
Installed
User
Program

8H20-1922-0

Virtual Machine /370
Conversational Monitor System (VM/CMS)
EXEC Language Extensions
Program Description/Operations Manual

Program Number: 5796-PJA

This manual describes the functions of the processor.
Formats and examples of the commands are included in
the form of a user's guide. General system design and
installation procedures are also specified.

'-~----.-. -.,- ---- ----- -. ----- - - ------_ .. ------,,-

PROGRAMMING SERVICES PERIOD

During a specified number of months immediately following initial availability of each licensed
program designated as the PROGRAMMING SERVICES PERIOD, the customer may submit
documentation to a designated IBM location when he encounters a problem which his diagnosis
indicates is caused by a licensed program error. During this period only, IBM through the program
sponsor(s), will. without additional charge respond to an error in the current unaltered release of
the licensed program by issuing known error correction information to the customer reporting the
problem and/or issuing corrected or notice of availability of corrected code. However, IBM does
not guarantee service results or represent or warrant that all errors will be corrected. Any onsite
programming services or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN "AS IS' BASIS WITHOUT
WARRANTY OF ANY KIND EITHER EXPRESS OR IMPLIED.

First Edition (January 1977)

A form for readers' comments has been provided at the back of this publication. If
this form has been removed, address comments to: IBM Corporation, BfO # 115,
101 North Shoreline Drive, Corpus Christi, Texas 78401. Attention: Mr.
Richard Brandle.

© Copyright International Business Machines Corporation 1977

INTRODUCTION. •
.. '. '. • Ie • .. • '. • .. 1

SYSTEM OVERVIEW~ • • • - . • . • I. • ,
Description. • .. • _
System Flowchart • _ • .. • '.
Programming Systems. • • • _ • •

INSTALLATION PROCEDURE ~ • • ~ • • • .. •
Dumping the distribution taFe
Assembling the EXSERV source ~ .. • .. • • •
Generating the EXSERV command module • _ •
Verifying the installation results .. • • •
Use of Sample Execs~ ~ .. • _ ~ • • • • • •
Release Restrictions • _ • • • .. • ~ _ .. •
Release Compatibility Considerations.

EXSERV USER'S GUIDE •••
Notational Conventions
Command Syntax • • _ •
Processor Interface. •
Interface Between EXSERV
Return Codes ~ • •

~ - . . .

.. '.
and CMS EXEC Interpreter. :.

EXSERV FUNCTIONS • • .. • _ • ~ • _ •
~~~1 (Performs OS BLDL function) .. ... .. 
~!1:~ (Calculate function). - • • ... 
J2!I~Il1i~ (Date and time services). • • 
]EVIYP~ (Device type information).. .. .. • • '. '. 
11B~ (Search file for character string) •• 
1i~IQfI.Y~ (Get option value) ... '- _ • • .. ' • 
.!2~TPAliMLGETOPT (Get parameter or option) _ .. .. 
LOQ~ (Search a list). • .. _ _ ... ___ • .. • • • 

.. . 

.. .. 

g~1NTLgy~~~I!CKLIYPE (Handles untokenized output) •• 
~~.!] (Read CMS files) '. .. • • • '. • .. .. .. • • • 
~IVEN (Pass a val ue back) ... _ • '. ' .... '.. • _ '. 
~I!TELFILE12ATA (Get file characteristics) '.. • 
~I.!S!IL~ (Put a CMS file on console stack). .. • 
~.x~DAT! (Obtain user or system information). '. 
~.x~§LBL (Global variable processor) .... ~ • 
l.§IOPT (Test option list) '. ... • •• .. .. 
~EJTE (Create or update a CMS file)_ .. 

i 

· , 
• 3 
• 4 

• 5 
.. 5 

• 6 
• 7 
.. 7 
• 7 
.. 8 

• 8 

.. 10 
• 10 
• 12 
• 12 
• 13 
• 13 

.. 15 

.15 
• 16 
.17 
... 18 
.20 
.. 21 
.23 
.. 25 
.26 
.28 
.. 30 
.31 
.33 
.34 
.35 
.37 
.. 39 



ii 



This document is a guide for installing and understanding 
the functions of the CMS EXEC language extensions. As the 
command name for the extensions module is ;'"EXSERV', the 
extensions will be refered to as such throughout this 
document,. Since EXSERV is an extension of the CftS EXEC 
processor, this manual assumes that the reader has a good 
working knowledge of CMS and the EXEC language. 

The EISERV module is designed to run in the transient 
program area of a CMS virtual machine. Therefore, it can be 
invoked by any CMS user in an EXEC procedure or EDIT macro. 
The user's guide section of this manual contains detailed 
descriptions and examples of the EXSERV commands. This may 
be extracted and included with a CMS user's guide. 

Detailed instructions for the installation of the EXSERV 
module by a system programmer are included. It is assumed 
that the installer has a good understanding of CMS and the 
EXEC processors,. 

For details on 
processors, refer 
LY 20- 2279,. 

the internal design 
to the EXSERV Systems 

of the command 
Guide, Form,. No. 

DESCRIPTION 

The CMS exec language extensions are designed to provide 
additional functions to, and expand the usefulness of the 
Virtural Hachine/370 CMS exec language__ It isa standard CMS 
command module which runs in the transient area and allows 
the EXEC writer to: 

1,. Perform multiplication, division, 
operations as well as addition and 
("CALC" function) 

and residue 
subtraction. 

2. Obtain current date and time in EXEC variables. 
("DATETIME" function) 

3. Obtain real or virtual device type information. 
("DEVTYPE" function) 

-1-



4,. Search a file in a specific column for a particular 
character string,. ("FIND" function) 

5. Search a list of values for a particular value. 
("LOOKUP" function) 

6~ Determine ~f a member is defined in a library and 
obtain the starting record number of the member in 
the library and the size of the member~ ("BLDL" 
function) 

7~ Obtain the values of specific parameters or options 
from the EXEC argument list and supply default 
values if no value was provided. ("GETOPT/GETPARM" 
function) 

8. Obtain the value of an option which follows a 
specific keyword and supply a default if the keyword 
does not occur in the option list~ Also, several 
synonyms may be provided for the keyword if desired. 
("GETOPTVL" function) 

9~ Return the values of local EXEC variables to the 
next higher level EXEC~ ("BETURN" function) 

10~ Print, punch, stack, or type data which contains a 
specific number of embedded blanks and strings 
greater than 8 characters in length. 
(" PRIN T/P U NCH/ ST ACK/T YPE" function) 

11~ Read any record in a CMS file into EXEC variables. 
("READ" function) 

12. Place a eMS file in the console stack. 
function} 

(IfSTKFILE" 

13 .. Obtain data from the File System Table (FST) when 
only part of the file ID is known. 
("FILEDATA/STATEfI function) 

14. Obtain virtual machine user ID, system level number, 
or virtural machine storage size,. ("SYSDATA" 
function) 

15. Set global EXEC variables which may be accessed from 
command to command~ ("SYSGLBL" function) 

16. Test the option list for one of a mutually exclusive 
set of values and retu~n the value found or a 
default value if none w'ere found,. Also, short forms 
of the option values may be specified if desired. 
(IfTSTOPT" function) 

-2-



17. Add new records to a CMS file, rewrite any record in 
a CMS file, or overlay specific columns of~a record 
in a CMS file. ("WRITE/WRTUPD" function) 

Items 5, 7, 8, and 16 greatly ease the tasK of obtaining and 
testing values of parameters and options passed in an EXEC 
argument list,. 

Items 4, 6, ~~, 12, and 17 prov~de I/O capability for the 
EXEC writer,. 

Item 10 provides a way to print, punch, stack, or type data 
with variable substitution and/or character strings longer 
than eight characters. 

SYSTEM FLOWCHART 

EXSERV consists of: 

* a general entry routine to set up the 
the validity of the parameter list, 
correct processor 

work areas, check 
and branch to the 

* 17 operation processors to perform the functions 

* 11 subroutines 
processors 

that are common to several of the 

* a general exit routine that sets the return 
restores the original environment,. 

-3-

code and 



r---------, 
I General I 
I entry I 
I routine I 

r ....... _ ........... --- ............. ., r~ ..... ~-- ........... - ... , r-- ......... __ ... .-.--.1I r-......... ~~- ......... .-., 

• Operation I I Operation I I. I. '. ! •. I Operation 1 I Operation I 
I Processor I I Processor I '. 'el. f. :1 Processor j': I Processor I 
L4Iao ...... ___ .... ~_ ........ .I L ....... ...,-~.., .................... -' L .................. ----... - ...... ,J L--......... ~-- .... - ... ~ 

PROGRAMMING SYSTEMS 

General I 
I exit I 
I routine :1 
L ...................... _--~ 

EXSERV is written in eMS Assembler and is designed to run 
under VM/370 - Release 3.0. For operation in a previous 
release, some of the functions may not be supported. Consult 
the Installation section of this document and the function 
in question,. 

Minimum hardware configuration is the same as for VM/370~ 

-4-



The installation procedure for EXSERV is divided into four 
steps~ Specifically: 

1) Load distribution tape onto a CMS minidisk,. 
2) Assemble the EISERV source~ 
3) Generate the EISERV command module~ 
4) Execute the basic installtion verification procedure .• 

Each of these steps will be described in detail·. 

DUMPING THE DISTRIBUTION TAPE 

The distribution tape was created using the CMS 'TAPE DUMP' 
command and must be restored with the eMS 'TAPE LOAD' 
command. Due to dependencies in the EXSERV generation execs, 
the minidisk .!!.Y.§1 be accessed as an A-DISK,. 

The tape is divided into two files. The first file contains 
the necessary material to generate EISERV and the second 
file contains functional sample execs which use EXSERV. 
Additionally, a technique for an exec testing facility is 
provided. If the second file is not desired, omit the 
, (EOT)' specification on the • TAPE LOAD' command. 

The CMS minidisk space requirements 
material and generation procedure are 

Distribution material 
Generation procedure output 
Assembler workspace 

for the distribution 
as follows: 

340 blocks 
650 to 970 blocks 
1300 blocks 

On a 3330 drive, this is approximately 10 cylinders. 

The only output required for operation of EXSERV is the 
module file~ This is the actual lXSERV command module and 
requires approximately 8 blocks on a formatted CMS minidisk. 
All other files may be erased. However, all maintenance 
changes will be provided in source form. 

With the distribution tape loaded and attached as device 
address 181, perform the following set of commands: 

TAPE HEW 
R; 
TAPE LOAD * * A (EOT) 
LOADING ••• 
EXSERV ASSEMBLE AO 
EXSRVASM EXEC AO 
EISRVGEN EXEC AO 

-5-

Operator input 
System output 
Operator input 
System output 



EXSRVVFP EXEC AO 
EXSPL100 UPDATE AO 
EXSPL2~7 UPDATE AO 
END-OF-FILE OR END-OF-TAPE 
$EXENTER EXEC AO 
EXHT EXEC AO 
EXRT EXEC AO 
EXT EST EXEC AO 
FILES EXEC AO 
HELP EXEC AO 
END-OF-FILE OR END-OF-TAPE 
END~OF-FILE OR END-OF-TAPE 
R; 

This concludes the dumping of the distribution material. 

ASSEMBLING THE EXSERV SOURCE 

The exec 'EXSRVASM' is used in the next step to assemble the 
source of EXSERV,. This exec has one parameter which 
indicates the release level of VM/370 in which EXSERV will 
operate. This parameter may have the following values: 

100 - Indicates EXSERV is to be assembled for use on 
a VM/370 system prior to Release 2 PLC 17~ 

217 - Indicates EXSERV is to be assembled for use on 
a VM/370 system between Release 2 PLC 17 but 
prior to Release 3 

blank - Indicates EXSERV is to be assembled for use on 
Release 3 of VM/370. 

If other than a Release 3 VM/370 system is the host, a 
temporary source module (named $EXSERV) will be created for 
the assembly step,. The original source m<?dule is not 
modified. The changes being incorporated are ope to two card 
changes which reflect a change in the starting displacement 
of the EXEC Interpreter common area. If problems arise after 
a release change, this is the most likely cause of the 
problem~ Refer to CMS module 'DMSEXT' for a mapping of this 
area. 

During the course of the source update and assembly, status 
messages will be issued~ At the conclusion of this exec, 
print the IEXSERV LISTING' file for future reference. 

-6-



GENERATING THE EXSERV COMMAND MODULE 

Upon completion of the EXSERV assembly, the exec 'EXSRVGEN' 
must be run to generate the command module for EXSERV. This 
exec has no parameters,. The output of this exec will be the 
EXSERV command module file and the load map. When this exec 
completes, EISERV is ready to use~ If desired, the EXSERV 
module file may be copied to the eMS system disk. Be sure 
to save a new CMS system or else the file will not be in the 
saved system's file directory for the S-DISK~ 

VERIIYING THE INSTALLATION RESULTS 

After the installation process is complete, a basic 
verification procedure ('EXSRVVFP') may be executed to 
insure EXSERV is working correctly~ This exec will use four 
EXSERV functions to insure that variables may be passed 
correctly between EISERV and the EXEC interpreter. The four 
functions used are: 

DATETIME 
DEVTYPE 
SYSDATA 
TYPE 

These functions were selected because they 40 not require 
user input or user files for operation. As the exec 
executes, messages will be issued which indicate the 
expected results. At no time should a nonzero return code or 
program check result. If the verification procedure fails, 
insure the correct release level vas specified on the 
'EXSRVASM' exec command for the assembly of EXSERV. 

USE OF SAMPLE EXECS 

The sample execs in the second file may be used for 
additional testing and contain examples of how EXSERV can be 
used. Clearly, without EXSERV these functions could not be 
performed in an exec without the use of external modules 
written in assembly language. 

Execs I EXTEST I, 'FILES', and 'HELp!' utilize EXSERV in their 
operation. Execs'EXHT' and ,I EXRT' are used internally by 
the 'FILES' exec and are part of an exec testing facility. 
The format, usage, and parameters required for any of these 
execs may be obtained by entering 'HELP exec-name'. 

The exec named I$EXENTER' is an edit macro and should not be 

-7-



used from the console,. Its used is explained in the help 
information of the 'EXTEST' exec. 

The 'HELP' exec is a generalized function which can be 
useful in an operational environment~ HELP information is 
written at the end of an exec in the following format: 

(A full line of asterisks) 
FORMAT: 

Exec format information 
(Blank line) 
USAGE: 

Description of exec function and usage. 
(Blank line) 
PARMS: 

Detailed description of parameter and option 
values. 

The operation of the HELP exec depends on this format. 
Analysis of the exec logic will reveal the reasons. 

RELEASE RESTRICTIONS 

SYSDATA Function: 
This function uses the VM/370 diagnose code zero to 
extract the user id and system level number. The 
diagnose code zero function was not implemented until 
release 2 PLC 19 of VM/370. If SYSDATA is used on a 
prior release, the return code will always be four. 

Also, if the virtural machine storage size is 
requested, the VM/370 diagnose code sixty function is 
used. This function was not available until release 3 
PLC 1 of VM/370. Therefore, if the machine storage size 
is requested on a system between release 2 PLC 19 and 
release 3 PLC 1, the results will be unpredictable~ 

RELEASE COMPATIBILITY CONSIDERATIONS 

EXSEBV in general: 
EXSERV interfaces to the exec interpreter thru the 
interpreter work area defined in CMS module DMSEXT~ The 
mapping of this area is available only within this 
module. A second independent mapping is also contained 
in the EXSERV source. When changing releases, it is 
important to determine if any updates have been applied 
to DMSEXT which affect the displacements of field~ in 
the interpreter work area. If so, duplicate changes 
must be made in the EXSERV source,. The in terpreter work 

-8-



area format is moderately stable 
during the lifetime of VM/370. 
required for new functions added 
the exec interpreter. 

SYSGLBL Function: 

and has changed twice 
These changes were 
to either VM/370 or 

This function uses one reserved word in the low storage 
area of the CMS nucleus. (Area' NUCRSV1' mapped by the 
dsect NUCON) This word is used to anchor the global 
variable chain and has remained unused thru the current 
release of VM/370. Future releases may utilize this 
area for new functions in which case a di fferent 
reserved area must be selected. During the 
implementation of a new release, examine the NUCON 
macro for possible changes regarding this area. 

-9-' 



This guide shows the proper syntax, function, examples, and 
possible uses of the EXSERV operations~ 

NOTATIONAL CONVENTIONS 

The notation defining the command syntax in this guide is 
described in the following paragraphs: 

1~ Truncations and abbreviations of commands 

2. 

Where abbreviation of a command is permitted, uppercase 
letters represent the shortest possible version of the 
command. The example below shows the format 
specification for the EXEC command~ 

EXec 

This representation means that EX, EXE, and EXEC are 
all valid specifications for this command name. 

Options are specified in the 
minimum truncation is noted, you 
word. 

same manner. If no 
must enter ~he entire 

A second series of characters below the command name or 
option indicates that an abbreviation (a collection of 
characters which is not a simple truncation) is also 
valid. 

MESSAGE Full command name (MESSAGE) 
MSG Valid abbreviation (MSG) 

The following symbols define the 
should never be typed when you 
command. 

underscore 
braces { J 
brackets [ ] 
ellipsis 

command format and 
enter the actual 

3. You should type uppercase letters and words (Note: The 
Editor automatically converts lowercase letters into 
uppercase before the file is written) and the symbols 
listed below, as specified in the statement format. 

-10-



asterisk 
comma 
percent sign 
equal sign 
parenthesis 
period 
colon 

* , 
% 
= 
( ) 

4~ Lowercase letters, words, and symbols that appear in 
the command format represent variables for which you 
should substitute specific information,. For example, 
"fn ft fm" indicates that you should type file 
identifiers such as .. MYFILE EXEC A 1 n,. 

Lowercase letters containing an imbedded hyphen (-) 
represent EXEC variables which should be entered less 
their leading ampersand (&) '. For example, "var-vl" 
indicates that you should type identifiers such as 
"VARn, which represents the EXEC variable "&VARn. 

5. Choices are represented in the command format by 
stacking. 

A 
B 
C 

6. An underscore indicates an assumed default option. If 
you select an underscored choice, you need not type it 
when you enter the command~ 

E!!MP~~ 
The representation: 

A 

12 
c 

indicates you may select either A, B, or C. However, 
if you select B, you need not type it since it becomes 
the default choice_ 

7. The use of braces denotes choices, one of which you 
!!y§! select,. 

~XAl!f~£; 
The representation: 

{ A 1 
{ B } 
{ C } 

indicates you must specify either A, B, or C. If 
neither brackets nor braces enclose a list of choices, 
treat it as if enclosed by braces. 

-11-



8. The use of brackets denotes choices, one of which you 
i!!sY select. 

~!A11fll 
The representation: 

[ A ] 
( B ] 
( C ] 

indicates that you may code A, B, or C, or you may omit 
the field .• 

9. An ellipsis indicates that you may repeat the preceding 
item or group of items more than once in succession. 

~!AHP~~ 
The representation: 

(option • '. '. ) 

indicates that you may code more than one option within 
the parenthesis. 

COMMAND SYNTAX 

The argument list to the EXEC procedure using EXSERV is 
divided into the following fields: 

(EXEC] execname (parameters] [ ( options [ ) ] ] 

"parameters" are any tokens between the EXEC name and the 
first left parenthesis. "Options" are any tokens between the 
first left parenthesis and the end of the EXEC argument 
list. An optional. ending right parenthesis is not part of 
the option list,. 

PROCESSOR INTERFACE 

The EXSERV Processor is always invoked by a command in the 
following format: 

EXSERV operation [parameters] [ (options [ ) ]] 

Not all operations require parameters or option lists. 
Because EXSERV runs in the transient area, it may be used in 
"EDIT" macros. 

-12-



INTERFACE BETWEEN EXSERV AND CMS EXEC INTERPRETER 

1) Upon entry, EXSERVobtains the value of the CM~ EXEC 
Interpreter's register 13 from the save area. This 
register points to the EXEC Interpreter's common area 
and allows EXSERV to access the local variables 
currently in use by the EXEC procedure~ Also, additional 
variables may be created and inserted into the· EXEC 
procedure's variable list. 

2) If the global EXEC variables are used, one reserved word 
is used in the CMS nucleus ("NUCRSV1")~ This function 
can be release sensitive. 

3) The eMS User's Guide (GC20-1819) states that a percent 
sign (%) may be used as a place holder. The use of the 
percent sign as a place holder only applies to commands 
which are processed by the EXEC interpreter. The CMS 
command processQr does not place any special 
significance on the percent sign character and treats it 
like any other character. 

EXSERV uses the percent sign frequently as ~ place 
holder. However, the EXEC writer is advised that 
different EXEC control words treat the percent sign 
differently. At times it may be necessary to change an 
argument returned by EXSERV from a percent sign to a 
null (blank) before using it. 

4) EXSERV makes a very important distinction between 
variables and values that are passed to it. Any variable 
names that are passed to EXSERV must not be preceded by 
their ampersand (&). This is because the EXEC 
Interpreter changes any name preceded by an ampersand 
into its corresponding value before executing the 
command. Therefore, when a command asks for a variable 
name, it must be typed without the ampersand (&). If a 
value is needed, then it can be in the form of a literal 
or a variable name with the ampersand~ 

RETURN CODES 

o -
4 -
8 -

12 -
100 -
104 -
108 -
200 -

***** 
***** 
***** 
***** 

DEPENDS ON THE EXSERV FUNCTION 

EXSERV not called from within an EXECu 
Invalid EXSERV operation reguesto 
Invalid EXSERV parameter listo 
Invalid variable name. Name exceeds 

-13-

seven 



characters plus an ampersand. 
300 - Invalid decimal value (contains non-decimal 

digi ts) '. 
304 - Numeric value exceeds eight characters after 

conversion. 
308 - Invalid arithmetic operator~ 
312 - Invalid range for numeric value. (eg~ a value used 

for a card column is greater than 80) 
316 - Invalid hexadecimal value (contains non-hex 

digits). 
4xx - Error from "FSSTATE". xx is STATE return code,. 
5xx - Error from uFSREAD",. xx is READ return code,. "EOF" 

(return code 12) is not considered an error and is 
returned as '12'. 

6xx - Error from "FSiRITE",. xx is the WRITE return code. 

NOTE: The error return codes for the three macros mentioned 
above can be found in the eMS Command and Macro Reference, 
form number GC20-1818. 

-14-



EXSERV FUNCTIONS 

~1~b (Performs OS BLDL function) 

FUNCTION: 

This routine performs an OS 'BLDL' operation on a macro 
or text library. It searches the library directory and 
returns the beginning location of the member in the 
library and the length of the member. These values 
might be used in a COPYFILE command to move the library 
member into a seperate file of its ownJ 

COMMAND FORMAT: 

EXSERV BLDL mbrnm fn ft [fm][ ( str-var [In-var [) ]]] 

mbrnm 
fn 
ft 

- Member name for search~ 
- Library file name~ 
- Library file type (Normally KACLIB or 

TXTLIB) I. 
fm - File mode. 
str-var - Variable name in which to place the 

starting location of the member in the 
library. 

In-var - Variable name in which to place the 
length of the member~ 

RETURN CODES: 

o BLDL SUCCESSFULI. 
4 BLDL NOT SUCCESSFUL~ 
8 DIRECTORY UPDATE IN PROGRESS~ 

I &CONTROL OFF 
I EXSERV BLDL &1 &2 MACLIB A (START LNGTH) 
I &IF &RETCODE NE 0 &EXIT &RETCODE 
I COPYFILE &2 MACLIB A &1 MACRO A 
I (FROM &START FOR &LNGTH) 
I EDIT &1 MACRO A 
I MACLIB REP &2 &1 
I ERASE &~ MACRO A 
• &EXIT &RETCODE 

exec editmac foo mymaclib 
R; 
EDIT: 

A simple EXEC (EDITMAC) which easily edits members of macro 
libraries. 

-15-



EXSERV FUNCTIONS 

CA~~ (Calculate function) 

FUNCTION: 

This function 
capabili ty to 
opera tions,. 

COMMAND FORMAT: 

provides 
perform 

the 
one 

EXEC writer with the 
of five mathematical 

EXSERV CALC ans-var = var1 opr var2 

ans-var - Name of the variable result is to be 
placed in,. 

var1 - First operand. May be variable name or 
constant value,. 

opr - Operation to be performed~ + (addition), 
- (subtraction), * (multiplication), 
/ (division), or II (remai~der from 
division) • 

var2 - Second operand. May be variable name or 
constant. 

RETURN CODES: 

o RESULT IS ZERO OR POSITIVE 
4 RESULT IS NEGATIVE 

For division, it is necessary to invoke CALC twice if both 
t.he quotient and remainder are desired,. 

&CONTROL OFF 
EXSERV CALC ANSWER = &1 &2 &3 
STYPE IT IS &ANSiER 
&EXIT &RETCODE 

exec whatis 7 * 8 
IT IS 56 
R; 

exec whatis 10 I -2 
IT IS -5 
R (00004) ; 

A simple EXEC (WHATIS) using the CALC function~ 

-16-



EXSERV FUNCTIONS 

~AIET~ (Date and time services) 

FUNCTION: 

This function allows the user to obtain the date and 
time in printable form in EXEC variables. 

COMMAND FORMAT: 

EXSERV { DATETIME } 
{ DT } 

RETURNED VARIABLES: 

The variable &DATE, in the format mm/dd/yy, and &TIME, 
in the format hh:mm:ss, will be available for use upon 
return from this command. 

RETURN CODES: 

NONE 

&CONTROL OFF 
EXSERV DATETIME 
&TIPE TODAY IS &DATE 
&TYPE THE TIME IS NOW &TIME 
&EXIT &RETCODE 

exec date 
TODAY IS 08/25/76 
THE TIME IS NOW 13:27:07 
R; 

A simple EXEC (DATE) using the DATETIME function~ 

-17-



EISERV FUNCTIONS 

~jVTYP~ (Device type information) 

FUNCTION: 

This routine is used to extract device type information 
about non-spooled virtual devices~ Both virtual and 
real device type information is available if desired. 

COMMAND FORMAT: 

EISERV { DEVTYPE } rtn-v 1 [rtn"v 2] [ ( devadr [) ]] 
{ nVT } 

rtn-v1 - Return variable name for real device 
informa tion. 

rtn-v2 - Return variable name for virtual device 
information. 

devadr - Virtual device address. If omitted, the 
virtual console will be assumed. 

RETURN CODES: 

o VALID DEVICE ADDRESS. INFORMATION RETURNED. 
4 INVALID DEVICE ADDRESS. VARIABLES SET TO ",. 

NOlES: 
SPOOLED DEVICE INFORMATION CANNOT BE EXTRACTED~ IF AN 
ATTEMPT IS MADE TO OBTAIN INFORMATION ABOUT SPOOLED 
DEVICES, EXSERV WILL EXIT WITH RETURN CODE OF 4. 

DEVICE CODES: 

The information returned consists of a four digit 
number which is the device class and type codes as 
defined in the VM/370: System Programmer's Guide 
(GC20-1801)~ The first two digits define the device 
class, which are as follows: 

80 Terminal device 
40 Graphics device 
20 Unit record input device 
10 Unit record output device 
08 Magnetic tape device 
04 Direct access storage device 
02 Special device 

The last two digits define the device type, which 
depends on what class it is~ The complete codes for 
some of the more common devices are: 

8040 2700 Binary synchronous line 
8018 IBM 2741 Communication terminal 
4004 IBM 3277 Display station 
104~ IBM 1403 Printer 
0410 IBM 3330 Disk storage facility 

-18-



I 
I 
I 
I 
I 
I 

.1 

EXSERV FUNCTIONS 

0408 IBM 3350 Disk storage facility 

EXSERV DEVTYPE CONTYPE 
tIF &CONTYPE NE 4004 &EXIT &RETCODE 
CP SET PF1 COpy 
CP SET PF2 IMMED QUERY TIME 
&EXIT &RETCODE 

Using DEVTYPE in a PROFILE EXEC to set the program function 
keys on a 327 O. 

-19-



EXSERV FUNCTIONS 

lI~Y (Search file for character string) 

FUNCTION: 

This routine can be used to search a eMS file for a 
character string starting in a particular column. 

COMMAND FOBMAT: 

EXSERV FIND fn ft ( fm [ rcd ]J ( fCc] str rcd-var ()] 

tn - Name of file to be searched. 
ft - Type of file to be searched. 
fm - Mode of file tc be searched,. 
rcd - Starting record number for search. The 

default record is one~ 
cc - Column in which to search for string. 

Defaults to one if not provided. 
str - Character string to be searched for. 

May be 1 to 8 characters,. 
rcd-var - variable name which is to contain the 

record number of the record in which the 
search string was found. 

RETURN CODES: 

I 
t 
I 
I 
I 
I , 
t 

o ITEM FOUND. VARIABLE SET TO RECORD NUMBER. 
4 ITEM NOT FOUND. VARIABLE NOT SET. 

EXSERV FIND & ~ &2 A 1 ( 1 / / EECORD) 
&IF &RETCODE EQ 0 &SKIP 2 
&TYPE JCL CARD NOT FOUND 
&EXIT &RETCODE 

• 

Part of an EXEC which searches a file for OS JCL records. 

·20-



EXSERV FUNCTIONS 

§~:tQfI!l! (Get option value) 

FUNCTION: 

The GETOPTVL Processor is used to extract option values 
which are preceeded by a specific keyword. This 
function is useful when positional values are not 
desirable~ Also, several synonyms may be provided for 
the keyword. For EXEC procedures which depend on 
several options, this can eliminate most of the 
searching for the values and their positional 
dependency,. 

COMMAND FORMAT: 

EXSERV { GETOPTVL} [ndx] rtn-var [syn-nm •• ,.][ (dftval () ]] 
{ GOV } 

ndx - Index number of value to be obtained. 
Defaul ts to one,. (First value after 
keyword) 

rtn-var - Keyword name and name of variable in 
which the value following the keyword is 
to be set. 

syn-nm - Alternate keyword name. If a synonym 
keyword is used, the 'rtn-var' name is 
still used to return the value following 
the synonym name. 

dftval - Default value to be used if the keyword 
or any synonyms is not found in the 
option list. If not provided, the 
'rtn-var' will be set to '%'. 

RETURN CODES: 

o SUCCESSFUL COMPLETION,. KEYWORD SET TO VALUE .• 
4 NO VALUE PROVIDED AFTER KEYWORD~ KEYWORD OR 

SYNONYM OCCURRED AS LAST VALUE IN THE OPTION LIST 
OR INDEX POINTS PAST END OF EXEC OPTION LIST. 

EXAMPLE: 

The following section of an EXEC procedure could be 
used to get a variable number of disk filemodes 
following the keyword 'DISK' or 'DISKS',. If the 
procedure was called 'FOO', it could be invoked as 
follows: 

EXEC FOQ ( .'.'. DISK [fm (fm ., •• ]] •• '. [)] 

--21-



&N = 1 
-LOOP 

EXSERV FUNCTIONS 

EXSERV GETOPTVL &N DISK DISKS (%) 
&IF &RETCODE EQ 4 &GOTO -END 
&IF &DISK EQ % &GOTO -END 
* (statements that would verify that &DISK is valid.) 
* (for example, use EXSERV LOOKUP.) 
&D.lSK&N = &DISK 
&N = &N + 1 
&GOTO -LOOP 
-END 
SIF &N EQ 1 &GOTO -OUT 

.. I. '. 

-22-



EXSERV FUNCTIONS 

§jIg!RML§~I (Get parameter or option) 

FUNCTION: 

The GETPARM/GETOPT Processor allows the EXEC coder to 
extract values from either the 'parameters' or 
'options' which were input to the EXEC procedure. 
Everything up to the first left parenthesis (excluding 
the EXEC nam~ is considered a parameter~ Everything 
after the first left parenthesis is considered an 
option. If a parameter or option value is not 
explicitly provided in the EXEC's argument list, a 
default value may be provided. Also., a specific 
parameter or option value may be obtained by providing 
its index number in the parameter or option list. 

COMMAND FORMAT: 

EXSERV { GETP ARM } [ndx] rtn-var ••• [ ( dftval • •• [)]] 
{ GP } 
{GETOPT } 
{ GO } 

ndx - Index number of parameter or option 
value to be obtained. If not provided, 
the default is one greater than the 
index value used for the previous 
'rtn-var' specified. If no such 
previous index value exists, it defaults 
to 1,. 

rtn-var - Name of the EXEC variable in which the 
parameter or option value is to be set. 
If the parameter or option was not 
included in the EXEC parameter list, the 
default value (dft-val) associated 
(positionally) with this variable will 
be used~ If no default value was 
provided, the variable will be set to 
I %' '. 

dftval - Default value to be used if parameter or 
option value was not provided. Default 
values are associated on a one-to-one 
basis with return variables. 

RETURNED VARIABLES: 

The variable I&PNUM' or I&ONUHI is returned to the 
calling EXEC~ if GETPARM is specified, &PNUM is 
returned, and for GETOPT, &ONUM is returned. 
I&PNUM' provides the true number of parameters that are 
provided in the EXEC's argument list and '&ONUM~, the 
true number of option values in the argument list. 

-23-



EXSERV FUNCTIONS 

EXAMPLE: 

Assume an EXEC has been invoked with the following 
command line: 

EXEC ANY NAME ABC DEF (GHI JKL) 

And the following EXSERV command has been executed from 
within the EXEC: 

EXSERV GETPARM FN FT FM (% SCRIPT A 1,) 

Then upon return from EXSERV, the variables 'I&FN", 
'&FT' , and' &FM' would be set to ,. ABC", • DEF', and 
'A1'. 'ABC' and 'DEF' from the EXEC argument list, and 
'A1' supplied by the default value. &PNUM would be set 
to 2. This supplies more information than &INDEX which 
would be set to 6~ (Parenthesis are counted by &INDEX). 
The following EXSERV command would have the same 
results: 

EXSERV GETPARM 2 FT 1 FN 3 FM (SCRIPT % A1) 

-24-



EXSERV FUNCTIONS 

~2Q~Yf (Search a list) 

FUNCTION: 

The function of this routine is to look for a value in 
a list of values and indicate if the value occurs in 
the list. This can be very useful in checking the 
validity of a variable. 

COMMAND FOBMAT: 

EXSERV { LOOKUP } tstval ( tblvl '.'. '. [)] 
{ LU } 

tstval Value to be searched for ip a list of 
values. 

tblvl - One or more values which comprise the 
list to be searched~ 

BETURN CODES: 

I 
I 
I 
I 

• i 
I 
I 
I 
I 

o VALUE LOCATED IN LIST,. 
4 VALUE NOT LOCATED IN LIST~ 

&TYPE WHICH DISK MODE ? 
&READ &VARS &HODE 
EXSERV LOOKUP &HODE (A BCD E F G 5 Y Z) 
&IF &RETCODE EQ 0 &SKIP 2 
&~YPE INVALID MODE - &HODE 
&EXIT 4 
.• I. !. 

Fragment of an EXEC procedure showing typical use of LOOKUP 
function,. 

-25-



EXSERV FUNCTIONS 

FUNCTION: 

This routine 
data which 
characters in 
characters or 
an underscore 
into the data 
typed,. 

is used to print, punch, stack, or type 
contains strings greater than eight 
length~ The input tokens must be eight 
less with blank characters indicated by 
character. Variables may be substituted 
to be printed, punched, stacked, or 

If the print or punch function is used, a 'CP CLOSE' 
~Y§! be issued by the exec when all data has been 
printed or punched~ 

COMMAND FORMAT: 

EX S ER V { P R IN T [c tl ] } ([ c c] da ta MIl. '. [) ] 

{ PRT [ctl] } 
{ PUNCH } 
{ PCH } 
{ STACK [order] } 
{STK [ order] } 
{ TYPE } 

ctl 
order 

- ASCII carriage control character,. 
- Is either of the following~ If neither 

cc 

data 

is specified, FIFO is the default. 
1) FIFO - Requests this line to be 

stacked at the end of the 
console stack. 

2) LIFO - Requests the line to be 
placed at the beginning of 
the console stack. 

- Card column in which data is to be 
printer, punched, stacked, or typed. 

- Data to be output~ (Underscore 
characters are translated to blanks 
prior to output) 
NOTE- Data starting with a numeric 
character is always considered to be a 
card column numbe~ 

RETURN CODES: 

NONE·. 

EXAMPLE: 

The data to be printed, punched, stacked, or typed 
should not start with a numeric value because it would 

-26-



EXSERV FUNCTIONS 

then be interpreted as a column number~ Also, since CMS 
tokenizes all parenthesis, the token' (25,6)' would be 
received as I ( 25,6 )', or as 3 tokens,. The' 25,6' 
would then be treated as a column number and an error 
would result. These problems can be overcome either by 
preceding numeric data with an underscore or inserting 
numeric data into a variable. 
For instance: 

&NUMBER = 24,2 
EXSERV PUNCH (II 16 SPACE= (CYL,( NUMBER ») 

would resu~t in the following card: 

col 1 
I 
1/ 

col 16 
I 
SPACE= (CYL, (24,2) ) 

All blanks between the data must be inserted explicitly 
since EXSERV concatenates all the data unless column 
numbers are specified. For instance, assume the 
variable I&UID' contains the value 'DOSMAINT'. Then the 
following command: 

EXSERV PUNCH (/ I _JOB_ TEST - 36 ***_JElB - FOR - Uln _***) 

would produce the following card: 

col 1 col 36 
I I 
II JOB TEST *** JOB FOR OOSMAINT *** 

Variable names must not have underscores before or 
after them or they will not b€ substituted. 

-27-



EXSERV FUNCTIONS 

~EA~ (Read CMS files) 

FUNCTION: 

This routine is used to read CMS files from within EXEC 
procedures~ The data is returned in EXEC variables. 
Specific columns may be read if desired and blanks are 
not considered as part of the data~ Character strings 
longer than eight characters are returned in successive 
variables. 

COMMAND FORMAT: 

EXSERV { READ J fn ft [fm [rcd [trcval]]] ( ([ $COL] [cc] rtn-var ' ••• [) ] 
{RD } 

fn 
ft 
fm 
rcd 
trcval 

$COL 

- File name to be used for read. 
- File type to be used for read~ 
- File mode to be used for read~ 
- Record number to read~ Defaults to one~ 
- Last position in record to scan for 

data~ The default is the record length 
if not specified. 

- Requests the column number to be 
returned along with the data~ A variable 
preceded by 1&$1 followed by the data 
variable name (rtn-var) will contain the 
column number. This option is only 
specified once at the beginning of the 
option list,. 

rtn-var - Variable name in which data is 
returned. 

RETURN CODES: 

o READ SUCCESSFUL .• 
12 END OF FILE. 
5xx I/O ERROR DURING READ. IXX' INDICATES RETURN 

CODE FROM I FSREAD I MACRO .• 

EXAMPLE: 

To read the fourth data item in the N!h record of 
IMYFILE DATAl, the following statement could be used: 

EXSERV READ MY FILE DATA % &N ($COL % % % NUMBER) 

After completion, the variable I&$NUMBERI would contain 
the starting column number of the data item, and 
&NUMBER would contain the data. Keep in mind that this 
processor I tokenizes l the input record,. That is, it 
breaks up any character strings longer than 8 

-28-



EXSERV FUNCTIONS 

characters into two or more strings,. Therefore, in the 
above example, if the record contained a continuous 
string, then '&NUMBER1I would contain the substring from 
col umns 25 to 32,. 

-29-



EXSERV FUNCTIONS 

HETU~! (Pass a value back) 

FUNCTION: 

This routine is used to pass one or more local variable 
values to the next higher level EXEC~ The next higher 
level EXEC can access the value of the variables by 
using the variable name within a command line. This 
provides EXEC procedures with a subroutine-like 
facility,. 

COMMAND FORMAT: 

EXSERV { RETURN J var ~.~ 
{RTN 1 

var - Name of variable to be passed to the 
next higher level EXEC. 

RETURN CODES: 

I 

• J 
I 
I 
I 

o VARIABLES SUCCESSFULLY PASSED TO NEXT HIGHER 
LEVEL,. 

4 NO HIGHER LEVEL EXEC TO PASS TO. 

&X = 8X + 1 
&IF &X LT 100 &GOTO -LOOP 
EXSERV RETURN X Y 
&EXIT &RETCODE 

Section of an EXEC procedure which does some calculations 
and returns two values. 

-30-



EXSERV FUNCTIONS 

~I!I!LFI1~~ATA (Get file characteristics) 

FUNCTION: 

The state processor Lan be used to d~termine if a file 
exists~ Also, if a file does exist, the explicit file 
name, file type, and file mode can be obtained. 

The original function of the 't STATE' operation is 
obsolete since the addition of the NOMSG option of the 
&CONTROL exec verb~ However, the function remains since 
it is an integral part of the FILEDATA routine. 

COMMAND FORMAT: 

EXSERV { STATE j fn [ft [fm]] [( rtn-fn [rtn-ft [rtn-fm]] [) ]] 
{ FILEDATA 1 fn eft [fm]] [( rtn-fn [rtn-ft [rtn-fm [rtn-ff 
{ FD} [rtn-lrl [rtn-ic [rtn-bc [rtn-dt 

[ rt n - t m ] ] ] ] ] ] ]] () ]] 

fn - File name for the search. May be 
specified as ' *' . 

ft - File type for the search,. If omitted, 
defaults to ,*. '. 

fm - File mode for th<l:;: search,. If omitted, 
defaults to '*' .. 

If the state operation is successful (return code 
0), the following option values represent variable 
names in which the associated file information 
will be returned: 

rtn-fn 
rtn-ft 
rtn-fm 
rtn-ff 
rtn-lrl 
rtn-ic 
rtn-bc 
rtn-dt 
rtn-tm 

- Actual file name,. 
- Actual file type. 
- Actual file mode,. 
- Actual file format ('F' or 'V')~ 
- Actual logical record leng~h. 
- Number of logical records in file,. 
- Number of physical 800-byte bloCKS,. 
- Date file created (rom/dd/yy) '. 
- Time file created (hh:mm). 

NOTE- If STATE/FILEDATA operation is unsuccessful, 
any return variables are set to ~%'~ 

RETURN CODES: 

o -. FILE DOES EXIST~ INFORMATION RETURNED. 
28 FILE DOES NOT EXIST. 
4xx 'xx' IS ANY RETURN CODE POSSIBLE FROM THE 

'FSSTATE' MACRO~ Return code 28 is not 
considered an error condition. 

-31-



EXAMPLE: 

A percent 
name if a 
instance: 

EXSERV FUNCTIONS 

sign (i) may be used as a return variable 
part icular da ta i te m is not desired,. For 

EXSERV FILEDATA NAME TYPE * (I i FM) 

will extract the file mode of the file named 'NAME 
TYPE'. 

-32-



EXSERV FUNCTIONS 

~I!FI1~ (Put a CMS file on console stack) 

FUNCTION: 

This routine is used to place all or part of a eMS file 
onto the console stack. 

COMMAND FOBMAT: 

EXSEBV { STKFILE} fn ft [fm [strtrcd]][ {([ [FOR] nbrrcds][) ]} ] 

EXAMFLE: 

{([ TO rcdnbr][) ] } ] 
{ SF } 

fn - Name of file to be stacked,. 
ft - Type of file to be stacked. 
fm - Mode of file to be stacked .. Defaults to 

, *' f. 
strtrcd - Starting record number in file. Defaults 

to one. 
nbrrcds - Number of records to be stacked~ 
rcdnbr - Last record number to be stacked. 

NOTE - If neither 'nbrrcds' or -rcdnbr' is 
specified, all records from the starting record 
number to the end of the file will be stacked. 

Suppose there existed a file called 'CHANGES EDIT' 
which contained several edit statements~ If only a 
subset of these changes was desired, then the variables 
'SSTART' and '&STOP' would have to be initialized to 
the correct records. Then by executing the two 
following commands, any file can be easily edited: 

EXSERV STKFILE CHANGES EDIT ~ SSTART (TO &STOP) 
EDIT MYFILE SCRIPT 

-33-



EXSERV FUNCTIONS 

~I~J2ATA (Obtain user or system information~ 

FUNCTION: 

The function of this routine is to return system ID 
variables to the user. The following information can be 
obtained: 

1) USER ID 
2) SYSTEM, MODIFICATION, AND PLC LEVEL NUMBERS. 
3} VIRTURAL MACHINE STORAGE SIZE. 

Refer to the section IRelease Restrictions· in this 
document before using this function. 

COMMAND FORMAT: 

EXSERV { SYSDATA } [{ rtn-uid (rtn-slv [rtn-stg]] () ]] 
{ SD } 

rtn-uid - Variable name in which user ID is to be 
returned. 

rtn-slv - Variable name in which current system 
level is to be returned,. Value format 
is Ivv.mm.ll l where: 

vv - System version level. 
mm - System modification level. 
11 - Program change level,. 

rtn-stg - Variable name in which virtural machine 
storage size is to be returned. Value is 
in I K I,. 

RETURN CODES: 

o SYSTEM DATA RETURNED. 
4 CURRENT VM/370 SYSTEM DOES NOT SUPPORT THE 

I EXTRACT SYSTEM DATAl (DIAG CODE 0) FUNCTION,. 

I &CONTROL OFF 
I EXSERV SYSDATA (% SYSTEM) 
I SIF &RETCODE NE 0 &EXIT &RETCODE 
J &TYPE THE SYSTEM IS VH/370 RELEASE &SYSTEM 
I &EXIT &RETCODE 

I exec whatsys 
I THE SYSTEM IS VM/370 RELEASE 03~01.00 
I R; 

Sample EXEC (WHATSYS) which identifies the system,. 

-34-



EXSERV FUNCTIONS 

~~g~~ (Global variable processor) 

FUNCTION: 

This routine is used to move global variable values to 
local variable values, set, or, test global variable 
values,. 

COMMAND FORMAT: 

SET OPERATION: 

EXSERV SYSGLBL gbl-var ( value [)] 

MOVE SYSTEM VARIABLE VALUE TO LOCAL VARIABLE VALUE: 

EXSERV SYSGLBL gbl-var .~~ 

TEST SYSTEM VARIABLE VALUE: 

EXSERV SYSGLBL gbl-var ( apr value () ] 

RELEASE OPERATION: 

EXSERV SYSGLBL ( RELEASE [)] 

gbl-var - Name of global varianle. 
opr - Compare operation (LTILEIEQIGEIGTINE) 

COMMENTS: 

- Value to be used for compare or value 
used for set operation. 

This function uses the area INUCRSV1' in the eMS 
nucleus. 

RETURN CODES: 

SET OPERATION: 

ALWAYS ZERO,. 

MOVE GLOBAL VARIABLE VALUE TO LOCAL VARIABLE VALUE: 

o ALL LOCAL VARIABLES HAVE BEEN SET. 
4 ONE OR MORE GLOBAL VARIABLES HAVE NOT BEEN 

DEFINED. LOCAL VARIABLE SET TO 1%'. 

TEST GLOBAL VARIABLE VALUE: 

o TEST CONDITION IS TRUE. 
4 TEST CONDITION IS FALSE-. 

NOTE- A test for an undefined variable is always 

-35-



EXSERV FUNCTIONS 

false unless it is being tested for a null (~) 
value. 

RELEASE OPERATION: 

ALWAYS ZERO. 

NOTES: 

The System Global processor is very useful in maintaining a 
list of variables to be kept from one EXEC procedure to 
another,. Thus, the variables can be, in effect, global to 
the user's terminal session~ 

To use a global variable, it must be defined by using the 
set operation~ Thereafter, the variable exists as long as 
the user remains in CMS. Since the system global variable 
list is separate from the local variable list, there can be 
no name conflicts between locals and globals. By using the 
move operation, global and local variables of the same name 
will then have the same value. This does not mean, however, 
that changing this local variable will affect the global 
one. Globals can only be changed by the set operation. If 
the user wishes only to test the value of a system global 
variable, then the test operation is used and no local 
variable is created~ When there is no further need for the 
system global variables, then the release operation releases 
the storage for all the variables,. To release specific 
global variables, set the variable to a null value (I). 

-36-



EXS~RV FUNCTIONS 

I~IQgI (Test option list) 

FUNCTION: 

This routine is used to test the options of the EXEC 
argument list for one of a mutually exclusive set of 
values~ If none are found, a default value may be 
supplied~ Additionally, short forms of the option 
values may be specified if desired~ If an option value 
is found in the argument list, the value is returned in 
a local EXEC variable. If a short form is found, the 
long form of the option value is returned. 

COMMAND FORMAT: 

EXSERV { TSTOPT } rtn-var [ (value [min val] ' ••• () ]] 
{ TO } 

rtn-var - Name of variable in which to return 
option value or default value~ 

value - Value for the EXEC option list search. 
Only one such value may occur in the 
option field of the EXEC argument list~ 
The first value provided is considered 
the default value. If no default value 
is desired, a 1%' may be specified,. 

minval - Number which indicates the minimum 
length needed to be considered an option 
value match. Default is t~e value 
length. eg., If 'PRINT 2' were 
specified, then 'PR', ·PRI~, 'PRIN', and 
'PRINT' would be considered as a match. 
'PRT' would not be considered a match. 
Caution should be used in specifying too 

BETURN CODES: 

short a truncation that causes the set 
to be non-exclusive. For example, 
'PRINT 1 PUNCH 1'. 

o TEST SUCCESSFUL~ OPTION VALUE OR DEFAULT VALUE 
RETURNED,. 

4 MORE THAN ONE OPTION VALUE FOUND IN LIST. DEFAULT 
VALUE RETURNED. 

-37-



EXSERV FUNCTIONS 

EXAMPLE: 

Suppose an EXEC procedure called il FOO' coptained the 
following statement: 

EXSERV TSTOPT WHERE (PRINTER 2 DISK PUNCH 3 TERMINAL 4) 

and the variable '&WHERE' is used to control where the 
output is to be directed. Then when 'FOO' is invoked as 
follows, the option list can easily be checked and 
verified,. 

exec foo ( '. '.. pun '.... ) 

After the execution of the above EXSERV command, &WHERE 
would contain the value 'PUNCH~~ 

-38-



EXSERV FUNCTIONS 

!i!I~ (Create or update a CMS file) 

FUNCTION: 

The write processor is used to create a new file, write 
over any record ~n an existing file, or add a new 
record to the end of a CMS file. The write update is 
used to overlay specific columns of an existing record 
without disturbing the data in other columns of the 
record. 

COMMAND FORMAT: 

EXSERV {WRITE } 
{ WRT } 
{ WRTUPD } 
{ WRU } 

fn ft [fm [rcd [ff [lrecl]]]][ ([$COL][cc] 
va r • '. '. [) ]] 

fn 

ft 

fm 

rcd 

ff 

lrecl 

$COL 

cc 

var 

- File name to be used for write 
operation. 

- File type to be used for write 
operation. 

- File mode to be used for write 
operation. Can be omitted if writing to 
existing file. 

- Record number to write in file. 
Defaults to zero (add new record to 
file). If writing an existing record, 
the entire record will be written unless 
'WRTUPD' is specified. 

- File format of file to write. Default 
value is 'F' (fixed), or whatever the 
existing file format is,. Only' F' or 
'V" may be specified,. 

- Length of record to write. Defaults to 
80 or whatever the existing record 
length is,. 

- Used in conjunction with the '$COL' 
option of the READ operation. Indicates 
that the column numbers the data is to 
be written in is contained in a variable 
preceded by '&$' and followed by the 
data's variable name. 

- Column in which to write data. A 
numeric value in the list is always 
considered a column number. Numeric 
data must be contained in a variable. 

- Variable name containing the data to be 
written. 

-39-



EXSERV FUNCTIONS 

RETURN CODES: 

6xx -- 'xx' IS ALL POSSIBLE RETURN CODES FROM THE 
, FSWRITE' MACRO,. 

EXAMPLE: 

If the 'SCOL' option is used in conjunction with column 
numbers, then the precedence is as follows: 

The processor first searches for an associated 
column variable (preceded by I&$I)~ If none is 
found, then the data is positioned at either the 
column specified or one column to the right of the 
last data item written. If this is the first data 
item and no column number was specified, the output 
is placed in column one,. 

Suppose the following statement was executed: 

EXSERVWRITE MYFILE DATA A (SCOL A B 25 C 37 DE) 

And the variables had the following values: 

&A = AAAAA &$A = 10 
&B = BBB &$B - no value 
&C = CCCCCCCC S$e - no value 
&D = DD &$D = 20 
&E - no value 

The following record would be written: 

col 10 16 20 25 
I I I I 
AAAAA BBB DD E CCCCCCCC 

Variable Length Format Files: 
When adding new records to an existing variable length 
file, the maximum length record which may be written is 
equal to the length of the longest record in the file 
unless an explicit length is provided in the EXSERV 
command,. If a record exceeds the maximum length, the 
record is truncated and no error is indicated. 

When rewriting a variable length record, the existing 
record 1 ength £~!!!!2! be chan ged,. If the new record is 
longer then the eXisting record, the record will be 
truncated and no error will be indicated. If the new 
record is shorter, it is padded with blanks (WRITE 
operation) or with whatever data previously existed in 
the record (iRTUPD operation). 

-40-



EXSERV FUNCTIONS 

-41-



SH20-1922-0 

==-=- =CRl ----- -.. ----- - - ------_ .. -
-~-.-

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue. White Plains. N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
T-?~n of Mount Pleasant. Route 9. North Tarrytown. N.Y .. U.S.A 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601 



CI) ..... o 
Z 

Virtual Machine/370 Conversational Monitor System (VM/CMS) EXEC Language Extensions 

Program Description/Operations Manual 

SH20-1922-0 

You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you 
supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, is 
deemed appropriate. Comments may be written in your own language; use of English is not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 
Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? __________________________ _ 

Number of latest Newsletter associated with this publication: _____________ _ 

READER'S 
COMMENT 
FORM 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the title page.) 



SH20--1922--0 

Reader's Comment Form 
Your comments, please ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold and tape Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

International Business Machines Corporation 
Department 68Y 
P.O. Box 2750 
225 John W. Carpenter Freeway, East 
Irving, Texas 75062 

Fold and tape 

==..= =® - ----- ---- - ---- - - --------
-~- .. -
International Business Machines Corporation 
Data Processing Division 

Please Do Not Staple 

1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

I 
n 
S 
g 

6' 
ii 
l> 
0' 
::J 
\0 

r 
5' 
CD 

I 


