
'" I

Installed
User
Program

SH20-1114-0

SCRIPT/370
Text Processing Facility
Under Virtual Machine Facility/370
(VM/370)
Program Description/
Operations Manual

Program Number 5796-PAF

This manual describes an IBM internally-developed program
called SCRIPT/370. This program executes as a command
of the Conversational Monitor System (CMS), a component
ofVM/370. SCRIPT/370 is a successor to SCRIPT, a text
_processing Type III program supplied with CP-67/CMS.
Through the facilities of SCRIPT/370, text files developed
using the CMS Editor may be formatted in single- or multiple
columns,justified or ragged, and with automatic pagination.
Additional facilities of the SCRIPT processor permit accepting
input from a terminal during processing, the inclusion of
other SCRIPT files, and extensive top and bottom title
(Le., running head and foot) capabilities. Other formatting
and control is facilitated by special symbols that may be
substituted for frequently-used control word sequences or
used to generate tables of contents.

I,

SUPPORT PERIOD SERVICES

During a specified number of months immediately following initial availability of this licensed program,
designated as the SUPPORT PERIOD, the customer may submit documentation to a designated IBM location
when he encounters a problem which his diagnosis indicates is caused by an error in this licensed program.
During this period only, IBM through the program author(s) will, without additional charge, respond to an
error in the current unaltered release of the licensed program by issuing known error correction information
to the customer rep..orting the problem and/or issuing corrected or notice of availability of corrected code.
However, IBM does not guarantee service results or represent or warrant that all errors will be corrected. Any
on site programming services or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WARRANTY OF ANY
KIND EITHER EXPRESS OR IMPLIED. >

First Edition (November 1972)

This edition corresponds to Release 1 of SCRIPT/370 and to all subsequent modifications until
otherwise indicated in new editions or Technical Newsletters.

Changes are periodically made to the specifications herein; before using the publication in
connection with the operation of IBM systems, refer to the latest IBM System/360 and System/370
SRL Newsletter, Order No. GN20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office in your locality.

Address comments concerning the contents of this publication to IBM Corporation, VM/370
Publications, 24 New England Executive Park, Burlington, Massachusetts, 01803.

© Copyright International Business Machines Corporation 1972

(
~

\ This document has
The original copy
control of VM/370.

been formatted entirely by SCRIPT/370.
was printed on an IBM 1403 printer under

Users of SCRIPT/370 will find further information about the
CMS "and CP commands available to t~em in t~e following IBM
publications:

Persons evaluating the use of SCRIPT/370 in an installation
should review, in addition to this manual, the following IBM
pUblications:

IB~ Vi£lY~! ~~£~i~g ~~£ililIL11Q: IntrQ~y£!io!,
GC20-l800
I!!!1 !itl~! l!~chi!lg K~£iliiIL37Q: ~la!lni.ng ~g ~.§te!!.§
Geng~!tiQ!l Qui~~, GC20-l80l

Programmers planning to extend the facilities of SCRIPT/370
through modification will need the following licensed
publication:

I.TRODUCTION •••••••••••••••••••••
Preparing to Use Script/370 ••••••
Your Typewriter Terminal ••

Preparing to Log In •••••••••
Logging In. • . • • . • . ..

Your Script File

• • • • • • •• 7
• • • • • • • • • • • 8'

• ••••••• 8 · ·8
• .9

• • • • • • • • • • • • .11
Creating and Modifying Your Script File wita
Correcting Typing Errors •••••••••••••••••

Edit ••••• 11
••••••••• 1'2

Creating a Script File. ••• • ••••••••••••• 13
Entering.a New File •••••••• • • • • • • • • • .13
Filing It Away ••••••••••••••••••••• ..14
Saving Entries for Future Filing ••• ~ •• • •••••••• •• lq
Correcting Your File ••• • • • • • • • • • • • 1 5
Printing Your file •••••• ~ •••••••••• • •••• • 15

Logging out•....... • •••• • 15
Sample Terminal Session ••••••••••••••••• 16

SCRIPT/370
Notational

CONTROL WORDS ••••••••••••••••••••••••••••••••• 18
Conventions Used in Tkis Manual. • •••• • 18

Page Setup and Formatting •••••••••••••••••••••••••••••••• 19
Specifying the Overall Dimensions of a Page ••••••••••• 20

Line-Length (.11) ••••••••••••••••••••• •••••••••. 20
Page- Lengt 1a (. pI) ••••••••••••••••••••• • •••••••• • 21
Top-Margln and Bottom-Margin (.tm and .bm). • .21
Heading-Margin (.hm) ••••••• •••• 22
Footing-Margin (.fm) ••••••••••••••••••
Top-Title (.tt) ••••••••••••••••••••••••••

• ••• 22 · .. .23
Even-Page-Top-Title and Odd-Page-Top-Title

(• eta n d • 0 t) • • • • • • • • • • • • • -. • 2 4
Bottom-Title (.bt) ••••••••••••••••••••••• ~ ••••••••• 25
Even-Page-Bottom-Title and Odd-Page-Bottom-Title

(.eb and .ob) •••••••••••••••••••
Specifying Pagination ••••••••••••••••••••

Page-Number-Symbol (. ps) •••••••••••
Page-Numbering Mode (. pn) ••••••••••

Example of Page Setup and Formatting ••
Text Formatting ••••••••••••••••••••••••••

Justified Text ••••••••••••••
Format-Mode (.fo) ••••••••
Justify-Mode (. ju) •••••••••••••
Conca tenate-Mode (. co) •••
No-Concatenate-Mode (.nc)
Break (. br) ••.••••••••••••••••••

Ragged Right Output •••••••••••
No-Justify-Mode (.nj) ••••••••••

....

• .25
• ••••••• 25

• ••••••••• 25
• ••• 26
• ••• 28 · • ••• 30

· • ••• 30
• •• ~ 31
• ••• 31

• ••••••••• • 32
• .••.••••. . 32

• ••• 32
• ••••••••• • 33

• .33
As-Is Ou tput ••••••••••••••••••••••••• ~ ••••••••••••• • 34

No-Format-Mode (.nf)
Right-Adjusted output ••

Right-Adjust (.ri)
Centered output •••••• · ..

••••••• • 34
•• ., •• • 34 · · . ..34

• ••••••••• • 36
Center (.ce) •••••••••••••••••••••••••• • ••••••••• ,36

Supplemental Page Formatting ••• · • ••• 37
Line Spacing ••••••••••••••••••••••••• • ••••.•• 37

Space-Lines (.sp) ••••••••
Single-Space-Mode (.ss)
Double-Space-Mode (.ds)
Line-Spacing (.ls)

Page Spacing ••••••••••••••••
Page-Eject (. pal •••••••••

• •••••••••••• • 37
• e· • • • • • • • • · ... • ••••••••• • 38

• ••••••••• • 38 · ... • ••••••••• • 38
• •••••••••••••••••••••• • 39

Condi tional-Page-E ject (. cp) •••••••
Even-Page-Eject and Odd-page-Eject

• ••••••••••• • 40
(.ep and .op) ••• 40

Margin Modification •••• ~ ••••
Indent (.in) •••••••••••••
Offset (.of) •••• ~ ••••••••
Unden t (. un) •••••
T a b-Set tin g (• t b) • • • • ••••

Incorporating Other Files •••
Imbed (.im) ••••••••••••••
Delay-Imbed (. di) ••••••••
Append (. ap) •••••••••••••

•• ••••••••••••••• 41 · • ••• 41 · ... • •••••••• • 42
• ••••• e" •••••• • 43

• ••••••••••• • 44 · • ••••••••• • 1.1.5
• ••••••••• 46 · · ... • ••••.•••.• "7 ·49

End-of-Pile (.ef) ••••••••••••••••••••• ••••••••••• 49
Quit (.qu) •••••••••••••••••••••••••••••••••••••• ~ •• 50

Preserving Pile Status. · • ••••• ' •.••••• • 50
• ••••••••• 52 Save-Status (.sa) •••

Restore-Status (.re) ... • ••••••••••••••• • 53
Additional Facilities •••••••••• · ... • •••••••••• 55

Condi tional-Section (. cs) ••••••. · ... • ••• 55
Revision-Code (.rc) ••••••••••••••• • ••• 57
Control-Word-Separator (~cw) · .. · • ••• 59
Comment (.cm) •••••••
Literal (.li) ••••• ~ ••••••
Translate-Character (.tr)

••••••••••••••••• 60
·

Multiple Column Processing •••••
Column-Definition (.cd) ••
Column-Length (.cl) ••••••••••••

· ...
· ..

Col u m n - Be gin (• c b) •••••••••••••••••
Conditional-Col~mn-Begin (.cc)
Balance-Columns (.bc) ••••••••••••••
No- Balanced-Columns (. nb) •••••• · ...

Using Multiple Column Facilities.'. · ..
Termi.nal Input/Output •••••

Read-Terminal (.rd).
Terminal- Input (. tel •••••
Type-On-Terminal (.ty) •••

. -... . ~.

Set Symbol and Macro Facilities ••
set-Symbol (.se) ••••••••
Substitute- Symbol (. su)
Using set-Symbols •••••••

• • • • • • • • e •

· • ••• 60 · • ••• 61 · •••• 64 · • .64 · •••• 64 · .. • .65 · .. •••• 65
• •• 66

• •••• e .•• • 66
• •• 69

• .70
..70
• .70
• • 72

• ••• 73
• ••••••• 73 · •••• 75

• ••• 77

)

)

IMBED Parameter Passing.~.

THE SCRIPT COMMAND ••••••••••••••••••••••
Using the Options of the SCRIPT Command.
Halting output ••••••••••••••••••••••••••

.79

••.••.•. 80
• ••••.• . 82

..83

SCRIPT/370 ERROR PROCESSING ••••
Error Messages •••••

• • • • . • • . • • • • . . . • • • • • • • • • • . 84
•••• 84

EXAMPLE •••••••••••••••• ..90

USING SCRIPT/370 ••••••• o ••••••••••••••••••••••••••••••••• 115
Using the CMS Editor ••••••••••••••••••••••••••••••••••••• 115

Positioning the Pointer ••••••••••••••••••••••••••••••• 116
Changing Part of a Line ••••••••••••••••••••••••••••••• 118
Example of Using Locate and Change Commands ••••••••••• 118
Changing an Entire Line ••••••••••••••••••••••••••••••• 121
Adding a Line in Edit Mode •••••••••••••••••••••••••••• 122
Listing Part of a File •••••••••••••••••••••••••••••••• 122
Exiting from Edit Mode •••••••••••••••••••••••••••••••• 122

Using Other VM/370-CMS Commands •••••••••••••••••••••••••• 123

INSTALLING SCRIPT/370 •••••••••••••••••••••••••••••••••••• 125
SCRIPT/370 Distribution Tape ••••••••••••••••••••••••••••• 125
System Requirements •••••••••••••••••••••••••••••••••••••• 125
Installation Procedure ••••••••••••••••••••••••••••••••••• 126
System ftaintenance ••••••••••••••••••••••••••••••••••••••• 128

APPENDIX A. COMPATIBILITY WITH SCRIPT (CP-67/CMS) •••••••• 129

APPENDIX -B. CONTROL WORD SUMMARY ••••••••••••••••••••••••• 130

APPENDIX C. ADDITIONAL INFORMATION REGARDING
SET-SYMBOL AND SUBSTITUTE-SYMBOL CONTROL WORDS •••••••• 136

Figure 1. Text Formatting •••••••••••••••••••••••••••••••• 35

Figure 2. IMBED/DELAY-IMBED •••••••••••••••••••••••••••••• 48

Figure 3. Master File Using IMBED, DELAY-IMBED,
and END-OF-FILE ••••••••••••••••••••••••••••••••••••••• 51

Figure 4. Balance versus Non-Balance Multiple
Column output ••• 61

Figure 5. Sample SET-SYMBOL Control Word Usage ••••••••••• 18

Figure 6. VM/310-C~S Command Summary ••••••••••••••••••••• 124

(

The SCRIPT/370 Text Processing Facility (SCRIPT/370) is
invoked via the SCRIPT command of the Conversational Monitor
System (CMS), a component of t~e virtual Machine
Facility/370 (VM/370). Installation of the Script processor
in a VM/370 system automatically validates the SCRIPT
command. SCRIPT/370 operates on files developed through use
of the CMS Editor. As the user develops his file from the
terminal, he includes SCRIPT control words in the form

.control-word xxxx

which direct the operation of the SCRIPT processor as it
reads the file.

SCRIPT/370 has many formatting capabili ties that make 'it
useful for many different kinds of documents such as working
papers, program documentation, reports and internal
newsletters. Combined with the powerful context editing
capabilities of tae CMS Editor, SCRIPT/370 is an efficient
and economical means of preparing these documents.
Modifications and additions to documents 'can be made easily.
In addition, the virtual machine environment of VM/370
permits text processing applications to be run concurrently
with other installation work.

SCRIPT/370 provides various text processing capabilities,
including

• One to nine columns of text per page

• As-is, justified, right-adjust.ed, or ragged right
composition

• Automatic page numbering in Arabic or lower-case
Roman

• Automatic generation of top and bottom titles, with
even and odd page options

• Simple generation of form letters with or without
variable information from a terminal

• Inclusion of the contents of other SCRIPT files

7

• Extensive macro
shorthand symbols
control words

capabilities to permit defining
for frequently-used sequences of

• As many as nine revision indicators that will print
at the left margin

• Conditional printing of different sections of a
document

Because SCRIPT/310 operates in the CMS environment of
VM/310, to make use of it you must first establish a
connection with V8/370 from your typewriter terminal. Once
you have done this, you use the CMS editor to develop a
Script file which contains the information for your
document. This information consists of text, the information
you wish to be printed, and Script control words, special
statements that direct the operation of SCRIPT/370' and
determine the appearance of your printed output.

YOUR TYPEWRITER TERMINAL

Your communication with the computer may be by means of an
IBM 2741 Communications Terminal, similar to an IBM
Selectric (R) typewriter. You will find a switch on the left
side of the cabinet in which the typewriter is mounted; when
the switch is set to LCL you have an ordinary Selectric
typewriter; by switching to COM you can be linked to the
central computer by telephone line, and your typewriter is
now a typewriter terminal. In this latter mode, you and the
computer converse through messages that you type v~a your
terminal to the computer, and responses you receive back at
your terminal. If your terminal is not an IBM 2741, refer to
t h~ do cu men t !!U~ Vi r !.l!~! 1!~£.hi!l~ ~i!i!YL1IQ : !~!! in~!
Q2~£~2 Q~i~~ for information about your terminal.

PREPARING TO LOG IN

In order to log in, that is, to establish a connection with
the system from your terminal, you need a user
identification (userid or ID) and a password, ~nd which you

8

(

~
)

)

can obtain from the operations group at your installation.
To prepare your terminal, set the left margin at 1 and the
right margin at 130, in order to provide maximum typing
width. (You should have a #963 typing element for an EBCDIC
terminal, and a #015 element for a correspondence terminal.)
Make sure the switch on the left side of the cabinet is on
COM.

LOGGING IN

f£Q£~Q~£~_l. If your terminal has a direct wire connection,
simply press the ON button. If there is no response, hit
ATTN. The system types

vm/370 online ijh359 gsyosu

Press the ATTN key.

f~Q£~Q~~~_~. If your terminal has a
connection, proceed as follows:

a) Turn the terminal on.
b) Press the TALK button on the data

proper telephone number.
c) When a high-pitched continuous tone

phone, depress the DATA button on
replace the phone in its holder.

d) After the system types out

vm/370 online ijh359 gsyosu

e) Press the ATTN key.

telephone line

set and dial the

is heard on the
the data set and

After you have completed either procedure 1 or procedure 2,
you are ready to log into the system. Log in by typing

login '10'

For example,

login smith

Press RETURN. System responds with

ENTER PASSWORD:

Enter your password and hit RETURN. (Typeout is suppressed

9

so that no copy of your password appears on the terminal ~
sheet if your terminal has the Print Inhibit feature.) ~

The system may respond with messages g1v1ng special
instructions for system users. It always responds with

LOGON AT 'time' 'day' 'date'

Now that .you are logged in, you are ready to access eMS,
which contains SCRIPT/370. Type

ipl cms

and press RETURN. The system responds with

CMS •• VERSION n.m mm/dd/yy hh.mm

!Q!~: In this publication, single quotation marks denote
that the entry is not a literal entry; it is merely a
description of the information to be entered. For instance,
'ID' indicates that some particular userid should be
entered--~ithQY! the quotation marks.

The printout at your terminal should look something like
this

vm/370 online ijh359 qsyosu

login smith
ENTER PASSWORD:

CP WILL RUN UNTIL 17:00 AND FROM 18:00 TO 24:00
LOGON AT 12.00.00 EST THURSDAY 11/30/72

ip! cms
CMS •• VERSION 1.0 11/30/72 12:00

You are now ready to create a file, print an existing file,
edit (make changes to) an e~isting file, etc. You are in
the eMS command environment. By entering simple commands
(such as EDIT, TYPE, etc.) from the terminal, you access an
extensive set of CMS commands, as well as create and format
Script files.

To distinguish your entries from system responses, it is a
good idea to typ~ your commands in lowercase. (Text lines
of a Script file should, of course, be typed exactly as you
wish them to appear on output.) The system generally types

10

(

\ its messages to you in uppercase. For example, you could
/ type

login SMITH

or

LOGIN SMITH

or simply

login smith

(combination of uppercase
and lowercase)

(uppercase only)

(this is recommended)

Your VM/310 command entries appear to the system as
uppercase, no matter how you type them in; the practice of
using only lowercase for commands is merely a convention to
improve the readability of your terminal printout.

The source data for your document is stored for you by the
data management facilLties of CMS and is called a Script

\ file. It is composed of records and resides on disk space
) allocated to your virtual machine and identified by your

userid. Files are identified by a unique combination of
filename (of your own choosing), filetype (SCRIPT, for all
Script files), and filemode (you need not concern yourself
with this for a while). Script files consist of text lines
and speciai ~ommand words that you type in at your terminal.

\
I

;

CREATING AND MODIFYING YOUR SCRIPT FILE WITH EDIT

The EDIT facility enables you to create your Script file,
make changes to the file, or simply peruse its contents.

There are
facility:

two modes of operation
Input and Edit.

when using the Edit

To make corrections to a file you have created in Input
mode, you must enter ~gi1_~Qg~. Entry to Edit is automatic
when you issue the command shown below. You can use Edit
commands to make revisions to your file; for example, you
can locate a word or string of words, ch~nge a word string
to another word string, go to the next line in _your file,

1 1

delete words from that line, and so on.

_ You can go back and forth between Edit and Input modes (you
will learn how to do this later on), typing in text and
Script commands (Script commands all begin with a period in
position 1) in Input mode, and co~recting your entries in
Edit mode.

The EDIT command is used to invoke the Edit facility:

edit 'filename' script

It is important to familiarize yourself with the system by
means of a practice session at the terminal; in no other way
can you gain the facility that you will need later on for
creating and operating on your own files. While at the
terminal, you might wish to refer to Appendix B, which lists
and bDiefly describes all the SCRIPT commands explained in
greater detail in the body of this manual.

CORRECTING TYPING ERRORS

Errors must be corrected before hitting the RETURN key. (If
you have failed to do this, the EDIT facility can be used to
correct errors to a file that has been written and "saved".
This will be described later.)

One or several ~'s deletes one or several preceding
characters--which may be blanks--and effectively backspaces
the~typing element.

Thus

This es~xail~~mple

is interpreted as

This example

since the first ~ canceled the s (and backspaced one space),
and the next two ~'scanceled the i and I (and backspaced
twice) •

A line is canceled by the ¢ symbol. Thus if, instead of
correcting individual mistakes in the above example, you had
decided to start over again, you would have typed

This esail¢

12

~ and hit RETURN. Then you would have retyped
/

)

)

This example

!2i~: m cannot cancel ¢. Once a ¢ has been typed, all
preceding characters (and blanks) are canceled, and the
effective line begins with the next character after the ¢
sign.

CREATING A SCRIPT FILE

First, decide on a filename, sometimes abbreviated to fn
in this manual. The maximum length o.f a filename is eigh t
characters. Any of the alphameric characters may be used in
the filename: A-Z, a-z, 0-9, i, ~, $. The filename and
filetype (SCRIPT, in this case) uniquely identify a file for
access by eMS commands.

When you are creating a file, make certain you choose a new
and unique filename. Next, issue the command

edit 'filename' script

and hit RETURN. The system responds with

NEW FILE.
EDIT:

You ate now in Edit mode; enter Input mode by typing

i

or

input

The system responds with

INPUT:

You are now in Input mode and ready to type in your file,
one line at a time, hitting RETURN at the end of each line.

Your Script file contains textual information plus special
Script command words for controlling the format of your
output. These commands are typed on separate lines from the
text, and always start with a period in position 1.

1 3

When you have finished typing in your file you must store
it. To do this, you must leave Input mode and enter Edit
mode. To enter Edit, hit RETURN on a "null" line (a line on
which nothing has been typed--not even spaces--and,
therefore, the typing element is at the left margin).

The system responds with

EDIT:

You type

file

and hit RETURN. The system types

R; T= 'CPU times' 'time of day'

At intermediate
generally a good
{as a safeguard
leaving the Edit
RETURN (on a null

points in developing your file, it is
idea to save your entries up to that point
against general system failure), without
facility. You can do this by pressing

line).

System responds with

EDIT:

You type:

save

and hit RETURN. System types

EDIT:

You may now continue editing or adding to your file from the
point where you stopped in order to issue the Save command.
If you want to add to your file, you must type:

input

and hit RETURN.

14

\
I

The File command takes you from Edit mode to the general CMS
command environment. It is more useful when you have
finished creating or modifying a file.

To make changes, additions, or deletions to your file, you
simply reissue

edit IfnI script

which places you in Edit mode. (See "Using SCRIPT/370" for
a fuller description of the Edit facility. A complete
description can be found in the publication, I~~ !i£iY~!
~~£~i~~·f~£i!iiYLJIQ: I~I! GuiQ~, Order No. GC20-1805.)

Later on, you will learn the commands for printing out your
file at your terminal and on the offline printer. These
printouts can be done either in the format you have
determined with your Script control words or unformatted,
that is, with text lines and commands in the same format in
which they were entered. (See .. The SCRIPT Command It.)

At the completion of all your work, including printing your
file, you will want to end your session at the terminal by
logging out of VM/370. To do so, type:

logout

and hit RETURN. The system types out three sets of times:

CONNECT='time' VIRTCPU='time' TOTCPU='time'

and

LOGOUT AT 'time' on 'date'

Press the OFF button on the terminal.

1')

The following example illustrates the use of VM/370, CMS and
SCRIPT/370. You should take this example as a guideline for
your first terminal session.

By the convention of this document, system responses are
shown in uppercase while commands to the system are shown in
lowercase. Of course the file called SAMPLE SCRIPT is a
combination of upper- and lowercase and is stored that way
by CMS.

vm/370 online

login jones
ENTER PASSWORD:

ijh359 qsyosu

CP WILL RUN UNTIL 17:00 AND FROM 18:00 TO 24:00
LOGON AT 11:00:00 EST THURSDAY 11/30/72

ipl cms
CftS ••• VERSION 1.0 11/30/72 11:00

edit sample script
NEW FILE: I

EDIT: ~
input
INPUT:

Text lines and characters are entered in upper and
lower case as appropriate. If no Script control
words are specified, SCRIPT/370 will automatically
generate lines justified at both the left arid right
margins (that is, text printed in the format
of this publication), at 66 lines per page
and 60 characters per line.

When entering text, you can begin each
new paragraph with a tab stroke or blank as the
first character. This serves as a break to the
process of joining (or concatenating)
lines for output.

When all the text is entered, type a null
line.

EDIT:
file
R;

script sample
SCRIPT/370 VERSION 1-LEVEL O.
ADJUST PAPER; PRESS RETURN

16

Text lines and characters are entered in upper and lower
case as appropriate. If no Script control words are
specified, SCRIPT/370 will automatically generate lines
justified at both the left and right margins (that is, text
printed in the format of this publication), at 66 lines per
page and 60 characters per line.

When entering text, you can begin each new paragraph with a
tab stroke or blank as the first character. This serves as a
break to the process of joining (or concatenating) lines for
output ..

When all the text is entered, type a null line.

R;

logoff jones
CONNECT=
LOGOFF AT

When the SCRIPT command is entered in CMS without any
options, a formatted copy of the Script file is typed on the
terminal if a carriage return (null line) is entered after
the prompting message. See the section on script Command
Options for other capabilities of the SCRIPT command.

17

This section describes SCRIPT/370 control words and how they·
are used to determine the appearance of documents printed
via the SCRIPT command. The first set of control words
presented consists of those used for page setup and titling.
These control words enable you to specify top ~nd bottom
margins, line length, and top and bottom titles (running
heads and feet).

The second set of control words described in this section
comprises those used to co~trol text formatting. These
control words determine whether your text will be centered
or flush with the left or right margins, whether it will be
right-justified, as-is, or ragged-right. (These terms are
explained and illustrated as part of the appropriate control
word descriptions.)

Following the text formatting control words are those for
supplemental page formatting such as tab setting, indenting,
page ejection and reserving space for illustrations or
material from other SCRIPT/370 files.

The remaining control words are those that permit you to
specify margin indicators for revised portions of your
document, include only certain portions of it when printing,
accept input from a terminal during printing, and direct
selected portions of your document to the terminal even
though the remainder is being printed offline. Two control
words, set-symbol and substitute-symbol, are described
separately at the end of this section.

Each control word is shown in both its full and abbreviated
form. You may enter ~ither form when developing your
document, as long as you begin each control word with the
period character (.). Control words are separated from their
arguments by a single blank. Multiple arguments are
separated by single blanks. Although the diagonal character
(/) is shown as the delimiter between portions of an
argument, as in the even-page top-title control word, any
character ~hat does not appear in the argument can be used.

18

)
/

Page setup and formatting consists basically of determining
the dimensions of the final text on the page. Using the
control words described below, you can specify top and
bottom margins, left and right margins, the margins between
body text and top and bottom titles (heads and feet), and
the type and position of page numbering. The diagram below
illustrates a piece of paper, marked by the *s. The body of
the manuscript text is enclosed within the inner rectangle
marked "Text". The following margin settings are indicated
on the diagram:

.BM Bottom-margin

.FM Footing-margin

.HM Heading-margin

.IN Indent
_LL Line-length
.PL Page-length
.TM Top-margin

**
* I I *

. * I I *
* .TM I Top Title (if any) *
* I I I * .
* I I • HM *
* I t I * * --*
*
*
*
*
*
*
*
*
*
*

• PL Text

*
*
*
*
*
*

*
*
*
*

* ! * * !--*
* I I I *
* I I .FM *
* I I I * * .EM I Bottom Title (If any) *
* I I *
* ! I I *
***** **

!<--.IN-->I
!<-----------------.LL----------------->I
!<---column 1 of typewriter or printer platen.

19

SPECIFYING THE OVERALL DIMENSIONS OF A PAGE

You specify the overall dimensions of a page primarily with
tw~ control words

LINE-LENGTH or .11
and

PAGE-LENGTH or .pl

These are supplemented by use of the various top and bottom
margin control words to determine exactly where the text
begins and ends on the page whose length you have specified.

The LINE-LENGTH control word determines the maximum number
of ch~racters that will be printed as measured from the left
margin. This value includes spaces, indents, tabs, and
offsets (See the OFFSET control word.), but not underscores.
Its format is

.11 n

n specifies the maximum number of characters in each
output line. If you do not enter ~ LINE-LENGTH
control word, SCRIPT/370 will choose an output
line length of ~Q.

The actual number of characters in any given output line is
determined by the combination of the line length you have
specified and the text formatting you have selected (See
Text Formatting Control Words). If you have specified
CONCATENATE-JUSTIFY, SCRIPT/370' will first attempt to fill
up the line by taking words from the next line without
exceeding the line length specified by the .11 control word.
SCRIPT/370 then fills the remainder of the available line
length by inserting blanks between words. Lines longer than
the specified output line length are shortened by moving
words to the next line and inserting blanks in the resulting
shorter line.

The line length you specify takes effect on the first page
started after the control word is read by SCRIPT/370.

20

)
The PAGE-LENGTH control word communicates to SCRIPT/370 the
maximum number of lines and line-spaces that can fit on the
physical page. This allows SCRIPT/370 to keep track of how
many lines remain before it must eject to the next page, or
pause so that you may insert a new page. Its format is

.pl n

n is the number of lines possible on the output
page. If you do not enter a PAGE-LENGTH control
word, SCRIPT/370 will choose a page length of §&.
This corresponds to six lines per inch (standard
for most terminals) using ll-inch paper.

Because the PAGE-LENGTH control word may be included
anywhere in the document as often as necessary, you are not
limited to using only one size of paper for your output. By
specifying PAGE-LENGTH as 82, for example, your document, or
portions of it will print properly on legal-size paper. This
same page length could be used to print your document or
certain pages of it on oversize pages which were to be
photo-reduced during reproduction.

Using the TOP-MARGIN and BOTTOM-MARGIN control words, you
determine what portion of the total page length will be
occupied by body text. These control words allow you to
specify the number of blank lines that will appear at the
top and bottom, respectively, of each page of your document.
If, for example, you had specified a page length of 66 (.pl
66), and top and bottom margins of 30, your document would
be printed with six lines per page.

The format of the TOP-MARGIN control word is

.tm n

n is the number of blank lines to appear between the
top of the page and the first line of body text.
If you do not enter a TOP-MARGIN control word,
SCRIPT/370 will choose a value of ~.

21

If you change top margin settings within your document, each
new setting takes effect on the first page started after the
TOP-MARGIN control word is read by SCRIPT/370.

The format of the BOTTOM-MARGIN control word is

.bmn

n is the number of blank lines to appear between the
last line of body text and the bottom of the
page.If you do not enter a BOTTOM-MARGIN control
word, SCRIPT/370 will choose a value of §.

If you change bottom margin settings within your document,
each new setting takes effect bn the first page to be ended
after SCRIPT/370 reads the BOTTOM-MARGIN control word. This
means that the bottom margin of the £~!£~! page is changed.

With the HEADING-MARGIN control word, you specify how many
blank lines are to appear between the heading and the first
line of body text. This means that the heading actually
occupies one line of the top margin. Naturally, the value
specified for the heading margin must be less than that
specified for the top margin.

The format of the HEADING-MARGIN control word is

.hm n

n is the number of blank lines to appear between the
heading and the first line of body text. If you
efo not enter a HEADING-MARGIN control word,
SCRIPT/370 will choose a value of 1.

The FOOTING-MARGIN control word determines the number of
blank lines that will appear between the last potential line

22

of body text and the footing text. Since the footing text
occupies one line of the bottom margin, the value specified
for the footing margin must be less than that specified for
the bottom margin.

The format of the fotting margin control word is

.fm n

n is the number of blank lines to appear between the
last potential line of body text and the "footing
text.

Top titles or running heads are useful to readers of your
document as an aid in finding the portion of the:document
that contains a given block of information. {Notice the use
of headings in this manual.)

SCRIPT/310 provides the TOP-TITLE cont~ol word So that you
need specify a heading only once, and have it printed at the
top of each subsequent page until another TOP-TITLE (or
other titling control word) is enc6untered. The TOP-TITLE
coniroi ~ord allows you to sp~cify three separate parts so
that ob subsequerit p~ges, "you can retain a chapter heading,
for example, ~hd change a section heading.

The format of the TOP-TITLE control word is

/

.tt /left/center/right/

is any character that does not appear
anywhere in the title. It is used by
SCRIPT/370 as a separator between adjacent
parts of the top title.

left is the text to "be printed "beginning at the
left margin.

center

right

is the text to be printed centered.

is the text to be printed justified at the
right margin.

23

When specifying a top title, you should take into account
the current line length. since the top title text may not
exceed this value. Because SCRIPT/370 formats the top title
from left to right, the 'center' text may overlay the last
portion of the 'left' text, and may in turn be overlayed by
the beginning of the 'right' text if you have inadvertently
specified them as being too long to fit within their
respective portions of the line.

When writing the text of your top title, you should consider
the character ampersand (&) reserved. That character is
used as the page number symbol (unless you have specified
another character with the PAGE-NUMBER-SYMBOL control word)
and can be used by you in the text of the title whenver you
want the number of the page to print.

The TOP-TITLE control word may be used anywhere within your
document to change the heading of subsequent pages.

If you require the page number to be part of the top title,
and you expect your document to be reproduced using both (
sides of the sheet, you could respecify the top title with
each page. This would allow you to cause the page number to
print at the left on even-numbered pages, and at the right
on odd-numbered pages. This would be cumbersome. Therefore,
SCRIPT/370 provides two special-purpose variations of the'
TOP-TITLE control word called EVEN-PAGE-TOP-TITLE (.et), and
ODD-PAGE-TOP-TITLE (.ot).

The format of the EVEN-PAGE-TOP-TITLE control word is

.et Ileft/center/rightl

The format of the ODD-PAGE-TOP-TITLE control word is

.ot Ileft/center/rightl

The meanings of (I), 'left', 'center', and 'right' are the
same as those in the explanation of the TOP-TITLE control
word.

By specifying the page number symbol (ususally ampersand

24

, (&» in the 'left' text of your EVEN-PAGE top title and as
) the 'right' text of your ODD-PAGE top title, you will cause

SCRIPT/370 to print the page number in the proper position
for conventional reproduction.

SCRIPT/370 provides three other control words for analagous
use with footing text or bottom titles. These control words
are BOTTOM-TITLE (.bt), EVEN-PAGE-BOTTOM-TITLE (.eb), and
ODD-PAGE-BOTTOM-TITLE (.ob). Notice that page number has
been specified in the bottom titles of this manual.

The format of these control words is

.bt /left/center/right/

.eb /left/center/rightl

.ob /left/center/right/

SPECIFYING PAGINATION

SCRIPT/370 provides you with many facilities for controlling
the pagination of your document. You may suppress page
numbering altogether or just on output, cause the numbering
to be in Arabic or lower case Roman, and reset page numbers
within a document.

As mentioned above, in the explanation of the TOP-TITLE
control word, the ampersand (&) is usually reserved for use
as the page number symbol. SCRIPT/370 substitutes the
current page number for each occurrence of the ampersand
within a title line. Naturally, there may be times when you
must use the ampersand within a top or bottom title. There
may also be instances in which the terminal or printer on
which your document is to be printed does not include the
ampersand. To allow for these situations, SCRIPT/370

25

provides the PAGE-NUMBER-SYMBOL control word.

The PAGE-NUMBER-s1MBOL control word allows you to substitute
another character for the ampersand as.a representation of
the current page number.

The format of the PAGE-NUMBER-SYMBOL control word is

.ps s

s is any single character except the blank. This
character will be interpreted by SCRIPT/310 as a
request to substitute the current page number
whenever it is encountered in a top or bottom
title.

The character specified in the PAGE-HUMBER-SYMBOL control
word takes effect for all subsequent top and bottom titles.
This means that if you have previously used the ampersand or
some other character as the page number symbol, you will
have to revise those control words to reflect use of the new
symbol. If, for instance, you have previously entered an
ODD-PAGE-TOP-TITLE control word in the form

.ot /Chapter I/Industrial Relations/&/

and you later change the page number symbol to the plus sign
(+) SCRIPT/310 will not recognize the ampersand in your odd
page top title as a page number symbol. Instead, it will
print the ampersand, treating it as text. To prevent this,
you must change the ampersand in the title control word to a
plus sign, using the CMS editor, to correspond to the
changed page number symbol.

The PAGE-NUMBERING-MODE (.pn) control word lets you
determin~ whether automatic page numbering is to take place,
and whether it is to be in Arabic or lower case Roman.
SCRIPT/310 maintains two sets of page numbers for your
document: internal and external. (The counter used by the
SCRIPT command program to record page numbering as the
document is processed contains the internal page number.)
With the PAGE-NUMBERING-MODE control word you can control
these separately or dispense with both. If you wanted to
print certain pages for inGlusion in another document, for
example, you would probably prefer to have page numbers

26

suppressed so that they could be filled in later in the
final composite document. If you are following the usual
conventions, you would also number your frontis pages in
lower case Roman, and not begin numbering in Arabic until
the first page of text.

The format of the PAGE-NUMBERING-MODE control word is

on

off

offno

.pn,onloffloffnolarabiclroman

causes page numbering to be resumed if you have
previously entered a .pn off or .pn offno. If
you do not enter any PAGE-NUMBERING-MODE
control word, SCRIPT/370 will choose the On
condition.

causes external page numbering to be
discontinued. Internal page numbering
continues, however. This allows you to resume
printing the page number at the correct point
when you enter .pn on.

suppresses both internal ~Qg external page
numbering. A subsequent .pn on causes both
internal and external page numbering to be
resumed beginning with the next sequential page
number, regardless of how many actual pages
have been processed since the .pn 6ffno was
entered.

This can be especially useful if your document
is to include pages meant to be removed. Using
.pn offno followed by .pn on, you can suppress
numbering of those pages, and preserve the
numbering sequence that should exist after they
have been removed.

arabic causes all subsequent page numbers to be
printed as Arabic numerals. If you do not enter
a PAGE-NUMBERING-MODE control word, SCRIPT/370
chooses Arabic numerals.

roman causes all subsequent page numbers to be
printed as lower-case Roman numerals.

~ou can suppress inclusion of page numbers in top and bottom
titles simply by omitting the page number symbol from the
title definition.

27

EXAMPLE OF PAGE SETUP AND FORMATTING

This example is based on one shown in the Announcement
Notice for SCRIPT/370 (Form G320-1520-0). Since the margin
settings are not specified, they assume the default values.
The text itself will be formatted with lines justified at
the left and right margins since that is the default mode of
output. The page-eject function causes the top title to
print on the first page.

Terminal input:

.line-Iength 35

.page-Iength 27

.top-title ///ANNOUNCEMENT NOTICE/

.page-eject 1

.bottom-title /IBM IUP//PAGE &/
SCRIPT/370 provides text processing
capabilities to users of the IBM virtual Machine
Facility/370, V"/370. It executes as a command
of the Conversational Monitor System, the
time-shared component of VM/370 •
• space-lines 1
The SCRIPT command creates formatted output
from one or more CMS files, each of which contains
text and/or Script control words. The Script
files are created and modified at a terminal
using the CMS editor.

28

(
~

\ SCRIPT/370 output:
)

ANNOUNCEMENT NOTICE

SCRIPT/370 provides text-processing
capabilities to users of the IBM
Virtual Machine Facility/370,
VM/370. It executes as a command of
the Conversational Monitor System,
the time-shared component of
VM/370.

The SCRIPT command creates
formatted output from one or more
CMS files, each of which contains
text and/or Script control words.
The Script files are created and
modified at a terminal using the
CMS editor.

IBM lUP PAGE 1

29

SCRIPT/370 gives you many choices as to the appearance of
your final text. The control words described in the previous
section give you the facilities for determining the overall
dimensions and relative positions of the different elements
of the page: text, top and bottom title, margins, etc. The
control words described in thi§ section allow you tQ
determine exactly how your body text is to appear within the
margins.

The five basic text formats are

1. Justified - even left and right margins

2. Ragged right - even left margin, uneven right
margin

3. As-is - output line corresponds exactly to input
line regardless of margins

4. Right-adjusted - Even right margin, uneven left
margin

5. Centered - Equidistant from both margins

JUSTIFIED TEXT

SCRIPT/370 justifies your text by inserting blanks as needed
between words until the line length you have specified is
filled. In CONCATENATE-JUSTIFY mode, SCRIPT/370 obtains
words from the next line until no more words can be placed
on the line without exceeding the line length. It then
inserts blanks as needed to fill out the line. If the input
line is too long to fit within the output line length,
SCRIPT/370 removes words from it and spills them into the
next input line, and fills the first line with blanks as
needed.

/

30

This mode of operation is the one chosen by SCRIPT/370
unless you enter appropriate control words to specify some
other mode. In other words, it is the default mode of
SCRIPT/370. It is called CONCATENATE-JUSTIFY mode, or
FORMAT mode. The two principal control words associated with
the standard mode are FORMAT-MODE (.fo) control word and the
NO-FORMAT-MODE (.nf) control word which is explained later.

The format of the FORMAT-MODE control word is

.fo

The only use of the FORMA~-MODE control word is to restore
SCRIPT/370 to CONCATENATE-JUSTIFY mode after you have
entered a NO-FORMAT-MODE, NO-JUSTIFY-MODE, or
NO-CONCATENATE-MODE control word. The FORMAT-MODE control
word is simply a convenient abbreviation for the combination
of CONCATENATE-MODE and JUSTIFY-MODE. The majority of this
manual has been printed in the CONCATENATE-JUSTIFY ~ode.

The JUSTIFY-MODE control word specifies that output lines
are to be filled with blanks to justify the right-hand
margins of text. JUSTIFY-MODE is implied in the default
FORMAT-MODE of SCRIPT/370 processing, and is used to restore
right justification after the NO-JUSTIFY-MODE control word
(describ~d below) is used, or to specify justification of
output lines without concatenation if NO-FORMAT-MODE (also
described below) is in effect.

The format of the JUSTIFY-MODE control word is

.ju

31

The CONCAtENATE-MODE control word specifies that output
lines are to be formed by shifting words to or from the next
input line. The resulting line is as close to the specified
line length as possible without exceeding it, splitting a
word, or, as in FORMAT-MODE, padding the line with blanks;
this resembles normal typist output.

The format for the CONCATENATE-MODE control word is

.co

Output from this point on in the file is formed to approach
the right margin without exceeding it.

A variation of justified text in CONCATENATE-JUSTIFY mode is
NO-CONCATENATE mode. In NO-CONCATENATE mode SCRIPT/370 does
not shift words back and forth between input lines. Instead,
blanks are inserted as necessary to make each individual
input line extend the full distance between margins. You ~
might find this mode of operation useful when you have
tabular material in which the elements are of uniform length
such as number conversion tables. By specifying
NO-CONCATENATE mode, you automatically achieve uniform
spacing between the elements of each input line without the
necessity of using tabs. You might also use NO-CONCATENATE
mode in conjunction with the Or character (I) to produce
vertical rules.

The format of the NO-CONCATENATE-MODE control word is

To restore concatenation
CONCATENATE-MODE control
word, as appropriate.

.nc

of input
word, or a

lines, you
FORMAT-MODE

enter a
control

Often, as when entering the first line of a new paragraph,

32

~ you will need to suspend concatenation of input lines for
just one line. As shown previously, one way to do this is to
begin the line with one or more blanks or the tab stroke.
You also can achieve the effect of

\
I

J

.nc
text line for new paragraph
.co
subsequent text

by using the BREAK control word.

The format of the BREAK control word is

.br

Enter the BREAK control word just ahead of the text that
must start on a new line in the document. You need not enter
a BREAK control word if the first line of the new paragraph
begins with a blank or a tab. Many SCRIPT control words also
cause a BREAK to occur automatically; these are noted in
Appendix B. In general they are ones used between paragraphs
to specify the format of output text.

RAGGED-RIGHT OUTPUT

If you enter a CONCATENATE-MODE control word, SCRIPT/370
will shift words between lines to fill the current line
length, but it ~il! ll2i insert blanks. Thus, by specifying
CONCATENATE-MODE, you cause SCRIPT/370 to generate
£~gg~~=£ighi output. Another method of achieving
ragged-right output is to enter a NO-JUSTIFY-MODE control
word. The NO-JUSTIFY-MODE control word causes SCRIPT/370 to
stop inserting blanks so as to achieve the full line length.
If CONCATENATE mode is still in effect, the output is ragged
right. If CONCATENATE mode is not in effect, the output is
as-is.

I The format of the NO-JUSTIFY-MODE control word is

.nj

33

If you have entered a NO-JUSTIFY-MODE control word, you can
cause SCRIPT/370 to resume justification by entering a
JUSTIFY-MODE control word or, if you require
CONCATENATE-JUSTIFY operation, the FORMAT~MODE control word
which was discussed previously.

AS-IS OUTPUT

The format of the NO-FORMAT-MODE control word is

.nf

The NO-FORMAT-MODE control word is your means for causing
as-is output. By entering .nf, you cause SCRIPT/370 to stop
~Q!~ concatenating and line justification. You will find
this mode of operation especially us~ful if portions of your
document must contain tabular material" or literal
representations and illustrations. For example, the "Sample
Terminal Session" in the first section of this manual was
done primarily in no-format mode. Figure 1 below illustrates
the difference between ragged-~ight and formatted output.
With as-is output the output would look exactly like input
text lines, that is, the break control word would not print.

RIGHT-ADJUSTED OUTPUT

A single SCRIPT/370 control word allows you to specify
right-adjusted, or flush right, output. Entering a
RIGHT-ADJUST control word causes succeeding input lines to
be printed even with the right margin as is commonly done in
the sender's address of a letter. The input lines are not
concatenated.

The format of the RIGHT-ADJUST control word is

.ri onlofftn

34

/

r

INPUT:

r ,
I aaaa bb c dddddd ee ffff ggggg hhhh I
I i jjjjj kk 1111 mm I
I nnn 0000000000 I
I .br I
I ppppp qqqq r I
I ssss ttttttt uuu vvvvv I
I w xxxxxxxxx yy zz I
L ,

using .11 25, .co, and .nj using .fo

. rr------------------------------~
I aaaa bb c dddddd ee ffff
I ggggg hhhh i jjjjj kk
I 1111 mm nnn 0000000000
I ppppp qqqq r ssss ttttttt
I uuu vvvvv w xxxxxxxxx yy
I zz

aaaa bb c dddddd ee ffff
ggggg hhhh i jjjjj kk
1111 mm nnn 0000000000
ppppp qqgq r ssss ttttttt
uuu vvvvv w xxxxxxxxx yy
zz t L---____________________________ ~

I
I

Formatting

on caus\es subsequent input lines to be printed flush
right~

off restores whatever mode of operation was in effect
at the time .ri on was specified.

n causes the next n lines to be printed flush right.
This can be used as an alternate to the
combination .ri on, .ri off when the number of
lines tq be right adjusted is known.

Specifying the control word .ri by itself is equivalent to
specifying .ri 1, that is, the next line of input text will
be right adjusted on output.

35

CENTERED OUTPUT

A single SCRIPT/370 control
centered output. Entering a
succeeding input lines to be
left and right margins.
concatenated.

word allows you to specify
CENTER control word causes
printed equidistant from the

The input lines are not

The format of the CENTER control word is

.ce onlofftn

on causes subsequent input lines to be centered until
a .ce off is encountered.

off restores whatever mode of operation was in effect
at the time .ce on or .ce n was specified.

n causeS the next n lines to be centered. When you
know in advance how many lines you require to be
centered, using .ce n is more convenie,nt and
relieves you of having to remember to enter a .ce
off control word.

Specifying the control word .ce by itself is equivalent to
specifying .ce 1, that is, the next line of input text will
be centered on output.

36

LINE SPACING

SCRIPT/370 provides you with three control words that allow
you to determine spacing between lines of body text. Using
these control words you can cause double- or single-spacing,
or cause a given number of blank lines to be inserted
between two lines of text so that, for example,
illustrations can be introduced in the reproduction copy of
your document.

With the SPACE-LINES control word you can cause a specified
number of blank lines to be inserted in the page before the
next line of body text is printed. The SPACE-LINES control
word is especially useful following a paragraph heading
because it generates a break in addition to inserting the
specified number of blank lines.

The format of the SPACE-LINES control word is

.sp n

n is the number of blank lines to be inserted,
~Q!~§§ a DOUBLE-SPACE-MODE or LINE-SPACING control
word is in effect. If DOUBLE-SPACE-MODE is in
effect, ~!i£~ the number of lines you specify will
be inserted. If LINE-SPACING is in effect, the
number of lines you specify in the SPACE-LINES
control word will be multiplied by the
line-spacing increment you have specified in the
LINE-SPACING control word.

If you have entered a DOUBLE-SPACE-MODE control word or a
LINE-SPACING control word specifying other than
single-spacing, you can cause single-spacing to resume by
entering a SINGLE-SPACE-MODE control word. The
SINGLE-SPACE-MODE control word takes effect immediately.

37

The format of the SINGLE-SPACE-MODE control word is

.ss

To cause one blank line to be inserted between each line of
body text, you enter a DOUBLE-SPACE-MODE (.ds) control word.
The DOUBLE-SPACE-MODE control word takes effect immediately.
It remains in effect until you enter a SINGLE-SPACE-MODE
control word or a LINE-SPACING control word that specifies
other than double-spacing.

The format of the DOUBLE-SPACE-MODE control word is

.ds

Occasionally, you may want your document or some portion of
it to be printed with line spacing greater than double- or
single-spacing. You may require triple-spacing for a review
copy you expect to be proof-marked, or perhaps you might
wish to leave space for writing in answers to questions on a
test or 1nserting reproduction copy from another source.
Rather than entering a SPACE-LINES control word before each
line of text, you can enter a LINE-SPACING (.15) control'
word specifying the number o~ blank lines to be inserted
after ~~£~ line of body text.

The format of the LINE-SPACING control word is

.ls n

n is the number of blank lines to be inserted after
~~£~ line of body text. This is the value which
will be used by SCRIPT/310 as the multiplier in
any subsequent SPACE-LINES control word you enter.

38

I

\

PAGE SPACING

Frequently, you may require a new page to be started even
though space may remain on the current page. conventionally,
new sections or chapters begin on new pages, for example.
You may want to insert an illustration that will not fit in
the space rema1n1ng on the current page, or you may
deliberately want a blank page so that the the back-up page
(reverse side) can be removed from your document. SCRIPT/370
provides four control words so that you can cause a new page
to be started under such circumstances. Three of these
control words also include control of page numbering for the
page to be started.

To cause a new page to be started unconditionally, you enter
a PAGE-EJECT control word. If you are using continuous-form
paper, the form is advanced to the top of the next page
immediately. If you are using individual sheets, the form is
ejected, and SCRIPT/370 pauses to allow you to insert a
fresh sheet, l!!:Qvigi!!.9 you have specified the STOP (ST)
option when you entered the SCRIPT command.

The PAGE-EJECT control word also allows you to specify the
page number for the new page, or apply an increment or
decrement based on the number of the current page.

The format of the PAGE-EJECT control word is

.pa nl+nl-n

n is the page number to be printed on the new page

+n is the increment to be added to the current page
number

-n is the decrement to be subtracted from the current
page number

When SCRIPT/370 encounters the PAGE-EJECT control word, it
prints the bottom title (if applicable) on the current page,
and advances to the next page, or pauses, as described
above. You will probably use the PAGE-EJECT control word
often in conjunction with one or another of the top title

39

control words. Because the top title control words do not
take effect until the !l~!!: page, you must follow one with a
PAGE-EJECT control word if you want to force the beginning
of a new top title.

Sometimes, rather than having a paragraph or table be split
between two pages, you will require that a new page be
started for it. Because the amount of text preceding the
paragraph or table varies as the document is developed or
revised, SCRIPT/310 provides you with the
CONDITIONAL-PAGE-EJECT control word. This control vord
causes a new page to be started only if the current page
contains i~~~~ lines than you require between the current
line and the bottom margin.

The format of the CONDITIONAL-PAGE-EJECT control word is

n

.cp n

is the number of lines that must remain between
the current line and the first line of the bottom
margin if printing is to continue on the current
page.

In certain kinds of documents you may require that narrative
for an illustration or table appear on an even-numbered page
(left-hand page) facing the illustration. Often, as
mentioned above, you will require that new sections begin on
an odd-numbered page (right hand page). To meet these and
similar requirements, SCRIPT/310 provides you with two
control words. You may enter an EVEN-PAGE-EJECT or
ODD-PAGE-EJECT control word at any point in your document.
Like the PAGE-EJECT control word, these operate immediately
and unconditionally.

The format of the EVEN-PAGE-EJECT control word is

.ep

40

The format of the ODD-PAGE-EJECT control word is

.op

The following information is about the EVEN-PAGE-EJECT
control word for convenience of explanation. You may read it
as applying equally to the ODD-PAGE-EJECT control word
simply by substituting odd for even, and vice versa,
wherever they appear.

When you enter an EVEN-PAGE-EJECT control word, the result
1S one page eject if the current page is odd-numbered, and
two page ejects if the current page is even-numbered. Thus,
the new page will be even-numbered. If the page you
terminate with the EVEN-PAGE-EJECT control word was
odd-numbered, then naturally the n!!i page is even-numbered
and SCRIPT/370 resumes printing body text on that page. If
the page you terminated was even-numbered, so that the next
page must be odd-numbered, SCRIPT/370 prints only top and
bottom titles on that page and resumes printing body text on
the even-numbered page that follows.

MARGIN MODIFICATION

In preparing a document, you will probably require that the
location of the effective left margin be changed from time
to time. You may require that certain paragraphs be indented
from the left margin, that certain text be printed with
hanging indent, or that a block of formatted text be
centered. SCRIPT/370 provides four control words that
simplify these tasks for you. with them you can specify
indent amounts, temporary additions or subtractions from the
indent, and tab stops. These are described below.

With an ordinary typewriter, you probably would use the TAB
key for hanging indents. Using SCRIPT/370, however, you need
only enter a single INDENT control word, and continue
entering the text that is to be indented.

The format of the INDENT control WORD is

41

n specifies the number of spaces succeeding text is
to be indented from the left margin.

o restores the left margin.

Although the INDENT control word does not affect the right
margin, by using it in conjunction with the LINE-LENGTH
control word,;you can cause blocks of formatted text to be
cen~ered or shifted within the margins. For instance, the
following control words

.in 5

.11 55

preceding text in this document would result in text which
is centered, as

This text line was deliberately 'included and made
longer than 55 characters on input so as to
illustrate the SCRIPT/370 INDENT control word used
for centering of format-mode output.

Often, when indenting paragraphs, tWQ indents are needed:
one for a paragraph number or other designation, and a
second for the paragraph text itself. SCRIPT/370 provides
two methods for accomplishing this. In the first, usin~ the
OFFSET (.of) control word in conjunction woth the INDENT
control word, you simulate the use 'of the tab key on an
ordinary typewriter. The first line of a numbered paragraph
will appear as if it had been typed in the sequence
TABnTABtext. Succeeding lines will appear as if they had
been typed in the sequence TABTABtext.

The "format of the OFFSET control word is

'.of n

n is the number of spaces to be added to the current
margin or margin plus indent ~t1g£ the next line
is printed. You may restore the margin or margin
plus indent by omitting n or specifying it as o.

/

I~

~
i

/ Because the OFFSET control word's effect does not take place
until ~f!~f the next text line, the first line of your
paragraph will begin at the current left margin or margin
plus indent; succeeding lines will begin at the margin plus
indent plus offset, until you enter an additional offset or
until you reset the offset to zero by entering .of 0, or
.of. You can enter a series of paragraphs that uses the same
offset simply by repeating the .of n before the first line
of each paragraph; no intervening .of 0 is necessary. If you
require a series of paragraphs with different offsets, you
must enter .of or .of 0 before entering the new OFFSET
control word.

To assure that SCRIPT/370 does not attempt to insert blanks
between the paragraph number and the beginning of text, you
should be sure that the TAB-SETTING control word in effect
includes a tab for the print position at which the text is
to begin. For instance, if your indent were five, and your
offset were three, the TAB-SETTING control word in effect at
that ~ time must include print position 8 as one of its
operands. For example, if you have set

.in 5

.of 3

\ then you should also have entered a TAB-SETTING control word
/ that includes print po~ition 8 (5+3), as explained below.

SCRIPT/370 provides you with another method of accomplishing
hanging indents, through use of the UNDENT control word. The
UNDENT control word works from the current indent towards
the left margin, unlike OFFSET which works from the left
margin towards the right. Also, the UNDENT control word
operates on the line i~~ggi~1g!I !Q!!Q~ing it. Thus, you can
specify an indent for the text to be printed hanging, and
use the UNDENT control word before the first line of each
new paragraph so that the -paragraph number is printed
nearer the left margin.

The format of the UNDENT control word is

.un n

n is the number of spaces the beginning of the next
line is to be moved towards the left margin. It

43

must be less than the current indent. Note that
this requirement means that you cannot cause a
line to begin to the left of the basic left
margin, because the margin is equivalent to .in o.

In general, the choice between using the UNDENT and OFFSET.
control words depends on your personal 1 preference. It i§
important, however, QQ! to use the UNDENT control word in
portions of text that are offset, because the UNDENT control
word operates with respect to the margin plus indent, not
the margin plus indent plus offset.

When using SCRIPT/370 you will work with two kinds of tabs:
the mechanical tab stops on yciurterminaI;-wIth--which you
are already familiar, and logical tabs, which SCRIPT/370
uses to format your output on a printer. To set tabs for
your document, or a portion of it, proceed as follows

1. Clear the mechanical tabs on your terminal.

2. Set the mechanical tabs on your terminal as
required.

3. Enter a TAB-SETTING (.tb) control word specifying
th~ settings of your mechanical tab stops.

When you use the TAB key as you are entering your text, tab
characters are generated which act as logical tabs when
SCRIPT/370 recognizes them during output processing.
SCRIPT/370 uses the information you have furnished it in the
TAB~SETTING control word to convert these logical tabs into
the appropriate number of blanks to simulate actual tab
stops.

The format of the TAB-SETTING control word is

n 1 •••

.tb n1 n2 n3 •••

specifies the print position of the tab stop,
gQ! the number of spaces between it and the
last tab stop. If you do not enter a
TAB-SETTING control word, SCRIPT/370 chooses
logical tab stops at print positions 5, 10, 15,
etc., up to 75.

44

J

)

If you have entered a TAB-SETTING control word,
you can restore the standard tabs simply by
entering a TAB-SETTING control word with no
stops specif~ed.

By using the TAB key to begin a paragraph you accomplish two
things at once: the first line of the paragraph is indented
to the tab stop, and, because the tab begins the line an
automatic break occurs, assuring that the formatted
paragraph will begin on a new line.

SCRIPT/370 provides a second form of the TAB-SETTING control
word that you will find especially useful for drawing lines,
and for filling otherwise blank lines with a non-blank
character. This ta£ ~i!! facility permits you to enclose
portions of text in boxes, generate periods in tables of
contents, etc.

When used for this purpose, the format of the TAB-SETTING
control word is

.tb n1 c1/n2 c2/n3 •••

n1 ••• specifies the print position of the tab stop
•

c 1 .••• specifies the fill character

/n2 ••• specifies the tab stop at which the preceding
fill character is to termina te

For example, specifying

.tb 5 +/15 -/25 */35

followed by the sequence TABxTAByTABzTABi, results in

x+++++++++y---------z*********i

When developing long documents, or documents that you expect
to revise frequently, it is good practice to establish a
number of individual Script files that each contain a
separate portion of your document. For instance, each
chapter could be a separate file, and your
,keyboard-developed illustrations could be kept in a file of
their own. Then, using the control words described in this

45

section, you can establish a !~!~!: fi!~ that combines the ~
individual sections in any order you require. ,

In this way, you can reorganize your document if necessary,
and add to it or delete from it with a minimum of effort.
Different master files can be established so that different
versions of your document can be printed simply by re£~rring
to the appropriate master file, without having to maintain
separate (duplicate) files. This conserves storage space and
relieves you of the necessity of making sure that changes
are incorporated into duplicate files.

SCRIPT/370 p~ovides you with five control words that permit
you to combine files in different ways. Using these control
words, you can insert all or part of a file into another
file, add a file to the end of another file, and assure that
a file is not inserted into another until a new page is
begun in the receiving file.

The I"BED control word is your principal means of inserting
or including other script files within the one you are
developing. SCRIPT/370 does not limit the number of IMBED (/
control words you may have within a file, but it does limit ~
the number of "nested" I"BED control words to eight. (A
nested imbedded file is one which has been imbedded in a
file which is itself an imbed.)

You may use the IMBED control word anywhere within a
document. When SCRIPT/370 encounters it,; the file to be
imbedded is inserted into the file containing the IMBED
control word. At the end of the imbedded file SCRIPT/370
resumes printing the original file.

The format of the IMBED control word is

.im file

file is the name of the file that is to be imbedded.
Script is assumed as the filetype

One useful application of the IMBED control word. is that of
including frequently-used sets of control words in a file.
Using the IMBED control word, you need not repeat the
sequence; you need only enter an IMBED control word

46

referring to the file that contains the sequence.

The operation of SCRIPT/370 when you make use of imbedded
files is shown below in Figure 2. Note that the master file
contains the page and text formatting control that are to be
in effe~t for the entire docum~nt. You will find the IMBED
control word extremely useful whenever yo~ are working with
large documents. For example, the section "Multiple Column
Processing" is a separate file, as is the section "Terminal
Input/Output;" both are imbedded into the document from a
master file.

The IMBED control word does not permanently change the file
in which it is encountered. The" imbedded file does not
become part of the master file; it simply becomes part of
your output.

Because SCRIPT/370 does not automatically perform a page
eject at the end of the imbed, the n+1 line should be one of
the page eject control words if you require that the
remaining text in the receiving document begin on a new
page.

You will find the DELAY-IMBED control word useful if you are
working with a document which includes tables" br diagrams
smaller than a full page. Its purpose is to allow you to
delay the in~lusion of a portion of your Script inpui file
until the next page eject occurs. DELAY-IMBED does not
force a page-eject. Instead, SCRIPT/370 continues to place
lines on the current page. When a new page is begun, the
portion of your file which you specified as delayed is
printed.

The format of the DELAY-IMBED co~trol word is

.di nlONIOFF

n is the number of input :ines saved for processing
at the top of the next page by SCRIPT/370. If n
is omitted, 1 is assumed. These input lines may
contain text and/or control words.

ON specifies that all input lines
control word are to be delayed.
off."

47

following the
Used with n.di

UNFORMATTED OUTPUT

filea
r-- ,

aaaaaaaaaaa
aaaaaaaaaaa
.im fileb
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
.di 2
.sp 3
.im filed
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa

FORMATTED OUTPUT

aaaaaaaaaaa
aaaaaaaaaaa
bbbbbbbbbbb
ccccccccccc
ccccccccccc
bbbbbbbbbbb
bbbbbbbbbbb
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa

-1-
~ ____ . _________ J

ddddddddddd
ddddddddddd
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa
aaaaaaaaaaa

-2-L--_____

Figure 2. IMBED/DELAY-IMBED Handling

OFF marks the end of the set of input lines being
delayed. Used with n.di on."

The operation of the DELAY-IMBED control word is shown in
Figure 2. This control word can be used to ensure that a
table or illustration begins at the top of the page

48

\
)

\
/

)

following the first reference to it in the text. As
indicated in the figures, DELAY-IMBED is often used in
combination with the IMBED control word.

Another method of organ1z1ng the script files containing
your document is to end each individual file with an APPEND
control word. This method differs from using the IMBED
control word in that SCRIPT/370 does not resume processing
the first file after it has processed the file named in the
APPEND control word. When SCRIPT/370 encounters the APPEND
control word, it terminates processing the original file,
and begins processing the file tQ be appended as though it
were a continuation of the or~ginal file. Unless the
appended file itself ends with an APPEND control word,
SCRIPT/370 returns control to eMS at that point.

The format of the APPEND control word is

.ap filename

filename is the name of the file to be appended to the
current file

You can simulate an end-of-file within a file by using the
END-OF-FILE control word. You will find this capability
especially useful for dividing into segments a file that is
to be imbedded in portions.

For example, you may have developed a Script file containing
illustrations for an entire document. However, the
illustrations are to appear interspersed with different
portions of the text, rather than all together. By entering
an END-OF-FILE control word after each illustration, you
cause SCRIPT/370 to terminate the imbed rather than continue
to the end of the illustration file. Thus, in your text file
you simply enter an IMBED control word at each point you
wish to insert the next illustration. If it is th~ first
IMBED control word referring to that file, SCRIPT/370 begins
at the top of the file and imbeds each successive line until
it encounters an actual end-of-file condition, or until it

49

encounters an END-OF-FILE. control word. The next IMBED
control word in your text file that refers to the
ill u st r at ion fi Ie bl~gins i nse rting t he ill ustra tion file at
the point where it left off, immediately following the
END-OF-FILE control word.

The format of the END-OF-FILE cOhtrol word is

.ef

An illustration of the use of the IMBED, DELAY-IMBED, and
END-OF-FILE control words is shown in Figure 3.

QQ!I (.!.9.l!)

With the QUIT control word, you can cause processing of your
file to be terminated immediately. You may use the QUIT
control word in conjunction with the END-OF-FILE control
vord to control the printing of form letters, or in
conunction with the TERMINAL-INPUT and TYPE-ON-TERMINAL
control words to terminate processing of a document from the
terminal. When SCRIPT/370 encounters a QUIT control word,
even in a file that is being imbedded, it advances the form
to the top of the next page, and ends processing.

The format of the QUIT control word is

.qu

An example showing a technique for printing pe-£-sonalized
form letters using QUIT, IMBED, END-OF-FILE, and APPEND can
be found in the section "Using set Symbols."

PRESERVING FILE STATUS

When you cause another file to be included in you~ output by
use of the IMBED or DELAY-IMBED control words, the setup
values of the imbedded files remain in effect after the
return to the receiving fila until new control words are
encountered. Often, this is undesirable. For instance, if
the file you imbedded us~d double-spacing, it remains in
effect for the remainder of the file in which you imbedded
it, even though you have specified single-spacing at some
point before the IMBED. iou could prevent problems of this

50

UNFORMATTED
I

xmaster xintro
r' , r- , xfigs
I. tt //SAMPLE// I,..> I text text text I t 1

I. ps + I I I.di 3 I .--> I r- I
I . eb /+/// I I I. sa I I J I I
I.ob ///+/ I I I. im xfigs I J I I I
, • i iii xintro I J I. re< I t I I
I < , Itext text text I I I
I.im xdescrip I I I I Figure 1. I
I < +--, I xdescrip L--I.ef I
I.im xconfig I II ,--> I I
r. im xlist I I '--> I text text text I I l- t
I _-im xfunctn I I (.di 3 I r I I. I
t. im xsample I I J. sa I I I t
I . im xappena I I I. im 'xfigs I I I
I • im xappenh I I I.re< I i ~ I
t. im xappenc I L--Itext text text I L--I Figure 2. I
I. im xindex I I '-1

I.im xtoc I
L I

~ORMATTED

, i -, I

t SAMPLE I I SAMPLE" I SAMPLE I
I I • l I

xintro text I • ~ ,
I i I xconfig text ~

xintro' text I • I t f I I x.con·fig text I
xintro text I 1 I I L-_I I xconfig text J
xintro text I I • I • J xconfig text I
xintro text • I f I f xlist text J
xintro text I Figure 1 • I I I xlist text I
xintro text I xintro text I I Figure 2. I xlist text t/
xintro text I xdescrip text I I xdescrip text I xlist text I
xintro text I xdescrip text r I xconfig· text , xlist text I
xintro text I xdescrip text I I xconfig text I xfunctn text I

1 I 2 I • 3 I 4 I
.J I , I .J

'igure 3. Master File Using IMBED, DELAY-IMBED, and END-OF-FILE

51

kind by keeping
the appropriate
or DELAY-IMBED,
Frequently, it
settings were.

track of all your setup values and entering
control words to reset them after each IMBED

but this would be extremely inconvenient.
is djfficult to know what the original

To prevent the problem SCRIPT/370 provides you with two
control words that relieve -you of the necessity to keep
track of the values in effect at the time of the IMBED or
DELAY-IMBED. The SAVE-STATUS control word causes SCRIPT/370
to store the values; the RESTORE-STATUS control word allows
you to put them back in effect.

To insure that you will be able to restore your current
control values after an imbedding a file, you must enter a
SAVE-STATUS control word before entering the IMBED or
DELAY-IMBED control word. This causes SCRIPT/370 to store
your current values such as margin and tab settings, line
length, text format, etc. It does E2!, however, store your
top and bottom titles. If you wish to resume printing of the
same top and bottom titles that were in effect at the time
of the imbed, you must reenter appropriate control word·s at
the point where SCRIPT/370 resumes processing the original
file.

The format of the SAVE-STATUS contr~l word is

.sa

When SCRIPT/370 encounters the SAVE-STATUS control word, it
stores the settings of the following control words

.CE CENTER

.CO CONCATENATE-MODE

.DS DOUBLE-SPACE-MODE

.FI FILL-MODE
.FM FOOTING-MARGIN
.FO FORMAT-MODE
.HM HEADING-MARGIN
• IN INDENT
.JU JUSTIFY-MODE
.LI LITERAL
• LL LINE-LENGTH
.NC NO-CONCATENATE-MODE

52

~
I

\

)

.NF NO-FILL-MODE

.NF NO-FORMAT-MODE

.NJ NO-JQSTIFY-MODE

.OF OFFSET

.PL PAGE-LENGTH

.PN PAGE-NUMBERING-MODE
• SS SINGLE-SPACE-MODE
.TB TAB-SETTING
~TM TOP-MARGIN
.UN UNDENT

The SAVE-STATUS control word does not change the settings of
any of these; it merely stores them so that they can be
reset later. Because of this, you may find it necessary to
set certain values explicitly if you do not know what they
are at the time you enter the SAVE-STATUS control word. For
example, you may want to set your indent value to zero in
the file to be imbedded. Remember also that SCRIPT/370 may
encounter subsequent SAVE-STATUS control words in the
imbedded files before reaching the RESTORE-STATUS control
word corresponding to the SAVE-STATUS control word you
entered. As many as five nested save-restore sequences are
permitted.

As mentioned above, the RESTORE-STATUS control word resets
control word values in accordance with those stored by the
corresponding (preceding) SAVE~STATUS control word. A
RESTORE-STATUS control word that does not have a
corresponding SAVE-STATUS control word causes an error
message to be printed during output.

The format of the RESTORE-STATUS control word is

.re

An example of use of SAVE-STATUS and RESTORE-STATUS is shown
by the following sequence •

• DELAY-IMBED ON
.SAVE-STATUS
.INDENT 0
.TAB-SETTING 5 15

53

.SINGLE-SPACE-MODE

.SPACE 2

.CENTER
Table III .
• SPACE
The following table shows the legal commands:

FORTRAN FORTRAN cbmpiler
PLI PL/I Compiler

.PAGE-EJECT

.RESTORE-STATUS

.DELAY-IMBED OFF

The material from the DELAY-IMBED ON to the DELAY-IMSED OFF
viII be activated at the end of the current page of SCRIPT
output. When this section is activated, it first saves the
SCRIPT status. Since it is not known whether an INDENT or
OFFSET was in affect, the INDENT 0 ensures that printout
will start at column 1. Likewise, since DOUBLE-SPACE-KODE
may have been in affect, the SINGLE-SPACE-MODE control word
insures that single spacing will occur for this table. The
tab setting is specially set for the tabular information. At
the end of the table, the PAGE-EJECT control word forces
printout to continue on a new page. The RESTORE-STATUS
restores the SCRIPT status variables, in particulat the
INDENT, SINGLE/DOUBLE SPACE-MODE, and TAB-SETTING, to their
original values. The DELAY-IKBED OFF terminates the imbed
section.

5U

SCRIPT/370 includes many facilities for increasing the
usability of your document in both final and unformatted
form. Through the control words described in this section,
you can

• cause selective printing of anything from a single
word to an entire document

• indicate as many as nine different revision codes
at the left margin

• cause characters entered from a terminal to be
translated when your document is printed offline

• cause lines beginning with a period (.) to be
treated as literal text rather than as control
words

• include comments that will not appear in the final
document

• change the symbol used to separate successive
control words that are entered on the same line

To cause only selected portions of your document to be
printed, you associate a £QngiiiQn~l §g£tiQn £Q~g with the
portion of the document you require to be controlled.. You do
this through the CONDITIONAL-SECTION control word. Through
this facility you have the means for printing only
unclassified portions of a confidential or prop~ietary
document or including information on different versions of a
system or procedure in the same document, and having only
the information pertaining to a given version printed.
Because the CONDITIONAL-SECTION control word does ll2! cause
a break, you can even use it within a sentence to cause
certain word to be included or ignored, as required.

The format of the CONDITIONAL-SECTION control word is

.csn onln off

55

and

n

on

off

.cs n includeln ignore

represents the conditional section number,
and may be any digit from one to nine

specifies that the conditional section n
indicator be set

specifies that conditional
indicator be reset

section n

include specifies that all following conditional
sections with code number 'n' are to be
included

ignore specifies that all following conditional
sections with code number ' n' are to be
ignored

The first three operands are the ones you will U$~ when
entering text to define which portions of text are
associated with a given conditional section. The material
within a cohditional section may inclUde any SCRIPT control
word, text, or both. For example, the sequence

This manual contains
.cs 1 on
three
.cs 1 off
.cs 2 on
five
.cs 2 off
sections.

associates the word three with conditional section 1, and
the word five with conditional section 2. When you want to
print your document at some later time, and you want to use
the versi9n that will refer to there being five sections,
you simply edit the document or your master file to insert
the following

.cs 1 ignore

.cs 2 include

and invoke the SCRIPT command specifying the appropriate
filename. The resultant output will be

This manual contains five sections.

56

I
\

\,
)

In the same manner, you could develop a document such as a
combined course and instructors guide by defining all
instructor-oriented material as a conditional section, and
all student-oriented material as a second conditional
section. You would then be able to print three different
versions of the document:

1 • One for students, that contained only
student-oriented material

2. One for instructors that contained both student
and instructor-oriented material

3. A second version for instructors, that contained
only instructor-oriented material

When making changes to a published document you may need to
distinguish in the final copy between original and new
material. Often, this is done by printing a bar or other
symbol adjacent to the new text. SCRIPT/370 provides you
with the capability of printing as many as nine different
symbols, representing nine different levels of revision. In
addition, because the blank is a valid revision symbol, you
may suppress printing of some or all revision symbols simply
by redefining them as blanks.

When SCRIPT/370 finds that it must print reV1S10n indicators
it accommodates them by shifting body text three spaces to
the right. This allows the revision indicator to be printed
at the left margin ~ith two spaces between it and the
beginning of the text line. If an indent is in effect at
that point, then, naturally, the number of spaces between
the revision indicator and the text will be greater. Because
of this shift to the right you should define your revision
code at the beginning of your document so that it will be
printed uniformly. If you must define a revision code ~i1hin
the document, you should do so immediately following a page
eject so that the entire page will be indented uniformly.

For defining a revision indicator, the format of the
REVISION-CODE control word is

.rc n s

57

n

s

is the revision number, and must be between 1 and
9
is the revision indicator to be
the revision number specified by
single character, including blank

associated with
n. It may be any

Having defined your revision codes, you use a different form
of the control word for associating them with given portions
of your document, similarly to the CONDITIONAL-SECTION
control word. For this purpose, the format of the
REVISION-CODE control word is

n on

n off

.rc n onln off

causes revision number n
all subsequent text until
off is encountered.
terminates the association
with text.

to be associated with
a corresponding .rc n

of revision number n

It is important when using more than one revision code
within a document, as when you are working on a second or
later revision, that you always turn OFP your revision codes
in the reverse order from which you turned them ON. You may
turn ON-therevision codes in any order, but you must 'always
turn them OFF in the reverse order

For examp-le:
.rc J on
i
text •••
• rc 1 on
text •••
• rc 2 on
text •••
• rc 2 off
text •••
• rc 1 off
text •••
• rc 3 off

Of course, you may have control words and/or intervening
text at the point where you turn OFF the revision codes.

At times, you will require that a revision code apply to a
single line or a portion of a line. To do this, you need not
use separate ON and OFF control words. Instead, you may use
the REVISION CODE control word in the following format

58

\
)

.rc non/off

This causes SCRIPT/370 to turn on revision code n
immediately, and turn it off at the end of the next te~t
line. You will find this helpful, because it relieves you of
the necessity for keeping track of ON/OFF sequences. In
practice, it is more reliable to use this method than to
break up your text line with the REVISION-CODE contrQI
words. Using the CONTROL-WaRD-SEPARATOR control word
(described below), you can even enter the REVISION-CODE
control word and the text on the same line.

To save typing SCRIPT/370 allows you to enter more than one
control word, or a series of control words and text, on a
single line. You do this by separating the control words
from each other and from the text on that line with a
character recognized by SCRIPT/370 for that purpose.
Normally, the semicolon(;) is the control word separator
character. Because you may want to change this in a given
document, SCRIPT/370 provides you witfi the
CONTROL-WORD-SEPARATOR control word.

The format of the CONTROL-WORD-SEPARATOR control word is

.cw c

c is the chracter to be used in place of the
semicolon as a separator. If c is omitted, you may
not enter more than one control word per line, and
may not combine control words and text on a line.

This facility is especially useful for such sequences as

.sp 2;.of 5;This section contains the following

and

.rc 2 on/off;This line has been revised a second time.

The FIND subcommand of the CMS Editor operates only on
information beginning in terminal position one. Therefore,
if the control word you wish to CHANGE or DELETE is not the
first one in a line containing a series of control words,

59

you will have to use the LOCATE subcommand.

with the COMMENT control wcird you can include notes to
yourself or special references in your document. These
comments are seen when you are editing your document, or
printing it using the UNFORMAT option of the SCRIPT command.
They do not appear in formatted output. Thus using the
COMMENT control word you can include reminders to yourself
or reviewers to fill in a date, suppress revision indicators
for final printing, etc.

The format of the COMMENT control word is

• em .text

text is the comment which is to appear
output. If the comment exceeds one
enter a COMMENT control word at the
each subsequent line.

in unformatted
line, simply
beginning of

Because SCRIPT/370 control words begin with a period (.),
you may encounter problems with your output if you begin a
text line with a period. There may be occasions, however,
when you need to do this, such as when entering a number
preceded by a decimal point, or beginning a line with an
ellipsis. There are many ways to avoid the problem by
reartanging text, rewording it, or using TAB or blank to
begin the line. The former are inconvenient and the latter
may be incompatible with your format requirements. Using the
LITERAL control word, you may begin any number of subsequent
input lines with a period and have them interpreted by
SCRIPT/370 as the text lines they actually are.

The format of the LITERAL control word is

.li n

n is the number of subsequent lines to be processed
as text even if they begin with a period. If you

60

I
I

\~

omit n, only the next line is affected.

Often, text that is entered from a terminal is to be printed
OFFLINE on a printer equipped with the TN chain, which
contains both upper and lower case letters and a number of
special characters, superscripts, etc. Many of the special
characters of the TN train are not available to you at the
keyboard of your terminal. However, using the
TRANSLATE-CHARACTER control word, you can use a keyboard
character in place of a special character and have
SCRIPT/370 interpret this usage at the time your output is
printed. At that time, the appropriate character is
sUbstituted for the keyboard character.

The format of the TRANSLATE-CHARACTER control word is

.tr i 0

i is the input (keyboard) character to be used as a
representation of the desired output character. It
may be a character or a two-digit hexadecimal
number (see the table below).

o is the desired output character which SCRIPT/370
substitutes for the input character specified by
i. It may be a character or a two-digit
hexadecimal number.

After formatting of an input source line has been completed
and immediately prior to actual output, each character of
the output line is analyzed for possible translation to a
different output code. Consequently, the TRANSLATE-CHARACTER
control word is primarily of use when the final output
device uses a character set different from that used to
create the Script file.

Title lines are processed by SCRIPT/370 under control of the
TRANSLATE specifications in effect at the time the title
lines were entered. Thus, you can translate an input
character in a title differently from the way you cause it
to be translated in text.

Once you have entered a TRANSLATE-CHARACTER control word for
a given input and output character combination, it remains
in effect until you explicitly r~define it. You can,

61

however, reset all your translation specifications to the
original (default) settings, by entering a
TRANSLATE-CHARACTERS control word in the form

• tr

You need not specify the translations of lower-case
alphabetic characters to upper-case for an entire document,
since this can be accomplished automatically if you specify
the TRANSLATE option of the SCRIPT command.

I

The hexadecimal code for each printable character is shown
in the table below:

o 1 234 5 6 7 8 9 ABC D E P
+---------------------------~-----+

00 I I 00
10 I f 1(}
20 I 20
10 ~ 30
40 t t. . < (+ L 40
50 I & 1 $ *) ; ..., 50
60 I - / , I > 1 60
70 I • () f. = " 70
80 I a b c d e f g h i { S (+ + 80
90 I j k .1 m n 0 p q r) D) ± • 90

-AO I - 0 s t u v w x y Z L r [~ • AO
BO I 0 1 2 3 4 5 6 ., 8 9 .J. , J :f: BO
CO I A B C D E P G H I CO
DO I J K L ft N 0 P Q R DO
EO I 5 T U V W X Y Z 1 EO
FO I 0 1 2 3 4 5 6 7 8 9 FO

+---------------------------------+
0 1 2 3 4 5 6 7 8 9 ABC D E P

!~~!E!~§.:

a • • t r) 0 b 0 ; • t r 1 b 1 i ••• i • t r 9 b9
This causes the characters 0, 1, ••• , 9 to print as their
corresponding superscript character if the output device is
a printer equipped with the TN-train. For example, the
formula

X2+Y2=Z3
will print as

b. .TRANSLATE-CHARACTER 40 1
This causes all blanks in the file to be typed as questions
marks (1) on output.

c. .tr $ 7B
This causes each occurrence of the character "$" to be

62

'(

~

I\
\

)

replaced by the hexadecimal character 7B,which is the "#"
character. This may be necessary since the # character may
have special significance to the eMS Edit facility.

Perhaps one of SCRIPT/370's most useful features is its
ability to produce multiple-column output. Using the various
multiple-column control words, you can determine the number
of columns per page,their width and separation, and whether
all columns on a page are to be the same length (balanced)
or the last column will be allowed to be shorter than the
others (unbalanced). Using these control words, you can
produce output with as many as nine columns per page. This
allows you to produce double-column output similar to that
of many technical manuals, six- or eight-column output
similar to that of most newspapers, or other formats which
may be of special use in your installation.

with the COLUMN-DEFINITION control word, you specify the
number of columns per page, and the beginning print position
of each. When SCRIPT/370 encounters a COLUMN-DEFINITION
control word, it processes all text up to that point in
accordance with the old column definitions before putting
the new definitions into effect.

The format of the COLUMN-DEFINITION control word is

.cd n p1 p2 •••

n is the number of columns to be printed on each
subsequent page, and may be any number from 1 to
9.

p1 p2 ••• is the starting print position of columns 1
through n. The physically leftmost position is
designated position zero.

If you specify fewer than n
previously defined values remain
respecified.

starting
in effect

positions,
for those

the
not

The COLU~N-DEFINITION control word specifies only the number
of columns and the starting print positions. To prevent

64

\
!

/

unintentional overlaps, you use the COLUMN-LENGTH control
word to specify the number of print positions each column
will occupy. To insure that you have space between columns,
("gutter"), you should set column length to occupy less
space than that between defined column starting positions.
The column length also is the reference for the operation of
such control word as CENTER and RIGHT-ADJUST wheft you have
specified multiple-column output.

The format of the COLUMN-LENGTH control word is

.cl n

n is the number of print positions to be occupied by
each column defined in the current
COLUMN-DEFINITION control word.

If you have not entered a COLUMN-LENGTH control word,
SCRIPT/370 sets column width equal to the current line
length, and changes it in accordance with subsequent changes
to line length.

The COLUMN-BEGIN control word causes subsequent text to
start a new column. If the COLUMN-BEGIN control word occurs
within the last column on a page, SCRIPT/370 causes a page
eject and begins the new column on a new page. When you use
a COLUMN-BEGIN control word, the column in which it occurs
remains unbalanced (fewer lines than the current page
length), even if a BALANCE-COLUMNS control word is· in
effect.

The format of the COLUMN-BEGIN control word is

.cb

The CONDITIONAL-COLUMN-BEGIN control word operates similarly
to the CONDITIONAL-PAGE-EJECT (.cp) control word.

65

The format of the CONDITIONAL-COLUMN-BEGIN control word is

.cc n

n is the number of lines that must remain between
the current line and the first line of the bottom
margin if printing is to continue in the current
column.

If there are more than n lines remaining, this control word
is ignored.

To cause all columns on a page to have the same number of
lines, you enter a BALANCE-COLUMNS control word. When
SCRIPT/370 encounters this control word, it processes all
accumulated text to that point and formats it S9 that all
columns occupy the same number of lines •• This allows you to
end a section within a page, and resume multiple-column
formatting on the same page after balancing the end of the
first section.

The format of the BALANCE-COLUMNS control word is

.bc

You need not use the BALANCE-COLUMNS control word unless you
wish to cancel a previous NO-BALANCED-COLUMNS control word.

The NO-BALANCED-COLUMNS control word causes the lines
printed as the result of a new COLUMN-DEFINITION control
word or page eject to be printed without being balanced.

The format of the NO-BALANCED-COLUMNS control word is

.nb

The difference in effect between BALANCE-COLUMNS and
NO-BALANCED-COLUMNS is shown below in Figure 4.

66

(
~

INPUT:
~\

1
I

/

aaaaaaa
.sp
bbbbbbb
.sp
CCCCCCC
.sp
ddddddd
.sp
eeeeeee
.sp
fffffff
.sp
ggggggg
.sp
hhhhhhh
.sp
iiiiiii
.sp
jjjjjjj
.sp
kkkkkkk
.sp
1111111
.sp
mmmmmmm
.sp
nnnnnnn
.sp
0000000
.sp
ppppppp
.sp
qqqqqqq
.sp
rrrrrrr
.sp
5555555

.sp
ttttttt
.sp
uuuuuuu
.sp
vvvvvvv
.sp
wwwwwww
.sp
xxxxxxx
.sp
111111Y

I. sp
Izzzzzzz

-,

l
t
I
I
I
I
t

L _______________ -J Figure ~. (Part 1 of 2)

67

FORMATTED OUTPUT:

Using .cd 3 0 11 22, .c1 7, and bc (defa u1 t)
r
I
I aaaaaaa rrrrrrr
I jjjjjjj
I bbbbbbb sssssss
I kkkkkkk
I ccccccc ttttttt
I 1111111
I ddddddd uuuuuuu
I mmmmmmm
I eeeeeee vvvvvvv
I nnnnnnn
I fffffff wwwwwww
I 0000000

I ggggggg xxxxxxx
I ppppppp
I hhhhhhh yyyyyyy
I qqqqqqq
I iiiiiii zzzzzzz
I
L

Using same column definition, .nb, and a .p1 of 20
r ,
I
I aaaaaaa mmmmmmm wwwwwww
I
I bbbbbbb nnnnnnn xxxxxxx
I
I ccccccc 0000000 yyyyyyy
I
I ddddddd ppppppp zzzzzzz
I
I eeeeeee qqqqqqq
I
I fffffff rrrrrrr
I
I ggggggg sssssss
I
I hhhhhhh ttttttt
I \

I kkkkkkk uuuuuuu
I
I 1111111 vvvvvvv
I
L

Figure 4. Balance versus N~n-ba1ance Multiple Column output
(Part 2 of 2)

68

(

11.,:

J

USING MULTIPLE-COLUMN FACILITIES

For most users the separate .CD and .eL are cumbersome, thus
it is recommended that SCRIPT set-symbol macros be used
instead. For example, the symbol n&lcol n could be assigned
to mean "enter 1 column format" and "&2col" mean "enter 2
column format".

By creating an initialization file, named U$COLUMN SCRIPT"
for example, which contains:

.control-word-separator ?

.page-length 84

.column-definition 2 a 46

.set lcol = '.cd l;.cl 89;'

.set 2col = '.cd 2;.cl 43;'

.control-word-separator

.substitute on

You can create text files using $COLUMN SCRIPT, as follows:

.im $COLUMN
&lcol (start in 1 column mode)

&2col (enter ~ column mode)

&2col (dump out columns
but stay 2 column mode)

etc.

WARNING: The Page-Length (.PL) should never
'~xcept when in one column mode, as is true

beginning of the SCRIPT file.

be changed
at the very

Also, the CENTER or NUMBER parameters to SCRIPT should only
be used with very small explicit nn values since IIstaI\dard"
double column format takes 89 characters, leaving very
little extra space on the line. Since the file
identification space needed by NUMBER is about 16
characters, the parameter NUMBEROO requires:

89+2*16 = 121 characters
whereas the default value for NUMBER is NUMBER30 which
requires:

89+2*46 = 181 characters
which won't fit on a printer line.

69

Using the terminal input/output control words you' will find
SCRIPT/370 very useful for form letters with variable
information such as name and address, questionnaires, and
making one-shot changes to documents SCRIPT/370 provides you
with two control words that cause it to accept input from a
terminal during output processing, and one that causes it to
print information at the terminal that will not be processed
as part of your document.

With the READ-TERMINAL control word you can enter text lines
from the terminal at the time of formatted output without
their becoming part of your file, and without their being
processed bY,SCRIPT/370. Thus, you could precede the date,
recipient's name, and recipient's address lines of a "form"
letter with READ-TERMINAL control words. During output
processing of the file containing the form letter,
SCRIPT/370 suspends processipg when it encounters the
READ-TERMINAL control words and unlocks the keyboard of your
terminal so that you can type in the appropriate
information. This informations will appear only on the (
individual page being printed at the terminal.

The format of the READ-TERMINAL control word is

n

.rd n

is the number of lines
terminal. If you omit a
allows you to enter one
processing.

to be entered from the
value for n, SCRIPT/370
line and then resumes

The I~B~1!~1=1!gg1 control word differs from the
READ-TERMINAL control word in that the lines you enter from
the terminal are passed to SCRIPT/370 and processed by it as
though they were part of the file. Because of this, you may
enter SCRIPT/370 control words as well as text. Thus, you
can enter text and determine the format in which it is to be
printed, just as though it were originally part of the file

70

)
being processed.

The format of the TERMINAL-INPUT control word is

.te nlonloff

n is the number of lines from the terminal to be
accepted and processed. If you omit a value for n,
SCRIPT/370 allows you to enter one line and then
resumes processing, beginning with the line you
entered.

on specifies that file input is to be suspended, and
terminal input to be accepted for processing until
a TERMINAL-INPUT control word specifying off is
entered from the terminal.

off is entered from the terminal when you
completed entering your terminal input.
causes SCRIPT/370 to resume file input.

have
This

It is generally good p~actice to precede a TERMINAL-INPUT
control word with a TYPE-ON-TERMINAL control word that
prints an appropriate prompting message at the terminal.
This allows you to instruct the terminal user as to what
input is expected or what will be the results of different
input. (The TYPE-ON-TERMINAL control word is described later
in this section.) The TERMINAL-INPUT control word should not
be used unless you have specified the FILE or OFFLINE option
of the SCRIPT command. If you use it when printing at the
terminal, the input lines you enter ~Q~ the formatted output
corresponding to them will appear in your output unless you
avoid it manually by using separate sheets of paper.
Remember also that the lines you enter from the terminal do
not become part of the file. To make permanent changes to
your file you must Edit it in the normal manner.

Because the TERMINAL-INPUT control word allows you to enter
control words, you can use it to "tailor" the processing of
a document. For example, by entering appropriate
REVISION-CODE or CONDITIONAL-SECTION control words you can
actually control which portions of a document are to
printed, and which revision indicators are to be printed.
You could also, by entering an IMBED control word, cause an
entire file to be included for processing. If you do not
receive a prompting message, and do not know if only one
line will be accepted, you can enter a TERMINAL-INPUT
control word specifying on so that SCRIPT/370 will continue
to accept input from the terminal until you enter a
TERMINAL-INPUT control word specifying off.

7 1

With the TYPE-aN-TERMINAL control word you can include
inf~rmation in your file that will be printed on the
terminal during output processing but will not be part of
your document. of course if you are printing your document
at the terminal, the line associated with each
TYPE-ON-TERMINAL control word will appear interspersed with
the rest of your document. Therefore, you should not use
this control word unless you are planning on OFFLINE output,
or unless you intend to prompt or question the person at the
terminal.

The format of the TYPE-aN-TERMINAL control word is

.ty text

text is the line to be printed at the terminal. If
more than one line is to be printed, simply
precede each with another. TYPE-aN-TERMINAL control
word.

This control word can be used for informing the person who
is printing or editing your document of tab settings,
imbedded files, etc. When used in conjunction with the (
TERMINAL-INPUT control word, you effectively develop a
"questionnaire" mode of operation. Remember, you must use
the TERMINAL-INPUT control word if you want the lines
entered from the terminal to become part of a printed
document. If all you require is copy at the terminal, you
can use the READ-TERMINAL control word.

72

The set-symbol facilities of SCRIPT/370 in conjunction with
the SUBSTITUTE-SYMBOL control word and the 2PASS option of
the Script command provide an extremely powerful method of
generating tables of contents, assigning section numbers,
and defining shorthand symbols to substitute for special
phrases or control word sequences. You use the SET-SYMBOL
control word to define a symbol and the name of the value to
be substituted for it. You use the SUBSTITUTE-SYMBOL control
vord to determine whether the current value is substituted
for the symbol in a given portion of your document. Thus you
could define a symbol called chapl with a value of &
(pagenumber). Later, in your table of contents, you could
type in chapl as the page number associated with the heading
of Chpater 1 • SCRIPT/370 would then substitute the actual
page number for the symbol. Many more involved applications
of these facilities are possible, but they are all based on
the type of action described above. Additional details
describing the set-symbol facilities are in Appendix C.

To define a symbol that will be used later in conjunction
with the 2PASS option, you use the SET-SYMBOL control word.
This control word can also be used to define groups (arrays)
of symbols, so that you can cause series of values to be
substituted rather than just a single value. Such arrays are
useful in generating indexes which have multiple references
for each index entry.

The format of the SET-SYMBOL control vord is

.se symbol-designator=symbol-value

The symbol-designator may be anyone of the following
forms:

symboll
symboll 0
symboll (n)
symbol1 (&symboI2)

where symbo11 is any string of up to 10 non-blank
characters excluding the characters:

73

period = equal sign
+ plus sign minus sign

* asterisk / slash
(left parenthesis) right parenthesis , quote mark & ampersand

n must be a non-negative integer and symbol2 must be a
defined set-symbol with any integer value.

The symbol-value may be either a character string or an
arithmetic expression, as follows:

A character string must be less than or equal to 14
characters, and may be of the form:

'character string'
or

string

where string does not contain any of the arithmetic
operations or the character blank (e.g., the quote
marks may be omitted if the string does not contain any
of the special characters).

An arithmetic expression is of the form:

opO operand1 op1 operand2 op2 operand3 etc.

where operand1, operand2, etc. are either integers (n),
defined set-symbols (&symbol), or the special SET page
number symbol (&); op1, op2, etc. are the ari thmetic
opera tors:

+ addi tio'n
subtraction

* multiplication
/ division

opO, if present, may be either a
Expressions are evaluated in
adding-machine left-to-right order.

unary + or - sign.
the conventional

Each symbol-designator may be viewed as a single element of
an array that can span the subscripts from symbol(-32768) to
symbol (32767) • In particular, symbol1 alone is a short-hand
notation for symbol1 (0). The symbol-designator

• SET-SYMBOL symbol1 () = •••

is a short-hand notation for the sequence

. SET-SYMBOL symbol1 = &symbol1 + 1

74

(

)

• SET-SYMBOL symbol1 (&symboll) = •••
which results in stepping one-by-one through the array with
symboll(O) used as an index counter. This is very useful for
creating an array of references.

The number of unique symbol elements that may be defined is
dependent upon the storage size of the user's virtual
machine. This may be changed by the DEFINE command of
VM/370, or by the operations department of your
installation.

case letters are
symbols: symbol1,

distinct symbols.
as SYSYEAR, SYSMONTH,
should not be used as

In symbol names, upper case and lower
considered to be different, thus the
Symbol1, and SYMBOL1 are three
Symbol-names beginning with SYS, such
etc., are reserved for system use and
symbol-designators. See Appendix C.
curr~nt page number, &, remains the
PAGE-HUMBER-SYMBOL control word is used.

The symbol for the
same even if the

An iterative substitution, as described in the
SUBSTITUTE-SYMBOL control word, is automatically performed
on all character string symbol-values. If the symbol-value
is ommitted, the symbol's value is set to a null character
string (length zero).

With the SUBSTITUTE-SYMBOL control word you cause SCRIPT/370
to scan input lines for symbols defined with a previous
SET-SYMBOL control word, and replace the symbol with it's
current value. Successive scans are performed on each input
line until no further set-symbol substitution can be found;
then SCRIPT/370'proceeds to the next line.

The format of the SUBSTITUTE-SYMBOL control word is

.su nlonloff

n is the number of succeeding lines to be scanned
for set-symbols. If you omit a value for n,
SCRIPT/370 chooses 1.

on specifies that all succeeding lines are to be
scanned until a subsequent .su off is encountered.

off specifies that
substitution of
terminate'.

scanning
values

of
for

input lines
symbols is

Set-symbols may appear in any of the following forms:

&symbol
&symbol.
&symbol (*)
&symbol(*) •

and
to

In each case, the symbol m~§l be immediately followed by a
blank or a period. When the period (.) is used to terminate
the set-symbol, it is removed when the substitution is
performed. The period must be used if the symbol cannot be
followed by a blank (e. g., ""&symbol," must be written as
lI&symbol. , tI) •

When the representation &symbol is used, the current value
of symbol (0) is substituted in the line. When ~ the
representation &symbol(*) is used, the current value of all
defined and non-null elements of the array are substituted
except for symbol(O). When an array substitution is used,
elements are ordered by subscript value (from lowest to
highest) and separated by a comma and a blank.

Multiple sca~s are performed over the input line until no
further set-symbol substitution can be found.

The sUbstitution of set-symbols may increase or decrease the
length of the text line. If the line's length reduces to
zero, it is ignored. If the line's length expands so that it
exceeds 130 characters, an error condition occurs if a
single variable sUbstitution caused the line overflow. If
the overflow occurred as the result of an array
substitution, the current line is terminated at the end of
preceeding array element's comma. The next input line starts
with the remaining array elements. As many lines, of up to
130 characters each, as necessary are generated until the
array substitution is completed.

Substitution only occurs for symbols that are currently
defined. The 2PASS option permits use of symbols defined
physical!y !ater in the SCRIPT fi!e. Thus, a Table of
Contents can be created using set-symbols for the page
numbers, as shown in "Using Set Symbols." Under rare
circumstances, the substitution of symbols during pass2
which were not defined during pass1 may affect the length of
certain pages and disrupt the page numbers assigned during
pass 1.

\

76

1
/

USING SET SYMBOLS

The page numbers in a table of contents or an index change
each time a document is revise~. The use of set-symbols can
make such changes automatic. Suppose you are creating a
table of contents. You should first define all the items
whjch will be specified in the table of contents, and, then,
associate each with a set-symbol name preceded by an &
character. For example

Chapter 1 •
Chapter 2 •
Chapter 3 •

&chapter1
&chapter2
&chapter3

In order for SCRIPT/370 to substitute the assigned page
n~mbers for the set-symbol names, you must specify
substitute-mode. Put the following control words at the top
and bottom of y~ur table of contents, respectively:

.substitute-symbol on

.substitute-symbol off

Now you must assign values to the set-symbols you have
defined. The character &, when used alone, represents the
current page number of the formatted output. For example,
at the point in the SCRIPT file where chapter 2 hegins, you
must include a SET-SYMBOL control word which assigns to the
name &chapter2 the current page number, as

.page-eject

.space-lines 2
CHAPTER 2. THE DOUBLE TASK OF LANGUAGE
.set-symbol chapter2=&
.space-lines 2

Note that when substitution is desired, you reference
"&chapter2", but in the SET-SYMBOL control statement, you
reference "chapter2". Note also that SCRIPT/370 would
regard chapter2 and Chapter2 as different set-symbol names.

Figure 5 demonstrates another use of the SET-SYMBOL control
word. The input files are LETTER SC~IPT and NAMES SCRIPT.
When the command SCRIPT LETTER is issued, three pages will
be printed. Each page will be a separate letter addresseq to
each of the three people designated in the NAMES file. The
page shown is the second letter.

77

LETTER SCRIPT

Paul Tardif
114 Maple Street
Montreal, Quebec
CANADA

VM/370 Development Group
19 May 1971

NAMES SCRIPT

Tom Jones
947 Wood St.
poughkeepsie, N.Y •
• set name='Tom'
.end-of-file
Paul Tardif
114 Maple st.
Montreal, Quebec
CANADA
.set name='Paul'
.end-of-file
Stuart Madnick
162 Winona st.
Peabody, Mass •
• se name='Stuart'
.end-of-file
• quit

Paul, the enclosed ~eport contains a further
description of the SCRIPT manuscript processing facility. I
hope, Paul, that you will find it helpful.

Very truly yours,

John Smith

Figure 5. Sample SET-SYMBOL Control Word Usage

78

, IMBED PARAMETER PASSING
I

Frequently, imbedded SCRIPT files have the same relationship
to the master file as program subroutines have to the main
program. It is possible to pass parameters to an imbedded
file, processing them with the facilities provided by set
symbols.

The full format of the IMBED control word is

.im file arg1 arg2 ••• arg9

up to 9 arguments can be specified in an IMBED request.
These arguments will be assigned to the special set symbols
&1 through &9. Th~ set-symbol &0 will be set to the number
of parameters specified only if arguments are specified. The
set symbols &1 through &9 are not automatically stacked if
an IMBED file is called within an i.bedded file.

If the file HANGPARA SCRIPT is:

.substitute-symbol on

.in 0

.space-line

.offset &1

.substitute-symbol off

Then the following control word would cause subsequent text
to be processed with an offset value of 5:

.im hangpara 5

Script files specified in imbed control words may be on an~
active disk associated with the userid. The standard CMS
order of search is used to find the specified file.

79

The SCRIPT command is your means of causing the Script file
containing your document to be processed by SCRIPT/370 and
printed. The processing of your file is accomplished by
SCRIPT/370 in accordance with the control words you entered
into your document as you developed it. When you issue the
SCRIPT command, you must name the file you wish to be
processed, and indicate to SCRIPT/370 which of the output
options are to be operative.

The format of the SCRIPT command is

script filename [(option 1 option2 ••• optionN [)]]

filename specifies a file with a filetype of SCRIPT.

CENTER (CE)
causes offline output to be shifted 30 characters to
the right on the printer paper. \

CENTERnn
causes offline
the right on
required.

CONTINUE (CO)

output to be
the printer

shifted nn characters to
paper. Two digits are

causes processing to continue after detecting and
printing any errors, if possible.

DEBU G (DE)
allows breakpoints to be set by the CMS DEBUG command;
if this option is not used, breakpoints will cause a
terminal error to occur.

PIL E (PI)
writes the edited and formatted output of SCRIPT into a
file named lI$filename", instead of at the terminal or
offline printero

MARK (MA)
marks the beginning of each line of the original input
by underlining the first character.

80

\ NOWAIT (NO)
/ starts SCRI~T output immediately without waiting for

the first page t~ be adjusted.

NUMBER (NU)
prints in the left margin the SCRIPT filename and line
number corresponding to each line of printed output.
The text is shifted 30 characters to the right.

NUMBERnn
same as NUMBER, except that text output is shifted nn
characters to the right. The SCRIPT filename and line
number require 16 spaces reserved; the nn value is
added to this automatic shift amount.

OFFLINE (OF)
prints the edited and formatted output of SCRIPT on the
offline printer, instead of at the terminal.

PAGExxx
causes printout to start at page xxx.

QUIET (QU)
causes the SCRIPT version number identification line,
normally printed immediately after issuing the SCRIPT
command, to be suppressed.

SINGLE (51)

STOP

terminates printing after one page, usually used in
conjunction with the PAGExxx option.

(ST)
causes a pause at the bottom of each page during SCRIPT
printout.

T RAN S I ., Z . T R)
tl~ns~ tcs lowercase letters to uppercase in printout.

UNFORMATTED (UN)

2PASS

prints the inputted SCRIPT file along with the control
words; the ~ontrol words being ignored with no
formatting of the output.

(2 P)
causes 2 passes through the input files to occur; both
passes process all the control words, but actual output
only occurs on the second pass.

81

Filename must be specified with the
filetype SCRIPT is assumed. If "SCRIPT
explanation of the SCRIPT command is
list of valid control words.

SCRIPT com"mand. The
1" is typed, a brief
typed including the

When the SCRIPT command is issued, the specified SCRIPT file
is typed either at the user's terminal, on the offline
printer, or into a file. Execution is controlled by format
control words included in the specified SCRIPT file. When
the file is located, and typing is ready to begin, a
response is typed, and execution pauses until a carriage
return is entered at the terminal, unless the NOWAIT,
OFFLINE, or FILE option has been specified~ This pause
allows the user to position the output paper at the top of a
page. If STOP is specified with the command, the pause is
repeated at the bottom of each page, allowing the user to
change paper if noncontinuous forms are being used. If STOP
is used, the paper should be positioned to the first line to
be printed (the heading) rather than to the physical top of
the page. Typing resumes when a carriage return is typed."

The TRANSLATE option is needed if output is to be directed
to an offline printer that is not equipped with the
uppercase and lowercase letters (TN-chain). In conjunction /
with the UNFORMATTED option, TRANSLATE provides a means of \
printing the original SCRIPT file on a printer that does not
have the TN-chain (this can also be done by the CMS command
PRINT filename SCRIPT (CC»).

The PAGExxx option, in conjunction with the SINGLE option,
provides a means for selectively formatting and printing
portions of a manuscript. The xxx represents a three-digit
page number and must include leading zeros (for example,
page 12 only" should be requested by SINGLE PAGE012). Another
means of selectively manipulating a formatted manuscript is
to use the FILE option to generate the entire or relevant
portion of a manuscript into a file and then use the CMS
facilities of EDIT and/or TYPE to process it.

The CENTERnn and NUMBERnn options should be used with small
explicit nn values if the text output is in multiple colum-n
format. The standard line length for double columns is 89
characters. The default nn value for the NUMBER option is
NUMBER30 and would print to the left of each column,
requiring

89 + 2 X 30 = 149

:haracters - too many for a printer line.

82

c The FILE option produces an output file in either typewriter
format (backspace characters and carriage return characters
are used) or printer format (printer control codes are
used). The default format is typewriter. The printer format
can be specified by the combination of both the FILE and
OFFLINE options. A printer format file may be later printed
by the eMS command PRINT with the CC option.

The QUIET' option can be especially useful when the SCRIPT
command is issued by means of a CMS EXEC file. This will
cause the processing . to begin without any interruptions or
printout (the NOWAIT option may be also needed for online
terminal printout to surpress other interruption). If
multiple SCRIPT commands are issued from the EXEC file (each
with appropriate QUIET and NOWAIT options), the output will
correctly start on a new page for each input file as needed
f6r "form letters", for example.

The 2PASS option can be used, perhaps in conjunction with
the CONTINUE option, to scan the entire input for possible
control word errors before starting any actual printout.
Furthermore, when used in conjunction with the SET-SYMBOL
and SUBSTITUTE-SYMBOL control words, the 2PASS option allows
references to be automatically inserted which are not
physically defined until later in the input file (e.g. "This

\ will be discussed again on page &PAGENUM.", where &PAGENUM
is a set-symbol defined later in the input file).

Once you have entered a Script command and pressed RETURN,
your keyboard is locked, whether or not you have specified
the OFFLINE option. If you decide that you do not want your
output to continue, perhaps because of errors in the Script
file, or because you have specified an incorrect filename or
have omitted a desired option, you can halt output
processing as follows

1. Press ATTN. The system will respond by typing an
exclamation point (!).

2. type ht. The system will respond with the READY
message.

If, after you press ATTN, you decide to continue with your
output, press RETURN. SCRIPT/370 will resume processing your
file, but the line you interrupted ~ill ll2! be processed.

83

As SCRIPT/370 processes your file it responds to errors
(usually improperly-specified control word), by printing
appropriate messages at the terminal. If you have specified
the CONTINUE option of the SCRIPT command, SCRIPT/370 does
not stop processing your file, but goes on if possible. If
you did not specify the CONTINUE option, processing stops
when the error is encountered, output up to that point is
printed, and the system responds. with the CMS READY message
followed by the eMS error code. The following information,
as appropriate, is printed for each error detected:

1. The SCRIPT error number and description of the
error situation.

2. The control word line or parameter that caused the
error. '

3. The number of input lines that had been processed
up to the point that the error was encountered.

4. The specific SCRIPT filename and record number
that vas last read.

5-. The SCRIPT filename and record number that
imbedded the error file, if the error was
encountered within an imbedded file.

Sample error output:

SCRIPT ERROR 02: CONTROL LINE, PARAMETER SHOULD BE A NUMBER •
. sp abc
ERROR OCCURRED AFTER READING 00145 LINES.
LAST LINE READ WAS FROM FILE: ERROR , LINE: 00003.
WHICH WAS IMBEDDED FROM FILE: TESTR , LINE: 00067.

The messages typed by SCRIPT/370 when it encounters an error
are shown below.

E(00001) OUTPUT LINE TOO LONG OR PRINTER ERROR.
An output line longer than 132 characters was created. This
usually is caused by neglecting to set the format mode

84

~\

V

resulting in very long lines which, when printed using the
CENTER option, exceed 132 characters.

E(00002) CONTROL LINE PARAMETER SHOULD BE A NUMBER.
An alphabetic parameter was found for a SCRIPT control word
that requires a numeric parameter.

E(00003) MORE THAN EIGHT ACTIVE FILES - REDUCE NESTING.
SCRIPT files have been imbedded to a depth greater than
eight (see .IM).

E(00004) INVALID CONTROL WORD ENCOUNTERED.
A line was read that started with a period but could not be
recognized as a valid control word.

E(00005) CONTROL LINE PARAMETER MISSING.
A required parameter for th~s SCRIPT control word was
ommitted.

E(00006) STATUS STACK OVERFLOW/UNDERFLOW.
An attempt was made to stack status to a depth greater than
5 (see .SA) or to restore status more times than it was
saved (see • RE) •

E (00007) NEGATIVE PAGE NU.MBER COMPUTED.
A negative page number was computed. This is usually caused
by using a negative parameter with the .PA control word
incorrec.tly.

E(00008) INVALID CONTROL LINE PARAMETER.
A parameter specified is not. valid for this SCRIPT control
word (e.g. only ON or OFF are valid parameters for certain
control words).

E (00009) LINE LENGTH o OR GREATER THAN 132.
The parameter to the .LL control word is not within the
range 1 to 132.

E(00010) UNDENT)INDENT.
The execution of a .IN, .UN, or .OF control word would cause
the left hand margin to move to the left of column 1 •

E(00011) PREVIOUSLY SET OFFSET HAS NOT BEEN TRIGGERED.
Two .OF control words were encountered without any
intervening text lines.

E(00012) HEADING MARGIN)TOP MARGIN.
The execution of a .HM or .TM control word would violate the
constraint that the heading margin must be less than the top
margin.

E(00013) FOOTING MARGIN)BOTTOM MARGIN.

85

The execution of a .FM or .BM control word would violate the
constraint that the footing margin must be less than the
bottom margin.

E(00014) FIRST PARAMETER SHOULD BE A SINGLE DIGIT.
The first parameter to a .RC or .CS control word must be a
digit.

E(00015) .RC MODE WAS ON/OFF ALREADY.
A .RC n ON was encountered while revision code n was already
on, or a .RC n OFF was encountered while revision code n was
already OFF.

E{00016) INVALID .RC TERMINATION ~ NUMBER NOT DEFINED OR
ALREADY TERMINATED.
An attempt was made to undefine a revision code that vas not
currently defined.

E(00017) NEGATIVE SPACE COUNT GENERATED.
This is a system error and should not occur.

E(00018) FILE SYSTEK ERROR ON INPUT.
An error code was returned from the file system while
reading input.

E(00019) TEMP FILE "CMSOTl SCRIPT" ALREADY EXIST, ERASE IT~
The tempoTary file CKSUT1 SCRIPT is normally erased
automatically by SCRIPT; if this file is a user file alter \
its name, otherwise erase it.

E(00020) CORRECT FORM IS: "SCRIPT" FILENAME (OPTIONS); TYPE
"SCRIPT 1" FOR KORE INFORMATION.
A filename was not specified in the SCRIPT command.

E(00021)
The file
found.

INPUT FILE NOT FOUND (SYSTEM ERROR).
specified in a .IM or .AP control word cannot be

E(00022) FILE SPECIFIED ON SCRIPT COMMAND NOT FOUND.
The file specified in the SCRIPT command cannot be found.

E(00023) MESSAGE CODE NOT USED.

E(00024) INVALID SCRIPT COMMAND OPTION.
One of the options to the SCRIPT command is not valid.

E(0002S) RC STACK OVERFLOW.
Revision codes can only be nested to a depth of 9, there was
an attempt to nest further. This is usually caused by
forgetting to use appropriate .RC n OFF control words.

E(00026) SYSTEM ERROR HAS OCCURRED, PLEASE SAVE YOUR SCRIPT

86

FILE.
This message indicates a system error. The appropriate
personnel should be informed of the circumstances. Usually
this condition can be bypassed by diagnosing the cause of
the error and changing the SCRIPT file accordingly.

E(00027) EQUAL SIGN (=) NOT FOUND IN .SET.
An equal sign is required in the operand field of the
SET-SYftBOL control line.

E(00028) INVALID SYNTAX ON LEFT OF EQUAL SIGN OF .SET.
The symbol-designator of the SET-SYMBOL control line is not
in one of the four legal forms.

E(00029) I~VALID SYNTAX ON RIGHT OF EQUAL SIGN ON .SET.
The symbol-value of the SET-SYMBOL control line is not in
one of the legal forms.

E (00030) • SET SYMBOL TABLE OVERFLOW.
The maximum number of set-symbols has been exceeded, this
limit is normally set at 1000 symbols.

E(00031) UNDEFINED SYMBOL USED AS INDEX OF .SET SYMBOL ON
LEFT OF EQUAL SIGN.
A symbol-designator of the form symbol1(&symboI2) was used
in a' SET-SYMBOL control line where symbol2 was not a
previously defined set-symbol.

E(00032) INVALID (NON-DECIMAL) NUMBER USED AS INDEX OF .SET
SYMBOL ON LEFT OF EQUAL SIGN.
A symbol-designator of the form symboll (n) was use4 in a
SET-SYMBOL control line where n was not a valid decimal
number •.

E (00033) INVALID (NON-DECIMAL) NUMBER
EXPRESSION ON RIGHT SIDE OF .SET.

ENCOUNTERED IN

The symbol-value of a SET-SYMBOL control line is an
arithmetic expression which has a term which is neither a
set symbol (e.g. &symbol) nor a valid decimal number.

E(00034) UNDEFINED SYMBOL ENCOUNTERED IN EXPRESSION ON
RIGHT SIDE OF .SET.
The symbol-value of a SET-SYMBOL control line is an
arithmetic expression which has a term in the form of a set
symbol, e.g. &SYMBOL, where SYMBOL is not a previously
defined set symbol.

E(00035) A TOKEN LONGER THAN 14 CHARACTERS ENCOUNTERED IN
.SET.
A string of more than 14 characters has been encountered in
a SET-SYMBOL control line where there are no break
characters (~ •. g. blank, +, - etc.) within the 42 character

87

string. This can not be a legal control line.

E(00036) MORE THAN 10 TOKEN ENCOUNTERED IN .SET.
A maximum of 10 tokens (symbols, punctuation, numbers) are
allowed in a SET-SYMBOL control line (e.g. ".SET-SYMBOL
ALPHA = BETA * 2 - GAMMA + 13" has exactly 10 tokens) •

E(00037) INFINITE LOOP OCCURRED AS A RESULT OF RECURSIVE
.SET SYMBOL SUBSTITUTION.
While processing an input line under the specification of a
SUBSTITUTE-SYMBOL control word, each time a set-symbol was
substituted its value contained another set-symbol and never
terminated.

E(00038) SUBSTITUTION FOR .SET SYMBOL CAUSES LINE TO EXCEED
MAXIMUM ALLOWABLE SIZE.
While proces~ing an input line under the specification of a
SUBSTITUTE-SYMBOL control word, the substitution of a
set-symbol causes the input line to exceed 132 characters.

E(00039) UNABLE TO ALLOCATE SPACE FOR ~SET SYMBOL TABLE.
The space of the set-symbol table is allocated by means of
an SVC GETMAIN. There was not enough storage space available
to satisfy the requirements of the GETMAIN.

E900040) FILE SPECIFIED ON IMBED OR APPEND NOT FOUND.
The file named in an IMBED or APPEND control word was not
found. Check the filename and insure that it is correct and
that the file is available under your userid.

E(00041) NUMERIC CONTROL LINE IS OUTSIDE OF VALID RANGE-.
A parameter specified for a LINE-LENGTH or similar control
word was erroneously specified as too large. Check the
control word and respecify the parameters in-error.

E(00042) INCORRECT NUMBER OF PARAMETERS SPECIFIED.
An incorrect number of parameters has been specified, such
as specifying more than one value f~r a PAGE-LENGTH or
INDENT control word. Check the control word and respecify it
omitting the incorrect parameters.

E(00043) UNABLE TO ALLOCATE BUFFER SPACE FOR MULTIPLE
COLUMN PROCESSING.
Less than 4096 bytes of virtual storage were available when
reguir~d for buffer space. Press ATTN twice, and issue a
DEFINE STORAGE command to increase the storage size of the
virtual machine. Then issue IPL CMS (or the equivalent) and
reissue the SCRIPT command.

E(00044) INSUFFICIENT BUFFER SPACE FOR MULTIPLE COLUMN
PROCESSING.
Insufficient buffer space exists to format multiple column

88

\

output. Do one of the following: 1) Reduce the PAGE-LENGTH
size and reissue the SCRIPT command; 2) Press ·ATTN twice
and issue a DEFINE STORAGE command to increase the storage
size of the virtual machine. Then issue IPL CMS (or the
equivalent) and reissue the SCRIPT command.

89

This section contains unformatted and formatted copies of
one of the sample problems that are distributed with the lUP
tape to illustrate some of the facilities of the Script text
processor. Since only one of the files is included here,
references to an imbedded file in the unformatted copy (and
the associated CONDITIONAL-SECTION control words) should be
ignored.

90

\

.cs 1 ignore

.tt ////;.cm thi~ will suppress printing of Page xxx at the top of the following pages

.sp 6

.ce on;.cm this command will center each of the next lines typed
A Virtual Machine System' for the 360/40
.sp 2
.tr ~ OO;.=m see next line, blank character needed to adjust spacing
R.J. Adair..,
R.U. Bayles
1. W. Comeau
R.J. Creasy
.sp 2
IBM Cambridge Scientific Center Report
.sp·30
International Business Machines Corporation
Cambridge Scientific Center
Cambridge, Massachusetts
.sp 2
May, 1966
.ce off;.cm this resets default format-mode and left margins
.pa
.ri 4;.cm the next four lines of text viII be
.cm moved to be in line with the right margin
"ay, 1966
.c •• ri, like .ce, is an implicit no-format command
Scientific Center Report
.sp 3
A VIRTUAL "ACHINE
SYSTE" FOR THE 360/40
.sp 3
Abstract
.sp
.in 5;.cm all text viII begin in column 6
.11 55;.cm this, vith the .in 5, viII center the following text
.ca on the page, as all text will end in column 55
1 virtual machine system, vhich provides copies of a 360
computing system for concurrent use by separate operating syste.s,
has been implemented for the IBft 360 "odel 40. The user
at a terminal interface of a virtual 360 has all of the capability,
vith minor restrictions, provided by a stand-alone system. The system
vas designed as a system evaluation tool and as such, CPU
efficiency or throughput improvement vas not a
pri.ary design goal •
• in O;.~m this resets the default for the left margin
.11 60;~cm this command resets the default line length
.sp 2

.br;.cm this command inhibits formatting, and will force the

.cm following text to a separate line
!QII: Cambridge worke~ on virtual machine concepts throughout
1965 and 1966 and in January, 1967, put the modified Model
40 into internal use supporting a dozen virtual machines.

Parallel to this development, part of the Cambridge group

91

that worked on CP/40 began to work on a software solution for the
~odel 67 user. In the fall of 1967, it completed CP/67, a
product oriented system •
• em in the above paragraph, as in the following,
.cm initial blanks acted as a break

In Janurary of 1968, Cambridge desc'ribed CP/67 and CMS
to SHARE and in July of that year it became available to Model 67
users. This system was the forerunner of VM/370 .
. sp

The information contained in this document is of historical
interest, and should not be confused with any current
V~/370 documentation •
. su on;.cm this command is necessary if the page numbers are to be
.cm supplied by the text processor when the 2pass option is used on the
.cm SCRIPT command line •
. nf
• pa
.se afigno=l;.cm these symbolic figure numbers, when used, may be convenient
.cm for files where figures may be added or deleted, or used conditionally
.cs 1 on;.cm this indicates that the following lines will be included or ignored
.cm depending on the setting of '.cs' at the top of the file
.se xfigno=l;.cm this introduces a new figure into the text
.se afigno=&xfigno+1;.cm this introduces a new value for 'afigno' •
. cs 1 off;.cm this is the end of the conditional section at this point
.se bfigno=&afigno+l;.cm now, whatever the value of 'afigno' from above,
.cm 'bfigno' will be one greater •
• cm the SCRIPT processor, when substitute. mode is on, wil supply the
.CI correct numbers
.tb 6 ./55
.CI the above setting for the tabs indicate that tab stops are at 6 and 55, and that
.cm tabs to column 55 are to contain periods instead of blanks
• sp 2
.ce;.cm CE, with no on or off,parameters, indicates that just one line is to be centered
TABLE OF CONTENTS
.sp 5

I. INTRODUCTION &tintro
.cm these set symbols refer to corresponding symbols set within the text, in the form '.se tintro=&'
.sp
II. HARDWARE IMPLEMENTATION &thard

.sp
III. PROBLEM MODE OPERATION OF THE ASSOCIATIVE MEMORY &tproblem
.sp

IV. CONTROL PROGRAM ST~UCTURE &tcontrol
· sp

V. INPUT-OUTPUT OPERATIONS &tinput
.sp

VI. LIMITATIONS
.fi

&tlimit

.su off;.cl substitute mode is turned off when it is not needed

.cm to save on CPU time

.ps +;.cm defines page numbering parameter for following command:

.tt. //-+-//

.pn on;.cm this command will initialize page nUmbering

92

\

\

.pa 1;.cm this assutes that page numbering will begin with page
1.cm on the first page of text
;.tb 5;.cm this is the default, but when files are embedded, the last tab setting is in effect, so

.cm the defaults (it desired) can be [es.et by this comlland (.tb 5 assulles 10 15, 20, etc.)

.ce
I. INTRODUCTION
.se tintro=&;.cm this substitution symbol will, when the 2pass option is used
.em in processing, result in the proper page number appearing in the Table of Contents
. sp

Late in 1964, the IBM scientific Center (forllerly
Systeills Research and Development Center) at
cambridge, Massachusetts, ~ndertook a project with a number of
objectives. Among these were:
.sp
.in 5
.tb 5 8
.of 3;.clI offsets and tabs used in conjunction to justify left margins
.cm of offset paragraphs
.cm tab setting = 1ndentation level + offset value

the development ot means for obtaining data on the operational
characteristics of both system applications programs;
.of 3;.clI begins a new.offset sequence

the analysis of this data with a view toward more efficient
machine structures and programming techniques, particularly for use
in interactive systems;
.of 3

the provision of a multiple-console computer system for the
Center's computing requirements;
. of 3

the investigation of the use of associative memories in the
control of multi-user systems .
• in O;.CII any command to indent will clear both previous indentations and offsets
.sp
.cs 1 on;.clI lIore of the conditional section is here
.di on; .cm the following command (until • di off is reached) will not be
.CII executed until text processing begins on a new page
.sa;.cm all current format settings (tab, indent, etc.) are to be saved
.ill scdelay;.cm this is an imbedded file, which will begin a new page
.re;.cm this comlland restores the saved settings of control words
.di off
.cs 1 off
A system was designed which we thought would satisfy these goals and, in
~ddition, provide other useful features. Efficiency in CPU utilization
~as not a primary design consideration •
• sp
.tr $ b1;.cm this command will result in all '$'s' to appear as superscript '1's' in
.tr ? b2;.clI printed copy, for printers equipped with a TN train
.cm infrequently used characters are used to avoid substitution when not desired

Central to the idea of this system is the concept of the
"virtual machine" and, in our case, the "virtual 360"$. Because of our
desire to be able to measure a broad spectrull of progralls, it is important
that the imposition of a measuring system results in lIinimull alteration
)f the characteristics of the subject prograll. The "virtual 360"

93

concept effects this minimum while providing the flexibility also
required for the multi-user environment. In this system, the ~
subject program interacts with the multi-user controller in the same ~
manner as with the physical machine, and not by specially designed
supervisor calls or subroutine calls as in currently implemented
multi-programming packages. The program does not "see" the software
interface between it and the physical hardware •
• sp

Within these "virtual 360's" (called 360's), programs
such as operating systems, which were initially designed to run on
a hardware machine, may be run without change. In order to use
the available facilities more efficiently, the Control program
supporting these multiple 360's performs the traditional multi-user tasks,
such as scheduling, resource allocation, and core management •
. sp

We have created, therefor~, a multi-user system where each user's
virtual machine can run the programming system of his choice. None
of these programming systems need consciously make use of multi-tasking
facilities to improve machine utilization. Two other advantages accrue
from this design - the ability to dynamically alter the virtual
machine's configuration (core, size, available input-output units and
paths), and the ability to assign more than one virtual 360 to a
problem in order to examine the applications of multiprocessing •
• sp

We are providing sixteen virtual machines which may address
256K bytes of main storage7 a maximum of one multiplexor and
two selector channels, and a console typewriter. Some of the virtual
machines may have additional typewriters, tape units, and a 2250
display console assigned to them. A user is normally supplied
with three disks -- one read-only disk is to secure for all
users access to a library of often-used systems and routines, while
providing the protection necessary in a multi-user system. The permanent
disk provides continuing storage capability to the user. The temporary
disk is available to a virtual machine for the duration of the
session only. The user retains complete control over the format and use
of his permanent and temporary space. Programs may be loaded into the
user's virtual machine by name from the read-only disk, or by location
from any device attached to the virtual machine •
• sp 3
.cp 7;.cm this command will force the text to a new page if fewer than 7 spaces
.cm remain on the current page, will keep headings and text together
II. HARDWARE IMPLEMENTATION
.se thard=&
.sp 2

To provide these virtual machines, the Center
obtained a modified System 360/401 with
a multiplexor and two selector channels, interval timer, storage protection
feature, universal instruction set, and 256K bytes of main storage.
Its input-output equipment includes 'a console typewriter, line printer,
card reader and punch, 2702 Transmission Control with remote
terminals, four 2311 disk drives on two control units, two 240-111 tape
drives, and a 2250 display unit with a 4K buffer •
• sp

94

\
I

.su on; .cm this 'command will invoke set symbol substitution for the figure

.cm number in the next paragraph, as per set commands in the Table of Content~
The CPU has been modified to permit dynamic relocation

of storage addresses. by the addition of a 64 .
word (one per 4096 .. byte page of core memory) by 16 bit associative
lIelllory (Figure &afigno.) •
. cm with '.su on' during processing, the proper figure no. will be printed
A privileged operation to load and interrogate the memory has been
added to the instruction set. (see Figure &afigno •.)
.cm since a period is necessary following a 'figno' to invoke ~ubstitution
.cm two periods are needed here if .one is to print
.sp 3
.cp 7
III. PROBLEM MODE OPERATION OF THE ASSOCIATIVE MEMORY
.se tproblem=&
.sp 2

When the CPU is in problem mode, each main storage address
presented to memory is mapped by the following method (see Figure &bfigno.)
.sp
.in 5
.su off
the high order six bits of the eighteen bit memory address plus the
user identification number (set by the Control Program) are
presented to the associative memory for a match:
.sp
.tr ! af
.cm the translate coordinates 'aft. supply a bullet for lists
.un 2
.un 2;.cm when an indent is in effect, an 'undent' commmand will set the
.cm first line of subsequent text two spaces to the left
.cm and by using a tab character, proper line-up of indented text is assured •
• cm this is an alternate method of offsetting portions of text

if a single match is found, the address of the selected
row of the memory replaces the high order six bits on the memory
bus, and the memory select takes place;
.sp
.un 2

if a multiple match condition (an error which should
never occur) or no match (requested page is not in memory)
occurs, an interruption is generated and the Control Program must take
the appropriate steps to resume execution •
• in 0
.tr;.cm this will negate all previously set translate control words
.sp
This mapping take place with no degradation of Model 40 cycle time •
• sp

Six bits of the associative word are provided
to assist the scheduling section of the Control Program in selecting
the least costly (i.e. least likely to be brought back) page to roll
out when additional main memory space is required •
• sp
.in 5
The used bit is set when a match condition is found for a row

9S

of memory, indicating a reference to the corresponding
page, and is reset when all of the pages represented
by the entries in the memory have been either referenced or
are locked;
.sp
the active bit is set at the same time the used bit is set,
but is-not, like the used bit, automatically reset;
.sp
the £h~ng~g bit is set when the instruction causing

\ . .

the match condition could result in alteration of the contents of
the corresponding page;
.sp
the 1Q£! bit is set by the control program and is interpreted
by it to mean that the page may not be removed from memory;
.sp
the i£~n§ii bit is used by the control program to indicate that the
page is currently being brought in or dumped out;
one spare bit is provided for unspecified use •
• sp 3
.in 0
.cp 7
IV. CONTROL PROGRAM STRUCTURE
.se tcontrol=&
.sp 2

When the Control Program code is being executed, the machine
is in the supervisor state; at all other times it is in the
problem state. Any action of a virtual machine which could cause
a change of machine state results in an interrupt. The control
Program, then, is an interrupt driven system whose components reference
a set of tables describing the state of users' virtual machines. For
each user, this table (UTABLE) contains a copy of the,current
Program Status Word (PSW) and the user's general purpose and floating-point
registers, the locations of the user's virtual memory pages
(which are ~ither core or disk resident), a description of the input-output
equipment and its status, a copy of the user's interrupt region,
and other similar information •
• sp

There are two basic types of interrupts handled
by the Control Program: 1) those which invoke a section of the
Control Program to perform some function for the
virtual machine, and 2) those which require no special action by
the Control Program and are "reflected" to the virtual
machine (such as supervisor call and most program interrupts caused
by overflow conditions, protection violations, addressing errors, etc.).
The reflection of interrupts to the virtual machine is performed by the
appropriate swapping of PSW's in UTABLE and setting the proper interruption
codes there .
• sp

If a virtual machine's current PSW contains the wait bit
or if its execution has been delayed due to the temporary unavailability
of a necessary resource, it is considered
not runnable. At the occurrence of an interrupt which could affect
the runnability of a machine, UTABLE is examined

96

for interrupts pending which are enabled. If an enabled pending interrupt
~ is found, the appropriate "reflection"
, of the interrupt takes place (moving of the current PSW to one of the

old psw's, and of the corresponding new PSW to the current PSW) •
• sp

A privileged operation interruption (caused by an attempted
execution of a privileged operation while in problem mode) results
in one of two actions, depending on whether the virtual machine was
in problem or ~upervisor mode. If the virtual machine was in problem
mode, the interrupt is merely reflected to the virtual machine. If
the virtual machine was in supervisor mode, the action of the privileged
operation, with the exception of input-output operations which are handled
separately and discussed in a later section, must be simulated by the
Control Program by appropriate changes in UTABLE •
• sp

A timer-initiated external interrupt controls CPU
scheduling among the virtual machines. Each machine is allotted
a quantum of time to run (which may be sliced into smaller intervals
for timer simulation purposes) and, at the completion of the interval,
a round-robin scan is made of the users to ascertain if another
virtual machine is runnable •
• sp

An interrupt from the associative memory, caused by an attempted
reference to a page not core resident, invokes the core
managem~nt and scheduling routines. The missing page is in~icated
by the interruption code and the paging routines must schedule a page to be rolled
out (according to algorithms which will be a chief point of study), and the
appropriate page retrieved from disk. For the duration of the "page turning"
the virtual machine is placed in not runnable condition •
• sp 3
.cp 7
V. INPUT-OUTPUT OPERATIONS
.se tinput=&
.sp 2

The input-output equipment generally falls into two
classes: high data rate devices on the selector channel, and low

\ data rate devices on the multiplexor channel. These characeristics,
) together with the need to share unit record facilities, the expected

I programming mode of the typewriter devices, and the differences in the
logical structure of the channels, make it desirable to handle
selector channel and multiplexor channel input-output operations
separately •

\

• sp
. Much 'of the selector channel input-output is not

conveniently interruptable; therefore the channel programs are prescanned
and all referenced pages are brought into core and held there for the duration
of the operation. During this scan, virtual data addresses are converted to
real core addresses, eliminating the need for translation hardware
associated with channels. Similarly, direct access storage addresses (bin,
cylinder, and head numbers) specified within the channel program are
modified to provide partitioning of these devices, thus sharing
the units among the virtual machines. The modified copies of the channel
programs thus produced are used to directly control the selector

97

channel devices. Under this scheme much of the validity checking and
interruption sequencing can be performed by the hardware. Tables
are provided to map device addresses, detect path conflicts, and stack
interruptions for the virtual machines. An input-output scheduler
provides request queuing and facilities scheduling at the hardware interfac~ •
• sp

The sub-channel programs for the shared unit record equipment
(punch, reader, and printer) on the multiplexor channel are run interpretively
All data for these devices are buffered in core and on disk, thus operating in a
spool-like mode. All interrupts must be software simulated •
• sp

since multiplexor subchannels servicing typewriter
devices are expected to spend most ~f the time in a read state
awaiting input, buffers are provided to reduce the core tied up by these
operations from one or two pages to a few hundred bytes. The I/O status
at these devices is controlled by the subchannel program; no information is read
before being requested by the virtual machine. A mapping program is provided
to simulate the on-line typewriter with remote typewriters, when
desired •
• sp

By depressing the BREAK button (a special feature of our
modified remote terminals which roughly corresponds to the Attention feature
of the online 1052 and 2741 remote terminals), the user may break out of his
virtual machine and enter conversation activity with the Console Function
routines, which provide the simUlation of the following hardware console
functions:
.sp
.in 10
.nf
.tr ! af;.cm since translate symbols were cancelled, this one must be reset

Address Stop
System Reset
start
Stop
Load
External Interrupt
Display
Store

.in 0

.fi

.sp 3

.cp 7
VI. LIMITATIONS
.se tlimit=6
.sp 2

Taking the above concepts into consideration,
the following limitations were accepted in the initial implementation
of the system:
.sp
.in 5
.of 3
.cm since no other tab settings have been specified, the '.tb 5 8' is still in effect

the result of dynamic alteration o~ channel control

98

.~

\
\

/

\

programs, while they are in execution, is generally unpredictable.
• of 3

correct operation of input-output timing dependent programs
may not be assumed;
.of 3

no input-output operation which requires more core than
is available for virtual machine page residence is allowed;
• of 3

the interval timer will accurately reflect only CPU execution time •
• in 0
• pa
.ce
!~!~ren£~2
.sp 2
• tt; $ b 1
.ttl * b2
.of 5
$ "On Virtual Systems", D. Sayre, IBK watson Research Center
.. sp
.of 5
*"A Time-Sharing System Using an Associa ti ve Memory'l,
A. B. Lindquist and R. R. Seeber, IBM Systems Development Laboratory.
Unpublished paper submitted for December, 1966, 'issue of "Proceedings
of the IEEE" •
• in ,0
• pa
.nf
.tr * ac;.cm translate symbols may be redefined without first cancelling them
.tr $ bc;.cm so that other translate symbols will stay in effect
.tr ~ bb;.cm this series of symbols supply corners for box figures
.tr ab
.tr - bf
.sp 5

CONTROL

M
E
M
a
R

MATCH

PAGE USER U A C L SP
*---------------------------------------$
1 1 1 1 I , l 1
1-----------1------1---1---1---1---1----(
1 1 1 1 , I· l 1
=---------------------------------------~

*---------------------------------------$
1 1 1 1 ·1 1 1 1
1-----------1------1---1---1---1---1----1
1 1 1 1 1 1 1 1
1-----------1------1---1---1---1---1----1
till' til
1-----------1------1---1---1---1---1----1
1 1 I 1 III •
1-----------1------1---1---1---1---1----1
1 1 1 1 r 1 1 1
I-----------I------I~--I---I---t---I----I

99

INDICATORS

• l
1
1
1
I
1
V

*--$
I l 0
1--1
1 I
1--1
1 ~ 2
1--1
1 1 3
1--1
t t 4
~--I

.sp 5

.su on

.ce

y

*---------------------------------------$
1 1 1 1 1 1 1 1
1-----------1------1---1---1---1---1----1
1 1 1 1 1 1 1 1
=---------------------------------------~

FIGURE &afigno ••
• pa

*--$
1 1
1--1
1 1
=---,

1 FROM CPU
1 ,

62

63

USER NUMBER
I

*----------------~---------$
1 1 1

1 1 1 1
=---------$ =--------------------------~

1 (---- ---> <----- ------->
*---------t----------------------,
1 1

*-----V---------V--------------$ M
I 1 1 1 A
1----------1------1------------1 T
1 11 11 11 1 11 111 0 0 0 0 I C
=-------------------------------, H

*------------------------------$
1 r
1------------------------------1

1 1 I
1------------------------------1

2 1 \
1------------------------------\

3 1 I
=------------------------------~

.
*------------------------------$

63\ 1
=----------~---~---------------~

*--$
1 \
1--1
1 1
1--\
1 I
1--1
1 1

$
1
1
1
1
1
>

=---, 1
1
1
1
1
1

*--$ 1
1 I"
=--~

--$
\
\
1
\
\
1
\
1
1
1 \

*-----------------------------~-$
1 V \ , 1
1 1 1
=-------------------------------~ <------------V---------------->

100

/
'~

\

/
.sp 4
.ce
FIGURE f,bfigno ••
• f i
• su off
.tr

I
TO MEMORY

101

A virtual Kachine System for the 360/4Q

R. J. Adair
R.U. Bayles
L.W. Comeau
R. J. Creasy

IBK Cambridge Scientific Center Report

International Business Kachines Corporation
Cambridge Scientific Center

Ca~bridge, Massachusetts

May, 1966

102

(

Abstract

May, 1966
scientific Center Report

A VIRTUAL MACHINE
SYSTEM FOR THE 360/40

A virtual machine system, which provides copies of
a 360 computing system for concurrent use by
separate operating systems, has been implemented
for the IBM ~60 Model 40. The user at a terminal
interface of a virtual 360 has all of the
capability, with minor restrictions, provided by a
stand-alone system. The system was designed as a
system evaluation tool and as such, CPU efficiency
or throughput improvement was not a primary design
goal~

!Q!~: Cambridge worked on virtual machine concepts
throughout 1965 and 1966 and in January, 1967, put the
modified Model 40 into internal use supporting a dozen
virtual machines.

Parallel to this development, part of the Cambridge
group that worked on CP/40 began to work on a software
solution for the Model 67 user. In the fall of 1967, it
completed CP/67, a product oriented system.

In Janurary of 1968, Cambridge described CP/67 and CMS
to SHARE and in July of that year it became available to
Model 67 users. T~is syste~ was the forerunner of VM/370.

The information contained
historical interest, and should
current VM/370 documentation.

in this
not be

103

document is of
confused with any

TABLE OF CONTENTS

I. INTRODUCTION ••••••••••••••••••••••••••••••••••••• 1

II. HARDWARE IMPLEMENTATION •••••••••••••••••••••••••• 2

III. PROBLEM MODE OPERATION OF THE ASSOCIATIVE MEMORY.2

IV. CONTROL PROGRAM STRUCTURE •••••••••••••••••••••••• 4

V. INPUT-OUTPUT OPERATIONS •••••••••••••••••••••••••• 5

VI. LIMITATIONS .•••••••••••••••••••• ~ ••••••••••••••••• 6

104

!

\"

-1-

I. INTRODUCTION

Late in 1964, the IBM Scientific Center
Systems Research and Development Center) at
Massachusetts, undertook a project with a
objectives. Among these were:

(formerly
Cambridge,
number of

the development of means for obtaining data on the
operational characteristics of both system
applications prograas;
the analysis of this data with a view toward more
efficient machine structures and programming
techniques, particularly for use in interactive
systems;
the provision_of a multiple-console computer system
for the Center's computing requirements;
the investigation of the use of associative memories
in the control of multi-user syste.s.

A system was designed which we thought would satisfy these
goals and, in addition, provide other useful features.
Efficiency in CPU utilization was not a primary design
consideration.

Central to the idea of this system is the concept of
the "virtual machine" and, in our case, the "virtual 360"1.
Because of our desire to be able to measure a broad spectrum
of programs, it is iaportant that the i.position of a
aeasuring system results in minimu. alteration of the
characteristics of the subject progra.. Th~ "virtual 360"
concept effects this minimum while providing the flexibility
also required for the multi-user environment. In this
system, the subject program interacts with the multi-user
controller in the same manner as with the physical .achine,
and not by specially designed supervisor calls or subroutine
calls as in currently iaplemented .ulti-programming
packages. The program does not "see" the software interface
between it and the physical hardware.

within these "virtual 360's" (called 360's), progra.s
such as operating systems, which were initially designed to
run on a hardware machine, may be run without change. In
order to use the available facilities .ore efficiently, the
Control Program supporting these multiple J60's performs the
traditional multi-user tasks, such as scheduling, resource
allocation, and core management.

We have created, therefore, a .ulti-user syste. where
each user's virtual machine can run the progra •• ing systea
of his choice. None of these programming syste.s need
consciously make use of multi-tasking facilities to improve
machine utilization. Two other advantages accrue from this

105

-2-

design the ability to dynamically ~lter the virtual
machine's configuration (core, size, available input-output
units and patbs), and the ability to assign more than one
virtual 360 to a problem in order to examine the
applications of multiprocessing.

We are providing sixteen virtual machi~es which may
address 256K bytes of main storage, a maximum of one
multiplexor and two selector channels, and a copsole
typewriter. 'Some of the virtual machines may have
additional typewriters, tape units, and a 2250 display
console assigned to them. A user is normally supplied with
three disks -- one read-only disk is to secure for all users
access to a library ~f often-used systems and routines,
while providing the protection necessary in a multi-user
system. The permanent. disk provides continuing storage
capabilitf to the user. The temporary disk is available to
a virtual machine for the duration of the session only. The
user retains coaplete control over the format and use of his
permanent and temporary space. Programs may be loaded into
the user's virtual aachine by name from the read-only disk,
or by location from any device attached to the virtual
aachine.

II. HARDWARE IftPLEftENTATION

To provide these virtual machines, the Center obtained
a modified System 360/40 2 with a multiplexor and two
selector channels, interval timer, storage protection
feature, universal instruction set, and 256K bytes of main
storage. Its input-output equipment includes a console
typewriter. line printer, card reader and punch, 2702
Transmission Control with remote terminals, four 2311 disk
drives on two control units, two 240-111 tape drives, and a
2250 display unit with a 4K buffer.

The CPU has been aodified ta perait dynaaic relocation
of storage ~ddresses by the addition of a 64 word (one per
4096 byte page of core memory) by 16 bit associative memory
(Figure 1). A privileged operation to load and interrogate
the meaory has been added to- t,he instruction set. (see
Figure 1.)

106

- 3-

III. PROBLEM MODE OPERATION OF THE ASSOCIATIVE MEMORY

When the CPU is in problem mode, each main storage
address presented to memory is mapped by the following
method (see Figure 2):

the high order six bits of the eighteen bit memory
address plus the user identification number (set by the
Control Program) are presented to the' associative
memory for a match:

• if a single match is found, the address of the selected
row of the memory replaces the high order six bits on
the memory bus, and the memory select takes place;

• if a multiple match condition (an error which should
never occur) or no match (requested page is not in
memory) occurs, an interruption is generated and the
Control Program m9st take the appropriate steps to
resume execution.

This mapping take place with no degradation of Model 40
cycle time.

Six bits of the associative word are provided to assist
the scheduling section of the Control Program in selecting
the least costly (i.e. least likely to be brought back) page
to rollout when additional main memory space is required.

The used bit is set when a aatch condition is found for
a row of memory, indicating a reference to the
corresponding page, and is reset when all of the pages
represented by the entries in th~ memory have been
either referenced or are locked;

the active bit is set at the same time the used bit is
set,--but-is not, like the used bit, automatically
reset;

the £h~~~~g bit is set when the instruction causing the
match condition could result in alteration of the
conten~s of the corresponding page;

the lock bit is set
interpreted by it to
removed from memory;

by the control program and
mean that the page may not

is
be

the 1£~~§11 bit is used by the control program to
indicate that the page is currently being brought in or
dumped out; one spare bit is provided for unspecified
use.

107

-4-

IV. CONTROL PROGRAM STRUCTURE

ihen the Control program code is being executed, the
machine is in the supervisor state; at all other times it is
in the problem state. Any action of a virtual machine which
could cause a change of machine state results in an
interrupt. The Control Program, then, is an interrupt
driven system whose components reference a set of tables
describing the state of users' virtual machines. For each
user, this table (UTABLE) contains a copy of the current
Program Status Word (PSW) and the user's general purpose and
floating-point registers, the locations of the user's
virtual memory pages (which are either core or disk
resident), a description of the input-output equipment and
its status, a copy of the user's interrupt region, and other
similar information.

There are two basic types of interrupts handled by the
control Program: 1) those which invoke ~ section of the
Control program to perform some function for the virtual
machine, and 2) those which require no special action by the
Control program and are "reflected" to the virtual machine
(such as supervisor call and most program interrupts caused
by overflow. conditions, protection violations, addressing
errors, etc.). The reflection of interrupts to the virtual
machine is performed by the appropriate swapping of PSW's in
UTABLE and setting the proper interruption codes there.

If a virtual machine's current PSi contains the wait
bit or if its execution has been delayed due to the
temporary unavailability of a necessary resource, it is
considered not runnable. At the occurrence of an interrupt
which could affect the runnability of a machine, UTABLE is
examined for interrupts pending which are enabled. If an
enabled pending interrupt is found, the appropriate
"reflection" of the interrupt takes place (moving of· the
current PSi to one of the old PSW's, and of the
corresponding new PSi to the current PSi).

A privileged operation interruption (caused by an
attempted execution of a privileged operation while in
problem mode) results in one of two actions, depending on
whether the virtual machine was in problem or supervisor
mode. If the virtual machine was in problem mode, the
interrupt is merely reflected to the virtual machine. If
the virtual machine was in supervisor mode, the action of
the privileged operation" with the exception of input-output
operations which are handled separately and discussed in a
later section, must be simulated by the Control Program by
appropriate ch·anges in UTABLE.

108

\

)

-5-

A timer~initiated external interrupt controls CPU
scheduling among the virtual machines. Each machine is
allotted a quantum of time to run (which may be sliced into
smaller intervals for timer simulation purposes) and, at the
completion of the interval, a round-robin scan is made of
the users to ascertain if another virtual machine is
runnable.

An interrupt from the associative memory, caused by an
attempted reference to a page not core resident, invokes the
core management and scheduling routines. The missing page
is indicated by the interruption code and the paging
routines must schedule a page to be rolled out (according to
algorithms which will be a chief point of study), and the
appropriate page retrieved from disk. For the duration of
the "page turning" the virtual machine is placed in not
runnable condition.

V. INPUT-OUTPUT OPERATIONS

The input-output equipment generally falls into two
classes: high data rate devices on the selector channel,
and low data rate devices on the multiplexor channel. These
characeristics, together with the need to share unit record
facilities, the expected programming mode of the typewriter
devices, and the differences in the logical structure of the
channels, make it desirable to handle selector channel and
multiplexor channel input-output operations separately.

Much of the selector channel input-output is not
conveniently interruptable; therefore the channel programs
are prescanned and all referenced pages are brought into
core and held there for the duration of the operation.
During this scan, virtual data addresses are converted to
real core addresses, eliminating the need for translation
hardware associated with channels. similarly, direct access
storage addresses (bin, cylinder, and head . numbers)
specified within the channel program are modified to provide
partitioning of these devices, thus sharing the units among
the virtual machines. The modified copies of the chann~l
programs thus produced are used to direct,y control the
selector channel devices. Under this scheme much of the
validity checking and interruption sequencing can be
performed by the hardware. Tables are provided to map
device addresses, detect path conflicts, and stack
interruptions for the virtual machines. An input-output
scheduler provides request queuing and facilities scheduling
at the hardware interface.

109

-6-

The sub-channel programs for the shared unit record
equipment (punch, reader, and printer) on the multiplexor
channel are run interpretively All data for these devices
are buffered in core and on disk, thus operating in a
spool-like mode. All interrupts must be software simulated.

Since multiple~~r subchannels servicing typewriter
devices are expected to spend most of the time in a read
state awaiting input, buffers are provided to reduce the
core tied up by these operations from one or two pages to a
few hundred bytes. The I/O status at these devices is
controlled by the subchannel program; no information is read
before being requested by the virtual machine. A mapping
program is provided to simulate the on-line typewriter with
reaote typewriters, when desired.

By depressing the BR~AK button (a special feature of
our modified remote terminals which roughly corresponds to
the Attention feature of the online 1052 and 2741 remote
terminals), the user may break out of his virtual machine
and enter conversation activity with the Console Function
routines, which provide the simulation of the following
hardware console functions:

• Address Stop
• System Reset
• Start
• Stop
• Load
• External Interrupt
• Display
• Store

VI. LIMITATIONS

Taking the above concepts into
following limitations were accepted
iaplementation of the system:

consideration, the
in the initial

the result of dynamic alteration of channel control
programs, while they are in execution, is generally
unpredictable. '
correct operation of input-output timing dependent
programs may not be assumed;
no input-output operation which requires more core
thaQ is available for virtual machine page residence
is allowed;
the interval timer will accurately reflect only CPU
execution time.

110

-7-

"On Virtual Syst,ems", 9. Sayre,
Center

IBM Watson Research

"A Time-Sharing System Using ah Associative Memory", A.
B. Lindquist and R. R. Seeber, IBM Systems Development
Laboratory. Unpublished paper submitted for December,
1966, issue of "proceedings of the IEEE".

III

CONTROL

M
E

" 0
R
y

-8-

MATCH

PAGE USER U A C L SP
r- ,

I I I I I I I I
1
I

-------1-----1---1---1---1---1---1
1 I I I I 1 I

~ J

r ,
I 1 I I I I I I
1------1---1---1-1--1---1--1
I I I 1 1 I I I
1 1----1---1-1---1--1--1
I I I 1 1 I I I
I 1--1-1-1-1-1--1
I I I I I I I I
I 1,-, ---1-1---1--1-1--1
1 1\ I I 1 I I I
I 1---1--1-1---1-1--1

r-- ,
I I I I I I I I
1----1--1-1---1-1-1--1
1 I I I r I I I
I I

FIGURE 1.

112

INDICATORS
I
I
I
I
I
I
I
V

~

I I 0
I-I
I I
I-I
I I 2
I-I
I I 3
I-I
I I 4

I-I
•
•
•
•

~

I I 62
I-I
I I 63
~

\
!

/

''\
)

USER NUMBER
I
I L ____ --,

I

-9-

I FROM CPU
I ,

r-----------------,
I I I
I I 1 l ___________________ J

<---- ---> <--- -----)
r-------t-----------J 1

I
1
I
1
1

1
I
1

1

1
1

I
I
I
1
1
1

1
1
1
I
I
1
1
I

1 1
,----v-----v-------,
1 1 1 1
1--------1-----1-------1
1 "1111 1 1111100 0 0 1 l ______________________ J

r----------------------,
1 I
1---------------------------1

1 1 1
I------~-------------------I

2 I I
1----------------------------1

3 1 1 L ________________________ J . :

. :
,------------------------,

631 1 L _______________________ J

FIGURE 2.

113

M
A
T
C
H

r-,
1 I,
1--1 1
1 1 1
1--1 1
I 1 1
1--1 1
1 1 >
L __ J 1

1
1 ,
I
I

r--, I
I 1 J
L-_J

--,
1

1

I
1

I
I
1

I
1

I
r----------------------,

VI' I
1 1 L-____________________ . ___ J

<----------v-------->
I

TO MEMORY

-10-

End of EXAMPLE
This page int-enti-o-n-ally left blank.

114

o

" \,
/

All creation, modification, and manipulation of your Script
files must be done using commands available to 'you as a user
of CMS, the Conversational Monitor System. This section
describes some commands which you must learn in order to
work with Script files, and lists others which you may find
helpful. Descriptions of each command available through CMS
are contained in the following publications:

• I~~ !ir~~~l ~~£hing f~£iliiYL11Q: ~Q!!~nQ b~ng~~g~ Q§gf~~
Q~iQ~, Order No. GC20-l804

• I§~ !!£~~! ~~£h!ng f~£!!!iYL11Q: ~Q!I Quig~, Order No.
GC20-laOS

Undoubtedly you will want to make modifications to your
Script files. When the Editor is in Edit mode, you can
insert, replace, or delete entire lines, and also change
parts of a line. Edit mode is entered in either of two
ways:

1. For an existing file, by using the command,

edit 'filename' script

2. After you have initially developed part of a Script
file in Input mode, by entering a null line.

Operation in Edit mode is by means of a pointer, which can
be 'moved up and down through the file and can be
interrogated about its position in the file at any time. In
order to make corrections, you must know where the pointer
is locatp.d.

If you have entered Edit by method 1 above, the pointer is
at a blank line preceding the first ~ine of your file; by
method 2, it is at the last line of input.

115

\

POSITIONING THE POINTER

!hg_!Qg_~Qh£Q!!~n~ ~op): This command positions the
pointer to the blank line preceding the first line of the
file. It enables insertions to be made at the top of the
file.

!hg_lil!I_§Q~£Q!!~B~ (next 'n' or n 'n'): If no number is
specified, 1 is assumed. Pointer moves down the specified
number of lines in the file. If the end of the file (BOF)
is reached, NEXT positions the pointer at the last line of,
the file. This command functions as a BOTTOM subcommand
(see below) if tn' is greater than the number of lines
between the pointer and the bottom of the file.

Ihg_Qg_2~Q£Q!!~Qg (Up 'n' or u 'n'): If no number is
specified, 1 is assumed. Moves the pointer up in the file
the specified number of lines. This functions as a TOP
subcommand if B is greater than the number of lines between
pointer and top of fi1e~ The line at which the pointer is
positioned. is printed out.

The BOTTOM Subcommand (bottom or bo): This command positions-the-pointer at the last line of the file.

Ihg_IYP~_~!!f!£Q!l!!~Bg (type· or t):
uncertain about the position of
command. The system responds by
the pointer is directed.

If at any time you are
the pointer, issue this
typing the line at which

The pointer can be moved either according to its line
position (as described above), or by lin£_£Qntex1 (searching
for a line by its content). Ordinarily it is easier to do
context editing, since the relative position of a file entry
is not usually known.

!hg_1Q~h1~_~Q~fQ!~QQ (locate /'string'/ or 1 /'string'/):
This command searches for the first appearance of the
specified string of characters. The search begins with the
line after which the pointer is positioned, and the line in
which the string occurs is typed.

116

o

(

The string is enclosed by any pair of characters (called
~~li!ii~£~) not occurring in it. Generally a slash is used
as a delimiter excppt when the string includes a slash. The
rule is that any character can be used as a string delimiter
as long as it does not appear in the string, and as long as
the same charact0r is used to enclose both sides of the
string. For exam~le, the following are valid uses of string
delimiters:

locate 8string8

locate .string.

The character string must be unique to the statement being
searched, since the first occurrence of the string will be
located. However, if it is not unique and is found first in
the wrong line, the command can be issued again. Remember to
include in the string any blanks or other unique characters
that appear in the statement being searched: that is, the
string to be searched must be typed exactly as it appears in
the file. Delimiters are also used with the Change command
(see below).

If you receive an end-of-file message (EOF:) rather than the
text line you are searching for, try reis~uing the LOCATE
with fewer characters in the string. The reason for this is
that the Editor can recognize only a character string that
appears in the file entirely within one line as stored in
the file. Therefore, if any part of your Locate string
carries over to the next line, Edit will search through your
entire file without finding it, and the pointer will be
positioned at the end of your file.

Thg_fl~~_2Q~£2~~~QQ (find 'line' or f 'line'): The FIND
subcommand, unlike Locate, is position dependent, and no
delimiters are used. To find the line which, beginning in
position 2, has the words "Section one", type

f Section one

The first blank after the command is part of the command
format. The second blank indicates a blank in position 1 of
the text line, and the search for non blank characters begins
in column 2. As in Locate, the line in which the characters
occur is typed.

To use FIND for a tabbed line, you must press the tab key
before typing the characters you are searching for. If tabs
occur within the characters you are searching for, you must
use the tab key to create either a LOCATE string or a FIND
string.

117

CHANGING PART OF A LINE

!hg_~~!!§~_~Y~£2~m~ll~ (c /'string1'/'string2'/): Change
searches left to right in the current line for the first
occurrence of string1 and replaces it with string2. The
current line is expanded or compressed as required (string1
and string2 can be of different lengths), and the line is
typed in its changed form. If no match is found, the line
remains unchanged, the message FIELD NOT FOUND is typed, and
the pointer (as above) remains positioned at the ~urrent
line so that the line can be operated on again easily. As
with the LOCATE subcommand, delimiters for the strings must
not occur in either of the strings.

To delete, that is, not substitute new characters for
string1, issue a null string2, as follows:

c /'string1'//

The CHANGE subcommand can also be issued just once to make a
correction in any number of lines--either on just the first,
or on every occurrence of the string in those lines. This is
done by adding parameters to CHANGE. For example:

c /mony/money/ 10

In the next ten lines (starting with the one pointed to)
"many" will be searched for and the fi!:§.1 occur.rence of
"many" in each line will be changed to "money". If you want
every occurrence of "mony" in those lines to be changed to
"money" you need a second parameter, an asterisk:

c /mony/money/ 10 *
The * denotes "in every case".

To make the specified change in every line in the file, use
an asterisk as the first parameter instead of a number:

c /mony/money/ * *

EXAMPLE OF USING LOCATE AND CHANGE COMMANDS

Suppose the second line of the file below is to be searched
for and changed (note that the text begins in column 4).

118

The quick brown fox jumps
over the quiet stream.

If, by mistake, you issue:

I /qui/

EDIT locates and types:

The quick br"own fox jumps

since that is the line in which the string "qui" !.!I§.!
occurs.

since you know that the desired line is the next line in the
file, you issue:

n

If you did not know this, you would reissue:

1 /qui/

In either case, the system types:

over the quiet stream.

The pointer is now positioned at the desired line and you
can use the CHANGE command to make your correction.

If you want the line to read:

over the quiet street.

Issue:

c /stream/street/

The system types the altered line:

over the quiet street.

and the pointer remains positioned at that line.

Suppose you now want to change "street" t.o "streets".. If
you issue:

c /et/ets/

EDIT locates the i.!I.§! occurrence of "et"
prints the altered line:

119

(in "quiet") and

over the quiets street.

To correct this error, you can issue something like this:

c /ts/t/

The system will respond:

over the quiet street.

You have corrected your error. This time change "street" to
"streets" by including more letters in the string than you
did before. (The character string specified in the CHANGE
string should be unique to the line.) Suppose you issue:

c /eet/eets/

The fiI§! occurrence of Ueet" is in "street". The desired
altered line would then be typed out:

over the quiet streets.

If you want to delete the word "quiet", you could use the
CHANGE subcommand with no string2 specification:

c /quiet//

The line would then read:

over the street.

If you decide to reinsert "quiet", issue:

c /the/the quieti

Q§ing_!h~_~lMQ_~~~£Q~~~nQ: If you had used the FIND
subcommand (instead of LOCATE) to search for the first line
in the example above, you could have typed:

f The quick

The first blank is required by format rules; the next blanks
indicate the occurrence of blanks in positions 1, 2, etc. of
the line being searched for. These blanks must be specified
if they exist in the file if you are using FIND.

120

(

CHANGING AN ENTIRE LINE

!h~_E'£!1rf~_~.1!££21!U!!~Q9. (r 'line'): The current line is
replaced with 'line'. If no 'line' is specified (that is,
if only r is typed) the current line is deleted, and the
Input mode is entered. This is useful when it is necessary
to replace the current line with more than one line, or when
many additions must be made to a file that has already been
created (it is easier to use Input mode for this purpose) .
You must type a null line to reenter Edit mode, and issue
the FILE subcommand to save your insertions.

REPLACE corresponds in format rules to FIND: 'line' is
separated from the request by only one blank, and any other
blanks are considered part of 'line'; no delimiters are
used; and the request is position-dependent.

~!~!!.E!~:
above:

We shall use the same two lines as in the example

The quick brown fox jumps
over the quiet stream.

To use REPLACE to change "stream" to "streets," position the
pointer to the desired line, and issue:

r over the quiet streets.

Note that the entire new line must be typed, since the old
line is going to be overlaid by the new one. Also, the same
number of blanks separate r from 'line' as were used in
the FIND subcommand above. In general, CHANGE is easier to
use for small changes within a line.

1hg_Q~1~1~_~~£f2!!!!~~Q
line, the specified
number is specified,
pointer is positioned
line.

(del 'n'): Starting with the current
number of lines are deleted. If no
only the current line is deleted. The
at the line following the last deleted

Before making additional changes, it is helpful to issue t
(for type) to ascertain the current line position following
a DELETE subcommand.

121

ADDING A LINE IN EDIT MODE

!hg_IM~~~!_~Q££Qmm~ll~ (i 'line'): This subcommand allows a
line to be added to a file without transferring to the Input
mode. The line is inserted after the line at which the
pointer is positioned, and the pointer is advanced to the
inserted line. Thus, additional lines can be entered
between existing lines. A blank line can be inserted by
using one or more spaces for 'line' but, if 'line' is
omitted and no spaces are inserted, the Input mode is
entered. The same format rules as for FIND and REPLACE are
observed for the INSERT subcommand.

LISTING PART OF A FILE

In the process of editing, it is easy to lose track of the
changes that have been made. The .TYPE subcommand lists one
line, several lines, or the entire file ~ith!n~gi1_~odg.
The command script' filename' (' options') produces an
entire listing, but in the CMS command environment rather
than in Edit mode.

To type only one line, issue t 1, or simply t.

To type part of a file, use NEXT, FIND, or LOCATE to
position the pointer at the first line to be printed, and
issue t In' where In' is the number of lines to be printed.

In order to type the entire file on the terminal, issue top,
then t In' where 'n' is greater than the number of lines in
the file.

EXITING FROM EDIT MODE

There are two ways to exit from the Edit environment into
eMS:

1 • To save your edited text
environment, issue the "file"
mode.

and enter CMS
subcommand in

command
the Edit

2. If you decide not to save the changes made in Edit, and
to enter eMS command environment, issue the "quit"
subcommand.

122

(

\

The commands listed in Figure 6 may be of use to you. They
are a subset of the VM/370 commands which are often used by
people working with SCRIPT/370. All of the commands shown
can be issued in the CMS environment, although some are
properly commands of the Control Program component (CP) of
VM/370.

You should become familiar with the functions available to
you as a SCRIPT user. If any function described in Figure 6
satisfies a requirement that you have, refer to IB~ !~L11Q:
~Q~m~ng ~~ngy~g~ Q2~£~2 ~~id~ for instructions on how to use
the command.

You should know that, as a user of SCRIPT/370, you have
access to a virtual machine which is created for you py
VM/370. It is the virtual machine environment which enables
you to use SCRIPT/370 while other users at your installation
pursue their own operating system and problem-solving
requirements. You may wish to read !~~ Y~llQ: Int£Qgy£tiQ~
to gain an appreciation of the VM/370 capabilities.

123

r---------------------------~ --,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ACCESS define additional direct access space to a eMS

COPYFILE

DEFINE

DETACH

ERASE

EXEC

IPL

LINK

LISTFILE

LOGIN

LOGOUT

MSG

PRINT

PUNCH

QU ERY

SET

SORT

SPOOL

TAPE

rRAN~~FER

1 Y r r:

virtual machine.

copy files according to specifications.

reconfigure a virtual machine.

disconnect a real device from a virtual machine.

delete files from user disks.

process special procedures made up of frequently
used sequences of commands.

initialize a virtual machine.

provide access to a specific disk.

list information about eMS files.

provide access to VM/370.

disable access to VM/370.

transmit messages from user to user.

spool a specified file to the printer.

spool a specified file to the punch.

request information about the virtual machine
and system status.

control various functions within the virtual
system.

arrange a specified file in ascending order.

alter spooling control options.

create a CMS file from data on tape, and vice
versa.

direct spooled prirtPl' or punch files to a
;.-) p e c i fie d use r ,!::) v.i r t \l ale d r d rea d e r .

type all or part of d (M~~~ file dt the terminal.
L __ --'

F i q u r (~ b. V M / 3 7 o-eM ~~ Co ill ill and S \l f' S f ~ t 5)1 m:u d. L Y

-124

(
'<i

This part of the manual describes the syste~ requirements
and procedures necessary to install SCRIPT/370. When
properly i~stalled, as verified by successful execution of
the sample problem supplied with the SCRIPT/370 distribution
tape, the SCRIPT/370 text processing facility is activated
by entering the SCRIPT command under CMS.

The SCRIPT/370 distribution tape is a
recorded at either 800 or 1600 bpi, as
recipient, containing three files.

nine-track
requested by

tape
the

1. A file in CMS tape dump format, which contains the
SCRIPT/370 processor. The SCRIPT/370 processor
accepts input files of filetype SCRIPT and
produces formatted printed output from them.

2~ A file in CMS tape dump format containg source,
macros, and associated object modules for
maintenance of SCRIPT/370.

3. A file in CMS tape dump format containing the
sample problem and its associated EXEC file,
required to execute the sample problem.

In addition to a correctly operating VM/370, SCRIPT/370
requires the following for installation.

1. A virtual machine with main storage of at least
256K. The eMS nucleus occupies main storage from
location zero to location 20000 (hex). SCRIPT/370
occupies main storage from location 20000 (hex) to
approximately location 30000(hex).

2. Approximately 50 blocks (800 bytes/block) on the
system disk to contain the SCRIPT module. (A 2314
cylinder contains 150 such blocks, and a 3330
cylinder 266.)

125

3. Approximately four 3330 cylinders or eight 2314
cylinders on a disk other than the system disk, to
contain the source files, object module files,
sample problem, and sample problem EXEC file.

!Ql~: Space for the sample problem and its EXEC
file need not be permanentl~, allocated~

4. To maintain or modify SCRIPT/370, a temporary disk
of ten 3330 cylinders is recommended. This can be
allocated by issuing the command

DEFINE T3330 19x CIL 10

5. A line printer equipped with the TN chain to
provide upper- and lower-case alphabetic
characters. If a TN chain is not available, the
TRANSLATE option of the SCRIPT command must be
specified. SCRIPT/370 output should be directed to
the appropriate output class by means of the SPOOL
command.

To install SCRIPT/370, perform the following procedure.

1Q~gillg lhg ~fgI~!L1IQ Qi§lEi£~li2~ 1~E~

1. Mount the SCRIPT/370 distribution tape on a tape
unit and ATTACH that unit to a virtual machine as
device 181. The system disk should be ACCESSed as
the A-disk, in read/write status.

2. Issue the CMS command TAPE LOAD which will load
the file named SCRIPT MODULE.

1. Keep the SCRIPT/370 distribution tape mounted, and
its tape unit ATTACHed to the virtual machine as
device 181.

2. ACCESS the disk that is to contain the source and
object files as the A-disk.

126

(

1
/.

3. To insure that the tape is positioned properly,
issue the following CMS commands

TAPE· REW

TAPE FSF 1

TAPE LOAD * *
This will load the following files

SCSFOR ASSEMBLE
SCSLIN ASSEMBLE
SCSLNK ASSEMBLE
SCSPRT ASSEMBLE

SCSFOR TEXT
SCSLIN TEXT
SCSLNK TEXT
SCSPRT TEXT

~2~gi~g !h~ ~~~E!~ ~~Q~!~!

1. Keep the SCRIPT/370 distribution tape mounted, and
its tape unit ATTACHed to the virtual machine as
device 181

2. ACCESS the disk that is to contain the sample
problem and its EXEC file as the A-disk.

3. To insure that the ta pe is positioned
issue

This

the following CMS commands

TAPE REW

TAPE FSF 2

TAPE LOAD * *
will load the following files

SAMPLE EXEC

PROBLEM SCRIPT
PROBLEM2 SCRIPT
SCD.ELAY SCRIPT

127

properly,

~~g£Y1ing ih~ 2~!£!~ R£QQ!~!

The sample problem EXEC file makes available a command
called SAMPLE. Issuing the SAMPLE command causes the sample
problem to be executed. Successful execution of the sample
problem verifies correct installation and operation of the.
SCRIPT/370 processor contained in the SCRIPT module. To
execute the sample problem, perform the following procedure.

1. Mount a TN chain on the printer that is to receive
the output of the SCRIPT/370 processor. If no TN
chain is available, the TRANSLATE option of the
SCRIPT command must be specified.

2. Have the system operator START the printer as
output class S.

3. ACCESS the disk that contains the sample problem
EXEC' file as an extension of the A-disk for the
userid under which the test is being performed.

4. Issue the following CMS command

SAMPLE

The following files will
SCRIPT/370 and directed to
previously specified.

PROBLEM Formatted
PROBLEM2 Formatted

PROBLEM Unformatted
PROBLEM2 Unformatted
SCDELAY Unformatted

be processed by
the line printer

SCRIPT/370 has been written in the VM/370 Assembler Language
and uses eMS macros. Maintenance of the system will be by
eMS update files and requires that the SCRIPT/370 source
code be disk resident when program maintenace is being
performed. Update instructions will be supplied with the
maintenance releases.

128

. (

)

APPENDIX A. Compatibility with SCRIPT (CP-67/CMS)

SCRIPT/370 is fully compatible with files created for
processing by SCRIPT (CP-67/CMS). Although the FILL-MODE,
HEADING, and FOOTING control word of this earlier version
have been superseded by the PORMAT-MODE and various titling
control words in SCRIPT/370, Script files created under the
CP-67/CMS version will be processed correctly by SCRIPT/370.

129

APPENDIX B. Control Word Summary

The table which follows summarizes SCRIPT/370 control words
and their characteristics. It can be used as a convenient
reference sheet at the terminal.

,.--
I I
I I
leontrol Word IFunction

IPage IImpli-IStandard Set
IRefer-1 cit I ting or
lence IBreak IDefault Value

• ap (APPEND) Allows an additional file 49
to be appended to the one
just printed or typed.

.bc (BALANCE- Causes subsequent text to 66
COLUMNS) be placed sta~ting at the

next column or page.

.bm (BOTTOM
MARGIN)

• br (BREAK)

• bt (BOTTOM-ok
'fITLE)

.cb (COLUMN
BEGIN)

.cc (CONDI
TIONAL
COLUMN
BEGIN)

.cd (COLUMN
DEFINI
TION)

Specifies the number of
lines in the bottom
margin.

21

Prevents the concatenation 32
of the following text
lines with preceding text
lines.

Specifies a title line for
the bottom of the current
and each subsequent page.

Causes subsequent text to
be placed starting at the
next column or page.

25

65

Causes a column eject if 65
fewer than n lines remain
in the col umn.

Specifies the number of 64
columns on a page and the
leftmost position of
each.

.ce (CENTER) Specifies the centering of 36
the following text
line (s) •

130

y

y

y

y

y

y

Balanced
Column Mode

6

n=1

)

r--,
I I IPage IImpli-IStandard Set-
I I IRefer-f cit I ting or
control Word IFunction lence IBreak IDefault Value

L

.cl (COLUMN
LENGTH)

Specifies the number of
characters in each line
of a column •

64

• c m (COMMENT) Allows comments to be 6 0

.co (CONCA
TENATE
MODE)

.cp (CONDI
TIONAL
PAGE
EJ ECT)

.cs (CONDI
TIONAL
SECTION)

stored in the file for
future reference.

Causes output lines to be
formed by concatenating
input lines.

32

Causes a page eject if 40
fewer than n lines remain
on the page.

Allows conditional inclu- 55
sion of input in the for
matted output.

y

.cw (CONTROL- Specifies the character 59 y
WORD- used for separation of

SEPARATOR) control words on a single
input line.

• di (DELAY
IMBED)

• ds (DOUBLE
SPACE
MODE)

· eb (EVEN
PAGE
BOTTOM
TITLE)

.ef (END-OF
FILE)

Delays the inclusion of a 47
portion of the input file
until the next page eject
occurs.

Specifies that subsequent
formatted output will be
double spaced.

Specifies that a title
line for the bottom of
the current page, if it
is even-numbered, .and all
subsequent even-numhered
pages.

Simulates an end of file
condition.

13 1

38

25

49

y

y

Line Length

Concatenate
Justify Mode

INCLUDE

Single Space
Mode

· r-- --,
~

I IPage IImpli-IStandard Set-I I.j

I IRefer-1 cit I ting or I
control Word I Function lence IBreak IDefault Valuel

.ep (EVEN- Causes one or two pa.ge 40 y
PAGE- ejects such that the next
EJECT) page will be even num-

ber ed.

.et (EVEN- Specifies a title line for 24
PAGE-TOP- the top of each subse-
TITLE) quent even-numbered page.

.fo (FORMAT- Causes concatenation of 31 y Concatenate-
MODE) input lines, and left and Justify Mode

right justification of
output. (Also called
Concatenate-Justify) •

.fm (FOOTING- Specifies the number of 22 y 2
MARGIN) blank lines between the

last line of text and the
bottom title.

.hm (HEADING- Specifies the number of 22 y 2
MARGIN) blank lines between the

top title and the first
line' of text.

I I
I • im (IMBED) IInserts a file of text 46

I and/or control words into 79
I I the one being processed
I I by the SCRIPT command.
I I
I.in (INDENT) ISpecifies the number of 41 y Left margin.
I I spaces subsequent text is n=1
I I to be indented when prin-
f I ted or typed.
I
I . j u (JUSTIFY- Causes left and right 31 y Concatenate-
I MODE) justification of output. Justify Mode
I
I.li (LITERAL) Insures that the next in- 60 n=1
I put line (s) is read as a
I text line by, SCRI PT/370.
I
1.11 (LINE- Specifies the number of 20 y 60
I LENGTH) characters, including
I blanks, in each subse-
I quent line.
L

~
132

\,

r
I I
I I
IControl Word IFunction

--,
IPage IImpli-IStandard Set
IRefer-1 cit I ting or
lence IBreak IDefault Value

.ls (LINE
SPACING)

.nb (NO
BALANCED
COLUMNS)

• nc (NO-CON
CATENATE
MODE)

• nf (NO
FORMAT
MODE)

• n j (NO
JUSTIFY
MODE)

.ob (ODD
PAGE
BOTTOM
TITLE)

Specifies the number of 38
blank lines to be insert-
ed after each subsequent
output text line.

Causes columns of lines
forced out by the equiv
alent of a page eject to
be unbalanced.

Prevents concatenation of
input lines.

66

32

Permits "as-is" output 34
text by preventing conca
tenation and left-and-
right justification.

Prevents padding between 33
words of input text lines
with blank characters.

Specifies a title line for 25
the bottom of the currentl
page, if it is odd num- I
bered, and all subsequent/
odd numbered pages. I

I
· of (OFFSET) Provides a technique for

indenting all but the I
first line of a section. I

42

.op (ODD
PAGE
EJ ECT)

Causes one or two
ejects such that
page will be odd
bered.

I
page I 40
the nextl
num- I

I
I

• at (ODD- Specifies a title line for I 24
PAGE-TOP-I the top of each subse- I
TITLE) I quent odd numbered pages I

I I
I. pa (PAGE- ICauses a page eject and I 39
I EJECT) I optionally alters the I
I I internal and external I
I I page numbers. I
L

133

y

y

y

y

y

y

y

Single Space
Mode

Balanced
Col umn Mode

Concatenate
Justify Mode

Concatenate
Justify Mode

IConcatenate-
i Justify Model
I I
I I
I
I
I
I
I
I
I L~~ft Margin.
I n=1
!
I
!
I
/

I
I
I
I
I
I
/
I
I
/

--_.---'

134

r
I I
I I
IControl Word IFunction

IPage IImpli-IStandard Set
IRefer-1 cit I ting or
lence IBreak IDefault Value

.sp (SPACE
LINES)

• ss (SINGLE
SPACE
MODE)

• su (SUBSTI
TUTE
SYMBOL)

.tb (TAB
SETTING)

Specifies the number of
blank lines to be inser
ted before the next out
put line.

Specifies that subsequent
formatted output will be
single spaced.

37

37

Enables the macro capabil- 75
ities of SCRIPT/370 by
selectively causing sub
stitution of defined set
symbols.

Specifies the "logical"
tabs used when the docu
ment is printed or typed
by SCRIPT/370 •

44

• te (TERMINAL Permits one or more text 70
INPUT) lines to be entered from

the terminal during
SCRIPT/370 processing.

.tm (TOP
MARGIN)

.tr (TRANS
LATE

CHARACTER)

.tt (TOP
TITLE)

.ty (TYPE-ON
TERMINAL)

Specifies the number of
lines in the top margin.

Specifies the final output
representation of any
input character.

21

61

I
Specifies a title for the I 70

top of each subsequent I
output page. I

I
Types one line of informa-I 72
tion on the user's termi-I
nal during SCRIPT/370 I
processing. I

I
I. un (UNDENT)
I

Causes the following text I 43
line to be printed or I
typed farther to the leftl
than the current indent. I

I
I
L

135

y

y

y

n=l

Single-Space
Mode

OFF

5,10,15 ••• 75

n=l

6

.J

APPENDIX C. Additional Information Regarding SET-SYMBOL and ~
SUBSTITUTE-SYMBOL Control Words

There are 8 special reserved symbols that are automatically
initialized, each time SCRIPT is used, to the current values
for: year (SYSYEAR), month (SYSMONTH), day of year
(SYSDAYOFY), day of month (SYSDAYOFM), day of week
(SYSDAYOFW), hour of day (SYSHOUR), minute of hour
(SYSMINUTE), and seconds of minute (SYSSECOND). These
symbols are tabulated below: .

§!J!!!Q!
SYSYEAR

SYSMONTH

SYSDAYOFY

SYSDAYOFM

SYSDAYOFW

SYSHOUR

SYSMINUTE

SYSSECOND

XX

XXX

XX

X

XX

XX

XX

1!~!li!lg
year

month

~ay of year

day of month

day of week

hour of day

minute of hour

seconds of minute

Ex a!u~l~_ of _val u ~
If this is 1971, SYSYEAR

has the value 11.
If this is Feb. 8, 1971,

SYSMONTH has the value
02.

If~his is Feb. 8, 1971
(39th day of the
year), SYSDAYOFY has
the value 039.

If this is Feb. 8, 1971,
SYSDAYOFM has the
value 08.

If this Is Monday, Feb.
8, 1971, SYSDAYOFW has
the value ~ (Sunday is
considered 1st day of
week) •

If it is 7:30 P.M.,
SYSHOUR has the value
12 (24 hour clock,
7:30 A.M. would have
value Q1).

If it is 7:30 P.M.,
SYSMINUTE has the
value 30.

If it -- is 7:30:15,
SYSSECOND has the
value 12.

The table above only indicates the initial values of the
symbols. Although they may be changed and used exactly as
regular set symbols, it is not recommended. .

Each symbol has a fixed size value field. If its current
value is less that the field size, leading zeroes are

136

(

~

\
I

./

"\
I

J

provided (e. g. ,
leading zeroes
word such as

SYSDAYOFY was 039 above not just 39). The
can be easily removed by a SCRIPT control

.SET SYSDAYOFY = &SYSDAYOFY + 0

since leading zeroes are automatically deleted after an
arithmetic evaluation.

The numeric values of the special symbols can be converted
to other forms as shown in the following example:

.set m01='January';.set m02='February'

.set m03='March'; ••• ;.set m12='December'

.set alphamonth = &m&sysmonth

.sub;This is now &alphamonth already.

This above sequence would result in the line: "This is
now February already" if the current date was Feb. 8,
1971. The beginning of the sequence defines a sequence
of set-symbols, m01, m02, .~., m12, whose values
correspond to the alphabetic representation of the 12
months. The expression "&m&SYSMONTH" involves a double
substitution; first it becomes "&m02" and then
"February". A very similar technique can be used to
convert the days of the week to their alphabetic
equivalents (e.g., Monday instead of 2).

EXAMPLE 1

.set version1 = 'March 1971'

.set version2 = 'June 1971'

.set number=2

.set vname = 'version&number'

.set vdate1 = &version&number

.set vdate2 = &&vname

The symbol vname will end up with the value
symbols vdate1 and vdate2 will end up with
1971."

137

"version2," the
the value "June

EXAMPLE 2

.set < = I&left.&n&nl

.set > = 'n •• &right '

.set left = I(';.set right = 1)1

.set n1='i ' ;.set n2='ii ' ;.set n3='iii';.set n4='iv'; •••
• set nn = 0

.set nn = &nn + 1

.su 1; Reference &<.&> has more data.

The expanded line will be: "Reference (i) has more data."

This result involves 6 substitutions, as follows:

&<.&>
&l~!~.!..&n&n>
(&n&n§:.~
(&n&n!!.!... &right

J&n1.!..&right
(i §:.!:ig!!1
(i)

This may seem to be a particularly obscure way of
accomplishing a simple task, but it does illustrate the
flexibility possible. In fact, this type of multiple (
substitution can be very useful in conjunction with the \~
CONDITIONAL-SECTION and TER"INAL-INPUT control words for
altering specific parts, such as changing the (i) form to be
<i> instead.

EXAMPLE 3

.SET code_word=O;.SET code_word()=&

.set code_word()='*&.*'

.set code_word()=&

(page 2)

(page 6)

(page 14)

The successive elements of the array code_word are assigned
the values of the page numbers that they occurred on. In
particular, code_word (0) = 3, code_word (1) = 2, code_word (2)
= *6*, and code_word (3) = 14 •

• sub on
.of 20
Code_word references (&code_ word.) •••••• &code_word (*)

138

would become

Code_word references (3) •••••• 2, *6*, 14

as a result of array substitioDs.

139

SH20-1114-0

International Buslnell Machines Corporation
D,ta Pro ceiling Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

(J)
(")
JJ
'"tJ
-i
W
-..J
0
-i
CD
x ...
'"tJ
0
(')
CD
~
5'
cc
'"Tl
Q)

~.
;:0:
<
C
::l
a.
~
<
~.

c
~

3:
Q)
(')

~ ::r
5'
CD

"T1
Q)

~
;:+.
<
W
-..J
0

'"tJ
Cl
~
0
s:

~
::l ...
CD
a.
5'
C
en
~
(J)

J:
I\J

~
.j::o.

6

