
margin and automatically reset to be blank. 

Q!O"f 2 PROCE§§!!Q 

Control Words: 
.RE Restore-Status 
.SA Save-Status 

The Save and Restore Status control words use a stack to 
save/restore the current state of: (1) the binary switch 
bytes (e. g., SWITCH, AUGSW, etc.), (2) the control word 
variables (e.g., PL, LL, etc.) and (3) the output translate 
table. 

When the first Save status control word is encountered, 
sufficient space to have a 5 level stack is allocated via 
the GETMAIN macro. In the current version each stack level 
requires 475 bytes or a total of 2375 bytes for a 5 level 
stack. At the completion of processing, the stack area, if 
allocated, is released via the FREEMAIN macro. If the Save 
Status control word is not used in the SCRIPT input, the 
stack area will not be allocated and the GETMAIN/FREEMAIN 
will not be required. 

LICENSED MATERIAL - PROPERTY OF IBM 29 



control Words: 
.SE Set-Symbol 
.SU Substitute-Symbol 

The processing of symbols in SCRIPT is quite elaborate and 
is handled principally by the SCSYM CSECT. The Set Symbol 
control word is processed by the SCSET entry-point of SCSYM. 
The Substitute-Symbol control word does very little work 
directly, it merely sets or resets the SUBCNT variable. The 
actual sUbstitution of symbols is performed by the SCSUB and 
SCSUB2 entry-point of SCSYM; these entries are invoked 
automatically by the internal READ function which provides 
the next input line to the basic SCRIPT processing cycle. 
After reading each input line, READ calls SCSUB if SUBCNT is 
non-zero. If substitution for a set symbol array reference, 
such as &REFERENCES(*), results in a line longer than 130 
characters, substitution is only performed up to that point. 
After SCRIPT has processed this portion of the line, instead 
of reading a new input line, READ calls the SCSUB2 entry to 
get the next portion of the substitution. When the 
substitution has been completed, READ reverts to reading new 
input lines. 

The set symbols are stored in a symbol table that is 
dynamically allocated via GETMAIN when the first set symbol 
is defined. If the symbol table is used, it occupies ail of 
available GETMAIN space minus 24K which is reserved for 
other uses. Each individual set symbol requires 32 bytes in 
the symbol table. In a typical ~20K CMS virtual machine, 
there is about 160K available for the symbol table which is 
sufficient to handle 5000 symbols. 

The 32 byte symbol table entry is used as follows: 

TABSYM = 11 bytes for symbol's name, such as ALPHA. 
TABDATA = 14 bytes for t~e symbol's value, such as 

"HELLO". 
TABDLING = 1 byte to indicate actual length of symbol's 

value. 
TABIDX = 2 bytes for index subscript, if any, such as in 

&ALPHA (4) • 
TABPTR = 4 bytes for pointer to next array element, if 

subscripted symbol. 

Figure 4 illustrates the structure of the symbol table. 
Note that all subscripted set symbols, such as &BETA(1), 
&BETA(2), and &BETA(4), are chained together 

30 LICENSED MATERIAL - PROPERTY OF IBM 



Entry Number Name Value • Value Length Index Next Element 

1 ALPHA "14" 2 
2 BETA "2" 1 
3 BETA IIJohn" 4 
4 GAMMA " 14" 2 
5 BETA "Stu" 3 
6 BETA "Madnict" 7 

(a) Symbol Table 

.Substitute on 

.SET ALPHA = 14 
• SET BETA () = 'John' 
.SET GAMMA = &ALPHA 
.SET BETA(4) = 'Stu' 
.SET BETA() = 'Madnick' 

-sets BETA(1) 

-sets BETA (2) 

(b) Set-Symbol sequence that 
Produces Symbol Table 

Figure 4. set-Symbol Table 

o 
o 
1 
o 
4 
2 

3------,. 
6--,.<-' 

I 
-<, I 
5-' <-' 

in order of their index. The chain starts at the "master" 
symbol for the array, which is called either &BETA or 
&BETA(Q) for the example above. Recall that the single 
SCRIPT control word 

.SET BETA()='Madnick' 
is identical to the sequence: 

.SET BETA =&BETA+1 

.SET BETA(&BETA)='Madnick' 
which accounts for &BETA(O) having a value of "2" and 
&BETA(1) and &BETA(2) being set as indicated in Figure 4. 
If &BETA (or, equivalently, &BETA(O» had not been 
initialized in advance by the user, it is automatically set 
to zero by the first &BETA() reference. 

When the 
&SYSYEAR, 
&SYSHOUR, 
stored in 

symbol table is allocated, the special symbols 
&SYSMONTH, &SYSDAYOFY, &SYSDAYOFM, &SYSDAYOFW, 
&SYSMINUTE, and &SYSECOND are initialized and 

the table. 

The SCSET entry into the SCSYM CSECT handles the Set-Symbol 
control word. The SPARSE internal function is used to parse 
the free form control word into a list of tokens, each 15 
bytes long. For example, the control word 

.SET GAMMA() = &ALPHA+1 
would be converted into a list of 8 tokens as follows: 

LICENSED MATERIAL - PROPERTY OF IBM 31 



~!!ngth lllue 

1 • 4 " .SET" 
2. 5 "GAM MAli 
3. X'FF' II (" 

4. X'FF' ") II 

5. X'FF' "=" 
6. 6 "&ALPHA" 
7. X'FF' "+" 
8. 1 "1" 

Special 1-byte break characters, such as =, 
and I, have the number 255 (X'FF') stored 
byte. 

(, ), +, -, *, 
in the length 

The processing is neatly divided into two stages, first the 
left side of equal sign is handled and then the right side. 
The left side must be one of three basic forms: 

1. .SET SYMBOL = ---
2. • SET SYMBOL () = ---
3. .SET SYMBOL(n)=---

Each case is handled somewhat differently. In all cases, 
the corresponding entry in the symbol table is found or 
created, if it did not previously exist in the sy.bol table. 

The right side of the equal sign may be either a cingle 
token or an arithmetic expression. If it is a single token, 
it may be either quoted or unquoted, for example: 

1. • SET W = , HELLO' 
2. • SET X = HELLO 
3. • SET Y = '*&X.*' 
4. • SET Z = *&X.* 

Cases 1 and 2 are treated exactly the same, the quotes are 
only needed if there are imbedded blanks. Cases 3 and 4 are 
handled differently. Y will b~ assigned the value "*&X.*" 
since set substitution for &X is suppressed, whereas Z will 
be the value "*HELLO*" since set substitution for &X is 
requested. NOTE: Since the general Substitute-Symbol ON 
control word takes affect immediately after reading the 
input line, the symbol &X will be substituted in both cases 
3 and 4 even before processing by the Set-symbol control 
word it Substitute-Symbol ON mode is active. If case 3 is to 
set Y to the value "*&X.*", then Substitute-Symbol OFF must 
be in effect. 

If the right side of the equal sign is an arithmetic 
expression, it is evaluated left to right. Constants, such 
as 14, are converted to binary for computation and symbols, 
such as &COUNT, are retrieved from the symbol table and 

32 LICENSED MATERIAL - PROPERTY OF IBM 



converted to binary for computation. 

After the right side has been processed r the resulting value 
is stored in the symbol table entry located during the first 
step. 

The SCSUB entry of the SCSYM CSECT performs the symbol 
substitution function. It is automatically called by the 
READ routine to scan and process each input line if 
substitution mode is in affect. The line is scanned left to 
right for set symbols. After sUbstitution for a symbol, the 
line is rescanned left to right. The sUbstituion is 
complete when a scan is made that does not find a set symbol 
to be substituted. For example, the sequence: 

.SET X = 'A' 

.SET Y = 2 

.SET A1 = 'Monday' 

.SET A2 = 'Tuesday' 
Today is &&X.&1 

will result in the following sUbstitutions: 

1- Today is &&X.!..&Y (scan and find &X .. ) 
2 .. Today is &A&Y (substitute for &x.) 
3. Today is & A!!! (scan and find &1) 
4. Today is &A2 (substitute for &Y) 
5. Today is !!!~ (scan and find &A2) 
6. Today is Tuesday (substitute for &A2) 

If a complete array substitution is requested, such as 
&BET1(*), all elements of &EETA, except for &BETA(O), are 
substituted. The elements are separated by a comma and a 
blank. If the sequence illustrated in Figure 4 had been 
processed, the text: 

.SUESTITUTE; The names are &EET1(*) •• 

would result in the line: 

The names are John, Madnick, Stu. 

If such an array substitution causes the line to exceed 130 
bytes, further SUbstitution is suspended and the substituted 
portion is provided to the READ routine for processing along 
with a return code indicating that the substitution is 
incomplete. The entry SCSUE2 may be used to resume 
substitution and return the next portion. SCSUB2 should be 
called repeatedly until it returns a code that indicates 
that substituion has been entirely completed. 

LICENSED MATERIAL - PROPERTY OF IEM 33 



Control Words: 
.RD Read-Terminal 
.TY Type-on-Terminal 

These control 
control word, 
many times as 
in the BUFF2 
next WAITRD. 
corresponding 

words are quite simple. For the Read-Terminal 
a WAITRD console I/O function is invoked as 

specified. The actual line entered is stored 
area and is ignored and/or overlayed by the 

If output is not to the console, the 
number of blank lines are generated. 

For the Type-On-Terminal control word, a TYPLIN console I/O 
function is invoked to print the message specified. This 
message is always printed on the terminal regardless of the 
output device specified for the formatted SCRIPT output. 

Control Words: 
• BF End-of-File 
.QU Quit 

Both of these control words utilize the standard SCRIPT 
termination sequence (see Method of Operation Diagram 6), 
but at different entry stages. The End-of-File control word 
simulates the end-of-file error return for the current file 
and uses exactly the same processing sequence, except that 
the current file is ~Q! closed (i.e., the call to the CMS 
file system function FINIS is bypassed). This corresponds 
to step 2 in Method of Operation Diagram 6. 

The End-of-File control word causes input processing to 
revert to the file that invoked, the current imbed file. If 
the current file was not imbedded, then processing 
terminates. The Quit control word, on the other hand, 
results in an unconditional immediate termination. This 
corresponds to step 5 in Method of Operation Diagram 6. 

Termination processing is 
TERMINATION section. 

explained further in the 

34 LICENSED MATERIAL - PROPERTY OF IBM 



FILNAM 

~ 
(current 

End of file on filename, etd 
current file CD Close current file 
termination 

End-of-fi Ie => control word @ If there is no other "open" file (i.e. file that 

termination invoked current IMBED file!. go to ® 

IMBED Stack ~ (] Revert back to previous input file by obtaining IMBED Stack 
filename, etc., from IMBED stack 

0) Go to READ routine retry (normal processing) or 
main routine loop (end-of-file control word 
processing) 

Quit control word ~ ® Print a,ny residual text line 

termination 

Error ~ ® Close all open files, if any 

termination 

(j) erase temporary file CMSUT1 SCRIPT 

® Release storage allocated for SAVE/RESTORE 
stack and multiple column buffers, if any 

® If this is the first of two passes, reset initial 
conditions and restart SCR IPT processing 

@ Release storage allocated for set-symbol table, 
if any Exit 

@ Close any output file or printer spool file 

@ Disable the SPIE 

@ Set return code and return to the CMS 
command processor Exit 

METHOD OF OPERATION DIAGRAM 6. TERMINATION 

LICENSED MATERIAL - PROPERTY OF IBM 35 



Control Words: 
.CB column-Begin 
.CC Conditional-Column-Begin 
.CD Column-Definition 

The processing of these control words, as well as the 
Balance-Columns (.BC) , No-Balance-Columns (. NB) , and 
Column-Length (.CL) control words, are all highly related to 
the multiple column processing mechanism used in SCRIPT. 
Thus, the overall mechanism will be explained before 
elaborating upon the processing of the individual control 
words. 

When operating under standard single-column format, SCRIPT 
directly outputs a text line as soon as it has been 
completely formatted. Thus, at any time, there is at most a 
single line of text, the residual line, buffered in main 
storage. This line is kept in link~d list element form 
(LLEP). When operating under multiple-column format, the 
entire page of text must be formatted and saved internally 
before any output can be generated. After the page has been 
completed, the columns can be balanced, if necessary, and 
the composite multiple-column output lines can be produced. 

Storage space to save the page of text is allocated via 
GETKAIN. A variable conditional GET!AIN request is issued 
for 21120 bytes (approximately 160 lines of 132 bytes each 
buffer capacity), although processing will proceed if as 
little as 4096 bytes of buffer space is available. If during 
processing, there is insufficient buffer space to hold a 
complete page of text, an error termination occurs. This 
error could occur if the page size is defined very large 
(for example, 400 lines per page) or if the user's virtual 
machine is so small that there is little buffer space 
available. 

The text lines are stored as variable-length character 
strings within the allocated storage buffer area. Each data 
line starts on a half-word boundary and begins with a 
four-byte header followed by the actual text. The header 
consists of two half-word fields: a relative pointer to the 
next data line and the actual length of the current data 
line. Figure 5 presents an example of the text storage 
format. The four text lines illustrated are 15 bytes 
(X' OOOF'), 1 bytes (X' 0001'), 1 byte (X' 0001'), and 16 bytes 
(X'0010') long, respectively. Each data line specifies the 
relative address of the next data line. The absolute 
address is computed by adding the relative address to the 
base address of the storage area. 

36 LICENSED MATERIAL - PROPERTY OF IBM 



!~! !in~§ (4 lines) 

1. This is line 1. 
2. Line 2. 
3. 
4. Third data line. 

Assume storage buffer starts at location X'28000' • 

X'28000' 
X'28014' 
X'28020' 
X'28026' 

.!!at~ Lin~~ 

X'0014',X'000F',C'Tbis is line 1.' 
X'0020'X0007',C'Line 2.' 
X'0026',X'0001',C' , 
X'0000',X'0010',C'Tbird data line.' 

A A A 
I I L-Data 
I I 
I L-Data length 
I 
L-Relative address of next data line 

Figure 5. Example of Text storage for Multiple Column 
Processing 

LICENSED MATERIAL - PROPERTY OF IBM 37 



For example, the relative address X'0014' specified on the 
first data line indicates that the second data line starts 
at X'28000' + X'0014' = X'28014'. 

The data line with its associated header information is 
called a Line Control Block (LCB). The LCB's are grouped 
into "areas" (i.e., columns). There is a separate Area 
Control Block (ACB) for each group of LCB's. Each ACB 
specifies the address of the first LCB and last LCB in the 
area as well as a count of the number of LCB's in the area. 
All the LCB's in an area group are chained together via the 
"next LCB" relative pointer in the LCB header. Figure 6 
illustrates the relationship between the ACB's and LCB's. 
There are 2 ACB's in use, each represents a logical sequence 
of print lines. The reader should examine the figure and 
decipher the messages represented by each ACB. 

In order to manage the overall buffer storage space, there 
is a single storage Control Block (SCB). Most of the SCB 
information is quite static, such as the location (base 
address) of the buffer, the size of the buffer, the ending 
address of the buffer and the minimum/maximum space to be 
requested via GETMAIN. The SCBNEXT field is the most active 
data element of the SCB. The buffer space is allocated on a 
"wrap-around" basis. LCB's are allocated space one after 
another starting at the beginning of the buffer area. When 
the end of the buffer is reached, allocation restarts at the 
beginning again. The SCBNEXT field specifies the address of 
the buffer space to be allocated next. Some of the more 
subtle details will be explained below. It should be noted 
that conventional "garbage collection M techniques are not 
used and the buffer space is sequentially allocated. 

Now that the LCB, ACB, and SCB mechanisms have been 
described, the overall multiple column processing technique 
can be explained. SCRIPT currently uses nine ACB's, called 
COLACBS, one for each of up to 9 text columns. The input 
text lines are formatted exactly as if it were single column 
processing. The Column-Lengtb or Line-Length settings 
control the length of each generated line if FORMAT mode is 
in effect. Instead of outputting each formatted line onto 
the terminal, printer, or file, it is stored in the buffer 
area via the LSTORE routine and associated with COLACB(1) , 
the first ACB. When the first column has been completed, 
either by filling all the lines or by an explicit 
Column-Begin control word, the page line counter, PLCT, is 
reset to the top of the column and formatting continues -
this time using COLACB(2). This process continues for as 
many columns as the user designated on the Column-Definition 
control word or until an explicit Page-Eject control word is 
encountered. This procedure is only used if two or more 
columns have been specified or if a single column has "been 
specified but it is not to start in the first print position 
of the line according to the user's ColUmn-Definition (e.g., 

38 LICENSED MATERIAL - PROPERTY OF IBM 



bQ~~!!~!! 
X'28000' 
X'28008' 
X'2800E' 
X'28014' 
X'28018' 

lCBl 

ACBFlRST 
ACBLAST 
ACBLINES 

I£B2 

ACBFIRST 
ACBLAST 
ACBLlNES 

= 
= 
= 

= 
= 
= 

b£~~§ (in buffer area) 
X'0018', X'0007', C'This is' 
X'OOOO', X'0006', C'wrong.' 
X'0014', X'0005', C'It is' 
X'0008', X'0003', C'not' 
X'OOOO', X'OOOB', Clan example.' 

X'28000' 
X'28018' 
X'00002' 

X'2800E' 
X'28008' 
X'00003' 

Figure 6. Relationship Between Area Control Blocks (ACBs) 
and Line Control Blocks (LCBs) 

.CD110). 
After all the required columns have been filled or there has 
been an explicit Page-Eject control word, preparation for 
actual output commences. If column balancing is in effect 
and there has not been any explicit Column-Begin control 
word, the columns are balanced. This is accomplished by 
evenly distributing the LCB's among the ACB's. This actually 
involves several steps. First, all the LCB's are combined 
into a single LCB chain. The number of LCB's is divided by 
the number of columns to determine the appropriate number of 
LCB's desired per column. The one long LCB chain is then 
subdivided into sequences of the appropriate length and 
assigned to the ACB's. 

The output lines are formed by getting one line out of each 
ACB via the LFETCH routine. Each line is positioned in the 
output buffer space as specified in the user's 
Column-Definition control word. The line is then outputted 
to the terminal, printer, or file. This process continues 
for each line of the page until all the ACB's are empty. The 
LFETCH routine automatically deletes the LCB from the buffer 
area and sets the storage space to zero. If the LSTORE 

LICENSED MATERIAL - PROPERTY OF IBM 39 



routine ever attempts to allocate an LCB in space that is 
non-zero, this would indicate that the buffer space was too 
small and an error exit would occur. 

After the entire page of text has been extracted from the 
buffer space and outputted, normal sequencing continues. 
Footings and headings are generated and processing of the 
next page of text commences. Thus, in multiple column 
processing, an entire page of text time is kept in main 
storage. 

Control words: 
.DI Delay-Imbed 
.SP Space-Lines 
.TB Tab-Setting 
.TR Translate-Character 

These control words are each handled quite specially and 
will be explained separately. The Delay-Imbed control word 
copies the designated input text lines directly into a 
temporary file named CKSUT1 SCRIPT. The CKS file system 
functions, such as ERASE, WRBUF, and FINIS, are used for 
this purpose, in addition to the SCRIPT READ routine. While 
copying, each line of input must be examined for the 
possibility of a .DI OFF if the Delay-Imbed was invoked by a 
.DI ON. When the copying is completed either by the user 
specified line count or a .DI OFF, the DIPENDFG flag is set 
and control returns to the SCRIPT main processing loop. 
Normal SCRIPT processing resumes. After every page eject, 
whether automatic or explicit, the DICHK routine is always 
invoked. If the DIPENDFG flag is not set, DICHK does 
nothing. If the flag has been set, any residual text lines 
are appended to the CKSUT1 SCRIPT file and the DINEXTFG flag 
is set. Control returns to tne normal SCRIPT processing. 
Eventually, the READ routine is used to get the next input. 
At that time the DINEXTFG flag is examined. If it is set, 
the line ".IK CKSUT1" is returned as the next line to be 
processed. From this point on, processing is handled by the 
Imbed control word routine. 

The Space-Lines control word routine determines the number 
of lines to be spaced by multiplying the user specified 
count by the line spacing count as previously set by the 
Single-Space, Double-Space, or Line-Spacing control words. 
The SPACER utility routine is used to actually produce the 
appropriate number of blank output lines. 

The Tab-Setting control word routine uses two 
TABS and NEWTABS. Each table contains a 

tables named 
list of tab 

40 LICENSED MATERIAL - PROPERTY OF IBM 



settings, each entry is 2 bytes long. One byte specifies the 
column position, the other byte specifies the fill character 
to be used. The TABS table contains the default tab 
settings. When a Tab-Setting control word is encountered, 
the NEWTABS table is set as specified. The TABTAB pointer 
points to either TABS or NEWTABS. It is initially set to 
TABS and is reset to TABS whenever a Tab-Setting control 
word with no settings is encountered. TABTAB is set to 
NEWTABS whenever new tab settings are in effect. The SCRIPT 
line formatting routines use the tab settings to produce the 
desired result. While each input line is in the Linked List 
Element Form, the tab character is converted to the "fill" 
character, which is normally a blank, and the character 
multiplier is set to generate the appropriate number of 
"fill" characters. When the line is later linearized for 
output, the desired effect takes place. 

The Translate-Character control word routine uses a 256 byte 
table named TRANTAB. This table is used by means of the 370 
TRANSLATE (TR) machine instruction. If either the TRANSLATE 
option was specified in the SCRIPT command line or any 
Translate-Character control word was processed, the TRSWS 
flag is set. Subsequently, every output line is subjected to 
translation immediately prior to actual output. Each 
Translate-Character control word sets one byte in the 
TRANTAB table. 

The SCRIPT termination processing 
in the section explaining the 
End-of-File and QUIT. Method 
describes the overall process. 

has already been covered 
Group 8 control words, 

of Operation Diagram 6 

Termination processing may be invoked due to the following 
events: 

1. Encountering a physical end-of-file or End-of-File 
control word while processing the primary input file. 

2. A Quit control word. 

3. An error condition (certain error conditions are 
recoverable and do not cause termination if the 
CONTINUE option had been specified). 

LICENSED MATERIAL - PROPERTY OF IBM 41 



This section lists the SCRIPT program routines and describes 
their function. Each individual assembly module, control 
section (CESCT), and entry name is identified. 

The SCRIPT program consists of four separate assembly 
modules named: SCSPRT, SCSFOR, SCSLNK, and SCSLIN. The 
SCSPRT module, which contains the SCRIPT CSECT, is the 
primary routine of the program. It includes the 
initialization, main processing loop, and termination 
functions of the SCRIPT program. The other assembly modules, 
and their associated CSECTs and ENTRYs, serve as utility 
routines to the SCSPRT module. Thus, the SCRIPT program 
structure has only a two level module hierarchy. 

As noted above, the SCRIPT program consists of four assembly 
modules. These assembly modules are further divided into 13 
control sections (CSECTS). In addition to the CSECT names, 
there are 31 entry-points into these control sections. The 
module directory, depicted in Figure 7, indicates the 
hierarchical re~ationship between assembly modules, control 
sections, and entries. For each control section and entry 
there is a brief description of that entry's function. 

INTERNAL SUBROUTINES OF SCSPRT 

The SCSPRT assembly module (SCRIPT CSECT) contains an action 
for every SCRIPT control word. Many of these actions merely 
involve setting a binary switch and are performed by using a 
common routine with a parameter. The other actions require 
subroutines internal to the SCSPRT module. In some cases 
entries into the other assembly modules are used to perform 
part of the control word action. These control word 

42 LICENSED MATERIAL - PROPERTY OF IBM 



Control 
Assembly Sections 
Module (CSECTs) 

SCSPRT 
SCRIPT 

TAB 

SCSFOR 
SCSFOR 

SFOR 

SLNK 

LINKAREA 

STITLE 

SABBREV 

Entries 

SPRT 
SCRIPT2 
SCSPRT 

MERGE 
ADJUST 
CENTER 

LINKINIT 
LINKPUT 
LINKGETT 
LINKGETP 
LINKSTAR 

ETENTRY 
EBENTRY 
BTENTRY 
TTENTRY 
OTENTRY 
OBENTRY 
HEENTRY 
FORMTITL 
PSENTRY 

SPRCWORD 

Description 

Main module. 
Alternate name. 
Alternate name. 
Alternate name. 

Control word table. 

Dummy CSECT. 

Merge, truncate and adjust LLE lines. 
Append new line to residual line. 
Insert fill characters~ 
Center or right-adjust line. 

Process Link List Element (LLE) lines. 
Initialize link list storage. 
Convert string to LLEF. 
Convert LLEF to typewriter format. 
Convert LLEF to printer format. 
Pointer to start of free list. 

Link List Element storage area. 

Process title control words. 
Process even-top title. 
Process even-bottom title. 
Process bottom title. 
Process top title. 
Process odd-top title. 
Process odd-bottom title. 
Process heading title. 
Format and return appropriate title. 
Set page-number-symbol character. 

Convert unabbreviated control word. 
Print list of legal control words. 

Figure 7. Module Directory (Part 1 of 2) 

LICENSED MATERIAL - PROPERTY OF IBM 43 



Control 
lssembly sections 
lodule (CSECTs) 
.. _---- --------

;CSLNK 
SCSLNK 

SERR 
SERRM 

SCSYM 

5CSLIN 
SCSLIN 

Entries 
-------

SCSET 
SCSUB 
SCSUB2 
TABCLOSE 

LOPEN 
LCLOSE 
LSTORE 
LPAGE 
LFETCH 
LBALANCE 

Description 

Dummy CSECT. 

Print error messages. 
Error message table. 

Process set-symbol and substitution. 
Process set-symbol control word. 
Scan line and substitute symbols. 
Resume substitution if SCSUB overflow. 
Deallocate symbol table space. 

Process multiple column format. 
Initialize buffer space. 
Deallocate buffer space. 
Store a line in buffer. 
Form a multiple-column line. 
Fetch a single line from buffer. 
Rearrange buffer lines to balance column 

Figure 7. Module Directory (Part 2 of 2) 

44 LICENSED MATERIAL - PROPERTY OF IBM 



subroutines are identified in the assembly listing for 
SCSPRT. The mapping from control word to action routine is 
specified by the TAB CSECT which is also part of the SCSPRT 
assembly module. 

The following utility subroutines are internal to the SCSPRT 
assellbly module: 

COLUMN 

COLDUMP 

CVB 

GETARG 

GETNUI! 

GPARSE 

IOPRINT 

PARMROUT 

PAGE 

PRINT 

PRINT1 

PRINT2 

PRINT3 

READ 

Start new column (invoked by Column-Begin or 
bottom of page). 

Output a page of mUltiple column text that has 
been previously stored in the multiple column 
buffer area. 

Convert EBCDIC character string to a binary 
number. 

Scan input line in BU112 for location of first 
argument. 

Scan input line in BUFF2 and convert argument to 
binary number. 

Scan input line in BUFP2 and convert in to 
sequence of 8-byte tokens. 

Direct output line to the appropriate output 
device (terminal, printer, or file). 

Process the CMS Parameter List and set the 
appropriate binary switches and variables. 

Generate a page-eject including bottom and top 
titles required. 

Convert text line from link list element form 
(LLE1) to linear form and initiate output 
operations (uses the PRINT1, PRINT2, and PRINT3 
utility routines). 

Adjusts the character multiplier of a LLE1 line 
to account for amount to be centered. 

Convert LLE1 line to linear form appropriate for 
output device. 

Cause the linearized line to be outputed (via 
IOPRINT). 

Read next input line into BU1P2 area. other 
related activities are initiated in this 

LICENSED MATERIAL - PROPERTY OF IBM 45 



SPACER 

routine, such as set-symbol substitution and 
end-of-file processing. 

Generate the appropriate number of blank lines. 

SWON/SWOFF OR or AND, respectively, the 2-byte argument 
with the SWITCH and AUGSW switch bytes. 

46 LICENSED MATERIAL - PROPERTY OF IBM 



This section describes the error handling procedure employed 
by SCRIPT. It also outlines facilities provided in SCRIPT 
that assist in the debugging process. 

Whenever an error is detected during SCRIPT processing, the 
SERR routine is invoked for error handling. It is provided 
with the following information in its parameter list: 

1. Index code (error number x 4). 
2. Last control word line. 
3. Cumulative input line counter. 
4. Current file name. 
5. Current file line number. 
6. Number of active files. 
1. Pointer to the Imbed stack. 

Associated with each index code there is: error message 
text, an action code, and a return code. Depending upon the 
action codes, the count of lines read, the trace back of 
Imbeds, and/or the last control word line will be printed on 
the terminal. There are three possible return actions: (1) 
do not allow error retry, use standard termination sequence, 
(2) allow error retry if user had specified the CONTINUE 
option, or (3) terminate immediately without completing the 
normal termination sequence. 

In addition to conventional debugging techniques, SCRIPT 
provides two addition diagnostic aids. By specifying DEBUG 
as a SCRIPT command option, the SPIE program interrupt 
processor will be inhibited. Under these circumstances, the 
eMS DEBUG program can be used for interactive examination of 
SCRIPT variables and flow of control. See the IB~ !i!!~~l 

~2£hi~~ l2£ili!yL]lQ EfQgf2mmef~2 Guig~ !Q Q~~Qgging, 
GC20-1801, for additional information. 

Program errors are difficult to isolate if the error is 
allowed to propagate its effect so that the error condition 

LICENSED MATERIAL - PROPERTY OF IBM 47 



is not detected until much later during processing. To help 
isolate errors, SCRIPT checks the legality of variables at 
various points during processing. If an internal variable is 
found to be invalid, processing terminates immediately with 
an appropriate error message. The SCRIPT user is advised to 
forward the error message printout to the appropriate 
programming personnel for error analysis. A similar 
procedure is used if the SCRIPT program interrupt handler is 
activated (established via the SPIE macro instruction unless 
the DEBUG option has been used) • 

The register usage for the SCSPRT module are listed below. 

!!ggi§!gr 
o 
1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 

14 

15 

48 

y§g 
Work register. 
Contains address of parameter lists, also used as 
work register. 
work register. 
Work register. 
Work register. 
Linkage resiter (return address) for internal 
subroutines, also used as work register. 
Base register. 
Work register. 
Base register. 
Work register. 
Work register. 
Work register. 
Work register. 
Contains address of save area, simultaneously 
serves as a base register. 
Linkage register (return address) to the CMS 
command processor, also used as work register. 
Linkage register (entry address) to SCRIPT 
external utility routines. 

LICENSED MATERIAL - PROPERTY OF IBM 



.;.' 



L Y20-0762-0 

International BUllnell Machlnel Corporation 
Data Proceiling Dlvilion 
1133 Weltchester Avenue, White Plalnl, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nallons Plaza, New York, New York 10017 
(lnternallonal) 

LICENSED MATERIAL ~ PROPERTY OF IBM 

~ 
:tl 
"tl 
-t 
W 
-.,J 
o 
-t 
CD 

:i 
"tl a 
(') 
CD 

~, 
:l 
cc 
." 

~. 
;+ 
< 
c 
" a. 
!!l 
< 
~. 

c 
!!!. 
s:: 
II> 
(') 

:T 
5' 
CD 

." 
Q) 

~ 
;+' 
< 

r 
-< 
'" o 
6 
-.,J 
en 
'" 6 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50

