


Program Product 

SC28-6469-5 
File No. S370-24 

IBM CMS User's Guide 
for COBOL 

Program Numbers 5740-CB1 
5740-LM1 
5746-CB1 
5746-LM4 

Release 2.4 

---..- ------ -------- ~ ---- - - -------------_. -



Sixth Edition (August 1983) 

This is a major revision of, and makes obsolete, SC28-6469-4. 

This edition applies to OS/VS COBOL and DOS/VS COBOL, Release 2.4 of Program Products 
5740-CB1, 5740-LM1, 5746-CB1, 5746-LM4, and to any subsequent releases until otherwise 
indicated in new editions or technical newsletters. 

The changes for this edition are summarized under "Summary of Amendments" following the 
preface. Specific changes are indicated by a vertical bar to the left of the change. These bars will 
be deleted at any subsequent republication of the page affected. Editorial changes that have no 
technical significance are not noted. 

Changes are periodically made to the information herein; before using this publication in 
connection with the operation of mM systems, consult the latest IBM System/3 70 and 4300 
Processors Bibliography, GC20-0001, for the editions that are applicable and current. 

References in this publication to mM products, programs, or services do not imply that mM 
intends to make these available in all countries in which mM operates. Any reference to an mM 
program product in this publication is not intended to state or imply that only mM's program 
product may be used. Any functionally eqUivalent program may be used instead. 

Publications are not stocked at the address given below; requests for mM publications should be 
made to your mM representative or to the mM branch office serving your locality. 

A form for readers' comments is provided at the back of this publication. If the form has been 
removed, comments may be addressed to mM Corporation, P.O. Box 50020, Programming 
Publishing, San Jose, California, U.S.A. 95150. mM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1972, 1974, 1976, 1981, 1983 



PREFACE 

This publication is intended for the COBOL programmer who is using or is 
planning to use the following program products under the control of the 
Conversational Monitor System (CMS) in the virtual machine environment of 
Virtual Machine Facility/370 (VM/370) and Virtual Machine/System 
Product (VM/SP): 

• IBM OS/VS COBOL Compiler and Library (5740-CBl) 

• IBM DOS/VS COBOL Compiler and Library (5746-CBl) 

In this publication, the term COBOL applies to the COBOL program 
products listed above, unless a more restrictive wording is used. Similarly, the 
term OS is used to refer to both OS and OS/VS; DOS to DOS and DOS/VS. 

It is assumed that the user has a basic understanding of the CMS component 
and that user of VM/370 or VM/SP, also knows how to write COBOL 
programs, and is familiar with the contents of the latest editions of the 
following prerequisite publications. 

OS/VS COBOL: 

• IBM OS/VS COBOL Compiler and Library Programmer's Guide, 
SC28-6483 

• IBM Virtual Machine Facility/370: CMS User's Guide, GC20-1819 

• IBM Virtual Machine Facility/370: CMS Command and Macro Reference, 
GC20-1818 

• IBM Virtual Machine Facility/370: Terminal User's Guide, GC20-1810 

• IBM Virtual Machine Facility/370: System Messages, GC20-1808 

• IBM Virtual Machine Facility/370: Operating Systems in a Virtual Machine, 
GC20-1821 

• IBM Virtual Machine Facility / 370: CP Command Reference for General 
Users, GC20-1820 

DOS/VS COBOL: 

• IBM DOS/VS COBOL Compiler and Library, Programmer's Guide, 
SC28-6478 

• IBM Virtual Machine/System Product: CMS User's Guide, SC19-6210 

• IBM Virtual Machine/System Product: System Product Editor Command and 
Macro Reference, SC24-5221 

• IBM Virtual Machine/System Product: System Product Editor User's Guide, 
SC24-5220. 

• IBM Virtual Machine/System Product: EXEC2 Reference, SC24-5219 

The purpose of this publication is to provide the COBOL programmer with a 
fundamental understanding of how to properly enter the pertinent CMS 
commands to invoke the OS or DOS COBOL compiler under CMS. 

Under CMS, the OS/VS COBOL compiler can accept and compile any 
COBOL source program that it can accept and compile under OS/VSl and 
OS/VS2. The object code generated by the OS/VS COBOL compiler under 

Preface iii 



iv ffiM CMS User's Guide for COBOL 

CMS can be executed under control of OS/VSl and OS/VS2 or it can be 
executed under CMS with the restrictions noted under "Restrictions on Using 
OS COBOL Under CMS." 

Under CMS, the DOS/VS COBOL compiler can accept and compile any 
COBOL source program that it can accept and compile under DOS/VSE. The 
object code generated by the DOS/VS compiler under CMS can be executed 
under control of DOS/VSE or it can be executed under CMS with the 
restrictions described under "Restrictions on Using DOS COBOL Under 
CMS." 

Although this publication reviews some of the concepts, terminology, and 
procedures that are introduced in the prerequisite publications, it does not 
attempt to explain everything you must know about CMS, VM, and COBOL 
to program successfully in this environment. You are expected to extrapolate 
a great deal of information from other publications. 

• IBM OS COBOL Interactive Debug Terminal User's Guide and Reference, 
SC28-6465, contains information about how to use the program product 
mM OS COBOL Interactive Debug (5734-CB4) to debug an OS COBOL 
program under CMS. 

• IBM VS COBOL for OS/VS, GC26-3857, describes the COBOL 
language, its rules and restrictions, as implemented for OS/VS (Release 2). 

• IBM VS COBOL for DOS/VSE, GC26-3998, describes the COBOL 
lanaguage, its rules and restrictions, as implemented for DOS/VSE. 

This publication is divided into the following sections: 

• An Introduction, which summarizes the facilities of CMS and includes 
sample terminal sessions, showing the commands necessary to create, 
compile, link-edit, and execute an OS or a DOS COBOL program in CMS. 

• A section for OS/VS COBOL programmers, describing the commands 
necessary to compile, load and execute OS/VS COBOL programs, as well 
as the commands necessary to identify and manipulate OS data sets and 
CMS files. 

• A short section describing how to prepare a COBOL program using CMS. 

• A section for DOS COBOL programmers, describing the commands 
necessary to compile, link-edit, and execute DOS COBOL programs, as 
well as the commands available to manipulate DOS and CMS files. 

The sections on OS and nns COBOL programming each contain a list of the 
CMS error messages produCt,d by the commands that invoke the compilers, as 
well as a summary of the restrictions on executing COBOL programs in CMS. 

References to Virtual Machine Facility/370 (often abbreviated VM/370) are 
for OS users; Virtual Machine/System Product (VM/SP) for nos users. 



SUMMARY OF AMENDMENTS 

August 1983 

New: Progmmming Feature 

Maintenance: Documentation 

The MIGR option of the COBOL command is described. MIGR flags major 
COBOL language elements that are no longer supported or are supported 
differently by the VS COBOL II compiler, Program Number 5668-958. 

Other corrections and clarifications have been made. 

DOS/VS COBOL Release 3, 15 May 1981 

Miscellaneous Changes 

New: Programming Feature 

The text has been updated to reflect changes required for DOS/VS COBOL 
Release 3. Major features include: 

• Enhanced VSAM support 

• Expanded physical sequential file capabilities 

• Expanded library facilities 

• Powerful data manipulation 

• Extended computational facilities 

• User-defined collating sequences 

• Eased programming rules 

• COBOL source program debug language 

• 1974 ANS Standard language 

References to the IBM VS COBOL for DOS/VSE publication have been 
added. 

Maintenance: Documentation Only 

Minor clarifications and corrections have been made, primarily in the OS/VS 
areas of passing execution-time parameters and using VSAM. 

Summary of Amendments v 





CONTENTS 

Preface .... : ....................................................................................................... iii 

Summary of Amendments ................................................................................. v 

Figures ............................................................................................................. ix 

Introduction............................................................................................. ........ 1 
What You Must Know to Use CMS ............... ............ ........................... ......... 1 
How to Start and End a Terminal Session...................................................... 1 

VMLogon .......................................•.......................................................... 2 
VM Logoff ................................................................................................. 2 

How to Enter Information at the Terminal. .................................................... 3 
How to Enter the CMS Commands. ...... ................. ........................................ 3 

Syntax of a Command................................................................................ 3 
Typing the Command............ ... ... .... ......... ..... ....... .......... ................... ......... 5 

How to Use the CMS File Conventions ..................................... .................... 6 
File Identifier.............................................................................................. 6 

Using the CMS Features ................................................................................. 7 
CMS Commands ................... ... ....... .............. ................... ................. ......... 7 
Execution Control...................................................................................... 7 
Debugging Facilities ................................................................................... 7 
Utilities....................................................................................................... 7 
Control Commands.................................................................................... 7 
Library Facilities................................................................................... ..... 8 

Preparing a COBOL Source Program With the CMS Editor ........................... 9 
Entering Input Lines.......... ........................................... ........ ........... ... ..... ....... 9 
Filing a Source File ....................................................................................... 10 
Serializing Records........................................................................................ 10 
Renaming Existing Source Files .................................................................... 11 
Sample Terminal Session for an OS User ..................................................... 11 
Sample Terminal Session for a DOS User ..................................................... 13 

Using OS COBOL Under CMS .................................................................... 15 
The COBOL Command ................................................................................ 16 

Entering Command Options....................................... ........ ...................... 26 
Copying OS COBOL Files From CMS MACLms ...................................... 28 
Files Created by the OS COBOL Compiler ................................................. 29 

TEXT Files............................................................................................... 29 
LISTING Files................................ .......................................................... 29 

Error Messages From the COBOL Command ............................................. 31 
How to Load and Execute an OS COBOL Program .................................... 33 

Passing Execution-Time Parameters .................... ......................... ........... 34 
Defining Program Input and Output Files....... ........ ...... ................ ............... 34 

Using VSAM Files in CMS ...................................................................... 36 
Special Considerations ............................................................................. 37 

Restrictions on Using OS COBOL Under CMS ........................................... 37 
Executing Programs Under OS, OS/VSl, and OS/VS2 .............................. 38 

Using DOS COBOL Under CMS ................................................................. 39 
Accessing Disks Under CMS ........................................................................ 39 
Compiling DOS Source Files ................... ............ ......... ................... ............. 40 
The FCOBOL Command ............................................................................. 40 

Specifying Compiler Options-OPTION Command ............................... 41 
Specifying Options with the CBL Statement................................... ......... 43 

Contents vii 



Copying COBOL Files From DOS Source Statement Libraries................... 44 
Files Used by the Compiler ........... .... ...... .... ..... ........... ...... ................. .......... 44 
Error Messages From the DOS COBOL Compiler ...................................... 45 
Output From the Compiler .. .... ..................................... .................. .............. 46 

The Output LISTING File ........................................................................ 47 
The CMS TEXT File....................................... ......................................... 47 

Link-Editing and Executing DOS COBOL Programs .................................. 48 
Executing DOS COBOL Programs ........................................................... 48 

Setting the UPSI Byte .............................................. ....... ................ .............. 49 
Defining Program Input and Output Files.. ................ ................ ........ ..... ..... 49 

Identifying VSAM Files........... ........................................................ ........ 50 
Restrictions on Using DOS COBOL in CMS ...... ......................................... 51 
Executing Programs Under DOS/VS ........................................................... 52 

Appendix A: Sample EXEC Procedures for DOS Users ................................ 53 
Sample EXEC for a COBOL Compile ................................................ 53 
Sample COBOL Compile and Link-Edit EXEC Procedure ................ 54 
Sample COBOL Compile, Link-Edit, and Execute 

EXEC Procedure ............................................................................... 55 

Appendix B: Reserved FDetype Descriptions Pertinent to COBOL Users ...... 57 
OS COBOL Reserved Filetype Descriptions ....................................... 57 
DOS/VS COBOL Reserved Filetype Descriptions ............................. 57 

Index ............................................................................................................. 59 

viii mM CMS User's Guide for COBOL 



FIGURES 

Figure 1. Entering information at the terminal involves various 
operations ...... .... .......... ......... ........... ....... ........... ..... ... ....... .... ......... 3 

Figure 2. CMS commands grouped according to their uses......................... 4 
Figure 3. COBOL command example ......................................................... 4 
Figure 4. CMS notation defines how to select and use COBOL command 

operands ....................................................................................... 5 
Figure 5. Sample terminal session for an OS user ...................................... 12 
Figure 6. Sample terminal session for a DOS user ..................................... 14 
Figure 7. OS compiler option defaults.. ................. ........................ ............ 27 
Figure 8. OS compiler output........ ........ ..................... ............ ....... ............ 30 
Figure 9. DOS compiler output............................. ........... ............. ............ 46 

Figures ix 





INTRODUCTION 

The Conversational Monitor System (CMS) is a time-sharing system that 
, provides an extensive range of conversational programming capabilities at a 

remote terminal. The CMS command language uncomplicates file and data 
handling through the use of simple terminal commands. 

Using CMS commands, COBOL source programs can be processed in the 
CMS environment: 

• In OS/VS COBOL under CMS, you can use the COBOL command to 
both invoke and control the compilation of OS/VS COBOL source 
programs. The COBOL command invokes the OS/VS COBOL Compiler, 
and processes the OS/VS COBOL source program in the CMS file you 
specify. You can specify compiler options in the operand field of the 
COBOL command. Execution of the compiled program can be in either the 
as environment or, with restrictions, in the CMS environment. 

• In DOS/VS COBOL, you can invoke and control the compilation of 
DOS/VS COBOL source programs under CMS through the FCOBOL and 
OPTION commands. The FCOBOL command invokes the DOS/VS 
COBOL compiler, which then processes the DOS/VS COBOL source 
program in the CMS file you specify. You can specify compiler options in 
the operand field of the OPTION command or use the default system 
options. Execution of the compiled program can be either in the DOS/VS 
environment, or, with restrictions, in the CMS environment. 

The Control Program (CP) component of VM/370 or VM/SP creates a 
simulated computer for the programmer to use on a time-sharing basis. The 
environment of VM/370 or VM/SP is called a "virtual machine 
environment" because there is a functional simulation of a real computer and 
its associated input/output devices. 

What You Must Know to Use CMS 
Before you begin a terminal session, you should know how to perform the 
operations that are described briefly in this part of the publication. A quick 
overview of the CMS conventions and procedures presented here may bring 
to your attention those areas of CMS that deserve greater study in the 
prerequisite publications. 

How to Start and End a Terminal Session 
Before you can use the facilities of the CMS component of VM/370 or 
VM/SP, you must have a valid user identification (userid) and a valid 
password. These required identifiers are assigned to you by the person 
responsible for VM/370 or VM/SP at your installation. In a process that is 
called logon, you identify yourself to the system by entering your userid and 
password. When you are finished using the system, you signal your wish to 
stop by performing a logoff. The period between logging on and logging off is 
called a terminal session. 

Note: Throughout this text, entries you make at the terminal are shown in 
lowercase letters, and OUTPUT THE SYSTEM TYPES AT THE 
TERMINAL IS SHOWN IN UPPERCASE. These conventions are used to 
illustrate clearly what you must type in each example. 

Introduction 1 



YM Logon 

YMLogoff 

2 IBM CMS User's Guide for COBOL 

First, turn on your terminal and establish a connection to your computer. For 
detailed information regarding how to operate your terminal, or how to dial a 
multiaccess system to establish communications with a computer, see IBM 
VM/SP eMS User's Guide or IBM VM/370 Terminal User's Guide. 

. Once a communications line is established, your system types a message with 
contents and format that depend upon your type of terminal. Assuming that 
you have an mM 2741 Communications Terminal with a standard mM 
SELECTRIC ® character set, the system prints this message for example: 

xxxxxxxxxxxx vrn/370 online 

The Xs are meaningless characters which you should ignore. VM/370 
ONLINE tells you that a communications line is established. You press the 
attention (A TIN) key once, and the system responds by unlocking your 
keyboard. 

In this example, where your userid is USEROO, you identify yourself to the 
system and press the RETURN key. Your entry and the system response 
follows: 

login userOO 
ENTER PASSWORD: 

The system response shows it has accepted your userid. You must type your 
password and press the RETURN key. Assuming your 2741 terminal is 
equipped with the Print Inhibit feature, your password is not printed. 

If your password is accepted and your logon is complete, the system issues the 
following message: 

LOGON AT 10:45:15 EST ON TUESDAY 03/29/76 

This gives you the time and date you have entered the VM environment. 

Now you must initialize CMS. You enter the following: 

ipl cms 
eMS ... VERSION 3.0 03/29/76 10:46:15 

In this example, your entry, followed by pressing the RETURN key, causes a 
copy of the CMS nucleus to be brought into storage from disk. Once the 
system issues the CMS ... message with the version and modification level, the 
keyboard is unlocked, and you may enter any CMS command. 

If you are going to use the DOS simulation capabilities of eMS, and are going 
to use the DOS/VS COBOL compiler, you must enter the following 
commands: 

access 192 c 
set dos on c 

where "c" refers to the DOS system residence volume. 

To end your terminal session, enter the following: 

logoff 
LOGOFF AT 12.15.30 03/29/76 

The system gives you the logoff time and date. Logging off ends your terminal 
session, and you may turnoff the power at your terminal. 



How t() Enter Information at the Terminal 
Although every terminal has a typewriter-like keyboard through which you 
enter information to the system, the features of each keyboard vary from 
terminal to terminal. For a complete description of features, variations, and 
restrictions as they apply to VM/370, see IBM VM/370 Terminal User's 
Guide; as they apply to VM/SP, see IBM VM/SP eMS User's Guide. 

Figure 1 shows how various operations are performed when entering 
information at an IBM 2741 Communications Terminal: 

Operation How it is accomplished 

enter a line Type a line of input in upper- or lowercase. (Input is shown in lowercase in 
this publication to distinguish it from system output.) A line may not exceed 
130 characters. 

end a line Press the RETURN key. 

delete a character Type the character-delete symbol (@) to delete the preceding character in 
an input line. 

delete characters Type n character-delete symbols to delete the preceding n characters in an 
input line. 

delete a line Type the line-delete symbol (¢) to delete the entire input line. 

Figure 1. Entering information at the terminal involves various operations. 

How to Enter the CMS Commands 

Syntax of a Command 

CMS commands are merely requests for work, and they are your way to 
communicate to the system. You enter a command by typing it, along with its 
operands, at the terminal. Figure 2 on the next page lists the CMS commands 
according to their uses. 

A command consists of a command name followed, usually, by one or more 
operands. A command name is usually a familiar English word, or 
combination of words, that describes the function of the command. For 
example, the COBOL command invokes the OS/VS COBOL Compiler, a 
language processing program that translates as COBOL source statements 
into machine language object code. The format of the command is described 
fully later in the part of this publication called "The COBOL Command." The 
format of the DOS COBOL command (FCOBOL) is described in the section 
entitled "The FCOBOL Command." 

Each CMS command has a general purpose and a specific use. Figure 2 lists 
CMS commands, and their capabilities, that the COBOL programmer will find 
useful. 

Operands provide the specific information that the command requires to 
perform the work that you request. For example, the operands of the COBOL 
command identify which file contains the source program you want to compile 
and which compiler options you wish to select. Figure 3 illustrates the syntax 
of a CMS command, using the COBOL command as an example. 

Introduction 3 



Positional Operands 

4 mM CMS User's Guide for COBOL 

CMSCommand CMSCommand 
General Use (OS COBOL) (DOS/VS COBOL) 

Initialization SET DOS ON 

MACLm SSERV, DSERV, 
TXTLm PSERV, RSERV, 

DOSLm 

File handling AMSERV AMSERV 
control COPYFILE COPYFILE 

EDIT EDIT 
ERASE ERASE 
FILEDEF ASSGN/DLBL 
LISTDS LISTDS 
LISTFILE LISTFILE 
MOVEFILE MOVEFILE 
PRINT PRINT 
PUNCH PUNCH 
READCARD READCARD 
RENAME RENAME 
STATE STATE 
TYPE TYPE 

COBOL COBOL OPTION 
compilation FCOBOL 
control 

Program DOSLKED 
execution 
control EXEC EXEC 

GENMOD 
GLOBAL GLOBAL 
LOAD FETCH 
LOADMOD 
RUN 
START START 

Debugging DEBUG DEBUG 
control SVCTRACE SVCTRACE 

TESTCOB 

Figure 2. CMS commands grouped according to their uses. 

Specific Purpose 

Initialize CMS/DOS 
Environment 
Manipulate libraries 

File creation-input from 
terminal, card, disk, or tape 
File maintenance-adding, 
changing or deleting data; 
processing an existing file 
against an update file; 
copying,combining,moving, 
splitting, and listing disk 
files 

Compiling source programs 
written in COBOL 
language 

Link-editing DOS object modules 

Loading and running COBOL 
programs 

Monitor program execution; 
examine and change storage 

Positional operands are values that follow the command name in a p~escribed 
sequence. The value may be one or more names, symbols, or integers. 
Examples of positional operands are filename and yyyyyyy in Figure 3. 

Command Operands 

COBOL filename ([SIZEJmI.Y.Y.Y] [DMAP I NODMAP] [SXREF I NOSXREF]) 

Figure 3. COBOL command example. 

The COBOL command has many more operands than are shown here. But 
Figure 3 illustrates how the format of a CMS command is presented. You 
must replace "filename," a positional operand, with the name of the actual 
CMS file that contains the source program you want to compile. Similarly, you 
must replace "yyyyyyy" with the actual value of the SIZE option. Positional 
operands are presented in lowercase in CMS formats to show that you must 
replace the name with a value when you enter the command and its operands 
at the terminal. 



Keyword Operands 

Delimiters 

Notation Conventions 

Typing the Commllnd 

Keyword operands are presented in uppercase in CMS formats to show that 
you' must type them exactly as they are shown. In some cases you may specify 
a value with a keyword (such as "yyyyyyy" with "SIZE"). 

When you type a command, separate the command name from the operand by 
one or more blanks, and also separate operands by one or more blanks. 

Figure 4 summarizes the notations used to define CMS command syntax: 

Name 

parentheses 

underscore 

braces 

brackets 

ellipsis 

suffixes 1,2,N 

or symbol 

Symbol Meaning 

( ) Parentheses must be typed exactly as they appear whenever any 
of the operands enclosed within them are specified. The closing 
parenthesis is optional. 

{ } 

[ ] 

1,2,N 

This indicates the default option, which you need not type if it is 
the one you want. 

These group related items; you must choose one of the items. 

These also group related items; you may choose one of the items. 

This indicates that the preceding item(s) may be repeated one or 
more times in succession. 

These suffixes denote the first, second, and Nth items 
respectively. 

This symbol indicates you must choose one of two (or three) 
operands. 

Figure 4. CMS notation defines how to select and use COBOL command operands. 

According to the notation in Figure 3, you must type the parentheses if you 
specify any of the operands enclosed within them; you may specify the SIZE 
option; you may specify DMAP or NODMAP, and SXREF or NOSXREF; 
and the defaults NOD MAP AND NOSXREF are assumed if you specify 
neither choice. 

Once you have initialized CMS according to procedures explained earlier in 
"VM Logon," you may enter any CMS command merely by typing it at the 
terminal. After you have typed the command name plus the required operands 
and any optional operands you want to include, correct any mistakes and 
press the RETURN key. 

Note: Although you can type your commands in upper- or lowercase, you may 
want to choose lowercase so that you can easily distinguish your input at the 
terminal from the system's output. The examples in this publication show 
input in lowercase AND OUTPUT IN UPPERCASE for this reason. 

Introduction 5 



How to Use the CMS File Conventions 

File Identifier 

6 IJ3M CMS User's Guide for COBOL 

You must understand the CMS file conventions in order to use the various 
file-handling facilities of CMS. Whereas you may never need to manipulate 
files very much, you will always need to specify a file in the operand field of 
the COBOL or FCOBOL command. This file, which contains the source 
program you want to compile, must be available to CMS before you invoke 
COBOL compilation. Because CMS files may be stored on disk, cards, or 
magnetic tape, you must make CMS aware of where the file resides. The 
default medium is disk. 

In as, you use the FILEDEF command (and/or DLBL in the case of VSAM) 
to achieve this function. 

In DOS/VS, you use the ASSGN and DLBL commands. 

All of these commands are explained fully in VM/370 eMS User's Guide and 
in VM/SP eMS User's Guide. Examples are shown in the sample terminal 
session at the end of this section. 

Each file that resides on disk must have a unique identifier that consists of 
three components: filename, filetype, and filemode. You must specify this 
identifier, or a portion of it, in the operand fields of various CMS commands 
that must access user and system files. For example, you must specify the 
filename in the operand field of COBOL. 

The filename must be any combination of eight-or-fewer alphanumeric 
characters (A-Z, 0-9, #, @, $). This user-supplied name has no special 
implications for CMS. 

The filetype may be any combination of eight-or-fewer alphanumeric 
characters. Certain filetypes imply specific characteristics to CMS. Although 
you may assign any of the reserved filetypes to any file you create, you must 
ensure that the contents of your file conform to the required format for each 
filetype. Commands that use particular filetypes do not execute successfully 
when the contents of the file are not in the expected, and required, format. 

Files that contain COBOL source code must have a file type of COBOL. How 
to create such a file and ensure that the filetype, as well as the other fields of 
the identifier, are correct is described later in "Preparing a COBOL Source 
Program with the CMS Editor." 

The filemode consists of two characters, one which indicates the disk directory 
in which the file resides and the other which specifies certain user-determined 
attributes such as whether the file may be written or read. 

Filemodes are described in detail in VM/370 eMS User's Guide and in 
VM/SP eMS User's Guide. 



Using the eMS Features 

CMS Commands 

Execution Control 

Debugging Facilities 

Utilities 

Control Com1lUlnds 

The following features are included here to provide a brief overview of the 
various operations you can perform, along with COBOL compilation, under 
CMS. See the prerequisite CMS publications for additional information on the 
topics covered here. 

A CMS command is the name of a program resident in a discontiguous saved 
segment (DCSS), in the nucleus or on any CMS disk, or the name of a file 
containing CMS commands. The CMS commands are summarized according 
to their uses in Figure 2 and are explained in detail in VM/370: CMS 
Command and Macro Reference and in IBM VM / SP: System Product Editor 
Command and Macro Reference. Usage information is contained in VM/370: 
CMS User's Guide and in VM/SP User's Guide. 

The execution control commands allow you to load your object programs 
from data sets called TEXT files (the required filetype for object programs is 
TEXT) and then to execute the object program. To simplify execution 
control, you can create your own command language or command procedures 
and place logic statements in the file with the commands so that the order of 
command execution can be dynamically set or altered. You may use the 
EXEC command to execute the command procedures. 

A permanent, nucleus-resident debugging facility is available which enables 
you to interrupt program execution at predetermined points and then to 
examine and modify if necessary the registers, program status word (PSW), 
and storage. 

In OS, the program product mM OS COBOL Interactive Debug (5734-CB4) 
is also available for debugging OS COBOL programs under CMS. (The TEST 
compiler option and the TESTCOB command are explained later in this 
publication. ) 

The utility functions in CMS enable you to copy tapes, compare and sort 
CMS disk files, create VSAM catalogs, data spaces and files, copy the 
contents of a 3270 screen on a 3284 printer, and dump files either by name 
onto the console or by cylinder location onto the offline printer. You can also 
dump files to tape and reload them onto disk. 

The control commands enable you to suppress and restore the typed output at 
your terminal, redefine the line-end, character-delete, and line-delete symbols, 
rename commands, and define abbreviations. 

Introduction 7 



Library Facilities 

8 IBM CMS User's Guide for COBOL 

OS users can create macro libraries, containing COBOL source statement 
copy files. These libraries, called MACLffis in CMS, can be manipulated 
using the MACLffi command. You can specify macro libraries to be searched 
at compilation time with the GLOBAL command. Similarly, you can use text 
libraries, or TXTLffis, to contain object modules that are referenced by other 
programs. 

DOS users can directly access the DOS/VS system residence file, and use the 
system or private source statement, relocatable, and core image libraries. By 
using the ASSGN and DLBL commands, you can copy from the source 
statement library at execution time. The CMS commands DSERV, SSERV, 
PSERV, and RSERValIow you to access and copy files from the DOS system 
or from private libraries. 



PREPARING A COBOL SOURCE PROGRAM 
WITH THE CMS EDITOR 

Entering Input Lines 

When you create a COBOL source file using the CMS Editor, you must assign 
a filetype of COBOL to the file. You can assign any eight-character filename 
you wish. If you are creating a new file, you must be sure not to assign a name 
that is the same as that of an existing COBOL file on the same disk. 

To create a COBOL file named MYFILE, you would enter 

edit myfile cobol 

The CMS Editor recognizes the filetype of COBOL, and assigns the following 
characteristics to the file: 

• Tab settings are 1,8, 12,20,28,36,44,68, 72, and 80. When you press 
the tab key on your terminal (or equivalent), the Editor will use these 
internal tab settings to provide the proper number of spaces on the input 
line. 

• All input is translated to uppercase characters, regardless of how you enter 
it, unless you first specify CASE M, to enter lowercase letters. For 
example, if you need to enter a program resPQnse or special identification 
in lowercase, you can specify 

case m 

in edit mode, insert the line, and then specify CASE U to continue having 
your input translated to uppercase. 

• All input lines are truncated in column 72. If you try to enter a line longer 
than 72 characters, the Editor truncates the line and issues the message 

TRUNCATED. 

followed by a display of the line as it was entered into the file. If you want 
to modify the line before continuing to enter input, you must enter a null 
line to return to edit mode. 

• Input records are automatically serialized in columns 76 through 80. 

When you are creating a source file, or adding lines to an existing file, you use 
the EDIT subcommand INPUT. For example, 

edit myfile cobol 
NEW FILE. 
EDIT: 
input 

You must press the tab key (or equivalent) in front of every line to ensure the 
proper spacing. In the examples below, the percent sign (%) indicates 
pressing of the tab key: 

Jidentification division. 
Jprogram-id. myprog. 
Jenvironment division. 

Preparing a COBOL Source Program With the CMS Editor 9 



Filing a Source File 

Serializing Records 

10 mM CMS User's Guide for COBOL 

If you display these lines, they appear as they have been interpreted by the 
Editor: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. MYPROG. 
ENVIRONMENT DIVISION. 

Note that the pressing of the tab key resulted in the input lines beginning in 
column 8. Pressing the tab key twice before entering text on an input line 
would result in the text being aligned in column 12. Thus, the first two 
COBOL tab settings correspond to Area A and Area B for a COBOL source 
file. 

The publications IBM VS COBOL for OS/VS and IBM VS COBOL for 
DOS/VSE describe how to write COBOL programs in standard format. If 
you are using a 3270 terminal, there is no functional tab key supported by 
VM. 

When you have finished creating a source file, you may want to use the CMS 
Editor to make corrections, additions, and deletions. Then, when you are 
ready to save the file on a CMS disk, issue the subcommand 

file 

To store the file on disk. 

You can place serial or line numbers in columns 1 through 5 of your COBOL 
source files by using the EDIT subcommand LINEMODE. After you enter 
the EDIT environment, and before you enter input mode, enter the 
subcommand 

linemode left 

You can then use line-number editing to create the file. When you are in input 
mode, the Editor prompts you to enter an input line: 

10%This is the first line. 
20%This is the second line. 

The Editor right-aligns the serial numbers, and pads with blanks to the left. 

When you are in edit mode, and using EDIT subcommands to make changes 
to the file, you can use the LINEMODE subcommand to refer to lines by line 
number. For example, if you enter 

30 

the Editor's current line pointer is positioned at the line with a line number 
of 30. 

Note: If you use line-number editing for a COBOL file, you might wish to use 
the PROMPT subcommand to specify increments greater than 10 for input 
lines in the file you are creating. Once a COBOL file has been created with 
line numbers on the left, there is no way for the Editor to resequence the file 
numbers. 

If you want to place sequence numbers in columns 76 through 80, you can use 
the SERIAL subcommand. 



Renaming Existing Source Files 
Because all disk files to be used as input to the compiler must have a filetype 
of COBOL, if you have a COBOL source file that exists with some other 
filetype, you can rename it using the CMS RENAME command: 

listfile myfile * 
MYFILE SOURCE A1 
R; 
rename myfile source * myfile cobol * 
R; 

The input file, MYFILE SOURCE, must be in the proper format for the 
COBOL compiler. 

Sample Terminal Session for an OS User 
A terminal session is everything that happens at your terminal between logon 
and logoff. The sample terminal session shown in Figure 5 shows you how to 
do the following, where the numbers refer to the numbers in the sequence 
below: 

1. Create the source program 

2. Compile the program and create a text file of the object program 

3. Create an input file and identify it 

4. Load the COBOL subroutine library and program 

5. Execute the program 

The entire terminal session is shown below to provide an overview of the 
program creation, compilation, and development process. Details are 
contained in the section "Using OS COBOL Under CMS." 

Preparing a COBOL Source Program With the CMS Editor 11 



12 mid eMS User's Guide for COBOL 

edit myfile cobol 
NEW FILE. 
EDIT: 
input 
INPUT: 
00010%identification division. 
00020%program-id. myprog. 
00030%environment division. 

(enter a null line by pressing the RETURN KEY) 
EDIT: 
file 
R; 

cobol myfile quote 

(Progress, diagnostic, and compiler messages 
appear here.) 

R; 

edit infile data 
NEW FILE. 
EDIT: 
input 
INPUT: 
alpha 
bravo 
charlie 

(enter a null line by pressing the RETURN KEY) 
EDIT: 
file 
R; 
filedef ddfile disk infile data 
R; 

global txtlib vscoblib 
R; 

load myfile 
R; 

start 
EXECUTION BEGINS ... 

R; 

Figure 5. Sample terminal session for an OS user. 

1 

2 

3 



Sample Terminal Session for a DOS User 
A terminal session is something that happens at your terminal between logon 
and logoff. The sample terminal session in Figure 6 shows how to do the 
following, where the numbers refer to the sequence below: 

1. Create the source program file 

2. Access the DOS system core/image library as file mode C and initiate the 
CMS/DOS enrivonment 

3. Set compiler options (such as LISTX), assign the source input device, in 
this case, your CMS A-disk, and compile the program 

4. Examine the compiler output listing 

5. Create an input file 

6. Link-edit the object program and identify the DOS phase library 

7. Identify the input file 

8. Load the program into virtual storage 

9. Execute the program 

To provide an overview of the program creation, compilation, and execution 
process, the entire terminal session is shown below. Details are contained in 
the section "Using DOS COBOL Under CMS." 

Preparing a COBOL Source Program With the CMS Editor 13 



14 mM CMS User's Guide for COBOL 

edit myfile cobol 
NEW FILE. 
EDIT: 
input 
INPUT: 
cbl quote 

00010%identification division. 
00020%program-id. myprog. 
00030%environment division. 

(enter a null line by pressing the RETURN key) 
EDIT: 
file 
R; 
access 192 c 
C (192) R/O_DOS 
R; 
Set dos on c 
R; 
option listx 
R; 
assgn sysipt a 
R; 
fcobol myfile 
R; 
edit myfile listing 
EDIT: 
locate/message 

(Progress, diagnostic, and compiler messages 
appear here.) 

R; 
edit infile data 
NEW FILE. 
EDIT: 
input 
INPUT: 
alpha 
bravo 
charlie 

(enter a null line by pressing the RETURN key) 
EDIT: 
file 
R; 
doslked myfile mylib 
R; 
global doslib mylib 
R; 
assgn sys009 a 
R; 
dlbl ddfile a cms infile data (sys009 
R; 
fetch myfile 
PHASE MYFILE ENTRY POINT AT LOCATION 020000 
R; 
start 
EXECUTION BEGINS •.. 

R; 

Figure 6. Sample terminal session for a DOS user. 

1 

5 



USING OS COBOL UNDER CMS 

When you enter the COBOL command at your terminal, it invokes the 
OS/VS COBOL Compiler, a language processing program that translates 
COBOL source statements into machine-language object code. 

When you invoke the COBOL command, you must specify the filename of 
the COBOL source file, and, optionally, any compiler options that you want 
in effect for the compilation. These options are equivalent to the options you 
would specify on the P ARM parameter of an EXEC job control statement, if 
you were invoking the compiler under OS. 

When the compiler finishes executing, it displays any messages indicating 
compilation errors on your terminal, as well as writing them into the 

LISTING file, which is described below. You can usually identify a problem 
from the diagnostic message you see displayed at the terminal, so that you do 
not have to examine a printed listing file. When you have an error, you can 
correct the source file immediately and recompile it. 

Under CMS, object files created by the compiler have a filetype of TEXT. 
TEXT files can be loaded into your virtual storage area and executed in CMS 
using the LOAD and START commands. 

Using OS COBOL under CMS 15 



The COBOL Command 
The format of the OS COBOL command is shown below (defaults are underscored): 

COBOL I CO !ilename([SIZEyyyyyy'y] [BUFyyyyy] [LINECNTnn)} 

[ADV I NOADV] 

16 mM CMS User's Guide for COBOL 

[BATCH I NOBATCH] 
[CDECK I NOCDECK] 
[CLIST I NOCLIST] 
[COUNT I NOCOUNT] 
[CSYNTAX I NOCSYNTAX] 
[DECK I NODECK] 
[DISK I PRINT I NOPRINT] 
[DMAP I NODMAP] 
[DUMP I NODUMP] 
[DYNAM I NODYNAM] 
[ENDJOB I NOENDJOB] 
[FDECK I NOFDECK] 
[FLAGE I FLAGW] 
[FLOWnn I NOFLOW] 
[LANGLVLll LANGLVL2] 
[LCOLl I LCOL2] 
[LIB I NOLIB] 
[LOAD I NOLOAD] 
[LSTCOMP I NOLST I LSTONLY] 
[LVLy I NOLVL] 
[Ll20 I Ll32] 
[MIGR iNOMIGR] 
[NAME I NONAME] 
[NUM I NONUM] 
[OPI'IMIZE I NOOPf] 
[OSDECK] 
[PMAP I NOPMAP] 
[QUOTE I APOST] 
[RESIDENT I NORES] 
[SEQ I NOSEQ] 
[SOURCE I NOSOURCE] 
[SPACEll SPACE21 SPACE3] 
[STATE I NOSTATE] 
[SUPMAP I NOSUPMAP] 
[SXREF I NOSXREF] 
[SYMDMP I NOSYMDMP] 
[SYNTAX I NOSYNTAX] 
[SYSTI SYSX] 
[TERM I NOTERM] 
[TEST I NOTEST] 
[TRUNC I NOTRUNC] 
[VBREF I NOVBREF] 
[VBSUM I NOVBSUM] 
[VERB I NOVERB] 
[XREF I NOXREF] 
[ZWB I NOZWB] 



COBOL I co 
is the unique command word that must be entered in one of its two forms 
to invoke the OS COBOL compiler you're using. 

filename 
specifies the filename of the file to be compiled. The file must have a 
filetype of COBOL, which implies that the file contains fixed length 
records. 

You can compile a source file from a medium other than a CMS disk, for 
example, an OS disk, a tape, or your virtual card reader. If you need to do 
this, you must use the FILEDEF command to identify the COBOL input, and 
you must use a ddname of COBOL. For example, if the source file is in your 
card reader, enter the commands 

filedef cobol reader 
cobol testfile 

If the source file was on an OS disk accessed as your C-disk, the following 
sequence of commands would be used: 

filedef cobol c dsn test cds 
cobol testfile 

Output files produced by the compiler will have a CMS filename of 
TESTFILE, because that is the name specified on the COBOL command line. 
You can also compile a source file from an OS disk, using the FILEDEF 
command to identify the OS data set name of the file. The options that follow 
the filename control the COBOL compiler operation and output. You may 
specify these options in any order within a set of parentheses. If an option has 
an acceptable abbreviation, its abbreviation is included in the following pages. 

SIZEYY.m'YY I SIZEyyyK 
indicates the amount of virtual storage, in bytes, available for compilation. 
YY.m'YY is an integer from 131072 to 9999999 for OS/VS COBOL. 
9999999 instructs the compiler to obtain as much virtual storage as 
possible. The SIZE parameter can be given in multiples of K, where K = 
1024 decimal bytes. 

Default: 131072 is the default for OS/VS COBOL. 

BUFyyyyy I BUFyyyK 
indicates the amount of virtual storage to be allocated to buffers. If both 
SIZE and BUF are specified, the amount allocated to buffers is included in 
the amount of virtual storage available for compilation . .yyyyy is an integer 
from 4096 to 99999 for OS/VS COBOL. The BUF parameter can be 
given in multiples of K, where K = 1024 decimal bytes. 

If BUF is omitted, and SIZE is specified, the value of BUF for OS/VS 
COBOL is calculated as: 

SIZE-98304 + 4096 
4 

Defaults: For OS/VS COBOL, 4096 is the default if both SIZE and BUF 
are omitted. 

LINECNTnn I CNT 
indicates the number of lines to be printed on each page of the output 
listing. nn is a two digit number from 01 to 99. 

Default: If the parameter is omitted a value of 60 is assumed. 

Using OS COBOL under CMS 17 



18 mM CMS User's Guide for COBOL 

ADV 
specifies that records for files with WRITE ... ADV ANCING need not 
reserve the first byte for the control character. 

NOADV 
specifies that records for files with WRITE ... ADV ANCING need to 
reserve the first byte for the control character. 

BATCH I BAT 
specifies that the file named 'filename' consists of multiple programs 
and/ or subprograms to be compiled with a single invocation of the 
COBOL compiler. 

NOBATCHI NOBAT 
specifies that·a mUltiple program compilation is not being performed. 

CDECKICDE 
specifies that COpy statements are to be expanded in the reformatted deck 
requested through FDECK. 

NOCDECKINOCDE 
specifies that no COpy members will be expanded in the reformatted deck. 

CLISTI CLI 
specifies that a condensed listing of the compiler generated object code is 
to be produced. 

NOCLIST I NOCLI 
specifies that a condensed listing is not to be produced. 

COUNTICOU 
specifies that code is to be generated to produce verb execution summaries 
at the end of problem program execution. Each verb is identified by 
procedure-name and by statement number, and the number of times it was 
used is indicated. In addition, the percentage of verb execution for each 
verb with respect to the execution of all verbs is given. Also, a summary of 
the executable verbs used in a program and the number of times they are 
executed is provided. If COUNT is specified, SYSCOUNT is dynamically 
allocated. 

NOCOUNTI NOCOU 
specifies that no COUNT information is to be provided. 

CSYNTAX I CSYN 
specifies that conditional syntax checking and object code generation of the 
COBOL source file are to be performed. A full compilation is produced as 
long as no messages exceed the Wor C level. If one or more E-Ievel or 
higher severity messages are produced, the compiler generates the messages 
but does not generate the object text. 

NOCSYNTAXINOCSYN 
specifies (if your installation has not changed the defaults) that the 
NOSYNT AX option is in effect. If your installation's default is 
CSYNT AX, then you must specify NOCSYNT AX in order to specify 
SYNTAX. 

DECK I DEC 
specifies that the output object module is to be punched on the spooled 
punch. 

NODECKI NODEC 
specifies that the object module is not to be punched on the spooled punch. 



DISKIDI 
specifies that a program listing is to be produced as specified under the 
PRINT option with the exception that the listing will be written to the 
appropriate read/write disk with a filetype of LISTING. 

PRINTIPRI 
specifies that a program listing is to be printed containing page headings, 
line numbers of the statements in error, message identification numbers, 
severity levels, and message texts (as well as any other output requested by 
CLIST, DMAP, LSTCOMP, LSTONLY, PMAP, XREF, SOURCE, 
SXREF, VBREF, or VBSUM). The listing will be printed at the offline 
printer. 

NOPRINT I NOPRI 
no LISTING file will be produced. 

DMAPIDMA 
specifies that the glossary, global tables, literal pools, and register 
assignments are to be listed. 

NODMAP I NODMA 
specifies that a DMAP is not to be produced. 

DUMP I DUM 
specifies that there is to be an abnormal termination at the point of failure 
if a disaster situation occurs. 

NODUMP I NODUM 
specifies that there is to be no abnormal termination at the point of failure 
if a disaster situation occurs. However, the D-Ievel message is produced. 

DYNAMIDYN 
causes subprograms invoked through the 'CALL literal' statement to be 
dynamically loaded, and through the 'CANCEL' statement to be 
dynamically deleted at object time instead of automatically loaded when 
the calling program is loaded. 

NODYNAM I NODYN 
causes subprograms to be statically loaded with calling programs at the 
time the calling program is loaded. 

ENDJOBIEND 
specifies that, at the end of a COBOL run unit, subroutines are to be called 
to close DCBs opened by subroutines and free their associated buffers,free 
storage acquired through GETMAINs, and delete modules (RES). 
Specifying ENDJOB prevents fragmentation of storage for programs 
executed after the COBOL program in the same job step. This option takes 
effect at a GOBACK statement in a main program or at a STOP RUN 
statement in any program. If any program executed in a run unit specifies 
ENDJOB, ENDJOB is in effect for the entire run unit. 

NOENDJOB I NOEND 
specifies that the ENDJOB procedures described above are not to occur. 

FDECKIFDE 
specifies that a copy of the reformatted listing is to be written on the 
SYSPUNCH data set. Since FDECK has meaning only with either 
LSTONL Y or LSTCOMP, the lister output will be both a reformatted 
listing and a reformatted deck. 

Using OS COBOL under CMS 19 



20 mM CMS User's Guide for COBOL 

NOFDECK I NOFDE 
specifies that no copy of the reformatted listing is to be written on the 
SYSPUNCH data set. 

FLAGE I LAG 
specifies that only error messages are to be printed. 

FLAGWILAGW 
specifies that all compilation error and warning messages are to be printed. 

FLOWnnlFLO 
specifies that a formatted trace of a variable number of procedures 
executed before an abnormal termination is to be listed. Where nn specifies 
the number of procedures. 

NOFLOW I NOFLO 
specifies that a trace is not to be produced. 

LANGLVLll LANGLVL2 
LANGL VL applies only to those few language elements where the 1968 
and the 1974 standards have different interpretations. LANGLVLl 
specifies the COBOL source will be interpreted using the 1968 American 
National Standard COBOL (X4.23-1968). LANGLVL2 specifies that 
COBOL source will be interpreted using the 1974 American National 
Standard COBOL (X3.23-1974). 

LCOLIIOLI 
specifies that the Procedure Division part of the reformatted listing is to be 
in single column format. 

LCOL210L2 
specifies that the Procedure Division part of the lister output listing is to be 
in double column format. 

LIB 
specifies that data requested by a COpy statement in the source or a 
BASIS card in the input stream will be searched for in the macro definition 
libraries now in effect. If the COpy or BASIS statements are used, Lm 
must be specified. 

NOLIB 
specifies that, because COpy or BASIS statements will not be 
encountered, the macro definition libraries will not have to be searched. 

LOAD I LOA 
specifies that a TEXT file is to be produced. 

NOLOADINOLOA 
specifies that a TEXT file is not to be produced. 

LSTCOMP I LSTC 
specifies that the lister feature is to be used and that both a reformatted 
listing is to be produced and compilation is to occur in the same job step. 

NOLST 
specifies that the lister feature is not to be used. 

LSTONLY I LSTO 
specifies that the lister feature is to be used and that a reformatted listing is 
to be produced but no compilation is to occur. 



LVLy 
specifies that the standards deviations from American National Standard 
COBOL are to be flagged. If flagging is specified, the value of y must be 
one of the following levels of FIPS (Federal Information Processing 
Standard): A, B, C, or D. Entering any character other than A, B, C, or D 
will be flagged, and the user will be prompted to reenter a valid character. 
L VL y indicates that source clauses and statements that do not conform to 
the specified level of FIPS are to be identified. No listings will be produced. 
The LANGLVL compiler option, discussed later, causes FIPS flagging to 
be done according to either the 1975 FIPS (LANGLVL 2) for 1974 ANS 
COBOL, or to the 1972 FIPS (LANGLVL 1) for 1968 ANS COBOL. A 
complete list of statements flagged at each level is contained in IBM VS 
COBOL for OS/VS. 

Note: If L VL y is the SYSGEN default, the default level y, whatever it is, 
can be overridden at compile time with any other level, but not overridden 
by NOL VL. Also, L VL y requires the SYSUT6 data set, which is 
dynamically allocated under eMS. 

NOLVL 
specifies that standards deviations are not to be flagged. 

L120 I L12 
specifies that the length of each line of the reformatted listing is to be 120 
characters. 

L132 I L13 
-specifies that the length of each line of the reformatted listing is to be 132 

characters. 

MIGR I NOMIGR 
specifies whether or not migration flagging is to occur. If MIGR is 
specified, both syntax and semantics as well as specific language elements 
are flagged. 

MIGR issues I-level (informational) messages for those COBOL 
statements that are no longer supported or are supported differently by the 
VS COBOL n compiler. 

Notes: 

• The SYNTAX option can be used with the MIGR option. The MIGR 
option does not affect CSYNT AX. That is, if CSYNT AX is in effect 
and only migration messages are generated, the compilation will not be 
terminated with listing and object output inhibited. 

• See IBM VS COBOL for OS/VS for a list of the statements that are 
flagged and those that are not flagged. 

• Informational messages issued when you specify MIGR do not affect the 
compiler return code. 

NAMEINAM 
specifies that TEXT files generated from the batch compilation 
environment will contain 'NAME' records. The program names on the 
'NAME' records will be formed according to the rules for forming module 
names from the program-name. 

Using OS COBOL under CMS 21 



22 mM CMS User's Guide for COBOL 

NONAMEI NONAM 
specifies that 'NAME' records will not be produced for the 'TEXT' files 
generated from batch compilations. 

Note: If the BATCH option is not specified, NONAME will be in effect. 

NUM 
specifies that user-supplied line numbers recorded in the input are to be 
used instead of compiler-generated statement numbers wherever such 
numbers are listed. 

NONUM 
specifies that compiler generated line numbers are to be used. 

Note: If when the NUM option is in effect the compiler discovers a 
nonnumeric character in a line number or if ascending numeric sequence is 
broken and one or more of the debugging options are in effect, the 
compiler begins generating card numbers at that point. The increment of 
these card numbers is one. 

OPTIMIZE I OPT 
specifies that the compiler generate optimized object code, considerably 
reducing the use of object program main storage. 

NO OPT 
causes no optimized object code generation. 

Note: The OPTIMIZE feature is automatically in effect when the 
SYMDMP option is specified. In general, the greater the number of 
COBOL PROCEDURE DIVISION statements, the greater the percentage 
of reduction in the amount of main storage required. 

OSDECKIOSD 
specifies that the object program is to be executed under OS or as a 
subprogram under CMS. If OSDECK is not specified, it is assumed that the 
object program is to be executed as a main program under CMS; this is the 
default. 

PMAP I PMA 
specifies that global tables, literal pools, register assignments, and 
assembler language expansion of the source program are to be listed. 

NOPMAP I NOPMA 
specifies that a PMAP is not to be produced. 

QUOTE I QUO 
specifies that the double quote (") character is to be used to delineate 
literals, and also used by the compiler to delineate figurative constants. 

Note: If double quote is the default logical escape character for your CMS 
Editor, you may wish to use APOST instead. 

APOSTI APO 
specifies that the apostrophe (') is to be used in the above situations. 

RESIDENT I RES 
requests the COBOL Library Management feature to be in effect. COBOL 
Library subroutines will be dynamically loaded at execution time rather 
than statically loaded by the LOAD command. 



NORES 
specifies no COBOL Library Management feature. 

Note: If both NORES and NODYNAM are either specified or implied by 
default, and a 'CALL identifier' statement occurs in the source statements 
being compiled, the RESIDENT option is automatically in effect. 

SEQ 
specifies that the compiler is to check the sequence of the source module 
statements. 

NOSEQ 
specifies that sequence checking is not to be performed. 

SOURCE I SOU 
specifies that the source module is to be listed. 

NOSOURCEINOSOU 
specifies that the source module is not to be listed. 

SPACEll ACEl 
specifies that single spacing is to be used on the source card listing 
generated when SOURCE is specified. 

SPACEllACEl 
specifies that double spacing is to be used in the above condition. 

SPACE31ACE3 
specifies that triple spacing is to be used in the above condition. 

STATEISTA 
specifies that during execution the number of the statement and the verb 
being executed at the time of abnormal termination is to be listed. 

NOSTATE I NOSTA 
specifies that the above listing is not to be produced. 

SUPMAPISUP 
specifies that object code listing, and object modules are to be suppressed if 
an E-Ievel or D-level message is generated by the compiler. 

NOSUPMAP I NOSUP 
specifies that the above items are not suppressed when an E-level or 
D-Ievel message is generated by the compiler. 

SXREFISXR 
specifies that a sorted cross-reference listing is to be produced. 

NOSXREF I NOSXR 
specifies that a sorted cross-reference listing is not to be produced. 

SYMDMPISYM 
requests a formatted dump of the data area of the object program at 
abnormal termination. With this option the programmer can request 
dynamic dumps of specified data names at strategic points during program 
execution. 

NOSYMDMP I NOSYM 
specifies that no formatted dumps be produced. 

Notel: If the SYMDMP option is in effect, the SYSUT5 utility file will be 
produced. If the BATCH option is specified, the SYMDMP option is 
negated. Specification of the SYMDMP option automatically yields the 
OPTIMIZE feature, and negates the STATE option. 

Using OS COBOL under CMS 23 



24 mM CMS User's Guide for COBOL 

Note 2: If WITH DEBUGGING MODE and USE FOR DEBUGGING 
declaratives are both specified, TEST will be canceled. 

SYNTAXISYN 
specifies that the COBOL source file is to be scanned for syntax errors 
only and appropriate error messages are to be generated. 

NO SYNTAX I NOSYN 
specifies that normal compilation with both syntax checking and object 
code generation is to be performed. 

Note: When the SYNTAX option is in effect, all of the following 
compile-time options are suppressed: 

LOAD p~ FLOW 
XREF DECK STATE 
SXREF SYMDMP NAME 
CLIST TRUNC RESIDENT 
NOSUP~ OPTIMIZE COUNT 
LSTCOMP LSTONL Y VBREF 
VBSUM 

If both SYNTAX and OPTIMIZE are specified, no object code is 
produced. 

Unconditional syntax checking is assumed if all of the following compile 
time options are specified: 

NOLOAD NOCLIST SUP~ 

NOXREF NOP~ NODECK 
NOSXREF NOLST NOVBREF 
NOVBSUM 

SYST 
specifies that SYSOUT is the ddname of the file to be used for debug 
output and for data when SYSOUT is specified (implicitly or explicitly) in a 
DISPLA Y statement. 

SYSX 
specifies that SYSOUx (where 'x' is an alphanumeric character) is the 
ddname of the file to be used for debug output and for data when SYSOUT 
is specified (implicitly or explicitly) in a DISPLAY statement. 

Note: The user must issue a FILEDEF with ddname 'SYSOUx' at 
execution time if the SYSX compiler option is selected. 

TERM I TER 
specifies that progress and diagnostic messages and compiler statistics are 
to be printed at the terminal. No listings are produced. 

NOTERM I NOTER 
specifies that progress and diagnostic messages and compiler statistics are 
not to be printed at the terminal. 

TEST 
specifies that the program caD be debugged at the terminal using the 
program product IBM OS COBOL Interactive Debug (Program Number 
5734-CB4). 

Note: TEST has the following effects on other compiler options: TEST 
overrides FLOW, STATE, and SYMDMP. However, BATCH overrides 
TEST. 



If WITH DEBUGGING MODE and USE FOR DEBUGGING 
declaratives are both specified, TEST will be canceled. 

Complete information on OS COBOL Interactive Debug, which includes 
the TESTCOB command and its subcommands, is contained in IBM OS 
COBOL Interactive Debug Terminal User's Guide and Reference. 

NOTEST 
specifies that the program cannot be debugged at the terminal using the 
program product OS COBOL Interactive Debug. 

Note: A program compiled with NOTEST may be executed under OS 
COBOL Interactive Debug in combination with programs compiled with 
TEST, provided all programs are compiled with the RES option. 

TRUNCITRU 
specifies that a computational (binary) is moved to a receiving field 
according to the specification in the PICTURE clause during a move 
operation. 

NOTRUNC I NOTRU 
specifies that the item is moved according to the size of the field in storage. 

VBREFIVBR 
specifies that a cross reference of all verbs used in the program is to be 
provided. VBREF gives the user a quick index to any verb used in the 
program. 

NOVBREF I NOVBR 
specifies that a cross reference of all verbs is not to be produced. 

VBSUMIVBS 
specifies that there is to be provided a brief summary of verbs used in the 
program and a count of how often each verb was used. 

NOVBSUM I NOVBS 
specifies that there is to be no summary and count of verb use. 

VERB 
specifies that procedure-names and verb-names are to be listed with the 
associated code on the object program listing. VERB has meaning only if 
PMAP or CLIST is in effect. 

NOVERB 
specifies that no procedure-names and verb-names are to be listed. 
NOVERB yields more efficient compilation. 

XREFIXRE 
specifies that an unsorted cross-reference listing is to be produ~d. 

NOXREF I NOXRE 
specifies that an unsorted cross-reference listing is not to be produced. 

ZWB 
specifies that the compiler will generate code to strip the sign from a signed 
external decimal field when comparing this field to an alphanumeric field. 

NOZWB 
specifies that the compiler will not generate this code. 

Using os- COBOL under CMS 2S 



Entering Command Optiom 

26 mM CMS User's Guide for COBOL 

You can enter as many options as you wish on a command line, to a maximum 
of 100 characters, including blanks. If you specify conflicting options, such as 
XREF add NOXREF, the last one you entered is in effect. Exceptions to this 
rule are noted in the operand descriptions. Accordingly, you may change one 
or more options without reentering the entire command line. 

If any of the following mutually exclusive options are specified, the last to 
appear in the command will have priority: 

CLIST - PMAP 
XREF - SXREF 
PRINT - DISK 

You can abbreviate any command options to the minimum truncation shown 
in the option descriptions. The only exceptions are that for the options 
NOOPTIMIZE and NORESIDENT, only the abbreviations of NOOPT and 
NORES are acceptable. 

The compiler options, default values, and alternate names are summarized in 
Figure 7. 



OptIon 

APOST 
BATCH 
BUF .Y.Jm'~ 
CDECK 
CLIST 
COUNT 
CSYNTAX 
DECK 
DMAP 
DUMP 
DYNAM 
ENDJOB 
FDECK 
FLAGE 
FLOWnn 
LANGLVLl 
LCOLI 
LIB 
LINECNTnn 
LSTCOMP 
LSTONLY 
LVLy 
L120 
MIGR 
NAME 
NOADV 
NOLOAD 
NOPRINT 
NOSEQ 
NOSOURCE 
NOTERM 
NOTRUNC 
NOVERB 
NOZWB 
NUM 
OPTIMIZE 
OSDECK 
PMAP 
PRINT 
RESIDENT 
SIZE,,""", 
SPACE2 
SPACE3 
STATE 
SUPMAP 
SXREF 
SYMDMP 
SYNTAX 
SYSx 
TEST 
VBREF 
VBSUM 
XREF 

Default 

QUOTE 
NOBATCH 
4096 
NOCDECK 
NOCLIST 
NOCOUNT 
NOCSYNTAX 
NODECK 
NODMAP 
NODUMP 
OODYNAM 
NOENDJOB 
NOFDECK 
FLAGW 
NOFLOW 
LANGLVL2 
LCOL2 
NOLIB 
60 
NOLST 
NOLST 
NOLVL 
L132 
NOMIGR 
NONAME 
ADV 
LOAD 
DISK 
SEQ 
SOURCE 
TERM 
TRUNC 
VERB 
ZWB 
NONUM 
NOOPT 
NOOSDECK 
NOPMAP 
DISK 
NORES 
131072 
SPACE 1 
SPACE 1 
NOSTATE 
NOSUPMAP 
NOSXREF 
NOSYMDMP 
NOSYNTAX 
SYST 
NOTEST 
NOVBREF 
NOVBSUM 
NOXREF 

Figure 7. OS compiler option defaults. 

Alternate Names 

APO,QUO 
BAT,NOBAT 
BUFmK 
CDE,NOCDE 
CLI,NOCLI 
COU,NOCOU 
CSYN,NOSYN 
DEC,NODEC 
DMA,NODMA 
DUM,NODUM 
DYN,NODYN 
END,NOEND 
FDE,NOFDE 
LAG,LAGW 
FLO,NOFLO 

OL1,OL2 

CNT 
LSTC 
LSTO 

L12,L13 
MIG,NOMIG 
NAM,NONAM 

NOLOA,LOA 
DI,NOPRI 

NOSOU,SOU 
NOTER,TER 
NOTRU,TRU 

OPT 
OSD 
PMA,NOPMA 
PRI,DI 
RES 
SIZEm'K 
ACE2,ACEI 
ACE3,ACEI 
STA,NOSTA 
SUP,NOSUP 
SXR,NOSXR 
SYM,NOSYM 
SYN,NOSYN 

TES 
VBR,NOVBR 
VBS,NOVBS 
XRE,NOXRE 

Caution: Where you intend to execute your object programs is a compile-time 
consideration. If you are compiling a COBOL source program for execution 
under OS, you must specify the OSDECK option. If you compile it for 
execution under CMS, you should not specify the OSDECK option. 

Using OS COBOL under CMS 27 



Copying OS COBOL Files from CMS MACLms 

28 mM CMS User's Guide for COBOL 

If you are using the OS COBOL compiler COPY statement, and you have 
files that contain COBOL code that you use frequently, you can place them in 
a CMS file called a MACLffi, and then identify the MACLffi to be searched 
during compilation. 

A MACLffi is similar to an OS partitioned data set. It has individual 
members, which you can create using the CMS Editor, or which you can copy 
from other sources. In order for a member to be added to a MACLffi, it must 
be in a CMS file with a filetype of COpy or MACRO. 

The MACLffi command in CMS is used to create a macro library, to add or 
delete members, or to list or compress the members in a library. For example, 
to create a MACLffi from files named DATA COPY, CREATE COpy, and 
LIST COPY, you would enter 

maclib gen mylib data create list 

This command creates the file MYLffi MACLffi, which has the members 
DATA, CREATE, and LIST. 

In order to make the MACLffi available, both the GLOBAL and FILEDEF 
CMS commands must be issued: 

GLOBAL MACLIB mylib 
FILEDEF SYSLIB DISK mylib MACLIB 

Note that up to eight MACLffis can be specified on a GLOBAL command 
and that the FILEDEF command must define the DDNAME SYSLffi. 

The FILEDEF command will be issued by the CMS interface for COBOL, as 
a default, if the library has a filetype of MACLffi and is on your A-disk or a 
disk accessed as an extension of your A-disk. If you fail to follow these 
guidelines, your COPY library members will not be found during compilation 
of your COBOL program. 

If the enhanced COpy facility of OS/VS COBOL is desired, you must issue a 
FILEDEF command for each library. The DDNAME field of the FILEDEF 
command is identical to the library-name in your program. For these 
additional libraries, you must not issue a GLOBAL command. 

You can also copy library text directly from your OS partitioned data sets at 
compilation time. You must have the OS disk that contains the data set 
attached to your virtual machine and accessed. Then, you can use the 
FILEDEF command to assign a ddname of SYSLffi to the data set, and use 
the GLOBAL command to identify the library. For example, to use the data 
set COBTEST.COPYDATA, you would enter: 

access 195 d 
D ( 1 95) R/ a - as 
R; 
filedef syslib disk syslib maclib d dsn cobtest copydata 
global mac lib syslib 

You can also concatenate additional OS libraries, or CMS MACLffis, at the 
same time. 

Additional information on using MACLIBs is contained in the VM /370: 
eMS User's Guide. 



Files Created by the OS COBOL Compiler 

TEXT Files 

LISTING Files 

When the as COBOL compiler is executing, it creates workfiles, and assigns 
them filenames that are the same as the source file, and filetypes of SYSUTl, 
SYSUT2, SYSUT3, SYSUT4, and SYSUT6. They are erased at the end of 
compilation, but if you should ever have occasion to terminate a compilation 
before it is finished, these files might still reside on one of your disks, and you 
should erase them. 

When the compiler writes an output disk file, it places it on a read/write CMS 
disk. If your COBOL source file is on a read/write disk, the output files are 
written to that disk. If your source file is on a read-only disk that is an 
extension of a read/write disk, the files are written on the read/write parent 
disk. If your COBOL source file is on a read-only CMS disk or an OS disk, 
then the output files are written on the first available read/write CMS disk in 
the standard search order. 

According to options that you specify, the compiler also creates files with the 
filetypes of TEXT, LISTING, and SYSUT5. Again, their filenames are the 
same as the source file. Figure 8 lists the types of output produced as a result 
of the various compiler options. 

TEXT files contain the machine-language object code generated by the 
COBOL compiler. In CMS, this TEXT file is executable. If you want to 
punch the TEXT file on cards, you can specify the option DECK when you 
invoke the compiler: 

cobol newfile (deck 

Or, you can use the CMS PUNCH command to punch the TEXT file: 

punch newfile text 

In both cases, the disposition of the output punch file depends on the spooling 
characteristics of your virtual card punch. See VM /370: eMS User's Guide 
for information on spooling virtual punch files. 

In addition to TEXT files, the compiler produces a compilation listing for each 
COBOL source file that you compile. The listing is placed on your A-disk 
(unless LISTING was assigned to some other read/write disk) in a file with a 
filetype of LISTING. 

Using OS COBOL under CMS 29 



Compiler Option Listing File Test File Debug File Terminal Response 

CDECK file is punched 

CLIST object module is listed 

DECK file is punched 

DISK writes the LISTING file to disk 

DMAP glossary, global tables, literal file is punched 
pools, register assignments 

FDECK 

FLAGE only error compiler messages are 
printed 

FLAGW all compile error and warning 
warning messages are printed 

LOAD object module to 
disk 

LSTCOMP reformatted source listing is 
produced 

LSTONLY reformatted source listing is 
produced 

LVLy FIPS messages listed 

NUM user-supplied line numbers are 
used here 

PMAP global tables, literal pools, register 
assignments, assembler expansion 
of source module 

PRINT prints the listing file on the virtual 
printer 

SOURCE source module is listed 

SPACE 1 single spacing for this file 

SPACE 2 double spacing for this file 

SPACE 3 triple spacing for this file 

SUPMAP suppresses listing of object module 
if D or E level compiler messages 

SXREF sorted cross-reference listing is 
listed 

SYMDMP written to disk, 
filetype SYSUTS 

TERM progress and diagnostic 
messages 

TEST written to disk, 
filetype SYSUTS 

VBREF verb references listed 

VBSUM verb references listed 

XREF unsorted cross-reference listing 
is listed 

Figure 8. OS compiler output. 

30 IBM CMS User's Guide for COBOL 



Error Messages from the COBOL Command 
When you use the COBOL command in CMS, the TERM option is in effect 
by default. This specifies that all diagnostic messages issued by the compiler 
are to be displayed at your terminal, as well as being written into a LISTING 
file. COBOL messages all have prefix IKF. A complete listing of compiler 
diagnostic messages, along with their explanations can be generated by 
compiling a program with PROGRAM-ID of ERRMSG. For further 
information, see IBM OS/VS COBOL Compiler and Library Programmer's 
Guide, or IBM VS COBOL for OS/VS. 

In addition to the messages from the compiler, there are messages issued by 
the COBOL command. They have the identification DMSCOB, followed by a 
message number and a message text. Whether or not the message 
identification or text, or both, is displayed depends on the setting in your 
virtual machine of EMSG, which is a CP SET command function. Many of 
the DMSCOB messages issued by CMS are self-explanatory. For example: 

cobol 
DMSCOB001E NO FILENAME SPECIFIED 
R(00024); 

The error was issued because no filename was specified to identify the source 
file, and you would reenter the command, specifying a filename. 

The error messages issued by the COBOL command are listed below. 

DMSCOBOOIE NO FILENAME SPECIFIED 

Explanation: You must specify the filename of the COBOL source file. 

System Action: RC = 24. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Retype the command, supplying a filename in the command line. 

DMSCOB001E FILE • fn COBOL' NOT FOUND 
Explanation: The specified input file was not found on any disks accessed. 

System Action: RC = 28. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Reissue the command, specifying the correct input file. 

DMSCOB003E INVALID OPDON • option • 

Explanation: The option(s) specified are not valid for this command. 

System Action: RC = 24. The compilation is terminated. 

User Action: Reissue the corrected command. 

DMSCOB004W WARNING MESSAGES ISSUED 
Explanation: Minor errors were detected during compilation. 

System Action: RC = 4. Compilation is completed. 

User Action: If execution is not successful, correct the minor errors identified 
through the compiler warning messages. 

DMSCOB006E NO READ/WRITE DISK ACCESSED 

Explanation: No read/write disk is available to contain compiler output and 
work files. 

System Action: RC = 36. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Access a CMS disk in read/write status. 

Using OS COBOL under CMS 31 



32 mM CMS User's Guide for COBOL 

DMSCOB008W ERROR MESSAGES ISSUED 

Explanation: Errors were detected in the compiled program. 

System Action: RC = 8. Compilation is complete. Execution may be possible. 

User Action: Correct errors identified by error messages. 

DMSCOB012W SEVERE ERROR MESSAGES ISSUED 

Explanation: Serious errors were detected in the compiled program. 

System Action: RC = 12. Compilation is complete. Successful execution is not 
probable. 

User Action: Correct the serious errors identified by error messages. 

DMSCOB016W DISASTER ERROR MESSAGES ISSUED 

Explanation: Very serious errors were detected during compilation. 

System Action: RC = 16. Compilation is incomplete. Results are 
unpredictable. 

User Action: Correct the very serious errors identified through the compiler 
disaster error messages. 

DMSCOB034E FILE 'fn COBOL' IS NOT FIXED LENGTH 

Explanation: The specified file must have fixed length records to be acceptable 
to this command. 

System Action: RC = 32. Compilation is terminated. 

User Action: Convert the file to fixed length records, or reissue the command 
with the correct file specified. 

DMSCOB038E FILEID CONFLICT FOR DDNAME 'COBOL' 
Explanation: A previously issued FILEDEF for ddname COBOL to a disk 
device did not contain the same filename and/or filetype as specified and 
implied by the COBOL command. 

System Action: RC = 40. Compilation is terminated. 

User Action: Reissue the corrected FIELDEF and/or COBOL command. 

DMSCOB052E MORE THAN 100 CHARACTERS OF OPfIONS 
SPECIFIED 

Explanation: The COBOL command options, including a delimiting blank 
between each option, totaled more then the permissible maximum of 100 
characters. 

System Action: RC = 24. Compilation is terminated. 

User Action: Reisuue the COBOL command using fewer options. 

DMSCOB070E INVALID PARAMETER 'parameter' 
Explanation: The specified parameter is not expected in the command line. 

System Action: RC = 24. Compilation is terminated. 

User Action: Reissue the command in the correct format. 

DMSCOB075E DEVICE' device type' ILLEGAL FOR INPUT 

Explanation: The specified device type is invalid for input to the COBOL 
compiler. 

System Action: RC = 40. Compilation is terminated. 

User Action: Reissue the FILEDEF command for the ddname of COBOL with 
the device type DISK, READER, or TAPE as input source file device. 
Reissue the FILEDEF command, then the COBOL command. 



Note: If the COBOL command is issued while CMS/DOS is active, the 
following LOADMOD error message is issued: 

DMSMODl14E I COBOL MODULE fo I NOT LOADED; CMS/DOS 
ENVIRONMENT ACTIVE 

Explanation: The COBOL command cannot be invoked while CMS/DOS is 
active. 

System Action: RC = 40 or -5. Execution of the command terminates. 

User Action: Issue the SET DOS OFF command, then reissue the COBOL 
command. 

How to Load and Execute an OS COBOL Program 
In order to execute OS COBOL programs under CMS, you must have access 
to the COBOL library, which is contained in a CMS TXTLffi. To identify the 
COBOL library, use the GLOBAL command: 

global txtlib coblibvs 

In this example, the TXTLffi is named COBLffiVS TXTLffi. The filename is 
assigned at system installation time, so you should find out from your 
installation personnel what the name is in your installation. 

To load your program into storage, you can use the LOAD command, and 
then use the START command to begin execution: 

load myfile 
R; 
start 
EXECUTION BEGINS ... 

In this example, the file MYFILE TEXT contains the object code from a 
COBOL compilation. The message EXECUTION BEGINS ... indicates that 
the program is executing. 

You can also load more than one routine into storage by naming them both on 
the LOAD command line, or by using the INCLUDE command: 

load prog1 prog2 
R; 
include prog3 
R; 
start 

You can, if you want, use the START option on the LOAD or INCLUDE 
commands to specify that execution is to begin immediately: 

load myfile (start 

The RUN command performs like a cataloged compile, load, and execute 
procedure, if you invoke it for a COBOL source file: 

run oldfile 

When you use the RUN command, however, you cannot specify compiler 
options, nor can you indicate the inclusion of more than one TEXT file for 
execution. 

Using OS COBOL under CMS 33 



Possing Exeeution-Time PIB'tIItIet~ 
The CMS START and RUN commands can be used to pass parameters to a 
COBOL program when it is invoked for execution. The RUN command can 
be used to pass user-defined parameters (which will be accessible in the 
program through the COBOL USING statement). The START command can 
be used to pass user-defined parameters and/or COBOL-defined 
execution-time options. The formats of the two commands are: 

START {entry I*} [user-defined parameters] [/ COBOL options] 

RUN fn [ft [fm]] [(user-defined parameters)] 

CMS requires all items in the parameter list to be separated by blanks. Also, 
each item ("token," in CMS terms) cannot exceed eight characters. The 
delimiting blanks are removed by CMS when the parameters are passed, and 
the concatenated list arrives in the COBOL program as a single character 
string. For example, if you entered 

START * ONE TWO THREE 

your program would receive the variable ONETWOTHREE. The parameter 
list MAINE, MASSACHU SETTS, NORTHDAK OTA would enter the 
COBOL program as MAINE,MASSACHUSETTS,NORTHDAKOTA. The 
maximum permissible length of a parameter string is 100 characters. 

The COBOL-defined execution-time options are explained in your COBOL 
Programmer's Guide. If you include any of these options on the START 
command, a slash must precede the first such option. Remember that to meet 
CMS requirements, any individual option that exceeds eight characters must 
be split with a blank. For example, to pass UPSI switches and debugging 
notification, one might code: 

START * / UPSI(nnn nnnnn) DEBUG 

Defining Program Input and Output Files 

34 mM eMS User's Guide for COBOL 

The FILEDEF command simulates the functions of the Job Control Language 
(JCL) data definition (DD) statement. You must use it whenever you are 
going to execute a program that performs I/O. You must establish file 
definitions, as well, for any input or output performed by a verb such as 
ACCEPT, DISPLAY, and so on. 

The FILEDEF command relates a ddname (filename) in your program with 
an I/O device. The ddname in your program is specified with the SELECT or 
ASSIGN clause in the FILE CONTROL paragraph. If the device is a disk 
device, then you must specify a file identification. For example, if your file 
contains the following: 



FILE-CONTROL. 
SELECT INFILE 
ASSIGN TO UR-2540R-S-CARDIN 
SELECT OUTFILE 
ASSIGN TO DA-3330-S-0UTDD. 

FD INFILE 

FD OUTFILE 

you would specify the following to execute the program: 

filedef cardin reader 
filedef outdd disk test4 output a4 
load myprog (start 

By specifying a filemode number of 4, you ensure that CMS will write the file 
in simulated OS data set format. 

You can also read input files directly from an OS disk, if it is attached to your 
virtual machine. For example, to read an input file named 
COBOL.TEST.FILE from an OS disk at virtual address 198, enter: 

access 198 c 
C(198) RIO - as 
R; 
filedef input c dsn ? 
ENTER DATA SET NAME: 
cobol. test. file 
R; 
load cobtest2 (start 

The FILEDEF command is described in greater detail in VM/370: CMS 
User's Guide and VM/370: CMS Command and Macro Reference. 

Although you can read data sets from OS disks when you execute OS 
COBOL programs in CMS, you cannot write files on OS disks, unless you are 
writing VSAM files. You can, however, write OS simulated data sets on CMS 
disks, which retain file characteristics of OS sequential data sets. 

If you attempt to execute a program without issuing FILEDEF commands to 
define any input or output files, CMS creates a default file definition when the 
file is opened. The file defaults to a filename of FILE, and a filetype that is 
the same as the external name specified in the ASSIGN clause in your 
program. Any file definitions that are created by default are cleared when the 
file is closed. 

All other file definitions in effect are cleared when the program finishes 
executing, except those that were specified with the PERM option. 

When a program ABENDs, all file definitions are cleared. 

Be aware that the COBOL-CMS interface subroutine (DMSILB) issues its 
own FILEDEF commands for the files SYSOUT, SYSIN, SYSDBOUT, 
SYSPUNCH, SYSDBG, and SYSUT5. If the user is to access these files in a 
program, correct FILEDEF commands must be issued for them. If this 
requirement is not observed, the program will execute with no apparent error, 
but the data being read will be unreliable. 

Using OS COBOL under CMS 35 



Using VSAM Files in eMS 
You can execute OS/VS COBOL programs that read and write VSAM files in 
CMS. The VSAM being used will be DOS VSAM (not OS VSAM). 
Nevertheless, the VSAM files written in CMS have the same format as those 
created under OS, and are fully compatible with OS VSAM data sets. VSAM 
files created in CMS can be read by an OS system, and vice versa. 

The fact that DOS VSAM is being used has no effect on your coding 
requirements within the OS/VS COBOL program. These are the same as 
when using OS VSAM. However, instead of using the FILEDEF command to 
identify the VSAM files, you must use the DOS DLBL command. The DLBL 
command has the same basic format as the FILEDEF command: 

dlbl input c dsn cobtest data (vsam 

This file might be identified in your program as follows: 

FILE-CONTROL. 
SELECT INVSAM 
ASSIGN TO INPUT 
ORGANIZATION IS INDEXED ... 

FD INVSAM 

More information on the DLBL command can be found in VM/370: CMS 
User's Guide. 

If you are executing a program that uses a VSAM file and a non-VSAM file, 
then you must use the DLBL command to identify the VSAM file and the 
FILEDEF command to identify your non-VSAM file. There are additional 
options you may specify if the VSAM data set is a multivolume file, or if it is 
cataloged in a user catalog. If you use any of these special options, then you 
do not need to use the VSAM option. 

There is a special ddname provided for you to identify the VSAM master 
catalog you will be using during a terminal session: 

dlbl ijsysct f dsn mastcat (perm 

Entering this command makes the VSAM master catalog available to you for 
the remainder of your terminal session. 

Note: Even if PERM has been specified, if a program abnormally terminates 
or if an HX Immediate command is issued during execution, all DLBL 
definitions are cleared. 

Using Access Method Services under eMS 

36 IBM CMS User's Guide for COBOL 

You must use DOS/VS Access Method Services to define VSAM catalogs, 
data spaces, and clusters, and to perform REPRO, EXPORT/IMPORT, 
LISTCAT, and other Access Method Services functions using the CMS 
command AMSERV. How to use AMSERV command is described in 
VM/370: CMS User's Guide and in VM/370 CMS Command and Macro 
Reference. The Access Method Services control statements are described in 
DOS/VS A.ccess Method Services. 



Special Considerations 

The programmer's guide that corresponds to your version of the compiler 
explains how to assign and use ddnames. That publication explains the 
relationships between DD statements and various COBOL compiler options 
and language statements. For example, the programmer's guide explains how 
the operation of the SYMDMP option is dependent upon the object-time 
control data placed in the SYSDBG data set. 

Under CMS, if you specify the SYMDMP compiler option, you must create a 
file with the ddname of SYSDBG and with the required contents that are 
described in the programmer's guide. You can use the CMS Editor to create 
the file. The execution-time interface does a default FILEDEF for SYSDBG 
to disk: you do not have to enter the FILEDEF command. 

If the source file is compiled with the SYMDMP option, it should be given the 
same name as the program-name specified in the PROGRAM-ID paragraph; 
in this case, the execution-time interface does a default FILEDEF for 
SYSUT5. If the program name is not used, then you must issue a FILEDEF 
command for the debug file before you execute the program. 

Restrictions on Using OS COBOL under CMS 

Compiler Restrictions 

Execution-Time Restrictions 

There are several restrictions placed on compiling and/or executing COBOL 
programs in CMS. 

At compile time, the "nn" subparameter of the FLOW option must be 
specified; it is not optional. 

The "." and "dsname" subparameters of the PRINT option and the 
"dsname" subparameter of the Lm option are not valid; you must not specify 
them when you are compiling a COBOL program in CMS. 

The following restrictions apply to executing OS COBOL programs in CMS. 
You can, however, compile these programs in CMS and then execute them in 
an OS virtual machine, or under a real OS system. 

• Indexed files (BISAM and QISAM) are not supported. Therefore, the 
following clauses and statements associated with these access methods are 
invalid: 

RECORD KEY TRACK-AREA 
START APPLY REORG-CRITERIA 
APPLY CORE-INDEX 

• Creating direct files is restricted as follows: 

- For U and V recording modes, access must be sequential. 

For ACCESS IS SEQUENTIAL, track identifier must not be modified. 

- You must specify the XTENT option of the FILEDEF command to 
indicate the number of logical records to be written. 

• There is no Checkpoint/Restart feature. Therefore, the RERUN clause is 
not supported. 

• The positioning options of the OPEN (EXTEND) and CLOSE statements 
are ignored. 

Using OS COBOL under CMS 37 



• There is no multivolume data set support. Therefore, the CLOSE statement 
with the REEL or UNIT option is invalid. 

• None of the user label handling functions are supported. Therefore, the 
label handling format of USE is invalid. The data-name option of the 
LABEL RECORDS clause is invalid. 

• There is no TCAM support; however, the BSAM test facility will function 
only for single level queues. 

I · There is no Sort/Merge feature. Therefore, the SORT verb is not 
supported. 

• ASCll-encoded tape files are not supported. 

• Spanned record (S-mode) processing is not available under QSAM, 
BDAM, and BSAM. This means that the S-mode default (block size 
smaller than record size) cannot be specified, and that the RECORDING 
MODE IS S clause cannot be specified. 

• No support for the mM 3886 Optical Character Reader is provided. 

• Neither the LISTING nor the SYSUT5 data set can be used under other 
systems. 

• The GIVING option of the USE statement in the error declarative section 
is not supported for VSAM data sets. 

• The AIXBLD execution-time option is not supported. Therefore, the 
dynamic building of alternate indexes and the dynamic completion of 
VSAM relative record data sets (RRDS) record information is not 
supported. 

• The CALL ... ON OVERFLOW statement is not available. 

Executing Programs under OS, OS/VSl, and OS/VS2 

38 mM CMS User's Guide for COBOL· 

You can execute your COBOL programs under an OS system, either in a 
virtual machine, or on a real machine. In either case, you can use CMS to 
prepare your job stream, and then punch a card deck containing your JCL 
statements, TEXT files, and so on. Use the CMS Editor to create a file with 
fixed-length, 80-character card images, exactly as you would punch them on a 
real card punch. Then, use the eMS PUNCH command to punch them: 

punch job stream (noh 

The NOHEADER option on the PUNCH command eliminates the punching 
of a CMS header card. 

To execute your program in an OS virtual machine, spool your virtual card 
punch to the reader of the OS virtual machine, which can then read and 
execute your job. To load the OS system into your own virtual machine, you 
can spool your virtual punch to your own card reader. To execute the program 
on another real OS system, punch your file onto real cards, and submit to the 
OS system in the normal manner. For more information on these techniques, 
consult VM/J70: Operating Systems in a Virtual Machine. 



USING DOS COBOL UNDER CMS 

In order to use the DOS/VS COBOL compiler under CMS, you must first 
place your virtual machine in the CMS/DOS environment. CMS/DOS is a 
part of the normal CMS system, but it accepts, in addition to the regular CMS 
commands, a number of commands and routines that apply specifically to 
DOS functions. 

You enter the CMS/DOS environment by specifying the command 

set dos on 

Accessing Disks under CMS 
In addition to disks defined in your VM/SP directory, you can temporarily 
obtain disks via use of the CP LINK and DEFINE commands. CMS must also 
know about these disks, and you must use the CMS ACCESS command to 
establish a filemode letter for them: 

ACCESS 197 f 

CMS uses the filemode letter to manage your files during your terminal 
session. By using the ACCESS command, you can: 

• Control whether the disk is to be read-only (that is, you cannot write on 
it), or is read/write. 

• Control the minidisk search sequence used by CMS. 

• Control which disks are to contain new files that you create. 

For the most part, you will use your primary 191 minidisk, that is, your 
A-disk, your DOS and/or OS read-only disks, and, if needed, your VSAM 
disks. For more detailed information on the CMS ACCESS command and the 
CP LINK and DEFINE commands, refer to the VM / SP eMS User's Guide. 

If you want access to the DOS system residence volume during your terminal 
session, you can access the volume and name it as the system residence by 
entering its filemode letter on the SET command line: 

access 198 C 
C(198) RIO - DOS 
R; 
set dos on c 
R; 

When you have accessed the system residence, you can copy files from the 
source statement, relocatable, and procedure libraries with the CMS 
commands SSERV, RSERV, and PSERV. The command DSERV displays the 
directories of the libraries, including the core-image library, from which you 
can fetch phases for execution, and from which the DOS/VS COBOL 
compiler is fetched. 

Also available to you in the CMS/DOS environment are the commands 
ASSGN and DLBL, which are familiar to you as DOS/VS control statements. 
In CMS, they perform similar functions, though their format varies somewhat. 
You must use the ASSGN command to relate a system or programmer logical 
unit specified in a program with an external device. If the device is a DASD, 
then you must use the DLBL command to establish the file identificaiton. In 

Using DOS COBOL Under CMS 39 



CMS, you do not need to specify an EXTENT statement, since the CMS file 
system can locate and determine the extents of existing files. 

The CMS commands DOSLKED and FETCH allow you to link-edit DOS 
COBOL object programs and load the core image phases into virtual storage 
for execution. 

Compiling DOS Source FUes 
Under DOS/VS, entering the FCOBOL command invokes the DOS/VS 
COBOL compiler, which translates your COBOL source programs into 
machine-language object code. 

Before you can use the compiler, you must be sure that you have accessed the 
DOS disk on which the compiler resides (if it is not the system residence 
volume) and identified the private core image and relocatable libraries 
containing the compiler phases. If the COBOL compiler library is on the 
system residence disk, and you have entered the CMS/DOS environment 
specifying the system residence, then you do not have to identify it as the core 
image library. If the COBOL compiler is on a private library, you must access 
the disk, and use the special ddnames DSYSCL and DSYSRL with the system 
logical units SYSCLB and SYSRLB to identify the libraries: 

access 195 9 
assgn sysclb 9 
dlbl ijsyscl 9 dsn cobol clib (sysclb 
assgn sysrlb 9 
dlbl ijsysrl 9 dsn cobol rlib (sysrlb 

The FCOBOL Command 

40 mM CMS User's Guide for COBOL 

The format of the FCOBOL command (which is actually an EXEC 
procedure) is: 

I FeODOL I filename 

filename 
specifies the filename of the file to be compiled. If the file is on a CMS 
disk, it must have a filetype of COBOL. The file must have fixed-length, 
80-character records. If this command is executed from within an EXEC 
procedure, it must be specified as 

exec fcobol filename 

because FCOBOL, itself, is an EXEC procedure. 

Note 1: FCOBOL erases any existing$LISTIO EXEC on your A-disk. The 
A-disk must be accessed in read/write mode. 

Note 1: If the DOS COBOL compiler resides in the DOS system core 
image library instead of in the private core image library, the time required 
to compile your COBOL program will be significantly increased if any 
DOSLm libraries were previously activated via a GLOBAL OOSLm 
libename-l ... libename-n command. This is because CMS's fetch routine 
uses the following search order to find the COBOL compiler: 

1. In a DOS/VS private core image library, if one had been previously 
assigned via a DLBL command such as the following: 

dlbl ijsyscl fm dsn? (sysclb) 



2. If a GLOBAL DOSLIB command with up to eight DOSLIB libraries 
had been previously issued, all such libraries are searched in the order 
specified in the GLOBAL command. 

3. In the DOS/VS system core image library, if the CMS disk mode letter 
(fm) was specified in the SET DOS ON fm command. 

Therefore, if the COBOL compiler is in the DOS system core image 
library, you should issue the GLOBAL DOSLIB command with no 
additional operands to eliminate the searching of the DOSLIB libraries 
prior to invoking the FCOBOL command. 

When you invoke the FCOBOL command, you must make an assignment for 
SYSIPT, specifying the filemode letter of the disk that contains the source file. 
For example, if your COBOL source statements are in the CMS file 
NEWFILE COBOL, on your A-disk, then you would enter the commands: 

assgn sysipt a 
fcobol newfile 

In this example, because the source file is on a CMS disk, the FCOBOL 
command will automatically issue a DLBL command for you. 

You can also compile a sequential source file directly from a DOS/VS disk. In 
this case, you must specify the DLBL command, as well as the ASSGN 
command, to identify the file name. For example, to compile a source program 
that is located on a DOS disk that has been accessed as your C-disk, you 
would enter: 

assgn sysipt c 
dlbl ijsysin c dsn dostest file (sysipt 
fcobol test2 

When this FCOBOL command executes, the source program is read from the 
DOS disk with a file-id of DOSTEST .FILE. Any output files created have 
filenames of TEST2, since that is the filename specified on the FCOBOL 
command line. 

Specifying Compiler Options-OPTION Command 

The OPTION command allows you to specify the compiler options to be used 
while the DOS/VS COBOL compiler is being executed. These options are 
similar to those you would enter on the OPTION control statement if you 
were compiling a source file on a DOS/VS system. 

The command defaults in CMS/DOS are not necessarily the same as the 
defaults on the DOS/VS system being used. 

The format of the OPTION command is: 

IOPTION I [optionloption2 ... optionn] 

Option can be omitted or can be one or more of the following: 

no option 
resets the options to the initial default settings. 

DUMP 
dumps the registers and the virtual partition on the virtual SYSLST device 
in the case of abnormal program end. 

NODUMP 
suppresses the DUMP option. 

Using DOS COBOL Under CMS 41 



42 ffiM CMS User's Guide for COBOL 

DECK 
punches the resulting object module on the virtual SYSPCH device. If you 
have not assigned SYSPCH, CMS stores the object module on your A-disk 
with a filetype of TEXT. 

NODECK 
suppresses the DECK option; therefore, no CMS TEXT file is created. 

LIST 
--writes the output listing of the source module on the SYSLST device. 

NOLIST 
suppresses the LIST option. This option overrides the XREF option as it 
does in DOS/VS. 

LISTX 
produces a Procedure Division map on the SYSLST device. 

NOLISTX 
suppresses the LISTX option. 

SYM 
prints a Data Division map on SYSLST. 

NOSYM 
suppresses the SYM option. 

XREF 
writes the output symbolic cross-reference list on SYSLST. 

NOXREF 
suppresses the XREF option. 

ERRS 
writes an output listing of all errors in the source program on SYSLST. 

NOERRS 
suppresses the ERRS option. 

48C 160C 
Uses the 48-character set. Uses the 60-character set. 

The OPTION command causes bits in the partition communication region to 
be modified. If an invalid option is specified on the command line, an error 
message is issued for that option. Other valid options on the command line are 
processed. Only those options specified are altered. All other options remain 
unchanged. If you enter conflicting options, only the last one entered is in 
effect. 

Options entered on the OPTION command stay in effect throughout a 
terminal session, unless they are specifically changed. Thus, to compile many 
different source programs, if you wanted the same options in effect for each 
compilation, you would only need to enter the OPTION command once. 

If the OPTION command is issued with no operands, the options are reset to 
the initial default settings that were in effect when the eMS/DOS 
environment was entered. 



Specifying OptiOl&t with tM CBL Statemtmt 

In addition to the options you can specify with the OPTION command, you 
can use the CBL statement in your source file to specify additional options. 
The options you can specify are: 

ADVI NOADV 
APOST I QUOTE 
BUF=nnnnn 
CATALR I NOCATALR 
CLIST I NOCLIST 
COUNT I NOCOUNT 
FLAGE I FLAGW 
FLOW=nn 
LANGLVL (1) I LANGLVL(l) 
LIB I NOLIB 
LVL=AIBICIDINOLVL 
O~IOPTINOOPTImDZEINOOPT 
PMAP=h 
SEQ I NOSEQ 
SPACEn 
STATE I NOSTATE 
STXIT I NOSTXIT 
SUPMAP I NOSUPMAP 
SXREF I NOSXREF 
SYMDMP= filename 
SYNTAX I CSYNTAX I NOSYNTAX 
TRUNC I NOTRUNC 
VERB I NOVERB 
VERB REF I NOVERBREF 
VERBSUM I NOVERBSUM 
ZWBINOZWB 

Note: For pre-DOS/VS Release 3, the APOST I QUOTE and 
TRUNK I NOTRUNK defaults are reversed and L VL and ADV are not 
available. 

These options are explained in DOS/VS COBOL Compiler and Library 
Programmer's Guide. 

If filename is not specified, the default filename of USYS05 is used by the 
compiler for the DEBUG file. If you are invoking the compiler via the 
FCOBOL command, this default must be in effect. After compilation, the 
following DEBUG file is created for use at execution time: 

filename SYMDMP filemode 

SYMDMP is a reserved CMS filetype. The above is a permanent CMS file. 
You must provide a DLBL for it when executing the program. FCOBOL 
erases any existing DEBUG file on your disk before writing a new one. 

The filename parameter of the SYMDMP option should never be specified 
unless the DLBL in FCOBOL EXEC is changed to specify a matching 
filename. 

Using DOS COBOL Under CMS 43 



If you use a CBL statement, it must be the first input record in your source 
file, and it must begin in column 2. If you are using line-number editing, enter 
the EDIT subcommand 

linemode off 

in order to insert the CBL statement beginning in column 2. (Column 1 must 
be blank.) And then issue the subcommand LINEMODE LEFT to resume 
line-number editing. 

Copying COBOL Files from DOS Source Statement 
Libraries 

If your COBOL source programs contain COPY statements that reference 
books cataloged in DOS source statement libraries, you can identify the 
libraries to be searched during compilation. If you specified a DOS system 
residence when you entered the eMS/DOS environment, then the system 
source statement library is searched for files named in a COpy statement. 

Additionally, you can identify a private library using the ddname DSYSSL and 
the logical unit SYSSLB. For example, if your COBOL source file MYTEST 
references a file contained in the private library COBTEST.COPYFILE, then 
you can enter: 

access 195 c 
C(195) RIO - DOS 
assgn sysslb c 
dlbl ijsyssl c dsn cobtest copyfile (sysslb 
fcobol my test 

COBOL programs being compiled under CMS/DOS cannot copy files from 
CMSMACLffis. 

Files Used by the Compiler 

44 IBM CMS User's Guide for COBOL 

During compilation, the compiler uses a number of files. These files are 
allocated by the FCOBOL command, according to the logical units and 
filenames listed below. 

Logical Unit 

SYSIPT /SYSIN 
SYSLST 
SYSPCH 
SYSSLB 
SYSOOI 
SYSOO2 
SYSOO3 
SYSOO4 
SYSOO5 
SYSOO6 

Filename 

DSYSIN 
DSYSLS 
DSYSPH 
DSYSSL 
DSYSOI 
DSYS02 
DSYS03 
DSYS04 
DSYS05 
DSYS06 

When you use the COBOL compiler in CMS/DOS, if SYSLST, SYSPCH, 
and SYSOO 1 through SYSnnn are not assigned, they are assigned to the disk 
on which the input source file resides, if it is a read/write CMS disk. If the 
source file is on a read-only disk, then the ASSGN is made for the disk's 
read/write parent, if it is an extension; otherwise the assignment is made to 
the A-disk, or to the first available read/write disk in the standard CMS 
search order. 



Note: If you already have any or all of the above system logical units assigned 
for some other purpose, DOS/VS COBOL will attempt to use those 
assignments even if the device is inappropriate or cannot be used. For 
example, if SYSOOI is a read-only DOS disk, the FCOBOL compiler will 
attempt to write a work file on that disk and will terminate with an error 
message. Also if SYSLST had been previously assigned to OOE, then the 
listing will be printed rather than written to disk. You should use the ASSGN 
SYSxxx UA command to unassign any system logical units that should not be 
used by the FCOBOL command. FCOBOL will then make its own 
assignments. 

Error Messages from the DOS COBOL Compiler 
When you execute the FCOBOL command in CMS, there are no diagnostic 
messages from the compiler automatically displayed at the terminal. You must 
examine the listing produced by the compilation to determine whether your 
program compiled successfully. 

There are, in addition to the DOS/VS COBOL compiler messages, messages 
produced by the CMS FCOBOL command, which are identified with the 
prefix DMSFCO and a message number. Whether the identification or the 
text of the message, or both, is displayed depends on the setting of the EMSG 
function of the CP SET command. 

Most of the messages produced by the FCOBOL command are 
self-explanatory; for example, the sequence: 

fcobol rnyfile 
DMSFC0027E INVALID DEVICE I UA I FOR I SYSIPT I 

indicates that SYSIPT is unassigned. You must use the ASSGN command to 
specify the mode letter of the disk containing your COBOL source file and 
then reenter the FCOBOL command. 

The error messages produced by the FCOBOL command are listed below. 

DMSFCOOOIE NO FILENAME SPECIFIED 

Explanation: You must specify the filename of the COBOL source file. 

System Action: RC = 24. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Retype the command, supplying a filename in the command line. 

DMSFC0002E FILE I fn COBOL I NOT FOUND 

Explanation: The specified input file was not found on any of the accessed 
disks. 

System Action: RC = 28. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Reissue the command, specifying the correct input file. 

DMSFC0005E INV ALID PARAMETER I parameter I 

Explanation: More than one positional parameter was specified in the 
command line. 

System Action: RC = 24. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Retype the command in the correct format. 

Using DOS COBOL Under CMS 45 



DMSFC0006E NO READ/WRITE DISK ACCESSED 
Explanation: No read/write disk is available to contain compiler output and 
work flIes. 

System Action: RC = 36. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Access a CMS disk in read/write status. 

DMSFC0027E INVALID DEVICE' device' for' SYSxxx ' 
Explanation: The device associated with the specified logical unit is not 
supported by the processor. 

System Action: RC = 28. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Use the 'LISTIO SYSxxx' command to verify the device to which 
the logical unit is assigned. Reassign the logical unit to a proper device, and 
retype the command. 

DMSFC0037E DISK' mode' is READ ONLY 
Explanation: Logical units for compiler output files have been assigned to a 
read-only disk. 

System Action: RC = 36. Execution of the command terminates. The system 
remains in the same status as before the command was entered. . 

User Action: Assign the output files to a read/write disk, or unassign them and 
let the compiler assign them to read/write disks. 

DMSFC0099E CMS/DOS ENVIRONMENT NOT ACTIVE 
Explanation: In order to execute the command, the CMS/DOS environment 
must be active. 

System Action: RC == 24. Execution of the command terminates. The system 
remains in the same status as before the command was entered. 

User Action: Use the 'SET DOS ON' command to activate the CMS/DOS 
environment and retype the command. 

Because the FCOBOL command is actually a CMS EXEC procedure, you 
may receive error messages as a result of other CMS commands being 
executed within the EXEC procedure. 

Output from the Compiler 

46 IBM CMS User's Guide for COBOL 

When you invoke the compiler with certain options in effect, output files are 
written to the virtual devices assigned to SYSLST and SYSPCH. The options 
that result in output files, and the files they produced, are listed in Figure 9. 

Compiler Option 

DUMP 

DECK 

ERRS 

LIST 

LISTX 

SYM 

XREF 

Listing File (on SYSLST) Text File (on SYSPCH) 

dump printed 

deck is punched 

all source program errors 
printed 

source program printed 

Procedure Division map 
printed 

Data Division map printed 

cross-reference listing 
printed 

Figure 9. DOS compiler output. 



The Output LISTING File 

The eMS TEXT File 

If you are going to use any of these options when you compile a source file, 
you must be sure to issue the ASSGN command for the appropriate device 
before entering the FCOBOL command. 

The default output files created on your CMS A-disk have filetypes of 
LISTING and TEXT, which contain the compiler listing and the object 
module produced by the compiler. If you specifically assign SYSLST to 
PRINTER, your listing is spooled to your virtual printer and the CMS listing 
file is not produced. Likewise, if SYSPCH is assigned to PUNCH, your object 
module is spooled to your virtual punch and the CMS file for TEXT is not 
created. 

The LISTING file contains the compiler output listing, which you must 
examine to find out if the compiler completed successfully. When you are 
intially compiling a new source file, you may have compilation errors indicated 
in the listing. Because the LISTING file is written to disk if SYSLST is not 
assigned, you can use the CMS Editor to determine whether or not the 
compilation completed successfully. If not, then you can edit the source file to 
correct the error and attempt to recompile. If the compilation was successful, 
then you can print the LISTING file so that you will have a copy of your I 

program available when you are debugging. 

As noted above, the assignment of SYSLST defaults to disk. If, however, you 
do not want to retain a disk copy of the listing, but merely want a printed 
copy, then you can assign SYSLST to your virtual printer: 

assgn syslst printer 
fcobol myfile 

When the compiler finishes executing, the file MYFILE LISTING is spooled 
to your virtual printer. 

SYSPCH, if unassigned, defaults to your CMS A-disk. The CMS TEXT file 
contains the output object file, which is relocatable. This file must be 
link-edited into a relocatable phase and placed in a special CMS file, called a 
DOSLm, before you can execute it. 

A TEXT file corresponds to an output object deck, which is sometimes 
punched onto cards. Whether or not an object module (text) file is created is 
controlled by the option DECK. If DECK is in effect, the text file is written 
to the virtual device assigned to SYSPCH. When the compiler is invoked, this 
assignment is made to disk, if it had not been assigned before. Therefore, if 
you do not want a CMS TEXT file created, but want a text file punched as a 
result of compilation, you must enter the following before you compile: 

assgn syspch punch 
fcobol myfile 

If you have an existing CMS TEXT file that you want punched, you can use 
the CMS PUNCH command. 

Using DOS COBOL Under CMS 47 



Link-Editing and Executing DOS COBOL Programs 
You can link-edit CMS TEXT files, as well as relocatable phases from a DOS 
relocatable library, with the CMS command DOSLKED. Input to the linkage 
editor can be 

• In a CMS file with a filetype of DOSLNK, which contains linkage editor 
control statements, such as INCLUDE, ACTION, and so on, and 
optionally, one or more object decks 

• In a CMS file with a filetype of TEXT, which can also be edited to contain 
linkage editor control statements 

• In a DOS relocatable library, which must be identified in a DLBL 
command specifying a ddname of DSYSRL, with a logical unit of SYSRLB 

Link-edited output phases, in CMS/DOS, are placed in a special CMS file 
called a DOSLm. The DOSLKED command must specify the name of the 
input DOSLNK or TEXT file, or phase, as well as the output library name. If 
no DOSLm name is specified, a DOSLm is created with the same name as 
the input file. 

For example, if you have a CMS TEXT file named DOSTEST, and you want 
it link-edited and placed in a DOSLm with a filename of TESTLm, you 
would enter the DOSLKED command as follows: 

doslked dostest testlib 

If the file, TESTLm DOSLm, does not exist when this command is executed, 
it is created. 

Note: Each DOSLKED command invoked extends the space used in the 
DOSLm. Thus, fetch time is increased. If possible, a separate DOSLm should 
be created for each program. This DOSLm should be erased before another 
DOSLKED command is issued for the same program. If several programs 
must reside in the same DOSLm, that DOSLm should be condensed 
periodically with a "DOSLm COMP libename" command. 

Executing DOS COBOL Programs 

48 IBM CMS User's Guide for COBOL 

To execute a previously link-edited executable phase in CMS/DOS, you must 
use the FETCH command to load the phase into your virtual storage area, 
and then issue the START command to begin execution. If you are executing 
a phase from a CMS DOSLIB, you must first use the GLOBAL command to 
identify the DOSLm. For example, to execute the program MYPROG, which 
has been link-edited into the file TESTLm DOSLm, you must enter the 
commands: 

global doslib testlib 
fetch myprog 
start 

Instead of issuing a separate START command, you can use the START 
option of the FETCH command to indicate that execution is to begin 
immediately. For example, 

fetch myprog2 (start 

You can also fetch a core-image phase directly from a DOS core-image library 
and execute it in CMS/DOS. To fetch a phase from the system core-image 
library, you must have entered the CMS/DOS environment by specifying the 



Setting the UPSI Byte 

mode letter of the system residence. H you want to fetch a phase from a 
private core-image library, you must define the library with an ASSGN 
command and a DLBL command specifying a ddname of DSYSCL with an 
assignment of SYSCLB to the mode letter at which the disk is accessed: 

assgn sysclb d 
dlbl ijsyscl d dsn private corelib (sysclb 
fetch prog10 (start 

H you use the special names UPSI-O through UPSI-7 in your programs to set 
switches in the DOS/VS Communications Region, you can set these UPSI 
switches prior to executing your program. In CMS, the SET command has the 
UPSI operand, which allows you to set the UPSI byte. For example, to turn on 
switches 0, 2, and 7, you would enter: 

set upsi 10100001 

Defining Program Input and Output FOes 
When you are executing a COBOL program that performs input/output 
functions, you must identify the I/O devices by associating a system or 
programmer logical unit in your program with a virtual device. You can do this 
with the ASSGN command; for example: 

assgn sys008 reader 

You might issue this ASSGN command if you had an input file that defined an 
input reader device as SYS008. 

You must establish file definitions as well, for any input or output performed 
by verbs such as ACCEPT, DISPLAY 6,7, and so on. 

H your input and output files are disk files, then you must use the DLBL 
command to establish a definition for the file, and associate the file with a 
logical unit. For example, the commands 

assgn sys009 a 
dlbl file1 a dsn cobtest output (sys009 

establish the correspondence between an output file, named COBTEST 
OUTPUT, to be written on your CMS A-disk, with the file identified in your 
program as follows: 

FILE CONTROL. 
SELECT OUTREC 
ASSIGN TO SYS100-DA-3330-S-FILE1. 

An input file might reside on a DOS disk, and you can enter the DLBL 
command specifying the DOS file-id. For example, if your program contains 
the following: 

FILE CONTROL. 
SELECT INREC 
ASSIGN TO SYS013-DA-3330-S-INDD. 
SELECT OUTLIST 
ASSIGN TO SYS014-UR-1403-S-PRINT. 

Using DOS COBOL Under CMS 49 



Identifying VSAM Files 

Then, to use the DOS file PRIMARY DATA as an input file, and to direct 
your output to your virtual printer, enter 

assgn sys013 c 
dlbl indd c dsn ? (sys013 
DMSDLB220R ENTER DATA SET NAME: 
primary data 
assgn sys014 printer 

You must enter the file-id using the DSN ? form of the DLBL command 
because the file-id contains embedded blanks. 

When you are executing DOS COBOL programs in CMS, you cannot write or 
update DOS files on DOS disks, except for VSAM files. If you ate writing 
sequential disk files, you must write them to CMS disks. 

If you are going to be using VSAM files in CMS, you should specify the 
VSAM option, as well, when you enter the CMS/DOS environment: 

set dos on (vsam 

Entering the command this way makes all of the VSAM functions of CMS 
available to your virtual machine. 

You can identify VSAM files for program input and output in the same way as 
other DOS files" except that you must specify the VSAM option of the DLBL 
command, to indicate that the file is a VSAM file: 

assgn sys202 d 
dlbl test3 d dsn vsamtest cobol (vsam sys202 

There are additional options you may specify if the VSAM data set is a 
multivolume file, or if it is cataloged in a private catalog. If you use any of 
these special options, then you do not need to use the VSAM option. 

There is a special ddname provided for you to identify the VSAM master 
catalog you will be using during a terminal session: 

assgn syscat f 
dlbl ijsysct f dsn mastcat (syscat perm 

Entering these commands makes the VSAM master catalog available to you 
for the remainder of your terminal session. 

Using Access Method Services under eMS 

50 mM CMS User's Guide for COBOL 

You can use Access Method Services to define VSAM catalogs, data spaces, 
and clusters, and to perform REPRO, EXPORT/IMPORT, LISTCAT, and 
other Access Method Services functions using the CMS command AMSERV. 
How to use the AMSERV command is described in VM/SP: eMS User's 
Guide. 



Restrictions on Using DOS COBOL in CMS 
The following restrictions apply to executing DOS/VS COBOL programs in 
CMS. You can, however, compile these programs in CMS and then execute 
them in a DOS virtual machine, or under a DOS system. 

• Indexed files (DTFIS) are not supported. The following clauses and 
statements are therefore invalid: 

NOMINAL KEY 
TRACK-AREA 
APPLY CYL-OVERFLOW 
APPLY MASTER/CYL-INDEX 
APPLY CORE-INDEX 

• Creating direct files is restricted as follows: 

- For U and V recording modes, access mode must be sequential. 

- For ACCESS IS SEQUENTIAL, track identifier must not be modified. 

• None of the user label-handling functions are supported. Therefore, the 
label handling format of USE is invalid. The data-name option of the 
LABEL RECORDS clause is invalid. 

• The positioning options of the OPEN (EXTEND) and CLOSE statements 
are ignored. 

• There is no multivolume data set support. Therefore, the CLOSE statement 
with the REEL or UNIT option is invalid. 

• The segmentation feature can only be used with LANGLVL(2). 

• Use of SYSP ARM as an execution-time option is not available. 

• Neither AIXBLD nor NODEBUG may be set. 

• ASCII-encoded tape files are not supported. 

• Spanned records (S-mode) processing is not available. This means that the 
S-mode default (block size smaller than record size) cannot be specified, 
and that the RECORDING MODE IS S clause cannot be specified. 

• There is no Checkpoint/Restart feature. Therefore, the RERUN clause is 
not supported. 

• Multitasking, multipartition operation, and teleprocessing functions are not 
supported when executing under CMS. 

Using OOS COBOL Under CMSSI 



Executing Programs under DOS/VS 

52 mM CMS User's Guide for COBOL 

You can execute your COBOL programs under a DOS system, either in a 
virtual machine, or ona real machine. In either case, you can use CMS to 
prepare your job stream, and then punch a card deck containing your control 
statements, TEXT files, and so on. Use the CMS Editor to create a file with 
fixed-length, 80-character card images, exactly as you would punch them on a 
real card punch. Then, use the CMS PuNCH command to punch them: 

punch job stream (noh 

The NOHEADER option on the PUNCH command eliminates the punching 
of a CMS header card. 

H you are going to execute your program in a DOS virtual machine, you can 
spool your virtual card punch to the reader of the DOS virtual machine, which 
can then read and execute your job. Or, if you are going to load the DOS 
system into your own virtual machine, you can spool your virtual punch to 
your own card reader. 

H you are going to execute the program on an DOS system, then you can have 
your file punched onto real cards, which you can submit to the DOS system in 
the usual manner. 



APPENDIX A. SAMPLE EXEC PROCEDURES FOR 
DOS USERS 

This section contains sample compile, compile and link-edit, and compile, 
link-edit, and execute EXEC procedures for DOS/VS COBOL users in CMS. 
The RUN command performs a similar function for OS COBOL users. 

Sample EXEC for a COBOL CompUe 

&CONTROL OFF 
&HIGH = 0 
CP SET EMSG ON 
• DEVICE 350 IS ASSUMED TO BE DOS/VS SYSRES 
CP LINK DOSRES 350 350 RR PSWD 
ACCESS 350 F 
• DEVICE 353 IS ASSUMED TO BE A PRIVATE RELOCAT LIBRARY 
• CONTAINING COBOL LIBRARY MODULES 
CP LINK LIBRARY 353 353 RR PSWD 
• DEV!CE 352 IS ASSUMED TO BE A PRIVATE CORE IMAGE LIBRARY 
• CONTAINING THE COBOL COMPILER PHASES 
CP LINK LIBRARY 352 352 RR PSWD 
SET DOS ON F 
ASSGN SYSIPT A 
ACCESS 352 E 
ACCESS 353 G 
ASSGN SYSCLB E 
ASSGN SYSRLB G 
DLBL IJSYSCL E DSN PRIVAT CORE IMAGE LIB ( SYSCLB PERM 
DLBL IJSYSRL G DSN PRIVAT RELOCAT LIB ( SYSRLB PERM 
&IF &INDEX EQ 0 &GOTO -NOSOURC 
&IF &INDEX GT 1 &GOTO -TOOMANY 
&FN = &1 
OPTION DUMP NODECK LIST XREF ERRS GOC 
ASSGN SYSLST PRINTER 
EXEC FCOBOL &FN 
&IF &RETCODE EQ 0 &SKIP 1 
&IF &RETCODE GT &HIGH &HIGH = &RETCODE 
-EOJ &CONTINUE 
&TYPE END OF JOB &FN CHECK SPOOLED OUTPUT TO VERIFY
RESULTS 
&TYPE THE HIGHEST UN EXPECTED RETURN CODE WAS " &HIGH " 
&TYPE ALL ERRORS WILL APPEAR ON THE SPOOL PRINTER 
CP SET EMSG TEXT 
&EXIT &HIGH 
-NOSOURC &CONTINUE 
&BEGTYPE 
* NO SOURCE FILE SPECIFIED 
• PLEASE RE-ENTER THE COMMAND WITH THE SOURCE FILE NAME
AS ARGUMENT ONE 
&END 
&HIGH = 213 
&GOTO -EOJ 
-TOOMANY &CONTINUE 
&BEGTYPE 
* THE ONLY ARGUMENT ALLOWED IS THE SOURCE FILE NAME 
&END 
&HIGH = 22 
&GOTO -EOJ 

Appendix A. Sample EXEC Procedures for OOS Users 53 



Sample COBOL CompDe and Liak-Edit EXEC Procedure 

&CONTROL OFF 
&HIGH = 0 

54 mM CMS User's Guide for COBOL 

CP SET EMSG ON 
• DEVICE 350 IS ASSUMED TO BE DOS/VS SYSRES 
CP LINK DOSRES 350 350 RR ALL 
ACCESS 350 F 
• DEVICE 353 IS ASSUMED TO BE A PRIVATE RELOCAT LIBRARY 
• CONTAINING FCOBOL LIBRARY MODULES 
CP LINK LIBRARY 353 353 RR PASS 
* DEVICE 352 IS ASSUMED TO BE A PRIVATE CORE'IMAGE LIBRARY 
• CONTAINING THE FCOBOL COMPILER PHASES 
CP LINK LIBRARY 352 352 RR PASS 
SET DOS ON F 
ASSGN SYSIPT 0 
ACCESS 352 E 
ACCESS 353 G 
ASSGN SYSCLB E 
ASSGN SYSRLB G 
DLBL IJSYSCL E DSN PRIVAT CORE IMAGE LIB ( SYSCLB PERM 
DLBL IJSYSRL G DSN PRIVAT RELOCAT LIB ( SYSRLB PERM 
&IF &INDEX EQ 0 &GOTO -NOSOURC 
&IF &INDEX GT 1 &GOTO -TOOMANY 
&FN = &1 
OPTION DUMP DECK LIST XREF ERRS 60C 
ASSGN SYSLST PRINTER 
EXEC FCOBOL &FN 
&IF &RETCODE EQ 0 &SKIP 1 
&IF &RETCODE GT &HIGH &HIGH &RETCODE 
-LINK &CONTINUE 
&STACK LIFO FILE 
&STACK LIFO C I ,1,1 5 
&STACK LIFO TOP 
&STACK LIFO C I DUMMY I &FN I 5 
&STACK LIFO TOP 
&BEGSTACK LIFO 
I INCLUDE 
I PHASE DUMMY,S 
I ACTION REL,MAP 
TOP 
&END 
EDIT &FN TEXT. 
DOSLKED &FN 
&IF &RETCODE EQ 0 &SKIP 
&IF &RETCODE GT &HIGH &HIGH = &RETCODE 
-EOJ &CONTINUE 
&TYPE END OF JOB &FN CHECK SPOOLED OUTPUT TO VERIFY
RESULTS 
&TYPE THE HIGHEST UN EXPECTED RETURN CODE WAS " &HIGH " 
&TYPE ALL ERRORS WILL APPEAR ON THE SPOOL PRINTER 
CP SET EMSG TEXT 
&EXIT & HIGH 
-NOSOURC & CONTINUE 
&BEGTYPE 
• NO SOURCE FILE SPECIFIED 
* PLEASE RE-ENTER THE COMMAND WITH THE SOURCE FILE NAME
AS ARGUMENT ONE 
&END 
&HIGH = 213 
&GOTO -EOJ 
-TOOMANY &CONTINUE 
&BEGTYPE 
* THE ONLY ARGUMENT ALLOWED IS THE SOURCE FILE NAME 
&END 
&HIGH = 22 
&GOTO -EOJ 



Sample COBOL Compile, LIDk-FABt, .... Execute EXEC Proeedure 

'CONTROL OFF 
'HIGH = 0 
CP SET EMSG ON 
• DEVICE 350 IS ASSUMED TO BE DOS/VS SYSRES 
CP LINK DOSRES 350 350 RR PSWD 
ACCESS 350 F 
• DEVICE 353 IS ASSUMED TO BE A PRIVATE RELOCAT LIBRARY 
• CONTAINING COBOL LIBRARY MODULES 
CP LINK LIBRARY 353 353 RR PASS 
• DEVICE 352 IS ASSUMED TO BE A PRIVA~E CORE IMAGE LIBRARY 
• CONTAINING·THE COBOL COMPILER PHASES 
CP LINK LIBRARY 352 352 RR PASS 
SET DOS ON F 
ASSGN SYSIPT D 
ACCESS 352 E 
ACCESS 353 G 
ASSGN SYSCLB E 
ASSGN SYSRLB G 
DLBL IJSYSCL E DSN PRIVAT CORE IMAGE LIB ( SYSCLB PERM 
DLBL IJSYSRL G DSN PRIVAT RELOCAT LIB ( SYSRLB PERM 
SIF S INDEX EQ 0 S GOTO -NOSOURC 
SIF SINDEX GT , SGOTO -TooMANY 
SFN = S, 
OPTION DUMP DECK LIST XREF ERRS 60C 
ASSGN SYSLST PRINTER 
EXEC FCOBOL SFN 
&IF &RETCODE EQ 0 &SKIP , 
SIF SRETCODE GT &HIGH SHIGH = &RETCODE 
-LINK &CONTINUE 
&STACK LIFO FILE 
&STACK LIFO C I ,1,1 5 
SSTACK LIFO TOP 
&STACK LIFO C I DUMMY I &FN I 5 
&STACK LIFO TOP 
&BEGSTACK LIFO 
I INCLUDE 
I PHASE DUMMY , S 
I ACTION REL,MAP 
TOP 
&END 
EDIT &FN TEXT. 
DOSLKED &FN 
&IF &RETCODE EQ 0 &SKIP' 
&IF &RETCODE GT &HIGH &HIGH = &RETCODE 
-EXECUTE &CONTINUE 
GLOBAL DOSLIB &FN 
FETCH &FN (START 
&IF &RETCODE EQ 0 &SKIP , 
&IF &RETCODE GT &HIGH &HIGH = &RETCODE 
-EOJ &CONTINUE 
&TYPE END OF JOB &FN CHECK SPOOLED OUTPUT TO VERIFY
RESULTS 
&TYPE THE HIGHEST UN EXPECTED RETURN CODE WAS II &HIGH II 

&TYPE ALL ERRORS WILL APPEAR ON THE SPOOL PRINTER 
CP SET EMSG TEXT 
&EXIT &HIGH 
-NOSOURC &CONTINUE 
&BEGTYPE 
• NO SOURCE FILE SPECIFIED 
• PLEASE RE-ENTER THE COMMAND WITH THE SOURCE FILE NAME
AS ARGUMENT ONE 
&END 

Appendix A. Sample EXEC Procedures for DOS Users 55 



56 mM CMS User's Guide for COBOL 

&HIGH = 213 
&GOTO -EOJ 
-TOOMANY &CONTINUE 
&BEGTYPE 
• THE ONLY ARGUMENT ALLOWED IS THE SOURCE FILE NAME 
&END 
&HIGH = 22 
&GOTO -EOJ 



APPENDIX B. RESERVED FILETYPE 
DESCRIPTIONS PERTINENT TO COBOL USERS 

os COBOL Resened Filetype DescripdoDS 

FDetype COIIIDIIIId Ullle FDeIllUlle Format Coateats 

COBOL COBOL input fn fixed-length COBOL source statements 

LISTING ASSEMBLE output fn fixed-length processor printed output 
(121) 

COBOL output fn variable-length 

SYSUTI ASSEMBLE work fn 
SYSUT2 COBOL 
SYSUT3 
SYSUT4 

SYSUT5 COBOL output fn fIXed-length debug file 

SYSUT6 COBOL work fn 
(OS/VS only) 

TEXT ASSEMBLE output fn fixed-length object file 
COBOL output fn 
INCLUDE input fn 
LOAD input fn 
output fn 
TXTLm input fn 

DOS/VS COBOL Resened Filetype DeseripdoDS 

FDetype COIIIDIIIId Usage FlIeIIIUIIe Format Coateats 

COBOL FeOBOL input fn fixed-length COBOL source statements 

LISTING FCOBOL output fn variable-length processor printed output 
ESERV 
SSERV 
PSERV 
DSERV 
RSERV 

SYSOOI FCOBOL work fn 
SYS002 ESERV 
SYSOO3 
SYS004 
SYS006 

SYSOO5 FCOBOL output fn fIXed-length debug file 

TEXT FCOBOL output fn fIXed-length object file 
RSERV 

DOSLKED output fn fIXed-length CMS/DOS executable 
phases 

DOSLNK DOSLKED output fn fIXed-length CMS/DOS executable 
phases 

DOSLIB DOSLIB input fn variable-length CMS/DOS executable 
DOSLKED output fn fIXed-length phases 
FETCH input fn fIXed-length 
GLOBAL library fn fIXed-length 
QUERY input fn fIXed-length 

Appendix B. Reserved FUetype Descriptions Pertinent to COBOL Users 57 





INDEX 

(Where more than one page reference is given, the major 
reference appean fll'St.) 

Symbols 
¢ (cent sign), line delete symbol 3 
% (percent sign), shows hitting the TAB key 9 
_ (underscore), shows compiler defauts 5 
(at sign), character delete symbol 3 
[] (brackets), shows optional choices 16 
( ) (braces), shows required choices 16 
( ) (parentheses), required entry in command format 5 
... (ellipsis), shows optional repetition of items 5 

A 
abbreviations for OS compiler options 27 
abnormal termination, requesting (DUMP) 19 
access method services, using 

DOS 50 
OS 36 

ACCESS command for DOS simulation 39,51 
accessing disks under CMS (DOS) 39-40 
ADV compiler option 

DOS 43 
OS 18 

alternate names for compiler options 27 
amendments, summary of v 
APOST compiler option 

DOS 43 
OS 22,27 

apostrophe ('), requesting use enclosing literals (APOST) 
OS 22 

ASCn tape files, not supported 38,S 1 
ASSGN command (OOS) 40-44,50 
assigning a ddname to the input file 44 
assignment of compiler work files 

B 

OOS 44 
OS 28 

BATCH compiler option (OS) 18,38 
blanks used as delimiters 5 
braces, show required choices 5 
brackets, show optional choices 16 
BSAM test facility, restriction 37 
BUP compiler option 

c 

DOS 43 
OS 17,27 

card deck, punched of object program 
DOS 51,47,42 
OS 18 

CBL statement (OOS), specifies computer options 43 
CDECK compiler option (OS) 18,27 

effect on compiler output, summary 29 
cent sign, line delete symbol 3 
change filetype, how to 11 

change modes, how to 
EDIT to INPUT 9 
INPUT to EDIT 10 

character-deletion character 3 
Checkpoint/Restart feature, restriction 

DOS 51 
OS 38 

CUST compiler option 
DOS 43 
OS 18,26 

effect on compiler output, summary 30 
CLOSE statement, restriction (OS) 

DOS 51 
OS 38 

CMS 
COBOL restrictions 

DOS 51 
OS 37-38 

command 3-5,7-8 
compilation control commands, summary 4 
control commands 

description 7 
summary 4 

debugging 
control commands, summary 4 
facilities 7 

DOS restrictions 51' 
execution control 7 
features 7 
file conventions 6 
how to bring a copy into storage 8 
initialization commands, summary 4 
library facilities 8 
MACLms (OS) 28 
OS restrictions 37-38 
program execution control commands, summary 4 
utilities 7 

COBOL Interactive Debug 24 
TBSTCOB command 4 

COBOL Library Management feature (RESIDENT), requesting 
use (OS) 22 

COBOL Programmer's Guide, using iii 
COBOL command (OS) 

compilation control 15 
description 15-27 
example 4 
filename 17 
format 17 
operands 18-27 

COBOL filetype characteristics 28 
COBOL source programs, preparing 9-14 
command 

entering 3 
general description 3 
syntax 3 
uses of 4 

command name 4 
command operands, entering 4-5 . 
compile, EXEC procedure for (DOS) 53 
compile, link-edit EXEC procedure (DOS) 54 
compile, link-edit, execute EXEC procedure (DOS) 55 

Index 59 



compile, load, and execute a program, how to 9-14 
sample session 

DOSCOBOL 13-14 
EXEC procedure for (DOS) 53-56 
OS COBOL 11-12 

compile time restrictions 
CMS 37,51 
DOS 51 
OS 37 

compHer-generated line numbers, requesting use (NONUM) 22 
compiler options 

alternate names (OS) 27 
conflicting (DOS) 26 
defaults (DOS) 43 
defaults (OS) 16-27 
effects on output, summary 

DOS 46 
OS 29 

for OS COBOL only 15 
compiler output 

effect of compiler options 
DOS 46 
OS 29 

general description 
DOS 46-47 
OS 28 

compiling DOS source fdes 40-47 
condensed listing of object code (CUST) 

DOS 43 
OS 18 

conditional syntax error checking (CSYNT AX) 
DOS 43 
OS 17 

control commands under CMS, general description 7 
control of execution 7 
copying 

DOS COBOL fdes 44 
OS COBOL fdes from MACLIBs 28 

core image library and DOS COBOL compiler 40 
COUNT compiler option 

DOS 43 
OS 16,18,26 

create a punched card deck of the object program, how to 
DOS 47 
OS 29 

create a TEXT file, how to 
DOS 47 
OS 29 

create an input fde, how to 9-11 
create and edit an input fde, how to 9-11 
CSYNT AX compiler option 

D 

DOS 43 
OS 18,27 

ddname, assigning to input fde 34,35 
debug fde (OS), required assignment of ddname 36 
Debug, COBOL Interactive, specifying 24 

TESTCQB command and 4,24 
debugging control, CMS commands used for 4 
debugging facilities under CMS, general description 7 

60 mM CMS User's Guide for COBOL 

DECK compiler options 
DOS 42 
to get punched card deck of object program 

DOS 47 
OS 38 

effect on compiler output, summary 
DOS 46 
OS 30 

OS 18,27 
default 

compiler options 
DOS 41-42 
OS 24-25 

FILEDEF 
for SYSDBG 37 
for SYSUT5 37 

SYSPCH (DOS) 47 
defining program input and output fdes 

DOS 50-51 
OS 34-36 

delete a character, how to 3 
delete a line, how to 3 
delimiters, blanks used as 5 
DISK compiler option (OS) 19,26 

effect on compiler output, summary 30 
display fdetype, how to 11 
DLBL command 

DOS 50,8 
OS 35 

DMAP compiler option (OS) 19,27 
effect on compiler ~utput, summary 30 

DMSCOB, CMS OS COBOL compilation response prefIX 31 
DMSFCO, CMS DOS COBOL compilation response prefIX 45 
DOS EXEC procedures, examples 53-56 
DOS system residence volumes 44,8 
DOS 

COBOL reserved filetype descriptions 55 
executing programs under 53-56 

ooSLKED command 48 
double quote (") literal delimiter, requesting (QUOTE) 

DOS 43 
OS 21 

DSERV command copies 
DOS libraries 8 

DUMP compiler option 
description 

DOS 41 
OS 19,27 

effect on compiler output, summary of 
DOS 46 

DYNAM compiler option (OS) 19,27 

E 
edit mode, using 9-11 
effect of compiler options on output, summary 

DOS 46 
OS 30 

ellipsis, used to define command syntax and format 5 
end a line, how to 3 
end a terminal session, how to 4 
ENDJOB compiler option (OS) 19,27 
enter a line, how to 3 



enter command options, how to 
CMS commands 5 
COBOL command (OS) 25 
OPTION command (OOS) 41,42 

enter CMS commands, how to 3-6 
enter information at the terminal, how to 3-6 
enter COBOL source code, how to 9-14 
entering input lines 9-10 
error messages 

COBOL command (OS) 31-33 
OOS COBOL compiler 45-46 
FCOBOL command (OOS) 40,43 
OS COBOL compiler 28-30 

error recovery 
OOS 45-46 
OS 31-33 

ERRS Compiler option (OOS) 42 
establish a connection to the computer 1-2 
example 

CMS command syntax 5 
COBOL command message 30 
CMS message 30,45 
OOS EXEC procedures 53-56 
FCOBOL command message 40 
terminal session 1,2 

EXEC procedure and FCOBOL command 40 
EXEC procedures (OOS) 

creating 7 
samples of 53-56 

execute the program, sample session 
OOS 13,14 
OS 11,12 

executing programs 
underOOS 53 
underOS 37 

execution 
OOS COBOL program 51,48-49 
OS COBOL program 37,33 

execution-time restrictions 
general discussion 7 
under CMS 37-38,51 
underOOS 51 
under OS 37-38 

execution control under CMS, general description 7 

F 
FCOBOL command (OOS) 

description 40-42 
error messages 45-46 

FDECK compiler option (OS) 19,27 
effect on compiler output, summary 30 

FETCH command (OOS) 40,4 
example 14 

file conventions 
CMS 6-7 
OOS 46,49-51 
general 1 
OS 28-29,34-37 
VSAM 

OOS 50 
OS 36 

file handling control 
CMS commands used for 4 
general description 6-8 
identifier 6-8 
required specification 

COBOL command (OS) 15-26 
FCOBOL command (OOS) 40 

source, handling 9-14 
Fll..E subcommand, used to place file on disk 10 
Fll..EDEF command (OS) 

used in sample session 12 
used to assign input file cidname, example 34 
used to simulate OS JCL, in general 34 

filemode 6-7 
filename 

in COBOL command (OS) 17 
in FCOBOL command (OOS) 40-41 
of object code, how determined 

OOS 49-50 
OS 34-35 

syntax 6-7 
files 

created by OS COBOL compiler 29 
used by OOS COBOL compiler 44 

filetype 
changing with RENAME 11 
descriptions, reserved 

OOS 57 
OS 57 

of object code 7 
using USTFILE to display 11 

filing source files 10 
FIPS flagging, requesting 

OOSCOBOL 43 
OS COBOL 20,26 

FLAGE compiler option 
description 

OOS 43 
OS 20,26 

effect on OS compiler output, summary 30 
FLAGW compiler option 

description 
OOS 43 
OS 20,26 

effect on OS compiler output, summary 30 
FLOW compiler option (OS) 20,26 
format of files, according to reserved filetypes 57 
formatted dump, requesting (SYMDMP) 

OOS 43 
OS 23 

formatted trace, requesting (FLOW) 
OOS 43 
OS 20 

format a source program, how to 9-10 

G 
GLOBAL command 

specifies OS COBOL compilation library 8 

Index 61 



H 
how to 

I 

compile a program 
DOS 40-44,53 
OS 15-27 

create and edit the source program file 9-10 
end a terminal session 2 
enter a line 3 
enter CMS commands 3-5 
enter information at the terminal 3 
load and execute a COBOL program 

DOS 48-49 
OS 33-36 

start a terminal session 1-2 
use CMS file conventions 6-7 

identifying VSAM files 
DOS 50 
OS 35-36 

IKF, OS COBOL compiler message prefix 30 
indexed flles, restriction 

DOS 51 
OS 37 

initializing CMS 
INPUT environment, how to enter 9-10 
input file 

creating and editing, example 
DOS 13-14 
OS 11-12 

ddname, assigning (OS) 34-35 
defining 

DOS COBOL 50-51 
OS COBOL 34-35 

input line, entering 3 
Interactive Debug (OS) 

TEST compiler option and 24-25 
TESTCOB command 24-25 

internal tabs~ for formatting a source program 9 
interpreting error messages 

DOS 45-46 
OS 31-33 

introduction 1-8 

K 
keyword operands 5 

L 
L120 compiler option (OS) 21,26 
L132 compiler option (OS) 21,26 
label handling functions, restriction 

DOS 51 
OS 38 

LABELRECORDSc~use,restriction 

DOS 51 
OS 38 

LANGLVLl 
OS 20,26 
DOS 43 

LANGLVL2 
OS 20,26 
DOS 43 

62 mM CMS User's Guide for COBOL 

language processors under CMS, general discussion 
LCOLI compiler option (OS) 20,26 
LCOL2 compiler option (OS) 20,26 
Lm compiler option 

DOS 43 
OS 20,26 

library facilities under CMS, general discussion 8 
line-deletion character (¢) 3 
line number editing 10 
link-editing programs 

DOS 48 
OS 33 

LINECNT compiler option (OS) 17,26 
LISTX compiler option (DOS) 42 
lister feature (OS), requesting 20 
LISTFll...E command, used to display filetype, example 11 
LISTING file 

description (OS) 28 
summary of compiler options effect on 

DOS 46 
OS 29 

load and execute the program, how to 
in one step (OS) 33-34 
OSDECK compiler option, when required 27 
under CMS 33,48-51 
under DOS 51 
under OS 37 
using FETCH and START (DOS) 48-49 
using LOAD and START (OS) 33-34 
using RUN (OS) 33 

LOAD command (OS) 33,4 
example 12 

LOAD compiler option (OS) 20,24 
effect on compiler, summary 30 

logoff 2 
logon 2 
LSTCOMP compiler option (OS) 20,26 

effect on compiler output, summary 30 
LSTONL Y compiler option (OS) 20,26 

effect on compiler output, summary 30 
LVLy compiler option (OS) 21,26 

effect on compiler output, summary 30 

M 
MACLm command (OS) 36,8 
messages, compiler 

DOS 45-46 
OS 31-33 
printing all error and warning (FLAGW) 

DOS 43 
OS 20 

printing only error (FLAGE) 
DOS 43 
OS 26 

messages during compilation under CMS 
DOS 45-46 
OS 31-33 

messages listed at the terminal (OS), requesting (TERM) 24,26 
MIGR compiler option (OS) 21 
multivolume data sets not supported (OS) 38 
multipartition operation not supported (DOS) 51 
multitasking not supported (DOS) 51 
multiple programs, how to compile using BATCH 18,26 



N 
NAME compiler option (OS) 21,27 
IUUIIin8 TEXT rue records (NAME) 21,27 
IUUIIin8 the source file (OS), and SYMDMP option 37 
IUUIIin8 the debug fde with SYST or SYSx 24 
NOADV compiler option (OS) 18,26 

OOS 43 
NOBATCH compiler option (OS) 18,26 
NOCDECK compiler option (OS) 18,26 
NOCUST compiler option 

OOS 43 
OS 18,26 

NOCOUNT compiler option (OS) 18,26 
OOS 43 

NOCSYNTAX compiler option (OS) 18,26 
NODECK compiler option 

OOS 42 
OS 21,26 

NODMAP compiler option (OS) 19,26 
NODUMP compiler option 

OOS 41 
OS 19,26 

NODYNAM compiler option (OS) 19,26 
NOENDJOB compiler option (OS) 19,26 
NOERRS compiler option (OOS) 42 
NOFDECK compiler option (OS) 20,26 
NOFLOW compiler option (OS) 20,26 
NOLIB compiler option 

OOS 43 
OS 20,26 

NOUSTX compiler option 
OOS 42 

NOLISTX 
OOS 42 

NOLOAD compiler option (OS) 20,26 
NOLST compiler option (OS) 20,26 
NOL VL compiler option 

OOS 43 
OS 21,26 

NOMIGR compiler option (OS) 21,26 
NONAME compiler option (OS) 22,26 
NONUM compiler option (OS) 22,26 
NOOPT compiler option 

OOS 43 
OS 22,26 

NOPMAP compiler option (OS) 22,26 
NOPRINT compiler option (OS) 19,26 
NORES compiler option (OS) 22,26 
NOSEQ compiler option 

OOS 43 
OS 23,26 

NOSOURCE compiler option (OS) 22,26 
NOSTA TE compiler option 

OOS 43 
OS 23,26 

NOSUPMAP compiler option 
OOS 43 
OS 23,26 

NOSXREF compiler option 
OOS 43 
OS 23,26 

NOSYM (OOS) 42 
NOSYMDMP compiler option (OS) 23,26 

NOSYNTAX compiler option 
DOS 43 
OS 24,26 

notation conventions 5 
NOTERM compiler option (OS) 24,26 
NOTBST compiler option (OS) 25,26 
NOTRUNC compiler option 

DOS 43 
OS 25,26 

NOVBREF compiler option (OS) 25,26 
NOVBSUM compiler option (OS) 25,26 
NOVERB compiler option 

OOS 43 
OS 25,26 

NOVERBREF 
DOS 43 

NOVERBSUM 
OOS 43 

NOXREF compiler option 
OOS 42 
OS 25,26 

NOZWB compiler option 
OOS 43 
OS 25,26 

NUM compiler option (OS) 22,26 
effect on compiler output, summary 30 

o 
object code, not produced if both SYNTAX and OPTIMIZE are 

specified 23 
filename and filetype, how determined ~8 

object program execution under OS, OSDECK required 27 
OPEN (EXTEND) statement, restriction (OS) 38,SI 
operand syntax 4-S 
operands of COBOL and FCOBOL commands (see COBOL and 

FCOBOL command operands) 
OPTIMIZE compiler option 

OOS 43 
OS 21,26 

optimi7.ed object code, how to request (OPTIMIZE) 
OOS 43 
OS 21,26 

OPTION command (OOS) 
defaults 41-43 
description 41-43 
format 43 
operands 

OS as an .abbreviation m 
OS COBOL compiler options IS-30 
OS COBOL reserved filetype descriptions S7 
OSDECK compiler option (OS) 22,26 

disallowed for CMS execution 27 
required for OS execution 27 

output, compiler 
DOS 44-47 
OS 29 

outputfiles,defbrlng 
DOS COBOL 39-40,SO-SI 
USTINGfile 

DOS 46-47 
OS 29 

OS COBOL 15,34-35 
TEXT file 

DOS 47 
OS 29 

Index 63 



p 
parameter lists 34 
parentheses, used in derIDing command syntax and format 5 
passing parameten 34 
percent sign (%), used to show pressing the TAB key 9 
PMAP compHer option (OS) 22,26 

effect on compHer output, summary 30 
positional operands 4 
preface iii-iv 
preparing COBOL source programs in CMS 9-14 
prerequisite publicatioDS iii-iv 
PRINT compHer option (OS) 19,26 

effect on compHer output, summary 30 
procedure-names, using VERB to request 

DOS 43 
OS 25 

program execution 
under CMS 33,36-38,48-51 
underDOS 51 
underOS 37 

program execution control, CMS commands used for 4 
program listing, directing 

to disk 
DOS 42 
OS 18 

to offline printer 
DOS 48 
OS 18 

PSERV command copies DOS libraries 8 
PUNCH command, used for object deck 

DOS 47 
OS 28 

punched card deck of object program, how to get 
using DECK option 

DOS 42 
OS 18 

using PUNCH command 
DOS 48 
OS 28 

purpose of this publication iii 

Q 
QUOTE compiler option 

DOS 43 
OS 22,26 

R 
record length 9 
records, serializing 10 
reformatted listing (OS) 

requesting 19 
specifying tine length 19 
writing copy on SYSPUNCH 19 

related publicatioDS list iii-iv 
RENAME Command to change filetype, example 11 
renaming existing source files 11 
reserved filetype descriptioDS 55 
RESIDENT compiler option (OS) 22,26 

64 mM CMS User's Guide for COBOL 

restrictiODS on using COBOL under CMS 
compHe-time 

DOS 51 
OS 37-38 

execution-time 
DOS 51 
OS 37 

RETURN key, used to end tine 2 
RSBRV command copies DOS files 8 
RUN command (OS) 

s 

compHer default OptiODS used 33 
one-step execution procedure 33 

sample terminal session 
for DOS user 13-14 
for OS user 11-12 

search of libraries (LIB) for data (OS) 20,26 
segmentation feature 51 
SEQ compHer option 

DOS 43 
OS 23,26 

sequence checking, requesting (SEQ) 
DOS 43 
OS 23,26 

serializing records 10 
SET DOS ON command 39 
setting the UPSI byte 49 
simulating DOS JCL functioDS 48-49 
simulating OS JCL function 34 
SIZE compiler option (OS) 17,26 
sorted cross-reference listing, how to request (SXREF) 

DOS 43 
OS 22,26 

source code, how to enter 9-14 
source files 

DOS 40 
OS 15 

SOURCE compiler option (OS) 23,26 
effect on compiler output, summary 29 

source module listing, how to request (SOURCE) 23,26 
source program, how to format 9-11 
SPACE 1 compiler option (OS) 23,26 

effect on compiler output, summary 29 
SPACE2 compiler option (OS) 23,26 

effect on compiler output, summary 29 
SPACE3 compiler option (OS) 23,26 

effect on compiler output, summary 29 
SPACEn compiler option (DOS) 43 
spanned record processing, restriction 

DOS 51 
OS 38 

special consideratioDS, OS COBOL files 37 
specifying compHer OptiODS, OPTION command (DOS) 41-43 
'specifying OptiODS with CBL statement (DOS) 43 
SSERV command copies DOS libraries 8 
start a terminal session, how to 1-2 
START command, used to execute an object program, 

example 12,14 
STATE compiler option 

DOS 43 
OS 23,26 



storage specifications 
usingBUP 

OOS 43 
OS 17 

using SIZE (OS) 17 
SUPMAP compiler option 

description 
OOS 43 
OS 23,26 

effect on OS compiler output, summary 30 
suffixes used in notation convention 5 
summary of amendments v 
suppression compiler options by SYNTAX (OS) 24 
suppression of object code listing (SUPMAP) 

OOS 43 
OS 23,26 

SXREF compiler option 
description 

OOS 43 
OS 23,26 

effect on OS compiler output, summary 30 
SYM compiler option (OOS) 42 
SYMDMP compiler option 

description 
OOS 43 
OS 23,26 

effect on OS compiler output, summary 30 
specifying source file name, caution 36 

syntax checking (OS), unconditional, when assumed 23 
SYNTAX compiler option 

OOS 43 
OS 24,26 

syntax error checking 
conditional (CSYNTAX) 

OOS 43 
OS 18,26 

unconditional (SYNTAX) 
OOS 43 
OS 24,26 

syntax of 
CMS commands 4-5 
COBOL command 15-26 
FCOBOL command 40-41 
OPTION command 41-42 

SYSDBG data set (OS) 35-36 
SYSLST assignment (OOS) 46-47 
SYSPARM 24 
SYSPCH assignment (OOS) 46-47 
SYSPUNCH data set (OS) 19 
SYST compiler option (OS) 24,26 
system logical units (OOS) 

assignment of 44,39-41 
wamingon 43 

SYSUTI-SYSUT6 compiler work files (OS) 29 
SYSOOI-SYSnnn compiler work files (OOS) 44 
SYSx compiler option (OS) 24,26 

T 
TAD key, percent sign (%) used to show pressing 9 
tab settings, used to format COBOL source program 9 
TCAM support, (OS), restriction 38 
TERM compiler option (OS) 24,26 

effect on compiler output, summary 30 
terminal session 

definition 2 
entering information 3-6 
how to end 3 
how to start 2-3 
sample 

forOOS 3-14 
for OS 11-12 

terminal user 
TEST compiler option (OS) 24,26 

effect on compiler output, summary 30 
TESTCOB command 19 
TEXT as COBOL object program fdetype 

OOS 14 
OS 15 

TEXT file 
description (OS) 28 
how to create 

OOS 40-47 
OS 28 

summary of effects of compiler options on 
OOS 46 
OS 30 

TRUNC compiler option 
OOS 43 
OS 25,26 

TXTLm text libraries (OS) 8 
type a command at the terminal, how to 5 

u 
unconditional syntax checking (OS), when assumed 24 
underscore ( ), shows defaults in coMmand format 5 
unsorted croS;reference listing, requesting (XREF) 

OOS 42 
OS 25 

uppercase, shows output in this publication 5 
UPSI byte, setting (OOS) 49 
USE declarative, restriction 

OOS 51 
OS 38 

use of reserved fIletypes 57 
user-supplied line numben (OS), requesting (NUM) 22 
user identification (userid) in logon 2 
user label handling functions, restriction 

OOS 51 
OS 38 

using access method services under CMS 
OOS 51 
OS 36-37 

using OOS COBOL under CMS 39-52 
using OS ·COBOL under CMS 15-38 
using the CMS features, in general. 7-8 
using the CMS file conventions, in general 6-7 
using the COBOL Programmer's Guides, in general iii 
using VSAM fdes in CMS 

OOS 50 
OS 36 

utilities under CMS, general discussion 7 

Index 65 



v 
VBREF compiler option (OS) 25,26 

effect on compiler output, summary 30 
VBSUM compiler option (OS) 25,26 

effect on compiler output, summary 30 
verb-names, using VERB to request a list of 

DOS 43 
OS 25 . 

verb being executed at ABEND, requesting list of (STATE) 
DOS 43 
OS 25,26 

VERB compiler option 
DOS 43 
OS 25,26 

verb cross-references (OS), requesting 29 
verb execution summaries (OS), requesting 29 
VERBREF 

DOS 43 
VERBSUM 

DOS 43 
virtual machine environment W-IV 

Virtual Machine Facility /370 (VM/370) 
entering commands 3-6 
entering information 3 
logoff 2 
logon 2 

VM/SP 3-6 
VM/370 3-6 
VSAM files, using 

inDOS 50 
in OS 36 

w 
what you must know to use CMS 1-8 
worl files 

DOSCOBOL 44 
OSCOBOL 28 

x 
XREF compiler option 

description 

z 

DOS 42 
OS 25,26 

effect on compiler output, summary 
DOS 44 
OS 30 

ZWB compiler option 
DOS 43 
OS 25-26 

66, mM CMS User's Guide for COBOL 



iii 
o 
z 

IBM CM8 User's Guide 
for COBOL 
8C28-6469-5 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts. programmers. and operators of 
IBM systems. You may use this form to communicate your comments about this publication. its organization. or 
subject matter. with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action. if any. are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests,for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book. please list them here: 

last TNL _________ _ 

Previous TNL ________ _ 

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere. an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



SC28-6469-5 

Reader's Comment Form 

Fold end tepe Please do not staple Fold and tape 

......................................................................................................................................... 

Fold end tepe 

--..------- -------- - ---- - - -----------,-(I) 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Please do not staple 

I II II I NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

C) 
c: 
0.: 
(I) 

..... o .., 
(") 

o 
OJ o 
r-
"T1 

CD 
Z 
~ 
en w 
~ 
o 
~ 
~ 



SC28-6469-5 

= .... $ -----~ .. ------_.-


