

---- ------------- ------------_._-_._--

c

Program Product

SH20-91 60-0

Document Composition
Facility: Generalized Markup
Language (GML) User's Guide

Program Number S748-XX9

~ ~ ~ §=§
===-= ":' =

First Edition (July 1978).

This edition applies to Release 1 of the Document Composition Facility, program
number 5748-XX9, and to all subsequent releases unless otherwise indicated in new
editions or technical newsletters.

Information in this publication is subject to significant change. Any such changes
will be published in new editions or technical newsletters. Before using this pub
lication, consult the latest IBM System/370 Bibliography, GC20-0001, and the tech
nical newsletters that amend the bibliography, to learn which editions and
technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office
that serves you.

Forms for readers' comments are provided at the back of this publication. If the
forms have been removed, comments may be addressed to IBM Corporation, P.O. Box
50020, Programming Publishing, San Jose, California 95150. All comments and sug
gestions become the property of IBM.

~ Copyright International Business Machines Corporation 1978

(-
1,,-

c

c

c

c./

PREFACE

The Document Composition Facility, program number 5748-XX9, is a text processing
system that supports the use of computers in the preparation of printed materials.
The principal component of the Document Composition Facility is called
"SCRIPT/VS." SCRIPT/VS provides facilities for manuscript preparation, text mark
up, page makeup and composition, and printing. It also provides a number of other
document processing functions, among which is the ability to create your own mark
up interface, using the Generalized Markup Language (GML). GML provides the syntax
and usage rules for developing your own vocabulary of "tags" for describing the
parts of a document, without respect to particular processing.

This manual will show you how to define GML support for your installation. As an
illustration of how to use SCRIPT/VS to develop GML support, IBM has created a
"starter set" of GML. Thi s manual al so descr i bes the starter set, and prov ides
basic information on using SCRIPT/VS to process GML documents.

Note: The starter set of GML tags, profiles, and application processing functions
(APFs) descri bed in thi s manual are provi ded on an "as is" basi s to expedi te
initial use of the Document Composition Facility. No warranty, express or implied,
is provided for the starter set. Service support of the starter set is the respon
sibility of the customer.

Information about the use of batch processing and the Document Library Facility is
for planning purposes only until availability of the Document Library Facility
program product, program number 5748-XXE.

HOW TO USE THIS PUBLICATION

This manual addresses two distinct audiences: persons who define document pro
duction standards and procedures (called "document administrators" in this
publication), and persons who mark up documents for processing in accordance with
those standards and procedures (called "markup edi tors").

For document administrators, Parts One and Two of this manual are examples of how
to prepare markup and operation guides for the types of document processed at your
installation, and for the operating procedures you actually use. As such, they are
written to be read by markup editors, and by persons producing their own documents
informally.

Part One explains what GML markup is and how to mark up the type of document which
the sta rter set supports. It includes deta i led descr i pt ion s of some 50 tags and
APFs provided in the starter set. Part Two shows how to invoke SCRIPT/VS, with
examples from a number of system environments.

Part Three is addressed to persons performing the functions of a document adminis
trator. It describes some of the decisions made in designing the starter set, and
shows how to use GML to create markup tailored to the types of document produced at
your installation.

Persons producing documentation informally, and users of the GML implementation
known as "EasySCRIPT," may find "Appendix G: Getting Started with Gr'lL" on page
151 helpful. It explains how you can quickly put SCRIPT/VS to work on most text by
using just a handful of starter set GML tags.

RELATED PUBLICATIONS:

• IBM Document Composition Facility: General Information Manual, GH20-9158,
contains general Document Composition Facility product and planning informa
tion.

• IBM Document Compos; ti on Faci 1 i ty: User's Gui de, SH20-9161, descri bes all
SCRIPT/VS control words in detail, SCRIPT/VS symbol and macro facilities, and
how to use SCRIPT/VS with other text processors and user programs.

Preface iii

• IBM Document Library Facility: General Information, GH20-9163, describes the
Document Library Facility licensed program that must be installed to use
SCRIPT/VS in batch processing environments.

• IBM Document Library Facility Guide contains specific information about the
Document Library Facility functions available to batch SCRIPT/VS users. l

• Document Composition Facility: Generalized Markup Language (GML) Quick
Reference, SX26-3719, summari zes the starter set of GML tags, markup proce
dures, and processing options in a convenient reference card format.

REFERENCED PUBLICATIONS:

• IBM Virtual Machine Facility/370: CMS User's Guide, GC20-1819, gives detailed
information about CMS text entry, editing, and file management.

• IBM OS/VS2 TSO Terminal User's Guide, GC28-0645, gives detailed information
about TSO text entry, editing, TSO data set naming conventions, and TSO data
set management.

1 This publication will be available when the Document Library facility is
available.

i v GML User's GUt de

Part One: GMl Markup Guide for General Documents

What is GML Markup?

Marking Up General Documents
Identifying Document Elements
Markup Examples

General
List s
Hi ghl i ght i ng
Cross-References

Markup Procedures
Entering GML Markup and Text
SCRIPT/VS Symbols
Control Words and Macros

Source Document Management
Imbedding Files (.IM)
Writing Comments (.CM)
Indicating Revisions ..
Inserting Attributes (.ATT)

Graphic Formatting
Modifying Processing Results
Additional General Processing

Processing General Documents
Choosing the Correct Profile
Interim Processing
Markup Errors

Element Tag Descriptions
abstract -- abstract
address -- address
aline -- address line ..
appendix -- appendix section
author -- author name
backm -- back matter
body -- body
date -- document date
dd -- definition description
dl -- definition list
docnum -- document number
dt -- definition term
fig -- figure
figcap -- figure caption ...
figdesc -- figure description
figlist -- list of illustrations
figref -- figure reference
fn -- footnote
fnref -- footnote reference
frontm -- front matter
gdoc -- General Document
hdref -- heading reference .
hpO highlighted phrase (type 0)
hp1 -- highlighted phrase (type 1)
hp2 -- highlighted phrase (type 2)
hp3 -- highlighted phrase (type 3)
hO head zero
hI head one
h2 head two
h3 head three
h4 head four
h5 head fi ve
h6 head six
Ii list item
1 p lis t pa r t
lq long quotation
note -- note
01 -- ordered list
p -- paragraph ' ...

CONTENTS

1

3

5
5
7
8
8
9
9

11
11
12
13
13
13
13
13
14
14
14
15

17
17
18
18

21
23
24
25
26
27
28
29
30
31
33
35
36
38
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
63
64
65
66
68

Contents v

pc -- paragraph continuation
ph -- phrase
preface -- preface
psc -- process-specific controls
q -- quote
sl -- simple list
title -- document title
titlep -- title page ..
toc -- table of contents
ul -- unordered list
xmp -- exampl e

Part Two: GML Processing Guide

Entering and Editing GML Documents

Processing GMl Documents With SCRIPT/VS
SCRIPT Command Options
Issui ng the SCRIPT Command

CMS
TSO
Batch Processi ng

Part Three: GMl Markup Design Guide

Developing GMl for Your Own Use
GMl In Your Installation
The Role of Document Administrator

SCRIPT/VS Functional Capabilities
Formatting Functions
General Document Handling Functions

Basi c GMl Concepts
Obj ect i ves of GMl Ma rkup

GMl With SCRIPT/VS Text Processing
GMl With Other Applications

How SCRIPT/VS Interprets GMl

Creating Document Type Descriptions
Document Characteri sti cs

Determining Document and Element Types
Defining Document and Element structure
Defining Attributes

Description Design Considerations
Normal Form and Other Forms
Influence of Expected Processing

Effect on Document Type Descriptions
Effect on Markup Conventions

Rules or Conventions?
Freedom or Complex; ty?

Some Questions to Ask
Why; s Thi s Done?
Is Thi s Temporary?
Is the Formatted Output Involved?
Is Physical Storage Involved?
What About Multiple Versions?

Defining Tags

Specifying Processing
GMl Interpretation

Element Start Interpretation
Attribute Interpretation
Element End Interpretation

Specifying APFs and Profiles
What is a Profi Ie?
Organ i zi ng Your APFs ..
Implementing Processing Options

Supplementing SCRIPT/VS Processing
Generating SCRIPT/VS Input
Using SCRIPT/VS to Prepare Input for Other Programs
Shari ng SCRIPT/VS GMl Fi les

Defining Markup Procedures
GMl Markup

vi GMl User's Guide

69
70
71
72
74
75
77
78
79
80
82

85

87

89
89
90
90
91
92

93

95
95
96

97
97
98

101
101
101
102
102

105
105
106
109
112
113
113
114
114
114
115
115
115
115
116
116
116
117
117

119
119
119
120
120
121
121
121
121
122
123
123
123

125
125

r
"'--..

c

----- -------

c

c

o

Text Entry
SCRI PT /VS Symbo 1 s

Entering Unkeyable Characters
Reference to Generated Information
Abbreviating lengthy Phrases

Control Words
Interchange Consi derati ons

Establishing Interchange Standards
Preparing Documents for Interchange

Creating Your Own GMl Markup Guides
Communication Considerations
Descri bi ng Processi ng
Determining Your Requirements
GML Support for Markup Guides .
Using the Starter Set Markup Guide

Appendix A: GMl Markup Summary
Markup Procedures

Entering GML Markup and Text
SCRIPT/VS Symbols
Control Words and Macros ..

Source Document Management
PSC Elements

Tags for General Documents
Processing General Documents

Profile and Variations
Interim Processing
Errors

Appendix B: GMl Processing Summary
SCRIPT Command
Options
File Hame Qualifiers

Appendix C: GMl Messages

Appendix D: Title Page Example

Appendix E: Document Type Description for General Documents
Element Types and Structure Definition
Permi tted Attri bute Values
Markup Conventions

Symbol s
Control Words and Macros

Appendix F: Document Type Description
Element Types and Structure Definition
Permitted Attribute Values
Markup Conventions
Processi ng

Appendix G: Getting Started with GML
GML Tags
Examples
Other Funct ion s

Glossary

Index

for GMl Markup Guides

-------_____ '00_-__ 0_''''''0

125
125
126
126
126
127
127
127
128
128
129
129
129
130
130

131
131
131
131
132
132
132
132
136
136
136
136

139
139
139
139

141

143

145
145
145
146
146
146

148
148
149
149
150

151
151
152
154

155

161

Contents vii

C~:

c

c:

~--------------~~------ ------- ---

o

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

LIST OF ILLUSTRATIONS

1. Contents of a Paragraph Uni t
2. The 11 Basic Document Elements
3. Element Relationships in a General Document
4. Ma rkup Exampl e
5. Generated Vertical Space with Box Frame
6. Line Elements
7. Document and Profile with APFs in Separate Documents
8. Di fferent Tags Processed by the Same APF
9. Multiple Profiles for Different Applications
10. Structure of a Tag Description (Generic)
11. Structure of a Tag Description (Specialized) ..
12. Element Tag Description Marked Up With Specialized GML
13. Element Tag Description Marked Up With Starter Set
14. Example of Formal Definition Notation
15. Formal Def in it i on of the Front Matter
16. Formal Def in it i on of the Body
17. Possible Symbols for Unkeyable Characters
18. Summary of General Document Tags
19. Device Names Supported by the Starter Set
20. Formal Definition of a General Document
21. Formal Definition of a GML Markup Guide (Part 1 of 2)
22. Formal Definition of a GML Markup Guide (Part 2 of 2)
23. Output Generated by Element Tag Description APFs
24. Example of Paragraph, List, and Heading Tags

5
6
7
8

40
40

103
103
104
106
107
107
108
110
111
112
126
133
140
1 (t 7
148
149
150
152

List of Illustrations ix

c:'

(
\..... ..

I C",,'

PART ONE: GML MARKUP GUIDE FOR GENERAL DOCUliENTS

This section explains what GML markup is, and the rules and conventions for enter
ing it in a document. A type of document called a "General Document" is
introduced, and 50 tags for markup of General Documents are described in detail.
Special processing considerations for General Documents are also discussed. A sum
mary of the material is included for quick reference in "Appendix A: GML Markup
Summary" on page 131.

GML Markup Guide 1

C'

c

o

WHAT IS Gf1L MARKUP?

You may be accustomed to typing documents on typewriters, where they appear exact
ly the way you typed them. Or, you may have worked with word processing or text
processi ng systems where you "marked up" the text by enter; ng spec; al codes to
achieve a desired output appearance. In both cases, you had to be concerned with
such things as the length of lines and pages, hyphenation of words, alignment of
columns, indentions, tab settings, and similar formatting considerations.

Markup with GML is different -- and very easy! You look over a document to deter
mine the parts, or "elements," of which it is made up, such as paragraphs, fig
ures, lists, and headi ngs. You insert "element tags" to show where the elements
begin and end, and what type of element it is. For example, ":fig" starts a figure
and": efi g" ends it.

Not all element types require an explicit ending tag. The tag n:title" starts the
title of the document; the title terminates at the end of the input line. (The
individual tag descriptions, presented later in this manual, indicate when an
explicit ending is required.)

You also insert "attribute labels" to give other information about the element,
such as the depth of a figure or a shortened version of a heading.

: fig depth=' 2 i ' .
:efig

:hl stitle='GML Guide'.GML Markup Guide for General Documents

The document into whi ch you enter the text and markup is called the "source
document"; it is created using the facilities available at your installation for
text entry and editing.

The reason you do not have to put formatting codes in the source document is that a
text programmer has already written "application processing functions (APFs)" for
each type of element. For example, the APF for a list causes the text to be
indented. The APF for an item of an ordered list causes the item to be numbered
automatically. The formatting instructions, called "control words," are in the
APFs, not in your document. That is why you do not have to be concerned with for
matting when you mark up documents with GML.

Once the source document is prepared, you call the text processing program
"SCRIPT/VS" to process it (using the command described later in this book).
SCRIPT /VS produces a formatted "output document."

Because of GML, you can have the output document formatted in several different
ways without changing your markup. This is done with other documents called
"profiles," which have also been prepared by the text programmers. When you call
SCRIPT/VS, you can indicate a specific profile, so it will know which APFs to
associate with the tags and attribute labels you have entered. SCRIPT/VS will then
perform all of the hyphenation, justification, page numbering, page layout, spell
ing verification, table of contents preparation, and other processing that may be
required.

What is GML Markup? 3

------ -._"._-----_.--- -------._--------_.- -_.". - ,,_._ .. _,,-----_.-._,,------------ - ------_._---_ ". ---------------

c

c

- ~~~ -~.~-~ ----~~ ~ -- .~- .. ~-~.--~--~-~

c'

o

HARKING UP GENERAL DOCUMENTS

When you mark up a document, you must know what type of document it is, so that you
can use the correct markup procedures for that type. For example, if your instal
lation produces specialized types of documents, such as Directories, Procedure
~lanuals, or Standard Contracts, separate sets of tags and markup practi ces may
have been created for each of them. If your document does not fit into a special
ized category, its document type may be "General Document." This Markup Guide
describes the tags and markup practices for General Documents.

IDENTIFYING DOCUMENT ELEMENTS

You might think of the text of a document as just a string of characters or words.
Actually, documents have a natural structure, which in some cases can be fairly
elaborate. This section explains the structure of General Documents so you will
know how to mark them up.

The smallest things in a document, of course, are individual characters. Charac
ters are combined to form words. Groups of words are phrases, which are combined
to form sentences. Sentences themselves are elements of still larger structures,
such as paragraphs.

Paragraphs, and other elements that have the same structure as a paragraph
scribed later), are called "paragraph units." Most of the time, elements
occur witnin a paragraph unit can clearly be identified in the text, and you
rarely need to mark them up with tags. For example, you can tell the bounds
word by the interword blanks, and the end of a sentence by the punctuation. 1

(de
that
will
of a

In other cases, such as phrases which need to be emphasized (highlighted), or quo
tations, we do need to use tags. This is because these elements are of a different
type from the other elements in the paragraph unit. We call tagged elements that
occur wi thi n the bounds of a paragraph uni t "text items." Fi gure 1 shows the
structure of a paragraph unit and the types of element, including text items, that
can occur within it. (Of course, not every paragraph unit will have all of the ele
ments shown in the figure. In fact, a paragraph unit could conceivably contain as
little as a single word, or even a single character.)

paragraph unit (P, NOTE, or PC)
sentence (no tag)

figure reference (FIGREF)
footnote reference (FNREF)
heading reference (HDREF)
highlighted phrase (HPO, HPl, HP2, HP3)
phrase (PH)
quote (Q)

word (no tag)
character (no tag)

Figure 1. Contents of a Paragraph Unit: Tags are in parentheses after the
element type. Only paragraph units and text items have tags.

Normally, though, we use tags only to identify paragraph units, and higher-level
elements that are made up of paragraph units. One group of elements for which you
will need tags is called "basic document elements," because of the frequency with
which they occur. Their tags are the ones you will use most often.

Some basi c documen~t elements are paragraph uni ts. Others are made LIP of other
tagged elements WhlCh themselves may be paragraph units, or may contain still oth
er tagged elements. For example, an ordered list element contains list items and
list parts. A list item contains a paragraph, but it can also contain most other

Using natural text characters (such as a period at the end of a sentence) to
mark up a document is called. implicit markup. Using tags is called exp-licit
markup.

Marking Up General Documents 5

. _. __ _-------_. __ . -----------------_ .. __ ... ----_.... _ " .. _._ -------- -_._--_. __ ._ .. _ .. _ .

basic document elements -- including lists. Such "nested" structures occur quite
frequently. They are easy to mark up with the GML starter set, since you can always
use the same tags, regardless of the level of nesting.

The basic document elements are listed in Figure 2, together with an indication of
the types of element each can contain. The content of some elements is shown as
"Text on Same Line." For such elements, you can enter only as much text as can fit
on the same line as the tag. The text cannot include any tagged elements.

For other elements, the content is given as "No Immediate Text." This means you
would not enter text immediately after the tag. Instead, you would enter the mark
up for another element which that element can contain. For example, long quota
tions can contain any basic document element except figures (f;9).

For other elements listed in the figure, the content is shown as "Implied P
Structure." Such elements always begin with an "implied" paragraph; that is, you
do not enter a paragraph tag. The existence of the paragraph is understood from
the existence of the tag for the implied paragraph structure. After the initial
paragraph, an implied paragraph structure can also contain other basic document
elements. (There are some restrictions, depending on the element type.)

You can find detailed explanations of all element types, where they can occur, and
what they can contain, listed alphabetically by tag in the section "Element Tag
Descriptions" on page 21.

Paragraph Units:
• note (NOTE)
• paragraph (P)
• paragraph continuation (PC)

Lists:
• definition list (DL)

definition term (DT): Text on Same Line
definition description (DO): Implied P structure
list part (LP): Implied P Structure

• ordered list (OL)
list item (LI): Implied P Structure
list part (LP): Implied P Structure

• simple list (SL)
list item (lI): Implied P structure
list part (LP): Implied P structure

• unordered list (UL)
list item (lI): Implied P Structure
list part (lP): Implied P Structure

Other Basic Document Elements:
• address (ADDRESS)

address line (ALINE): Text on Same Line
• example (XMP): No Immediate Text
• figure (FIG)

figure body (no tag): No Immediate Text
figure caption (FIGCAP): Text on Same Line
figure description (FIGDESC): Implied P structure

• long quotation (lQ): No Immediate Text

Figure 2. The 11 Basic Document Elements: Tags are in parentheses after the
element type. Content is described after the tags.

The remaining elements of a General Document are shown in Figure 3 on page 7,
which illustrates the overall structure. It shows that a General Document consists
of four major elements: front matter, body, appendix, and back matter.

The front matter contains a series of elements of specialized types (title page,
abstract, etc.) called "front matter segments." They do not occur anywhere else in
the document.

The body, appendix, and back matter contain "heading segments." Heading segments
are elements which begin with a heading, followed by basic document elements, and
other heading segments. There are no tags for heading segments, since the tag for

6 GML User's Gui de

c

c

..... _--------_ .. _- -----------.

the heading will also identify the segment.

Heading tags are numbered to show the level of segment they begin: hO for
"zero-level heading segment," hI for "first-level," and so on to h6. (A zero-level
heading segment is called a "part." A first-level segment, when it occurs within
the bounds of the body, is known as a "chapter.") When the document is pr i nted,
each level of heading will normally be formatted in a different style, to empha
size the structure of the text.

You will find that the more familiar you become with the structure of General Doc
uments, the easier it will be to remember the tags and the places where you can
enter them in a document. Figure 18 on page 133 summarizes all of the starter set
tags in a way that illustrates the structure of General Documents.

• Overall Structure:
General Document (GDOC)

front matter (FRONTM)
title page (TITLEP)

document title (TITLE)
document number (DOCNUM)
document date (DATE)
author name (AUTHOR)
address of author or publisher (ADDRESS)

address line (ALINE)
abstract (ABSTRACT)
preface (PREFACE)
table of contents (TOC)
list of illustrations (FIGLIST)

body (BODY): May contain either parts or chapters
part (implied by HO)

head zero (HO)
basic document elements
chapter (implied by Hl)

head one (HI)
basic document elements
lower-level heading segments (implied by H2 to H6)

appendix section (APPENDIX)
first-level heading segment (implied by Hl)

back matter (BACKM)
first-level heading segment (implied by HI)

• Other Heading Segments:
nth-level heading segment (implied by H2 to H6)

head n (H2, H3, H4, H5, H6)
basic-document elements
lower-level heading segments

• Special Elements:
footnote (FN)
process-specific controls (PSC)

Figure 3. Element Relationships in a General Document:
parentheses after the element type. Not all content
suIt tag descriptions for details.

MARKUP EXAMPLES

Tags are in
i s shol..Jn; con-

This section gives examples of markup and processing for some of the elements of a
General Document.

Marking Up General Documents 7

._---_ _--_ .. _-_._ .. _'"-_._. __ ._-----

GENERAL

Figure 4 on page '8 illustrates how starter set GMl tags were used in marking up
parts of this book. The formatting results of using the starter set tags depends
on the APFs associated with them~ the profile~ and the output device.

:hl id='mupro'.Markup Procedures
:p.This section explains:
:u1
:li .How to enter GML markup and text.
:li .Use of SCRIPT/VS symbols.
:li .When and how to use SCRIPT/VS control words.
:eul
:h2.Entering GML Markup and Text
:p.The rules for GML markup are:
:01
:1i.A document is marked up by identifying its elements.
It is almost always necessary to mark the start of an element
explicitly.
This is done with a tag preceded by a special
character that is used as the GML delimiter (&gml.).
Some examples are: &gml.fig~ &gml~gdoc, &gml.title, and &gml.hl ..
:p.Sometimes it is also necessary to mark the end of an element
explicitly.
This is done with the same tag used at the start~ but
preceded by the GML
delimiter and an ":q.e:eq. (for :q.end:eq.).
Some examples are &gml.efig and &gml.egdoc.
:p.Begin a new input line for all tags except text items.
:note.Miskeyed tags may be treated as text, or they may be mistaken for
other tags.
:li .Attributes are marked up in the form
:xmp
attribute-label='value'
:exmp
:pc.with at least one blank before the attribute label.
This markup is needed for each attribute.
The text or number that is the value of the attribute must be enclosed
by single quote marks (apostrophes), as shown.
If a single quote is used within the text of the value,
you should double it, so SCRIPT/VS will know it is not the end of the
value. ,
:p.For some attributes, the value' is an amount of space, expressed
in :q.space units:eq ..
Recommended space units are inches (nnI),
millimeters (nnW), picas/points (nnPnn), or
Ciceros/Didot points (nnCnn),
where :q.nn:eq. is the number of units.

Figure 4. Markup Example: The source for the start of the section "Markup
Procedures" on page 11.

LISTS

There are several types of list element: definition, ordered, unordered, and sim
ple. They can be nested (that i s~ occur wi thi n the bounds of one another), but
within the bounds of a single list the level of nesting cannot be more than 3 for
unordered lists, 6 for definition lists, 6 for simple lists, and 6 for ordered
lists.

Simple lists (51).

This is simple list item 1.

This is simple list item 2.

8 GML User's Guide

c

c

Ci

C

c

Uno rdered Ii st s (ul), somet i mes known as "bu 11 eted" Ii st s.

• This is unordered list level 1. item 1 .

This is unordered list level 2, item 1.

This is unordered list level 3, item 1.

• This is unordered list level 1. item 2.

Ordered lists (01), somet i mes known as "numbered" lists.

1. This is ordered list level 1, item 1. Hote that list items are automatically
numbered or lettered when the document is processed; you need not enter the
numbers. When an item is add~d or removed, renumbering is done for you.

a. This is ordered list level 2, item 1.

1) This is ordered list level 3, item 1.

a) Thi sis ordered Ii st level 4, item 1.

b) This is ordered list level 4. item 2.

2) This is ordered list level 3, item2.

b. This is ordered list level 2, item 2.

2. This is ordered list level 1, item 2.

Definition lists (dl), which contain definition terms (dt) and corresponding defi
nition descriptions (dd).

Ter'ml

Ter'm2

Definition description for term one.

Definition description for term two.

HIGHLIGHTING

Certain elements of a document may be emphasized, or "highlighted," which usually
requires that they contrast with unemphasized text when printed. Four kinds of
highlighting are possible with the starter set. They are: Highlight 0, HighliQht
1, H;ghl;ght 2, and H;9hl;9ht 3. 2 In the starter set, Highlight 0 is set like
normal text. It can be used TOr' a deemphasized element that occUr's w;th;n an
emphas;zed element.

In a General Document, the elements which can be highlighted are the phrase (ph),
the four kinds of highlighted phrase (hpO, hpl, hp2, and hp3), and the definition
term (dt). Highlighting for the phrase is specified by the h; attribute label.
Highlighting for the definition term is specified by the ter'mh; attribute of the
definition list Cdl).

CROSS-REFERENCES

Footnotes, figures, and certain heading elements ChO through h4) may have an
attribute called a "unique identifier." The value of the unique identifier is a
string of 1 to 5 alphameric characters which serves as a name which can be used to
refer to the element. Two footnotes, two figures, or two headings (of any type)
cannot have the same unique identifier. The unique identifier is specified by the
;d attribute label.

2 Wherever the starter set uses bold face for 3800 output, upper case is used
instead for single-font devices.

Marking Up General Documents 9

:fn id='impmu'.Using natural text characters.
(remaining footnote text)
:efn

:fig id='btu'
(body of figure)
:figcap.The 11 Basic Document Elements
:figdesc.Tags are in parentheses after the element type.
Content is described after the tags.
:efig

:h3 id='me'.Markup Examples

There are three other elements which are references to the footnote, figure, and
heading elements. They are footnote reference (fnref), figure reference (f;9ref),
and heading reference (hdref), respectively. Each has an attribute called
"reference i denti fi er " whi ch is speci fi ed by the ref;d attri bute label. Its value
is the unique identifier of the element being referred to .

... implicit or not.:fnref refid='impmu'

... see :figref refid='btu'. for details .

... discussed in :hdref refid='me' ..

In the starter set, the content of a reference element is generated by its APF.
Depending upon the element, the content will consist of a footnote number, a fig
ure number, or the text of a heading. For figure and heading references, the gen
erated content will include the page number if the element being referred to is
not on the same page as the reference to it .

... implicit or not. 1

... see Figure 2 on page 6 for details .

.. . discussed in "Markup Examples" on page 7.

10 GML User's Guide

.- .•. _-_ ... _-_._---- --- -------- -- ---------_ ... _----------- - --------------

('

~--

c

c.

c

c

MARKUP PROCEDURES

This section explains:

• How to enter GML markup and text.

• Use of SCRIPT/VS symbols.

• When and how to use SCRIPT/VS control words.

ENTERING GML MARKUP AND TEXT

The rules for GML markup are:

1. A document is marked up by identifying its elements. It is almost always nec
essary to mark the start of an element explicitly. This is done with a tag pre
ceded by a special character that is used as the GML delimiter (:). Some
examples are: :fig, :gdoc, :title, and :hl.

Sometimes it is also necessary to mark the end of an element explicitly. This
is done with the same tag used at the start, but preceded by the GML delimiter
and an "e" (for "end"). Some examples are :efig and :egcloc.

Begin a new input line for all tags except text items.

Note: Miskeyed tags may be treated as text, or they may be mistaken for other
tags.

2. Attributes are marked up in the form

attribute-label='value'

with at least one blank before the attribute label. This markup is needed for
each attribute. The text or number that is the value of the attribute must be
enclosed by single quote marks (apostrophes), as shown. If a single quote is
used within the text of the value, you should double it, so SCRIPT/VS will
know it is not the end of the value.

For some attri butes, the value is an amount of space, expressed in "space
units." Recommended space units are inches (nnI), millimeters (nnW),
picas/points (nnPnn), or Ciceros/Didot points (nnCnn), where "nn" is the
number of units. Inch and millimeter units may be expressed as a decimal frac
tion with one or two decimal places.

Each attribute label and its corresponding value must be on the same input
line as the element tag. If there is insufficient space, you can use the tech
nique for attribute insertion described in the section on "Inserting
Attributes (.ATT)" on page 14.

3. If an element has text, the text must begin on the same line as the markup.
Markup is the element tag and any attri bute labels and thei r values.

Note: For some element types, all of the text must be on the same line as the
markup. These are described in the individual tag descriptions.

4. Whenever markup is followed by text on the same input line, the markup must be
separated from the following text by a period (.). There should be no blanks
before the period. Blanks after it are treated as part of the text.

Note: This rule applies to markup for the end of an element as well as markup
for the start.

5. Start all lines at the left margin. There should be no leading blanks. (Trail
ing blanks at the end of an input line are ignored.)

6. When you end a sentence, do not enter any more text on that line.

7. Do not begin a line with a period unless you are entering a SCRIPT/VS control
word. (Control words are identified by a period in the first position of an
input line.)

Markup Procedures 11

The following practices are also recommended:

1. Do not mark an element with a tag that does not correctly describe it, even if
it results in the correct processing. If a document has elements of a type not
described in this manual, consult your document administrator.

2. Enter tags entirely in lower case, as shown in the individual tag
descriptions.

3. Do not enter any blank lines. (This applies to "null" lines and "index
returns" as L.Jell, for those keyboards whi ch ordi nari ly permi t them.)

4. Keep your input lines short -- no longer than approximately 70 characters.
Short lines make revisions easier. However, a line may be as long as 132 char
acters, if needed.

5. Do not underscore or overstrike any characters.

6. Do not use the tab key.

7. For convenience in handling, you may divide a document into parts and store
each part in a separate computer file. Make sure that each file starts at the
beginning of a paragraph unit ·or higher level element, and ends at the end of
one.

Note: Some of the foregoing practices may not apply when entering text and control
words as part of a pSC element (explained later), an example, or a figure.

SCRIPT/VS SYMBOLS

A symbol is a string of characters that begins with an ampersand (&) and ends with
a period (.). When you include a symbol in a source document, SCRIPT/VS will
replace it with other characters in the output document. Your installation may
have defined symbols for such purposes as!

• Entering characters that are not on the input keyboard.

• Abbreviating frequently-used lengthy phrases.

• Avoiding confusion with characters that have a special meaning to SCRIPT/VS.

A symbol may be entered anywhere in a document where the characters the symbol
represents could have been entered. One exception to this rule is, GML tags cannot
contain symbols. (You can, however, use a symbol within the value of an
attribute.) The starter set includes the following symbols:

&.

&gml.

&rbl.

This symbol generates an ampersand (&). Use it instead of the ampersand
whenever it is immediately followed by a letter, a number, or the char
acters ~, $, or #. This will prevent the text from being interpreted as
a symbol.

GML delimiter (:). When your document contains examples of GML markup,
use this symbol in the examples instead of the real GML delimiter char
acter. This prevents the markup examples from being interpreted as real
markup.

Required blank. When you wish adjacent words to be treated as a single
word for the purpose of checking spelling, or to keep them on the same
output line as one another, use &rbl. to separate them, instead of the
ordinary blank.

If you miskey a symbol, it will be treated as text, unless it is mistaken for
another symbol.

Note: Your document administrator may be able to advise you of other symbols you
may find useful in your documents.

12 GML User's Guide

o

CONTROL WORDS AND MACROS

There are a number of situations in which it will be necessary to supplement G~1L
markup with direct entry of control words or macros.3 These are!

• to use SCRIPT/VS for source document management;

• to obtain graphic formatting not provided by available APFsi

• to modify processing results; and

• to supplement the general processing specified in the profile.

The control words described in this section must be entered at the left margin,
preceded by a period (.). Some control words require you to specify additional
items of data, called "parameters." They are entered on the same line as the con
trol word, preceded by a blank. If there are several parameters, they must be sep
arated by blanks.

Note! You should not enter control words except in accordance \.oJi th the procedures
in this section. Although acceptable processing output may be produced, the con
trol words may make it more difficult to maintain the document and to use it for
other applications. You can follow these procedures and still obtain all of the
functions which direct entry of control words can provide.

SOURCE DOCUMENT MANAGEMENT

You may want to store parts of your document as separate files and have SCRIPT/VS
combine them for processing. You may want to write comments to readers of your
source document, or identify revised portions of the text. Or you may need several
input lines for attributes which SCRIPT/VS expects to find on one line. The fol
lowing control words will help you handle these situations.

Imbedding Files (.lM)

This control word causes the file whose file-identifier is given as the parameter
to be processed at this point, as though the current file and the imbedded file
were one single file. Many different files can be imbedded to form a single docu
ment.

For example:

.im chap2

Writing Comments (.CM)

To write a comment to readers of the source document (such as yourself), enter:

.cm text of comment -- if too long for one line, then

.cm continue it like this.

Indicating Revisions

You can call attention to a revised portion of a document by causing it to be
flagged. Consult your document administrator for your installation's procedure
for doi ng thi s.

J A macro is a processing instruction which is created by a text programmer. The
rules and conventions for entering control words also apply to macros.

Markup Procedures 13

..... _ .. _._-----_._.- .--_.-.--._-"------------- --------

Inserting Attributes (.ATT)

Sometimes you may not have enough room on one line to mark up all of an element's
attributes. The attribute insertion macro control (.ATT) allows for additional
attribute labels on the lines above the related document element. SCRIPT/VS
inserts them in the correct place. (This is the way a caret might be used on a man
uscript, to indicate that additional text, written above a line, is to be
inserted.)

.att stitle='Purchasing List'
:hl.Acme Company Consolidated Interdivisional Purchasing List

You may have more than one attribute label and corresponding value with one .ATT
macro control. Also, you may have more than one .ATT macro control above an ele
ment. In each case, the attri bute label and value are treated as if inserted ahead
of the first blank or period on the following line .

. att id='purl'

.att stitle='Purchasing List'
:hl.Acme Company Consolidated Interdivisional Purchasing List

GRAPHIC FORMATTING

Your document may require formatting which is not convenientlY available with the
APFs provided by your- installation. For example, you may wish to use character
graphics to create an illustration, such as a flow chart, or a complex table.
Illustrations can be done with specific markup. However, different versions of the
marked-up illustration may be required for different processing that may be per
formed on the document. For example, producing a single-column draft on a 2741
terminal would be a different process from producing a two-column final copy on
the 3800 printer. 4

To make this flexibility possible, you should enter such formatting control words
only LoJi thi n a special element called a "process-speci fi c controls" element (P!)C).
An attribute of the psc element lets you specify the processes to which it
applies. The first line of the element should be a comment that indicates that the
element is being used for permanent graphic formatting.

When a psc element is used in this way it is called a "graphic." As the folloloJing
example illustrates, you can have more than one version of a graphic. SCRIPT/VS
automatically includes the version for the process being run, and ignores the oth
ers.

:fig
:psc proc='1403 TERM'
.cm graphic
(formatting control words and data)
:epsc
:psc proc='3800'
.cm graphic
(other formatting control words and data)
:epsc
:figcap.Typical Diagram
:efig

To mark up a graphic, you must know how to use the specific markup language. For
further details, including the list of acceptable processes, see the description
of "psc -- process-specific controls" on page 72.

MODIFYING PROCESSING RESULTS

You may occasionally be dissatisfied with the results produced by your formatter,
whether it be SCRIPT/VS, or some other formatter for which SCRIPT/VS is being used
as a preprocessor. For example, the formatter might choose to break a column or
page at a bad point; or, it might leave unwanted white space on the p~ge. You would

4 IBM 3800 Printing Subsystem

14 GML User's Guide

c

c,

o

not want to make a permanent change in the document markup to cure such problems,
because they might disappear when the text of the document is revised. Likewise,
they might only occur on one output device, and not on others.

The situation is similar to those that require graphic psc elements. In both
cases, you must tell the system which processes apply. However, there is one sig
nificant difference. The graphic element is a permanent part of the document,
while the modification is only temporary.

For this reason, although the psc element tag is used, the following comment line
should identify the element as a temporary modification, or "patch."

:psc proc='TERM'
.cm patch
(formatting control words)
:epsc

A patch might include text interspersed with\the control words. When this is the
case, you might need two or more patches for the single situation that needs
repair: one to correct the condition, and the other to make sure the text prints
normally for the other output devices. The "nor~al" patch will usually have more
than one process specified.

Note: Remember to remove from your document any patches which become unnecessary.
Patches may become unnecessary when editorial revisions, or changes in the format
ting APFs, have the effect of eliminating the undesirable output.

ADDITIONAL GENERAL PROCESSING

The profile you specify when you use ~CRIPT/VS contains a number of control words
that perform functions other than formatting. These include the associating of GML
tags with APFs, and the setting of values of symbols. You can request additional
functions of this nature for a particular document by including the desired con
trol words within apse 8lement. A psc so used should include a comment indicating
its use in supplementing the document profile.

:psc
.cm profile
(general processing control words)
:epsc

Where possible, psc profile elements should be placed at the beginning of a docu
ment. However, you may insert them elsewhere as necessary vJithin a document. You
should include detailed comments in the psc to explain the purpose of the control
words.

Markup Procedures 15

c

c

CI

PROCESSING GENERAL DOClJllEJ~TS

In order to process your documents, you will need to know how to issue the command
that will cause the computer to invoke SCRIPT/VS. You will also need to be famil
iar with some of the options which can be issued with the command, and the method
of requesting them. This knowledge is applicable to the processing of all types of
documents, and therefore is not di scussed here. You can learn about it in
"Processi ng GML Documents Wi th SCRIPT /VS" on page 89. Thi s sect ion di scusses proc
essing considerations unique to General Documents.

CHOOSING THE CORRECT PROFILE

When a document is ready to be processed, you issue the "SCRIPT" command to the
computer to invoke SCRIPT/VS. One of the options of the command permits you to
name a profile, which tells SCRIPT/VS which APFs to associate with your markup.
Different profiles cause different processing to occur. With some profiles you may
be able to specify variations of the processing, using the "SYSVAR" option of the
SCRIPT command.

Profile(s) available for use with General Documents are:

Sdocpr'of Produces. formatted output on terminals,
Printing Subsystem. Verifies spelling
option is specified.

line pri ntet's, and the IBr1 3800
when the "SPELLCHK" command

SYSVAR parameters for variations are:

c 1, c 2

dyes

h num

Columns: Prints the body, appendix (if any), and back
matter (if any) in the number of columns specified (1 or
2). If omi tted, pri nts in double-column format on the
3800, and single-column format on other devices.

Duplex: Begins new odd-numbered page for hO, hI, and
front matter segments. This is the preferred style for
making master pages for two-sided ("duplex")
reproduction. If omitted, begins new page which may be
either even or odd.

Head Numbering: Automatically numbers the heading types
h1, h2, h3, and h4. If omitted, prints headings as
entered, without numbering them.

p p~ocess-name Process: Lets you specify the process being run. If omit
ted, the names of the physical output device and the log
ical device are used as active processes for PSC
elements. See "psc -- process-specific controls" on page
72 for detai Is.

t no Title Page Printing: Suppresses printing of the title
page. If omi tted, the ti tIe page is pri nted.

For example, the following command will cause output to be printed in two columns
with numbered headings, not duplexed, and with a title page. Only psc elements
with the process attribute of "TERM" or "2741" will be processed, because they are
the default logical and physical devices. 5

SCRIPT mydoc (PROFILE (gdocprof) SYSVAR (c 2 h num)

Variations other than the heading numbering and number of columns were defaults,
and were not specified in the command.

Note: Consult your document administrator for other profiles and variations he may
have established; such as for double-spaced drafts or for pre-processing documents
for use with other text processors. He may also have prepared "execs,"
"procedures," or "option" files for specific tasks that make it unnecessary to

5 The CMS syntax is used in the command. For TSO, the initial left parenthesis
is omi tted. The command word "SCRIPT" and the opti on names are shown in upper
case for emphasis.

Processing General Documents 17

specify the individual profile and variations.

INTERIM PROCESSING

This manual explains how to mark up a General Document in its "normal" form. This
is the form in which it is processed for final printing, and in which it remains in
your computer files for any processing that may be required in the future.
Profiles and APFs are primarily designed to work correctly when a document is in
the normal form.

During the course of production, though, your document may not always be in the
normal form. At times it will be incomplete, or incorrectly marked up. Or, you
might wish to process only a part of the document -- perhaps a heading segment
which was just revised. The starter set profile and APFs allow you considerable
flexibility during the production cycle:

• You can temporari ly enter the toe and f;91;st tags as the last tags in the back
matter, thereby obtaining a table of contents and a list of illustrations
without the expense of two-pass processing. (Hote that you may want the second
pass anyway, if you need to check the resolution of cross-references.)

• Parts of the document can be processed independently, although results may not
be identical to those you will obtain when the entire document is processed in
the normal form. (You can improve these interim results by including 50me of
the higher-level tags in the processing run. For example, if you wish to proc
ess only a second-level heading segment, you may obtain better output if you
insert the gdoe, body, and hl tags ahead of it, since their APFs will estab
lish the proper page layout, running headings, heading numbering (if
requested), and so on.) By experimenting, you can determine which element
types you can satisfactorily process independently.

• Incomplete or inaccurate markup can cause errors which would normally persist
for the remainder of the document. For example, failure to terminate a list
might cause succeeding text to be indented. To minimize the impact of such
errors, some APFs perform "housekeepi ng" functi ons in addi ti on to thei r normal
processi ng. For example, the headi ng APFs termi nate any current 1 i sts and
highlighting. (These safeguards will make it more likely that your draft
copies will appear to be correct, but you should nonetheless correct the error
conditions with the proper markup. Errors are discussed fu~ther in the next
section.)

MARKUP ERRORS

There are two kinds of markup error:

1. entering markup you think is right, but isn't; and

2. making a typographical error that causes SCRIPT/VS to misinterpret markup (or
to treat as markup somethi ng that is not).

You can prevent the first type of mistake by understanding this manual, and by
taking care in identifying the elements of your document. The second type of mis
take obviously can be avoided by careful typing.

Of course, no one is perfect, and errors will be made. The next best thing to
avoiding errors is being able to recognize where they are, and to correct them
without difficulty. In computer text processing, finding and correcting markup
errors is called "debuggi ng" your markup.

Some common markup "bugs" are:

• Omi tti ng the peri od at the end of a symbol.

• Omitting the period at the end of markup (when required).

• Omitting the ending tag of a list, figure, example, or other element that
requires explicit termination.

18 GML User's Guide

C~,

c

c

•
•

•

•

Ending a quote (q) with a quotation mark instead of eq.

Using tags where they are not permitted, such as within an element whose con
tent i s "Text on Same Line."

Not entering the ending tag of a text item immediately after the last charac
ter of the element, and on the same input line. (This may cause an extra blank
to be included in the text item.)

Omi tti ng the p tag for a paragraph that is not the start of an "Impl i ed P
Structure," such as a paragraph that follows a heading or figure.

For example, you might find that entire pages of your output are underscored. This
would normally be caused by omitting an end of highlighted phrase tag. (You could
actually have forgotten the tag, or you might just have forgotten the period at
the end of it. In that case, SCRIPT/VS would not know it was a tag, and would treat
it as text. Either way, the result is the same.) This bug is easy to find: just go
to the point where the underscoring begins, and start looking for an incorrectly
entered end of highlight tag (or the place where the highlighting should have
ended.)

It is important to realize that even though dozens of words (or even dozens of
pages) may look wrong in the output, it does not necessarily mean you must make
dozens of corrections in the source. In fact, you will often find that the worse
your output looks, the easier it will be to locate the bugs and correct them.

Sometimes an APF can determine that a markup error was made. In such cases, it will
take some appropriate processing action, and issue a message to help you correct
the error. The text of messages issued by the starter set APFs, together wi th
explanations, can be found in "Appendix C: GML Messages" on page 141.

You may also receive error messages from SCRIPT/VS itself. You should consult your
document administrator about these.

Processing General Documents 19

----- --------------_ .. __ .. __ ._. _,-.- .. _._ .. _ ... _-.... _----------------

c

c'

ELEHENT TAG DESCRIPTIONS

The following pages describe the elements of a General Document, how to mark them
up, and the processing that is performed on them. Each element description
includes a box that shows:

Type

Attributes

content

Term;nat;on

The tag for the element type.

The labels for the attri butes (i f any).

If the markup is to be followed immediately by text, this ~Jill tell
if it all must fit on the same input line as the markup ("Text on Same
Line"), or vJhether there can be m<:iny lines of text ("Text Item,"
"Paragraph Unit," or "Implied P Structure"L If it says "No Immediate
T ex t ," not h i n gel s e s h 0 u I d be en t ere don t he lin e. T he n ex t lin e ~J i 11
begi n wi th the tag for another element. If it says "Generated by
A P F ," you s h 0 u 1 d not en t era nyc 0 n ten t for t hat e I em e n t. H 0 LlJ eve r, i f
the element is a text item, you can continue to enter text on the same
line.

How to mark up the end of the element. Elements whose content is
"Text on Same Line" terminate at the end of the input line ("At End of
Line"). Elements whose content is "Generated by APF" are
self-termi nati ng. That is, the end of the markup is the end of the
element ("At End of Markup"). Some elements are termi nated expl i ci t
ly; for these, the ending tag will be shown.

The remaining elements are terminated by the tag for a new element
which is at the same or a higher level in the document's structure.
For example, a paragraph uni tis termi nated by a "Paragraph or Hi gher
Level Element." Similarht, a chapter would be terminated by another
chapter (same level) or the appendix section (higher level). A head
3, or a basic document element, though, would be at a lower level and
would not terminate the chapter; it would be part of the chapter's
content. The box will either show the actual tags that could termi
nate the element, and/or direct you to the text for an explanation
("See "Usage" in text").

When an element ends, any unterminated elements in its content are
terminated at the same time.

Below the box are descriptions of the element and its attributes, followed by
discussions under the following headings:

USAGE: This discusses where in a document's structure the element can occur, and
what elements it can contain, together with any special entry rules.

Some elements, such as title page elements, must always occur in a specific place
in the document. These elements are frequently optional (need not occur in every
document) and/or repeatable (can occur more than once in succession). When this
is the case, it is mentioned in this section.

PROCESSING: Markup is the same regardless of the profile you will be using. Proc
essing, though, depends upon the profile, APFs, and output device, and may be
varied by options of the SCRIPT command. For this reason, processing is discussed
separately for each profile if more than one is available. (Only one -- GDOCPROF
-- is supplied with the starter set.)

The processing examples in the tag descriptions will vary depending upon the way
this manual itself was processed. Printers traditionally include in their books a
statement, called a "colophon," which tells how the book was composed and
printed. So you will know the conditions under which the processing examples were
produced, SCRIPT/VS has automatically generated the following colophon. 6

6 The CMS syntax is used in the command. The profile is not GDOCPROF. It is
another profile which includes GDOCPROF, plus other tags needed for markup
guides. The processing examples are the same as if GDOCPROF were the profile.

Element Tag Descriptions 21

........... _-_ .. ------------

This document was produced with SCRIPT/VS on a 3800 (logical device 3S00NS)
using the following command:

SCRIPT GMLGUIDE (PROFILE (GHLGPROF) SYSVAR (DYES C 1) DEV (3800HS)
TWO BIND (7P6 3P6) FILE ($GMLGUID)

22 GMl User's Guide

-----~------- ----------------------------

C:

c

ABSTRACT -- ABSTRACT

Type Attributes Content Termination

:abstract Hone Ho Immediate Text :preface, :toc,
:figlist, or :body

The abstract tag identifies a summary of the document.

Usage: The abstract can occur only within the front matter, after the title page.
It can contain basic document elements and second-level and lower heading seg
ments. This element is optional.

:frontm
:titlep

:etitlep
:abstract
:p.This manual describes a method by which you can
obtain the benefits of a powerful text processing system without
becoming an expert in composition .

.
:preface

:toc
:figlist
:body

Processing With the "gdocprof" Profile: The supplied APF begins a new page
(odd-numbered if the SYSVAR D YES option is specified) and generates the word
"Abstract" as a heading.

Results:

See the preface of this manual for an example. It is formatted in the same way as
an abstract, except that the L-Jord "Preface" is generated.

Element Tag Descriptions 23

ADDRESS -- ADDRESS

Type Attributes Content Termination

:address Hone No Immediate Text :eaddress

The address tag identifies a street address or mailing address. Within the title
page, it identifies the address of the author or publisher.

Usage: The address can occur within the title page, where it is optional and
repeatable. It can also occur wherever a basic document element can occur. Its
content is one or more address line (al;ne) elements which contain the actual
text of the address.

:frontm
:titlep
:title stitle='GMl User"s Guide'.GMl Markup and Processing&rbl.Guide
:docnum.MG-00001
!date.July 3, 1978
:author.l. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

processing 'Hth the "gdocprof" Profile: The supplied APF formats the address as
shown below, when it is not entered as part of the title page. See
"Appendix D: Title Page Example" on page 143 for placement and style of the
address on the title page.

Results:

Any Company
500 Main Street
Anycity, Anyplace

24 GML User' 5 Gu ide

c

C~

C \, ;'

ALINE -- ADDRESS LINE

Type Attributes Content Termination

:aline Hone Text on Same Line At End of line
(no other tags)

The al;ne tag identifies a line of an address.

Usage: The address line can occur only as an element of an address. It is repeat
able.

:frontm
:titlep
:title stitle='GMl User"s Guide'.GMl Markup and Processing&rbl.Guide
:docnum.MG-OOOOl
:date.July 3, 1978
:author.l. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

Processing With the "gdocpro-F" Pro-File: The supplied APF formats the address
lines as shown below, when they are not entered as part of the title page. See
"Appendix D: Title Page Example" on page 143 for placement and style of the
address lines on the title page.

Results:

Any Company
500 Main Street
Anycity, Anyplace

." _ -._-_ .. _-_ _-_._---------------_._------- -----

Element Tag Descriptions 25

APPENDIX -- APPENDIX SECTION

Type Attributes Content Termination

:appendix Hone No Immediate Text :backm or :egdoc

The appendix tag identifies that major element of a document which contains
explanatory and illustrative material helpful to the reader, but not essential to
the main text.

Usage: The appendix section can occur immediately after the body. It is optional.
It contains one or more first-level heading segments.

:gdoc sec='Company Confidential'
:frontm

:body

:appendix
:hl.GMl Diagonostic Messages

:backm

:egdoc

Processing With the "gdocprof" Profile: The supplied APF causes the word
"Appendix" and a serial letter to be printed as a prefix to each head one (hI) in
the appendix section. For 3800 output, the appendix section is set in two columns
unless the SYSVAR C 1 option is specified. For other devices, it is set as a sin
gle column unless the SYSVAR C 2 option is specified.

Results:

See "Appendix D: Title Page Example" on page 143 for an example.

26 GMl User's Guide

('

('

C.:.

c

c

c'

AUTHOR -- AUTHOR NAME

Type Attributes Content Termination

:author None Text on Same Line At End of Line
(no other tags)

The author tag identifies the writer of the document.

Usage: The author name can occur only within the title page. It is optional and
repeatable. (That is, it may be entered more than once for more than one author.)

:frontm
:titlep
:title stitle='GML User"s Guide'.GML Markup and Processing&rbl.Guide
:docnum.MG-OOOOl
:date.July 3, 1978
:author.L. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

Processing "Hth the "gdocprof" profile: The supplied APF prints the author name
on the title page.

Results:

See "Appendix D: Title Page Example" on page 143 for an example.

Element Tag Descriptions 27

------_.,--.,_ ... _-_._. -

BACKM -- BACK MATTER

Type Attributes Content Termination

:backm None No Immediate Text :egdoc

The backm tag identifies that major element of a document which includes such
reference information as a glossary, a bibliography, and an index.

Usase: The back matter can occur at the end of the document, immediately after
the appendix section (or after the body if there is no appendix section). The back
matter is optional. It contains one or more first-level heading segments.

:gdoc sec='Company Confidential'
:frontm

:body

:appendix

:backm
:hl.Glossary

:hl.Index

:egdoc

processins With the "sdocprof" Profile: The supplied APF suppresses automatic
heading numbering (when it is requested) for headings within the bounds of the
back matter. For 3800 output, the back matter is set in two columns unless th2
SYSVAR C 1 option is specified. For other devices, it is set as a single column
unless the SYSVAR C 2 option is specified.

Results:

See the back matter of the IBM-published version of this manual for an example of
the processihg results.

28 GMl User's Gu ide

---------------- ------- ------------ ----------

(
'---

CI

BODY -- BODY

Type Attributes Content Termination

:body None No Immediate Text :appendix, :backm,
or :egdoc

The body tag identifies that major element of a document which contains the main
text.

Usage: The body can occur immediately after ,the front matter. It can contain
either a series of parts (hO) or a series of chapters (hl).

:gdoc sec='Company Confidential'
:frontm

:figlist
:body

:hl.What is GML Markup?

:hl.Marking Up General Documents

:appendix

:backm

:egdoc

Processing With the "gdocprof" Prof;!e: The supplied APF causes body pages to be
numbered in Arabic numerals. For 3800 output, the body is set in two columns
unless the SYSVAR C 1 option is specified. For other devices, it is set as a sin
gle column unless the SYSVAR C 2 option is specified.

Results:

See the Arabic numeral pages of this manual for an example of the processinQ
results.

Element Tag Descriptions 29

DATE -- DOCUMENT DATE

Type Attributes Content Termination

:date None Text on Same Line At End of Line
(no other tags)

The d~te tag identifies a date associated with the document, such as the date of
creation, publication, or revision.

Usage: The document date can occur only within the title page.

:frontm
:titlep
:title stitle='GML User"s Guide'.GML Markup and Processing&rbl.Guide
:docnum.MG-00001
:date.July 3, 1978
:author.L. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

Process;ng tHth the "gdocprof" Prof;!e: The supplied APF prints the contents of
the date element on the title page. If the date tag is entered with no text, the
title page will contain a system-supplied processing date.

Results:

See "Appendix D: Title Page Example" on page 143 for an example.

30 GMLUser'sGuide

('
\ _ ..

c

c

c'
DD -- DEFINITION DESCRIPTION

Type Attributes Content Termination

:dd None Implied P Structure :dt, :lp, or :edl

The dd tag identifies a definition, description, or explanation of a word or
phrase in a definition list.

Usase: The definition description can occur only within a definition list Cdl),
immediately after its corresponding definition term element (dt). There must be a
dd for each dt. It contains an implied paragraph (no p tag), and may also contain
basic document elements.

:p.This paragraph precedes the list.
:dl
:dt.Terml
:dd.The first definition description.
This is an implied paragraph -- there was no :hp2.p:ehp2. tag.
:p.This paragraph is part of the first definition description.
:dt.Term2
:dd.The second definition description.
:lp.This list part introduces succeeding terms and descriptions.
:p.A list part could comment on preceding terms and descriptions.
:dt.Term3
:dd.The third definition description.
It has two topics:
:01
:l1.one topic;
:li .another topic.
:eol
:dt.Term4
:dd.The fourth definition description.
:edl
:p.This paragraph follows the list.

._._---_.---_ .. __ ._---------_.

Element Tag Descriptions 31

----------_._-----_ ... _-

Processing With the "gdocprof" Profile: The supplied APF formats the definition
terms and definition descriptions as a hanging indent list, with the indent;on
equal to the specified term size (10M if the tsize attribute of the definition
list is not specified). The·terms are assumed to have a highlighting attribute of
2 if the termhi of the definition list is not specified. (See "Highlighting" on
page 9 for an explanation of highlighting.)

Results:

This paragraph precedes the list.

Terml

Term2

The first definition description. This is an implied paragraph -- there
was no p tag.

This paragraph is part of the first definition description.

The second definition description.

This list part introduces succeeding terms and descriptions.

A list part could comment on preceding terms and descriptions.

Term3 The third definition description. It has two topics:

1. one top i c;

2. another topic.

Term4 The fourth definition description.

Thi s paragraph follows the list.

32 GML User's Gu ide

c

(
~/

DL -- DEFINITION LIST

Type Attributes Content Termination

:dl termhi= tsize= No Immediate Text :edl

The dl tag identifies a list of words and phrases and their corresponding
definitioris, descriptions, or explanations.

The termh; attribute label identifies the optional definition term highlight
attribute. Its value is a number from 0 to 3 which identifies the type of emphasis
associated with the definition terms in this Ust. (See "Highlighting" on pa£e 9
for an explanation of highlighting.)

The ts;ze attribute label identifies the optional definition term size attribute.
Its value is a number of "ems" (entered' nnM') whi ch is one greater than the num
ber of characters of the longest definition term that could be in the list.

Usage: The definition list can occur wherever a basic document element can occur.
It contains a series of definition list items, which may be intermixed with indi
vidual elements known as "list parts" (Ip>. Each definition list item is actually
a word or phrase -- the "definition term" (dt) and its corresponding
definition or explanation -- the "definition description" (dd).

All types of list (definition, ordered, unordered, and simple) can occur within
the bounds of one another), but within the bounds of a single list the level of
nesting cannot be more than 3 for unordered lists, 6 for definition lists, 6 for
simple lists, and 6 for ordered lists.

:p.This paragraph precedes the list.
:dl tsize='6M' termhi='3'
:dt.Terml
:dd.The first definition description.
This is an implied paragraph -- there was no :hp2.p:ehp2. tag.
:p.This paragraph is part of the first definition description.
:dt.Term2
:dd.The second definition description.
:lp.This list part introduces succeeding terms and descriptions.
:p.A list part could comment on preceding terms and descriptions.
:dt.Term3
:dd.The third definition description.
It has two topics:
:01
:li.one topic;
: 1 i . another topi c.
:eol
:dt.Term4
:dd.The fourth definition description.
:edl
:p.This paragraph follows the list.

Element Tag Descriptions 33

-_ _._---, ... " ' _----

Processing With the "gdocprof" Prof;le: The supplied APF indents the list
appropriately to its level of nesting. Terms and descriptions are formatted as a
hanging indent list, with the indention equal to the specified term size (10M if
tsize is not specified). If an actual term is longer than the specified size, the
term will be separated from the start of the definition description text by a
single interword space. The terms are assumed to have a highlighting attribute of
2 if termh; is not specified.

Results:

This paragraph precedes the list.

Terml The first definition description. This is an implied paragraph -- there was
no p tag.

This paragraph is part of the first definition description.

Term2 The second definition description.

This list part introduces succeeding terms and descriptions.

A list part could comment on preceding terms and descriptions.

Term3 The third definition description. It has two topics:

1. one topi c;

2. another topic.

Term4 The fourth definition description.

This paragraph follows the list.

34 GML User's Guide

r'
\
\
'-

c

c

(j

C',

DOCNUM -- DOCUMENT NUMBER

Type Attributes Content Termination

:docnum Hone Text on Same Line At End of Line
(no other tags)

The docnum tag identifies a number associated with the document, such as a form,
serial, or order number.

Usage: The document number can occur only within the title page. This element is
optional.

:frontm
:titlep
:title stitle='GML User"s Guide'.GML Markup and Processing&rbl.Guide
:docnum.MG-OOOOl
:date.July 3, 1978
:author.L. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

P~ocess;ng With the "gdocprof" Profile: The supplied APF prints the contents of
the document number element on the title page.

Results:

See "Appendix D: Title Page Example" on paQe 143 for an example.

Element Tag Descriptions 35

--------------------------------_ .. _ .. " _ ..•.. " ...• -.-....

DT -- DEFINITION TERM

Type Attributes Content Termination

:dt None Text on Same line At End of line
(no other tags)

The dt tag identifies a word or phrase which is defined, described, or explained
by an item of a definition list.

Usage: The definition term can occur only within a definition list (d!). It is
repeatable. It must immediately be followed by its corresponding definition
description element (dd).

:p.This paragraph precedes the list.
:dl
:dt.Terml
:dd.The first definition description.
This is an implied paragraph -- there was no :hp2.p:ehp2. tag.
:p.This paragraph is part of the first definition description.
:dt.Term2
:dd.The second definition description.
:lp.This list part introduces succeeding terms and descriptions.
:p.A list part could comment on preceding terms and descriptions.
:dt.Term3
:dd.The third definition description.
It has two topics:
:01
:li.one topic;
:li.another topic.
:eol
:dt.Term4
:dd.The fourth definition description.
:edl
:p.This paragraph follows the list.

36 GMl User's Gu ide

('

(
\

'-

------------_ _------ ------------------ . __ .. _._--_. __ ._ ... _.- ------

C\
./

o

Processing With the "gdocprof" Profile: The supplied APF formats the definition
terms and definition descriptions as a hanging indent list, with the indention
equal to the specified term size (10M if the ts;ze attribute of the definition
list is not specified). The terms are assumed to have a highlighting attribute of
2 if the termh; attribute of the definition list is not specified. (See
"Highlighting" on page 9 for an explanation of highlighting.)

Results:

This paragraph precedes the list.

Terml

Term2

The first definition description. This is an implied paragraph -- there
was no p tag.

This paragraph is part of the first definition description.

The second definition description.

This list part introduces succeeding terms and descriptions.

A list part could comment on preceding terms and descriptions.

Term3 The third definition description. It has two topics:

1. one top i c;

2. another topic.

Term4 The fourth definition description.

This paragraph follows the list.

Element Tag Descriptions 37

-----------_ , ... ",,-' --- ._---------- .. "". __ .. _----------------

FIG -- FIGURE

Type Attributes Content Termination

:fig id= depth= place= Ho Immediate Text :efig
frame=

The Tig tag identifies a diagram, table, or other illustration.

The id attribute label identifies the optional unique identifier attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. Ho other figure can have the same unique identifier.

The depth attribute label identifies the optional depth attribute. Its value is
an amount (in space units) of vertical white space to be included in the body of
the figure.

The place attribute label identifies the optional placement attribute. Its value
is the relationship of the figure to the surrounding text (either 'column' or
'inline' or 'page').

The Trame attribute label identifies the optional frame attribute. Its value is
the emphasis to be given the figure by framing it (either 'rule' or 'box' or
'none' or another character string).

38 GMl User's Gu ide

c

- -- - ----- ----------------- --------------.-- -- -------------.----------------~

c

c

Usage: The figure can occur wherever a basic document element can occur, except
within the bounds of another figure, an example, a footnote, or a long quotation,
or immediately after an element whose content is "Text on Same Line."

A figure contains a figure body (not explicitly tagged), and c~n also contain a
figure caption (f;gcap) and a figure description (fisdesc). When the figure is
referred to by a figure reference element (figref), the id attribute and figure
caption are mandatory. If the figure is to be listed automatically in the list of
illustrations (f;91;st), the figure caption is mandatory.

The figure body can contain basic document elements (except figures) and "line
elements." A line element is a line of a source document which is processed in
such a way that it appears as an independent line in the output. Line elements can
occur only within the bounds of a figure body or an example (X~p). There are no
tags for a line element; one starts at the beginning of an input line and termi
nates at the end. A line element can contain text items.

Within the bounds of a figure body, elements that do not have explicit termi
nation tags (dd, li, Ip, note, p, and pc) are implicitly terminated at the end of
the input line. Succeeding untagged input lines are treated as line elements. (As
usual, the entered content may include psc elements to obtain special graphic
effects, and .IM control words to imbed content from other files.)

If no content is entered, the APF will generate white space as specified by the
depth attribute to provide room for artwork to be stripped in for reproduction.

The first part of the following example shows a figure whose body w~s generated by
the APF. The second part is a figure whose body contains only line elements.

as seen in the following figure:
:fig place='inline' depth='l.Si' frame='box'
:figcap.Generated Vertical Space with Box Frame
:figdesc.lnstead of entering the content of a figure body,
you can let the APF generate space for stripped-in art.
:efig
:pc.The figure below, in contrast, demonstrates that.

:fig
(1) A * B = C
(2) C = A * D
(3) B = D
:figcap.Line Elements
:efig

Element Tag Descriptions 39

Process;ng w;th the "gdocprof" Prof;!e: The supplied APF generates the required
space if depth is specified. Otherwise, the content!is processed without justi
fication, running together of input lines, or spelling checking.

If placement is specified as "column" (a "column figure") or "inline," the figure
is set at the same width as a column. If placement is specified as "page," the
figure is set at the full width of the page. (If placement is not specified,
"column" is assumed.)

Figures are "keeps"; that is, the output of processing a figure is intentionallY
kept together, and moved to the next column or page if there is insufficient room
in the current column or page. Column figures "float"; if forced to the next col
umn, text entered after the figure in the source document is brought ahead of it
and set in the remainder of the current column. Inline figures do not float. Page
figures float only during single-column formatting.

If frame is specified as "rule," horizontal rules are printed above and below the
figure. If frame is specified as "box," rules are printed on all four sides. No
rules are printed if frame is specified as "none." If frame is specified as any
other character string, that string is printed repetitively as a border above and
below the figure. (If not specified, "rule" is assumed.)

If ;d is specified and there is a figure caption, the next sequential figure num
ber is generated (by the f;gcap APF) and is saved so f;9ref elements can refer to
it.

Note: A figure within the bounds of a list is not indented as are other basic doc
U'iliei1t elements.

Resul ts':

as seen in the following figure:

Figure 5. Generated Vertical Space with Box Frame: Instead of entering the
content of a figure body, you can let the APF generate space for
stripped-in art.

The figure below, in contrast, demonstrates that ...

(1) A * B = C
(2) C = A * D
(3) B = D

Figure 6. Line Elements

40 GML User' 5 Gui de

C.:~

c

c

FIGCAP -- FIGURE CAPTION

Type Attributes Content Termination

:figcap Hone Text on Same line At End of line
(no other tags)

The T;9cap.tag identifies the title or designation of a figure.

Usage: The figure caption can occur only in a figure element, after the figure
body. If a reference is made to the figure by a figure reference element (f;9ref),
or if the figure is to be listed automatically in the list of illustrations
(figl;st), then the figure caption is mandatory. (However, the tag can be entered
without text.) The figure caption text should be entered with initial capitals.

APFs associated with them, the profile, and the output device.
:fig id='se'.

:figcap.Markup Example
:figdesc.The source for the start of the
section :hdref refid='mupro' ..
:efig.

Processing With the "gdocproT" Profile: The supplied APF generates the word
"Figure" and the next sequential figure number, and prefixes them to the caption
content (if any). The numbered caption is included in the list of illustrations
C; f any).

Results:

See Figure 4 on page 8 for an example.

Element Tag Descriptions 41

FIGDESC -- FIGURE DESCRIPTION

Type Attributes Content Termination

:figdesc None Implied P structure :efig

The figdesc tag identifies an extended comment or description of a figure.

Us~ge: The figure description can occur only in a figure, after the figure
caption. It is optional. It contains an implied paragraph (no p tag), and may
contain other basic document elements (except figures).

:fig id='se'.

:figcap.Markup Example
:figdesc.The source for the start of the
section :hdref. refid='mupro' ..
:efig.

Pr'ocess i ng Wi th the "gdocprof" Prof; Ie: The supp! i ed AP F fo rmat s the desc r ; pt ion,
beginning on the same line as the figure caption.

Results:

See Fi gure 4 on page 8 for an example.

42 GML User's Guide

c

c

FIGLIST -- LIST OF ILLUSTRATIONS

Type Attributes Content Termination

:figlist Hone Generated by APF At End of Markup

The figlist tag identifies a listing of the figures in the document and the pages
on which they occur.

Usage: The list of illustrations can occur only within the front matter, after
the title page (and abstract, preface, and table of contents, if any). This ele
ment is optional.

:frontm
:titlep

:etitlep
:abstract

:preface

:toc
:figlist
:body

Processing With the "gdocprof" Profile: The supplied APF generates the content of
the list of illustrations element from figure captions (figcap) in the document.
It begins a new page (odd-numbered if the SYSVAR D YES option is specified). The
TWOPASS option is required for normal processing of a General Document containing
a figlist.

Hote: The figlist may generate an incorrect page number for a figure which
changes its output page during the second pass. This may be remedied by moving the
figure to a point in the source document which appears on the same output page
after both passes.

Results:

See this manual's list of illustrations for an example.

Element Tag Descriptions 43

----_. _ •......•.. , _ ... _ .. _._ .. _---------... __ _---_ _._._ .. _--_ _ __ .. __ .. _

FIGREF -- FIGURE REFERENCE

Type Attributes Content Termination

:figref refid= Generated by APF At End of Markup

The figref tag identifies a reference to a figure, sometimes called a "figure
callout."

The ref;d attribute label identifies the mandatory reference identifier attrib
ute. Its value is the same as the id of the figure being referred to.

Usage: The figure reference can occur anywhere in text except in an element whose
content is "Text on Same Line." It is a text item.

:p. :figref refid='se'. illustrates how starter set GML tags
were used in marking up parts of this book.

Process;ng w;th the "gdocprof" Profile: The supplied APF generates the content of
the element, as shown in the example, below. The page number is included only if
the figure is on a different page from the figref. The TWOPASS option is required
when the reference precedes the figure.

Note: The figref may generate an incorrect page number if the figure it refers to
changes its output page during the second pass. This may be remedied by moving the
figure to a point in the source document which appears on the same output page
after both passes.

Results:

Figure 4 on page 8 illustrates how -starter set GML tags were used in marking up
parts of thi s book.

44 GML User's Guide

FN -- FOOTNOTE

Type Attributes Content Termination

:fn id= Implied P Structure :efn

The fn tag identifies a note of reference, explanation, or comment, usually
placed below the text on the printed page.

The ;d attribute label identifies the mandatory unique identifier attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. No other footnote can have the same unique identifier.

Usase: The footnote can occur only in conjunction with a footnote reference
(fnref). It may be entered wherever a basic document element could be entered,
but not within the bounds of an example, a figure, a list, or another footnote, or
immediately after an element whose content is "Text on Same Line." The footnote
should be entered close to the TnreT (so that both will appear on the same output
page) .

A footnote contains an implied paragraph (no p tag), and may also contain basic
document elements (except figures and other footnotes). There must be no more
than 10 lines of output within the bounds of a footnote.

:p.SCRIPT/VS saves text indicated as a footnote and
places it at the bottom of the
page.:fnref refid='emg'.
Subsequent footnotes are placed
below it.:fnref refid='adg'
:fn id='emg'.Up to 10 lines of output per footnote.
:efn
:fn id='adg'.Like this.
:efn

Process; n9 w; th the "sdocprof" Prof; Ie: The suppl i ed APF generates the next
sequential footnote number, formats the footnote, keeps the processing output
together, and places it below the text on the page. Footnotes are numbered in a
single sequence throughout the document. The number is saved for reference by the
related fnref element.

Results:

SCRIPT/VS saves text indicated as a footnote and places it at the bottom of the
page. 7 Subsequent footnotes are placed below it.e

7
a

Up to 10 lines of output per footnote.
Like this.

_____________ 00 ,0 __ ,,'_' .. "0 .. _' ... __ 0.00 _____ ... __

Element Tag Descriptions 45

FHREF -- FOOTNOTE REFERENCE

Type Attributes Content Termination

:fnref refid= Generated by APF At End of Markup

The fnref tag identifies a reference to a footnote.

The refjd attribute label identifies the mandatory reference identifier attrib
ute. Its value is the same as the id of the footnote being referred to.

Usage: The footnote reference can occur anywhere in text except in an element
whose content is "Text on Same Line." It is a text item.

:p.SCRIPT/VS saves text indicated as a footnote and
places it at the bottom of the
page. :fnref refid='cfg'.
Subsequent footnotes are placed
below it. :fnref refid='ejm'
:fn id='cfg'.Up to 10 lines of output per footnote.
:efn
:fn id='ejm'.Like this.
:efn

Processin9 With the "9docprof" Profile: The supplied APF generates the number of
the footnote as the content of the fnref element. It appears in text as a super
script. The TWOPASS option is required when the reference precedes the footnote.

Results:

SCRIPT/VS saves text indicated as a footnote and places it at the bottom of the
page. 9 Subsequent footnotes are placed below it.l0

9 Up to 10 lines of output per footnote.
10 Like this.

46 GML User's Gui de

FRONTH -- FRONT MATTER

Type Attributes Content Termination

:frontm None No Immediate Text :body

The frontm tag identifies that major element of a document which contains materi
al that serves as a guide to the document's contents and nature, such as the title
page, the abstract, and the table of contents.

Usage: The front matter can occur only at the start of the document, immediately
after the Sdoc tag. The front matter contains a title page, and may also contain
an abstract, a preface, a table of contents, and a list of illustrations.

:gdoc sec='Company Confidential'
:frontm
:titlep

:body

:appendix

:backm

:egdoc

Processing With the "gdocprof" Profile: The supplied APF causes front matter
pages to b~ numbered in Roman numerals. Front matter headings do not appear in the
table of contents.

Results:

See the Roman numeral pages at the beginning of this manual for an example of the
processing results.

Element Tag Descriptions 47

GDOC -- GENERAL DOCUMENT

Type Attributes Content Termination

:gdoc sec= Ho Immediate Text :egdoc

The gdoc tag identifies a General Document.

The sec attribute label identifies the optional security level attribute. Its
value is a character string that identifies the security classification of the
document.

Usage: The General Document can occur only as a whole document; not as an
element. The gdoc tag must be the first tag in the document.

:gdoc sec='Company Confidential'
:frontm

:body

:appendix

:backm

:egdoc

Processing With the "gdocprof" Profile: The supplied APF sets up the environment
for the document. The security level, if specified, is printed as a running head
ing throughout the document, and on the title page. Any subsequent occurrences of
gdoc (such as within imbedded files) are ignored.

Results:

This manual is an example of a General Document (except for the tag descriptions
and some other elements that occur in GML Markup Guid~s).

48 GML User's Gui de

C:

HDREF -- HEADING REFERENCE

Type Attributes Content Termination

:hdref refid= Generated by APF At End of Markup

The hdref tag identifies a reference to a heading.

The refid attribute label identifies the mandatory reference identifier attrib
ute. Its value is the same as the id of the heading being referred to.

Usase: The heading reference can occur anywhere in text except in an element
whose content is "Text on Same Line." It is a text item.

If there is insufficient space, you can use the technique
for attribute insertion
described in the section on :hdref refid='ral' ..

Processins Wi th the "sdocprof" Profi Ie: The suppl i ed APF generates the content of
the element. The content consists of the text of the heading referred to, plus the
page number if the heading is on a different page from the hd~ef. The TWOPASS
option is required when the reference precedes the heading.

Results:

If there is insufficient space, you can use the technique for attribute insertion
described in the section on "Inserting Attributes (.ATT)" on page 14.

Element Tag Descriptions 49

,----------,,,.,---------"--------"-

HPO -- HIGHLIGHTED PHRASE (TYPE 0)

Type Attributes Content Termination

:hpO None Text Item :ehpO

The hpO tag i denti fi es a phrase whose hi ghl i ght value is "0." A phrase is techni
cally a series of words expressing a thought in a fragmentary manner. In prac
tice, though, a highlighted phrase can be one or more related words which are to
be distinguished from their surrounding text for some reason. (See "Highlighting"
on page 9 for an explanation of highlighting.)

Usage: The highlighted phrase (type 0) can occur anywhere in text except in an
element whose content is "Text on Same line."

Note: The starter set includes four "highlighted phrase" element t~/pes (hpO, hpl,
hp2, and hp3) which simplify the markup of phrases (ph) with a h; attribute.

:p.ln the starter set, Highlight 0 is set like normal text.
:hp2.It can be used for a :hpO.deempnasized
element:ehpO. that occurs within an
emphasized element:ehp2 ..

Processing With the "gdocprof" Profile: The supplied APF prints the phrase in a
font and style appropriate to its highlighting. Type zero highlighting is printed
in the same font and style as normal body text. It is used for contrast when a
deemphasized phrase is nested within an emphasized phrase. The text surrounding
the phrase is unaffected.

Results:

In the starter set, Highlight 0 is set like normal text. It can be used for a
deemphasized element that occurs within an emphasized element.

50 GML User's Guide

c

c
HP1 -- HIGHLIGHTED PHRASE (TYPE 1)

Type Attributes Content Termination

:hpl None Text Item :ehpl

The hp1 tag identifies a phrase whose highlight value is "1." A phrase is techni
cally a series of words expressing a thought in a fragmentary manner. In prac
tice, though, a highlighted phrase can be one or more related words which are to
be distinguished from their surrounding text for some reason. (See "Highlighting"
on page 9 for an explanation of highlighting.')

Usage: The highlighted phrase (type 1) can occur anywhere in text except in an
element whose content is "Text on Same Line."

Note: The starter set includes four "highlighted phrase" element types (hpO, hpl,
hp2, and hp3) which simplify the markup of phrases (ph) with a hi attribute.

:p.Four kinds of highlighting are possible with the starter set.
They are:
:hpO.Highlight O:ehpO.,
:hpl.Highlight l:ehp1.,
:hp2.Highlight 2:ehp2., and
:hp3.Highlight 3:ehp3 •.

Process;n9 t.Hth the "9docprof" Profile: The supplied APF prints the phrase in a
font and style appropriate to its highlighting. The text surrounding the phrase
is unaffected.

Results:

Four kinds of highlighting are possible with the starter set. They are: Highlight
0, Highlight 1, H;Shl;9ht 2, and H;9hli9ht 3.

Element Tag Descriptions 51

HP2 -- HIGHLIGHTED PHRASE (TYPE 2)

Type Attributes Content Termination

:hp2 Hone Text Item :ehp2

The hp2 tag identifies a phrase whose highlight value is "2." A phrase is techni
cally a series of words expressing a thought in a fragmentary manner. In prac
tice, though, a highlighted phrase can be one or more related words which are to
be distinguished from their surrounding text for some reason. (See "Highlighting"
on page 9 for an explanation of highlighting.)

usage: The highlighted phrase (type 2) can occur anywhere in text except in an
element whose content is "Text on Same line."

Hote: The starter set includes four "highlighted phrase" element types (hpO, hpl,
hp2, and hp3) which simplify the markup of phrases (ph) with a h; attribute.

:p.Four kinds of highlighting are possible with the starter set.
They are:
:hpO.Highlight O:ehpO.,
:hpl.Highlight 1:ehp1.,
:hp2.Highlight 2:ehp2., and
:hp3.Highlight 3:ehp3 ..

Process;ng ,.nth the "gdocprof" Prof;le: The supplied APF .prints the phrase in a
font and style appropriate to its highlighting. The text surrounding the phrase
i s unaffected.

Results:

Four kinds of highlighting are possible with the starter set. They are: Highlight
0, Highlight 1, H;ghl;ght 2, and H;9hl;9ht 3.

52 GMl User's Guide

r"
',-..

o

HP3 -- HIGHLIGHTED PHRASE (TVPE 3)

Type Attributes Content Termination

:hp3 None Text Item :ehp3

The hp3 tag i dent i fi es a phrase whose hi ghl i ght value is "3." A phrase is techn i
cally a series of words expressing a thought in a fragmentary manner. In prac
tice, though, a highlighted phrase can be one or more related words which are to
be distinguished from their surrounding text for some reason. (See "Highlighting"
on page 9 for an explanation of highlighting.)

Usage: The highlighted phrase (type 3) can occur anywhere in text except in an
element whose content is "Text on Same Line."

Note: The starter set includes four "highlighted phrase" element types (hpO, hpl,
hp2, and hp3) which simplify the markup of phrases (ph) with a h; attribute.

:p.Four kinds of highlighting are possible with the starter set.
They are:
:hpO.Highlight O:ehpO.,
:hp1.Highlight 1:ehp1.,
:hp2.Highlight 2:ehp2., and
:hp3.Highlight 3:ehp3 ..

Processing With the "gdocprof" Prof;le: The supplied APF prints the phrase in a
font and style appropriate to its highlighting. The text surrounding the phrase
i s unaffected.

Results:

Four kinds of highlighting are possible with the starter set. They are: Highlight
0, Highlight 1, Highlight 2, and Highlight 3.

Element Tag Descriptions 53

HO -- HEAD ZERO

Type Attributes Content Termination

:hO id= stitle= Text on Same line At End of line
(no other tags) See "Usage" in text

The hO tag identifies a zero-level heading. The heading begins a zero-level head
ing segment, also known as a "part." A part is a separately identified group of
consecutive chapters.

The id attribute label identifies the optional unique identifier attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. Ho other heading (of any type) can have .the same unique identifi
er.

The st;tle attribute label identifies the optional short title attribute. Its
value is a character string that is a short version of the heading.

Usage: The head zero can occur only within the body of a document. The heading
text should be entered with initial capitals. When the heading is referred to by a
heading reference element (hd~ef), the id attribute is mandatory.

A part contains one or more chapters. It also may contain basic document elements
preceding the first chapter. The part segment is terminated by another part seg
ment, or by ·starting the appendix section or back matter .

. att stitle='GMl Markup Guide'
:hO id='c3' .Part One: GML Markup Guide for General Documents
:hl.What is GML markup?

Process i ng W; th the "gdocp~of" Prof; le: The suppl i ed AP F beg ins a new page
(odd-numbered if the SYSVAR D YES option is specified). The heading is aligned at
the right margin. The heading text is included in the table of contents (if any).
If the id attribute is specified, the text of the heading and the page number on
which it appears are saved for reference by a hdref element. The short title (or
the heading text, if no short title is specified) is printed as a running footing
on odd-numbered pages throughout the part until replaced by the heading (or short
title) of the first chapter.

Results:

The heading "Part One: GMl Markup Guide for General Documents" on page 1 is an
example.

54 GML User's Guide

('

c.

c

c

Hl -- HEAD ONE

Type Attributes Content Termination

:hl id= stitle= Text on Same Line At End of Line
(no other tags) See "Usage" in text

The hl tag identifies a first-level heading which begins a first-level heading
segment. Within the body of a document, a first-level heading segment is also
called a "chapter."

The id attribute label identifies the optional unique identifier attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. Ho other heading (of any type) can have the same unique identifi
er.

The stitle attribute label identifies the optional short title attribute. Its
value is a character string that is a short version of the heading.

Usage: The head one can occur within the appendix, back matter, or a part, or
directly within the body if the body is not divided into parts. The text of the
heading should be entered with initial capitals. When the heading is referred to
by a heading reference element (hdref), the id attribute is mandatory.

The heading segment can contain basic document elements and lower-level heading
segments. It is terminated by another first-level heading segment (hl), a part
(hO), or the appendix or back matter.

:hl id='mupro'.Markup Procedures
:p.This section explains:

Processing With the "9docprof" Prof; le: The suppl i ed APF begi ns a new page
(odd-numbered if the SYSVAR D YES option is specified). The heading text 15

included in the table of contents (if any). If the id attribute is specified, the
text of the heading and the page number on which it appears are saved for refer
ence by a hdref element. The short title (or the heading text, if no short title
is specified) is printed as a running footing on odd-numbered pages throughout
the chapter. The heading is numbered automatically if the SYSVAR H HUM option is
specified.

Results:

The headi ng "Markup Procedures" on page 11 is an example.

Element Tag Descriptions 55

H2 -- HEAD TWO

Type Attributes Content Termination

:h2 id= Text on Same Line At End of Line
(no other tags) See "Usage" in text

The h2 tag identifies a second-level heading which begins a second-level heading
segment. A document is divided into segments to guide the reader when the materi
al so requires, as when first-level heading segments are long and the subject
complex.

The ;d attribute label identifies the optional unique identifjer attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. Ho other heading (of any type) can have the same unique identifi
er.

Usage: The head two can occur within an abstract, preface, or higher-level
(except 0) heading segment. The text of the heading should be entered with ini
tial capitals. When the heading is referred to by a heading reference element
(hd~ef), the ;d attribute is mandatory.

The heading segment can contain basic document elements and lOL~er-level heading
segments. It is terminated by another heading segment of the same level or high
er, by a front matter segment, or by the body, appendix or back matter.

symbols you may find useful in your documents.
:h2 id='mucw3'.Control Words and Macros
:p.There are a number of situations in which it will be .

P~ocessin9 'Hth the "gdocp~of" Profile: The supplied APF includes the heading in
the table of contents (if any). If the ;d attribute is specified, the text of the
heading and the page number on which it appears are saved for reference by a hd~eT
element. The heading is numbered automatically if the SYSVAR H HUM option is
specified.

Results:

The heading "Control Words and Macros" on page 13 is an example.

56 GML User's Guide

(~'
I ,-,.

H3 -- HEAD THREE

Type Attributes Content Termination

:h3 id= Text on Same Line At End of Line
(no other tags) See "Usage" in text

The h3 tag identifies a third-level heading which begins a third-level heading
segment. A document is divided into segments to guide the reader when the materi
al so requires, as when chapters are long and the subject complex.

The ;d attribute label identifies the optional unique identifier attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. No other heading (of any type) can have the same unique identifi
er.

Usage: The head three can occur within an abstract, preface, or higher-level
(except 0) heading segment. The text of the heading should be entered with ini
tial capitals. When the heading is referred to by a heading reference element
(hdref), the id attribute is mandatory.

The heading segment can contain basic document elements and lower-level heading
segments. It is terminated by another heading segment of the same level or high
er, by a front matter segment, or by the body, appendix or back matter.

direct entry of control words can provide.
:h3 id='sdm'.Source Document Management
:P.You may want to store parts of your document as .

Process;ng "Hth the "9docprof" Prof;!e: The supplied APF includes the heading in
the table of contents (if any). If the id attribute is specified, the text of the
heading and the page number on which it appears are saved for reference by a hdref
element. The heading ;s numbered automatically if the SYSVAR H NUM option is
specified.

Results:

The head i ng "Source Document Management" on page 13 i s an exampl e.

Element Tag Descriptions 57

-----_._---, .. , .. _.".", ... _ .. _-------, .•. _-

H4 -- HEAD FOUR

Type Attributes Content Termination

:h4 id= Text on Same Line At End of line
(no other tags) See "Usage" in text

The h4 tag identifies a fourth-level heading which begins a fourth-level heading
segment. A document is divided into segments to guide the reader when the materi
al so requires, as when chapters are long and the subject complex.

The id attribute label identifies the optional unique identifier attribute. Its
value is a string of up to five alphameric characters which can be used to refer
to this element. No other heading (of any type) can have the same unique identifi
er.

Usage: The head four can occur within an abstract, preface, or higher-level
(except 0) heading segment. The text of the heading should be entered with ini
tial capitals. When the heading is referred to by a heading reference element
(hd~ef), the id attribute is mandatory.

The heading segment can contain basic document elements and lower-level heading
segments. It is terminated by another heading segment of the same level or high
er, by a front matter segment, or by the body, appendix or back matter.

for doing this.
:h4 id='ral'.Inserting Attributes (.att)
:p.Sometimes you may not have enough room on one line

P~ocessing IHth the "9docp~of" P~ofile: The supplied APF includes the heading in
the table of contents (if any). If the id attribute is specified, the text of the
heading and the page number on which it appears are saved for reference by a hd~ef
element. The heading is numbered automatically if the SYSVAR H NUM option is
specified.

Results:

The heading "Inserting Attributes LATT)" on page 14 is an example.

58 GML User's Gui de

C:

o

HS -- HEAD FIVE

Type Attrlbutes Content Termlnatlon

:h5 None Text on Same Line At End of Line
(no other tags) See "Usage" in text

The hS tag identifies a fifth-level heading which begins a fifth-level heading
segment. A document is divided into segments to guide the reader when the materi
al so requires, as when chapters are long and the subject complex.

Usage: The head five can occur within an abstract, preface, or hlgher-level
~except 0) heading segment. The text of the heading should be entered with inl
tial capitals.

The heading segment can contain basic document elements and lower-level heading
segments. It is terminated by another heading segment of the same level or high
er, by a front matter segment, or by the body, appendix or back matter.

end of the previous paragraph unit.
:h5.Head Five Example
:p.It is run into the following paragraph.

:h5.Another Head Five
:note.It stands alone because it is not followed by a paragraph.

Processin9 With the "9docprof" Profile: The supplied APF formats the heading as a
run-in head if the next element is a paragraph (p). Otherwise, the heading is set
as an independent line.

Results:

end of the previous paragraph unit.

HEAD FIVE EXAMPLE: It is run into the following paragraph.

ANOTHER HEAD FIVE

Note: It stands alone because it is not followed by a paragraph.

Element Tag Descriptions 59

------------ ----_._- --_ .. _--------_ _ ... _._ ... _. __ _._ _ _-_ --........... ------------------------_._-_._-_._-.

H6 -- HEAD SIX

Type Attributes Content Termination

:h6 Hone Text on Same Line At End of Line
(no other tags) See "Usage" in text

The h6 tag identifies a sixth-level heading which begins a sixth-level heading
segment. A document is divided into segments to guide the reader when the materi
al so requires, as when chapters are long and the subject complex.

Usage: The head six can occur within an abstract, preface, or higher-level
(except 0) heading segment. The text of the heading should be entered ~Jith ini
tial capitals.

The heading segment can contain basic document elements. It is terminated by
another heading segment of the same level or higher, by a front matter segment, or
by the body, appendix or back matter.

end of the previous paragraph unit.
:h6.Head Six Example
:p.It is run into the following paragraph.

:h6.Another Head Six
:note.It stands alone because it is not followed by a paragraph.

Processing With the "gdocprof" Profile: The supplied APF formats the heading as a
run-in head if the next element is a paragraph (p). Otherwise, the heading is set
as an independent line.

Results:

end of the previous paragraph unit.

Head Six Example: It is run into the following paragraph.

Another Head Six

Hote: It stands alone because it is not followed by a paragraph.

60 GML User's Guide

("
'-_ ..

c

c'

C\,'
"

r
~/

o

LI -- LIST ITEM

Type Attributes Content Termination

: 1 i None Implied P Structure : 1 i , : 1 p, :eol,
:esl, or :eul

The 1; tag identifies an element of an ordered list, simple list, or unordered
list.

Usage: The list item can occur only within an ordered list, simple list, or
unordered list. It is repeatable. It contains an implied paragraph (no p tag),
and may also contain basic document elements.

List items of an ordered list should be entered without sequence numbers or let
ters, as these will be provided by the APF.

list items of an unordered list should be entered without bullets or dashes, as
these will be provided by the APF.

:p.This paragraph precedes the list.
:01
: 1 i . The fi rst 1 i st item.
:p.This paragraph is part of the first list item.
:1i.The second list item.
:lp.This list part comments on the preceding list items.
:p.A list part can also
introduce the succeeding list items.
:li .The third list item.
It has two topics:
:ul
:li.one topic;
:1i .another topic.
:eul
:li .The fourth list item.
:eol
:p.This paragraph follows the list.

Element Tag Descriptions 61

/

Processing With the "gdocprof" Profile: The supplied APF prefixes the list item
with a number or bullet (if required by the type of list) and formats it.

Results:

This paragraph precedes the list.

1. The first list item.

This paragraph is.part of the first list item.

2. The second list item.

This list part comments on the preceding list items.

A list part can also introduce the succeeding list items.

3. The third list item. It has two topics:

• one topi Cj

• another topic.

4. The fourth list item.

This paragraph follows the list.

See "l; sts" on page 8 for add; ti onal examples of list items.

62 GML User's Guide

----------- ._------

c

LP -- LIST PART

Type Attributes Content Termination

: Ip Hone Implied P structure : dt, : 1 i , :edl,
:eol, :esl, or :eul

The lp tag identifies a comment or explanation which applies to part of a list
(that is, to some of the list's items).

Usage: The list part can occur only within a list. It is optional and repeatable.
It contains an implied paragraph (no P tag), and may also contain basic document
elements.

:p.This paragraph precedes the list.
:01
:li.The first list item.
:p.This paragraph is part of the first list item.
:li .The second list item.
:lp.This list part comments on the preceding list items.
:p.A list part can also
introduce the succeeding list items.
: 1 i . The thi rd 1 i st item.
It has two topics:
:ul
:li.one topic;
:li .another topic.
:eul
:li .The fourth list item.
:eol
:p.This paragraph follows the list.

Processin9 With the "9docprof" Profile: The supplied APF aligns the list part
with the number or bullet of the list items (or with the definition term) and for
mats it.

Results:

This paragraph precedes the list.

1. The fi rst list item.

This paragraph is part of the first list item.

2. The second list item.

This list part comments on the preceding list items.

A list part can also introduce the succeeding list items.

3. The third list item. It has two topics:

• one topi c;

• another topic.

4. The fourth 1 i st item.

This paragraph follows the list.

Element Tag Descriptions 63

---_._---- _-------_ .. _-

LQ -- LONG QUOTATION

Type Attributes Content Termination

:lq None No Immediate Text :elq

The lq tag i dent if i es an excerpt tor "block quotat ion t" wh i ch i s set off from
other text to show that it is quoted from another source.

Usage: The long quotation can occur wherever a basic document element can occur.
It contains basic document elements (except fig).

:p.The following is an excerpt from the markup rules
for long quotations.
Observe that the long quotation is
indented on both the left and the right.
:lq
:p.Do not enclose long quotations in quotation marks.
Short quotations within a long quotation should be
marked with the :hp2.q:ehp2. and :hp2.eq:ehp2. tags.
:p.long quotations can include lists and other basic document elements
(except figures).
:elq
:p.This paragraph follows the long quotation.

Processing tHth the "gdocprof" Prof;!e: The supplied APF indents the long
quotation.

Results:

The following is an excerpt from the markup rules for long quotations. Observe
that the long quotation is indented on both the left and the right.

Do not enclose long quotations in quotation marks. Short quotations within
a long quotation should be marked with the q and eq tags.

long quotations can include lists and other basic document elements
(except figures).

This paragraph follows the long quotation.

64 GMl User's Gui de

l '--

NOTE -- NOTE

Type Attributes Content Termination

:note None Paragraph Unit Paragraph or Higher
Level Element

The note tag identifies a paragraph containing a comment or explanation which
must be called to the reader's attention.

Usage: The note can occur wherever a basic document element can occur.

:note.This is the first example of a note element.
It is normally printed flush with the left margin.
:01
:li .This is an ordered list item.
:note.This note is part of a list item in an ordered list.
Notice the indention level in relation to the text of the
list item.
:e01
:note.This is the first note after ending the ordered list.

Process;n9 'Hth the "9docprof" Prof;!e: The supplied APF causes the word "Note:"
to be prefixed to a paragraph which is formatted flush left. Notes within ele
ments that are indented, such as list items and examples, are formatted at the
appropriate indention of the outer element. Notes are set in block style.

Results:

Note: This is the first example of a note element. It is normally printed flush
with the left margin.

1. This is an ordered list item.

Note: This note is part of a list item in an ordered list. Notice the
indention level in relation to the text of the list item.

Note: This is the first note after ending the ordered list.

Element Tag Descriptions 65

.... _--_ .. _ .. __ _ ... , _., ... _. __ _---------_._ ..•.• _ .. _ .. ,---

OL -- ORDERED LIST

Type Attributes Content Termination

:01 None No Immediate Text :eol

The 01 tag identifies a list of elements, called "list items," t-Jhose order is
significant. It is usually printed with sequence numbers or letters to emphasize
the order of the items.

Usase: The ordered list can occur wherever a basic document element can occur. It
contains a series of list items (Ii), which may be intermixed with individual
elements known as "1 i st parts" (lp).

All types of list (definition, ordered, unordered, and simple) can occur within
the bounds of one another), but within the bounds of a single list the level of
nesting cannot be more than 3 for unordered lists, 6 for definition lists, 6 for
simple lists, and 6 for ordered lists.

List items of an ordered list should be entered without sequence numbers or let
ters, as these will be provided by the APF.

:p.This paragraph precedes the list.
:01
:li.The first list item.
:p.This paragraph is part of the first list item.
:li.The second list item.
:lp.This list part comments on the preceding list items.
:p.A list part can also
introduce the succeeding list items.
: 1 i . The t h i r d 1 i s tit em .
It has two topics:
:ul
:lLone topic;
:li.another topic.
:eul
:li .The fourth list item.
:eol
:p.This paragraph follows the list.

66 GML User's Guide

c~

Pl'ocessins With the "sdocpl'o-f" Pl'o-fi!e: The supplied APF indents the list
appropriately to its level of nesting, and resets the item counter for the first
list item. List items will be numbered or lettered sequentially in different
styles, according to the level of nesting.

Results:

This paragraph precedes the list.

1. The first list item.

This paragraph is part of the first list item.

2. The second list item.

This list part comments on the preceding list items.

A list part can also introduce the succeeding list items.

3. The thi rd list item. It has two topi cs:

• one topic;

• another topic.

4. The fourth list item.

This paragraph follows the list.

See "lists" on page 8 for additional examples of lists.

Element Tag Descriptions 67

P -- PARAGRAPH

Type Attributes Content Termination

:p Hone Paragraph Unit Paragraph or Higher
level Element

The p tag identifies a paragraph -- that is, one or more sentences related by
their subject matter.

Usase: The paragraph can occur wherever a basic document element can occur.

:p.This is the first example of a paragraph element.
It is normally printed flush with the left margin.
:01
:li .This is an ordered list item.
:p.This paragraph is part of a list item in an ordered list.
Hotice the indention level in relation to the text of the
list item.
:eol
:p.This is the first paragraph after ending the ordered list.

processins With the "sdocprof" Profile: The supplied APF causes paragraphs to be
formatted flush left. Paragraphs within elements that are indented, such as list
items and examples, are formatted at the appropriate indention of the outer ele
ment. Explicitly tagged paragraphs are set in block style. The format of the
implied paragraph of add, fisdesc, fn, Ii or lp element is determined by the for
mat of that element.

Results:

This is the first example of a paragraph element. It is normally printed flush
with the left margin.

1. This is an ordered list item.

This paragraph is part of a list item in an ordered list. Hotice the indention
level in relation to the text of the list item.

This is the first paragraph after ending the ordered list.

68 GMl User's Guide

c

o

PC -- PARAGRAPH CONTINUATION

Type Attributes Content Termination

:pc Hone Paragraph Unit Paragraph or Higher
Level Element

The pc tag identifies a paragraph continuation -- that is, one or more sentences
related by their subject matter to a paragraph which has been interrupted by an
address, example, figure, list, or long quotation.

Usase: THe paragraph continuation can occur after the sequence consisting of a
paragraph unit followed by an address, example, figure, list, or long quotation.

:p.The subject of a paragraph might be continued through
: sl
:li.an address, a list,
:li.an example or figure, or
:li.a long quotation,
:esl
:pc.and continue to be discussed in flowing text.
The discussion could continue indefinitely through
:01
:li .other addresses or lists,
:li .other examples or figures, and
:li .other long quotations,
:eol
:pc.by adding additional paragraph continuations, like this.

Process;ns LoHth the "sdocprof" Prof;!e: The supplied APF causes paragraph
continuations to be formatted flush left. Paragraph continuations within elements
that are indented, such as list items, examples, and figures, are formatted at
the appropriate indention of the outer element. Paragraph continuations are set
in block style (even where the paragraph units being continued have their first
line indented).

Results:

The subject of a paragraph might be continued through

an address, a list,

an example or figure, or

a long quotation,

and continue to be discussed in flowing text. The discussion could continue
indefinitely through

1. other addresses or lists,

2. other examples or fi gures, and

3. other long quotations,

by adding additional paragraph continuations, like this.

Element Tag Descriptions 69

PH -- PHRASE

Type Attributes Content Termination

:ph hi= Text Item :eph

The ph tag identifies a phrase -- technically a series of words expressing a
thought in a fragmentary manner. In practice, a phrase can be one or more related
words which are to be distinguished from their surrounding text for some reason.

The hi attribute label identifies the optional highlight (emphasis) attribute.
Its value is a number from 0 to 3 which identifies the type of emphasis (if any)
associated with the phrase. (See "Highlighting" on page 9 for an explanation of
highlighting.)

Usage: The phrase can occur anywhere in text except within the bounds of another
phrase (ph), or in an element whose content is "Text on Same line."

Note: The starter set includes four "hi ghl i ghted phrase" element types (hpO, hpl,
hp2, and hp3) which simplify the markup of phrases (ph) with a hi attribute.

:p.Four kinds of highlighting are possible with the starter set.
They ar.e:
:ph hi='O'.Highlight O:eph.,
:ph hi='l'.Highlight l:eph.,
:ph hi='2'.Highlight 2:eph., and
: ph hi =' 3' . Hi ghl i ght 3: eph ..

processing Wi th the "gdocprof" Profi Ie: The suppl i ed APF pri nts the phrase in the
normal body text font and style unless highlighting is specified. The text sur
rounding the phrase is unaffected.

Note: Your document administrator may have defined other attributes which can be
associated with phrases.

Results:

Four kinds of highlighting are possible with the starter set. They are: Highlight
0, Highlight 1, Highlight 2, and Highlight 3.

70 GMl User's Guide

-------------------------- ----------

C\
/

/

c~

c

PREFACE -- PREFACE

Type Attributes Content Termination

:preface Hone Ho Immediate Text :toc, :fjglist,
or :body

The preface tag identifies the writer's introductory remarks, such as acknowl
edgements, or reasons for writing the document.

Usage: The preface can occur only within the front matter, after the title page
(and abstract, if any). It can contain basic document elements and second-level
and lower heading segments. This element is optional.

:frontm
:titlep

:etitlep
:abstract

:preface
:p.There has long been a need for a method of bringing
typographic capabilities to the production of office documents,
using normal secretarial skills.

:toc
:figlist
:body

processin9 With the "9docprof" Profile: The supplied APF begins a new page
(odd-numbered if the SYSVAR D YES option is specified) and generates the word
"Preface" as a headi ng.

Results:

See the preface of this manual for an example.

Element Tag Descriptions 71

PSC -- PROCESS-SPECIFIC CONTROLS

Type Attributes Content Termination

:psc proc= See "Usage" in text :epsc

The psc tag identifies an element which contains control words and text which are
meaningful for one or more specific processes that will be performed on the docu
ment.

The proc attribute label identifies the optional process attribute. Its value is
an uppercase alphameric character string which identifies one or more processes
to which the element is restricted. Process names may be 1 to 8 characters long,
and must be separated by blanks.

Usase: The process-specific controls can occur potentially anywhere in a document
(even within a word), but this depends upon the material you enter into it. It may
contain any control words or text that can be passed through the SCRIPT/VS sys
tem, including markup for "post-processors" that wi 11 read the output of the
SCRIPT/VS processing.

See "Graphic Formatting" on page 14, "Modifying Processing Results" on page 14,
and "Additional General Processing" on page 15 for information about the use of
psc elements.

The following example shows how a figure which is too lar~e for a single page when
printed at 6 lines per inch can conditionally be split into two figures. The mark
up shown will cause Figure 18 on page 133 to print as two separate figures when
printing is done at 6 lines per inch, and as a single figure when printing is done
at 8 or 12 lines per inch.

72

:fig id='gdoc' place='inline'
:psc
.cm graphic
.se C'lssk = 0
:epsc
:ul
:li .Overall Structure:
(additional text)
:psc proc='1403N6 1403W6 1403SW 3800N6 3800W6 3800N6S 3800W6S 3800N8S 3800W8S TERM'
.cm graphic
.cm split figure for 6 line/inch devices
:eul
:figcap.Summary of General Document Tags (Part 1 of 2)
:efig
:fig
:ul
:epsc
:li .Basic Document Elements:
(additional text)
:eul
:psc
.cm graphic
.se C'lssk = 1
:epsc
:psc proc='1403N6 1403W6 1403SW 3800N6 3800W6 3800N6S 3800W6S 3800N8S 3800W8S TERM'
.cm graphic
.cm split figure for 6 line/inch devices
:figcap.Summary of General Document Tags (Part 2 of 2)
:epsc
:psc proc='1403N8 1403W8 3800N8 3800W8 3800W12 3800W12S'
.cm graphic
.cm caption for "unsplit" 8 or 12 lines per inch version of figure
:figcap.Summary of General Document Tags
:epsc
:efig

GML User's Guide

----_ .. - -------

C
'
"

/

C
·
/

processing With the "gdocprof" Profile: The supplied APF will cause SCRIPT/VS to
ignore a psc element with a specified proc value which does not include the
process name or names associated with the SCRIPT/VS run. A process name can be
designated with the SYSVAR P option. If this option is not specified, the logical
device specified in the SCRIPT command, and its underlying physical device, are
both treated as default process names. Figure 19 on page 140 contains the starter
set logical and physical device names. (Your document administrator may designate
other process names, or change the default.) If proc is not specified, the psc is
valid for all processes.

Results:

See Figure 18 on page 133 for the results.

Element Tag Descriptions 73

Q -- QUOTE

Type Attributes Content Termination

: q None Text Item :eq

The q tag identifies a phrase in which the exact words of a person or text are
cited.

Usase: The quote can occur anywhere in text except in an element whose content is
"Text on Same Line." Trailing punctuation which is not really part of the quote
should not be included in the element. It should be entered after the eq tag, as
in the exampl e.

:p.Here is :q.an example of a
quoted phrase with :q.another quoted
phrase:eq. nested within it:eq ..
Note the two periods at the end: one ends the :q.markup:eq.,
while the other ends the :q.sentence:eq ..

Processing With the "gdocprof" Profile: The supplied APF prints the phrase within
double quotation marks. Nested quoted phrases will alternate single quotes with
double quotes.

A comma or period immediately following the eq tag will be brought inside the
closing quotation mark. (Your document administrator may have changed the profile
to prevent this if your installation follows a different ~tyle.)

Results:

Here is "an example of a quoted phrase with 'another quoted phrase' nested within
it." Note the two periods at the end: one ends the "markup," t-Jhile the other ends
the" sentence. "

74 GMl User's Guide

C",
/

SL -- SIMPLE LIST

Type Attributes Content Termination

:sl Hone No Immediate Text :esl

The s1 tag identifies a list of elements, called "list items." It differs from an
unordered list in that the items themselves are usually short and not emphasized,
and so are usually not printed with bullets or da5hes to distinguish them.

Usage: The simple list can occur wherever a basic document element can occur. It
contains a series of list items (1;), which may be intermixed with individual
elements known as "1 i st parts" (1p).

All types of list (definition, ordered, unordered, and simple) can occur ~Jithin
the bounds of one another), but within the bounds of a single list the level of
nesting cannot be more than 3 for unordered lists, 6 for definition lists, 6 for
simple lists, and 6 for ordered lists.

:p.This paragraph precedes the list.
:sl
:li.The first list item.
:p.This paragraph is part of the first list item.
:1i .The second list item.
:lp.This list part comments on the preceding list items.
:p.A list part can also
introduce the succeeding list items.
:li.The third list item.
It has two topics:
: sl
:l1.one topic;
:li.another topic.
esl
Ii .The fourth list item.
esl
p.This paragraph follows the list.

Element Tag Descriptions 75

--------_._._--".,.",---"., .. _-_. __ .,_ ... _"_.- -

Processing With the "gdocprof" Profile: The supplied APF indents the list
appropriately to its level of nesti ng. list items wi 11 be "bulleted" ; n di fferent
styles, according to the level of nesting.

Results:

This paragraph precedes the list.

The first list item.

This paragraph is part of the first list item.

The second list item.

This list part comments on the preceding list items.

A list part can also introduce the succeeding list items.

The third list item. It has two topics:

one topic;

another topic.

The fourth list item.

This paragraph follows the li~t.

See "lists" on page 8 for additional examples of lists.

76 GMl User's Guide

c/

TITLE -- DOCUMENT TITLE

Type Attributes Content Termination

:title stitle= Text on Same Line At End of Line
(no other tags)

The title tag identifies the name of the document.

The stitle attribute label identifies the optional short title attribute. Its
value is a character string that is a short version of the document title.

Usage: The document title can occur only as the first element of the title page.
The text of the document title should be entered with initial capitals.

:frontm
:titlep
:title stitle='GML User"s Guide'.GML Markup and Processing&rbl.Guide
:docnum.MG-00001
:date.July 3, 1978
:author.L. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

processin9 With the "9docprof" Profile: The supplied APF prints the document
title on the title page. The short title (or the full document title, if no short
title 1S specified) is printed as a running footing on even-numbered pages
throughout the document.

Results:

See "Appendix D: Ti tIe Page Example" on page 143 for an example.

Element Tag Descriptions 77

TITLEP -- TITLE PAGE

Type Attributes Content Termination

:titlep Hone Ho Immediate Text :etitlep

The t;tlep tag identifies the element of the front matter which contains general
information about the document that is to appear on the title page.

Usage: The title page can occur only as the first element of the front matter. It
contains the document title and document date, and can contain a document number,
author, and address.

:frontm
:titlep
:title stitle='GMl User"s Guide'.GMl Markup and Processing&rbl.Guide
:docnum.MG-OOOOI
:date.July 3, 1978
:author.l. T. Smith, Document&rbl.Administrator
:address
:aline.Any Company
:aline.500 Main Street
:aline.Anycity, Anyplace
:eaddress
:etitlep
:preface

processing With the "gdocprof" Profile: The supplied APF prints the contents of
the title page (unless title page printing is suppressed by use of the SYSVAR T
option). If the document has no date element, the APF will print a
system-supplied date of processing on the title page.

Results:

See "Appendix D: Title Page Example" on page 143 for an example.

78 GMl User's Guide

c~'

------------------------- ----- ---------

c~

o

TOC -- TABLE OF CONTENTS

Type Attributes Content Termination

:toc None Generated by APF At End of Markup

The toe tag identifies a listing of the sections of the document and the pages on
which they begin.

Usage: The table of contents can occur only within the front matter, after the
title page (and abstract and preface, if any). This element is optional.

:frontm
:titlep

:etitlep
:abstract

:preface

:toc
:figlist
:body

Proeess;ng With the "gdoeprof" Profile: The supplied APF begins a new page
(odd-numbered if SYSVAR DYES is speci fi ed). It generates the content of the
table of contents element from the text of headings (hO through h4) in the body,
appendix section (if any), and back matter (if any). The TWOPASS option is
required for normal processing of a General Document containing a toc.

Results:

See the table of contents of this manual for an example.

Element Tag Descriptions 79

UL -- UNORDERED LIST

Type Attributes Content Termination

:ul Hone Ho Immediate Text :eul

The ul tag identifies a list of elements, called "list items," whose order is not
significant. The items themselves are usually lengthy or emphasized, and are
therefore usually printed with preceding bullets or dashes to distinguish them.

usage: The unordered list can occur wherever a basic document element can occur.
It contains a series of list items (1;), which may be intermixed with individual
elements known as "1 i st parts" (1p).

All types of list (definition, ordered, unordered, and simple) can occur within
the bounds of one another), but within the bounds of a single list the level of
nesting cannot be more than 3 for unordered lists, 6 for definition lists, 6 for
simple lists, and 6 for ordered lists.

list items of an unordered list should be entered without bullets o~ dashes, as
these will be provided by the APF.

:p.This paragraph precedes the list.
:ul
:li .The first list item.
:p.This paragraph is part of the first list item.
:11 :The second list item.
:lp.This list part comments on the preceding list items.
:p.A list part can also
introduce the succeeding list items.
:li.The third list item.
It has two topics:
:01
:li .one topic;
:li .another topic.
:eol
:li .The fourth list item.
:eul
:p.This paragraph follows the list.

80 GMl User's Guide

c

c.,

o

Processing With the "gdocprof" Profile: The supplied APF indents the list
appropriately to its level of nesting. List items will be "bulleted" in different
styles, according to the level of nesting.

Results:

This paragraph precedes the list.

• The first list item.

This paragraph is part of the first list item.

• The second list item.

This list part comments on the preceding list items.

A list part can also introduce the succeeding list items.

• The third list item. It has two topics:

1. one topic;

2. another topic.

• The fourth list item.

This paragraph follows the list.

See "Lists" on page 8 for additional examples of lists.

Element Tag Descriptions 81

XMP -- EXAMPLE

Type Attributes Content Termination

:xmp depth= No Immediate Text :exmp

The xmp tag identifies an example, such as a diagram~ table, or other
illustration, which is read in line with the main text. It dlffers from a figure
in that it is not captioned, or referred to from other parts of the document.

The depth attribute label identifies the optional depth attribute. Its value is
an amount (in space units) of vertical white space to be included in the example.

Usage: The example can occur wherever a basic document element can occur.

The example can contain basic document elements (except figures and other exam
ples) and "line elements." A line element is a line of a source document LoJhich is
processed in such a way that it appears as an independent line in the output. line
elements can occur only within the bounds of an example or a figure body. There
are no tags for a line element; one starts at the beginning of an input line and
terminates at the end. A line element can contain text items.

Within the bounds of an example, elements that do not have explicit termination
tags (dd, 1i, 11', note, p, and PC) are implicitly terminated at the end of the
input line. Succeeding untagged input lines are treated as line elements. (As
usual, the entered content may include psc elements to obtain special graphic
effects, and .IM control words to imbed content from other files.)

If no content is entered, the APF will generate white space as specified by the
depth attribute to provide room for artwork to be stripped in for reproduction.

The first part of the following example shows an example element with generated
content. The second part is an example element whose body contains only line ele
ments.

as seen in the following graph:
:xmp depth='6p6'
:exmp
:pc.The chart below, in contrast, demonstrates that.

:p.This can be demonstrated in a variety of ways, but perhaps it is
best illustrated by the following proof:
:xmp
(1) A * B = C
(2) C = A * D
(3) B = D
:exmp
:pc.But other arguments are equally valid.

82 GML User's Gui de

----------_.-----------._- .

c

(
. -

"

C'

."

c.

...... _ .. --_ .. - ... _ .. __ .. --_ ... -... _._ _-----

processing With the "gdocprof" Profile: The supplied APF generates the required
space if depth is specified. Otherwise, the content is processed without justi
fication, running together of input lines, or spelling checking. In either case,
the output of processing is kept together, and is placed on the next page if there
is insufficient room on the current page. Examples are indented at the left mar
gin.

Results:

as seen in the following graph:

The chart below, in contrast, demonstrates that ...

This can be demonstrated in a variety of ways, but perhaps it is best illustrated
by the following proof:

(1) A * B = C
(2) C = A * D
(3) B = D

But other arguments are equally val i d ...

Element Tag Descriptions 83

('

........ - ,»- ... " ' , .. ~_."A ~ , " ~~",_.""-~ .• C.> __ -'-''''.,,",V ..• '''',, •• ,.,.,, _4" __ .•• ~.,..._,,_ •• ".,. _,.' ~._ ... ~ •. ,\..",.. ... , ... ,_ ... , .. _ ..

~"' ~. - --------

-------.---- _.------_ _-_ ...

c

o

PART TWO: GML PROCESSING GUIDE

This section explains how to process documents that contain GML markup. The mate
rial covered applies to all types of document; text entry and processing consider
ations which pertain only to a specific document type are discussed in the GML
Markup Guide for that type. A summary of the material on processing is included
for quick reference in "Appendix B: GML Processing Summary" on page 139.

Part Two: GMl Processing Guide 85

('
'-- .

---" "------------

c

c

o

ENTERING AND EDITING GML DOCUMENTS

GML documents can be created on any word processing or text editing system which
is capable of communicating its files to an IBM System/370 computer for processing
by SCRIPT/VS. The exact procedures for doing this will depend upon the system you
use.

One system you can use is the Conversational Monitor System component of VM/370.
Information on its use can be found in IBM Virtual Machine Facility/370: CMS
User's Guide. Another IBM system which can be used for preparing SCRIPT/VS GML
input is the Time Sharing Option (TSO) of OS/VS2 MVS. It is described in IBM OS/VS2
TSO Terminal User's Guide. You can also use a Program Product: IBM Advanced Text
Management System II (ATMS 11).11

Hote: Consult your document administrator for the actual procedures for the sys
tems in use in your installation.

11 OS 5740-XX2, DOS 5746-XXG

Entering and Editing GMl Documents 87

---_ ... _ ' _------ -------_._ .. _ ... _._ .. _--_ _ .. - ---_._--_ ... __ _. __ .. __ ._._-_. __ . __ ._,-

c

c:

c

----- _-_

PROCESSING GML DOCUMENTS WITH SCRIPT/VS

SCRIPT/VS is invoked by use of the "SCRIPT" command. A complete description of the
command and all its options can be found in the Document Composition Facility:
User's Reference. This section provides only a brief summary of those options most
likely to be used by markup editors.12 Since the exact form in which you issue the
command and options depends upon your system, examples of use and explanations are
presented separately for the CMS, TSO, and batch processing environments.

SCRIPT COMMAND OPTIONS

The first parameter of the command is an identifier of the file or data set which
contains the beginning (or all) of your document. For example:

SCRIPT mydoc

The file identifier is followed by any options you may specify.

Some available options are shown in the following list. The options (like the
remainder of the command) can be entered in any combination of upper and lower
case characters. In this list, the upper case letters signify acceptable abbrevi
ations for the options.

Processing Options:

PROfile(name) Specifies the name of a file or data set you want used as the docu
ment profile. The profile(s) available depend on the type of docu
ment you are processing, and are described in the GML Markup Guide.

SYsvar(x value) Specifies variations of the normal processing for the profile in
use. There can be one or more pairs of variation codes ('x') and
corresponding values. The variations possible depend on the type
of document being processed, and are discussed in the GMl Markup
Guide.

SPellchk

TWopass

BindCn! n2)

Causes SCRIPT/VS to perform spelling verification when requested
with the .SV control word.

Causes SCRIPT/VS to process your input document twice, so it can
resolve forward references (as when an automatically generated
table of contents is in the front of a book). The output is prod
uced after the second pass. This option approximately doubles the
computer processing time needed for a run.

Specifies that the printed portion of the output page is to be
shifted to one side to leave room for binding. It is shifted n1
space units to the right on odd pages, and n2 space units on even
pages. (You would normally make n2 smaller than n1 for duplex
printing, so even pages would have a large enough right margin for
binding.) The n2 value can be omitted when you want all pages
shifted the same amount (as you normally would for simplex print
i ng).

Logical Device and Output Destination:

DEVice(type) Specifies the "logical" device and underlying physical device for
which formatting is to be performed. In this context, "logical"
means a combination of physical device type, page size, and number
of lines per vertical inch. The logical device types supported in
the starter set are shown in Figure 19 on page 140. If you do not
specify a device, "term" is the default in the CMS and TSO environ
ments, and "1403W6" in the batch environment.

12

The output destination of the document will be the physical device,
unless the FILE, PRINT, or TERM options are specified.

Your installation's procedures may require you to specify options in addition
to those you choose from this manual.

Processing GML Documents With SCRIPT/VS 89

----_ " "._._----_ ..

FileCname)

PRInt

TErm

Error Handl i ng:

Causes output to be formatted for the specified logical device, but
stored in the named file or data set instead of being displayed or
printed.

Causes output to be formatted for the specified logical device, but
printed on the system printer. If no logical device is specified,
"deviceC1403W6)" is assumed.

Causes output to be formatted for the specified logical device, but
displayed at a, terminal instead of on the physical device. If no
logi cal devi ce is speci fi ed, "devi ceCterm)" is assumed.

Note: TERM is not available in the batch environment.

Message(delay) This option, with the parameter "delay," causes error messages to
be printed at the end of the output document, instead of being dis
played at a terminal during processing. (In the batch processing
environment, messages are always delayed.)

COntinue Normally, SCRIPT/VS stops processing when it finds an error. This
option directs it to continue processing unless the error is a
severe one.

ISSUING THE SCRIPT COMMAND

The command is discussed separately for each available environment: CMS, TSO, and
batch processing. In the examples, option names are shown in upper case for empha
sis.

Note: Consult your document administrator for the actual operating procedures for
your installation. These could include combinations of system procedures (that is,
execs, proclibs, or JCL) and manual operating procedures.

eMS

The Conversational Monitor System (CMS) component of VM/370 is a single-user oper
ating system that provides interactive file creation and manipulation facilities
that can be useful for document development. SCRIPT/VS uses the input/output
facilities of CMS to read source documents and write the formatted output. Proc
essing output may be directed to your CMS terminal, a VM/370 printer, or a CMS file
for later use.

The APFs and a profile must be available to CMS before invoking SCRIPT/VS to proc
ess your document.

When issuing the SCRIPT command, you must separate the options from the file iden
tifier by a left parenthesis. A default filetype of "script" is assumed for all
files if a filetype is not specified.

In the following example:

SCRIPT techrprt (PROFIlECgdocprof) TWOPASS BIND(.5i)

• "techrprt" is the filename of the document to be processed. The default
filetype of "script" is assumed.

• The PROFILE(gdocprof) option causes SCRIPT/VS to use the file "gdocprof
script" as the profile.

• The TWOPASS option tells SCRIPT/VS to make two passes through this file before
formatting it for output.

• The BINDC.5i) option causes SCRIPT/VS to shift the printed output .5 inches to
the right on all pages.

90 GMl User's Guide

c

• The logical device for which the output would be formatted is "TERM," since
the device option was not specified. The destination would be the same as the
logical device, since no destination was specified. The results would there
fore be displayed at your terminal.

In the next example:

SCRIPT mydoc C MCdelay) PROFIlECgdocprof) PRINT SPELLCHK

• "mydoc" is the filename of the document to be processed. The default filetype
of "script" is assumed.

• The MCdelay) option causes error messages to be appended to the output,
instead of being displayed at the terminal during processing.

• The PROFIlECgdocprof) option causes SCRIPT/VS to use the file "gdocprof
scri pt" as the profi Ie.

• The PRtNT option tells SCRIPT/VS to direct output to the system printer. Since
no logical device was specified, "device(1403W6)" is assumed.

• The SPEllCHK option causes SCRIPT/VS to verify the spelling of the words in
your document when requested with the .SV control word.

TSO

The Time Sharing Option (TSO) is a processor available to OS/VS2-MVS users.
SCRIPT/VS uses the input/output facilities of TSO to read source documents and
write the formatted output. Processing output may be directed to your TSO termi
nal, an MVS printer, or a TSO data set for later use.

APFs and a profile data set must be available to TSO before invoking SCRIPT/VS to
process your document.

All data set names which are not fully-qualified assume "userid." and ".text" as
default qualifiers.

In the following example:

SCRIPT techrprtCrptl) PROFIlECgdocprof) TWOPASS BINDC.5i)

• "techrprt" is the name of a partitioned data set whose member "rpt1" is the
document to be processed. The default qualifiers of "userid." and ".text" are
assumed, thus producing "userid.techrprt.text(rptl)" as the fully-qualified
name.

• The PROFIlE(gdocprof) option. causes
"userid.gdocprof.text" as the profile.

SCRIPT/VS to use the file

• The TWOPASS option tells SCRIPT/VS to make two passes through this file before
formatting it for output.

• The BINDC.5i) option causes SCRIPT/VS to shift the printed output .5 inches to
the right on all pages.

• The logical device for which the output would be formatted is "TERM," since
the device option was not specified. The destination would be the same as the
logical device, since no destination was specified. The results would there
fore be displayed at your terminal.

In the next example:

SCRIPT 'userid.mydoc' CO PROFIlE(gdocprof) PRINT SPElLCHK

• "userid.mydoc" is the fully-qualified data set name of the document to be
processed.

• The CO option causes SCRIPT/VS to continue processing even after an error is
found, unless the error is a severe one.

Processing GML Documents With SCRIPT/VS 91

• The PROFIlE(gdocprof) option causes
"userid.gdocprof.text" as the profile.

SCRIPT/VS to use the file

• The PRIHT option tells SCRIPT/VS to direct output to the system printer. Since
no logical device was specified, "device(1403W6)" is assumed.

• The SPEllCHK option causes SCRIPT/VS to verify the spelling of the words in
your document when requested with the .SV control word.

BATCH PROCESSING

To process SCRIPT/VS documents in batch environment~ the Document library Facility
(DlF) program product is required. Processing output may be directed to a system
printer or to a document data set.

Information about DlF can be found in the Document library Facility Guide. Consult
your document administrator for information about the batch processing proc~dures
in use in your installation.

92 GMl User's Guide

c

c:'

c
PART THREE: GML MARKUP DESIGN GUIDE

This section will show you how to design GML markup to fit the e~act needs of your
installation. There are discussions of SCRIPT/VS functional capabilities and G~ll
concepts to convey a better understanding of how the starter set works and what
else the system can do for you. Material is presented which will enable you to:

• Define GML tags to describe your installation's documents.

• Specify APFs and profiles that must be developed to process them.

• Establish conventions and procedures for marking up and processing documents.

Part Three: GMl Markup Design Guide 93

----_ '""., .. , ,._-- ... , ,-_ .. _ .. ,------- -------_ .. ", ..• ".", .. ".".",,, _,, ... " " .. _ _._ "

('
'--

c

... _ .••.. __ ..•. _--_._ _. ---~

c~

c

DEVELOPING GML FOR YOUR OWN USE

GML is customizable; it provides the syntax and usage rules for developing your
own vocabulary of tags for describing the parts of a document. SCRIPT/VS recog
nizes GML markup and interprets it according to the profile and APFs that are
specified for use during processing. SCRIPT/VS provides the symbol and macro
facilities to create profiles and APFs.

As an illustration of how to apply these functions, IBM has created the starter
set of GML described in Part One of this manual. You can use the same facilities to
tailor the starter set, or to create entirely new sets of GMl, for the different
kinds of documents you produce (for example, reports, lists, catalogs, proposal~,
specifications, bulletins, manuals, directories, form letters, and computer gen
erated reports). For each kind of document, you can define the GML tags that are
most meaningful to the people who produce documents of that kind. And you can
define document profiles and processing functions that will cause your style of
printing to be produced for each kind of document. How you accomplish these things
will depend on the role GML plays in your installation.

GML IN YOUR INSTALLATION

GML is a method for marking up documents in a way that describes the document. GML
provides a syntax and conventions for markup, but does not require any particular
vocabulary to be used. This is because the function of the GML language is to
describe documents, and different kinds of document require different vocabular
ies to describe them. In other words, GML lets you create the precise vocabulary
of tags you need to mark up your documents.

SCRIPT/VS is a system and language for processing documents. SCRIPT/VS allows you
to define new interfaces to its function to suit your own needs. This process can
be as simple as merely changing the behavior of a single SCRIPT/VS control word,
or it can involve providing an.entirely new markup language, such as GML, for the
users of the system.

If you are using the SCRIPT/VS language directly, the kinds of changes you might
want to make would probably be in the nature of adding a few special-purpose
macros .. When your installation uses GML, on the other hand, you will want to use
the markup definition capability of SCRIPT/VS to refine the vocabulary of tags so
that the language can be used to describe your own documents, using words that
reflect how you actually view their structure and purpose.

To take full advantage of GML, some preparation is needed. The documents to be
marked up should be analyzed, so that the vocabulary of tags needed to describe
them can be established. Also, the actu~l composition or formatting for each
described item must be defined and implemented. Sometimes, you may want to have
several alternative styles of composition available for each tag. These need not
all be defined at the start -- one of the benefits of having your documents marked
up with GML is that you can later decide to process the same document in a way that
was not foreseen at the time it was created and marked up. Since the markup of the
document merely describes the document's characteristics, different processing is
possible by simply writing new processing functions to be associated with the same
descriptive tags.

For purposes of explaining what is involved in these tasks, and how to do them,
this manual characterizes them as jobs performed by different individuals, includ
ing:

document administrator: One who is responsible for defining markup conventions
and procedures for an installation. This involves defin
ing the actual vocabulary of tags to be used and also the
nature of the processing required for each.

markup edi tor:

text entry operator:

One who marks up individual documents according to an
installation's conventions and procedures established by
the document administrator.

One who actually enters the text and markup into
machine-readable form on a terminal or word processor.

Developing GML for Your Own Use 95

--------_ __ ... _-_._

text programmer: One who implements APFs that provide the processing
specified by the document administrator. In SCRIPT/VS,
this involves writing SCRIPT/VS macros and org~nizing
macro libraries and profile files so that the appropriate
composition will be done for each tag.

Of course, all of these roles could be performed by the same person. And, partic
ularly in larger installations, m~ny persons could perform each of these roles.
Some of the roles might be performed by persons who have othe~ responsibilities as
well. Authors, for example, might also perform the tasks of ~ m~rkup editor and
text entry operator. If you are developing your own informal document~tion, you
might perform all four roles in addition ta being the author. For the sake of clar
ity, therefore, each role is discussed in this manual as if it were performed by a
separate individual.

THE ROLE OF DOCUMENT ADMINISTRATOR

To perform the document administrator role, you must be familiar with text proc
essing and with basic programming concepts (although you need not be a
programmer). You must know those of your installation's documents for which you
are responsible, and the activities associated with them. These activities not
only include publishing production, but such auxiliary activities as cataloging,
indexing, and the like, since SCRIPT/VS and GML can assist in those as well.

You wi 11 desi gn the markup for your documents, and you may create one or more "GMl
Markup Guides" that show how to prepare the documents for processing. Part One of
this manual is an example of such a guide. It i5 frequently cited as an example in
thi s Part, where it is referred to as the "Markup Gui de."

As document administrator you will specify the processing required for your docu
ments. You therefore need to know the functional capabilities of SCRIPT/VS. (You
need not know the details of coding control words or SCRIPT/VS macros since the
actual implementation of the processing is done by the text progr~mmer.) In par
ticular, you should be well acquainted with the symbol and macro capabilities, ~s
these are ver.y important in GML support. .

These subjects are introduced in the next chapter. However, a more detailed know
ledge than is provided in that chapter. is sometimes required for other discussions
in this Part. You will then need to refer to the IBM Document Composition Facili
ty: User's Guide for further information.

Note: You may also need to assist text entry operators and to organize and manage
your installation's document data base. These activities may require knowledge of
the text entry and edit systems used by your installation, the word processing
systems, the output devices (including such characteristics as fonts and paper
sizes), and the facilities for data base management. Because these areas vary
greatly among installations, the subject is not addressed in detail in this m~nu
al.

96 GML User's Guide

',,--

c

SCRIPT/VS FUNCTIONAL CAPABILITIES

The starter set APFs utilize many of the capabilities of SCRIPT/VS. From the dis
cussions of processing in the Markup Guide, you are aware that SCRIPT/VS formats
text for printing on impact printers and on nonimpact printers, such as the IBM
3800 Printing Subsystem. With the 3800, SCRIPT/VS can format text in multiple
character styles and sizes (called "fonts"). Thus, for many documents, SCRIPT/VS
can provide flexible composition for printing on a computer printer as an alterna
tive to using independent composition machines or sending typesetting jobs to a
vendor.

SCRIPT/VS can also be used as a "preprocessor" to prepare documents for processi ng
by other programs, such as formatters that support photocomposers.

This chapter summarizes SCRIPT/VS functional capabilities so you will know what
your own APFs can be made to do. User-controllable SCRIPT/VS processing includes
two broad categories of function: formatting, and general document handling.

FORMATTING FUNCTIONS

The formatting functions provide:

Page Layout: You can control page dimensions, the number of columns per page (up
to nine), running headings and footings, and single or double spacing.

Page layout includes:

• Line Formatting. You can control how input lines are processed for output:
formatted or unformatted; centered, aligned left, or aligned right; justified
(so that output lines are the same length) or ragged-right.

•

•

Spacing. You can control the amount of space left between output lines,
including the reservation of space for illustrations to be stripped in.

Paragraphing. You can control the style of paragraphing (spacing between para
graphs and indention).

• Fonts. When using the IBM 3800 Printing Subsystem, you can control which fonts
are used for different portions of text, both in the body and in running
headings and footings.

• Columns. You can define the number of columns as well as the size of each one
and its placement on a page.

• Margins. You can control the size of the top and bottom margins as well as the
left and right margins. Title lines can be defined that will be put into the
top and/or bottom margins.

• Indention. You can have indention done in a number of ways. For example, you
can have hanging indentions, left or right margin indention, and single line
indentions.

• Headings and Footings. You can have running headings and footings with or
without page numbers, and separate treatment for odd and even pages.

Head Levels: You can specify up to seven head levels for distinctive formatting of
headings for different levels of topics. Distinctive formatting includes before
and after spacing, font selection, capitalization, underscoring, and right or left
alignment. For example, the heading of this chapter has a head level of 1. The
run-in heading of this paragraph has a head level of 6.

Table of Contents: You can control whether or not a table of contents is automat
ically generated and where it is placed. SCRIPT/VS collects entries for a table of
contents from the text of head levels and supplies the page numbe~. You can also
specify phrases other than the text of head levels to appear in the table of con
tents. The table of contents of this manual was automatically generated by
SCR.I PT /VS.

SCRIPT/VS Functional Capabilities 97

Highlighting Phrases: You can control how phrases are to be highlighted for
emphasis. For devices that don't have multiple fonts, highlighting is done with
underscore, uppercase, or uppercase underscored. For devices that support multi
ple fonts, you can change font for emphasis.

Footnotes: SCRIPT/VS saves text indicated as a footnote and places it at the bot
tom of the page. 13 Subsequent footnotes are placed below it.14

Hyphenation: You can control whether or not words are to be hyphenated at the end
of output lines. SCRIPT/VS provides a dictionary of more than 10,000 English
words. For hyphenation,SCRIPT/VS looks in the dictionary to determine how a word
is broken up into syllables and applies an algorithm for prefix and suffix vari
ations. (This algorithm significantly extends the basic 10,000.) You can also add
words to a supplementary dictionary for possible hyphenation in a particular docu
ment.

Printing of Portions of the Output Document: You can control whether every page of
formatted text is put in the output document or only the range or ranges of pages
specified.

Tab Handling: You can specify the setting of tabs. When formatting output lines,
SCRIPT/VS tabs to the right to the prescribed tab stop.

Box Drawing: You can construct boxes around text (which can still be formatted in
the usual ways). You can also draw boxes within boxes and can draw vertical lines
to separate columns of text within a box and horizontal lines to separate rows.

Keeping Text Together: Standard SCRIPT/VS processing includes a way of keeping
text together to improve the appearance of output. For example, SCRIPT/VS keeps
the text of a head level and the following three lines of output text together, so
that they appear in the same column. You can specify other types of text to be kept
together.

Use As A Subroutine: In a batch environment, with the IBM licensed program Docu
ment Library Facility installed with SCRIPT/VS, an application programmer can code
programs to call SCRIPT/VS as a subroutine (for example, to format reports).

GENERAL DOCUMENT HANDLING FUNCTIONS

The general document handling functions can be used in conjunction with format
ting, or by themselves. They include:

Saving Input Lines for Subsequent Processing: You can control whether certain
input lines will be written to a data set or file.

Revision Codes: You can control the placement of up to nine distinct reV1S10n
codes in the left margin to indicate lines revised since a previous version of the
document. (Revision codes may be used to flag lines for other reasons as well.)

Spelling Verification: You can control whether or not words are checked for spell
ing. SCRIPT/VS uses the same dictionary and English-language prefix and suffix
algorithm for spelling verification that it does for hyphenation. The additional
words that you can specify for a particular document for hyphenation can also be
used for spelling verification.

Imbedding of Separate Files: You can control how separate source documents are
brought together for processing as a single document. Any number of source docu
ments can be imbedded in the base source document. A source document that has been
imbedded can itself have another source document imbedded in it, and so on, up to
eight levels.

Symbol and Macro Instruction Processing: You can define symbols and macro
instructions for substitution during processing. Symbols have many uses: for exam
ple, in tests for conditional processing, for cross-references to pages or figure
numbers, for entering characters unavailable on the entry keyboard, and as abbre
viations for lengthy, repetitive phrases. You can define what a particular macro
instruction will do. For example, you might redefine a particular head level to
alter the SCRIPT/VS formatting style. The symbol and macro instruction facilities

13 Up to 10 output lines per footnote.
14 like th is.

98 GMl User's Guide

c

c

o

are used to implement the Generalized Markup Language de~cribed in this manual.

Conditional Processing! You can cause SCRIPT/VS to test for user-controllable
conditions that can alter processing. For example, the symbol values set by the
user might determine whether a block of input text is included in the output docu
ment or not. (SCRIPT/VS includes much conditional testing as part of its normal
processi ng. For example, it checks the amount of space left ina column before
processing certain blocks of text. Much of this conditional processing can also be
controlled by the user by defining macro instructions to supplement SCRIPT/VS con
trol words.)

Personal Interaction During Processing! In an interactive environment (eMS or
TSO), you can affect SCRIPT/VS as it processes by entering text and/or markup at a
terminal. In effect, the terminal can be treated as an input file. For example,
the user can interactively define the values of symbolic variables specified in
the document or enter those portions of text that vary from one processing time to
the next.

Destination of Output: You can control whether the output document is, (1) stored
as a file for possible later editing, printing, or as input to another program
(for example, a formatter that supports a photocomposer), Or, (2} printed on the
device specified, which includes both impact and nonimpact printers and display
and typewriter terminals.

Tracing of Processing Actions for Debugging: You can trace all control words and
each step of symbol and macro substitution in input lines. In casas where unex
pected output occurs as the result of executing a macro, which may contain many
control words, trace information can be an invaluable aid to pinpointing the prob
lem area.

SCRIPT/VS Functional Capabilities 99

c

BASIC GML CONCEPTS

The Markup Guide shows how to ~ GML markup, but says little about the benefits to
an installation of doing so, or the way in which SCRIPT/VS actually interprets the
markup. When you design your own GML markup, you will make decisions that depend
(among other things) on the GML benefits you wish to obtain, and the markup inter
pretation capabilities available. These subjects are introduced in this chapter.

OBJECTIVES OF GML MARKUP

SCRIPT/VS functions are invoked by "marking uP" your source document. To mark up a
source document is to add information to it that enables a person or system to
process it in some way. In SCRIPT/VS, the added information, or "markup," can be
control words, or it can be GML tags that· describe the characteristics of a source
document without respect to particular processing.

Although some SCRIPT/VS control words deal with general document handling func
tions and symbolic representation of data, the control words that usually come to
mind when speaking of document markup are those that control the actual compos
ition of the document. For example, control words would allow you to specify that
text should be set in a column 25 picas wide. This composition control would
always have the same meaning, independent of the content of that column.

GML markup, on the other hand, has an entirely different purpose. GML is a
descriptive language -- with GML you describe the document. For example, GML mark
up allows you to identify that certain text is a p~ragraph, or that other text is
part of a numbered list. That paragraph will always be a paragraph in this docu
ment, independent of how it is formatted in a particular run. The author of a docu
ment can specify this kind of markup without understanding the composition or
publis~ing conventions that will be applied. He can concentrate entirely on the
content and purpose of the document, which is his own field of expertise.

When a document is marked up with GML, it can be processed in various ways, merely
by providing different interpretations for the same set of tags. These interpreta
tions can result in different composition, or they can even result in processing
other than formatting.

GML WITH SCRIPT/VS TEXT PROCESSING

Here are some benefits in using GML when you use SCRIPT/VS only for text process
ing:

• Alternative GML interpretation. A GML tag need not be limited to a single
SCRIPT/VS interpretation. For example, a tag might indicate that a group of
words in the text is a paragraph. For one application, you might want the
first line of. a paragraph to be indented. But for another application, you
might want paragraphs to be set in block style, with spaces between them. Each
application can be satisfied by alternative GMt interpretations, with no
change to the source document or to the markup of paragraphs. You have control
over the way GML is interpreted.

• Ease of markup. It is easy to remember GMt tags because they can consist of
terms and abbreviations commonly used to describe a document. GML generally
requires fewer characters to be entered for markup than a corresponding com
plex sequence of control words. The result is faster markup and keying of the
document. Changes to the markup are also faster and may even be eliminated
with GML, because you can control how GML is interpreted.

• Ease of text update. It's easy to update text marked up with GML. With GML,
such things as the numbering of items in an ordered list is usually left to the
formatter, which numbers the items automatically. Thus, when you insert or
delete an item, you don't have to renumber subsequent items, as you would have
to if the numbers were part of the source text.

• Uniformity of formatting style. Use of GML for all documents of a particular
kind results in a single format for all those documents -- without the persons
that do markup even having to think about format. Similarly, a change in for-

Basic GMl Concepts 101

---.................. _ - .. ----... .

mat for all the documents could be achieved simply by changing the way GML is
interpreted -- without anyone having to be retrained to do markup in a differ
ent way.

GML WITH OTHER APPLICATIONS

For applications involving general processing with SCRIPT/VS, or other programs,
the benefits of GML include:

• Alternative text processing programs. SCRIPT/VS could be used to interpret GML
into the processing controls of text processing programs other than SCRIPT/VS.
For example, they might be interpreted into the controls of a composition pro
gram (such as the IBM Installed User Program TERMTEXT/Format, 5796-PBR), which
could be used to produce output for a photocomposition device.

• Document exchange. Documents with GML can be processed by different groups or
locations more easily than documents with the specific markup of a particular
"house style." With GML, each user can obtain his own formatting style, and
support his own output devices, by using his own interpretation of the tags.

• Data-base applications. GML describes the contents of documents, so that pro
grams can identify information in them. Programs could be written alone, or in
conjunction with SCRIPT/VS processing, to extract information from documents
for data base construction or to retrieve information for data base sharing.

• Unique customer applications. Precisely because GML is general, it allows for
numerous applications unique for a particular customer. GML designed for this
purpose could, for instance, be used both for formatting printed output and
for information retrieval.

HOW SCRIPT/VS INTERPRETS GML

In GML, "interpreting" a tag means performing the correct processing function on
its associated text. The choice of processing functions will depend upon the
desired application. (Processing functions are called "application processing
functi ons" or "APFs. ") For example, obtai ni ng a proof copy of a document on a ter
minal would be considered a different application from obtaining final copies on
an IBM 3800 Printing Subsystem. In each case different processing functions for
some of the tags would be used. The tags would not change '-- only the associated
APFs.

In SCRIPT/VS, APFs are implemented as sets of control words. These sets of control
words need not be placed in the document itself. They can be placed in a separate
document called a "profile." SCRIPT/VS processes the profile before it processes
the document marked up in GML. Profiles for different kinds of applications can
have different APFs for some tags, but use common APFs for others.

SCRIPT/VS has still greater flexibility in that each APF can also be defined as an
individual document. These APFs are defined in documents separate from the profile
and stored in host system libraries, so they will be available for the processing
of many documents and applications. Figure 7 on page 103 shows a source document
and a profile with two APFs established as separate documents.

102 GML User's Guide

c~

C'

C,'

o

Source
Document

•
•
•

Paragraph
•

Heading --
•

List
•
•
•

~
I

-) Paragraph = APF20

-> Heading = APF19

-> List = APFB

Host
System
Library

-) APF20
(Control

Words)

~-) APFB
(Control

Words)

Figure 7. Document and Profile with APFs in Separate Documents

You may want a single APF to operate on the text associated with many different
tags, or a single tag's text to be operated on by a number of different APFs for
different applications. To accomplish this, SCRIPT/VS provides a wa~ of associat
ing a tag with the name of the APF that is to act on its text. As SCRIPT/VS proc
esses a document marked up with GML, it interprets GML tags by associating them
with APFs.

One or more tags can be associated with the same APF. This will cause the same
processing to occur for the text associated with each tag. Figure 8 shows this
relationship.

Source
Document

•
•
•

Figure
•
•

Example
•
•
•

Prof;le

-> Figure = APF12 ---

-> Example = APF12 --~ --

Figure B. Different Tags Processed by the Same APF

Host
System
Library

-) APF12
(Control

Words)

Figure 9 on page 104 illustrates the use of multiple profiles. When you run
SCRIPT/VS, you indicate the profile for the application being run. The profile
then associates each tag with the correct APF for that application.

Basic GML Concepts 103

Host
Source system
Oocur.mnt Prof i Ie A L;br~ry

~
-> APF20

• -> Paragraph = APF20 - (Control
• Words)
•
•
•

Paragraph Pr,of i Ie B
•
•
• ~ -> APF14
• -> Paragraph = APF14 - (Control
• Words)

Figure 9. Multiple Profiles for Different Applications

SCRIPT/VS provides the facilities for you to define the profiles and APFs as you
want them. Profiles and APFs are just documents with special uses. You create
them, update them, and store them the same as your text documents.

104 GMl User's Guide

(,
,--.

CREATING DOCUMENT TYPE DESCRIPTIONS

To specify APFs and profiles, you must first know the characteristics of your doc
uments. This is because a document's characteristics are what cause you to want to
process it in a particular way. Such formatting, for example, as beginning chap
ters on a new page, italicizing emphasized phrases, and indenting lists, is all
done to assist the reader's comprehension by emphasizing the structural character
i st i cs of the document.

GML, plus the vocabulary of markup tags you define, form the means of telling a
processing system about the characteristics of a type of document, so the correct
APFs can be associated with them. But before you can define these tags, you must
know the document characteristics the tags will identify. Determining the charac
teristics of a type of document and recording them in an unambiguous fashion is
called "creating a document type description."

DOCUMENT CHARACTERISTICS

A document has two primary characteristics, one being its role or purpose. This
characteristic is called the document "type."lS It is literally an answer to the
question: "What type of document is this?" The other primary characteristic of a
document is its content.

GML tags serve to identify the structure of the content of a document. That is,
they identify the document's component parts and their relationship to one anoth
er. These component parts are known as elements. An element has the same two pri
mary characteristics as a document: type and content. In a typical document, you
find element types such as paragraph, chapter, list, heading, and so on. In a spe
cialized type of document, such as a service manual, you might find such special
ized element types as "parts list," "removal instructions," and "replacement
instructions." Whether common or specialized, elements of the same type are always
processed identically to one another.

The elements of a document are organized in a hierarchy: typically, the content of
a chapter would include element types such as list and heading; the content of a
list would include such lesser elements as list items and list parts; and so on. At
any point in the hierarchy you could (in theory, at least) remove an element and
process it by itself; while you did so, that element would be a document. A docu
ment, then, is just an element that is at the highest level of the hierarchy. (Or,
you could sayan element is a document that is within the hierarchy of some larger
document.)

A document (or an element) can have secondary characteristics in addition to the
two primary characteristics of "type" and "content." These secondary character
istics are referred to as "attributes" when it is necessary to distinguish them
from the primary characteristics. One example of an attribute is the shortened
version of a heading or title (stitle) which can be used instead of the full
version in running headings or footings. We saw other examples in the Markup
Guide.

The type, content structure, and attributes must all be reflected in your document
type descriptions. The way in which you prepare the descriptions can have a sig
nificant effect on the ease with which your documents can be marked up, the varie
ty of applications which can be performed on them, and the accuracy with which
APFs and other processing can be specified.

Without an accurate and complete document type description, it is difficult to
tell markup editors precisely where in a document they can insert particular tags.
Nor can a text programmer be certain of the state of processing that will exist
when his APFs are executed.

Fortunately, development of document type descriptions need not be a formidable
task. Sometimes they already exist, in the form of style books, outlines, or pro
cedure manuals. Whether or not you have such aids available, you begin by analyz
ing your installation's documents. This involves three activities:

IS It is also known as the "GML type," because of the importance of "type" in GMl
markup.

Creating Document Type Descriptions 105

1. Determining document and element types;

2. Defining document and element structure; and

3. Defining attributes.

For clarity, these activities will be discussed as if they were performed in
sequence. In practice, there is significant interaction among them; at times you
will perform them simultaneously.

DETERMINING DOCUMENT AND ELEMENT TYPES

The first step is to examine your installation's documents and group them by type.
There may be some classes of specialized document which have unique character
istics, and which are produced often enough that it is clearly worth categorizing
them as unique document types (for example, quarterly editions of a phone directo
ry, periodic revisions of a procedure manual, standard contracts, etc.).

At the other extreme are documents which are neither specialized nor numerous, and
whi ch can be grouped together as a si ngle "generi c" document type. The Markup
Gui de descri bes a markup desi gn for such documents, whi ch it calls "General
Documents." Most of the elements of a General Document are generic in the sense
that an element's type suggests only the structural role the element plays in the
document, rather than the semantic role as well.

Compare the General Document "ordered list," for example, with a "removal
i nstructi ons" element that mi ght be part of a "servi ce manual" document type. Both
suggest a numbered list, but the second tells what it is a list of. Many more ele
ments could be identified as ordered lists than as removal instructions, but doing
so would preserve less information about those elements.

Most documents will fall somewhere between the extremes of "clearly specialized"
and "clearly generic." As an example, consider the Markup Guide itself. While most
of its elements could be treated as General Document elements with little loss of
GML benefits, the individual tag descriptions in the section "Element Tag
Descriptions" on page 21 present a unique situation. Figure 10 shows how a tag
description could be viewed as part of a General Document.

head three (H3)
markup rule (graphic PSC)
paragraph (P)
fifth-level heading segment (implied by HS)
example (XMP)
fifth-level heading segment (implied by HS)

head five (HS)
basic document elements
sixth-level heading segment (implied by H6)

Figure 10. structure of a Tag Description (Generic)

In contrast, Figure lIon page 107 shows the structure of a tag description when
it is treated as a specialized element.

Hote the differences between the two approaches.

• The specialized view shows more detail about the tag description.

•

For example, we know what occurs within the markup rule. Similarly, the divi
sion of the description into three parts (element type definition, tag usage
discussion, and processirig discussion) is identified. This could be a factor
in processing! you might specify that the APFs should keep each part on the
same page.

The generic view uses fewer tags, and appears simpler, but it is largely inac
curate.

106 GML User's Guide

c

element tag description (implied by TYPE)
element type definition (TYPE)

markup rule (implied by.TYPE)
element tag (implied by TYPE)
attribute labels (ATTR)
additional attribute labels (ATTRMORE)
content rule (CONT)
termination rule (TERM1)
termination rule continuation (TERM2)

element description (DESC)
attribute description (ADESC)

tag usage discussion (implied by USAGE)
usage rule (USAGE)
tag usage example (TXMP)

processing discussion (implied by PROC)
processing specification (PROC)
processing example (PXMP)

Figure 11. Structure of a Tag Description (Specialized)

Some of the tags do not really describe the elements, although they are asso
ciated with APFs that will produce acceptable formatting. For example, the tag
description is not a third-level heading segment, although it begins with a
head three. In a General Document, as defined in the Markup Guide, a head
three always begins a third-level heading segment. Similarly, in the tag
description the first fifth-level heading segment must be followed by an exam
ple (xmp). This is not true of General Documents.

These considerations suggest strongly that specialized tags should be used for the
tag description section. (Frequency of production of the document is less signif
icant here, since even in a single GMl Markup Guide there will be dozens of tag
descriptions.) However, let us go a step further and mark up a tag description
using both starter set and specialized tags. For the specialized tag case, we will
also define some attributes, and some symbols for repetitive text. (Repetitive
text is sometimes called "boilerplate.")

Figure 13 on page 108 shows how the tag description "hI -- head one" on page 55
could have been marked up using only tags and symbols in the starter set, while
Figure 12 illustrates the use of specialized GMl.

:type id='tdh1' tag='h1' .head one
:attr.id= stitle=
:cont.&osl.
:term1.&ael.
:term2.&cpl.
:desc.a first-level heading ... called a :q.chapter:eq ..
:adesc atag='id' aname='unique identifier'.&adid.
:adesc atag='stitle' aname='short title'.an alphameric ... heading.
:usage.within the ... back matter.
:txmp

&gml.hl id='mupro'.Markup Procedures
&gml.p.This section explains:

:proc prof='gdocprof'.begins ... specified.
:pxmp.:hp!.The heading :hdref refid='mupro'. is an example.:ehp1.

Figure 12. Element Tag Description Marked Up With Specialized GML

The two markup examples produce results that are almost identical; differences are
within the normal stylistic variations of APFs and profile options. Nonetheless,
there are significant differences between them. 16

Creating Document Type Descriptions 107

:h3 id='tdh1'.h1 -- head one
:psc
.cm graphic
.cm to obtain special formatting of markup rule
.tb .2i 1.2i 3.0i 5.1i 7.2i
.if &$PDEV eq 3800 .tb .2i 1.2i 2.8; 4.6i 6.6;
.sk 3
.if &$PDEV ne 3800 .bx .2i 1.2i 3.0i 5.1i 7.2i
.if &$PDEV eq 3800 .bx .2i 1.2i 2.8i 4.6; 6.6i
.fo off
&$tab.Type&$tab.Attributes&$tab.Content&$tab.Termination
.bx
&$tab.&gml.h1&$tab.id= stitle=&$tab.Text on Same Line&$tab.At End of Line
&$tab.&$tab.&$tab.&$tab.See "Usage" in te~t
.bx off
.sk 2
.fo on
:epsc
:p.The :hp2.h1:ehp2. tag identifies
a first-level heading ... called a :q.chapter:eq ..
:p.The :hp2.id:ehp2. attribute label identifies the
optional unique identifier attribute.
Its value is a string of up to five alphameric characters
used to refer to this element.

which can be

No other head one can have the same unique identifier.
:p.The :hp2.stitle:ehp2. attribute label identifies the
optional short title attribute.
Its value is an alphameric ... heading.
:h5.Usage
:p~The head one can occur
within the ... back matter.
:xmp

&gml.hl id='mupro'.Markup Procedures
&gml.p.This section explains:

:exmp
:h5.Processing With the "gdocprof" Profile
:p.The supplied APF
begins ... specified.
:h6.Results:
:p.:hp1.The heading :hdref refid='mupro'. is an example.:ehpl.

Figure 13. Element Tag Description Marked Up With starter Set

• The generic case requires many more keystrokes. Substantial boilerplate must
be entered which, in the specialized case, is generated by the APFs and sym
bols.

• The graph i c PSC el ement in the gener i c ca se i s appl i cat i on-dependent and
system-dependent. Fortunately, most of it is identical for each tag
description, and can be duplicated by using an imbedded file or macro, or the
duplication functions of a text entry system.

However, the two lines between the .BX and .BX OFF control words must be keyed
separately for each tag description, and they are rather complex to enter. The
corresponding specialized tags (attr, attrmore, cont, terml, and te~m2), on
the other hand, are simple to enter. They can be associated with APFs other
than those which format the tag description, such as the APFs which automat
ically generated the tag summary table in "Appendix A: GML Markup Summary" on
page 131.

16 Some text is replaced by ellipses (...) to keep the examples short; this text
is identical in both cases. The starter set example uses the system symbol
"&$tab" instead of the tab key character, which would appear as a blank when
printed.

108 GML User's Guide

c

c

c~

c/

o

• In the specialized case, the three parts of the tag description are kept
together. (See "fig -- figure" on page 38 for an example.)

• The starter set markup will require a psc element whenever the processing
example element requires a live example (rather than a reference to one, as
was the case here).

• The specialized markup creates a far superior "document data base." Each ele
ment of a tag description can be located individually, and specialized proc
essing defined for it. In the generic case, in contrast, you cannot tell the
h3 and hS elements from any other h3 and hS that might be in the document.

One practical application of this distinction was the generation of the tag
summary table mentioned above. Another might be the documentation of a parti'c
ular profile by printing only the processing specification elements (proc)
with a designated prof attribute.

The benefits of using specialized tags must be weighed against the markup design
and APF development costs, documentation of markup practices, training of markup
editors, and possible need to conform to a document interchange standard. l7 For
this manual, specialized tags were used for the tag descriptions, but the remain
der was marked up as a General Document (with a few exceptions). Since the docu
ment as a whole did not conform to the description of a General Document, its
document type was designated as "GMl Markup Guide," with the tag smsdoc. A
description of the markup used can be found in "Appendix F: Document Type
Description for GMl Markup Guides" on page 148.

A significant point made by these examples is the importance of the initial
approach to the problem. In Figure 10 on page 106 we started with a given
vocabulary of tags and tried to make it fit the characteristics of a document.
This resulted in inaccurate "force fits," but economized on tags and APFs. In
Figure 11 on page 107, on the other hand, we started with the document and tried to
let its characteristics determine the tags to use. This could have (although it
did not in our example) lead to unnecessary proliferation of tags and APFs. This
experience suggests the following approach to identifying document and element
types:

1.

2.

3.

Examine the document (or element) and attempt to identify its elements using
the terminology that authors, editors, and readers use to describe them.

Roughly specify the processing you anticipate for each element.

Compare the tentative element types and processing to tags and APFs already in
use in your installation, and decide whether new ones are really required.

This procedure must be done iteratively, and in conjunction with the other aspects
of creating a· document type description. later in this chapter we will suggest
some additional criteria to use in determining document and element types.

DEFINING DOCUMENT AND ELEMENT STRUCTURE

In order to prepare markup guides for your markup editors, and to' fully specify
APF processing for the text programmer, you must have a complete understanding of
the structure of the type of document for which you are creating a type
description. For each element, you must be able to answer ~he following questions:

1. What is the tag for the start of the element, or is it implicit in the start of
some other element?

2. Does the element have attributes? Are the attribute labels mandatory or
optional?

3. What is the structure of the content?

17

a. Which types of element can occur in the content?

b. In what order can they occur?

The latter point can be handled by APFs that convert from one form of markup to
another. See "Interchange Considerations" on page 127.

Creating Document Type Descriptions 109

c. Which content elements can occur more than once (are repeatable)?

d. Which content elements are optional?

e. Are there alternatives for any of the content elements?

4. How does the element terminate?

This section will suggest some techniques for representing the answers to these
questions in a concise manner in "formal definition" diagrams. Such diagrams use a
combination of tags and special characters to show the answers to structural
questions.

One possible notation for formal definitions is illustrated in Figure 14, which
shows the structure of a General Document as a whole: 18

:gdoc sec=?frontm, body, appendix?, backm? :e

Figure 14. Example of Formal Definition Notation

This figure answers the structural questions as follows:

1. A General Document is expl i ci tly tagged wi th the tag "Sdoc."

This is shown by the .use of the normal tag markup syntax, including the GML
delimiter (:). (If the element were recognized implicitly, the delimiter would
have been omitted.) For conciseness, tags and labels are used throughout the
diagram instead of the full name of the element type or attribute.

2. A General Document has the attribute "security level"-; its label is optional.

Attributes are denoted by the normal attribute label markup syntax. The
question mark signifies that the attribute label is optional; that is, it will
not necessarily be entered for all elements of this type (i .e., General Docu
ments) si nce a default value can be assumed if the label is omi tted. '

3. A General Document contains

• an element whose type is "front matter,"

• fo 11 owed by an el ement who se type i s "body,"

• followed optionally by one whose type is "appendix section,"

• followed optionally by an element whose type is "back matter."

The period separates the markup from the content, just as it does in a source
document when the content is immediate text. 19 The comma signifies a sequen
tial relationship ("followed by") between the elements before and after it.
The question mark denotes an optional element, just as it denoted an optional
attribute label. In other words, some General Documents will not have an
appendix, some will not have a back matter, and others will have neither.

4. The termination of the General Document is marked by an explicit tag.

This is denoted by the ":E," which is the st~rter set convention for delimit
ing terminating tags.

The structure of the content elements can be shown in similar diagrams. Figure 15
on page 111 shows the front matter and body, and introduces additional notation
techniques. The lines are numbered to facilitate reference.

18 The full notation is summarized in "Element Types and Structure Definition" on
page 145.
The period could have been called the "content start" character, except that
the Markup Guide requires that you begin a new line for each tag (except text
items). This makes it unnecessary to delimit the content of an element except
when it is immediate text. It would, in fact, not be incorrect to enter a peri
od after every tag (or after the attributes, if the element has them), but
these would be unnecessary keystrokes.

11 0 G ~1 L Use r 's G u ide

r"
'--

Ci

o

1.
2.
3.
4.
5.

:gdoc sec=?frontm, body, appendix?, backm? :e
:frontm.titlep, abstract?, preface?, toc?, figlist?
:titlep.title, docnum?, date, author?*, address?* :e
:address.aline* :e
:abstract :preface.bde?*, hseg6?*, hseg5?*, hseg4?*, hseg3?*, :hseg2?*

Figure 15. Formal Definition of the Front Matter

line! repeats the overall structure of the General Document. Since the content
elements are displayed horizontally (rather than vertically, as was done in the
informal structure diagrams in the Markup Guide), tags on the same line literally
represent elements on the same level in the document's hierarchical structure.

line 2 shows that the front matter is explicitly tagged, and has no attributes.
Its content consists of a title page, which is mandatory, followed optionally by
an abstract, a preface, a table of contents, and a list of illustrations. Some
General Documents will not have one or more of the last four types of element, but
all General Documents will have a title page.

No termination is shown for the front matter. This means it is terminated implic
itly by the next element at the same or higher level. Line 1 shows that the body is
the next element at the same level. Since the body is mandatory, we can conclude
that the front matter can only be terminated by the body.

line 3 describes the title page, which has explicit start and termination tags,
and no attributes. It contains elements of five different types, of which all but
the document title and document date are optional. The asterisk after the dutho~
tag indicates that it is repeatable. In other words, some General Documents could
have more than one author element in their title page. Since author is also
optional, the title page could have one author, many authors, or none.

Note that the address is also optional (and repeatable). However, line 4 shows
that its content contains one or more address lines, one of which must always be
present when the address itself is. In documents which have no address element,
there will of course be no address lines either, since they can occur only within
an address.

The title page elements are separated by commas, which indicates that they must be
entered in the specified order. If the commas were omitted, the title page ele
ments would form a "set," and could be entered in any order. (The starter set APFs
actually support a set structure, but the title page was defined as a sequence
because it is easier to find things in a document prepared by another person when
the entry order is prescribed.)

line 5 introduces the notation for elements with identical structure. You can
emphasize the commonality (and also save space in the diagram) by showing the ele
ments on the same line. The markup for each element is shown on the left, separated
by blanks. After the last piece of markup, the period and the definition of the
content occur.

Here, the abstract and preface have an identical structure, which is much freer
than that of the front matter. That is, there can be much more variation among dif
ferent documents. The structure consists of optional basic document elements
(ttbde"), followed by optional heading segments ("hseg tt) of level 2 or lower, in
ascending order. 2o The first-level heading segment, shown in Line 3 of Figure 16
on page 112, has an. almost identical structure, differing only in that it begins
with a mandatory head one.

Note that this definition permits successive headings without intervening text,
since the basic document elements are optional. If your house style prohibits suc
cessive headings, you can reflect this in your document type descriptions by mak
ing the basic document elements mandatory.

20 Ascending order is the only one possible, since a lower-level segment would be
considered part of the content of a higher-level segment which preceded it.

Creating Document Type Descriptions III

-_. __ . __ ... _-_. __ ._--_.

1. :body.part*/hsegl*
2. part.hO, bde?*, hseg1*
3. hseg1.h1, bde?*, hseg6?*, hseg5?*, hseg4?*, hseg3?*, hseg2?*

Figure 16. Formal Definition of the Body

Line 3 of Figure 16 is also an example of an element which does not require an
explicit tag at the start. This is shown by the lack of a GML delimiter (:). The
mnemonic name "hseg1" is not really a tag (since it is not used in markup), but is
only a "token" used in formal definitions. In actual markup, the first-level head
ing segment is recognized by the tag for the head one (hI), which is·the first
element of its content.

Line 2 of Figure 16 shows that the part element has a more rigid structure than the
first-level heading segment and the abstract and preface. Here, only the
next-lower level of heading segment is permitted, preceded optionally by basic
document elements.

Line 1 of Figure 16 introduces a notation (/) for expressing that a structure
might permit a number of different element types to occur at a certain point.
Here, the body can be one or more parts or one or more first-level heading segments
(called "chapters" within the bounds of the body).21 .
Parentheses are frequently used with alternatives to show grouping (although they
may be used wherever needed to resolve ambiguities).

Alternatives and "grouping are also used in the following definition of the example
(xrnp) element:

:xmp depth=?space/(line/bde)?* :e [no fig, fn, xmp]

It says that the content of an example either contains a space, or it contains
optional intermixed line elements and basic document elements (literally, "a line
or a basic document element, occurring zero or more times").

The brackets indicate a restriction expressed as narrative text, which is fre
quently less cumbersome than expressing the restriction formally as part of the
definition. Here, the restriction is that figures, footnotes, and other examples
cannot occur within the bounds of an example.

This discussion has covered the notational techniques you will need to create
formal definitions. As a further example, a complete definition of the General
Document is given in "Appendix E: Document Type Description for General
Documents" on page 145. .

But whether you use these techniques -- or whether you simply create your
descriptions with narrative text -- is not'very important. What i§ important is
that you ask the structural questions, determine the answers, and record those
answers in a manner that leaves no ambiguities.

DEFINING ATTRIBUTES

Document type descriptions must indicate which elements have attributes, the
attribute labels, and the permi~sible values for each attribute. One design prob
lem which can occur is deciding when an element's characteristics should be
treated as attributes, and when they warrant defining a new element type.

21 It may seem confusing to say that a body must contain either parts or chap
ters, since the parts themselves consist of chapters. However, we use the word
"contain" consistently to refer only to the first level of an element's con
tent. When speaking of all levels we use the phrase "within the bounds of" the
element. Therefore, whiTe a body that contains parts does not contain
chapters, chapters do occur within the bounds of such a body.
The tags for this are also included in the starter set.

112 GML User's Guide

c

C" "

I

In the starter set, for example, there is an element type of "highlighted phrase
(type I,.." This also could be thought of as an element type of "phrase," with an
emphasis or "highlight" attribute whose value is "1."22 The choice of which view
to adopt will depend upon such considerations as the ease of entry and modifica
tion, the clarity and meaningfulness of the marked up source ~ocument, whether you
intend to defi ne and support other attri butes of a phrase, and whether "hi ghl i ght"
is defi ned as an attr i bute of other element types.

The elements f;9~ef, fn~ef, and hd~ef illustrate a similar situation. The content
of these three types of element is empty. However, all three have a "ref2rence
identifier" attribute whose value is the unique identifier of the element being
referred to. One could just as well decide to eliminate the ~eTid attribute and
enter the reference identifier value as the content of the element.

The title page element represents a different situation. Its elements can be
th6ught of as attributes of the document as a whole. However, since some of them
(such as "address") have structures more complicated than the simple strings that
SCRIPT/VS permits in attribute values, it was necessary to find some other way to
represent them. In the starter set, these attributes were such that they could be
considered elements of the title page, but this would not work for all attributes.
One approach is to define an element to be a "holder" for attributes. Such an ele
ment would not be part of the sequential content of the document. (In this respect
it is similar to the footnote, which also does not appear in output at precisely
the point at which it is entered.) Its elements would be considered to exist along
with the document for the duration of processing. In practice, this means their
APFs would simply store the element contents for later ref~rence by other APFs. In
the starter set, for example, the APFs for the title page and its elements are
actually implemented in this way.

When an element is defined as possessing a certain attribute, a value for that
attribute must always exist. Normally it is specified explicitly with an attribute
label, but if a default value can be assumed when needed, your document type
description can define that attribute's label as optional. In deciding whether an
attribute label should be optional, you should balance such considerations as the
savings in keyboarding time, the clarity of the markup with and with,out the label,
and the ease with which your APFs can supply a default value.

The various techniques available in SCRIPT/VS for recognizing and processing
attri butes are di scussed below in "Attri bute Interpretat i on" on page 120.

DESCRIPTION DESIGN CONSIDERATIONS

Some considerations which affect the design of document type descriptions are
discussed in this section. The discussions of those which affected the design of
the starter set are illustrated with starter set examples.

NORMAL FORM AND OTHER FORMS

Document type descriptions should describe the "normal" form of a document -- that
which is reflected in the published copies. When an individual document is marked
up to conform to its type description, it should be adequately marked up for all
processing. (This implies that processing programs should expect documents to be
in the normal form.)

At times, though, you may need to process documents which are not in their normal
form. For example:

• You may need to process incomplete and out-of-order drafts. (See "Interim
Process; ng" on page 18.)

• You might need to convert from the normal form to an interchange standard
agreed on wi th other users. Thi sis di scussed further under "Interchange
Considerations" on page 127.

• You might want some of your markup editors and text entry operators to use
special markup conventions that are more consistent with their previous train
ing, or the characteristics of their keyboards.

Creating Document Type Descriptions 113

You could try to reflect such needs in your document type descriptions, thereby
defining the "normal" form to include aberrations. This would require all APFs to
accommodate the variations, since an APF must be able to process any document
which conforms to the type description. A better approach is to identify possible
variations from the normal form in the specifications for the APFs, while leaving
the document type description undistorted. In this way, only those APFs which
actually must process the variant forms will be affected.

INFLUENCE OF EXPECTED PROCESSING

In theory, GMl markup design should depend only upon the characteristics of the
document. In practice, one has also to consider in a'general way the kind of proc
essing that can be anticipated. It can affect both your document type descriptions
and the markup conventions you establish.

Effect on Document Type Descriptions

Consider a service manual which has elements that are "removal instructions" and
other elements that are "replacement instructions." If you cannot reasonably
anticipate a use of the document in which the two kinds of instructions would be
processed differently from one another, it would simplify matters to consider them
a single element type. Otherwise, you should play it safe and define them as sepa
rate element types. (You could of course associ ate thei r tags wi th a common APF
for processing.)

In making such evaluations, you should consider the processing of the document by
human beings as well as by SCRIPT/VS and other programs. In our example, if the
authors and editors who create and revise the source document habitually treat
"removal instructions" as something distinct from "replacement instructions,"
then that is a good enough reason for your markup to reflect the same distinction.

Processing restrictions can also affect markup design. For example, SCRIPT/VS
terminates a keep if another keep begins within it.23 Since the starter set APFs
for figures and footnotes establish keeps, the descriptions of these elements pro
hibit them from occurring within the bounds of one another. Situations like this
should be avoided, if possible, since they subject the permanent document data
base to the limitations of the most restricted application. In the starter set,
however, these particular restrictions were acceptable because they were not unna
tural for the type of document. They might have been adopted even in the absence of
the processing constraint.

Effect on Markup Conventions

The starter set includes a number of examples of the effect of anticipated proc
essing on the design of markup conventions. The table of contents element, for
one, has no content defined for it. This is because the supplied APF generates it
automatically. For the same reason, no explicit ending tag is required for the
element. If you define document types for which the table of contents will not be
generated automatically, you should create a type description for the table of
contents element.

The starter set APFs for figure and heading references generate not only the fig
ure number or heading text, but the page number on which the element begins and
some appropriate text as well. This saves entry keystrokes, but requires that the
markup editor be aware of the generated text. If you should associate a different
APF with the tag, it might generate different text which would no longer fit the
context.

You may want to change these APFs, or not use these tags altogether. In the latter
case, you can obtain similar function by using symbols, as described in "Reference
to Generated Information" on page 126.

23 This is a simplification, but is sufficiently accurate for this discussion.

114 GMl User's Guide

('

c

RULES OR CONVENTIONS?

You can decide whether your document type descriptions will reflect rules, or
merely conventions. An element APF, for example, might invoke only the attribute
APFs for attributes validly specified for elements of that type, or it might do no
such checking. Similarly, some APFs check to see if they are within the type of
element in which their associated tags are permitted to occur, while others do
not. When you specify your own APFs, you must balance the benefits of strict
system-assisted enforcement of markup rules, against the economies of being able
to use the same APF with a number of different tags, and the performance impact of
extensive checking.

Str;ct enforcement of syntax rules, on the other hand, does not involve the same
degree of negative side effects. When your APFs scan for attributes, they can -
and should -- check to see that delimiter characters were entered correctly and
issue appropriate messages if they were not. The starter set includes some exam
ples of how to do this, but does not provide complete enforcement.

FREEDOM OR COMPLEXITY?

By developing a document type description, you are able to understand exactly what
tags can occur in a document, and where. When you then create a markup guide for
that type of document, it could state clearly, for example, that the preface is
optional, but if used it must occur after the abstract. This will guide the markup
editors. Similarly, the text programmer will know that the preface APFs will
always execute, if at all, after the abstract APFs. This could affect the way he
programs the APFs.

At the lower levels of the document, where there can be considerably more vari
ation in structure, this discipline becomes even more important. Your analysis
will cause you to address -- and resolve -- questions which could otherwise puzzle
markup editors and/or cause APFs to malfunction. For example:

Can lists occur within figures?

Can figures occur within lists?

Can lists occur within footnotes?

How you answer questions of this kind is not as important as the fact that you con
sider them and record your answers in your document type descriptions. You must
balance freedom of document structure, on the one hand, against the potential com
plexities of implementing APFs that accommodate such freedom.

SOME qUESTIONS TO ASK

When creating document type descriptions, situations can arise which do not sug
gest a s;ngle correct way to handle them. Sometimes there really is no "correct"
way; use whichever alternative you prefer. In other cases, though, you can improve
your understanding of the situation by asking the kinds of question discussed in
this section.

WHY IS THIS DONE?

Some formatting may appear random, like the italicization of phrases. By asking
"Why is this done?" you can better determine the correct markup. The italicization
might have been simply for emphasis, or it might have been a foreign word, or a
bibliographic reference. If the differences among these three were important, you
would define three different element types for prec;se identification. If not, a
generic type like hpl (highlighted phrase) would do.

Creating Document Type Descriptions 115

IS THIS TEMPORARY?

You should only use APFs for processing which is associated with the permanent
characteristics of the document. This assures that your document will be usable
for many purposes over a long period of time. Processing stemming from temporary
characteristics, such as repairs to undesirable formatting results, is better han
dled with control words. (See "Control Words and Macros" on page 13 of the Markup
Gui de, and "Control Words" on page 127 in thi s Part.)

IS THE FORMATTED OUTPUT INVOLVED?

Persons experienced with formatting using specific control word markup frequently
request a "new page" GML tag (or "new column," "new line," etc.). The possible
reasons for the request are:

• To modify formatting results, such as to prevent a widow.

This stems from temporary characteristics. A patch psc element and appropriate
control words should be used.

• To cause an element to begin on a new page. For example, a preface might con
tain a second-level heading segment entitled "Acknowledgments" that the house
style says should begin on a new page.

This is not really a second-level heading segment, since the house style for
second-l evel . head i ng segment s does not requ i re a page break. It i s a un i que
element type which should have its own tag and APFs. The APFs would enforce
the house style for acknowledgements by causing the page break.

• To create a special graphic effect, such as a three-column table.

This should be defined as an element type, and APFs created, unless doing so
would not be practical. For example, there may not be sufficient use of exact
ly this type of element, or the APF processing might of necessity be highly
device-dependent. The alternative would be to treat the element as a graphic
psc element and use control words to create the desired effect.

• To "copyfit" a document.

•

Some documents, such as reference cards, must be written with the final layout
in mind; the author must indicate page breaks in his source document. This is
a case where the page is genuinely an element of the source document and
should be identified by its own tag. However, it is best to call it a "panel"
or "frame" or "display" to emphasize that it is a logical element, not just a
physical page.

The document contains many elements of the same type, each of which is printed
on a separate page.

For example, a service manual might have a single service procedure on each
page (or pair of facing pages). Although there is a logical correspondence
between elements of the source document and pages, the source elements (unlike
those in the reference card example) can exist independently of the pages. A
tag for "service procedure" should be defined, and APFs written that will
cause the necessary page breaks.

This discussion raises an issue whose importance cannot be overemphasized: the
distinction between processing instructions and descriptive tags. Disguising con
trol words as tags to "keep formatting control words out of the document" is the
same sort of error as using legitimate tags solely to invoke particular APFs.
Neither practice is generalized markup, regardless of the delimiter being used.
Both practices jeopardize the attainment of GML benefits.

IS PHYSICAL STORAGE INVOLVED?

A possible source of confusion in markup design can stem from failure to distin
guish between the "logical" document you are marking up, and the "physical"
representation in which it is stored.

116 GML User's Guide

r
\'-. ..

C:

o

For example, when you store a single document as a number of separate files, you do
not ordinarily reflect this in the markup design. This is because the physical
files need not have any correspondence to the logical structure. If you changed
the number of separate files, the document would still look exactly the same to
SCRIPT/VS, and the processing results would be the same. The combining of source
files, in this instance, is not based on any characteristics of the document, and
is best handled by the .IM (imbed) control word. (An analogy can be m~de to ~
typescript. Whether it is stapled in one group or many does not affect the compre
hensibility of the document.)

In contrast. the condi ti onal i nclusi on or exclusi on of porti ons of the 10g1 cal
document (which mayor may not be stored in separate files), is very much related
to GMl markup. This is discussed in the next section.

WHAT ABOUT MULTIPLE VERSIONS?

Your installation may produce a group of documents which differ from one another
in only a few places. For example, they may be service manuals for a machine with
slight differences based on the options purchased with it.

SCRIPT/VS offers powerful conditional processing capabilities for producing such
multi-version documents with a minimum of duplication. GML can provide a very sim
ple markup interface to these powerful capabilities.

For example, suppose there were three versions of a user's manual for office
equipment to correspond to three different models that are available. The manuals
are identical except for descriptions of operating procedures, since some models
do different things automatically.

You could handle this situation in your document type description by defining an
element type of "procedure" with an attribute of "model." In the source document,
you would enter three versions of each procedure -- one for each model -- along
with the common portions of the document.

When the document is processed, the profile (perhaps through a SYSVAR option)
would indicate which model's manual was being p~oduced. This would permit the
"procedure" and "model" APFs to test the model attri bute of the procedure agai nst
the model (i .e., version) of the document being processed. Versions of the proce
dure for the other two models would be ignored. 24

DEFINING TAGS

When you analyze documents to define document type descriptions, you think in
terms of the element type names and the names of the attributes. When you mark up
documents, you use tags, which are actually mnemonic abbreviations for these
names. (In this context, and for the remainder of this discussion, "tag" means
both element type markup tags and attribute labels, exclusive of the delimiters.)

Choosing appropriate tags can be very important, and is subject to a variety of
conflicting considerations. For example, short tags reduce data entry time and
fi Ie si ze, whi Ie longer tags make it easi er to remember what the tag stands for. In
the starter set we used short tags for the most common elements, since frequent
use would increase the likelihood of remembering them. You might consider resolv
ing such conflicts by establishing long and short forms of tag for each attribute
or element type. Both tags would always be associ ated wi th the same APF.

To conform to the GML syntax convention, tags should be one to eight characters
long. The characters may be upper case A-Z and 0-9, with a leading alphabetic
required. Blanks are not allowed in a tag. All of the tags in the starter set con
form to this convention.2~

24 This is similar to what the pSC and proc APFs do in the starter set.
2S Since SCRIPT/VS actually interprets tags as symbols, it will accept lengths of

up to 10 characters, and some special characters. This fact will not affect
GML processing.

Creating Document Type Descriptions 117

Although tags are treated internally as upper case, SCRIPT/VS permits you to adopt
different practices regarding the entry of tags. In the starter set, we chose all
lower case for ease of entry. You might prefer upper case because it distinguishes
the markup more clearly from the text. (You can even mix cases within a tag, but
this may make it more difficult to edit the document. Most text editing systems
are case-sensitive; tcr locate a mixed case tag, you would need to remember exactly
which letters were capitalized.) .

In the starter set, when a tag is used to identify the end of an element, it is
prefixed with an "E" (for "end"). This character is not included in the eight
charact~r limit for the tag proper. However, it is combined with the tag and the
combination is entered in the SCRIPT/VS symbol table, just as "pure" tags are.
Therefore, to avoid possible confusion, the starter set has no tags which begin
with "E." You may choose to follow the same convention, or you might prefer to use
the "#" special character instead of the "E." The .special character offers the
added benefit of distinguishing the ends of elements more clearly in the source
document.

Since tags are treated as symbols, you must be sure there are no upper case symbols
which are the same as tags (with or without the "E"). lower case and mixed case
symbols will not. be confused with tags, since symbols (unlike tags) are sensitive
to case.

118 GML User's Guide

------------------ ------ --------- ---- -- ----

SPECIFYING PROCESSING

Document type descriptions reflect both the natural characteristics of the docu
ments and, to a lesser extent, the processing anticipated for them. This chapter
explains the relationship between GML markup and SCRIPT/VS processing capabili
ties.

GML INTERPRETATION

GML documents are processed by:

1. recogn i zi ng the start or end of an element, or an attr i bute label;

2. associating it with an APF; and

3. executing the APF.

Recognition and association can be performed in a variety of ways, by both the
SCRIPT/VS system and your own APFs. Moreover, recognition and association can be
discrete steps, or be combined with one another, and/or with the execution of the
APF. Each approach has important implications. This section discusses how these
tasks can be performed for the start of an element, for attributes, and for the end
of an element.

ELEMENT START INTERPRETATION

The start of an element can be marked up explicitly or recognized implicitly. In
the explicit case, SCRIPT/VS recognizes the tag and associates it with an APF. An
APF is implemented as a sequence of control words, possibly intermixed with text
and symbols, in one of three forms: macro definition, value of a symbol, or imbed
ded file. The method of associating a tag and an APF depends on the form of the
APF.

In all cases, SCRIPT/VS recognizes the GML delimiter and treats the element type
tag as an upper case symbol. The value of the symbol, however, depends upon the
form of the APF. If the APF is implemented as a macro, the value of the symbol wi 11
be an invocation of that macro, as in:

.se TITLEP = '.~prolog ,

Or the value could be the APF itself: a sequence of control words separated by con
trol word separator characters (semi-colons in the starter set) .

. se TXMP = '.sk; .fo off;. in 3; .li on'

If you choose to implement the APF as a separate file, the symbol value will be an
invocation of the imbed control word (.lM) with the APF name as the file to be
imbedded .

. se NOTICE = '.im notice78 '

It is sometimes useful to mix the forms of APF implementation. For example, some
specialized elements are processed by generating text for a heading, and then
processing that heading in the usual way. It t~ possible to create a separate mac
ro for each such element, but this would be wasteful. The following example ~hows
how such elements can share a common macro by including part of the APF in the sym
bol· value and invoking macros for the remainder .

. se REMOVAL = '.~h4 Removal Instructions;.~dl '

.se ASSEMBLY = '.~h4 Assembly Instructions;.~dl '

An element can also be recognized implicitly by the tag for another element. In
such a case, the recognition is performed by your APF, which also performs (or
invokes) the processing for the other element. In the starter set, for example, a
head one (hl) implies a first level heading segment. The value for the symbol
could invoke two APFs, like this,

Specifying Processing 119

.....•.. _--_.--_. '--- _ _._-------- ._------'" _._---_ .. _

.se HI = '.hsegl i.hl '

Or (as actually implemented) it could invoke a single APF which performs the proc
essing for both the segment (skipping to a new page) and the heading (changing
font, and so on).

ATTRIBUTE INTERPRETATION

Attribute interpretation is completely under the control of the element start APF.
It can ignore the possibility of attributes, or it can test for them (and take
appropriate action) at any point in its processing. The element start APF could
perform the attribute processing itself, but this would tend to make it complex
and specialized, and restrict its usability for other applications and other ele
ment types. The starter set seeks to minimize this problem by defining an inde
pendent APF for each attribute.

An element type APF can test for attributes by using the starter set .~SCAN macro,
and then execute them by invoking the .~EXATT macro. These macros map an attribute
to an APF by treating the attribute tag as the name of a macro, and the attribute
value as the' macro's parameter list. For example, the markup

:fig place='page'

results in the following attribute APF invocation:

.place page

In this approach, the APF name must always be identical to the attribute label.
Therefore, you can only change the APF mapping by having a number of macros with
the same name and choosing among them. This is done by storing each of the synony
mous macros in a different library (or a diff~rent profile), and specifying the
desired library (or profile) with a SCRIPT/VS command option.

The macro definition for an attribute APF can be any of the things that the value
of an element type tag symbol can be. In particular, it can be an invocation of
another -- differently named -- macro that will perform the actual APF processing.
Like tag symbols, macro names are converted internally to upper case, so you can
use the same entry conventions for attribute labels that you do for tags.

You could perform attribute interpretation differently in your own installation by
having your text programmer modify the .~SCAN macro. For example, you could store
in a symbol in your profile an "index name." Your version of .~SCAH would prefix
the index name to the attribute label to derive the APF macro name. For example, if
the value of the index symbol were "ab," then our markup example would result in
the following APF invocation:

.abplace page

By defining new index names as needed, your APFs could have complete control over
the mapping process.

Another possible variation of .~SCAN would be to treat the attribute label as a
symbol. It would generate the following from our example:

&place.page

This would provide the same capabilities for mapping attribute labels as exist for
element type tags, although the symbol would be case-sensitive.

ELEMENT END INTERPRETATION

The end of an element can be recognized by SCRIPT/VS if it is explicitly marked, or
it can be recognized implicitly by your own APFs. In the starter set, the explicit
markup of an end of an element consists of ":E" and the element type tag. SCRIPT/VS
recognizes the GML delimiter (:), and treats the "E" and the tag together as an
upper case symbol. The association of the symbol with an APF is the same as
described for the element start, for example:

.se EOl = '.~el 0'

120 GMl User's Guide

c'

c

c'

o

Implicit recognition of the end of an element is simplest when the element is
always followed by an element of a particular type, as in the dt, dd sequence in
definition lists. Here, processing for the end of the dt can be invoked (or
performed) when the dd is recognized, just ·as with implicit recognitioM of the
start of an element.

However, when the structure of the document permits more variation, it may be nec
essary for earlier APFs to leave indications that will tell later APFs their
location in the structure of the document. For example, the APF for the preface
could set a symbol to indicate that the preface had begun. APFs for elements which
could not occur within the preface would test that symbol. The first such APF to
execute would therefore know that the preface had just ended and could perform the
end of preface processing. It would then change the symbol value so no other APFs
would perform end of preface processing by mistake.

End of element recognition is also implicit when the content of an element is
"Text on Same Line," as with headings in the starter set. Here, the heading APF is
able to "see" the enti re content at once, and can thus perform the end of element
processi ng as well as the processi ng at the start.

SPECIFYING APFS AND PROFILES

This section discusses how to organize profiles and APFs, and the ways in
optional processing can be specified.

WHAT IS A PROFILE?

which

A profile is a document that is automatically processed when SCRIPT/VS is invoked.
Although, the .SE (set-symbol) statements that map tag symbols to APFs could be
anywhere in a document, it is usually most convenient to collect them in the pro
file. The profile may also contain macro definitions and .SE statements that ini
tialize variables used by the APFs to establish the formatting style. In the
starter set, for example, the default indention for a simple list is set as fol
lows:

.se 41s1n = 4m

ORGANIZING YOUR APFS

A single APF could be capable of performing a variety of processing functions,
chosen by the value assigned to certain symbols. Or, it could be a much simpler
single-function routine.

In the former case, your tags would map to the same APFs in a variety of applica
tions, but your profile would contain symbols that would be initialized different
ly for each application. The profile supplied with the starter set is set up this
way. It results in fewer, but more complex, APFs. For example, heading numbering,
number of columns, duplex printing, Others include the movement of periods and
commas inside a quotation, are among the APF functions that are controlled by sym
bols in the starter set profile.

The alternative would be to have a greater number of simpler, single-purpose APFs.
The tradeoffs to consider are available programmer skill levels, ease of managing
your library of APFs, likelihood of changes to the APF specification, and ease of
maintenance.

IMPLEMENTING PROCESSING OPTIONS

There are two classes of processing option:

• You may design your APFs so that by setting a symbol value you can get differ
ent types of processing that reflect different formatting styles. (Your estab
lishment may have different house styles for different document types, for

Specifying Processing 121

. __ .•.. _-_•... _._--------

•

example.) These options should be specifiable only by the Document Administra
tor, not the Markup Edi tor. They are called "controlled opti ons."

You may want different processing for draft copies than you do for interim
distribution or for final copies. You might want spelling checking for some
runs, but not others, or you might want to initialize heading number counters
for processi ng of part of the document. These are called "user opti ons"

SCRIPT/VS offers the following techniques for specifying controlled options:

• Setting defaults in the permanent environment, such as logical device, profile
name, etc.

• Setting symbol values within a profile.

• In the CMS environment, creating an OPTIONS ~ile which will transparently
invoke command options.

• Creating system procedures (CMS exec, JCl, procs, etc.) which will tr.nspar
ently invoke SCRIPT/VS with the desired command options.

User options can implemented in the following ways!

• Specifying a profile with the PROFILE command option.

Even when, as with the starter set, a single profile handles all tag mappings
for a document type, you might consider creating multiple profiles for each
application. Each application profile would simply imbed the document type
profile and set the variables and switches to achieve the desired processing.
This will permit your Markup Editors to obtain desired application processing
by specifying the appropriate profile when invoking SCRIPT/VS.

• Setting symbol values through the SYSVAR command option.

• Specifying a library of APFs and symbols with the SEARCH command option.

The association of tags and APFs within a profile goes only to the point of
identifying a symbol or macro name. SCRIPT/VS permits the same name to be
associated dynamically with different definitions by specifying the library
which is to be searched. This is done with a combination of command options
and control words, depending upon the system environment.

• Specifying other command options, such as DEVICE, BIND, etc.

• Specifying an OPTIONS file (CMS only).

• Invoking ·SCRIPT/VS through a particular system procedure which includes the
set of options needed for a particular application or processing run.

In addition to dividing options into the classes "controlled" and "user," it can
also be useful to consider the distinction between those which affect GMl inter
pretation (i.e., which APFs go with which tags) and those which alter APF parame
ters.

In general, GMl i nterpretati on is most effecti vely controlled by the "mappi ng"
control words (.SE and .DM) within a profile, and by designating ~n active
library. APF parameters are best varied by setting symbols within the profile,
either directly, or by the user with SYSVAR, OPTIONS files, or system procedures.
However, SCRIPT/VS offers such flexibility that you may find ways of intermixing
these techniques, or developing others, to meet your own needs.

SUPPLEMENTING SCRIPT/VS PROCESSING

Your documents may require processing that SCRIPT/VS was not designed to perform.
GMl greatly facilitates using SCRIPT/VS in conjunction with other programs, as
pre-processors, post-processors, or independent programs operating on the same
source fi lese

122 GMl User's Guide

c

(
'--

c

C:

c

c

GENERATING SCRIPT/VS INPUT

You can use SCRIPT/VS to format reports using data from data processing files. An
application program could access these files, perform the necessary computations,
and create an output file. This file could contain GML markup just as if it had
been created with your usual text entry procedures. You will then be able to proc
ess it with the same flexibility as your other documents.

You can also use SCRIPT/VS to prepare input for itself. For example, SCRIPT/VS
could help prepare an index to a manual. You might define an attribute called
"index descriptor," make up a suitable attribute label ("desc"), and have your
text programmer produce an APF. You would specify this attribute for those phrases
in your document which were suitable entries for an index.

The APF would write the phrase and current page number to a file, together with
appropriate element type tags identifying each. You could sort the file using a
sort program and arrange the sorted file in a manner appropriate to an index. The
sorted file would be a ~CRIPT/VS document which, when processed by appropriate
APFs, would generate an index to the manual.

USING SCRIPT/VS TO PREPARE INPUT FOR OTHER PROGRAMS

SCRIPT/VS has a great variety of general document handling functions which can be
used independently of formatting. You can use these func~ions to create APFs which
will translate a GML document into suitable input for another program, such as a
formatter that can support photocomposers.

For example, the starter set APFs for ordered lists and list items automatically
generate numbers (or letters) for the items on an ordered list. This is a desira
ble function, since it permits the list to be revised without renumbering all the
items.

Those APFs include general processing control words which maintain the number
counter, translate numbers to letters, and insert the numbers or letters into the
output text stream. They also include formatting control words which indent the
list and leave spaces between the items. You could create a modified version of
the APFs which would retain the SCRIPT/VS controls that perform general processing
functions, but would eliminate the SCRIPT/VS formatting controls. Instead, the APF
would insert the appropriate control words of the postprocessor into the output
stream.

In addition to creating APFs, you would also create a profile which would map the
GML markup to the new APFs. The profile would also issue control words that would
turn off justification and page numbering, and the like, so the output will look
like a source file. You might also need to translate special characters which
might be unacceptable to the post-processor.

By having two sets of APFs and two profiles, you could continue to proof the docu
ment on a line printer while getting final output on a photocomposer via the
post-processor.

SHARING SCRIPT/VS GHL FILES

SCRIPT/VS interprets GML markup by recognlzlng tags, associating them with APFs,
and executing the APFs. You can write other programs which do the same thing, and
the APFs could then be any function of which your programming system is capable.

If you create formal definitions of your document types, persons familiar with
computer language processing techniques can write programs to verify the correct
ness of document markup, supply missing tags, or prompt markup editors in the cre
ation of documents.

Specifying Processing 123

c

c

o

DEFINING MARKUP PROCEDURES

This chapter discusses considerations involved in defining markup conventions and
procedures for your installation, and documenting them in GML markup guides.

GML MARKUP

GML syntax recognition is implemented using SCRIPT/VS symbol-processing
facilities,26 which tolerate the following deviations from the recommended syn
tax:

• The period (.) that separates m~rkup from immediate text on the same line can
be omitted if attributes are specified and there are no equal signs (=) in the
text that follows the attributes.

• Quotation marks may be omitted for attribute values which do not contain
blanks or special characters, but such values must be followed by a blank.

As a result, SCRIPT/VS may occasionally process incorrect GML markup as if it were
marked correctly. If this is undesirable, you can develop your APFs to test for
these conditions and issue appropriate warnings.

You can change the GML delimiter character by using the .DC GML control word, but
you cannot change the period that separates markup from text. If necessary to meet
special requirements of your installation, you can change the equal sign (=) which
delimits attribute labels, and the single quotation marks that delimit attribute
values, by modifying the starter set .~SCAN macro.

TEXT ENTRY

You should specify the desired and maximum line lengths based on the types of
device your text entry operators and editors will be using, bearing in mind that
expansion of symbols will lengthen many lines. You should also mention any prohib
ited keys that are on these devices, such as the "index return" on magnetic card
typewriters.

You may also wi sh to redefi ne ,certai n keys on the input keyboards used in your
installation. This can be done with combinations of the translate-input (.TI) and
translate-output (.TR) control words.

Or you could establish implicit markup conventions -- for example, by defining a
leading blank to be equivalent to a p tag. This capability is provided by the
SCRIPT/VS macro facilities.

SCRIPT/VS SYMBOLS

In addition to the uses mentioned in the Markup Guide, symbols are used extensive
ly in implementing macros and APFs. Such symbols are normally not visible in the
source document except where processing controls are entered. This discussion will
therefore focus entirely on symbols used in conjunction with GML markup.

Note: Remember that GML tags are treated as uppercase symbols. You must not define
uppercase symbols which are identical to GML tags, even if you enter tags in lower
case.

26 But GML tags are not processed identically to symbols, and GML and symbols
have distinctly different functions in document markup.

Defining Markup Procedures 125

ENTERING UNKEYABLE CHARACTERS

The choice of symbols for this purpose will depend upon the types of keyboard and
printer in use in your installation, and upon the types of document processed.
Each of your markup guides might therefore define a different set of special char
acter symbols. Figure 17 suggests some candidates, based upon the character set of
the IBM TN print train.

&bul. Bullet &sup9. Superscript 9
&lbr. Left bracket &supr. SuperscrlPt ")"
&rbr. Right bracket &supl. Superscript "("
&lbrc. L eft brace &suppl. Superscript plus
&rbrc. Right brace &supmin. Superscript minus
<sym. Less than °. Degree
&lesym. Less or equal &sqbul. Square bullet
&nesym. Not equal &loz. Lozenge
&gesym. Greater or equal &bxul. Box upper left
>sym. Greater than &bxur. Box upper right
¬sym. Not sign &bxll. Box lower left
&plusmin. Plus or minus &bxlr. Box lower right
&supO. Superscript 0 &dash. Dash

Figure 17. Possible Symbols for Unkeyable Characters

The symbols would be set to the printer codes for the desired characters. The
definition of the "&rbl" symbol in the starter set profile is an example of how to
define symbols for unkeyable characters.

You can use the conditional processing facilities of SCR1PT/VS to vary the defi
nition of these (or any other) symbols. For example, if you define a symbol for a
vertical rule, you might want it to have a different value for the 3800 than you do
for line printers.

REFERENCE TO GENERATED INFORMATION

Symbols can let you refer to information which will not exist until your document
is processed. For example" there are system symbols whi ch let you refer to the
current date, or the page number. You may wish to document these symbols for use by
your markup editors.

Symbols can also permit forward and backward cross-references. As an example, the
starter set APF for the 1D attribute creates a symbol composed of the "0)" special
character, followed by the first two characters of the element name (with the
fi rst capi tal i zed), followed by the value of the ID (as entered), followed by
"pg." Thus, for the markup

:fig id='ajs'

the APF generates the symbol "o)Fiajspg." The value of the symbol is the page num
ber on which the element is printed. You can define similar symbols in your own
APFs, and document them for di~ectuse in markup. Or, aswe did in the starter set,
you can reserve use of the symbo 1 sto AP Fs associ ated wi th "reference" elements.

ABBREVIATING LENGTHY PHRASES

In certa; n of your document types, some lengthy phrases (such as product or
department names) may oc~ur frequently in the text of the document. In such cases
you may wish to define a symbol to be used as an abbreviation for the phrase. (When
such phrases appear in connection with specific document elements, such as
headings in a form, they can be generated by the APFs, and no symbols will be
required.)

126 GML User's Gui de

------------ ---------

c

c

._-------_ .. _ .. -_ _---

C:

c

o

CONTROL lJORDS

Situations will occur in which it will be necessary to supplement GML markup with
control words. You should strive to create conventions for control word markup
which will not prevent access to all of the functions of SCRIPT/VS (and any pro
grams for whi ch you may be usi ng it as a pre-processor).

At the same time, you will wish to preserve the generality of your documents so
they can be used for other applications, and so they can be processed by other pro
grams you may use in conjunction with SCRIPT/VS. This means you should have some
way for both people and programs to easily determine· when and why control words
have been used in the markup. The Markup Guide does this by identifying four cate
gories of control word use:

• Source document management.

• Permanent formatting graphic effects (graphic PSC).

• Temporary formatting repairs (patch psc).

• Non-formatti ng ("preprocessor") functi ons (profi Ie PSC).

The cat~gories represent two approaches to the problem: unrestricted use of a lim
ited set of control words, and carefully bounded use of an unlimited (i .e., full)
set of 60ntrol words. An implication of this organization of control words is that
all of your markup editors can (and should) be taught the limited set. When the
other situations for control words occur, the document should be given to a
specially-trained person for markup of that portion.

The "limited set" control words are of an application-independent nature them
selves, and will not harm the generality of your document. However, SCRIPT/VS mac
ro facilities will permit you to redefine them if necessary (for example, to be
comments which are ignored in processing, or to generate markup for a
post-processor). You may wish to make other control words of this type (such as
.SV for spelling verification and .HW for hyphenating a word at designated
points}, or macros of your own devising, available to your markup editors.

If you adopt the psc element conventions for bounding the use of the full set of
control words, you might wish to have separate tags for patch, graphic, and pro
file, while continuing to map all three to the same APF for most processing. This
will simplify markup, by eliminating the need for the separate comment line which
identifies the type of control word use. Moreover, in applications vJhich require
differing treatment (such as ignoring all patches when preparing a document for
interchange), you will be able to associate them with different APFs.

You can simplify the entry of short pSC elements by defining macros, such as the
following:

.PATCH 'procnames' .cw parameters

.GRAPHIC 'procnames' .cw parameters

.PROFILE 'procnames' .cw parameters

The macros could either perform the function .of the PSC and proc APFs, or they
could generate the normal form of the document if required for interchange.

INTERCHANGE CONSIDERATIONS

One of the benefits of GML markup is that it can facilitate the exchange of docu
ments among different users with possibly different processing requirements. This
section discusses considerations in establishing interchange standards, and in
preparing documents for interchange.

ESTABLISHING INTERCHANGE STANDARDS

An interchange standard could range in detail from an agreement to use GML markup
syntax only, to a full interchange of documents, APFs, profiles, and libraries.
The following list is ordered by increasing degrees of ihterdependence:

Defining Markup Procedures 127

1. All parties use GML syntax and markup conventions. There is no agreement on
standard document types or sets of tags.

2. An interchange document type is defined and documented by a document type
desc~iption which describes its normal form.

3. A number of document types are defined and documented.

4 .. Standard APFs are developed for all processors (not just SCRIPT/VS) in use by
the parties to the interchange standard. Interchange documents need not con
form to standard document types, but must be accompanied by profiles which map
tags to the standard APFs.

5. All parties use SCRIPT/VS and interchange documents, APFs, profiles, and
libraries.

The choice of interchange standards depends upon how closely the parties'to the
interchange work together, .how closely their processing environments match, and
the ways in which they use one another's documents.

PREPARING DOCUMENTS FOR INTERCHANGE

The normal form of your documents may differ from the interchange standard. Your
entry convention may differ from both of these (as discussed in "Normal Form and
Other Forms" on page 113>' Many of the considerations and techniques are the same
in converting a local standard to an interchange standard, as in converting from
an entry convention to a local standard.

Depending upon the level of standardardization and level of interdependence, as
discussed above, you may need to:

• Convert your GML delimiter if it differs from the standard. If the standard
permits varying delimiters, make sure that a control word or macro which
defines the delimiter precedes any tags in your document .

• . Replace any local symbols by their values (when possible).

• Translate characters to the standard character set.

• Resolve file imbeds.

• Remove unnecessary control words, such as patch and graphic psc elements for
processes which the receiving party will not perform.

• Remove references to the local environment, such as local file names.

As an example, consider converting a specialized document type such as a GML Mark
up Guide to a more general interchange standard, such as the starter set General
Document. You would use SCRIPT/VS as a preprocessor, as discussed in "Generating
SCRIPT/VS Input" on page 123. Your text programmer would prepare APFs for each of
the custom tags which would generate the appropriate General Document tags,
together with any boilerplate text and psc elements.

Figure 12 on page 107, and Figure 13 on page 108, respectively illustrate a typi
cal source and result of such processing. The conversion APFs also resolved
symbols used as a convenience in entering lengthy or complex markup sequences,
and performed other applicable functions as discussed above.

CREATING YOUR 'OWN GML MARKUP GUIDES

Throughout Part Three we have been discussing the design of your own GML support,
using the starter set as a point of departure. Since the Markup Guide, which we
have also been using as an example, describes the starter set document type 27 -
General Document -- it follows that it can be used as a point of departure for
developing documentation for your own document type descriptions.

27 The Markup Guide describes suggested use of the starter set. Examination of
the macros and profiles themselves will reveal additional APF functions.

128 GML User's Guide

--_._-_. ---------

c

-.-.------ - ------.- .. -.-. ---

(/

o

COMMUNICATION CONSIDERATIONS

Some distinctions which are important to GML markup design are of less importance
to the person actually marking up documents. In the starter set Markup Guide we
have taken a number of steps to simplify the information presented to the markup
editor without introducing technical inaccuracies.

• The term "attribute" is used only to refer to an element's secondary charac
teristics. There is no mention of the fact that type and content are also
characteristics -- hence, attributes -- of an element.

• Attribute tags are always distinguished from element type tags by referring to
them as "attribute labels."

• The terms "tag" and "label" frequently are used ina way that encompasses the
delimiters as well as the tag (or label) proper.

• Attributes are characterized as "optional" or "mandatory," although these
terms properly apply only to the attribute labels.

DESCRIBING PROCESSING

Markup guides should carefully distinguish descriptions of an element's charac
teristics from descriptions of processing performed by the APFs. This can be dif
ficult in cases where the document type description has been influenced by
anticipated processing, as when the content of the element is generated by an APF.
However, it is relatively easy to refrain from gross errors (for example, describ
ing the security level attribute as a "running heading").

In each tag description, we reserved a separate heading for discussing processing,
and identified the profile whose processing was being described. Additional dis
cussions could be added for other profiles that you may develop in your installa
tion.

You can assist markup editors experienced with processing-oriented markup to adapt
to descriptive markup by the way you prepare your markup guides. You might even
consider removing the processing discussions entirely, and documenting the APFs
elsewhere for reference by yourself and the text programmer.

DETERMINING YOUR REQUIREMENTS

Your requirement for GML Markup Guides may vary from a single guide documenting
all tags and processing provided by your installation, to an individual guide for
each document type. In making your decision regarding your requirements, the fol
lowing factors may be significant:

• The number of document types.

• The extent of overlap of tags among them. (Are they all mostly common, or
quite distinct?)

• The number of different markup editors, and the number of different document
types each one handles. A wide variety would suggest a single guide, with dis
tinctions between types called out; concentration on a single type would sug
gest a specialized guide, to avoid confusing the markup editor with
information about irrelevant documents.

You might also require an operations manual to provide instruction on entering and
revising files, managing files, and invoking SCRIPT/VS for each system environment
your installation supports. This information could be included in each markup
guide; or, if a single markup editor would typically use many guides, it might be
less confusing to provide information which cuts across all document types in a
separate manual. Some information on these subjects is provided in Part Two of
this manual. This information is also distributed in machine-readable form to pro
vide a base for your own customized documentation, subject to the procedures
dQscribed in "Using the Starter Set Markup Guide" on page 130.

Defining Markup Procedures 129

GMl. SUPPORT FOR MARKUP GUIDES

The tag description section of the·Markup Guide uses a number of specialized tags
and symbols. The APFs and symbol definitions are contained in a special profile
included on the ~roduct distribution tape. Some features of the APFs are discussed
in "Determi n i ng Document and Element'Types" on page 1 06. Further understandi ng of
their use, and the proper markup, can be had from examining the profile, the
machine-readable copy of the starter set Markup Guide, and "App~ndix F: Docum~nt
Type Description forGMLMarkup Guides" on page 148.

USING THE STARTER SET MARKUP GUIDE

Parts One and Two of this manual, and Appendixes A, B, C, and D, have been made
available with the Document Composition Facility licensed program in a
machine-readable ("soft COpy") form, for use both as a sample problem and as a
base for the development of customized GMl markup guides and other support doc
umentation for use in a SCRIPT/VS installation. The Program Directory distributed
with the Document Composition Facility contains information on how this fil~ is
distributed.

These materials are copyrighted by the IBM Corporation and contain the following
copyright information:

(C) Copyright International Business Machines Corporation 1978.

This GMl Markup and Processirig Guide is copyrighted and is provided in
machine-readable form to facilitate customer cust~mization of the GML
interface to the Document Composition Facility licensed program.

Permission is granted to:

• Store the copyrighted material in your system incorporating the Docu
ment Composition Facility licensed program and display it on that
system's terminals. This permission is granted for the duration of the
licensed pr~gram license.

• Print only the number of copies required for use by those persons who
are using the Document Composition Facility licensed program' on the
system for which this material is provided.

• Modify the material to meet specific installation requirements.

The IBM copyright notice must appear on all printed versions of this mate
rial or extracts thereof. Permission is not granted to further reproduce or
distribute the material.

130 GML User's Guide

c

c'

c

APPENDIX A: GML MARKUP SUMMARY

MARKUP PROCEDURES

ENTERING GML MARKUP AND TEXT

The rules for GML markup are:

1. Document elements are identified with GML tags. The tags begin with the GMt
delimiter, which is defined in the starter set profile as a colon (:). Begin a
new input line for all tags except text items.

2. For some elements, additional characteristics can be specified with attribute
labels. Attribute values must be enclosed in single quotation marks. For exam
ple:

:fig depth='7i'
:efig

Recommended space units are inches (nn!), millimeters (nnW), picas/points
(nnPnn), or Ciceros/Didot points (nnenn).

3. When the content of an element is immediate text, it must begin on the same
1 i ne as the markup.

4. When text follows markup on the same line, enter a period (.) before the text.

5. Start all input lines at the left margin.

6. When you end a sentence, do not enter an~ more text on that line.

7. Do not start text lines with a period.

The following practices are also recommended:

1. Do not mark an element with a tag which does not correctly describe it, even if
it results in the co~rect processing.

2. Enter tags and attribute labels in lower case.

3. Do not enter blank lines.

4. Maximum input line length is 132 character positions. (About 70 is recom
mended, for ease of revision.)

5. Do not underscore or overstrike characters.

6. Do not use the tab key.

7. When storing parts of a document in separate files, be sure each file starts
at the beginning of a paragraph unit or higher level element, and ends at the
end of one.

SCRIPT/VS SYMBOLS

Symbols begin with an ampersand (&) and end with a period (.).

&.

&gml.

&rbl.

For printing the & character without treating it as a symbol delimiter.

For printing the current GML delimiter (: in the starter set).

For entering a required blank character.

Appendix A: GML Markup Summary 131

CONTROL WORDS AND MACROS

Source Document Management

Use these control words and macros freely within a document:

. im fileid Includes stored file named by fileid in your document .

· cm text Text is a comment in your source file.

. rc Consult document administrator for use of revision codes .

.att label='val' Inserts attribute labels and values into following line.

PSC Elements

Use PSC elements to enter control words and macros for the following purposes:

• Graphic Formatting

:psc proc='procname'
.cm graphic
(speci fi c 'control words)
:epsc

• Modifying Processing Results

•

:psc proc='procname'
.cm patch
(specific control words)
:epsc

Additional General Processing

!psc proc='procname'
.cm profile
(specific control words)
:epsc

Valid process names are the logical and physical device names in Figure 19 on page
140.

TAGS FOR GENERAL DOCUMENTS

The starter set is intended for use with documents whose type is "General
Document." A wide variety of documents can conform to this type. The structure and
elements of a General Document are shown in Figure 18 on page 133. The tables fol
lowing the figure show the usage rules for the tags, and the permissible values
Tor the attribute labels.

132 GML User's Guide

c

c

• Overall structure:
General Document (GDOC)

front matter (FRONTM)
title page (TITLEP)

document title (TITLE)
document number (DOCNUM)
document date (DATE)
author name (AUTHOR)
address of author or publisher (ADDRESS)

address line (ALINE)
abstract (ABSTRACT)
preface (PREFACE)
table of contents (TOC)
list of illustrations (FIGLIST)

body (BODY)
part (implied by HO) or chapter (implied by HI)

appendix section (APPENDIX)
first-level heading segment (implied by HI)

back matter (BACKM)
first-level heading segment (implied by HI)

• Heading Segments:
nth-level heading segment (implied by HO to H6)

head n (HO, HI, H2,. H3, H4, H5, H6)
basic-document elements
lower-level heading segments

• Basic Document Elements:

Paragraph Units:
note (NOTE), paragraph (P), paragraph continuation (PC)

lists:
definition list COL)

definition term (DT)
definition description (00)
list part (lP)

ordered list Cal), simple list (Sl), unordered list (UL)
list item (LI)
list part (lP)

Other Basic Document Elements:
address (ADDRESS)

address line (ALINE)
example (XMP)
figure (FIG)

figure body (no tag)
figure caption (FIGCAP)
figure description (FIGDESC)

long quotation (LQ)

• Text Items:
figure reference (FIGREF)
footnote reference (FNREF)
heading reference (HDREF)
highlighted phrase (HPO, HP1, HP2, HP3)
phrase (PH)
quote (Q)

• Special Elements:
footnote (FN)
process-specific controls (PSC)

Figure 18. Summary of General Document Tags

Appendix A: GMl Markup Summary 133

--_ _ ...•.... _._._--

Type Attributes content Termination

:abstract None No Immediate Text :preface, :toc, c
:figlist, or :body

:address None No Immediate Text :eaddress

:aline NOfle Text on Same line At End of line
(no other tags)

:appendix None No Immediate Text :backm or :egdoc

:author None Text on Same line At End of line
(no other tags)

:backm None No Immediate Text :egdoc

:body None No Immediate Text " :appendix, :backm,
or :egdoc

:date None Text on Same line At End of line
(no other tags)

:dd None Implied'P Structure :dt, : lp, or :edl

:dl termhi= tsize= No Immediate Text :edl

:docnum None Text on Same line At End of Line
(no other tags)

:dt None Text on Same Line At End of line
(no other tags)

:fig id= depth= place= No Immediate Text :efig
frame=

:figcap None Text on Same line At End of Line
(no other tags)

:figdesc None Implied P Structure :efig

:figlist None Generated by APF At End of f1arkup

:figref refid= Generated by APF At End of Markup

:fn id= Implied P Structure :efn

:fnref refid= Generated by APF At End of Markup

:frontm None No Immediate Text :body

:gdoc sec= No ImmediClte Text :egdoc

:hdref refid= GenerClted by APF At End of MClrkup

:hpO None Text Item :ehpO

:hpl None Text Item :ehpl

:hp2 None Text Item :ehp2

:hp3 None Text Item :ehp3

:hO id= stitle= Text on Same Li ne At End of line
(no other tags) See "Usage" ; n text

:hl id= stitle= Text on Same line At End of Line
(no other tags) See "Usage" ; n text

:h2 id= Text on SClme line At End of Line
(no other tags) See "Usage" in text c

13~ GMl User's Guide

Type Attributes content Termination

:h3 id= Text on Same Line At End of Line
(no other tags) See "Usage" in text

:h4 id= Text on Same Line At End of Line
(no other tags) See "Usage" in text

:h5 None Text on Same Line At End of Line
(no other tags) See "Usage" in text

:h6 None Text on Same Line At End of Line
(no other tags) See "Usage" in text

: 1 ; None Implied P Structure : 1 i , : 1 p, :eol,
:esl, or :eul

:lp Hone Implied P Structure :dt, : 1 i , :edl,
:e01, :es1, or :eul

:lq Hone Ho Immediate Text :elq

:note Hone Paragraph Unit Paragraph or Higher
Level Element

:01 None Ho Immediate Text :eol

:p None Paragraph Unit Paragraph or Higher
Level Element

:pc None Paragraph Unit Paragraph or Higher
Level Element

:ph hi= Text Item :eph

:preface None Ho Immediate Text :toc, :figlist,
or :body

!psc proc= See "Usage" in text :epsc

!q None Text Item :eq

:sl None No Immediate Text :esl

:title stitle= Text on Same Line At End of Line
(no other tags)

:titlep None No Immediate Text :etitlep

:toc None Generated by APF At End of Markup

:ul None No Immediate Text :eul

!xmp depth= No Immediate Text :exmp

Permitted attribute values are described in the following list. Enclose attribute
values in single quotation marks. Attributes are optional unless otherwise stated.

depth=

frame=

hi=

place=

Reserved vertical space in space units.

Figure emphasis! 'rule' or 'box' or 'none' or another character string.

Highlight type 0, 1, 2, or 3.

One to five alphameric characters unique among elements referred to by
the same type of reference element. (Mandatory for fn elements.)

Figure placement! 'column' or 'inline' or 'page'.

Appendix A: GML Markup Summary 135

proc=

refid=

sec=

stitle=

termhi=

tsize=

One or more names, separated by blanks, that identify process(es) for
psc elements. Each name is one to eight upper case alph~meric charac-
ters. .

One to five alphameric characters that are the id attribute of the
element referred to. (Mandatory attribute.)

Character string identifying the security classification.

Character string that is a short version of a heading ortitle.

Highlight type 0, 1, 2" or 3 for· definition terms.

Maximum number of characters in a definition term, plus one (entered
'nnM').

PROCESSING GENERAL DOCUMENTS

PROFILE AND VARIATIONS

Profile(s) usable with General Documents are:

gdoeprof Produces formatted output on terminals, line printers, and the IBM 3800
Printing Subsystem. Verifies spelling when "SPEllCHK" option is
specified.

SYSVAR parameters for variations are:

c 1, c 2

dyes

h num

Columns: Prints number of columns specified (1 or 2). If
omitted, prints 2 on the 3800, and 1 on other devices.

Duplex: Begins new odd-numbered page for hO, hl, and
front matter segments. If omitted, begins next available
page.

Head Numbering: Automatically numbers heading types hI,
h2, h3, and h4. If omitted, prints without numbering
them. .

p process-name Process: Specifies process for psc elements. If omitted,
the names of the physical and logical devices are used.

t no Title Page Printing: Suppresses printing of the title
page.

INTERIM PROCESSING

The GDOCPROF profile permits thes~ shortcuts:

• toe and f i gl i st can be processed as last two tags of back matter.

• Heading segments and other elements can be processed independently.

ERRORS

Common causes of errors are:

• Om; tti ng the peri od at the end of a symbol.

•
•

Omitting the period at the end of markup (when required) .

Omitting the ending tag of a list, figure, example, or other element that
requires explicit termination.

136 GML User's Gu; de

(,r-

c

c

• Ending a quote (q) with a quotation mark instead of eq.

•

•

Using tags where not permitted, such as within an element whose content is
"Text on Same Line."

Not entering a text item terminating tag immediately after the element.

• Omitting the tag for a paragraph that requires explicit markup.

Appendix A: GML Markup Summary 137

(: .

...

c

o

APPENDIX B: GML PROCESSING SUMMARY

SCRIPT COMMAND

The first parameter of the command is an identifier of the file or data set which
contains the beginning Cor all) of your document. For example:

SCRIPT mydoc

The file name may be followed by one or more options. (In CMS, a left parenthesis
precedes the options.)

OPTIONS

The following list summarizes those options most likely to be used by markup edi
tors. (Your installation may require other options as well.) The upper case let
ters signify acceptable abbreviations for the options.

Processing Options:

PROfileCname) Hame of file or data set to be used as document profile.

SYsvarCx value) One or more pairs of variation codes ('x') and corresponding
values.

SPellchk

TWopass

BindCn1 n2)

Verifies spelling when requested with the .SV control word.

Processes input document twice, to resolve forward references.

Shifts printed portion of output page to right n1 space units on
odd pages, and n2 space units on even pages, to leave room for
binding. If n2 is omitted, n1 is used for all pages.

Logical Device and Output Destination:

DEViceCtype)

FileCname)

PRInt

TErm

Error Handl i ng:

Specifies logical device, and underlying physical device (which is
also output destination). (See Figure 19 on page 140.) If omitted,
"term" is the default in CMS and TSO, and "1403W6" in batch.

Formats output for logical device, but stores in named file.

Formats output for logical device, but prints on system printer. If
no logical device is specified, "device(1403W6)" is assumed.

Formats output for logical device, but displays on terminal. If no
logical device is specified, "device(term)" is assumed. (CMS and
TSO only.)

MessageCdelay) Prints error messages at end of output document. (CMS and TSO
only.)

COntinue Continues processing after non-severe errors.

FILE NAME QUALIFIERS

In CMS, a default filetype of "script" is assumed.

In TSO, data set names assume "userid." and ".text" as default qualifiers.

Appendix B: GML Processing Summary 139

LOGICAL PHYSICAL LPI WIDTH, LENGTH

1403N6 1403 6 8.S 11
1403W6 1403 6 14 11
1403SW 1403 6 8:5 11

1403N8 1403 8 8.5 11
1403W8 1403 8 14 11

3800N6 3800 6 8.S 11
3800W6 3800 6 14 11
3800N6S 3800 6 11 8.S
3800W6S 3800 6 14 8.S

3800H8 3800 8 B.5 11
3BOOWB 3BOO B 14 11
3BOONBS 3800 8 11 8.5
3800W8S 3800 8 14 8.S

3BOOW12 3800 12 14 11
3BOOW12S 3800 12 14 8.5

TERM 2741 6 14 11

Figure 19. Device Names Supported by the Starter Set: Physical device name
1403 includes 3211; 2741 includes all terminals. Dimensions are
lines per inch and default page size.

140 GML User's Guide

c

c

c'

4

c

APPENDIX c: GHL MESSAGES

The following messages are generated by the starter set APFs. In all messages, the
phrase "on 'page 'nnn'" refers to the page of the output on whi ch the error can be
found.

These messages' are always preceded by three plus signs (+++) when displayed or
printed. Messages which do not begin with three plus signs are SCRIPT/VS messages.
Consult your document administrator about any SCRIPT/VS messages you receive.

DSMGHL201W The ID 'xxx' on 'yyy' on page 'nnn' used before

Explanation: The document element whose type is 'yyy' has the same
id='xxx' attribute as one or more other elements of the same type.

DSMGML203W 'xxx' tag on page 'nnn' implicitly ended list(s)

Explanation: The tag 'xxx' was incorrectly placed within the bounds
of a list. The list, and any lists nested within it, were terminated.

DSMGML204W Redundant list end was found and igno~ed on page 'nnn'

Explanation: An edl, eol, esl, or eul tag was incorrectly placed out
side the bounds of a list.

DSHGHL205W No definition te~m fo~ desc~iption 'xxx' on page 'nnn'

Explanation: A dd tag was encountered without its preceding dt tag.

DSHGHL206W Definition 'xxx' on page 'nnn' but no defn. list sta~t

DSHGML207W

DSHGHL208W

Explanation: The 'xxx' element is a definition list element edt or dd)
which was incorrectly placed outside the bounds of a definition list.

List was ended by 'xxx' list tag on page 'nnn'

Explanation: The 'xxx' list element ending tag (edl, eo1, esl, or eul)
was erroneously used to end a list element of another type.

ID 'xxx' on page 'nnn' is too long, t~uncated to 'yyy'

Explanation: The 10 value 'xxx' exceeded 5 characters in length. It
was truncated to 'yyy'. (If another element of the same type also has
the 10 value 'yyy', the unexpected duplication could cause message
OSMGML201W to be issued for that element.)

DSHGHL210S 'xxx' type lists not suppo~ted

DSHGHL211W

DSHGHL212W

Explanation: There is an error in your document profile. The profile
is attempting to invoke the list APF for a nonexistent list type.
Consult your document administrator.

Extra end of highlight ignored on page 'nnn'

Explanation: An explicit tag for ending a highlighted phrase (ehpO,
ehpl, ehp2, or ehp3) was encountered without a preceding highlighted
phrase tag (hpO, hpl, hp2, or hp3).

'xxx' found outside of 'yyy' on page 'nnn'

Explanation: The 'yyy'
The 'xxx' element is
description (figdesc),
of a figure, or an end
example.

element is a figure (f;g) or an example (xmp).
either a figure caption (figcap), figure
or end of figure (efig) that was found outside
of example (exmp) that was found outside of an

DSHGHL213W Invalid syntax for 'xxx' attribute 'yyy' on page 'nnn'

Explanation: The attribute label 'xxx' and/or its value 'yyy' were
entered incorrectly.

Appendix C: GML Messages 141

c

\

'--

•

c

c~

APPENDIX D: TITLE PAGE EXAMPLE

The following page is the title page created by the markup examples in the tag
descriptions, such as the example in "titlep -- title page" on page 78.

Appendix D: Title Page Example 143

144 GML User's Guide

GML Markup and Process;n9 Gu;de

Document Number

MG-OOOOl

July 3, 1978

L. T. Smith, Document Administrator

Any Company
500 Main Street

Anycity, Anyplace

Internal Use Only

(
\... ..

c

C~

•

c

APPENDIX E: DOCUMENT TYPE DESCRIPTION FOR GENERAL DOCUMENTS

The General Document description can apply to a variety of documents, from memo
randa to technical manuals. It may be used as a "catch-all" category for documents
which do not conform to any other type description.

ELEMENT TYPES AND STRUCTURE DEFINITION

This information is presented formall y 28 in Figure 20 on page 147. The definition
uses the tokens "sentence," "space," "wor·d," "list," and "textitem," as well as
those on the following list:

bde
char
fiSbody
hseg
ip
line
part
pcs

Basic Document Element
Character
Fi gure Body
Heading Segment
Implied Paragraph
Line Element
Zero Level Heading Segment
Paragraph Continuation Structure

The following notation is used:

Expl i ci t Tag
= Attribute

Content
, Sequence
? Optional * Repeatable
/ Alternative
() Grouping
[1 Restriction

PERMITTED ATTRIBUTE VALUES

depth=

frame=

h ·-1-

place=

proc=

refid=

sec=

stitle=

Reserved vertical space in space units: inches (nnI), millimeters
(nnW), picas/points (nnPnn), or Ciceros/Didot points (nnCnn).

Figure emphasis: 'rule' or 'box' or 'none' or another character string.

Highlight type 0, 1, 2, or 3.

One to five alphameric characters unique among elements referred to by
the same type of reference element.

Figure placement: 'column' or 'inline' or 'page'.

One or more names, separated by blanks, that identify process(es) for
psc elements. Each name is one to eight upper case alphameric charac
ters.

One to five alphameric characters that are the ;d attribute of the
element r~ferred to.

Character string identifying the security classification.

Character string that is a short version of a heading ortitle.

Highlight type 0, 1, 2, or 3 for definition terms.

28 Persons familiar with formal grammars will recognize that interword separa
tors and sentence terminating sequences are ignored, and that the terminal
characters ("char") are not defined. These omissions do not affect the usabil
ity of the definition for markup design.

Appendix E: Document Type Description for General Documents 145

Maximum number of characters in a definition term, plus one (entered
'nnM').

HARKUP CONVENTIONS

These are the conventions for symbols and control word usage.

SYHBOLS

&.
&gml.
&rbl.

& character -- not treated as symbol delimiter.
GML delimiter character -- not treated as markup.
Required blank character.

CONTROL WORDS AND HACROS

Freely usable: .1M, .CM, .RC, .ATT

pSC Elements: graphic, patch, profile

146 GML User's Guide

c

('

c

c'

c

Overall structure:
1. :gdoc sec=?frontm, body, appendix?, backm? :e
2. :frontm.titlep, abstract?, preface?, toc?, figlist?
3. :titlep.title, docnum?, date, author?~, address?~ :e
4. :address.aline~:e
5. :abstract :preface.bde?~, hseg6?~, hseg5?~, hseg4?~, hseg3?~, :hseg2?~
6. : body. part~/hsegl *
7 . : append i x : backm. hseg1 *

Heading Segments:
8. part.hO, bde?~, hsegl*
9. hseg1.h1, bde?~, hseg6?*, hseg5?~, hseg4?*, hseg3?*, hseg2?*
10. hseg2.h2, bde?*, hseg6?~, hseg5?~, hseg4?*, hseg3?~
11. hseg3.h3, bde?~, hseg6?~, hseg5?~, hseg4?~
12. hseg4.h4, bde?~, hseg6?~, hseg5?*
13. hseg5.h5, bde?*, hseg6?*
14. hseg6.h6, bde?*

Basic Document Elements:
15. bde.list/address/fig/lq/note/p/pcs/xmp
16. list.dl/ol/sl/ul
17. :dl termhi=? tsize=?lp?, ((dt, dd), Ip?)* :e
18. :01 :sl :uI.lp?, (Ii, Ip?)* :e
19. pcs.(ip/p/note), ((address/list/lq/xmp/fig), pc)*
20. :dd :li.ip, bde?* [no fnJ
21. :lp.ip, bde?* [no fn, listJ
22. :lq.bde?* :e [no fig]
23. :xmp depth=?space/(line/bde)?* :e [no fig, fn, xmp]
24. :fig id=? depth=? frame=? place=?figbody, (figcap, figdesc?)? :e
25. figbody.space/(line/bde)?* :e [no fig, fn]
26. :figdesc.ip, bde?* [no fig, fn]

Paragraph Units:
27. ip :note :p :pc.sentence?* [no fn]
28. sentence.(word/textitem)*
29. textitem.figref/fnref/hdref/hpO/hp1/hp2/hp3/ph/q
30. :hpO :hp1 :hp2 :hp3 :q.(word/textitem)* :e
31. :ph hi=?(word/textitem)* :e [no ph]
32. word.char*

Generated Elements (terminated by end of· markup):
33.:figref refid=? :fnref refid=? :hdref refid=?Generated by APF
34. :figlist space :toc.Generated by APF

Text Lines (terminated by end of input line):
35. :docnum :date :author :aline :h5 :h6 :dt :figcap.word?~ [no psc]
36. :title stitle=? :hO-:h1 id=? stitle=? :h2-:h4 id=?word?* [no psc]
37. line.(word/textitem)*

Special Elements:

Footnotes can occur wherever a bde can occur unless restricted.
38. :fn id=.ip, bde?* :e [no fig, fnl

Process-specific controls can occur wherever not restricted.
39. :psc proc=?anything readable by SCRIPT/VS :e [no psc]

Figure 20. Formal Definition of a General Document

Appendix F: Document Typa Description for GML Markup Guides 147

APPENDIX F: DOCUMENT TYPE DESCRIPTION FOR GML MARKUP GUIDES

A GML Markup Guide is a manual which describes the markup conventions and tags for
a type (or types) of document. It is essentiallY a General Document with some spe
cialized elements.

ELEMENT TYPES AND STRUCTURE DEFINITION

This information is presented formally in Figure 21 and F~gure 22 on page 149. The
definition uses the tokens "word," and "textitem," as well as those on the
following list:

bde
etd
hseg
ip
markup
prod
sum!ine
tagentry
ttag
tud

Basic Document Element
Element Tag Description
Headi ng Segment
Implied Paragraph
Markup Rule
Processing Discussion
First Line of Tag Summary Entry
Tag Summary Entry
Element Tag
Tag Usage Discussion

The following notation is used:

Explicit Tag
= Attribute

Content
, Sequence
? Optional * Repeatabl'e
/ Alternative
() Grouping
[] Restriction

The tag description section was discussed in "Determining Document and Element
Types" on page 106 and the colophon in "Element Tag Descri pti ons" on page 21.

The tag summary is the table in "Appendix A: GML Markup Summary" on page 131.
Each entry consists of either a single line (tagline) or two lines (a "summary
line," then the tagline). The lines contain the markup rule from the tag
description.

The message list (ml) can be found in" Append i xC:
Each entry consists of a messge number, a message,
system action, and a user response.

GML Messages" on page 141.
an explanation, an optional

1. :gmgdoc sec=?frontm, body, appendix?, backm? :e
6. : body. part~u (hseg1/tagdesc HE
8. part.hO, bde?*, (hseg1/tagdesc)*
15. bde.list/address/fig/lq/note/p/pcs/xmp/tagsum/ml
29. textitem.figref/fnref/hdref/hpO/hp1/hp2/hp3/ph/q/mv/t/tref

Figure 21. Formal Definition of a GML Markup Guide (Part 1 of 2): These
elements are variants of General Document elements. The state
ments are modifications of correspondingly numbered statements in
Figure 20 on page 147. The other statements in that figure are
also considered part of this definition.

148 GML User's Guide

c

c

c

c

Tag
1.
2.
3.
4.
5.
6.
7.
8.
9.

Description Section:
:tagdesc.hsegl, colophon?, etd* :e
etd.type, tud, prod*
:type id=? tag=.markup, desc, adesc?*
markup.ttag, attr, attrmore?, cont, terml, term2
tud.usage, txmp
prod.proc, pxmp?
:desc :adesc atag= aname= astatus=?ip
:usage :proc prof=.ip, bde?* [no fig, fn, xmp]
ttag :attr :attrmore? :cont :terml :term2.word?*

Tag Summary:
10. :tagsum.tagentry* :e
11. tagentry.(sumline?, tagline)*

Message list:

[no psc]

12. :ml t~rmhl=? tsize=?(msgno, msg, xpl, sysact?, uresp)* :e
13. :msg :xpl :sysact :uresp.ip

Text Items
14. : mv . wo rd* : e
15. : t. word : e
16. :tref.(word/textitem)* :e

Generated Element (terminated by end of markup):
17. :colophon.Generated by APF

Text lines (terminated by end of input line)
18. :msgno.word* [n~ psc]
19. sumline :tagline.tab, word?*, tab, word?*, tab, word?*, tab, word?*

Figure 22. Formal Definition of a GMl Markup Guide (Part 2 of 2): Elements
Unique to GMl Markup Guides.

PERMITTED ATTRIBUTE VALUES

These are the same as for General Documents, plus the following:

aname= Alphameric character string that is the name of an attribute.

astatus= Status of an attribute label: 'optional' or 'mandatory'.

atag=

prof=

tag=

Attribute label: one to eight upper case alphameric characters, with
initial alphabetic. (May be entered in lower case.)

Profile: one to eight upper case alphameric characters, with initial
alphabetic. (May be entered in lower case.)

Element type tag: one to eight upper case alphameric characters, with
initial alphabetic. (May be entered in lower case.)

MARKUP CONVENTIONS

These are the same as for General Documents, with the following additional sym
bols:

&$tab.
&adid.
&tab.
&tname.
&ttag.
&xmtp.

Tab character (system symbol).
Description of ;d attribute in tag descriptions.
Tab character -- when automaticallY generating a tag summary.
Current element type name in tag description.
Current tag in tag description.
Example of title page in tag descriptions.

Appendix F: Document Type Description for GMl Markup Guides 149

.. " .. __ .--_._._ ... __ _----

The following are symbols for repetitive phrases used in tag descriptions and
elsewhere to maintain consistency.

&nit.
&osl.
&cpl.
&utl.
&cpu.
&gbs.
&tbs.
&ael.
&tbl.
&tb12.
&eom.

PROCESSING

No Immediate Text
Text on Same Line
See "U sage" in text
Text Item
Paragraph Uni t
Generated by APF
Implied P Structure
A t End of Line
Paragraph or Higher
Level Element
At End of Markup

The APFs for the tag description elements generate a substantial amount of text.
Figure 23 shows the output of the APFs for the markup in Figure 12 on page 107 with
attribute values and the content of the type element clearly identified. Content
of other elements, and all of the second adesc element, was omitted. The optional
astatus label for the adesc element, which was omitted in Figure 12 on page 107,
was entered here so that its output could be identified.

$$tag$$ -- $$type content$$

Type Attributes Content Termination

:$$tag$$

The $$tag$$ tag identifies

The $$atag$$ attribute label identifies the $$astatus$$ $$aname$$ attribute. Its
value is

Usage: The $$type cohtent$$ can occur

Processing With the "$$prof$$" Profile: The supplied APF

Results:

Figure ·23. Output Generated by Element Tag Description APFs

150 GML User'!5 Gui de

c

c:

C:

APPENDIX G: GETTING STARTED WITH GML

The starter set of GML described in this manual can be used with very complex docu
ments. It provides a variety of powerful functions, ranging from automatic number
ing of list items to generating a list of illustrations. You enter descriptive
mnemonic tags in your document, such as ":p." for paragraph and ":fig" for figure,
and SCRIPT/VS does the rest.

GML is easy to learn and use. But for many documents, you will not need the full
set of fifty tags which the starter set provides. This section will get you
started with just a few of the tags, with which you can:

1. Produced numbered ("ordered") or bulleted ("unordered") lists automatically.

2. Automatically format headings and a table of contents. And, if you want, you
can have GML number your headings using a decimal numbering system. Then, when
you add or delete information, the numbering is changed for you.

3. Format text in paragraphs aligned with the current indention level of a list.

GML functions are invoked by using the PROFILE(GDOCPROF) option of the SCRIPT com
mand. If you want automatic heading numbering, you also use the SYSVAR(H HUM)
option of the command.

GML TAGS

GML tags identify parts, or "elements," of a document. You always enter a tag at
the start of an element; sometimes (we'll tell you when) you also enter a tag to
identify when an element ends.

You can get started with just five types of tag:

:hH.

:Tl

: 1 i .

:toc

: p.

29

Identifies a heading of level H where H is 0 to 6; i.e., :hO., :h1.,
:h2., :h3., :h4., :h5., or :h6. tag. The heading should be entered ~oJith
initial capitals, and must fit entirely on the same line as the tag.

If the numbering option is requested, headings of levels 1, 2, 3, and 4
will be numbered 1.0, 1.1, 1.1.1, 1.1.1.1, 1.2, 1.2.1, 1.2.1.1, and so
on.

Identi fi es ali st of type T, where Tis the letter "0" (: 01 for ordered
list), "u" (:ul for unordered list), or "s" (:sl for simple list
neither bulleted nor numbered). You must end the list with the ":eTl"
tag, where T is the same as when you started the list.

Within a list everything is indented. You can start a new list within a
list (called a "nested" list) and it will be indented further. When you
end the nested list (with the :eTl tag), following text will return to
the level of indention of the outer list. You can nest lists for many
levels 29 but you always use the same tags regardless of the level of
nesting. You can nest different types of list (:01, :ul, and :sl) within
one another.

Identifies an item of a list. In an ordered list (:01) it will automat
ically be numbered (or lettered). In an unordered list (:ul) it will be
bulleted. In a simple list (:sl) it will be neither numbered nor
bulleted. When lists are nested, the style of numbering or bulleting
will be different for each level of nesting. (Examples are shown later.)
You should not enter the numbers or bullets yourself.

Identifies where a table of contents is to be generated. Headings of
level 0, 1, 2, 3, and 4 are included in the table of contents.

Identifies a paragraph. It will be set in block style at the current
level of indention.

Within the bounds of a single list the level of nesting cannot be more than 3
for unordered lists, 6 for simple lists, and 6 for ordered lists.

Appendix G: Getting Started with GML 151

As you can see, all tags begin with a colon (:), which is the GMl delimiter charac
ter. They all are entered at the beginning of a line. Those tags which end with a
period are followed by text on the same line. Each of the other tags is entered on
a li~e by itself.

EXAMPLES

This book was marked up entirely in GMl (except for a few control words used in
figures), so there are plenty of examples for you to look at~ And of course you can
look up any tag in the alphabetical listi'ng in "Element Tag Descriptions" on page
21 and find an 'example there. Figure 24 shows how part of the beginning of this
appendix could have been marked up with just the tags we have been discussing. In
addition, here are some examples of lists:

:p.GMl is easy to learn and use.
But for many documents; you will not need the full set of fifty tags
which the starter set provides.
This section will get you started with just a few of the tags, with
which you can:
:01
:li.Produced numbered ("ordered") or bulleted ("unordered")
lists automatically.
:li .Automatically format headings and a table of contents.
And, if you want, you can have GMl number your headings using a
decimal numbering system.
Then, when you add or delete information, the numbering is changed
for you.
:li.Format text in paragraphs aligned with the current indention
level of a list.
:eol
:p.GMl functions are invoked by using the PROFIlE(GDOCPROF) option
of the SCRIPT command.
If you want automatic heading numbering, you also use the
SYSVAR(H HUM)'option of the command.
:h2.GMl Tags
:p.GMl tags identify parts, or "elements," of a document.
You always enter a tag at the start of an element; sometimes
(we'll tell you when) you also enter a tag to identify when an element ends.
:p.You can get started with just five types of tag:

Figure 24. Example of Paragraph, list, and Heading Tags

• Here is an unorder~d list item at level one.

• And another unordered list item with enough words to ,show what a lengthy line
looks like when formatted.

1. This is item one of a first l~vel ordered list. The list was begun with the
following tag (on a line by itself):

:01

The list item above was entered on the next input line, as follows:

:li.This is item one of a first ...

2. This is item two of a first level ordered list.

a. This is item one of a second level ordered list. This nested list was
begun with the same markup as the outer list:

:01

The list item above was entered on the next input line, as follows:

:li.This is item one of a second ...

152 GMl User's Guide

c

,.

c

c

c

o

b. This is item two of a second level ordered list. It is long enough to show
the "hanging indent" formatting style.

3. This is item three of a first level ordered list.

4.

This ;s a paragraph which ;s part of the list item. It is entered after the
text of the :1;. tag, and ;s formatted at the same level of indention. It is
marked up the same way inside a list as it would be outside.

a. This is another item one of a second level ordered list.

This is a paragraph which is part of a second level list item. It is
included to illustrate how the indention is maintained.

• We can nest an unordered list within an ordered list. Like the other
lists, it begins with a list tag on a line by itself:

:ul

The list item is entered on the following line, just like the others:

:li .We can nest an unordered list ...

• Here is another unordered list item.

And of course we can nest still another unordered list within the
first one!

It was entered the same way as the previous ordered list; you
always use the same list, list item, and paragraph tags, regard
less of the level of nesti ng.

1) This is item one of a third level ordered list.

2) This is item two of a third level ordered list. This added sentence
shows how longer items are formatted.

a) This is item one of a fourth level ordered list. It was entered
the same way as ordered list items at higher levels, so we won't
show you how again.

• Here is an unordered list within a fourth level ordered list.

Of course we can have paragraphs here too.

• And as many Ii S'c items as you need.

We can even nest another unordered list if the current
item requi res "sub-bullets."

Although we are starting to use so much space for the
indention that there is'little left for text.

b) So let's go back to the fourth level.

3) And the thi rd.

b. And the second.

And back to the first!

This i s item one of a level one simple list.

This is item two of a level or 3 simple list.

This is item one of a level two simple 1 i st.

This is item two of a level two simple list.

This is item one of a level three simple list.

This is item two of a level three simple list.

Appendix G: Getting Started with'GML 153

These processing examples are interesting, but the best way to use GML is simply
to ignore processing. GML tags are not processing instructions -- they describe
the document. Just identify each document element with the tag that describes it,
and SCRIPT/VS will take care of .the processing.

OTHER FUNCTIONS

With a few more tags, you can have a title page and an appendix section. Just enter
the tags shown below. (If you want more information included on the title page --
such as your name -- see Part One of thi s manual ~) ,

:gdoc
:frontm
:titlep
:title.Enter the Title with Initial Capitals Here
:date.Enter the date here (or leave blank and GML will provide it)
:etitlep
:toc
:body
(Enter your tags and text here.)
:appendix
(Enter more tags and text if you like -- each :hl. starts
another appendix.)
:egdoc

Here's what these tags do:

:gdoc

:frontm

:titlep

:title.

:date.

:body

Identi fi es your document as a "General Document," rather than some other
type which your installation may also support.JO You must end a General
Document wi th the": egdoc" tag.

Identifies the front matter, which appears ahead of the main text. Front
matter pages are numbered with Roman numerals.

Identifies the title page. You must end the title page with the
":etitlep" tag.

Identifies the document title. Enter it entirely on the same line, with
initial capitals.

Identifies the document date. You can omit the date (but not the tag!)
and the system will supply the date.

Identifies the main portion of the document (and implicitly ends the
front matter). Page numbering starts again at page one, but in Arabic
numbers.

:appendix Identifies the appendix section (and implicitly ends the body). In the
appendix section, each :hl. tag starts a new appendix on a new page. The
words "Appendix X:" are prefixed to the heading, where X is the current
appendix letter.

The appendix section is optional. Omit the tag if the document has no
appendixes.

The full starter set also offers tags for cross-references to headings, figures,
and footnotes, and tags for emphasizing phrases. It also has tags for definition
lists, such as the one that precedes this paragraph. You'll find those other tags
-- thirty in all -- just as easy to learn as the twenty you've already learned
about.

30 With GML you can define the exact tags and processing you need for each type of
document produced at your installation. The starter set is just an example of
support for a particular type (although a very general one).

154 GML User's Guide

c

c

c

•

o

Glossary terms are defined as they are
used in this book. Element type names
and tags, attribute names and labels,
and SCRIPT command options are, for the
most part, not included in the glossa
ry. Their definitions can readily be
found in the alphabetic listing of tag
descriptions in Part One of this manu
al, and in the reference summaries in
Appendixes A and B. If you cannot find
the term you are looking for, refer to
the table of contents, the index, or to
the IBM Data Processing Glossary,
GC20-1699.

ampersand: The "&" character.

When an ampersand begins a character
string, SCRIPT/VS assumes the charac
ter stri ng is a symbol name. If the
symbol name is defined, SCRIPT/VS
replaces the symbol with its value
(unless symbol substition is off).

APF: Application processing function.

application processing function (APF):
In GML processing, the processing that

is performed when a document element or
attribute is recognized. In SCRIPT/VS,
an APF is implemented as a sequence of
control words, possibly intermixed
with text and symbols, in one of three
forms: macro definition, value of a
symbol, or imbedded file.

attribute: A characteristic of a docu
ment (or document element) other than
its type or content. For example, the
security level of a document or the
depth of a figure.

attribute label: In GML markup, a name
of an attribute that is entered in the
source document when specifying the
attribute's value.

back matter: In a book, those sections
(such as glossary and index) that are
placed after the main chapters or
sections.

balancing: In multicolumn formatting,
the process of making column depths on
a page approximately equal.

basi c document element: In a General
Document, one of a group of elements
which occur frequently. They are: note,
paragraph, paragraph continuation,
definition list, ordered list, simple
list, unordered list, address, exam
ple, figure, and long quotation.

batch environment: The environment in
whi ch non- interact i ve programs are
executed.

GLOSSARY

binding edoe: The edge of a page to be
bound, stapled, or dri lIed. Defined
with the BIND option of the SCRIPT com
mand.

body: (1) Of a pr i nted page, that
portion between the top and bottom mar
gins that contains the text. (2) Of a
book, that porti on between the front
matter and the back matter.

boldface: A heavy-faced type. Also,
printing in this type .

bug: An error in a program or in docu
ment markup.

caps: Capi tal letters. (See also
initial caps.)

caption: Text accompanying and
describing an illustration.

chapter! In a General Document, a name
given to a first-level heading segment
that occurs within the body of of docu
ment. (See also heading segment.)

character: A symbol used in printing.
For example, a letter of the alphabet,
a numeral, a punctuation mark, or any
other symbol that represents informa
tion.

Cicero: In the Didot point system, a
unit of 0.1776 inches (4.512 millime
ters) used in measuri ng typographi cal
material.

CMS: An ; nteract i ve processo r that
oPerates within VM/370.

command: A request from a terminal or
specified in a batch processing job for
the performance of an operation or the
execution of a particular program. For
example, a request given at a terminal
for SCRIPT/VS to format a document, or
for an editor to edit a line of text.

composition: The act or result of for
matting a document.

concatenation: The for~ing of an out
put line that contains as many words as
the column width allows, by placing the
first words from an input line after
the last words from the preceding input
line. When words from an input line
would reach beyond the right margin and
hyphenation cannot be performed, they
are placed at the beginning of the next
output line, and so on.

content: A primary characteristic of a
document (or element) that defines its
component parts. In markup, the content
may be immediate text, or it may con
si st of elements that are tagged
explicitly.

Glossary 155

control word: An instruction within a
document that tells SCRIPT/VS how to
process the document. (See also macro.)

control word line: An input line that
contains at least one c~ntrol word.

current I; ne: The line ina source
document at which a computer program
(such as an editor or a formatter) is
positioned for processing.

debug: To detect, trace, and eliminate
errors in computer programs and
SCRIPT/VS documents.

default value: A value assumed by a
computer program when a control word,
command, or control statement with no
parameters is processed. In GML proc
essing, the value assumed for an
attribute when none is specified.

dictionary: A collection of "word
stems" that is used with the spelling
verification and automatic hyphenation
functions.

Didot point system: A standard print
er's measurement system on which type
sizes are based. A Didot point is
0.0148 inches (0.376 millimeters).
There are 12 Didot points to a Cicero.
(See also Cicero and point.)

document: (1) A publication or other
wri tten materi al. (2) A
machine-readable collection of lines
of text or images, usually called a
source document. (See also output docu
ment and source document.)

document administrator: One who is
responsible for defining markup
convent ions and procedures for an
installation. This also involves cre
ating document type descriptions, and
specifying the processing to be per
formed on the documents.

document type: See type.

document type description: An unam
biguous record of the characteristics
of a type of document. It i ncl udes a
definition of the content structure
(formal or informal), permi tted
attribute values, allowable symbols,
and other information that will assist
in preparing GML Markup Guides and
developing APFs. (See also formal defi
nition.)

duplex: A mode of formatting appropri
ate for printing on both sides of a
sheet.

edit: To create or modify the contents
of a document or file. For example, to
insert, delete, change, rearrange, or
copy lines.

editor: A computer program that proc
esses commands to enter lines into a
document or to modify it.

156 GML User's Guide

element: A component part of a docu
ment. It is actually a document which
is part of the content of a larger
document. Bei ng a document, it has a
type and a content, and may have
attributes as well. (See also content
and structure.)

element type: See type.

em: A unit of measure for a particular
font that is equal to the point size of
that font. In a font that is not
proportionally-spaced, an em is equiv
alent to ~ character.

float: (1) (noun) A keep (group of
input lines kept together) whose
location in the output document and
printed page may vary from its location
in the source document. (2) (verb) Of a
keep, to be formatted in 'a location
different from its location in the
source file.

flush: Having no indention.

font: An a sso rtment of type, a 11 of
one size and style.

footing: Words located at the bottom
of the text area. (See also running
footing.)

footnote: A note of refe~ence, expla
nati on, ,or comment, placed below the
text of a column or page, but within
the body of the page (above the running
foot i ng).

fo reground: The env ironment in wh i ch
interactive programs are executed.
Interactive processors reside in the
foreground.

formal definition: A diagram which
uses a combination of tags, attribute
labels, and special characters to
define precisely the structure of a
document. For each type of element in
the document, it shows where the ele
ment can occur, what attributes it has,
how it isto be marked up, and the
structure of its content. (See also
document type description.)

format: (1) (noun) The shape, size,
and general makeup of a printed docu
ment. (2) (verb) To prepare a document
for printing in a specified format.

formatter:
prepares a
printed.

A computer program
source document to

that
be

front matter: In a book, those
sections (such as preface, abstract,
table of contents, list of illus
trations) that are placed before the
main chapters or sections.

Genera 1 Document: A type of document
whose description can apply to a varie
ty of documents, from memoranda to c

c

G

technical manuals. It may be used as a
"catch-a 11" category for documents
which do not conform to any other type
description.

Generalized Markup Language (GMl): A
language for describing the character
istics of a document without respect to
particular processing.

generic element: An element whose type
suggests only the structural role the
element plays in the document, rather
than the semantic role as well. Compare
the General Document "ordered 1 i st,"
for example, with a "removal
instructions" element that might be
part of a "service manual" document
type. Both suggest a numbered list, but
the second tells what it is a list of.

GMl: Generalized Markup language

GMl delimiter: A special character
that denotes the start of GMl markup.
In the starter set, it is initially a
colon (:).

GMl interpretation: Interpretation of
GML markup consists of recognizing the
start or end of an element (or an
attribute label), associating it with
an APF, and executing the APF. In
SCRIPT/VS, interpretation is performed
jointly by SCRIPT/VS itself and by
APFs.

GMl Markup Guide: A manual which
describes the markup conventions and
tags for a type (or types) of document.
As a document type, it is essentially a
General Document with some specialized
elements.

GML type: See type

graphic PSC element: A PSC element
that produces permanent formatting
effects not conveniently possible with
avai lable APFs.

hanging indention: The indention of
all lines of a block of text, following
the first line (which is not indented
the same number of spaces).

heading: Words located at the begin
ning of a chapter or section or at the
top of a page.

heading segment: An element which
begins with a heading, followed by bas
ic document elements and lower-level
heading segments.

hexadecimal: Pertaining to a number
system based tin 16, using the sixteen
digits 0, 1, ... 9, A, B, C, D, E, and
F. For example, hexadecimal IB equals
decimal 27.

highlighting: Emphasis associated
with a document element. In formatting,
highlighting is usually expressed by
changing font, underscoring, and/or
capitalizing the highlighted element.

implied paragraph structure: An ele
ment which begins with an "implied"
paragraph; that is, one for which you
do not enter a paragraph tag. The
existence of the paragraph is under
stood from the existence of the implied
paragraph structure.

indent: To set typographical material
to the right of the left margin.

indention: The action of indenting.
The condition of being indented. The
blank space produced by indenting.

initial caps: Capital letters
occuring as the first letter of each
word in a phrase. To set a phrase in
initial caps is to capitalize the first
letter of each word in the phrase.

input device: A machine used to enter
information into a computer system (for
example, a terminal used to create a
document).

input line: A line, as entered into a
source file, to be processed by a text
processor.

interactive: Pertaining to an appli
cation in which entries call forth a
response from a system or program, as
in an inquiry syst~m. An interactive
system might also be conversational,
implying a continuous dialog between
the user and the system. Interactive
systems are usually communicated with
via terminals, and respond immediately
to commands. (See also foreground.)

int~ractive environment: The environ
ment in which an interactive processor
operates.

italic: A typestyle with characters
that slant upwards to the right.

JCl: Job control language.

job control lanQuage (Jel): A language
of control statements used to identify
a computer job or describe its require
ments to the operating system. 31

job control statement: A statement
that provides an operating system with
information about the job being run.

justi fy: To insert extra blank space
between the words in an output line to
cause the last word in the 1 i ne to
reach the right margin. As a result,
the right-hand edge of each output line
is aligned with preceding and following
output lines.

31 American National Dictionary for Information Processing

Glossary 157

-------------_ .. _--_ _" __ ._-. __ .

keep: (noun) In a source document, a
collection of lines of text to be
printed in the same column. When the
vertical space remaining in the current
column is insufficient for the block of
text, the text is printed in the next
column. (In the case of si ngle-column
format, the next column is on the next
page.)

layout: The arrangement of matter to
be printed. (See also format.)

lower case: Pertaining to small let
ters as distinguished from capitals;
for example, "a, b, gIl rather than "A,
B, G."

machine-readable: Ability of data to
be acquired or interpreted by a
machine, from a storage device, from a
data medium, or from another source.

macro: An instruction in a source lan
guage that is to be replaced by a
defined sequence of instructions in the
same source language. In SCRIPT/VS, a
macro definition is a sequence of one
or more input lines that can contain
control words, symbol s, text, and GML
markup.

margin: (1) The space above, below,
and on et ther s.i de of the body of a
page. (2) The left or right limit of a
column. (See also **Figure reference
'Apage' unresolved**.)

mark up: (verb) (1) To determine the
markup for a document. (2) To insert
markup into a source document.

markup: (noun) Information added to a
document that. enables a person or
system to process it. Markup may
describe the document's character
istics, or it may specify the actual
processing to be performed. In
SCRIPT/VS, markup consists of GML tags,
attribute labels and values, and con
trol words.

markup editor: One who marks up indi
vi dua I document sacco rd i ng to an
installation's conventions and proce
dures established by the document
administrator.

normal form: The normal form of a doc
ument is that which is reflected in the
published copies, and expressed in the
document type description.

opt; on: Informat i on entered wi th the
SCRIPT command to control the execution
of SCRIPT/VS.

output device: A machine used to
print, display, or store the result of
processing.

output document: A machine-readable
collection of lines of text or images
that have been formatted, or otherwise
processed, by a document processor. The

158 GML User's Guide

output document can be printed or it
can be filed for future processing.

output line: Ali ne of text produced
by a text processor.

paginate: To number pages.

paragraph unit: An element that has
the same structure as a paragraph. In a
General Document, the paragraph units
are: paragraph, note, and paragraph
continuation.

parameter: Items of· data entered on
the same line as a control word which
govern the control word's behavior ..

part: In a General Document, a part is
a zero-level heading segment. (See also
heading segment.)

9atch PSC element: A PSC element that
1S used temporarily to modify the
normal output; for example, to prevent
a widow.

pica: A unit of about 1/6 inch used in
measuring typographical material.
Similiar to a Cicero in the Didot point
system.

point: (1) A unit of about .1/72 of an
inch used in measuring typographical
material. There are twelve points to
the pica. (2) In the Didot point sys
tem, a unit of 0.0148 inches. There are
twelve Didot points to the cicero~

process-specific controls element (PSC
element): An element which contains
control words and text which are mean
ingful for one or more processes that
will be performed on the document. PSC
el ements are the recommended con
vention for entering control words that
would otherwise disturb the generality
of a document.

profile: In SCRIPT/VS processing, a
file that is imbedded before the prima
ry file is processed. It can be used to
control the formatting of a class of
source documents. When processing GML
markup, the profile usually contains
the mapping from GMl to APFs, and the
symbol settings that define the format-

,ting style.

profi Ie PSC element: A PSC element
that supplements the profile document;
for example, by defining additional
symbols.

proportional spacing: The spacing of
characters in a printed line so that
each character is alloted a space
proportional to the character's width.

PSC element:
troIs element.

Process-specific con-

ragged right: The unjustified right
edge of text lines. (See also justify.)

c

..

reference element: In a General Docu
ment, an element whose content is a
reference to another element that is
generated by an APF. There are three:
figure reference, footnote reference,
and heading reference.

regui rp.d blank: A character that
prints as a blank, but does not act as
a word separator.

right-hand page:
when a book
odd-numbered.

The page on the right
is opened; usually

rule: (noun) A straight horizontal or
vertical line used, for example, to
separate or border the parts of a fi~
ure or box.

running footing: A footing that is
repeated above the bottom margin area
on consecutive pages (or consecutive
odd- or even-numbered pages) in the
page's body (text area).

runn i ng headi ng: A headi ng that i s
repeated below the top margin area on
consecutive pages (or consecutive odd
or even-numbered pages) in the page's
body (text area).

source document: A machine-readable
collection of lines of text or images
that is used for input to a computer
program.

space: A blank area separating words
or lines.

space unit: A unit of measure of hori
zontal or vertical space. In GMlmark
up, the em is used when a measure that
is relative to the 'current font size is
required. When an absolute measure is
required, as in specifying the depth of
a figure, recommended space units are
inches (nnI), millimeters (nnW),
picas/points (nnPnn), or Ciceros/Didot
po i nts (nnCnn) , where "nn" i s the
number of units. (See also em, pica,
point, Cicero, and Didot point system.)

starter set: An example of GMl support
that is provided with the Document Com
position Facility. It consists of a
documen.t type descri pti on for "General
Documents," a profile, and a library of
APFs.

structure: A characteristic of a docu
ment (or element) that expresses the
type and relationship of the elements
of the content. (See al so content and
element.)

symbol: A name in a source document
that can be replaced with something
else. In SCRIPT/VS, a symbol is
replaced with a character string.
SCRIPT/VS may interpret the character
string as a numeric value, a character
string, a control word, or another sym
bol.

symbol substitution: During format
ting, the replacement of a symbol with
a character string which SCRIPT/VS may
interpret as a value (numeric, charac
ter stri ng, or control word) or as
another symbol.

SYSVAR: An opt i on of the SCRIPT com
mand which permits the user to specify
values for symbols. In the starter set,
SYSVAR symbol values determine whether
certain processing variations !.-Jill
occur, such as heading numbering,
duplex formatting, and two-column
printing.

tab: (1) (noun) A preset point in the
typing line of a typewriter-like termi
nal. A preset point in an output line.
(2) (verb) To advance to a tab for
printing or typing. (3) a tab charac
ter, hexadecimal code X'OS'.

~ In GMl markup, a name for a type
of document (or document element) which
is entered in the source document to
identify it. For example, ":p." might
be the tag used to identify each para
graph.

termi nal: A devi ce, usually equi pped
with a keyboard and some kind of dis
play, capable of sending and receiving
information over a communication chan
nel.

text item: Explicitly marked
("tagged") elements that occur within
text, such as within a paragraph unit.
In a General Document, for example,
quotes and phrases are text items.

text line: An input line that contains
only text.

text programmer: One who implements
APFs that provide the processing speci
fied by the document administrator. In
SCRIPT/VS, this involves writing
SCRIPT/VS macros and organizing macro
libraries and profile files so that the
appropriate composition will be done
for each tag.

TSO: An interact i ve processo r with in
OS/VS2.

~ A primary characteristic of a
document (or ~lement) that expresses
its role or purpose. It is literally an
answer to the quest ion: "What type of
document is this?" "Type" is sometimes
referred to as "document type,"
"element type," or "Gt'1L type."

typeface: All type of a single style.
There might be several fonts (different
sizes) with the same typeface or style.

typeset: (1) (verb) To arrange the
type on a page for printing. (2) (ad
jective) Pertaining to material that
has been set in type.

Glossary 1S9

underscore: (1) (noun) A line printed
under a character. (2) (verb) To place
a line under a character. To underline.

un; que i denti fi er (10): In a General
Document, an attribute whose value
serves as a name which can be used to
refer to the element. (See also refer
ence element.)

upper case: Pertaining to capital let
ters, as distinguished from small let
ters; for example, "A, B, G" rather
than "a, b, g."

160 GML User's Guide

wi dow: A si ngle output line that is
printed in a different column from the
text with which it is associated so as
to create a typographically unaccept~
ble effect. For example, Ali ne of a
paragraph that is printed separately
from the rest of the paragraph, or a
heading that is separated from the
section it heads.

word spacing: The space between words
in a line. Also called wordspace or
interword space.

..

c

c

•

o

.ATT 14

.CM 13

.IM 13
& 12

(see also SCRIPT/VS)
lamp. 12

(see also SCRIPT/VS)
&gml. 12

(see also SCRIPT/VS)
&rbl. 12

A

(see also SCRIPT/VS)
12
(see also SCRIPT/VS)

ABSTRACT tag 23
ADDRESS tag 24
ALINE tag 25
ampersand 12
APF (see application processing
function)

apostrophes, use of 11
appendix (see elements)
APPENDIX tag 26
applications, GML 102
application processing

function (APF)
associating GML tags

with APFs 3
housekeeping functions 18

At End of Line,
explanation of 21

At End of Markup,
explanation of 21

attribute label
definition of 11
introduction 3
insertion of 14
value 11

attributes, defining 113
AUTHOR tag 27

B

back matter (see elements)
BACKM tag 28
basic document elements 6
batch processing 92
benefits of GML 101-102
BIND option of the

SCRIPT command 89
blank lines, entering 12
body (see elements)
BODY tag 29
bugs, common markup 18

c

calling in external files 13
callout, figure

(see reference)
capabilities of

SCRIPT/VS 97-99
case, entering tags

in lot.Jer 12
chapter 7 (see also segments)
characteristics of

documents and elements 105
choosing the correct
profile 17

---------._---_

CMS (see Conversational
Monitor System)

concepts, GML 101
colon as GML delimiter 12
Columns parameter of

SYSVAR option 17
command, SCRIPT 89
comments in a document,
writing 13, 15

considerations
document

design 113-117
interchange 127-128

content, GML element 21
Continue option of the

SCRIPT command 90
control, process-specific 14
control, macro (.ATT) 14
control words 3, 127
Conversational Monitor

System (CMS)
SCRIPT command example 90

creating GML guides 128-130
cross-references 9

(see also reference)
customizing GML 95, 106-109
cycle, production 18

D

data base applications 102
DATE tag 30
DCF (see Document

Composition Facility)
DD tag 31
debugging your markup 18
defining

attributes 113
markup procedures 125
tags 117

definition lists 9, 33
delimiter, GML 11
design guide, GML markup 93
describing a

figure 38-39
document type 114, 145-152

descriptions, element tag 21
explanation of

markup 106-109
determining document and

element types 106
developing GML 95
Device option of the

SCRIPT command 89
diagram, inserting a 38
DL tag 33·
DOCNUM tag 35
document

administrator duties 95-96
attributes 20
batch processing of 21
characteristics 105
data set (output) 13
design considerations 113
elements (see elements)
exchange 7
Library Facility 88
management 13
output 3
overall structure of 7
parts of 11

Index 161

processing 17
shell 18
source 8
type descriptions 145-152

DT tag 36
duplex printing 17

E

editing GML documents 87
element

PSC 14
reference 10
relationships 7

characters, words,
and sentences 5

in a General Document 7
tags 3
tag descriptions 21
type, determining 106

elements
basic document 5-6
identifying 5
major 6
paragraph unit 5
processor-specific control

(PSC) 14
entering and editing

GML documents 87
error

handling 90
messages 141

errors
markup 18
typographical 18

example, markup 8
exec files 17
explicit markup 5
extending an author's
address 25

F

Facility, Document
Composition 111

Facility, Document Library 92
FIG tag 38
FIGCAP tag 41
FIGDESC tag 42
FIGLIST tag 43
FIGREF tag 44
figure callout (see reference)
figure reference 10, 44
figures, generating

a list of 43
,File option of the

SCRIPT command 90
file-identifier 13
files

exec 17
imbedding 13
option 18
procedures 18

FN tag 45
FHREF tag 46
footnote reference 10, 46
footnotes 45
formatting, graphic 14
front matter

introduction (see elements>
segments 6

FRONTM tag 47
functions of SCRIPT/VS 97-99

162 GML User's Guide

G

GDOC tag 48
General Document

marking up 5
processing 17

(see also processing)
structure of 5

Generalized Markup
Language (GML)

benefits of 101-102
concepts 101
delimiter 11
developing or
customizing 95

documents, entering
and editing 87

interpretation 119-121
markup (see markup)
markup design guide 93
messages 141
objectives 101
processing guide 85
What is 3

generating a list
of figures 43

glossary styled list 33
GML (see Generalized

Markup Language)
graphic formatting 14
guide

H

GML markup 1
GML markup design 93
GML processing 85

HDREF tag 49
head level

markup 54-60
numbering 17

heading
references 10, 49
segments 7

highlighting
examples 9
tags 47-50

housekeeping functions
of APFs 18

how SCRIPT/VS interprets
GML 102

how to
format and produce

SCRIPT/VS documents 89
start using GML 153-157

HPO tag 50
HPI tag 51
HP2 tag 52
HP3 tag 53
hyphenation 98
HO tag 54
HI tag 55
H2 tag 56
H3 tag 57
H4 tag 58
H5 tag 59
H6 tag 60

I

identifying
document authors 27
document elements 5
footnotes 45
revisions 13

..

(
'-

c

C~

•

C,

o

illustration, inserting a 38
imbedding separate files 13
implicit markup 5
implied

P structure 6
paragraph 6

including
external files 13
notes in a document 13

inserting
attributes 14
illustrations 14

interchanging documents,
considerations for 127-128

interim processing 18
interpreting GMl 119-121
italics (see highlighting)
items, text 5

K

key, tab 12

L

label, attribute
introduction 3
rules for entering 11

II tag 61
Library Facility, Document 92
lines

blank 12
comment 15
short 12

lists
definition 9, 33
ordered 9, 66
simple 8, 76
unordered 9, 81

long quotation 64
lower case, enter tags in 12
lP tag 63
lQ tag 64

H

macro control (.ATT) 14
major elements

definition of 6-7
management, source document 13
marking up General Documents 5
marks, use of quote 11
markup

bugs 18
definition 11
editor duties 95
errors 18
example 8
explicit 5
guide 128-130
implicit 5
introduction 3
practices, recommended 12
processor specific
control 14, 72

rules 11
summary 131

Message option of the
SCRIPT command 86

messages, error 19, 141
miskeyed tags 11
modifying processing
results 14

N

nested structures 6
No Immediate Text 6
NOTE tag 65
numbering, head 17

o

objectives of GML 101
option files 18
options of the SCRIPT

command
bind 89
continue 90
device 89
file 90
message 90
print 90
profile 89
spellchk 89
sysvar 17, 89
twopass 89

OL tag 66
ordered lists 9, 66
output document 3
overall document structure 7
overstrike, do not 12

(see also highlighting)

p

P tag 68
P structure, implied 6
page layout 97
paragraph

structure, implied 6
unit 5 (see also elements)

parameters, control word 13
part 7 (see also segments)
PC tag 69
period 11
PH tag 70
practices, GML markup 12
PREFACE tag 71
preprocessor, using

SCRIPT/VS as a 97
Print option of the

SCRIPT command 90
printing

portions of the output 98
the title page 17

procedure files 18
PROCESS-NAME parameter

of SYSVAR option 17
process-specific control (PSC)

use of 14-15
tag 72

processing
batch 92
conditional 99
function (see appli~ation
processing function)

General Documents 17
GML documents 21, 89
guide, GML 85
interim 18
options of SCRIPT

command 89
results, modifying 14-15
supplementing 122
two-pass 18

produce SCRIPT/VS documents 12
production cycle 18

Index 163

profile
choosing the correct 17
how SCRIPT/VS uses 102-104
introduction to 3
what is a 121

Profile option of the
SCRIPT command 89

programmer, text 96
PSC (see process-specific

control)

Q

Q tag 75
quotation, long 64
quote marks, use of 11

R

reference
cross 9
element 10
figure 10, 44
footnote 10, 46
heading 10, 49

relationships, element 5-7
results, modifying
processing 14-15

revision
codes 98
indicating in markup 13

rules for GML markup 11

s

safeguards, APF 18
SCRIPT command

CMS example 90
options 89
TSO example 91

SCRIPT/VS
APFs 3
capabilities 97-99
control words 3, 127
documents 8
functions 3, 97-99
GML error m~ssages' 141'
interprets GML 8
introduction 3, 97
symbols 125-126
used as a preprocessor 97

security level, specifying 48
segments

front matter 6
heading 7

sharing GML documents 123
simple lists 8, 76
SL tag 76
source document 8
source document management 13
space units, recommended 11
specifying a document

date 30
author 27
document number 35

Spellchk option of the
SCRIPT command 89

spelling verification 89
starter set iii
structure

defining document
and element 109-112

General Document 5
nested 6
overall document 7

164 GML User's Guide

subroutine, using SCRIPT/VS
as a 98

summary of
GML markup 131
GML processing 139

supplementing SCRIPT/VS
processing 122

symbols, possible 125-126
SYSVAR option 17, 89

T

tab
handling 98
key, do not use 12

table of contents 97, 80
table, 'inserting a 38
tag descriptions, element 21

explanation of markup 106-109
tags

defining 117
element (introduction) 3
miskeyed 11

Term option of the
SCRIPT command 90

termination, GML markup 21
TERMTEXT/Format 102
text

items 5
programmer 3, 96
source 8

Text On Same Line 6
Time Sharing Option (TSO)

SCRIPT command example 91
title page

printing
example

TITLE tag
TITLEP tag
TOC tag 80

17
143

78
79

TSO (see Time Sharing Option)
two-pass processing

description of 89
how to avoid 18

type, GML 21

u
UL tag 81
underscore, use of 12

(see also highlighting)
unique customer
applications 102

units, paragraph 5
(see also elements)

unordered lists 9,81
usage, GML markup 21
using customized GML

markup 106-109

v

verification, spelling 89

what goes in back matter 28
what is

a profile 121
SCRIPT/VS 111, 97

words, SCRIPT/VS
control 3, 127

writing comments in
a document 13 c

X Z

c XMP tag 83 zero-level head;ng segment 7, 51

•

C
'"

I

o
Index 165

-.. --.. ~--.............. ,-------

c

c

c

•

c'

~ g
E2
c.'" 0::; :c
0''''
tllCij
Cltll
C '"
't B
o tll
'" 0. := co
co ...
E-o

tll
] E
ro E
E 5,
o ...
... tll

~£
..c 0

o~ a
'" tll
E °5
~ 00;;
.0 c
o tll ... (/)

o.tll

~ ~
co tll

~ 0.
~ e;
(/) ::l

~~
co tll
cl)a:

tll
(5
z

Document Composition Facility:

Generalized Markup Language (GML)

User's Guide

SH20-9160-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality .

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________ _

Previous TNL _______ _

Previous TNL _______ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation .

. ---------_ ... _-----_.- ._-_._-_ •... __ . -_ .. _-------

SH20·9160·0

Reader's Comment Form

Fold and Tape ... '

1111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

t •••

Fold and Tape

®
-- ------ ---- - ---- - - --------- --------------- -- . -

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

0
0
(')
c:
3
Cl)

:J
.-+

C')
0
3

"C
0
en ;:::to

" o·
:J

" Q)

n .
;:::to
-<

G)
Cl)

:J
Cl) ...,
Q)

N'
Cl)

c..
s::
Q) ...,
7\
c:

"C

r
Q)

:J

(to c:
Q)
to ,-Cl)

G)
s::
C
C
en
Cl) ...,
en-

G)
c:
c.:
Cl)

~
:J
.-+
Cl)

c..
:J

C
en
~
en
:r:
I'J
0
cD
-"
0')
0
6

c

•

o

OJ

(5
z

Document Composition Facility:

Generalized Markup Language (GML)

User's Guide

SH20-9160-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality .

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________ _

Previous TNL _______ _

Previous TNL _______ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9160-0

Reader's Comment Form

Fold and Tape
, .. .

II
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

ARMONK, N.Y.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold and Tape

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

I BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

('

0
0
(")
c:
3
CD
::J
~

(")
0
3

"C
0
en
;:;:
o·
::J

"T1
Q)

Q.
;:;:
-<

G)
CD
::J
CD
-:
Q)

N'
CD
0-

s:
Q)
-:
7\
c:

"C

r
Q)

::J

C to
c:
Q)
to
CD

G)
s:
r

C
en
CD
-:
en~

G)
c:
c:
CD

~
::J
~
CD
0-

::J

C
en
~
U)

:c
I\J
a
cb
0)
a
6

(

SH20-9 160-0

----------------- ® ---------- ------ ------- --- -- - ---- - ----- ---- -- -------- -- - -- - --- - . -
Inlernotlonal Business Machi nes CorporatIon

Datd Processing Divisio n
1133 Westchester Avenue, White Plains , N. Y. 10604

IBM World Trade Americas/ Far East Corporat Ion
Town of Mount Pleasant, Route 9 , Nor th Tarrytown , NY. , U.S.A. 10 591

I BM World Trade Europe/ Midd le East / Africa Corporation
360 Hamilton Avenue , White Plains, N.Y., U.S.A. 10601

o
o
" c
3
C1)

:::l .-.
(')
o
3
-0
o
~ . .-.
o
:::l

" OJ
c:?

N
C1)
Q.

~
OJ

'" c
-0

r
OJ

.n
c
n;

<.C
C1)

GJ
~
r

c
V>
C1) .,
",'

GJ
c
Ci
C1)

~
:::l
C1)
Q.

:::l

C
(fJ

»

(fJ

I
f\..l
o
W
en
o
6

