
Installed
User
Program

SH2~ 1965~O' , '
I' ,I

Display Editing System for eMS
Users Guide

Program Number: 5796-PJP

This guide contains usage and reference information for
Display Editing System for CMS, a full-screen editing system
that operates under the Conversational Monitor System (CMS)
component of IBM Virtual Machine Facility/370 (VM/370).

The Display Editing System Installed User Program is a full
screen editing system for the Virtual Machine Facility/370
Conversational Monitor System (VM/370 CMS) designed to
utilize the features of both local and remote terminals. In
addition to a comprehensive array of cursor ami command
oriented data manipulation functions, the IUP has direct
usability in a wide range of user applications. Display ter
minals supported are the IBM 3277 Model 2 and the IBM
3278 Model 2, including both the TEXT PROCESSING and
APL keyboards.

The Display Editing System accommodates CMS files of all
types, including program source material, documentation,
and data. It permits users to change portions of the display
without program intervention. By placing the cursor on the
position(s) requiring change, the user may re-enter the correct
character(s). The Display Editing System checks for modi
fications made to the display image and makes permanent
copies of the changes to the file.

PROGRAM SERVicES')::'
, ," !' ,

, ", ~ ,I,',;; : :' 1 ,-' ~ , ,

Central Service will be' provided until oth~rwis~ notifIed. Users wii1b~'given a minimum of six
months notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without additional
charge, respond to an error in the current unaltered release of the program by issuing known
error correction information to the customer reporting the problem and/or issuing corrected
code or notice of availability of corrected code. However, IBM does not guarantee service re
sults or represent or warrant that all errors will be corrected.

Anyon-site program service or assistance will be provided at a charge.

WARRANTY -

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

First Edition (September 1977)

A form for readers' comments has been provided at the back of this publication.
If this form has been removed, address comments to: IBM Corporation, 1133
Westchester Avenue, White Plains, New York 10604. Attention: R. F. Walsh.

© Copyright International Business Machines Corporation 1977

Cont'ents

I.,
II.
III.

IV.

V.

VI.
VII.

'Use of this Manual••... '., '. ',' ','•. -~!,;
Abstract ... ' . . •. 11
Introduction'. ' ' ~ .. '. . 1
System Overview ' 3
System Flow ... 3
Initialization and Termination 5
Screen Structure and Formatting 9
Keyboard Functions. .. 16
Editing Functions. .. 18

'Type I, Commands 18
Type II Commands 25
Type III Commands ' 39
Autosave Facility .. 42
Advanced Editing Facilities 43
Screen Operation Simulation ;-;'-.' T'. •• 43
User Written Commands 47
Error Messages 49
Installation Procedures 52
Index ... 55

Illustrations

Figure 1 System flow ... 4
Figure 2 Basic screen layout and definition 9
Figure 3 Sample screen with one logical display .. 10
Figure 4 Sample screen with two logical displays 12
Figure 5 Sample screen with two logical screens 13
Figure 6 Sample screen with multiple line data-displays 14

Table of Contents

,I. Abstract

Abstract ii

Although this is primarily a'referenc~ man~'al~ it does p~ovicie 'a'n introd~cti~n
'to soine of the 'concepts nt~ces~ary for effective use of the editing system. "::
New users of the DISPLAY EDITING SYSTEM for CMS should acquaint them-, .
selves with the overall system flow, a few of the more basic commands, and
the facilities of the IBM 3270.Information,Display System (see Operator's
Guide, GA27-2742). It is important not to attempt to learn all the unusual
commands until the need arises. Becoming aware of the various "types" of
functions available and referring to the manual later for specific commands as
they are needed would be the most effective approach to familiarization. The
effective use of the "Advanced Editing Facilities" requires an understanding
of the CMS console stack and the basic facilities of the DISPLAY EDITING
SYSTEM for CMS.

The DISPLAY EDITING SYSTEM for CMS, is a virtual storage, full-screen
editing system for VM/CMS files, designed to use the full range of 3270
terminal features on either a'local or remote basis. In addition to a compre
hensive array of cursor and command oriented data manipulation features, the
following points are of special interest:

Editing records of varying lengths and formats.

Nested editing levels.

Multiple independent split screen control.

Multi-level Change Data Set Facility.

Minimum data transmission (changed data only).

• Minimum CPU activity (multiple functions per interrupt).

• Full-function execution of the editor from EXEC's.

Invoking EXEC'S from within edit sessions.

User controlled data display - EBCDIC, HEX, or both.

User defined Program Function Key functions.

• Simulation of 3270 operations.

• User written editing commands.

User defined Command Synonyms.

, Il'mtroduction

The, DISPLAY EDITING SYSTEM FOR CMS is a gene~ purpose data file editing
system for CMS data files of all types, including program source material.
documentation', etc. This document, Ifor example, was originally produced on
a display terminal using the DISPLAY EDITING SYSTEM FOR eMS.

The system comprises several components:

• EDGAR Edits Data Graphically And Recurrently. This component pro
vides the basic editing system functions and is invoked by the C~tS com
mand EDGAR.

• $PROFILE is the filetype of a user modifiable set of specifications which

establish the editing environment.

Preprocessor EXEC's are automatically invoked, based on filetypc. to
establish default editing parameters.

ECOMMAND is a CMS command which interfaces directly between EXEC's

and the editing functions of EDGAR.

The display facilities of the DISPLAY EDITING SYSTEM were designed to
permit maximum use of the display editing capabilities of an IBM 3270
INFORMATION DISPLAY SYSTEM. Some of the resulting features are as
follows:

• The user can directly change any portion of the display to meet his re
quirements. These changes do not require program intervention. By
placing the cursor on the position(s) requiring change, the user may
re-enter the correct character(s). Upon depression of the "ENTERII key
EDGAR checks for modifications made to the display image and makes
corresponding changes within the working copy of the file.

• The data to be reviewed and/or edited is sometimes contained in more
than one CMS file. EDGAR permits the user to divide his physical screen
into logical screens each of which may display a different file for inde
pendent editing. Since it is often convenient to review nonconsecutive
portions of a single file concurrently, EDGAR provides for division of a
screen or logical screen into multiple displays, which can also be edited
independently.

• Although the physical screen size of a display terminal is most readily
adaptable to files of fixed-length, 80-character records, most users will
frequently have need to edit files with other characteristics. EDGAR
allows the editing of both large and small, fixed and variable length re
cords, up to 2047 characters in length.

• It is often desirable to view data either in hexadecimal form or in column
order other than that of the file items. The VIEW command provides these
capabilities.

Introduction

Introduction 2

'V~lfious"editiIig cOnUnarids 'or the' DISPLAY EDITING SYSTEM have been ,
inlplem~~te(fln way~' 'that 'r~d~ce the number of operations required of the.
,user'and thus-impr~vet~e,ove!all efficiency of the editing system. For
. exa~p~~\ . , ,

• Repetitive~editi~g operations' may be pr~defined and invoked as user
written EXECS or commands.

• _ The CHANGE command, which allows the user to change one character
string within an item to another, also can be made to specify a horizontal
"zone" within which the change is to occur, as well as both vertical and
horizontal continuation counts. Thus, the change may be made on con
secutive items or repeatedly within the same item.

• It is frequently necessary to apply a change made by cursor positioning on
the display screen to several consecutive lines. The REPEAT command has
been installed for this purpose.

• A facility called Screen Operation Simulation, sos, has been included to
allow the user to simulate the operation of the display terminal. Through
the use of SOS commands and the CMS console stack, the user can pre
program the operation of the terminal to simplify repetitive or complex
actions.

Above all, the DISPLAY EDITING SYSTEM is flexible and has been designed to
allow the user to tailor his editing environment. Several components are
included in the system to facilitate this. For example:

• Program Function Keys may be assigned by the user to perform any
function, or combination of functions, desired.

• Optionally, at edit level initiation, a "default" EXEC can be automatically
invoked to establish a user - specified editing environment.

• An SVC interface to the EDGAR command processor allows the us~r to
write his own editing commands and invoke them during an active edit
session.

~~tem'~low

The 110 Processor

The Display Processor

As shown'ih figure' i, the DISPLAY EDITING SYSTEM editor, EDGAR, is '
comprised of three major components:

I/O Processor
Display Processor
Editing Command Processor

The I/O Processor maintains a storage copy of an I/O virtual screen. The I/O
virtual screen has the same physical characteristics as the user's 3270 (if any)
and may be updated as a result of activity on either of two sources; the
physical display device, or the Screen Operation Simulation (SOS) facility.
(The operation of Sos is described in Section v, Advanced Editing Facilities).
The operation of the I/O Processor is as follows:

1. For each edit level currently selected for display, map the corresponding
edit level virtual screen to the appropriate areas of the I/O virtual screen.

2. Allow the sos facility to update the I/O virtual screen.

3. If ENTER depressed by sos, go to step 6.

4. Replicate the contents of the I/O virtual screen on the physical display
device and wait for action by the terminal user. When user depresses a PF
key or ENTER, reflect ch~nges made on the physical display device to the
I/o virtual screen.

5. If ENTER not depressed by UStf, rtlufn Lo slep 2.

6. Reflect changes made to the I/O virtual screen back to the edit level
virtual screen(s).

7. Pass control to the Display Processor once for each currently displayed
edit level virtual screen. Process the edit level virtual screens in the order,
top down, that they appeared on the I/O virtual screen. Then return to
Step 1.

Upon receiving control from the I/O Processor the Display Processor analyzes
the edit level virtual screen. The data and command areas are passed through
the CMS input translate table. For information on the use of the CMS
input/ output translate tables, see IBM Virtual Machine Facility /370: CMS

Command and Macro Reference Gc20-1818. The data file records are, then,
updated according to the changes in the data areas, and the commands are
passed, one at a time, to the Editing Command Processor. Each command is
terminated by either a X'O!' or the end of the command area on the edit level
virtual screen. Thus, through the use of the CMS input translate table, a user
may assign any character to be a logical command separator. Also, since all
data is passed through the CMS input translate table a user may enter any
character from the keyboard (or via sos) and have it appear as a different
character in the data file.

System Overview 3

Editing Command Processor

Editing
Command
Processor

Display
Processor

I/O
Processor

Figure 1. Basic system flow

System Overview

", .Aft~r' pioce~s~~g lh~.: ~,~i~ l~,~e~(y~r~~:al scr~~~: th~ Display pro~~ssor. ~uild~r'~ ;"
. new display based on the updated information. The data, starting with the '
'!.,,"~rir~e~tJine'~.,~~s'i~a~~~JrpITl the lile~ passed th~ou-gh theCMS output ~~ansl~te
, table, and placed In the data areas of the screen. Any messages that were ii'·

: received from the Edit Comma~d Processor are placed on the command iin~: "
. Control is then returned to the I/O Processor.

4

The Editing Command Processor receives control from either the Display
Pro-cessor or, via an SVC, from a user program. (The SVC interface is ex
plained in Section v, Advanced Editing Facilities). In either case, the com
mand is analyzed, processed if a recognized editing command, passed to the
CMS SUBSET if not, and control is returned to the caller.

S CM
Console
Stack

Data
File

SOS

Data Data
File File

I

CMS input/output
translate tables .

f
Edit Level Virtual Screens ,

I/O Virtual Screen

Physical
Display

,I I'

, "The 'DISPLAY' EDITING SYSTEM for CMS runs as a command under CMS and is
invoked by'ent~ring the command:' .

,,,,i

EDGAR Fn Ft

,'. ,

<Fm> < Lrecl nn>
< Seq8 I NOSeq8 >
< Ctl xxxxxxxx I NOCtl>
<Update I NOUpdate>
< DEFault yyyyyyyy I NODEF>
<CLEAR I NOCLEAR>

(For an explanation of these operands and options refer to the ENTER com
mand in Section IV of this manual). Upon initialization, and prior to reading
the first edit level file, EDGAR reads a control file named 'EDGAR $PROFILE'
and, based on the information contained therein, establishes the overall
editing system environment. A standard version of this file is maintained on
the system disk. By changing the information in 'EDGAR $PROFILE' the user
can tailor the editing system to his needs.

'EDGAR $PROFILE' may be either a fixed or variable format file with a maxi
mum record length of 130 bytes. It may contain six (6) different types of
control statements. The first positional parameter in each control statement
indicates the record type. The valid control statement types are as follows:

FILE This is the default if no other valid control type is found as
the first parameter. FILE allows the user to specify default
settings, by filetype, for the operands of the ENTER (or
EDGAR) command. The defaults established by this control
statement may be overridden when the command, itself, is
entered.

<FILE> file type <fiIemode> < Lrecl nn>
< Default xxxxxxxx>
<Update> _
< Ctl nnnnnnnn>
<Seq8>
< Noclear>
<Synonym yyyyyyyy <m»

The presence of any of the keyword operands except
SYNONYM establishes the corresponding default for the
ENTER (or EDGAR) command with the matching file type .

System Overview . 5

*

PFxx

TABCHR

System Overview 6

, For,:exarriple, if ,the FILE statement read,
. :l :; " " , 'I.', \ 'f',',': ~ _' , . '

FILE ASSEMBLE (& LRECL80 DEFAULT ASMDEF U
~. '. o'..t ~ .' ; ,.. , , • ~

and the user entered
" '"

EDGAR TEST ASSEMBLE

the following statement would be generated

EDGAR TEST ASSEMBLE * LRECL 80 DEFAULT ASMDEF UPDATE

The presence of the SYNONYM keyword establishes a syno
nym filetype, yyyyyyy, by which a file may be called. In
addition, the filetype may be abbreviated to the minimum
number of characters indicated by 'm'. For example, if the
FILE statement read

FILE ASSEMBLE 0:: LRECL 80 SYN TEST 1

and the user entered

EDGAR SOME T

the following statement would be generated

EDGAR SOME ASSEMBLE (& LRECL 80

A file type of asterisk (*) not starting in position one (1) of
the statement establishes the default ENTER settings for all
filetypes for which there is no FILE control statement.

An asterisk in column one indicates a comment card and has
no effect on the editing system environment.

The PF control statement allows the user to establish the
meaning of the depression of a PF Key. The data which
appears on the rest of the PF control statement becomes
associated with the key and is placed, LIFO, in the CMS con
sole stack when the PF key is depressed during an editing
session. The data is then available to the sos facility and
may, as a result, cause a simulated screen operation or be
come part of the data file. (See Section v, Advanced Editing
Facilities for a discussion of SOS and its use of the CMS con
sole stack).

The T ABCHR control statement defines a logical tab charac
ter. When this character is encountered in the data as the
I/O virtual screen is being updated (see Section III, System
Flow), a tab operation is performed based on the current
"tab settings" as defined by the editing command TAB. Use
of the T ABCHR is functionally equivalent to use of the
"FIELD MARK" key. (See Section III, Keyboard Functions).

TABDEF "

CMDSYN

The TABDEF,controi statement defines the "tab fill" 'charac
ter string. This character string is inserted on the I/O virtual ,
screen from the point where the logical tab character was'

. 'depre'ssed to the start of the data at the next "tab stop" ~ For:-'
, example, if the T ABDEF and T ABCHR read: .

TABDEF'

TABCHR @

" and the data appearing on the screen reads as follows:

abc def ghi

with the 'A', the 'D' and the 'G' appearing in the "tab stop"
columns, and one entered:

x@klm@y

the result would be:

x kIm yhi

Setting the TABDEF to nothing means "don't fill" and will
leave existing data on the I/O virtual screen. (The function
of the IIDUP" key is useful when using logical tabs. See Sec
tion III, Keyboard Functions.)

The CMDSYN control statement allows the user to create
command synonyms. Through the use of this control state
ment, the user may provide a synonym for any EDGAR, CMS,
or CP command enterable from the EDGAR command line.
The synonym definition may include the re-ordering andlor
reformatting of command operands.

The CMDSYN control word identifies a synonym definition
statement describing the synonym name, minimum abbrevia
tion, and the order and format of its operands. This control
statement must be immediately followed by a synonym mod
el as shown below.

CMDSYN xxx xx < n > < & & / &. &~: >
ABC & 1 & 2 & 3

The synonym definition statement contains the name of the
synonym, xxxxx, the minimum abbreviation count, "n", and
a set of descriptive codes identifying the position and attri
butes of each of the possible operands. An' & ' signifies a
blank delimited operand. An' & I' signifies a string delimit
ed operand such as I abel. An' & .' indicates a dual string
delimited operand. This form is used when two operands
utilize a common string delimiter as in I abcl xyz/ such that
the embedded delimiter, 'I', can be reused for the second
operand. In this case, the format of the first string would be
signified by an '& .' and the format of the second by an

System Overview 7

System Overview 8

"~I Immediately following the synonym' definition 'statement is
the synonym model. This statement is a model of the com- '
mand which is to be generated from the command synonym.
The model statement includes all literal data to be generated.
The variable data (operands supplied in the source com
mand) are indicated by & 1, & 2, etc. In this case, , & l'
refers to the first operand encountered under control of the
synonym model. For example, if the synonym HEXC were
defined as follows:

CMDSYN HEXC 1 &. & I &:::
C IX' & l' IX' & 2' I & 3

and the following command was entered:

h Ild/efl * * ver

the command generated (and processed by the Editing
Command Processor) would be:

, C IX'ID' IX'EF' I ::: ::: VER

Note that the "string-delimited" operands (X' & l' and
X' & 2') include only the data within the delimiters; i.e., the
delimiters in the source command are removed prior to sub
stitution. Thus the user may provide alternate delimiters if
desired.

The synonym command table is always examined before
analysis of the command thereby permitting synonyms for
any EDGAR, CMS, or CP command enterable from the com
mand line.

A synonym definition cannot contain a logical command
separator. Since the synonym is processed by the Editing
Command Processor, facilities which are provided by the I/O
and Display Processors are not available to data generated
through use of the synonyms. For example, the resultant
command is not translated before processing nor can you
define a synonym to execute an SOS command.

After the processing of EDGAR $PROFILE, the file to be edited is read into
virtual storage and closed. The file is written from storage-to-disk when a
FILE or SAVE command is issued or via the AUTOSAVE facility (see Section
IV). The method used in each of these cases is to write the file to a utility file
('EDIT CMSUTl') on the specified disk. When the entire file has been success
fully written, the original file is erased and the utility file is 'RENAMED' to the
original file-id. Should any errors occur while writing the utility file, the
original is always maintained. Furthermore, any AUTOSA VE files for the
given level are not erased until the utility file has been successfully written
and renamed. If the file 'EDIT CMSUTl' exists, EDGAR cannot be initialized.
This reduces inadvertent deletion of important data. If this condition exists,
the user should verify the information in the utility file and 'ERASE' it if not
needed or 'RENAME' the file to the desired fileid if required.

1 FN

Figure 2 below describes the basic screen layout and 'names of the various
screen'fields.' The user should attempt to become familiar with these names
because they will be used throughout this manual and will be referenced in
error messages generated by EDGAR.

AL TERATION COUNTER

UPDATE OPTION'INDICATOR I
I J LRECL
I

, AUTOSAVE I FlLEID, AREA RECFM I D RECORD COUNTER , , J I I ,
I , I I I I I

I I
I I

I I I I

Xt Xt ~ -.!t -.!t Xt
FT FM - UPD 80 (1) ALT"'14 RECDS 21 LINE

LINE 2 ..:=> TYPE I & II COMMAND AREA

LINE I - - - -> /===/
LINE 1 *.==*
LINE 1 *=~=*

LINE 1 * *
LINE 7<- - - - - - -DATA DISPLAY AREA- - - - - - - - - - - - - - -> *===*
LINE

LINE

LINE 10

LINE 11

LINE 12

LINE 13

LINE 14

LINE 15

LINE 16

LINE 17

LINE 18

LINE 19

LINE 20

LINE 21

LINE 22

LINE 23

24

Figure 2. Basic screen layout and definition

===

=z::=
===
===
===
===

TYPE *===*
THREE *===*
CO~~H\ND *===*
AREAS *===*

===
===
===
===
===

- - - -> *EOF*

System Overview 9

,,'''- - J • ,', . ,r • .. t

TEST ASSEMBLE Al - F 80 (1) AlT=14 RECDS 21
== ..) UP 5

PROGRAM START 0 BEGIN CONTROL SECTION /== .. /
USING PROGRAM,RI5 *===*

STM RI4,R12,ZERO(R13) *===*

LA R13,OURSAVE *=:=*

XR R2,R2 *===*

XR R6,R6 *===*

R3,=F'lO' *===*

0 R2,=F'5' *===*
M R2,=F'IO' *===*
LR R15,R2
ST R15,Rl*FOUR(R13) *===*

L R5,=F'lOO' *===*
XR R4,R4 *===*
0 R4,=F'30' *===*

STM R4,R5,R2*FOUR(R13) *===*

XC R6*FOUR(FOUR,R13) ,R6*FOUR *== .. *
lM R14,R12,ZERO(R13) *===*

SlR R15,R15 *===*

BR RI4 *===*

OURSAVE OS 90 *== .. *
END

* * * END-OF-FIlE * * *

Figure 3. Sample screen with one logical display

System Overview 10

The basic screen contains a system information area on line 1. Lines 2 .
through 24 are used for a series of one or more "logical displays". The
number of "logical displays" and format of each is established by the user via
the Type I command FORMAT (see FORMAT command in Section IV). Each
logical display contains a command line and several data-display areas.
Optionally, each data-display area may be accompanied by a Type III com
mand area pertaining only to the individual data-display area.

Figure 3 illustrates the simplest screen format. At the top of the 3270 screen
(Fig. 3, Line 1) is a system-required area containing the file-identifiers and
file status information. In this example, the "fileid" is ItTEST ASSEMBLE AI".

The file-id may be modified by the user at any time during the editing session.
The editor will verify any new fileid entered. If any errors are encountered in

the new fiI~id, the, fileid, will not be changed, 'the old fileid will be re-displayed
and the'3270 audible alarm'will sound (no error message will be produced).

, Whfm a FI~E. or SAVE request is issu~d, the fileid at that point becomes the
, name of the file written to disk (unless over-ridden by the FILE or SAVE .

command). The specified fileid must'contain all three identifiers; that is,
filename, filetype, and filemode. Each of these must conform to the specifi
cations required by eMS for standard file identifiers. Furthermore, the
filename, filetype, and first character of the filemode (disk identification
letter) must not match that of any existing edit level.

The file status area, which makes up the rest of line one (1), cannot be
modified and contains pertinent information relative to the current edit level.
Following the RECFM and LRECL indicators within the status area is the
"AUTOSAVE-ID" field (in parentheses); the next field is the current file
alteration count. In Figure 3, the" AUTOSA VE-ID" is 1 and the file alteration
count is 14. Further information on these fields can be found in Section IV,

under the discussion of the SET command. The last field in the file status area
is the current record count. This count is always updated to reflect the
number of items currently in the working copy of the file.

Line 2 in figure 3 is the start of the first "logical display". Each logical
display begins with a pointer (= = = >). This pointer identifies the start of the
Type I & II command area (known as the 'command line') for that "logical
display". Immediately following the command line is the first data-display
area (Figure 3, Line 3). Each data-display area is used to display one (1)
item of the file. Using the Type I command, FORMAT, the user may specify
the number of data-display areas for each logical display as well as the num
ber of physical screen lines to be allocated for-each data-display area. There
must be at least one data-display area for each "logical display". In F~gure 3,
only one physical screen line has been allotted to each data-display; thus, the
user may view one file item on each successive line of the screen.

The screen format of Figure 3 is the "default" arrangement (that which
requires no user action).

System Overview 11

'.'
~EST ASSEMBLE Al - f 80 (1) ALT=14 REeDS 21

===} UP 5
PROGRAM START

USING
STM
LA
XR
XR
l
0

.. ==) FORWARD
LR
ST
l
XR
0

STM
XC
LM
SlR
BR

OURSAVE OS
END

o BEGIN CONTROL SECTION
PROGRA"'.RlS
RI4.R12.ZERO(RI3)
RI3,OURSAVE
R2.R2
R6.R6
R3.=F'10'
R2.=F'S'

RlS.R2
RlS.Rl*FOUR(RI3)
RS.= F' 100'
R4.R4
R4.=F'30'
R4.RS.R2*FOUR(RI3)
R6*FOUR(FOUR.R13) .R6*FOUR
R14,RI2,ZERO(R13)
RlS.RI5
R14
90

/===/
===
===
===
===
===

===
===

/===/
===
===
===
===
===
===
===
===

===
===
===

* * * END-OF-FILE * * * *EOF*

Figure 4. Sample screen with two logical displays

System Overview

By permitting the user to format a screen into multiple logical displays,
EDGAR allows the user to view and edit mUltiple portions of a given file. on
one screen simultaneously.

Figure 4 shows a sample screen layout with two "logical displays". Note the
second command line (Fig. 4, Line 11). Any Type I or II command may be
entered on either command line. Line 12 in Fig. 4 is the first data-display
area for the second logical display. This line is the "current line" for the
second logical display as indicated by the' /' at the start of the Type III
command area for this line.

The screen format of Figure 4 would result from the command:
FORMAT 1-8 1-13 (see command discussion in Section IV).

12

TEST ASSEMBLE Al - F 80 (1) ALT=14 RECDS 20
au> UP 5

PROGRAM ST~RT 0 BEGIN CONTROL SECTION /===/
USING PROGRAM,R15 *===*

STM R14,R12,ZERO(R13) *===*
LA RI3,OURSAVE *===*
XR R2,R2 *===*
XR R6,R6 *===*

R3,=F'lO' *===*
D R2,=F'5' *===* ---:::'0::-.

LR R15,R2 *===*
ST R15,Rl*FOUR(R13) *===*

OTHR ASSEMBLE Al - F 80 (2) ALT=21 RECDS 43
=== > BOTTOM

DEMO START 0 /===/
USING DEMO,R15 *===*
STM R14,RI2,ZERO(RI3) *===*

LA RI3,OURSAVE *===*
XR R2,R2 *===*
XR R6,R6 *===*

R3,=F'IO' *===*
D R2,=F'5' *===*
LR R15,R2 *===*
ST RI5,Rl*FOUR(R13) *===*

Figure S. Sample screen with two logical screens.

A second form of screen subdivision permits the user to format a screen into
multiple logical screens by use of the SCREEN command (see Section IV).

Figure 5 shows a sample screen layout with two logical screens. Note the
second file status area (Fig. 5, Line 13). The significant feature of this
arrangement is that two or more different files can be edited and viewed at
the same time. When two or more logical screens are defined, EDGAR uses
them when possible in response to the ENTER command.

The screen format of Figure 5 would result from the command:
SCREEN 12 12

System Overview 13

TEST ASSEMBLE Al - F 80 (1) ALT=14 RECDS 20
===)-{JP 5' --"

PROGRAM START 0 BEGIN CONTROL SECTION
/===/

USING PROGRAM.RlS
===

STM R14.R12.ZERO(R13)
===

LA R13.0URSAVE
===

XR R2.R2
==:;

R3.=F'lO'
===

R2.=F'S'
===

M R2.=F'lO'
===

LR RlS.R2
===

ST RlS.Rl*FOUR(R13)
===

. RS.=F'lOO'
===

Figure 6. Sample screen layout with multiple-line data display area

System Overview 14

Sometimes one physical item is wider than the screen line. One approach to
this problem is to use the Type II commands, LEFT, and RIGHT to allow
viewing of the appropriate portions of the data item. As an alternative, a
display may be formatted in which two or more successive screen lines are
allotted to each data-display area. By "formatting" the screen in this manner,
and defining the "viewed" data columns to be wider than one screen line,
data-wraparound (from one screen line to the next) can be effected.

The screen format of Figure 6 would result from the command:
FORMAT 2-11

Screen Order of Processing

The last eight positions of each data-display area contain the Type III com
mand line for that data-display. Type III commands are used to .perform
~'edit-in-place" functions for each individual data-display (see Type III Edit..: .
ing Commands in Section IV).

Optionally, the user may specify (using the FORMAT command) that the given
logical display is not to contain Type III command areas, permitting full
screen-width viewing. However, users should avoid, whenever possible,
eliminating the Type III areas since these are used as physical line separation
fields on the 3270. Elimination of these fields will cause substantially in
creased communication overhead (especially on remote devices) and seriously
complicate cursor movement and positioning.

Each data-display area normally contains the "viewed" columns of one
data-item in the file (see the VIEW command in Section IV). However:· a line
may also contain the "TOP-OF-FILE" or "END-OF-FILE" indicators (example on
line 24 in figure 3). These lines do not become part of the file on disk and
any changes to these lines or their corresponding Type III areas are ignored.

The order of processing for the screen is of prime importance because it
determines the net effect of entering multiple commands and various changes
to the display. First the "FILEID" area of the screen is examined for change.
Then each logical display is processed, in order, from the top of the screen to
the bottom. The processing of each logical display consists of: 1) scanning
each data-display area and recording any modifications made, therein; 2)
processing the Type III command for the given data-display area (if Type III
commands exist) immediately after recording any changes to that display; 3)
processing the Type I & II command area; and 4) performing any "post
processing" (see Section IV) necessitated by Type I commands.

When all display processing is complete, the "alteration count" is inspected to
see whether an "AUTOSAVE" is necessary (if that option is in effect). If
required, the file is checkpointed before the "set-up" of the new display
begins. When all of the above processing has been completed, a new display
is constructed and the logical screen is returned to the I/O Processor.

System Overview 15

::~ Keyboard Fu,nctions ."

System Overview

This section describes the fu~cti~ns of the 3270 keyboard which are unique to
, DISPLAY EDITING SYSTEM for C>MS. Users should also acquaint themselves '
with the 'OPERATOR'S GUIDE for IBM 3270 INFORMATION DISPLAY SYSTEM'

16

(GA27-2742). " .' ". , .

.PAl

.PA2

.PA3

Depression of this key will cause 'cp' mode to be entered and
a "CP READ" status will be displayed. While in this environ
ment, any 'CP' commands may be issued. To return to
EDGAR from the 'CP' environment, issue the 'CP' command,
"BEGIN".

Depression of PA 2 will cause the CMS SUBSET environment
to be entered and a "RUNNING" status to be displayed.
While in the CMS SUBSET environment, any CMS commands
which run in the transient area may be issued. For example:

ACCESS
CP
DISK
ERASE
EXEC

LlSTFILE
PRINT
PUNCH
QUERY
READCARD

RENAME
RETURN
SET
STATE
TYPE

To return to EDGAR from the CMS SUBSET environment,
issue the CMS SUBSET command, "RETURN".

Depression of the PA 3 key (available only on "data-entry"
type keyboards) is considered invalid by EDGAR and will
cause the "input inhibited" indicator to appear, the keyboard
to "lock," and the audible alarm to sound (if this feature is
installed).

NOTE: Depression of any PA key does not cause transmission of data to the
computer. Hence, alterations made to the screen before depressing a PA key
and after depressing ENTER or a Program Function key, will be lost.

• FIELD MARK Depression of this key inserts a logical tab character into the
data stream. This is functionally equivalent to entering the
character defined by the T ABCHR control statement. (See
Section III, System Overview, Initialization and Termina
tion). Logical tabs are useful as a means of shifting data to a
specified data column without causing an I/O interrupt for
each "tab" operation. When using logical tabs the data on
the screen is not rewritten and will not appear to be shifted
until an "ENTER" key is depressed. At that time, the data
file is updated, the I/O virtual screen is rebuilt and, when it i!
displayed will reflect the changes to the data.

• DUP The DUP key is useful in conjuction with a logical tab opera
tion. It indicates that the rest of the data read as part of this
screen field is to be ignored. When used in conjuction with
the overlay facility of logical tab it allows the user to indicatt:
the end of the new "typed-in" data. For example if the data
appears as

.ENTER

.CLEAR

ABC DEF GHI

and the user overlays that with

;bc*DEF GHI

where ';' is a FIELD MARK, '*' is a DUPl the upper case is
residual data and the lower case that which the user types in;
the result will be

ABC BCF GHI

This example assumes T ABDEF is set to a "null string" and
that the' A', the '0', and the 'G' are in the "tab stop" col
umns.

Depressing the ENTER key indicates that the I/O virtual
screen is to be passed to the Display Processor (see Section
III, System Overview, System Flow). It is not until the
ENTER key has been depressed, either at the physical display
device itself or simulated via SOS, that the screen is analyzed
and any resultant action taken.

When depressed on the physical display device once, the
CLEAR key causes the physical screen to be rebuilt as it
appeared the last time an interrupt causing key (PF keys or
ENTER key) was depressed. In all other cases, the CLEAR

key causes the I/O virtual screen to be rebuilt as it appeared
after the ENTER key was last depressed, and the CMS console
stack to be purged.

System Overview 17

IV. Editing Functions

Type I Commands

CANCEL

Type I Commands

EDGAR commands· are ·divided into three (3) categories. Type I and II com
mands may either be entered on 'the Type I & -'n Command Area of the
screen (Fig. 2, Line 2), or passed to the Editing Command Processor via the
SVC interface. Type III commands generally pertain to individual Data
Display Areas and may be entered only in the Type III Command Areas.

Type I commands differ from Type II commands in that they require "edit
level post-processing." this means that the immediate effect of a command is
to flag the requested action for execution at the appropriate time. Edit level
post-processing actually occurs after all logical displays on the screen have
been processed and all data has been analyzed. Post-processing involves edit
level disposition, edit level storage, and edit level re-formatting.

The Type I & II command line entry may be preceded by the character" & "
causing EDGAR to leave the associated command(s) on the screen if no errors
are encountered during processing. This reduces the need for re-entering
commands which are used repeatedly. For example, if " & F" is entered on
the command line, the FORWARD co.mmand will remain on the screen, allow
ing the user to "scroll" through the file without re-entering the FORWARD

command.

Multiple commands (both Type I and II) may be entered on the command line
if they are separated by a X'OI '. The commandS' will be processed, in order,
from left to right, with the exception of any post-processing activity, which
will occur only once, when all other command processing is complete.

Type I and II commands which are not recognized by the Editing Command
Processor are passed to the CMS subset.

Messages generated during edit level post processing, such as errors in writing
to disk or errors in re-formatting are not issued on the command line. In
stead, these messages are produced on the standard VM or CMS screen,format
(with the command line and the "RUNNING" status at the bottom). After
displaying these messages, the screen will enter "MORE" status at which point
the user may depress PA 2 or CLEAR to return to EDGAR. If post-processing
errors occur, the necessary action must be taken (including re-issuing of
commands) to renew the post-processing request.

The Type I commands and their formats are described below. A Type I
command is entered on the Type I & II Command Area of the screen (Fig. 2,
Line 2). Each command described below is shown with its shortest form.
Optional arguments are enclosed in brackets «» and the "OR" symbol (I)
is used to designate operands of which one and only one must be selected
from the list.

CANCEL

This command causes immediate termination of the editor. It is functionally
equivalent to entering QUIT for each active edit level. (For information on
edit levels, see the TYPE I command, ENTER).

18

'ENTER E'<:Fn <ft <fm> > > ' < Lreel nn>
< Seq8 I NOSeq8 >
< Ctl xxxxxxxx I NOCtl>
<Update I NOUpdate>
< DEFault yyyyyyyy I NODEF>
<CLEAR I NOCLEAR>

The ENTER command provides the capability to edit on several different "edit
levels". Each edit level pertains to a different file and each is edited inde
pendently. If .the ENTER command is issued with no arguments, another level
is entered. If no other level exists, no apparent change occurs.

Optionally, a filename, filetype, and filemode may be specified in the ENTER

command. If the filename and/or file type is specified as "*", the correspond
ing attribute of the current fileid will be substituted. (Note: the useof "*"
for the filename or file type is not permitted when entering the first level, i.e.
from the eMS command level). The file mode must be specified as a one- or
two-character file mode or "*". If only the disk letter is specified, the mode
number defaults to "1". When a fileid is specified in this manner, the ENTER

command causes EDGAR to search all existing edit levels for a file name, type
and mode matching tha~ requested. If the mode is specified as "*", EDGAR
will scan for matching filename and filetype, only.

If no existing edit level can be found with a fileid matching that requested, a
new edit level is created using the requested fileid. In this case, the requested
disk is searched for a file with the same filename and file type as that speci
fied. If the filemode is specified as "*", the standard order of disk search (A,
B, C, D, E, F, G, S, Y, Z) is used to locate the file. Once found, the file is
read from disk and editing initialized on the new level.

If no previous edit level exists with the specified filename and type, and no
file can be found on disk with a matching fileid, EDGAR assumes that a new
file is to be created. If the mode was specified as "*", the new level will be
created with a default mode of AI.

The remaining parameters on the ENTER command are used only when
creating a new edit level. These parameters will be ignored if an existing edit
level is found with a matching fileid. Each option permits specification of file
characteristics for the level being created. Only those characteristics which
cannot be altered after the level has been initialized are used in the ENTER
command.

LRECL - this option sets the maximum logical record length for the newly
created edit level. As with other options, LRECL may be speci
fied explicitly on the command, or implicitly through the
EDGAR $PROFILE. If this option is not specified and the file
exists on disk, the maximum logical record length in the existing
file is used. If the option is specified and the file exists on disk,
the maximum record length for the newly-created edit level will
be equal to the specified length or the maximum record length
in the file, whichever is greater. If the file does not exist, the
specified LRECL is used. If none has been specified, LRECL will
default to 80.

Type I Commands 19

Type I Commands

,'DEFAuLj .'",~":The DEFAULT option specifies the'name·of the EXEC,'
yyyYfyyy;' that'. is' to' be c~lled whe'n: this edit level is initialized.
The EXEC is passed, the following parameters:
) I, : t • / "; " .. I, I ,~'," ,I, ~ ,. 11 ,

CLEAR

& 1 - filena~e"',
',& 2 - filetype ;'

& 3 - fHemode
& 4 - OLD or NEW
& 5 - UPDATE (exists for UPDATE FILES ONLY)

It is in this "pre-processing" EXEC that the user has the oppor
tunity to tailor the editing environment to his needs. The
DEFAULT option has a corresponding no-op option, NODEF,
which may be used to override the ENTER default parameters as
specified in EDGAR $PROFILE.

- The CLEAR option will cause the CP formatted screen to be
"cleared" with no intervention required by the user. This op
tion is permitted only when the first edit level is being initial
ized. If unspecified, CLEAR is assumed. The CLEAR option has
a corresponding no-op option, NOCLEAR, which may be used to
override the ENTER default parameters as specified in EDGAR
$PROFILE.

CTL, UPDATE and SEQ8 - these options are used when an "update" file is
to be created as a result of changes made during editing. Each
has a corresponding no-op operand, NOCTL, NOUPDATE and
NOSEQ8, for use in overriding EDGAR $PROFILE defaults.

The UPDATE facility of EDGAR is intended primarily for programming appli
cations where "update" streams are frequently generated. This facility allows
the user to request that changes made to a program source file while editing
be written to disk in the form of a CMS UPDATE file. Thus, the source file
remains unaltered and the update file may be applied to the source using the
CMS UPDATE command to re-create the source as it appeared after editing.
Furthermore, when editing of the source file is initiated using this facility; the
existing update file is automatically applied to the source during initialization.
Thus, the updated version of the source becomes available for editing and
changes made during this editing process are "merged" with the initial up
dates. The resultant update file replaces the original update file.

To request the automatic update inclusion and generation, the UPDATE option
of the ENTER command must be specified. This option is ignored if the file
requested has been previously "entered" (using multiple editing levels).
When the ENTER command with the UPDATE option is issued, the requested
source file is initialized for editing. The source file must exist on disk and
must contain fixed-length, 80-character records; otherwise, an error message
is generated and ENTER will not be performed. When the source file is read,
all source records are checked for valid sequencing in columns 76-80. If the
'SEQ8' option was also specified in the ENTER command, columns 73-80 are
checked for valid sequencing. Once the source file has been initialized, the
update file is applied to the source. The file name of the update file must be I

the same as that of the source and the file type must be "UPDATE". The
update file must exist on disk and must follow the rules required for a CMS
update file (see CMS "UPDATE" command in VM/370 CMS Command and

20

Macro Refer'ence', GC20-1818). If the update file does not conform to these
requirements, an error message will be generated and ENTER will not be
perfo~ed~ ..

, Once the requested editing level has been successfully initiated, editing may
proceed in the normal fashion. There are no restrictions on editing commands
used. Data placed in the sequencing columns (73-80) will be lost when the
update file is created as sequence numbers are automatically generated by
EDGAR. EDGAR will maintain a record of changes made in dynamic fashion
and indicate collection of "change" data by placing the characters 'UPD' at the
start of the file, status field (Figure 2, Line O. In addition, the fileid area will
reflect the name of the update file - not the original source.

When the UPDATE option is in effect for a given editing level and a "FILE" or
"SAVEll (Type I) command is issued, the update file only is written to disk.
The source file, therefore, remains unaltered. The fileid of the update file will
be determined in the standard fashion for a "FILE" or "SAVE" command.

The update stream generated by EDGAR will attempt to maximize the use of
the './ R ' update function. Thus if "inserted" records are found to be
adjacent to "altered" or "deleted" records in the file (or vice versa), a single
'./ R ' card will be generated followed by the necessary input cards. All data
cards written to the update file are sequenced by EDGAR regardless of the
current setting of the SERIAL command. "Altered" cards are given the same
sequence numbers as the source records they replace. "Inserted" cards are
sequenced with the highest increment divisible by ten which will not introduce
sequence errors in the resultant file. For example, if nine records are inserted
into a file between items XXXOOOIO and XXX00020 they will be sequenced
XXXOOOll through XXXOOOI9. If more records are inserted than will fit in the
increment, the following records in the file are automatically "replaced" to
provide extra sequence numbers. To illustrate this using the above example,
ten records inserted between the items indicated above, would be sequenced
as XXXOOOIO through XXX00020 and the original item XXX00020 would be
"replaced" as item XXX00021.

EDGAR, also supports the multi-level update facility of CMS/370. A multi
level update is controlled through the use of an update "CNTRL" file. The
structure of this file and the associated auxiliary files is described in some
detail in "IBM Virtual Machine Facility/370: CMS Command and Macro
Reference" (GC20-1818) under the discussion of the CMS "UPDATE" com
mand. Users considering this facility for program development and mainte
nance should evaluate its features based on this discussion. All features of the
'CNTRL', 'AUX', and 'PTF' files described for the "UPDATE" command are
supported by EDGAR.

The multi-level update function of EDGAR is invoked by specifying the "CTL"
option followed by the filename of the desired control file on the "ENTER"
command. Use of this option implies the "UPDATE" option. As with
"UPDATE" and "SEQ8", the "CTL" option is ignored if the edit level being
entered already exists.

When initiating an edit level with the "CTL" option, the following steps are
performed by EDGAR:

1. The source file is located and read.

Type I Commands 21

FILE

FORMAT

Type I Commands

2." The'muiti-leveL;'CNTRL"·file is r~~d and each '~ecord is validated for
, , "~' i ~yntax.: For e~ch update level to be 'applied, the update file is read and

applied to the original source as described in the previous discussion of the
, t!PD'ATE 'facility." . .

) ,', ,.,., , : ,.. ~
3. As each update level is applied, all previous update levels are "forgotten";

that is, they become an integral part of the working copy of the file and
their original identity lost. The edit level then assumes the filetype of the
newly applied update file. Thus, the "last" update level fileid implied by
the CTL (and AUX) file structure becomes the fileid of the edit level being
initiated. If no file with this identifier was found, the edit level is assumed
to be creating a new update file and an appropriate message will be
generated. Note that another edit level of the same name must not al
ready exist.

The normal process, therefore, for developing a "new" update level to a base
source file would be to:

1. Edit the source with the "CTL" option applying any existing update levels.

2. Make the changes which will constitute the "new" update level and
"FILE".

FILE <Fn <Ft <Fm»>

The FILE command causes the file at the current edit level to be re-written to
disk and the current level to be released. Optionally, an alternate file-id may
be specified in the FILE command to override the "current" file identifiers.
An "*" in place of any of the three identifiers specifies that the corresponding
identifier in the "current" file is to be used. After the file has been success
fully written to disk, any" checkpoint" files (see the' AUTOS A VE' option of
the 'SET' command in Section IV, TYPE II commands) having the "current"
'AUTO-ID' are erased (on any disk) and an exit is taken from the current to
the "next" level. If no other level exists, the editor terminates normally, and
control is returned to CMS.

FORM <*>x-y x-y x <-y>

The FORMAT command allows the user to set-up the logical display(s) for the
current file edit level. Each pair of numbers separated by a hyphen (-),
provides the format specifications for one logical display. Each logical display
consists of a command line, and a series of one or more" data-display" areas.
Each "data-display" area may be used to display one "item" from the file.
As many "screen" lines as are required may be specified for each "data
display" area, thereby allowing "data-wraparound" from one line to the next.
The number 'x' in each pair of "format" specifications designates the number
of screen lines to be allotted for each "data-display" area in the correspond
ing logical display. The number 'y' in,each pair of "format" specifications
designates the number of "data-display" areas for the display (and thus the
maximum number of file items which may be displayed at once within the
logical display). For example:

FORMAT 1-22

22

requests the construction of one logical·display containing (22) "data-"
display" areas (allowing simultaneous viewing of up to 22 items within the
file) and the allotment of one (1) screen line for each file item." (This is the
default screen format). Figure 3 shows this format.

FORMAT 1-8 1-13

will create two logical displays each of which will allot one screen line for
each data-display area. The first logical display will contain eight (8) data
display areas and the second will contain thirteen (13). Figure 4 illustrates
this format. "

FORMAT 2-11

will construct a screen as shown in Figure 6 in which two screen lines have ,
been allocated for each of eleven (11) data-display areas. Note that"ihe Type
III command line for each data-display area is located at the end of the entire
data-display area (end of the second screen line). In each data-display area,
"displayed data" may wrap-around from the first screen line to the second.

Optionally, the number of "data-display" areas may be left-out of the last
logical display specification indicating that as many consecutive "data
display" areas, as the screen size will permit, are to be created. Thus, for the
first example above, 'FORM l' would indicate that one logical display is to be
built, containing as many "data-display" areas each occupying one (1) screen
line as the screen size will permit. Similarly, 'FORM 1-7 l' will create two (2)
logical displays; the first will contain seven (7) "data-display" areas, each
occupying one (1) screen line, and the second will contain as many" data
display" areas, each occupying one (1) screen line, as the screen size will
permit (fourteen in this example). Correspondingly, 'FORMAT 2' will con
struct a display as illustrated in Figure 5.

Placing an asterisk ("*") immediately preceding (no intervening blanks) any
logical display specification pair indicates that the corresponding logical
display is not to contain Type III command areas. Because of the nature of
3270 display "fields", this mode of operation can effect a significant degrada
tion in data transmission time (especially for remote 3270 systems). Further
more, the "Local Alteration" features of the 3277 lose significance. There
fore, operation without Type III command areas should be limited to cases
where viewing a full display width is an absolute requirement and the screen is
being used for display only (no data editing is to occur).

If the 'FORMAT' command is issued with no arguments, the current format
settings will be displayed on the command line.

Type I Commands 23

SAVE

SCREEN

Type I Commands

9,u(r_ .. ,
, \ '

1his, c~mma.nd may' b~ used t~ caus~ an ,exit from any given editing level
without re-writing the file to disk. When the QUIT command is entered, all
storage for the given level is released, and any autosave files for this level (on
any READ/WRITE disk) are erased. '

SAVE <Fn <Ft <Fm»>

The SAVE command causes the file at the current edit level to be written to
disk without releasing the level. After issuing the 'SA VE command, the user
may continue editing the current file. This command is the same as FILE
except that no new level is entered after command completion (see FILE
command for a description of the valid arguments).

SCR <nl> <n2>

The SCREEN command is used to define logical screens by depth. The default
setting is "24". If the SCREEN command is entered with no parameters, the
current setting will be displayed. The operands to the SCREEN command each
represent one logical screen and indicate the number of screen lines of an edit
level virtual screen which can be displayed in the corresponding logical
screen. The first line displayed in each logical screen is always line one of an
edit level virtual screen. When an edit level is ENTERed, it automatically
becomes eligible for the "next available" logical screen (if any). Figure 5
illustrates a display with two logical screens.

24

Type II Commands

ADD

BACKWARD

BOTTOM

CASE

, Most Type II' cOmlnarids pertain to the "current line". The "current line" is
normally the displayed line immediately following the command line. In any
case, the "current line" may be identified (if Type III command areas exist on
the screen) by a "/" at th'e start of the corresponding Type III area instead of
the normal "*". A display normally consists of the "current line" followed by
as many succeeding items as possible within the dimensions of the current
logical display. Movement or "scrolling" through the file, therefore, is the
adjustment of ~he "current line".

The Type II commands, their shortest forms, and valid arguments are listed
below:

A <n>

The ADD command is used to add blank lines to the file immediately follow
ing the "current" line. These blank lines may be used for new data whenever
desired. "n" may be specified to indicate the number of lines to be "added".
If "n" is omitted, one blank line is added. In some files, particularly those
destined for certain compilers, blank lines cannot be allowed to remain in the
file when re-written to disk. To eliminate the need to delete blank lines
before a FILE or SAVE request, use the Type II function: "SET DB LANK ON".

This will cause wholly blank lines to be eliminated from the file written to
disk. These lines, however, will remain embedded within the in-storage
(working copy) of the file to allow use of the ~'added" lines later in the editing
session.

B <n>

To allow "backward" scrolling through the file, the BACKWARD command
may be used to move the "current" line back (toward the top of the file) "n"
pages. A "page" is defined as the depth (number of items) last displayed on
the I/O virtual screen. In the example in figure 2 the depth is 22. Thus, the
BACKWARD command will cause the "current line" to be moved "back"
(toward the top of the file) 22 lines.

BOT

BOTTOM sets the current line to the last line in the file. If there are no lines in
the file, the current line becomes "EOF".

CAS < M I U>

CASE is used to display or alter the upper case/lower case translation setting.
"CASE V" specifies that all characters entered in the corresponding logical
display are to be translated to upper case automatically. IICASE M" indicates
that no translation is to be performed. If no parameters are specified on the
CASE command, the current setting is displayed on the Type II command line.

Type II Commands 25

CHANGE

Type II Commands

C /string l/string 2/ < n I .XXX I * < n I * <VER> > > _ '

,The CHANGE command is used to "change" a character string to another
. 'string withln defined limits and within defined c·olumns. As indicated in the
example above, the standard string delimiting character is the "/". However,
'any character may be used as the string delimiter so long as it is unique (does
not appear within either "string 1" or "string 2"). The "string" specifications
are followed by the vertical and horizontal change counts. These may be used
to specify the number of times the change is to be be repeated vertically and
horizontally. The CHANGE command operates only within the previously
specified "ZONE" settings. '(See the Type II command: ZONE, in this section).
Thus, if the "start" zone is currently set to 10 and the "end" zone is set to 50,
only columns 10 through 50 will be scanned for" string 1". If" string 1" is
located within these columns, "string 2" will be substituted for it and data
which previously followed "string 1" will be moved after "string 2". If this
movement causes any non-blank data to be shifted past the "end" zone, data
truncation will occur at the "end" zone column.

The vertical and horizontal "change" counts may be used to indicate the
number of successive lines to be scanned for" string 1" and the maximum
number of occurrences per line to be changed, respectively. The vertical
change count may be specified as: "n" where "n" is a positive decimal integer
not greater than the total number of items in the file; ".xxx" to indicate a
"named" line to be the last line scanned for the "change"; "*" indicating that
every line through end-of-file is to be scanned for the change. The "VER"

option causes a display of only those lines on which a change has occurred.
The CHANGE command does not cause the "current line" to be moved unless
the VER option is used. In this case, the "current" line at the completion of
the command is set to the first line immediately following the last line on
which a change occurred, or to "EOF" if the command ended at "EOF". The
first line to be scanned for the change is always the" current" line.

The horizontal change count may be specified as: "n" where "n" is a positive,
decimal integer indicating the maximum number of occurrences of "string I"
per line, to be changed; or "*" to indicate that all occurrences (within the
specified zones) are to be changed. If either the vertical or horizontal change
count is not specified, a default value of "one" is used.

NOTES:

1. If vertical and horizontal change counts are not specified, it is not neces
sary to include the final delimiter character.

2. If "string 1" is "null" (Le., two successive delimiters found with no
intervening data) "string 2" will be inserted starting at the "start" zone
column.

3. If "string 2" is "null" (or missing), "string I" will simply be deleted.

4. By using the "command-hold" (&) capability (see Section IV - Type I
Commands) with the CHANGE command and using the VER option, the
user may view each successive change made (in a "global change").
Thus, if the user wishes to abort the "global" change, he may do so
having changed only as many lines as the current "logical display" depth
setting.

26

CMS

COpy

CP

DELETE

CMS

The CMS command will call the CMS SUBSET and will pass to it th"e rest of the
com~and data, if any.,. " '".

COpy n I .XXX I TOF I / < n I .XXX I / < n I .XXX I / > >

The COpy command is used to "copy" data from one portion of a file to
another portion of the same file. The command requires at least one and no
more than three, parameters. The three parameters are the liT ARGET", the
"LOWER LIMIT", and the "UPPER LIMIT", respectively. The "target" item is
the one after which the new data is to be copied. The target may be specified
as: "n" - a positive decimal integer (not greater than the total number of
records in the file) indicating the line number after which data is to be copied;
".xxx" where ".xxX" is a previously defined "named" line; "TOF" indicating
that the target is the top of the file (prior to item number one); or "/" indi
cating that the "current line" is to be the target. The "target" must be
specified. The second parameter (if included) is the "lower limit" which is
the first item to be copied. The "LOWER LIMIT" may be specified as: "n" - a
positive decimal integer indicating the line number to be the lower limit;
".XXX" indicating that the lower limit is the previously defined "named" line,
".XXX"; or "/" which signifies that the "current line" is to be the lower limit.
If no second parameter is specified, the lower limit will be "/" (the "current
line"). The third and final parameter for COpy is the" upper limit". This will
be the last line to be "copied". The upper limit may be specified as: "n" - a
positive, decimal integer (not greater than the total number of records in the
file) signifying the line number to be the upper limit; ".XXX" where ".XXX" is
the previously defined" named" line to be the upper limit; or "I" indicating
that the current line is to be the upper limit. Tile upper limit and lower limit
may refer to the same item in the file in which case only that one item is
copied. If the upper limit is not specified, it defaults to "I" (the current line).
The "UPPER" limit must be equal to or follow the "LOWER" limit within the
file. The "TARGET" item may not be between the "UPPER" and "LOWER"
iimits of the "range" nor equal to either the "UPPER" or "LOWER" limit.

NOTE: The COpy function may be used to duplicate several successive line
items. However, since the target and the upper limit cannot be the
same, the target should specify the item immediately prior to the
lower limit; in effect, COpy the data prior to rather than after itself.

CP

The CP command will call CP and pass to it the rest of the command data, if
any.

DEL < n I . XXX I * >

The DELETE command is used to delete items from the file. If no arguments
are specified, only the current line is deleted. Valid arguments are: "n" where
"n" is any positive decimal integer (not greater than the total number of items
in the file) indicating the number of consecutive items to be deleted; ".XXX"
where ".XXX" is a previously defined "named" line to be the last deleted line
(this line must lie between the "current line" and "EOF"); or "*" indicating
that all lines between the current line and "EOF" are to be deleted. Note
that deletions always terminate if "EOF" is encountered.

Type II Commands 27

",DOWN

DSPC

DSPF

DUP

FIND

FORWARD

Type II Commands

o <n>':'

DOWN ~au~es 'the display to appear to ~ove "down" "n" lines by moving the
"current line" 'toward the top of the file by lin" lines. If "n" is not specified it
\-vill default to one.: If specified, "n" must be'a positive decimal integer not' '
greater than the current total items in the file. Thus, "DOWN 2" causes the '
"current line" to move 2 lines toward the top of the file.

DSPC

The DSPC command causes a display on the command line in the form * LL

CC of the current cursor position. (LL = Line Number, Cc = ,Column Num
ber). Having entered the DSPC command on the command line the user must
move the cursor to the position of interest before depressing the "ENTER"
key.

DSPF

The DSPF command causes a display of the current settings of the Program
Function Keys. To return from this display the user must depress PA2.

DUP <n>

nup causes the current line to be duplicated (in-line) "n". times where "n" is
any positive, decimal integer. If "n" is not specified, it will default to one.
Note that the current line, itself, is not included in "n". Thus "DUP 3" would
cause the current line to be duplicated three times yielding a total of four
duplicate lines (including the "current line"). Following a DUP command the
cursor is positioned at the first new line.

FI string

The FIND command causes a search for the specified string starting only at
the beginning of the current zone. (See ZONE command in this section).

F <n>

To allow scrolling through the file, the FORWARD command may be used to
move the "current" line forward (toward the end of the file) "n" pages. A
"page" is defined as the number of items last displayed on the I/O virtual
screen. In the example in figure 2 the depth is 22. The FORWARD command
in that case would cause the "current line" to be moved "forward" (toward
the end of the file) 22 lines.

28

GETFILE

INPUT

GET < Fn 1.* < Ft I (I < Fm I>:: < n1 < n2 I>:: <APPEND»»»

. GETFILE is used to imbed one eMS file or a portion thereof within another.
The file name and type may be speCified explicitly or with an "*" indicating
that the corresponding identification in the current level fileid is to be used.
The file mode may be specified explicitly or as "*" (the default) indicating
that the standard order of disk search (A,B,C,D,E,F,G,S,Y,Z) is to be used to
locate the file. "nl" may be used to specify the starting record number at
which to begin reading. "n2" specifies the last item number to be read; if
specified as "*" reading will continue to "end-of-file". Normally, data read is
imbedded after the "current line" and the line pointer remains unchanged.
However, if the "APPEND" option is specified (this may be abbreviated to
"A"), data will be "appended" at the end of the w<;>rking copy of the current
file and the line pointer will be set to the first item read.

INP <c>

INPUT allows the user to input new data items after the current line. After
the INPUT command is entered, the indicated logical display is set to allow
data inputting. The current line is placed at the top of the display and the
remainder of the logical display is completed with blank unused "input" areas.
These lines differ from those created using the ADD command in that they are
not actually placed into the file until used. The Type III command area
pertaining to each "input" line contains the the designator, "*INPUT". Type
III commands may be entered on INPUT Type III command areas. Because
INPUT requires the" current line" to be displayed at the top of the logical
display, at least two data-display areas must be- defined for that display prior
to issuing the INPUT command.

Optionally, a 1-8 character string may be entered as a parameter to the INPUT

command. This character string will be placed at the start of each "input"
area. This is especially useful if there are no Type III areas on the display to
indicate where each data-display area ends.

As previously mentioned, only those "input" data areas which have been
modified are actually added to the file. The criterion used to determine
whether a given "input" data area has been modified depends on whether
Type III areas are present. If Type III areas exist, a line is considered modified
if any change has been made to the line via cursor movement. Simply moving
the cursor over a line without changing any data therein does not constitute a
modification to the line. However, placing any character on the line
(including a blank) does constitute a modification (even if the data is subse
quentlyerased). If a modification is inadvertently made, the Type III "D"
(DELETE) command may be used to prevent the line from being entered in the
file. If Type III areas are not present on the screen, a line is considered
modified if it "appears" different than when originally written. Thus, if data
is placed on a line and subsequently erased, that line will not be considered
modified.

After new data has been "inputted", the current line will be set to the last line
entered. Therefore, if the "command-hold" feature is being used, continuous
inputting of lines can be effected.

Type II Commands 29

'INSERT

LEFT

LOCATE

negative
LOCATE

Type II Commands

- INS <c>.

The INSERT command is functionally identical to INPUT except that at the,
conclusion of the command the current line will remain at its present position
(will not be set to' ~he last"line---entered).

LE <n>

Frequently, it is n~cessary to "view" columns of data which are not currently
on the screen. The selective column "viewing" facility may be used to ac
complish this (see Type II command: VIEW) or the user may simply adjust
the data left or right as desired. By specifying LEFT the columns currently in
view will be shifted one position to the left. No data loss occurs and the user
may simply enter the RIGHT command to cause data to be shifted back into
its original position. "n" specifies the number of columns to be shifted to the
left (or "right") and defaults to one if not specified. The data will not be
shifted if the requested shift would cause the total offset (total shift magni
tude) to exceed the maximum record length of the current level.

L /stringl/ <zl I (: <z2 I * > > < /string2/ > ...

The LOCATE command may be used if the location of a desired line is not
known. A specified string of characters or multiple strings of characters are
entered as parameters to the LOCATE command. This will cause a search,
starting at the line immediately following the current line, for one containing
all of the requested character strings within the currently defined "zones"
(see Type II command: ZONE). The search ends when such a line is
"located", and the line found then becomes the current line. Optionally,
over-riding zones may be specified ("zl" and "z2"). These zones function in
exactly the same fashion as those defined by the ZONE command but are in
effect only for the immediately preceeding character string. If an over-riding
zone is specified as "*", the corresponding permanent zone will be used. If
no overriding zones are specified for the last character string, and the delimit
ing character is "I", the second delimiter may be eliminated. Similarly, if no
overriding zones are supplied for the last character string, it is not necessary
to enter any delimiter. If only the starting delimiter is entered, in this case, it
will be considered a delimiter (and not part of the data string) only if it is a
"/"

L-.stringl-. <zl I * <z2 1*» < -.string2-. > ...

The negative locate is a feature of the basic LOCATE command and may be
used to locate a line in which a specified string of characters does "not"
occur. Specified strings of characters are entered as in the basic LOCATE
command. However, by using the logical "not" symbol (-.) as a character
string delimiter, a search for a line in which the delimited string does "not"
occur is initiated. "Negative" and "normal" strings may be combined in one
issuance of the locate command. Only a line in which ALL conditions
(positive and negative) of the LOCATE command are met, will cause termina
tion of the search. The selected line then becomes the "current line".

30

MOVE

PFn

POINT

PUTFILE

All of the charactefistics which apply to the slash ("/") symbol regarding
LO~A TE, pertain as well to the logical not (-,) symbol.

MOV E n I .XXX I TOF / < n I .XXX I / < n I .XXX I / > >

The MOVE command parameter list is identical to that of the COpy command.
The difference between MOVE and COpy is that data "moved" is deleted from
its old position whereas data "copied" is not deleted. (For an explanation of
the MOVE command parameter list refer to the Type II command: COpy).
Note that when "moving" lines, no additional virtual storage is required.
Thus lines may be moved even when a "virtual storage full" condition has
already been encountered.

PFn string 1

The PFn command establishes 'string l' as the meaning of Program Function
Key (n) for the current logical display. Specifying the (PFn) command with
no operand causes the PF Key meaning to be reset. (See also the DSPF
command in this section).

P < .XXXX I :XXXX <DELETE> >

POINT is the primary command for the "alphameric pointer system" which
may be used while editing. Using this system of line referencing, it is not
necessary to remember the "line number" of a particular line in the file.
Using the POINT command, a "name" may be assigned to the desired item
which, unlike "line numbers", remains assigned to that item throughout the
editing session (unless specifically re-assigned) regardless of editing changes.
This name may be used in most commands which require referencing a·
particular item. Using line "names", a line may always be located no matter
what its location simply by its name. A line name must always begin with a
"point" (.) or a "colon" (:). The name may be any 1-4 char,acters which can
be entered from the 3270 keyboard. If the POINT command is issued with a
name, the specified name is assigned to the current line. If the name has
already been assigned to a different item, it is re-assigned if the name begins
with "point" (.). Names beginning with a "colon" (:) can not be reassigned.
If entered with no parameters, the POINT command will cause all names
assigned to the current line to be displayed on the command line. If the
POINT command is issued with a "name" followed by the keyword "DELETE"
(which may be abbreviated to "D"), the specified "name" will be deleted
from the index (regardless of the line to which it currently pertains). NOTE:
l.ny given item may have as many names as desired (limited only by the
amount of virtual storage available for storage of same). However, when
displaying names assigned to the current line only as many names will be
displayed as will completely fit on the command line.

PUT <Fn I * <Ft I ~~ <Fm I ~~ <n I .XXX I * <REPLACE <APPEND»»»

The PUTFILE command will cause one or more lines of the current file to be
written to disk starting with the current line. These lines will be placed in the
file indicated by Fn, Ft, and Fm. The file name, type, and mode may be

Type II Commands 31

RECFM

REPEAT

REPLACE

Type II Commands

';specified explicitly or as "*" ,(the default) indicating t·hat the corresponding
identifier of the file at the current edit level is to be used. Writing begins at
the current line and continues: for "n" lines where "n" is any positive integeOr
not greater than the number of records in the current file; or through ".xxxo" J '

where" .XXx" is a previously defined "named" line; or through
"END-OF-FILE" if "*" has been ·specified. If no limit is specified, only the
current line will be placed in the specified file. If the requested file already
exists, an error message will be displayed and the PUTFILE will not be per
formed, unless the REPLACE option (this may be abbreviated to "R") has
been specified If the keyword "APPEND" (this may be abbreviated to "A") is
supplied, the specified data will be "appended" to the requested file.

RECFM < F I V >

The RECFM command is used to set the current record format characteristic
for the file at the current edit level. "F" indicates that the file is to contain
fixed-length records and "V" indicates variable-length records. The record
format is significant only when the file is written to disk (on a SAVE, FILE, or
PUTFILE request or during an "AUTOSAVE"). At that time, if the record
format is "V", trailing blanks are removed from all records written to disk. If
the RECFM command is issued without any arguments, the current setting is
displayed on the command line.

REPEAT < n I .XXX I * < c > > o.

The REPEAT command is used to "repeat" any changes m"ade to the current
line on succeeding lines. If no operand is specified, the change is repeated
only once. Using the operand, the change may be repeated: "n" times where
"n" is any positive decimal integer not greater than the total number of items
in the file; or through ".xxx" where ".xxx" is a previously defined "named"
line located between the current line and "END-OF-FILEII; or through
"END-OF-FILE" (indicated by "*"). Frequently, it is necessary to cause a
character position in the current line to be repeated without being changed.
This is considered a "logical overlay". If a "logical overlay" is desired, a
logical overlay character ("c") may be provided with the REPEAT command.
The original contents of all positions in the current line in which this character
has been inserted, will be "overlayed" on the requested succeeding lines.
Therefore, the character selected must be unique to all changed data in the
current line. Note that the specification of the logical overlay character
pertains only to this issuance of the REPEAT command. If the command is
invalid or the overlay character is inadvertently not specified, the overlay
character is considered a modification to the data, and will remain in the
working copy of the file.

REP < n I .XXX I * >

The REPLACE command is used to "replace" lines in the current file. It is
functionally equivalent to performing a DELETE, followed by a "DOWN 1"
followed by an INSERT. Thus, REPLACE causes the lines specified (as in the
DELETE command) to be deleted (starting with the current line), after which
the current line is backed-up to the line immediately preceding the first
deleted line, and INSERT is automatically entered at this point. The argu-

32

RIGHT

SEARCH

SERIAL

SET

, L ,L ,

ments for t,he REPLACE command are equivalent to those used for the
DELETE command (see Type II command: DELETE).

RI<n>

The RIGHT command is functionally similar to LEFf. Its purpose is to cause a
display shift to the right (the actual data is not shifted). For details on use of
the RIGHT and LEFT commands see the Type II command, LEFT, in this
section. .

S /string1/ <zl I ::: <z2 I :::» < /string2/ > ...

The SEARCH command is functionally similar to LOCATE. However, if
LOCATE does not find the requested line by "EOF", it will terminate and an
error message ("EOF REACHED") will be displayed; whereas, if the requested
item is not found by SEARCH when "EOF" is encountered, a wrap-around to
the top of the file will occur. Thus, using SEARCH, the error message will not
be produced. At the conclusion of the SEARCH command, if the requested
item has not been found, the line pointer will remain at the current line and
the message ("DATA NOT FOUND") will be displayed. The SEARCH com
mand may be issued without the comm~nd verb (ie: "/stringl/" alone).

SER <ON I OFF I ALL I XXX < 10> >

The SERIAL command may be used to specify automatic sequencing of
records within a file. Sequencing is significant only when the file at the
current edit level is written to disk and then only if the file contains fixed
length, 80-character records.

With "SERIAL ON" the first three characters of the file name are placed in
columns 73-75 of all records and columns 76-80 are sequenced according to
the increment value. With SERIAL OFF, no sequencing is performed. Option
ally, SERIAL XXX may be specified where "XXX" is any three characters to be
placed in columns 73-75 of each record before being written to disk. Col
umns 76-80 are again sequenced according to the increment value. When
SERIAL ALL is specified, all eight columns (73-80) are sequenced (no prefix
characters are used). If the SERIAL command is issued without any argu
ments, the current setting is displayed on the command line.

SET < Dblank ON I OFF>
< Nulls ON I OFF>
< Autosave n I OFF>
< NUMbers ON I OFF >
< NOread ON IOFF>
< Convert ON I OFF >

The SET command is used to vary settings of certain optional functions of
EDGAR while editing is in progress. The SET command is followed by a
keyword indicating which option is to be set. The keyword must be followed
by the new setting. If the SET command is issued with no arguments the valid
keywords and their current settings will be displayed. As many options as

Type II Commands 33

Type II Commands

.desired may be set in one command. However, if any errors are encountered
. while processing any o'f the 'options, no setting changes are performed. The
keywords and valid se~ti~gs for each are describ~d below:

NUMBers - This option causes display of the "line numbers" within Type III
Command Areas. Normally, this area will contain a symbol
('*===*' or '1===1') over which the user enters the desired
Type III command. With the setting, NUMBERS ON, the Type III
command areas will, instead, contain an "*" or 'I' (if the
"current line") followed by the item number of the correspond
ing data item in the working copy of the file. Since these num
bers are continually re-calculated, substantial overhead can be
created by requesting display of numbers. The amount of over
head will depend on the size of the file and the position of the
"current line" within the file. Therefore, 'SET NUMBERS ON'

should be issued only when necessary and when system over
head is non-critical.

DBLAnk - This option causes EDGAR to eliminate any blank records
before writing a file to disk. DBLANK may be SET ON or OFF.
With DBLANK ON, totally blank records contained within the
working copy of the file (in storage) are not written to disk.
These records, therefore, will not be serialized (if serialization is
in effect) but will remain as blank records in the working copy
of the file. The DBLANK option is especially useful, for exam
ple, in ASSEMBLE files where lines have been "ADDED" (using
the ADD command). Since such records (if they remain in the
file.) will cause compiler errors, the DBLANK option makes
manual deletion of excess "ADDED" records unnecessary.

NULLs - This option causes the I/o Processor to replace any trailing
blanks within each 3270 field of the edit level virtual screen
with "null" characters before transmitting the data to the physi
cal display. Null characters are useful when adding characters
to a data record using the "insert mode" feature of the 3270
system. Since only null characters may be shifted out of a'line
(using "insert mode"), setting "NULLS ON" allows the user to
insert characters until the first non-blank reaches the end of the
data-display area.

***NOTE: Users should refrain from setting NULLS ON when Type III com
mand areas are not present in the logical display. In this case, nulls are added
only at the end of the last data-display area reSUlting in a shift of all data
display lines when "insert mode" is used. This will lead to unpredictable
editing results.

NOREad - This option determines the effect of the SOS ATTN command.
With NOREAD OFF, the ATTN command is functionally equiva
lent to a "null line" in the stack. With NOREAD ON, the ATTN

command is functionally equivalent to SOS ENTER. For a full
discussion of this subject, refer to Section V (Advanced Editing
Facilities, Screen Operation Simulation).

CONVert - This option permits data description within commands (such as
CHANGE, LOCATE, etc) to use hex or binary conversion nota-

34

SHIFT

STACK

TABS

tion. With CONVert set ON:for example, the command
L/X'FOFOFO'/ would have the same meaning as L/OOO/.
Similarly, the command L/B'11110000' / would have the same
meaning as L/O/.

AUTOsave - This option invokes the "Autosave" facility. It may be set
"OFF" or an alteration threshold value may be supplied. The
threshold value must be a positive decimal integer not greater
than 32767 and indicates the alteration threshold at which
"AUTOSAVE" will take place. Thus, "SET AUTOSAVE 1" will
cause the file to be checkpointed every time at least one altera
tion is made to the working copy. For details on the
"Autosave" facility see Section IV, AUTOSAVE FACILITY.

SH < Left I Right < n < m I * I .XXX < c > > > >

The SHIFT command causes data within the currently defined ZONE (See
ZONE command in this section) to be shifted left or right a distance of (n)
columns. The third operand dictates the number of lines effected starting
with the current line. The user may specify a number of lines (m), to End of
File (*), or to a named line (.xXX). Optionally, a "fill" character (c) may be
specified. In this case, the specified character will be inserted in all columns
"from" which data has been shifted. Note that SHIFT operates only on data
within the currently defined ZONE (see ZONE command in this section).

STACK <LIFO I FIFO> <n I .XXX I * <string-l> >

The STACK command causes data from file items to be placed in the CMS
console stack. Stacking will be FIFO unless LIFO is specified. The number of
lines to be treated is specified by "n", ".xxx", or "*" (thru EOF). An
additional character string, "string 1 ", will be stacked after each item in the
file, if specified. STACK operates only on the currently ZONEd columns.

T < n 1 n2 n3 n4 n5 n6 >

The TABS command is used to establish tabbing columns for all data-display
areas in the corresponding logical display. The arguments to the TABS com
mand are the desired tab columns. Each tab position represents one column.
The list must be in ascending order and each number must be a positive
decimal integer not greater than the maximum record length of the file at the
current edit level. A maximum of 25 tab positions may be set. If specified
with no arguments the TABS command will display the current tab settings on
the command line. Once tab settings have been established the user may use
the tabbing feature to achieve cursor movement. With the standard options
"PFl" requests a backward tab and "PF2" a forward tab (the display station
must be equipped with these keys to utilize the tabbing facility). Effective
tabbing with this facility is dependent on system response time since the
tabbing mechanism is under software control. Under average to good re
sponse conditions, this tabbing feature will be faster than the cursor move
ment cluster keys on the 3277. However, depression of the "PF" keys for this
purpose causes transmission of all "modified" data on the 3277 screen to the
CPU. This may be an unacceptable condition on a remotely attached device if

Type II Commands 35

TOP

UFIND

ULOCATE

UP

USEARCH

VIEW

Type II Commands

: several data~disphlY ii~es (or c~Inni~nd lines)have been altered prior to
'depressing the tab keys, unless high-speed line transmission is utilized.

TOP

"TOP" positions the current line to the first item in the file. There are no
arguments to the TOP command. If no items exist in the file, the current line
is set to "TOF".

UF stringl

The UFIND command is functionally identical to FIND -except that the file
scan is in an upward direction.

UL /stringl/ <zl I * <z2 I *» < /string2/ > ...

The ULOCATE command is functionally equivalent to LOCATE except that the
file scan is in an upward direction.

U <n>

UP causes the screen to appear to move "up" "n" lines. When UP is issued
and the current line is "EOF", no movement takes place. UP allows the user
to view lines further toward "EOF" in the file. If no parameters are supplied
with the UP command "UP 1" is assumed. The argument specifies the number
of lines (items) by which the current line is to be moved (forward in the file).
This number must be a positive decimal integer not greater than the total
items currently in the file.

US /stringl/ <zl I * <z2 I ,.~» < /string2/ > ...

The USEARCH command is functionally equivalent to SEARCH except that the
file scan is in an upward direction.

VIEW < <Rn I Ln> «H>nAl nA2 <H>nBl nB2 <H>nCl nC2 ... »

The VIEW command is the primary command for the selective column viewing
feature of EDGAR. Using the VIEW command the user may select, for view
ing, only those columns which are necessary for the editing to be performed.
Thus, pertinent information in records of greater width than the current
display may be viewed. VIEW specifications are supplied in pairs of positive
decimal integers each of which must not exceed the maximum record length
for the file at the current edit level. Each pair designates a "viewing field".
The first number of the pair indicates the "starting" column of the desired
field, and the second the" ending" column. Within each pair the" ending"
column must be equal to or greater than the "starting" column. However,
view fields (successive pairs) may be in random order. Furthermore, view
fields may overlap or be equal. Each field will be displayed (one following
another) in the data-display area beginning at the left margin. Immediately

36

ZONE

. XXXX
:XXXX

$XXXX

preceding the "starting" column designation with the letter "H" causes that
field to b~ displayed in HEX format. The total width of all "viewed fields" .
may not exceed the width of the data-display areas. Specification of an offset
value is optional: If supplied, the offset must be the first argument to the
VIEW command. The offset value is the magnitude (left or right) by which
the selected fields are "offset" from their specified "start" columns. This
must be designated as "R" (for RIGHT) or "L" (for LEFT) immediately
followed (no intervening space) by the offset value. Thus, "R5" indicates
that the selected view fields are to be offset from their specified starting
columns by 5 postions to the right. This is identical to providing the view
fields followed by a "RIGHT 5" command. When the VIEW command is
issued with no arguments, the current view fields and the current offset value
(if any) are displayed in the Type II command area. Note: it is possible for
truncation to occur on such a display, if the column numbers currently in view
plus the offset value number exceed the display width of the Type II com
mand line. Use of the display option is valuable if the user does not know the
exact current offset value but wishes to restore the display to its normal (no
offset) positon. By issuing the VIEW command with no arguments (creating a
display) and then erasing the offset value from the command, a zero offset
will be re-established.

Z < nl < n2 »

ZONE is used to establish the current column limits for the STACK, SHIFT,
SEARCH, FIND, CHANGE and LOCATE commands. If specified with no
parameters, the current zone settings are displayed on the command line. To
alter the current settings enter the ZONE command specifying the new
"START" and "END" zone columns. Each must be a positive decimal integer
not greater than the maximum record length of the file at the current edit
level. The "END" zone must be equal to or greater than the "START" zone.
Optionally, the "END" zone setting may be omitted in which case the current
"END" zone value will be used .

.XXXX
:XXXX

Once a given item in a file has been "named" via the Type II command,
POINT, it is possible to find that line regardless of its current location by
entering the "POINT" name, as shown above, on the command line. The name
must be 1-4 characters in length and must begin with a "point" (.) or a
"colon" (:).

$XXXX < parms >

An EXEC can be entered from an EDGAR session by entering the $ command
where XXXX is the EXEC name. This command may be followed by whatever
PARM's the user wishes to have passed to the EXEC. For further information
about EDGAR EXEC's refer to Section v, Advanced Editing Facilities.

Type II Commands 37

nlinn'

Type II Commands

'nnnnn

Line callout by item number is possible as a Type II command. This number
must be the current item number of the desired line in the working copy of
'the file. This must be a positive decimal integer not greater than the total
items in the file. .

38

Type III Commands
Type III commands are the basis for "in-line" editing functions, .i.e., functions
pertaining to an individual line within a given logical display. l)pe III com
mands do not necessarily reference or alter the "current line" pointer. Each
data-display area within a given logical display may contain a Type III com
mand area in the last 8 positions (unless deleted by the Type I command:
FORMAT). Type III commands are "overlayed" on the Type III command
areas. The initial contents of each Type III area depends on the contents of
the corresponding data-display area as well as user option settings and may be
one of the following:

1. the characters "I = = = I" or "* = = = *" as illustrated in figure 2, lines 3
and 4, respectively; either of these indicators will appear in the Type III
command areas for data-display areas containing file data when NUMBERS
have been set OFF (See the Type II command: SET). Since SET NUMBERS
OFF is the default setting, these constants will always appear unless SET
NUMBERS ON has been issued. ". = = = *" is provided for all such data
display areas except those containing the "current line", for which the
constant "I = = = I" is used.

2. the characters "/nnnnn" or "*nnnnn" (where "nnnnn" is the line number
of the corresponding item within the file. This format is used only when
the user has specified SET NUMBERS ON. Although this facility is conven
ient when item number referencing is utilized, substantial overhead may
be incurred in large files when calculation of the line numbers is required.
"*nnnnn" is used for all Type III command areas unless the corresponding
data-display area contains the" current lin~" in which case" I nnnnn" is
used.

3. the characters "*INPUT" - indicating that the corresponding data-display
area is for "input" and has not yet been incorporated in the file. These
constants will appear when a display has been created via the INPUT or
INSERT commands.

4. the characters "*TOF*" or "*EOF*" - used when the cor~esponding
data-display area represents the imaginary lines at "top-of-file" and
"end-of-file", respectively. Type III commands may not be entered on
these lines and changes to these Type III areas will be ignored.

Type III commands are single character commands which mayor may not
have preceding arguments. If the command is of the type which may have a
parameter, the parameter must begin in the first position of the command area
and must be immediately followed by the command character. No errors are
indicated for Type III commands. The user must verify that the command has
been successfully executed and re-issue the command, correctly, if not.

Since Type III commands do not produce error messages, no warning of this
situation is provided to the user.

Type III Commands 39

'A

o

/

"

<

Type III Commands

,The "A" command is similar to the Type II command: ADD. It is used to
. "add" one or more blank lines after the line associated with this Type III '
command area. (For information on "added" lines refer to the ADD Type II
command.) If no argument is provided, one blank lines is "added" to the file.
If a parameter is supplied it must be a 1-5 digit, positive, decimal integer
indicating the number of lines to be "added".

The "D" command is used to delete (in place) items from the file. Its func
tion is similar to the Type II DELETE command and will cause "n" lines
(beginning with the line associated with this Type III command area) to be
deleted from the file. If no argument is specified, only the associated line will
be deleted. The parameter must begin at the start of the Type III command
area and must be immediately followed by the "D" command character.

I

The" /" command is used to set the line pointer to the associated line. The
" /" should be entered at the start of the Type III command area and has no
associated parameters. Its effect is to set the line pointer to the associated
line at that time. Since the order of processing for any logical display includes
all data-display areas and their associated Type III command areas before the
Type I & II command area, the "/" command may be used to set the line
pointer ("current line") to a line other than the normal current line for
reference by the Type II command. If "/" is issued to more than one line
only the last will become the "current" line.

<n>"

The" (double-quote) command allows "in-line" duplication of the associated
file item. It is similar, in function, to the Type II command: DUP. The"
command causes the associated file item to be replicated "n" times. If "n" is
not specified it will default to one. "n" represents the number of duplications
to be performed. Thus, if two duplications are requested, three (3) equivalent
lines (the original and two duplicates) will appear in-line in the file .

. xxxx<

The" <" command is similar to the Type II POINT command and allows the
user to "name" the line associated with this Type III command area for later
alphameric line referencing. The argument to the" <" command is the 2-5
character line "name" which must begin with a "." or a ":". (The "point" or
"colon" must begin at the start of the Type III command area). Any 4
characters which may be entered from the 3277 display may be used for the
remainder of the line "name" (except the character "<", which is treated as
the command). If the given name is valid and not previously defined, it is
added to the" name" index. If the name has been previously defined and
assigned to another line in the file, the action taken is as follows:

40

1. If the name begins with a ".", it will be re-defined and assigned to the line
corresponding to this Type III command area.

2. If the name begins with a ":", no redefinition will take place.

Type III Commands 41

Au.tosave Facility

Autosave Facility 42

EDGAR provides a facility known as "AUTOSAVE" which will automatically
checkpoint the working copy of the file. Checkpointing is triggered by the
number of alterations made to the file. Therefore, an alteration counter is ,.
maintained by EDGAR throughout any editing session. The value of the
counter is always displayed in the status area (Line 1) of the screen after the
prefix, 'ALT='.

Whenever a new edit level is entered, an "AUTOSAVE-IO" is automatically
generated and assigned to,that level. This is a 1-8 digit number which will
always be unique to the current editing level. The "AUTOSAVE-IO" for any
level is always displayed in the status area (Line 1) of the screen bracketed in
parentheses. In the example in figure 2, the" AUTOSA VE-ID" is "1". The
"AUTOSAVE-ID" becomes the file name of the checkpoint file created for that
particular edit level. The file type is always" AUTOSA VE" and the file mode is
(X) 1 where X represents the disk on which the checkpoint file is written. The
file is always written to the R/W disk with the greatest amount of available
space. If no R/W disk is 'ACCESSED' or if there is insufficient space to create
an "AUTOSA VE" file, or if errors occur while writing the file to disk, the
'AUTOSAVE' facility is cancelled. The AUTOSAVE file is written to disk in the
same manner as a FILE or SAVE request (see the description of writing files to
disk in Section I: "INTRODUCTION"). Before renaming the file to the correct
AUTOSAVE name, any existing AUTOSAVE files (on any disk) having the same
1-8 digit file name are erased. Thus, at anyone time, there will be no more
than one copy of an AUTOSA VE file containing the unique AUTOSA VE-ID. In
the event of system failure the user need only restart the editor to the check
point file and change the file-id while editing (see information on the
"FILE-IO" area in Section III.)

Whenever a normal exit is taken from any edit level, any AUTOSA VE files
having the unique AUTOSA VE-IO corresponding to that level are automatically
erased (from any disk) to prevent the user's disks from becoming overrun
with AUTOSA VE files.

To invoke the AUTOSAVE facility, the user must issue the SET AUTOSAVE

Type II command (see SET command in Section IV). Normally AUTOSAVE is
set "OFF". However, by setting AUTOSA VE to the desired threshold alteration
count, checkpointing of the file will occur whenever the alteration counter
reaches the specified threshold. To display the current threshold value, issue
the "SET" command with no arguments.

V. Advanced Editing Facilities

Screen Operation Simulation

SOS, Screen Operation Simulation, is an EDGAR facility by which the user can
automate the operation of the 3270 keyboard. By executing a set of com
mands, the user can request that Sos simulate the depression of 3270 keys
and cause changes to occur on the I/O virtual screen.

SOS has only one input device, the CMS console stack. (A working knowledge
of the CMS console stack is a prerequisite for using SOS. See vM/370 CMS
User's Guide, GC20-1819). Data may be placed into the stack in several
ways. The most commonly used methods are as follows:

• Depressing a PF Key - Data which is assigned to a PF key is placed LIFO into
the stack when the PF key is depressed

• Executing an EXEC - An EXEC or CMS application program which places
data into the CMS console stack may be executed during an editing session.
EDGAR may be invoked from within an exec which had previously placed
data into the stack.

• Executing the STACK Editing Command - The STACK command will allow
the user to place data records and, optionally, related data into the CMS
console stack. NOTE: When reading data from the console stack, CMS
considers a X' 15' to be a line end character. Thus if the user desires to put
mUltiple lines into the stack with only one statement, he should imbed
X'15's (or characters that will be translated to X'15's via the CMS input
translate table) in his data.

When SOS is given control it reads the top entry in the console stack and
breaks it up into one or more logical lines which are processed one at a time,
the unprocessed logical lines remaining in the stack. The star~ of logical line is
defined as the first position of the stack entry. (This position may, in fact,
have resulted from the processing of the previous logical line). A logical line
ends either with the termination of a valid SOS command and its operands,
with the end of the stack entry, or with a X'15' (the CMS line end designa
tion). Trailing blanks are always deleted as the logical line is processed. In
addition, if the last non-blank character is an exclamation point (!), it is also
deleted. Thus if a line is placed into the stack as follows (with its start and
end indicated by a bar (I »:

/ sos tabcmd abc

I

the logical lines are defined as follows:

/sos tabcmd

I I
abc

I

Advanced Editing Facilities 43

and the resulting data to be processed is:'

/sos tabcmd
I I,

abc

I'

The SOS facility recognizes only two types of data; SOS commands and data
to be typed on the I/O virt!lal screen. As each logical line is obtained from
the eMS console stack, a check is make to determine if it contains a valid SOS
command. A valid sos command is defined as one which starts in position
one (1) of the logical line, begins with the characters "/ sos ", and has as its
first operand a recognized sos command. If the logical line does contain a
valid sos command, the rest of the line is returned to the eMS console stack
and the command is executed. If the logical line does not contain a valid sos
command, it is considered to be data and is placed on the I/O virtual screen at
the current position of the virtual cursor. The cursor position is then incre
mented once for each character so inserted.

sos continues to process the eMS console stack until the stack is empty _or it
reads a "null" entry (an entry with zero length). At that time, it relinquishes
control of the I/o virtual screen which is subsequently written to the physical
display device.

Note: It is important for the user to recognize that changes made to the I/O
virtual screen by the sos facility have exactly the same effect as those made
by the user on his display terminal. In fact, except for the I/o Processor, the
editing system has no knowledge of the source of changes to the 1/0 virtual
screen.

Advanced Editing Facilities 44

SOS COlnmands
All sos commands are prefixed by the characters "/ SOS ". TIW description
of each command, below, conforms to the following format: uppercase
characters indicate the shortest allowable form of the command, while the
lowercase letters complete the command.

ALarm

Attn

BField n

CLEAR

CONTinue

Down n

DELete n

ENTER

ERAseof

ERRor Continue

ERRor VERIFY

ERRor ESCAPE

EXec xxx p r

INsert

Ring the terminal alarm when, and if, this screen is written
to the physical display terminal.

If the NOREAD setting is on, perform the same function as
/SOS ENTER. If the NO READ setting is off, perform the
same function as a "null" entry in the stack (display the
virtual screen on the physical display terminal).

Reposition the cursor as per the back field key. The key is
to be depressed n times. The default is one (1). -

Clears the eMS console stack and thus will terminate SOS
activity and display the virtual screen on the physical ter
minal.

Implies processing is to continue.

Move the cursor down n lines on the virtual screen. The
default is one (1).

Delete n characters at the position of the cursor from the
3270 field. The default value for n is one (1).

Depress the ENTER key. This will cause the I/O virtual
screen to be mapped to the active level virtual screens and
thus processed by the Display Processor. It is not until
this key is depressed that any changes can be made to the
data file.

Depress the ERASE EOF key. Erase the data until the end
of this 3270 screen field.

If an error message is found on an edit level virtual screen,
ignore it and continue processing

If an error message is found on an edit level virtual screen,
issue the sos "error encountered" message and terminate
sos activity (do not purge the console stack however).

If an error message is found on an edit level virtual screen,
issue the sos "error encountered" message, terminate sos
activity, and purge the eMS console stack.

Execute exec xxx and pass to it the parameters p and r.

Insert turns on insert mode. Insert mode will be on for the
duration of one (1) logical line (the next one). After that
an automatic reset is issued. Data may be inserted only
within fields for which NULLS have been set on.

Advanced Editing Facilities 45

Left n

NField n

NLine n

NUlls

NUlls On

NUlls OFF

PAl

PA2

PFn

POP

PUsh

Right n

TABB n

TABCmd

TABCMDB

TABCMDF

TABF n

Up

Advanced Editing Facilities 46

-, 'Move the cursor n places to the left. The default is one
(1).

Move the cursor to the next 3270 field n times. The
default is one (1). '

Depress the "new line" key n times. The default is one
(1).

Reverse the current setting of the "nulls" option for the
·3270 fjeld in which the cursor is located.

Change the trailing blanks to "nulls" for the 3270 field in
which the cursor is located.

Change the trailing "nulls" to blanks for the 3270 field in
which the cursor is located.

Depress the PAl key. (Call Cp).

Depress the PA2 key. (Call the CMS subset).

Depress a PF key where n is the key number 1-12. The
data which had been assigned to the key is placed LIFO in
the CMS console stack.

Remove the top position from the cursor stack and place
the cursor there.

Save the current position on the I/O virtual screen of the
virtual cursor. The position is saved in a LIFO fashion in a
special internal stack of EDGAR. This stack has room for
five (5) positions before it "forgets" the oldest entry.

Move the cursor n positions to the right on the virtual
screen. The default is one (0.

Move the cursor backward to the previous "tab" pos,ition
as indicated by the TAB editing command. The" tab"
operation may be performed n times with one (1) being
the default.

Position the cursor at the command line for the logical
screen in which it currently resides.

Move the cursor in a backward direction to the first
encountered command line.

Move the cursor in a forward direction to the first encoun
tered command line.

Move the cursor forward to the next "tab" position as
indicated by the TAB editing command. The "tab" opera
tion may be performed n times with one (I) being the
default.

Move the cursor up n lines. The default value for n is one
(1).

User Written Commands

The SVC Interface,
In addition to communicating with the Display Processor (see Section III,
System Overview), the Editing Command Processor of EDGAR can communi
cate with a user written program via an SVC. The SVC which has been chosen
for this purpose is X'ED'. A user program which desires to use this svc
should point general purpose register one (1) to a 132 byte data area and
issue the SVC. The data area will be processed by the Editing Command
Processor as a command line. Upon return from the svc, general purpose
register 15 contains a return code as follows:

o - indicating the command executed successfully

-1 - indicating the command executed successfully and producea some
informational data. The data has been placed in the data area
pointed to by general purpose register 1.

1 - indicating that the command cannot currently be accepted.

xxx - a message number corresponding to an EDGAR error message
indicating the unsucessful execution of the command. The error
message has been placed in the data area pointed to by general
purpose register 1.

NOTE: Only programs which have been inv_oked as a result of issuing a
CMS command on an EDGAR command line, or programs invoked
from a "DEFAUL Til EXEC, may issue the EDGAR SVC. If the pro
gram is not invoked in this fashion, a return code of one is re
turned in OPR 15.

Advanced Editing Facilities 47

"'ECOMMAND
ECOMMAND is a c'MS problem program which runs in the CMS SUBSET and.
uses the EDGAR SVC int~rface. ECOMMAND takes its input either in the form
of entry parameters entered on the same line, or from the console. If the .
input is entered as parameters and the user wishes to avoid the tokenizing
normally done by CMS, he may "wrap" the data, which he wishes to remain
contiguous, with parentheses and enter it in the normal eight (8) byte group
ings. For example

. ECOMMAND L (/tJABC/)

ECOMMAND will pass its input to the EDGAR editing command processor
which will treat it as an edit command to be executed against the currently
active edit level file. The result of the edit command processing will be
returned to the user in the form of a return code and, possibly, a message line
placed LIFO in the CMS console stack. The user may inhibit the placement of
the message line in the CMS console stack by executing ECOMMAND while
& CONTROL is set to NOMSG. The possible return codes which can be
returned from ECOMMAND are:

o - indicating the command executed successfully

-1 - indicating the command executed successfully and produced a
message which would normally be placed on the command line of
the screen and has been placed LIFO in the CMS console stack.

1 indicating that, EDGAR is not active

xxx - a message number corresponding to an EDGAR error message
indicating the unsucessful execution of a command. The error
message is also placed LIFO in the eMS console stack if the com
mand was called via SVC.

Advanced Editing Facilities 48

VI. ERROR MESSAGES'

EDIMSG500E
EDIMSG501E'

EDIMSG502E

EDIMSG503E
EDIMSG504E
EDIMSG505E

EDIMSG508E

EDIMSG509E
EDIMSG510E

EDIMSG511E
EDIMSG512E

EDIMSG513E

EDIMSG514E
EDIMSG515E
EDIMSG516E

EDIMSG517E

EDIMSG518E

EDIMSG519E

EDIMSG520E

EDIMSG521E
EDIMSG526E
EDIMSG527E

EDIMSG528E

EDIMSG529E
EDIMSG522E

EDIMSG530E
EDIMSG531E

EDIMSG532E

EDIMSG533E
EDIMSG534E

EDIMSG535E

EDIMSG536E

EDIMSG540E
EDIMSG541E

EDIMSG542E

EDIMSG543E

EDIMSG550E
EDIMSG551E

EDIMSG552E

EDIMSG553E

EDIMSG554E

EDIMSG555E
EDIMSG556E

EDIMSG557E

EDIMSG558E

EDIMSG560E

EDIMSG561E

INSUFFICIENT STORAGE FOR INITIALIZATION.

INTERNAL DATA GENERATION ERROR; RESTART EDGAR
VIRTUAL CONSOLE IS NOT A 3277.

RECEIVE FORMAT ERROR ' .. .' FROM DISPLAY STATION

INVALID CHARACTER RECEIVED FOR TERMINAL MODE
INSUFFICIENT STORAGE; CANNOT RE-FORMAT.

INCOMPLETE FILEID ~PECIFIED
FILENAME OR FILETYPE EXC'EEDS EIGHT (8) CHAR~CTERS
FILEMODE EXCEEDS TWO ("2) CHARACTERS

MISSING OR INVALID RECORD LENGTH SPECIFICATION
RECORD LENGTH '' EXCEEDS ALLOWABLE MAXIMUM

OF 2047.

INVALID CHARACTER IN FILE ID: " "
INVALID FILEMODE

FILE '' NOT FOUND
DISK ' . .' NOT ACCESSED

RECORD '' IS PAST EOF C •.. .)
FILE II •••••••••••••••••••• II EXCEEDS EXISTING

RECORD LENGTH.
ERROR •.... .' READING FILE " "

FROM DISK

TYPE I POST-PROCESSING FAILED;

EDIT LEVEL: " "

CREATING NEW FILE:
II •••••••• II IS NOT A VALID SUBSET COMMAND

SUBSET ALREADY ACTIVE.

STACKED LINES CLEARED .. .

RETURN CODE •..... .' FROM " "
CURRENT LINE IS 'EOF' OR ·TOF·.

DISK ' . .' IS READ/ONLY OR NOT 'ACCESSED'
DISK ' . .' IS FULL

DISK ' . .' HAS NOT BEEN FORMATTED

ERROR '' WRITING TO FILE " "
CANNOT APPEND TO LENGTH RECORDS

FILE " " IS OPEN FOR INPUT
FILE II •••••••••••••••••••• " HAS UNEQUAL RECORD
LENGTH

STORAGE FULL - FILE ADDITIONS INCOMPLETE.
INVALID "REPEAT" COUNT -

NO CHANGES ON "CURRENT" LINE - REPEAT IGNORED.

INVALID LOGICAL OVERLAY CHARACTER.

UNKNOWN COMMAND - " "
EXCESSIVE PARAMETERS FOR " " COMMAND

UNKNOWN " " OPTION - " "
CURRENT LINE HAS NO NAME.

POINT " " ALREADY ASSIGNED
ILLEGAL "pOINT" NAME.

NAMED POINT EXCEEDS FOUR (4) CHARACTERS.

NAMED POINT'' IS UNDEFINED

INSUFFICIENT STORAGE - POINT LIST FULL.
FILE '' ALREADY EXISTS

TOO MANY RECORDS; LEVEL CANNOT BE STORED.

Error Messages 49

, EDIMSG562E

EDIMSG563E

EDUv,ISG564E

EDIMSG565E

EDIMSG566E

EDIMSG567E

EDIMSG568E

EDIMSG569E

EDIMSG570E

EDIMSG571E

EDIMSG572E

EDIMSG573E

EDIMSG574E

EDIMSG575E

EDIMSG576E

EDIMSG577E

EDIMSG579E
EDIMSG580E

EDIMSG581E

EDIMSG583E

EDIMSG584E

EDIMSG586E

EDIMSG587E

EDIMSG588E

EDIMSG589E

EDIMSG590E

EDIMSG591E

EDIMSG592E

EDIMSG593E

EDIMSG594E

EDIMSG595E

EDIMSG596E

EDIMSG597E

EDIMSG598E

EDIMSG599E

EDIMSG600E

EDIMSG601E

EDIMSG602E

EDIMSG603E

EDIMSG604E

EDIMSG605E

EDIMSG606E

EDIMSG607E

EDIMSG608E

EDIMSG609E

EDIMSG610E

EDIMSG611E

EDIMSG612E

EDIMSG613E

EDIMSG614E

EDIMSG617E

EDIMSG619E

Error Messages

EMPTY EDIT LEVEL; LEyEL CANNO,T BE STORED.

EXISTING LEVEL - SPECIFICATION IGNORED

,REQUESTED, FORMAT EXCEEDS SCREEN CAPACITY.

INVALID "FORMAT" SPECIFICATION.

DISPLAYS ACTIVE - CANNOT RE-FORMAT.

INV ALID SERIALIZATION SPECIFIED

UNKNOWN "SET" FUNCTION -

" " MUST BE SET "ON" OR "OFF"

ILLEGAL "VIEW" COLUMN SPECIFIED.

START COLUMN '' EXCEEDS END COLUMN '.P'.'
..... COMUMN " " EXCEEDS RECORD LENGTH (. ...)

REQUESTED VIEW FIELDS EXCEED DISPLAY WIDTH (. ...)

INVALID TOTAL LINES SPECIFIED FOR" "

REQUESTED

ILLEGAL OFFSET VALUE.

TOTAL OFFSET EXCEEDS MAXIMUM RECORD LENGTH.

SHIFT MAGNITUDE EXCEEDS CURRENT ZONE WIDTH (. ...)

INVALID CHARACTER '.: ENCOUNTERED IN IMPLICIT DATA
........ PREFIX STRING MUST BE 1-8 CHARACTERS

ILLEGAL POINTER MOVEMENT VALUE.

ILLEGAL ITEM REFERENCE VALUE - " "

EXCESSIVE PARAMETERS ON LOCATIVE COMMAND.

DISPLAY TOO SMALL TO - PLEASE RE-FORMAT
SHIFT DIRECTION INCORRECTLY SPECIFED.
CANNOT IIREPLACE" AND "APPEND".

'POINT " " NOT FOUND BEFORE 'EOF'

NO SEARCH ARGUMENT SPECIFIED.

ILLEGAL ZONE COLUMN

ZONE COLUMN (.) EXCEEDS RECORD LENGTH

(.)
START ZONE (. ...) EXCEEDS END ZONE (....)

STRING ... EXCEEDS ZONE WIDTH (. ...)

NOT FOUND - EOF REACHED.

INVALID HORIZONTAL COUNT- " "

DATA NOT FOUND.

DATA TRUNCATION HAS OCCURRED.

EOF REACHED.

ILLEGAL TAB SPECIFIED - " "

TAB " " EXCEEDS MAXIMUM RECORD SIZE

TAB " " NOT GREATER THAN PREVIOUS TAB (....)

NUMBER OF TABS REQUESTED EXCEEDS MAXIMUM.

INVALID "AUTOSAVE" COUNT.

INSUFFICIENT R/W SPACE FOR CHECKPOINT - "AUTOSAVE"

CANCELLED.
CHECKPOINT TAKEN TO FILE" 11

'RECFM' MUST BE "F" OR "V".

'CASE' MUST BE "M" OR "U".

NOT FOUND - TOF REACHED.

RANGE UPPER LIMIT PRECEEDS LOWER LIMIT.

TARGET RECORD IS WITHIN RANGE OF LIMITS.

TARGET NOT SPECIFIED.

INVALID ITEM REFERENCE NUMBER

END RECORD PRECEEDS START RECORD.

UPPER LIMIT FOR "PUT" NOT FOUND BEFORE 'EOF'.

INV ALID LOGICAL DISPLAY SPECIFIED -

50

EDIMSG620E

EDIMSG621E

EDIMSG622E

EDIMSG623E

EDIMSG624E

EDIMSG625E

EDIMSG626E

EDIMSG627E

EDIMSG628E

EDIMSG629E

EDIMSG630E

EDIMSG631E

EDIMSG632E

EDIMSG640E

EDIMSG641E

EDIMSG700E

EDIMSG701E

EDIMSG702E

EDIMSG703E

EDIMSG704E

EDIMSG705E

EDIMSG706E

EDIMSG707E

EDIMSG708E

EDIMSG709E

EDIMSG7lOE

EDIMSG711E

EDIMSG712E

EDIMSG715E

EDIMSG716E

EDIMSG720E

EDIMSG721E

EDIMSG725E

EDIMSG726E

EDIMSG727E

EDIMSG728E

EDIMSG729E

LOGICAL DISPLAY " DOES NOT EXIST

PLEASE SPECIFY LOGICAL DISPLAY NUMBERS TO BE

COMPARED
LOGICAL DISPLAy IS

EOF REACHED ON DISPLAy

COMPARISON FAILED ON DISPLAy

FILE " " IS NOT FIXED,

8~CHARACTERRECORDS

SEQ. ERROR INCURRED - SEQUENCE NUMBER

IN ERROR:

INVALID UPDATE CONTROL CARD IN FILE "

UPDATE CONTROL CARD SEQ. ERROR IN FILE " : "

"UPDATE" OPTION INVALID - SOURCE FILE MISSING.

CANNOT SEQUENCE OUTPUT EXCESSIVE RECORDS.

CREATING NEW UPDATE FILE:

ERROR IN FILE: " "

PF NUMBER IMPROPERLY SP~CIFIED

INSUFFICIENT STORAGE TO PERFORM PF ASSIGNMENT.

PROFILE ERROR; INSUFFICIENT STORAGE FOR PROFILE

FILE " " EXCEEDS MAX. 'PROFILE'
'LRECL'

PROFILE ERROR; LINE

UNKNOWN PROFILE TYPE -
PROFILE ERROR; LINE - IMPROPER 'PF'

ASSIGNMENT

PROFILE ERROR; LINE - FILETYPE NOT SPECIFIED

PROFILE ERROR; LINE - INVALID FILETYPE

PROFILE ERROR; LINE - INVALID FILEMODE

PROFILE ERROR; LINE - UNKNOWN FILETYPE

OPTION

PROFILE ERROR; LINE - INVALID RECORD LENGTH

PROFILE ERROR; LINE - INVALID 'CTL'

SPECIFICATION ,
PROFILE ERROR; LINE - IMPROPER 'DEFAULT'

SPECIFICATION

PROFILE ERROR; LINE - IMPROPER 'SYNONYM'

SPECIFICATION

PROFILE ERROR; LINE

IMPROPER TAB CHARACTER ..

ALLOCATION OF SCREEN LINES IMPROPERLY SPECIFIED:

"
MAXIMUM PHYSICAL SCREEN CAPACITY EXCEEDED.

CURSOR IS NOT WITHIN THIS LOGICAL DISPLAY.

CURSOR IS NOT ON A VALID DATA COLUMN.

EMPTY EDIT LEVEL; CANNOT "RENUM".

'RENUM' FUNCTION NOT INSTALLED.

INVALID 'RENUM' SPECIFIED

'RENUM' NOT PERMITTED WHILE UPDATE OPTION IN EFFECT

Error Messages 51

"VII~ Installation Procedures "

The DISPLAY EDITING SYSTEM installation tape for CMS contains three (3) .
files in CMS 'TAPE LOAD' format. There are no tape labels and each file is
followed by one tape mark.

File 1 includes all material necessary for installation of the DISPLAY EDITING
SYSTEM. Included are the ECOMMAND and EDGAR load modules, a set of
sample "DEFAULT" EXECS, a sample "EDGAR $PROFILE" and the EXECs and
TEXT files required to perform the installation procedure.

File 2 contains the assembly language source code and object form of the
system modules and the macro libraries required to assemble these modules.
It is not necessary to load this file for installation or maintenance purposes.

File 3 contains the MACRO and COpy files which comprise the macro libraries
included in file 2.

Assembly of the DISPLAY EDITING SYSTEM modules requires the vs H-LEVEL
ASSEMBLY LANGUAGE PROGRAM PRODUCT (5734-ASl) which in turn
requires the ASSEMBLER H/CMS INTERFACE IUP (5796-PEJ) for installation
under CMS. Assembly language modifications to the system are discouraged
as normal maintenance of the product may include substantial revisions in
source code.

Prior to installation the user must assure that the Extended Full Screen 3270
Console Interface for VM/370 (PRPQ # 5799-AWP) or equivalent has been
included in the VM/370 system on which the DISPLAY EDITING SYSTEM is to
be installed. Furthermore, if remote 3270 systems are to be utilized by the
DISPLAY EDITING SYSTEM, the vM/370 control program must include the fix
for APAR vM07289. In addition, the 3271 control units which will be utilized
must include the following EC's (Engineering Changes): 717956, 739540,
and 739278.

The DISPLAY EDITING SYSTEM may be installed to run either always in the
CMS user program area, or in a Discontiguous Shared Segment (DCSS) if
available. The two methods of installation will be discussed separately.

Installing For Use In The User Program Area Only

Installation Procedures 52

1. Generate a vM/370 system which will support the DISPLAY EDITING
SYSTEM environment. This includes installing the PRPQ 5799-AWP.
Access the disk on which the Display Editing System is to reside as your
'A' disk. Be sure the disk contains at least 280 CMS data blocks.

2. Attach the installation tape to your virtual machine as 181.

3. Enter the CMS command "TAPE LOAD".

The DISPLAY EDITING SYSTEM is now installed and ready to be used. If the
disk on which it was installed was the CMS sysres (190), resave the CMS
system (SAVESYS CMS).

Installing Fo.,. Use In, Either A DCS~ or The User Program Area

1. Generate a VM/370 system which will support the DISPLAY EDITING
SYSTEM environment. This includes installing the PRPQ 5 799-A wP, and
generating an entry in the DMKSNT system name table as follows for the
EDGAR DCSS.

LABEL NAMESYS SYSNAME = xxxxxxxx, (name af EDGAR DCSS)
SYSPGCT = 16,
SYSPGNM = (272-287),
SYSHRSG = (17),
SYSS/ZE = l024k, any value ;s valid
VSYSRES = IGNORE,
VSYSADR = IGNORE,
SYSVOL = valid,
SYSSTRT = (mm,nn)

The SYSVOL and SYSSTRT information pertain to the location of the cylinders
on which this DCSS is to be saved. These must be supplied by the system
programmer doing the installation. (See vM/370 Planning and System
Generation Guide, Defining Your vM/370 System, GC20-180l). The
SYSNAME parameter may be assigned by the system programmer. The same
name must be entered as part of the IUP installation procedure INSTED. The
SYSPGNM and SYSHRSG load the shared segment at location x'110000'.
These values may be changed to fit the installation's needs.

2. Logon to a virtual machine with "E" class privilege and a virtual machine
size at least X' 12000' bytes larger than the value represented by the
SYSPGNM parameter above.

3. Access the disk on which the DISPLAY EDITING SYSTEM is to reside as
your' A' disk. Be sure the disk contains at least 280 eMS data blocks.

4. Attach the installation tape to your virtual machine as 181.

5. Enter the CMS command "TAPE LOAD".

6. Enter the command INSTED xxxxxx, where xxxxxx is the name of the
EDGAR DCSS assigned in step one (1) above. You will be prompted for
any additional information or errors encountered. NOTE: The use rid
from which you invoke INSTED will require 'E' privilege class for success
ful operation.

The EDGAR component of the DISPLAY EDITING SYSTEM may be regenerat
ed by using the INSTED exec. The INSTED exec when entered with one (1)
entry parameter will generate the version of EDGAR which is capable of
running in the DCSS. If EDGAR is generated in this manner and the DCSS
cannot be loaded, EDGAR will be executed from the user program area
(X'20000'). The INSTED exec when entered with no parameters will generate
the version of EDGAR which is capable of running only from the user program
area. This form should be used if the DCSS will never be loaded.

Installation Procedures 53

Installation Procedures 54

· Index

Advanced Editing Facilities 43
AUTOSAVE 42
CLEAR key 17
COMMAND HOLD option 18
Command Stacking 18
Command Synonyms 7
CTL option (ENTER command) 19
Display Processor 3
ECOMMAND 48
EDGAR $PROFILE 5
Editing Command Processor 4
Edit Levels 19
ENTER key 17
File-ID Area 10
Fixed-Length Records 32
I/O Processor 3
Logical Displays 10,22
Logical Screens 13,24
Logical Tabbing 6,16
Null characters 34
PA (Program Access) keys 16
PF (Program Function) keys 6,31,46
Post -Processing 18
Screen formatting 9,22
Screen Operation Simulation 43 -

Screen Processing Order 15
sEQ8 option (ENTER command) 19
Type I commands 18

CANCEL 18
ENTER 19
FILE 22
FORMAT 22
QUIT 24
SAVE 24
SCREEN 24

Type I I commands 25
ADD 25
BACKWARD 25
BOTTOM 25
CASE 25
CHANGE 26
CMS 27
COpy 27
CP 27
DELETE 27
DOWN 28
DSPC 28
DSPF 28
DUP 28
FIND 28
FORWARD 28
GETFILE 29

Index 55

'INPUT 29
INSERT 30
LEFT ,30
LOCATE 30
LOCATE (negative) -30
MOVE 31
PFn 31
POINT 31
PUTFILE 31
RECFM 32
REPEAT 32
REPLACE 32
RIGHT 33
SEARCH 33
SERIAL 33
SET 33
SHIFT 35
STACK 35
TABS 35
TOP 36
UFIND 36
ULOCATE 36
UP 36
USEARCH 36
VIEW 36
ZONE 37
.xxxx 37
:xxxx 37
$XXXX 37
nnnnn 38

Type III commands 39
< 40
/ 40
" 40
A 40
D 40

UPDATE option (ENTER command) 19
Variable-Length Records 32

Index 56

SH20",1965·0

--... - H

-~--- --...-.
-. ----- - ---

-~- ... -
-~-"-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant. Route 9, North Tarrytown. N.Y .• U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601

o
en'
"Q.
OJ
-<
m
c..
~:
::l
to

en
-<
VI
r-+
CD

3
-+0
o ...,
()
$:
en

c
VI

!:g
VI

G>
C I

0:,
CD

~
::l
r-+
CD
c..
::l

C
en
?>
en
I
N
9
~

<.0
en
tn
6

~ E c
ClJ 0 E '+-
Q. til

::J -C
cr +-'

ClJ Cij
OJ ClJ
C til

°e 0
+-'

~ ClJ
Q.
ro

ro +-'

E "0
ClJ

"0 E
~ E ro
E ::J

OJ

8 I.-

::J ClJ

ro ..c
+-'

~
0
I.-

3: 0

E
ClJ

.:::
+-'

GJ
til

-0 C
0 GJ

a. til

GJ
2::

til ::J
::J til

II)
ro ClJ u a. c
ro ~ u
II) ::J
ClJ

~ 0. ro ro ClJ u:; a:

ClJ
+-'
0
Z

Display Editing System for eMS

Users Guide

SH20-1965-0

READER'S
COMMENT
FORM

. This manual is part of a library that serves as a reference sour~e for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication ..
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.
Note: Copies of IBlV! publications are not stock~d at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance i'n using your IBlV! system, to
your IBlV! representative or to the IBM branch office serving YOllr locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

\Vhatisyouroccupation? __ ____

Number of latest Newsletter associated with this pUblication: -----------------------------
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in thf' Frlitinn Nntirf' nn thp h~rk- nf th" tit!p n~Clp)

Re~der's Comment Form

Fold and tape Please Do Not Staple Fold and tape

... ,

111111

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 825
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

,. _Wi -- .111
we !P

EI·I l1li

iB"9MW
kWHi,§-;;,

I
I -
I
t
I
I
n
c ..
~
." o
ii
))
0"
:I
\0

r
:;-
III

o
iii'
"0
iii
-<
m
0.
~:
:J
to
Cf)
-< en
ro+
(t)

3
-h o ...,

C
en
(t) ...,
en

"'C
~.
:J
ro+
(t)

0.

:J

C
en
~
Cf)

I
~

C?
~

co
en .. 6

Fold and tape Please Do Not Staple

==..=. =® - -------- ~ ------ - - - ... ----_ ... ----.. -"-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
'. Town of Mount Pleasant. Route 9. North Tarrytown. N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y .• U.S.A. 10601

Fold and tape

