

Program Product

SH20-9161-0

Document Composition
Facility: User's Guide
Program Number S748-XX9

The source for this document was marked up with GML tags and SCRIPT/VS
control words, and formatted with SCRIPT/VS (program number 5748-XX9)
under the eMS component of VM/370. The output was transmitted to OS/VS2
MVS via the VM/370 Networking PRPQ (program number 5799-ATA), and printed
on the IBM 3800 Printing Subsystem. The fonts used were GT12 and GB12,
which are provided with SCRIPT/VS for use with the 3800 Printer.

This is the first edition of a new publication that applies to the IBM Document
Composition Facility program product, program number 5748-XX9.

Information in this publication is subject to significant change. Any such changes
will be published in nQW editions or technical newsletters. Before using this pub
lication, consult the latest IBM System/370 Bibliography, GC20-0001, and the tech
nical newsletters that amend the bibliography, to learn which editions and
technical newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office
that serves you.

Forms for readers' comments are provided at the back of this publication. If the
forms have been removed, comments may be addressed to IBM Corporation, P.O. Box
50020, Programming Publishing, San Jose, California 95150. All comments and sug
gestions become the property of IBM.

© Copyright International Business Machines Corporation 1978

This manual contains a description of the IBM Document Composition
(SCRIPT/VS) program product and the information necessary to use it.
operating system knowledge is required for general use of SCRIPT/VS.

PREFACE

Facility
No 'prior

The information in this publication applies equally to OS/VS1, OS/VS2 MVS, DOS/VS,
and VM/370 unless specifically stated otherwise.

Use of SCRIPT/VS in a TSO or CMS environment requires the Foreground Environment
Feature (feature number 6043 or 6044); use in a background environment requires
the Document Library Facility program product (program number 5748-XXE).

Information on the background environment is for planning purposes only until the
Document Library Facility is available.

The chapters of this publication contain:

• "Chapter 1. An Introduction to SCRIPT/VS" on page 1: A general description of
SCRIPT/VS. This chapter includes a discussion of what SCRIPT/VS is and what it
does.

• "Chapter 2. Using the SCRIPT Command" on page 13: A description of the SCRIPT
command and each of its options.

• "Chapter 3. Basic Text Processing" on page 29: A description of how to specify
basic text formatting functions, such as indention, tabs, blank space, forcing
a new page, and formatting modes. This chapter also describes some guidelines
for entering input lines in a SCRIPT/VS file.

• "Chapter 4. Defining a Page Layout" on page 51: A description of how to define
the parameters of a page, such as page length, column width, line length, and
page numbering. This chapter also describes how to have text repeated at the
top and bottom of each page: running titles, headings, and footings.

• "Chapter 5. Multicolumn Page Layout" on page 65: A description of how to
establish a multi column format for the body of a page.

• "Chapter 6. Head Levels and Table of Contents" on page 71: A description of
how to specify and modify SCRIPT/VS head levels (that is, chapter and topic
headings), and how SCRIPT/VS creates a table of contents from the head levels.

• "Chapter 7. Additional Formatting Features of SCRIPT/VS" on page 77: A
description of additional formatting features of SCRIPT/VS, including charac
ter translation, keeping text together, marking revised material, drawing
boxes, and using fonts with the IBM 3800 Printing Subsystem. This chapter also
describes footnotes, and conditional column and page ejects.

• "Chapter 8. The SCRIPT/VS Formatting Environment" on page 97: A description of
the SCRIPT/VS formatting environment.

• "Chapter 9. Conditional Processing" on page 99: A description of how to alter
the order in which input lines are processed. The techniques discussed include
conditional control words, branching, and conditional sections.

• "Chapter 10. Combining SCRIPT/VS Files" on page 105: A description of how to
combine SCRIPT/VS input files, merge input from several files, and use
SCRIPT/VS to interactively create an output document.

• "Chapter 11. Symbols in Your Document" on page 117: A description of the
SCRIPT/VS symbol processing capability: how to name symbols, store them in a
symbol library~ use system symbols, and use symbol arrays. This chapter
describes many useful applications for symbols.

• "Chapter 12. Writing SCRIPT/VS M~cro Instructions" on page 137: A description
of the SCRIPT/VS macro processing capability: how to build a macro, use sym
bols within a macro, conditionally process parts of the macro, and store
macros in a macro library.

Preface iii

• "Chapter 13. GMl Support in SCRIPT/VS" on page 145: A descr~ption of how to
name a GML tag, build an Application Processing Function (APF) associated with
the tag, and map the tag to the APF. This section should be read in conjunction
with the Document Composition Facility: Generalized Markup language (GMl)
User's Guide.

• "Chapter 14. Using SCRIPT/VS with Other Programs" on page 153: A description
of how to use SCRIPT/VS with other text processing programs, either as a post
processor used to format the output of another program, or as a preprocessor
used to prepare SCRIPT/VS files for input to another text processing program.

• "Chapter 15. Automatic Hyphenation and Spelling Verification" on page 157: A
descripticon of the SCRIPT/VS dictionary and how SCRIPT/VSuses it for automat
ic hyphenation and spelling verification. This chapter also describes how to
build an addenda dictionary, used to supplement the SCRIPT/VS dictionary.

• "Chapter 16. Diagnostic Aids" on page 163: A description of how to identify
errors in your input file and correct them. This chapter includes a
description of the SCRIPT/VS input substitution trace facility, which enables
you to observe the results of SCRIPT/VS processing at various points as your
input file is being processed.

• "Chapter 17. EasySCRIPT" on page 171: A description of EasySCRIPT functions
and usage.

• "Chapter 18. Compatibility with SCRIPT/370" on page 177: A description of the
similarities and differences between SCRIPT/VS and SCRIPT/370.

• "Chapter 19. ATMS - I I Conver s ion" on page 187: A descr i pt i on of the A TMS- I I
Conv~rsion program provided with SCRIPT/VS for use with the Document Library
Facility.

• "Chapter 20. Compatibility with TSO/FORMAT" on page 197: A description of the
similarities and differences between SCRIPT/VS and TSO/FORMAT.

• "Chapter 21. SCRIPT/VS Control Word Descriptions" on page 199: A detailed
description of each SCRIPT/VS control word: its format, parameters, usage
notes, and examples of use.

• "Appendix A. SCRIPT/VS Summary" on page 297: A summary of SCRIPT/VS: file
names, SCRIPT command parameters, control words, system symbols, special
characters, character sets, and 3800 Printer fonts.

• "Appendix B. Device and Font Table Maintenance" on page 323: A description of
how to define a new logical output device or new font to SCRIPT/VS.

• "Appendix C. Font~ Supplied with SCRIPT/VS" on page 329: An illustrated list
of the fonts provided with SCRIPT/VS for use with the 3800 Printer

• "Appendix D. Formatting Considerations for the 3800 Printer" on page 337: A
description of the use of SCRIPT/VS with the 3800 Printer.

REQUIRED PUBLICATIONS

• Document Composition Facility: General Information, GH20-9158. This manual
provides a general description of the SCRIPT/VS program product and supplies a
s~mmary of its functions and capabilities. It contains the requirements for
installation as well as the storage estimates.

• Document Composition Facility: Generalized Markup Language (GMl) User's
Guide, SH20-9160. This manual is for all users of the Document Composition
Facility. It describes the use of the starter set of Generalized Markup lan
guage tags provided with SCRIPT/VS, how to analyze documents in preparation
for the creation of new GML tags and APFs, and how to use the Document Compos
ition Facility to process them.

i v Document Composi ti on Faci Ii ty: User's Gui de

RELATED PUBLICATIONS

• Document library Facility: General Information, GH20-9163. This manual intro
duces the related program product Document Library Facility.

• Document library Facility Guide. This manual explains how to set up, use, and
maintain the library. It also explains how to call SCRIPT/VS as a subroutine,
and how to convert an ATMS-II data set into a SCRIPT/VS input file.

• Doc u men teo m po sit ion Fa c iii t y : D i a 9 nos tic Pro c e d u res and Log i c 0 v e r view,
LY20-8067. This manual is licensed; that is, it remains the property of IBM
and is provided under the terms of the licensing agreement for the Document
Library Facility. It is for IBM service personnel and customers who diagnose
programming errors.

• Document Composition Facility: User's Quick Reference, SX26-3723. This refer
ence card summarizes the SCRIPT command, the SCRIPT/VS language, and other
facilities of SCRIPT/VS.

• Document Composition Facility: GML Quick Reference, SX26-3719. This reference
card summarizes the GML starter set and how to use SCRIPT/VS in each interac
tive environment.

• IBM Virtual Machine Facilitv/370: Introduction, GC20-1800. This manual con
tains an introduction to CMS (the Conversational Monitor System) which is one
of the interactive systems in which SCRIPT/VS operates. Other manuals that
include detailed information about CMS are:

IBM Virtual Machine Facility/370: CP Command Reference for General Users,
GC20-1820.

IBM Virtual Machine Facility/370: CMS User's Guide, GC20-1819.

IBM Virtual Machine Facility/370: CMS Command and Macro Reference,
GC20-1818.

IBM Virtual Machine Facility/370: Terminal User's Guide, GC20-1810.

• OS/VS2 TSO Terminal User's Guide, GC28-0645. This manual gives detailed user
information about OS/VS2 TSO (Time Sharing Option), which is one of the inter
active systems in which SCRIPT/VS operates. It describes the TSO EDIT command
and related facilities for text entry and editing and for text data set man
agement. Other manuals that include detailed information about TSO are:

OS/VS2 TSO Command language Reference, GC28-0646.

OS/VS2 TSO Command languaoe Reference Summary, GX28-0647.

• Introducing the IBM 3800 Printing Subsystem and Its Programming, GC26-3829.
This manual provides general information about the 3800 Printer. It describes
what the 3800 Printer ;s and provides information about the standard and
optional features available for the 3800 Printer. Another manual that includes
detailed information about programming for the 3800 Printer is:

IBM 3800 Printing Subsyste~ Programmer's Guide, GC26-3846.

Preface v

Chapter 1. An Introduct;on to SCRIPT/VS
Generalized Markup Language

How SCRIPT/VS Works
Control Words and Their Parameters

Defaults and Initial Settings
SCRIPT/VS Input File Characteristics
Logical and Physical Output Devices
Vertical and Horizontal Space Units .
Fonts (IBM 3800 Printing Subsystem Only)
Calling the SCRIPT/VS Processor

In a Batch Environment
In an Interactive Environment
Using SCRIPT/VS as a Subroutine
Using SCRIPT/VS as a Preprocessor

When To Use SCRIPT/VS Control Words
Selecting Control Words

SCRIPT/VS Functions
Formatting Functions

Page layout
Head Levels
Table of Contents
Highlighted Phrases
Footnotes
Hyphenation and Spelling Verification
Printing Part of the Output Document
Tabs
Boxes
Documents Marked up for SCRIPT/370 ..•..
Keepi ng Text Together

General Document Handling Functions
Saving Input lines for Subsequent Processing
Ident i fyi ng Updated Materi al .••..
Imbeddi ng Separate Fi les
Processi ng Symbols and Macros•..
Process; ng Input Condi t i onally
Processing Interactively During Formatting
Specifying the Destination of Output
Converting ATMS-II Documents•.
Debugging by Tracing Processing Actions

Chapter 2. Us;ng the SCRIPT Command
Nami ng the Input Fi Ie

CMS Naming Conventions
TSO Naming Conventions

SCRIPT Command Options
Defaults
Mutually Exclusive Options
Logi cal and Physi cal Output Devi ces

Examples
BIND: Shift the Page Image to the Right
CHARS: Speci fy Fonts
CONTINUE: Continue Processing After a Nonsevere Error Occurs
DEST: Name a Remote Output Station
DEVICE: Specify a Logical Output Device
DUMP: Enable the .ZZ Control Word
FILE: Name a Disk File for Output
LIB: Specify Symbol and Macro Libraries
MESSAGE: Control Message Printing
NOPROF: Suppress the Profi Ie
NOSPIE: Prevent Entering SPIE Exit Routines
NOWAIT:, Prevent Prompting for Paper Adjustment
NUMBER: Print the File Name and line Number
OPTIONS: Name a File That Contains Options
PAGE: Selectively Print Pages
PRINT: Produce Pri nter Output
PROFILE: Specify a Profile
QUIET: Suppress the Formatter's Identifier Message
SEARCH: Specify a Library
SPEllCHK: Enable the .SV Control Word
STOP: Print Separate Pages at the Terminal
SYSVAR: Set System Variable Symbols

Contents

1
3
3
3
4
4
4
5
6
6
6
7
7
7
7
8
8
8
8
8
9
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
11
11
11

13
13
13
14
14
16
16
17
17
17
17
18
19
19
19
19
21
22
23
23
23
23
23
24
25
25
26
26
26
26
26

TERM: Display the Output at the User's Terminal •.•••
TWOPASS: Prepare the Document With Two Formatting Passes
UNFORMAT: Print All Input Lines Without Formatting
UPCASE: Print Lowercase Letters as Uppercase• . •.•

Chapter 3. Basic Text Processing
GML Markup and Control Words
SCRIPT/VS Text Formatting

Format Mode
Ragged Right
Concatenate Mode

SCRIPT/VS Implicit Formatting Conventions
Using Tabs In SCRIPT/VS

Setting Tabs
Some Uses for Tabs
Tab Fill Characters

Breaks
Changing the Margins

Simple Indention ..
Indenting a Single Line
Offsetting Text . .
Using Indention with Tabs

Vertical Space
Line Spac i ng

Positioning Lines on the Page
Underlining and Capitalizing
For c i n g aNew P age

Specifying the Odd or Even Page
Spec i fy i ng Page Ej ect Mode

Guidelines for Entering Text and Control Words In SCRIPT/VS
Start All Input Lines In Column One
Avoid a Text Period In Column One
Remember Which Control Words Cause Breaks
Group the SCRIPT/VS Control Words

Redefining the Control Word Separator
Comments in SCRIPT/VS Documents

Two Kinds of Comment ..•.

chapte~ 4. Defining a Page Layout
Basic Page Dimensions

Changing the Page Length
Chang i ng the' Line Length .

Top and Bottom Running Titles
Multiline Running Titles

Allocating Space For Running Titles
Running Title Defaults

Running Headings and Footings'
Page Numbers In Headi ngs and Foot i ngs
Where To Define Headings, Footings, and Running Titles

A Heading on Page One
Page Numbers•..

Decimal Page Numbers
Roman Numeral Page Numbers
Alphabetic Page Numbers
Prefixes for Page Numbers

Chapte~ S. Hulticolumn Page Layout
Defining Multicolumn Layout

Page Sections and Section Breaks
Column Positions
Column Wi dth
Starting a New Column ...•.

Suspending and Resum;ng Multicolumn
.
Processing

Chapte~ 6. Head Levels and Table of contents
Characteristics of Head Levels

Spacing and Page Ejects
Defining Head Levels

The Table of Contents .•..•
Adding Lines to the Table of Contents

Like Th i s One •....
Printing the Table of Contents
TWOPASS Considerations

viii Document Composition Facility: User's Guide

27
27
28
28

29
29
29
29
30
31
31
32
32
33
33
34
35
36
37
38
39
40
41
42
44
45
46
46
46
47
47
47
48
48
49
50

51
51
53
53
54
55
57
59
59
61
62
62
62
62
63
63
63

6S
65
66
67
68
69
69

71
71
72
73
73
74
74
74
75

Chapter 7. Additional Formatting Features of SCRIPT/VS
Using Special Characters•.......•

Input Character Translation•.
Character Translation For Terminal Output
Defining Special Characters That Affect SCRIPT/VS Processing
The Continuation Character

Ensuring That Blocks of Text Stay Together
Footnotes
Starting Text at the Top of a Page or Column .•..•

Cond; t i onal Column and Page Ej ects
Marking Updated Material
Drawi ng Boxes•.

Stack i ng one box on another
Drawing a box within a box
Drawing the middle portion of a box within another (larger) box
Drawing boxes in a horizontal row
Drawing the top line (only) of a box
Drawing the middle portion of a box (without top or bottom lines)
Drawing the bottom line (only) of a box ...•.......

Using Fonts With the IBM 3800 Printing Subsystem

Chapter 8. The SCRIPT/VS Formatting Environment
Parameters That Define the Formatting Environment

The Keep Environment
The Footnote Environment•....•.

Saving and Restoring the Current Formatting Environment

Chapter 9. Conditional Processing •••••••
The .IF Control Word

Special Techniques for Conditional Processing
Conditional Sections
Conditional Processing With Symbols

Chapter 10. Combining SCRIPT/VS Files ••••
Imbedding and Appending Files

Naming the File To Be Imbedded or Appended
Master Fi les•.......•

Writing To an Output File .•.........
Several .WF Files•....

Delaying the Imbedding of Input Text
Terminating the Formatting of a File
Mergi ng Documents From Several Sources

Creating a Customized letter For Mass Mailing
Interactive SCRIPT/VS Processing

Communicating With VM/370 .•..
Communicating With TSO ...••.

Chapter 11. Symbols in Your Document ••••••
How SCRIPT/VS Substitutes Values For Symbol Names

Compound Symbols
Unresolved Symbols
GMl Tags
Inhibiting Substitution ..•..
Cancell i ng a Symbo 1
Attri butes of a Symbol's Value ..•.

Symbol and Macro I:. ibrari es
SCRIPT /VS System Symbol s

Symbols for the System Date and Time
Elaborating the System Date ...•

Symbols for SCRIPT/VS Control Values
The &$RET Special Symbol

Passing Parameters To Input Files .
Sett i ng Symbol s With the SCRIPT Command ...•.•
Symbols Set When a File Is Imbedded or Appended
Symbols Set When a Macro Is Processed

Some Things You Can Do With Symbols
Setting the Current Page Number ..••.
Numbering Figures

Prefixes and Suffixes For Figure Numbers
Extended Symbol Processing
Symbols for Arrays of Values

Controlling the Array Elements
Accessing the Index Counter
Setting the Index Counter

Contents

77
77
78
81
81
82
82
84
85
85
86
87
90
91
92
92
92
93
94
94

97
97
97
98
98

99
99

100
102
104

lOS
105
106
107
108
109
110
110
111
111
112
114
115

117
119
119
120
120
121
122
122
125
126
126
127
128
128
129
129
129
130
131
131
131
133
133
134
134
135
135

ix

Chapter 12. writing SCRIPT/VS Macro Instructions
When Should You Use Macros?
How To Defi ne a Macro

Macro Naming Conventions
local Symbols for Macros
Redefining SCRIPT/VS Control Words

Avoiding an Endless loop•.......
How Values Are Substituted For Symbols Within a Macro Definition
Redefining SCRIPT/VS Formatting Conventions

Processing Input lines That Are Empty•...
Processing Input lines That Begin With a Blank or a Tab

Speci fyi ng a Macro library

Chapter 13. GHL Support in SCRIPT/VS
The Role of a Document Profile
Creating Your Own Profiles
GMl Tag to APF Mappi ng ..•..

APFs for Text Items .•....•..
Symbols Wi thi n Starter Set APFs
Starter Set Macros for Attribute Processing
Use of the .LI [literal] Control Word
Debugging Your APFs•....

Chapter 14. Using SCRIPT/VS with Other Programs
Using SCRIPT/VS as a Postprocessor
Using SCRIPT/VS as a Preprocessor

Developing Preprocessor APFs and Profiles
Redefining Symbols
Handling Directly Entered Control Words

Source Document Management ..
Modifying Unpredictable Processing Results
Speci al Graphi c Effects

Prepari ng for Processi ng

Chapter 15. Automatic Hyphenation and Spelling Verification
How Automatic Hyphenation Works

Altering the Hyphenation Parameters
Hyphenating Single Words
How.Spelling Verification Works
The SCRIPT/VS Dictionary

The Main Dictionary
The Addenda Dictionary
Building an Addenda Dictionary
Stem Process i ng

Prefixes Removed from Words
Suffixes Removed from Words

Fallibility

Chapter 16. Diagnostic Aids •• • •••
Debugging With the SCRIPT Command

CONTINUE: Continue Processing After an Error Occurs
DUMP: Enable the .ZZ [Diagnostic] Control Word
MESSAGE: Control Information in Error Messages
NOSPIE: Prevent Entering SPIE Exit Routines
NUMBER: Print the File Name and line Number
PAGE: Selectively Print Pages
SPELlCHK: Verify Spelling
TWOPA~S: Provide Two Formatting Passes •...
UNFORMAT: Print All Input Lines Without Formatting

Control Words to Assi st Debuggi ng ..•.....
Spell i ng Veri fi cat; on
Displaying the Sequence of SCRIPT/VS Processing

The Output Line Generated by Input Tracing ..•.
Capabi Ii ti es of the. IT Control Word••.
Stepping through an Input Trace•.
Using Terminal Entry to Test a Control Word Sequence

Putt i ng Messages In Macros
Displaying Control Blocks

Chapter 17. EasysCRIPT
EasySCRIPT Tags

EasySCRIPT Formats
Headings•....

Setting the Heading Counter
EasySCRIPT Heading Defaults

x Document Composition Facility: User's Guide

137
137
137
138
138
140
141
141
142
142
142
143

145
145
145
146
146
147
149
149
150

153
153
153
154
155
155
155
156
156
156

157
157
157
157
158
158
159
159
160
160
161
161
161

163
163
163
163
163
164
164
164
164
164
165
165
165
165
165
166
167
169
170
170

171
171
172
172
173
173

Cross-References to EasySCRIPT Headings
Examples of EasySCRIPT Formatting
Paragraphs
Automatic Item Numbering
Unnumbered lists
Bullets ..•..•.•..
Tables of Contents

Chapter 18. compat;b;l;ty w;th SCRIPT/370
Changes to the SCRIPT Command
Changes to SCRIPT/370 Control Words
The SCRIPT/370 Dictionary

Chapter 19. ATMS-II Convers;on ••••••••
Converting ATMS-II Documents To SCRIPT/VS Format

Conversi on Techni que
Non-Format Command Conversion
Formatting Control Conversion

ATMS Control - SCRIPT/VS Macro Relationship

Chapter 20. compat;b;l;ty w;th TSO/FORMAT ••
Creating a TSO/FORMAT Compatible Environment
The SCRIPT Command in TSO

Chapter 21. SCRIPT/VS Control Word Descr;pt;ons
Control word syntax

Macros
The control word modifier
Type 1 control words
Space un its

Notational conventions
[Set label]

.AP [Append]•

.BC [Balance Columns]

.BF [Begin Font]

.BM [Bottom Margin]

.BR [Break]

.BT [Bottom Title]

.BX [Box] ..•.

.CB [Column Begin]

.CC [Conditional Column Begin]

.CD [Column Definition]

.CE [Center]

.Cl [Column Width]
· CM [Comment]
· CO [Concatenate Mode]
.CP [Conditional Page Eject]
.CS [Conditional Section]
.CW [Control Word Separator]
.DC [Define Character]
.DD [Define Data File-id]
.DH [Define Head level]
.DI [Delay Imbed]
.DM [Define Macro]
· DS [Doubl e Space Mode]
.DU [Dictionary Update]•
.EB [Even Page Bottom Title]
.EC [Execute Control]
.EF[EndofFile]••..
.EM [Execute Macro]
.EP [Even Page Eject]
.ET [Even Page Top Title]
.EZ [EasySCRIPT] .
.FM [Footing Margin]
.FN [Footnote]
.FO [Format Mode]
.FS [Footing Space]
.GO [Goto]
.HM [Heading Margin]
.HN [Headnote]
.HS [Heading Space]
.HW [Hyphenate Word]
· HY [Hyphenate] •••••.
.HO - .H6 [Head Level 0 - 6]
.IF [If]•..••.

Contents

173
174
174
174
175
175
175

177
177
178
181

187
187
187
188
189
194

197
197
197

199
199
199
199
199
200
200
202
203
204
204
205
206
206
207
209
209
210
211
212
212
213
214
214
215
217
219
221
222
223
225
226
227
227
228
229
230
230
231
232
233
234
235
236
237
237
238
239
239
240
241

xi

[Indent Line]
[Imbed]
[Indent] ..•.
[Indent Right]
[Input Trace]
[Just i fy Mode]
[Keep] '.

.IL

.IM

. IN

.IR

.IT

.JU

.KP

.LB
• L I
.LL
. lS
. LT
. l Y
.MC
. MG
.MS
. NL
.OB
.OC
. OF
. 0P
.OT
.PA
.PF
. Pl
.PN
.PP
.PS
.PT
.QQ
. QU
.RC
.RD
.RE
.RF
.RH
.RI
.RT
.RV
. SA
.SC
.SE
.SF
.SK
.SL
.SP
.SS
.SU
.SV
.SX
.SY
.TB
.TC
.TE
.TI
.TM
.TR
.TT
.TY
.UC
.UD
.UN
.UP
.US
.WF
.ZZ

[Leading Blank]
[Literal]
[Line length]

... : :~:--~
[line Spacing]
[leadi ng Tab]•...
[Library] ...
[Multi column Mode]
[Message]
[Macro Substitution]
[Null line]•.
[Odd Page Bottom Title]
[Output Comment]
[Offset]
[Odd Page Eject] .
[Odd Page Top Title]
[Page Eject]
[Previous Font]
[Page length]
[Page Numbering Mode]
[Paragraph Start]
[Page Number Symbol]
[Put Table of Contents]
[Quick Quit]
[Quit]
[Revision Code]
[Read Terminal]
[Restore status]
[Running Footing]
[Running Heading]
[Right Adjust]
[Running Title]
[Read Variable]
[Save Status] ..
[Single Column Mode]
[Set Symbol]
[Save Font]
[Skip]
[Set Line Space]
[Space]
[S i ngl e Space Mode]
[Subst i tute Symbo 1] . ..• .
[Spelling Verification] .•••
[Split Text] ••.
[System Command] . • ••.
[Tab Setting] .•••
[Table of Contents] .•..
[Terminal Input]
[Translate Input]
[Top Margin] .
[Translate Character]
[Top Title]
[Type on Terminal]
[Underscore and Capitalize]
[Underscore Definition]
[Undent] .•..
[Uppercase]
[Underscore]
[Wri te To Fi Ie]
[Diagnostic]

Append;x A. SCRIPT/VS Summary

Append;x B. Dev;ce and Font Table Ha;ntenance
Updating a Logical Device Table (LOT)
LOT Fi eld Descri pt; ons•.•..
Default Values for Logical Output Devices

Font Table Ma; ntenance ...•• • ••.
Updat i ng the Font Tabl e (FTB) .••..•

xii Document Composition Facility: User's Guide

243
244
245
246
246
248
248
250
251
252
252
253
253
254
255
256
256
257
257
258
259
259
260
261
261
262
264
264
265
266
266
267
268
268
269
270
271
272
273
274
274
275
278
278
279
279
280
280
281
282
283
284
285
286
287
287
288
289
290
290
291
292
293
294
295
296

297

323
323
323
325
325
325

FTB Field Descriptions •.•...•...•
Fonts Provided With SCRIPT/VS
3800 Printer Fonts Supported By SCRIPT/VS

Appendix O. Fonts Supplied with SCRIPT/VS

APpendix D. Formatting Considerations for the 3800 Printer
Font Management .•.•...•....
Tab, Backspace, Underscore Resolution
Interword Space
Revi si on Code Characters .•..
1n1ine Space Management
Box Processi n9 ..•••.•. ..
Formatter Escape Character

Glossary

Index

326
327
327

329

337
337
338
338
339
339
340
341

343

351

Contents xi i i

LIST OF ILLUSTRATIONS

Figure 1. SCRIPT Option Scan Order for non-TSO Systems
Figure 2. Summary of SCRIPT Options (Part 1 of 2)
Figure 3. Logical Output Device vs. Output Destination
Figure 4. SCRIPT/VS Logical Device Characteristics
Figure 5. Data Set Hame Qualification in TSO•
Figure 6. How the Current Margins Are Established
Figure 7. SCRIPT/VS Terms for Parts of the Page
Figure 8. Summary of Default Head Level Characteristics
Figure 9. Imbedding and Appending SCRIPT/VS Files
Fi gure 10. Master Fi Ie Structure
Fi gure 11. Result of the Customi zed Form Letter
Figure 12. APF for List Items
Figure 13. SCRIPT/370 Command Option Compatibility (Part 1 of 2)
Figure 14. Changes to SCRIPT/370 Control Words (Part 1 of 4)
Figure 15. Hew Control Words
Fi gure 16. Obsolete Control Words
Figure 17. Character Codes Regcognized by ATMS-II Conversion
Figure 18. ATMS-II Controls to SCRIPT/VS Symbols Conversion
Figure 19. Unsupported TSO/FORMAT Control Words
Fi gure 20. Index to SCRIPT/VS Summary
Figure 21. SCRIPT/VS Terms for Parts of the Page
Figure 22. File-id's of SCRIPT/VS Utility files
Figure 23. Summary of SCRIPT Options (Part 1 of 2) ...
Figure 24. SCRIPT/VS Control Word Summary (Part 1 of 10)
Fi gure 25. Control Words That Cause a Break
Figure 26. Control Words That Take Effect On the Hext Page
Figure 27. Control Words That End a Keep, Running Heading or Footing, or

Footnote
Figure 28. Control Words Within a Running Heading or Footing
Figure 29. Control Word Values Based On the Logical Device
Figure 30. SCRIPT/VS Logical Device Characteristics
Figure 31. Summary of Head Level Characteristics
Figure 32. The SCRIPT/VS Formatting Environment ...••.
Figure 33. SCRIPT/VS System Symbol Hames (Part 1 of 2)
Figure 34. Attributes of a Symbol's Value•.......
Figure 35. Characters that Delimit Words for Spelling Verification
Figure 36. Characters Hot Underscored By Default
Figure 37. TN Translate Table For the 1403 Printer
Figure 38. Fonts Provided With SCRIPT/VS
Figure 39. Fonts Supplied With the 3800 Printer
Figure 40. Example of a Font Width Table
Figure 41. Fonts Provided With SCRIPT/VS
Figure 42. SCRIPT/VS Fonts: Gothic Text
Figure 43. SCRIPT/VS Fonts: Serif Text ..
Figure 44. SCRIPT/VS Fonts: Gothic Highlight
Figure 45. SCRIPT/VS Fonts: Serif Highlight ...
Figure 46. SCRIPT/VS Fonts: Gothic Special Purpose
Figure 47. SCRIPT/VS Fonts: Serif Special Purpose
Figure 48. Justification Alignment Error for 3800 Printer Output
Figure 49. How the Current Margins Are Established

List of Illustrations

14
15
18
20
21
35
52
72

106
108
113
154
177
182
186
186
194
195
197
297
298
299
299
301
311
311

312
312
313
313
314
315
316
318
319
319
320
320
321
326
329
330
331
332
333
334
335
341
343

xv

CHAPTER 1. 'AN INTRODUCTION TO SCRIPT/VS

SCRIPT/VS is a text processing program that executes in:

• An interactive environment under:

The Conversational Monitor System (CMS), of the IBM Vir
tual Machine Facility/370 (VM/370).

The Time Sha ring Opt ion (TSO) of OS/VS2 MVS.

Use of SCRIPT/VS in the interactive environments requires the
Foreground Environment Feature of the Document Composition
Facility.

• A batch processing environment under:

OS/VSl

OS/VS2 MVS

DOS/VS

Use of SCRIPT/VS in the backgound batch environments requires
the Document Library Facility.

SCRIPT/VS formats text for printing on terminals, impact print
ers, or non-impact printers. SCRIPT/VS provides flexible compos
ition for printing on a computer printer as an alternative to
independent typesetting machines or sending typesetting jobs to
an outside vendor.

SCRIPT/VS can also be used as a "preprocessor" to prepare docu
ments for processing by other programs, such as formatters that
support photocomposers.

When you use SCRIPT/VS with CMS, you need to be able to do the
following:

• Log on and enter CMS commands.

• Create and edit files using a CMS Editor.

• Manage CMS disk storage.

For more information about VM/370, see:

VM/370 Terminal User's Guide

VM/370 CMS User's Guide

When you use SCRIPT/VS with TSO, you need to be able to do the
following:

• Log on and enter TSO commands.

• Create and edi t fi les usi ng a TSO Edi tor.

• Manage TSO disk storage.

For more information about TSO, see:

OS/VS2 TSO Terminal User's Guide

OS/VS2 TSO Command language Reference

When using SCRIPT/VS in a batch environment, input can come from:

• Files created by the TSO, CMS, or VSPC editors

• A word processing system attached to the host system via a
telecommunications network

Chapter 1. An Intrriduction to SCRIPT/VS 1

• A user-written program that calls SCRIPT/VS as a subroutine

A text processing program reads non-structured input data con
taining text and control information, formats the data into
pages, and produces formatted output on a system printer or other
suitable output device.

Information that may appear in the SCRIPT/VS input file includes:

• "text," which is th~ content of the document.

• "symbols," which are character strings starting with an
ampersand (&l that are resolved to a different character
string when the line is processed. The new string may be text,
another symbol, or control information. For example, in this
document the symbol "&3800" resolves to "3800 Printer."

• "control words," which are two-letter codes that are recog
nized when the first character in the input line is a period
c.). For example, to cause a page eject ".PAn is specified in
column one of an input line.

• "macros," which are groups of control words having unique
names that are themselves treated as control words. A macro is
defined using the Define Macro (.DM) control word. For exam
ple, the ".XX" macro could be defined to contain a ".NL" con
trol word followed by a ".PA" control word. Anytime the" .XX"
macro is processed, the ".NL" and ".PA" control words are sub
stituted and processed as though they were the next two input
lines.

• "GML markup," which uses "tags" to identify the associated
text as a particular type, such as paragraph or heading. GML
stands for "General i zed Markup Language." The General i zed
Markup Language provides a syntax and usage rules for marking
up a document, and allows you to develop a vocabulary of tags
for describing your own documents. A tag is identified by the
GML delimiter, which is by default the colon C:), anywhere in
an input 1; ne. For exampl e, in the GML starter set prov i ded
with SCRIPT/VS, ":p" identifies a paragraph.

To "mark up" a source document is to add information to it that
tells the SCRIPT/VS system to process it in some specific way. The
added information or "markup," is typically GML tags or control
words.

Normally, a SCRIPT/VS input file is a sequential file on direct
access storage that can be modified using an editing program.

SCRIPT/VS can process the file and produce formatted output that
reflects changes to the text or markup.

SCRIPT/VS knows the width and depth of the output page. It fills
up a page with text, then begins printing a new page automat
ically. It continues processing until it reaches the end of the
input data.

Many text processing programs can do these things. SCRIPT/VS,
however, offers additional flexibility in the following forms:

• SCRIPT/VS data files are independently maintained. Any editor
that can produce files in the form required by SCRIPT/VS may
be used to create or modify these files.

• SCRIPT/VS can combine many input files to produce a single,
integrated output document. The imbedded files can be
arranged in any sequence. While they are being processed,
SCRIPT/VS treats each input file as though it were part of a
single continuous input file.

• SCRIPT/VS has high-level macro and symbol capabilities. With
SCRIPT/VS you can define your own control words, or GML tags,
conditionally process text, perform variable symbol substi
tutions, and do integer arithmetic.

2 Document Composition Facility: User's Guide

• New SCRIPT/VS users can become productive quickly, because
the control words and GML tags are easy to use.

GENERALIZED MARKUP LANGUAGE

GML provides the syntax and usage rules for developing your own
vocabulary of "tags" for descrt bi ng the parts, or "elements," of a
document, without respect to particular processing. With GML tags
you can describe the type of element; you can also enter "attri
bute labels" to describe other characteristics of an element.

The following example of GML markup describes an element whose
type is FIG (figure), and which has a DEPTH attribute of 2.5
inches:

:fig depth='2.5i'

Since GML markup does not specify processing, it must be inter
preted before any processing can occur. In GML, "interpreting"
markup means performing the correct application processing func
tion (APF) on the element the markup describes. In SCRIPT/VS, APFs
are implemented as sets of control words, in the form of a macro
definition, a symbol value, or a file to "be imbedded. The associ
ation, or "mapping," between the GML markup and the APFs is usual
ly made in a document called a "profile," which is processed by
SCRIPT/VS before the file marked up in GML is processed.

Information on GML markup is contained in the Document
Composition Facility: Generalized Markup Language (GML) User's
Guide. This manual explains the control words which invoke the
actual processing, and the symbol and macro facilities that ena
ble you to create APFs and profiles.

HOW SCRIPT/VS WORKS

CONTROL WORDS AND THEIR PARAMETERS

A SCRIPT/VS control word is identified by a period in column one
of the input line, except when the .LI (Literal) control word
specifies that a period in column one should be regarded as text.
A ".*" at the start of an input line identifies a comment line.
Comment lines do not appear in the output.

Each input line identified as a control word is scanned from left
to right for a control word separator, usually a semicolon (j). If
found, the control word to the left of the semicolon is processed;
the character string to the right of the semicolon (which might be
another control word) is saved. This process is repeated until the
input line is completely scanned. For example,

.paj.sp .5i

will cause a page eject (.PA) followed by a space for one-half
inch (.SP).

Control words may have numeric or keyword parameters that further
qualify the action to be performed. For example, the .CE (Center)
control word accepts the keywords "ON" or "OFF" and is specified
as follows:

.ce on

The .SP (Space) control word accepts numeric parameters and is
specified as follows:

.sp 2;

Some control words that accept keyword parameters also accept
numeric parameters. The .CE (Center) control word also allows you
to specify a number of input lines to center. For example,

.ce 10

Chapter 1. An Introduction to SCRIPT/VS 3

Each control word description lists the parameters that it
accepts. See "Chapter 21. SCRIPT/VS Control Word Descriptions" on
page 199 for deta; Is.

Defaults and Initial Settings

SCRIPT/VS can format an input file without any control words or
GML tags specified. In this case, the initial settings for page
dimensions and formatting control are used. The initial settings
are associated with the logical output device specified with the
DEVICE option of the SCRIPT command.

Each control word description includes initial setting and
default values.

SCRIPT/VS INPUT FILE CHARACTERISTICS

SCRIPT/VS input files have the following default characteristics:

• In a CMS environment,

filetype of SCRIPT

variable-length records, with a maximum of 132 bytes

uppercase and lowercase letters, numbers, and special
characters

Normally, any CMS editor will create files of appropriate
format for filetype SCRIPT.

• In a TSO environment,

data set organization of PO or PS

fixed or variable-length records, blocked or, unblocked,
with a maximum of 132 bytes

uppercase and lowercase letters, numbers, and special
characters

record content with or without line numbers. If the input
line is numbered:

A variable-length record has the line number in posi
tions 1 to 8 of each record.

A fix~d-Iength record has the line number in the last
eight positions.

Normally, any TSO editor will create files of appropriate
format.

• For input file characteristics in a batch environment, see
Document Library Facility Guide.

LOGICAL AND PHYSICAL OUTPUT DEVICES

When SCRIPT/VS formats a document it takes into consideration the
characteristics of the intended physical output device, called
the "Logical Output Device," which may be a terminal, a line
printer, or a non-impact page printer. The actual destination of
the formatted output may be any of the devices supported by
SCRIPT/VS.

If you specify, via the DEVICE option, a specific logical device,
SCRIPT/VS will assume an appropriate output destination. Con
versely, if you specify a specific output destination, SCRIPT/VS
will assume an appropriate logical device.

4 Document Composition Facility: User's Guide

You may specify any combination of output destination and logical
device. For example, when formatting documents that are to be
saved for printing at a later date you would specify the destina
tion "FILE" and the logical output device of your choice.

VERTICAL AND HORIZONTAL SPACE UNITS

Some control words accept parameters that specify vertical or
horizontal dimensions or distances. These dimensions may be
expressed in any of several different space units. The space unit
type is identified with a single letter. Numbers without space
unit identifiers are in character spaces horizontally and line
spaces vertically.

The space un it types are:

• em: The type size of the blank character (hexadecimal 40) in
the current font. The "em" unit is useful when specifying
indention, horizontal displacement, and tab settings. The
type size of the blank character may be one of the following:

1/10 inch (2.540 millimeters)
1/12 inch (2.117 millimeters)
1/15 inch (1.693 millimeters)

The EM unit is specified as

aaM or aam

For example, to produce an indention of three characters in
any font:

. in 3m

• Cicero! A Cicero in the Didot Point System is 0.1776 inch
(4.512 millimeters) and is a standard printer's measurement
in most countries except Great Britain and the United States.
There are 12 Didot points in one Cicero.

The Cicero is specified as!

aaCbb or aacbb

aa = number of Ciceros
bb = number of Didot points

For example,

C12 = 12 Didot points

2C3 = 2 Ciceros and 3 Didot points

• Pica: A Pica is 0.1663 inch (4.224 millimeters) and is a
standard printer's measurement in Great Britain and the
United States. There are 12 points in one Pica.

The Pica is specified as:

aaPbb or aapbb

aa = number of Picas
bb = number of points

For example,

P12 = 12 points

2P3 = 2 Pi cas and 3 poi nts

Chapter 1. An Introduction to SCRIPT/VS 5

• Inch:

The Inch is specified as:

aaI or aai

aa = number of inches, and can be fractional. Up to two
decimal positions may be specified.

For example,

3.5i = 3-1/2 inches

• Millimeter:

The Millimeter is specified as:

aaW or aaw

aa = number of millimeters, and can be fractional. Up to
two decimal positions may be specified.

For example,

12.7W = 12.7 millimeters

FONTS (II" 3800 PRINTING SUISYSTE" ONLY)

A "font" is a set of characters having the same size and type
style.

In a "monopitch" font, all characters have the same width.

In a "proportional" font, characters may have different widths.
For example, the "I" may be narrower than the "H", and the "M" may
be wider than the "N".

The width attribute of a font is called "pitch" and is the number
of "characters per inch" in a line of printed text.

The 3800 Printer has three pitch values:

10-Pitch (10 characters per inch)
12-Pitch (12 characters per inch)
IS-Pitch (15 characters per inch)

When using the 3800 Printer, you may select multiple fonts via the
CHARS option of the SCRIPT command. Each font corresponds to a
Character Arrangement Table (CAT) that will be loaded into the
3800 Printer when the document is printed using the appropriate
Job Control language (JCl).

The CHARS option is described in "Chapter 2. Using the SCRIPT
Command" on page 13.

Using different fonts within the input file is described in
"Chapter 7. Additional Formatting Features of SCRIPT/VS" on page
77.

The fonts provided with SCRIPT/VS are illustrated in "Appendix C.
Fonts Supplied with SCRIPT/VS" on page 329.

CALLING THE SCRIPT/VS PROCESSOR

IN A BATCH ENVIRONMENT

For details about calling SCRIPT/VS in a batch environment, see
Document library Facility Guide.

6 Document Composition Facility: User's Guide

IN AN INTERACTIVE ENVIRONMENT

You call the SCRIPT/VS processor by issuing the SCRIPT command
specifying the input file name. The default file type in CMS is
SCRIPT.

• In CMS: SCRIPT fi lename (opt; ons

• In TSO: SCRIPT dsname options

The SCRIPT command format and opt ions are descr i bed in "Chapter 2.
Usi ng the SCRIPT Command" on page 13.

USING SCRIPT/VS AS A SUBROUTINE

In a batch environment, with the Document Library Facility Pro
gram Product, an application program can call SCRIPT/VS as a sub
routine. For details, see Document Library Facility Guide.

USING SCRIPT/VS AS A PREPROCESSOR

SCRIPT/VS can be used to prepare an input file for use as input to
another text processing program. For details on translating GML
markup to non-SCRIPT/VS formatting controls, see Document Compos
ition Facility: Generalized Markup Language (GML) User's Guide.

WHEN TO USE SCRIPT/VS CONTROL WORDS

When you create an input file, or when you create Application
Processing Functions (APFs) for GML processing, you should con
sider:

• How is the text formatted? Do you want to add spaces between
lines or paragraphs? Indent lines? Create numbered or
bulleted lists?

• What size paper are you using for output? How many lines of
text should be on the page? How wide is it? Do you want spe
cial titles on the top or bottom of each page? Where, and in
what format, do you want the page number to appear?

• Are you going to use a multiple column page layout?

• Do you want to generate a table of contents listing major
headings, and the page numbers on which they occur?

• How long is the final document going to be? Can you organize
it into several input files and let SCRIPT/VS combine them?

• Are you going to have illustrations? Are you going to create
tables and boxes using SCRIPT/VS? Do you need to leave blank
pages or blank space so that artwork can be included later?
How are you going to number the illustrations?

• Are you using variable information? Can you use symbolic
names throughout a document to represent information that
changes frequently?

• Do you want the SCRIPT/VS processing to be interactive? Are
there types of information you may want to enter during
SCRIPT/VS processing?

• Are you using the same sequences of control words frequently?
Can you define a macro so you don't have to rekey all the con
trol words in sequence each time?

Chapter 1. An Introduction to SCRIPT/VS 7

SELECTING CONTROL WORDS

This book describes many formatting techniques and shows many
examples. No single example or technique is necessarily the best;
there are usually several ways to do the same thing. As you become
more experienced in using SCRIPT/VS, standard ways of doing
things will evolve and may be accepted as installation standards
where you work.

SCRIPT/VS FUNCTIONS

User-controlled SCRIPT/VS processing includes two general cat~go
ries of functions: formatting functions, and general document
handling.

FORMATTING FUNCTIONS

Page Layout

Head Levels

You control page dimensions, the number of columns per page,
running headings and footings, and line spacing.

Page layout includes:

• line Formatting. You can control line concatenation, line
justification, line centering, or line alignment to left or
right. For details, see "Chapter 3. Basic Text Processing" on
page 29 .

• line Spacing. You can control the amount of space left between
output lines, including the reservation of space for drop-in
art. For details, see "Chapter 3. Basic Text Processing" on
page 29 .

• Paragraphing. You can control the style of paragraphing,
spacing between paragraphs, and indention. For details, see
"Chapter 3. Basi c Text Processi ng U on page 29.

• Fonts. You can control which font is used for different
portions of text, both in the body and in running headings and
footings. For details, see "Chapter 7. Additional Formatting
Features of SCRIPT/VS" on page 77.

• Columns. You can define the number of columns as well as the
size of each one and its placement on a page. For details, see
"Chapter 5. Multicolumn Page layout" on page 65.

• Margins. You can control the size of the top and bottom
margins as well as the left and right margins. Title lines can
be defined that will be put into the top or bottom margins.
For details, see "Chapter 4. Defining a Page Layout" on page
51.

• Indention. You can control indention in a number of ways. For
example, you can have hanging indents, left or right margin
indention, and indent one line only. For details, see
"Chapter 3. Basic Text Processing" on page 29.

• Headings and Footings. You can have running headings and
footings with page numbers and separate treatment for odd and
even pages. For details, see "Chapter 4. Defining a Page
layout" on page 51.

You can specify up to seven head levels for distinctive formatting
of headings for different levels of topics. Distinctive format
ting includes before and after spacing, font selection, capital
ization, underscoring, and right or left alignment. For details,
see "Chapter 6. Head Level~ and Table of Contents" on page 71.

8 Document Composition Facility: User's Guide

Table of contents

You can control whether or not a table of contents is automat
i cally generated and where- it is placed. SCRIPT /VS collects
entries for a table of contents from the text of head levels and
supplies the page number. You can also specify phrases other than
the text of head levels to appear in the table of contents. The
table of contents of this manual was automaticallY generated by
SCRIPT/VS. For details, see "Chapter 6. Head Levels and Table of
Contents" on page 71.

Highlighted Phrases

Footnotes

You can highlight phrases for emphasis. For devices that don't
have multiple fonts, highlighting is done with underscore, upper
case, or uppercase underscored. For devices that support multiple
fonts, you can change font for emphasis. For details, see "Chapter
3. Basic Text Processing" on page 29.

SCRIPT/VS saves text indicated as a footnote and places it at the
bottom of the page. 1 Subsequent footnotes are placed below it.2
For details, see "Chapter 7. Additional Formatting Features of
SCRIPT/VS" on page 77.

Hyphenation and Spelling Verification

You can control whether or not words are to be hyphenated at the
end of output lines, and whether words are to be checked for cor
rect spelling. SCRIPT/VS provides a dictionary of many common
English root words. An algorithm for prefix and suffix variations
significantly extends the basic root word set. SCRIPT/VS deter
mines hyphenation points and spelling validity based on the pre
fix and suffix algorithms and the root word set. You can add words
to a supplementary dictionary as required for a particular docu
ment. For deta i 1 s, see "Chapter 15. Automat i c Hyphenat i on and
Spelling Verification" on page 157.

Printing Part of the output Document

Tabs

Boxes

Like this.

You can control whether every page of formatted text is put in the
output document or only the range or ranges of pages specified.
For details, see the PAGE option in "Chapter 2. Using the SCRIPT
Command" on page 13.

You can specify the values of tabs. When formatting output lines,
SCRIPT/VS tabs to the right to the prescribed tab stop. For
details, see "Chapter 3. Basic Text Processing" on page 29.

You can construct boxes around formatted text. You can also draw
boxes within boxes, vertical lines to separate columns of text,
and horizontal lines to separate rows. For details, see "Chapter
7. Additional Formatting Features of SCRIPT/VS" on page 77.

1
2 Up to 10 lines per footnote.

Chapter 1. An Introduction to SCRIPT/VS 9

Documents Marked up for SCRIPT/370

If you have documents prepared for SCRIPT/370 Version 3, you can
use SCRIPT/VS to format them, with very few changes, if any,
required. For details, see "Chapter 18. Compatibility with
SCRIPT/370" on page 177.

Keeping Text Together

SCRIPT/VS processing includes functions which keep text together
to improve the appearance of output. For example, SCRIPT/VS keeps
the text of a head level and the following three lines of output
text together, so that they appear 1n the same column. For
details, see "Chapter 7. Additional Formatting Features of
SCRIPT/VS" on page 17.

GENERAL DOCUMENT HANDLING FUNCTIONS

Saving Input Lines for Subsequent Processing

You can control whether certain input lines will be written to a
data set or file. For details, see "Chapter 10. Combining
SCRIPT /VS Fi les" on page 1 05.

Identifying Updated Material

You can control the placement of up to nine distinct revision
codes in the left margin to indicate revised lines. For details,
see "Chapter 7. Additional Formatting Features of SCRIPT/VS" on
page 77 .

You can control how separate source files are brought together for
processing as a single document. Any number of source files can be
imbedded in the primary source file. A source file that has been
imbedded can itself imbed another source file. For details, see
"Chapter 10. Combining SCRIPT/VS Files" on page 105.

Processing symbols and Macros

You can define symbols and macros for substitution during proc
essing. Symbols have many uses: for example, in tests for condi
tional processing, for cross-references to pages or figure
numbers, for entering characters unavailable on the entry key
board, and as abbreviations for repetitive phrases. You can
define what a particular macro will do. For example, you might
redefine a particular head level to alter the SCRIPT/VS format
ting style. Symbol and macro instruction facilities are used to
support the Generalized Markup Language. For details, see
"Chapter 11. Symbols in Your Document" on page 117 and "Chapter
12. Writing SCRIPT/VS Macro Instructions" on page 137.

processing Input Conditionally

You can cause SCRIPT/VS to alter input processing. For example, by
setting symbol values you can control whether a block of input
text is included in, the output document. SCRIPT/VS uses condition
testing as part of its normal processing. It checks the amount of
space left in a column before processing certain blocks of text.
Conditional processing can be controlled by defining macro
instructions to supplement SCRIPT/VS control words. For details,
see "Chapter 11. Symbols in Your Document" on page 117.

10 Document Composition Facility: User's Guide

Processing Interactively Dur;ng Formatt;ng

In an interactive environment (CMS or TSO), you can affect
SCRIPT/VS as it processes by entering text or markup at a termi
nal. In effect, the terminal can be treated as an input file. For
example, you can interactively specify the values of symbolic
variables specified in the document or enter those portions of
text that vary from one processing time to the next. For details,
see "Chapter 10. Combining SCRIPT/VS Files" on page 105.

Specifying the Destination of output

You can control the output destination of the formatted document.
It can be stored as a fi Ie, for later use, or pri nted on the
device specified, which includes impact and nonimpact printers,
and display and typewriter terminals. For details, see "Chapter
2. Using the SCRIPT Command" on page 13.

Converting AlMS-II Documents

With the IBM Document library Facility program product installed
with SCRIPT/VS, you can convert most ATMS-II markup to equivalent
SCRIPT/VS markup. For details, see Document library Facility
Gu i de and "Chapter 19. A TMS-I I Convers i on" on page 187.

Debugging by Tracing Processing Actions

You can trace all control words and each step of symbol and macro
substitution in input lines. In cases where unexpected results
are observed, trace information can be an invaluable aid in pin
pointing the problem area. For details, see "Chapter 16.
Diagnostic Aids" on page 163.

Chapter 1. An Introduction to SCRIPT/VS 11

CHAPTER 2. USING THE SCRIPT COMMAND

Issue the SCRIPT command to process and format an input file.
SCRIPT/VS formats the input file based on GML tags, macros, con
trol words, and text that are included in the file, as well as the
SCRIPT command options you specify.

SCRIPT can be issued as a CMS command and as a TSO command. For
details about using the SCRIPT command in a batch environment, see
the Document library Facility Guide. The format of the SCRIPT com
mand ;s the same for each system, with the exception that TSO
options must not be placed in parentheses:

In eMS,

SCRIPT

I [
file-id [(options ••• J]
?

In TSO,

SCRIPT

I [
file-id [options .•.]] ?

where:

? causes SCRIPT/VS to display a list of all the valid com
mand options.

T;le-;d is the name of the input file. When the input file con
tains imbedded or appended files, file-id names the pri
mary or master file; the imbedded and appended files are
named with control words in the master file. The format
of the file-id depends on the environment from which
SCRIPT/VS is called.

opt;ons specify how SCRIPT/VS ;s to process and format the input
file and where the resulting output file is to go. You
can specify as many options as you think appropriate. A
detailed description of each option follows. The left
parenthesis "(" before the option list is required in
the CMS environment, but not permitted in the TSO envi
ronment.

NAMING THE INPUT FILE

The format of the name you specify for file-id depends on the
environment from which you call SCRIPT/VS. The naming rules and
conventions apply equally to the primary input file, the profile,
and any imbedded or appended files.

CMS NAMING CONVENTIONS

The file-id of a CMS file to be processed is given in the form:

filename [filetype [filemode]]

If filetype is omitted, a filetype of "SCRIPT" is assumed. If
filemode is omitted, the CMS search sequence is used to locate the
file on an accessed CMS disk. If you want to specify the filemode,
you must also give the filetype, since these parameters are posi
tional.

Chapter 2. Using the SCRIPT Command 13

TSO NAMING CONVENTIONS

In TSO, you can use a fully or partially qualified data set name
to refer to the primary input file, identified by file-id in the
SCRIPT command, and other input files associated with the docu
ment, such as the profile and imbedded files.

If the file-id given is not fully qualified (placed within
quotes), the userid is prefixed to the file-id as the leftmost
qualifier, and "TEXT" is added (unless it already appears) as the
rightmost qualifier. For example,

Specified
DSNAME

A
A.TEXT
DOC(CHAPl)
'DPJKl.X.Y'
(CHAP2)

Option

BIND
CHARS
CONTINUE
DEVICE
DUMP
FILE
LIB
MESSAGE
NOPROF
NOWAIT
NUMBER
OPTIONS
PAGE
PRINT
PROFILE
QUIET
SEARCH
SPELLCHK
STOP
SYSVAR
TERM
TWOPASS
UNFORMAT
UPCASE
NOSPIE

Actual
DSNAME

userid.A.TEXT
userid.A.TEXT
userid.DOC.TEXT(CHAP1)
DPJKl.X.Y
userid.TEXT(CHAP2)

Minimum
Abbreviation

B
C
CO
D
DU
F
L
M
N
NOW
NU
0
P
PR
PRO
Q
S
SP
ST
SY
T
TW
U
UP
NOS

Figure 1. SCRIPT Option Scan Order for non-TSO Systems

SCRIPT COMMAND OPTIONS

SCRIPT command options control how SCRIPT/VS processes and
formats your input file. Some of the options have parameters; each
option's parameters are enclosed in parentheses. You do not have
to use a right parenthesis unless another option follows. Options
and parameters are separated from each other by blanks. In TSO, a
comma may also be used as a separator.

The options you can specify with the SCRIPT command are shown in
Figure 2 on page 15.

14 Document Composition Facility: User's Guide

Opt;on Parameters Descr;pt;on

BIND (bind) Shift the page image to the right.
(obind ebind)

CHARS (font! . . . font4) Specify up to four fonts .

CONTINUE Continue processing after a non severe error
occurs.

DEST (station id) Specify a remote output station. (Valid only
for TSO.)

DEVICE (devtype) Specify a logical output device.

DUMP Enables the .ZZ [Diagnostic] control word.

FILE [(fileid)] Specify a disk file for output.

LIB (libname ...) Specify symbol and macro libraries. (Only
one for TSO; up to eight for CMS.)

MESSAGE ([DELAY] Control message printing.
[10]
[TRACE])

NOPROF Suppress the profile.

NOSPIE Prevent entering SPIE exit routines. (Valid
only for CMS and TSO.)

NOWAIT Prevent prompting for paper adjustment.
(Valid only for typewriter terminal output.)

NUMBER Print file name and line number.

OPTrONS [(fileid)] Specify a file that contains SCRIPT options
(Valid only for CMS.)

PAGE [FROM] p [TO] q Selectively print pages.
[FROM] p FOR n
[FROM] p ONLY
PROf1PT

PRINT [(copies,class, Produce printer output. (Sub-options valid
fcb,ucs)] only for TSO.)

PROFILE [(f;leid)] Spec; f~' a profile. (A file to be imbedded
before the primary input file is processed.)

QUIET Suppress the formatter's identifier message.

SEARCH (libname) Specify a library. (Hot valid in a CMS envi-
ronment.)

SPELLCHK Enable the .SV [Spelling Verification] con-
trol word.

STOP Print separate pages at the terminal. (Valid
only for typewriter-terminal output.)

SYSVAR (n value ...) Set symbol values for &SYSVARn.

TERM Display the output at a user's terminal.
(Valid only in CMS and TSO.)

TWOPASS Prepare wi th two formatting passes, and
produce output on the second pass.

Figure 2. Summary of SCRIPT Options (Part 1 of 2)

Chapter 2. Using the SCRIPT Command 15

opt;on parameters Descr;pt;on

UNFORMAT Print all input lines without formatting.

UPCASE Fold lowercase letters to uppercase before
printing.

Figure 2. Summary of SCRIPT Options (Part 2 of 2)

DEFAULTS

The name of each option can be shortened to its mlnlmum unambig
uous length. In TSO, ambiguous truncations are not accepted: you
will be prompted to reenter the option. In other systems, ambig
uous truncations are accepted and resolved by matching the first
option encountered in the scan order shown in Figure 1 on page 14.
Note that this scan order is not alphabetical.

When you specify the SCRIPT command with a file-id and no options,
the defaults are:

For CMS,

TERM BIND (2) PROFILE (PROFILE) lIB (GMl)

For TSO,

TERM BIND (2) PROFILE (PROFILE)

For Batch,

PRINT BIND (2) PROFILE (PROFILE) MESSAGE (DELAY)

All other options must be explicitly specified when desired.

When you specify the PAGE option without parameters, SCRIPT/VS
assumes you mean PAGE (PROMPT). All other suboptions must be
explicitly specified.

MUTUALLY EXCLUSIVE OPTIONS

Some of the SCRIPT command options are mutually exclusive from a
logical standpoint. However, when two are specified, no error
results. Instead, an option can cancel the effect of a previously
specified option. In TSO, options are processed in alphabetical
order regardless of the order of entry. In other systems, they are
processed in the order in which they are specified. Within the
following groups of options, the last one processed by SCRIPT/VS
takes effect:

• PROFILE and NOPROF.

• TERM and PRINT. TERM or PRINT serves to identify the type of
formatting, for a typewriter or a printer, unless DEVICE is
also specified. If FILE is not also specified, TERM or PRINT
also identifies the output's destination. (When FILE is spec
ified, the document's destination is a direct-access file.)
When both DEVICE and FILE are specified, neither TERM nor
PRINT has any effect.

16 Document Composition Facility: User's Guide

LOGICAL AND PHYSICAL OUTPUT DEVICES

Examples

When SCRIPT/VS formats a document it takes into consideration the
characteristics of the intended physical output device (called
the "Logical Device"). The actual destination of the formatted
output may be one of these devices or a file on disk. If you spec
ify, with the DEVICE option, an explicit logical device,
SCRIPT/VS will assume an appropriate output destination. Con
versely, if you specify an explicit output destination, SCRIPT/VS
will assume an appropriate logical device. However, you may spec
ify explicitly any combination of output destination and logical
device. For example,

SCRIPT Al (FILE DEVICE(3800N8)

will format a document for the 3800 Printer but save the output in
a disk file for later demand printing on a physical printer.

Figure 3 on page 18 shows the logical output device and output
destination for a document when various combinations of options
are specified.

• In CMS, format and print the document named TEST for an IBM
1403 printer. Print the last part of the document, starting
with page 10, and allow for a binding margin on the left side
of each page of 4 character-spaces:

SCRIPT TEST (PRINT PAGE (10) BIND (4)

• In TSO, format and display at the terminal the document named
'userid.RESUME.TEXT'. Do not prompt for paper adjustment;
begin typing immediately. Do not type the formatter identifi
cation message:

SCRIPT RESUME NOWAIT QUIET

BIND: SHIFT THE PAGE IMAGE TO THE RIGHT

The BIND option causes SCRIPT/VS to shift the formatted output of
each page to the right. The BIND option is specified as:

BIND (obind ebind)
or

BIND (bind)

You can specify a binding for odd-numbered pages (obind) and a
different binding for even-numbered pages (ebind). If ebind is
not specified, the value of bind applies to both odd- and
even-numbered pages. The actual (or potential) page number of the
output page is controlled by the .PA [Page Eject] and .PH [Page
Numbering Model control words, which are used to specify even and
odd page numbers. Consequently, you can have two or more
even-numbered (or odd-numbered) pages in a row.

Bindings can be specified in numbers of character-spaces or in
space units.

If the BIND option is not specified, it defaults to two character
spaces. This allows room for potential revision codes for the
first column. (Revision codes for subsequent columns are placed
in the gutter between columns.) If sufficent room is not provided
for revision codes, they are discarded.

CHARS: SPECIFY FONTS

The CHARS option identifies the fonts to be used when formatting
for the 3800 Printer. You may specify up to four uppercase only
fonts, or two upper- and lowercase fonts. Fonts provided with
SCRIPT/VS are illustrated in "Appendix C. Fonts Supplied with
SCRIPT/VS" on page 329.

Chapter 2. Using the SCRIPT Command 17

Options Logical Output
Specified Output Device Destination

none (eMS, TSO) TERM [Terminal] Terminal

none [Background] 1403W6 [Printer] Printer

TERM TERM [Terminal] Terminal

PRINT 1403W6 [Printer] Printer

DEVICE(devtype) devtype devtype

FILE [CMS, TSO] TERM [Terminal] Disk file

FILE [Background] 1403W6 [Printer] Disk file

FILE TERM TERM [Terminal] Disk file

FILE PRINT 1403W6 [Printer] Disk file

FILE DEVICE(devtype) devtype Disk file

TERM DEVICE(devtype) devtype Terminal

PRINT DEVICE(devtype) devtype Printer

Figure 3. Logical Output Device vs. Output Destination: It is the user's
responsibility to ensure that the characteristics of the physical
device to which the output is directed match the characteristics of the
specified or implied logical device. Your installation's conventions
for output class, FCB, and forms must be included in these consider
ations.

The CHARS option is specified as:

CHARS (font1 [... font4])

When you specify the CHARS option, you must specify at least one
font.

All of the fonts specified with the .BF [Begin Font] control word
must be identified with the CHARS option. If you do not specify
the CHARS option, the default font specified for the logical
device is used. In either case, the first font specified or
implied becomes the initial font.

After formatting, the document must be printed by a job or subsys
tem on an operat i ng system that supports the 3800 Pri nter, in
order to use the appropriate fonts. The CHARS JCL parameter must
specify. the corresponding character arrangement tables in the
same sequence as the fonts specified in the CHARS option of the
SCRIPT command.

CONTINUE: CONTINUE PROCESSING AFTER A NONSEVERE ERROR OCCURS

The CONTINUE option allows processing to continue after SCRIPT/VS
detects an error condition and flags it with an error message.
When SCRIPT/VS encounters an error that is too severe for process
i ng to cont i nue, it termi nates process i ng even when CONTI NUE i s
specified. "Severe" and "terminal" errors cause SCRIPT/VS to ter
minate processing.

For a description of error types and SCRIPT/VS error messages, see
the Document Composition Facility: Messages manual distributed
wi th SCRIPT /VS.

18 Document Composition Facility: User's Guide

DEST: NAME A REMOTE OUTPUT STATION

The DEST option, available only in TSO, is used to specify a
remote output station where the output document is to be printed.

The DEST option is specified as:

DEST (station-id)

station-id is a one- to eight-character name.

DEVICE: SPECIFY A LOGICAL OUTPUT DEVICE

The DEVICE option allows you to identify the type of output device
for which you want SCRIPT/VS to format your document. The logical
device description includes the default page layout, font to be
used, and characteristics of the physical output device.

The DEVICE option is specified as:

DEVICE (devtype)

devtype is the name of a logical output device that takes into
account the physical characteristics of the device as well as the
characteristics that can be changed by the operator or by program
control: font, lines per inch, form size, and page image size.
SCRIPT/VS logical device support allows a single physical device
type to be defined as many different logical device types, each
having different characteristics. The logical devices defined in
SCRIPT/VS a~e summarized in Figure 4 on page 20.

You can add a new logical device to the SCRIPT/VS logical device
table. For details about this procedure, see "Appendix B. Device
and Font Table Ma i ntenance n on page 323.

When you issue the SCRIPT command to format and display your docu
ment at the terminal, DEVICE (TERM) is assumed. When you invoke
SCRIPT/VS in a batch environment or use the PRINT option in a
foreground environment and do not specify a device type,
SCRIPT/VS assumes DEVICE (1403W6).

The formatted output for all 3800 logical devices contains table
reference characters (TRCs). Consequently, the parameter
DCB=OPTCD=J must be included in the output JCl.

DUMP: ENABLE THE .ZZ CONTROL WORD

The DUMP option allows SCRIPT/VS to perform a specific diagnostic
action when it encounters a .ZZ [Diagnostic] control word in an
input file. Parameters of the .ZZ control word specify the type of
diagnostic action to be taken. The DUMP option is intended for use
by the system programmer who is maintaining SCRIPT/VS.

If the DUMP option is not specified, SCRIPT/VS ignores the .ZZ
control word.

For details about the output produced when the .ZZ [Diagnostic]
control word is processed, see n.zz [Diagnostic]" on page 296.

FILE: NAME A DISK FILE FOR OUTPUT

The FILE option directs the formatted output document to a
direct-access file.

The FILE option ;s specified as:

FILE [(file-id)]

Chapter 2. Using the SCRIPT Command 19

logical Real lines Page Size line Page
Device Device per (inches) length l length 2 ·
Type Type Inch

Width Depth (bytes) (lines)

TERM 2741 6 8-1/2 11 60/132 66/144

1403N6 1403 6 8-1/2 11 60/85 66/144
1403N8 1403 8 8-1/2 11 60/85 88/192
1403W6 1403 6 13-1/2 11 60/132 66/144
1403W8 1403 8 13-1/2 11 60/132 88/192
1403SL.J3 1403 6 8-1/2 11 72/90 66/66

3800N6 3800 6 8-1/2 11 60/85 60
3800N8 3800 8 8-1/2 11 60/85 80
3800N12 3800 12 8-1/2 11 60/85 120
3800W6 3800 6 13-1/2 11 60/136 60
3800L.J8 3800 8 13-1/2 11 60/136 80
3800W12 3800 12 13-1/2 11 60/136 120
3800N6S 3800 6 11 8-1/2 60/110 45
3800N8S 3800 8 11 8-1/2 60/110 60
3800W6S 3800 6 13-1/2 8-1/2 60/136 45
3800W8S 3800 8 13-1/2 8-1/2 60/136 60
3800W12S 3800 12 13-1/2 8-1/2 60/136 90

1 line lengths are given as "default/maximum" in 10-pitch characters.
For the 3800 Printer, 12-pitch and 15-pitch fonts have values 20~ and
50% greater, respectively.

2 Default and maximum page lengths are identical for 3800 devices.

3 This is a 12-pitch device, as opposed to the normal 10-pitch 1403.

Figure 4. SCRIPT/VS logical Device Characteristics

Output is formatted for either a printer or a terminal. When you
specify the PRINT option or the DEVICE option with a printer
device type, the output document is in the specified printer for
mat. Otherwise, the output document is sent to the direct-access
file in terminal format.

file-id names the direct-access file. If you do not specify a
file~id, SCRIPT/VS sends the output document to a default file-id
based on the environment.

• In CMS, the file-id ;s of the form:

filename [filetype [filemodel]

The default filename is "$filename", where "filename" is the
first seven characters of the input filename preceded by a
dollar sign ($). The default filetype is "SCRIPT", and the
default filemode is "AI".

If a file with the name specified or implied already exists,
SCRIPT/VS issues a message to allow you to let the replacement
of the old file occur or to cancel the output.

• In a TSO environment, file-id is a fully or partially
qualified data set name. The full name will be determined by
the following rules:

1. If a fully qualified dsname(placed within quotes) is
given, the name is used as specified.

20 Document Composition Facility: User's Guide

2. If a partially qualified name is provided, it is fully
qualified by prefixing it with "userid." and suffixing it
with ".LIST" (unless ".LIST" is already the rightmost
qualifier) or replacing a rightmost qualifier of ".TEXT"
with ".LIST".

3. If a file-id is not given, the name of the input file is
examined. If the rightmost qualifier of that data set is
". TEXT", a name is generated by replacl ng ". TEXT" wi th
".LIST". If the rightmost qualifier is not ".TEXT", an
error results. In this case, a file-id must be specified.

Figure 5 illustrates the manner in which file-ids are quali
fied in the TSO environment.

If an output data set of the generated name does not exist,
SCRIPT/VS creates an output data set with the following char
acteristics:

Organization: PS or PO
Record format: VB or VBM
Record length: 210

When a new member is created in an existing partitioned data
set, the existing record format and length are used.

If the output data set already exists, a check is made to
ensure that the characteristics of that data set are compat
ible with the data to be produced. Specifically, if a
printer-formatted document is directed to a data set which
does not have the machine carriage control record format, or
if a terminal-formatted document is directed to a data set
which does, the command will be terminated with an error mes
sage.

If a document is formatted for a printer and is sent to a
direct-access file, the output document has printer controls
imbedded in it appropriate for the specified or implied logical
output device type. You must ensure you print the document on the
same device for which it was formatted.

In CMS, for example, you can use the CMS PRINT command to print
the file. You should use the CC parameter, so that the carriage
controls are correctly interpreted. For details on the PRINT com
mand, see IBM VM/370: CMS Command and Macro Reference.

File Input Generated Rule
Specification DSNAME Output DSNAME Number

FIlE('DOC.OUT') N/A DOC.OUT 1
FIlE(DOC.OUT) N/A userid.DOC.OUT.LIST 2
F.IlE(DOC. LIST) N/A userid.DOC.LIST 2
FIlE(DOC.TEXT) N/A userid.DOC.LIST 2
FILE«CHAPZ» N/A userid.LISTCCHAPZ) 2
FILE 'DOC. TEXT' DOC.LIST 3
FILE 'DOC. OTHER' *** error ***
Figure 5. Data Set Name Qualification in TSO

LIB: SPECIFY SYMBOL AND MACRO LIBRARIES

The LIB option is only valid in the CMS and TSO environments, and
specifies that SCRIPT/VS is allowed to search the specified
libraries for a definition of the symbols and macros not defined
within the input file. In a batch environment, you can use the
SEARCH option for a similar function.

Chapter 2. Using the SCRIPT Command 21

In CMS, the LIB option is specified as:

LIB (libnamel [... libname8])

where libname is the filename of a CMS macro library. The filetype
is MACLIS. The CMS search sequence is used to locate the library
on any accessed disk.

In TSO, the LIB option is specified as:

LIB (libname)

If the libname given is not fully qualified (placed within
quotes), the userid is prefixed to the libname as the leftmost
qualifier, and "MACLIB" is added (unless it already appears) as
the rightmost qualifier.

libname names a symbol and macro library. SCRIPT/VS uses the
library if your"input file includes the .LY [Library] control word
with the ON, SYM, or MAC parameters specified, or when the .OM
[Define Macro] and .SE [Set Symbol] control words include the LIB
parameter.

The library is searched when a symbol or macro is not already
known and SCRIPT/VS has encountered a .LY ON, a .LY SYM (for sym
bols only), or a .L Y MAC (for macros only) control word. The
library is also searched (without regard to the setting of the .LY
control word) when a symbol or macro is defi ned wi th the LIB
parameter. For example,

.se symbolname LIB

.dm macroname LIB

You can specify up to eight library names in CMS or one name in
TSO (although multiple libraries may be concatenated by preallo
cating a DDname of SCRPTLIB). If the symbol name or macro name is
not found in the symbol table (and the symbol or macro is defined
as being in a library), SCRIPT/VS scans each library named in the
LIB option (in the order given) until the symbol or macro is
found. SCRIPT/VS then moves the symbol or macro definition into
its symbol table, so that a second occurrence doesn't require a
library search. If no library option is specified, the symbolname
or macro is searched for in the default library (if it exists).

• In CMS, a symbol and macro library is a standard MAClIB file.
Its file type is MACLIB, and the default library is GML
MAClIS.

• In TSO, a symbol and macro library is a partitioned data set.
The default library, unless changed by your installation, is
SCRIPT.MACLIB, and is concatenated to the library you speci
fy.

If the LIB option is not specified, but instead a user allo
cates a part it i oned data set wi th the DDname of SCRPTL IB,
SCRIPT/VS uses whatever data sets are allocated to this
DDname to resolve symbols and macros. Any number of data sets
may be concatenated in this manner, and SCRIPT.MACLIB is not
included in the concatenation.

If the LIB option is not specified and a DDname of SCRPTlIB is
not allocated, SCRIPT.MACLIB is used.

MESSAGE: CONTROL MESSAGE PRINTING

The MESSAGE option controls the amount and timing of the informa
tion SCRIPT/VS provides with error messages. If the MESSAGE
option is not specified, SCRIPT/VS provides a short message that
includes the message text and, when appropriate, the line number
and text of the input last read when the error was detected.

22 Document Composition Facility: User's Guide

The MESSAGE opt; on is speci fi ed as:

MESSAGE ([DELAY] [10] [TRACE])

You must specify at least one parameter with the MESSAGE option;
you may specify two or all three parameters, separated by blanks.
Each of the options may be abbreviated as a single letter.

DELAY requests that SCR1PT/VS not display messages while a docu
ment is being displayed or printed. SCRIPT/VS accumulates mes
sages in a utility file and appends them to the end of the
formatted output.

10 causes SCRIPT/VS to include the error message identifier along
with the error message.

TRACE causes SCRIPT/VS to list, whenever appropriate, the
sequence of imbedded files, from the file that includes the error
input line backward to the primary input file. This is useful when
a file is imbedded in many other files.

NOPROF: SUPPRESS THE PROFILE

The NOPROF option requests that SCRIPT/VS not imbed a Profile doc
ument. For details about the Profile, seethe PROFILE option's
description below.

NOSPIE: PREVENT ENTERING SPIE EXIT ROUTINES

The NOSPIE option requests that SCRIPT/VS not establish a program
interrupt exit. The NOSPIE option is intended for use by the sys
tem programmer who is maintaining SCRIPT/VS. It is not allowed
when calling SCRIPT/VS from a batch processing environment.

NOWAIT: PREVENT PROMPTING FOR PAPER ADJUSTMENT

The NOWAIT option causes SCRIPT/VS to send output to your terminal
without first prompting you to adjust the paper. NOWAIT option is
the normal mode for output to other than a typewriter terminal.

NUMBER: PRINT THE FILE NAME AND LINE NUMBER

The NUMBER option causes SCRIPT/VS to print the file-id and line
number of the last line read when a formatted output line is
printed. The file-id and line number are printed to the right of
the formatted output line.

OPTIONS: NAME A FILE THAT CONTAINS OPTIONS

The OPTIONS option is valid only in CMS, and allows you to specify
a fi Ie that contai ns, in essence, an extensi on to the SCRIPT
command options list. The options in the file are in addition to
options you specify with the SCRIPT command and with other
"options" files.

The OPTIONS option is specified as

OPTIONS [(file-id)]

If the file-id is not specified, the default file-id is SCRIPT
OPTIONS, and if only a filename is given, the default filetype is
OPTIONS.

Each record in the options file can contain one or more options,
in the same format as they would appear on the SCRIPT command
line. They must, however, be in uppercase. An option need not be
completed on a single line (suboptions may appear on following
lines), but each word must be completed in a single record. A left
parenthesis must not precede the options in the file.

Chapter 2. Using the SCRIPT Command 23

The options in the file are processed as though they replace the
OPTIONS option. Consequently, the OPTIONS option in one option
file can refer to another option file. Options files c~n be
chained together in this manner. Alternatively, the OPTIONS
option in the SCRIPT command line might refer to a file that con
tains a list of OPTIONS option~,each of which points to a differ
ent options file.

PAGE: SELECTIVELY PRINT PAGES

The PAGE option allows you to print pages of formatted output
sel~ctively. The page number need not be an integer; you can use
the .PN [Page Numbering Model control word to establish decimal,
alphabetic, and Roman numeral page numbers, and attach a prefix to
each page number. The page number you specify with the PAGE option
is the character string SCRIPT/VS substitutes for the current
page number symbol (initially &).

The PAGE option has several formats, and any number of page range
specifications may be included in the PAGE option. Note, however,
that prompting mode replaces the remainder of the suboptions.
Valid forms of pag~ range specifications are:

[FROM] frompage [TO] topage

[FROMl frompage FOR n

[FROM] page ONLY

PROMPT

I~ no parameter is given with the PAGE option, PAGE (PROMPT) is
assumed.

The following are examples of valid explicit page range specifi
cations:

FROM 10 TO 15

7 FOR 2

FROM 95.1 FOR 3 99 OHLY

An asterisk (*) specified as frompage is interpreted as the cur
rent page; an asterisk specified as topage means the last page in
the document.

If you specify or imply the PROMPT option, SCRIPT/VS will ask you
to enter page range specifications from your terminal. You may
respond with any of the forms described above, and SCRIPT/VS will
continue to ask for new page range specifications until the end of
the document is reached or you indicate an end to prompting mode
by entering a null line.

If there is a syntax error in your page range specification,
SCRIPT/VS issues an error message and. begins prompting.

The page numbers must be entered in the same order as they appear
in the output document. For example, you can specify

PAGE (6 1)

but it will be meaningful only if there is, at some point follow
ing page 6, a .PN 1 or .PA 1 control word that resets the page
counter to 1.

If there is no page with the number given or if SCRIPT/VS has
passed the specified page, SCRIPT/VS will reach the end of the
document without changing from not printing to printing, or vice
versa.

24 Document Composition Facility: User's Guide

PRINT: PRODUCE PRINTER OUTPUT

The PRINT option causes SCRIPT/VS to send the output document to a
printer. If the DEVICE option is not specified, SCRIPT/VS assumes
DEVICE (1403W6).

If the FILE option is also specified, SCRIPT/VS formats your docu
men t for apr i n t e r (imp I i cit 1 y , DE V ICE (1 4 0 3ltJ 6)) un I e s s the
DEVICE option is also specified. SCRIPT/VS then sends the output
toadiskfile.

In CMS, the number of copies and the output clas~ are controlled
by the CP SPOOL command and the CP CHANGE command.

In TSO, you can control the disposition of the printed output by
specifying the following positional parameters with the print
option:

PRINT (copies,class,fcb,ucs)

copies is the number of copies desired, and defaults to one. class
is the SYSOUT class. Unless changed by your installation, class
defaults to "A" when the UPCASE option is specified and "T" when
it is not. fcb is the forms control buffer name. ucs ; s the
universal character set name. Your installation det~ines the
appropriate values for class, fcb, and g£§.

Hote that under JES2, if the default LINECT value is not zero,
JES2 may insert extra page ejects into your document when it is
printed. You may circumvent this by directing your formatted out
put to a file and then printing the file specifying LINECT=O.
Simi larly, if SYSOUT parameters such as CHARS, FLASH, FORMS,
etc., are desired, direct your formatted output to a file and
print the contents of the file specifying the desired parameters.

For more information on fcb, ucs, and LINECT, see the OS/\}S2 MVS
JCL manual.

PROFILE: SPECIFY A PROFILE

The profile is a SCRIPT input file that is imbedded before proc
essing begins on the primary input file.

The PROFILE option names a file that SCRIPT/VS is to use as the
profile for the document being formatted. A profile can contain
frequently used symbol and macro definitions, GML application
processing functions, and text appropriate for many documents
(for example, top and bottom titles).

For details about creating a profile, see "Chapter 13. GML Support
in SCRIPT/VS" on page 145.

The PROFILE option is specified as:

PROFILE [(file-id)]

file-id name~ the profile. You can select different profiles to
use when formatting the document for different applications.

If the PROFILE option is not specified or if file-id is not
specified, SCRIPT/VS searches your files for one named PROFILE.

In CMS, the default is:

PROFILE SCRIPT

In TSO, the default is:

'userid.PROFIlE.TEXT'

Chapter 2. Using the SCRIPT Command 25

QUIET: SUPPRESS THE FORMATTER'S IDENTIFIER MESSAGE

The QUIET option causes SCRIPT/VS to not display the version iden
tification message that is otherwise typed or displayed as a
response to the SCRIPT command.

SEARCH: SPECIFY A LIBRARY

The SEARCH option, in a TSO or batch environment, causes SCRIPT/VS
to search the specified library or partitioned data set for imbed
ded files. In a batch environment, SCRIPT/VS also uses the library
to locate symbols and macro definitions, as well as GML tags, not
defined within the input file. For more details on libraries, see
the LIB option.

The SEARCH option is specified as:

SEARCH (libname)

The SEARCH option is invalid in a CMS environment.

For TSO, if the SEARCH option is not specified:

• And the user allocates a DDname of TEXTLIB, SCRIPT/VS uses
whatever data sets are allocated to this ddname to attempt to
find files to be imbedded when the .DD [Define Data File-idl
control word has not been used to specify the actual data set
name. Any number of data sets may be concatenated in this man
ner.

• And no ddname of TEXTLIB exists, SCRIPT/VS checks the primary
input data set. If it is a partitioned data set, it is used as
the SEARCH data set; otherwise, SCRIPT/VS assumes that a data
set named 'userid.TEXT' contains imbedded files.

SPELLCHK: ENABLE THE .SV CONTROL WORD

The SPEllCHK option causes SCRIPT/VS to verify spelling if the .SV
[Spelling Verification] control word has been specified with the
ON option. SCRIPT/VS verifies each word in the input file using
the spelling and hyphenation dictionary. Spelling errors are
listed with other errors found during formatting.

If the UN FORMAT option is specified, the .SV [Spelling Verifica
tion] word has no effect, even when the SPELLCHK option is given.

STOP: PRINT SEPARATE PAGES AT THE TERMINAL

The STOP option causes SCRIPT/VS to wait for you to press the
return key before starting to type each page. Use this option when
printing your output document on separate sheets of paper at a
typewriter terminal.

The STOP option is valid only for typewriter-terminal output.

When SCRIPT/VS stops, no message is issued. SCRIPT/VS unlocks
your keyboard, and is ready to type the new output page at the
proper position for the first output line. The first output line
might be either a top title, a running heading, a blank line, or a
line of text.

When SCRIPT/VS stops, position the paper one line above where you
want the first line to be typed and press RETURN to resume output
typing.

SYSVAR: SET SYSTEM VARIABLE SYMBOLS

The SYSVAR option allows you to pass information to SCRIPT/VS as
symbols defined when you issue the SCRIPT command.

26 Document Composition Facility: User's Guide

The SYSVAR option is specified as:

SYSVAR (x value ... x value)

Each x value pair causes the symbol &SYSVARx to be set to value. n
is any alphameric character identifying the token. Value is any
alphameric string of up to eight characters, and cannot contain
imbedded blanks or parentheses. Because both ~ and value are part
of the SCRIPT statement, any lowercase characters you specify
will be converted to uppercase.

The maximum number of x value pairs is limited only by the length
of the SCRIPT command line.

For example, your input file might include the lines

.in &SYSVARA

.11 &SYSVARL

When you issue the SCRIPT command to format your document, you can
specify values for indention and line width as:

SCRIPT ... SYSVAR (A 10 L 72)

The symbols on the input line are substituted with the values set
by the SYSVAR option. The input lines shown above are processed by
SCRIPT/VS as though they had been:

.in 10

.11 72

TERM: DISPLAY THE OUTPUT AT THE USER'S TERMINAL

The TERM option causes SCRIPT/VS to send the output document to
your terminal. If the DEVICE option is not specified, SCRIPT/VS
assumes DEVICE (TERM) and displays the document on your terminal.

If the FILE option is also specified, SCRIPT/VS formats your docu
ment for the terminal and sends the output to a disk file rather
than the terminal.

TERM is valid only in interactive environments and is the default
when neither PRINT or FILE are specified.

TWOPASS: PREPARE THE DOCUMENT WITH TWO FORMATTING PASSES

The TWOPASS option causes SCRIPT/VS to process the input file in
two passes. Both passes process all control words, but output
occurs only on the second pass. Unless you specify TWOPASS,
SCRIPT/VS formats and outputs everything in one pass.

Tw6 formatting passes are required when a symbolic value is needed
earlier in the document than when it is set; for example, a page
number in a table of contents or list of figures. The first for
matting pass allows SCRIPT/VS to collect head-levels and corre
sponding page numbers. The second formatting pass, which produces
output, includes accurate page numbers in the table of contents.

You can produce an accurate table of contents with a single for
matting pass by having SCRIPT/VS prepare it at the end of the out
put document. Later, you can move the table of contents pages to
the front of the document. If you do this, be sure to reset the
page number before the table of contents.

You can also use the TWOPASS option to detect errors in an input
file. If you process a document with TWOPASS and without CONTINUE,
the second pass will not begin unless the first pass is completed
with no errors.

. Chapter 2. Using the SCRIPT Command 27

If TWOPASS is used while processing a file that uses .TE [Terminal
Input], text entered as a result of .TE on the first pass will be
excluded from the formatted output. Text entered during the sec
ond pass, however, will be formatted. You can use the TWOPASS sym
bol, &$TWO, and .IF [If] to skip the .TE on the first pass.

Hote: The SCRIPT/VS symbol and conditional processing functions
might cause the input file to look entirely different on the
second pass than it did on the first pass. As a result, page num
bers might not be accurate in the table of contents or in other
cross-references. They reflect the page numbers set during the
first pass.

UNFORHAT: PRINT ALL INPUT LINES WITHOUT FORMATTING

The UHFORMAT option causes SCRIPT/VS to print all input lines as
they appear in the input file. The lines that are produced in an
unformatted listing represent all (and only those) lines that
will be processed by SCRIPT/VS: For example, Input lines that are
not processed as a result of a .GO [Goto] control word or are
ignored because of a .CS [Conditional Section] control word are
not shown in the unformatted listing.

Some lines not in the primary input file might be printed. When
SCRIPT/VS encounters the .IM [Imbed], .AP [Append], or .EF [End of
File] control word, the contents of the imbedded or appended file
is included following the control word. In the unformatted list
ing, SCRIPT/VS puts the line

.*===> IMBED/APPEHD FILE: file-id

at the beginning of each imbedded and appended file. The file-id
is always listed. SCRIPT/VS puts the following line after the last
line of an imbedded or appended file:

.*<=== EHD OF FILE: file-id

If the HUMBER option is used with UHFORMAT, the file-id and line
number are printed on the left instead of the right.

UPCASE: PRINT LOWERCASE LETTERS AS UPPERCASE

The UPCASE option causes SCRIPT/VS to convert, for the output doc
ument only, all lowercase letters to uppercase. This option
should be specified when the output is directed to a printer that
cannot print lowercase letters.

28 Document Composition Facility: User's Guide

j

CHAPTER 3. BASIC TEXT PROCESSING

GMb MARKUP AND CONTROL WORDS

When you prepare a document for SCRIPT/VS to format, the document
(called the input file) can contain two kinds of data:

• Text, the actual content of the document which SCRIPT/VS
places on your output page, and

• Markup, which consists of

SCRIPT/VS control words that control processing of your
document and the placement of the text on the output page.

GMl markup that describes the characteristics of the doc
ument, but does not specify processing. When GML markup
is used, the Application Processing Functions (APFs)
contain the control words that specify the processing.

A SCRIPT/VS input file might contain text data only. In this case,
SCRIPT/VS formats the file using a set of defaults appropriate for
the logical output device. Typical default values specify the
output page as 8-1/2 by 11 inches, single-column format, with con
catenation and justification.

Insert control words into the input file when you want to change
any of the default assumptions and when you want to use the more
advanced functions of SCRIPT/VS, such as footnotes, automatically
generated table of contents, and interactive text input.

The Document Composition Facility: Generalized Markup Lan9uaae
(GML) User's Guide describes marking up with GML tags. This manual
discusses SCRIPT/VS control words.

SCRIPT/VS TEXT FORMATTING

SCRIPT/VS can format input text to build output lines. The output
text appears in columns of regular width. This formatting con
sists of two processes which SCRIPT/VS performs as it builds out
put lines:

• Concatenation: spilling words from one line to another to put
as many words as possible on each output line, and

• Justification: distributing space between words to align the
right edges of output lines (right-justified).

FORMAT MODE

3

Most writing that you do requires some kind of formatting. With
format mode on, lines that are entered in a SCRIPT/VS file as: J

The quick brown
fox
came over to greet the lazy poodle.
The lazy poodle was
as indifferent
as the fox was quick.

result in the output lines:

The quick brown fox came over
. to greet the lazy poodle. The

lazy poodle was as indifferent
as the fox was quick.

Many of the examples of SCRIPT/VS formatting in this book are shown, for con
venience, with short lines.

Chapter 3. Basic Text Processing 29

RAGGED RIGHT

When SCRIPT/VS reads input, it "saves" words until it accumulates
enough of them to fill an entire line. When the next word in the
input would make the line too long, SCRIPT/VS justifies and prints
the line, then begins formatting the next line. When two input
lines are joined (that is, concatenated), SCRIPT/VS inserts blank
space between the last word of one line and the first word of the
next.

If you enter text in a SCRIPT/VS file with no markup, the defaults
established by SCRIPT/VS cause the text to be formatted as in the
above example.

There may be oc~asions when you do not want SCRIPT/VS to concat
enate and justify the input ,lines. You may want to present a sim
ple list, such as:

Boston
Chicago
New York
Providence

If these lines are processed when SCRIPT/VS formatting is in
effect, the four names are concate~ated as follows:

Boston Chicago New York Providence

To prevent this, you can use the .BR [Breakl control word between
each entry to force a "break," or you can use the . FO [Format
Model control word to suspend SCRIPT/VS justification and concat
enation:

.fo off
Boston
Chicago
New York
Providence

To restore normal formatting, use the control word:

.fo on

Since ON is the default, you can also use:

.fo

If you use the .FO OFF control word when you create tables or
charts, remember to turn formatting back on when you resume enter
ing text. For more about the .BR [Breakl control word, see
"Breaks" in this chapter.

The .FO [Format Model OFF control word suspends both concat
enation and justification. When you want to produce SCRIPT/VS
output that resembles normal typewriter output (that is, "ragged
right" output), you do not want to suspend concatenation. You
still want each line to contain as many words as can fit on it,
but you do not want extra space inserted between the words to
pad the line to a specific length. To achieve this, use the .FO
[Format Model lEFT control word):

.fo left

When the .FO [Format Model lEFT control word is in effect, output
is formatted as in the above paragraph. To resume justification of
output lines, use the ON parameter of the .FO control word:

.fo on
or

.fo

30 Document Composition Facility: User's Guide

CONCATENATE MODE

You can suspend concatenation by using the .CO [Concatenate Modal
control word with the OFF parameter:

.co off

Each subsequent line of output contains the text of its corre
sponding input line. If the input line is shorter than the output
line width, it is padded with blank space when justification is in
effect. If the input line is longer than the output line width,
the placement of excess words depends on the .FO [Format Model
control word parameters:

• EXTEND: the excess words are printed on the same output line;
the line is allowed to extend beyond the column width.

• FOLD: the excess characters are printed on the next output
line.

• TRUNC: the excess characters are truncated at column width
and are not printed.

With .FO FOLD or .FO TRUNC, a word is divided at the last charac
ter to fit in the column.

With concatenation off, each input line results in a new output
line. It is not joined to the previous input line.

To restore concatenation, use the control word

.co on
or

.co

Since ON is the default for the .CO [Concatenate Model control
word, you do not need to specify ON.

The .FO ON (Format Mode On) control word restores both concat
enation and justification even if they have been turned off sepa
rately with the .CO [Concatenate Model OFF and the .FO [Format
Model LEFT control words.

SCRIPT/VS IMPLICIT FORMATTING CONVENTIONS

Unless you specify otherwise, SCRIPT/VS formats your document
based on default settings appropriat~ for the logical device you
have specified.

When input lines are concatenated, SCRIPT/VS inserts a blank at
the end of the output line before joining it to the next input
line. This blank is the interword blank between two input lines on
the same output line.

If you follow the publishing convention that requires sentences
to be separated by two blanks, you can take advantage of another
SCRIPT/VS function. When a SCRIPT/VS input line ends in a "full
stop" and the output document is being printed on an IBM 1403
Printer or at a typewriter terminal, a second blank is automat
ically added when the line is concatenated to the next input
line. 4 A "full stop" is a period (.), a question mark (1), or an
exclamation point (!). A line is also considered to end in a full
stop if it ends with a double quote (") or a right parenthesis
(», and the next-to-last character is a "full stop" character.
You can change the characters that are treated as "full stop"
characters with the .DC [Define Ch'aracter] STOP control word (see
"Chapter 7. Additional Formatting Features of SCRIPT/VS" on page
77 for detai Is).

See "Appendix D. Formatting Considerations for the 3800 Printer" on page 337
for special considerations relating to the insertion of blanks after "full
stop" characters when the document is to be printed on the 3800 Printer.

Chapter 3. Basic Text Processing 31

A null input line in SCRIPT/VS causes a break. Input lines that
start with a leading blank or leading tab also cause breaks.
SCRIPT/VS generates a control word and executes it when it detects
one of these situations. For null lines, SCRIPT/VS generates and
executes the .Nl [Null line] control word. For leading blanks, the
.lB [leading Blank] control word, and for leading tabs, the .IT
[leading Tab] control word. All of these control words do exactly
the same thing as the .BR [Break] control word.

SCRIPT/VS implements these implicit breaks as control words to
allow you to alter the processing for these situations. You can
define a .Nl, .lB, or .IT macro to provide whatever processing you
require. Note that input lines processed in literal mode, under
the .lI [literal] control word, do not invoke the .Nl, .lB, or .IT
functions. ---

USING TABS IN SCRIPT/VS

SETTING TABS

To generate the tab character (hexadecimal 05) in your input
lines, you can use one of the following techniques:

• Choose a character that you would not normally use in your
text and assign it the hexadecimal 05 using the .TI [Translate
Input] control word. For example, to set the "-" character to
a tab character, specify

. t i ... 05

This causes every "not sign" character to be translated to a
tab in the input line, before formatting occurs. Using this
technique, you can see your "tab" characters when you edit the
input fi Ie.

• Use the SCRIPT/VS system symbol "&$TAB" anywhere in a text
line to create the hexadecimal 05 character. Using this tech
nique, you can see your "tab" characters when you edit the
input file. Always delimit the symbol with a period (.).

• Using an editor, build the text lines with hexadecimal 05
characters as required. This technique has the disadvantage
of making the tab characters "invisible" when editing the
file in normal character display mode.

• Build the input file using an input device that can generate a
hexadecimal 05 in response to pressing a key (for example,
pressing the TAB key on an IBM 2741 Communications Terminal).
This technique has the disadvantage of making the tab charac
ters "invisible" when editing the file in normal character
display mode.

When SCRIPT/VS processes an input line and encounters a tab char
acter, it formats the line using the current tab settings, which
are established by the .TB control word.

The default tab settings (the ones SCRIPT/VS uses if you don't
specify them with the .TB control word) are at every fifth charac
ter position to position 80. The numbers correspond to unquali
fied horizontal space units that represent the end of a tab
expansion (tab stop) through which SCRIPT/VS prints blanks on the
output line.

For example, if you use the default SCRIPT/VS tab settings and
enter a tab character in front of each input text line, then char
acter positions 1 through 5 of each output line will contain
blanks; the text begins in character position 6. If you press the
tab key twice, character positions 1 through 10 are filled with
blanks, and so on.

32 Document Composition Facility: User's Guide

If you enter a word or number (for example, a list item), then
press the tab key, SCRIPT/VS fills the remaining character posi
tions (through the next tab setting position) with blanks, then
continues formatting text. For example, the liness :

. t i ... 05

.tb 14m
This-line has been
formatted with a tab.

result in:

..•• v •••• v •••• v •••• v •••• v ••.. v
This line has been
formatted with a tab.

SCRIPT/VS has inserted blanks through character position 14,
which is the current tab setting for the first tab.

Neither the physical tab key settings nor the appearance of input
lines on the terminal has any affect on the SCRIPT/VS tab posi
tions.

Once a .TB control word has been processed, the tab settings
remain in effect until explicitly reset by another .TB control
word. You can restore the SCRIPT/VS default values using the .TB
control word without parameters:

.tb

You can specify up to sixteen tab positions using the .TB control
word.

SOME USES FOR TABS

Tab characters at the beginning of an input line (called leading
tabs) ordinarily cause it not to be concatenated with the previous
line (that is, they cause a "break" in concatenation). Therefore,
you can use tab characters to create tables and charts. For exam
ple, the input lines:

.ti ... 05

.tb 5m
We are planting:
"'Marigolds
... Peonies
"'Cucumbers

are formatted as:

.... v v v v ..•. v .•.• v
We are planting:

TAB FILL CHARACTERS

Marigolds
Peonies
Cucumbers

Ordinarily, SCRIPT/VS uses blank space to pad a line to a tab
position. Instead of blank space, you can specify a "fill"
character to'be used to pad the line. You issue a .TB control word
with the tab setting parameters preceded by the fill-character
parameter (the two parameters are separated by a slash (/».

5 Space units here are specified in "ems." For details about other ways to spec
ify an amount of space, see "Specifying Vertical and Horizontal Space Units"
in "Chapter 1. An Introduction to SCRIPT/VS" on page 1.

Chapter 3. Basi~ Text Processing 33

BREAKS

When you enter a line that includes a tab, the character positions
normally padded with blanks are padded with the fill character
(periods, in the following example) instead:

.tb .. 05

.tb ./Sm
~This line begins with a tab.

is formatted as:

...•. This line begins with a tab.

You can specify a different fill character for each tab setting
po~ition you specify with the .TB control word. For example,

.ti ~ OS

.tb ./Sm */10m -/15m
A~B""C~D
E F

results in:

A B****C----D
E *****F

When you want an input line to begin a new line of output, you
must cause a break. The break causes SCRIPT/VS to print the par
tial output line that is being built before it processes the next
input 1 i ne.

If you begin a line with a blank or a tab, the formatting process
is interrupted, the text that has accumulated for the current out
put line is printed, and the next input line begins a new output
line.

To create paragraphs in text, one method you can use is to enter
spaces before each line that begins a new paragraph. For example,

The quick brown
fox
came over to greet the lazy poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letters J and S.
That's why the quick brown fox usually jumps.

But the poodle was frightened
and ran away.

results in:

The quick brown fox came over
to greet the lazy poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letter J
and S. That's why the quick
brown fox usually jumps.

But the poodle was fright
ened and ran away.

You can specify a break using the .BR [Break] control word.

The quick brown
.br
fox came over to greet ... but you
know the rest.

results in:

The quick brown
fox came over to greet .•• but
you know the rest.

34 Document Composi t ion Fac iIi ty: User's Gu ide

Without the .BR [Break] control word between the two input lines,
the above input lines format as:

The quick brown fox came over
to greet ... but you know the
rest.

Some SCRIPT/VS control words cause a break in addition to their
explicit function. For a complete list of the control words that
cause a break, see Figure 25 on page 311.

Current margins:
1<-- -->1
The current left margin is either character position 1, or the character
position established by the combined effect of the .IN [Indent], .OF [Off
set], .UN [Undent] and .IL [Indent Line] control words. The current right
margin is determined by the combined effect of the .CL [Column Width] and
.IR [Indent Right] control words .

. Il [Indent line]:
-->1

The first line following the indent line control word is moved to the
right of the current left margin. All subsequent lines start at the current
left margin. (Changes affect the current left margin for one line.)

.IN [Indent]:
---->1

All lines following the indent control word are moved to the right
of the current left margin. (Changes affect the current left margin
for all subsequent lines until respecified.)

. OF [Offset]:
1->1
The first line following the offset control word is not indented

from the current left margin; all subsequent lines are
indented. The offset remains in effect until changed by anoth
er offset or indent control word. (Changes affect the current
left margin after one output line.)

.UN [Undent]:
1<-1
The line following the undent control word is shifted to the left of the

current left margin; all subsequent lines start at the current left
margin. (Changes affect the current left margin for one line.)

.IR [Indent Right]:
1<-

All lines following an indent right control word are justified to the
column width minus the right indention. (Changes affect the current
right margin for all subsequent lines until respecified.)

Figure 6. How the Current Margins Are Established

CHANGING THE MARGINS

SCRIPT/VS formats text into the defined column or'columns on the
page.

The "left margin" is the leftmost print position in the column.
This is always character position onQ.

The "right margin" is the right edge of the rightmost print posi
tion in the column. The right margin is determined by the column
width. For example, if the column were 38M wide, the "right mar
gin" would be at character position 39.

Chapter 3. Basic Text Processing 35

SIMPLE INDENTION

When the left or right margin is modified, the new margin is
called the "current" left or right margin respectively.

To improve readability or emphasize a block of text,
desirable to alter the left or right margin. The
SCRIPT/VS control words are provided for this purpose:

it may be
following

• .IN [Indent] - change the left margin for all subsequent out
put lines.

• .IR [Indent Right] - change the right margin for all subse
quent output lines.

• .Il [Indent line] - apply the specified indent to only the
next output line.

• . UN [Undent] - reduce the indent of only the next output 1 i ne.

• .OF [Offset] - apply this indent to all lines after the next
output 1 i ne.

All margin-modifying control words cause the current output line
to be placed on the page and a new output line started. This is
called a "break."

Figure 6 on page 35 illustrates the effects of the various
margin-modifying control words.

The most basic form of indention is simple modification of the
left or right margin. When the "indent" is zero, all text output
lines originate in the leftmost print position of the column. By
increasing the indent the left margin can be moved to the right.
For example, by specifying

· in 6m

-6m->
the left margin is set 6M to the right of column origin. The
left margin may also be changed by specifying an lncre
mental value to be applied to the current left margin. This
is called "relative" indenting. For example, by specifying

. in + 5m

--llm-->

--8m->

the value 5M is added to the current left margin. In
this example, 6M + 5M is 11M, so the current left mar
gin is now 11M to the right of the column origin. You
can move the current left margin to the left by
specifying a negative value. For example, by specify
ing

. in-3m

the value 3M is subtracted from the current left margin.
In this example, 11M - 3M is 8M, so the current left mar
gin is now 8M to the right of its origin.

You can return the left margin to the column origin at any time by
speci fyi ng

· in 0
or

· in

The right margin can be easily changed with the .IR [Indent Right]
control word. With justification on, the last character in each
line is flush with the right margin. By changing the "right
indent" the right margin may be moved to the left.

36 Document Composition Facility: User's Guide

For example, by specifying

· i r 8m

<-8m-
the right margin ;s moved 8M to the left. As with .IN [In-
dent] you can modify the current right margin using rela-
tive values. For example, by specifying

· i r +3m

<--11m-
the value 3M is added to the current right indent. In
this example 8M + 3M is 11M, so the current right mar-
gin is now 11M to the left of its origin.

You can return to the original right margin at any time by
specifying

· i r 0
or

· i r

In practice it is more convenient to use relative indention rather
than absolute indention. The advantage of relative indention is
that you need not be sensitive to the actual value of the margin
that you are changing. Relative indents will work "in context"
with the surrounding text so that the document may be imbedded
into another while maintaining the same relative appearance.

INDENTING A SINGLE LINE

If you would like to indent a single line without modifying the
current left margin, you can use the .IL [Indent Line] or .UN [Un
dent] control word. These control words may be used interchangea
bly. The indent value specified is summed with the current left
margin value to produce a net indent which is applied to the next
output line only. If specified, the sign indicates the direction
of the indent. For example, to indent the next output line 6M, you
would specify

· i 1 6m
or

.il +6m
or

.un -6m

-6m->
As you can see, this line is indented 6M and all subsequent

lines originate at the current left margin. This technique is
often used to indent the first line of a paragraph.

If the body of the text is indented, the opposite effect can be
achieved by "undenting" a single line. For example, specify

· in 8m

to indent the body text.

--8m->

Undenting the first line of text in a block makes it stand
out, providing a natural break for the eye between blocks
of text such as list items. For example, by specifying

.i1 -6m
or

.un 6m
or

.un +6m

Chapter 3. Basic Text Processing 37

O~FSETTING TEXT

<-6m--
Look, this output line originates 6M to the left of the current

left margin and catches your eye. All subsequent lines
originate at the current left margin. This block of text
is easily distinguished from those around it.

In the following examples, the SCRIPT/VS system symbol "&$RB" is
used to generate a "required blank" in the input line. Required
blanks are not recognized as wordspaces for the purpose of justi
fication. Consequently, they may be used to create blank space of
a fixed length in a line that may be justified.

The required blank is by default hexadecimal 41, but may be
changed with the .DC [Define Character] RB control word.

A typical application of the .UN [Undent] control word is the for
matting of an ordered list. Each list entry starts with an
undented output line. For example, to create an ordered list you
would specify

.in +3m

.un 3m
1)&$RB.The first line of this ordered list
entry is undented 3M.
Subsequent output lines originate
at the current left margin .
. sk 1
.in +3m
.un 3m
A)&$RB.The current left margin has been
moved to the right
by 3M to create this sublist entry.
The first output line is undented 3M .
. in -3m
.sk 1
.un 3m
2)&$RB.The first line of this ordered list
entry is undented 3M.
Subsequent output lines originate
at the current left margin.

With justification on, the result will be

1) The first line of this ordered list entry is undented 3M.
Subsequent output lines originate at the current left margin.

A) The current left margin has been moved to the right by 3M to
create this sublist entry. The first output line is
undented 3M.

2) The first line of this ordered list entry is undented 3M.
Subsequent output lines originate at the current left margin.

In the above example, the indent value was set equal to the undent
value so that only the number would be undented while the text
portion of each output line would originate at the same point.

As an alternative to using the .IN [Indent] and .UN [Undent] con
trol words you can use the .OF [Offset] control word to create an
ordered list. For example, you would specify

38 Document Composition Facility: User's Guide

.of 3m
1)&$RB.The first line of this ordered list
entry originates at the current left margin.
Subsequent output lines are offset
3M to the right .
. sk 1
.in +3m
.of 3m
A)&$RB.The current left margin has been
moved to the right
by 3M to create this sublist entry.
Specifying .IN cancels the previous
offset.
The first output line originates at the new
left margin. Subsequent output lines
are offset 3M to the right .
. in -3m
.sk 1
.of 3m
2)&$RB.The first line of this ordered list
entry originates at the current left margin.
Subsequent output lines are offset
3M to the right.

With justification on, the result will be

1) The first line of this ordered list entry originates at the
current left margin. Subsequent output lines are offset 3M to
the right.

A) The current left margin has been moved to the right by 3M to
create this sublist entry. Specifying .IN cancels the pre
vious offset. The first output line originates at the new
left margin. Subsequent output lines are offset 3M to the
right.

2) The first line of this ordered list entry originates at the
current left margin. Subsequent output lines are offset 3M to
the right.

You can reset the offset to zero at any time by specifying

.of 0
or

.of

USING INDENTION WITH TABS

In the simple case of an ordered list, all the undented lines were
the same. That is, they all began with the number, and right
parenthesis, followed by a required blank. When the undented
lines do not all begin with the same convention, a different tech
nique should be used.

A definition list would contain definition terms of varying
length followed by the text which defined those terms. To ensure
that all the text lines originate at the same point on the output
line it would be necessary to make each definition term appear to
have the same length. This is done by following each term with a
tab which is set equal to the current indention. For example, if
you specify

Chapter 3. Basic Text Processing 39

VERTICAL SPACE

. in 12m

.tb 12m

.ti -. 05

.un 12m

.uc term ... definition

.sk 1

.un 12m
BEE-.any of a number of related four-winged, hairy
insects which feed on the nectar of flowers .
. sk 1
.un 12m
BEEKEEPER"'person who keeps bees for producing
honey; apiarist .
. sk 1
.un 12m
BEESWAX"'a tallow like substance secreted by
honeybees and used by them in making their
honeycomb.

With justification on, the result will be

TERM

BEE

DEFINITION

any of a number of related four-winged, hairy insects
which feed on the nectar of flowers.

BEEKEEPER

BEESWAX

person who keeps bees for producing honey; apiarist.

a tallow like substance secreted by honeybees and
used by them in making their honeycomb.

As you can see from the above example, the tab ensures that the
text portion of each undented line starts at the same point on the
output line as the text that follows it. If you did not use the
tab, you would have to manually space the number of blanks neces
sary to position the first word of the text to the appropriate
point. There are some disadvantages to manually entering the
blank space:

• The number of keystrokes and attendant potential for error is
greater.

• The blank space may be increased in width if justification is
on. This problem can be avoided by using required blanks.

• The space can not always be accurately filled with manually
entered blanks if you are formatting the document for the 3800
Printer.

For details on the margin-modifying control words, see "Chapter
21. SCRIPT/VS Control Word Descriptions" on page 199.

Three ~f the ways you can separate lines of text with vertical
space are:

• Enter a blank line.

• Use the .SK [Skip] control word.

• Use the .SP [Space] control word.

For example,

The quick brown fox came over to
greet the lazy poodle .
. sp
But the poodle was frightened
and ran away .
. sk
The poodle ran over to her
friend the Saint Bernard.

40 Document Composition Facility: User's Guide

LINE SPACING

are formatted as:

The quick brown fox came over
to greet the lazy poodle.

But the poodle was frightened
and ran away.

The poodle ran over to her
friend the Saint Bernard.

If the space generated by the .SK [Skip] control word occurs at
the top of a column (or page), no blank lines are printed.
However, a .SP [Space] control word always results in blank lines.
For this reason, you may prefer to use the .SK [Skip] control word
instead of the .SP [Space] control word whenever you need blank
output lines.

The .SP [Space] and .SK [Skip] control words allow you to specify
an amount of vertical space. They also accept a parameter indicat
ing how much space you want to create in the text output. For
example,

.sp 2i

indicates that you want to create two inches of space in the out
put.

You can use blank space to cause a heading or a title to stand
out. For example, the lines:

A Love story
.sk 3
The quick brown fox
was eager
to meet the pretty poodle.

results in:

A Love story

The quick brown fox was eager
to meet the pretty poodle.

When you want to produce output that is double-spaced or
multiple-spaced, you can indicate to SCRIPT/VS that, while for
matting is to continue for each input line, extra line-spaces are
to be inserted between each output line. For double-spacing, use
the .DS [Double Space Mode] control word:

.ds

After the .DS [Double Space Mode] control word is processed, all
output text lines have an additional line space between them.

Some of the spaces or skips that you have placed in the file are
doubled as well: if you have a .SP 2 control word, then your out
put page has four line spaces. However, if you have specified
blank vertical space in terms of inches, picas, clceros, or milli
meters, that space is not doubled: if you have a .SP 2i control
word, then your output page has two inches of blank vertical
space.

Double-spacing can be cancelled by the .SS ['ingle Space Mode]
control word, which returns SCRIPT/VS output to normal
single-line spacing.

Chapter 3. Basic Text Processing 41

You can also obtain additional space between output lines using
the .lS [line Spacing] control word. For example, you can specify

.ls 2

which results in two additional blank lines between each output
line, or "triple-spaced" output. The .LS control word is a gener
alization of .05 and .55; .LS 1 is equivalent to .05, and .LS 0 is
equivalent to .55. Any of the three control words .55, .05, and
.lS, cancels the other two.

In contrast, the .SL [Set line Space] control word defines the
vertical size of an output line. For example,

.sl .5i

results in each output line occupying a vertical space of one-half
inch. Each output line is subject to line spacing as defined by
the .55, .05, and .LS control words. For example,

.sl .5i

.ls 1

defines double-spacing mode where each output line is one-half
inch deep. With these control words in effect,

.sp 2

results in two inches of vertical space. It is a request for a
space of two lines, and each line is one-half inch deep. The
resulting one inch of space is doubled because double-spacing is
in effect. However, no matter what line spacing controls are in
effect, an absolute space request always has the same effect. For
example,

.sp .75i

causes SCRIPT/VS to space vertically as close to 3/4 inch as the
resolution of the logical device allows.

POSITIONING LINES ON THE PAGE

Most line positioning is based on a displacement from the left
margin -- a cumbersome way to format when you want text centered
between the margins or aligned with the right margin (leaving a
"ragged left edge"). SCRIPT/VS allows you to center text using the
.CE [Center] control word, and to align text with the right margin
using the .RI [Right Adjust] control word.

When using the .CE [Center] and .RI [Right Adjust] control words,
remember that the text lines affected by these· control words are
not concatenated or justified.

The .CE [Center] control word adjusts an output line to provide an
equal amount of space on either side of the line. The line

.ce Chapter 1

results in:

Chapter 1

The .RI [Right Adjust] control word adjusts an output line to
align it with the right margin. For example,

.ri Chapter 1

results in:

Chapter 1

42 Document Composition Facility: User's Guide

Both the .CE [Center] and .RI [Right Adjust] control words allow
you to specify a numeric parameter, indicating how many input
lines should be centered or aligned with the right margin. For
example,

.ce 4
After this control word is processed,
the next four lines from the input file
are centered within the current
margins.
However p subsequent input lines are
processed without centering,
to produce formatted (that is,
concatenated and justified)
output lines.

results in:

After this control word is processed,
the next four lines from the input file

are centered within the current
margins.

Howeverp subsequent input lines are processed without cen
tering, to produce formatted (that is, concatenated and jus
tified) output lines.

You can also use the ON and OFF parameters with the .CE [Center]
and .RI [Right Adjust] control words. For example,

. ri on
These lines must
be flush with the
right margin .
. ri off

results in:

These lines must
be flush with the

right margin.

All the output lines between the .RI [Right Adjust] ON and .RI
[~ight Adjust] OFF control words are aligned with the right mar
gin. No concatenation or justification takes place.

The following paragraph is formatted using the .FO CENTER control
word.

Do not confuse the .CE [Center] control word with the
.FO [Format Model CENTER control word. The .FO CENTER

control word allows you to format the input lines with
concatenation, producing unjustified output lines that

are centered between the column's margins (that is,
with ragged left and ragged right edges).

The following paragraph is formatted using the .FO RIGHT control
word.

Also, do not confuse the .RI [Right Adjust] control word
with the .FO RIGHT control word. The .FO RIGHT control word
allows you to format input lines with concatenation, prod

ucing unjustified output lines that are aligned with the
right margin (that is, ragged left edge).

Perhaps you want to align part of an output line with the left
margin, and the other part with the right margin, all on the same
line. You do this with the .SX [Split Text] control word, whose
format is:

.sx /Left-edge text//Right-edge text/

which results in:

left-edge text Right-edge text

Chapter 3. Basic Text Processing 43

The slash (/) is used in the example above as a delimiter to sepa
rate the control word's fields. SCRIPT/VS recognizes the first
character after the blank (in this case, the slash) as the delim
iter character for the control word. If you want to use a slash as
part of the text, use some other character as a delimiter:

.sx ¢SCRIPT/VS User's Guide¢¢Control Words¢

is formatted as:

SCRIPT/VS User's Guide Control Words

The space between the parts of split text can be left blank.
However, you can specify a "fill string" that is repeated as often
as necessary to fill the space between two parts of the split
text. The fill string can be up to eight characters long. For
example,

.sx /Left side/*-/Right side/

results in:

Left side

UNDERLINING AND CAPITALIZING

Because underlining requires backspacing and overstriking charac
ters, the procedur~ can be particularly frustrating when you need
to create a line that contains an underlined word or words.
Instead of manually keying in the character/backspace/underline
sequence, you can use the .US [Underscore] control word to tell
SCRIPT/VS to underscore a word or phrase when it is printed.

For example,

.us Do not destroy this letter.

prints as:

Do not destroy this letter.

Because the .US [Underscore] control word does not cause a break,
you underscore a single word as:

This sentence contains a very
.us important
word for contemplation.

which results in:

This sentence contains a very important word for contem
plation.

When lines are underscored automatically, SCRIPT/VS does not usu
ally underscore blanks and punctuation marks. It does underscore
letters, numbers, and some special characters. You can specify
the characters to be underscored (or specify characters you do not
want SCRIPT/VS to underscore) with the .UD [Underscore Defi
nition] control word.

The .UP [Uppercase] and .UC [Underscore and Capitalize] control
words work in a similar manner. Instead of entering text to be
capitalized all in uppercase letters, you can tell SCRIPT/VS to
capitalize text for you. For example,

.up Chapter 10

results in:

CHAPTER 10

44 Document Composition Facility: User's Guide

Use the .UC [Underscore and Capitalize] control word when you want
a line both underscored and capitalized. The line:

.uc preface

results in:

PREFACE

You can also affect a number of input lines with the .US [Under
score], .UP [Uppercase], and .UC [Underscore and Capitalize]
control words. For example, to underscore three input lines:

.us 3
Do not
destroy this letter
until
its expiration date,
which is January 31, 1978.

results in:

Do not destroy this letter
until its expiration date,
which is January 31, 1978.

You can use the ON and OFF parameters of these control words to
affect a group of text lines in a similar manner. Using the ON and
OFF parameters might require less updating than using a numeric
parameter when you add or delete lines to a group of underscored
lines. For example,

This is capitalized for
.up on
emphasis
.up off
and
.uc on
emotional
.uc off
impact.

results in:

FORCING A NEW PAGE

This is capitalized for EMPHA
SIS and EMOTIONAL impact.

As SCRIPT/VS formats text, it keeps track of how many lines it has
filled on a page. When it reaches the bottom of the output page,
SCRIPT/VS performs a "page eject" and continues on a new output
page. SCRIPT/VS keeps track of the current page number as it is
processing.

You can force SCRIPT/VS to begin a new output page by using the
.PA [Page Eject] or the .CP [Conditional Page Eject] control word:

.pa

The .PA [Page Eject] control word causes a break. SCRIPT/VS prints
the output line being constructed, then leaves the remainder of
the current page blank. The .CP [Conditional Page Eject] control
word is described in "Chapter 7. Additional Formatting Features
of SCRIPT/VS" on page 77.

The .PA [Page Eject] control word also allows you to specify a
numeric parameter, to assign a page number to the new page. When
you specify a page number with the .PA [Page Eject] control word,
the page number counter is reset to the new number and continues
sequentially from that number.

Chapter 3. Basic Text Processing 45

For example, if you are creating a SCRIPT/VS file with a title
page and you want the second output page to be numbered "1". you
can enter:

Title page ...
. pa 1
This is page one

to cause a page eject after the title page and number the follow
ing pages, beginning with 1.

For a method of suppressing the numbering of introductory pages,
see the discussion of the .PN [Page Numbering Mode] control word
in "Chapter 4. Defining a Page Layout" on page 51.

SPECIFYING THE ODD OR EVEN PAGE

You can force a new odd-numbered or even-numbered page when you
specify the ODD or EVEN parameter of the .PA [Page Eject] control
word. For example, if SCRIPT/VS is currently processing output
page 3 and the next control word it encounters is

.pa odd

it ejects the current page, prints any titles, heading, and foot
ing that might be in effect on the next page (page 4), ejects, and
prints the next output text on page 5.

This is convenient when some of your document's pages must begin
on even- or odd-numbered pages, such as the first page of a chap
ter, or the text that describes a figure on the facing page.

SPECIFYING PAGE EJECT MODE

When you want your document to be printed only on even-numbered
pages (leaving the intervening odd-numbered pages blank) you can
specify

.pa even on

This process is called "page eject mode." To specify page eject
mode, you use the ON and OFF parameters of the .PA [Page Eject]
control word, along with its EVEN or ODD parameters. You can simi
larly specify odd-numbered page eject mode with

.pa odd on

You can end page eject mode by issuing:

• Another page eject mode control word. For 'example, if the
odd-page eject mode is in effect, you can change to ~ven-page
eject mode with

.pa even on

• The OFF parameter. To turn off the odd-page eject mode, issue

.pa odd off

• Page renumbering. You can also cancel page eject mode by
specifying a page eject that resets the page number:

.pa 12

GUIDELINES FOR ENTERING TEXT AND CONTROL WORDS IN SCRIPT/VS

If you have not used a text processor before, or if you have used
a text processor other than SCRIPT/VS, you may find some of the
following tips useful when entering input for SCRIPT/VS files.

46 Document Composition Facility: User's Guide

START ALL INPUT LINES IN COLUMN ONE

When you enter input into a SCRIPT/VS file, you should enter all
the input lines (text lines as well as control words) beginning in
column one. Occasionally, you may want to enter lines that begin
with blank characters or tabs. Remember that blanks and tabs at
the beginning of a line may cause breaks. When you want to manipu
late the margins for output lines, use control words instead of
blanks or tabs.

AVOID A TEXT PERIOD IN COLUMN ONE

When SCRIPT/VS processes an input line, data that follows a period
in column 1 is treated as a control word. If what f~llows the
period is not a valid control word or macro, SCRIPT/VS issues an
error message. If a valid control word follows the period in col
umn 1 (even though you intended it to be text), SCRIPT/VS proc
esses it as a control word. In this case, the results might be
undesirable.

The .LI [Literal] control word tells SCRIPT/VS that you want the
line interpreted as a text input line, even though it begins with
a period, leading blank, or leading tab. For example,

.ti .. 05

. 1 i .•. and so it goes .

. 1 i 2
Leading blank lines

"and leading tab lines
do not cause an implicit break
when preceded by the .LI
control word.

prints as:

... and so it goes. Leading
blank lines and leading tab
lines do not cause an implicit
break when preceded by the .LI
control word.

You can specify parameters with the .LI [Literal] control word. If
there are many lines that begin with a period, for example, you
can issue:

study the following control words:
. 1 i . 1 i on
.DS,
.L I,
.PA, and
.IM .
. 1 i .1 i off
This assignment is due on Monday.

which results in:

Study the following control
words: .OS, .LI, .PA, and .IM.
This assignment is due on Mon
day.

Note: When literal mode is in effect, the ~ SCRIPT/VS control
word that is processed is .lI OFF. Other for~sof the .LI control
word, as well as other SCRIPT/VS control words, are treated as
text. .

REMEMBER WHICH CONTROL WORDS CAUSE BREAKS

When you finish a block of text or a paragraph, you might want
SCRIPT/VS to print the text that has accumulated, so that the next
input line begins a new output line. You can use the .BR[Break]
control word to do this. However, many other control words cause
breaks as part of their normal function. In the sequence

Chapter 3. Basic lext Processing 47

text text text
.br
. in 5m

the .BR [Break] control word is unnecessary, since the .IN [In
dent] control word causes a break.

Many control words that provide format functions do not cause
breaks. CA. list of those that cause an implicit break is provided
in Figure 25 on page 311.) The underscoring and capitalizing con
trol words are good examples:

This
.up sentence
.us has several control
.uc words in
.up it,
and its text is concatenated.

results in:

This SENTENCE has several con
trol WORDS IN IT, and its text
is concatenat.ed.

GROUP THE SCRIPT/VS CONTROL WORDS

You can enter more than one control word on\ a single input line.
You can also enter control words and text on the same input line.
To separate the control words, or the control words and text, use
a semi colon (;). The semi colon i 5 called the control word
separator. Its effect is to allow SCRIPT/VS to separate an input
line into two or more processable input lines. For example,

.ski.ce on

is the same as the two 1 i nes:

.sk

.ce on

Grouping control words on a line is useful because you can quickly
see the sequence and context of one control word within the group.

Redefining the Control Word Separator

Each time a control word line is processed, SCRIPT/VS divides it
into two pieces: the part before the first control word separator,
and the remainder (which is saved for later processing). For exam
ple, the input line:

.de cw ?;.ce. ;Centered;?dc cw

i s processed as fo 11 ows:

Step

1)
2)
3)

Active Part

.dc cw ?

.ce iCentered;

.dc cw ;

Remainder

.ce ;Centered;?dc cw

.dc cw ;

In the first step, the .DC [Define Character] CW control word is
separated from the remainder of the input line by the first semi
colon, which is the current control word separator. The first .DC
CW control word changes the control word separator to a question
mark (?). When the next line is divided into the active piece and
the rema i nder, the 1 i ne is di v ided at the quest i on mark. The
semicolon is now an ordinary character with no special meaning.

In the second step, the .eE rCenter] control word is processed,
and the text ";Centered;" is centered on the output page.

48 Document eomposition Facility: User's Guide

In the third step, the control word separator is restored to its
usual value. Semicolons that are part of a control word line now
have the intended effect.

You must be careful when you use semicolons on text lines that are
processed as control word lines. For example, the line

.us Be careful; semicolons end control word lines.

results, on output, in:

Be careful I

-Semicolons end control word lines.

Notice that the second line caused a break because it begins with
a leading blank.

To avoid this problem, the .DC [Define Character] CW control word
allows you to indicate a character other than a semicolon as the
separator for separating control words. When you specify .DC CW
OFF, SCRIPT/VS does not recognize any character as a control word
separator character. For example, you can enter the line above as
follows:

.dc cw off

.us Be careful; semicolons end control word lines .

. dc cw

The ".DC CW" line restores the control word separator.

The .DC [Define Character] CW control word is also useful when you
define symbols. For details on symbol definition, see "Chapter
11. Symbols in Your Document" on page 117. The example above shows
how to use it to solve a text input problem.

Another way to avoid this problem is to use the control word sepa
rator (that is, the semicolon) to separate the control word from
the text it operates on. For example,

.us;Be careful; semicolons end control word lines

is the same as

.us
Be careful; semicolons end control word lines ..•

which results in:

Be careful; semicolons end input lines •..

In this case, the semicolon after "careful" was not a control word
separator because it was not in a control word line. The control
word separator ends an input line when the input line begins with
a period (that is, it is a control word). Otherwise, the control
word separator character is regarded as a text character.

COMMENTS IN SCRIPT/VS DOCUMENTS

In addition to text and control words, SCRIPT/VS files can contain
comments. Comments are useful for:

• Accounting notes: You can include comments that give your
name and location, the date and reason you created a file, and
a date when the file can be erased.

• Documenting formats: If you use a special format in a
SCRIPT/VS file that may be accessed by other people, you can
leave notes within the file explaining how to access it.

• Placeholders: If a file is only partially complete, you may
want to insert comments at places where information should be
added later.

Chapter 3. Basic Text Proc~ssing 49

TWO K;nds of Comment

You can place comments in a SCRIPT/VS file with the

.cm Created: 12/21/75

.cm Updated: 3/3/76

The comments are control word lines. They can appear on lines with
other cont~ol words (grouped and separated with control word sep
arators) :

.cm change format;.;n +5;.11 -5

If you want comment lines that are not processed by SCRIPT/VS, you
should enter them using .*:

.* SCRIPT/VS ignores this line; all of it.

The .* function, even though it begins with a period, is not con
sidered a control word. Other control words on the same line are
ignored, as is the control word separator character.

50 Document Composition Facility: User's Guide

CHAPTER 4. DEFINING A PAGE LAYOUT

The previous chapter showed you how to format your text to provide
paragraphs, indention, formatting, and page ejects.

This chapter describes the SCRIPT/VS control words you can use to
establish the page layout within which the text resides. It cov
ers:

• The page dimensions: length and width, and the amount of space
reserved for top and bottom margins.

• Running Top Titles: Descriptive information that is printed
within the top margin, above the heading.

• Running Headings: Descriptive information that precedes the
body of text on each page, printed below the top title.

• Running Footings: Descriptive information that follows the
body of text on each page, printed after footnotes, if any,
and above the bottom title.

• Running Bottom Titles: Descriptive information that is
printed within the bottom margin, below the footing.

• Page numbering: SCRIPT/VS can automatically insert the cur
rent page number and its prefix, if any, on each page as it is
formatted for printing.

Figure 7 on page 52 shows the layout of a SCRIPT/VS output page.
Control words used to specify the size or contents of each area
are shown in parentheses.

BASIC PAGE DIMENSIONS

The output pages that SCRIPT/VS formats are designed to fit the
form size of the logical output device (for more details, see the
DEVICE option in "Chapter 2. Using the SCRIPT Command" on page
13). The default logical devices are defined for a form size of
8-1/2 by 11 inches. When SCRIPT/VS formats output for logical
deMices that specify a form size of 8-1/2 by 11 inches, each
SCRIPT/VS page has the default dimensions of:

• 11 inches long (66 lines at 6 lines per inch (LPI), 88 lines
at 8 lines per inch). For 3800-type logical devices, the val
ues are 60 and 80, respectively, because one inch of the form
is reserved by the 3800 Printer.

• 6 inches wide (60 characters at 10 pitch, 72 characters at 12
pitch, and 90 characters at 15 pitch).

Although the initial page length and line length values are based
on the logical output device, you can change these values within
your document by using the .PL [Page Length] and .LL [Line Length]
control words.

In addition (if not otherwise specified), SCRIPT/VS provides
space for top and bottom margins, which is included in the page
length. The amount of space is based on the logical output device
type. Based on the logical output device, the maximum number of
text lines on a page is the number of lines per page less the num
ber of lines for top and bottom margins. The .TM [Top Margin] and
.BM [Bottom Margin] control words are used to respecify the top
and bottom margin size.

By changing the values of these control words, you can adjust the
dimensions of an output page. Three immediate considerations are:

• The physical size of the paper on which you are printing
SCRIPT/VS output.

Chapter 4. Defining a Page layout 51

P
a
g
e

L
e
n
g
t
h

>

Top
Margin
(.TM)

Body
of
the
Page

Bottom
Margin
(.BM)

>

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

B
I
H
D
I
H
G

<----------Line length (.Ll)------------>

Heading Space (.HS/.RT)

Heading Margin (.HM)

Running Heading (.RH)

...
< Column Width (.CL) >

....•.............•........ <-Indent

. R i ght->

<-Indent->
G
U
T
T
E
R

<-Column Width-->

Footnotes (.FH)

Running Footing (.RF)
\

Footing Margin (.FM)

Footing Space (.FS/.RT)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Figure 7. SCRIPT/VS Terms for Parts of the Page: Hote that Top Margin and Bottom
Margin include all the space on the paper that is accessible to
SCRIPT/VS. For terminals and 1403-type printers, this includes the
entire page. For 3800-type devices, Top and Bottom Margin do not include
1/2 inch on each side of the interpage perforation. This space is
rese~ved.by the 3800 Printer for accelerating and decelerating the paper
when it is necessary to halt the paper path.

• The number of lines printed' or typed per page on the output
device.

• The 3800 Printer reserves one-half inch at the top and bottom
of the page that is not included as part of the page length.

Page length includes all of the page that is accessible to
SCRIPT/VS. For non-3800 devices, this is the entire form (the ver
tical distance between perforations for continuous forms). The
3800 Printer reserves 1/2 inch above and below the perforation,
and makes it inacce~sible for printing. Consequently, for 3800
logical devices, page length does not include 1/2 inch at the top
and bottom of the page.

S2 Document Composition Facility: User's Guide

CHANGING THE PAGE LENGTH

Page length can be changed using the .PL [Page Length] control
word. If you change the page length, the top and bottom margins do
not change automaticallY. '

Usually, you do not set the page length and line length for a doc
ument unless deviating from the values set for the logical device.
Once set, the page length and line length values remain in effect
until you explicitly reset them. You can put page layout control
words into the profile. Whenever you format the document using
that profile, the page layout appropriate for that document is
used.

You may need to adjust a page dimension to handle a special situ
ation in your document. Instead of recalculating the margin val
ues, you can specify an increment or decrement to increase or
decrease the amount of space reserved for margins. For example, if
you want to reduce the number of text lines per page from 68 to
65, you can increase the amount of space for the top margin by
specifying

.tm +3

To restore the original margin, use the control word

.tm -3

If you specify the .TM [Top Margin] control word with no param
eter, the top margin is set to the default established for the
logical output device.

CHANGING THE LINE LENGTH

When you are changing the default dimensions of SCRIPT/VS output,
you should consider the width of pages as well as the length. The
SCRIPT/VS default is based on the logical output device, speci
fied with the DEVICE option of the SCRIPT command. You can use the
.ll [Line Length] control word to set the page width. The page
width controls the right-hand margin of your output. For example,
if you want a width of 8 inches, specify

.11 8i

The .LL [Line Length] control word controls the width of the top
and bottom titles, running headings and footings, and footnotes.
Column width, controlled by the .CL [Column Width] control word,
defaults to the .LL value. The .CL [Column Width] control word
controls the width of each output text column. The starting posi
tion of the rightmost column plus the column width is the effec
tive width of the page body. This can exceed the .LL value.

As with the .PL [Page Length], .BM [Bottom Margin], and .TM [Top
Margin] control words, you can increment and decrement the value
of the line length. For example, the control word

.11 -2i

decrements the line length by 2 inches.

If you specify the .LL [Line Length] control word with no param
eter, the line length is set to the default established for the
logical output device.

When SCRIPT/VS is concatenating text, the column width (not the
1 i ne length)' 1 i mi ts the number of characters that can fi t on an
output line in that column.

If SCRIPT/VS is not concatenating text (.FO [Format Mode] OFF or
.CO [Concatenate Mode] OFF), lines that are longer than the column
width print as they appear iri the input file. They can extend into
the right margin unless the FOLD or TRUNC parameters of the .FO
[Format Mode] control word are specified. (The EXTEND parameter
of the .FO [Format Model control word is the default.)

Chapter 4. Defining a Page Layout 53

TOP AND BOTTOM RUNNING TITLES

In addition to running headings and footings, described later in
this chapter, SCRIPT/VS provides running titles. Running top
titles appear in the heading space (part of the top margin);
running bottom titles appear in the footing space (part of the
bottom margin). When you do not specify otherwise, SCRIPT/VS pro
vides a default top title that prints the page number in the upper
right corner of the output page.

Use the .RT [Running Title] control word to specify titles.
Running titles have many uses: they can indicate page numbers,
chapter or section headings, document titles, form numbers, or
almost anything you want.

Each title consists of three parts, separated by arbitrary delim
iters, printed- in the following positions according to the cur
rent line length:

.rt top /left part/center part/right part/

• The left part is flush left (aligned with the left margin).

• The center part is centered between margins.

• The right part is flush right (aligned with the right margin
of the page).

To center the words "First Draft" at the top of every output page,
specify

.rt top //First Draft//

If you want this title to appear on the left side of every output
page, specify

.rt top /First Draft///

To cancel a title, make all three parts null:

.rt top ////

The above control word cancels top title line 1. To prevent all
top titles from being printed, use .HS [Heading Space] rr.
The control words which define titles are:

.rt top even /X/Y/Z/

.rt top odd /X/Y/Z/

.rt bottom even /X/Y/Z/

.rt bottom odd /X/Y/Z/

Even-page Top Title
Odd-page Top Title
Even-page Bottom Title
Odd-page Bottom Title

If you want the same titles on both even- and odd-numbered pages,
you can use the control words:

.rt top /X/Y/Z/

.rt bottom /X/Y/Z/
Top title
Bottom title

You can use any character that does not appear in the title as the
delimiter. SCRIPT/VS assumes the first nonblank, nonnumeric char
acter that follows "bottom," "top," "even," or "odd" is the
delimiter. SCRIPT/VS processes the rest of the .RT control word
line using that character as the delimiter. For example,

.rt bottom ¢¢OS/VSl Operators Manual¢¢

If you use the EVEN or ODD parameter with the .RT [Running Title]
control word, the titles you specify appear only on the even- or
odd-numbered pages. For example, the titles:

.rt even bottom /First Draft///

.rt odd bottom ///Window Operator's Manual/

54 Document Composition Facility: User's Guide

result in the words "First Draft" appearing on the lower left of
each even-numbered output page and the words "Window Operator's
Manual" appearing on the lower right of each odd-numbered output
page.

The heading space and heading margin are allocated from the bottom
of the top margin, contiguous with the body of the page. Simi
larly, footing space and footing margin are allocated from the top
of the bottom margin.

The default page margin values, listed in Figure 29 on page 313,
are defined to allow one line each for running top and bottom
titles (heading and footing space), and two blank lines between
the running titles and the body of the page (heading and footing
margin).

The default top and bottom margin values allow 1/2 inch of blank
space between the running titles and the edge of the form. This
space is accessible to SCRIPT/VS for non-3800 devices, and is
inclu~ed in the top and bottom margin values. It is not included
in the top and bottom margin values for 3800 logical devices.

If you want one blank line instead of two between the title and
the running heading or text, specify

.hm 1

SCRIPT/VS will then provide one blank line between the lowermost
top title (if any) and the first line of text on the page. The top
margin value, however, does not change; the position of the top
title changes.

Increasing a top or bottom margin does not automatically change
the heading or footing margins. If you try to decrease a top or
bottom margin to a value too small to accommodate the titles (that
is, the values of the heading and footing space) plus the heading
or footing margin, an error results.

SCRIPT/VS automatically numbers the pages of your output for you.
When you want the page number to appear in a title, you use the
page number symbol (an ampersand (&) unless otherwise defined) to
represent the page number. SCRIPT/VS replaces the page number
symbol with the current page number when the title is formatted.
The default top title is:

.rt top IIIPAGE &1

If you want to replace the default top title with one that has the
page number centered, you can specify

.rt top 11- & -II

If you need to use an ampersand as text in a running title, you
can redefine the page number symbol to some other character with
the .DC [Define Character] PS control word. For example, the
sequence

.dc ps 9

.rt odd bottom III Page 91

.rt even bottom IPage 9111

results in the page number appearing in the lower right of all
odd-numbered pages and on the left of all even-numbered pages.

MULTILINE RUNNING TITLES

You can specify up to twelve running title line positions at one
time in a SCRIPT/VS file. The twelve possible title line positions
are:

Chapter 4. Defining a Page Layout 55

• Six lines of titles for even-numbered pages

• Six lines of titles for odd-numbered pages

When you want to use multiline titles, there are two things you
should consider:

• Specifying the text of the titles

• Allocating space for the titles to print

The .RT [Running Title] control words allow you to specify the
order in which you want the lines printed. For top titles, title
lines 1 through 6 are numbered from the top of the page down
toward the first line of text. When you specify

.rt top 1 /Top title line 1///

.rt top 2 /Top title line 2///

.rt top 6 /Top title line 6///

the top ti tIes are pri nted in the top margin as:

Top title line 1
Top title line 2

Top title line 6

For bottom titles, title lines 1 through 6 are numbered from the
bottom of the page up toward the last line of text. When you spec
ify

.rt bottom 1 /Bottom title line 1///

.rt bottom 2 /Bottom title line 2///

.rt bottom 6 /Bottom title line 6///

the bottom titles are printed ; n the bottom margin as:

Bottom t i'tie line 6

Bottom title line 2
Bottom title line 1

Since there are only six buffers available for storing title
lines, top title line 6 uses the same buffer as bottom title line
1. In other words, each title line can be referred to as either a
top title line or as a bottom title line. That is,

Top title line 1 = bottom title line 6
Top title line 2 = bottom title line 5
Top title line 3 = bottom title line 4
Top title line 4 = bottom title line 3
Top title line 5 = bottom title line 2
Top title line 6 = bottom title line 1

Therefore, you should take care when you specify multiline top and
bottom titles, and when you cancel a title. If you would like to
specify four top title lines and four bottom title lines, enter

.rt top 1 /Top title line 1///

.rt top 2 /Top title line 2///

.rt top 3 /Top title line 3///

.rt top 4 /Top title line 4///

.rt bottom 1 /Bottom title line 1///

.rt bottom 2 /Bottom title line 2///

.rt bottom 3 /Bottom title line 3///

.rt bottom 4 /Bottom title line 4///

However, you do not get eight unique title lines. Instead, the
ti tIes that are pri nted on your output pages are:

56 Document Composition Facility: User's Guide

Top title line 1
Top title line 2
Bottom title line 4
Bottom title line 3

body of the output page

Bottom title line 4
Bottom title line 3
Bottom title line 2
Bottom title line 1

This is because top title lines 3 and 4 were redefined as bottom
titles 3 and 4 before they were used.

Allocat;ng Space For Runn;ng T;tles

No matter how many different title lines you specify, SCRIPT/VS
prints only one top title line and one bottom title line on each
page unless you allocate space for more titles. To print multiline
titles on either the top or bottom of a page, you must tell
SCRIPT/VS that you want more space in which to print the title
lines. The .HS [Heading Space] and .FS [Footing Space] control
words specify how many lines you want SCRIPT/VS to reserve for
titles.

The top margin area is established by specifying an amount of
space with the .TM [Top Margin] control word. For example,

.tm 8

specifies a top margin of eight lines. The .HM [Heading Margin]
control word tells SCRIPT/VS how many lines of the top margin to
leave blank above the body of the page. To continue the example,

.hm 2

specifies two blank lines between the title lines and the body.
Therefore, there are six lines available to contain title lines.
However, you have to tell SCRIPT/VS how many of those lines are to
actually contain titles. The remaining lines, between the title
lines and the top of the form, are left blank. To conclude our
example,

.hs 3

specifies that SCRIPT/VS can print the first three title lines (if
they are specified), leaving three blank lines at the top of the
form. The top margin, when formatted, looks like this:

Title line One
Title line Two

Title line Three

The body of the page . . .

You specify the format of the bottom margin in the same way, using
the .BM [Bottom Margin], .FM [Footing Margin], and .FS [Footing
Space] control words.

For example, the control word sequence

.bm 8

.fm 2

.fs 3

Chapter 4. Defining a Page layout 57

results in a bottom margin that looks like this:

last line of page.

Bottom line Three
Bottom line Two
Bottom line One

You can specify top titles such that one title line appears on all
pages, centered, and another title line is designated specif
ically for an even- or an odd-numbered page. For example,

.hs 2

.rt top 1 //Preliminary Draft//

.rt top even 2 /Page &///

.rt top odd 2 ///Page &/

After these control words are.processed, SCRIPT/VS prints the top
title lines on the even-numbered pages as:

Preliminary Draft
Page 12

and the top title lines for odd-numbered pages as:

Preliminary Draft
Page 13

As a result, the page number is aligned with the outside margin
when the pages are printed on both sides.

You can specify space for bottom titles the same way.

When you specify space for multiline titles, you should note the
following restrictions:

• The heading margin plus the heading space cannot exceed the
amount of vertical space specified for the top margin.

• The footing margin plus the footing space cannot exceed the
amount of vertical space specified for the bottom margin.

• You can specify from 1 to 6 lines for both the foo~ing space
and the heading space, but you can have no more than 6 unique
title lines.

• Heading space and footing space must be specified as a number
of lines.

As with other SCRIPT/VS control words, the most recent specifica
tion of a title line replaces any previous specifications for that
line. Therefore,

.rt bottom 3 ////

cancels the previous specification of bottom title line 3 and top
title line 4, including

.rt bottom 3 .•. ,

.rt bottom even 3 .•. ,

.rt bottom odd 3 .•• ,

.rt top 4 .•. ,

.rt top even 4 ... , and

.rt top odd 4

You can specify the number of title lines within the top or bottom
margin by adjusting the .HS [Heading Space] and .FS [Footing
Space] control words. For example, if top title lines 1 through 6
have been specified and you want to print only top title line 1,

58 Document Composition Facility: User's Guide

specify:

.hs 1

.fs 0

This causes SCRIPT/VS to provide one line for top titles and no
space for bottom titles. SCRIPT/VS will print top title line 1 in
the first line available for titles in the top margin (preceding
the heading margin).

Hote: If you specify six top title lines, and you specify heading
QD~ footing spaces of six, all six title lines print at the top
and the bottom of the page. Any time the heading space plus the
footing space is greater than six, some titles are used in both
places.

Runn;ng T;tle Defaults

The default value for heading space and footing space is 1 line.
Therefore, if you specify .RT [Running Title] with no numeric
parameter, the title is printed (even if no heading or footing
space control words have been specified).

To prevent titles (including the default top title) from appear
ing on your output pages, specify a zero amount of heading space
and footing space!

.hs 0

.fs 0

RUNNING HEADINGS AND FOOTINGS

Part of the format of each of your output pages can be information
at the top and bottom of the body, below the top margin and abov~
the bottom margin. The information at the top of the body is
called a running heading; information at the bottom of the body is
called the running footing. Running headings and footings can be
repeated for each page, and can be specified differently for even
and odd pages. You can use running headings and footings to indi
cate page numbers, chapter or section titles, document titles,
form numbers, security warnings, and anything else you want
repeated on each page. Running headings and footings are proc
essed exactly alike.

When you want a running heading or footing on each page, use the
.RH [Running Heading] or .RF [Running Footing] control word. For
example,

.rh on
text and control words for the running heading
.rh off

or
.rf on
text and control words for the running footing
.rf off

When you want different running headings or footings for even and
odd pages, you can specify

.rh odd
text and control words for the odd-page running heading
.rh even
text and control words for the even-page running heading
.rh off

When you want to cancel a previously-set running heading or foot
ing, you can either respecify it with new text and control words:

.rf odd
new text and control words
for the odd-page running footing
.rf off

Chapter 4. Defining a Page layout 59

6

60

or you can eliminate it completely:

.rf odd cancel

The running heading is placed .beginning in the line (or lines)
following the top margin. Similarly, the running footing is
placed beginning in the line (or lines) that immediately precedes
the bottom margin.

Within the running heading and footing definition (that is, the
input lines bounded by .RH ON and .RH OFF), you can specify many
of the SCR1PT/VS control words. For example, if you want to have
two lines of space after a running heading, you can issue

.rh on
text of running heading
.sk 2
.rh off

SCRIPT/VS formats your running heading and footing (in
single-column mode) as it would any other group of input lines.
That is, the text is concatenated and justified unless you specify
otherwise. Some of the SCR1PT/VS control words you specify are
processed once (the .1M [Imbed] control word, for example). Most
of the control words, however, are saved with the running heading
or footing definition. Each time SCRIPT/VS has to build a running
heading or footing, it processes the "saved" definition. If you
want to modify a running heading or footing, you must redefine it
in its entirety.

Control words you specify for the running heading or footing defi
nition are effective only for the running heading or footing, and
not also for the body of the page. Most control words specified
outside the running heading or footing definition have no effect
on the running heading or footing. For example, you can specify an
unformatted running heading in singlespace, though doublespace is
specified for the body of the text, by issuing:

.ds

.rh on

.fo off 6

text and control words for the running heading
.rh off

You can use indention control words to position your running head
ing or footing. If you do not specify indention, the running head-
1ng and footing are printed flush left (aligned with the left
margin). You can also position the running heading or footing with
the .CE [Center] control word to center it, with the .RI [Right
Adjust] control word to align it with the right margin, and with
the .SX [Split Text] control word to align parts with both the
left and right margins.

You can put parts of your running heading or footing in uppercase,
and have words underscored, by using the .UP [Uppercase], .US
[Underscore], and .UC [Underscore and Capitalize] control words.
Fo r exampl e,

.rh on

.us This part is underscored
and this part isn't .
. rh off

results in a heading that looks like:

This part is underscored and this part isn't.

".FO ON" is not necessary at the end of the definition, because the page envi
ronment before the definition is restored during formatting. See "Chapter 8.
The SCRIPT/VS Formatting Environment" on page 97 for details about the
formatting environment.

Document Composition Facility: User's Guide

PAGE NUHBERS IN HEADINGS AND FOOTINGS

SCRIPT/VS can automatically number the pages of your output for
you. When you want the page number to appear in a running heading
or footing, you must use the page number symbol (an ampersand (&)
unless otherwise defined with the .DC (Define Character] PS
control word) within the text of the running heading or footing to
represent the page number. SCRIPT/VS replaces the ampersand with
the current page number when the page is printed. For example,

.rf on

.ri PAGE &

.rf off

results in a running footing aligned with the right margin that
looks like

PAGE 61

You can specify a running heading that has the page number cen
tered on the page. For example,

.rh on

.ce -- Page & -

.rh off

results in a heading that looks like:

-- Page 61

If you need to use an ampersand as text in the running heading or
footing, you can redefine the pag~ number symbol to some other
character using the .DC (Define Character] PS control word. For
example, the heading "Topsy & Turvy" can be specified with this
sequence:

.dc ps ¢

.rh on

.ce Topsy & Turvy -- Page ¢

.rh off

resulting in a running heading that looks like:

Topsy & Turvy -- Page 61

The .DC (Define Character] PS word, when processed, affects all
headings, footi ngs,and titles, including those that have been
defined previously. For example, if a title has been set with

.rt top ///Page &/

and, later, SCRIPT/VS processes

.dc ps ?

the top title must be reset to

.rt top ///Page 1/

Otherwise, the current page number will not be substituted in the
top title for all pages following the .DC PS control word.

Note: The page number symbol is used only for substituting page
numbers in headings, footings, and titles. SCRIPT/VS always
recogni zes the ampersand as "the current page number" when it
occurs on the right-hand side of a symbol definition, regardless
of the current page number symbol:

.se here = &

However, in normal body text an ampersand by itself is always con
sidered to be part of the text.

Chapter 4. Defining a Page Layout 61

WHERE TO DEFINE HEADINGS, FOOTINGS, AND RUNNING TITLES

If you are working on a document that has different sections or
chapters, you may need to change running headings and footings
frequently. In these instances, put . RF [Runn i ng Foot i ng] , . RH
[Running Heading]; and .RT [Running Title] control words before a
.PA [Page Eject] control word (or a control word that causes a
page ej ect) .

Keep in mind that SCRIPT/VS will always apply the new heading or
footing to the page following the current page. SCRIPT/VS does not
use the running heading, footing, and title you specify until the
next page eject occurs.

A Head;ng on Page One

PAGE NUMBERS

Normally, SCRIPT/VS processing begins with the first text line on
the first page of output. Running headings and footings usually
don't appear on page 1. If you want the running heading or footing
to print on the first page of output, you must enter the .RH [Run
ning Heading] or .RF [Running Footing] control word before any
text line or any control word that would cause the page to be
started. For example, if you want the running heading

.rh on
Company Confidential Document
.rh off

to appear on the title page as well as every other page, the defi
nition should be entered first.

You can use the .PA [Page Eject] control word to both eject to a
new page and to reset the page number, and you can use the .DC
[Define Character] PS control word to respecify the current "page
number symbol."

With the .PN [Page Numbering Mode] control word, you establish
whether or not you want page numbering, and what kind of page
numbering you want.

• If you do not want SCRIPT/VS to print the page number on sub
sequent output pages, and you want SCRIPT/VS to continue
incrementing the page number internally, you can specify:

.pn off

• If you do not want SCRIPT/VS to print the page number on sub
sequent output pages and also not to increment the page number
internally, you can specify

.pn offno

• To reset the OFF and OFFNO parameters, you can specify

.pn on

DECIMAL PAGE NUMBERS

You can specify that you want decimal-point page numbering to
begin after the next even-numbered page:

.pn frac

If this control word is encountered while SCRIPT/VS is processing
page 46, then subsequent pages are numbered 46.1, 46.2, 46.3, and
so on.

62 Document Composition Facility: User's Guide

You can end decimal-point page numbering and resume normal page
numbering when you specify

.pn norm

SCRIPT/VS ejects the page and numbers the next page 47.

ROHAN NUMERAL PAGE NUMBERS

When you want page numbers to be printed in lowercase Roman numer
als, you can specify

.pn roman

The ROMAN operand is useful for printing prefaces, forewords,
front matter, and similar pages that might be numbered with Roman
numerals. To restore Arabic numbering, you can specify

.pn arabic

ALPHABETIC PAGE NUMBERS

When you want page numbers to be printed as lowercase alphabetic
characters, such as page a, page b, page c, and so on, you can
specify

.pn alpha

To restore Arabic page numbering, you specify

.pn arabic

PREFIXES FOR PAGE NUMBERS

Sometimes, the page numbering scheme for your document requires
that each page number begin with a prefix. For example, you want
page numbers for chapter one to begin with the prefix "1-", page
numbers for chapter two to begin with "2-", and so on. You can use
the PREF parameter of the .PN [Page Numbering Mode] control word
to attach a prefix to each page number. For example,

.*** Beginning of your document ***

.pn pref 1-

.*** Text of Chapter 1 ***

.pn pref 2-

.pa 1

.*** Text of Chapter 2 ***

When this sequence is processed, all pages in Chapter 1 are num
bered 1-1 through 1-n. A running footing for chapter 1 on page 8
that includes the "current page number" symbol, &, is printed as

Chapter 1 footing Page 1-8

That is, the page number symbol & is replaced by the entire page
number, and is composed of both the prefix Cif any) and the page
number. If the initial processing of chapter 2 ~especifies the
running footing and prefix, the footing for the first page of
chapter two might be printed as

Chapter 2 footing Page 2-1

In the above coding sequen~e, the .PA [Page Eject] control word is
used to eject to a new page for the next chapter and to reset the
page number counter to 1, so the first page for chapter 2 is num
bered 2-1 on the output page. If you do not want to reset the page
number counter each time a new chapter is processed, omit the .PA
[Page Eject] control word's numeric parameter. The PREF operand
is useful for texts that begin a new numbering scheme with each
section.

Chapter 4. Defining a Page layout 63

All of the above operands affect running titles, running
headings, and running footings that have the page number symbol
(usually an ampersand (&» in them.

Each table of contents entry generated by the head level (.Hn)
control words contains the page number in the format specified by
the .PH [Page Numbering Model control word. For information on
creating tables of contents in SCRIPT/VS, see "Chapter 6. Head
Levels and Table of Contents" on page 71.

64 Document Composition Facility: User's Guide

CHAPTER 5. MULTICOLUMN PAGE LAYOUT

With SCRIPT/VS you can produce single-column or multiple-column
output pages, or a mixture of both.

DEFINING MULTICOLUMN LAYOUT

o
I

SCRIPT/VS can format your output page with up to nine columns of
text. To define a multi column layout you should decide how many
columns you want, the width of each column, and the desired hori
zontal position on the page for the left margin of each column.

The space between columns (the gutter) is determined by the
relationship of the column width to the column positions. Usually
the column width will be a value that is less than the difference
between the left margin positions of adjacent columns, ensuring
that some space will be present between columns.

Once you have decided the dimensions and positions of your
columns, the column definition can be specified using the follow
ing SCRIPT/VS control words:

• .CD [Column Definition], which provides for

Specifying the number of columns

Specifying the left margin position for each column

• .Cl [Column Width] which provides for

Specifying the column width

Hote: All columns must be the same width but the space between
columns may vary.

To define a multi column layout for three columns that have a width
of 18M, and have left margins at the page's left margin, at 24M,
and at 52M respectively, the following control words would be
used:

.cl 18m

.cd 3 0 24m 52m

and would produce this effect:

18m
I

24m
I

42m
I

52m
I

70m
I

v v v v v v
As you can see the
column definition
has changed and we
are now formatting
wi th three col
umns. The fi rst
column's left mar
gin is at the left
margin of the page
(position 0). The
second column's
left margin is at
position 24M.
Column one's right
margin (position +
column width) is

<-6m->

18M. The space
between column one
and column two is
6M (24M 18M).
Column two's right
margin is 42M (24M
+ 18M). The third
column's left mar
gin is at position
52M. The space
between column two
and column three
is 10M (52M
42M). As can be
seen, the space
between columns

<-10m-->

two and three is
greater than that
between columns
one and two. All
columns have the
same width. It is
not necessarily
desirable to vary
the gutter space
but thi s does
illustrate the
flexibility of the
.CD [Column Defi
nit ion] and . Cl
[Column Width]
control words.

Chapter 5. Multicolumn Page layout 65

The preceding example shows one multi column layout. There are
many possible variations.

The .LL [line Length] control word is used to specify the line
length for running headings, running footings, top and bottom
ti tIes, and footnotes. Normally thi s value is set equal to the
right margin of the rightmost column to align all the components
of the page. In the preceding example you would specify:

.11 70m

The following control words specify text that is formatted using
line length (.ll) instead of the column width (.CL):

• . RH [Runn i ng Headi ng]

• .RF [Runni ng Footi ng]

• .RT [Running Title]

• .FN [Footnote]

Notes:

• The .CD [Column Definition] and .Cl [Column Width] control
words take effect immediately on the next output line.

• "Appendix D. Formatting Considerations for the 3800 Printer"
on page 337 contains additional considerations regarding the
definition of multi column layout for the 3800 Printer.

PAGE SECTIONS AND SECTION BREAKS

A page is divided into "sections" that may be thought of as inde
pendent components. These sections are:

Top Title

Runn i ng Head i ng

Body Text

Footnote

Running Footing

Bottom Title

When a page section is completelY formatted, the appropriate out
put device module is called to process the accumulated lines and
send them to the output destination. This is called a "section
break."

See Figure 21 on page 298 for a pictorial representation of the
page and its component parts.

The "column depth" for each column on the page is equal to the
page length minus the space reserved for the top and bottom mar
gins, running headings and footings, and footnote if any. See
"Chapter 4. Defining a Page layout" on page 51 for details on
these component space values.

When formatting a page, completed output lines a~e placed in the
current column until it is full. The lines formatted for the cur
rent column are saved and a new column is begun. This is called a
"column eject."

If all columns on the page are full, a new page is begun. Thls is
called a "page eject."

66 Document Composition Facility~ User's Guide

COLUMN POSITIONS

A section break occurs when:

• All columns on the page are full

• A page eject is requested by:

.PA [Page Eject]

.CP [Conditional Page Eject]

.CB [Column Begin]

.CC [Conditional Column Begin] on the last column

• The column definition is changed by:

.CD [Column Definition]

• The column mode is changed by:

.MC [Multi column Model

.SC [Single Column Model

• A full page skip or space is requested by:

.SK [Skip] with the "PH parameter

.SP [Space] with the "PH parameter

When a section break occurs, the lines that have been formatted
for this section are redistributed as equally as possible among
the defined columns. This is called "column balancing." This
process is not performed if there is only one column, or if column
balancing has been disabled by the .BC [Balance Columns] control
word.

If the column definition is changed in the middle of the page, all
lines formatted to that point are processed and sent to the output
destination. A new output section is started using the new column
definition. The depth of the new columns is equal to the space
remaining on the page above the running footing and bottom margin.

Column positions remain in effect until explicitly changed by a
.CD [Column Definition] control word. For example, you can define
a multi column layout and then format using one or more columns
without changing the column positions.

Chapter 5. Multiholumn Page layout 67

This first section
was produced by
specifying

.cd 1 0 22m 44m

.cl 18m

to format usi ng
only the fi rst
column. Notice
that the second
and third columns
are empty, even
though their posi
ti ons have been
defined.

This second
secti on was prod
uced by specifying

.cd 2

to format usi ng
the first two col
umns. The original

This third section
was produced by
specifying

.cd 3

to format usi ng
all three columns.
As can be seen

COLUMN WIDTH

column width is
used for all col
umns. Notice that
the formatted
lines are distrib
uted between
columns one and
two.

from this example,
the number of col
umns may be varied
without changing
the column posi-
tion values.
Not ice that the
formatted lines

are distributed
among all three
columns. If the
1 i nes cannot be
equally divided,
some columns may
be longer than
others.

Column width remains in effect until explicitly changed by a .CL
[Column Width] control word. The formatter attempts to build each
output line to fill the column width by concatenating short input
lines or folding long input lines. A partially full output line is
padded to full width by justification. Line concatenation and
justification are controlled by:

.eE, .CO, .JU, .FO, and .RI control words

For details see "Chapter 21. SCRIPT/VS Control Word Descriptions"
on page 199.

If an input line contains a word that is longer than column width,
the portion of the word that overflows the column is processed
according to the TRUNC, FOLD, or EXTEND option of the .FO [Format
Model control word. l i kewi se, if concatenati on is off, and the
input line is longer than column width, the excess portion of the
line is processed based on that specification.

If there is more than one column, and the document is being for
matted for the 3800 Printer, excess characters in column one will
cause dislocations in all subsequent columns on an extended line.
For this reason the EXTEND option is not recommended when format
ting multi column output for the 3800 Printer.

68 Document Composition Facility: User's Guide

Column width is normally changed along with column positions to
maximize use of the space on the page when the number of columns
changes. Normally the column width value would be set to line
length minus all gutter space, divided by the number of columns.

With a line length of 68M, and a
gutter of 4m, two columns would
be defi ned as:

maXlmlze the use of the space on
the page. As can be seen, there
is little wasted. This example is
meant to show typical usage.
Normally columns will be laid out
to be as dense as possible for
economic page use. Readability
is also a factor in column defi
nition.

.cd 2 0 36m
ocl 32m

This two column data ;s formatted
wi th a column wi dth of 32M to

With the same line
length and gutter
size three columns
would be defined as:

with a column width
of 20M to maXlmlze
the use of the space
on the page. As can
be seen, there is
little wasted. This
example is meant to
show typical usage.
NormallY columns
will be laid out to

be as dense as pos
sible for economic
page use. Readabil
ity is also a factor
in column defi
nition. In the three
column example the
columns are a little
narrow.

.cd 3 0 24m 48m

.cl 20m

This
data

three co I umn
is formatted

STARTING A NEW COLUMN

If the current column is forced to end, and a new page is not
started, that column and all columns to the left of it are ineli
gible for column balancing. The following SCRIPT/VS control words
may be used to end a column before it is full.

• .CB [Column Begin] ends the column unconditionally.

• .CC [Conditional Column Begin] ends the column based on the
space remaining in the column.

• .CP [Conditional Page Eject) ends the column and causes a page
eject based on the space remaining in the column.

Use the .BC [Balance Columns] control word to enable or disable
column balancing. If column balancing is OFF, no columns are bal
anced. If column balancing is ON, all eligible columns are bal
anced whenever a section break occurs.

Blocks of text, such as figures or tables, can be kept together
and balanced as a unit. Text lines in a block will not be split
across columns. See "Chapter 7. Add; ti onal Formatt; n9 Features of
SCRIPT/VS" on page 77 for details on use of the .KP [Keep] control
word.

SUSPENDING AND RESUMING MULTICOLUMN PROCESSING

The .SC [Single Column Mode] control word

• Saves the current column definition

Column width

Number of columns

Column positions

Chapter 5. Multicolumn Page layout 69

• Defines a single column with a column width equal to line
length.

The .MC [Multi column Model control word

• Restores the last saved column definition

The .SC [Single Column Model and .MC [Multi column Model control
words are always paired; you must specify the .SC control word
before you specify .MC control word.

70 Do~timent Composition Facility: User's Guide

CHAPTER 6. HEAD LEVELS AND TABLE OF CONTENTS

SCRIPT/VS provides an automatic table of contents facility which
is based on the concept of "head levels." When you create a
SCRIPT/VS file, you can enter topic headings7 to designate
changes in content, or to create titles.

The format of a topic heading indicates its relationship to the
other topic headings in the document. In SCRIPT/VS, different
levels of headings can be entered with the control words .HO, .HI,
. H2, . H3, . H4, . H5 and . h6 e. When SCRIPT /VS processes a • HO - • H6
[Head level 0 - 6] control word:

• The text portion of the heading is formatted according to
characteristics associated with the head level. The format
ting may include such things as spacing above and below the
heading, capitalization, underscoring, and font.

• If the heading requires a table of contents entry, the
heading's text and current page number are saved in a tempo
rary file called DSMUTTOC.

For example, if you enter a topic heading as

.h3 Symptoms

SCRIPT/VS uses the characteristics for a level three heading to
format the heading's text on the page. SCRIPT/VS also creates an
entry in the table of contents file for the topic "Symptoms" and
the page number on which it appears. All the headings entered with
the .H3 control word are formatted in the same way.

If you use SCRIPT/VS head level control words exclusively, you
need not create a table of contents manually. When you revise or
reorganize your document, the table of contents is automatically
updated.

CHARACTERISTICS OF HEAD LEVELS

7

•

Head levels are commonly associated with the following sections
of a document:

.HO Table of Contents entry only

.Hl Chapter

.H2 Major section

.H3 Minor section

.H4 Topic

.HS Inline heading

.H6 Inline heading

The .DH [Define Head levell control word allows you to redefine
the characteri st i cs of any head level to su it your needs. The
characteristics are:

• Whether the heading in the text should begin on a new page or
cause a break.

The word "heading" is used in this section to mean a topic heading that is
printed as part of the text .
GMl and EasySCRIPT provide tags with similar names and functions. This dis
cussion is concerned only with the SCRIPT/VS control words.

Chapter 6. Head levels and Table of Contents 71

.HO .HI .H2 .Hl .H4 .HS .H6

Page eject before heading yes

Heading Out-justified 1 yes

line skips before heading 0 0 3 3 3 1 1

line spaces after heading 0 5 2 2 2 0 0

Heading underscored yes yes yes yes yes

Heading capitalized yes yes yes yes

Heading wi 11 cause a break yes yes yes yes

Table of Contents entry yes yes yes yes

Table of Contents entry only yes

Skip before T.O.C. entry yes

Table of Contents indention 0 0 0 2 4 6 8

1 The heading will be right-justified on the page if the page number is
odd.

Figure 8. Summary of Default Head Level Characteristics: This table lists the
default characteristics of the .Hn [Head Level n] control words. The .DH
[Define Head Levell control word allows you to redefine any of these
characteristics to suit your needs. Note that by default all headings
are printed in the current font.

• Whether the heading should be right-aligned if it occurs on an
odd page.

• Whether the heading should be capitalized or underscored, and
the font it is to be printed in.

• The amount" of vertical space which precedes and follows the
heading.

• Whether or not a table of contents entry is to be created, and
if so, what its indention should be.

• Whether only a table of contents entry should be created,
placing no heading at all in the text.

Figure 8 lists the default characteristics of the .HO - .H6 [Head
level 0 - 6] control words.

SPACING AND PAGE EJECTS

Headings are printed in the current column when there is enough
room for the heading and at least two lines of text that follow it
in the body of the document. If there is not enough room, the
heading is placed at the top of the next column.

The line spaces that follow topic headings are conditional. If the
heading ;s followed by more vertical space (whether caused by the
.SP [Space] or .SK [Skip] control words, or another head level),
only the larger of the two spaces is used, not the sum.

Head levels that are defined to begin new pages cause page ejects
only if SCRIPT/VS is not already at the top of a page. This can be
useful:

72 Document Composition Facility: User's Guide

• To assign a page number to the output page with a .PA [Page
Ejectl control word.

• To eject to a new even- or odd-numbered page with the .PA EVEN
or .PA ODD control words.

DEFINING HEAD LEVELS

The .DH [Define Head Levell control word allows you to redefine
the characteristics of any he.ad level. The .DH control word
accepts parameters that describe head level characteristics, such
as SPAF (SPace AFter) to set the amount of vertical space to fol
low the heading, and TC to indicate that a table of contents entry
is to be generated. For example,

.dh 3 skbf 1 us

will redefine the .H3 head level to provide only one line of space
before the heading, and to underscore the heading. The .DH control
word is described in "Chapter 21. SCRIPT/VS Control Word
Descriptions" on page 199.

You can also redefine a .HO - .H6 [Head Level 0 - 6] control word
using macros:

• To provide an entirely different function for an existing
head level, use the .DM [Define Macro] control word to define
a macro with the name of the head level control word.

• If the head level function provided by the .HO - .H6 [Head
Level 0 - 6.] control words are basicallY suitable, but you
want to augment them, you can take advantage of SCRIPT/VS
internal head level macro definitions.

The names of the head level macros are DSMSTDHO through
DSMSTDH6 for the .HO - .H6 [Head Level 0 - 6] control words,
and DSMEZSHO through DSMEZSH6 for EasySCRIPT head level tags.

When a head level control word is first processed, SCRIPT/VS
builds a corresponding macro to provide the requested func
tion. SCRIPT/VS then processes that macro whenever the head
level control word is encountered. This internal macro can be
modified using the .DM [Define Macro] control word.

For details, see "Chapter
Instructions" on page 137.

THE TABLE OF CONTENTS

12. Writing SCRIPT/VS Macro

When SCRIPT/VS processes a head level control word that requires a
table of contents entry, it writes an entry in the DSMUTTOC file.
The entry contains the following information:

• The text of the heading.

• The page number of the page on which the heading appears.

• The revision code character in effect when the heading was
processed.

All entries in the table of contents file are inserted by .PT [Put
Table of Contents] control words in the head-level macros. Each
entry consists of one or more text lines and standard control
words such as .SX [Split Text], .IN [Indent], .OF [Offset], and
.RC [Revision Code].

The automatic underscoring and capitalization provided for topic
headings do not apply to the associated table of contents entry.
Therefore, enter the text of a topic heading as it should appear
in the table of contents.

Chapter 6. Head Levels and Table of Contents 73

ADDING LINES TO THE TABLE OF CONTENTS

You can place lines directly into the table of contents with the
.PT [Put Table of Contents] control word.

The .PT [Put Table of Contents] control word causes the text line
to be written into the file DSMUTTOC along with the current page
number as a .SX [Split Text] control word. For example, the input
line:

.pt Sail and Rudder

will cause the following control word to be written into DSMUTTOC:

.'SX /Sail and Rudder/ ./74/

When the DSMUTTOC file's input lines are processed, the line
appears in the table of contents as:

Sail and Rudder 74

You can insert any SCRIPT/VS control word into the table of con
tents with the .PT control word. If the "text line" part of the
.PT control word begins with a period (with only one blank between
.PT and the text line), SCRIPT/VS inserts it directly into the
DSMUTTOC as a control word, rather than as the text of a .SX
[Split Text] control word. For example,

.pt .h3

inserts a .H3 control word into the table of contents.

If the line of text you want to enter into the table of contents
begins with a period, begin the line with a leading blank so that
SCRIPT/VS will not interpret the line as a control word, but will
include the page number with the line in the table of contents.
For example,

.pt .h3

inserts the control word

.'SX F /.h3/ ./74/

into the table of contents.

PRINTING THE TABLE OF CONTENTS

Use the .TC [Table of Contents] control word to imbed the DSMUTTOC
file. When .TC is encountered, SCRIPT/VS:

• Ejects to a new page, if it is not already at the top of a
page.

• Prints the word "CONTENTS," unless otherwize specified with
the .PT control word.

If you want a different title for the table of contents page,
you can specify it as

.tc Table of Contents

If you don't want a title at all, specify

.tc /

• Formats the DSMUTTOC file according to the SCRIPT/VS environ
ment in effect when the .TC control word is processed, as mod
ified by formatting controls inserted in the DSMUTTOC file.

The DSMUTTOC file is not deleted until the next time a new
table of contents file is started.

74 Document Composition Facility: User's Guide

TWOPASS CONSIDERATIONS

If you place the .TC [Table of Contents] control word at the
beginning of your input file, you must use the TWOPASS option of
the SCRIPT command to produce a complete table of contents. Other
wise, the DSMUTTOC file will be empty when the .TC control word is
encountered. For details about the TWOPASS option, see "Chapter
2. Using the SCRIPT Command" on page 13.

In order to have correct page numbers in the table of contents,
pages must be numbered the same way on both passes. On the first
pass, the table of contents is empty. On the second pass, it can
contain several pages of information. Because SCRIPT/VS doesn't
know how many pages will be required for the table of contents, it
numbers the pages following the table of contents the same way on
both passes.

You can tell SCRIPT/VS the number of page numbers to reserve for
the table of contents. For example, you can reserve six pages if
the table of contents is to occupy pages 3 through 8. The page
number range you reserve has nothing to do with how many actual
pages the table of contents will occupy: it only establishes the
page number of the page that follows the table of contents page.

For example, if the table of contents will require three pages,
you can reserve the current page number and the next two page num
bers by specifying:

.tc 3 Table of Contents

If the document is formatted with the TWOPASS option, SCRIPT/VS
will allow page numbering to continue sequentially following the
table of contents if the page number is explicitly reset with a
.PA [Page Eject] or .PH [Page Humbering Model control word before
any head level or .PT [Put Table of Contents] control word is
encountered that requires knowledge of the page number.

You can precede the .TC [Table of Contents] control word with oth
er SCRIPT/VS control words:

• To number table of contents pages with Roman numerals, use the
.PH [Page Numbering Model control word:

.pn roman

• To put bottom titles on each table of contents page, use the
.RT [Running Titlel control word:

.rt bottom even /Contents &///

.rt bottom odd ///Contents &/

• To ensure that the first page of the table of contents starts
on an odd-numbered page, use the .PA [Page Eject] control
word:

.pa odd

Chapter 6. Head levels and Table of Contents 75

CHAPTER 7. ADDITIONAL FORMATTING FEATURES OF SCRIPT/VS

In addition to formatting your document as described in previous
chapters, SCRIPT/VS allows you to:

• Use special characters for output, even if not available as
keyboard characters.

• Establish characters with special meaning for SCRIPT/VS.

• Keep blocks of text together so that, on output, the
kept-together material appears entirely in one column.

• Define footnotes to be placed at the bottom of the page.

• Mark all updated material in a review draft, so readers can
identify the modified material.

• Draw rectangular boxes with horizontal and vertical interior
lines.

• Intermix different fonts when printing your document on the
IBM 3800 Printing Subsystem.

USING SPECIAL CHARACTERS

9

If you are using a terminal with a standard keyboard, you do not
have an immediate way to enter special characters in a SCRIPT/VS
file. You cannot, for example, directly enter a bullet (.) from
the keyboard. When you print SCRIPT/VS output, you might want to
be able to print a bullet and other special characters as well.

One way to enter special characters into a file is to use CMS or
TSO commands while editing.

SCRIPT/VS provides another method for printing special charac
ters. You can specify one of your keyboard characters to be trans
lated to the special character, using the .TR [Translate
Character] control word. 9

For example,

.tr * af

Each occurrence of an asterisk in your file is translated, on out
put, to the bullet character (.) which has the hexadecimal code
AF. For example, the input line

* How about this for a paragraph?

results in:

• How about this for a paragraph?

"Appendix C. Fonts Supplied with SCRIPT/VS" on page 329 and
Figure 37 on page 320 illustrate the various character sets
available and their hexadecimal codes. You can use these charts
when you want to translate characters such as:

• Bracket s: []

• Braces: { }

• Algebraic and logical symbols: < ~ t. = ~ > ±

See "Appendix D. Formatting Considerations for the 3800 Printer" on page 337
for special considerations regarding the use of .TR within documents that will
be printed on the IBM 3800 Printing Subsystem.

Chapter 7. Additional Formatting Features of SCRIPT/VS 77

• Superscr i pt numera Is: 0 2 345 6 7 e 9

• Bullets for square-shooters: •

• Box characters: r , L J T.L+ r-l
You can specify as many translation pairs with one .TR [Translate
Character] control word as your input line allo~"s. For example,

.tr a AC b Be c BB d AB - BF I FA

specifies the corners, vertical bar, and dash used for drawing a
box. Each special character is specified as its character code:
hexadecimal AC is the code for "r", hexadecimal BC is the code for
",", and so on. l.:Jhen the characters "a", "b", "c", "d", "I", and
"-,, appear ina subsequent output line, they are replaced wi th the
special character's hexadecimal code. For example, the input
lines

a----------b
I I
I I
I I
d----------c

result in

D
When you use hyphens to draw boxes, you can translate them to the
special dash (hexadecimal BF), which aligns with the corner sym
bols and extends further than a hyphen to create an uninterrupted
line.

To cancel translation of all previously specified input charac
ters, use the .TR [Translate Character] word with no parameters:

.tr

When you have many special characters specified, you can reassign
or cancel some of the special characters without affecting the
others. For example,

.tr ((

cancels translation of the left parenthesis to any character
established for it. (Actually, this is equivalent to setting up a
new translation for "(": the character is to be translated to
itself.)

Note: Dur i ng the time a tran slat i on is in effect, every occurrence
of the translated character is translated to the designated out
put character. You should therefore take care to translate only
characters that will not be needed during that time.

The actual translation is done at various times in the formatting
process, depending on the requirements of the logical output
device. The latest time translation can be done is when a line is
finished and is placed in a column. You should assume, therefore,
that a translation will be needed until the next break is done,
whether that happens naturally because a line is full or is forced
by a control word that causes a break.

INPUT CHARACTER TRANSLATION

SCRrPT/VS also performs character translation on input lines. The
.rr [Translate Input] contr~l word allows you to make characters
that are unavailable on your terminal effectively part of your
input file. For example, the IBM 3270 terminal does not have a tab

78 Document Composition Facility: User's Guide

key. However, an available character (such as the "~") can be
translated to hexadecimal 05, the tab character code:

. t i ... 05

While the translation is in effect, any not-sign (...) on an input
line is processed as though it were a tab. Because the translation
occurs first, before any other processing, you should take care
when using the .TI control word to:

• Use hexadecimal codes for the special character rather than
the character itself. For example,

.ti % $

translates all occurrences of % to $. However, you cannot
restore the percent-sign character by subsequently issuing

. ti % %

because that input line is translated to ".ti $ $" before
being processed. However, you can restore % to itself with

.ti 6C 6C

Be careful, though. Remember that each character on the input
line is translated (if a translatTOnfor it exists) before
processing the input line. If you translate 0 (hexadecimal
FO) to ~ (hexadecimal 7C), for example, with

.ti FO 7C

you cannot restore the 0 to its original definition by issuing

.ti FO FO

because each "FO" in the above control word would be trans
lated to "F~" before the control word is processed.

• Be careful when you translate a symbol that has special mean
ing for SCRIPT/VS, specifically the period (. or hexadecimal
4B) and the blank (hexadecimal 40). For example,

.ti . %

translates the period (.) to the percent sign (%). All subse
quent SCRIPT/VS control words are ignored because the input
characters are translated first, before the line is proc
essed. Control words and macros would be regarded as text
because they begin with a percent sign instead of a period.

• To restore all characters to normal, use the .TI [Translate
Input] control word with no parameters:

.ti

There are several advantages to using the .TI [Translate Input]
control word instead of the .TR [Translate Character] control
word:

• You can create a symbol that will be replaced with a special
character. Each time you need the special character, you can
insert the symbol. You don't have to first translate a key
board character to the special character, insert the keyboard
character (now with its special meaning), and then reset the
keyboard character to its usual meaning.

For example, to set the symbol "&bul" to be the bullet special
character (hexadecimal AF), specify

.ti % AF

.se bul = '%'

.ti 6C 6C

Chapter 7. Additional Formatting Features of SCRIPT/VS 79

The percent sign (hexadecimal 6C) was set to specify the
special character's hexadecimal code. Next, the symbol "&bul"
was set to the percent sign (translated, on input, to the spe
cial character). Finally, the percent sign hexadecimal code
is restored to its original character meaning.

• You can use the best character available on your output device
for the special character. For example, on the IBM 1403 Print
er the only vertical line ~vailable for drawing boxes is the
"or" sign (1). However, some of the IBM 3800 Printing Subsys
tem fonts include a longer vertical line (I). You can set the
symbol n&vline" to the longest vertical line available on
your printer with:

.ti 6C 4F

.if x&$PDEV = x3800 .ti 6C FA

.se vline = '%'

.ti 6C 6C

SCRIPT/VS will conditionally choose the proper vertical bar
character for the printer currently being used. For details
on how this works, see the discussion of the .IF control word
in "Chapter 9. Conditional Processing" on page 99.

• You can create a symbol that will be replaced with a character
that has special meaning to SCRIPT/VS. For example, if you use
the n~fl keyboard character (on the IBM 3270 Terminal) as a tab
(hexadecimal 05) you cannot also enter it from the keyboard
when you mean "not".

You can, however, define a symbol to use instead of the "-"
keyboard character by specifying:

.ti 6C SF

.se notsym = '%'

.ti 6C 6C

SCRIPT/VS substitutes the '-' character for the ¬sym
symbol in the input line. The '-' character specified in this
way can be used as a text character and as a logical "not"
character with the .IF [If] control word.

You can create a SCRIPT/VS file that establishes the meaning of
each special-character symbol name you create. When you want to
use special characters in a document, you can imbed the
special-character file at the front of the document and use the
special~character symbol names throughout the document.

For example, to set the symbol name "°ree" to mean "0",
"& 1 brace" to mean "{", and "& rbrace" to mean "}", you can spec i fy

· t i 4) Al
.se degree = , 4) ,

· t i 7C 8B
.se lbrace = , 4) ,

· t i 7C 9B
.se rbrace = , 4) ,

· t i 7C 7C

The first .TI [Translate Input] control word redefined the "4)"
sign to hexadecimal AI, or ° (that is, a degree: temperature or
navigational).lO The .SE [Set Symbol] control word sets the value
of the symbol °ree to the "degree" character .

. The second .TI control word ~esets the "~" sign to hexadecimal 8B,
or the left brace ({). The symbol &lbraceis set to the left brace
character.

10 Some fonts do not include the degree sign. However, the superscript zero (0)
is very similar in shape and position, and is used in this manual for both the
degree sign and the superscript zero.

80 Document Composition Facility: User's Guide

The third .TI control word resets the "~" sign to hexadecimal 9B,
and the symbol &rbrace identifies the right brace (}). The last
.TI control word restores the "~" sign to itself.

The input lines

The schooner's position ;s &lbrace.149°ree 30' W by
17°ree 30' S&rbrace ..

result in

The schooner's position is {149° 30' W by 17° 30' S}.

To restore all characters to normal, use the .TI [Translate Input]
control word with no parameters.

CHARACTER TRANSLATION FOR TERMINAL OUTPUT

If you have used the .TR [Translate Character] control word and
direct the SCRIPT/VS output to your terminal, then the special
characters might not be displayed in the output. The positions
occupied by the translated characters appear to be blanks,
because there are no equivalent characters on the terminal. You
can circumvent this proofreading problem in some cases by making
the translation conditional, using the .IF control word .

. if SYSOUT eq PRINT .tr * af

This control word line results in output translation of asterisks
(*) only if output is going to the printer.

This technique is also useful for hyphens, since the dash
(hexadecimal BF) that aligns with corner symbols is not printed by
most terminals. If you specify

.if SYSOUT eq PRINT .tr - BF

the hyphens will be translated to dashes only when the file is
printed. (You should remember to translate the hyphen back to its
normal state for text, since the dash (hexadecimal BF) does not
align properly when used for interword hyphenation.)

DEFINING SPECIAL CHARACTERS THAT AFFECT SCRIPT/VS PROCESSING

You can define characters with special meaning to SCRIPT/VS using
the .DC [Define Character] control word. The special characters
are:

The array element separators, which are placed between
elements of a symbol array. See "Chapter 11. Symbols in Your
Document" on page 117 for details.

The continuation character, which allows single words to span
input lines. The continuation character is described below.

The control word separator, which allows several SCRIPT/VS
control words to be "stacked" on a S1 ngle input line. See
"Chapter 3. Basic Text Processing" on page 29 for details.

The GML delimiter, or alternate symbol delimiter, which ;s
used to identify GML tags. See "Chapter 11. Symbols in Your
Document" on page 117 for details.

The page number symbol, which is replaced with the current
page number wherever it appears in running titles, running
headings, and running footings. See "Chapter 4. Defining a
Page Layout" on page 51 for details.

Punctuation characters which are recognized during spelling
verification. See "Chapter 15. Automatic Hyphenation and
Spelling Verification" on page 157 for details.

Chapter 7. Additional Formatting Features of SCRIPT/VS 81

The required blank, which is not recognized as an interword
blank during justification, and is translated to an ordinary
blank on output.

Full stop characters which indicate the end of a sentence. See
"Chapter 3. Basic Text Processing" on page 29 for details.

Word delimiters which delimit words for purposes of spelling
verification. See "Chapter 15. Automatic Hyphenation and
Spelling Verification" on page 157 for details.

The parameters of the .DC [Define Character] control word are
described in detail in "Chapter 21. SCRIPT/VS Control Word
Descriptions" on page 199.

THE CONTINUATION CHARACTER

SCRIPT/VS ordinarily appends an interword blank to the last word
on a text input line. However, if the last character on a text
input line is the continuation character, it is removed and the
interword blank is no~ appended. The continuation character is
defined with the .DC {Define Character] control word:

.de cont +

This allows a single word to span text input lines and control
words. For example, the input lines

A few high+
.sf
.bf GB12
light+
.pf
ed characters.

will produce this output:

A few highlighted characters.

If the formatter control or text which follows the continued word
causes a break, continuation is cancelled for that line. The con
trol words that cause breaks are listed in Figure 25 on page 311.

There is no default continuation character; it must be explicitly
set before it can be used.

ENSURING THAT BLOCKS OF TEXT STAY TOGETHER

When you place a figure, diagram, or .chart in your text, you want
to ensure that the figure is printed on one page. You may also
want to ensure that all of a paragraph or group of lines prints'in
the same column. Use the .KP [Keep] control word to tell SCRIPT/VS
which lines you want kept together.-For example,

.kp on
These text lines will all
appear in the same column,
regardless of page ejects
or column balancing .
. kp off

Keeps can be separated into two broad categories:

• Inline keeps, started with .KP INLINE, .KP v, or .KP v + v,
ensure that a designated vertical amount of formatted text
remains together. These keeps do not disturb the formatting
of text in any way~ Inline keeps that specify an amount of
space are automatically ended when the requested amount of
space has been formatted. They may also be ended with .KP OFF,
before the requested amount is exhausted.

82 Document Composition Facility: User's Guide

• Those started with .KP ON, .KP FLOAT or .KP DELAY. Each of
these keeps must be explicitly ended.

Regular Keeps, started with .KP ON, place the kept text in
the current column if it will fit. Otherwise, a column
eject is performed and the text is placed at the top of
the new column.

Floating Keeps, started with .KP FLOAT, save the kept
text for the top of the next column if it does not fit 1n
the current column, and format text following the keep in
the input file into the current column.

Delayed Keeps, started with .KP DELAY, are always placed
at the top of the next column, regardless of whether they
fit in the current column. As with floating keeps, text
following the keep in the input file may be moved ahead of
it in the output to fill the current column.

Each of these keeps saves the current formatting environment,
including any partially processed output line. The formatting
environment is restored when the keep ends. See Figure 32 on
page 315 for a list of formatting Rarameters saved and
restored around keeps.

Some control words are not allowed within keeps, and will
force termination of the keep before being processed. This is
true regardless of whether the control word is found in the
input file, in a tag, or within a macro. In general, these
control words alter the page or column definitions; they are
listed in Figure 27 on page 312.

There is an order of precedence among keeps, with regular, float
ing, and delayed keeps taking precedence over inline keeps. If an
inline keep is encountered within a floating keep, it is ignored.
But if a regular keep is encountered within an inline keep, the
inline keep is ended and the regular keep begun. Keeps of the same
level of precedence end each other. For example,

.kp on
These lines will be
kept together in
one column .
. kp on
So will these lines,
but not necessarily in
the same column with the
previous few lines .
. kp off

Examples

In this document, each paragraph is started with the GML starter
set ":p" tag. One of the control words invoked by this tag is:

.kp 3

This ensures that the first three lines of the paragraph will be
kept together, preventing widows at the bottom of a column.

If you place a large figure in a regular keep, and it does not fit
in the current column, it wi 11 be placed at the top of the next
column. This will leave a large blank space at the bottom of the
current column. If the figure does not have a specific relation
ship to the text around it, you can avoid the blank space by plac
ing the figure in a floating keep. For example,

Chapter 7. Additional Formatting Features of SCRIPT/VS 83

FOOTNOTES

This paragraph contains a reference
to the figure that follows it.
This text will appear above the figure,
.kp float

(drop in figure here)

.kp off
but this text may appear above or
below the figure, depending upon whether
the figure is moved to the next column.

Inline keeps are preferable to conditional column ejects, espe
cially when your page layout. contains more than one column,
because columns which are explicitly ended with .CB [Column
Begin] or .CC [Conditional Column Begin] are ineligible for bal
ancing. Inline keeps ensure that text is moved to the next column
if necessary to keep the text together, yet allow preceding text
to be moved into the next column as needed to balance the columns
if the page is not filled. See "Chapter 5. Multicolumn Page
layout" on page 65 for more information on column balancing.

The .FN [Footnote] control word provides an automatic way to for
mat text so it appears at the bottom of a page as a footnote.
SCRIPT/VS determines how many lines currently remain on the page
and reserves the space needed for the footnote. The .FN [Footnote]
control word is specified as:

.fn on ** This line is going to
appear as a footnote
on this page .
. fn off

SCRIPT/VS prints a 16-dash line, called a "leader," to separate
the body of the page from the footnote. However, you can specify
up to ten lines of leader material. Define the leader before you
define the first footnote for the page. For example,

.fn leader

.sp

.tr - BF

.us ----------------

.sk

.fn off

You can mark up the footnote with GML tags, control words, macros,
and text just as you can the material within a keep. The footnote
definition can include up to ten output lines. The control words
that are disallowed within a keep are also disallowed within a
footnote. For example, to provide special formatting within a
footnote:

.fn on

.tr 2 B2

.in 5m
2 This is the next footnote
in this section .
. fn off

To keep the footnote and its callout on the same page, you should
enter the .FN [Footnote] control word and the footnote input lines
immediately before the word or phrase that refers to the footnote
(called the "callout").

** This line is going to appear as a footnote on this page.
2 This is the next footnote in this section.

84 Document Composition Facility: User'.s Guide

Since footnotes do not cause breaks, you can interrupt a sentence
to place the footnote on the line above the word it refers to,
even if the word is in the middle of a sentence.

Because the environment is saved during a footnote definition and
restored after it, any formatting changes within the footnote
(such as indention, font changes, revision codes, and so on) are
not used outside the footnote. Therefore, it is not necessary to
reset the indention. See "Chapter 8. The SCR1PT/VS Formatting
Environment" on page 97 for details about saving and restoring the
formatting environment.

STARTING TEXT AT THE TOP OF A PAGE OR COLUMN

When you want to start text at the top of a page, you can:

• Precede it'with a .Hl [Head level 1] control word.

• Precede it with a .PA [Page Eject] control word to force 8 new
page.

• Precede it with a .CP [Conditional Page Eject] control word to
force a new page if not enough space remains on the current
page.

• Use the .01 [Delay Imbed] control word to save the input text
until the next page eject occurs, then to process it. (The .DI
[Delay Imbed] control word is described in "Chapter 10.
Combining SCRIPT/VS Files" on page 105.)

When you need to start text at the top of a column:

• Precede it with a .CB [Column Begin] control word to force a
new column.

• Precede it with a .CC [Conditional Column Begin] control word
to force a new column if not enough space remains in the
current column.

• Use a .KP [Keep] DELAY control word to keep a block of text
together and print it in the next column.

• Use a .KP [Keep] control word to keep a block of text together
and print it in the next column if it won't fit in the current
column.

Many of these control words are discussed in other parts of the
book. This section describes the .CP [Conditional Page Eject] and
.CC [Conditional Column Begin] words.

CONDITIONAL COLUMN AND PAGE EJECTS

The .CP [Conditional Page Eject] and the .CC [Conditional Column
Begin] control words allow you to specify how much space must
remain in the column for SCRIPT/VS to continue formatting lines in
that column. If there is not enough space remaining, SCRIPT/VS
performs the page (or column) eject. For example:

This list includes
.sk
.cp 3
GML Tags
Symbols
Macros

When the .CP [Conditional Page Eject] control word is encount
ered, SCRIPT/VS determines the number of lines left in the column.
If there are at least three lines, processing continues and the
lines are printed on the current page. If there are fewer than
three lines, however, SCRIPT/VS performs a page eject; the lines
following the .CP control word are printed on the next page.

Chapter 7. Additional Formatting Features of SCRIPT/VS 85

When you use the .CP [Conditional Page Eject] control word,
SCRIPT/VSalways ejects to the next page when less than the
required amount of space remains in the column.

The .CC [Conditional Column Begin] control word works in a similar
fashion. A column eject (which might result in a page eject if it
occurs when the page's last column is processed) is performed when
there are fewer than the required number of lines left in the col
umn.

HARKING UPDATED MATERIAL

11

86

If you process documents that are frequently revised, you can
identify revised text with a "change bar" (or other symbol) in the
left margin. 11 You use the .RC [Revision Code] control word to
identify changed material. You can establish up to nine different
revision code characters, which are printed to the left of your
text output.

For example, the lines

.rc 1 I

.rc 2 *
initialize two different reVISIon codes. Within the body of your
document, you can identify revised material with a pair of .RC
[Revision Codel control words:

.rc n on

.rc n off

"n" specifies which reV1SIon code identifier to use. If the iden
tifier has not been defined it is, by default, a blank, which is
tantamount to no character at all. The lines:

.rc 1 I

.rc 2 *

.rc 1 on
These lines were revised at
one time .
. rc 1 off

.rc 2 on
These lines were
revised later .
. rc 2 off

result in

These lines were revised at
one time.

* These lines were revised * later.

For a one-line change, you can use the ON/OFF parameter of the .RC
[Revision Codel control word. For example,

.rc lon/off
This is the revised line.

resul ts in

I This is the revised line.

See "Appendix D. Formatting Considerations for the 3800 Printer" on page 337
for special considerations regarding the use of .RC within documents that are
printed on the IBM 3800 Printing Subsystem.

Document Composition Facility: User's Guide

You can mark the next output line only by specifying the .Re [Re
vision Codel control word with an asterisk (*> and any character.
For example,

.rc * $
This line has new information.

which results in:

$ This line has new information.

The revision code is placed to the left of the column of text to
which it applies. For the leftmost column, the revision code is
placed in the binding area provided with the BIND option of the
SCRIPT command. For other columns, it is placed in the intercolumn
gutter. If the space for the revision code is insufficient, the
revision code is omitted.

When you do not want a revision code character to be printed, you
can respecify the character to a blank character with the .Re con
trol word. For example,

.rc 1

Revision code 1 now prints as a blank.

DRAWING BOXES

12

SCRIPT/VS can draw boxes around illustrations or text, and can
format charts with horizontal and vertical lines. 12 The control
word that draws boxes and lines within boxes is the .BX [Box] con
trol word. You use the .BX control word in three different ways to
draw a box:

1. Define the box left and right edge, and the character posi
tions you want to contain vertical lines. For example, you
might want a box thirty spaces wide, starting in character
position 1, with vertical lines at character positions 10 and
20. Specify the .BX [Box] control word as:

.bx 1m 10m 20m 30m

which formats and prints a box top, with upper corners and
descenders:

2. Each time you want a horizontal line within the box, specify
the .BX [Box] control word with no other parameters. For exam
ple,

.bx

results in

The lines are drawn with intersections at the vertical rule
character positions:

3. When you want to complete the box, use the OFF parameter of
the .BX [Box] control word. For example,

.bx off

See "Appendix D. Formatting Considerations for the 3800 Print~r" on page 337
for special considerations regarding the use of the ~BX [Box] control word
within documents that are printed on the IBM 3800 Printing Subsystem.

Chapter 7. Additional Formatting Features of SCRIPT/VS 87

This terminates the box definition and draws a bottom line
with lower corners and ascenders.

After a box is started, SCRIPT/VS processes and formats output
lines as usual. When each line is formatted and ready to print,
SCRIPT/VS inserts box vertical rule characters wherever appropri
ate to continue the box's vertical lines on the output line.
However, SCRIPT/VS will not overlay a printed character on the
output line wlth a vertical rule unless the output device is an
IBM 3800 Printing Subsystem. For 3800 printers, the vertical rule
has precedence and replaces the printed character.

You can use the .BX [Box] control word to build a three-column
table. Comment lines (identified with n.*,,) are included to
explain the control words used:

.* Define the box:

.bx 1m 10m 20m SSm

.*

.* Set the width of the text line slightly

.* shorter than the box's right edge:
· i r 2m
.*
.* Set the indention for the third column:
· in 21m
.* .* Set tabs for the second and third .* columns:
· t i ... 05
.tb 11m 21m
· * .* Begin the table's entries. The first
.* line of each entry has text in each
.* column. Subsequent lines are concatenated
.* and formatted in the third character position . . * The first line is shifted left (with
.* Undent) to the first column position .
. un 19m
.*
.* Text for the first item follows:
Item l ... Part l-.The first part
of item 1 is described here.

· * .* Separate the parts of an item with
.* a blank line:
.sk

· * .* The first line of an item's part
.* is shifted left to the second column
.* position:
.un 10m
Part 2--The second part of item 1 is
described here.
It is a very
long description.
· * .* Separate the items with a horizontal line:
.bx
· * .* Begin the next item:
.un 19m
Item 2 ... Part 1--The second
and subsequent items are entered in a
similar fashion
· * .* Complete the box:
.bx off

· * .* Reset the page layout parameters so
.* subsequent markup is not disrupted:
.tb
· in
.cl

88 Document Composition Facility: User's Guide

The above example results in

Item 1 Part 1 The first part of item 1 is
described here.

Part 2 The second part of item 1 is
described here. It is a very
long description.

Item 2 Part 1 The second and subsequent items
are entered in a similar fash-
ion .

. . .

Note: The character positions defined with the .BX control word
are the positions at which the vertical lines are drawn. Contrast
this with the displacement setting of the .TB [Tab Setting] con
trol word (.TB 12m results in spaces through character position
12; the text begins in character position 13). Therefore, you can
use the same numbers for the .BX control word and for the .TB con
trol word, and use the tab to position to the character position
immediately after the vertical bar.

The special corners and intersections that SCRIPT/VS uses to for
mat boxes are based on the character set available with the
logical output device. For example, the input lines:

.bx 1m 5m 25m 29m

.cl 30m

.ce on
These lines
are centered within
this
lovely box •
. ce off
.bx off
.cl

are displayed for the TERM logical output device as:

+---+-------------~-----+---+

I I These lines I I
lare centered withinl I

I I thi s I I
I I lovely box. I I +---+-------------------+---+

However, when the same input lines are formatted for the IBM 3800
logical output device used to produce this manual, they appear as:

These lines
are centered within

this
lovely box.

SCRIPT/VS chooses the appropriate box character set for the
logical output device. However, you can force SCRIPT/VS to use any
of the box character sets (see "Using Fonts With the IBM 3800
Printing Subsystem" later in this chapter for an example). The
ability to force SCRIPT/VS to use a specific box character set is
important, because some box character sets, such as 3270 text and
APl, are never automatically selected.

You can use SCRIPT/VS to produce many different box configura
tions, horizontal lines, and graphic structures. Some of the ways
you can use the .BX [Box] control word are described below.

Chapter 7. Additional Formatting Features of SCRIPT/VS 89

stack;ng one box on another

You can define a box and then define a larger or smaller box,
without first ending the first box's definition. The top of the
second box is printed on the same line as the bottom of the first
box. For example, the lines:

.bx 10m 20m

.sp

.bx 5m 25m

.sp

.bx 10m 20m

.sp

.bx 5m 25m

.sp

.bx 10m 20m

.sp

.bx off

result in:

By using this form of the .BX [Box] control word, you can create a
complex structure of boxes. For example, the lines

.bx 10m 20m

.sp

.bx 15m 30m

.sp

.bx 10m 20m

.sp

.bx 1m 15m

.sp

.bx 10m 20m

.sp

.bx 1m 30m

.sp

.bx off

.pa

result in

When the upper box bottom line does not touch the lower box top
line, SCRIPT/VS joins the two lines together. For example, the
input 1 i nes:

90 Document Composition Facility: User's Guide

.bx 10m 20m

.sp

.bx 30m 40m

.sp

.bx 10m 20m

.sp

.bx off

result in

Drawing a box with;n a box

You can draw a box within a box, using the NEW parameter of the
.BX [Box] control word.

Each box is ended with a .BX CAN or .BX OFF control word. Note the
different results of each type of ending. For example,

.bx 1m 30m

.sp

.bx new 5m 25m

.sp

.bx new 10m 20m

. sp

. in 11m
Elephants
.bx off
.bx can
.bx off

results in

I Elephants I
When nesting boxes, the new box does not have to be completely
within the previous box. For example,

.bx 1m 30m

.sp

.bx new 5m 40m

.sp

.bx new 3m 45m

.sp

.bx off

.sp

.bx off

.sp

.bx off

results in

Chapter 7. Additional Formatting Features of SCRIPT/VS 91

Drawing the middle portion of a box within another (larger) box

You can draw a box that is open at the top and bottom by using
slashes (/) between the character position displacements (as
shown previously). You can also nest that type of box within a
iarger box. For example

.bx 1m 40m

.sp

.bx new 5m / 10m / 15m / 20m / 25m / 30m / 3Sm

.sp 2

.bx off
~sp

.bx off

results in

Drawing boxes in a horizontal row

You can draw a row of boxes by specifying a box definition with
slashes. For example,

.bx 1m 10m / 20m 30m / 40m SOm

.sp 2

.bx off

The slash indicates a discontinuity
connection. These lines result in:

Drawing the top line (only) of a box

with no horizontal

When you want SCRIPT/VS to draw the top portion of a box, but not
the bottom line, you use the CAN parameter of the .BX (Box] con
trol word to cancel the box definition. For example,

.bx 1m 10m 20m SOm

.sp

.bx new 1m SOm

.sp
Last line of text in the box
.bx can
.bx can

92 Document Composition Facility: User's Guide

results in

I Last line of text in the box

Drawing the middle portion of a box (Without top or bottom lines)

When you want SCRIPT/VS to draw a box without horizontal top and
bottom lines, you insert slashes (/) between the character posi
tion displacements in the .BX [Box] control word. This causes
SCRIPT/VS to draw the "top and bottom lines" of the box with only
the vertical bars (that is, without a horizontal line).

When you want a horizontal line across the box, redefine the box
using the NEW parameter of the .BX [Box] control word. For example

. in 22m

.fo left

.cl 38m

.bx 1m / 10m / 20m / 40m

.sp
First item in the box
.bx new 1m 10m 20m 40m
.sp
Second item in the box
.bx
.sp
Third and subsequent items
in the box
.bx off
.bx can

results in

First item
the box

Second item
the box

in

in

Third and subse-
quent items in
the box

Note: the .BX OFF control word ends the box defined with the .BX
NEW control word, and results in a box bottom line. The .BX CAN
control word cancels the next previous .BX. control word, to end
the "open-topped" box.

If the .BX CAN control word preceded the .BX OFF control word
(instead of the way it is shown in the example), the result would
be:

Chapter 7. Additional Formatting Features of SCRIPT/VS 93

First item in
the box

Second item in
the box

Third and subse-
quent items in
the box

Therefore, the .BX CAN control word can be used repeatedly to can
cel all previous box definitions.

Drawing the bottom line (only) of a box

When you want SCRIPT/VS to draw the bottom line of a box, you use
the .BX [Box] control word as you would to define the start of a
box and you include the OFF parameter. For example,

.bx off 1m 10m 20m 40m

results in

USING FONTS WITH THE IBM 3800 PRINTING SUBSYSTEM

When formatting a document for the IBM 3800 Printing Subsystem,
you can take advantage of that printer's dynamic font storage to
intermix several different fonts in your document. Use the CHARS
option of the SCRIPT command to specify the fonts to use when for
matting the document.

SCRIPT/VS supports the fonts distributed by IBM with the IBM 3800
Printing Subsystem. However, most of the IBM 3800 fonts are upper
case only and therefore inappropriate for text applications. (For
more information about the IBM 3800 fonts, see the IBM 3800
Printing Subsystem Programmer's Guide.>

SCRIPT/VS provides sixteen full uppercase and lowercase fonts,
which are listed and illustrated in "Appendix C. Fonts Supplied
with SCRIPT/VS" on page 329. In addition, any locally-created
font can be used by SCRIPT/VS when its characteristics are listed
in a font table. (See "Appendix B. Device and Font Table
Maintenance" on page 323 for details about adding a new font's
characteristics.>

The IBM 3800 can contain up to four uppercase-only fonts, but only
two uppercase and lowercase fonts. To ensure proper output line
j'ustification, you should not specify IBM 3800 fonts of different
pitches. However, each SCRIPT/VS font contains special blanks
that allow the SCRIPT/VS fonts to be freely intermixed without
regard to pitch.

When SCRIPT/VS begins formatting a document for the IBM 3800, the
first font specified with the CHARS option of the SCRIPT command
becomes the current font. If CHARS is not specified, the logical
output device default font becomes the current font. Use the .BF
[Begin Font] control word at any time to change the current font
to any of those specified with the CHARS option. For example, in
thi s manual

This is a
.bf GB12
bold
.bf GT12
word.

94 Document Composit ion Faci Ii ty: User's Gu ide

13

would produce the line:

This is a bold word.

To eliminate dependence in the file on specific font n~mes, you
can use the SCRIPT/VS symbols &$CHARCn) instead of actual font
names. The previous example could be revised as:

This is a
.bf &$CHAR(2)
bold
.bf &$CHAR(1)
word printed in the &$CHAR(2) font.

which prints as:

This is a bold word printed in the GB12 font.

In a longer input file, you may not want to keep track of the cur
rent font for restoration after using the .BF [Begin Font] control
word. Use the .SF [Save Font] and .PF [Previous Font] control
words to save and restore font names. For example,

This is a
.sf
.bf &$CHAR(2)
bold
.pf
word printed in the &$CHAR(2) font.

Note: The font-save stack is 16 entries deep.

When you use the .BF, .PF [Previous Font], and .SF [Save Font]
control words when formatting for a printer that doesn't dynam
ically change fonts, the control words are ignored.

All SCRIPT/VS fonts contain three special blanks that are used for
justification: hexadecimal 11 for a lO-pitch blank, hexadecimal
12 for a 12-pitch blank, and hexadecimal 13 for a 15-pitch blank.
You should not use these hexadecimal codes with the .TI [Translate
Input] and .TR [Translate Character] control words. 13 The special
blanks allow SCRIPT/VS to justify output lines and align columns
regardless of font and pitch changes.

Special considerations apply to font changes within a box.
Because SCRIPT/VS does not provide three widths of each box char
acter in each font, SCRIPT/VS performs monospace justification
inside a box. The following restrictions apply within a box:

• All nested boxes are in the font of the outermost box, regard
less of the font changes within the box.

• All fonts used within the box must be of the same pitch as the
box itself Cthat is, the pitch of the current font when the
outermost box was begun).

• Proportional fonts (for example, GPI2) cannot be used within
a box.

You can produce boxes of different line thicknesses containing
text in several fonts. For example,

Hexadecimal 27 is used internally by SCRIPT/VS and therefore should also not
be translated with .TI or .TR.

Chapter 7. Additional Formatting Features of SCRIPT/VS 95

.fo center

.bf GT12

.bx 1m 20m
The
.5f
.bf GB12
first
.pf
box
.bx off
.5p 2
.bf GB12
.bx 1m 20m
The
.5f
.bf GT12
second
.pf
box
.bx off

results 1n:

The first box

The second box

96 Document Composition Facility: User's Guide

CHAPTER 8. THE SCRIPT/VS FORMATTING ENVIRONMENT

The formatting environment is a set of values and parameters that
specify exactly how SCRIPT/VS is to format each line on an output
page. The formatting environment consists of three parts:

• The active environment, which contains parameters for format
ti ng text

• The page control area, which contains parameters that define
the ent i re page

• The translate tables associated with the .TI [Translate
Input] and .TR [Translate Character] control words

PARAMETERS THAT DEFINE THE FORMATTING ENVIRONMENT

The parameters that make up the active environment area and the
page control area are listed in Figure 32 on page 315. Each param
eter, its corresponding control word, its initialized value, and
its special SCRIPT/VS symbol (if any) is listed.

When SCRIPT/VS ejects to a new page (or begins the first page), it
prepares the output page in the following manner:

1. It saves the active environment values for body text and
initializes the active environment for formatting:

• Top titles

• Running heading

• Running footing

• Bottom titles

The active environment is reinitialized before each of these
is formatted.

The output page's running titles, heading, and footing are
now in place on the output page. All "page control" dimensi ons
are now fixed for the page; any changes to these values will
take effect on the next page.

2. SCRIPT/VS restores the active environment for body text that
it had saved.

THE KEEP ENVIRONMENT

Input lines are processed to produce output lines, which are
inserted into the body of the page. When the page is full, or
when a page eject occurs, the formatted page is sent to its
destination.

When a keep with certain parameters (ON, FLOAT, and DELAY) is
started, SCRIPT/VS saves a copy of the active environment and then
modifies the active environment:

• The values of the .OF [Offset] and .UN [Undent] control words
are cleared, and indention is restored to the basic .IN [In
dent] value currently in effect.

• Maximum allowed column width is set to column width. The width
of the material within a keep cannot exceed the column width,
although it can be narrower.

When the keep ends, the saved copy of the active environment is
restored.

Chapter 8. The SCRIPT/VS Forma~ting Environment 97

THE FOOTNOTE ENVIRONHENT

When a footnote is started, SCRIPT/VS saves a copy of the active
environment and then modifies it:

• The values of the .OF [Offset] and .UN [Undent] control words
are cleared, and indention is restored to the basic .IN [In
dent] valuecurrentlv in effect.

• Column width is set to line length. The footnote text goes
across the page in single-column format.

When the footnote ends, the saved copy of the active environment
is restored.

SAVING AND RESTORING THE CURRENT FORMATTING ENVIRONMENT

The .SA [Save Status] and .RE [Restore Status] control words are
used to save and restore the current formatting environment. All
three parts of the environment are saved and restored by .SA and
. RE:

• The active environment

• The page control area

• The .TI and .TR translate tables

For example, part of an input file that contains a distribution
list requires indention and tab settings to format properly.
However, the main document indention and tab settings are differ
ent. To avoid having to reset the matn document's values, use the
.SA [Save Status] and .RE [Restore Status] control words:

• sa
.in
Distribution list for special publications:
.sk
• in 3m
.tb 20m 30m
.us Name Dept Address

.
*** End of distribution list ***
· re

98 Document Composi ti on Facili tv: User's Gui de

CHAPTER 9. CONDITIONAL PROCESSING

SCRIPT/VS provides several methods for processing input condi
tionally. You can write input files and macros that are capable of
making simple decisions, and taking action based on the result.
With conditional processing techniques, you can:

• Select the alternative input lines to be processed in a
particular run.

• Construct loops that process the same material several times
to provide several copies of the formatted output. (Each copy
can, of course, contain different specific information, as in
the form letter example in "Chapter 10. Combining SCRIPT/VS
F i Ie s" 0 n pa gel 0 5 .)

• Construct loops that process input in several small steps.

• Write macros that define other macros based on the current
logical device and the formatting required.

• Provide processing based on the content of an input line.

These capabilities use the basic conditional processing tech
niques in conjunction with other techniques that are not dis
cussed here. "Chapter 12. Writing SCRIPT/VS Macro Instructions"
on page 137 contains information about the mechanics of writing
macros, and "Chapter 11. Symbol~ in Your Document" on page 117
discusses symbol substitution. Individual control words are
described in "Chapter 21. SCRIPT/VS Control Word Descriptions" on
page 199 .

There are three basic conditional processing techniques you can
use:

• The .IF control word

• Conditional sections

• Conditional processing with symbols

THE .IF CONTROL WORD

'SCRIPT/VS allows you to test a symbol's value to determine whether
to process an input line, or to ignore it. Use the .IF [If] con
trol word to specify a conditional statement in the form:

.if argumentl test-condition argument2 input-line

The input-line part of the .IF [If] control word can be any valid
SCRIPT/VS input line: a GML tag, a control word, a symbol, a mac
ro, or text. The fi rst nonblank character after "argument2" is
treated as the first character of the input line. If the condition
is true, the input line is processed by SCRIPT/VS. Otherwise, it
is ignored.

When you want to bypass a part of your input file, you can use the
.GO [Goto] and ... [Set Label] control words. For example

.if &type = 1 .go bypass

... bypass

In the above example, if the symbol "&type" has a value of 1, all
the control words and text between the .IF and the ... [Set Labell
control words (which sets the label "bypass") are skipped.

The conditions that you can test for and the codes you can use
are:

Chapter 9. Cond ilt i ona 1 Process i ng 99

Code Meaning

= or eq equal to
~- or ne not equal to
> or gt greater than
< or It less than
>= or ge greater than or equal to
<= or Ie less than or equal to

The input line of a .IF [If] control word does not have to be a .GO
control word. For example, you can use

.if &SYSHOUR >= 12 .im pm

.if &SYSHOUR < 12 .im ~m

In this example, a different file is imbedded (either the file
named PM or the file named AM), based on whether the time is
before or after 12 noon.

Conditional processing with the .IF [If] control word can be espe
cially convenient when one file is imbedded in several different
masterfiles. You can provide for slight differences among the
files by setting the same symbol to a differ~nt value in each
masterfile, and using that symbol to determine how processing is
done in the imbedded file.

There are two special arguments that you can use on an .IF [If]
control word line. They are keywords, not symbols; do not delimit
them with an &.

• The keyword SYSPAGE tests whether the page currently being
formatted is EVEN or ODD. You can use SYSPAGE to place text
on an output page, based on whether the output page is
even-numbered or odd-numbered:

.if SYSPAGE = EVEN .sx /Evenpage Top line///

.if SYSPAGE = ODD .sx ///Oddpage Top line/

• The keyword SYSOUT tests whether the destination of the out
put is the printer (PRINT) or the terminal (TERM). This
keyword is provided for compatibility with SCRIPT/370. The
SCRIPT/VS system symbols &$LDEV and &$PDEV provide a better
way to test which of the many logical and physical output
devices possible with SCRIPT/VS is currently in use.

The input line of an .IF [If] control word can be another .IF [If]
control word. This allows you to satisfy two or more tests as cri
teria for processing the final input line. For example, if the
document is processed in the afternoon, you want to imbed the file
named PMPRINT. If the document is processed in the morning or if
it is sent (as output) to a terminal, the file PMPRINT is not nec
essary:

.if &SYSHOUR ge 12 .if &$lDEV ne TERM .im pmprint

SPECIAL TECHNIQUES FOR CONDITIONAL PROCESSING

There are two techniques you should be aware of when using the .IF
[If] control word.

• More Than One Control Word On a .IF [If] Input line

The input line of a .IF [If] control word can be only one
actual input line. However, you can set a control word separa
tor character (other than the semicolon) and cause the .IF
[If] input line to contain two or more control words.

SCRIPT/VS detects control word separators on an input line
before processing the line. For example, the input line

.if &sval gt 32 .sp S;.im fig7

100 Document Composition Facility: User's Guide

is processed as the two I; nes:

.if &sval gt 32 .sp 5

.im fig7

so that only ".sP 5" is subject to conditional processing.

To overcome this, make the subject of the condition a .DC CW
(Define Character) control word, followed by a .CM [Comment]
control word, as shown in the following example:

.if &sval gt 32 .dc cw ?;.cm ?sp 5?im fig7?dc cw

SCRIPT/VS processes this line one of two ways, based on the
condition "&sval gt 32":

Condition is not satisfied: SCRIPT/VS does not process
the .DC CWo The next line is merely a comment (.eM), and
nothing happens:

.if &sval gt 32 .dc cw ?

.cm ?sP 5?im fig7?dc cw

Condition is satisfied: SCRIPT/VS processes the condi
tional input line (that is, .DC CW ?). First, the control
word separator is changed to "?". Next, SCRIPT/VS recog
nizes the following (now properly separated) control
words and processes them:

.cm

.sk 5

.im fig7

.dc cw

This sequence ends by restoring the control word separa
tor to its default value (;).

• Comparing Null-Value Symbols

When you specify the name of a symbol value that might be
null, you should precede the symbol name with a
character-prefix to avoid a possible error. For example, the
input 1 i ne

. se a = "

.if &a = ON .go next

results in a SCRIPT/VS error because the symbol &a was set to
a null value. The conditional statement resolves to:

.if = ON .go next

The "=" character is treated as the first comparand, and "ON"
is not a valid comparison. However, the input line

.if x&a = xON .go next

resolves to

.if x = xON .go next

When the symbo I &a ha s the va I ue "ON," it reso I ves to

.if xON = xON .go next

That is, the prefix "x" is concatenated with the value of &a
to result in "xON," which satisfies the test. When the symbol
&a hasn't been set to ON, x&a = x and the test fails, but no
error results.

Chapter 9. Conditional Processing 101

CONDITIONAL SECTIONS

When your document is likely to be read by several different audi
ences, you may want to build it so that you can customize it for
each. For example, your company might build three very similar
devices:

• Class A Wi dget, whi ch is a very basic machi ne.

• Class B Widget, which is really an improved Class A Widget.

• Class C Widget, which includes some, but not all, of the fea
tures of Class A and B Widgets, and includes some improvements
of its own.

Because the devices are very similar, you can write a section of
material that applies to all three. You can follow each general
information paragraph or section with more specific information
applicable to one or two, but not all three, of the device types.

In this way, you can keep all information about Widgets in one
input file. When you format the input file for printing, however,
SCRIPT/VS can customize it so that all information (general as
well as specific) about one of the classes of Widgets is printed.
To do this, you identify those sections of the input file that are
to be processed conditionally.

SCRIPT/VS processes a conditional section, or ignores it, based
on the setting of a .CS [Conditional Section] control word. Each
conditional section number, from 1 to 9, can be used many times in
a document. You can associate each type of information to be proc
essed conditionally with its own conditional section number.

For example,

Conditional
Section
Number

1
2
3
4
5
6

Conditional Section Applies To

OnlY Class A Widgets
Only Class B Widgets
Only Class C Widgets
Class B or Class C Widgets (Not Class A)
Class A or Class C Widgets (Not Class B)
Class A or Class B Widgets (Not Class C)

At the beginning of your document, specify that SCRIPT/VS is to
bypass all conditional sections with the IGNORE parameter of the
.CS [Conditional Section] control word. The SCRIPT/VS default is
to process all conditional sections not specifically bypassed .

. cs 1 ignore

.cs 2 ignore

.
. cs 6, ignore

Before you issue the SCRIPT command to process your document,
change some of the .CS [Conditional Section] IGNORE control words
to .CS [Conditional Section] INCLUDE control words, to process
each desired conditional section. For example, to print all mate
rial appropriate for readers interested in Class B Widgets, spec
ify

.cs 2 include

.cs 4 include

.cs 6 include

In the body of your input file, you identify each conditional
section by preceding it and following it with the .CS [Conditional
Section] control words, using the ON and OFF parameters. For exam
ple,

102 Document Composition Facility: User's Guide

.cs 2 on
This material applies only
to Class B Widgets.
It does not apply to either
of the other types .
• cs 2 off

Because you can only specify one conditional section number with
the .CS [Conditional Section] control word, you must use a sepa
rate number to identify sections that apply to either one of two
(but not the third) type of device.

When you "nest" the .CS [Conditional Section] control words, you
identify a section that applies only when two (or. more) conditions
are met. For example,

.cs 1 on

.cs 2 on
This material is applicable to
people who use the Class A Widget
with the Class B Widget.
It is not to be printed for
readers interested only in Class A
Widgets or only in Class B Widgets .
. cs 2 off
.cs 1 off

Because the .CS [Conditional Section] control word doesn't cause
a break, you can process small units of text conditionally. For
example, the input lines

.cs 1 ignore

.cs 2 ignore

.cs 3 include
This book is written specifically
for the operator of a
.cs 1 on
Class A
.cs 1 off
.cs 2 on
Class B
.cs 2 off
.cs 3 on
Class C
.cs 3 off
Widget.

are printed as:

This book is written specifically for the
operator of a Class C Widget.

The input lines (GML tags, control words, and text) between the
.CS ON and the .CS OFF control words are included unless explic
itly bypassed as a result of a preceding .CS IGNORE control word.

When ignoring a conditional section n, SCRIPT/VS recognizes one
control word only:

.cs n off

which ends the ignored conditional section. All other input lines
(control words as well as text lines) are ignored without further
processing. This means that an ignored conditional section that
is started in one file cannot be ended in another file that is
imbedded by the first, because the .IM [Imbed] control word will
not be processed in the ignored section. However, if a conditional
section is started in an imbedded file, it can be ended in the
outer file, because SCRIPT/VS returns to the outer file automat
ically when it reaches the end of the imbedded file. No control
word is needed to switch back from the end of an imbedded file to
the file that imbedded it.

Chapter 9. Conditional Processing 103

CONDITIONAL PROCESSING WITH SYMBOLS

With set symbols, you can do conditional processing in several
ways. The simplest of these is to have a symbol that resolves into
one control word or another depending on the conditions. For exam
ple, the symbol "xi m" could be set to ei ther ". eM" or ". 1M" to
cause the input line

&xim filename

to be treated as an .IM [Imbed] control word or a .CM [Comment]
control word. If your file has several places where another file
should be imbedded conditionally, the symbol "xim" could be
defined once to control all occurrences of the symbolic control
word.

Another technique uses the existence attribute (&E') of a symbol
to generate a macro name according to whether a symbol exists or
not. See "Chapter 11. Symbols in Your Document" on page 117 for
detai Is on symbol attri butes. The exi stence attri bute causes a
string to be substituted with 0 if a symbol does not exist, and
with 1 if it does. You could write a macro called "xo" to provide
the appropriate processing when a given symbol does not exist, and
another called "Xl" for when it does exist. Now, the expression:

.X&E'&name

will resolve to ".XO" if the symbol "&name" does not exist, and
".X1" if it does.

You can also use the symbol length attribute (&L') to perform
conditional processing. The length attribute and the following
string or symbol are replaced with the length of the string or
symbol during substitution. See "Chapter 11. Symbols in Your
Document" on page 117 for details. If a symbol called "&num" con
tains a number that is from one to five digits long, you can
develop a five-digit number by adding the correct number of lead
ing zeros to &num. First, you need to define symbols that contain
the number of zeros needed for each possible length the number
might be:

.se 5z =

.se 4z = 0

.se 3z = 00

.se 2z = 000

.se 1z = 0000

If the number is five digits long, you need to add no zeros. If it
is four digits long, you need one zero, and so forth. Now, the
expression

&&L'&num.z.&num

concatenates the correct number of zeros to the number to form a
five-digit number. One part of the expression, "&L'&num", is
resolved to the number 1, 2, 3, 4, or 5, whatever the length of
the number in the symbol &num happens to be. If it is 3, the
expression becomes "&3z.&num". The symbol "&3z" is now replaced
with two zeros, the proper number of zeros for a three-digit num
ber, and concatenated with the number itself when "&num" is sub
stituted.

104 Document Composition Facility: User's Guide

CHAPTER 10. COMBINING SCRIPT/VS FILES

SCRIPT/VS provides the ability to combine many SCRIPT/VS input
files for processing as a single document. The control words that
allow you to do this are:

• .IM [Imbed], which causes SCRIPT/VS to process another file
immediately, then return to the imbedding file.

• .AP [Append], which causes SCRIPT/VS to process another file
immediately and not return to the appending file.

IMBEDDING AND APPENDING FILES

An input file can "call" other input files with the .IM [Imbed]
and .AP [Append] control words:

• When a file is imbedded into an outer file, the contents of
that file are read and processed as though the file were
inserted into the outer file immediately following the .IM
[Imbed] control word. When the imbedded file completes,
SCRIPT/VS resumes processing at the outer file's input line
that follows the .IM [Imbed] control word.

• When a file is appended to another file, the contents of the
appended file are processed immediately. The appended file
replaces the appending file as the current input file. Conse
quently, when the appended file completes, SCRIPT/VS does not
resume processing input lines in the appending file.

You must specify the filename of the file you want to imbed or
append. If the SCRIPT/VS file named OUTER processes the input line

· i m tester

SCRIPT/VS stops reading input lines from the OUTER file and begins
reading and processing lines from a file named TESTER. Whatever
formatting controls are in effect when the file is imbedded remain
in effect until respecified by control words in TESTER. Imbeds do
not cause breaks, either. When SCRIPT/VS reaches the end of the
TESTER file, it continues processing in OUTER with the input line
following the .IM [Imbed] control word.

The file TESTER might also contain .IM [Imbed] control words to
imbed additional files. The process is the same as when TESTER was
imbedded. The imbedded file is read and processed, then SCRIPT/VS
returns to the line in the imbedding file that follows the .IM
[Imbed] control word. Although many files can be imbedded in
another SCRIPT/VS file, the maximum level of nesting is eight.

For example, consider the following four fi les:

MASTER: FILEA: FILEB: FIlEC:

· i m filea The quick brown fox over
· i m filec . i m fileb the lazy
dog. jumps

When you issue the SCRIPT command to format the MASTER input file,
the result is:

The quick brown fox
jumps over the lazy
dog.

The .AP [Append] control word is similar to the .IM [Imbed] con
trol word, except that when SCRIPT/VS finishes processing the
input lines from a file specified in a .AP control word, it does
not return to the calling file. For example, when SCRIPT/VS proc
esses the input line

.ap names

Chapter 10. Combining SCRIPT/VS Files 105

it closes the current input file and begins processing the NAMES
fi Ie. All the 1 i nes from the NAMES fi Ie are treated as though they
were in the original file. When the end of the NAMES file is
reached, SCRIPT/VS does not return to the file that appended it:

• If the file that appended NAMES was the file named in the
SCRIPT command, SCRIPT/VS completes processing.

• Otherwise, if the file that appended NAMES was itself imbed
ded, SCRIPT/VS returns to the next input line in the file that
originally imbedded the file that appended NAMES, as shown in
Figure 9.

OUTER
INNER

. i m inner > I NAMES I .. ap names >
Next line <-------~ I c:J

~---------------------------- last line.

Figure 9. Imbedding and Appending SCRIPT/VS Files

You can pass values to the imbedded or appended file, so the file
can be customized each time it is called. See "Chapter 11. Symbols
in Your Document" on page 117 for details.

NAMING THE FILE TO BE IMBEDDED OR APPENDED

The name of the fi Ie to be imbedded or appended is gi ven as a 1- to
a-character name with the .IM or .AP control word:

.im filename

.ap filename

"f1lename" 1 s an internal SCRIPT/VS name for the fi Ie to be read.
The real name of the file can be established in one of two ways:

• You can use the .00 [Define Data File-idl control word to
associate the "filename" to any real file name available in
the system under which SCRIPT/VS is executing, as explained
in "Naming an Input File" in "Chapter 1. An Introduction to
SCRIPT/VS" on page 1.

• If no . DO control word has been processed for "fi lename,"
SCRIPT /VS uses "fi lename" to deri ve the real name of the fi Ie
to be read, based on rules appropriate for the system under
which it is executing.

In CMS, "filename" is used as the filename of a CMS fil~
whose filetype is SCRIPT.

In TSO, SCRIPT/VS builds the name "userid.filename.TEXT,"
using "filename" as the second qualifier.

When the .00 [Define Data File-idl control word defines the
file-id, SCRIPT/VS makes assumptions about the file name based on
the environment, as explained in "Chapter 21. SCRIPT/VS Control
Word Descriptions" on page 199.

106 Document Composition Facility: User's Guide

MASTER FILES

In CMS, use the .00 [Define Data File-id] control word when:

• the imbedded filename is different from the actual CMS
filename.

• the filetype is other than SCRIPT.

• a specific filemode that is not the first in the CMS search
sequence is to be used.

In TSO, use the .00 [Define Data File-idl control word when the
imbedded or appended file is not a member of the partitioned data
set (PDS) named in the SCRIPT command, or when the member name is
different from the file-ide

In the batch processing environment, use the .00 [Define Data
File-id] control word when:

• the library document name is different from the imbedded
filename.

• a password is required to access the file.

• the file is stored on a library other than the ones listed
with SCRIPT command options.

The format and usage of the .DD [Define Data File-id] control word
when defining a file are described in "Chapter 21. SCRIPT/VS
Control Word Descriptions" on page 199.

There are several advantages to using imbeds in SCRIPT/VS files:

• For convenience in updating and tracking SCRIPT/VS files, you
can use one file as the master file for a SCRIPT/VS document.
The master file can contain the formatting controls (for page
size, depth, column definitions, and 50 on) that are to be in
effect for the entire document. The remainder of the master
file might contain only the .IM control words that imbed the
remaining files.

• You can easily reorganize a large document that is composed of
many small files that are imbedded in a single master file.
When you want to move or remove information, you need only to
change the position o~ the .IM [Imbedl control word in the
master file, or to delete it.

• Small files can be shared by several master files. Each master
file can imbed vthe small file where appropriate. Therefore,
you do not need to keep duplicate copies of the same informa
tion.

• While there may be a limit to the number of records that can
be contained in a single disk file, there is no restriction on
the number of files that SCRIPT/VS can process. Also, many
different people can work on pieces of the same document
simUltaneously.

• Some CMS and TSO editors have a limit on the number of records
in a file. With the .1M [Imbed] control word, you can struc
ture a document by combining many small files, each of which
can be edited. The document as a whole can be formatted and
printed using the SCRIPT command.

Figure 10 on page 108 illustrates a typical
structure.

master file

When you are proofreading SCRIPT/VS output files that contain
many imbed files, you can use the NUMBER option of the SCRIPT com
mand. As a result, SCRIPT/VS prints (next to each output l~ne)

Chapter 10. Combining SCRIPT/VS Files 107

UNFORMATTED

xmaster xintro
xfigs

.rt t //SAMPlE// > text text text

.dc ps +

.rt even b /Page +/// :~! 3 I> t==j

.rt odd b I//Page +/ .im xfigs
• i m xintro

<
· i m xdescrip

<
• im xconfi 9
• i m xlist
· im xfunctn
• i m xsample
· i m xappena
.1m xappenb
· im xappenc
· i m xindex
· i m xtoc

SAMPLE

xintro text
xintro text
xintro text
xintro text

,xintro text
xintro text
xintro text
xintro text
xintro text
xintro text

Page 1

--------text text text .re <----------------~U

L
Figure 1.

.•. '>r----Xdescr:Jj.p > .e~f
text text text
. di 3
. sa
.im xfigs
.re <---------------------Figure 2.

'-----text text text
I

SAMPLE

Figure 1.
xintro text
xdescr i p. text
xdescrip text
xdescrip text

Page 2

FORMATTED

SAMPLE

Figure 2.
xdescrip text
xconfig text
xconfig text

Page 3

SAMPLE

xconfig text
xconfig text
xconfig text
xconfig text
xlist text
xlist text
xlist text
xlist text
xlist text
xfunctn text

Page 4

Figure 10. Master File structure

• the filename of the file that is currently being processed.

• the number of the last input li~e SCRIPT/VS had read when the
output line was formatted.

The line number and file name are useful when you update and cor
rect the SCRIPT/VS files.

The UHFORMAT option of the SCRIPT command causes SCRIPT/VS to
print input l~nes instead of output lines. SCRIPT/VS produces an
unformatted document that contains all the input lines from all
imbedded.and appended files.

WRITING TO AN OUTPUT FILE

The .WF [Write To File] control word allows you to put input lines
into afile dynamically. For example, you can collect figure cap
tions for a figure list in one file and index entries in another.

You can have several .WF files, one ,for each of several lists you
want to build as your document is processed. However, only one .WF
fi le.,can be open at a time.

108 Docul11ent Composition Facility: User's Guide

When SCRIPT/VS processes the .WF [Writ. To Fil.] control word, on.
or more input lines are ~ritten to a SCRIPT/VS file named
DSMUTWTF.

• You can insert ona line into the file with:

.wf contents of the input line

.
. wf .ce Taxt to be centered.

• You calii nsert a number of lines into the fi Ie wi th:

.wf 5

. in 3m

.ce 3
These are the
lines to go
into DSMUTWTF.

• You can also insert a number of lines into the fil. with:

.wf on

.
Many input linas

.wf off

~ the .WF [Write To File] OFF control word must b. on an
lnput line by itself.

You can later process the contents of the DSMUTWTF file with the
IMBED paramater of the .WF [Write To File] control word:

.wf imbed

After imbedding the DSMUTWTF fil., you can add t~ the end of it
with more .WF control words. You can imbed the DSMUTWTF fila into
another file many times.

When .the contents of DSMUTWTF are no longer useful to you, you can
erase the file with the ERASE parameter of the .WF [Write To File]
control word:

.wf erase

The DSMUTWTF fi Ie can be erased and reused many times.

By using the .DD [Defina Oat. File-id] control word, you can
define the file-id DSMUTWTF so that. y.ou 'can use the .WF [Write To
File] control word to write lines to several different files. For
example, to add lines to the end of the eMS file PART6 SCRIPT AI:

.dd dsmutwtf lib part6

.wf on
Input lines
to be added
to PART6 •
• wf off

It.21Jt:. If the fi Ie (PART6 i Ii the above example> is currently being
imbedded or appended, you cannot add lines to it. That is, you
cannot write into a file that is currently being read.

Chapter 10. Combining SCRIPT/VS Files 109

To rQstor~thQfile-jd DSMUTWTF to the default real file, specify

.dd dsmutwtf lib dsmutwtf

DELAYING THE IMBEDDING OF INPUT TEXT

The .01 [Delay Imbed] control word is used to store input lines in
a SCRIPT/VS file named DSMUTDIM. When you are finished storing
lines into it with the .DI control word, SCRIPT/VS continues proc
essing your file's input lines. As soon as a page eject occurs
(either because of a full page or because of a control word that
cauSes ~ page ejQct), SCRIPT/VS imbeds and processes the DSMUTDIM
file.

When SCRIPT/VS encounters a .DI [Delay Imbed] ON control word, it
puts the following input lines into the DSMUTDIM file. The lines
are put in DSMUTDIM as they are; SCRIPT/VS does no other process
i ng except to check each 1 i ne for the .01 [Delay Imbed] OFF
control word which must begin in column 1. When the .DI OFF con
trol word is found, SCRIPT/VS continues to format the input lines
1 n the f1 Ie.

For example, to delay the inclusion of a few input lines until the
next page eject occurs, you can specify:

.di on

.ce on
******************** * READ CAREFULLY *

.ce off
.di off

The input 1 i nes from . CE ON to .CE 0 FF are wr i tten into the
DSMUTDIM file. When one of the lines is a .IM [Imbed] control
word,' the DSMUTDIMfile does not receive the imbedded file's con
tents. Instead, when the DSMUTDIM file is imbedded at the top of
the next page, the file it imbeds is read in and processed.

Rather than begin an open-ended delay imbed with .DI ON, you can
specify the numbe~ of input lines to be delayed. For example,

. di 3

causes the next three input 1 i nes to be delayed. You don't have to
terminate the .DI 3 with .01 OFF. However, .. DI OFF ends a delay
imbed, whether it was started with .DI ON or with .DI n before n
lines have been imbedded.

TERMINATING THE FORMATTING OFA FILE

There are three control words that cause SCRIPT/VS to terminate
processing: .EF [End of File], .QU [Quit], and .QQ [Quick Quit].

Th~ .EF {End of File] contr~l word is useful with imbedded files.
If a .EFcontrol word occurs in an imbedded f:ile, SCRIPT/VS does
not conti nue imbedding the fi Ie but returns topr.ocess the outer
file. If another .IM, [Imbed] contr'ol word is encountered that
imbeds the same file again, SCRIPT/VS resumes reading and proc
essing with the input line following the .EF control word that was
last processed.

You can respecify the start of the file again with the CLOSE
parameter of the .EF [End of File] control word:

.ef close

The next tiinethe file is imbedded, SCRIPT/VSbegi.ns reading input
lines at the first line.·

110 Document Composition Facii. i ty:.User" sGui de

The other two control words, . QU [Qu it] and . QQ [Qu i ck Qu it] ,
cause SCRIPT/VS to terminate processing entirely, regardless of
whether the current file is an imbed file or not. When you use the
.QU [Quit] control word, processing terminates after SCRIPT/VS
prints the remainder of the current page (and any bottom titles
and running footings in effect) and after SCRIPT/VS closas all
open files. In contrast, the .QQ [Quick Quit] control word causes
immediate termination of processing with no final page eject.
Therefore, some formatted text on the last page might not be
printed.

The .QQ [Quick Quit] control word can be useful when checking your
file for errors. You can specify the TWOPASS option when format
ting the file and terminate processing after the first pass
completes.

For example, a very long input file named MASTER10 can have the
last input 1 i ne

.qq

When you format it at the terminal using the SCRIPT command

SCRIPT MASTERIO (TERM TWOPASS

the file is completely formatted during the first formatting
pass. Errors detected by SCRIPT/VS are displayed at your terminal
for you to note and correct later. However, processing terminates
before the second pass occurs, when the formatted document L~ould
usually be displayed.

MERGING DOCUMENTS FROM SEVERAL SOURCES

You can create a customized document from many different input
files by using the .IM [Imbed] and .EF [End of File] control
words. An imbedded fi Ie can include . EF [End of Fi Ie] control
words to cause a different group of input lines to be processed
each time the file is imbedded. This can result in customized doc
uments because each group of lines from the imbedded file can con
tain the specific information for a particular copy of the basic
document.

CREATING A CUSTOMIZED LETTER FOR MASS HAILING

By using the .IM [Imbed] and .EF [End of File] control words, you
can create a form letter customized for each of its recipients.
For example, the form letter might be built using two files:

• LETTER, which contains the contents of the letter (in this
example, a congratulatory notice to a prize winner).

• WINNER, which contains the information about each winner and
award needed to customize the letter.

The LETTER file consists of the following input lines (explana
tory comments are included):

LETTER:
.* The file appends itself to repeat the
.* letter until the last one has been processed .
. * .* Date and address:
.fo off
October 30, 1978
.* Imbed 1: Winner's name and address
.im winner
.fo left
.sp 2
.* .* Salutation:
Dear
.* Imbed 2: Winner's name
. im wi nner

Chapter 10. Combining SCRIPT/VS Files 111

.sp

· * .* letter contents:
Congra,tu lat ion s!
last July was your lucky month!
You entered our very difficult and
demanding word-finding contest and
.uc you won!!!
You won the cash prize of
.* Imbed 3: Amount won
· i m wi nner
A check for that amount is enclosed
with this letter.
Thcmk you for
participating in our contest.
May your good luck continue .
. sp

· * .* Sign off:
Yours truly,
.sp 2
.fo off
X. T. Smith
Manager, Word-finding Contest .* Controls to finish the letter
.* and start a new letter or to end .
. pa
.if x&last ne xyes .ap letter

· * End of File

The WINNER file can contain many groups of input lines. This exam
ple only shows the first group (for the first winner) which is
repeated for each recipient, and the last part of the last group
(to end the document with the last letter).

WINNER:
.* Data for W. Adams .* Imbed 1:
Ms. Winnifred Adams
1487 Easy St.
San Jalisco, Calif, 95138
.ef
.* Imbed 2:
Ms. Adams,
.ef
.* Imbed 3:
$500 (Five hundred dollars) .
. ef
.* .* Data for next recipient:

.* Imbed 3 (for last recipient):
$5 (Five dollars) .
. se last = yes
.* *** No more letters ***
End of File

The formatted LETTER file is shown in Figure lIon page 113.

INTERACTIVE SCRIPT/VS PROCESSING

When you use SCRIPT/VS, you do not have to have all of your input
text in final form when you issue the SCRIPT command. There are
three control words that allow you to enter one or more input
lines from the terminal.

• The .RD [Read Terminal] control word allows you to type text
at a typewriter terminal during SCRIPT/VS output. This con
trol word is useful if you are creating form letters and want
to enter names, addresses, or other kinds of variable infor
mation directly at the terminal. The text you type is not

112 Document Composition Facility: User's Guide

October 30, 1978
Ms. Winnifred Adams
1487 Easy St.
San Jalisco, Calif, 95138

Dear Ms. Adams,

Congratulations! last July was your lucky month! You entered our
very difficult and demanding word-finding contest and YOU WOH!!!
You won the cash prize of $500 (Five hundred dollars). A check
for that amount is enclosed with this letter. Thank you for
using our fine product and for participating in our contest. May
your good luck continue.

Yours truly,

X. T. Smith
Manager, Word-finding Contest

Figure 11. Result of the Customized Form letter

inserted into the input file and is not processed by
SCRIPT/VS.

• The .TE [Terminal Input] control word accepts input lines of
text or control words as though they were part of an imbedded
input file, and processes each line as it is entered.

• The .RV [Read Variablel control word allows you to assign a
value to a symbol during SCRIPT/VS processing by entering it
at the terminal.

The .TE [Terminal Input] and .RV [Read Variable] control words are
enhanced by using the .TY [Type on Terminal] control word to prod
uce a prompting message, which is displayed at the terminal during
SCRIPT/VS processing. The prompting message is not formatted as
part of the output.

The .TE [Terminal Input] control word accepts several operands.
You can specify (in the input file)

.te on

SCRIPT/VS reads input lines from the terminal until you type in

.te off

Then, SCRIPT/VS processing continues with the next line in the
file. You can enter SCRIPT/VS control words or text.

You can specify a numeric parameter with the .TE control word. For
example,

.te 4

In this example, SCRIPT/VS reads four lines from the terminal.

You can also terminate terminal input with the .EF control word,
which indicates the end of the current file. The .TE [Terminal
Input] control word is essentiallY an imbed, where the "file"
imbedded is the terminal.

The following example uses these control words to process and for
mat the same file an indefinite number of times.

Chapter 10. Combining SCRIPT/VS Files 113

· .. start
.im heading
.ty Enter NAME and ADDRESS (3 lines)
.te 3
.lm letter
.ty Any more?
.rv answer = ,
.if x&answer eq xyes .go start

The lines between the label ... start and the .IF control word are
processed an indefinite number of times. As long as you continue
to enter "yes" when prompted wi th the message "Any more?,"
SCRIPT/VS loops back to the beginning of the file, prompts you for
another name and address, and cont i nues.

Notice how the .RV [Read Variable] control word results in the
setting of the symbol &answer, and allot<Js it to be set to a char
acter string value (as entered). When used in the .IF control
word, the symbol is preceded wi th "x." If there is no reply to the
.RV request, the symbol &answer has a null value so the comparison
is beh.Jeen "x" and "xyes," whi ch is unequal. Wi thout the prefi x,
if the symbol value of &answer were null, the first argument would
"di sappear," resul t i ng ina control word error because of an
incorrect number of arguments. Once you have set a symbol in this
manner, you can use the symbol "&ansl>Jer" as you would any other
set symbol.

To enter variable names from the terminal, you must follow the
syntax rules for defining set symbols. See the descriptions of the
.SE [Set Symbol] and .RV [Read Variable] control words in "Chapter
21. SCRIPT/VS Control Word Descriptions" on page 199 for more
details.

COMMUNICATING WITH VH/370

Another useful feature of SCRIPT/VS is the ability to execute CMS
or CP commands from CMS SUBSET during SCRIPT/VS processing. To
execute a command (or an EXEC procedure or user program), use the
.SY [System Command] control word. For example,

.sy cp spool printer class s

The .SY [System Command] control word is convenient if you ordi
narily need to issue several commands before you process a
SCRIPT/VS file (you may need certain disks accessed, a particular
printer class, as in the above example, and so on). With the .SY
[System Command] control word you can put the commands directly in
the input fi Ie.

For example, if a SCRIPT/VS file imbeds several files from another
user's disk, you can include the commands to link to and access
the required disks:

.sy cp link user2 191 291 rr rpass

.sy access 291 b
· i m f ilea
· i m f i I eb
.sy release 291 (detach

When you execute a command during SCRIPT/VS processing, you might
not want SCRIPT/VS to continue processing if the command failed.
To test the return code from the CMS or CP command, you can check
the value of the SCRIPT/VS system symbol, &$RET:

.sy exec mysetup

.if &$ret ne 0 .qu

If the EXEC procedure MYSETUP completes with a nonzero return
code, SCRIPT/VS terminates processing. If the return code is
zero, execution continues with the next input line following the
.IF control line.

114 Document Comp~sition~ Facility: User's Guide

Note: the CMS commands "CP" and "EXEC" are explicitly shown here
for clarity. The implied CP (IMPCP) and implied EXEC (IMPEX) func
tions are not turned off when SCRIPT/VS executes, as they are
within an EXEC file.

COMMUNICATING WITH TSO

The .SY [System Command] control word can be used to specify TSO
commands and procedures to be executed after SCRIPT/VS completes
processing for the input file. The commands specified with .SY are
passed to TSO for execution in the order in which they are
encountered.

For example, the .SY [System Command] control word might be used
to display the output file after it has been formatted. To request
the document be sent to an output file:

SCRIPT INFILE (FILE('OUTFILE')

Within the file, to display the output file:

.* TSO command to display the output file

.sy edit 'outfile' old

Chapter 10. Combining SCRIPT/VS Files 115

CHAPTER 11. SYMBOLS IN YOUR DOCUMENT

By using symbols, you can refer to page numbers, variable values,
character strings, and control words in your input file. A symbol,
in SCRIPT/VS, has a name and a value. When SCRIPT/VS encounters a
symbol name, it replaces it with the symbol's current value. After
all symbol names in an input line have been replaced with their
current values, SCRIPT/VS processes the line.

You define a symbol by using the .SE [Set Symbol] control word.
For example, to define the symbol &printer, you can issue

.se printer = 'IBM 1403 Printer'

Later, you can refer to the symbol "printer" in an input line as
"&printer". Each SCRIPT/VS symbol is identified with its prefix,
an ampersand (&). The symbol is terminated with either a period
(.) or a blank. For example, the input line

Our publisher uses the &printer for output.

is processed by SCRIPT/VS and printed as:

Our publisher uses the IBM 1403 Printer for output.

but,

Our publisher uses the &printer ..

is processed as:

Our publisher uses the IBM 1403 Printer.

Your document might contain the symbol "&printer" many times, in
different places. In the future, when you want the document to
describe a different printing device, you can reset the symbol
with

.se printer = '3800 Printing Subsystem'

At that time, SCRIPT/VS will process your document and substitute
the new value for the same symbol:

Our publisher uses the 3800 Printing Subsystem for output.

The symbol's name can be up to ten characters long. The name can
not contain blanks, but can include alphabetic characters, numer
als, and the characters 4), #, and $.

The symbol's value can be a character string, as shown above, or a
numeric value. It can be an arithmetic expression. It can contain
compound data items with imbedded blanks and control words. A sym
bol's value can even be another symbol. If the symbol's value con
tains blanks or special characters, enclose the entire value in
single quotes (as shown in the example above).

Some examples of valid symbol definitions are:

.se corp = 'Scriptographicology, Inc. ,

.se add = 1

.se incr = &add + 1

.se mult = &add * 10

.se test = testa

.se TEST = testb

You can set a symbol to:

• A numeric value:

.se number = 25

Chapter 11. Symbols in Your Document 117

• A character string:

.se textl = 'IBM 1403 Printer'

• A SCRIPT/VS control word:

.se break = '.br'

• The value of another symbol:

.se printer = '&text!'

You can do arithmetic operations on a symbol's numeric value,

• To increment it:

.se nextpage = &pagenum

• To decrement it:

.se prevpage = &pagenum

• To divide it:

.se leaf = &pagenum / 2

• To multiply it:

.se cost = &pagenum * 20

• To negate a value:

.se negvalue = -&value

+ 1

- !

Symbols can also be set using the .RV [Read Variable] control
word. The .RV control word allows you to enter symbol values from
a terminal during SCRIPT/VS processing in interactive environ
ments. For details, see the .RV [Read Variable] control word
description.

Symbols can be set to a part of the value of another symbol by
using the SUBSTR (substring) parameter of the .SE [Set Symbol]
control word. The substring is one or more characters of the char
acter string (the symbol's value). For example,

.se corp = 'Scriptographicology, Inc.'

.se name = substr &corp 1 6

sets the symbol &name to the substring of the value of the symbol
"&corp" beginning with character 1 and continuing for 6 charac
ters. Because "&corp" has been previ ously set to
"Scriptographicology, Inc.", this substring results in the symbol
&name having the value of the 6-character substring "Script".

In the same manner, the SUBSTR (substring) function can be used to
extract characters from a character string that is not another
symbol's value. For example,

.se name = substr Jonathan 5 4

sets the symbol &name to that 4-character substring of "Jonathan"
beginning with character 5. That is, the symbol &name will have
the value "than". The substring must follow the rules for charac
ter string values of a symbol. If the string contains any imbedded
blanks or special characters allowed within a symbol value (= / +
*), it must be enclosed in single quotes.

You can use the INDEX function of the .SE [Set Symbol] control
word to find the location of a string of characters within a sym
bol value or a string of characters. For example,

.se name = 'Nicola'

.se location = index &name cola

118 Document Composition Facility: User's Guide

defines the symbol &location to have the value 3, because the
string 'cola' starts with the third character of the value of
&name (Nicola).

HOW SCRIPT/VS SUBSTITUTES VALUES FOR SYMBOL NAMES

COMPOUND SYMBOLS

When SCRIPT/VS processes an input line, it first scans for any
symbols in the line that require substitution. SCRIPT/VS checks
any character string that begins with an ampersand (&) to see if
it is a symbol name. When SCRIPT/VS finds a valid symbol, it
replaces the symbol's name with its value. A symbol name is termi
nated either with a blank, a period (.), or the end of the input
line. If the symbol name is terminated with a blank, the blank is
treated as a normal input character and is left in the input line.
If the symbol name is terminated with a period, the symbol value,
after substitution, is concatenated with the next input character
and the period is removed. Therefore, if a symbol has punctuation
immediately after it, you must concatenate the punctuation char
acter to the symbol with a symbol-end period. For example, .

This list ends with an &item1 ..

results in an end-of-sentence period concatenated with the value
of the symbol named &item1. Otherwise, SCRIPT/VS considers a sin
gle period as the end-of-symbol indicator and concatenates the
symbol with the next character.

You should use this technique when the symbol precedes other punc
tuation marks or text. For example,

The name of our product is &prodname., which is planned
for shipment on &shipmo &shipday., 19&shipyr ..

In this example, values for the symbols are substituted with the
adjacent text and punctuation with no intervening blanks. The
printed sentence appears as:

The name of our product is Whizbanger, which is planned
for shipment on June 19th, 1978.

If you do not place a concatenating period between lprodname and
its punctuation (,), SCRIPT/VS regards "&prodname," simply as a
character string, and performs no substitution.

You can redefine a symbol as often as necessary in your input
file. Each time you redefine the symbol with the .SE [Set Symbol]
control word, the new value replaces the old value.

When SCRIPT/VS substitutes values for symbol names, it performs
as many substitutions as necessary to resolve the symbol name.
Because of this, you can use a compound symbol, composed of two or
more separately defined symbols. For example, when you define the
symbols

.se x = 1

.se type1 = first

.se type2 = second

the input line

This is the ltype&x try.

results in:

This is the &typel try. (intermediate result)
This is the first try.

Another example of compound symbols is in "Elaborating the System
Date" on page 127.

Chapter 11. Symbols in Your Document 119

An example of a numeric symbol whose value is concatenated with a
character string is in "Numbering Figures" on page 131.

UNRESOLVED SYMBOLS

GML TAGS

Sometimes SCRIPT/VS encounters a symbol name that was not previ
ously defined. In this case, the symbol is unresolved and remains
in the input line as a character string that happens to begin with
an ampersand. The unresolved symbol is printed on the output page
as it appears in the input line.

When you use symbols that are set later in the document than they
are referred to (such as a symbol that refers to a page number or
a fi gure number), the symbol wi 11 be unresolved when fi rst
encountered. When you specify the TWOPASS option with the SCRIPT
command, SCRIPT/VS processes the input file twice. As a result,
properly defined symbols not resolved during the first formatting
pass are resolved during the second pass.

SCRIPT/VS GML tags are recognized by the symbol processor. A GML
tag is actually a symbol set by the .SE [Set Symbol] control word,
and is associated with an application processing function (APF)
d uri n g s ym b 0 1 sub s tit uti 0 n. T y pic all y , t he A P F for a tag i s a
SCRIPT/VS macro. The tag symbol value substituted for the tag name
invokes that macro.

SCRIPT/VS recognizes an alternate symbol delimiter for GML tags.
The GML delimiter is initially, and by default, the colon (:). You
can change it with the .DC [Define Character] GMl control word.

Symbols delimited with the GML delimiter are substituted differ
ently than those delimited with an ampersand. To be substituted, a
GMl-delimited symbol must be:

• Defined with .SE [Set Symbol] with a name all in uppercase
characters.

• A simple symbol, not a compound or array symbol.

If no symbol that meets these requirements exists, the GMl delim
iter is left in the line as a text character. The search for sym
bol (and GMl) delimiters continues from the next character of the
input line.

To illustrate the difference between symbol substitution for
symbols delimited with the ampersand and those delimited with the
GML delimiter, suppose the following symbols have been set:

.se charts = 'the symbol'

.se CHARTS = 'the tag'

.se Charts = 'charts'

These are three different symbols. The names differ only in the
case of the characters used. In symbol substitution:

&charts yields: the symbol
&CHARTS yields: the tag
&Charts yields: charts
&&Charts yields: the symbol

:charts yields: the tag
:CHARTS yields: the tag
:Charts yields: the tag
:cHaRtS yields: the tag
::Charts yields: :the tag

Notice that every use of the GMl delimiter results in substituting
the same symbol, &CHARTS. The double ampersand causes two stages
of substitution, but the double GML delimiter does not.

120 Document Composition Facility: User's Guide

Any GMl tag can actually be specified with an ampersand and the
uppercase form of the symbol name that represents the tag.
Conversely, the GMl delimiter can be used to refer to any symbol
whose name is uppercase. However, you should always use the GMl
delimiter for markup tags, and the ampersand for symbolic vari
ables to preserve the distinction between the markup and the con
tent of your document.

INHIBITING SUBSTITUTION

Usually, ampersands and GMl delimiters that occur in an input file
as ordinary text characters are treated as text characters and not
as symbol delimiters. The context in which it appears usually pre
vents the text ampersand from being mistaken for a symbol name.
Where a text ampersand precedes a character string that forms a
defined symbol name that you want treated as a text character
string, there are several ways to inhibit symbol substitution:

• Turn off substitution with the .SU [Substitute Symbol] con
trol word. With the .SU OFF control word, all substitution is
turned off. You can turn symbol substitution on again with .SU
ON.

• Contrive to make the symbol name unrecognizable by adding
punctuation without a delimiting period. For example,

I have defined the symbols &AAA, &BBB, &CCC, and others
for this file.

The symbol for the day of the month (&SYSDAYOFM) is
maintained by SCRIPT/VS.

Use the symbol "&xyz" for this purpose.

• Translate an unused punctuation mark or special character on
your keyboard to the ampersand, and enter the special charac
ter in your input whenever you need a text ampersand:

.tr ¢ &

Because the translation happens after symbol substitution,
the text ampersand cannot be mistaken for a symbol-starting
ampersand.

• Define a symbol to have the value of of an unused hexadecimal
code and translate the code to an ampersand. Enter the symbol
name in your input whenever you need a text ampersand. The .TI
[Translate Input] control word is used to establish the sym
bol's value: an unused hexadecimal character code
(hexadecimal 07, for example) replaces the symbol lamp in
subsequent input lines. The .TR [Translate Character] control
word translates the hexadecimal 07 to an ampersand when the
input has been formatted for an output line, after all symbol
substitution has occurred .

. ti 7B 07

.se amp = 'I'

.ti 7B 7B

.tr 07 &

SCRIPT/VS will substitute the value "I" for the symbol "lamp"
whenever it is encountered. Remember to end the symbol "lamp"
with a period whenever you want to concatenate the ampersand
with characters that follow it. This technique has been used
in marking up this book whenever a text ampersand is required.

There are many times when text ampersands are perfectly safe and
there is no need to worry about an unexpected substitution. Any
time the character string immediately following the ampersand is
not a symbol name, no substitution occurs. A character string can
not be a symbol name if:

Chapter 11. Symbols in Your Document 121

• It has not been defined as such with a previous .SE [Set Sym
boll control word.

• It contains a character that would not be allowed in a symbol
name (before the first blank or period that ends a symbol
name) .

• It contains more than ten characters before the blank or peri
od.

You can use these same techniques to protect text GML delimiters.

CANCELLING A SYMBOL

When you no longer want to use one of the symbols you've previous
ly defined, you can cancel the symbol:

.se oldsymbol off

The symbol &oldsymbol will be regarded by SCRIPT/VS as an unde
fined symbol. It is as though it had never been defined; it is not
regarded as a null-value symbol. When you specify

.se oldsymbol =
or

.se oldsymbol = "
you redefine the symbol with a "null" value. It exists as a symbol
but it has as its value the null string. Note that a null symbol
is quite different from an undefined symbol. The null symbol is
substituted with a value: the zero-length null string.

ATTRIBUTES OF A SYMBOL'S VALUE

SCRIPT/VS provides you with the ability to determine some of the
characteristics of a symbol in your input file, such as:

• Its existence (&E')

• Its length (IL')

• Its type (I T ')

• Its current value (IV')

In addttion, you can convert

• a numeric symbol value to its Roman numeral (character
string) equivalent (&R' or lr')

• a numeric symbol value to a base-26 "number" (that is, a char
acter string: 1 = A, 2 = B, ... 26 = Z, 27 = AA, 28 = AB, ..•
and so on). (lA' or la')

• a lowercase character string to uppercase (&U')

iE' verifies the existence of a symbol. When you use the IE' pre
fix, the value is substituted with either a 1 or a 0, depending on
whether or not the character string following IE' is a defined
symbol. For example,

.setest = on
The result is IE'ltest •.

results in:

The result ;s 1.

If the symbol named &test had not been set, the value of IE'&test
would be O. Any character string that is not a defined symbol
name, as in

122 Document Composition Facility: User's Guide

lE'czechoslovakia

resultsinO.

&L' determines the length of a symbol's value (or the length of
any character string, for that matter). For example, after the
lines:

.se test = 'This is a test.'

.se length = lL'ltest

the value of llength is 15. If the symbol named ltest had not been
set, then llength would have a value of 5 (that ls, the length of
the character string "ltest").

&T' analyzes the type of the symbol and replaces the character
string with:

• N, if the value can be converted to a numeric value that can
be used in an arithmetic expression, or

• C, if the value contains non-numeric data (Characters).

The "N" or "C" that SCRIPT/VS sets is always in uppercase. For
example,

IT'1978

is replaced with "N", ~ut

IT'DAD

is replaced with "C".

iV' returns the current value of the symbol (as it was last set),
without any further substitution. The value attribute of an unde
fined symbol or a character string is a null value. For example,

.se a = 'lb.linda'

.se b = 'Be'

An occurrence of la will be substituted with "Belinda" and its
length is 7 (that is, lL'la = 7). However, an occurrence of lV'&a
will be substituted with "&b.linda", and &L'lV'la = 8.

Attribute symbol prefixes can be combined. For example, &L'lV'&a
is the length of the value of the symbol &a, whi ch 1 s 8.

Note that lV' returns a character string that represents the cur
rent value of the symbol as previously set. In other words, a sym
bol has a value; a character string does not have a value (that
is, a character string's "value" is null). For example,

.. se b off

.se a = 'lb. linda'

• lV'&a yields the character string "&b.linda". The ampersand
and the period in "&b." are merely text characters; not symbol
delimiters, for this value substitution.

• &V'&b.linda yields the character string "linda". In this
case, the ampersand and the period in "lb." act as symbol
delimiters. The value of the symbol "lb" is concatenated to
the character string "linda". Since "lb" is not a defined sym
bol, its "value" is null.

• &V'&V'la yields either of two results, depending upon whether
or not substitution tracing is in effect from the .IT [Input
Trace] control word. Let's see why:

If substitution tracing is off, lV'&V'&a yields the null
string. &V'la yields the character string "&b.linda", as
shown above, as an intermediate result. The value of this
character string is the null string.

Chapter 11. Symbols in Your Document 123

If substitution tracing is on, &V'&V'&a yields the char
acter string "linda". &V'&a yields the intermediate
result "&b.linda", but in this case substitution stops at
this point so that the intermediate result can be traced.
After tracing, the string "&V'&b.linda" is evaluated as a
sepa rate operat ion. The ampers"and and the per i od in" &b. "
now act as symbol delimiters, causing the value of the
symbol "&b", which is null, to be concatenated to the
string "linda".

Attributes apply only to the symbol (or character string) imme
diately following them, up to the next delimiter (period or
blank). For example,

.se a = '&J'

. se b = 'K'

.se JK = 'TIMOTHY'

The string &a.&b resolves to "TIMOTHY", since &a.&b resolves to
"&J&b", then to "&JK", and finally to "TIMOTHY". However, the
string &L'&a.&b results in "2K", because "&L'&a" is evaluated
first. SCRIPT/VS provides a length of 2 (for the symbol's value:
"&J"), and concatenates the "2" with the character "K". &L'&a&b
results in "3", because n&b" is evaluated first and the length
SCRIPT/VS provi des is the length of the character stri ng "&aK"
(because a symbol with that name hasn't been defined in the exam
ple) .

The symbol attribute names &E', &L', &T', and tV' can be speci
fied, to produce the same result, in either uppercase or lower
case. That is, &L' and &1' will both return the length of a
symbol.

However, the symbol attributes &R', which converts a numeric val
ue to Roman numerals, and &A', which converts a numeric value to
an alphabetic character string, have different meanings when
specified in uppercase and lowercase.

&R' converts a decimal number to a Roman numeral. The decimal
integer number is converted to a cha~~cter string that r~presents
the number's Roman numeral equivalent:

• &R'B7 will cause the string LXXXVII to be substituted.

• &R'19&SYSYEAR wilj/~ause the string MCMLXXVIII to be substi
tuted (i n 197 ~J~//

• &r'B7 will cause the string lxxxvii to be substituted.

The largest number correctly translated to a Roman numeral is
3999. For numbers between 4000 and 9999, the character "?" is used
to represent the number "5000" or "10,000" (for example, &R'6020 =
?MXX and &R'9020 = M?XX). Numbers larger than 9999 are not trans
lated to Roman numerals (zero is returned).

&A' converts a number to a character string. The number is con
verted to character string that might be thought of as a base-26
number composed of alphabetic letters.

• &A'2 will cause the string B to be substituted.

• &A'26 will cause the string Z to be substituted.

• &A'27 will cause the string AA to be substituted.

• &A'28 will cause the string AB to be substituted.

• &A'705 will cause the string AAC to be substituted.

• &a'28 will cause the string ab to be substituted.

The largest number that can be converted is 65535. Numbers higher
than this return a zero.

124 Document Compositi~n Facility: User's Guide

For both &R' and &A', if the character string to be converted is
not a decimal integer number, the result is zero (for example,
&R'zorch = 0).

&U' converts lowercase characters to uppercase. For example,

&U'hello

results in:

HELLO

SYMBOL AND MACRO LIBRARIES

If a symbol cannot be resolved from a definition that has been set
with the .SE [Set Symbol] control word, SCRIPT/VS can look for a
definition in a library.

A symbol and macro library is a partitioned data set. In CMS, a
library is a file whose filetype is MACLIB, which is a CMS simu
lated partitioned data set. Each symbol definition in the library
is a one-line member whose member name is the symbol name. Macro
definitions can also reside in the same library, but they occupy
as many lines as required. Each line in a library member must have
a delimiter to indicate where the line ends.

For example, a library member named "B" might look like:

; . BR; J

SCRIPT/VS regards the rightmost nonblank character from a symbol
library as a delimiter and deletes it. In this case, the letter J
serves as the delimiter. You might want a symbol value to have
trailing blanks, which must be delimited. The .SE [Set Symbol]
control word allows a symbol value to be delimited with single
quotes. In a library, the delimiter is the nonblank ending charac
ter.

If the member "B" is in the library named "SCRIPT", you can issue
the SCRIPT command to process a file that uses the symbol &B:

SCRIPT TEST (LIB (SCRIPT

If you do not use the LIB option, symbol &B is undefined (in this
example).

The default filename for the symbol library is "GML" (because the
macro definitions for GML processing functions usually reside in
the library). If the symbol library has this name, you can omit
the filename that identifies the library but you must specify
"LIB" so SCRIPT/VS knows it has to search a library.

Before searching a library for a symbol, SCRIPT/VS translates the
symbol name to uppercase characters. Even though SCRIPT/VS recog
nizes the symbols "&libsym" and "&LIBSYM" as separate and unique
symbols, the library doesn't. Member names in the library are
always in uppercase. Therefore, the symbol names "1 i bsym" and
"LIBSYM" even though they are different, can be set from the same
library member. You can use the symbol library in two ways:

• To explicitly set a symbol name by declaring that its defi
nition is in a library:

.se para lib

SCRIPT/VS searches the library specified by the LIB option of
the SCRIPT command for the definition of ¶ (member PARA)
and sets it in the symbol table.

• To set an unresolved symbol. During substitution, the library
can be searched for a definition"of an unknown symbol with the
same name as the symbol (when converted to uppercase) only
when.LV ON or .LY SYM is specified. If found in the library,
the symbol is defined in the symbol table.

Chapter 11. Symbols in Your Document 125

When you are sure that none of your symbols are defined in a sym
bol library, you can issue the .LY [Library] control word to pre
vent library searches for unresolved symbols. (The initial
setting is OFF. You have to specify .LY ON or .LY SYM to search a
library for undefined symbols.)

The .LY OFF control word prevents all library searches, for unre
solved macros as well as for symbols. The .LY MAC control word
allows library searches for unresolved macros.

Note: When you specify that a symbol's definition is in the symbol
library wi th

.se libsym lib

the current .LY [Library] control word specification ;s ignored.
In the above example, the library is searched to find a definition
for &libsym. Remember, the symbol name is translated to uppercase
before searching the library.

SCRIPT/VS SYSTEM SYMBOLS

There are several groups of system symbol names that are initial
ized and recognized by SCRIPT/VS:

• Symbols you can use to obtain the current date and time.

• Symbols you can use to obtain current values of SCRIPT/VS
formatting parameters: the current line length, left margin
indention, and page length, to name a few.

• The symbol set as a return code from the latest CMS command
executed using the .SY [System Command] control word.

Some of the system symbols begin with "&$". These symbols cannot
be changed with a .SE [Set Symbol] control word, because they are
reserved and contain SCRIPT/VS formatting parameters and con
trols. Most of the special symbols reflect values under your con
trol: you can change them with the appropriate control word or
command option, but not with the .SE [Set Symbol] control word.

All other system symbols (those that do not begin with "&$") can
be manipulated and modified by .SE [Set Symbol] control words
within the input file.

SYMBOLS FOR THE SYSTEM DATE AND TIME

lhe symbol names for date and time values that are maintained by
the system are:

Symbol
Name

&SYSYEAR
&SYSMONTH
&SYSDAYOFM
&SYSDAYOFW
&SYSDAYOFY
&SYSHOUR
&SYSMINUTE
&SYSSECOND

Description

Year
Month
Day of the month
Day of the week
Day of the year
Hour of the day
Minute of the hour
Second of the minute

Value Range

00-99
01-12
01-31
1-7 (1 = Sunday)
001-366
00-23
00-59
00-59

The date and time values are set once and stay in effect through
out the processing of the file. You can use these symbol names to
set symbol values for the date and time yourself.

No punctuat ion i s pro v ided by SCRIPT /VS for combi n i ng these
values. You must supply it yourself when combining them. For exam
ple, to obtain the current date and time for printing on your out
put pages, you might enter:

DATE: &SYSMONTH./&SYSDAYOFM./&SYSYEAR
TIME: &SYSHOUR.:&SYSMINUTE.:&SYSSECOND

126 Document Composition Facility: User's Guide

Notes:

• Delimit all symbols with a beginning ampersand e&) and an end
ing period (.). Even though there are situations when an end
ing period is not required, you can't go wrong by ending your
symbol name with a period each time you specify it.

• The date and time symbol names must be specified with all
uppercase characters.

• leading zeros are provided with the symbol value whenevar
appropriate. That is, the eighth day of the month sets the
value of &SYSDAYOFM to "08", rather than to "8". To suppress
leading zeros, you can reset the symbol with the following
arithmetic expression before you refer to it:

.se SYSDAYOFM = &SYSDAYOFM + 0

As a result, leading zeros are suppressed. The symbol
&SYSDAYOFM will be redefined, for your input file only, with
no leading zeros. SCRIPT/VS removes leading zeros from the
result of arithmetic expressions on the right-hand side of
the equal sign in .SE control words.

Elaborat;ng the System Date

If you want to print the date with the names of the months and
days, your output page can include the date in the form

Monday, June 19, 1978.

This requires a group of .SE [Set Symbol] control words using the
reserved symbols in compound expressions, as follows:

.se d1 = Sunday

.se d2 = Monday

.se d3 = Tuesday

.se d7 = Saturday

.se mOl = January

.se m02 = February

.se m12 = December

To eliminate the leading zero of &SYSDAYOFM, include

.se SYSDAYOFM = &SYSDAYOFM + 0

leading zeros that occur with the other symbols do not present a
problem in this example.

The symbolic input line might be:

&d&SYSDAYOFW .. , &m&SYSMONTH .. &SYSDAYOFM., 19&5YSYEAR •.

which results in:

Monday, June 19, 1978.

Notice the ending delimiters for the
&d&SYSDAYOFW and 19&5YSYEAR in the above:

compound symbols

• "&d&SYSDAYOFW .. ," ends with two periods to prevent the symbol
name from being concatenated with the comma and to allow its
value to be concatenated with the comma. This compound symbol
requires two stages of substitution to be resolved.
&SYSDAYOFW ends with the first period. When resolved, the
symbol &d2 ends with the second period. In this way, the comma
needed for punctuation is concatenated with the name of the
weekday.

Chapter 11. Symbols in Your Document 127

• 19&5YSYEAR is not a compound symbol. It is resolved with only
one stage of substitution. The character string "19" is con
catenated with the symbol "&SYSYEAR". The first period ends
the symbol &SYSYEAR. The second period is needed (in this
example) for punctuation, and is concatenated with the value
of the year.

SYMBOLS FOR SCRIPT/VS CONTROL VALUES

SCRIPT/VS allows you to examine the formatting parameter values
it uses when processing your input file. Some of the values change
dynamically. You can obtain the parameter's current value by
using the system symbols.

The symbols that represent SCRIPT/VS internal formatting param
eters cannot be set by .SE control words in your input file. The
name of each of the following reserved symbols begins with "&$"
and can be specified using either lowercase or uppercase charac
ters. The system symbols are listed and described in Figure 33 on
page 316.

These symbols allow you to specify control words in a generalized
(that is, format independent) way. You can use this technique when
devising a macro or APF that must be able to produce desirable
results even though some of the formatting parameters can change
dynamicall'y. For example, the following sequence produces a box
the width of the output page:

.se ind = &$IN

.if lind = 0 .se ind = 1

.bx lind &$Cl

. in +2m;. i r +2m
The .BX control word begins
a box structure
.bx off
.in -2mi.ir -2m

which results in

The .BX control word begins a box structure using the cur
rent margins. The .IN [Indent] and .IR [Indent Right] con
trol' words shift the margins to position the text within the
box. After the text is processed, the original values are
restored.

///

As anoth~r ~xample, you might want to leave a blank page with only
a figure caption at the bottom of a single column page. Perhaps
the file is to be printed within different master files, each of
which requires a diff~rent page length. You might code the follow
ing sequence:

.pa

.cm leave page for a figure

.se lines = &$lC - 1

.sp &lines
Figure x. Sample Output

You will find that these special symbols can be especially useful
when writing SCRIPT/VS macros, or for testing the current envi
ronment using the .IF control word.

THE &$RET SPECIAL SYMBOL

The &$RET special symbol contains the return code from the CMS or
CP command that was most recently executed as a result of a .SY
[System Command] control word. You can examine the return code and
take conditional action based on its value. For example,

128 Document Composition Facility: User's Guide

·* see if optional input file exists
.sy state OPTDATA SCRIPT * . * if it ex i st s, imbed it . . * If not, don't try to imbed it .
. if &$RET eq 0 .im optdata

In TSO, &$RET is set to "0" by the. SY [System Command] control
word to indicate that the command was stacked for execution after
SCRIPT/VS terminates.

In batch, &$RET is set to "-3" to indicate that the .SY [System
Command] control word is not supported.

PASSING PARAMETERS TO INPUT FILES

SCRIPT/VS has three sets of symbols that can be set automatically
to contain values that can be used as parameters, to pass values
to an input file. These are:

• Symbols you can use to pass parameters to the input file from
the SCRIPT command line.

• Symbols set by'tokens on the .AP [Append] and .IM [Imbed] con
trol words.

• Symbols set by tokens when a macro is called.

SETTING SYMBOLS WITH THE SCRIPT COMMAND

You can use the SYSVAR option of the SCRIPT command when you want
to pass values to the input file from the SCRIPT command line. You
can set the SYSVAR symbols from the SCRIPT command line to specify
processing techniques to be used for that formatting run.

The symbols that you can set with the SYSVAR option have names
starti ng wi th "SYSVAR" and have one alphameri c character
appended: 0 through 9, uppercase A through Z, and ~, #, and $. For
example,

SCRIPT OUTLINE (SYSVAR (A ATYPE 2 NOGO)

This command line sets the symbols &SYSVARA to ATYPE and &SYSVAR2
to NOGO. Lowercase letters assigned to an &SYSVAR symbol are
translated to uppercase letters by the operating system. Conse
quently, when you include the symbols in an input line, always use
the uppercase symbol name and character-string values.

In a sample input file named OUTLINE, &SYSVARA is used to bypass
parts of the document and &SYSVAR2 is used to terminate processing
before completion:

.if &SYSVARA = ATYPE .go aproc

.if &SYSVAR2 = NOGO .qu
aproc

When you use &SYSVAR symbols, it is good practice to put comments
at the beginning of your input file so that other users who proc
ess the file are aware of each &SYSVAR symbol and the meanings of
its values.

For details about the SYSVAR option of the SCRIPT command, see
"Chapter 2. Using the SCRIPT Command" on page 13.

SYMBOLS SET WHEN A FILE IS IMBEDDED OR APPENDED

You can pass values to an imbedded file and an appended file with
the .IM [Imbed] and .AP [Append] control words. The format of the
control word, for example, might be:

.im finance George 125 $21.50 '18-7'

Chapter 11. Symbols in Your Document 129

A numeric value can be passed without enclosing it in quotes.
However, a character string that contains imbedded blanks or
special characters must be enclosed in single quotes, as shown.

When the file named FINANCE is imbedded, the symbols &0 through &4
are automatically set by SCRIPT/VS:

Symbol
Name

Value set by
SCRIPT/VS

&0
&1
&2
&3
&4

4
George
125
$21.50
18-7

Symbol &0 contains the number of symbol values passed. Up to four
teen symbol values can be passed when a fi Ie is imbedded or
appended. These symbol values are called "tokens." Each token can
be up to eight characters long, delimited with blanks. The rules
that apply to setting the value of a symbol also apply to specify
ing a token. See "Chapter 10. Combining SCRIPT/VS Files" on page
105 for details about imbedding and appending files.

SYMBOLS SET WHEN A MACRO IS PROCESSED

You can pass values to a macro when your input file calls the mac
ro. However, the values are for local symbols (that is, symbols
that are set for the called macro only; not for other macro calls
that occur within the called macro). The format of the macro call
might be:

.burger fries shake nosauce 'on a great big poppy-seed bun'

When the macro BURGER is processed, local symbols within it are
automatically set by SCRIPT/VS:

Symbol
Name

&*
&*0
&*1
&*2
&*3
&*4

Value set by SCRIPT/VS

fries shake nosauce 'on a great big poppy-seed bun'
4
fries
shake
nosauce
on a great big poppy-seed bun

Symbol &* contains the entire untokenized input line. It contains
all leading blanks after the blank that delimits the macro name.
Symbol &*0 contains the number of symbol values passed. The sym
bols &*1 through &*n contain the individual tokens passed to the
macro. Notice that a single token can contain embedde~ blanks and
special characters if it is enclosed in single quotes. Also, macro
tokens are not limited to eight characters; tokens passed by the
.IM [Imbed] and .AP [Append] control words cannot be longer than
eight characters. See "Chapter 12. Writing SCRIPT/VS Macro
In st ruct ion s" on page 137 fo r deta i I s about spec i fyi ng symbo 1 s
within macro instructions.

Note: Symbols whose names begin with an asterisk (*> are treated
differently than other symbols. Other symbols are globally avail
able to all fi les and macros, but symbols whose names begi n wi th *
are local to a particular macro at a particular level of nesting.
The symbols "&*" and "&*0" through "&*n" that are used to pass
tokens to a macro are "macro-local symbols." Each time a macro is
called, a new set of macro-local symbols is establish.d for· it.
The set lasts until the macro completes.

Unlike other symbols, macro-local symbols, when undefined, are
replaced during symbol substitution with the null string.

130 Document Composition Facility: User's Guide

SOME THINGS YOU CAN DO WITH SYMBOLS

There are many uses for symbols (that is, symbolic names) in
SCRIPT/VS input files. As you become more familiar with
SCRIPT/VS, you will find many applications for symbol processing.
Some techniques you might want to use are described in the follow
ing sections.

SETTING THE CURRENT PAGE NUMBER

You can set a symbol to be equal to the value of the current page
number when the .SE [Set Symbol] control word is encountered. For
example,

.se pagenum = &

A single ampersand on the right-hand side of the equal sign of a
.SE control word is replaced with the character string of the
current page number, including its prefix, if any. Elsewhere in
your document, you can refer to the page number with its symbol
name. To continue the example,

For details, see page &pagenum~.

Whenever the &pagenum symbol occurs in your document, SCRIPT/VS
replaces it with whatever the page number was when the .SE [Set
Symbol] control word was processed.

You can use this technique to create page numbers for an index, to
build a list of figures that includes the page number for each
figure, and to refer to another page in your document. When you
refer to a page further along in your document, the symbol you use
has not been set yet. To overcome this and resolve all valid sym
bols, use the TWOPASS option of the SCRIPT command when you format
the document for printing.

NUMBERING FIGURES

When your document contains a large number of figures, updating
the document with a new figure might mean that you have to renum
ber all subsequent figures. When you have to do this task manual
ly, it is time-consuming and prone to error.

With symbols, SCRIPT/VS can automatically keep track of the num
bering you need. You can have separate numbering sequences for
figures, photographs, tables, and other types of artwork. You can
have a separate numbering sequence for each chapter or section.
You can even build a list of figures, including figure numbers and
page numbers, that you can update easily. Most important, you can
rearrange the figures as often as you please without having a mon
umental task of renumbering them each time.

To number fi gures, use a "counter": a uni que symbol name that
refers to (and contains the value of) the figure number. The fig
ure number symbol (that is, the counter) is set at the beginning
of the input file, or in a separate file that is imbedded at the
beginning of the input file.

The sequence of the figure number symbols reflects the actual
sequence of the figures as they appear in your document. Each fig
ure number symbol can be anything you care to name it.

Each figure number symbol is set based on the current value of a
counter. The counter is incremented before the next figure number
is set. For example,

Chapter 11. Symbols in Your Document 131

.se fcnt = 1

.se afigno = &fcnt.;.se fcnt = &fcnt + 1

.se bfigno = &fcnt.;.se fcnt = &fcnt + 1

.se cfigno = &fcnt.;.se fcnt = &fcnt + 1

.se zfigno = &fcnt.i.se fcnt = &fcnt + 1

Each fi gure number symbol is set to the current value of the
figure counter, &fcnt. Each input line in the figure number
sequence (above) consists of two control word statements: the
first sets the value of the unique figure number symbol; the sec
ond increments the figure counter, which is used to set the value
of all figure number symbols.

You can establish a separate numbering sequence (that is, a sepa
rate counter) for tables, photographs, and other kinds of art
work, giving each type of illustration its own symbolic sequence.
When you enter figure captions or figure references in text, you
can use the symbol name instead of a figure number. For example,

Figure &efigno .. Organization Chart

See figure &mfigno. for a

Figure &mfigno .. Promotion Scheme

You can also assign page number symbols as you create the input
file. The page number symbol can relate to the figure number sym
bol it is associated with. For example,

Figure &afigno .. The Executive Board
.se afigpa = &

Figure &bfigno .. The VP's Staff
.se bfigpa = &

In this example, symbols of the form "&figpa" represent symbols
for the figure page numbers, and are associated with a correspond
i ng fi gure number symbol of the form "&fi gno".

The List of Illustrations can refer to the figures in the follow
i ng manner:

.sx /Figure &afigno .. The Executive Board/ ./&afigpa./

.sx /Figure &bfigno .• The VP's Staff/ ./&bfigpa./

.sx /Figure &efigno .• Organization Chart/ ./&efigpa./

.sx /Figure &mfigno .. Promotion Scheme/ ./&mfigpa./

.sx /Figure &fffigno .. Subsidiaries/ ./&fffigpa./

When you want the List of Illustrations to appear at the front of
your document, the page number symbols might be set after they are
needed. To print your document with SCRIPT/VS-generated page num
bers in the list of Illustrations, you can use the TWOPASS option
of the SCRIPT command. For details about the TWOPASS option, see
"Chapter 2. Usi ng the SCRIPT Command" on page 13.

132 Document Composition Facility: User's Guide

Pref;xes and Suff;xes For F;gure Numbers

You can have a figure number in the form "2-1", where "2-" (a pre
fix) might refer to the chapter or section that contains the fig
u r e. You can a 1 so ha v e a fig u r e n u m b e r i nth e for m "5 A", w her e "A"
(a suffix) might refer to part A of figure 5.

When you use a prefix or suffix, you are taking a character string
(the prefix or suffix) that can't be part of an arithmetic
expression and adding it to a character string that can (the value
of the figure number symbol or counter). The result is a character
string that can no longer be processed as part of an arithmetic
expression (that is, you cannot increment the figure-number part
of it>.

Therefore, when you want to use prefixes and suffixes, you must
save the numeric component of the figure number to pass along to
the next figure number symbol that increments it.

When you use a counter and include a prefix or a suffix, you mere
ly modify the figure number symbol's input line:

.se cfigno = '2A-&fcnt.'i.se fcnt = &fcnt + 1

.
. se cfigno = '&fcnt.-B'i.se fcnt = &fcnt + 1

Note: A period (in the above examples) is used to mark the end of
a symbol name. A single quote does not delimit a symbol name.

EXTENDED SYMBOL PROCESSING

Although a control word or macro must ordinarily begin in column
1, you can invoke a control word or macro at any point in the
input line by setting it as the value of a symbol, preceded by the
control word separator. When a symbol value begins with the con
trol word separator (i), the rest of the value is treated as
though it began on a new line. Therefore, a control word (set as
the value of a symbol) can be processed by SCRIPT/VS as though it
started in the first character position, even when it occurs in
the middle of a text input line.

For example, the .BR [Break] control word must begin in the first
character position of an input line to be recognized as a control
word. However, the symbol &BR, defined with

.cw

.se BR = 'i.br i'

.cw i

can be interpreted by SCRIPT/VS, and result in a break, no matter
where "it occurs in an input line (assuming symbol substitution is
on). The symbol &BR is interpreted as though you had a new input
line starting with ".BRi". For example, the input line

This is line one.&BR.This is line two.&BR

is formatted as though the file had the following four input
lines:

This is line one .
. br
This is line two .
. br

Note that the symbol &BR is delimited with a period. Without the
period,SCRIPT/VS would attempt to substitute the value of the
symbol &BRThis (which might be undefined).

When you set symbols to take advantage of the
processing capability of SCRIPT/VS, remember
control word separator, as in the example above.

extended symbol
to change the

Chapter 11. Symbols in Your Document 133

SYMBOLS FOR ARRAYS OF VALUES

An array symbol is a special type of symbol that allows you to
assign many values to the same symbol name. Each individual ele
ment of the array has, in addition to the name, an element number
in parentheses. The element number is also called the index of the
element. When you format your document for output, the entire
array of values can be referred to by a single symbol name. An
array symbol is defined with the .SE [Set Symbol] control word.
For example,

.se name() = value

The parentheses indicate that this is an element of an array and
"value" is any expression that can legally appear on a .SE [Set
Symbol] control word line. The notation () is a shorthand way to
specify the "next" element of the array.

When SCRIPT/VS encounters the array symbol value in the form:

&nameC*)

it replaces "&nameC*)" with the values of all the currently
defined array elements, in the order in which they are indexed. A
comma and blank separates the individual elements. You can speci
fy different array separator characters using the .DC [Define
Character] ASEP control word Cfor details, see the discussion of
".DC [Define Character]" on page 217).

If you are creating an jndex for a document, you can use array
symbols to identify the page numbers for an index item that is
referred to on many pages. When the input line

.se bslistC) = &

appears in a number of places in a document, then the expression

best sellers &bslist(*)

might result in the index entry

best sellers 10, 12, 20, 42

When the output line is too long because of the expansion of an
array symbol, the line's first part is used as one output line and
the remainder is printed on the next output line.

You can also cancel an array symbol by using the OFF parameter of
the .SE [Set Symbol] control word. If the symbol is an array sym
bol and no subscript is provided, the entire array is cancelled.

CONTROLLING THE ARRAY ELEMENTS

Each element in an array has a value associated with it. In the
example used above, 10 is the value of the first element, because
it is the first one encountered; 12 is the value of the second
element; and so on.

You can refer to any element of the array with the array's symbol
name and the element's index number in the form

&name(n)

where "n" is the positive integer that identifies the position of
the element within the array.

An array symbol reference can be used anywhere that a non-array
symbol can be used. If the element "n" exists in the array, its
value is substituted just as a normal symbol's value would be. If
the symbol exists but has no el~ment "n", a null value is substi
tuted. If the symbol is not defined at alIi the symbol is treated
as an undefined symbol.

134 Document Composition Facility: User's Guide

You can specify which array element you wish to set by including a
number (identifying its location within the array) within the
parentheses. For example, the input line

.se list(l) = &

sets element number 1 of the array with the current page number.
When you list all the elements of the array, this entry will be
listed first, even if it is not the first one set.

This is convenient for setting primary index entries (that is,
page numbers you want listed first). Here's another example:

.se name(l) = 1

.se name(47) = 2

.se name(25) = 3

.se name(2) = 4

.se name(3) = 5

The expression

&nameO':)
/

results in "&name(*)" being substituted as follows:

1, 4, 5, 3, 2

In other words, SCRIPT/VS places the array element values ;n
ascending element index order, not in the order in which they were
defined. In this example, there are many available but undefined
element numbers in between those that are defined. Any undefined
elements in an array are ignored when the array's values are sub
stituted.

The array element number can be another symbol. For example,

.se elem = 1

.se array(&elem) = &

The index symbol name must not be separated from the right paren
thesis by a symbol delimiter (that is, a blank or a period). When
array symbols are used on the right-hand side of a .SE [Set Sym
boll control word expression and symbol substitution is off,
symbols used as array SUbscripts will substitute correctly only
if they are simple, not compound, symbols.

Access;ng the Index counter

Every array has an element zero, represented by the symbol name

&nameCO)

Element zero is an index counter, and tells SCRIPT/VS which
element to set next if you didn't specify one.

sett;ng the Index Counter

The expression "name()" is treated as an index counter as well as
a symbolic expression. Each time SCRIPT/VS encounters the
expression, it assumes that the next element of the array is to be
fi lIed. If you never speci fy a number wi thi n the parentheses of an
array symbol, SCRIPT/VS begins numbering with element 1.

It is possible to set the initial value of the array index count
er, as follows:

.se name(O) = n

where n is any non-negative integer. Then, the first occurrence of
".se name()" with no element specified, would be equivalent to
".name(n+1)" and the counter would be incremented from there.

Chapter 11. Symbols in Your Document 135

In this way, you can start the automatic indexing of an array at
element S, for example, and reserve elements 1 through 4 for
explicitly specified definitions.

If you do not set the index counter explicitly, it will be incre
mented from the index value of the element last set. For example,

.se name() = first

.se name(3) = second

.se name() = third

The first element of the array is set to the value "first",
element 2 has a null value, element 3 has the value "second", and
element 4 has the value "thi rd".

For substitution of arrays, you can make SCRIPT/VS substitute all
elements of the array (except element zero), or you can make it
substitute just a single element.

The notation &name(S) causes only element S to be substituted. The
notation &name(*) causes all elements of the array to be substi
tuted, as previously described.

Any symbol is potentially an array symbol. The symbol &XYZ, for
example, is actually element zero of a possible array. &XYZ(O)
refers to the same symbolic value as &XYZ. If, after using a sym
bol like &XYZ, you set another element with:

.se XYZ(S) = 'last letters'

be careful about the value previously set in element zero (that
is, in symbol &XYZ). If the value is not a number, you will get an
error message if you ever use the shorthand notation where element
zero is supposed to contain the current index.

136 Document Composition Facility: User's Guide

CHAPTER 12. WRITING SCRIPT/VS MACRO INSTRUCTIONS

SCRIPT/VS allows you to define your own processing controls,
called macro instructions. The definition of a macro instruction
can consist of SCRIPT/VS control words, GMl markup, symbols, text
lines, and macros.

You can define macros for GMl processing (APFs), to provide addi
tional formatting controls, or to modify the action taken by a
SCRIPT/VS control word.

WHEN SHOULD YOU USE HACROS?

Many macro-like functions can be performed by symbols that are
defined as control word strings. Sometimes, though, you may need
to define a macro to perform a function that symbol processing
alone cannot provide. For example, the control word sequence

.se x = &x + 1;.se y = &x

is intended to increment the symbols x and y. Because SCRIPT/VS
always scans an entire input line for symbols first, &y is set
equal to the current value of &x and only &x is incremented.

You can perform this sequence properly by defining a macro. For
example,

.dm increment /.se x = &x + 1/.se y = &x/

After SCRIPT/VS processes the macro

. increment

&x and &y have equal values, since the two .SE [Set Symbol] con
trol words are processed sequentially.

Macros can also be very useful when you want to redefine the mean
ing of SCRIPT/VS control words. For example, you can use the macro
facility to define new head levels. Although seven head levels are
provided with SCRIPT/VS, you might want to define additional head
levels.

HOW TO DEFINE A MACRO

Define macros with the .DM [Define Macro] control word. Since
SCRIPT/VS processes macros as control words, an undefined
SCRIPT/VS macro is treated as an invalid control word.

When you define a SCRIPT/VS macro, you must name the macro and
specify the input lines to be processed whenever the macro is
called. Any SCRIPT/VS control words can be redefined by macros.
For example, the .PP [Paragraph Start] control word can be defined
as

.dm pp /.sk/.il 3/&*/

The macro definition elements (usually control words) are sepa
rated by delimiters. The delimiter, usually a slash (/), is the
first nonblank character that follows the blank after the macro
name. It can be any character that does not appear in the line
itself.

The special symbol &* represents "the following text" (that is,
the line passed to the macro for formatting). For example, when
the input line

.pp On second thought,

is processed, &* has a value of "On second thought,".

Chapter 12. Writing SCRIPT/VS Macro Instructions 137

The sing191ine form of the .DM [Define Macro] control word is
shown above, and is restricted to one input line. The input line
is broken at delimiter characters into separate macro lines. Each
component becomes a separate line of the macro.

The subscripted form of the .DM [Define Macro] control word allows
you to define macro lines on separate input lines. Each macro line
can contain several control words, by using the control word sepa
rator. For example, you could redefine the .PP [Paragraph Start]
control word as follows:

.dm pp(S) /.sk/

.dm pp(lO) /.il 3/

.dm pp(15) /&*/

The macro line number in parentheses is also called the subscript.
If the number is omitted from the parentheses, SCRIPT/VS will
automatically use an increment of 10, starting at 10. Macro line
numbers do not have to be defined in any particular order, nor do
they have to be sequential numbers. However, when the macro is
used, it is executed in subscript sequence, which is not necessar
ily the sequence in which the macro lines were entered. When you
use the sUbscripted form of the .OM control word, you can modify
it later without respecifying all parts of the macro definition.
For example, to increase the indention caused by a previously
defined .PP macro, you can issue:

.dm pp(10) /.il Sm/

or you can cause the .PP macro to start an inline keep by specify
ing

.dm pp(12) /.kp 3/

You cannot mix the two forms of the .OM control word. That is, if
you select the subscripted form you must put only one macro line
with the control word.

MACRO NAMING CONVENTIONS

The macro name can be up to 10 characters long, but cannot contain
special characters or imbedded blanks. The name can be the same as
the two letter name of a control word, in whi ch case its defi
nition redefines the function of the control word. When you enter
a macro name as part of your input file (after you've defined it),
enter it as though it were a control word, with a period in column
1.

LOCAL SYMBOLS FOR HACROS

In SCRIPT/VS, most of the input to be processed is text. The text
can contain any character string, including strings that look
like control words or symbols. Tags, macros, control words, and
symbols are merely character strings that have special meaning
based on the context in which they occur. Therefore, an undefined
symbol is regarded, by SCRIPT/VS, as an ordinary character
string.

For logical or arithmetic operations, you might prefer an unde
fined symbol to be replaced with the null value. Nice as that
would be, SCRIPT/VS doesn't replace all undefined symbols with
the null value because the "symbol" might be a valid character
string of text instead.

However, within macros SCRIPT/VS replaces some undefined symbols
with the null value. All symbol names that start with "&*" are
local symbols: these become null if not defined. There is a dif
ferent set of local symbols for each macro, and for each occur
rence of a macro call. Any symbol name that does not begin with
"&*" is a global symbol; the same value for global symbols is used
for all macros and outside macros. For symbol substitution within
a macro, the following rules apply:

138 Document Composition Facility: User's Guide

• All global symbols when substituted in a macro are considered
text character strings if undefined as symbols.

• All local symbols are considered null if not defined.

When SCRIPT/VS processes a macro, it assi gns values to certai n
designated local symbols based on the macro's input text line. The
local symbols are named &*0, &*1, &*2, and so on. Values are
assigned to a new set of local symbols each time a macro is
called.

The symbol &* contains the entire character string on the macro's
input line (except for the macro name). The symbol &*0 represents
the number of words that make up the character string. The symbol
&*1 contains the first word, the symbol &*2 contains the second
word, and so on. For example, when SCRIPT/VS encounters the fol
lowing input line

.process fileb 10 filea no

it sets the following values for the macro's local symbol values
(&*, and &*1 through &*n are called "tokens"):

S~mbol Value
&* fileb 10 filea no
&*0 4
&*1 fileb
&*2 10
&*3 fi lea
&*4 no
&*5-&*n (null value)

When a macro symbol beginning with &* is not set by the input
line, it has a null value. When you want to assign a null value to
a macro symbol without also assigning null values to all subse
quent tokens on the input line, use the percent sign 00 to
represent the null-value token. For example, the macro input line

.insert filea 10 % fileb 15

results in the symbols being set as:

Symbol
&*
&*0
&*1
&*2
&*3
&*4
&*5
&*6-&*n

Value
filea 10 % fileb 15
4
filea
10
(null value)
fileb
15
(null value)

Note: In SCRIPT/370, the symbols set when a macro was called were
&0 through &9; these symbols are no longer set by SCRIPT/VS when a
macro is called. See "Chapter 18. Compatibility with SCRIPT/370"
on page 177 for information on converting local symbols in a
SCRIPT/370 macro to SCRIPT/VS local symbols.

You can set any symbol with a name that begins with the character
"*". A symbol so named is considered a local symbol for the macro
whose definition includes it. Such symbols are known only to the
macro that defines them. The symbol values are saved when the mac
ro calls another macro, and are restored when the called macro
returns to the calling macro. A different set of local symbols is
set each time a macro is called, plus another set for when no mac
ro is the current source.

Note: Local symbols are replaced with null values if undefined,
but only when the current input source is a macro.

Chapter 12. Writing SCRIPT/VS Macro Instructions 139

REDEFINING SCRIPT/VS CONTROL WORDS

You can define a macro with the same name as a control word to
effectively redefine it, to revise it, or to supplement its func
tion. The definition you code with the .DM [Define Macro] control
word is used instead of the SCRIPT/VS-defined function. If you
redefine a control word as a macro, the new definition is effec
tive whenever the coritrol word is encountered as long as macro
substitution is on (.MS ON), or whenever the macro is called using
the .EM [Execute Macro] control word.

Once a control word is redefined, its function exists in two
forms: as a SCRIPT/VS control word, and as a user-defined macro.
However, when it is encountered in the input file, the function
defined by the macro always takes effect when macro substitution
i s on (. MS ON).

When macro substitution is on, you can specify that the SCRIPT/VS
control word function is to be effective, even when a macro of the
same name is defined, by stipulating that it is to be executed as
a control word, using the .EC [Execute Control] control word. For
example, the input line

.dm sk /.sp &*./.il 5/

redefines the .SK [Skip] control word, to space lines and indent
the first output line after the line space.

When you want the .SK [Skip] control word to be effective (as
SCRIPT/VS has defined it), and you do not want to turn off macro
substitution, issue

.ec .sk 4

to skip four lines and not indent the next output line. In other
words, the .EC [Execute Control] control word executes the con
trol word even if a macro of the same name exists.

When macro substitution is off (.MS OFF) and you want the macro
function to be effective (instead of the SCRIPT/VS control word of
the same name), use the .EM [Execute Macro] control word. For
example,

.em .sk 3

results in three line spaces, with the next output line indented
five spaces. The .EM [Execute Macro] control word can also call a
macro that does not have the same name as a control word, even
when macro substitution is off (.MS OFF).

Note: When you redefine a SCRIPT/VS control word with a macro of
the same name:

• Be sure to define all the functions, implicit as well as
explicit, that you want. The macro definition does not modify
the control word function; it is used, as a macro, instead of
the control word function.

• To make the macro definition effective:

Turn macro substitution on (.MS ON), or

Use the .EM [Execute Macro] control word to execute the
macro definition.

• When the macro definition includes the SCRIPT/VS control word
of the same name, use the .EC [Execute Control] control word
to specify the control word. An example of this technique is
in the following section, "Avoiding an Endless loop."

140 Document Composition Facility: User's Guide

Avoiding an Endless Loop

When you define a macro to replace the function of a SCRIPT/VS
control word, you might have to turn macro substitution off to
avoid an endless loop. For example, you want to redefine the .PP
[Paragraph Start] control word to put two line spaces between par
agraphs instead of one:

.dm pp(l) /.sk/

.dm pp(2) /.ms off/

.dm pp(3) /.pp &*/

.dm pp(4) /.ms on/

Had we not turned macro substitution off with the .MS OFF control
word, statement 3 would substitute the macro definition for .PP
until SCRIPT/VS flagged it as a severe error and terminated your
document's formatting.

However, sometimes turning off macro substitution is not an ade
quate solution to the problem. For example, you can change the .IM
[Imbed] control word so that the ~ame of the imbedded file is
typed (or displayed) when it is imbedded. If you define the macro
(that is, redefine the control word) in the following way:

.dm im(l) /.ty &*/

.dm im(2) /.ms off/

.dm im(3) /.im &*/

.dm im(4) /.ms on/

macro substitution is turned off to prevent an endless loop from
occurring. However, when macro substitution is turned off, sub
stitution ;s prevented for any macro that might be part of the
imbedded file (as well as files it might imbed).

Instead, you should use the .EC [Execute Controll control word to
tell SCRIPT/VS that the input line is to be treated as a control
word even though a macro of the same name might be defined. For
example, the following lines

.dm im(l) /.ty &*/

.dm im(2) /.ec .im &*/

redefine the .IM [Imbed] control word, allowing for macro substi
tution in the imbedded file.

HOW VALUES ARE SUBSTITUTED FOR SYMBOLS WITHIN A MACRO DEFINITION

When symbol substitution is on, the .DM [Define Macro] control
word line is scanned for symbol names. If you define a macro that
contains a symbol, you usually want the symbol's value substi
tuted for the symbol name when the macro is encountered as an
input line, rather than when the macro is defined. Therefore, turn
off symbol substitution (using the .SU OFF control word) before
you define the macro, to allow the symbol (rather than its value
when the macro is defined) to be part of the macro definition. For
example,

.su off

.dm ofs /.sk/.of &offset./

.su on

In this example, &offset is a symbol that might have a value when
SCRIPT/VS processes the .DM [Define Macro] control word. If sub
stitution is ON, the symbol's value becomes part of the macro
definition instead of the symbol &offset. The macro .OFS would
then result in a hanging indention of that amount, rather than of
the value of &offset when SCRIPT/VS encounters the macro .OFS.

Chapter 12. Writing SCRIPT/VS Macro Instructions 141

REDEFINING SCRIPT/VS FORMATTING CONVENTIONS

A control word, in SCRIPT/VS, is used to request a specific
SCRIPT/VS func·tion. You can use a macro to redefine the function
of a SCRIPT/VS control word.

SCRIPT/VS has implicit formatting functions, too. Input lines
that are null reset line continuation, and those that begin with a
blank or tab character cause a break. You can use a macro to rede-
fine these functions. .

PROCESSING INPUT LINES THAT ARE EMPTY

When SCRIPT/VS encounters a null input line (that is, a line that
contains nothing at all), it generates and executes a which resets
line continuation.

To redefine the SCRIPT/VS implicit formatting convention for null
lines, define a ~Nl [Null line] macro that will be executed when
ever a null line is encountered. For example,

.dm nl /.sk 2/

Now, when SCRIPT/VS encounters a null line, the result is two line
spaces on your output page.

You can also define the null line to be completelY ignored by
SCRIPT/VS:

.dm nl /.*/

PROCESSING INPUT LINES THAT BEGIN WITH A BLANK OR A TAB

When an input line begins with a blank (called a leading blank) or
a tab (called a leading tab), SCRIPT/VS does not concatenate the
line with the previous input line. That is, a break occurs.

Breaks are provided by executing the .LB [Leading Blank] control
word when a leading blank is encountered, and by executing the .LT
[Leading Tab] control word when a leading tab is encountered. Both
of these control words function exactly the same as the .BR
[Break] control word. However, after the break occurs, the lead
ing blank or tab remains on the input line and is processed as
part of the line.

As with null lines, you can control the actions to be taken for
leading blanks and tabs by defining a .LB and .LT macro.

When you want the leading blank and leading tab to be processed by
SCRIPT/VS as just a blank (or just a tab) that happens to occur as
the first character (that is, not processed differently than oth
er blanks or tabs), redefi ne the control words wi th:

.dm lb /~*/

.dm It /.*/

The tab or blank at the begi nni ng of the input line wi 11 be
concatenated with the previous input line. It will not necessar
ily appear at the beginning of an output line.

Note: The .NL [Null Line], .LB [Leading Blank], and .LT [Leading
Tab] funct ions are not ·performed for a line that would otherwi se
call fo·r them when the line is processed in literal mode (that is,
preceded by the .LI [Literal] control word). Hull text lines still
raset line continuation if the previous line ended with a contin
uation character, but the .NL control word or macro is not exe
cuted.

142 Document Composition Facility: User's Guide

SPECIFYING A MACRO LIBRARY

When a macro name cannot be resolved (because there was no previ
ous definition set with a .DM [Define Macro] control word),
SCRIPT/VS can look for its definition in a macro library.

Each macro definition is a member of the macro library. The member
name is the macro name without the leading period, restricted to
eight uppercase characters. Symbol definitions and macro defi
nitions may be members of the same library. However, only the
first line of a member is read for a symbol definition; for a mac
ro definition, all lines of the member are read and treated as
individual lines of the macro definition.

As with symbol definitions, the rightmost non-blank character of
each line is treated as a delimeter, and is deleted.

You can use the macro library in two ways:

• To explicitly set a macro name, by using the .DM control word
to cause SCRIPT/VS to retrieve its definition from a library:

.dm para lib

SCRIPT/VS searches the library specified by the LIB option of
the SCRIPT command for the definition of .PARA and retrieves
the definition. The retrieved definition replaces any exist
ing definition.

• To define an unresolved macro. When SCRIPT/VS encounters a
macro that has no definition, the library is searched for a
member with the same name as the macro.

When your input file contains macros that are defined in. a macro
library, you can specify that SCRIPT/VS is to search the macro
library for any unresolved macro it encounters:

.ly on
or

.ly mac

The ON parameter of the .LY [Library] control word specifies
searching the macro library for unresolved macros and symbols.
The MAC parameter allows library searching only for unresolved
macros. You can use the OFF or SYM parameters (described above) to
turn off library searching for unresolved macros.

Since searching macro libraries for unresolved symbols is expen
sive in terms of processing time, it is recommended that .LY MAC
be used except for short periods when you expect symbol defi
nitions to be returned; then .LY SYM or .lY ON should be used.

See "Using the SCRIPT Command" for details about the LIB option
and macro libraries.

Chapter 12. Writing SCRIPT/VS Macro Instructions 143

CHAPTER 13. GML SUPPORT IN SCRIPT/VS

This section explains how the GML starter set profile and APFs
were written and suggests how you can create your own profiles and
Application Processing Functions (APFs) to support processing
requirements at your installation. The purposes and advantages of
using GML are not discussed here, nor is the analysis of a docu
ment that is needed to define tags and determine which APFs you
need to write. Please refer to the Document Composition Facili~~
Generalized Markup LanQuage (GML) User's Guid~ for these dis
cussions, as this chapter assumes you are familiar with general
GML concepts and terminology.

The GMl starter set consists of the following:

• A document profile called GDOCPROF which has two main pur
poses!

1. To establish the GMl tag to APF relationship.

2. To establish the formatting style
Document."

of a "General

• A macro library which contains the implementations of the
APFs invoked when GML tags are encountered in a document.

THE ROLE OF A DOCUMENT PROFILE

You will probably need a number of document profiles if you plan
to use documents that you hav~ marked up with GML for a number of
different purposes. The profile provided as part of the starter
set is rather general in that its actions can be to some extent
controlled by:

• use of the SYSVAR option.

• the logical device for which processing is taking place.

• setting various symbols in the profile which are used in the
the macros provided in the starter set macro library to con
trol the style of formatting for document elements (for exam
ple, the skips between paragraphs).

CREATING YOUR DUN PROFILES

You can obtain a listing of the starter set GDOCPROF profile to
help you understand the APF processing associated with each
starter set GMl tag, and to aid you in creating your own document
profiles.

If you wish to use your own profile in conjunction with the start
er set, one of the last entries in it should be the .IM [Imbed]
control word to imbed the starter set profile (GDOCPROF). Your
profile will be processed ahead of the starter set profile, allow
ing use of both your tags and the starter set of GML tags.

This technique permits the mapping for any GML tag defined in a
private profile to override the mapping for the same tag in an
installation's shared profile when the two profiles are used
together.

Note: If you wish to use the starter set profile by imbedding it
in your profi Ie, and you want to overri de the values of the start
er set APF variables, you should remove the .SE [Set Symbol]
statements from the starter set profile which define these values
for the starter set APF vari abies. (These are descri bed in the
discussion of "Symbols Within Starter Set APFs" on page 147.) If
you do not do this, the values that you set will be overridden by
the starter set profile.

Chapter 13. GMl Support in SCRIPT/VS 145

GHL TAG TO APF HAPPING

The main function of a document profile is to relate GMl tags and
attribute labels to the processing that is to be performed on the
elements they describe.

A SCRIPT/VS GMl tag is a symbol that is folded to uppercase before
it is substituted. This folding occurs because the tag is delimi
ted with a GMl delimiter. The default GMl delimiter is a colon
(:), but this may be changed by use of the .DC [Define Character]
control word.

Starter set GMl tags a~e associated with APFs in the starter set
profile using the .SE [Set Symbol] control word. If you look in
the starter set profile (GDOCPROF), you will notice that in each
set statement which does this mapping, the tag name on the left
side of the equal sign (=) is in uppercase. If this were not done,
the tag would not be recognized when the tag was encountered in
the document, as the name is folded to uppercase by the symbol
processor before substitution is attempted.

Many tags in the starter set map to an APF which consists of a
macro. You must ensure that when such a GMl tag is recognized and
substituted, the macro that results from the substitution will be
processed as if it had been entered at the start of the line. You
can do this by means of the SCRIPT/VS extended symbol processing
capability. When a symbol whose value starts with a control word
separator is substituted, the results are treated as if they had
occurred at the start of a line.

In the example below, the tag "PREFACE" is mapped to the ~pref
macro by the .SE [Set Symbol] control word. The semicolon is the
control word separator:

.'se PREFACE = ';.~pref '

Note: Since the .SE [Set Symbol] line itself will be scanned for
control word separators before it is processed, this will only
work if one of the following techniques is used:

• The control word separator is undefined by using .DC CW OFF.

• The control word modifier (.') form of the set statement is
used as shown in the example.

• The control word separator character is temporarily redefined
to be something other than the character used for the control
word separator in the set statement.

APFS FOR TEXT ITEHS

A GMl tag normally identifies a document element which is a para
graph unit or larger. However, some tags (for example, phrase
(:PH»identify elements of the document that occur within a para
graph (or other text). These elements are known as "text items."

When processing a text item, it is important that all the charac
ters (including blanks) that were entered in the document are pre
served for the user. This is done by the use of a continuation
character as the first character of the tag symbol value.

When the tag is substituted, the continuation character is
appended to any preceding text and any blanks are preserved.
However, as we have seen above, a tag whose APF is a macro must be
processed as if it were entered at the beginning of the input
record. For this, a control word separator must be the first char
acter of the value.

The dilemma is resolved by stori~g the control word separator
character in a symbol so that it will only be substituted during
the substitution of the tag. In the example below, the symbol
&~cont has the value of the continuation character, and &~cw is
undefined but will be set to the control word separator character
when the document is being processed.

146 Document C~mposition Facility: User's Guide

.se Q = '&~cont.&~cw .. "em .~q ,

When the tag is found in a document, the following stages of sub
stitution result:

Mary said .'em .~q Hello; how are you?
Mary said &~cont.&~cw .. 'em .~q Hello; how are you?
Mary said +&~cw .. 'em .~q Hello; how are you?
Mary said +
.em .~q Hello; how are you?
.~q Hello; how are you?

Note: Since the text item may contain as text the character used
as the control word separator character, it is necessary to stop
it from being misinterpreted when the APF macro is invoked. For
control words, this can be done using the control word modifier
(.') form. For macros, you can achieve the same effect by using
the .'EM [Execute Macro] control word in front of the macro as
shown in the example above.

See the discussion of "Use of the .LI [Literal] Control Word" on
page 149 for a further discussion of text items.

SYMBOLS WITHIN STARTER SET APFS

By convention, all global symbols used in the starter set APFs,
other than the tag symbols, start with the commercial "AT"
character (01). These symbols contain variables that are used to
direct the formatting. They are often used a~ symbolic parameters
on the actual control words issued by the macros. The default val
ues for these symbols (shown in parentheses below) are used by the
starter set APFs unless overriding values are supplied.

symbol t~ame

8cClcols

8calcont

8cC)cw

8celdlterm

8caldsk

8cCldth;

8cClduplex

8caleframe

8calf;n

8celheadctr

8calll

8celosk

8capsk

8capuncmove

8celqin

8calsframe

Funct;on (Default)

number of columns (1 for non 3800 logical devices;
2 for 3800 logical devices)

continuation character (+)

control word separator character (;)

definition term length (10M)

definition list skip (1 line)

definition term highlight (2)

controls duplex printing (no)

default figure end frame (.sx //-//)

figure indention (0)

heading counter (no)

line length (default SCRIPT/VS line length except
for 3800 when it is 6.6 inches)

ordered list indention (4M)

ordered list skip (1 line)

paragraph skip (1 line)

controls movement of punctuation around quotation
marks (yes)

quotation indention (0)

default figure start frame (.sx //-//

Chapter 13. GML Support in SCRIPT/VS 147

&~sin

&;ssk

&;tipage

&Quin

&~usk

&~x;n

&~1pin

simple list indention (4M)

simple list skip (1 line)

controls printing of title page (yes)

unordered list indention (4M)

unordered list skip (1 line)

example indention (0)

first line paragraph indention (0)

You can expand or change this list to reflect your installation's
requirements.

In addition to the symbols shown above~ there are a number of
macros in the starter set which are important in the definition of
the basic style of the document. Macros that perform the process
ing for attributes have the same name as the label of the attri
bute they handle. Macros that are invoked by the symbols for the
tags themselves~ and inner macros used as "subroutines" by the
primary macros~ have names that start with the "AT" character (~).
You may wish to consider modifying or replacing th~se macros to
achieve the style that' you need:

Macro Name Function

~format This macro is invoked to establish the line format
ting style for a document. For ~xample, if you wish to
format the document in ragged right form you can
redefine this macro to include a .FO [Format Model
control word to do this.

~fontset This macro establishes the form of the various levels
of highlighting. If you do not like the starter set
conventions for the levels of highlighting~ or wish
to increase the number of levels~ you should change
this macro and perhaps defin. some new tags in the
profile.

stitle This macro processes the stitle attribute and hence
its name does not start with an a character. It con
trols the style of the running footings that are gen
erated whenever an stitle attribute is used (either
explicitly or implicitly). Redefine this macro if you
wish to change the style of the running footings
produced by the starter set.

sec This macro processes the sec attribute and hence its
name does not start with an ~ character. It controls
the style of the running headings that are generated
whenever a sec attribute is used. Redefine this macro
if you wish to change the style of the running
headings produced by the starter set.

~t;page

a2col

This macro produces the title page. To change
format and content of the title page produced by
starter set you must modify this macro or change
mapping of the :etitlep tag in the profile to an
of your own.

the
the
the
APF

The form of two column output produced by the starter
set depends on the calculations performed by the
~2col macro using the line length value that was set
in the symbol &~ll in the profile. These calculations
assume a certain gutter width. You can redefine the
~2col macro to achieve the two column formatting you
want. Of course, you could also generalize the ~2col
macro concept and extend it to include the ability to
format the document in many columns (SCRIPT/VS allows
a maximum of nine columns).

148 Document Composition Facility: User's Guide

STARTER SET MACROS FOR ATTRIBUTE PROCESSING

The ~scan and ~exatt macros provided as part of the GML starter
set may be of use in building your own APFs. You should refer to
the comments in the commented form of these macros for a more com
plete description of their function:

~scan scans the line given tG it as an argument for attributes.
Having scanned the line ~scan returns the text that fol
lows the attributes in the symbol &~line for use in the
invoking macro.

For example:

.~scan &*

will cause the ~scan macro to scan the string in the symbol
&* and to extract the attributes. The attribute names and
their values are stored in an element of the array symbol
&~att(*). This symbol is examined by the ~exatt macro.

Note that one of the checks made by the ~scan macro when
looking for attributes is that the line given to it con
tains at least two leading blanks. If this is not so, the
~scan m~cro will assum~ that there are no attributes in the
line to be scanned. This condition will always be satis
fied when the ~scan macro is invoked from a macro with the
APF for a GML tag. For example:

.se PREFACE = ';.~pref '

provides'the two blanks on the &* line to the macro .~pref
because there is one blank after the macro name (~pref) and
there will always be one additional blank if the user spec
ifies attributes.

~exatt causes any macros with names given by the attribute labels
found by the ~scan macro to be processed. For example:

.~exatt

will cause the ~exatt macro to execute all of the macros
with names identical to the attribute labels found by
~scan.

In addition, the ~exatt macro can be requested to execute
only a certain attribute by giving the macro name as a
parameter. For example:

.~exatt frame

This will cause the frame attribute macro to be executed if
it is found by the ~scan macro.

The ~exatt macro can also be requested to execute all of
the attribute macros found by the ~scan macro except for a
specified one. For example:

.~exatt ~ id

This will cause all attribute macros found by the ~scan
macro to be executed except for the id attribute macro.

USE OF THE.LI [LITERAL] CONTROL WORD

If you look at the definitions of many of the macros from the
starter set you will notice that the text which forms the macro
parameter (contained in &* if there are no attributes being
scanned, or in &~line if the ~scan macro was invoked) is always
preceded by the .LI [Literal] control word. For example:

Chapter 13. GML Support in SCRIPT/VS 149

.********************************

.* Reset indents etc *

.********************************

.in -&O)qin

.ir -&C)qin

.li 1
&*

This is for two reasons!

• The text may start wi th a peri ode In thi s case, SCRIPT/VS
would treat the line as a control word, and the user would be
given a message saying that an invalid control word had been
found.

• The text may start with leading blanks. If the tag is identi
fying a text item, this would have the effect of causing a
break and erroneous output would result.

Use of the .LI [Literal] control word will prevent these effects.

Note: For text items, when no text follows the tag, &* or &o)line
will have a null value. When these symbols are substituted, a null
line will be generated which will end continuation. This is appro
priate, since the user has implied the end of a word by placing
the tag as the last data on the line.

DEBUGGING YOUR APFS

Before you start writing your own APFs you should have a clear
understanding of the following SCRIPT/VS control words!

• .DM [Define Macro]

• .IF [If]

• .IT [Input Trace]

• . SE [Set Symbol]

• .SU [Substitute Symbol]'

The .SE [Set Symbol] control word can perform substitution on sym
bolic values on the right side of the equal sign, even if substi
tution is off. In this way, the .SE control word can treat complex
character strings as single parameters when the character string
is the value of a symbol. If substitution were on, the character
string would replace the symbol name before the .SE control word
processed the line, and each word in the string would appear as a
separate parameter. With substitution turned off, the symbol name
remains on the line as a single parameter until the .SE control
word retrieves its value.

GMl macros often use the "index" and "substring" capabilities of
the .SE [Set Symbol] control word, and take advantage of the abil
ity of .SE [Set Symbol] to perform its own substitution while gen
eral substitution is off.

You can use the .IT [Input Trace] control word to trace the
execution of your macros, or to understand the operation of start
er set macro s.

Sometimes you may have doubts about the way in which a partic
ularly complex symbol will resolve. In these circumstances, it is
useful to experiment to understand what will happen. You can cre
ate a file that contains various test cases, and trace the results
using the .IT [Input Trace] control word:

• at your terminal in foreground environments.

• to an output file or listing using the MESSAGE (DELAY) option
of the SCRIPT command.

150 Document Compo~ition Facility: User's Guide

Another useful technique you may use in foreground environments
is to create a file that contains nothing but the .TE [Terminal
Input] control word with the ON parameter specified. When you
SCRIPT this file, your terminal will be opened for reading, and
you can imbed files, excecute macros from your macro libraries,
and invoke any other SCRIPT/VS functions.

Since the output that you get using the .IT [Input Trace] control
word with the ALL parameter can sometimes be quite voluminous, you
may want to trace just the execution of a specific macro. Since
the .IT [Input Trace] control word cannot trace the excecution of
a specific macro, you must modify the macro definition to add .IT
ALL at the beginning of the macro definition, and .IT OFF and the
end. If the macro definition comes from a macro library you must
make sure that the definition is retrieved from the library using

.dm macroname lib

before attempting these modifications. You can determine the cur
rent contents of the macro definition at any time using:

.it snap macroname

Chapter 13. GMl Support in SCRIPT/VS 151

CHAPTER 14. USING SCRIPT/VS WITH OTHER PROGRAM~

You can use SCRIPT/VS to format an input stream prepared by anoth
er program. You can also use SCRIPT/VS as a preprocessor, to pre
pare an input file for processing by another text processing
system or by an application program.

USING SCRIPT/VS AS A POSTPROCESSOR

You can use SCRIPT/VS to format reports using data from data proc
essing files. An application program could access these files,
perform the necessary computations, and create an output file.
The output file could contain GML markup just as if it had been
created with normal text entry procedures. You will then be able
to process it with the same flexibility as any of your other docu
ments.

An alternative to the technique just described would be to have
the application program call SCRIPT/VS as a subroutine. This can
be done when the Document Library Facility is installed with
SCRIPT/VS. For details on using SCRIPT/VS via the Document
Library Facility, see the Document Library Facility Guide.

You can also use SCRIPT/VS to prepare input for itself. For exam
ple, you can automatically prepare index entries: you might
define a secondary attribute called "index descriptor," make up a
su i table tag (for example, "desc"), and create an APF for it. You
would specify this attribute for those phrases in your document
which were suitable entries for an index. For example,

This process, done with :ph desc='yes'.binary numbering:eph.,
can also be done with :ph desc='yes'.decimal numbering.:eph ..

The APF would write the phrase and current page number to a file,
together with appropriate document type tags identifying each.

You could sort and arrange the file in a manner appropriate to an
index. The sorted file would be a SCRIPT/VS document which, when
processed by appropriate APFs, would generate an index.

USING SCRIPT/VS AS A PREPROCESSOR

When you use SCRIPT/VS as a preprocessor, you want SCRIPT/VS to
produce an output file that can be processed by some other text
formatter or application program. To use SCRIPT/VS as a prepro
cessor, you must first thoroughly understand the text formatter
that is to receive the output file prepared by SCRIPT/VS.

Your SCRIPT/VS input file contains markup appropriate for
SCRIPT/VS (that is, GML tags, control words, macros, and symbols)
as well as text and implicit formatting conventions (such as lead
ing blanks, leading tabs, null lines, andend-of-sentence charac
ters). You must build a profile and APFs that interpret the
SCRIPT/VS markup and generate appropriate formatter controls.
(See "Chapter 13. GML Support in SCRIPT/VS" on page 145 for
details about profiles, APFs, and mapping tags to APFs. See
"Chapter 11. Symbols in Your Document" on page 117 for details
about symbols, and "Chapter 12. Writing SCRIPT/VS Macro
Instructions" on page 137 for details about macros.)

In most cases, you will find it preferabie to use GML markup when
using SCRIPT/VS as a preprocessor. The following discussion,
therefore, will assume that your document's markup observ~s a
convention like that described ln the Document Composition
Facilit~neralized Markup Languag~ (GML) User's Guide. Famili
arity with the markup procedures portion of Chapter 3 of that man
ual is assumed.

Chapter 14. Using SCRIPT/VS with Other Programs 153

DEVELOPING PREPROCESSOR APFS AND PROFILES

SCRIPT/VS has a great variety of general document-handling func
tions which can be used independently of formatting. You can use
these functions to create APFs that will translate a GML document
into suitable input for another program, such as a formatter that
can support photocomposers.

/

For example, the starter' set APFs for ordered lists and list items
automatically generate numbers (or letters) for the items on an
ordered list. This is a desirable function, since it permits the
list to be revised without renumbering all the items.

The SCRIPT/VS control words for a list item APF are shown below.
They include general processing control words which maintain the
number counter and insert numbers or letters into the output text
stream. They also include formatting control words which indent
the list and leave spaces between the items. The symbols used were
set with previous control words, either in the profile or in the
APF for the list .

• ********************************
.* Skip 1 line before the item *
.********************************
.sk &lskip
.********************************
.* Keep the first three lines *
.* together. *
.********************************
.kp 3
.********************************
.* Indent and undent first line.*
.********************************
. in +&O'l list in
.un &O'llistin
.********************************
.* Increment item counter. *
.********************************
.se O'llctr = &O'llctr + 1
.********************************
.* Insert counter and text into *
.* data stream. *
.********************************
(&O'llctr.)&$TAB.&*

Figure 12. APF for List Items

You would create a modified version of the APFs which would incor
porate the general processing functions, but eliminate the
SCRIPT/VS cont~ol words that result in formatting. In the exam
ple. these are .SK [Skip], .KP [Keep], .IN [Indent], and .UN [Un
dentl. You would insert the appropriate formatting controls of
the postprocessor into the output stream in place of these control
words. The SCRIPT/VS symbol substitution capability can still be
used to calculate parameters for the postprocessor's formatting
controls (or even to select one of a number of possible control
word~, although this use is not shown here).

Some of the logical sequence of formatting controls might have to
be changed, however. The graphic effect of having the first line
of the list item printed to the left of the indention for the rest
of the list item is achieved, in SCRIPT/VS, with the .IN [Indent]
control word followed by the .UN [Undent] control word. The
receiving processor might require a different sequence of format
ting controls to achieve the same graphic effect.

154 Document Composition Facility: User's Guide

When modifying an APF in this way, you can structure its logic and
function to produce formatting different from that produced by
the original APF. You can change the symbol definition for symbols
used in the APF (for example, for &~&~ltyp.sk, &~ind, and
&~&~ltyp.in) to achieve different formatting values.

In addition to creating APFs, you would also create a profile
which would map to the new APFs. The profile would also issue con
trol words that would turn off justification and page numbering,
and the like, so the output would look like a source file .

. tm 0

.bm 0

.fo off

In the APF for the end of the document, you would "drain" the page
buffer and terminate processing. This prevents SCRIPT/VS from
adding blank lines to the end of the output as it normally would
do to reach the end of the page .

. cd 1

.qq

You might also need to translate special characters which might be
unacceptable to the postprocessor.

By having two sets of APFs and two profiles, you could continue to
print draft copies of the document on a line printer while getting
final output on a photocomposer via the postprocessor.

REDEFINING SYMB~LS

Many symbols used in source document markup will not require
redefinition. For example, those used:

• As abbreviations for lengthy character strings.

• As references to generated information which is not
format-dependent (such as a figure or section number -- but
not a page number).

• . To enter unkeyable characters which are represented by the
same codes in both SCRIPT/VS and the postprocessor.

HANDLING DIRECTLY ENTERED CONTROL WORDS

Observing a GML convention for direct entry of control words, like
that described in the Document Composition Facility: Generalized
Markup language (GMl) User's Guide, makes it easy to prepare your
document for another processor. The following discussion will
refer to the specific conventions recommended in that book, but
the information will be applicable to conventions that may be
adopted by your own installation.

Source Document Management

The .CM [Comment] and .1M [Imbed] control words are executed by
SCRIPT/VS before the document is available to the postprocessor.
You need take no special action with respect to them.

The .RC [Revision Code] control word is different, because it has
a formatting effect (it inserts a revision code character to the
left of an output line). If the postprocessor has a comparable
function, you can define a macro called .RC which generates the
corresponding postprocessor controls.

If the "revision code" function is not available, you can deacti
vate it by defining the .RC macro to be a comment. For example,

.dm rc /.cm/

Chapter 14. Using SCRIPT/VS with Other Programs 155

(The technique described above could be used for all control words
if the one-to-one conversion approach is taken.)

Medifying Unpredictable Precessing Results

You should create a process name which reflects a specific post
processor, device, and application. Modifications for other proc
esses will automatically be ignored.

If the postprocessor is a formatter, you may have a need to create
patches for its output. In this case, the control words in the
patch would be those of the postprocessor.

Special Graphic Effects

Create a version of the graphic for this process by using the con
trol words of the postprocessor, just as for a patch. Control
words in versions of the graphic for other processes would auto
matically be ignored.

PREPARING FOR PROCESSING

When you are ready to have SCRIPT/VS prepare your input file for
the receiving text processor, take the usual steps needed for GML
interpretation and in addition use the BIND option to prevent
SCRIPT/VS from adding blank characters to the front of each output
record. In summary:

• Use the LIB option of the SCRIPT command to refer to the
appropriate symbol and macro library.

• Use the PROFILE option of the SCRIPT command to refer to the
appropriate profile.

• Use the BIND(O) option of the SCRIPT command to prevent
SCRIPT/VS from inserting blank characters at the beginning of
each output record.

While the file produced by SCRIPT/VS will contain the correct text
and markup for your postprocessor, it will not necessarily have
the correct physical characteristics. Some postprocessors may
require record lengths and formats, or other characteristics,
that differ from those produced by SCRIPT/VS. You might have to
use a utility program, or code your own, to handle such interface
requirements.

156 Document Composition Facility: User's Guide

CHAPTER 15. AUTOMATIC HYPHENATION AND SPELLING VERIFICATION

SCRIPT/VS provides automatic functions to both hyphenate and ver
ify the spelling of words. Words that occur at the end of an out
put line can be hyphenated, and each word in your document can be
checked for correct spelling.

HOW AUTOMATIC HYPHENATION WORKS

When SCRIPT/VS is formatting a line and the next word does not fit
in the current line and hyphenation is on, SCRIPT/VS tries to
hyphenate the word.

To find out where the word should be hyphenated, SCRIPT/VS
searches the main and addenda dictionaries to see if there is an
entry for the word. The SCRIPT/VS main and addenda dictionaries
are discussed below.

ALTERING THE HYPHENATION PARAMETERS

You can increase or decrease the frequency of hyphenation by
changing two parameters:

• THRESH, which is the hyphenation threshold (the minimum num
ber of blank characters that must remain on the line before
SCRIPT/VS attempts to hyphenate the word).

• MINPT, which is the minimum hyphenation point (the smallest
number of characters acceptable as a hyphenation point for
the word).

The default values are 7 for THRESH and 4 for MINPT. To change
them, use the THRESH and MINPT operands of the .HY control word:

.hy set minpt 3

.hy set thresh 6

.hy on

After these control words are encountered, there must be at least
six blanks left on the line before SCRIPT/VS tries to hyphenate
the next wo rd.

HYPHENATING SINGLE WORDS

Regardless of whether SCRIPT/VS is using automatic hyphenation or
not, there may be occasions when you would like a word to be
hyphenated if it occurs at the end of a line. The .HW [Hyphenate
Word] control word allows you to specify that you want a word
hyphenated, if necessary, and to specify how it should be hyphen
ated.

This may be convenient for long words that are normally hyphen
ated, or for words that occasionally need hyphenation. For exam
ple,

Guinevere's
.hw lighter--than--air
laughter was heard
.hw through-out
the kingdom.

When this line is processed, SCRIPT/VS uses the hyphens supplied
as hyphenation points and suppresses the hyphens it does not need:

Guinevere's lighter-than-air
laughter was heard throughout
the kingdom.

Chapter 15. Automatic Hyphenation and Spelling Verification 157

Note that since "throughout" did not require hyphenation when the
line was formatted, the hyphen was suppressed. For the hyph~nated
expression "lighter-than-air," two hyphens are used with the .HW
[Hyphenate Wo~d] control word so SCRIPT/VS prints the necessary
hyphens. ~ote that ~he hyphenation rules for a .HW word apply only
in this instan~e, and not anywhere else.

HOW SPELLING VERIFICATION WORKS

The spelling of words in your input file can b~ checked by the
SCRIPT/VS spelling verification function when:

• You include theSPEllCHK opti on in the SCRIPT command, and

• You specify the .SV [Spelling Verification] ON control word
in your input file.

Spelling verification is accomplished by attempting to find each
word in the input line in the SCRIPT/VS main dictionary or
user-created addenda dictionary.

For purposes of spelling verification, a "word" is a string of
characters delimited by "word delimiters." The default word
delimiter~ are listed in Figure 35 on page 319. You may change the
word delimiters for spelling verification with the .DC [Define
Character] WORD control word.

Punctuation characters are considered part of the word if they
appear within it, but are removed before spelling verification is
performed if they appear at the end of the word. The default punc
tuation characters are the hyphen (-) and apostrophe ('). You can
change the punctuation characters with the .DC [Define Character]
PUNC control word.

If the word in the input line contains a prefix or a suffix,
SCRIPT/VS removes the prefix and suffix (to yield the word's
"root") before attempting to locate the word in the dictionary. If
the word's root is not found in the main or addenda dictionary,
SCRIPT/VS attempts to locate the original word in the dictionary.

Spelling verification is normally performed using the main and
addenda dictionaries with stem processing. Words that contain
numbers are not checked unless requested with the NUM parameter of
.SV.

You can specify that:

• The addenda dictionary is not to be used:

.sv noadd

• Full word processing rather than stem processing is to be per
formed:

.sv nostem

• Words that contain numbers are to be checked:

.sv num

THE SCRIPT/VS DICTIONARY

The SCRIPT/VS dictionary is used for hyphenating words and for
spelling verification. It consists of a main dictionary provided
by IBM and an addenda dictionary. The add.~da dictionary is creat
ed with the .DU [Dictionary Update] control word.

158 Document Composition Facility: User's Guide

THE "AIN DICTIONARY

The main SCRIPT/VS dictionary contains about 10,000 "root words."
Because suffixes and prefixes are removed before a word is veri
fied, the effective dictionary size is significantly larger. The
main dictionary cannot be modified.

THE ADDENDA DICTIONARY

Documents usually contain several words that are not in the main
dictionary. These words reflect the nature of the business and
include jargon, acronyms, and names of people and places. Usually
a technical document contains several words that pertain only to
the subject of that document or of a group of related documents.

Words that are not widelY used can be contained in the addenda
dictionary. You create an addenda dictionary using the .DU[Dic
tionary Update] control word. For example, you can build an
addenda dictionary that includes the names of some Greek letters:

.du add alpha beta gamma delta

The "addenda dictionary" is a dynamic extension to the SCRIPT/VS
main dictionary. It is built in main storage by SCRIPT/VS via the
.DU control word. You can create a separate file that consists of
the .DU [Dictionary Update] control words needed to build the dic
tionary and then imbed the "addenda dictionary" fila .t the begin
ning of the input file.

If you use this technique to create an addenda dictionary, you Can
modify the dictionary with .DU [Dictionary Update] control words
in the input file. For example, you can add words to the dictio~
nary wi th

.du add epsilon zeta eta

and delete words from it using

.du del beta delta

Each word specified with the .DU [Dictionary Update] control word
is delimited with blanks. The word can contain lowercase and
uppercase alphabetic characters, the integers 0 through 9, the
hyphen (-), and the single-quote mark (').

When you include single hyphens in a word, SCRIPT/VSassumes they
are potential hyphenation points. Words that normally contain
hyphens (for example, upside-down) should be specified with a
double-hyphen for the normally appeari ng hyphen. For example,

.du add up-side--down

specifies two potential hyphenation points: between "up" and
"side," and between "side" and "down." It also specifies one
normal hyphen that is to always appear: between "side" and "down."

Spelling verification can also be used to verify that proper names
start with an initial capital letter.

When verifying, words are first checked using the case (upper,
lower, or mixed) as it occurs in the input line. If no match is
found, the word is next checked with all of the characters except
for the initial capital (if any) changed to lower case. Again, if
no match is found, a final check is made with all of theeharac
ters changed to lower case. If all three checks fail, the word is
regarded as "misspelled.

For example, if an entry is made in the addenda dictionary as
follows,

.du add Paul

Chapter 15. Automatic Hyphenation and Spelling Verification 159

then "Paul" and "PAUL" will both be correctly spelled. However,
"paul" will be regarded as misspelled.

BUILDING AN ADDENDA DICTIONARY

STEI1 PROCESSING

The addenda dictionary supplements the SCRIrT/VS main dictionary.
The easiest way to determine the words needed for an addenda dic
ti onary is to format the input fi Ie and locate each word not
included in the main dictionary (because it will be flagged as
"misspelled").

To create an addenda dictionary for a file (FILEIO) in a CMS envi
ronment:

1. Format the file at the terminal. Make sure your input file
begins with the .SV ON control word. Type

SCRIPT FILE1(MESSAGE (DELAY ID) SPEllCHK

Messages are issued to inform you of all words not correctly
verified.

2. When messages are delayed, they are accumulated in the
SCRIPT/VS utility file called (in CMS) DSMUTMSG SCRIPT A1 to
be displayed or printed after the formatted file is com
pleted. You can access and display the DSMUTMSG file with your
text editor, or look at the output listing.

3. look for messages that identify unverified words, identified
with DSMBRG459I. By examining these messages, you can derive
a list of words that are not included in the SCRIPT/VS main
dictionary and are appropriate for your addenda dictionary,
after eliminating words that are truly misspelled.

4. After correcting the misspelled words in the input file, you
can create a file that is used to build an addenda dictionary.

The file consists of many .DU [Dictionary Update] control
words, each of which specifies a word's correct spelling and
hyphenation points.

For example, the addenda dictionary can include the correct
spelling of various town names necessary for your business:

.du add San-ta Cruz So-quel

.du add Ap-tos Dav-en-port

.du add Cap-i-to-la Zay-an-te

.du add Ben lo-mond Lom-pi-co

.du add Bon-ny Doon

.du add Scotts Val-ley

5. Imbed the addenda dictionary file at the beginning of the
input'file whenever spelling verification is desired.

The stem processing function attempts to generate one or more pos
sible root words from which the input word might be derived.
Suffix and prefix processing are both performed on the input word.
The stem processing function does not generate a root word, or
stem, less than three characters long.

Wben a word's prefix is removed, the resulting stem is not
changed. However, when a word's suffix is removed the stem proc
essing function derives the word's stem based on English spelling
rules. For example, the word "churches" yields the stem "church",
and the word "flames" yi elds the stem "flame."

160 Document Composition Facility: User's Guide

Pref;xes Removed from Words

SCRIPT/VS checks each word for a prefix and, if found, removes the
prefix. The prefixes recognized by SCRIPT/VS are:

ANTI
ANY
BACK
COUNTER
CROSS
DE
DIS
DOWN

EN
FORE
IN
INTER
INTRA
KILO
MACRO

MEGA
MICRO
MILLI
MINI
MIS
MULTI
NON

OUT
OVER
PRE
PRO
RE
SEMI
Sor1E

SUB
SUPER
TELE
TRANS
UN
UNDER
UP

Suff;xes Removed from Words

FALLIBILITY

SCRIPT/VS checks for seven types of suffixes. Each type is proc
essed based on a set of English grammar rules to yield a root
word, or stem.

Words may be processed repeatedly to remove the suffixes and yield
a stem. For example, the word "conceptions" would lose two suf
fixes ("s" and "ion") to yield the stem "concept." The suffixes
recognized by SCRIPT/VS are:

, (apostrophe)
S
ED
AL

ALLY
ING
ION

SCRIPT/VS spelling verification is not infallible. A misspelled
word with a suffix or prefix could possibly yield a correctly
spelled word after stem processing. For example, "disbooked"
(wi th the stem "book"), and "m; ssteak" (wi th the stem "steak") are
both "correctly" spelled.

If a correctly spelled word has not been included in the main
dictionary or-the addenda dictionary, it will be identified as
misspelled.

Chapter 15. Automatic Hyphenation and Spelling Verification 161

CHAPTER 16. DIAGNOSTIC AIDS

The diagnostic aids presented in this chapter are tools to help
you find and correct problems caused by incorrectly specified or
missing control words. Diagnostic aids in this chapter might also
be useful to the Programming Service Representative (PSR).
However, this chapter is directed toward the person who needs to
find out why the sequence of specified GML tags and control words
is not resulting in the desired output.

To use SCRIPT/VS effectively, you need to know the function of
each GML tag and control word you use. Many formatting problems
can result from tags and control words used incorrectly. Other
chapters in this book provide detailed descriptions of each
SCRIPT/VS control word. The IBM-supplied APFs that define the GML
tags are documented with comments in the APFs themselves.

SCRIPT/VS diagnostic aids are provided as options of the SCRIPT
command and as SCRIPT/VS control words.

DEBUGGING WITH THE SCRIPT COMMAND

Some of the SCRIPT command options are useful (for diagnostic pur
poses) when specified to format an input file that might contain
errors.

CONTINUE: CONTINUE PROCESSING AFTER AN ERROR OCCURS

The CONTINUE option prevents SCRIPT/VS from terminating the for
matting of your file unless a "severe" or "terminal" error occurs.

DUMP: ENABLE THE .ZZ [DIAGNOSTIC] CONTROL WORD

The DUMP option is useful when the .ZZ control word is included in
the input file. The .ZZ [Diagnostic] control word specifies con
trol blocks and data areas to be displayed (or printed) only when
the DUMP ~ption is specified.

DUMP has no effect unless your file contains .ZZ control words.

The DUMP option and the .ZZ [Diagnostic] control word are useful
only for debugging the SCRIPT/VS program product. See the .ZZ con
trol word description for details about data areas being dumped.

MESSAGE: CONTROL INFORMATION IN ERROR MESSAGES

The MESSAGE option allows you to specify when messages are
printed, whether or not the message number is to be included, and
how the line causing the error was imbedded. The MESSAGE option
parameters are:

• DELAY, which accumulates all error messages in the file named
DSMUTMSG. SCRIPT/VS prints the message file at the end of the
formatted document or includes a message output file with the
document's output file if the FILE option of the SCRIPT com
mand is specified.

DELAY is useful, especially when the input file is printed,
because messages are normally sent to your terminal (that is,
not printed).

• 10, which identifies each message with its message number.
The message number can be used to refer to a more detailed
description of the error.

The message number is also needed by the PSR (Programming
Service Representative) if you should· need help via an APAR or
the RETAIN SEARCH facility.

Chapter 16. Diagnostic Aids 163

• TRACE, which enables the trace-back function for those mes
sages that require it. If an error occurred within a file that
is imbedded by many other files, the TRACE parameter identi
fies the previously imbedding files.

NOSPIE: PREVENT ENTERING SPIE EXIT ROUTINES

SCRIPT/VS ordinarily establishes a SPIE (Specified Program Inter
rupt Exit) before formatting begins. Subsequently, if a program
check occurs, "the system control program passes control to the
SPIE routine, allowing SCRIPT/VS to terminate itself. The NOSPIE
option inhibits this function, allowing the system control pro
gram to perform its own program check processing.

NUMBER: PRINT THE FILE NAME AND LINE NUMBER

The NUMBER option tells SCRIPT/VS to print the file name and line
number of the last-read input line next to each output line. If an
error occurs, you can easily locate the area where the error was
detected.

PAGE: SELECTIVELY PRINT PAGES

The PAGE option allows you to print (or display) part of your for
matted document, rather than requiring you to print the entire
document.

SPELLCHK: VERIFY SPELLING

The SPELLCHK option enables the .SV [Spelling Verification]
control word. Any word not found in the main or addenda dictio
naries is listed with an error message, along with the input line
that contained the word.

Because the list of spelling "errors" might be long, you should
delay message printing when you specify the SPELLCHK option!

SPELLCHK MESSAGE (DELAY)

The SPELLCHK option should be used infrequently,
spelling errors and to identify words that should
addenda dictionary. You might want to print, edit,
several draft copies before formatting the final
spelling verification.

TWOPASS: PROVIDE TWO FORMATTING PASSES

to identify
be in the
and rev i se
draft wi th

The TWOPASS option allows you, in an interactive environment, to
see all error messages before the formatted document is dis
played. (The MESSAGE (DELAY) option displays the messages after
the document is displayed.)

When you are working with a very long input file, you can format
it in an interactive environment just to detect and correct any
errors. With the TWOPASS option, SCRIPT/VS formats but does not
display the file on the first formatting pass. All detected errors
are displayed, however, before the second formatting pass starts.
By inserting the .QQ [Quick Quit] control word at the end of your
input file and using the TWOPASS option, you can display all
detected errors and not begi n the second formatti ng pass.

If you do not use the CONTINUE option, formatting will stop with
the first error. The second pass (and actual output) will not
occur unless the file is error-free.

164 Document Composition Facility: User's Guide

UNFORHAT: PRINT ALL INPUT LINES WITHOUT FORMATTING

The UHFORMAT option allows you to print an input file without for
matting it. All input lines (control words, GML tags, macros, sym
bols, and text input lines) are printed as entered. In addition,
other input lines are included as a result of processing the .IM
[Imbed] and .AP [Append] control words.

CONTROL WORDS TO ASSIST DEBUGGING

Some of the SCRIPT/VS control words that are useful when diagnos
ing problems in an input file are described below.

SPELLING VERIFICATION

The .SV [Spelling Verification] control word is used to check the
spelling of words in an input file. The .SV control word is ena
bled by the SPELLCHK option of the SCRIPT command. See "Automatic
Hyphenation and Spelling Verification" for details about verify
ing spelling.

DISPLAYING THE SEQUENCE OF SCRIPT/VS PROCESSING

One of the most powerful SCRIPT/VS control words is the .IT (Input
Substitution Trace) control word. This allows you to see the steps
taken by SCRIPT/VS when it substitutes a value for a symbol name.
You can also see the step-by-step processing of the control words
that make up a macro or GML tag's APF. The .IT control word has
many other capabilities that allow you to trace specific events
during SCRIPT/VS processing.

The output L;ne Generated by Input Trac;ng

When input tracing is activated, SCRIPT/VS generates one or more
output lines that describe the sequence of processing required
for the input line about to be executed. These lines are displayed
as though they were messages: they are written to the same output
destination as messages. Each generated output line is in the
form:

9 [name] [nn] x <source line>

where:

o a code that identifies why the "current source line" is being
traced:

C: Control word trace

M: Macro substitution trace

S: Symbol substitution trace

name identifies the name of the "current source line." This is
usually the name of the file or macro currently being proc
essed. If the name is in parentheses, for example, (.RT n),
(RHEAD), or (RFOOT), the current source line comes from a
previously saved running title (.RT n), running footing
(RFOOT), or running heading (RHEAD), and not from the file or
macro currently being processed.

nn the line number of the "current source line," either within a
file or within a macro.

x the length (number of characters and blanks) in the "current
source line. "

Chapter 16. Diagnostic ,Aids 165

current source line the line being traced by SCRIPTiVS. The fol
lowing description assumes that all traceable events are
being traced: control word tracing, symbol substitution
tracing, and macro substitution tracing (as specified with
.IT ALL):

• When the current source line contains only text, it is
not di splayed as part of the input trace.

• When the current source line contains a control word
(*C*), SCRIPT/VS displays the current source line and
then performs the control wo~d function. However, if the
STEP parameter of . IT is speci fi ed, you can change a
"control word" current source line before it is exe
cuted. SCRIPT/VS then executes the modified current
source line (as described in "Stepping through an Input
Trace" later in this chapter).

• When the current source line contains one or more sym
bols (*S*), SCRIPT/VS:

Displays the line as it is (*S*) before any symbols
are substituted.

Displays the line repeatedly, each time showing the
next stage of substitution, until each defined and
null-valued symbol has been replaced with its value
(*S*). Undefined symbol names are regarded as text.

At this point, the line is processed as a line of
text, or is traced as a control word current source
line (*C*) (as described above).

• When the current source line is from a macro expansion
(*M*), SCRIPT/VS:

Di splays the line as it exi sts in the macro (*M*).

If the line contains one or more symbols, SCRIPT/VS
traces the line as described above for symbol sub
stitution tracing.

At this point, the line
text, or is traced as
descr i bed above.

is processed as a line of
a control word (*C*) as

The above description made assumptions that allowed a simplified
presentation of input substitution tracing. However, the .IT (In
put Substitution Trace) control word allows you to trace events
much more selectively, and to only trace events that interest you.

• When you want to display all traceable events processed by
SCRIPT/VS, specify:

· it all

• When you want to trace only symbol substitution (and not other
traceable events) specify:

· it sub

• When you want to trace only macro expansions (and not trace
other traceable events) specify:

· it mac

Symbols that are part of the macro expansion are traced.
However, symbals that are not part of a macro expansion will
not be traced.

166 Document Composi t ion Faci 1 i ty: User' 5 Gu ide

• When you want to trace occurrences of control words that
interest you, specify:

.it ctl .xx .yy .zz

For example, to trace each occurrence of the .IN [Indent], .IL
[Indent Line], and .OF [Offset] control words, specify:

.it ctl .in .il .of

The .IN, .IL, and .OF control words are added to the list of
control words currently being traced, called the "control
word table."

When you want to stop tracing for control words, but want to
continue the input trace for other kinds of input items p~evi
ously specified, issue

.it ctl

The CTL parameter of the .IT control word clears the list of
control words being traced.

• When you want to stop tracing control words, but leave the
control word table intact for tracing later, issue

.it off

• When you want to turn off all input tracing, specify:

.it off

As noted above, the OFF parameter stops tracing, but does not
clear the control word table. When you want to resume tracing
the control words currently in the table, issue:

.it on

To add control words to the control word table, issue:

.it ctl .xx .yy

• When you want to display the current value of a macro or sym
bol, specify the SNAP parameter of the .IT control word. For
example, if you want to find out the current definition of the
~LIST macro specify:

.it snap ~LIST

The current definition of any symbol, as well as any macro by
that name, is displayed only once, not continuously. The SNAP
parameter does not affect other parameters of the .IT control
word, and can be specified even when input tracing is turned
off.

stepping through an Input Trace

The discussion so far assumed that merely displaying the sequence
of SCRIPT/VS operations is sufficient for diagnostic purposes~
However, SCRIPT/VS allows you to "step through" the lines being
traced in an interactive fashion. Each line of the trace ;s dis
played. When the "current source line" contains a cont~ol word
(*C*), it is not executed immediately after display. SCRIPT/VS
displays the line and waits for your response from the terminal.
You specify the "step through" function with:

.it step

Other input trace functions remain in effect~ When a traceable
event displays a control-word current source line, SCRIPT/VS dis~
plays the line and waits for your response. Therefore, the STEP
function cannot occur when you format the file with the MESSAGE
(DELAY) option specified. The traced lines are displayed as

Chapter 16. Diagnostic Aids 167

though they were messages, and you cannot respond to a "delayed"
message.

The procedure performed for step-by-step control word tracing is:

1. Display the control-word current source line (*C*) at the
message destination (that is, your terminal).

2. Wait for your response.

3. Process the response, which might result in:

a. Executing the traced control-word current source line, or

b. Displaying a new current source line to be processed
before, after, or instead of the traced control-word cur
rent source line.

c. Identifying the function currently reading input from the
terminal.

The responses that you can provide interactivelY are:

• Null (press the ENTER or RETURN key): the traced control-word
current source line is executed and SCRIPT/VS continues proc
essing until it encounters the next traceable control-word
line.

• STK input-line: means "stack this input line." The traced
control word line is executed. The stacked input line is put
on a stack and becomes the next control word to be executed
(or, if it is traceable, traced before it is executed) after
the currently traced control word line completes its exe
cution.

For most control words, the traced control word executes and
then the stacked input-line control word executes. However,
if the traced control word is .IM [Imbed], traceable control
word lines from the imbedded file are traced and executed
before the stacked input line executes. The control words .TE
[Terminal Input] and .AP [Append] prevent the immediate
sequence of the input line in a similar way.

• PRE input-line: executes the input line before the traced
line. The traced current source line is put on a stack. The
PRE input line becomes the current source line. If the PRE
input line is not a traceable control word, SCRIPT/VS
executes it and continues processing until it encounters the
next traceable control word line.

When the PRE input line is a traceable control word line, it
is displayed and SCRIPT/VS waits for your response. Your
response can be any response allowed for a traced line.

• REP input-line: replaces the traced line with the input line.
The traced input line is not executed nor is it put on a
stack. Instead, the REP input line becomes the current source
line. If the REP input line is not a traceable control word
line, SCRIPT/VS executes it and continues processing until it
encounters the next traceable control word line.

If the REP input line is a traceable control word line, it is
traced before execution (like any other traceable control
word line). You can now enter any response allowed for a
traced line~

• Data line: "PRE input-line" is assumed. SCRIPT/VS processes
the data line as described above for PRE.

• ?: does not affect the input trace line. SCRIPT/VS identifies
the "reader" of terminal input: either "TERMINAL INPUT" when
the .TE (Terminal Input] function is expecting your input, or
"CONTROL TRACE" when the .IT STEP function is expecting your
input.

168 Document Composition Facility: User's Guide

Note: To get out of step-by-step input tracing, enter a STK, PRE,
or REP with one of the following as a data line:

".it off", to turn off all input substitution tracing,

or

".it run", to resume normal input substitution tracing (that
is, to stop the STEP function),

or

".qq", to terminate the SCRIPT/VS formatting job immediately.

Us;ng Terminal Entry to Test a Control Word Sequence

A useful tool for testing SCRIPT/VS control word sequences is the
two-line input file (user-created) called TEST:

.ty Enter SCRIPT input:

.te on

When you process the file with the SCRIPT command in an interac
tive environment,

SCRIPT TEST (CONTINUE NOPROFILE)

you get the message

Enter SCRIPT input:

which resulted from the .TY control word. You can enter control
words, macros, symbols, GML tags, and text. Each terminal-entered
input line is processed immediately by SCRIPT/VS and is used to
build a page. When the page is full (or when a page eject occurs),
SCRIPT/VS displays the completely formatted page before accepting
additional input lines from the terminal.

To end processing and exit to your interactive environment (CMS or
TSO), you can enter:

.QQ [Quick Quit] to end all formatting immediately .

. EF [End of File] to end formatting and close the terminal
input file .

. TE [Terminal Input] OFF, to turn off the previous .TE ON and
(within the context of the TEST file) end formatting .

. QU [Quit] to display the current output page and then end
formatting.

The .QQ [Quick Quit] control word ends processing immediately
without the final output page being displayed; you will not see
the data that has been formatted for the final output section but
not yet displayed.

For testing and diagnosing macros and control word sequences, the
first input line you enter might be:

.it all

All subsequent traceable input lines are traced.

When the page eject occurs (you can force a page eject with the
.PA [Page Eject] control word), SCRIPT/VS displays th~ formatted
output accumulated so far. You can then resume terminal input.

Chapter 16. Diagnostic Aids 169

Be sure to write down whatever you want to save for future use.
The "input file" during terminal input is your terminal keyboard.
What you enter is not saved in a disk file. You can create a disk
file with input line sequences you want to repeat, and then imbed
the file from the terminal whenever you want it, by typing

.im filename

PUTTING MESSAGES IN HACROS

When you build a macro (or an APF), you can use the .IF control
word to detect errors in input or syntax. The .MG control word
allows you to notify the user that an error occurred. Your error
message should include a message number and a brief,
clearly-written description.

DISPLAYING CONTROL BLOCKS

One of the diagnostic functions SCRIPT/VS provides is the ability
to display control blocks and data areas at specified points in
the input file. The .ll control word identifies the data to be
displayed. The DUMP option of the SCRIPT command enables the .ll
control word. For further details about SCRIPT/VS internal data
areas, see the .ll control word description.

170 Document Composition Facility: User's Guide

EASYSCRIPT TAGS

CHAPTER 17. EASYSCRIPT

EasySCRIPT is an early implementation of GML that existed in
SCRIPT/370. Before deciding to use EasySCRIPT, you should review
the current SCRIPT/VS GML, which is described ln the Document
Composition Facilitv: Generalized Markup language (GMl) User's
Guid.,g -- particularly, the appendix on "Getting Started· with
Gf'1L • "

EasySCRIPT functions are built into the formatter. You don't use
any profile or symbol and macro library with EasySCRIPT.
EasySCRIPT is designed to be easy to use, but not flexible. Since
the EasySCRIPT functions are built in, you can't tailor them to
your own installation's requirements, as you can with SCRIPT/VS
GML.

EasySCRIPT provides formatting shortcuts that take advantage of
SCRIPT/VS to offer a simple way to format many documents.
EasySCRIPT tags can be freely intermixed with standard SCRIPT/VS
control words. Using these shortcuts, you can:

1. Produce numbered, unnumbered, or bulleted lists automat
ically.

2. AutomaticallY format headings and a table of contents. And,
if you want, you can have EasySCRIPT number your headings
using a decimal numbering system. Then, when you add or delete
information, the numbering ;s changed for you.

3. Format text in paragraphs aligned with the current indention
level of a list or heading section.

The built-in EasySCRIPT functions can be invoked in either of two
ways:

1. As parameters of the .El control word. For example, to get the
"B" EasySCRIPT function, which formats a bulleted item, you
could enter

.ez B text of the bulleted item.

2. As EasySCRIPT "tags." One of the functions of EasySCRIPT is to
define a series of symbols that act as tags to substitute the
appropriate .El control word. These are not true GML tags in
the sense that they are delimited with the symbol delimiter
(&), not the GML delimiter (:). The reason for this is that
EasySCRIPT tags have different meaning if entered in upper
case than if entered in lowercase. GML tags are not sensitive
to the case in which they are entered. The control word

.ez on

enables the EasySCRIPT tags. Each EasySCRIPT tag has the same
name as the equivalent parameter of the .El control word. The
EasySCRIPT tags are included in SCRIPT/VS to allow documents
already marked up with them to be processed by SCRIPT/VS.

You can use the EasySCRIPT functions in your own symbols and
macros.

There are five EasySCRIPT tags. Each tag provides two different
sets of functions depending upon whether it is capitalized or not.
The rule is that the capitalized version provides more function.

The five basic tags are:

1. &Hx -- Inserts a decimal numbered heading of level x where x
is 1, 2, 3, 4, 5, or 6.

Chapter 17. EasySCRIPT 171

To create documents without the decimal heading numbers, type
the,"h" in the h~ading tag in lowercase.

2. &P -- Starts a new major paragraph. A major paragraph resets
the indention to zero and produces the necessary spacing.

To maintain the current indention for a minor paragraph (that
is, within a list,) type the paragraph tag with a lowercase
"p".

3. &Nx -- Inserts a numbered item of level x where x is 1, 2, 3,
or 4.

If you do not want items numbered, enter the tag with a lower
case "n". A list is itemized at the level of indention associ
ated with the number in the tag (levell, 2, 3 ,or 4).

4. &8 -- Inserts a bulleted item (one that begins with a .) under
the current paragraph or numbered item.

Sub-bullets (items that are introduced with hyphens) may be
entered under bulleted items by typing the bullet tag with a
lowercase "b".

5. &toc -- Generates a table of contents.

As you can see, all five EasySCRIPT tags begin with an ampersand
(&). A tag may be connected to the line that follows wi th a per i
od or wi th one or more blanks:

&TAG.line

is the same as:

&TAG line

EASYSCRIPT FORMATS

HEADINGS

The EasySCRIPT tags for numbered headings, lists, and paragraphs
keep track of the current number of an item and the level of
indention. It is good practice, if you are using EasySCRIPT, to
use it consistently throughout a document. If you duplicate the
function of EasySCRIPT, for example, my manually numbering an
item, you will lose the benefit of having the other items numbered
automatically.

There is no problem, of course, using any SCRIPT/VS control words
that do not duplicate the functions of EasySCRIPT.

Within the text, headings are automatically numbered (when
requested) and formatted by EasySCRIPT, regardless of whether you
enter them with uppercase or lowercase characters. However,
headings placed in the table of cont~nts by EasySCRIPT appear with
the number (if requested) and in the same case as they were
entered in the input file.

The numbering scheme used by EasySCRIPT when you invoke the upper
case heading tags is a decimal system: headings may be numbered
1.0, 1.1, 1.1.1, 1.2, 1.2.1, 1.2.2, 1.2.3, and so on.

For documents not requiring decimal numbering, enter the heading
tag in lowercase (lhl through lh6). Decimal-numbered headings and
non-decimal numbered headings may be mixed.

When headings are processed, all indentions (from numbered items
and bullets, for instance) are reinitialized and all numbered
item counters are reset.

172 Document Composition Facility: User's Guide

A variation of the &Hn. tag is lAn, which may be used to automat
ically number appendixes with letter prefixes such as A.O, B.1.1,
C.2.l.3, and so on.

SETTING THE HEADING COUNTER

If you need to manually control the number of a particular heading
(for example, if you turn EasySCRIPT off and then want to turn it
back on again), you can specify the number of the last heading on
the .EZ control word:

.ez on &xref

The symbol &xref is the counter used by EasySCRIPT to keep track
of the numbers it is using.

To set a number explicitly for EasySCRIPT to use as the lest head
ing number, you can enter:

.ez on 3.0

After this control word is processed, the next level two heading
(IH2) will be numbered 3.1, the next level one heading will be
numbered 4.0, and so on. If you do not specify a number or &xref,
then the last heading is considered to have been 0.0.

EASYSCRIPT HEADING DEFAULTS

The default characteristics for headings associated with
EasySCRIPT vary from those used by the .HO - .H6 [Head Level 0 -
61 control words. If you enter the .EZ ON control word, these val
ues are in effect for .HI through .H6. When you enter .EZ OFF, the
normal values are restored.

Figure 31 on page 314 gives the default characteris~ics of
headings used in EasySCRIPT. Remember that if the heading tag is
entered in uppercase, the heading is assigned a number; if entered
in lowercase, it is not numbered. Otherwise, the characteristics
are the same.

You can change the default characteristics of EasySCRIPT heading
tags with the .DH [Define Head Levell control word. The change
affects only the EasySCRIPT head level, or only the
non-EasySCRIPT head level, whichever is currently in effect.

CROSS-REFERENCES TO EASYSCRIPT HEADINGS

EasySCRIPT has a cross-reference feature you can use to refer to
the heading numbers that are generated by EasySCRIPT. The symbol
"&xref" is the counter used by EasySCRIPT to keep track of the
heading level. If you set another symbol using this symbol, for
example,

.se intro = &xref

Then you can refer to the symbol &intro in your text:

Introductory material is in section &intro .•

When SCRIPT/VS substitutes this line, the result may be something
like:

Introductory material is in section 3.1.

Chapter 17. EasySCRIPT 173

EXAMPLES OF EASYSCRIPT FORMATTING

PARAGRAPHS

The following shows" how you might enter EasySCRIPT tags to control
the formatting of a document.

A paragraph is designated when the first three characters of a
line are either "&P." or n&p.". There should be either a period or
at least one blank before the first character of the paragraph
text. The EasySCRIPT paragraph tags insert a blank line between
pa ragraphs.

The paragraph above is entered as follows!

&P A paragraph is designated ...
There should be no space between ...
The EasySCRIPT paragraph tags ...

If the paragraph tag is capitalized ("&pn), a major paragraph is
indicated; this resets enumeration counts and returns the
indention to zero. Major paragraphs are used to break out of a
series of numbered items.

If the paragraph tag is not capitalized (n&p"), a minor paragraph
is indicated. You should use minor paragraph tags within numbered
items because a minor paragraph tag does not reset the indention
or list item counter.

AUTOMATIC ITEM NtJH~ERING

Up to four levels of items can be numbered or lettered. The num
bering range is from 1-99 and the lettering range is from a-z. The
use of any level of numbered items reinitializes item counts of
deeper levels.

An item at the first level of indention is formed when a line
begins with n&N1". Each successive use of n&N1" results in a blank
line to separate items, the next higher item number, and its
indented text.

The second level of numbered items results from using "&N2" in a
similar way to "&Nl". In like manner, the remaining levels are
obtai ned by usi ng n&N3" and "&N4". Followi ng is an example of the
numbered and indented, and bulleted items:

• Here is a bulleted item at level one. (A bulleted item is for
matted at the current indention.)

3. This is item one of a first level numbered list.

4. This is item two of a first level numbered list.

a. This is item one of a second level numbered list.

b. This is another item of a second level numbered list.

This is a minor paragraph placed underneath a level two
numbered item to illustrate how the indention is main
tained.

• We can put bulleted items under any level of
indention.

Sub-bullets, too.

174 Document Composition Facility: User's Guide

UNNUMBERED LISTS

BULLETS

Unnumbered lists can be formatted using the &n1 through &n4 tags.
Following are some examples of unnumbered lists:

This is item one of a level one unnumbered list.

This is item two of a level one unnumbered list.

This is item one of a level two list.

Bullets and sub-bullets can be used instead of numbers and letters
for indented items. The format of the EasySCRIPT bulleting tags
is:

&B.Text of bulleted item.
&b.Text of sub-bulleted item.

Bullets and sub-bullets may be used beneath any level of indention
(see examples above).

TABLES OF CONTENTS

A table of contents is automatically generated (with any calcu
lated decimal numbering) and inserted at the location of the
"&toc" tag (simi lar to the. TC [Table of Contents] control word).
All you need to enter is

&toc

and SCRIPT/VS formats and prints the table of contents.

Chapter 17. EasySCRIPT 175

CHAPTER 18. COMPATIBILITY WITH SCRIPT/370

This chapter is provided for the convenience of users of
SCRIPT/370 Version 1 (Program Number 5796-PAF) and SCRIPT/370
Version 3 (Program Number 5796-PHL).

Figure 13 shows SCRIPT command compatibility (that is, the simi
larities and differences between the options for SCRIPT/VS and
for SCRIPT/370).

SCRIPT/370 control words that are changed are listed in Figure 14
on page 182. (SCRIPT/370 control words that are obsolete are
listed separately, in Figure 16 on page 186, along with the equiv
alent SCRIPT/VS control word.) Control words and options with
identical meaning in SCRIPT/370 and SCRIPT/VS are not listed.
Control words that are new in SCRIPT/VS or SCRIPT/370 are listed
;n Figure 15 on page 186.

The following codes are used:

New/VS

The control word or option was changed for SCRIPT/370
Version 3.

The cbntrol word, feature, or option was changed for
SCRIPT/VS.

Inval;d The option is no longer valid. Its function is performed
by a new option in SCRIPT/VS. SCRIPT/VS does not accept
or process the old option.

The listed changes are cumulative. That is, SCRIPT/VS incorpo
rates and includes changes introduced in SCRIPT/370 Version 3 and
earlier versions of SCRIPT/370. For details on the functioning of
individual SCRIPT/VS control words and SCRIPT command options,
see the appropriate chapter in this book.

CHANGES TO THE SCRIPT COMMAND

opt;on

2PASS

ADJUST

ADJUSTnn

BIND

CENTER

CENTERnn

CHARS

DEBUG

DEVICE

DUMP

LIB

Figure 13 shows the SCRIPT command options that are different
(from previous versions of SCRIPT/370) for SCRIPT/VS.

Code Changes

Invalid Specify TWOPASS instead.

Invalid Specify BIND instead.

Invalid Specify BIND instead.

New/VS Shift the page image to the right.

Invalid Specify BIND instead.

Invalid Specify BIND instead.

New/VS Specify up to four fonts (Valid for the 3800 Printer
only.)

Invalid Specify NOSPIE instead.

New/VS Specify a logical output device.

New/VS Enable the .ZZ [Diagnostic] control word to snap
SCRIPT/VS control blocks.

New/VS You can specify up to eight library names.

Figure 13. SCRIPT/370 Command Option Compatibility (Part 1 of 2)

Chapter 18. Compatibility with SCRIPT/370 177

Opt;on Code Chan9ss

MARK Invalid

MESSAGE NeL.,,/VS Control the timing and destination of messages.

NOPROF New/3 Supress the PROFILE option.

NUMBERnn .Invalid Specify NUMBER instead.

OFFLINE Invalid Specify PRINT instead.

OPTIONS New/VS Specify a file that contains additional SCRIPT Com-
mand options.

PAGE New/VS You can specify one or more ranges of pages to print,
or that you want SCRIPT/VS to prompt you to enter
page number ranges.

PAGEnnn Invalid Specify PAGE (nnn) to print from page nnn.

PROFILE New/VS You can specify the name of a profile.

SEARCH New/VS Specify a library to be searched for imbedded files.
(Not valid in CMS.)

SINGLE Inval i.d Specify PAGE (nn ONLY) to print a single page, nne

SPELLCHK New/VS Enable the .SV [Spelling Verification] control word
to perform spelling verification.

SYSVAR New/3 Set Symbol values from the Command Options.

TERM New/3 Oi splay formatted output at the terminal.

TRANSLATE Invalid Specify UPCASE to have lowercase translated to upper-
case.

UNFORMAT New/3 Processes the .IM [Imbed], .AP [Append], and .EF [End
of File] control words, and reads lines from imbedded
files to include in the unformatted listing. Symbol
substitution is performed, but the input line is
printed as entered.

Figure 13. SCRIPT/370 Command Option Compatibility (Part 2 of 2)

CHANGES TO SCRIPT/370 CONTROL WORDS

Fi9ure 14 on page 182 shows the changes made to the SCRIPT/370
contr~l ~ords to enhance them for SCRIPT/VS. Other differences
between SCRIPT/370 and SCRIPT/VS control words are:

• SCRIPT/VS accepts only the two-character form
words. SCRIPT/370 allowed you to specify
two-character name or the control word's long
name.

of control
ei ther the
descriptive

• SCRIPT/VS sets the symbols &0 through &9 only when the .1M
[Imbed] and ~AP [Append] control words are processed.
SCRIPT/370 also set the same symbols when a macro was invoked.
(Actually, in SCRIPT/VS, the number of tokens available with
.IM[Imbed] and .AP [Append] has been increased from 9 to 14.)

• SCRIPT/VSsets the symbols &*0 through &*n when a macro i5
invoked. You should convert all your SCRIPT/370macros to the
SCRIPT/VS form, since the SCRIPT/VS macro processor is much
more powerful than the SCRIPT/370 macrti processor. In the
meantime, you can cause SCRIPT/VS to transfer the macro

178 Document Composition Facility: User's Guide

parameters in &*0 through &*9 to the symbols &0 through &9 to
allow unmodified SCRIPT/370 macros to operate correctly. To
do this, you must provide a .DM macro that will process all
SCRIPT/370 .DM [Define Macro] control words. The macro can be
included in your PROFILE file. You also need a dummy file that
will be imbedded by the .DM macro. The dummy file can contain
a single comment line. The macro can be defined with the fol
lowing:

.su off

.************ ************

.* .dm macro sets tokens &0 - &9: *

.* (requires dummy file be present) *

.************ ************
· 'dm dm off
· 'dm dm () /. ec . sa
· 'dm dm() /.ec .su off
.'dm dm() /.ec .se *a=index &V'&* &V'&*2
· 'dm dm() /.ec .se *b=substr &V'&* &*a
· 'dm dm() /.ec .se *s=substr &V'&*2 1 1
.'dm dm() /.ec .su on
· 'dm dmC) /.ec .dm &*1 &*s .. ec .im dummy &*&V'&*b
.'dm dm() /.ec .re

· * .su on

• For .SE [Set Symbol] control words that set a symbol to the
current page number the form ".se name = &", SCRIPT/VS sets
the symbol to the current page number, including its prefix,
if any, in its character string form. You should be careful
not to use the page number in arithmetic expressions when a
non-numeric prefix would cause an error.

• SCRIPT/VS accepts space units when you specify a control
word's parameter that defines a horizontal or vertical space
or displacement. With SCRIPT/370, the amount of space could
be specified only as a number of characters or lines. See
"Specifying Vertical and Horizontal Space Units" in "Chapter
1. An Introduction to SCRIPT/VS" on page 1 for details about
space un its.

Exceptions to this are the .HS [Heading Space] and .FS [Foot
ing Space] control words, which specify the number of lines
available for top and bottom titles.

• SCRIPT/VS maintains a page's layout parameters until it com
pletes formatting the page. Control words that affect a
page's layout always take effect on the next page.

With SCRIPT/370, a control word that affected the page layout
(for example, the .Pl [Page length] control word, which
changed the number of lines on a page) would take effect on
the current page if possible. Otherwise, it would take effect
on the next page. The resulting output was sometimes diffi
cult to predict and plan for.

With SCRIPT/VS, you can establish the next page's layout and
then eject to that page. The current page is not affected by
the new page layout parameters.

Control words that always take effect on the next page are:

.BM [Bottom Margin]

.BT [Bottom Title]

.EB [Even Page Bottom Title]

.ET [Even Page Top Title]

.FM [Footing Margin]

.. FS [Footing Space]

.HM [Heading Margin]

.HS [Heading Space]

.ll [line length]

.OB tOdd Page Bottom Title]

.OT tOdd Page Top Title]

.Pl [Page length]

.PN [Page Numbering Mode]

Chapter 18. Compatibility with SCRIPT/370 179

.RF [Running Footing]

.RH [Running Heading]

.RT [Running Titlel

.TM [Top Margin]

.TT [Top Title]

When SCRIPT/VS begins to process your input file, the first
page has not yet been started. Formatting for the first output
page begins when there is text for it, or when a control word
(for example, .SK [Skip]) that requires the page to be started
is processed.

You can specify all of the above dimensions for page one when
you put their control words before formatting begins for page
one, while page one is still the "next page" to be started.

A new chapter commonly begins with a .PA [Page Eject] control
word. In SCRIPT/370, some page layout control words were usu
ally placed before the .PA, and others after it. Assuming the
page layout (including new top- and bottom-titles) is to take
effect for the new chapter, the proper sequence in SCRIPT/VS
is to place all of these control words before the .PA control
word. You can include the following .PA macro definition in
your PROFILE file to allow the SCRIPT/370 sequence to operate
properly:

.su off

.************ ************

.* .pa macro synchronizes page ejects: *

.************ ************
· 'dm pa off
.'dm paC) /.if &e'&*1 = 1 .'pn &*1
.'dm paC) /.ec .pa nostart

· * .su on

• The control words .UC [Underscore and Capitalize], .UP [Up
percase], and .US [Underscore] have been changed in SCRIPT/VS
to accept the parameters ON, OFF, or a number. In SCRIPT/370,
these control words accepted only a single line of text. In
SCRIPT/370, the control word ".US 80" would underscore the
line consisting of the characters "80", but in SCRIPT/VS the
same control word will underscore the next 80 lines. The fol
lowing macros can be included in your PROFILE file to make
these three control words operate as the SCRIPT/370 equiv
alents:

.************

.* make .up,

.************
· 'dm up /.' uc
· 'dm u s /.' up
· 'dm uc /.' up
.*

.us, .uc act as in SCRIPT/3 *

off/:'us off/.'up 1/.'li &*
off/.'uc off/.'us 1/.'li &*
off/.'us off/.'uc 1/.'li &*

• Certain page layout parameters, whose values were constant in
SCRIPT/370, are based on the logical device type in
SCRIPT/VS. These parameters and the control words that affect
them are:

Top margin (.TM)
Bottom margin (.BM)
Footing margin (.FM)
Footing space (.FS)
Heading margin (.HM)
Heading Space (.HS)
line length (.Ll)
Page length (.Pl)

180 Document Composition Facility: User's Guide

THE SCRIPT/370 DICTIONARY

SCRIPT/370 supported a hyphenation exception dictionary called
SCRIPT XDICT. The XDICT dictionary was used to determine how to
hyphenate words that were not correctly hyphenated by the hyphen
ation algorithm. The user could create and modify his own hyphen
ation exception dictionaries using the HYPEDIT command.

SCRIPT/VS does not support either the HYPEDIT command or
exception dictionaries. Instead, SCRIPT/VS provides a comprehen
s;ve dictionary that supports both spelling verification and
automatic hyphenation.

You can also create and update a temporary dictionary for use when
your document is being formatted, called the addenda dictionary,
using the .DU [Dictionary Update] control word.

Chapter 18. Compatibility with SCRIPT/370 181

Control
Word Code Descr;pt;on

.. . New/VS Allowed in SCRIPT/VS macros .

. AP New/VS Up to 14 tokens can be passed to the appended file .
The tokens are not reset when a macro is called.

&0 contains the number of tokens passed.

.BC New/3 Operands ON and OFF restore and cancel column bal-
ancing .

. BM New/3 The bottom margin can be specified as an increment to
or a decrement from the current value.

Default based on logical device.
Control word always takes effect on the next page.

.BX New/3 Drat.-J automat i c boxes.
New options for drawing a box within a box, for draw-

ing fragments of boxes, and for drawing parallel
boxes.

.CC New/VS Ej ects to a new column only when not already at the
top of a column

.CD New/3 You can define up to nine displacements for columns,
even if you initially specify only one column The
remaining displacements are used when you later
increase the number of columns.

.CE New/3 Accepts input text as a parameter.

.Cl New/3 The column width can be specified as an increment to
or a decrement from the current value.

. CO New/3 Operands ON and OFF restore and cancel concatenation .

.CP New/VS Ejects to a new page only when not already at the top
of a page .

. DH Hew/VS You can specify a font for each head level.

.DM He~.J/VS You can specify a macro with more than one input line,
and store macros in a library.

When a macro is invoked, SCRIPT/VS sets local symbols
&*0 through &*n (n being the number of tokens passed
to the macro; &*0 contains the value n). The macro
can set local symbols that begin with &*.

.EF HeloJ/3 CLOSE operand.

.EZ Het.J/VS Allows EasySCRIPT tags and control words to be more
freely mixed .

. FM Hew/3 The footing margin can be specified as an increment to
or a decrement from the current value.

Default is based on the logical device.
Control word always takes effect on the next page.

.FN Hew/VS New parameter: LEADER, allows you to define leading
text lines to precede the first footnote of each
page.

Column balancing occurs on pages with footnotes.
Footnotes are formatted to the line length instead of
to the column width.

Figure 14. Changes to SCRIPT/370 Control Words (Part 1 of 4)

182 Document Composition Facility: User's Guide

control
Word Code Description

.FO New/3 Operands ON and OFF allow you to restore and cancel
formatting (concatenation and justification).

New parameters, LEFT, RIGHT, CENTER, EXTEND, FOLD, and
TRUNC .

. FS New/3 The footing space can now be specified as an increment
to or a decrement from the current value.

Control word always takes effect on the next page.

.GO NeL.J/VS Allowed in SCRIPT/VS macros.

.Hn New/3 Head-level control word for head levels 0 through 6.
The default characteristics of each head level are
changed when you specify the .EZ ON (Enable
EASYSCRIPT) control word, and are restored when you
disable EASYSCRIPT (with the .EZ OFF control word) .

.HM New/3 The heading margin can be specified as an increment to
or a decrement from the current value.

Default is based on the logical device.
The control word always takes effect on the next page.

.HS New/3 The heading space can be specified as an increment to
or decrement from the current value.

The control word always takes effect on the next page.

.HY New/VS Hyphenation is performed using a dictionary.

.IM New/VS Up to 14 tokens can be passed to the imbedded file.
The tokens are not reset when a macro i s called. &0
contains the number of tokens passed.

.11'4 New/3 An indent can be specified as an increment to or a
decrement from the current value.

. JU New/3 Operands ON and OFF restore and suspend concatenation .

.KP New/VS New parameter: INlINE, allows you to keep text with
preceding and following text.

You can specify .KP n, to keep the following n lines
together as an INLINE keep.

The ON parameter causes a break (INLINE doesn't cause
a break) .

When a keep is part of a column, the column remains
eligible for balancing. When the column is balanced,
the keep is treated as a single entity and is not
divided.

. LI New/3 Accepts a data line as a parameter . Operands ON and
OFF establish and suspend literal interpretation.

.LL New/3 The line length can be specified as an increment to or
a decrement from the current value.

Default i s based on the logical device. The control
word always takes effect on the next page.

When the column width i s changed (implicitly) by . L L,
the change is reflected in the current page's layout.

.OF New/3 An offset can be specified as an increment to or a
decrement from the current value.

Any new .OF [Offset] control word resets the previous
offset value.

Figure 14. Changes to SCRIPT/370 Control Words (Part 2 of 4)

Chapter 18. Compatibility with SCRIPT/370 183

Control
Word

.PA

. Pl

.PH

. PT

.RI

.RV

. SE

• SK

.SP

Code

Hew/VS

Hew/3

Hew/3

New/VS

New/3

New/VS

New/3

Hew/3

New/3

Description

Hew parameter: NOSTART, ends the current page without
starting the new page. You may then modify the page
layout, headings, footings, etc. The next page is not
started until SCRIPT/VS encounters either a control
word that requires it or input text.

New parameters: ODD, EVEN, ON, and OFF, allow you to
page eject when an odd or even page is encountered .

The page length can be specified as an increment to or
a decrement from the current value.

Default is based on logical device. The control word
always takes effect on the next page.

New parameter: FRAC, initiates fractional page number
ing (decimal point pages).

New parameter: NORM, restores normal (ascending inte
ger) page numbering and causes a page eject.

New parameter: PREF, specifies a character string pre
fix for all page numbers.

New parameter! AlPH, allows you to specify alphabetic
page numbering.

New parameter: n, allows you to reset the page number.
The control word always takes effect on the next page .

The document's table of contents is generated as a
separate file, named DSMUTTOC, whose format can be
influenced by the user.

Accepts a data line as a parameter.

A user can type in characters without having to
enclose them in quotes.

You can specify a file as the terminal input file by
using the .00 [Define Data File-idJ control word.

The OFF operand cancels a symbol value .
You use two single quote marks to achieve a single

quote within a symbol value.
New parameter! INDEX, allows you to locate one charac
ter string within another.

New parameter: SUBSTR, allows you to use part of a
character string.

New parameter: LIB, specifies that a library contains
the symbol's value.

New parameter: A, specifies absolute spacing .
New parameter: C, specifies conditional spacing.
New parameter: P, specifies page-width skips.
If a conditional skip is followed by another .SK or

.SP, the longer of the two is used, not the second
(as in SCRIPT/370) .

. SL governs the size of skip requests expressed in
lines, even if A is specified. .SK requests
expressed in other space units are not affected by
the setting of .SL.

New parameter: A, specifies absolute spacing.
New parameter: C, specifies conditional spacing.
New parameter: P, specifies page-width space.
If a conditional space is followed by another .SP or

.SK, the longer of the two is used, not the second
(as in SCRIPT/370) .

. SL governs the size of space requests expressed in
lines, even if A is specified. .SP requests
expressed in other space units are not affected by
the setting of .SL.

Figure 14. Changes to SCRIPT/370 Control Words (Part 3 of 4)

184 Document Composition Facility: User's Guide

Control
Word Code Descr;pt;on

.SU NeL-J/3 Initial value is ON.

.TB New/VS You cannot specify more than 16 tab positions.

.TC New/VS The table of contents fi Ie, DSMUTTOC, is built and
formatted by SCRIPT/VS as a normal input file.

Rules for n and input 11 ne parameters have been
changed .

. TM New/3 The top margin can be specified as an increment to or
decrement from the current value.

Default i s based on the logical device. The control
word always takes effect on the next page.

.UC New/VS New parameters: ON and OFF, allow you to capitalize
and underscore large blocks of text.

.UD New/VS The "required blank" is normally not underscored.
The required blank defaults to hexadecimal 41.

.UN New/3 An undent can be specified as an increment to or
decrement from the current value .

. UP New/VS New parameters: ON and OFF, allow you to capitalize
large blocks of text .

. US New/VS New parameters: ON and OFF, allow you to underscore
large blocks of text.

Figure 14. Changes to SCRIPT/370 Control Words (Part 4 of 4)

Chapter 18. Compatibility with SCRIPT/370 185

Hew Control Words in SCRIPT/370
Version 3

Hew Control Words in SCRIPT/VS

.DH [Define Head level]

.DM [Define Macro]

.FN [Footnote]

.GO [Goto]

.HW [Hyphenate Word]

.HY [Hyphenate]

.IF [If]

.IL [Indent line]

.KP [Keep]

.MC [Multicolumn Mode]

.MS [Macro Substitution]

.PP [Paragraph Start]

.PT [Put Table of Contents]

.QQ [Quick Quit]

.RV [Read Variable]

.SC [Single Column Mode]

.SK [Skip]

.SY [System Command]

.TC [Table of Contents]

.UC [Underscore and Capitalize]

.UD [Underscore Definition]

.UP [Uppercase]

.US [Underscore]

.BF [Begin Font]

.DC [Define Character]

.00 [Define Data File-id]

.DU [Dictionary Update]

.EC [Execute Control]

.EM [Execute Macro]

.IT [Input Trace]

.IR [Indent Right]

.LB [leading Blank]

.LT [Leading Tab]

.LY [library]

.MG [Message]

.HL [Hull Line]

.OC [Output Comment]

.PF [Previous Font]

.RF [Running Footing]

.RH [Running Heading]

.RT [Running Title]

.SF [Save Font]

.SL [Set line Space]

.SV [Spelling Verification]

.SX [Split Text]

.TI [Translate Input]

.WF [Write To File]

.ZZ [Diagnostic]

Figure 15. Hew Control Words: These control wo~ds were introduced into the
SCRIPT control word set in the indicated release.

Obsolete
Control Word SCRIPT/VS Equivalent Control Word

.BT .RT [Running Title] BOTTOM

.EB .RT [Running Title] BOTTOM EVEH

.EP .PA [Page Eject] EVEN

.ET .RT [Running Title] TOP EVEH

.FI .FO [Format Mode] ON

.FT .RT [Running Title] BOTTOM

.HE .RT [Running Title] TOP EVEN

.HH .RH [Running Heading]

.LS .Sl [Set line Space]

.NB .BC [Balance Columns] OFF

.NC .CO [Concatenate Mode] OFF

.NF .FO [Format Mode] OFF

.NJ \ .JU [Justify Mode] OFF

.OB \ .RT [Running Title] BOTTOM ODD

.OP .PA [Page Eject] ODD

.TT .RT [Running Title] TOP

Figure 16. Obsolete Control Words: SCRIPT/VS continues to recognize and support
these control words, but their functions have been subsumed by more
general control words as indicated.

186 Document Composition Facility: User's Guide

CHAPTER 19. ATMS-II CONVERSIO~

CONVERTING ATMS-II DOCUMENTS TO SCRIPT/VS FORHAT

ATMS-II to SCRIPT/VS conversion encompasses three separate fUnc
tions.

• The conversion processor, which runs as an attribute pro
cessor under the control of the SCRIPT/VS Document Library
Facility. This proeessor scans ATMS-II documents for ATMS-II
formatting controls and substitutes SCRIPT/VS symbols or
macros.

• The profile, used when invoking SCRIPT/VS to format documents
that were converted from ATMS. The profile defines to the for
matter the substitutions required for the symbols generated
by the conversion processor.

• The macro library of SCRIPT/VS controls gathered together as
macros that emulate the original ATMS-II control functions.

The conversion processor is designed to convert all the ATMS con
trols and implicit keying conventions to recognizable SCRIPT/VS
symbols and macros. The output of the processor can then be for
matted by use of a supplied ATMS conversion profile along with a
collection of SCRIPT/VS macros that emulate as closely as possi
ble the original ATMS functions by use of SCRIPT/VS controls.

Because of a small number of basic differences between ATMS and
SCRIPT/VS, there are some functions in ATMS that are not directly
convertible. The user should be aware of these when planning to
use the process because editing of the document may be necessary
to achieve the desired output.

The areas of ATMS to SCRIPT/VS limitations include:

• floating skips

• floating keeps

• STAIRS paragraph numbering

• dynamic page margins

• hyphenation

• left reference numbering

• widow zone control

• text block indention

• text line indention

• overstriking

• revision markers

• line controls within split text

• GML

In many of these areas the most noticeable difference is the fact
that the implementing macro causes a line break in SCRIPT/VS that
does not occur in the original ATMS.

CONVERSION TECHNIQUE

This section describes ATMS-II formatting controls identified by
the occurrence of an Application Control Definition (ACO) (usual
ly !) and an Application Type Definition (ATD) (t,l,m,f,i,x), and
their conversion to SCRIPT/VS symbols and macros by the SCRIPT/VS
ATMS-II attribute processor.

Chapter 19. AlMS-II Conversion 187

Hon-control conversion is also considered. The document header
records in the AlMS-II FlOO format contain information that must
be communicated to the formatter. The page width, page depth, and
tab settings are extracted from the d~c~ment headers and inserted
into the output as SCRIPl/VS macros and symbols.

Hyphenating Words

In AlMS-II, hyphens in a word at the end of an input line indicate
potential hyphenation points should that word fall at the end of
an output line. If the word does not fall at the end of an output
line, the hyphens are removed.

The input processor combines the word parts together and builds a
.HW (Hyphenate Word) SCRIPl/VS formatter control to obtain the
same effect.

Hyphens in the middle of an input line are retained by AlMS.

Conversion Program Operation

The AlMS-II file{s) in FlOO format may be imported into the
SCRIPl/VS Document Library Facility or used directly as input to
the formatter in batch mode.

Conversion of the ATMS-II controls and AlMS-II GML into SCRIPT/VS
symbols and GML can be accomplished during an IMPORT operation,
the SCRIPT/VS for~atting process, or a READ operation. After each
access method logical record has been read from the source docu
ment, an input processing program that has been associated with
the content attribute of AlMS is given control by Document Library
Facility. lhis input processing program converts the ATMS-II con
trols and AlMS-II GML as described above. When the record conver
sion is complete, the formatter or the IMPORl or READ routine
gains control in order to continue with the task.

NON-FORMAT COMMAND CONVERSION

The following describes the
non-formatting cohtrol.

End of Embedded Control

The !x is deleted~

conversion of each AlMS-II

The !mname is converted to :name (where the: is the default
SCRIPT/VS GML delimiter). Whenever the name has had special char
acters translated to ~ (at sign) or truncated to ten characters if
necessary, a message is issued indicating the briginal name and
its resultant name.

Subdocument Identifier

The subdocument identifier !i is converted to a .SE and some .DM
control words with all of the units that follow the !i being con
verted to elements of the macro.

The macros thus defined must be known to SCRIPT/VS when formatting
documents that reference the macros through the ATMS-II !m syn
tax. To accomplish this, the subdocuments containing the macros
may be specified on the SCRIPT command statement through the use
of the SYSVAR option. For exa~ple, to SCRIPT an AlMS-II document
(ATMSDOC) that contains !m's that are defined by another subdocu
ment (SUBDOC), the following command is required:

SCRIPT ATMSDOC (PROFILECATMSPROF) SYSVARCA SUBDOC»

188 Document Composition Facility: User's Guide

The IBM-supplied ATMS-II profile document (ATMSPROF) examines
SYSVARs A through J to determine if they have been set. If so,
their values are taken as the names of documents to be imbedded
prior to the start of formatting of the primary document. This
limit of 10 names can be changed by the user by altering ATMSPROF
at his own installation.

Master Document Fragment

Tab Setting

The master document fragment identifier !f is converted to a "&F"
symbol that is resolved to an .00 and .IM control words at format
ting time.

Tab settings from the document header are resolved by the input
processor and converted into the formatter symbol form of &~TTABS
t1 t2 etc. Since the current tab settings are used as parameters
to other ATMS-II commands, it is necessary to assign the tab val
ues to set symbols for use in the resolution of other ATMS-II com
mands.

FORMATTING CONTROL CONVERSION

In all of these descriptions, it must be understood that the
ATMS-II controls are converted to equivalent SCRIPT/VS symbols by
the processor as described below. The SCRIPT/VS controls that are
mentioned in the descriptions are brought in by SCRIPT/VS at for
matting time and do not exist in the output of the processor.
Additionally, the controls mentioned are not necessarily
all-inclusive. The complete contents of each symbol-to
macro-to-control substitution is contained in the ATMSPROF previ
ously mentioned and the conversion macros delivered with
SCRIPT/VS.

Unformatted Text Mode

The unformatted text mode command !tu in ATMS-II means no concat
enation and no justification and corresponds to the SCRIPT/VS
control .FO OFF.

Formatted Text Mode

The formatted text mode !tf in ATMS-II means concatenation only,
not justification also, which makes it correspond to .CO ON.

Explicit paragraphing Specif;cation

The !tf command has a number of variations, which are discussed
below:

• !tfn1;n2;n3;n4 allows the user to set parameters relating to
the formatting of the page and paragraphs within it. The
parameters correspond to formatter commands as follows:

nl (indent of first line of paragraph) -- .IL value, where
value is the character position on a line corresponding
to the nl'th tab setting.

n2 (paragraph body indent) -- .IN &tbCn2)

n3 (line length) -- .CL n3

n4 (inter-paragraph spacing) -- .SK n4. This skip is tak
en at the beginning of the paragraph and not at the end as
in ATMS~

Chapter 19. ATMS-II Conversion 189

• !tf; causes text to be formatted corr_sponding to the p~ram
eters set in the previous !tfnl;n2;n3;n4. Note that the com
mand without the following; resets the format settings to the
values set by the first explicit paragraphing !tf in the file
(or the default values).

The !tfe ends the explicit paragraphing mode so that para
graphing is controlled again by entry conventions.

Implicit Paragraphing Specification

ATMS-II recognizes the end of paragraphs by the following con
ventions:

• A double CR at the end of a paragraph. The use of the double
CR does not affect the paragraph spacing in explicit para
graphing.

• Indention of the first line of a paragraph by at least one tab
(with certain restrictions).

• Issuing most text format (!t) commands.

The input processor will recognize these conditions in !tf (for
matted mode) and insert the appropriate symbols.

Headings and Footings

The input processor converts the ATMS-II heading and footing text
and controls into SCRIPT/VS format. ATMS-II recognizes the start
of heading and footing information, by the commands !tuhnn,
!tuhcnn, !tufnn, and !tufcnn. These heading and footing commands
convert to formatter commands as follows:

• nn=12 (all pages) converts to .RF ON or .RH ON.

• nn=13 (all odd pages) converts to .RF ON or .RH ODD.

• nn=23 (all pages except first) resolves to .RF ON or .RH ON,
and printing is suppressed for the first page.

• nn=24 (all even pages) resolves to .RF EVEN or .RH EVEN.

• nn=35 (all odd pages except first) resolves to .RF ODD or
.RH ODD, and printing is suppressed for the fi~st page.

The ATMS-II capability of specifying centering with the head or
foot contr,o I will be accompl i shed by the generat i on of a . CE ON
after the .RH or .RF control. A .CE OFF will then be generated at
the next subsequent !tu or !tf.

Unformattable center Text

Keep Text

The ATMS-II center control !tuc resolves to .FO OFF and .CE ON.
The recognition of the concluding !tf or !tu is performed by the
input processor.

The ATMS-II keep commands !t(, !t), !t)(, are converted to
.KP ONi.KP OFF.

Skip Lines conditionally

!t+nn translates to .SK nn.

(Note: The + can also be keyed as = by ATMS-II users and is sup
ported.)

190 Document Composition Facility: User's Guide

Unconditional Skip

Float;ng Skip

The ATMS-II unconditional skip control !t+nniu converts to
.SP nne

The ATMS-II floating skip control has a number of variations
defined below:

• !t+nn;a (top or bottom of page) resolves to .KP FLOAT;
.SP nn ai .KP OFF.

• !t+nnib (bottom of page) is not supported directly by
SCRIPT/VS; therefore, SCRIPT/VS resolves this to the same as
above.

• !t+nn;t (top of page) resolves to .KP DELAY; .SP nn a; .KP
OFF (the formatter treats a delayed keep as a delayed floating
keep) .

The ATMS-II controls for single (!tss), double (!tds), and triple
(!tts) spacing resolve to .LS 0, .LS 1, and .LS 2, respectively.

The ATMS-II justification controls !tj and !tnj resolve to .JU ON
and .JU OFF, respectively.

Paragraph Numbering

The ATMS-II paragraph identification and numbering control
!tpsinxx has no equivalent in the formatter and is treated as a
simple !tf.

Text Alignment Controls

• !tal (align left) in !tf mode resolves to .FO ON;.JU OFF and
in !tu mode resolves to .FO OFF.

• !tar (align right) in !tf mode resolves to .FO RIGHT and in
!tu mode resolves to .RI ON.

• !tac (align center) in !tf mode resolves to .FO CENTER and in
!tu mode resolves to .CE ON.

• !taj (align justified) is allowed only in !tf mode and
resolves to .FO ON.

These cause a line break in SCRIPT, unlike ATMS-II, where they do
not.

Page Margin Control

The !tm control has no equivalent in SCRIPT/VS and is translated
to a null operation. (Note: The user can use the BIND option at
formatting time however or provide an alternative macro defi
nition.)

Width and Depth Controls

!twin1in2 (set page width and depth) resolves to .CL n1 and
.PL n2, which do cause breaks in SCRIPT/VS unlike those in ATMS.

Chapter 19. ATMS-II Conversion 191

Include Floating Keeps

comment Control

!tif has no equivalent in SCRIPT/VS and becomes a null operation.
(Note: The user can provide an alternative macro definition.)

The ATMS-II include comment control (!tcm) resolves to .*.

Hyphenat;on Control

The ATMS-II hold hyphenation control (!thh) resolves to .HY SUP
which suppresses hyphenation until the next space. The hyphen
ation level control (!thm;n) resolve.s to .HY ON if level n is
greater than 0; otherwise it is .HY OFF.

Controlling Left Reference Number;ng

start New Page

The ATMS-II controls for controlling output with left reference
numbering (!tls and !tle) in combination with their print command
are not supported by the SCRIPT/VS formatter. They are conse
quently a null operation. Numbering can only be specified in the
SCRIPT command and then only on the right.

The ATMS-II start new page control resolves to a .PA.

Widow Zone Control

The ATMS-II widow zone control (!twz) is a null operation, because
there is no support in SCRIPT/VS for eliminating widows.

The ATMS-II page definition control (!tpd), when used before any
body text, changes the default width and length from those speci
fied in the header. After body text is started (as indicated by a
!tu, !tuc, or any !tf), only the length is changed.

Text Block Indent;on

The ATMS-II indent block control (!tib) can only be partially sup
ported in SCRIPT/VS. The second parameter, the number of blocks to
be indented, is only supported for formatted paragraph blocks. In
!tu mode it is not supported. The first parameter, the amount of
indent for blocks, sets the indention valu~ of all text of the
same mode (!tu or !tf).

Text Line Indent;on

overstrike

The ATMS-II text line indention control (!tir) is resolved to a
.IR +n or a .IR 0 if no parameter is specified.

The !til control is resolved to .IN +n.

The ATMS-II overstrike commands !los;x and !loe resolve to .US ON
and US OFF. However, in ATMS-II it is possible to specify the
character to be used for overstriking by means of the "x" param
eter. The SCRIPT/VS formatter has no way of changing the system
defaul t character of " "

192 Document Composition Facility: User's Guide

Page Numbe~ Control

stop Code

Revision Harkers

Counters

The ATMS-II page number symbol !lpn resolves to the default
SCRIPT/VS page number symbol &.

The ATMS-II typewriter input capability specified by !lsc
resolves to a generated bullet character, the same as is done now
for ATMS-II operations on the peripheral queues. This is consist
ent, because the input processor is preparing data for the format
ter under SCRIPl/VS with the Document Library Facility. The
optional spaces entered by the ATMS-II user will be removed by the
input processor.

The SCRIPT/VS formatter split text control (.SX) provides an
equivalent function to the AlMS-II split text control (!lst),
albeit with a different syntax.

There can not be any imbedded AlMS-II controls in the lines which
are to be split. Therefore, any !l controls encountered in a split
text line will cause unpredictable results.

The ATMS-II revision markers are handled by three commands: !lre,
!lrs;x, and !trs;n.

• !trs;n sets the space between the marker and the start of text
on the output line. SCRIPT/VS has a set limit of two charac
ters, so this control becomes a null operation.

• !lrs;x identifies the revision marker starting point in the
text. If the x is not specified, it defaults to the OR symbol.

• !lre identifies the end of markers. There is no concept in
ATMS-II of levels of markers -- only one is allowed at a time.
Any !lrs replaces any previous one.

The inclusion of markers in the output is controlled in AlMS-II by
the print command option (m). Similarly, LoJhen revision markers
are to be printed by SCRIPT/VS in documents converted by the
AlMS-II conversi on processor, a SYSVAR wi th the name "1"\" wi th any
value must be specified; otherwise, the revision marker will not
be printed.

The AlMS-II counters are handled by two controls, !tset and !lcn
of thr form:

!tsetiidentifier;value;style

where identifier is

pn-page number
cH-all counters
en-specific counter 0 thru 9

value is

o to 65535
or

+0 to +65535

Chapter 19. AlMS-II Conversion 193

Hexadecimal Hexadecimal Hexadecimal
Code Charactlr Code Character Code Character

4A * A8 L B5 5

4C < AC r B6 6

4F I AE ~ B7 7

SF AF • B8 8

6E > 80 0 B9 9

88 { 81 1 BB J

8C S 82 2 BC ,
8F + 83 3 BE ~
98 } B4 4 BF
9F •

Figure 17. Character Codes Regcognized by ATMS-II Conversion: The triplet
(character-backspace-character) conventions for special characters
defined in ATMS-II Terminal Operations Guide are recognized and trans
lated into a single hexadecimal character.

Date Control

style is

a or la for upper- and lowercase alphabetic
r or lr for upper- and lowercase Roman
n for Arabic

Note: Counters may not be used in split text lines.

The ATMS-II today's date callout controls (!lda and !lde) resolve
to a macro that uses the built-in SCRIPT/VS system symbols to cre
ate equivalent output.

Uppercase Control

The ATMS-II uppercase start (!lus) and end (!lue) resolve simply
to .UP ON and .UP OFF respectively.

Triplets and Backspaces

In ATMS-II there is an entry convention involving backspaces for
characters which do not occur on the keyboards but which can be
represented on the output printers by graphics. These entry con
ventions are defined in ATMS-II Terminal Operations Guide.

The input processor will convert defined triplets (character
backspace-character) to a single hexadecimal character that
represents the triplet. All other instances of backspaces are
left unchanged.

The special characters and their hexadecimal codes are listed in
Figure 17.

ATMS CONTROL - SCRIPT/VS MACRO RELATIONSHIP

Figure 18 on page 195 identifies identifies the ATMS controls
that are converted and the SCRIPT/VS symbols to which they are
converted.

The substitution for the symbols on the right is contained in the
profile "ATMSPROF" and should be looked at in conjunction with
this list.

In addition, the contents of each macro which is eventually
invoked by the substitution should be examined.

194 Document Composition Facility: User's Guide

ATMS INPUT

!fname
! i name

!lcni+
!ldaix
!ldeix
!lpn
!loe
!los;x
!lre
!lrs
!lsc
textl!lstixtext2
!lue
!lus
!mname
! t (
!t)
! t) (
!t+nnix
!tac;n
!tajin
!tal;n
!tar;n
!tcm
!tds
!tfnlin2in3in4
!tfe
!thh
!thm;n
!tibinlin2
!tif
!tilinlin2in3
!tir;nlin2in3
!tj
!tle
!tls
!tminl;n2
!tnj
!tnp
!tpdinl;n2
!tpsinxx
!trsin
!tset;id;valistyle
!tss
!ttabinli •.. inm
!ttab-jnli ... ;nm
!ttab+inli ... inm
!tts
!tu
!tuc
!tufnn
!tufcnn
!tuhnn
!tuhcnn
!twinlin2
!twzin
!x

CONVERSION OUTPUT

&QlF name
.SU OFF
.SE name = '&QlCOHT.&QlCW .. Qlname'
.DM name OFF
&QllC H +
&QllDA X
&QllDE X
&QllPH
&QllOE
&QllOS X
&2JLRE
&QllRS
&QlLSC
&~lST QltextlQlxQltext2
&QllUE
&~LUS
:name
&~TBKP
&~TEKP
&~TEBK
&~SK1P nn X
&QlTAC H
&~TAJ H
&QlTAl H
&QlTAR H
&~TCM
&QlTDS
&QlTF n1 n2 n3 n4
&QlTFE
&C'lTHH
&~THM n
&C'lT1B nl n2
&QlT1F
&~T1l nl n2 n3
&o)T1R nl n2 n3
&QlTJ
&QlTlE
&~TlS
&~TM n1 n2
&C'lTHJ
&QlTHP
&~TPD nl n2
&~TPS Hxx
&~TRS n
&~TSET 1D val STYLE
&~TSS
&QlTTAB nl ... nm
&o)TTABM nl ... nm
&~TTABP nl .w. nm
&o)TTS
&QlTU
&O)TUC
&QlTUFnn
&~TUFCnn
&~TUHnn
&O)TUHCnn
&~n.J nl n2
&QlTWZ n
null

Figure 18. ATMS-II Controls to SCRIPT/VS Symbols Conversion

Chapter 19. ATMS-II Conversion 195

CHAPTER 20. COMPATIBILITY WITH TSO/FORMAT

The "TSO Data Ut; 1 i ty" program product prov; des users of the Time
Sharing Option (TSO) of OS/VS2 with a FORMAT function. TSO/FORMAT
allows TSO users to enter formatting controls into TSO text data
sets that indicate the type of formatting required.

SCRIPT/VS provides TSO/FORMAT users with an easy migration to
more powerful formatting. SCRIPT/VS control word syntax is iden
tical for many TSO/FORMAT control words, and SCRIPT/VS control
words which are new to TSO/FORMAT users provide many new or
enhanced functions.

CREATING A TSO/FORMAT COMPATIBLE ENVIRONMENT

SCRIPT/VS provides a symbol and macro facility which allows you to
process TSO/FORMAT documents without modifying the documents
themselves. Figure 19 lists the TSO/FORMAT control words that are
not directly supported by SCRIPT/VS. You can define a SCRIPT/VS
macro with the name of the TSO/FORMAT control word that executes
the equivelent SCRIPT/VS control word. See "Chapter 12. Writing
SCRIPT/VS Macro Instructions" on page 137 for detai Is.

You can place your macro definitions in a Profile to ensure that
they are always available when you process TSO/FORMAT documents.
See "Chapter 2. Using the SCRIPT Command" on page 13 for details
about the PROFILE option.

THE SCRIPT COMMAND IN TSO

The SCRIPT command is used to call SCRIPT/VS to format an input
file, and ;s similar to the FORMAT command. See "Chapter 2. Using
the SCRIPT Command" on page 13 for details about the SCRIPT com
mand, its options, and its TSO naming conventions.

TSO/FORMAT Control Word SCRIPT/VS Equivalent Control Word

.AD [Adjust] .RI [Right Adjust]

.BL [Blank] .TR [Translate Character]

. EN [End] .CE [Center] OFF

.HI [Hanging Indent] .UN [Undent], .OF [Offset]

.PI [Paragraph Indent] .PP [Paragraph Start]

.RP [Reprint]

.ST [stop] .QU [Quit]

Figure 19. Unsupported TSO/FORMAT Control Words: A SCRIPT/VS control word which
provides an equivalent function is listed for each TSO/FORMAT control
word, except .RP [Reprint]. SCRIPT/VS provides no equivalent of the
Reprint function.

Chapter 20. Compatibility with lSO/FORMAT 197

CHAPTER 21. SCRIPT/VS CONTROL WORD DESCRIPTIONS

This section describes each control
word in the SCRIPT/VS language. All
parameters are shown with descriptions
of their effect on processing. Usage
notes and examples are included.

CONTROL WORD SYNTAX

All control words have two-character
names. A control word is identified by
a period (.) in the first character
position of an input line, followed by
the two-character name. If the control
word accepts parameters, these follow
the control word name, separated from
the name and from each other by blanks:

.xx parm parm parm

Some control words accept a parameter
that ;s a line of text or another con
trol word line.

The control word separator character
may be used to allow more than one con
trol word to be entered on one line:

.c1 parmj.c2;.c3 parm parm

SCRIPT/VS scans every control word line
to find the first control word separa
tor character, and divides the line at
that point. The part of the line before
the control wQrd separator is processed
as a complete control word line, and
the remainder, to the right of the con
trol word separator, becomes the next
input line. The period in ".c2" in this
example appears in the first character
position, allowing ".c2" to be recog
nized as a control word.

The character to be used as the control
word separator may be changed with the
.CW [Control Word Separator] or the .DC
CW [Define Character] control word.

MACROS

SCRIPT/VS macros are invoked in the
same way as control words with a period
in the first character position of an
input line. Macro names, however, need
not be two characters long. Parameters
may be specified on a macro line in the
same way as on a control word line. If
a macro called "mymac" were defined
with the .DM [Define Macro] control
word, it would be invoked as a control
word:

.mymac parm parm parm

If a macro is defined with the same
name as a control word, it; 5 invoked
instead of that control word, assuming
macro substitution is ON. This is how
you can redefine the function of a con
trol word.

THE CONTROL WORD MODIFIER

The SCRIPT/VS control word processor
recognizes a single quote (') after the
period as a control word modifier. A
control word, such as .CE, can be
entered with the modifier as follows:

· 'CE Center thi s line.

The control word modifier changes the
usual operation of the control word
processor in two important ways:

1. No macro search is done. Even if a
macro of the given name exists, the
control word is invoked, not the
macro.

2. No control word separator scan ;s
done. Any control word separators
in the line are left there as ordi
nary text characters. Thus, a con
trol word entered with the control
word modifier must be the last con
trol word on that line.

Since the control word modifier indi
cates that the name that follows is a
control word name, it must be two
characters long. Therefore, the name
need not be delimited with a blank:

.'CECenter this line.

works in exactly the same way as:

· 'CE Center thi s 1 i ne.

Since no control word separator scan is
done, a control \,oJord that accepts a
line of text may be entered with the
control word modifier to protect any
separator characters that appear in the
line as part of the text:

· 'CE centered 1 i ne; one line.
· 'H3 Using the; in text

TYPE 1 CONTROL WORDS

There are several control words that
all have the same syntax and accept the
same parameters, called Type 1 control
words. All the Type 1 control words are
analyzed by a common preprocessor
before the individual control word pro
cessors get control, and they therefore

Chapter 21. SCRIPT/VS Control Word Descriptions 199

have certa in thi ngs in common. (There
are other control word types as well,
and their syntax is explained in the
individual control word descriptions.)

The fictitious centrol word otl is used
in this discussion to represent any
Type 1 control word:

[~N 1 OFF
!;ne

.tl

Where:

n is a posi ti ve integer that
indicates the number of input
lines to be processed by the Type
1 control word. The default is 1,
meaning that the next input line
after the control word is to be
processed by this control word.

ON starts an open-ended range of
input lines to be processed by
the Type 1 control word, unti 1
termi nated wi th the OFF param
eter.

OFF stops the effect of the Type 1
control word, whether it was
started wi th the ON parameter, or
wi th a number in "n" that has not
yet been exhausted.

!;ne is a single line that is to be
processed by the Type 1 control
word. The single input line

ot1 this is a line

;s equivalent to the two lines

. tl 1
this is a line

The line given on a Type 1 control word
is assumed to start with the first non
blank character. Thus, the following
two forms operate identically:

otl this is a line
~tl this is a line

The keywords ON and OFF and numbers
given in "n" are recognized only if
they are the only parameters on a con
trol word line. If there are other
parameters, it is a ssumed to be a
"I i nett to be processed. Thus, Type 1
control words in the form:

.tl On old Olympus' towering top

.tl 555 Bailey Avenue

are taken as control words that have a
line of text, not as requests to proc
ess large numbers of input lines.

SPACE UNITS

All control word parameters that speci
fy horizontal or vertical dimensions
may be specified in any recognized
space units, unless otherwise noted in
the control word description. The
recognized space units are:

Inches - aaI
Picas/points - aaPbb
Ciceros/Didot points - aaCbb
Em-spaces - aaM
Millimeters - aaW
Character spaces - aa
Line spaces - aa

where aa is any valid number.

NOTATIONAL CONVENTIONS

The format of each control word is
described as shown above in a format
box. The notation conventions used are!

1. Keywords that must be entered as
shown are in UPPERCASE. If the
keyword can be abbreviated, the
abbreviation is shown in uppercase
letters, and the rest of the word
in lowercase, as in ROman. (You may
enter the control word and the
keyword ; n uppercase or
lowercase.)

2. Parameters for which you must sup
ply the value are shown in lower
case letters.

3. If there is a default value for a
parameter, it is underscored. In
some cases, one parameter can have
a default but other parameters must
be specified .

4. A single optional parameter is
shown in [small brackets]. Thi s
parameter may be specified or omit
ted.

5. A parameter that allows you to
choose one of several possibil
ities, or none, ;s shown as a list
enclosed in large brackets, as in
the Type 1 example above.

6. A list enclosed in {braces} indi
cates that one of the choices must
be specified. For example, the
notation

{ ON 1
{ OFF 1
{ INCLUDE 1
{IGNORE 1

signifies that this parameter must
be specified as ON, OFF, INCLUDE,
or IGNORE.

200 Document Composition Facility: User's Guide

7. A single required parameter is
shot.-Jn wi thout any brackets or
braces.

8. If the format box has internal hor
izontal lines, as in the .DM [De
fine Macro] control word
description, each segment of the
box depicts an alternative form of
the control word.

9. An ellipsis (...) indicates that a
parameter can be repeated. The form
"dl ... d9" indicates that you may
specify up to nine "d" values, sep
arated by blanks. The form "c ... "
indicates that you may specify as
many values of c as will fit en
that input line.

Chapter 21. SCRIPT/VS Control Word Descriptions 201

[SET LABEL]

The ... [Set Labell control word marks a line of your SCRIPT/VS file or macro so
that that line may be referred to in a .GO [Goto] control word.

label [line]

Where:

label is a name of up to ei ght
characters that can be used to
refer to this line of your
SCRIPT file or macro.

line is the active part of this input
line. The first nonblank char
acter after the label 1S treated
as if it were the beginning of
the line; it may therefore be a
control word, but a text line
associated with a label may not
begin with blanks. If the input
line has a label only and no
active line, then the next line
to be processed is the one fol
lowing the labeled line.

Default: None

Notes:

•

•

•

•

When the control word is
encountered, SCRIPT/VS saves the
information necessary to enable it
to find this line again if a .GO
[Goto] control word is encount
ered. Any vall d SCRIPT/VS input
line may follow the label, or the
label alone may occupy the line.

Use of labels and the .GO control
word is restricted to one input
file or macro. That is, when a new
file is imbedded or appended, a new
set of labels is in effect while
that f i lei s be i ng processed.
SCRIPT/VS can only branch to a
label within the same input file or
macro.

Every label ina part i cular fi Ie
must be unique. If two identical
labels are found in the same file,
an error message is generated.

Multiple labels with the same name
are tolerated in macros, but when
searching for labels in a macro,
only the first occurrence of a
label will be found.

The .GO function can be relatively
inefficient in files. You should
use it sparingly in situations
where it is the best way to achieve

•

the required results. When going
to a label that is later in the
input file, it is m~efficient
when the label is not far from the
.GO; when going to a label that is
earlier in the file, it is most
efficient when the label is near
the beginning. Label processing in
macros is a much more efficient
operation than in files. However,
it is more efficient to branch to a
label that is earlier in a macro as
label sin macros are always
searched for from the top of the
macro.

A space is not required after the
control word itself. (This is the
only control word where this is
true without the control word modi
fier.) To set a label called
"HERE", ei ther" HERE" or
" ... HERE" may be used.

• The ... for a label must begin in
column 1. That is, it must be the
first control word on the input
line.

Example:

Suppose you had a file called REPORT!
that contained a summary of activity
for January, another file, REPORT2, for
February, REPORT3 for March, and so
forth. Now, if you wanted to create a
year-to-date report by imbedding all
the report fi les up to last month's
report, you could use this sequence of
SCRIPT/VS control words:

.se ctr = 1

... loop .im report&ctr

.se ctr = &ctr + !

.if &ctr It &SYSMONTH .go loop

The first time the .IM [Imbed] is proc
essed, the value of the symbol n&ctr"
is!, so the fi lename "report&ctr"
becomes "report!." The next control
word adds one to the value of the sym
bol; it is now 2. If the month is later
than March (month 03), then the value
of the counter is less than the month
number, and the loop is processed
again. This time the filename
"report&ctrn becomes "report2." The
loop continues until the counter is
equal to the current month number.

202 Document Composition Facility: User's Guide

.AP [APPEND]

Use the .AP [Append] control word to insert an additional SCRIPT/VS file at the
end of the file just printed.

.AP file-id [tokenl ••• tokenl4l

Where:

file-id specifies the file-id of the
fi Ie to be appended to the
file which has just been proc
essed. This file-id may refer
to an id which has been estab
lished using the .00 control
word. A description of the
file-;d in the various envi
ronments in which SCRIPT/VS
operates is given in Chapter
2.

tokens are positional values that
may be passed to the appended
file. The first token (word)
becomes the value of the sym
bol &1, the second token
becomes the value of the sym
bol &2, and so forth. The sym
bol &0 contains the number of
tokens given. File tokens may
be a maximum of 8 characters
long; up to 14 can be speci
fied.

Default: None.

Notes:

• When the .AP control word is
encountered, the current fi Ie is
closed, and the specified SCRIPT
file is processed as a continuation
of the SCRIPT/VS output from the
previous file. Text or control
words following the .AP control
word in the current file are not
processed.

• The .AP control word is especiallY
useful for iterative processing of
a file. See the example given

•

under the description of the .EF
[End of File] control word.

The .AP control word closes the
current file and starts reading
input lines from the appended file.
In this sense, the .AP control word
marks the end of the file; since it
is closed, SCRIPT/VS wi 11 not
return to it when the appended file
is finished. If the .AP control
word is not actually at the end of
the file, the lines after it are
not read.

• The symbols &1 through &14 are
reset whenever a .IM or .AP control
word is processed, and the token &0
is reset to the number of non-null
tokens. If you want to leave token
&1 unset but set token &2, you may
use a percent sign (%) in place of
tokenl (or any other token you want
I eft unset).

Example:

.ap abc 10

The input file is closed. The contents
of the SCRIPT/VS file ABC are processed
immediately following the line of the
current file which precedes the .AP
request. The token 10 is passed to the
appended file, so if the file ABC con
tains a control word of the form:

. in & 1

the result is:

. in 10

Chapter 21. SCRIPT/VS Control Word Descriptions 203

.BC [BALANCE COLUMNS]

Use the .BC [Balance Columns] control word to cancel and restore column balancing
for multiple column formatting.

.BC I [
Where:

ON
OFF]

ON indicates that you want SCRIPT/VS
to balance columns. ON is the ini
tial setting as !.aJell as :the
default.

OFF indicates that you do not want
SCRIPT/VS to balance columns when
a page eject or column definition
is encountered.

Initial Setting: ON

Default: ON

Notes:

• When column balancing is in effect,
the number of lines in each column
is made as equal as possi ble before
the material on that page is
printed.

• If a blank line that was generated
by the .SK [Skip] control word ends
up at the top of a column after
balancing, it is discarded.

• When column balancing is off, the
number of lines in each column is
determined by explicit .CB [Column

.BF [BEGIN FONT]

•

•

Beg;n] control words or by filling
all columns, but no attempt is made
to equalize the number of lines in
all columns.

A column that is ineligible for
balancing may not have any lines
moved into it or out of it to make
it longer or shorter. A column is
made ineligible if the next column
is started explicitly by a .CB
[Column Begin] control word or by a
.HO - .H6 [Head Level 0 - 6] con
trol word that causes an eject to a
new column.

If a page eject occurs whi Ie
processing multiple columns, this
does not mark the current column
ineligible for balancing. A column
eject that changes the current col
umn from the last column of a page
to the fi rst column of the next
page is~same as a page eject.
Unlike intra-page column ejects,
it does not mark the old current
column as ineligible for bal
ancing.

Use the .BF [Begin Font] control word to begin a new font.

.SF font

Where:

font is the name of the font. For the
3800 printer, the fonts that may
be specified correspond to those
fonts that have been defined to
the formatter in the form of font
availability and width tables.
The font name is the same a s that
which may be specified on the
CHARS option of the SCRIPT com
mand.

'Defaul t: None.

Notes:

• This control word allows text to be
formatted using a specified font (a
set of characters of one size and
style). When the .BF control word
is encountered by the formatter,
all subsequent text characters are
formatted using the specified
font. The specified font remains
in effect until another .SF or .PF
[Previous Font] control word is
encountered with a different font.

• The system symbol &$char is an
array symbol that contains the
names of the fonts that are avail-

204 Document Composition Facility: User's Guide

able for the .SF control word. The
fi rst name gi ven wi th the CHARS
opt i on of the SCRIPT command or the
name of the default font for the
logical device is the value of
&$char(!). The second, third, and
fourth names given with the CHARS
option are the values of &$char(2),
&$char(3), and &$ch~r(4).
&$charCO) contains the number of
fonts avai lable.

Examples:

1. This line is in the normal font for
this document .

• BM [BOTTOM MARGIN]

. BF GB12

has th i s effect.

2. You can specify the font to be
started symbolically:

.bf &$char(2)

st~rts formatting in whatever font
was the second one named on the
CHARS option of the SCRIPT command.

Use the .BM [Bottom Margin] control word to specify the amount of space to be
skipped at the bottom of output pages, overriding the initial value established
for the device.

Where:

v specifies the amount of space to be
skipped at the bottom of output
pages. v must be large enough to
accommodate the footing margin
(.FM) and the footing space (.FS),
both of which are allocated from the
bottom margin area. If +v or -v is
specified, the current value of the
bottom margin is incremented or dec
remented. If no value is specified
fo r v, the i nit i a 1 set tin g i s
restored. The maximum value for the
bottom margin is the page length
(. PL) less the top margi n (. TM) less
space for one line.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

• The value set by the .BM control
word applies on the page after the
one on which the .BM control word

•

•

•

is encountered, and all subsequent
pages until another .BM is encount
ered.

The value given may not be so large
that the top margin plus the bottom
margin fill the entire page. An
error message is issued if you try
to set the bottom margin to equal
to, or more than, the page length
minus the top margin. If you intend
to increase the bottom margin so
that you can increase the footing
margin or the footing space beyond
what the old bottom margin would
allow, be sure to do it in that
order. The rule is, increase the
bottom margin before the footing
margin or footing space, but
decrease the footing margin or
footing space before the bottom
margin.

If you specify .BM 0, the footing
margin and the footing space are
also made zero automatically.

The .BM control word is not allowed
in a keep.

Chapter 21. SCRIPT/VS Control Word Descriptions 205

.BR [BREAK]

Use the .BR [Break] control word to ensure that the next input line is not concat
enated with the previous line or lines .

• BR

Notes:

• The .BR control word is necessary
only when SCRIPT/VS is concatenat
ing input lines. It causes the pre
ceding line to be formatted as a
short line, if it is shorter than
the current column length.

•

•

•

Many other control words have the
effect of a break. No .BR control
word is necessary when one of these
is present. See Figure 25 on page
311 for a list of these control
words.

A leading blank or tab on an input
1 i ne has the effect of a break.

The .BR control word can ensure
that some other control words are
not effective too early or too
late, for example:

.br; .tr $ 40

• BT [BOTTOM TITLE]

may be used to prevent the trans
lation from being effective on the
preceding text line, and

.tr $ $;.br

may be used to make sure the trans
lat i on does not affect the next
line.

Example:

Heading:
.br
New paragraph ...

On SCRIPT/VS output, these lines appear
as:

Heading:
New paragraph ...

If the .BR control word were not
included, the lines would print as:

Heading: New paragraph ...

The .BT [Bottom Title] control word saves a specified title line in a storage
buffer for possible future use. This title may be used at the bottom of the cur
~ent page, and each subsequent output page.

.BT [n]

Where:

n is the number of the bottom
title line to be set. The num
ber may be from 1 to 6, and if
it is omitted, 1 is assumed.
The six possible title lines are
the same for top titles and bot
tom ti tIes. Bottom ti tIes are
numbered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "even bot
t om tit leI" set s the sam e st 0 r
age buffer as "even top title
6." See the discussion of the
.FS [Footing Space] control
word for information on how to
allocate space on your output
page for bottom titles.

pa~tl is the portion of the title to
be left justified.

pa~t2 is the portion of the title to
be centered between the left and
right margins.

pa~t3 is the portion of the title to
be right justified.

/ is any character that does not
appear in part!, part2, or
part3.

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.RT [Running Title]. See the dis
cussion of the .RT control word for
further information about running
titles, including those for the
bottom of pages.

206 Document Composition Facility: User's Guide

·BX [BOX]

The .BX [Box] control word defines and initializes a horizontal rule for SCRIPT/VS
output and defines vertical rules for subsequent output lines. With this control
word, you can format tables, charts, or text within neatly formatted boxes. The
BOX control word is designed to work only in non-mixed pitch situations.

.BX [NEW] [dl [/] ••• dn]
OFF

[CAN] CHAR cname

Where:

dl ••• dn are the distances from the
left margin where you want to
place vertical rules in out
put text. This format of the
control word initializes the
box and draws a horizontal
line, with vertical
descenders at the columns
indicated. A slash (/) indi
cates a discontinuity between
columns, with no horizontal
rule connecting these col
umns. Subsequently, entering
the .BX control word with no
operands causes SCRIPT/VS to
print a horizontal line with
intersections at the columns
indicated. This allows two or
more separate boxes to be
drawn ~ide by side. d1 - dn
may be specified in space
units but the designated val
ues will be converted to M
spaces, since the .BX control
word is supported for
monospaced fonts only.

NEW

OFF

CAN

if no columns are given, or if
no box is now going, the HEW
function is ignored; other
wise, a new box is started,
and the previous box is
stacked. This capability
allows boxes to be drawn
inside boxes.

causes SCRIPT/VS to finish
drawing the box, by printing a
horizontal line with vertical
ascenders at the columns in
effect. If thi s box was
started as a 'NEW' box, the
previous box is reinstated
when thi s one i s ended. If
columns are specified with
OFF, and no box is currently
in effect, then a box bottom
will be drawn according to the
column specifications given.

causes the box to be cancelled
without a box bottom. If the
box being cancelled is a

CHAR

nested box, the next higher
box is reinstated.

Allows you to override the
assumed box character set
that SCRIPT/VS uses to draw
boxes. When you specify CHAR,
you must also specify the name
of the box character set to be
used.

cname i s the name 0 f the box
character set SCRIPT/VS is to
use for drawing all subse
quent boxes. The valid names
are:

TRM terminal character set

32T 3270 text characters

TNC 1403 TH or 3211 T11
character set

38C SCRIPT/VS 3800 character
set

GPC box characters for 3800
GP12 font

APL APL box characters

Default: Repeat previous box defi
nition.

Hotes:

• The .BX control word describes an
overlay structure for subsequent
text that is processed by
SCRIPT/VS. After the .BX d1 d2 ...
line is processed, SCRIPT/VS con
tinues formatting output lines as
usual. However, after a line is
completely formatted qnd before it
is printed, SCRIPT/VS places ver
tical lines in the columns indi
cated by dl, d2, and so on.

If a data character occupi es the
same position as a vertical line,
the action taken depends upon the
logical device for which the docu
ment is being formatted. For 3800

Chapter 21. SCRIPT/VS Control Word Descriptions 207

•

•

•

•

logical devices, the vertical line
takes precedence over data charac
ters in the same column; for other
logical device types, the data
character takes precedence.

The .BX control word causes a
break.

The characters used to draw the box
depend on the logical device for
which formatting is taking place.
SCRIPT/VS assumes an appropriate
box character set for each logical
device, but you can override this
by using the CHAR parameter to
force any of SCRIPT/VS's box char
acter sets to be used instead.

A .BX control word with different
columns specified may be used while
a box is bei ng drawn. When thi s
happens, vertical ascenders are
put in for all the old columns and
vertical descenders are used for
all the new columns, a horizontal
rule is drawn, and the verti cal
rules are then placed in all subse
quent output lines in the new col
umns designated.

The column specification for the
.BX control word uses a different
rule than is used elsewhere in
SCRIPT/VS. In control words like
.IN, .TB, .CD, the numbers in the
control word represent not columns
but di splacements. The SCRIPT /VS
control word .TB 5 means that a tab
character should be expanded to
enough blanks to fill up throuah
column 5; the next word starts in
column 6. In the .BX control word,
.BX 5 means to put vertical rules
in column 5. Thus, you can use the
same numbers for a .TB control word
as for a .BX control word, and the
vertical bar will be placed in the
column just before the beginning of
the word following a tab. Further,
you can define a box that is to be
the full column width symbolically
with the following control word:

. bx 1 &$cl

because the number represents the
actual column where the vertical
rules should be placed.

• Problems of vertical alignment
will occur if the .BX control is
used to draw boxes in mixed pitch
situations. This will occur if the
font being used has characters of
different widths, or if monospaced
fonts are used which have different
widths.

• The characters to be used for box
drawing must be in all fonts which
are used within a box.

Examples:

1. There is a SCRIPT file called
MARYHADA that looks like this:

Mary had a little lamb,
Whose fleece was white as snow,
And everywhere that Mary went,
The lamb was sure to go.

The following input sequence could
be used to center this material in
a box that is the same width as the
current column length:

.bx 1 &$cl

.ce on

. i m maryhada

.ce off

.bx off

The result:

Mary had a little lamb,
Whose fleece was white as snow,

And everywhere that Mary went,
The lamb was sure to go.

2. An exampl e of a nested box:

A nested box was created using the
following control word sequence:

.bx 10m 20m 30m

.sp

.bx new 15m 25m

.sp

.bx off

.sp

.bx off

3. The following shows the effect of
the slash (/) between column spec
ifications:

.bx 5m 15m / 25m 35m

.sp

.bx new 15m 25m

.bx can

.sp

.bx off

208 Document Composition Facility: User's Guide

.CB [COLUMN BEGIN]

The .CB [Column Begin] control word causes subsequent text to start a new column
of output .

• CB

Notes:

• Use the .CB control word when you
want to make the following text
appear at the top of a new column.
If the current column at the time a
.CB is encountered is the last col
umn on the page, the co 1 umn ej ect
is the same as a page eject, since
the next column is the first column
of the next page. In thi s case,
the fact of explicitly starting a
new column does not prevent the
earlier columns from being bal
anced. If the column eject ends an
old column and starts a new column
that are both on the same page, the
old column is made ineligible for
balancing so that the material fol
lowing the .CB will be at the top
of the new column.

• CC [CONDITIONAL COLUMN·BEGIN]

•

•

•

If a floating or delayed keep is
waiting for the start of a new
column, then the text that follows
the .CB appears after the keep.

A column eject may be performed by
certain other control words if the
conditions warrant it. If this
happens, the function is the same
as the unconditional column eject
that is caused by the COLUMN-BEGIN
control word. The other control
words that can cause a column eject
are:

.CC [Conditional Column Begin]

.HO - .H6 [Head Level 0 - 6]

.KP [Keep]

.FN [Footnote]

This control word acts as a break.
It is not allowed in a keep .

The .CC [Conditional Column Begin] control word causes a column eject if less than
a specified amount of space remains in the current column.

.CC [v]

Where:

V is the amount of vertical space that
must remain in the current column
for processing to continue without a
column eject. If v is omitted, and
there is text in the current column,
a column eject is performed to the
top of the next column. This is
equivalent to the effect of .CB
[Column Begin]. However, if the cur
rent column is empty, then no column
eject is done. If the previous col
umn is exactly full, and the current
column is empty, the .CC control
word with no "v" specified does not
cause an eject, and the previ ous
column is subject to column bal
ancing, if this is in effect.

Notes:

•

•

When the .CC control word is
encountered, SCRIPT/VS checks to
see if there is enough space left
in the column. If not, a break fol
lowed by a column eject is per
formed, and the column is made
ineligible for balancing. However,
if the specified amount of space or
more remains in this column, and no
column eject is done, subsequent
column balancing may divide the
text within the specified vertical
space. To ensure that text is kept
together, use the . KP [Keep] con
trol word.

This control word is not allowed in
a keep.

Chapter 21. SCRIPT/VS Control Word Descriptions 209

.CD [COLUMN DEFINITION]

Use the .CD [Column Definition] control word to define how many columns of output
are to be formatted on each page and where each column is to start.

.CD n [pl [p2 ••• p9]]

Where:

n is the number of columns of
output to be formatted onto
each subsequent output page.
I t may be any number from 1 to
9.

pl ••• p9 are positions where the col
umns are to be placed on the
output page, relative to the
left edge of the paper (column
1). A position parameter of 0
i ndi cates that a column
should be flush with the left
edge of the page text a rea, as
defined with the BIND option
of the SCRIPT command. Posi
tions may be specified in
space uni ts.

Default: None.

Notes:

• The .CD [Column Definition]

•

•

control word causes a section break
when it is processed. Thi s means
that all the text up to that point
is processed and positioned on the
page using the old definition
before the new definition becomes
active, even if the new definition
is the same as the old.

The gutter between columns is
obtained by defining the column
width to a value less than the dis-
tance between column starting
positions.

The positions of the columns do not
control how wi de the columns are to
be; you must set the column width,
using the .Cl [Column Width] con
trol word, to control this. If the
current column width is greater
than the distance between columns,
the results depend upon the logical
device for which the document is
being formatted.

For logical devices for impact
printers and terminals, SCRIPT/VS
simply overlays part of the first

•

•

•

column with the second. (It would
be possible to define all columns
to begin in the same position. If
you did this, an entire column
would be overlaid with the text of
a later column.)

For 3800 logical devices, no over
laying is possible, since the char
acters may be of different widths.
In this case, the second column is
abutted to the first, with no
intervening gutter space. The
practice is not recommended as the
results may be unpredictable
especially when formatting with
multiple fonts. You should take
care to define compatible column
width and starting positions.

If you specify fewer positions than
the number of columns, and had pre
viously specified positions on
another .CD control word, those
values remain in effect for any
columns not respecified. Whenever
a .CD control word is used, there
must be positions for each column
available, either on this control
word line, or previously given on
another .CD. If you specify .CD n
without specifying any positions,
and no previous column definition
has been specified, the arbitrary
values 0, 46, 92, 0, 0, 0, 0, 0, 0
are used.

If you use several different column
formats in a document you can cre
ate symbol i c names (wi th the . SE
[Set Symbol] control word) or
macros (with the .DM [Define Macro]
control word) to establish column
definitions, column widths, and 50
on. If you use a single one-column
format and a single
multiple-column format, you can
switch back and forth using the .SC
[Si ngle Column Mode] and .MC
[Multi column Mode] control words.

This control word is not allowed in
a keep.

210 Document Composition Facility: User's Guide

.CE [CENTER]

Use the .CE [Center] control word to center output lines between the margins.

.CE

[
! 1 n
ON
OFF
line

Where:

n specifies the number of lines to
be centered. If omi tted, 1 is
assumed. If .CE n is specified
when .CE ON is in effect, center
ing is turned off when n lines
have been centered, or when .CE
OFF is encountered.

ON specifies that subsequent text
lines are to be centered.

OFF terminates centering mode if it
was ON, or if n has been speci
fied and has not been exhausted.

line is a line of text to be centered.
The line is considered to start
with the first non blank charac
ter after the .CE control word.

Default: 1

Notes:

• The keywords ON and OFF, and a
number of lines to be centered (n),
must be the only parameter on the
control word line. A string of
words that happens to start with
one of these is interpreted as a
single line to be centered. For
example, the control word lines:

•

•

•

•

character appears in the line to be
centered, the tab is resolved
before the line is centered.

Thi s control word acts as a break.

If the line to be centered is
longer than the current column
length, it is truncated, and the
excess is used on a second line.

The .R! [Right Adjust] control word
is a variant of .CE. If either of
these control words is processed,
the other is cancelled.

Contrast the .CE control word with
.FO CENTER. The latter allows lines
to be formatted by concatenating
words until the line is nearly
full, but then the filled line is
centered instead of being justi
fied, as would be the case with .FO
ON.

Examples:

1. To center one line:

.ce OFF THE RECORD

When this line of the file is dis
played, the characters ''''OFF THE
RECORD"" are centered between the
margins:

. ce on top of old smokey OFF THE RECORD

•

. ce 555 Bai ley Ave.

a re taken to be of the ". CE line"
form, not requests for large
numbers of lines to be centered.

The line(s) are centered between
the current left margin, including
any indent and offset values in
effect, and the right margin. When
centering is in effect, no format
ting is done on the line. That is,
the line is centered as it stands,
and it is not fi lIed from other
input lines or justified. If a tab

2. To center several lines:

. ce on
IBM Santa Teresa laboratory
Bailey Avenue, San Jose
95150
. ce off

Each of the 3 lines between ON and
OFF is separately centered:

IBM Santa Teresa Laboratory
Bailey Avenue, San Jose

95150

Chapter 21. SCRIPT/VSControl Word Descriptions 211

.Cl [COLUMN WIDTH]

The .Cl [Column Width] control word sets the width of each column of SCRIPT/VS
output •

• Cl

Where:

h is the width of each column of
formatted output. It may not be
larger than the logical device
width. It may be expressed in hori
zontal space units.

+h increases the current column width
by the specified amount.

-h decreases the column width by the
specified amount.

Initial Setting: Same as line length.

Default: Restore same width as line
length.

Notes:

• The .Cl control word should be used
in conjunction with the .CD [Column
Definition] control word to define
the width of each column from the
displacements given. If the column
width is greater than the space
left between columns, the columns
may overlay each other. An inter-

.CM [COMMENT]

•

•

•

column gutter is allocated by mak
ing the column width about three
em-spaces shorter than the
distance between columns.

The left and right margins of top
titles and bottom titles (running
titles), and running headings and
footings, are governed by the line
length, not the column width.
(The line length can be changed
with the .ll (line length] control
word.)

If the column width has never been
set explicitly, it has the same
value as the line length. If you
set the column width to zero (.CL
0), this makes it the same as
though you had never explicitly set
th& column width. Note that chang
ing the column width by means of
the .lL control word means that the
column width change will take
effect immediately, even though
the line length change will not
take effect until the following
page.

This control word causes a break.

Use the .CM [Comment] control word to place comments within a SCRIPT file .

• CM [co~mants]

Where:

co~ments may be anything; this input
line is not used in format
ting the output. However,
since this is a control word,
the input line is scanned for
control word separators.

Notes:

• The .CM control word allows
comments to be stored in the SCRIPT
file for future reference. These
comments can be seen when you edit
the file, or when you print it

•

using the UNFORMAT option of the
SCRIPT command.

The comments may also be used to
store unique identifications that
can be useful when attempt i ng to
locate a speci fi c regi on of the
file during editing.

If you want an ent ire line to be
ignored, and not scanned for con
trol word separatorsl you can ~se
another form of comment. Any line
that begins with ".*" is ignored.
".*" is not considered to be a con
trol word, but .CM is.

212 Document Composition Facility: User's Guide

• The .CM control word can be used in
conjunction with the .IF control
word to enable or disable strings
of control words. For an example of
how to do this, see the discussion
of the .IF control word.

• CO [CONCATENATE MODEl

Example:

. cm Remember to change the date.

The line above is seen when examining
an unformatted listing of the SCRIPT
file, and it reminds you to update the
date used in the text .

Use the .CO [Concatenate Model control word to cancel or restore concatenation of
input lines and truncation at the current column length.

.CO

Where:

ON
OFF]

ON restores concatenation of input
lines. ON is the initial setting,
as well as the default value.

OFF cancels concatenation of input
lines. If justification is still
in effect, .CO OFF results in each
line being padded with blanks to
the column length.

Initial Setting: ON

Default: ON

Notes:

• When SCRIPT/VS is concatenating
text, output lines are formed by
shifting words to or from the next
input line. The resulting line is
as close to the specified column
width as possible without exceed
ing it or splitting a word; if jus
tification is OFF, output

•

•

resembles normal typist output.
Concatenation is the normal mode of
operation for the SCRIPT command.

When SCRIPT/VS is not concatenat
ing text, there is a one-to-one
correspondence between the words
on the input and output lines. If
SCRIPT/VS is still justifying
text, each line that is less than
the column length is padded with
blank space to fill the column.

Concatenation is one component of
format mode, as controlled by the
.FO [Format Model control word. The
.CO control word is provided for
those occasions when you must be
able to control concatenation sep
arately, but all ordinary format
ting combinations are controlled
by the .FO control word, and you
should use it instead of .CO when
ever possible.

Thi s control word acts as a break .

Chapter 21. SCRIPT/VS Control Word Descriptions 213

.CP [CONDITIONAL PAGE EJECT]

The .CP [Conditional Page Eject] control word causes a page eject to occur if less
than the specified amount of space remains in the current column.

.CP [v]

Where:

V is the amount of vertical space that
must remain in the current column
for additional lines to be processed
wi thout a page ej ect. If "v" is
omitted, a break and a page eject
will be done if necessary to get to
the top of a page. A break and a
page eject will not be done if the
current page is empty.

Notes:

• The. CP control word can be used to
guarantee that enough space (up to
the maximum column depth) will
exist in one column to accommodate

.CS [CONDITIONAL SECTION]

blank space left by .SP [Space] for
a figure to be inserted later.

• To keep formatted text together,
use the .KP [Keep] control word.

• This control word is not allowed in
a keep.

Example:

. cp 2i

If less than two inches of space remain
on the current column, a page eject is
issued before processing continues. If
two inches or more remain, processing
continues on the current column.

The .CS [Conditional Section] control word allows you to designate sections of the
input file that are to be processed conditionally, or ignored.

.CS

Where:

n

ON

OFF

INCLUDE

IGNORE

Notes:

• The

n { ON }
{ OFF }
{INCLUDE }
{IGHORE }

speci fi es the condi ti onal
section code number from 1 to
9.

marks the beginning of
conditional section n.

marks the end of conditional
section n.

tells SCRIPT/VS to process
all the input lines between
the ON and the OFF control
words for conditional section
n.

tells SCRIPT/VS to bypass
every line for conditional
section n that falls between
.CS n ON and .CS n OFF.

Setting: All
INCLUDEd.

sections are

.cs [Conditional Section]

•

control word allows you to desig
nate specific sections of your
input file that may be ignored or
included conditionally. You may
have up to 9 separate section
codes, and specify which section
numbers are to be included and
which are to be ignored. Each
section code may be used for many
sections. The .CS control word is
used to designate conditional
sections, and also to specify
whether they are to be included or
ignored. The ON and OFF operands
identify the beginning and end of a
conditional section; the INCLUDE
and IGNORE operands i ndi cate
whether or not SCRIPT/VS should
process the input lines within the
conditional sections.

You can use conditional section
codes to separate sections of a
document that apply to different
versions, and specify which ver
sion is to be formatted. You may
also use this technique to identify
confidential sections of a manual
that you may sometimes wish to
exclude.

214 Document Composition Facility: User's Guide

•

•

•

•

Since the .CS control word does not
cause an automatic break, you may
turn conditional sections on and
off within a paragraph or even
within a sentence without disrupt
ing normal output formatting.

By default, all conditional
sect i on codes are assumed to be set
to INCLUDE unless explicitly set to
IGNORE.

A conditional section may contain
SCRIPT/VS control words as well as
text. I f the sect ion is ignored,
all control words contained in that
section will be ignored, except the
control word

. cs n off

which marks the end of the section.

Conditional section definitions
may be nested to a depth of 9 (that
is, a conditional section may con
tain another conditional section).
A nested section is included only
if all outer nestings specify
INCLUDE. Otherwise, the inner
nesting is never noticed, since it
is part of an outer section that
has been ignored. If a conditional
section is nested within another

• CW [CONTROL WORD SEPARATOR]

•

one, the entire section should be
enclosed by the outer section.

The .CS control word may be used in
conjunction with the .Re [Revision
Code] control word to mark the con
ditional sections. The .lE [Termi
nal Input] control word may be used
in interactive environments to
specify which sections are to be
included while the input file is
being processed.

Example:

.cs 1 ignore

.cs 2 include

In this version of the system there
can be only
. cs 1 on
256
.cs 1 off
. cs 2 on
1000
.cs 2 off
entries in a MACLIB file.

Since only conditional section code 2
is to be included, the generated output
line is "In this version of the system
there can only be 1000 entries in a
MACLIB file" .

The .CW [Control Word Separator] control word allows you to change the symbol used
to separate multiple control words on a single line. The default control word
separator symbol is the semicolon (;) character. The .DC [Define Character] con
trol word can also be used to alter the control word separator .

. cw [cl

Where:

c specifies the character to be used
as the "control word separator"
character. Any character may be
used. If the character "c" is omit
ted, no character is assi gned as the
control word separator, and there
fore you cannot have more than one
control word on a line.

Initial Setting: Semicolon (j).

Default: Nothing. (No separator char
acter.)

Hotes:

• All control word lines are scanned
for control word separators before
they are processed, unless they are
specified with the control word
modifier. The control word modifi
er allows the line that accompanies
a control word to be treated as

text, which may therefore contain
control word separators as ordi
nary text characters.

The control word modifier is a sin
gle quote immediately after the
period. The control word ".CE one;
two" is scanned before being proc
essed into the two lines ".CE one"
and "two". But the line ".'CE one;
two" uses the control word modi fi er
to allow the entire string "one;
two" to be centered.

The .CW [Control Word separator]
control word should always be 5pec
;f;ed w;th the control word
~cdifier. A .CW control word line,
like all unmodified control word
lines, is scanned for control word
separators before being processed.
If you were trying to make sure
that the control word separator was
set to semicolon by issuing
".cw j", just the opposite would
happen if the semicolon happened to

Chapter 21. SCRIPT/VS Control Word Descriptions 215

•

•

•

•

be the current separator; the line
would be separated before being
processed into the line n.cw", fol
lowed by no more on that line. The
control word, when processed,
would undefine the semicolon as the
separator.

If you always use the control word
modifier with .CW, no separator
scan will be done, and the charac
ter wi 11 be preserved as the param
eter on the control word:

· 'cw ;

will correctly ensure that the sep
arator is set to i.

When the .CW control word is proc
essed, the defaul t control word
separator (;) is reset. It may be
necessary to change the control
word separator character if it is
inconvenient to type the default
character, or if the default char
acter is used as part of a control
word operand, such as part of a
symbol specification.

If a symbol value begins with the
control word separator, the rest of
the symbol value is treated as
though it occupied the first posi
tion of the line.

Control word separators are
recognized on a .CM [Comment] line,
but not on a ".*" line.

"Ihe following control words must
Begin in column I and may not be
placed after a control word separa
tor:

· cs n off
· di off
· wf off
.li off
... label

When SCRIPT/VS is ignoring a condi
tional section, preparing a delay
imbed, writing to a file, reading
literal lines, or searching for a
label, no control word processi ng
is done. Each input record is
checked in column I for the pres
ence of the control word that ends
the special processing mode.

• Control words that accept text data
(for example, .US or .CE), should
not contain the current control

word separator as text, unless the
control word modifier is used to
prevent scanning for the separa-
tor. .

Examples:

I. Simple change:

· 'cw ,
.sp 2,.of 5,This section ...

The above line is equivalent to the
lines:

· sp 2
· of 5
Thi s secti on ...

2. Temporary cancellation to get the
separator character into a symbol
value:

· 'cw
.S9 2col = 'i.cd 2 0 46; .cl 43i'
.se lcol = 'i.cd l;.cl 89;'
· 'cw ;

In the sequence above, the control
word separator is temporarily can
celed so that the regular separator
(;) can be used as part of the .SE
[Set Symbol] control word line.
Since the symbols 2col and lcol
contain the appropriate control
words, they can now be used instead
of the actual control words
involved. Since the control words
are in a symbol that begins with
the control word separator, they
can be recognized as control words
even if the 2L~bol is encountered
in the middle of a line. Since the
symbols end with control word sepa
rators, the effective next line can
be concatenated to the symbol name.
With the symbols 2col and lcol set
as shown, the line:

This is a line.&2col.Now
columns.

Has the
sequence:

same

This is a line.
· cd 2 0 46
· cl 43

effect

Now start 2 columns.

start 2

as the

216 Document Composition Facility: User's Guide

.DC [DEFINE CHARACTER]

Use the .DC [Define Character] control word to define various special characters
that the formatter will recognize as having a special significance.

.DC

Where:

c

hh

{ ASEP } c ..•
{ CaNT } hh •••
{ CW } OFF
{ PS }
{ STOP }
{ PUNC }
{ WORD }
{ RB }
{ Gr1L }

specifies the character (or
characters) to be recognized.
The character may be any single
character.

specifies the
characters) to
expressed as
hexadecimal code.

character (or
be recognized,
a b.Jo-digit

If a parameter is given with no
following character or
hexadecimal code, then the char
acter is restored to its initial
setting. For the ASEP, PUNC, and
WORD parameters, more than one
character or hexadecimal code
may be speci fi ed, separated by
blanks. In thi sease, si ngle
characters and two-digit
hexadecimal codes may be inter
mixed on the same control word
line.

OFF causes the character to be
undefined. If for example, .DC CW
OFF is specified, then there is
no control word separator.

ASEP allows the definition of up to
four characters which are to be
used to separate array elements
when an array is substituted in a
document usi ng the &name(*)
form. All characters to be used
to separate array elements must
be specified, including blank
characters (as 40). The initial
and default values for the ASEP
characters are ,40.

CONT defines a continuation character
for text lines. The formatter
normally considers that no word
may span input lines. Use of the
continuation character defined
wi th the CaNT parameter alloL.Js
words to span input lines. When
the last character of an input
text line is a continuation char
acter, the normal interword
blank is not added when thi s 1 i ne

is concatenated to the next, but
existing blank charactErs pre
ceding the line continuation
character are retained.

If the formatter control or text
which follows the line continua
ti on character causes a break,
continuation is cancelled for
that line. A null line also can
cels continuation for the previ
ous line.

The line continuation character
is recogn i zed at the end of a
line, whether the line contains
text or control words, or a mix
ture of both. The cont i nuat ion
character may not be used to
extend a control L>Jord line, but
it may extend the text data that
is associ ated wi th- that control
word. There is no default line
continuation character.

CW specifies the character to be
used to separate control words on
a single line. The default con
trol word separator character is
the semicolon (j). If the speci
fied control word separator
character is hexadecimal 00, the
control word separator will be
undefined. The effect is the same
as if .DC CW OFF were specified.

STOP specifies the characters to be
recognized as end of sentence
characters when formatting for
non-3800 logical devices. If any
of the STOP characters occurs at
the end of an input line, or pre
cedes a " or) at the end of a
line, and the line is not the
last before a break, SCRIPT/VS
will insert an extra blank before
concatenating with the following
input line. If the same character
is defined as a continuation
character and a stop character,
its effect as a continuation
character will be used if it
occurs at the end of the line.

Chapter 21. SCRIPT/VS Control Word Descriptions 217

PUNC specifies the characters to be
recognized as punctuation for
spelling checking. Punctuation
characters are defined as those
characters which, when occurring
in a word, will be retained when
the word is checked against the
dictionary, but when they occur
at the end of a word, they will
be removed before checking takes
place. The default punctuation
characters are the hyphen
(hexadecimal 60), and the apos
trophe (hexadecimal 7D). Punctu
ation characters given with this
option will add to the currently
defined default characters. The
control word . DC PUNC OFF wi 11
clear the entire list, so that no
punctuati on characters are
defined for spelling verifica
tion.

PS specifies the character to be
used as the page number symbol.
It may be any character other
than blank. The default page num
ber symbol is ampersand (l).
Every page number symbol in run
ning titles (.RT), running
headings (.RH), and running
footings (.RF) is replaced with
the current page number every
time the running title, heading,
or footing is formatted to be
placed on a new page.

WORD specifies the delimiters to be
used in the recognition of words
for spelling verification. The
defaul t word del i mi ters are
shown in Figure 35 on page 319.

RB

Gt1L

The characters given with this
option will add to the currently
defined word delimiter charac
ters. The end of a line will
always be recognized as a word
delimiter unless the line con
tinuation character is used. If
.DC WORD OFF is specified, only
the period (.) and blank will be
recognized as word delimiter
characters.

defines the character to be used
as a required blank. Required
blanks are not recogni'zed as
interword blanks for formatting,
but they are translated to ordi
nary blanks after formatting is
complete. The initial and
default required blank is
hexadecimal 41. The current
required blank character is
always available in the system
symbol '&$RB'.

defines the character to be used
as the GMl del i mi ter or al ternate
symbol delimiter. It may be any
character that is not allowed in
a symbol name, except blank,

period, or ampersand. That is,
the GMl delimiter may not be set
to the characters blank, period,
ampersand, a-z, A-Z, 0-9, or the
characters #, ~, and $. A .DC GMl
control word that attempts to set
one of these characters as the
GMl delimiter causes an error
message, except .DC GMl 40, which
is equivalent to .DC GML OFF.

Default: Restores the initial setting
for specified character.

Notes:

• The. DC CW control word has the
same effect as the .CW [Control
Word Separator] control word,
except that with .DC, you do not
have to use the actual character
specified on the control word line;
you can specify it as a two-digit
hexadecimal code. This capability
is useful to prevent misinterpre
tation of the control word separa
tor character in cases where it is
already set to the value specified
on the control word. See the dis
cussion of the .CW [Control Word
Separator] control word for addi
tional information.

• The .DC PS control word has the
same effect as the .PS [Page Number
Symbol] control word. See the dis
cussi on of the . PS [Page Number
Symbol] control word for addi
tional information.

Examples:

1. Continuation Character

In the following examples, the plus
sign is used as the continuation
character. The continuation char
acter may not occur in the middle
of a control word line. For exam
ple,

thi sis
· up part+
ially uppercase

Results in:

this is PARTially uppercase

The continuation character will,
however, allow the user to create
one "logical" line from a number of
input lines. For example:

· ce 1
thi sis a si n+
· up gl eli ne

Will result in the line:

this is a sinGLE lINE

218 Document Composition Facility: User's Guide

2. PUNC and WORD

Note that there is only one delim
iter table to hold both punctuation
and word delimiter characters. The
latest specification for a charac
ter will be that in effect. For
example:

. dcword+

.DD [DEFINE DATA FILE-ID]

will cause the + character to be
recognized as a word delimiter
character.

. dc punc +

will cause + to be recognized now
as a punctuation character .

The .AP [Append] and .IM [Imbedl control words require a file-id for the file to be
imbedded or appended. This file-id is an internal SCRIPT/VS name for a file or
data set in the host environment in which SCRIPT/VS is executing. The .DD [Define
Data File-idl control word allows you to associate a one to eight character
internal SCRIPTIVS file-id with a real file or data set identifier. If no .DD has
been issued for a file-id, a valid identifier is constructed from the file-id,
based on assumptions and rules established for each operating environment.

.DD

Where:

LIB

filename

[
~~B 1 DSN
TERM

file-id

is a one- to eight-character
internal SCRIPTIVS name for
the file being defined. An
error will result if file-id
corresponds to the i d of a
file which is already in use
as an imbedded file. If the
fi le-i d corresponds to a
fi Ie that was previ ously
read and terminated by a .EF
[End of File] control word,
that original file is closed
before the redefinition is
made. This file-id is
described with the option~
below.

is the defaul t, and
indicates that the file to be
referred to exists in the
library of the environment
in which SCRIPT/VS is oper
ating.

In CMS, the "filename" given
is a normal CMS filename,
followed optionally by a
filetype and a filemode.

In the batch environment,
LIB i nd i cates that the
fi lename is a Document
Library Facility file, whose
filename may be followed
optionally by a library num
ber and password.

In TSO, the LIB option indi
cates that the filename
refers to a PDS member whose

[

PROC name
SEQ col len
CATALOG 1

DD

DSN

data set name is specified by
the SEARCH option of the
SCRIPT command.

specifies that file-id
refers to a DD name that is
specified in filename. This
option is applicable only in
the TSO and VS2 batch envi
ronments. Use of the DD
option implies that the user
has suppl i ed a JCL DD card
with a ddname of "filename",
or preallocated the data set
by use of the TSO ALLOCATE
command.

specifies that file-id
refers to a fully or par
tially qualified data set
name specified in filename.
This option is applicable
only in the TSO and batch
environments.

TERM specifies that, for file-ids
DSMTERMI and DSMTERMO ~
the input or output is to be
restored to the terminal.
Thi s opti on is useful when
the terminal input or output
has been changed with a pre
vious .DD control word for
either of these file-ids.

filename specifies the actual name of
the fi Ie whi ch is to be 9i ven
the specified file-id.

PROC speci fi es that the fi Ie is to
be processed with the attri
bute processor whose name is

Chapter 21. SCRIPT/VS Control Word Descriptions 219

name

SEQ

given. This option is appli
cable only in the batch envi
ronment.

is the name of the attribute
processor to be invoked.

<batch only) speci fi es
whether the records in the
external data set to be read
conta in sequence numbers,
and if so, describes them. If
SEQ is not specified,
SCRIPT/VS assumes that the
records contain no sequence
numbers. SCRIPT/VS will gen
erate sequential line num
bers for the read process.

If SEQ is specified, "col
umn" and "length" define the
starting position and the
number of characters (maxi
mum of 8) for the sequence
number. The sequence numbers
must be of fixed length with
a maximum length as defined
by the length parameter.
Nonnumer i c characters may
precede the numeric values.

CATALOG specifies that the data set
to which the file-id refers
is to be cataloged when it is
is closed. This option is
val i d only for SCRIPT /VS
utility files (see Usage
Notes) when used with the DSN
option in TSO to create a new
data set. In all other cases
it is ignored. CATALOG is
especially useful when cre
ating output files with the
.WF control word. It is pos
sible to create many differ
ent .WF files by specifying a
different data \set name with
.00. Normally, these data
sets would be deleted when
closed.

Default: LIB

Notes:

• If the . DO control word is used
wi th a parameter that is not
allowed in the formatter's operat
ing environment, a message will be
issued and the control word will be
ignored.

• The fi le-i d PROFILE is used for the
profile specified with the PROFILE
option of the SCRIPT command.

• SCRIPT/VS has a number of file-ids
that are used by the system. Some
of these may be the subject of the
.00 control word. These file-ids
are:

DSMTERMI - The terminal input
DSMTERMO - The terminal output
DSMUTDIM - The .01 file
DSMUTMSG - The message file
DSMUTTOC - Table of contents file
DSMUTWTF - The .WF file

For example, if the file-id
DSMTERMI is associated with a disk
file, then whenever a .RV or .RD is
processed the data will be read
from th~ specified file. This capa
bility is of particular use in the
batch environment.

Whenever any of these file-ids is
the subject of a .00 control word,
the host system file name associ
ated with the existing definition
of that fi le- i dis closed, and in
TSO, it is also deallocated.

Examples:

1. To give a file-id of "filel" to a
Document Library Facility file
named "title", with a password of
"p2301" which exists in library
"13425", the .DD control word
statement would be!

.00 filel LIB 13425 title/p2301

In this example, the option LIB
could have been omitted, as it is
the default.

2. To give a file-id of "alpha" to
member "mem3" of a partitioned data
set named "userid.doc.text", the
.DD contr6l word statement would
be!

.00 alpha DSN doc(mem3)

3. In CMS, if there are two SCRIPT
files called "names", one on your
A-disk, and the other on your
C-disk, the control word .IM NAMES
would ordinarily imbed the one on
the A-disk, following CMS search
order. The file on the C-disk would
be imbedded if the following .00
were in effect:

.00 names names script c

Note that in this example the
keyword LIB was omitted because it
is the defaul t.

220 Document Composition Facility: User's Guide

.DH [DEFINE HEAD LEVEL]

Use the .DH [Define Head Levell control word to override the default character
istics of the head levels that are generated with the .HO - .H6 [Head Level 0 - 61
control words .

• DH

Where:

n

n

is the number of the head
level to be defined. It may
be a number from 0 to 6.

opt;ons are keywords that indicate
how to change the definition
of head level n. If no
options are given, the
defau 1 t cha racter i st i cs of
the head level are restored.
The options recognized are:

SKBF V vis the amount of space to be
skipped before the head lev
el.

SPAF V vis the amount of space to be
skipped after the head level.

TCIN h

TO

NTO

TC

NTC

TS

NTS

US

NUS

UP

NUP

OJ

NOJ

PA

h is the amount the table of
contents entry associ ated
with the head level is to be
indented.

table of contents entry only -
no head printed in the text.

no "TO".

table of
wanted.

contents

no "TC".

space before
contents entry.

no "TS".

table

entry

of

underscore the head level.

don't underscore it.

put the head level in
uppercase.

don't put it in uppercase.

outjustify the head level
(this means right adjust it if
it falls on an odd-numbered
page).

don't outjustify
level.

the head

do a page ej ect before the
head level if necessary (if
not alreadY at the top of a
page) •

NPA

BR

NBR

no page ej ect.

do a break after the head.

no break.

FONT fontname specifies the font name
of the font to be used for the
heading or OFF. If OFF is
specified, the previous spec
ification of FONT will be set
off. If the fontname and OFF
are omi tted and the FONT
option is the last one speci
fied, no syntax error will
result. This is useful when
using the &$CHAR system sym
bols as the font names, since
these symbols have null val
ues when there is no corre
sponding font.

Default: Restores the initial setting.

Notes:

•

•

•

•

The .DH [Define Head Levell control
word allows a maximum of 14 options
on the line. If you wish to change
more head level variables than can
be done with 14 options, you must
do it with more than one .DH con
trol word. Each time .DH is proc
essed, only those variables
specified are changed. All other
variables remain the same.

If a head level control word is
processed that causes an entry in
the table of contents, the table of
contents entry is saved wi th the
specifications that are in effect
at the time that head level is
processed. If you change the defi
nition of that head level later,
the new definition only affects
later occurrences of that head lev
el control word.

For a list of the default
characteristics associated with
the heading levels 0 through 6, see
the discussion of .HO - .H6 [Head
Level 0 - 6].

The .HO - .H6 [Head Level 0 - 6]
con~rol words are actually imple
mented as macros, and the .DH con
trol word merely causes these
macros to be defined or updated.
These macro s a re named DSMS TDHn (0 r
DSMEZSHn if EasySCRIPT is in
effect) and can be seen by use of

Chapter 21. SCRIPT/VS Control Word Descriptions 221

•

the .IT [Input Trace] control word.
The macro for a given head level
does not exist until that head lev
el control word has been processed
for the first time, or until a .DH
for it has been processed.

The use of .EZ ON will cause a new
set of heading macros to be used.
Therefore, each time .EZ ON is

.D! [DELAY IMBED]

•

used, you must respecify th~ head
definitions that you want to use.

If you want to add a function to a
head level control word that is
beyond the scope of .DH [Define
Head level], you may add to the
macro using the .DM [Define Macro]
control word.

Use the .01 [Delay Imbed] control word to defer the inclusion of a portion of a
SCRIPT file until the next page eject occurs.

.DI

[~N 1 OFF
line

Where:

n specifies the number of lines to
be delayed. If omitted, 1 is
assumed.

ON starts an open-ended delayed
imbed. Subsequent lines, until a
. Dr OFF i s encountered, are
included in the delay imbed file.

OFF ends a delayed imbed, whether it
was started with .Dr ON or with a
specified n that has not been
exhausted.

line is an input line that is to be
delayed.

Default: 1

Notes:

• The .01 [Delay Imbed] control word
is especially useful for position
ing diagrams and tables. The next n
lines of the current SCRIPT file
are saved in a temporary file
called DSMUTDIM. When the top of
the next output page is reached,
this temporary file is imbedded and
processed by SCRIPT/VS. After the
inclusion of the saved lines,
normal processi ng resumes. If
there is a keep to be processed in
the next page, then a further page
ej ect i s done after the keep before
the delayed imbed is processed.

• Thi s control word does not act as a
break.

• An automa.t i c page ej ect is not
performed at the end of the inclu
sion. If you want SCRIPT/VS to

•

•

resume normal processing on a new
page, you should end the delayed
section with a .PA control word.

The .DI OFF control word must begin
in column 1, not after a cont rol
word separator. When SCRIPT/VS is
processing a delay imbed it is not
processing input lines except to
look for .01 OFF on a line by
itself.

No .01 control word is put into the
delay imbed file.

Examples:

1. To delay the inclusion of one line:

· di . pa

The single line ".pa" is written
into the delay imbed file. At the
end o~ the current page, a blank
page, except for top and bottom
ti tIes, is genercted. Output
resumes on the page after the blank
page.

2. To include a figure at the top of
the next page:

· di 3
· sp .5i
.im figure5
· sp 5

The current page is processed as if
the .01 and the three following
lines had not existed. At the top
of the next page, the three lines
are processed. This results in
spacing a half-inch, imbedding the
file named FIGURE5, followed by
spacing five lines.

222 Document Composition Facility: User's Guide

.DM [DEFINE MACRO]

Use the .DM [Define Macro] control word to establish macro definitions for
sequences of SCRIPT/VS control words or text lines. SCRIPT/VS macros are invoked
by preceding them with periods, as SCRIPT/VS control words. No macro substitution
1S performed unless the .MS [Macro Substitution] control word has been processed
to turn macro substitution ON.

.DM

Where:

name

name

[
/1;nel/ ••• /linen[/]
x
LIB
OFF

name([n]) [/1;ne[/]] x
OFF

is the symbolic name you want
to assign to the macro, so
that you can invoke it with
the control line:

.name

It may contain a maximum of 10
nonblank characters which may
be upper- and lowercase
alphabetic, numeric, and the
cha racters 4), I, and $.

name(n) iRdicates that the line that
follows is to be stored as
part of the macro definition
in line n. By this means, mul
tiple line macros may be
defined. The values for n need
not be sequential when the
macro is defined, but if the
same value for n is given on
two uses of the .DM control
word, only the latest value
for the line will be stored.
They are executed in numer
ical sequence. When a line
number is given with the name,
only one line of the macro may
be gi ven. Each line of the
macro is defined with a sepa
rate .DM control word. (n)
must follow the macro name
without intervening blanks,
and must be a positive integer
or zero. If n is omitted, that
is, "name()" is specified,
macro elements are assigned
with line number increments
of 10. Macro element zero has
the same si gni fi cance as
array element zero and can be
assigned a number (using the
.DM control word) which will
control the start of automat
ic line number assignment. If

1

/

x

LIB

you set macro element ZQro to
other than a valid number, the
va lue that you set wi 11 be
lost. It wi 11 never be exe
cuted with the rest of the
macro.

is any character used to
delimit the individual lines
in the macro. The final delim
iter may be omitted.

is any SCRIPT/VS control word
line or line of data that you
want to include in the macro
definition. It may contain
symbolic names, or any of the
special macro variables &*,
or &*1 through &*n (see Usage
Notes). If line is omitted,
the macro (or macro line if n
is given) is stored as a null
macro or macro line.

indicates that you want the
current value of a macro or
macro line assigned to the
symbol &x. x may be any single
alphameric character. (If you
give two or more characters,
SCRIPT/VS treats the first as
a delimiter and the others as
a line to be inserted in the
macro definition.)

causes the macro to be defined
by retrieving its value from a
library. The name of this
library may be defined using
the LIB option of the SCRIPT
command. If LIB is used to
define a macro, the defi
nition retrieved from the
library completely replaces
the current definition (if
one exists). If LIB is speci
fied, but no definition with
the macro name given exists on

Chapter 21. SCRIPT/VS Control Word Descriptions 223

the library, the macro will be
undefined. Since macro names
are in uppercase only, names
are fo 1 ded to upperca se
before the library is
accessed. The LIB parameter
sets up an entirely new macro
definition; no line number
may be given L-Jith the macro
name. The LIB option may be
used independently of the .LY
[Library] control word.

OFF deletes a macro definition or
a line from a definition.

Hotes:

• The following symbols have special
meanings within macros:

•

•

&*: is the line passed to the macro
when it is invoked. Thus, if the
macro defined with:

.dm typitC) /.ty ***

.dm typitC) /.ty &*

.dm typitC) /.ty ***

is invoked with the line

. typit Hello!

then the symbol &* has the value
"Hello!". The processi ng of thi s
macro results in the lines:

Hello!

being displayed at your terminal.

&*0: Contains the number of tokens
passed when th-e- macro is called.
Using the above example, the value
of &*0 is 1.

&*1 - &*n: Are the tokens passed to
the macro when it is called. You
can pass as many tokens to a macro
as will fit on the input line. If
the .typit macro is invoked

.typit Processing section 5 ...

then &*1 has a value of "Process
ing", &*2 has a value of "section",
and &*3 has a value of "5 ... ". The
value of &*0 is 3.

Macro calls are treated as invalid
control words if you do not use the
.MS [Macro Substitution] control
word:

.ms on

Symbol names that are used ina
macro definition are substituted
at the time the .DM control line is
processed, i f subst i tut ion i s on.
If you want to use variable symbols
ina macro to be subst i tuted at

•

•

•

•

•

•

execution time, you must use the
control word

. su off

before defining the macro with the
.DM control word.

Values for the symbols &*1 through
&*n are established whenever a mac
ro is invoked. These values are
local to the current level of macro
invocation.

A macro name may be the same as the
two-letter name of a control word.
Such a macro effectively redefines
the control word by getting control
whenever the control word is
encountered.

Macros may be invoked recursively.
In order to avoid looping situ
ations for recursive invocation
SCRIPT/VS keeps invocation counts
for macros. Any given macro may not
be opened more than 99 times, and
no more than 255 macros of any name
may be open at the same time. If
either of these situations occurs,
a severe error message is issued
and processing is terminated .

If macros are defined with multiple
macro lines on a single line of
input, the macro will be stored as
if it had been entered on separate
lines with an increment of 10, and
the new definition will completely
replace any existing definition
with the same name. However, subse
quent macro lines defined using
sequence numbers will behave as if
all lines had been added in this
way.

Macros defined using sequence
numbers may be defi ned usi ng
sequence numbers in any order.
However, the macro will be executed
as if the lines had been entered in
sequence. Macro lines may be rede
fined at any time within a docu
ment, or 1 i nes added or inserted
into an already existing macro
definition. This addition or
redefinition of lines will take
place based on the sequence number
specified.

If an enti re macro is assi gned to a
symbol "x" it wi 11 be stored in the
form:

~linel~line2~line3~linen#

where # represents a separator
character of hexadecimal FF. If
only a single line of a macro is
assigned to a symbol "x", it will
be stored in the form #line~. If
you want to print this symbol, the
.TR control word must be used to
convert this character to one that
is available on the printer being

224 Document Composition Facility: User's Guide

used, if th i sis requ ired. When
using the symbol assignment capa
bility, remember that the maXlmum
length for a symbol is 256 charac
ters.

The symbol assignment capability
can be used to test the existence
of a macro or a macro line, as fol
lows:

if the macro (or macro line)
does not exist, the symbol "&x"
is assigned a null value
(&L'&x=O)'

if the macro (or macro line)
does exist, but has a null val
ue, the symbol "&x" is assi gned
a value of hexadecimal FFFF,
which is two consecutive sepa
rator characters (&L'&x=2).

else, the symbol "&x" will have
the value of the complete defi
nition of the macro (or macro
line) as described before
(&L'&x>2).

.os [DOUBLE SPACE HODEl

•

•

Use of the LIB option of the .DM
control word allows a macro defi
nition to be explicitly retrieved
from the library. Use of the .LY
control word allows macro defi
nitions to be retrieved from the
1 i brary when a macro is used ina
doc u men t L.J her ea' de fin i t i On-f 0 r i t
does not currently exist.

Head level control words are
actually SCRIPT/VS macros; you can
define macros to perform the func
ti ons of head levels, or you can
add to the existing macro defi
nitions for the head levels to add
function not within the scope of
the .DH [Define Head Levell control
word.

Use the .DS [Double Space Model control word when you want your output to be
double-spaced .

• DS

Notes:

•

•

This control word does not cause a
break.

The . DS control word doubles the
line spacing set by the .SL control
word. When double-spacing is in
effect, each space or skip caused
by a . SP or . SK control word is
doubled (thus, .SP 2 yields four
spaces). However, if the .SP or .SK
control word i ndi cates "absolute"
spaces, the space count is not dou
bled.

Example:

.DS

Blank lines are inserted between output

lines below this point in the file, as

shown in these few lines.

Chapter 21. SCRIPT/VS Control Word Descriptions 225

.DU [DICTIONARY UPDATE]

Use the .DU [Dictionary Update] control word to add or delete words from the
addenda dictionary which may be used in addition to the main dictionary for
hyphenation and spelling verification. The changes to the dictionary which are
specified using this control word are in effect only during the formatting of the
current document .

• DU C ADD J word ••• word
C DEL J

Where:

ADD specifies that the word or words
given with the control word are to
be added to the addenda dictio
nary.

DEL specifies that the words given
with the control word are to be
deleted from the addenda dictio
nary.

word is a string of blank delimited
words.

Notes:

•

•

A .DU control word which requests
that a word be added to, or deleted
from, the addenda dictionary where
that word is already in the addenda
dictionary (for ADD), or not in the
addenda dictionary (for DEL), will
not cause an error message. The
first ADD for a word will put the
word in the dictionary, and all
subsequent ADDs will be ignored.
The first DEL for a word will
delete the word from the dictio
nary, and all subsequent DELs will
be ignored. You should be careful
to avoid multiple ADD or DEL situ
ations where a word may get added
and perhaps also deleted in an
imbedded fi Ie.

For a description of the function
and use of the formatter's spelling
checking'and hyphenation capabili
ties, see the discussion in
"Chapter 1. An Introduction to

•

•

•

•

•

SCRIPT/VS" on page 1.

Words added to the dictionary using
the .DU control word may include
hyphens. In this case, the hyphens
indicate potential hyphenation
points for the word. Whenever
hyphenation is in effect (speci
fied by the .HY control word) these
hyphenation points will be used
unless the .HW control word has
been used for the specific occur
rence of the L-Jord, or use of the
addenda dictionary has been sup
pressed with the NOADD option of
the .HY control word.

Words that contain hyphens, such as
lighter-than-air, should be sup
plied to the .DU control word with
double hyphens at these hyphen
points, as described for the .HW
control word.

Words that contain word delimiters
will be added to the addenda dic
tionary with the delimiters
intact. You can redefine these
delimiters with the .DC control
word.

Stem processing is used for
verification against both the main
and the addenda dictionaries when
reque~ted using the .SV control
word.

Words may be added to the addenda
dictionary even when spelling ver
ification is off, or is in effect
against the main dictionary only.

226 Document Composition Facility: User's Guide

.EB [EVEN PAGE BOTTOM TITLE]

The .EB [Even Page Bottom Title] control word saves a specified title line in a
storage buffer for possible future use. This title may be used at the bottom of
the current page, if it is even-numbered, and each subsequent even-numbered output
page.

.EB [n] /part!/part2/part3/

Where:

n is the number of the bottom
title line to be set. The num
ber may be from 1 to 6, and if
it is omitted, 1 is assumed.
The six possible title lines are
the same for top titles and bot
tom titles. Bottom titles are
numbered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "even bot
tom title 1" sets the same stor
age buffer as "~ven top title
6." See the discussion of the
. FS [Foot i ng Space] control
word for information on how to
allocate space on your output
page for bottom titles.

part! is the portion of the title to
be left justified.

• EC [EXECUTE CONTROL]

part2 is the portion of the title to
be centered between the left and
right margins.

part3 is the portion of the title to
be right justified.

/ is any character that does not
appear in part1, part2, or
part3.

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.RT [Running Title]. See the dis
cussion of the .RT control word for
further information about running
ti tIes, i ncludi ng those for the
bottom of even pages .

The .EC [Execute Control] control word is used to cause SCRIPT/VS to execute the
given line as a control word line, even if there is a macro defined with the same
name, and macro substitution is ON.

.EC control word l;ne

Where:

control word l;ne is a SCR1PT/VS
control word line.

Notes:

• Use the .EC control word whenever
you want to cause SCR1PT/VS to exe
cute a control word even when a
macro is defined with the same
name. The .EC control word is use
ful within macros that have the
same name as control words. Often,
a macro that "redefines" a control
word uses the control word function
in addition to whatever other func
tion it performs. In these cases,
if the .EC function were not used,
the same macro would be repeatedly
invoked in a loop until SCRIPT/VS
terminated it with a severe error
message. Of course, macro substi
tution could be turned OFF, but
that would prevent any other macro

from being invoked until macro sub
stitution was turned ON again.

• The control word modifier provides
an imp lied . EC funct ion. I t a Iso
prevents the control word separa
tor scan on that control word line.
The control word modifier may be
used with any control word; it con
si~ts of a single quote (') between
the period and the name of the con
trol word. (.' ce center thi s 1 i ne).

Examples:

1. To defi ne a macro called .1M to
replace the .IM control word with
out using the .EC control word
would require the following macro
definition:

.dm im(l) /.ty &*/

.dm im(2) /.ms off/

. dm i m (3) /. i m & */

.dm im(4) /.ms on/

Chapter 21. SCRIPT/VS Control Word Descriptions 227

In this example~ macro substi
tution needs to be turned off to
avoid an infinite macro substi
tution loop. Unfortunately, this
has the effect of turning off macro
substitution for the imbedded
file, and all files that it imbeds.
In this situation, the .EC control
word should be used:

.dm im(1) /.ty &*/

.dm im(2) /.ec .im &*/

The control word modifier may be
used in the same way!

.dm im(1) /.ty &*/

. dm i m (2) /.' i m 8: */

The difference between the .EC form
and the control word modifier form
is that the .EC line is scanned for
control word separators, while the
control word modifier line is not .

• EF [END OF FILE]

In this example, there is no dif
ference between the two; the ori
ginal .IM macro line will already
have been scanned for separators.

2. The .EC control word will issue an
error message if the subject con
trol word line is not a valid con
trol word line. To be a valid
control word, it must start with a
period, followed by two characters
and a blank. (A line without a
period in column 1 is usually
treated as text, but, as the sub
ject of .EC, it is treated as an
invalid control word.>

3. The .EC control word will issue an
error message if the control word
1 i ne gi ven is "val i d", but refers
to a non-existent control word,
even if a macro exi sts wi th the
control word name given.

The .EF [End of File] control word simUlates the end of the current file .

. EF [CLOSE]

L-lhere:

CLOSE tells SCRIPT/VS not to hold your
place in the current fi Ie, but
to close it, so that the next
time the file is imbedded,
SCRIPT/VS begins processing at
the top of the file, not at the
line following the .EF control
word.

Notes:

• The .EF [End of File] control word
causes an end of file condition to
be simulated on the current input
file. If the current input file is
not an imbedded file (see the dis
cussion of the .IM [Imbed] control
word), all processing is termi
nated. If the current input file
has been imbedded, the .EF control
word causes input processing to
conti nue in the outer fi Ie. In thi s
latter case, SCRIPT/VS remembers
the posi t i on of the . EF control
word; if the file is imbedded
again, then SCRIPT/VS begins read
ing at the line following the .EF
control word instead of the begin
ning of the file, unless the CLOSE
operand is used.

• The . EF control word, in
conjunction with the .IM [Imbed],
.AP [Append], and .QU [Quit]
control ~."ords, prov i des an easy and
flexible mechanism for producing

simple tables, as demonstrated in
the example below.

Example:

In this example, a table is generated
using two files. One file contains a
single line that defines a table format
and contains symbolic names for the
table entries. The other file contains
.SE [Set Symbol] control words to
define the values of the actual entries
in the table. Thi s method of generati ng
tables allows the format of a table or
the contents of the table to be sepa
rately altered or updated.

Consider the following
files.

Fi Ie: TABLE

.tb 3M 21M

.cs 2 on

.cs 1 ignore

.sp 2

.fo off

.bx 119M 8:$cl

.se bxoff=

.cs 2 ignore

.cs 2 off

two

. i m tabl sym
&$tab.8:state.&$tab.&capital
.bx &bxoff
.cs 1 on
.fo on
.cs 2 include
.sp 2
.ef

SCRIPT

228 Document Composition Facility: User's Guide

.cs 1 off

.ap table

File: TABLSYM

.se state =

.se capital

.ef

.se state =

.se capital

.ef

.se state =

.se capital

.ef

.se state =

.se capital

.ef

.se state =

.se capital

.ef

.se state =

.se capital

.se bxoff =

'STATE'
= 'CAPITAL'

'Alabama'
= 'Montgomery'

'Alaska'
= 'Juneau'

'Arizona'
= 'Phoenix'

'Arkansas'
= 'Little Rock'

'California'
= 'Sacramento'
'OFF'

.cs 1 include

Now, when the command "SCRIPT TABLE" is
issued, the table of state capitals
will be generated. Each time the file
TABLSYM is imbedded, it is read start-

.EM [EXECUTE MACRO]

;ng with the input line following the
.EF that ended the last imbed. Each
group sets new value.s for the symbols
"state" and "capi tal". The IClst time
TABlSYM is imbedded, the control word
. CS 1 INCLUDE is encountered. Thi s
allows the .EF control word in the
parent file to be recognized, terminat
ing the table generation. The symbol
"bxoff" is set to the l>Jord "OFF", so
that the last .BX control word will end
the box. The symbol "bxoff" was ori
ginally set to null, so that all the
.BX control words before the last mere
ly repeat the same box definition. The
actual table looks like this:

STATE CAPITAL

Alabama Montgomery

Alaska Juneau

Arizona Phoenix

Arkansas Little Rock

California Sacramento

The .EM [Execute Macro] control word is used to cause SCRIPT/VS to execute the
given line as a macro line even if there is a control word with the name given, and
macro SUbstitution is OFF .

• EM

Where:

macro 1; ne is an input 1 i ne that
invokes a SCRIPT/VS macro.

Notes:

• Use the .EM control word whenever
you want to cause SCRIPT/VS to exe
cute a macro when macro substi
tution is OFF. The .EM control word
is useful when a control word must
be replaced with a macro of the
same name and macro substitution
cannot be turned on.

• If the .EM control word specifies a
macro for which no valid 'macro
defi ni t ion exi sts, it is treated as
an invalid control word, even if
there is a control word of that

•

name.

The control word modifier provides
an implied .EC [Execute Control]
function, and also prevents a con
trol word line from being scanned
for control word separators. If you
l>Jant to prevent a macro 1 i ne from
being scanned for separators, you
can use the control word modifier
for the .EM control word:

. 'EM . mymac A; B

The control word that is modified
here is .EM, and this usage allows
the macro 'mymac' to be executed,
while preventing the data for the
macro (A;B) from being misinter
preted as containing a control word
separator.

Chapter 21. SCRIPT/VS Control Word Descriptions 229

.EP [EVEN PAGE EJECT]

Use the .EP [Even Page Eject] control word to cause either one or two page ejects,
such that the new page is even-numbered, regardless of whether the current page is
even- or odd-numbered.

.EP ON
OFF]

Where:

ON specifies that subsequent text is
to be printed only on
even-numbered pages. Odd-numbered
pages are left blank, except for
top and bottom titles, if any.

OFF resumes processing so that text
appears on odd- and even-numbered
pages .

• ET [EVEN PAGE TOP TITLE]

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.PA EVEN [ONIOFF].

The .ET [Even Page Top Title] control word saves a specified title line in a stor
age buffer for possible future use. This title may be used at the top of the cur
rent page, if it is even-numbered, and each subsequent even-numbered output page.

.ET [n] /partl/part2/part3/

Where:

n is the number of the top title
line to be set. The number may
be from 1 to 6, and if it is
omitted, 1 is assumed. The six
possible title lines are the
same for top titles and bottom
titles. Bottom titles are num
bered from bo ttom to top; top
titles are numbered from top to
bottom. Therefore, "even bot
tom title 1" sets the same stor
age buffer as "even top title
6." See the discussion of the
. HS [Head; ng Space] control
word for information on how to
allocate space on your output
page for top titles.

part! is the portion of the title to
be left justified.

part2 is the portion of the title to
be centered between the left and
right margins.

part3 is the portion of the title to
be right justified.

/ is any character that does not
appear in partl, part2, or
part3.

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.RT [Running Title]. See the dis
cussion of the .RT control word for
further information about running
titles, including those for the top
of even pages.

. '230 Document Composition Facility: User's Guide

.EZ tEASYSCRIPT]

EasySCRIPT is an early implementation of GMl that existed in SCRIPT/370. The .EZ
[EasySCRIPTJ control word provides automatic formatting functions used by
EasySCRIPT. These functions are available through a set of EasySCRIPT "tags" or
through the .EZ control word directly. The EasySCRIPT tags are symbols that sub
stitute to the appropriate .EZ control word. They are not true GML tags; they are
delimited with the ampersand (&), not the GMl delimiter (:). EasySCRIPT tags are
included in SCRIPT/VS to allow documents already marked up with them to be proc
essed by SCRIPT/VS .

• EZ (ON [hcadnuml }
(OFF }
(function line }

Where:

ON initializes the EasySCRIPT
tags that provide the
EasySCRIPT numbering, para
graphing, and heading func
tions. The names of the tags
a re the same a s the pa ram
eters of the .EZ control word
that provide the associated
function. ON also switches
the head level definitions
from the standard ones to
another set used only while
EasySCRIPT is in effect. The
.DH [Define Head Levell con
trol word operates on which
ever set of head levels
(standard or EasySCRIPT) is
currently in effect.

headnum is the decimal number of the
last heading that would have
been used. EasySCRIPT uses
this number to set the count
er it uses for numbered
headings. If not specified,
0.0.0.0 is assumed. If you
specify &xref, EasySCRIPT
resumes numbering where it
left off when .EZ OFF was
last processed. (&xref i s
the symbol EasySCRIPT uses
to keep track of the current
headi ng number.)

OFF cancels the EasySCRIPT tags,
so that they are not recog
nized by SCRIPT/VS. OFF also
switches the head-level
definitions back to the
standard set.

function is the name of the EasySCRIPT
function to be invoked. The
line of text data that fol
lows the function name is
processed by the built-in
function requested. The
functi ons are summari zed
below. The names of the func
tions are case sensitive.
For example, there are two
different bulleted list
functions: the "B" function,

line

in uppercase, starts a regu
lar bulleted item, and the
"b" funct ion, in I owerca se,
starts a sub-bulleted item.

is an input line of data. It
must be separated from the
function name by at least one
blank.

Notes:

• EasySCRIPT functions provide a
fast, convenient way of formatting
text and documents, particularly
those that require decimal number
ing. EasySCRIPT provides automatic
numberi ng for headi ng levels and
lists, if requested.

•

•

•

The names of the EasySCRIPT
functions are the same as the names
of the tags set up by ".ez on". For
example, the "N3" function identi
fies a numbered list item at level
3. This function can be invoked
with the control word

.ez N3 text of the numbered item

or wi th the tag

&N3.text of the numbered item

but the latter is enabled only
after .EZ ON has been processed.

The symbol "&xref" contains the
entire number of the current head
ing level, when EasySCRIPT's auto
matic numbering scheme is used. The
symbols "&xrefl", "&xref2",
"&xref3", and "&xref4" contain the
components of this number. For
example, if "&xref" has the value
"1.0", then "&xrefl" will have the
value "1", and "&xref2" will have
the value "0".

The EasySCRIPT funct ions are
summarized below. Note the differ
ences in the uppercase and lower
case versi ons of a funct i on name:

Chapter 21. SCRIPT/VS Control Word Descriptions 231

EasySCRIPT Functions

Hx Begins a decimal numbered
heading of level x (1
through 6).

hx Begins an unnumbered heading
of level x.

P Begins a major paragraph by
resetting the current
indention.

p Begins a minor paragraph at
the current indention.

Nx Begins a numbered item of
level x (1 through 4).

nx Begins an unnumbered item of
level x (1 through 4).

B Begins a bulleted item.

b Begins a sub-bulleted item.

toc Generates a table of con
tents .

• FM [FOOTING MARGIN]

Use the .FM [Footing Margin] control word to specify how much space to skip
between the last line of text, on a full page, and the bottom titles, overriding
the initial setting established for the device.

v
+v
-v]

Where:

v specifies the amount of space to be
skipped between the last line of
text and the footi ngs (bottom
titles). If +v or -v is specified,
the current value of the footing
margin is incremented or decre
mented. If no . FM control word is
used in the file, or if the .FM
control word is used with no oper
and, the initial value is used. The
minimum value that may be specified
for the footing margin is O. If a
negative result is calculated for
the footing margin, the value will
be set to zero, and a message will
be issued. The maximum value that
can be used for the footing margin
is equal to the bottom margin (.BM)
minus the footing space (.FS).

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

• The bottom titles are placed a
specified amount of space below the
last line of text. The location of
the last line of text is explicitly
defined by the .BM [Bottom Margin]
control word, whether that line is
actually filled or not.

• This control word does not cause a
break.

• The .FM control word will take
effect on the page after it is
encountered.

Example:

.fm .5i

A half-inch of space is left between
the last line of text and the running
bottom ti tIes, if any have been
defined.

232 Document Composition Facility: User's Guide

.FN [FOOTNOTE]

Use the .FN [Footnote] control word to set aside up to ten lines of formatted out
put text to be positioned at the bottom of the current page, if possible, or at the
bottom of the next page.

.FH { ON J
{ LEADER J
{ OFF J

WherEL:.

ON marks the beginning of the
material in the footnote.

LEADER allows the specification of up
to 10 lines of leader to be
placed at the top of the foot
notes on the page to separate
the footnotes from the text of
the page. The initial leader is
a space of one line and 16 hor
izontal box characters.

OFF marks the end of the footnote
materi al.

Notes:

• .FN ON starts a footnote. All
lines until the subsequent .FN OFF
control are put in the footnote. If
.FN OFF 15 encountered when no
footnote is in process, it is
ignored. If the maximum number of
1 i nes is exceeded, a message is
1 ssued, and the rema in i ng 1 i nes
until .FN OFF are discarded.

• The fi rst footnote ina page is
automatically started with a lead
er which may be redefined with .FN
LEADER and .FN OFF.

• The .FN control word does not act
as a break. The footnote is
considered to fit on this page if
the number of lines left is suffi
cient to accommodate the footnote
itself plus the leader. To ensure
that your footnote and the callout

•

•

•

•

appear on the same page, put the
footnote itself before the
callout. Since the footnote does
not cause a break, the sentence
containing the callout may be
interrupted for the footnote
itself without disrupting the for
matted output.

A keep and a footnote may not be in
process at the same time. The con
trol words that are disallowed in a
keep are also disallowed in a foot
note. A footnote in process is ter
minated by any disallowed control
word.

A footnote does not have any
automatic offset. You must include
an OFFSET (.OF) control word if you
want the footnote offset.

Footnotes will run across the page
in a single column. The line length
may be changed in the footnote.

When the footnote is started,
offsets are cleared, and indention
is set to the current .IN [Indent]
value, without any added .OF [Off
set] value. The column width is set
to the 1 i ne length. Any changes
within the footnote to the
indention, font, or certain other
values in the formatting environ
ment, are automatically restored
when the footnote ends, to the val
ues in effect before the footnote
started. See Figure 32 on page 315
for a list of all the values that
are automatically saved and
restored around a footnote.

Chapter 21. SCRIPT/VS Control Word Descriptions 233

.FO [FORMAT MODE]

Use the .FO [Format Mode] control word to cancel or restore concatenation of input
lines and justification of output lines. The .FO control word also controls wheth
er lines may be allowed to extend beyond the column boundary.

.FO

Where:

ON

OFF

LEFT

[

ON 1 [EXT END 1 OFF FOLD
LEFT TRUNC
RIGHT
CENTER

restores defaul t SCRIPT /VS
formatt i ng, i ncludi ng both
justification and concat
enation of lines. If the .FO
control word is used with no
operands, ON is assumed.

cancels concatenation of input
lines and justification of
output lines. Subsequent text
is printed "as is." If an input
line is longer than the defined
line length, the line may be
allowed to extend beyond the
right margin, and no message
will be issued.

specifies that input lines are
to be concatenated but not jus
tified. The resulting output
lines are left-aligned in the
column. This format is some
times called "ragged-right."

RIGHT specifies that input lines are
to be concatenated but not jus
tified. The resulting output
lines are right-aligned in the
column.

CENTER specifies that input lines are
to be concatenated but not jus
tified. The resulting output
lines are centered in the col
umn.

FOLD

TRUNC

specifies that if an input line
will not fit in the output col
umn (i n . Fa OFF mode), it is to
be broken and the remainder
placed on the next output
line(s). The line is broken at
the last character that will
fit on the column.

specifies that in .FO OFF mode,
the line is to be truncated at
the last character that wi 11
fit in the column.

EXTEND specifies that in .FO OFF mode,
if a line will not fit in the
column, it is allowed to extend
beyond the column width. This
is the initial setting.

Initial Setting: ON EXTEND

Default: ON

Notes:

• The .FO control word is a shorthand
way to specify the two control
words .CO [Concatenate Mode] and
.JU [Justify Mode]. The effect is
the same as if these two control
words were specified, except that
the .FO control word will end cen
tering or right adjust mode whereas
the .CO and .JU control words will
not. When format mode is in effect
(.FO ON), lines are formed by
shifting words to or from the next
line (concatenation) and padding
with extra space to produce an
aligned right margin (justifica
tion).

• Thi s control word acts as a break.

•

•

•

Even when format mode is in effect,
a line may exceed the current col
umn width. This can happen if there
is only one word on the line and
this word is longer than the column
width, and also if a word follol.-JS a
tab and spans the right column
boundary. The setting of the TRUNC,
FOLD, or EXTEND option controls how
these situations are handled.

Note that the TRUNC, FOLD, and
EXTEND options may be specified as
the only options of the .FO control
word. In thi s case, the current
formatting mode will be unchanged
although a break will be done. For
example, if .FO CENTER TRUNC is
specified, and this is later fol
lowed by .FO EXTEND, the output
will continue to be centered.

Options may be specified in any
sequence. If contradictory options
are specifed, only the latest one
LoJi 11 be used.

Examples:

1. . fo off

Justification and concatenation

234 Document Composition Facility:. User's Guide

are
completed for
the preceding line or lines,
but follo~o.Ji ng
lines are
typed exactly as they appear
in the file.

2. . fo

Justification and formatting are
resumed with the next input line.
Output from this point on in the
file is justified to produce
aligned left and right margins on
the output page.

3. . fo trunc

If the current formatting mode is
OFF, any lines that are longer than
the current column width are trun
cated at the column boundary. If

.FS [FOOTING SPACE]

the current formatting mode is
RIGHT or CENTER, any words that
would extend past the right column
boundary are truncated. If the cur
rent formatting mode is ON, the
TRUNC option becomes meaningful
only if the first word on a line or
the first word after a tab would
extend beyond the column width.

4. . fo center fold

Lines are concatenated and cen
tered, and any lines that are

longer than the column width are
folded onto the next line. Note
that the FOLD mode of operation
will continue in effect until

explicitly changed. For example,
another .FO control word with only
the OFF option will leave FOLD in

effect.

The .FS [Footing Space] control word allocates space from the bottom margin area
for running bottom titles.

Where:

n
+n
-n]

n is the number of bottom title lines
you want to appear on this and all
subsequent output pages. This num
ber may be from 0 to 6. If no num
ber is given, 1 line is assumed. n
must be an integer from 0 to 6.
This control word does not accept
sp&ce units. This number must be
less than the bottom margin (.BM)
minus the footing margin (.FM). If
you specify +n or -n, the current
value of the footing space is
incremented or decremented
accordingly. If the net result is a
negative number, zero is assumed
and a message is issued.

Initial Setting: 1

Default: 1

Notes:

• The .FS [Footing Space] control
word allocates space from the bot
tom margin for bottom titles. You
only need to use this control word
if you want more than one bottom
title in your document. If the

•

•

•

bottom margin is not big enough to
accommodate the footing space plus
the footing margin, an error mes
sage is generated.

This control word does not cause a
break, and takes effect on the page
after it is encountered.

The running bottom title control
words merely cause a title line to
be saved in a storage area for
future use. Only the first bottom
title (bottom title 1) is used at
the bottom of output pages by
default. To get more than one
title at the bottom of your format
ted output pages you must do two
things! define the titles using the
.RT [Running Title] control word,
and then allocate space for the
titles by using the .FS control.

If you do not want any bottom
titles at all, the best way to
accomplish this is to define the
footing space as 0 (.FS 0). This
is more efficient than setting the
bottom titles to null (.RT B 1111),
because SCRIPT/VS does not have to
process any titles to determine
that none are wanted.

Chapter 21. SCRIPT/VS Control Word Descriptions 235

Example:

If you want three running bottom titles
in your document, you could use the
following sequence:

.rt b 3 /Chapter 4//&/

.rt b 2 ////

.rt b 1 $$&SYSMONTH./&SYSYEAR.$$

.GO [GOrO]

At this point, only bottom title 1, the
one nearest the bottom of the page, is
used on formatted output pages because
the default footing space of 1 is still
in effect. Now that the three title
lines have been saved, the following
control word causes SCRIPT/VS to print
all three:

. fs 3

The .GO [Gotol control word causes SCRIPT/VS to branch to another part of the
SCRIPT/VS input file or macro .

• GO label

Where:

label is the name of a line set
elsewhere in this file or macro
using the ... [Set Labell con
trol word.

Notes:

•

•

Use the .GO control word to branch
to another place in your SCRIPT
file or macro. If the label desig
nated on the .GO control word is
not defined elsewhere in the file
or macro, an error message is
issued, and processing terminates.

This control word does not cause an
automatic break. The input line
preceding the .GO control and the
line at the label designated in the
.GO control word are processed as
though they were two sequential
lines from the SCRIPT file.

• Every .GO control word must refer
to 'a label def i ned wi th the .•.
(Set Labell control word; but you

•

may have more than one .GO refer
ri ng to the same label.

.GO is particularly useful when
performed condi ti onally as the
subj ect of an I F statement. See
the discussion of the .IF control
word.

Example:

Suppose you had a SCRIPT file that was
designed to recognize the variable
SYSVAR5. In this example, if SYSVAR5
is set to SMALL, you want SCRIPT/VS to
format the output at 36 lines per page
and 4.2 inches per line. Otherwise,
the default values are to be used.
This could be done with the following
control words:

.if &SYSVAR5 ne SMALL .go default

.pl 36

.11 4.21

. .. defaul t
(etc.)

236 Document Composition Facility: User's Guide

.HM [HEADING MARGIN]

The .HM [Heading Margin] control word specifies the amount of space to be skipped
between the running top titles and the first line of the text area, overriding the
initial value established for the device.

Where:

v specifies the amount of space to be
skipped after the top title lines.
If +v or -v is specified, the cur
rent value of the heading margin ;s
incremented or decremented. If the
calculated value of the heading
margin is found to be negative, the
value is set to zero and a message
is issued. The maximum value that
may be set for the heading margin
is equal to the top margin (.TM)
minus the heading space (.HS). If v
is not specified, the default value
for the logical device is restored.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

• HN [HEADUOTE]

Hotes:

• The last running top title line is
placed a specified amount of space
above the first line of text. If
no .HM [Heading Margin] control
word is included in the file, the
default value is used, as deter
mined for the logical output
device.

• This control word does not cause a
break, and will take effect on the
page after it is encountered.

Example:

.hm 3

Three lines are left between the run
ning title lines and the first line of
text. If a top margin of 6 lines is in
effect, the last top title is printed
two lines from the top of the page,
followed by three more blank lines (the
heading margin), and then the text .

This control word is provided for compatibility with SCRIPT/370 Version 3. The
same function is provided by the SCRIPT/VS control word .RH [Running Heading].

Chapter 21. SCRIPT/VS Control Word Descriptions 237

.HS [HEADING SPACE]

The .HS [Heading Space] control word allocates space from the top margin area for
running top titles.

Where:

n
+n
-n]

n is the number of top title lines
you want on each subsequent output
page. This number may be from 0 to
6. If no number is given, 1 is
assumed. The numb~r must be an
integer from 0 to 6. This control
word does not accept space units.
The size of the top margin (.TM)
minus the heading margin (.HM) must
be large enough to accommodate the
heading space specified. If +n or
-n is specified, the current value
for the heading space is incre
mented or decremented. If the net
result is less than zero, the head
i ng space is set to zero, and an
error message is issued.

Initial Setting: 1

Defaul t: 1

Notes:

• The .HS [Heading Space] control
word allocates space from the top
margin for running top titles. You
need to use this control word only
if the defaul t value of one top
ti tIe is not adequate for your doc
ument. If the top margi n is not
big enough to accommodate the head
ing space plus the heading margin,
an error message is generated.

• This control word does not cause a
break, and takes effect on the page
after it is encountered.

•

•

The .RT [Running Title) control
word merely causes a title line to
be saved ina storage area for
future use. Only the first top
title (top title 1) is used at the
top of output pages by default. To
get more than one title at the top
of your formatted output pages you
must do two things: define the
titles using .RT, and then allocate
space for the titles by using the
.HS control word.

If you do not want any top titles
at all, the best way to accomplish
this is to define the heading space
as 0 (.HS 0), This is more effi
cient than setting the top titles
to null (. RT T ////), because
SCRIPT/VS does not have to process
any titles to determine that none
are wanted.

Example:

If you want three running top titles in
your document, you could use the fol
lowing sequence:

.rt t 1 $$&SYSMONTH./&SYSYEAR.$$

.rt t 2 ////

.rt t 3 /CHAPTER 4//&/

At this point, only top title 1 will be
used on formatted output pages, because
the default heading space of 1 is still
in effect. Now that the three title
lines have been saved, the following
causes SCRIPT/VS to print all three:

. tm 8

.hs 3

238 Document Composit;on Facility: User's Guide

.HW [HYPHENATE WORD]

Use the .HW [Hyphenate Word] control word to specify how a single occurrence of a
word should be hyphenated if needed .

• HW text-word

Where:

text-word is the word that you want to
hyphenate. It should be
entered with hyphens show
ing where you want it bro
ken.

Notes:

• The .HW control word is a separate
function from the hyphenation
facility; it works regardless of
whether hyphenation 1S ON or OFF
(via the .HY [Hyphenate] control
word) .

• The .HW control word does not
define how a word should be hyphen
ated every time it is encountered.
It specifies how to handle that

.HY [HYPHENATE]

•

word for this particular instance
only. If you want a word hyphenated
every time it occurs (if hyphen
ation is in use), then you must
define hyphenation points for the
word in the dictionary using the
.DU control word.

If, while SCRIPT/VS is formatting
the line, it is not necessary to
break the word, the hyphens are
compressed out, and they do not
appear in the output. If you want
to indicate a hyphen that should
remain in a "compound-word," use
two hyphens:

This is a
.hw com-pound--word
that may be broken in
either of two places.

Use the .HY [Hyphenate] control word to cause automatic hyphenation to be turned
on and off.

.HY (ON 1
(NOADD 1
(OFF 1
(SUP 1

SET (THRESH J n
(MINPT 1

Where:

ON begins automatic hyphenation
of SCRIPT/VS output lines.

NOADD

OFF

SUP

specifies that the addenda
dictionary created using the
.DU control word is not to be
searched for words to be
hyphenated.

causes hyphenation
turned off.

to be

causes hyphenation to be
suppressed until the next
space. If hyphenat ion i s OFF,
then SUP does nothing, but if
it is ON, then SUP turns it off
temporarily. It automatically
turns on again the next time a
line space is generated (as a
result of .SP, .SK, head-level
control words, or a page

eject). Thi s allows you to sup
press hyphenation at the end of
a paragraph without having to
turn it off and then on expl i c
itly.

SET indicates that you are going to
override one or both of the
default hypenation values,
THRESH and MINPT.

THRESH n is a character count
i nd i cat i ng the hyphenat ion
threshold. When SCRIPT/VS is
formatting a line, at least the
number of characters specified
must remain before SCRIPT/VS
attempts hyphenation. The ini
tial value of THRESH is 7, and
the minimum is 2.

MIHPT n is a positive number
indicating the minimum hyphen
ation you want to allow. The

Chapter 21. SCRIPT/VS Control Word Descriptions 239

Notes:

initial value of MINPT is 4,
which means that the first
hyphenation point in a word
must be at least four charac
ters beyond the beginning of
the word.

• When SCRIPT/VS is formatting text,
and the next word does not fit on
the line, it ordinarily moves the
word onto the next output line .

• HO - .H6 [HEAD LEVEL 0 - 6]

When hyphenation is in effect,
SCRIPT/VS attempts to break the
word into two pieces: the longest
piece that can fit on the line, and
the remainder. If there are at
least "THRESH" spaces left on the
line, the word is examined by the
hyphenator, which returns a number
that is less than the number of
remaining spaces. If this number is
greater than ~lINPT, SCRIPT /VS
breaks the word after that number
of letters.

The control words .HO through .H6 automatically format topic headings in SCRIPT/VS
output. The definition of a particular head level may also result in an entry in
the table of contents for that heading. The definition of a head level may be
changed with the .DH [Define Head Level] control word or with the .DM [Define Mac
ro] control word .

. Hn [text]

Where:

n is the number of the head level
from 0 to 6.

text is the data to be formatted as a
subject head and optionally
placed in the table of contents.

Notes:

• The . Hn cont ro 1 words prov ide
several automated functions for
you. They can provide a topic head
ing that is underscored or capital
ized with a specified number of
skips before it and line spaces
after it. They can cause the unfor
matted topic head to be saved,
along with the current page number
and revision code character, in the
table of contents utility file for
automatic table of contents gener
ation. These functions may be rede
fined using the .DH [Define Head
level] control word.

•

Whether you use the default values
or redefi ne them, the topi c head
that is generated gives you the
function of a keep for the size of
the space after the heading plus 3
lines. This keep is of the form
".KP v + v". See the discussion of
the .KP [Keep] control word for
information about which forms of
keep may cancel or supersede this
form.

These control words
breaks.

all cause

•

•

•

•

If a head level control word calls
for an entry in the table of con
tents, the text goes into the table
of contents as entered. You control
how the table of contents entry is
capitalized by how you enter the
associated head level control word
text.

See Figure 31 on page 314 for
information about the default and
EasySCRIPT default head-level
definitions.

The head-level functi ons are
actually provided by internally
generated macros. The names of the
macros are DSMSTDHO - DSMSTDH6, or,
when EasySCRIPT is in effect,
DSMEZSHO - DSMEZSH6. You can dis
play the current definition of any
of these macros with the .IT [Input
Trace] control word. For example,

.it snap dsmstdh3

causes the definition of the macro
for .H3 to be displayed. The .DH
[Defi ne Head level] control word
operates by changing these macros.
Note that the macro for a partic
ular head level does not exist
until it has been invoked for the
first time with the associated .Hn
control word or defined with the
.DH control word.

If you wanted to defi ne a head
level, such as .H3, to include
function not within the scope of
the .DH [Define Head level] control
word, there are two different meth
ods you could use:

240 Document Composition Facility: User's Guide

1. Yau could define a .H3 macro
that would provide all the
function you wanted for .H3.
Your macro would then operate
whenever .H3 was encountered
in the input file, assuming
macro substitution was ON.

2. You could augment the function
of the existing .H3 by adding
or deleting lines from the
DSMSTDH3 macro, which ordinar
ily provides the function for
. H3. The function of the .H3

.IF [IF]

control word is merely to call
the DSMSTDH3 macro, even if
macro substitution is OFF. If
you do this, make sure the
D S ~1 S T D H 3 mac r 0 has bee n i n i -
tially defined by issuing ".DH
3", before attempt i ng to
change it.

In either case, see the discussion
of the . DM [Defi ne Macro] contt'ol
word for information about defin
ing macros .

The .IF [If] control word allows a SCRIPT/VS input line to be processed condition
ally.

.IF

Where:

compl

comp2

test

co~~pl test cOIt1p2 telrset

SYSPAGE test { EVEN }
{ ODn }

SYSOUT test { PRINT }
{ TER~1 }

is any word or number of eight
or fewer characters to be used
as the first comparand. This
comparand may be the value of
a set symbo I.

is any word or number of eight
or fewer characters to be used
as the second comparand. It
too may be the value of a set
symbol.

is a one or two character code
that tells SCRIPT/VS how to
determine whether the compar-
i son between the two
comparands is true. The
following codes are recog
nized by SCRIPT/VS:

Code

eq or =

ne or =

gt or >

It or <

ge or >=

Ie or <=

Meaning

equals

is not equal to

is greater than

is less than

is greater
equal to

is less
equal to

than

than

or

or

is any valid SCRIPT/VS input
line. It may be a control word
or text. If the condition is
true, then the target line is

target

target

SYSPAGE

SYSOUT

processed next, with the
first nonblank character
after the sEcond comparand
treated as the first position
of the subject line. If the
condi t ion is not true, the
target line is ignored, and
processing continues with the
input line that follows the
.IF control line.

is a special .IF keyword that
tests whether the p2ge that
SCRIPT/VS is currently proc
essing is an even- or
odd-numbered page.

SYSPAGE may have only one of
the two values, EVEN or ODD.

is a special .IF keyword that
tests whether SCRIPT/VS out
put is being directed to the
offline printer (if the PRINT
option has been specified),
or to the terminal (if the
TERM option, the default, is
in effect).

SYSOUT may have only one of
the two values, PRINT or TERM.

The SYSOUT keyword is pro
vided for compatibility with
SCRIPT/370 Version 3. In
SCRIPT /VS, there is more
variety possible in output
formatting than can be deter
mined with this keyword. The
SCRIPT/VS system symbols
'&$LDEV' and '&$PDEV' may be
used to determine the actual

Chapter 21. SCRIPT/VS Control Word Descriptions 241

logical and physical devices
for which formatting is being
done.

Notes:

•

•

•

•

This control word provides a
powerful conditional processing
capability to SCRIPT/VS. The .IF
and .GO control words can in some
cases replace the .CS [Conditional
Section] control word.

The .IF control word itself does
not cause a break; the target con
trol word, if it is processed,
might.

Two special sets of comparands are
recognized by the IF processing
routine. These are SYSPAGE
EVEN/ODD and SYSOUT PRINT/TERM.
You may use SYSPAGE to determi ne
whether the current page is even
or odd-numbered. The SYSOUT
keyword is provided for compat
ibility with SCRIPT/370 Version 3,
as noted above. When you use these
two spec i a 1 compa rands, you mu st
capitalize the keywords; "SYSPAGE"
i s recogn i zed, bu t "syspage" i s
not. You may use any of the test
codes wi th SYSPAGE and SYSOUT:

.if SYSPAGE eq EVEN (do this)

is the same as

. if SYSPAGE ne ODD (do thi s)

If any value on the . IF control
word line exceeds 8 characters
after substitution, an error
message is issued.

Examples:

1. The subj ect of an I F may be another
IF. Suppose you wanted to imbed a
file called ABC if it is after noon
and the file is being formatted in
printer format. You could use the
following:

.se H = &SYSHOUR

.if &H ge 12 .if SYSOUT eq PRINT
. im ABC

This is the same as saying, "IF the
hour is 12 or more, AND IF the out
put is in printer format, THEN
imbed the file; OTHERWISE, go on to
the next line."

2. I f you want the subj ect line to
contain more than one control word,
you should use a special method.
Since .IF is a control word, any
control word separators on the line
are detected before the .IF is
processed. Thus, a control word in
the form":

. if &sval gt 32 .sk 5;.im fig7

will process only the .sk 5 condi
tionally. The .IM control word is
treated as a second control line.
The following method can be used to
get more than one control word to
be conditionally processed:

.if &sval gt 32 .cw !;
.cm ?sk 5?im fig7?cw

As in the previous example, only
the part before the; is processed
conditionally. The remainder of
the line is a .CM [Comment] line.
If the condition is not true, the
.CW control word is not processed,
and the remaining line is treated
as a comment. If the condition is
true, the .CW is processed, and the
new control word separator is
recognized to allow the remaining
1 i ne to be broken up into four
active control words.

3. If there is a possibility that one
of the comparands may be a null
symbol, another technique should
be used:

· if X&answer eq Xyes (do thi s)

Now, if the symbol "answer" is
null, the line will become:

· if X eq Xyes (do thi s)

Otherwise, if you had not included
the Xs, a null symbol could shift
the fields over like this:

· if .eq yes (do thi s)

and "yes" is not a recognized con
dition. Note that the symbol ;s
null only if so set by the . SE or
.RV control words.

4. Although the .IF control word can
only ·compare tokens of eight char
acters or fewer, the INDEX function
of the .SE [Set Symbol] control
word can be used in conjunction
with .IF to test character strings
longer than eight characters.
Consider the following macro defi
nition:

.dm t() /.su off

.dm t() /.se *Ll = &L'&*l

.dm t() /.se *L2 = &L'&*2

.dm t() /.se *t = INDEX &*1 &*2

.dm t() /.su on

.dm t() /. if &*Ll HE &*L2 .se *t=O

.dm t() /. if &*t EQ 1 .ty TRUE

.dm t(> /. if &*t NE 1 .ty FALSE

The local symbol "&*t" will be set
to 1 if the two str i ngs are the
same length and if the second
string is a substring of the first,
starting with the first character.
You can wri te such a macro to do
whatever you want if the two
strings are (or are not) equal .

242 Document Composition Facility: User's Guide

Note that in this example, you must
invoke the macro with the two
strings in single quotes to allow
an enti re stri ng to be treated as a
single token to the macro:

elL [INUENT LINE]

.t 'string l' 'string 2'

If you don't use quotes, the macro
processor will separate the line
into tokens using blanks as delim
iters.

Use the .IL [Indent line] control word to indent the next output line .

• lL

Where:

h specifies the amount of horizontal
space to shift the next line from
the current margin. +h specifies
that text is shifted to the right,
and -h shifts text to the left.

Initial Setting: 0

Default: 0

Notes:

•

•
•

The .Il control word provides a way
to indent only the next output
1 i ne. The line is shi fted to the
right or the left of the current
margin (which includes any indent
or offset values in effect).

Thi s control word acts as a break.

The .IL control word and the .UN
[Undentl control word are oppo
sites; thus, the control words .UN
5 and .Il -5 are equivalent.

•

•

The .IL control word may be useful
for beginning new paragraphs.

When successive .IL and .UN control
words are encountered wi thout
intervening text, or when positive
or negative increments are speci
fied for .IL control words entered
without intervening text, the
indent amount is newly set for the
next output line, and any unused
. IL or . UN i scancelled. Thus the
lines

. i 1 4

. i 1 6m

result in the next line being
indented 6 em-spaces.

Example:

. i 1 3m

This line is preceded by the control
word .il 3m, and it has enough text to
show how the first 1 i ne i s indented
differently from subsequent lines.

Chapter 21. SCRIPT/VS Control Word Descriptions 243

.IM [If1!ED]

Use the .IM [Imbed] control word to process the contents of a specified file at
this point in the current file. Processing continues as though the material in the
imbedded file were part of the current file.

.IM file-id [tokenl ••• token14]

Where:

file-id is a on8- to eight-character
internal SCRIPT/VS name for
the file to be imbedded. This
name can be associated with a
real file or data set name
with the .00 [Define Data
File-idJ control word. If no
. 00 has been executed for the
name, a real name is built by
SCRIPT/VS from the given
fi le-i d, usi ng establ i shed
rules for the environment in
whi ch it is operati ng. A
description of the file-;d in
the various environments in
which SCRIPT/VS operates is
given in "Chapter 2. Using the
SCRIPT Command" on page 13.

tokens are positional values with a
maximum length of 8 charac
ters to be passed to the file
to be imbedded. The first
token (word) becomes the val
ue of the symbol &1, the sec
ond token becomes the value of
the symbol &2, and so forth.
The symbol &0 contains the
number of tokens that were
passed; up to 14 may be speci
fied.

Notes:

• Any SCRIPT/VS control word or text
may be in an imbedded file. Files
may be imbedded to a maxim~m nest
i ng level of ei ght, and no more
than 16 files may be active at one
time. If you have many files that
are open becau$e of the .EF [End of
File] control word, the nesting
limit of a may be reduced. After
.EF is processed, that file is left
open, but it is not in the list of
currently imbedded files. The file
is one of the 16 that can be open,

but not one of the 8 that can be in
the imbed 1 i st.

• The .IM and .AP control words
perform similar functions, but .IM
allows the contents of a second
file to be inserted into the proc
essing of an existing file, rather
than appended to the end of it .
Imbedding may be used to insert
standard sets of control words at
desired spots in a file, as well as
for many other purposes.

• The symbols &0 through &14 are
reset whenever an .1M or .AP con
trol word is processed. Whatever
tokens are not given on a .1M line
a re reset. I f you want to 1 eave
token &1 unset but set token &2,
you may use a percent sign 00 in
place of the token.

Example:

· i m common chap4

The contents of the SCRIPT file whose
file-id is COMMON are inserted into the
processing sequence of the current
SCRIPT file; when the end of the COMMON
file is reached, processing of the cur
rent file resumes. The token "CHAP4" is
set as the value of the symbol "&1."
The file tOMMON might have in it anoth
er imbed in the form:

· i m &1

and thi s would be subst i tuted as:

• im chap4

A different file could contain the con~
trol word

· i m common CHAP5

so that & 1 in COMMON is subst i tuted
with CHAP5 instead.

244 Document Composition Facility: User'·s Guide

.IN [INDENT]

Use the .IN [Indent] control word to change the left margin displacement of
SCRIPT/VS output .

• IN

Where:

h specifies the amount of space to be
indented. If omi tted, 0 is assumed,
and indention reverts to the left
margi n. If you use +h or -h, the
current left margin is incremented
or decremented accordingly.

Initial Setting: 0

Default: 0

Notes:

• The .IN control word resets the
current left margin. This
indention remains in effect for all
foIl ow i n g 1 i n e s (i II c 1 u din g new
paragraphs and pages), unti 1
another .IN control word is
encountered. ".IN 0" cancels the
indention, and output continues at
the original left margin setting.

• The value of h represents the
amount of blank space left before
text. Thus, ". in. 5i" sets a left
margin of one half-inch, and the
text begins after this blank margin
area. The .TB [Tab Setting] and .OF
[Offset] control words work in a
simi lar manner.

•
•

Thi s control word acts as a break .

The .IN control word cancels any
.OF setting. Any .OF request can
cels the current offset, but leaves
the left margin specified by the
most recent .IN control word
unchanged.

• The value of the system symbol &$IN
reflects the composite net
indention for the next output line,
as controlled by .IN [Indent], .UN
[Undent], .IL [Indent line], and
.OF [Offset]. After a .OF control
word, &$IN changes only after the
offset has been triggered by the
next output line being finished or
by a .BR control word.

• Although .IN cancels the .OF
sett i ng, it does not cancel the
effect of .IL or .UN. An attempt to
set the indention to the left of
the real left margin or to the
right of the right margin results
in an error message, and all
indention is reset to zero.

Examples:

1 .. in 10

2. . in 0

AlI 1 i nes processed
after this request are
indented 10 cha racter
spaces from the left.
This indention continues
until another .IN con
trol word is encount
ered.

The effect of any current .IN and
.OF control words is cancelled, and
output is formatted flush left. Any
.UN [UndentJ cont~ol word, how
ever, is not cancelled by .IN O.

3. . un 0;. in 0

All left indehtion is reset.

Chapter Zl~ SCRIPT/VS Control W~rd Description$ 245

.IR [INDENT RIGHT]

Use the .IR [Indent Right] control word to change the right margin displacement of
SCRIPT/VS output .

• IR

Where:

h specifies the amount of space to be
indented. If omi tted, 0 is assumed,
and indention reverts to the right
column boundary. If you use +h or
-h, the current right margi n is
incremented or decremented accord
ingly.

Initial Setting: 0

Default: 0

Notes:

• The .IR control word resets the
current right margin. This
indention remains in effect for all
following lines (including new
paragraphs and pages), unti 1
another .IR control word is
encountered. ". IR 0" cancels the
indention, and output continues at
the original right margin setting .

• IT [INPUT TRACE]

• The value of h represents the
amount of blank space just before
the right margin.

• Thi s control word acts as a break.

Examples:

1. . i r .5 i

All lines processed after
this request are indented
one half-inch from the right
hand side of the column. This
indent ion cont i nues unt i I
another .IR control word is
encountered.

2. . i r 0

The effect of any .IR control word
is cancelled, and subsequent lines
are formatted to the right hand
margin.

The .IT [Input Trace] control word allows trace information about input lines to
be displayed at your terminal or written to the same file as error messages .

• IT ON
OFF
MAC
SUB
All
CTl [ew ew •••]
STEP
RUN
SNAP [name name ••• l

.

. .

Where:

ON traces macro and symbol
subst i tut ion, and any cont rol
word that has been specified pre
viously with CTl.

OFF terminates tracing.

HAC causes each line coming out of a
macro to be traced.

SUB causes each stage of symbol
substitution to be traced for
lines that contain symbols or GMl
tags.

ALL causes macro and symbol
substitution and all control word
lines to be traced.

246 Document Composition Facility: User's Guide

eTl causes the control words
specified to be traced before they
are executed. If no control words
are given with .IT CTL, then the
list of control words to be traced
is cleared. If some control words
are given, they are added to the
list. Nonexistent control words
may be added to the list without
causing an error, but they will
never be traced because they will
be detected as invalid control
words before tracing would be
done. The list remains intact when
.IT OFF is executed, and is
resumed if .IT ON is subsequently
executed.

STEP causes SCRIPT/VS to "single step"
through all control words that are
being traced. If .IT ALL is in
effect, all control words are
traced. Otherwi se, just those
control words specified with .IT
CTl are traced.

When . ITS T EP i sin effect,
SCRIPT/VS displays the control
word line, and then pauses to read
a line from the terminal before
executing it. The line you enter
at this point can simply allow the
control word execution to pro
ceed, or you can enter another
input line to be processed before,
after, or instead of, the traced
control word.

RUN cancels . IT STEP mode, whi Ie
allowing all tracing to continue.
(. IT OFF stops STEP mode, and also
stops tracing.)

SNAP displays the current definitions
for any symbol and macro that
exist by the name or names given.
If no names are given, the entire
symbol and macro table is dis
played. The SNAP is done without
changing any other tracing that
may be in effect.

Notes:

• All trace information is written
out as messages. If the MESSAGE
(DELAY) option of the SCRIPT com
mand is in effect, the trace infor
mation is written to the same
SCRIPT/VS utility file as error
messages.

• .IT STEP mode can only take effect
if messages (and trace informa
tion) are actually being displayed
at your interact i ve termi nal .
Thus, STEP mode is not available in
the batch environment or when the
MESSAGE (DELAY) opti on of the
SCRIPT command is in effect. When
SCRIPT/VS reads a line from the
terminal after tracing a control
word line in STEP mode, it may have
any of the following formats:

•

•

•

null line - continue process
ing

? - verifies who is reading
from the terminal. If you are
stepping through control words
and you are also using .TE
[Terminal Input], it's easy to
lose sight of which kind of
read is being done from the
terminal. While in .IT STEP
mode, the single character? is
recognized by the control
trace module and by the termi
nal input module, and the mes
sage "TERMINAL INPUT:" or
"CONTROL TRACE:" is displayed,
and another read i s done. If
the read comes from some other
source, such as .RV [Read Vari
able] or .RD [Read Terminal],
the? is taken as ordinary
data, just as it would be from
terminal input when not in .IT
STEP mode.

STK 'data line' - the data line
entered is stacked and proc
essed after the traced control
word has been processed

PRE 'data line' - the data line
entered is processed before
the traced control word (the
tracing is done before the con
trol word is actuallY proc
essed) .

REP 'data line' - the data line
entered replaces the traced
control word line, and is proc
essed instead of it.

'data line' - the data line is
treated like a data line
entered with the 'PRE'
keYL.Jord.

If the new line to be entered is
also a control word line that is
being traced, it will be traced
before being processed, giving
another opportunity to enter a
line. If the line entered causes
the original line to be reprocessed
later, it may be traced again.

The trace function is initiallY
OFF.

The SNAP pa rameter prov i des a
selective printout of all current
ly defined set symbols and their
values. It does not affect the
current ON/OFF status of the trace
control.

On all trace lines, the first three
characters indicate which type of
trace it is, as follows:

S symbol substitution trace

Chapter 21. SCRIPT/VS Control Word Descriptions 247

M macro substitution trace

C control word trace

*** symbol or macro SNAP line

If . IT ALL is in effect, control
word lines may be traced several
times. Each may be traced to show

.JU [JUSTIFY NODE]

the vari ous stages of symbol sub
sti tuti on, then traced aga; n as a
control word line after it has been
completely substituted. You can
tell which type of tracing a line
represents by the first three char
acters of the line.

Justification of output lines is one component function of line formatting. Justi
fication is turned ON or OFF by the .FO [Format Mode] control word or the .JU [Jus
tify Mode] control word. In general, the .FO control word is the preferred way to
control justification.

.JU

L~here :

ON
OFF]

ON restores right justification of
output 1 i nes. If nei ther ON nor
OFF is specified, ON is assumed.

OFF cancels justification of output
lines. If concatenation is still
in effect, .JU OFF results in rag
ged right output.

Initial Setting: ON

Default: ON

. KP [KEEP]

Notes!

• Concatenation and justification
are controlled by the .FO [Format
Mode] control word. Ragged right
output results from concatenation
ON and justification OFF. The con
trol word .FO LEFT provides this
combination. Full formatting, with
concatenat i on and just if i cat ion
both ON, is provided by .FO ON. "As
is" output, with concatenation and
justification both OFF is provided
by .FO OFF. The only combination
not covered by the .FO control word
is concatenation OFF and justi
fication ON, and if you need this
combination, you can use the .JU
control word to control it sepa
rately .

The .KP [Keep] control word allows you to designate blocks of text that must be
kept together in ihe same column. There are several different ways of designating
keeps, and each form has different functions and powers. When .KP is encountered
inside another keep, it may end the first keep before starting the new one. If the
new keep is of a form that can't end the current keep, it is ignored, and the text
is kept together by vi rtue of bei ng part of the larger keep.

.KP { ON }
{ FLOAT }
{ DELAY }
{ INLINE }
{ OFF }
{ V + V }
{ V }

Where:

ON starts a regular keep. The text
within a regular keep is sepa
rate from the text outside of

248 Document Composition Facility: User's Guide

it, and no output line can be
built from text part of which
came from inside and part from
outside the keep. A regular
keep is put in this column if

FLOAT

DELAY

it will fit, and otherwise an
immediate column eject is
done. The regular keep appears
in the output in the same rela
tive location where it was in
the input. A regular keep ends
any other keep before start
i ng. The ON opti on causes a
break.

starts a floating keep. A
floati ng keep is put in thi s
column if it will fit; other
wise it goes at the top of the
next column. Text following
the floating keep is formatted
into the rest of this column.
.KP FLOAT ends any other keep
before the floating keep is
started.

starts a delayed keep. A
delayed keep is always printed
at the top of the next column,
even if there is room for it in
this column, and the current
column is filled with text from
after the delayed keep. A
delayed keep, in effect, acts
like a floating keep that did
not fit in the current column.
.KP DELAY ends any other keep
before starting.

INLINE starts an inline keep. An
inline keep flows with the pre
ceding and following text. No
separation of material inside
and outside the keep is done,
but formatting continues as
though no keep were desig
nated. All lines that contain
text from within the keep are
then kept together, and if col
umn balancing is done, the
ent ire keep is moved as a block
from one column to another .. KP
INLINE ends an i nl i ne keep or a
keep in the form". KP v + v" or
".KP v" before the inline keep
is started, but if a regular,
floating, or delayed keep is in
process, .KP INLINE is
ignored.

OFF marks the end of a regular,
floating, delayed, or inline
keep .. KP OFF also ends a keep
of a desi gnated depth, but is
not required. When a keep is
sta rted, its max i mum depth is
set to the maximum that can be
kept together, typically, the
depth of one full column of
text. If the keep is filled
before . KP OFF is processed,
the keep is ended, and a warn
ing message is issued.

v + V starts a keep of a desi gnated
vertical depth. The depth of
the keep is determined by add
ing up all the separate v's
given. For example, .KP 3 + 2
would start a keep for 5 lines,

V

and .KP 2i + 3 would start one
for 2 inches plus 3 lines.
(This is the only control word
that allows you to add up dif
ferent space uni ts to get a
single result.) This form of
keep is used by the head level
control words .HO - .H6 [Head
Level 0 - 6]. A keep for a des
i gnated depth need not be
explicitly ended with .KP OFF.
It will be ended automatically
when its dGpth has been filled.
A keep of the form .KP v + v
may end another keep of the
same form or a keep of the form
.KP v. If an inline or higher
keep is in process when .KP v +
v is encountered, the .KP v + v
is ignored. Any head level con
trol word also ends a keep of
the "v + v" form.

starts a keep of a designated
depth specified by v. When the
designated depth has been
filled, a keep of the "v" form
is automaticallY ended. A keep
of the "v" form may end another
keep of the same form before
starting, but if any other form
of keep is; n process, . KP vis
ignored.

Default: None.

Notes!

• Keeps started with .KP ON, .KP
FLOAT, and .KP DELAY all operate
with a separate environment from
ordinary text. No output line may
be formed by concatenating text
from inside the keep to text from
outside of it. When the keep is
started, the current indention and
certain other values are saved.
Offsets and undents are cleared so
that the indention at the beginning
of the keep is sefe to the basic
indention currently in effect, and
the maximum column width is set to
the width of the current column.
When the keep is ended, the ori
ginal text values are restored
automatically. This means that if
you change the indention, format
ting mode, hyphenation, double
spaci ng, or certai n other thi ngs,
you need not restore them when the
keep is ended. See Figure 32 on
page 315 for a list of the active
environment values that are saved
and restored for these keeps.

• Keeps started with .KP INLINE, .KP
v + v, or .KP v are not separated
from the surrounding text. Output
lines may be formed by concatenat
ing text from inside the keep to
text from outside of it. No envi
ronment values are saved or
changed, and the text within the
keep flows with neighboring text.

Chapter 21. SCRIPT/VS Control Word Descriptions 249

•

Formatt i ng cont i nues for these
keeps as though no keep had been
started, but all output lines
encompassed by the keep are kept
together in the same column of out
put.

Certa 1 n control words are not
allowed within a keep. If one of
the disallowed control words is
encountered, the keep is imme
diately ended, as though .KP OFF
had been processed, and then the
disallowed control word is exe
cuted. A warning message is issued,
telling you what control word ended
the keep. ~ee Figure 28 on page 312
for a list of the disallowed con
trol words.

• If too much text is processed
before .KP OFF is encountered, the
keep is ended at its maximum depth .

• LB [LEADING BLANK]

•

This is the normal way for a keep
of a designated depth to end, and
no message is issued in these
cases. For other keeps, a message
is issued, and then processing con
tinues. If a regular keep is ended
because it is full, the remaining
material is processed as normal
text. If a floating or delayed keep
becomes full, the remaining mate
rial until the .KP OFF is dis
carded.

A footnote is a specialized form of
keep. A footnote ends any keep
before starting. Regular, float
i ng, 0 r delayed keeps can end a
footnote, but inline, 'v', and 'v +
v' keeps are ignored within foot
notes.

The .LB [leading Blank] control word is generated by SCRIPT/VS and executed when
ever an input line that starts with a blank is processed .

• LB

Notes:

• This book states in several places
that a leading blank on an input
line causes a break. This is actu
ally done by generating and execut
ing a .LB control word whenever a
line with a leading blank is proc
essed, and the function of the .LB
control word is identical to that
of the .BR control word.

If you wish to ha~;-leading blanks
perform some other function, you
can define a .LB macro with .DM

•

[Define Macro], and, assuming mac
ro ~ubstitution is ON, your .LB
macro will be executed whenever a
leading blank is processed. Note,
however, that after the .LB control
word or macro is processed, the
leading blank is still on the line,
and it is processed as part of that
text input line. In other words,
you cannot use the . L B macro to
remove leading blanks from a line.

No .LB function is performed for
lines processed in literal mode
(.LI [literal]).

250 Document Composition Facility: User's Guide

.LI [LITERAL]

The .LI [Literal] control word allows all input lines, including those that begin
with periods, to be processed as text .

. LI

Where:

n specifies the number of lines to
be treated literally. If omit
ted, 1 is assumed.

ON starts an open-ended literal
mode, in which every line read is
treated as literal text. After
this control word is processed,
SCRI PT /VS reads input lines
looking only for ".LI OFF" begin
ning in column 1 on a line by
itself.

OFF terminates literal mode if it was
ON, or if n was gi ven and has not
been exhausted.

l;ne is the line to be treated as
literal text.

Notes:

• Ordinari1y, any SCRIPT/VS input
line that begins with a period is
interpreted as a SCRIPT/VS control
word. The lITERAL control word
causes the following n lines to be
processed as normal input lines
even if the first character of one
of the lines is a period. If .lI ON
i s encountered, a 11 subsequent
lines except .lI OFF (which must be
recognized to cancel literal mode)
are treated as literals.

• When literal mode is in effect,
null lines, lines with leading
blanks, and lines with leading tabs

do not cause a break. Null lines,
however, do cancel continuation if
the previous line ended with a con
tinuation character.

Example:

If a text line must begin with a peri
od:

Study the following control words:
.fo off
.in 5
.1 i on
.lB [leading Blank]
.IT [leading Tab]
.Nl [Null line]
.lI [Literal]
.1 i off
.fo on
. in

These 1 i nes are formatted as:

Study the following control words:
.lB [laading Blank]
.IT [Leading Tab]
.Nl [Null Line]
.LI [literal]

If formatting mode had not been turned
OFF with .fo off, the same lines would
be processed as:

Study the following control words:
.lB [Leading Blank] .IT [Leading
Tab] .NL [Null Line] .LI [Literal]

Chapter 21. SCRIPT/VS Control Word Descriptions 251

.LL [LINE LENGTH]

The .ll [line length] control word specifies the width of running titles, running
headings, and running footings. It also changes the column width, which governs
the width of text lines, if the latter has never been set explicitly with .Cl [Col
umn Width].

Where:

h
+h
-h]

h speci fi es an output 1 i ne length not
greater than the output device
capability. If no value is speci
fied for h, the default value
established for the device being
used wi 11 be taken.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

• The .ll control word sets the total

.LS [LINE SPACING]

•

length for output lines from the
left margin to the right margin.
The .LL value governs the length of
title lines. Text lines are always
governed by the .Cl [Column Width]
control word, but if the column
width has never been explicitly
se"l::, it has the same value as the
line length. See the discussion of
the .Cl control word.

This control word takes effect on
the page after it is encountered.
If it also performs a .Cl function,
however, the new column width takes
effect immediately.

• This control word causes a break.

Use the .LS [line Spacing] control word to specify multiple-spacing of output text
lines. This control word is a generalization of the .SS [Single Space Mode] and
.DS [Double Space Mode] control words .

• LS n

Where:

n specifies the number of blank lines
to be inserted after each standard
text line.

Initial Setting: 0

Default: None.

Notes:

• Contrast the function of the two
control words .LS [line Spacing]
and .Sl [Set line Space]. The .SL
[Set Line Space] control word
defines the actual depth of each
single output line. For example,
.SL .5i sets the vertical depth of
each output line to one-half inch.
The .lS [line Spacing] control
word, on the other hand, defines
how many output lines should be
generated for each line of text or
space request. If .SL .5i has been

•

•

executed, each single-spaced line
of formatted output occupi es
one-half inch vertically, and if
double-spacing is in effect,
another half-inch blank line is
inserted after each text line.

This control word does not cause a
break.

The .SS control word is identical
to .LS 0, and the .DS control word
is identical to .lS 1. When line
spacing is in effect, the amount of
vertical space requested by the .SK
[Skip] and .SP [Space] control
words may be multiplied by a
line-spacing multiplier if the
request is in lines. For example,
if .LS 1 (double spacing) is in
effect, the line space multiplier
;s set to 2. A .SK or .SP request
for a particular number of lines,
such as .sk 3, ;s multiplied by 2,
and the actual amount spaced is 6
lines. (Each of the 6 lines is of

252 Document Composition Facility: User's Guide

the depth defined with .SL [Set
Line Space].) If the skip or space
request is for an absolute amount,
however, it is not multiplied. A
request to skip 3/4 of an inch (.sk
.75i) is an absolute request, and
the amount skipped will be as close
to 3'/4 0 fan inc has the log i cal
device allows, regardless of the
current line spacing.

• This control word overrides
previous .LS, .SS, and .DS control
words .

. LT [LEADING TAB]

Example:

.1 s 2

Subsequent output is "tr i pIe-spaced"

such that each text line is separated

by two blank lines.

The .LT [Leading Tab] control word is generated by SCRIPT/VS and executed whenever
an input line that starts with a tab is processed .

• LT

Notes:

• This book states in several places
that a leading tab on an input line
causes a break. This is actua·lly
done by generating and executing a
.IT control word whenever a line
with a leading tab is processed,
and the function of the .LT control
word is identical to that of the
. BR control word.

If you wish to have leading tabs
perform some other function, you
can define a .LT macro with .DM

.LY [LIBRARY]

•

[Define Macro], and, assuming mac
ro substitution is ON, your .LT
macro will be executed whenever a
leading tab is processed. Note,
however, that after the .LT control
word or macro is processed, the
leading tab is still on the line,
and it is processed as part of that
text input line. In other words,
you cannot use the . L T macro to
remove leading tabs from a line .

No . L T functi on is performed for
lines processed in literal mode
(.LI [Literal]).

Use the .LY [Library] control word to cause symbol and macro definitions to be
retrieved from a library defined with the LIB option on the SCRIPT command.

.LY

[
~~H 1 MAC
OFF

IIJhere:

ON specifies that both symbol and
macro definitions may be
retrieved from a library. This is
the defau It.

SYH causes unresolved symbol values
to be retrieved from the library.
If SYM is specified, the library
will not be used to resolve unde
fined macros from the library
(unless MAC or ON is also speci
fied).

MAC causes unresolved macro defi
nitions to be resolved from the
library. If MAC is specified, no
undefined symbol values will be
resolved from the library (unless
SYM or ON is also specified).

OFF indicates that use of the library
for symbol values and macro defi
nitions is to stop. This is the
initial setting.

Initial Setting: OFF

Default: ON

Chapter 21. SCRIPT/VS Control Word Descriptions 253

/
/

Notes:

• Use of the library to resolve
symbol values and macro definition
is expensive in processing time.
This is especially true for forward
referencing of symbol values where
there are normally many potential
ly unresolved symbols. For this
reason, the .lY control word is
provided to control library look
up. The .LY control word allows you

.MC [MULTICOLUMN MODE]

•

to tell SCRIPT/VS that, if unre
solved symbols or macros are used
ina document, to attempt --:ro
resolve these from a library.

Symbol values or macro definitions
may be explicitly set from the
library, regardless of the setting
of the .LY control word, using the
LIB option of the .SE and .DM con
trol words.

The .MC [Multicolumn Mode] control word restores multiple column processing after
it has been temporarily suspended by .SC [Single Column ModeJ .

• Me

Notes:

•

•

I.
I

The .MC control word cancels a
temporary single column mode that
was put into effect by the .SC
[Single Column Mode] control word.
If there was no .SC control word
preceding this control word, it has
no effect, other than to cause a
break.

This control word is not allowed in
a keep.

The .SC control word saves the
current column definit~ and
starts a temporary single-column
processing mode. The column defi
nition that was in effect when .SC
saved it mi ght actually have been a
multiple-column definition, or it
might have been a single column
defi nit ion. The .MC control word
is, perhaps, misnamed. What .MC

•

actually does is to restore the
column definition that was saved by
.SC, however many columns that
definition called for. The column
definition saved by .SC and
restored by .MC includes the number
of columns and their positions and
the column width. If two .SCs are
processed without an intervening
. MC, then it takes two . f'1Cs to
restore the original column defi
nition that existed before the
first .SC. The first .MC restores
the single column definition that
existed, by virtue of the first
.SC, when the second .SC was proc
essed.

The .CD [Column Definition]
control word starts an entirely new
column definition, and cancels any
.SCs and .MCs that may be in
effect.

254 Document Composition Facility: User's Guide

.MG [MESSAGE]

The .MG [Message] control word is used to write out a message. It may be used to
provide diagnostic messages from macros .

• MG /[mid]/[massage text]/

Where:

/

mid

is any delimiter character.
The first nonblank character
will be taken as the delimiter
character.

is the message i d. Thi s
string must not be longer than
16 characters and the last
character must be R, I, W, E,
S, or T. Thi s fi nal letter is
used to establish the severi
ty of the message, and the
same meanings apply as for
regular SCRIPT/VS messages.
If a null message id is speci
fied, the message is consid
ered to be of type I, an
information message. If the
message is type R (Response),
you must provide the terminal
read using .RV or .TE; the
Message control word will not
do this for you. The message
id is not printed unless the
MESSAGE (10) command option
i sin effect.

message text is the text of the
message. It may be any string
of characters.

Notes:

• Messages generated by .MG may cause
SCRIPT/VS processing to terminate.
Type S (severe) or type T (termi
nating) messages always terminate
processing, and type E (error) mes
sages terminate processing if the
CONTINUE option of the SCRIPT com
mand is not in effect.

• The delimiter character between
the strings may be any unique char
acter which does not occur within
the strings themselves.

• When a message is displayed, a
prefix of "+++" appears before the
id or text to indicate the message
was generated by .MG. If the net
message is null, the prefix only is
displayed. This can happen if you
do not specify any message id or
text, or if you specify a message
id and no text, but the MESSAGE
(10) option is not in effect.

• If the .MG line has no data at all,
it is ignored.

• If the message header is longer
than 16 characters or if it does
not end with one of the valid
type-codes, it; s consi dered an
invalid control word parameter,
and an error message is issued.

Example:

The control word:

.mg Imsg001e/this is a messagel

is di splayed as:

+++MSG001E this is a message

if MESSAGE(10) is in effect, or:

+++ this is a message

if MESSAGE(IO) is not in effect.

Chapter 21. SCRIPT/VS Control Word Oescriptions 255

.HS [MACRO SUBSTITUTION]

Use the .MS [Macro Substitution] control word to initiate or cancel automatic mac
ro calls during SCRIPT/VS processing .

• NS {ON}
{OFF }

Where:

ON causes .SCRIPT/VS to begin
searching' for macro names when it
encounters unrecognized control
words.

OFF causes SCRIPT /VS to
searching for macro names
processing.

Initial Setting: OFF

Default: None

Notes:

stop
during

• SCRIPT/VS macros can be defined

.NL [NULL LINE]

•

with the .DM control word. However,
SCRIPT /VS does not ordi nar i ly
recogn i ze and process macro s
unless the .MS control word has
been used. When macro substitution
is OFF (the initial setting for
SCRIPT/VS processing), macros that
have been defined via the .DM [De
fine t-lacro] control word are
treated as invalid control words.

Even when macro substitution is
OFF, a macro can be explicitly
invoked via the .EM [Execute Macro]
control word.

The .NL [Null Line] control word is generated by SCRIPT/VS and executed whenever a
null line is processed .

• NL

Notes:

• Whenever SCRIPT/VS encounters a
null input line, that is, a line
whose length is zero, it generates
and executes a .NL control word.
The .NL contro[word does nothing,
except to reset line continuation,
incase the previ ous line ended
with a continuation character.

•

If you wish to have null lines per
form some other function, you can
define a .Nl macro with .DM [Define
Macro], and, assuming macro sub
stitution is ON, your .NL macro
will be executed whenever a null
line is processed.

No .Nl function is performed for
lines processed in literal mode
(.LI [Literal]). A null text line,

•

however, does reset continuation
if the previous text line ended
with a continuation character.

A null line may originate from a
number of sources. Because of this,
you should define a .NL macro only
when a specific use in a certain
part of a document requires it.
Null lines may originate from:

A source input file (not all
systems ; n whi ch SCRIPT /VS
operates allow this).

From terminal input (.TE).

A non-null line that becomes
null as a result of substi
tution .

A macro line that is null.

256 Document Composition Facility: User's Guide

tOB [ODD PAGE BOTTOM TITLE]

The .OB [Odd Page Bottom Title] control word saves a specified title line in a
storage buffer for possible future use. This title may be used at the bottom of
the current page, if it is odd-numbered, and each subsequent odd-numbered output
page.

.OB [n] /part!/part2/part3/

Where:

n is the number of the bottom
title line to be set. The num
ber may be from 1 to 6, and if
it is omitted, 1 is assumed.
The six possible title lines are
the same for top ti tIes and bot
tom titles. Bottom titles are
numbered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "even bot
tom title 1" sets the same stor
age buffer as "even top ti tIe
6." See the discussion of the
.FS [Footing Space] control
word for information on how to
allocate space on your output
page for bottom titles.

part! is the portion of the title to
be left justified.

. oc [OUTPUT COMMENT]

part2 is the portion of the title to
be centered between the left and
right margins.

part3 is the portion of the title to
be right justified.

/ is any character that does not
appear in part1, part2, or
part3.

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.RT [Running Title]. See the dis
cussion of the .RT control word for
further information about running
titles, including those for the
bottom of odd pages .

Use the .OC [Output Comment] control word to place comments in the output data
stream. Such comments are not examined by the formatter, and will be placed in the
output where found in the input. This means that if parts of the page are still in
storage the output comment may not appear in the output data stream in the same
place that it was, relative to the input data stream. This control word is
designed for the systems programming user of SCRIPT/VS and must be used with cau
tion .

• OC

Where:

l;ne may be anything, since it is not
used in formatting the output.
However, since this is a control
word, the input line is scanned
for control word separators.

Notes:

• The .OC control word allows
comments to be placed in the output
data stream. They are not examined
by the formatter and thus, unless
they are correctly interpreted by
the output device, the output will
be disrupted.

The .OC may be used, for example,
to control a printer in a certain
way, such as to transmit codes

•
recognized by certain printers.

The position of the line written
out as an output comment is not
synchronized with the formatted
output. The output comment may
appear in the output data stream
before the text that precedes it in
the input file, because the text
may still be filling a column. If
you force a "sect i on break" wi th
.CD [Column Definition] or .SK P,
all columns up to that point will
be balanced and written out, and
the .OC will be in the same rela
tive position in the output as it
was in the input. If the output is
ina si ngle column, the sect ion
break will not be noticeable.

Chapter 21. SCRIPT/VS Control Word Descriptions 257

.OF [OFFSET]

Use the .OF [Offset] control word to indent all but the first line of a block of
text .

• OF

Where:

h specifies the horizontal size of
the offset. If you specify +h or
-h, the old offset value is incre
mented or decremented the speci
fied amount to establish the new
offset size. If "h" is omitted, the
new offset size is O.

The next output line to be formal
ted after the .OF control word h s
been processed is formatted at t e
left margin established by the .IN
[Indent] control word, with no
added offset. For all subsequent
1 i nes, the left margi n is estab
lished by adding the offset (.OF)
to the size of the indent (.IN).

Initial Setting: 0

Default: 0

Notes:

• A .OF control word does not take
effect until after the next line is
formatted. The offset remains in
effect until a .IN [Indent] control
word or another .OF control word is
encountered.

The .OF control may be used within
a section which is also indented
with the .IN control. Note that
.IN settings take precedence over
.OF, however, and any .IN request
clears all offsets.

If you want to start a new section
with the same offset as the previ
ous section, you need only repeat
the .OF h request.

• Thi s control word acts as a break.

• The .IL [Indent Line] and the .UN
[UndentJ control words can be used
to shift only the next line to the
left or right of the current mar
gin.

• Tabs should be used whenever
possible to format numbered or
bulleted lists, to ensure that the
first text word on the line is even
with subsequent offset lines. The
items in this "Notes" section are
created usi ng offsets and tabs.

Examples:

1. Start i ng an offset:

.of 7
The line immediately following the

.OF control word is printed
at the current left margin.
All lines thereafter (until
the next indent or offset
request) are indented seven
character spaces from the
current margi n sett i ng.
These two examples were
processed with .OF control
words in the positions
shown.

2. End i ng an offset:

.of
The effect of any previous .OF
request is cancelled, and all out
put after the next line continues
at the current left margin setting.

258 Document Composition Facility: User's Guide

.OP [ODD PAGE EJECT]

Use the .OP [Odd Page Eject] control word to cause either one or two page ejects,
such that the new page is odd-numbered, regardless of whether the current page is
even- or odd-numbered.

.OP ON
OFF]

Where:

ON specifies that subsequent text is
to be printed only on odd-numbered
pages. Even-numbered pages are
left blank, except for top and
bottom titles, if any.

OFF resumes processing so that text
appears on odd- and even-numbered
pages .

• OT [ODD PAGE TOP TITLE]

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.PA ODD [ONIOFF].

The .OT [Odd Page Top Title] control word saves a specified title line in a storage
buffer for possible future use. This title may be used at the top of the current
page, if it is odd-numbered, and each subsequent odd-numbered output page.

.OT En] /partl/part2/part3/

Where:

n is the number of the top title
line to be set. The number may
be from 1 to 6, and if it i s
omitted, 1 is assumed. The six
possible title lines are the
same for top titles and bottom
titles. Bottom titles are num
bered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "odd bottom
title 1" sets the same storage
buffer as "odd top title 6."
See the discussion of the .HS
[Heading Space] control word
for information on how to allo
cate space on your output page
for top titles.

part is the portion of the title to
be left justified.

part2 is the portion of the title to
be centered between the left and
right margins.

part3 is the portion of the title to
be right justified.

/ is any character that does not
appear in partl, part2, or
part3.

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.RT [Running Title]. See the dis
cussion of the .RT control word for
further information about running
titles, including those for the top
of odd pages.

Chapter 21. SCRIPT/VS Control Word Descriptions 259

.PA [PAGE EJECT]

Use the .PA [Page Eject] control word to force subsequent text onto a new page of
output, even if the current page has not been filled.

.PA

[
n

1
+n
-n
NOS TART

[{ ODD 1 [ON]] { EVEN 1 OFF

Where:

n specifies the page number of
the next page. If n is not
specified, sequential page
numbering is assumed, and the
next page number is one great
er than the current page num
ber. n must be an Arabic
number with no decimal point.

+n specifies that the next page
should have a number that is
equal to the normal next
sequential page number plus
n. n must be a non-decimal
Arabic integer.

-n specifies that the next page
should have a page number that
is equal to the next sequen
tial page number minus n. If
subtracting n from the next
page number yields a negative
number, an error message is
issued, and the control word
is ignored.

The maximum allowed page num
ber is 9999.

NOSTART causes the current page to be
ended, but the next page will
not be started until some data
causes it to be started or a
control word that requires
the page to be started is
processed. After .PA NOSTART,
the page definition (includ
i ng runn i ng head i ngs and
footings), may be changed
until the page is started.

ODD causes one or two page ejects,
such that the new page is odd
numbered.

EVEN

ON

causes one or two page ejects,
such that the new page is even
numbered.

defines the start of odd or
even page eject mode. This
mode is ended by specifying
OFF or the start of another

. PA even or odd mode, or n. In
odd or even page eject mode,
output is formatted on odd
pages only, or even pages
only, whichever the case may
be, and the other pages are
left blank, except for run
ning titles and headings and
footings.

OFF defi nes the end of odd or even
page eject mode.

• The minimum page number is 1, and
the maximum is 9999. If a .PA con
trol word attempts to set the page
number outside this range, a mes
sage is issued, and the control
word is ignored.

• Whenever a .PA control word is
encountered, the rest of the cur
rent page is skipped after printing
any text lines accumulated thus
far. The next page is started,
unless .PA NOSTART was specified.
Starting a page includes format
ting running headings, running
footings, and running titles for
the page, and establishing the page
dimensions for the page. These
things are then fixed for the dura
tion of the page, and may not
change until the next page is
started.

• If you use the STOP option of the
SCRIPT command, SCRIPT/VS waits
for you to enter a null line (with
the Return or Enter key) before
starting the new page.

• This control word acts as a break.

•
It is not allowed in a keep.

If you want to change any page
dimensions or define new running
titles or running headings and
foot i ngs for a new page, the appro
priate control words must be proc
essed before the .PA control word
(except when NOS TART is

260 Document Composition Facility: User's Guide

•

•

specified). These control words
are .BM, .FM, .FS, .HM, .HS, .Ll,
.Pl, .PH, .RH, .RH, .RF, .RT and
.TM . Hote that at the beginning of
SCRIPT/VS processing, the first
page has not yet been started.

If .PA n (or +n or -n) is specified
after .PH FRAC is specified, the
page eject will occur, but the page
number will not be reset. This is
because the page number change to
fractional pagination is pending.

The following control words
require a page to be started, and
will cause one to start if one is
not already started: .BX, .CB, .CC,
.CD, .CP, .PT, .RD, .SK, .SP, and
.SX.

• PF [PREVIOUS FONT]

Examples:

1. To start the next sequential page:

.pa

The rest of the current page is
skipped. The top titles and page
number are put in the top margin of
the next page, and output resumes.

2. To repeat a page number:

.pa -1

The new page wi 11 have the same
page number as the preceding page.
The calculati on is done after
establ i shi ng the next sequent i-aT
page number .

Use the .PF [Previous Font] control word to resume the use of the font whose id was
last saved using the .SF [Save Font] control word .

• PF

Notes:

• If the . PF control word is used
when there is no previously saved
font, the default font for the out-

• PL [PAGE LENGTH]

•

put device will become effective.

This control word is ignored when
formatting for logical devices
that do not support multiple fonts .

The .Pl [Page Length] control word specifies the vertical length (depth) of output
pages. The value specified overrides the standard page length which is estab
lished for each logical device.

Where:

v
+v
-v]

v specifies the vertical length, or
depth, of output pages. If no value
is specified for v, the default
value for the device will be used.
Thi~ number should be the same as
the physical size of the paper
being used. However, when format
ting for a printer logical device,
it may be different, as explained
below. The minimum value for the
page length is the sum of the top
margin (.TM) and the bottom margin
(.BM) plus one line. The maximum
value that may be specified for the
page length is as established for
each logical device. If +v or -v is

specified, the current page length
is incremented or decremented
accordingly.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

• The .Pl control word allows varying
paper sizes to be used for output.
(The logical device specified in
the DEV option of the SCRIPT com
mand implies a default page length,

Chapter 21. SCRIPT/VS Control Word Descriptions 261

•

•

•

but this can be overridden with
.PL.) Page length may be changed
anywhere in a file, with the change
effective on the page after the
control word is encountered.

This control word does not cause a
break. It is not allowed in a keep.

If the output is in printer format,
the page length value need not be
the same as the actual number of
print lines on the real paper,
because SCRIPT/VS will cause the
printer paper to be ejected to the
top of the next real page whenever
a new SCRIPT/VS page is started.
Thus, a SCRIPT/VS page may occupy
less than a real page or more than
one real page, and the output will
be newly aligned to the paper each
time a SCRIPT/VS page is started.

The previous rule notwithstanding,
if you define a top margin (.TM)
and a heading space (.HS) and head
i ng margi n (. HN) such that
SCRIPT/VS needs to print data with
in the first three lines on a page,
no printer page ejects can be done.
Instead, SCRIPT/VS uses the page
length value to find the top of the
next page. It is, therefore, good
practice to keep the .PL value

• PN [PAGE NUMBERING MODE]

accurate, so that it reflects the
true depth of the page under
SCRIPT/VS control.

• The maximum value of the page
length that may be set is governed
by the va 1 ue establ i shed a s the
maximum for the logical device for
which formatting is being per
formed.

• I f the runn i ng head i ngs and
footings that are defined for a
page fill up the page so that no
room is left for text, SCRIPT/VS
terminates with an error message.
The depth of running headings and
footings cannot be predicted at the
time they are defined, because they
are formatted to the current line
length (.LL) when a page is
started. The same running heading
can occupy differing amounts of
vertical space on different pages
if the line length changes.

Example:

. pI 84

Page length is set to 84 lines. This
is the correct size for 14 inch printer
paper when printing at six lines per
inch .

The .PN [Page Numbering Mode] control word allows you to control various aspects
of page numbering, including the format of the page number, and whether it is to be
shown in running titles or running headings and footings that call for it.

.PN

Where:

OFF

OFFNO

C OFF }
C OFFNO }
<: ON }
C ARabic }
C ROman }
C ALPh }
C FRAC }
C NOR~t j
C PREF string }
C n J

suppresses the display of
page numbers in running
titles and running headings
and footings, although pages
are still sequentially num
bered i nterna 11 y. Symbo 1 s
set with .SE [Set Symbol] to
the current page number will
contain the correct number
of the page on whi ch they
were processed.

suppresses both page number
display and internal page
numbering. The current page
number set with .SE remains

ON

ARab;c

262 Document Composition Facility: User's Guide

..

the same for all pages until
.PN OFFNO is ended with .PH
ON.

cancels .PN OFF or .PN OFFNO,
so that internal numbering
of pages is resumed, and the
current page number can be
displayed in running titles
and running headings and
footings.

causes the following page
numbers to be represented as
standard Arabic numerals.
The ARABIC keyword may be
abbrev i ated as AR.

ROman

ALPh

FRAC

NORM

PREF

n

causes page numbers to be
represented as lowercase
Roman numerals. Page numbers
greater than 3999 are not
supported with the RaMAH
option. The RaMAH keyword
may be abbrev i ated as RO.

causes alphabetic page
numbering to be started. In
this mode, the number 1 is
converted to a, 2 to b, 26 to
z, and 27 to aa. The number
1978 is represented as bxb.
The ALPH keYLolord may be
abbreviated as AL.

causes fractional pagination
to begin. The next time a
page eject occurs that would
normally increment from an
even to an odd number, the
even number (for example,
20) is saved, and numberi ng
starts with a fractional
sequence, in thi sease,
20.1, 20.2, 20.3, and so
forth.

causes an immediate page
eject to occur, and normal
pagination to be resumed. In
the previous example, the
new page LoJould be numbered
21. If. PH FRAC i s not in
effect, .PH HORM is ignored,
and does nothi ng.

string specifies a 1- to
8-character string to be
used as a prefix in front of
all page numbers printed in
tittes, in tables of con
tents, or in front of set
symbols set with the value of
the current page number (&).
The string may not contain
embedded blanks. To cause
the prefix to be omitted from
the page number, spec i fy
".PH pref", with no string.
This clears the previously
defined prefix string.

specifies the number of the
next page. When the next page
eject occurs, either
naturally because of the
page becoming full, or as a
result of .PA, the new page
will have the page number
specified in n, as though
this page eject had been
caused by .PA n. If the next
page really is started with
.PA n, the number given on
the .PA control word super
sedes the number previously
specified with .PH n.

Initial Setting: OH, Arabic

Hotes:

• The .PH control word can be used to
control SCRIPT/VS's page number
i ng. I f the OFF operand is spec i
fied, page numbering is
discontinued on output, although
the page numbers continue to be
incremented internally. The OFFHO
operand discontinues page number
i ng on output and stops the
internal incrementing of page num
bers. When the OH operand is speci
fied, page numbering resumes from
the last internal page number.

The actual page numbers may appear
in either Arabic numerals, which is
the default, or Roman numerals,
depending upon whether .PH ARABIC
or .PH RaMAH was most recent.
Changes in the page numbering will
take effect on the page after the
.PH control was encountered.

• The .PH OFF and .PH OFFHO control
words suppress the default running
top title "PAGE &." If you use the
.RT (Running Titlel control word
and include an &, only the page
number and not the text is sup
pressed.

• If FRAC is specified while the page
numbers are represented in ROMAH or
ALPHA numerals, the page number
that is printed is in lowercase
Roman or alpha numerals, but the
fractional part is in Arabic.

• Table of contents entr i es
generated by .HO - .H6 (Head Level
0- 6] or the .PT (Put Table of
Contents] control words show the
page numbers in the same format
they appear on the page, that is,
if a prefix is used, it is shewn in
the table of contents; if Roman
numbers are in effect, the contents
entry has a Roman numeral, and so
on.

• Whenever the page number symbol is
substituted, its prefix will also
be included. Care must be taken
therefore when using the page num
ber symbol as a part of an arithme
tic operation on the right hand
side of a .SE statement.

• The .PH control word will take
effect on the page after it is
encountered.

Examples:

1. . pn off

The internal page count
to be incremented for
printed.

continues
each page

Chapter 21. SCRIPT/VS Control Word Descriptions 263

2.

3.

. pn offno

No page numbers appea r on SCRIPT /VS
output, and the internal page count
remains at its current setting
without further incrementing.

. pn on

Page numbering on SCRIPT/VS output
resumes using the current internal
page count; this count is incre
mented for each page printed .

• PP [PARAGRAPH START]

4. . pn roman

The page number in the title at the
bottom of the page after this one
appears as a Roman numeral.

The control word

. pn arabi c

restores Arabic numbering on the
next page.

Use the .PP [Paragraph Start] control word to start a new paragraph .

• PP [line]

Where:

line is the text that begi ns a new
paragraph. If line is omitted,
the text from the next input line
after the .PP control word begins
the new paragraph.

Notes:

• When the . PP control word is
encountered, a break occurs, a skip
is generated, and the next line of
text is indented three character
spaces to the right of the current
margin. The .PP control word is
equivalent to the control words:

.sk

. i 1 +3

.PS [PAGE NUMBER SYMBOL]

If these values are not satisfac
tory for your paragraph format
ting, you can redefine the .PP
control word as a SCRIPT/VS macro.

Example:

The input lines:

.pp This line begins with
a .PP control word.
Here is some more text to show
the formatt i ng.

Are formatted as:

T his lin e b'~ gin s wit h a . P P con t r 0 1
word. Here is ~ome more text to show
the formatti ng. '

The .PS [Page Number Symbol] control ~Jord allows you to change the page number
symbol, used in running top and bottom titles and running headings and footings.
The default page number symbol is the ampersand C&) character. The .DC PS [Define
Character] control word can also be used to alter the page number symbol.

.PS [c]

Where:

C specifies the character to be used
as the page number symbol. It may be
any character other than a blank. If
it is omitted, no character is
assigned as the page number symbol.

Initial Setting: Ampersand (&)

Default: Nothing. (No page number sym
bol.)

Notes:

•

•

Every occurrence of the page number
symbol is replaced with the current
page number in running titles, run
ning headings, and running
footings, unless .PN OFF or .PN
OFFNO is in effect.

The .PS control word allows you to
change the page number symbol cur
rently in effect. The initial page

264 Document Composition Facility: User's Guide

•

number symbol is the ampersand (&)
character. It may be necessary to
change the page number symbol if
the & character is not a val i d
character on your terminal
keyboard or the & character is
needed as a regular character in
your title text.

Thi s control word affects all
running top and bottom titles and
all running headings and footings,
including those that have been pre
vi ously defi ned. Thus, if a ti tIe
has been set by the control word:

.rt t ///Page &/

and later the control word:

. ps ?

is encountered, the top-title must

.PT [PUT TABLE OF CONTENTS]

•

be reset to:

.rt t ///Page ?/

Otherwise, the current page number
wi 11 not be subst i tuted into the
title.

Do not confuse the page number
symbol with the ampersand used on
the right-hand side of a .SE [Set
Symbol] control word. A single
ampersand in a .SE control word
always means that the symbol is to
be set to the current page number.

.se currpage = &

sets the symbol 'currpage' to the
current page number, regardless of
what character, if any, is defined
as the page number symbol.

Use the .PT [Put Table of Contents] control word to add lines or control words to
the fi Ie which is used to generate the automatic table of contents .

• PT {line 1
{ line 1

Where:

line is any text line or control word
line that you want in the table
of contents. This line may be
preceded with one or more extra
leading blanks (other than the
blank that delimits the control
word name), and these extra
blanks will be removed before the
1 i ne is wri tten into the table of
contents fi Ie.

If 'line' is text, it is written
to the fi Ie DSMUTTOC as part of a
.SX [Split Text] control word,
which causes it to be formatted
as a table of contents line when
DSMUTTOC is processed. (See the
discussion of the .SX control
word.)

If 'line' is a control word, it
is written into the DSMUTTOC file
directly, and it is executed when
the DSMUTTOC file is processed.

If 'line' is specified with extra
leading blanks, it is taken as a
line of text, even if the first
non blank character is a period.
The extra leading blanks are
removed, and a .SX control word
is built for the DSMUTTOC file,
using the first nonblank charac
ter as the beginning of the data.

Notes:

•

•

For text lines, the .PT control
word generates a .SX control word
to be written into the table of
contents utility file in the form:

.SX F /text line/ ./33/

where the page number used is the
actual page number when the .PT is
processed, and the delimiter used
is actually hexadecimal 00. The .PT
control word does not accept lines
that begin with hexadecimal 00 as
valid lines; such lines result in
an error message.

This control word is especially
useful for defining heading levels
with the .DM [Define Macro] control
word. The internal macros that
process the head level control
words .HO - .H6 [Head Level 0 - 6]
use .PT to write the required
information into the table of con
tents fi Ie.

• The .PT control word is ignored
while a table of contents is actu
ally being formatted.

Examples:

1. . pt . pa

This line places the .PA control
word in the table of contents so

Chapter 21. SCRIPT/VS Control Word Descripti~ns 265

2.

that when the table of contents
file is being processed, a page
eject occurs at this point. You may
do this if you want separate con
tent sections to appear on differ
ent pages.

.pt .pa

Since the line given has extra
J eadi ng blanks, it is a text line,
not a control word. The leadi ng
blanks are removed, and a .SX con
trol word is built, using the char
acters ". pa" as the data:

.sx f /.pa/ ./33/

(The head level control word macros
insert a leading blank in front of
a line to be written to the table
of contents with .PT when it is
known to be text.)

.QQ [QUICK QUIT]

3. .pt .h3 this is a head level 3

In this case, the control word .h3
is written into the table of con
tents file because the period
appears in the first available
position with no extra leading
blanks. Any head level that is
written into the table of contents
file in this way is processed as a
heading when the table of contents
is actuallY formatted. A normal
head level 3 ;s generated at that
point in the table of contents, but
no attempt is made to wri te any
more information into the table of
contents utility file. In other
words, the .PT function of the mac
ro for . H3 is ignored whi Ie the
table of contents is actually being
formatted.

The .QQ [Quick Quit] control word causes SCRIPT/VS processing to terminate imme
diately, without the usual final page eject .

• QQ

Hotes:

• Since SCRIPT/VS does not perform a
final page eject after encounter
ing the .QQ control word, some out
put that has been formatted may
never be displayed .

• QU [QUIT]

• The .QQ control word is useful when
you are using the .TE [Terminal
Input] control word to enter lines
from the terminal, and you want to
terminate processing quickly.

The .QU [Quit] control word causes processing to terminate with a final page
eject .

• QU

Notes:

• The .QU control word causes a final
page eject so that the last partial
page of formatted text may be
printed.

• The .QU control word will cause
termination no matter where or when
it is encountered, including with
in imbedded files (see the .IM con
trol word). All open SCRIPT fi les
are closed before processing ter
minates.

266 Document Composition Facility: User's Guide

.RC [REVISION CODE]

The .RC [Revision Code] control word allows you to designate a revision code mark
er to be printed to the left of the column.

.RC n

[
c

1
ON
OFF
ON/OFF

* c

Where:

n specifies the revision code
number from 1 to 9.

C specifies the revision code
character to be printed along
the left margin. It may be any
single character, including
the blank. If not specified, a
blank character is assumed.

ON signifies the beginning of
text to be marked wi th the code
character associated with RC
n.

OFF signifies the end of text to be
marked with the code associ
ated with RC n.

ON/OFF signifies that the next output
line should be marked with the
RC n code on output.

marks 'the next output line with
the specified revision code
(like the ON/OFF option).
Unlike the ON/OFF option, the *
option allows you to specify
any character for this one
occasion without associating
it with a revision code number.

Notes:

• The .RC control word
functions:

has

1. to define a
symbol and

revision

two

code

2. to activate the revision code.

You may have up to 9 revision codes
defined at any time, and each
revision code may be assigned a
different character. The operands
ON and OFF activate and deactivate
the actual revision code marking.
The operand ON/OFF has the effect
of turning ON revision code n for
one line only; the line that is
next printed after the .RC nON/OFF
i s processed.

•

•

•

•

•

•

By assigning different symbols to
different revision code numbers,
including the blank, it is possible
to selectively print specific
revision code markers or differen
tiate between various levels of
revision.

Since the .RC control word does not
cause an automatic break, revision
code markings may be turned on and
off within a paragraph or even a
sentence without disrupting normal
SCRIPT/VS formatting. An explicit
.BR control word may be necessary
under certain circumstances to
cause the last unrevised line to be
finished before formatting begins
on the revised material.

The revision code for the leftmost
column is placed in the binding
that is specified with the BIND
command option. The revision code
for other columns is placed in the
intercolumn gutter. If there is not
at least two character spaces of
binding or gutter, the revision
code is omi tted.

Revision codes may be nested to a
depth of 9. This is useful in cir
cumstances where revi si ons are
made to sections that have already
been revised. If a revision code is
turned ON while another is ON, the
first is stacked. It is neither ON
nor OFF. When the inner RC is
turned OFF, the stacked RC is
turned ON again. Only one RC is ON
at a time.

If you attempt to redefine a
revision code character while that
revision code is ON, an error mes
sage is issued.

The revision code status is subject
to the .SA [Save Status] and .RE
[Restore Status] control words. If
you have .RC 3 ON, then .SA, then
.RC 3 OFF, then .RE, the status is
restored as it was before the .SA
(that is, the revision code is
turned back on).

Chapter 21. SCRIPT/VS Control Word Descriptions 267

Example:

.rc 1 1

.rc 2 *
(input)
.rc 1 on
"This writeup applies to version 5."
.rc 1 off

The marker for revision code 1 is

.RD [READ TERMINAL]

defined to be a number one (1) and the
marker for revision code 2 is defined
to be an asterisk (*). All other
revision code markers are defined to be
blank by default. The line or lines of
printout that contain the sentence

1 "This writeup applies to version 5."
will be noted by a number 1 printed
along the left margin.

The .RD [Read Terminal] control word allows you to enter a line from the terminal
during SCRIPT/VS processing. SCRIPT/VS does not process this line in any way .

• RD

Where!

n specifies the number of lines to be
read at the terminal. If omitted, 1
is assumed.

Notes:

• The .RD control word is meaningful
only when the formatted output is
actually being typed at your termi
nal in interactive environments.
The line or lines typed are not
processed by SCRIPT/VS, but they
appear in the output exactly as
they are typed.

• The .RD control word causes a break
and a section break. All lines read
by .RD are read while SCRIPT/VS is

• RE [RESTORE STATUS]

•

•

in a single column mode. After the
.RD is finished, the previous col
umn definition is resumed.

If the output is not being typed at
a termi nal, the . RD control word
causes a break and a section break,
and then spaces down as many lines
as the "n" value specified, but in
a si ngle column mode. In thi s case,
.RD acts very much like n.sp n P".

As SCRIPT/VS reads lines from the
terminal, it accounts for the space
they occupy on the page. If the end
of a page is reacned befo re the
number of lines to be read is
exhausted, SCRIPT/VS takes con
trol, performs a page eject to
start a new page, and then contin
ues reading the remaining lines .

The .RE [Restore Status] control word restores the status of the SCRIPT/VS vari
ables that were previously saved by the .SA [Save Status] control word .

• RE

Notes!

• The .RE control word restores the
status of certain SCRIPT/VS vari
ables from the last-in-first-out
stack created by the .SA control
word. The .RE control word restores
the SCRIPT/VS variables to values
that were in effect at the time of
the corresponding .SA control

•

word. See the description of the
.SA control word for additional
information.

If there is no currently active .SA
control word, the .RE control word
restores the initial values. Each
.RE control word effectively
cancels a corresponding preceding
.SA control word.

268 Document Composition Facility: User's Guide

.RF [RUNNING FOOTING]

Use the .RF [Running Footing] control word to specify that the following lines of
text are to be saved as a running footing for subsequent pages.

.RF [ON] OFF
CANCEL

[ODD] [CANCEL]
EVEN

Where:

ON identifies the following lines
as a running footing to be
saved and placed on every sub
sequent page. ON is the
default.

OFF

ODD

EVEN

indicates that
specification of the
footing is ended.

the

specifies that the following
lines are to be saved as the
running footing for
odd-numbered pages only.

specifies that the following
lines are to be saved as the
running footing for
even-numbered pages only.

CANCEL may be used with the ODD and
EVEN parameters, or by itself
to cancel running footings
defined with the ODD, EVEN, or
ON parameters.

Default: ON

Notes:

• The running footing will be placed

•

•

•

on the page immediately above the
space which is defined by the .BM
[Bottom Margin] control word. It is
formatted to the current line
length, and all page number symbols
are replaced by the current page
number.

The running footing defined
the .RF control word will
effect on the page after the
control word is encountered.

with
take

.RF

Implicit termination of the
footing text is caused by starting
a new running heading or footing,
or by any control word that is not
allowed in a running footing. These
control words are the same as those
that are not allowed in a keep, and
are described in Figure 27 on page
312.

Some control words are processed
once when the running footing is
encountered, and others are proc
essed every page as the footing is
being formatted to be put on the
page. A list of the control words
that are processed immediately is
given in Figure 28 on page 312.

Chapter 21. SCRIPT/VS Control Word Descriptions 269

.RH [RUNNING HEADING]

Use the .RH [Running Heading] control word to specify that the following lines of
text are to be saved as a running heading for subsequent pages.

.RH [ON] OFF
CANCEL

[ODD] [CANCEL]
EVEN

Where:

ON identifies the following lines
as a running heading to be
saved and placed on every sub
sequent page. ON is the
default.

OFF i ndi cates that the
specification of the running
heading is ended.

ODD specifies that the following
lines are to be saved as the
running heading for
odd-numbered pages only.

EVEN specifies that the following
lines are to be saved as the
running heading for
even-numbered pages only.

CANCEL may be used with the ODD and
EVEN options, or by itself to
cancel running headings
defined with the ODD, EVEN, or
ON options.

Default: ON

Notes:

• The running heading will be placed
on the page immediately below the
space which is defined by the .TM
[Top Margin] control word. It is

•

•

•

•

formatted to the line length, and
all page number symbols are
replaced by the current page num
ber.

The running heading defined
the .RH control word will
effect on the page after the
control word is encountered.

with
take

.RH

Implicit termination of the
heading text is caused by starting
a new running heading or footing,
or by any control word that is not
allowed in a running heading. These
control words are the same as those
that are not allowed in a keep, and
are described in Figure 27 on page
312.

Some control words are processed
once when the running heading is
encountered, and others are proc
essed every page as the heading is
being formatted to be put on the
page. A list of the control words
that are processed immediatelY is
given in Figure 28 on page 312.

The function of the SCRIPT/370 Ver
sion 3 control word .HN [Headnote]
is provided by the .RH control
word. Thus, you cannot have a
SCRIPT/370 headnote and a
SCRIPT /VS runn i ng headi ng at the
same time.

270 Document Composition Facility: User's Guide

.RI [RIGHT ADJUST]

Use the .RI [Right Adjust] control word to position an output line flush with the
r; ght margi n .

• RI

Where:

n specifies the number of lines to
be right adjusted. If omitted, 1
is assumed. If .RI n is specified
when .R! ON is in effect, right
adjusting is turned off when n
lines have been right adjusted,
or when .RI OFF is encountered.

ON specifies that subsequent text
lines are to be right adjusted.

OFF terminates right adjust mode if
it was ON, or if n has been spec
ified and has not been exhausted.

l;ne is a line of text to be right
adjusted. The line is considered
to start with the first nonblank
character after the .R! control
word.

Default: 1

Notes:

• The keywords ON and OFF, and a
number of lines to be right
adjusted (n), must be the only
parameter on the control word line.
A string of words that happens to
start with one of these is inter
preted as a single line to be right
adjusted. For example, the control
word lines:

.r; on top of old smokey

.r; 555 Bailey Ave.

are taken to be of the ".RI line"

•

•
•

•

form, not request s for
numbers of lines to be
adjusted.

large
right

When right adjusting is in effect,
no formatting is done on the line.
That is, the line is right adjusted
as it stands, and it is not filled
from other input lines or justi
fied. If a tab character appears in
the line to be right adjusted, the
tab is resolved before the line is
right adjusted.

Thi s control word acts as a break.

If the line to be right adjusted is
longer than the current column
length, it is truncated, and the
excess is used on a second line.

The .CE [Center] control word is a
variant of .RI. If either of these
control words is processed, the
other is cancelled.

• Contrast this control word with .FO
RIGHT. The latter allows lines to
be formatted by concatenating
words until the line is nearly
full, but then the filled line is
right adjusted instead of being
justified, as would be the case
with .FO ON.

Example:

. ri 3

These three lines are
right-adjusted,
as you can see.

Chapter 21. SCRIPT/VS Control Word Descriptions 271

.RT [RUNNING TITLE]

The .RT [Running Title] control word saves a specified title line in a storage
buffer for possi ble future use. nli s ti tIe may be used at the top or bottom of the
next page and each subsequent output page.

.RT

Where:

Top

Bottom

Odd

Even

ALL

n

partl

part2

[

TOp
Bottom] [ALL

Odd
Even

specifies that this control
word refers to top titles. The
TOP keyword may be abbreviated
as T. This is the default.

specifies that this
word refers to bottom
The BOTTOM keyword
abbreviated as B.

control
titles.

may be

specifies that the title being
defined is to be printed on odd
numbered pages only. The ODD
keyword may be abbreviated as
O.

specifies that the title which
is being defined is to be
printed on even-numbered pages
only. If neither ODD nor EVEN
is specified, the title being
defined will be printed on both
even- and odd-numbered pages.
The EVEN keyword may be abbre
viated as E.

specifies that the title is to
be pri nted on both odd- and
even-numbered pages. All is
the default.

is the number of the title line
to be set. The number may be
from 1 to 6, and if it is omit
ted, 1 is assumed. The six
possible title lines are the
same for top titles and bottom
ti tIes. Bottom ti tIes are num
bered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "top ti tIe
l" set s the same sto rage bu ffer
as "bottom title 6." See the
discussion of the .HS [Heading
Space] and .FS [Footing Space]
control words for information
on how to allocate space on
your output page for top and
bottom titles.

is the portion of the title to
be left justified.

is the portion of the title to
be centered between the left
and right margins.

/partl/part2/part3/

part3 is the portion of the title to
be right justified.

/ is any delimiter character
that does not appear in partl,
part2, or part3.

Default: TOP All 1

Hotes:

•

•

•

•

•

•

Every occurrence of the page number
symbol in part l, part2, and part3
is replaced with the current page
number on each page where a title
appears, unless .PH OFF or .PN
OFFNO is in effect. The character
designated as the page number sym
bol may be changed wi th the . PS
[Page Humber Symbol] control word
or the .DC PS [Define Character]
control word.

Symbol substitution and character
translations set up by the .TR
[Translate Character] control word
are done on partl, part2, and part3
when the .RT control word is proc
essed, not on every page.

The three parts of the title are
used to form the actual title that
is to be saved for future use. Thi s
title may be printed at the top or
bottom of each subsequent output
page, if space has been allocated
for it using the .HS or .FS control
words.

The specific location of the top
titles on the page is controlled by
the .TM [Top Margin] and .HM [Head
ing Margin] control words; the
number of top titles to be used on
each page is controlled by the .HS
[Heading Space] control word.

The specific location of the bottom
titles on the page is controlled by
the .BM [Bottom Margin] and .FM
[Footing Margin] control words;
the number of bottom titles to be
used on each page is controlled by
the .FS [Footing Space] control
word.

Any title may be changed by
including another .RT control word
later in the file.

272 Document Composition Facility: User's Guide

•

•

•

The default top title, printed on
each page of output after page one,
i 5

PAGE &

which is right-justified at the top
of the page. This title may be sup
pressed with the .PN OFF control
word.

This control word will take effect
on the page after it is encount
ered.

The length of the ti tIe wi 11 be
that of the line length as set by
the .LL control word .

• RV [READ VARIABLE]

• The parameters may be specified in
any order, and if contradictory
options are specified, only the
latest one will be used. The first
character that is not recognized as
an option will be taken as a delim
iter.

Example:

.rt t 'heading' 'PAGE &'

The heading and the current page number
will be printed at the top of all sub
sequent pages, unless the heading space
has been set to zero.

The .RV [Read Variable] control word is similar to the .SE [Set Symbol] control
word, except that the value of the symbol is read from the terminal .

• RV symname [= ']

Where:

symname is the name of the symbol to
be set. I t may be ar1Y name
that would be allowable on the
left-hand side of the equal
sign in a .SE [Set Symbol]
control word.

= ' indicates that the value set
into the named symbol is to be
treated as a quoted string. If
you do not specify the equal
sign and the single quote,
SCRIPT/VS provides the equal
sign automatically, and proc
esses whatever string is
entered according to the
rules for the value on the
right-hand side of the equal
sign in .SE [Set Symbol] con
trol words. In this case, any
value that requires single
quotes must have the quotes
explicitly supplied as part
of the value entered from the
terminal.

Notes:

• When the .RV control word is
encountered, a line is read from
your terminal. This line is used as
the right-hand side of the equal
sign to set the value of the symbol
named in the .RV control word. Any
expression that would be allowable
as the value in a .SE control word
is allowable here. If no name is

given on the .RV control word, it
is ignored, and no line is read
from the terminal.

• The .RV control word does not cause
an automatic break.

• No message is displayed before the
terminal is unlocked to accept the
input line. You may use the .TY
[Type on Terminal] control word to
issue a prompting message before
the .RV control word issues its
terminal read.

Example:

A symbol called "name" could be set
with the following control word:

.se name = 'John Doe'

The same symbol could also be set this
way:

. rv name = ,
At this point, SCRIPT/VS issues a read
to your terminal, and you may enter the
material to be used as the value of the
symbol. In thi s example, you would
enter:

John Doe

You must use single quotes in the same
circumstances where they would be
required in a .SE control word, unless
the .rv name =' form is used.

Chapter 21. SCRIPT/VS Control Word Descriptions 273

.SA [SAVE STATUS]

The .SA [Save Status] control word saves the SCRIPT/VS formatting environment,
which consists of the values and dimensions of certain control words. If any of
these control words is processed, the environment is changed accordingly. The .RE
[Restore Status] control word restores all the environment values to the settings
that were in effect before the .SA control word was issued .

. SA

Notes:

• The .SA control word saves

•

•

•

environments in a stack. The .RE
[Restore Status] control word
restores the SCRIPT/VS environment
to the values that were in effect
at the time of the most recent .SA
control word.

The .SA control word can save up to
five different environments \~befOre
a .RE [Restore Status] contro word
i s requ ired. I f a sixth ,. A i s
encountered, a message is issued,
indicating that the save stack has
overflowed, and the control word is
ignored.

The .SA control word only saves a
copy of the values of ~se
SCRIPT /VS vari ables, it does not
change any of these variables. --

Since .SA does not change any of
the SCRIPT/VS variable settings,
all variables should be explicitly

.SC [SINGLE COLUMN HODE]

•

•

set to the values appropriate
unless the current settings are
known. For example, you can explic
itly set indention to 0, and then
restore it to whatever it was pre
viously.

The control word values in the
saved environment are listed in
Figure 32 on page 315.

The environment saved by .SA is
divided into three parts, the "ac
tive environment," "page control,"
and translate tables. The active
environment is automatically saved
and restored for some keeps (see
the di scussi on of the . KP [Keep]
control word) and for footnotes. It
is not necessary to use .SA and .RE
within keeps and footnotes unless
you want to save and restore values
that are not in the active environ
ment, such as .TR [Translate Char
acter] specifications.

The .SC [Single Column Mode] control word saves the current column definition and
starts a temporary single column format. The .MC [Multi column Model control word
restores the column definition that was saved by .SC .

• SC

Notes:

•

•

The .SC [Single Column Mode]
control word temporarily starts
formatting in a single column that
is the same width as the current
.LL [Line Length] specification.
The .MC [Multi column Model control
word restores the column defi
nition that was in effect before
the .SC was processed.

More than one .SC control word may
be processed without an interven
i ng . MC. Each . MC clears one . SC,
and, until the first .SC in the
list is cleared, the column defi
nition restored by each .MC is a

•

•

•

single column definition that was
set up by an earlier .SC.

The .CD [Column Definition]
control word starts an entirely new
column definition, and clears all
.SC's and .MC's that may be in
effect.

This control word is not allowed in
a keep.

The .SC control word starts a new
section. Therefore, skips inserted
by the .SK [Skip] control word are
discarded, since they would appear
at the top of a column.

274 Document Composition Facility: User's Guide

.SE [SET SYMBOL]

The .SE [Set Symbol] control word allows you to define and assign values to sym
bols or arrays of symbols. Using the .SE control word, you can give a symbolic name
to a page number, a word, or even a string of SCRIPT/VS control words. The .SE con
trol word itself, or any of its parameters, can be a symbol.

.SE symname [([nl 1 1 =

symnctme [([nlll C
C

Where:

[symvalue
Be
SUBSTR str;ng
INDEX str;ngl

OFF J
LIB J

INDEX

1 [start [lengthll
[str;ng21

searches the string
"string!" to see if it con
tains the string "string2".
If it does, the symbol value
is set to the position of the
starti ng character of
"stri ng2" wi thi n "stri ngl".

symname is the name to which you want
to assign a symbolic value to
be substituted during
SCRIPT/VS processing. It may
contain a maximum of 10 non
blank characters which may
be upper- and 1 owe rca 5e
alphabetic, numeric and the
characters ~, #, and $. You
may specify a line number in
parentheses for array sym
bols, except when you use the
LIB parameter. An array line
number is also called an ele
ment number or a subscript.

str;ngl is a string that is to be
searched to see if it con
tains the string "string2".

symvalue assigns a value to the symbol
name; it may be a character
string or arithmetic
expression.

assigns the symbol name a
value equal to the current
page number string.

SUBSTR obtains the specified
characters (substring) from
a given string and assigns
them to the symbol provided.

str;ng is the string from which the
substri ng is to be
extracted.

start is a positive integer that
defines the position of the
beginning character in the
string which is to be
assigned to the symbol. If
both start and length values
are omitted, the symbol will
be assigned the entire value
of the string.

length speci fi es the number of
characters to be extracted
from the string, in other
words, the length of the sub
string. If length is omit
ted, the remainder of the
string, from the specified
start to the end, wi 11 be
assigned to the symbol.

LIB

OFF

is a string that is to be
searched for in the string
"string1". If string2 is
omi tted, or has a null value,
the symbol will be set to O.

causes the symbol to be set
by retrieving its value from
a library. The name of this
library may be defined using
the LIB option on the SCRIPT
command. If the LIB option is
u sed to set a symbo I, the
value retrieved from the
library will replace the
current value. If no entry
with the symbol name given
exists in the library, the
symbol will be undefined.
Since symbol names in the
library are in uppercase
only, the same member of the
library will be used to
define all symbols of the
same name that differ only in
the case of the characters
used. SUbscripted symbol
names may not be used with
the LIB option. The LIB
opt i on may be used
reqardless of the most
recent specification of the
.LY control word.

unsets the named symbol so
that, to SCRIPT/VS, it was
never set. An entire array
symbol will be set off if no
subscript is provided.
However, only the specified
element will be set off if a
subscript is provided.

Chapter 21. SCRIPT/VS Control Word Descriptions 275

Symbol Names:

The character '*' has a special meaning
as the first character of a symbol name
because it denotes that the symbol is a
local symbol. This means that it will
only have the value that is set at the
current level of macro nesting, and
every macro that is called has its own
set of local symbols for the duration
of that macro's execution.

During SCRIPT/VS processing, a symbol
name is recognized when it is preceded
by an ampersand C&) and followed by a
blank or a period:

&symname

If the symbol name appears in any of
the following forms:

symname()
symname(n)
symname(&symbol)

it is an array symbol.

SCRIPT/VS also recognizes symbol names
that are preceded by the GML delimiter,
initially and by default, the colon
(:). The name of a symbol defined with
.SE as a GML tag must be all in upper
case characters, and it cannot be an
array symbol. The GML delimiter causes
SCRIPT/VS to search for a symbol name
that is all uppercase, regardless of
the case of the name in the input line.

Symbol Values:

If a symbol value is set to a character
str i ng that conta ins any embedded
blanks or any special characters, it
must be enclosed in single quotes. For
example,

. se dog = cat

. se end = '. qu'

.se sentence = 'This is a sentence.'

are all valid character strings. If you
want a character string to contain a
single quote ('), you must enter two of
them, for exam~le

.se title = 'Mrs; O"Grady"s Cat'

If you want to use the INDEX or SUBSTR
parameter of .SE to operate on a
portion of the string "~1rs. O'Grady's
Cat," which is the value of the symbol
&title, you should turn substitution
OFF with the .SU [Substitute Symbol]
control word before issuing the .SE
control word. If substitution is ON,
the control word line

.se syma = index &title Cat

does not work properly because substi
tution is performed on the line before
the .SE control word processes it. The
substituted line already has the string
"Mrs. O'Grady's Cat" on the right-hand

side of the equal sign, and the .SE
control word mi S1 nterprets the
internal blanks as delimiters between
parameters. If substitution is OFF, the
.SE control word receives the line in
its unsubstituted form, and the param
eter on the right-hand side of the
equal sign is the character string
"&title". Even though substitution is
OFF, the .SE control word can retrieve
symbol values when it recognizes symbol
names on the right-hand side of the
equal sign. In this case, the .SE con
trol word knows that the entire value
of the symbol &title constitutes the
"string1" parameter for thi s .SE con
trol word.

If the symbol value is an arithmetic
expression, it must be in the form:

[op1] n op2 n op2 n op2 n ...

where:

opl isaunary+or-sign.

op2 is an arithmetic operator:

n

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

is a valid integer of length less
than 9 digits. Lengths greater
than this may produce unpredict
able results. The integers may
have been assi gned thei r values as
a result of a symbol substitution
(including the page number
symbol).

For example,

. se nextpage = & + 1

.se current = -100

.se addit = ¤t + 25

.se answer = 15 - 42

are all valid arithmetic expressions.

Notes:

• In symbol names, uppercase and
lowercase letters are considered
to be different, thus the symbols
symbol1, Symboll, and SYMBOLl are
three distinct symbols. Symbols
whose names start with the dollar
sign ($) are system symbols, and
they exist only in an uppercase
form. The reserved system symbols
which may not be set by the user,
such as &$RET, are in this catego
ry. Although you can set a symbol
whose name starts with $ if that
name is not in use as a read-only
system symbol, this is discour
aged; c~nfusion can occur due to
the name folding. Symbols preceded
by the GML delimiter can be recog-

276 Document Composition Facility: User's Guide

•

•

•

•

•

•

•

nized only if a symbol (GML tag)
has been defined with the specified
name all in uppercase. During sub
stitution, a symbol name that
begins with $ or a symbol preceded
by the GML delimiter is folded to
uppercase before being resolved.

An i terat i ve subst i tut ion, as
described in the .SU [Substitute
Symbol] control word discussion,
is automatically performed on all
character string symbol values.

If the symbol value is omitted, the
symbol's value is set to a null
character string (length zero).

The symbol for the current page
number, &, remains the same even if
the page number symbol that is used
in running titles and running
headings and footings is changed
with the .PS [Page Number Symbol]
or .DC PS (Define Character] con
trol word.

If you set a symbol name equal to
the current page number (.SE refer
= &) wi thi n a keep, the symbol is
actually set twice. The page where
the keep will finally be located is
not known until the keep is ended
and measured. When a .SE control
word sets a symbol to the current
page number, the symbol is set
i mmedi at ely , and then it is set
again when the page number of the
keep is known. If you refer to this
symbol before the second setting,
the number may be inaccurate.

Arithmetic expressions in set
statements are evaluated strictly
from left to right, and no operator
takes precedence over another. For
example, the expression:

.se x = 1 + 2 * 4 + 6

will set the symbol x to the value
18.

See the discussion of the .SU
(Substitute Symbol] control word
for more information about symbol
substitution.

The LIB option of the .SE control
word allows a symbol to be explic
itly retrieved from the library.
The .LY (Library] control word
allows a symbol value to be
retrieved from the library when it
is used ina document and when a
value for it does not currently
exist. When a symbol value is once
retri eved from the 1 i brary, it is

•

•

•

•

stored in the symbol table for
future use.

You should be careful when using
local symbols and page number sym
bols in arithmetic set statements
with the mUltiplication operand
00. The expression .se a = &*3+1
wi 11 be taken as a request to add 1
to the value of the local symbol
&*3, not as a request to multiply
the page number by 3 and then add
1. To achieve the latter effect,
the page number symbol must be
delimited (.se a = &.*3+1).

When symbol substitution is ON, a
.SE control word line is completely
substituted before it is proc
essed. When substitution is OFF,
the .SE control word can still per
form individual substitutions on
symbolic values in the control
word. See the next two notes for
examples.

Be careful of the effects of
substitution on arithmetic set
statements when symbols that con
tain negative numbers are used. For
example,

· se a = -3
· se b = 5+&~

will result in an invalid
expression if substitution is on,
as the line will be substituted as:

· se b = 5+-3

which is invalid. However, if sub
stitution is OFF, the .SE control
word processor can see that you
want to add 5 to -3, and can do it
correctly.

Substitution also has an effect on
the .SE control word if strings are
to be set which are longer than 16
characters. SCRIPT/VS will treat a
single character string without
special characters or blanks as a
character string even if it is not
enclosed in quotes, if it is not
more than 16 characters long. If
the string is longer than this, an
error will result. For example:

.se a = '12345678901234567890'

.se b = index &a 1

will result in an error if substi
tution is on because the symbol &a
is not enclosed in quotation marks.
The error will not happen if
substitution is off.

Chapter 21. SCRIPT/VS Control Word Descriptions 277

.SF [SAVE FONT]

Use the .SF [Save Font] control word to save the current font identification .

• SF

Notes:

• The font-id saved with .SF is
restored by the .PF [Previous Font]
control word.

• SK [SKIP]

• You may save up to 16 font-ids with
.SF. If you issue more than 16 .SF
control words without an interven
ing .PF, the oldest saved font-id
i s lost .

Use the .SK [Skip] control word to generate blank vertical space before the next
text output line, except at the top of a column or page.

.SK [el [Al [P]

Where:

v is the amount of space to be
inserted in the output. If no number
is given, 1 line is assumed. If the
size in "v" is not qualified as any
of the other space units (inches,
picas, ciceros, or millimeters), it
is a request to skip a number of
lines. In this case, unless A is
specified, the size of the request
is multiplied by the appropriate
factor if double spacing or multiple
spacing is in effect.

e indicates conditional skips. These
skips depend upon what follows them
in the output column. If conditional
skips are followed by a line of
text, they appear in the column as
requested. If they are followed by
another skip or space request, the
two skip or space requests are com
pared, and only the larger of the
two remains in the column.

A indicates absolute skips. If the
vertical size of the skip given in
"v" is expressed in inches, picas,
ciceros, or millimeters, it is
already an absolute number, and the
actual requested depth will be
skipped, to the closest approxi
mation possible on the current log
i cal devi ceo In thi s case, A need
not be specified.

p indicates page skips. These skips
will generate skip space across the
full width of the page, even when
formatting in multiple columns.
Since this type of skip causes a

section break, it is not allowed in
a keep.

Notes:

• No blank space is generated if it
would be the first to be printed at
the top of a column of output. The
top of a column may be at the top
of the page or after a section
break. If the blank space would not
fall at the top of a column, the
.SK control word is identical to
the .SP [Space] control word. If
the column is partially filled, and
a .SK control word is encountered
requesting more space than remains
in the column, only enough space to
fill the column"is generated, and
then all the rest (at the top of
the next column) is ignored.

• Page skips (the P parameter) are
ignored if they fall at the top of
a page, but not if they fall else
where on the page.

• If double spacing is in effect, the
number of skips generated is multi
plied by the line spacing amount,
unless absolute spacing is speci
fied.

• Thi s control word acts as a break.

• If the skip request is in lines
(unqualified space units), the
size of each line is as defined
with the .SL [Set Line Space] con
trol word.

278 Document Composition Facility: User's Guide

.SL [SET LINE SPACE]

This control defines the vertical distance from the baseline of the current line
to the baseline of the following line .

. SL [vs;ze]

Where:

vs;ze is the the vertical size of all
followi ng formatted output
lines until redefined with
another .SL.

Initial Setting: One logical device
print line.

Default: One print line.

Notes:

• The vertical size of formatted
output lines is set by .SL to the
nea rest approx i mat i on of the
requested size that is possible on
the current logical device.

• SP [SPACE]

• The .SL value is used for formatted
lines and for requests in lines for
the following control words:

.CC [Conditional Column Begin]

.CP [Conditional Page Eject]

.SK [Skip]

.SP [Space]

In all other control words that can
have a vertical dimension
expressed in lines, such as .PL
[Page Length] and .1M [Top Margin],
the size of the request is based on
the size of a print line on the
current logical device. For exam
ple, if the logical device were an
8 1 i ne per inch pr inter, the con
trol word .TM 4 would set the top
margin to 4 lines, or one-half
inch, regardless of the .SL value .

Use the .SP [Space] control word to generate blank vertical space before the next
text output line.

.sP [C] [A] [P]

Where:

v is the amount of space to be
inserted in the output. If no number
is given, 1 line is assumed .. If the
size in "v" is not qualified as any
of the other space units (inches,
picas, ciceros, or millimeters), it
i s a request to space a number of
lines. In this case, the size of the
request is multiplied by the appro
priate factor if double spacing or
multiple spacing is in effect,
unless A is specified.

C indicates conditional spaces. These
spaces depend upon what follows them
in the output column. If conditional
spaces are followed by a line of
text, they appear in the column as
requested. If they are followed by
another skip or space request, the
two skip or space requests are com
pared, and only the larger of the
two remains in the column.

A indicates absolute spaces. If the
vertical size of the space given in
"v" is expressed in inches, picas,
ciceros, or millimeters, it is
already an absolute number, and the
actual requested depth wi 11 be
spaced, to the closest approxi
mation possible on the current log
ical device. In this case, A need
not be specified.

P indicates page spaces. These spaces
will generate space across the full
width of the page, even when format
ting in multiple columns. Since this
type of space causes a section
break, it is not allowed in a keep.

Notes:

• If double spacing is in effect, the
number of spaces generated is
multiplied by the line spacing
amount, unless absolute spacing is
specified.

Chapter 21. SCRIPT/VS Control Word Descriptions 279

•
•

•

Thi s control word acts as a break.

If the space
(unqualified
size of each
with the .SL
trol word.

request is in lines
space units), the
line is as defined

[Set Line Space] con-

If a page eject occurs while
SCRIPT/VS is processing a .SP con
trol word, remaining blank lines
are inserted after the top titles
and running heading on the follow-

.SS [SINGLE SPACE MODE]

•

ing page. If you do not want spaces
to appear at the top of the page,
use the .SK [Skip] control word.

Spacing via .SP for greater than
the number of 1 i nes 1 eft in the
column may produce undesirable
results if column balancing is in
effect. This is because the space
wi 11 be balanced across all columns
that were not completely fil18d by
the space.

Use the .SS [Single Space Mode] control word to cancel a previous .DS [Double
Space Mode] or .LS [Line Spacing] control word, and to resume single-spacing of
output .

• SS

Notes:

• This control word does not cause a
break.

• Output following the .SS [Single
Space Mode] control word is single
spaced. Since this is the normal

.SU [SUBSTITUTE SYMBOL]

output format, .55 is needed only
to cancel a prev i ou s . DS [Doubl e
Space Mode] or .LS [Line Spacing]
control word.

Use the .SU [Substitute Symbol] control word to cause SCRIPT/VS to stop substi
tution of defined set symbols or to restore substitution .

• SU

Where:

n specifies the number of lines to
be scanned for set symbols to be
substi tuted. If omi tted, 1 is
assumed.

ON turns on an open-ended
substitution mode. ON is the ini
tial setting.

OFF turns off substitution mode if it
was ON, or if n was given and is
not yet exhausted.

l;ne is a line containing symbols that
you want SCRIPT/VS to substitute
with values previously set.
Symbols may be set via the .SE,
. RV, .1M, or .AP control words,
or by a macro call.

Initial Setting: ON

Defaul t: 1

Notes:

• The .SU control word causes a
specified number of the following
input lines, control words as well
as text, to be scanned for defined
set symbols. If the argument ON is
in effect, every line up to a sub
sequent .SU OFF will be scanned.
Substitution ON is the initial mode
of operat ion, but it is reset to
OFF with .SU OFF; with .SU n, after
n lines have been read; or with
".SU line" after the line is
scanned .

280 Document Composition Facility: User's Guide

•

•

When an input line is substituted,
each complex symbol may go through
several stages of substitution
until no further substitution can
be done. Any "symbol name" for
which no definition exists is left
in the input line as text.

The substitution of set symbols may
increase or decrease the length of
the text line. If the line's length
reduces to zero, it becomes a "nu 11
line."

.SV [SPELLING VERIFICATION]

• The TWOPASS option of the SCRIPT
command may result in defining sym
bols during the first pass that can
be substituted during the second,
even though these symbols are
defined physically later in the
SCRIPT fi Ie. If the length of the
symbol value and the length of the
symbol name are grossly different,
the formatt i ng may come out sl i ght
ly differently in the two passes.

Use the .SV [Spelling Verification] control word to cause spelling checking to
start and stop. This control wbrd must be enabled by the SPELLCHK option of the
SCRIPT command. If the SPEllCHK option is not in effect, the .SV control word is
ignored.

.SV [ON] OFF

[NOADD] [NQSTE~fl [HUH]

Where:

ON specifies that spelling ver
ification is to be started.
This is the default.

NOADD The addenda dictionary will be
searched, stem processing will
be performed, and words that
contain numeric characters
will not be checked. Turns on
verification if it was off and
inhibits use of the addenda
dictionary for spelling check
ing. This dictionary is creat
ed using the .DU [Dictionary
Update] control word. If NOADD
is specified, only the main
dictionary will be used for
word verification.

NOSTEM turns on verification if it was
off and stops the spelling
checking function from per
forming stem processing on
words to be verified. Stem
processing is described in
more detail in "Chapter 15.
Automatic Hyphenation and
Spelling Verification" on page
157.

NUM turns on verification if it was
off and indicates that spell
ing verification is to be
started for words which con-

tain numeric as well as alpha
betic characters. This option
allows text that contains num
bers to be veri fi ed. If ON
instead of HUM is speci fi ed,
words that contain alphabetic
characters only will be
checked.

OFF stops spelling checking.

Initial Setting: OFF

Default: ON

Hotes:

• Each time the .SV control word is
used, the settings that control
spelling verification are all
reset. For example:

. sv noadd

will stop spelling checking
against the addenda dictionary. If
this is followed later in the docu
ment by:

. sv num

spelling verification will now
start for numbers, and will be
resumed from the addenda dictio
nary.

Chapter 21. SCRIPT/VS Control Word Descriptions 281

.SX [SPLIT TEXT]

The .SX [Split Text] control word is used to split a string of text between the
left and right column margins, with a filler in between the two.

.SX [Fl /lpart/fill/rpart

Where:

F allows the left part of a split
line to be folded if it will not
fit in the column. The folding
is done accord; ng to rules
appropriate for creating table
of contents entries. The fill
string and the right part are
never folded; they must fit in
the column.

/ is any delimiter character. The
first nonblank character will
be taken as the delimiter char
acter.

Ipart is the string to be placed
against the current left mar
gin.

is a string of up to eight
characters to be used to fi 11
the space between Ipart and
rpart. If this is not specified,
blanks are used. If the fi 11
string is shorter than the space
between the left part and the
ri ght part, it is repeated. If
the fill string is longer than
the space between the strings,
it is not used. The fill string
may not conta in tabs or back
spaces.

rpart is the string to be placed
against the current right mar
gin.

Notes:

• The delimiter character between
the strings may be any unique char-

•

•

•
•

acter that does not occur within
the strings themselves.

Any of the three parts of the line
may be null.

The final split line is printed in
the font that is in effect when the
.SX control word is encountered.

This control word causes a break.

The .PT [Put Table of Contents]
control word writes .SX control
words into the the table of
contents file to be processed when
the table of contents is formatted.
The del i mi ter used for these
internally generated .SX control
words is hexadecimal 00.

Examples:

1. Split text with null fill string:

.sx /left part//right part/

left part

2. A foldable split text, as used in
tables of contents:

. of 1

.sx f /An example ... / ./282/

An example of a folded split text
to demonstrate it 282

3. Split text with null left and right
parts:

. sx //-+//

-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

282 Document Composition Facility: User's Guide

.SY [SYSTEM COMMAND]

The .SY [System Command] control word is only supported in the interactive envi
ronments of CMS and TSO. In CMS, SCRIPT/VS passes a line to CMS for processing as a
CMS or CP command line. For TSO, the line is held until the end of SCRIPT/VS proc
essing .

• SY line

Where:

line is a CMS, CP, or TSO command
line. In CMS, if line is omitted,
CMS subset is entered.

Notes:

• Use the . SY control word if you
want to perform some CMS or CP
command when your SCRIPT file is
processed, or, in TSO, if you want
some command to be performed after
formatting is complete.

•

•

•

The .SY control word does not cause
a break.

No CMS command or user program is
allowed that requires the use of
the same area of storage that is
being used by SCRIPT/VS. CMS com
mands that are valid in CMS SUBSET
are valid on the .SY command. An
invalid SUBSET command results in a
return code of -2.

To test whether a command executed
successfully in a SCRIPT file, you
can use the . IF control word to
test the value of the reserved
symbol &$RET. For example:

.if &$ret ne 0 .qu

causes SCRIPT/VS to terminate

•

•

processing if the return code from
the last executed CMS command is
not zero.

If the command does not exist or
was not executed at all, &$RET is
set to a negative value. This would
be the case for nonexistent com
mands in CMS, and for all commands
in environments other than eMS.

In the TSO environment, if the .SY
control word is used more than
once, the commands will be executed
in the order in which they were
encountered.

Example:

The .IM [Imbed] control word issues an
error message if the designated file is
not found. The CONTINUE option of the
SCRIPT command allows SCRIPT/VS to con
tinue processing after this error. The
following .CIM [conditional imbed]
macro would allow SCRIPT/VS to test for
the existence of a file in CMS before
attempting to imbed it, and only imbed
it if it is available:

. dm c i m () /. s y s tat e & * 1 * *

.dm cim() /.if &$ret eq 0 .im sg10~sy

The macro would be invoked as follows:

.clm filename

Chapter 21. SCRIPT/VS Control Word Descriptions 283

.TB [TAB SETTING]

Use the .TB [Tab Setting] control word to define how tab characters (hexadecimal
05) are to be resolved. They may be changed into a number of blanks or to a string
of another character .

• TB [[f/lh [f/lh •.• [f/lhl

Where:

h specifies the horizontal
displacements of the tab stops.
SCRIPT/VS displaces to the next
stop by paddi ng wi th blanks or
other fill character. The
sequence must consist of increas
ing positive values separated by
one or more blanks.

If no parameters are specified,
the default tab settings (5, 10,
IS, 20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75, and 80) are
restored.

f/ speci fi es the fi 11 character to be
used in displacing through posi
ti on h. If the fi 11 character is
to be the blank, it need not be
specified.

Notes:

• Thi s control word acts as a break.

• The tab settings must be increas
ing. Tab settings that are not so
ordered resul~/i n an error message.

• Tab characters that are found
beyond (to the right) of the last
defined tab stop are converted~to a
single blank.

•

•

The fill ~hara~ter is formatted in
the current font when the fill
string is being formatted.

If the space to the next tab stop
is less than the width of one fill
character (minimum of 24 pels on
the 3800), the tab stop after the
next i s used.

•

•

•

Fill characters are only supported
with monospaced fonts on the 3800.
If you use fi 11 characters wi th
proportionally spaced fonts,
vertical misalignment may result.

Backspaces after a tab have the
effect of reducing the tab position
for non-3800 logical devices, but
the distance to be tabbed is never
reduced to less than one character
space.

No more than 16 tab stops may be
specified with the .TB control
word.

Examples:

1 .. tb 1020 */3040

Tab positions are interpreted as
character positions 10, 20, 30, and
40. If a tab character is processed
between positions 20 and 30 of a
line, the positions from the cur
rent posi t i on up through and
including position 30 are filled
with asterisks (*) instead of
blanks. The next character goes in
position 31. For example, using the
system symbol &Stab to generate tab
characters, the line,

&$tab~text&$tab.text&$tab.text

results in:

text

2. . tb

Tab positions revert to default
values of 5, 10, 15, etc.

284 Document Composition Facility: User's Guide

.TC [TABLE OF CONTENTS]

The .TC [Table of Contents] control word causes the automatically generated table
of contents to be imbedded and printed. Entries may be placed in the table of con
tents by head level control words .HO - .H6 [Head Level 0 - 6] and by the .PT [Put
Table of Contents] control word.

Where:

name
contl'ol
/]

n is the number of page numbers
to be reserved for the table
of contents. If omitted, 1 is
assumed. Thi s operand is
meaningful when the table of
contents is at the front of
the document, and the TWOPASS
option is used to process it.
On the fi rst pass, the table
of contents is empty, but on
the second pass, it may occupy
several pages. If the page
numbers in the table of con
tents are to be accurate,
every entry in the table of
contents must have the same
page number on both passes.
After .TC, if .PA n, or .PN n,
explicitly sets ~he page num
ber before .PT sets anything
into the table of contents,
then all the pages from the
table of contents to the
explicit .PA n, or .PN n will
be sequentially numbered. If
not, the n value on the .TC
control word will be used to
determi ne the number of the
page after the table of con
tents.

name is an optional line to be used
as the title of the table of
contents. If no name is given,
the word CONTENTS is used. A
head-level 1 (.Hl) is gener
ated at the top of the table
of contents using the name
given or the word CONTENTS.

contl'ol is a control word to be
processed at the top of the
table of contents in lieu of
the .HI. If this parameter
begins with a period, it is
assumed to be a control word,
and not a name.

/ signals SCRIPT/VS not to
generate any head level 1 for
the table of contents. Use
this when you want no name on
the table of contents, you
have no control word to be
executed, and you don't want
the default name CONTENTS to
be generated.

Notes:

•

•

•

•

•

When .TC is encountered, a head
level 1 is processed. A page eject
is done if not already at the top
of a page, but no entry is placed
in the table of contents for the
head. All table of contents entries
that have been saved in the utility
file DSMUTTOC are then formatted
and printed. The entries come from
the head level control words whose
definitions call for table of con
tents entries (by default, the con
trol words . HO through . H3 cause
these entries) plus any explicit
.PT control words in the source
file.

The table of contents is formatted
according to the line and page
dimensions in effect at the time
the . TC control word is encount
ered, not those in effect when the
head level was processed. Each line
in the table has the revision code
and the page number that were in
effect when the head level was
processed.

When the table of contents is
completely formatted, the utility
file is erased. Another page eject
is done, and the new page is num
bered as though sequential page
numbering had occurred and the
table of contents had occupied
exactly n pages. If the table takes
other than n pages, there will be
either a gap or an overlap in pagi
nation. If TWOPASS is in effect,
the pagination may be allowed to
run sequentially if the page number
is explicitly set before a .PT
tries to write an entry in the
table of contents file DSMUTTOC. In
this case, it doesn't matter what
was specified for n.

This control word acts as a break.
It is not allowed in a keep.

If the .TC control word is used at
the beginning of a document you
must be careful that the resolution
of symbols during the second pass
does not cause the document to

Chapter 21. SCRIPT/VS Control Word Descriptions 285

expand or contract in such a way
that the page numbers established
during the first pass are caused to
be i nval i d.

• TE [TERMINAL INPUT]

Example:

See the table of contents of this docu
ment for an example of an automaticallY
generated table of contents .

Use the .TE [Terminal Input] control word when you want to enter text or control
lines during the processing of the input file.

[~N 1 OFF
line

.TE

Where:

n

ON

specifies the number of lines
that will be accepted from the
terminal. If omitted, 1 is
assumed.

starts an open-ended terminal
input mode.

OFF turns off terminal input mode if
it was ON, or if n was given and
has not yet been exhausted.

line is an input line to be processed.
The "1 i ne" form is avai lable wi th
. TE because it is a Type 1 con
trol word, but it actually does
not read anything from the termi
nal. The control word:

.te read this line

causes the line "read this line"
to be processed as an ordi nary
input line, but SCRIPT/VS obvi
ously does not read it from the
terminal, because it already has
the line.

Notes:

• When the .TE control word is
encountered, your terminal key
board is unlocked to accept input
lines. The input lines may be text
or control words and are processed
as if they had been read from an
imbedded file (see the .IM [Imbed]
control word). The only exceptions
to this are the .GO [Goto] and ...
[Set Label] control words, whi ch
are not allowed during terminal
input. If a numeric operand was
specified, terminal input is ended
after reading n lines. If no oper
and was specified, only one line is
read from the terminal. If ON was
specified, input is accepted from

•

•

•

•

•

the terminal until ended with .TE
OFF. When terminal input is ended,
processing reverts back to the line
followi ng the . TE control word in
the file. If the TWOPASS option of
the SCRIPT command is in effect,
.TE control words in the input file
will be processed on both passes.

If you use .TE while the formatted
output is being displayed at your
terminal, the input and output may
be interspersed. This can be useful
for testing or experimentation,
but is not usually appropriate for
final output .

The .RD [Read Terminal] control
word merely unlocks the keyboard to
allow you to type lines in the
midst of the normal terminal out
put. It does not process what you
type. The .TE control word, on the
other hand, may be used to enter
control words or cause text input
to be formatted and to appear in
the output when the output is writ
ten to a device other than the ter
minal. The .TE control is in effect
an imbed, where the "file" imbedded
is your keyboard.

Use the .TY [Type on Terminal]
control word immediately before
the .TE control word to display
prompting messages.

If .TE ON was specified, the number
of lines to be read is open ended.
It can be ended by . TE OFF, but
since your keyboard is a simulated
imbed file, .EF, .QQ, or .QU will
also end it.

The .TE control word may be used to
enter control words to specify a
particular processing of the input
file, such as revision codes or
conditional sections.

286 Document Composition Facility: User's Guide

• Terminal input may be read from a
disk file if the terminal input
file name DSMTERMI has been associ
ated with the file or data set name

.TI [TRANSLATE INPUT]

with the .DD [Define Data File-id]
control word. See the discussion of
.DD for more information.

Use the .TI [Translate Input] control word to translate the input text from one
input representation to another. This control word should be used with caution,
since this translation will occur before any other processing is done.

• T1 [s t] •••

Where:

sis the source character to be
translated. It may be a single char
acter, or a 2-character hexadecimal
code.

t is the desired output
representation of the source char
acter. It may be a single character,
or a 2-character hexadecimal code.

Default: Restores the initial input
translate table.

• TM [TOP MARGIN]

Notes:

•

•

•

Multiple pairs of translate
characters may be specified with a
single .TI control word.

Translate-character specifications
remain in effect until explicitly
respecified.

A .TI control word with no operands
causes the translation table to be
reinitialized and all previously
specified translations to be
reset.

• The .TI control word does not cause
a break .

The .1M [Top Margin] control word specifies the amount of vertical space to be
skipped above the text and running heading on output pages, overriding the initial
value established for the device.

Where:

v
+v
-v]

v specifies the amount of vertical
space to be skipped at the top of
output pages. If no value is speci
fied for v, the default value for
the logical device will be used. v
must be large enough to accommodate
the heading margin and the heading
space, both of which are allocated
from the top margin area. The top
and bottom margins may not fill the
page so that there is no room left
for formatted text. If the value
specified for the top margin is so
large that there would not be at
least one line available for text,
the old top margin is left
unchanged, and an error message is
issued.

+v or -v increases or decreases the
existing top margin by the amount
given. The calculated top margin
value must fall within the allowed
range, or an error message will be
issued.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

• When the .TM control word is
processed, a new top margin is set
for future pages, but it is too
late for the new value to take
effect on the current page. If you

Chapter 21. SCRIPT/VS Control Word Descriptions 287

•

want to increase the heading
(.HM) or the heading space
beyond what the current top
will accommodate, you must
the top margin value first.

margin
(. HS)

margin
change

This control word does not cause a
break, and it takes effect on the
page after the control word is
encountered.

• If you specify .TM 0, the heading
margin and the heading space are
also made zero automaticallY. Any

.TR [TRANSLATE CHARACTER]

•

other top margin specification
that is smaller than the current
size of the heading margin plus the
heading space cannot be satisfied,
and results in an error message.

An error message is also issued if
you try to set the top and bottom
margins so that they fill the
entire page, without at least one
line left for text.

The .TR [Translate Character] control word allows you to specify the output
representation of each character in the source text .

• TR [s t] ..•

Where:

sis the source character to be
translated. It may be a single char
acter, or a 2-character hexadecimal
code.

t is the desired
representation of the source
acter.

output
char-

More than one pa i r of source and
intended output codes may be speci
fied with a single .TR control word.

Default: Restores the
translate table.

initial output

Notes:

•

•

•

The .TR control word is primarily
of use when the final output device
uses a different character set than
was used to create the source
SCRIPT file.

The text associated with runn;ng
title lines (.RT) is translated
under control of the translations
in effect at the time that the .RT
control word was processed. If you
change the translations after the
running title has been saved for
future use, it is too late to
affect that running title.

Since control words are only
processed internally, they are
never translated by the .TR control
word. However, text data associ
ated w; th a control word (as in
running titles and typed messages)
can be translated.

•

•

•

•

•

•

•

Translate-character specifications
remain in effect until explicitly
respecified.

A .TR control word with no operands
causes the translation table to be
rei niti ali zed and all previously
specified translations to be
reset.

The UPCASE option of the SCRIPT
command has the same effect as the
26 TRANSLATE CHARACTER control
words: ".tr a A; .tr b Bi ... ; .tr z
Z".

By using the .IF, .CS, or
control words, you may specify
ferent output character sets
different runs with different
put devices.

.TE
dif
for

out-

The .TR control word does not cause
a break.

The hexadecimal codes for each
printable character for the vari
ous character sets and fonts used
by SCRIPT /VS are shown in "Appendi x
A. SCRIPT/VS Summary" on page 297.

During the time a translation is in
effect, every occurrence of the
character is translated to the des
ignated output character in for
matted text. You should therefore
take care not to translate charac
ters that will be needed during
that range. The actual translation
is done at various times in the
formatting process, depending on
the requirements of the logical
device for which the document is
being formatted. The latest time
when a translation can be done is
when a line is finished, and is
placed in a column.' You should
assume, therefore, that a trans-

288 Document Composition Facility: User's Guide

lation will be needed until the
next break is done, whether this
happens naturally because a line is
full, or is forced by a control
word that causes a break.

Examples:

1. .tr 0 bO 1 b1 ... 9 b9

This causes the characters 0, 1,
... , 9 to pri nt as thei r corre
sponding superscript characters if
they are available in the current

.TT [TOP TITLE]

2.

font. For example, the formula:

X2+Y2=Z3

prints as:

.tr 40 ?

This causes all blanks in the file
to be translated to question marks
(?) on output.

The .TT [Top Title] control word saves a specified title line in a storage buffer
for possible future use. This title may be used at the top of the current page,
and each subsequent output page.

.TT [n]

Where:

n is the number of the top title
line to be set. The number may
be from 1 to 6, and if it is
omitted, 1 is assumed. The six
possible title lines are the
same for top titles and bottom
titles. Bottom titles are num
bered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "even bot
tom title 1" sets the same stor
age buffer as "even top ti tIe
6." See the discussion of the
.HS [Heading Space] control
word for information on how to
allocate space on your output
page for top titles.

partl is the portion of the title to
be left justified.

part2 is the portion of the title to
be centered between the left and
right margins.

part3 is the portion of the title to
be right justified.

/ is any character that does not
appear in partl, part2, or
part3.

Notes:

• This control word is provided for
compatibility with SCRIPT/370 Ver
sion 3. The same function is pro
vided by the SCRIPT/VS control word
.RT [Running Title]. See the di s
cussion of the .RT control word for
further information about running
titles, including those for the top
of pages.

Chapter 21. SCRIPT/VS Control Word Descriptions 289

.TY [TYPE ON TERMINAL]

The .TY [Type on Terminal] control word causes one line of information to be dis
played at your terminal, or written into the file DSMTERMO, no matter where the
SCRIPT/VS formatted output is going .

• TY text

Where:

text is the line to be typed. It is
used only for thi s message. It
does not become part of your doc
ument unless the document output
is also being typed at your ter
minal.

Notes:

• When the .TY control word is
processed, the text line given is
typed at the terminal. This line is
not part of the document. SCRIPT/VS
does not process the line for out
put; the line is not justified, or
formatted in any way. However, the
line is scanned for control word
separators and symbols are substi
tuted. The text to be typed is
translated according to the .TR
[Translate Character] translations
currently in effect.

• You may use the .TY control word to
issue a prompting message before a
.TE [Terminal Input] or .RV [Read
Variable] control word.

• The information line printed is not
counted as part of the normal out
put. Thus, if the formatted output

.UC [UNDERSCORE AND CAPITALIZE]

is being typed on the terminal, the
paper positioning may become
incorrect and requi re manual
adjustment. In general, the .TY
control word should be used for
document-driven messages when the
formatted output is going to a
printer or to a disk file.

• Contrast this control word with .MG
[Message]. The .MG control word
allows you to issue a true
SCRIPT/VS message. A true message
may have any of several different
degrees of severity, it may termi
nate SCRIPT/VS processing, and its
destination and final form are con
trolled by the MESSAGE command
option. The .TY control word merely
types out a line without any of the
function of a true message.

Example:

.ty Do you want 2 column output?
· rv answer
.if x&answer ne xyes .go by2col
· cd 2 0 46
.cl 43
· .. by2col

The .UC [Underscore and Capitalize] control word automatically underscores and
capitalizes one or more input lines .

• UC

Where:

n specifies the number of lines to
be underscored and capitalized.
If omitted, 1 is assumed. If .UC
n is specified when .UC ON is in
effect, .UC is turned off when n
lines have been underscored and
capitalized, or when .UC OFF is
encountered.

ON

OFF

290 Document Composition Facility: User's Guide

specifies that subsequent text
lines are to be underscored and
capitalized.

terminates underscore and
capitalization mode if it was ON,
or if n has been specified and
has not been exhausted.

l;ne is a single text line to be
capitalized and underscored.

Initial Setting: OFF

Defaul t: 1

Notes:

•

•

Use the .UC control word whenever
you have a line of data that is to
be formatted in capital letters and
underscored. This control word
provides the combined function of
.US [Underscore] and .UP [Upper
case] .

The .UC control word does not cause
an automatic break; single words in
a sentence may be underscored and
capitalized.

.UD [UNDERSCORE DEFINITION]

Examples:

1. Underscoring and capitalizing a
single word:
This sentence has
· uc one
word processed by .UC.

results in

Thi s sentence has ONE word proc
essed by . UC.

2. The . UC control word is a Type 1
control word. The SCRIPT/370 Ver
si on 3 . UC control "lord was not
Type 1, but it accepted a single
line of text only, like the 'line'
form of a Type 1 control word. The
SCRIPT/370 control word n.uc 80"
would process the string "80", but
the same control word in SCRIPT/VS
starts .UC mode for 80 LINES. If
you have any SCRIPT/370 documents
that you want to process with
SCRIPT/VS, the following macro may
be defined to make .UC operate as
the SCRIPT/370 control word:

· dm uc() /.' up off
· dm u c () /.' us 0 ff
· dm uc () /.' uc 1
· dm u c () /. Ii & *

Use the .UD [Underscore Definition] control word to specify which characters
s h 0 u 1 d be u n de r s co red w he n eve r aut 0 mat i c un d e r s cor i n g i s don e .

.UD {: ON
{: OFF

}
}

c c .••]
Where:

ON speci fi es that the followi ng
characters are to be underscored.

OFF speci fi es that the followi ng
characters are not to be under
scored.

c is either a single character or a
2-character hexadecimal code
representing a character that is
defined for underscoring (ON) or
not underscoring (OFF).

Initial Setting: See Notes.

Default: Restores initial settings.

Notes:

• When a line is automatically
underscored, each character is
subject to underscoring or not,
depending on the current .UD spec-

•

•

•

ification. For example, with .UD,
you can specify that no capital H
should be underscored. If you do
not give any parameters with the
control "lord, but put". UD" alone,
the initial definitions are
restored.

The control words that cause
underscoring are .US [Underscore},
.UC [Underscore and Capitalize]
and any . HO - . H6 [Head Level 0 -
6] control word whose current defi
nition calls for it.

This control word does not cause a
break.

You may specify as many characters
on a .UD control word line as you
wish. If you want to change some
characters to ON, and others to
OFF, or if you want to change more
characters than it is practical to
specify on a single input line, you
may use more than one .UD control

Chapter 21. SCRIPT/VS Control Word Descriptions 291

•

word. Each .UD control word changes
only the characters specified, and
leaves the rest of the characters
unchanged.

The initial .UD setting calls for
all characters to be underscored
except for blanks, tabs, punctu-

.UN [UNDENT]

ation characters, and cert~in
other special characters. The
characters that are not automat
ically underscored are shown in
Fi gure 36 on page 319. Blanks or
fill characters generated by a tab
character are not underscored.

Use the .UN [UndentJ control word to cause the next line to be shifted. The current
indention is changed for the next line only, then restored to its previous value
for subsequent lines .

• UN

Where:

h specifies the amount of horizontal
space by which the indention is to
b~ altered for the next line only.
A SCRIPT/VS "undent" is a negative
indent. If -h is specified, the .UN
control word is effectively the
same as the .Il [Indent line] con
trol word. If omi tted, 0 is
assumed, and the indention is not
changed.

Initial Setting: 0

Default: 0

Notes:

• The .UN control word provides the
same function as the .OF [Offset]
control word. The choice between
using .UN and .OF is usually a mat
ter of personal preference. They
may also be used at the same time
to control margins that shift both
right and left.

• Thi s control word acts as a break.

•

•

The value specified in a .UN
control word is subtracted from the
current indention (indent value
plus offset value) to determine
where to format the next line. If
the .UN amount exceeds the current
indention amount, an error message
results.

If successive .UN or .Il control
words with positive or negative
specification for h are encount
ered without intervening text
lines, the .UN value is reset to
the latest specified value each
time.

Example:

. in 3p

.un 3p

If an indention of 3 picas is in effect
(as in these lines), the next
line is undented to the left mar
gin; all following lines have the
normal indention of 3 picas from
the left margin.

292 Document Composition Facility: User's Guide

.UP [UPPERCASE]

The .UP [Uppercase] control word automatically capitalizes one or more input
lines .

• UP

Where:

n

ON

OFF

specifies the number of lines to
be capitalized. If omitted, 1 is
assumed. If. UP n i s spec i f i ed
when . UP ON is in effect,
capitalization is turned off
when n lines have been capital
ized, or when .UP OFF is encount
ered.

specifies that subsequent text
lines are to be capitalized.

terminates capitalization
if it was ON, or ;f n has
specified and has not
exhausted.

mode
been
been

line is the line to be capitalized.

Hotes:

•

•

•

Use the .UP control word whenever
you have a line of data that ;s to
be formatted in capital letters. If
your entire document is to be in
capital letters, use the UPCASE
option of the SCRIPT/VS command
line.

The .UP control word does not cause
an automatic break. Single words
in a sentence may be capitalized.

Another method of capitalizing a
single word is to use the uppercase
attribute symbol &u' that is recog
nized by the symbol processor.

Examples:

1. Capitalizing a single word:

2.

This sentence has
· up one
capitalized word.

results in:

This sentence has ONE capitalized
word.

Capitalizing a single word using
the symbol processor's uppercase
attribute:

This sentence has &u'one capital
ized word.

results in:

This sentence has ONE capitalized
word.

3. The. UP control word ; s a Type 1
control word. The SCRIPT/370 Ver
si on 3 . UP control word was not
Type 1, but it accepted a single
line of text only, like the 'line'
form of a Type 1 control word. The
SCRIPT /370 control word ". up 80"
would process the string "80", but
the same control word in SCRIPT/VS
capitalizes 80 LINES. If you have
any SCRIPT/370 documents that you
want to process with SCRIPT/VS, the
following macro may be defined to
make .UP operate as the SCRIPT/370
control word!

· dm up() /.' uc off
· dm up() /.' us off
· dm up () /.' up 1
· dm up () /. 1 i & *

Chapter 21. SCRIPT/VS Control Word Descriptions 293

.US [UNDERSCORE]

The .US [Underscore] control word automatically underscores one or more input
lines.

.us

Where:

n

ON

[~N 1 OFF
line

specifies the number of lines to
be underscored. If omitted, 1 is
assumed. If .US n is specified
when . US ON i sin effect, . US i s
turned off when n lines have been
underscored, or when .US OFF is
encountered.

specifies that subsequent text
lines are to be underscored.

OFF terminates underscoring if it
was ON, or if n has been speci
fied and has not been exhausted.

line is a single text line to be
underscored.

Initial Setting: OFF

Default: 1

Notes:

• Use the .US control word whenever
you have a line of data that is to
be underscored.

• The .US control word does not cause
an automatic break; single words in
a sentence may be underscored.

Examples:

1. Underscoring a single word:

This sentence has
· us one
underscored word.

results in:

This sentence has Qng underscored
word.

2. The .US control word is a Type 1
control word. The SCRIPT/370 Ver
si on 3 . US control word was not
Type 1, but it accepted a single
line of text only, like the 'line'
form of a Type 1 control word. The
SCRIPT/370 control word ".us 80"
would underscore the string "80",
but the same control word in
SCRIPT/VS underscores 80 LINES. If
you have any SCRIPT/370 documents
that you want to process with
SCRIPT/VS, the following macro may
be defined to make .US operate as
the SCRIPT/370 control word:

· dm us () /.' up 0 ff
· dm us () /.' uc 0 ff
· dtl}. us () /.' us 1
.dm use) /.li &*

294 Document Composition Facility: User's Guide

.WF [WRITE TO FILE]

Use the .WF [Write To File] control word to cause lines of text or control words to
be written to an output file with the id DSMUTWTF .

I" .
.WF !

n
ON
OFF
line
IMBED
ERASE .. .

Where:

n specifies that the next n lines
are to be written into the
DSMUTWTF fi Ie.

ON specifies that the following
text and control words are to be
written into the DSMUTWTF file
until .WF OFF is encountered.

OFF stops writing text and control
words to the DSMUTWTF file,
whether ON was specified, or a
number of lines in 'n' that has
not yet been exhausted. The .WF
OFF control word must occur on a
Ii ne by it sel f.

1;ne is a line of text or control
words to be written to the file.

IHBED causes the DSMUTWTF file to be
imbedded ..

ERASE causes the DSMUTWTF file to be
erased.

Hotes:

• All the text and control words
between the .WF ON and OFF control
words will be written into the
DSMUTWTF file. Ho .WF control word

•

•

•

•

is written to the file. Any .WF
other than .WF OFF is ignored when
.WF is writing lines to the file.

If symbol substitution is ON, the
lines that are written to the file
will have been substituted. If sub
stitution is ON when the file is
imbedded, the lines will be substi
tuted again if any unresolved sym
bols remained from the first
substitution.

The file-id DSMUTWTF may be
associated with different file or
data set names using the .DD [De
fine Data File-id] control word.
See the discussion of .DD for more
information. Different groups of
information can be written to dif
ferent actual files when .DD is
used.

The .WF control word cannot write
into a file that is currently in
use for .AP [Append] or .IM
[Imbed]. If an imbedded or appended
file is ended with the .EF [End of
File] control word it is still "in
use" unless the CLOSE option was
specified.

The data written to a file will be
added after any existing data in
the fi Ie.

Chapter 21. SCRIPT/VS Control Word Descriptions 295

.zz [DIAGNOSTIC]

The .ZZ [Diagnostic] control word provides the system programmer with the ability
to dump selected internal SCRIPT/VS control blocks. This control word is ignored
unless enabled by the DUMP option of the SCRIPT command .

. zz { ON }

Where:

ON

OFF

{ OFF }
{ DUMP nn [nn •••] }

allows dump data that is
specified in message definitions
to be printed. This is the ini
tial setting if the DUMP option
of the SCRIPT command is speci
fied.

prevents dump data that is
specified in message definitions
from being printed.

DUMP causes immediate dumping of the
data areas indicated by the code
numbers given in "nn". The valid
range of values is 9 through 64.
Any number of values may be spec
i fi ed. The val i d code numbers are
as follows:

9 Active save areas - DSMSAVD

10 Global area - DSMSGLB

11 Language processor common
a rea - DSMS ECT

12 PF work area - DSMNWRK

13 MF work area - DSMMCOM

16 Logical
DSMSLDT

Device table

17

18

TRS work area - DSMTRSC

Font work area - DSMSFWA

19 Font tables for
device - DSMSFTB

20 Trace table

logical

Notes:

• The .ZZ control word may be used
several times within the source
text to provide selective dump
information.

•

•

The information is dumped to the
same destination to which error
messages are written.

The control will only be active if
the DUMP option was specified on
the SCRIPT command.

296 Document Composition Facility: User's Guide

APPENDIX A. SCRIPT/VS SUMMARY

Figure Page Descr;pt;on

21 298 A picture of the SCRIPT/VS page layout.

22 299 List of the utility files that SCRIPT/VS creates or uses.

23 299 Summary of the options of the SCRIPT command.

24 301 Summary of the SCRIPT/VS control words and their parameters.

25 311 List of the control words that result in a break beh-Jeen
input lines of text.

26 311 List of the control words that always take effect on the
next output page.

27 312 List of the control words that are not allowed within a
keep, running heading or footing, or footnote.

28 312 List of the control words that are processed only once with-
in a running heading or footing.

29 313 List of the control words whose initial values are based on
the logical default device.

30 313 List of SCRIPT/VS Logical Device Characteristics.

31 314 Summary of the default characteristics of each head-level
control word.

32 315 Summary of the parameters that are saved as a result of the
.SA [Save Status] control word.

33 316 Summary of SCRIPT/VS system symbols.

34 318 List of attributes of a symbol's value.

35 319 List of the characters that mark the beginning or ending of
a word.

36 319 List of the characters that are underscored by default.

37 320 IBM 1403 Printer's TN print train character set.

38 320 List of the fonts provided with SCRIPT/VS for use with the
3800 Printer

39 321 List of the fonts provided with the 3800 Printer.

Figure 20. Index to SCRIPT/VS Summary

Appendix A. SCRIPT/VS Summary 297

>

Top
Margin
(.TM)

P
a
g
e

Body
L of
e the
n Page
g
t
h

Bottom
Margin
(. BM)

>

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

B
I
H
o
I
H
G

<----------Line length (.ll)------------->

Heading Space (.HS/.RT)

Heading Margin (.HM)

Running Heading (.RH)

...
< Column Width (.CL) >

.....•..................•.. <-Indent

........................... Right->

<-Indent->
G
U
T
T
E
R

Footnotes

<-Column Width->

(. FH)

Running Footing (.RF)

Footing Margin (.FM)

Footing Space (.FS/.RT)

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Figure 21. SCRIPT/VS Terms for Parts of the Page: Hote that Top Margin and Bottom
Margin include all the space on the paper that is accessible to
SCRIPT/VS. For terminals and 1403-type printers, this includes the
entire page. For 3800-type devices, Top and Bottom Margin do not
include 1/2 inch on each side of the interpage perforation. This space
is reserved by the 3800 Printer for accelerating and decelerating the
paper when it is necessary to halt the paper path.

298 Document Composition Facility: User's Guide

SCRIPT/VS utility Files

Control
File-id Description ltJord Option

DSMTERMI Terminal input file .TE
DSMTERMO Terminal output file .TY TERM
DSMUTD1M Delay imbed file .D1
DSMUTMSG Error messages file .MG MESSAGE(DELAY)
DSMUTTOC Table of Contents file .TC, .PT
DSMUTWTF Write to file file .WF

Figure 22. File-id's of SCR1PT/VS Utility files: SCRIPT/VS uses or creates these
files as a result of the control words or options indicated. Any of
these files may be redefined with the .DD [Define Data File-id] control
word.

Option Parameters Description

BIND (bind) Shift the page image to the right.
(obind ebind)

CHARS (fontl ... font4) Specify up to four fonts.

CONTINUE Continue processing after a non severe error
occurs.

DEST (station i d) Specify a remote output station. (Valid only
for TSO.)

DEVICE (devtype) Specify a logical output device.

DUMP Enables the .ZZ [Diagnostic] control word.

FILE [(fileid)] Specify a disk file for output.

LIB (libname ...) Specify symbol and macro libraries. (Only
one for TSO; up to eight for CMS.)

MESSAGE ([DELAY] Control message printing.
[ID]
[TRACE])

NOPROF Suppress the profile.

NOSPIE Prevent entering SPIE exit routines. (Valid
only for CMS and TSO.)

NOWAIT Prevent prompting for paper adjustment.
(Valid only for typewriter terminal output.)

NUMBER Print file name and line number.

OPTIONS [(fileid)] Specify a file that contains SCRIPT options
(Valid only for CMS.)

Figure 23. Summary of SCRIPT Options (Part 1 of 2)

Appendix A. SCRIPT/VS Summary 299

Opt;on Parameters Description

PAGE [FROM] p [TO] q Selectively print pages.
[FROM] p FOR n
[FROM] p ONLY
PROMPT

PRINT [{copies,class, Produce printer output. (Sub-options valid
fcb,ucs)] only for TSO.)

PROFILE [Cfileid)] Specify a profile. (A file to be imbedded
before the primary input file is processed.)

QUIET Suppress the formatter's identifier message.

SEARCH (libname) Specify a library. (Not valid in a CMS envi-
ronment.)

SPELLCHK Enable the .SV [Spelling Verification] con-
trol I,.oJord.

STOP Print separate pages at the terminal. (Valid
only for typewriter-terminal output.)

SYSVAR en value ...) Set symbol values for &SYSVARn.

TERM Display the output at a user's terminal.
(Valid only in CMS and TSO.)

TWOPASS Prepare with two formatting passes, and
produce output on the second pass.

UNFORMAT Print all input lines without formatting.

UPCASE Fold lowercase letters to uppercase before
printing.

Figure 23. Summary of SCRIPT Options (Part 2 of 2)

300 Document Composition Facility: User's Guide

Control
Word Parameters Descr;pt;on

... label [input linel Set Label: Inserts a line that can be used
as the target of a . GO control IIJord .

.AP file-id Append: Allows an additional file to to be
[token! ... token!4l appended to the file just processed

.BC [OHIOFF] Balance Columns: Causes SCRIPT/VS to
attempt to balance the columns when a page
eject occurs or when the column definition
is changed.

.BF font Begin Font: Causes SCRIPT/VS to use a new
font. Based on logical device.

.BM [vl+vl-vl Bottom Margin: Specifies the amount of
space in the bottom margin area. Causes
break.

SCRIPT/VS special symbol: &$BM
Not allowed within a keep, running heading,
or running footing.

Default: Based on logical device type

.BR Break: Prevents the concatenation of the
following text line wi th preceding text.

.BT [n] Bottom Title: Sets a bottom title line.
/left/center/right/ (Provided for compatibility with

SCRIPT/370; use the .RT [Running Title]
control word instead.)

Not allovJed wi thi n a keep, running heading,
or running footing.

.BX [NEWIOFFlcANl Box: Draws horizontal and vertical lines
[d! [/] d2 ...] around subsequent output text.
[CHAR name] Causes a break.

.CB Column Begin: Causes an eject to the next
column (or next page.)

Causes a break.
Not allowed within a keep, running heading,
or running footing.

.CC [v] Conditional Column Begin: Causes a column
eject if less than a specified amount of
space remains in the column.

Causes a break.
Not allowed within a keep, runn,i ng heading,
or running footing.

.CC causes a column eject unless there i s
no data in the current column.

.CD n [pi p2 ... p9] Column Definition: Specifies the number of
columns on the page and position of each
column.

Causes a break.
Not allowed within a keep, running heading,
or running footing.

Initial value: One column at position O.

.CE [llnIONIOFFI Center: Centers text lines betvJeen the cur-
input-line] rent left and right margins.

Causes a break.

Figure 24. SCRIPT/VS Control Word Summary (Part 1 of 10)

Appendix A. SCRIPT/VS Summary 301

Control
Word

.Cl

.CM

.CO

.CP

.CS

.CW

.DC

.DD

.DH

.DI

Parameters

[hl+hl-h]

[ONIOFF]

[v]

n [ONIOFF]

n [INCLUDEIIGNORE]

[character]

[option char ... I
OFF]

file-id
[LIBIDDIDSH file-id]
[PROC name]
[SEQ col length]

n [options]

[1InIONIOFFI
input-line]

Descr;ption

Column Width: Specifies the width of each
column (all columns are the same width).

Causes a break.
SCRIPT/VS special symbol: &$CL
Default: Line length

Comment: Identifies a comment line.

Concatenate Mode: Causes output lines to be
formed by concatenating input lines.

Causes a break.

Conditional Page Eject: Causes a page eject
if less than a specified amount of space
remains on the page.

Causes a break.
Not allowed within a keep, running heading,
or running footing.

Default: .CP causes a page eject unless
there is no data on the current page.

Conditional Section: Allows conditional
inclusion of input in the formatted output.
Initial value: All conditional sections

included.

Control Word Separator: Defines the control
word separator character.

SCRIPT/VS special character: &$CW
Initial value: ; (semi-colon)
Default: no control word separator.

Define Character: Defines the characters
for special functions.

Options:
ASEp: Array element separator characters

(up to 4)
CONT: Line continuation character (&$CONT)
CW: Control word separator (&$CW)
GMl: GML tag delimiter (&$GML)
STOP: End-of-sentence characters
PUNC: Punctuation characters
PS: Page number symbol (&$PS)
RB: Required blank (&$RB)
WORD: [See Figure 35 on page 319]
Defaults:

ASEP: ,40
CONT: none
CW: ;

GML:
STOp: !?
PUNC: - ,

&
41

Define Data File-id: Specifies the file-id
of a file to be used with the .IM [Imbed],
.AP [Append] or .WF [Write To File] con
trol words.

Default: .DD file-id LIB file-id

Define Head Level: Defines the format and
characteristics of the section headings
produced by the .Hn control words.

Default: Restores initial settings.

Delay Imbed: Delays the processing of input
lines until the next page eject occurs.

Causes a break.
Not allowed within a keep, running heading,
or running footing.

Figure 24. SCRIPT/VS Control Word Summary (Part 2 of 10)

302 Document Composition Facility: User's Guide

Contl'ol
WOl'd Pal'ametel's DeSCI';pt;on

.DM name (n) / Define Macro: Defines a macro using text,
[xIOFFlinput-line] SCRIPT/VS control words, and special sym-

bols.
name
[xIOFFILIBI

.DS Doublespace Mode: Causes subsequent output
lines to be doublespaced.

.DU ADDIDEL word ... Dictionary Update: Adds words to or deletes
words from the addenda dictionary, which
is used to supplement the SCRIPT/VS main
dictionary for spelling verification and
hyphenation.

.EB en] Even-Page Bottom Title: Sets bottom title
/left/center/right/ lines for even-numbered pages. (Provided

for compatibility with SCRIPT/370; use the
.RT [Running Title] control word instead.)

Not allowed within a keep, running heading,
or running footing.

.EC input line Execute Control: Execute the input line as
a control word even if there is a macro of
the same name.

.EF [CLOSE] End of Fi Ie: Simulates an end of file con-
dition.

.EM input line Execute Macro: Execute the input line as a
macro even if macro substitution is off.

.EP [ONIOFF] Even-Page Eject: Causes a page eject to the
next even-numbered page. (Provided for
compatibility with SCRIPT/370; use the .PA
[Page Eject] control word instead.)

Causes a break.
Not allowed within a keep, running heading,
or running footing.

.ET en] Even-Page Top Title: Sets a top title line
/left/center/right/ on even-numbered pages only. (Provided for

compatibility with SCRIPT/370; use the .RT
[Running Title] instead.)

Not allowed within a keep, running heading,
or running footing.

.EZ oNIOFFltag EasySCRIPT: Enables or disables the
EasySCRIPT processing functions.

.FM [vl+vl-v] Footing Margin: Specifies the amount of
space between the last line of text in the
page's body and the first bottom title
line.

SCRIPT/VS special symbol: &$FM
Not allowed within a keep, running heading,
or running footing.

Default: Based on logical device type.

.FN ONloFFILEADER Footnote: Saves formatted text and prints
it at the bottom of the page in single-
column format.

Not allowed within a keep, running heading,
or running footing.

Figure 24. SCRIPT/VS Control Word Summary (Part 3 of 10)

Appendix A. SCRIPT/VS Summary 303

Contr'ol
WOr'd

.FO

.F~

.FT

.GO

.HE

.HM

.HN

.HS

. HW

.HY

.Hn

[ONIOFFI
LEFTIRIGHTICENTER]

[EXTENDITRUNCIFOLD]

[nl+nl-n]

line

label

line

[vl+vl-v]

ONIOFFICANCEL

[nl+nl-n]

text-word

[ONloFF/SupINOADD]
[SET MINPT n]
[SET THRESH n]

[text-line]

Format Mode: Controls concatenation and
justification of input lines.

Default (for .FO OFF): EXTEND

Footing Space: Specifies the number of
lines in the bottom margin area that can
contain bottom title lines.

SCRIPT/VS special symbol: &$FS
Not allowed within a keep, running heading,
or running footing.

Default: Based on logical device type.

Footing: Specifies a bottom title. (Pro
vided for compatibility with SCRIPT/370;
use the .RT [Running Title] control word
instead.)

Not allowed within a keep, running heading,
or running footing.

Go To: Causes SCRIPT/VS to locate the input
line identified with "label" and resume
processing with that input line.

Heading: Specifies a top title. (Provided
for compatibility with SCRIPT/370; use the
.RT [Running Title] control word instead.)

Not allowed within a keep, running heading,
or running foofing.

Heading Margin: Specifies the amount of
space between the top title lines and the
first line of text (or running heading) on
the body of the page.

SCRIPT/VS special symbol: &$HM
Not allowed within a keep, running heading,
or running footing.

Default: Based on logical device type.

Headnote: Specifies a headnote similiar to
a running heading. (Provided for compat
ibility with SCRIPT/370; use the .RH [Run
ning Heading] control word for text at the
top of a page instead.)

Heading Space: Specifies the number of
lines in the top margin area that contain
top title lines.

SCRIPT/VS special symbol: &$HS
Not allowed within a keep, running heading,
or running footing.

Default: Based on logical device type .

Hyphenate Word: Specifies hyphenation
points for a word that might need to be
hyphenated during formatting.

Hyphenate: Controls the SCRIPT/VS automatic
hyphenation function.

Initial setting: OFF, MINPT=4, THRESH=7

Head Level n: Formats a section heading
according to default characteristics
supplied for the heading.

Figure 24. SCRIPT/VS Control Word Summary (Part 4 of 10)

304 Document Composition Facility: User's Guide

Control
Word

.IF

. I l

.IM

.IN

.IR

.IT

.JU

.KP

.lB

.lI

.ll

Parameters

x test y input-line

"test" can be:
It Ie eq ne gt ge
< <- - ~- > >=

[Qlhl+hl-hJ

file-id
[tokenl

[Qlhl+hl-h]

[Qlhl+hl-hJ

tokenl41

[ONIOFFIAllI.MAClsUB
CTLISNAPlsTEPIRUNJ

Response to STEP:
(null)
PRE input-line
REP input-line
STK input-line

[ONIOFFJ

[ONIFlOATIDELAYI
INLINElvlv + vlOFFJ

[llnIONIOFFI
input-line]

[hl+hl-h]

Descr;pt;on

If: Tests the relationship
"y". When the test
SCRIPT/VS processes the

between "x" and
is satisfied,

"input-line."
Otherwise, SCRIPT/VS ignores the
"input-line."

"x test y" can
SYSPAGE eqlne
SYSOUT eqlne

be:
EVENIODD
PRINTITERM

Indent line: Indents the next output line
the specified amount of horizontal space.

Causes a break.

Imbed:
point.

Processes the named file at this

Indent: Specifies the amount of space
subsequent output lines are to be indented
from the current left margin.

Causes a break.
SCRIPT/VS special symbol: &$IN

Indent Right: Specifies the amount of space
subsequent input lines are to be indented
from the current right margin.

Causes a break.
SCRIPT/VS special symbol: &$IR

Input Substitution Trace: Provides a trace
of processing for each SCRIPT/VS control
word and macro, as well as symbol substi
tution. When .IT STEP is in effect, the
user responds interactively.

Initial value: No input tracing.

Justify Mode: Causes left and right justi
fication of output lines as needed to make
the end of each line even with the current
right margin.

Causes a break.

Keep: Ensures that a group of output lines
are kept together in the same column.

SCRIPT/VS special symbol: &$KP

Leading Blank: Is processed whenever an
input line with a blank as the first char
acter is encountered.

Causes a break.

literal: Ensures that input lines are
treated as text lines by SCRIPT/VS (used
when a text input line begins with a peri
od),

line Length: Specifies the length of each
subsequent output line.

SCRIPT/VS special symbol: &$ll
Not allowed within a keep, running heading,

or running footing.
Default: Based on logical device type.

Figure 24. SCRIPT/VS Control Word Summary (Part 5 of 10)

Appendix A. SCRIPT/VS Summary 305

Control
Word Parameters Description

.LS n Line Spacing: Specifies the number of blank
lines between each subsequent output line.
(Provided for compatibility with
SCRIPT/370; use the . SL [Set Line Space)
control word instead.)

.LT Leading Tab: Is processed whenever an input
line with a tab as the first character i s
encountered.

Causes a break.

.LY [ONIOFFISYMIMAC] Library: Specifies whether a library i s to
be used to resolve symbol and macro defi-
nitions.

Use the LIB option to identify the
llbraries.

.MC Multicolumn Mode: Restores column defi-
nition saved by a previous .SC [Single
Column Mode] control word.

Causes a break.
Not allowed within a keep, running heading,
or running footing.

.MG /[id]/text/ Message: Produces a message similar in for-
mat to the SCRIPT/VS error messages.

.MS ONIOFF Macro Substitution: Causes SCRIPT/VS to
recognize and process macros.

Initial value: OFF

.NL Null Line: Is processed whenever an input
line that contains no characters is
encountered.

.OB [n) Odd Page Bottom Title: Sets bottom title
/left/center/right/ lines for odd-numbered pages. (Provided

for compatibility wi th SCRIPT/370j use the
.RT [Running Title] control word instead.)

Not allowed within a keep, running heading,
or running footing.

.OC input-line Output Comment: Specifies a line that i s to
be inserted into the output document as it
; s, as an output comment.

.OF [Qlhl+hl-h) Offset: Causes a hanging indention (a para-
graph in which the indention of the first
line is unchanged and subsequent lines are
indented to the offset value.)

Causes a break.
SCRIPT/VS special symbol: &$OF

.OP [ONIOFF] Odd-Page Eject: Causes a page eject to the
next odd-numbered page. (Provided for com-
patibility with SCRIPT/370; use the .PA
[Page Eject) control word instead.)

Not allowed within a keep, running heading,
or running footing.

Figure 24. SCRIPT/VS Control Word Summary (Part 6 of 10)

306 Document Composition Facility: User's Guide

Control
Word Parameters Description

.OT En] Odd-Page Top Title: Sets a top title line
/left/center/right/ for subsequent odd-numbered pages. (Pro-

vided for comp~tibility with SCRIPT/370i
use the .RT [Running Title] control word
instead.)

Not allo~<Jed wi thi n a keep, running heading,
or running footing.

.PA [ODDIEVEN] Page Eject: Causes a page eject, and can
[ONIOFF] set the page number of the new page.
[.:!:Qlnl+nl-n] Not allowed \.oJi thi n a keep, running heading,
[NOSTART] or running footing.

.PF Previous Font: Causes the last stacked font
to become the current font.

.Pl [vl+vl-v] Page Length: Specifies the amount of space,
including top and bottom margins, for e~ch
output page.

SCRIPT/VS special symbol: &$PL
Not allo\.oJed within a keep, running heading,
or running footing.

Default: Based on logical output device

.PN [nIONIOFFIOFFNOI Page Numbering Mode: Controls external and
ARABICIROMANIALPHAI internal page numbering.
NORMIFRACI Not allol-'Jed within a keep, running heading,
PREF string] or running footing. Initial value: Arabic

numbers from 1.

.PP [input-line] Paragraph Start: Begins formatting the out-
put line as the start of a paragraph after
a skip.

.PS character Page Number Symbol: Sets a page number sym-
bol.

SCRIPT/VS special symbol: &$PS
Initial value: & (ampersand)

.PT input-line Put Table of Contents: Places the input
line (which may be a control word, macro,
GML tag, symbol, or line of text) into the
file used to accumulate table of contents
entries (DSMUTTOC).

.QQ Quick Quit: Causes SCRIPT/VS processing to
terminate immediately without completing
the current page.

.QU Quit: Causes SCRIPT/VS processing to termi-
nate after completing the current page.

.RC n s Revision Code: Specifies a revision code
symbol that i s to be printed to the left

n [ONIOFFloN/OFF] of the output line that contains updated
material.

* s

.RO [lin] Read Terminal: Allows user to type in one
or more text lines while a file is being
formatted.

Causes a break.
Not allowed within a keep, running heading,
or running footing.

Figure 24. SCRIPT/VS Control Word Summary (Part 7 of 10)

Appendix A. SCRIPT/VS Summary 307

Control
Word Parameters Description

.RE Restore Status: Restores environment that
has been previously saved with the .SA
[Save Status] control word.

.RF [ONIOFFICANCEL] Running Footing: Specifies input lines that
[ODDIEVEN] are to be saved as a running footing and

processed at the bottom of each appropr T.-
ate page.

Initial value: No running footing.

.RH [ONIOFFICANCEL] Running Heading: Specifies input lines that
[ODDIEVEN] are to be saved as a running heading and

processed at the top of each appropriate
page.

Initial value: No running heading.

.RI [llnIONIOFFI Right Adjust: Produces output lines that
input-line] are unconcatenated input lines aligned

with the right-hand margin.
Causes a break.

.RT [TOPIBOTTOM] Running Title: Defines running title lines
[ALLIODDIEVEN] for the top and bottom of even, odd, or
[lin] all output pages.
Ileft/center/right/ Not allowed within a keep, running heading,

or running footing.
Initial value: .RT TOP ALL 1 ///PAGE &/
Default: .RT TOP ALL 1 /left///

.RV symbolname [='] Read Variable: Allows user to assign a val-
ue to a symbol name by entering it at the
terminal in response to an interactive
request made while SCRIPT/VS is processing
the input file.

.SA Save Status: Saves the current values and
parameters of the formatting environment.

.SC Single-Column Mode: Causes SCRIPT/VS to
save the current column definition and
format subsequent input lines in a single
column.

Causes a break.
Not allowed within a keep, running heading,
or running footing.

.SE symname[(n)] Set Symbol: Defines a symbol name and
[LIBIOFFJ assigns a value to it.
[= value]
[= SUBSTR str n1 n2]
[= INDEX strl str2]

.SF Save Font: Saves the current font-ide

.SK [llv] [A] [C] [P] Skip Lines: Specifies the amount of space
to insert before the next text .output
line. No lines are inserted if the .SK
occurs at the top of a page or column.

Causes a break.

.Sl [v] Set Line Spacing: Specifies the vertical
distance between baselines of output
lines.

Default: Based on logical output device.

Figure 24. SCRIPT/VS Control Word Summary (Part 8 of 10)

308 Document Composition Facility: User's Guide

Control
Word

.SP

. SS

.SU

.SV

.SX

. SY

.TB

.TC

.TE

.TI

Parameters

[llv] [A] [Cl [P]

[llnIOHIOFFI
input-line]

[OHIOFFl
[NOADD]
[HOSTEM]
[HUM]

[F]
/left/fill/right/

input-line

[h h h ...]

[f/h f/h ...]

[llnIOHIOFF]

[s t ...]

Space Lines: Specifies the amount of space
to insert before the next text output
line. The specified number of lines are
inserted even when the .SP occurs at the
top of a page or column.

Causes a break .

Single-Space Mode: Causes subsequent output
lines to be single-spaced.

Substitute Symbol: Controls the substi
tution of symbols with their previously
assigned values.

SCRIPT/VS special symbol: &$SU
Initial value: OH

Spelling Verification: Defines the start
and functions of the SCRIPT/VS spelling
verification function.

Enabled with the SPELLCHK option.
Initial value: OFF

Split Text: Produces an output line of
three parts: "left" is aligned with the
current left margin; "right" is aligned
with the current right margin; "fill" is
characters that fill the remaining space
between the two strings.

Causes a break .

System Command: SCRIPT/VS passes the input
line to the host system for processing.

SCRIPT/VS special symbol: &$RET (return
code)

Tab Setting: Specifies the tab settings to
be used when the input file is formatted.

Causes a break.
Default: 5 10 15 20 ... 75

Table of Contents: Imbeds the table
contents file (DSMUTTOC), which consists
of table of contents entries automatically
generated by the .Hn control words, and
entries inserted by using the .PT [Put
Table of Contents] control word.

Use the TWOPASS option if the table of con
tents is not at the back of the document.

Causes a break.
Hot allowed within a keep, running heading,
or running footing.

Terminal Input: Allows user to enter lines
interactively from the terminal when the
file is formatted.

Translate Input: Specifies character trans
lations to be performed on input lines
before SCRIPT/VS processing begins.

Default: Identity

Figure 24. SCRIPT/VS Control Word Summary (Part 9 of 10)

Appendix A. SCRIPT/VS Summary 309

Control
Word Parameters Description

.TM [v/+v/-v] Top Margin: Specifies the amount of space
in the top margin area.

SCRIPT/VS special symbol: &$TM
Not allowed within a keep, running heading,
or running footing.

Default: Based on logical device type.

.TR [s t ...] Translate Character: Specifies character
translations to be performed on output.

Default: Identity

.TT [n] Top Title: Sets a top title line for subse-
/left/center/right/ quent pages. (Provided for compatibility

with SCRIPT/370i use the .RD [Read Termi-
nal] control word instead.)

Not allowed within a keep, running heading,
or running footing.

.TY input-line Type On Terminal: Types the input line on
the user's terminal during formatting.

.UC [llnIONIOFFI Underscore and Capitalize: UNDERSCORES AND
input-line] CAPITALIZES one or more subsequent input

11 nes.

.UD ONloFF c c ... Underscore Definition: Defines the charac-
ters to be underscored when the .UC and
.US control words are used.

.UN [.Q.lhl+hl-h] Undent: Causes the next output line's
indention to change: it is moved to the
left of the current left margin.

Causes a break.

.UP [l/nION/OFF/ Uppercase: Prints one or more subsequent
input-line] input lines in UPPERCASE characters.

.US [llnION/OFF/ Underscore: Prints one or more subsequent
input-line] input lines with underscored characters.

.WF [l!n!ON!OFF! Writes one or more input lines to the out-
IMBEDIERASE! put file DSMUTWTF.
input-line] IMBED: imbeds file DSMUTWTF.

ERASE: erases fi Ie DSMUTWTF.

.ZZ [ONIOFF] nn ... Diagnostic! Turns on or off the diagnostic
trace function, and selects the type of
data to be traced.

Enabled with the DUMP option.
Initial value! OFF

Figure 24. SCRIPT/VS Control Word Summary (Part 10 of 10)

310 Document Composition Facility: User's Guide

.BR [Break]

.BX [Box]

.CB [Column Begin]

.CC [Conditional Column Begin] 1

.CD [Column Definition]

.CE [Center]

.CL [Column Width]

.CO [Concatenate Mode]

.CP [Conditional Page Eject] 1

.EP [Even Page Eject]

.FI [Fill Mode]

.FO [Format Mode]

.HH [Headnote]

.HI [Head Level 1]

.H2 [Head Level 2]

.H3 [Head Level 3]

.H4 [Head Level 4]

.H5 [Head Level 5]

.H6 [Head Level 6]

.IL [Indent Line]

.IH [Indent]

.IR [Indent Right]

.JU [Justify Mode]

.LB [Leading Blank]

.LL [Line Length]

.LT [Leading Tab]

.MC [Multi column Mode] 1

.HB [Ho Balancing]

.HC [Ho Concatenation]

.HF [No Formatting]

.NJ [No Justification]

.OF [Offset]

.OP [Odd Page Eject]

.PA [Page Eject]

.PP [Paragraph Start]

.QU [Quit]

.RO [Read Terminal]

.RF [Running Footing]

.RH [Running Heading]

.RI [Right Adjust]

.SC [Single Column Mode]

.SK [Skip]

.SP [Space]

.SX [Split Text]

.TB [Tab Setting]

.TC [Table of Contents]

.UN [Undentl

1 The break occurs only if the control word performs its function. These
control words may do nothing if the function is not needed.

Figure 25. Control Words That Cause a Break: When Concatenation is on (see tha
.CO [Concatenate Mode] and .FO [Format Mode] control words), words from
input lines are re-arranged on output lines to make each column line as
full as possible. This process is inhibited for the current line if any
of the5e control words is encountered .

. BM [Bottom Margin]

.FM [Footing Margin]

.FS [Footing Space]

.HI [Head Level 1] 1

.HM [Heading Margin]

.HS [Heading Space]

.LL [Line Length]

.PL [Page Length]

.PH [Page Numbering Mode]

.RF [Running Footing]

.RH [Running Heading]

.RT [Running Title]

.TM [Top Margin]

1 .Hl causes a page eject by default. The .DH [Define Head levell control
word allows you to redefine the meaning of the .HI control word.

Figura 26. Control Words That Take Effect On the Hext Page: These control words
take effect on the next output page to be started. If no data has yet
been ~laced on the first page of the document, or the previous page was
ended with a .PA NOSTART control word, the first, or next, page has not
yet been started, and these control words can take effect on this page.

Appendix A. SCRIPT/VS Summary 311

.BM [Bottom Margin]

.BT [Bottom Title]

.CB [Column Begin]

.CC [Conditional Column Begin]

.CD [Column Oefinition]

.CP [Conditional Page Eject]

.DI [Delay Imbed]

.EB [Even Page Bottom Title]

.EP [Even Page Eject]

.ET [Even Page Top.Title]

.FM [Footing Margin]

.FS [Footing Space]

.FT [Footing]

.HE [Heading]

.HM [Heading Margin]

.HN [Headnote]

.HS [Heading Space]

.LL [Line Length]

.MC [Multicolumn Mode]

.OB [Odd Page Bottom Title]

.OP [Odd Page Eject]

.OT [Odd Page Top Title]

.PA [Page Eject]

.PL [Page Length]

.PN [Page Numbering Mode]

.RD [Read Terminal]

.RT [Running Title]

.SC [Single Column Mode]

.TC [Table of Contents]

.TM [Top Margin]

.TT [Top Title]

Figure 27. Control Words That End a Keep, Running Heading or Footing, or
Footnote: If found, a message is issued and the Keep, Heading or Foot
ing, or Footnote is terminated before the control word is processed.

Note: .RF and .RH are disallowed in keeps and footnotes .. KP and .FN
are disallowed in running headings and footings .

.AP [Append]

.CM [Comment]

.CS [Conditional Section]

.CW [Control Word Separator]

.DC [Define Character]

.DD [Define Data File-id]

.DM [Define Macro]

.DU [Dictionary Update]

.EF [End of File]

.GO [Goto]

.Hn [Head Level n]

.IF [If]

.1M [Imbed]

.IT [Input Trace]

.LI [Literal]

.LY [Library]

.MS [Macro Substitution]

.OC [Output Comment]

.PN [Page Numbering Mode]

. PP [Paragraph Start]

.PT [Put Table of Contents]

.QQ [Quick Quit]

.QU [Quit]

.RF [Running Footing]

.RH [Running Heading]

.RV [Read Variable]

.SE [Set Symbol]

.SU [Substitute Symbol]

.SV [Spelling Verification]

.SY [System Command]

.TE [Terminal Input]

.TY [Type on Terminal]

.UC [Underscore and Capitalize]

.UD (Underscore Definition]

.UP (Uppercase]

.US [Underscore]

.WF [Write To File]

Figure 28. Control Words Within a Running Heading or Footing: These control
words are processed only once, during a Running Heading or Footing
definition. All other control words are saved as part of the Heading or
Footing definition, and processed each time a new page is formatted.

312 Document Composition Facility: User's Guide

.BF [Begin Font] 1

.BM [Bottom Margin]

.FM [Footing Margin]

.FS [Footing Space]

.HM [Heading Margin]

Device
Class .TM .HS .HM

Terminal 6 1 2
1403 6 1 2
3800 3 1 2

.HS [Heading Space]

.Ll [line Length]

.PL [Page Length] 2

.TM [Top Margin]

Initial Values

.BM .FS .FM

6 1 2
6 1 2
3 1 2

.LL

6 i
6 i
6 i

1 .BF is applicable only to 3800-type logical devices, and is determined
by the CHARS option if specified; otherwise, by the DEVICE option.

2 For 3800-type devices, Page Length does not include 1/2 inch at the top
and bottom of each page. This area is inaccessible to the formatter.

Figure 29. Control Word Values Based On the logical Device: The initial and
default values for these control words vary, depending upon the speci
fied or implied logical output device.

Logical Real lines Page Size Line Page
Device Device per (inches) Length l Length 2

Type Type Inch
Width Depth (bytes) (lines)

TERM 2741 6 8-1/2 11 60/132 66/144

1403H6 1403 6 8-1/2 11 60/85 66/144
1403H8 1403 8 8-1/2 11 60/85 88/192
1403W6 1403 6 13-1/2 11 60/132 66/144
1403W8 1403 8 13-1/2 11 60/132 88/192
1403SL.J 3 1403 6 8-1/2 11 72/90 66/66

3800H6 3800 6 8-1/2 11 60/85 60
3800H8 3800 8 8-1/2 11 60/85 80
3800H12 3800 12 8-1/2 11 60/85 120
3800W6 3800 6 13-1/2 11 60/136 60
3800L.J8 3800 8 13-1/2 11 60/136 80
3800W12 3800 12 13-1/2 11 60/136 120
3800H6S 3800 6 11 8-1/2 60/110 45
3800H8S 3800 8 11 8-1/2 60/110 60
3800W6S 3800 6 13-1/2 8-1/2 60/136 45
3800~.J8S 3800 8 13-1/2 8-1/2 60/136 60
3800W12S 3800 12 13-1/2 8-1/2 60/136 90

1 Line lengths are given as "default/maximum" in 10-pitch characters.
For the 3800 Printer, 12-pitch and IS-pitch fonts have values 20% and
50% ~reater, respectively.

2 Default and maximum page lengths are identical for 3800 devices.

3 This is a 12-pitch device, as opposed to the normal 10-pitch 1403.

Figure 30. SCRIPT/VS logical Device Characteristics

Appendix A. SCRIPT/VS Summary 313

keys

SKBF

SPAF

TCIN

TO

TC

TS

US

UP

OJ

PA

BR

.Hn Control Word EssySCRIPT Head Levels

HO

0

0

0

X

X

Hl H2 H3 H4 H5 H6 k~ys HO

0 3 3 3 1 1 SKBF 0

5 2 2 2 0 0 SPAF 0

0 0 2 4 6 8 TCIN 0

TO X

X X X TC X

X TS

X X X X X US

X X X X UP

X OJ

X PA

X X X X BR

where the "keys" are:

SKBF: number of line skips before the head.
SPAF: number of line spaces after the head.

Hl H2 H3

0 3 3

5 3 3

0 0 2

X X X

X

X X

X X X

X

X

X X X

TCIN: amount of indentation for table of contents entry.
TO: table of contents entry only; no heading in text.
TC: table of contents entry.
TS: line space before table of contents entry.
US: head is underscored.
UP: head is capitalized.
OJ: head is out justified.
PA: page eject before head.
BR: break after head.

/

H4

3

3

4

X

X

H5 H6

3 3

0 0

6 8

X

X

Figure 31. Summary of Head Level Characteristics: This table lists the default
characteristics of the .Hn [Head Level nl control words and EasySCRIPT
&Hn tags. The .DH [Define Head Levell control word allows you to rede
fine any of these Head levels to suit your needs.

314 Document Composition Facility: User's Guide

Parameter

Column balancing
Continuation Character
Control Word Separator
Current font
Column definition
Centering 2
Column width
Concatenation
Conditional sections
Line spacing
Format mode
GML tag delimiter
Indention 3

Justification
Page number symbol
Revision code
Right adjustment
Spelling verification
Tab setting
Terminal input 2

Parameter

Bottom margin
Footing margin
Footing space
Heading margin
Heading space
Hyphenation
Page length
Page numbering mode
Macro substitution 2

Symbol substitution 2

Top margin

Parameter

Input translation
Output translation

Act;ve Env;ronme.nt

Control Word

.BC

.DC CONT
· CW, . DC CW
.BF, .PF
.CD
.CE
.Cl
· CO, . FO
.CS
.SS, .DS, .Sl
.FO
.DC GMl

· JU, . FO
.DC PS, .PS
.RC
.RI
.SV
.TB
.TE

Pas€! Env;ronment

Control Word

.BM

.FM

.FS

.HM

.HS

.HY

.PL

.PN

.MS

.SU

.TM

Translate Tables

Control ~Jord

.TI

.TR

Initial Setting

ON
(null)
"." ,
(1)

Single column
OFF
line length
ON
INCLUDE
Single spacing
ON
":"
o
ON
"&"
OFF
OFF
OFF
5 10 15 ... 80
OFF

Initial Setting

(1)

(1)
(1)
(1)
(1)

OFF
(1)

Arabic
OFF
ON
(1)

Initial Setting

Identity
Identity

Symbol

&$CONT
&$CW

&$Cl

&$GML
&$IN

&$TAB

Symbol

&$BM
&$FM
&$FS
&$HM
&$HS

&$PL

&$SU
&$TM

Symbol

1 These parameters' initial settings are based upon the logical output
device.

2 The number of l~nes remaining, or ON or OFF, is saved.

3 The composite current indention is determined from the .IN, .IR, .Il,
.UN and .OF control word values. These values are individually saved.

Figure 32. The SCRIPT/VS Formatting Environment: The .SA [Save Status] and .KP
[Keep] control words preserve these parameters.

Appendix A. SCRIPT/VS Summary 315

Date and Tima 1

Symbol Description Value

&SYSYEAR Year of the century 00-99
&SYSMONTH Month of the year 01-12
&SYSDAYOFM Day of the month 01-31
&SYSDAYOFW Day of the week 1-7 ("1" is Sunday)
&SYSDAYOFY Day of the year 001-366
&SYSHOUR Hour of the day 00-23
&SYSMINUTE Minute of the hour 00-59
&SYSSECOND Second of the minute 00-59

output Dev;ce Characteristics

Symbol Description Value

&$LDEV Logical output device 2 1-8 characters
&$OUT Output destination TERM, PRINT, FILE
&$PDEV Physical output device 2741, 1403, 3800

SCRIPT Command options

Symbol Description Value

&$BE Even bind 3 4 0-
&$BO Odd bind 3 4 0-
&$CHAR(n) Fonts 5 1-4 characters
&$LIB Macro library available 0, 1
&$PARM Command options 6 8-256 characters
&$TWO TWOPASS option in effect 0, 1 (0 is no, 1 is yes)
&$UHF Unformatted output 0, 1 (0 is no, 1 is yes)

1 These symbols may contain leading zeros. They can be eliminated with a
.SE [Set Symbol] control word: ".se SYSHOUR = &SYSHOUR + 0".

2 Set by the DEVICE option of the SCRIPT command.

3 Set by the BIHD option of the SCRIPT command.

4 The system symbol values are represented in character spaces, regard
less of the space units used in setting them. The maximum value depends
upon the logical output device.

S Set by the CHARS option of the SCRIPT command. This is a symbol array;
element 0 contains the number of fonts specified and elements 1,2, ...
contain the names of the fonts specified.

6 Thi s ; s the SCRIPT command opt ions Ii st, token i zed into et ght character
tokens. Hote that this list will be truncated at 32 tokens (256 charac
ters) .

Figure 33. SCRIPT/VS System Symbol Names (Part 1 of 2)

31~ Document Composition Facility: User's Guide

Page Character;stics

Symbol Description Value

&$BM Bottom margin (.BM) 7 0-
&$Cl Column width (. Cl) 8 0-
&$FM Footing margin (.FM) 7 0-
&$FS Footing space (. FS) 0-6
&$HM Heading margin (.HM) 7 0-
&$HS Heading space (. HS) 0-6
&$IN left indention 8 0-
&$lC lines left in column 7 9 0-
&$ll line length (.ll) 8 0-
&$OF Offset 8 0-
&$Pl Page length (. Pl) 7 0-
&$TM Top margin (.TM) 7 0- \

SCRIPT/VS Formatter Parameters

Symbol Description Value

&$BS Backspace Character hexadecimal 16
&$CONT Continuation character 10 one character
&$CW Control word separator 10 (default: "j")
&$C256 Identity vector 256 characters
&$FNAM Current input file name eight characters
&$GMl GMl tag delimiter 10 (default: n:,,)

&$KP Keep in effect ON, OFF
&$lNUM last line number read 0-
&$PS Page number symbol 10 (default: "&")
&$RB Required Blank 10 (default: hexadecimal
&$RET Return code from .SY 11 0-
&$SU Symbol substitution enabled ON, OFF
&$TAB Tab Character hexadecimal 05

7 These values are represented in line spaces, regardless of the space
units used in setting them. The maximum value depends upon the logical
output device.

S The values of these symbols are represented in character spaces,
regardless of the space units used ;n setting them. The maximum value
depends upon the logical output device.

9 Note that the value of &$lC does not include &$BM, as ;t does in
SCRIPT/370.

10 Set by the .DC [Define Character] control word.

11 In CMS, any poss; ble return code value. In TSO, "0" to ; ndi cate the
command was stacked for execution after SCRIPT/VS terminates. In
batch, "-3" to indicate that the .SY [System Command] control wor~ ;s
not supported.

Figure 33. SCRIPT/VS System Symbol Names (Part 2 of 2)

41)

Appendix A. SCRIPT/VS Summary 317

Attribute Funct;on

aa' Converts a numeric character stringl to a "base-26" lowercase
alphabetic "number."

aA' Converts a numeric character string l to a "base-26" uppercase
alphabetic "number."

aE' Verifies the existence of a symbol; the value is 1 if the symbol
has been set; 0 if not.

al' Yields the length of a character string l .

aI" Converts a numeric character stringl into a lowercase Roman
numeral.

aR' Converts a numeric character stringl into an uppercase Roman
numeral.

au' Converts a lowercase character string to uppercase.

av' Yields the current value of a symbol.

1 The character string may be the value of a symbol.

Figure 34. Attributes of a Symbol's Value

318 Document Composition Facility: User's Guide

Hexadecimal Hexadecimal Hexadecimal
Code Character Code Character Code Character

OS Tab 4E + 6C ~
11 Special Blank 1 4F I 60
12 Special Blank 1 5A 6F '1
13 Special Blank 1 5B $ 7A
16 Backspace 5C * 7E =
40 Blank 50) 7F " 41 Required Blank 2 5E 8B {
4B (Period) 5F 9B }
4C < 61 / AD [
4D (6B BD]

1 Special Blanks are used for justification in documents formatted for
the 3800 Printer.

2 The required blank is a blank which cannot have space added to it dur
ing justification. Its value may be changed with the .DC [Define Char
acter] control word.

Figure 3S. Characters that Delimit Words for Spelling Verification: These
default characters can be changed with the .DC [Define Character]
control word, which accepts either single characters or two-digit
hexadecimal character codes.

Hexadecimal Hexadecimal Hexadecimal
Code Character Code Character Code Character

OS Tab 5A 7A
16 Backspace 50 7F " 40 Blank SE 8B {
41 Required Blank 1 6B 9B }
4B (Period) 60 AD [
40 (6F '1 BD]

1 The required blank is a blank which cannot have space added to it dur
ing justification. Its value can be changed with the .DC [Define Char
acter] control word.

Figure 36. Characters Not Underscored By Default: The .UD [Underscore
Definition] control word can be used to change these defaults, and
accepts either single characters or two-digit hexadecimal character
codes.

Appendix A. SCRIPT/VS Summary 319

Hexadecimal character cod~ in the form X'ab':

a b c d e
j k 1 m n
0 s t u v

2 :3 • 5

A B C D E
J K 1 M N

S T (J V
2 3 4 7-

Tab = X'05'
Backspaca = X'16'

f g h l.

0 p q r
v x y Z
6 7 8 9

F G H I
0 p Q p
W X Y Z
6 7 8 9

Figure 37. TN Translate Table For the 1403 Printer

Text / Fonts/ Highlight Fonts
/

I

GTlO Gothic (la-pitch) GBlO Gothic Bold
GT12 Goth;c (12-pitch) GB12 Gothic Bold
GT15 Gothic (IS-pitch) GI12 Gothic Italic

STlO Serif (la-pitch) SIlO Serif Italic
ST12 Serif (12-pitch) SI12 Serif Italic
ST15 Serif (IS-pitch) SB12 Serif Bold

Special Fonts

GRlO Gothic Reverse
GP12 Proportional

RTlO Roman Text
S012 Serif Overstruck

Figure 38. Fonts Provided With SCRIPT/VS: Each font is a complete set of upper
and lower-case characters. Any two of these fonts may be specified with
the CHARS option of the SCRIPT command.

320 Document Composition Facility: User's Guide

lO-p;tch Fonts

GS10 Gothic
GF10 Gothic Folded
GU10 Gothic Underscored
TU10 Text Underscored 1

12-pitch Fonts

GS12 Gothic
GF12 Gothic Folded
GU12 Gothic Underscored

GS15
GSC
GFl3
GFC
GU15
GUC
DUr'1P

lS-pitch Fonts

Gothic
Gothic Condensed
Gothic Folded
Gothic Folded Condensed
Gothic Underscored
Gothic Underscored Condensed
Condensed DUMP 2

Formnt Fonts

FMIO Format IO-pitch
FM12 Format l2-pitch
FM15 Format IS-pitch

lO-pitch Katakana Fonts

2773 Gothic and Katakana
2774 Gothic and Katakana 2
KNI Gothic and Katakana 2

3211 Print Trains

All Gothic IO-pitch
GIl Gothic IO-pitch
Hll Gothic lO-pitch
Pll Gothic IO-pitch
TIl Text IO-pitch 1

AN
GN
HN
PCAN
PCHN
PN
QN
QNC
RN
XN
YN
SN
TN

AOA
AOD
AON
OAA
ODA
OHA
BOA
BON
DAB
DHB

1403 Print Trains

Gothic IO-pitch
Gothic lO-pitch
Gothic IO-pitch
Gothic lO-pitch
Gothic IO-pitch
Gothic 10-pitch
Gothic lO-pitch
Gothic IO-pitch
Gothic IO-pitch
Gothic lO-pitch
Gothic IO-pitch
Text IO-pitch 1

Text 10-pitch 1

lO-p;tch OCR Fonts

Gothic and OCR-A
Gothic and OCR-A
Gothic and OCR-A
Gothic and OCR-A
Gothic and OCR-A
Gothic and OCR-A
Gothic and OCR-B
Gothic and OCR-B
OCR-B
Gothic and OCR-B

1 This is an upper- and lowercase font which closely resembles the STIO
SCRIPT/VS font. It counts as two fonts when combined with other fonts
in the CHARS option of the SCRIPT command.

2 This font contains more than 64 characters. It counts as two fonts when
combined with other fonts in the CHARS option of the SCRIPT command.

Figure 39. Fonts Supplied With the 3800 Printer: These are all uppercase-only
fonts, unless otherwise marked. Any four fonts (except those otherwise
marked) of identical pitch may be specified with the CHARS option of
the SCRIPT command.

Appendix A. SCRIPT/VS Summary 321

APPENDIX B. DEVICE AND FONT TABLE MAINTENANCE

SCRIPT/VS bases its formatting of a document on the character
istics of a specified (or implied) logical output device.
SCRIPT/VS takes into account the characteristics of the physical
device, as well as dynamically changing characteristics: font,
lines per inch, and form size.

The combination of these fixed (physical) characteristics and
changeable characteristics is called the logical output device,
which corresponds to the "setup" of a physical output device.

The module DSMLPLDT contains one logical device table (lDT) for
each logical output device. Each lDT is created by a DSMSlDD macro
and is mapped by the DSMSlDT DSECT.

UPDATING A LOGICAL DEVICE TABLE (LDT)

Use the following procedure to add or chDnge an lDT entry:

1. Obtain a listing of the DSMSlDD macro and of the DSMlPlDT mod
ule from your library.

2. Obtain the source code for the DSMLPLDT module and add a new
DSMSlDD macro that describes the new logical output device

Modify an existing DSMSLDD specification macro that describes
the logical output device whose characteristics you want to
change. The macro's field names are described in detail in
"LDT Field Descriptions."

3. Assemble the DSMlPLDT module to include the changes you've
made.

4. Link the newly-assembled version of the DSMLPLDT module with
the rest of.SCRIPT/VS, as described in the Program Directory.

LDT FIELD DESCRIPTIONS

14

Each logical device table (LDT) macro is specified as:

DSMSLDD LD=name,
PD=device name,
[DF=font name]
[,LPI=.§.\81121
[,MPL=device unitsl661
[,DPl=device units\661
[,MlL=device unitsl60J
[,Dll=device unitsl601
[,P=10\1211S1 --
[,HS=device units\!]
[,VS=device unitsl!]
[,DOTxx 14 =value]

logical device name
Physical device identifier
Default font identifier
Lines per inch
Maximum page length
Default page length
Maximum line length
Default line length
Pitch
Horizontal space unit
Vertical space unit
Page margin values

Page dimensions (MPl, DPt, Mll, Dll) and space units (HS and VS)
are represented as device units: the printer's physical unit of
resolution in the relevant direction. Vertically, this is one
line for all printers. Horizontally, this is one character space

xx = TM (Top Margin), HS (Heading Space), HM (Heading Margin), BM (Bottom Mar
gin), FS (Footing Space), or FM (Footing Margin). DOTxx can be specified
repeatedly (for example: ... DOTTM=3, DOTBM=3).

Appendix B. Device and Font Table Maintenance 323

for all printers except the 3800 Printer. The 3800 Printer's unit
of horizontal re~olution is the pel, a space of 1/180th of an
inch. The HS space unit for the 3800 Printer, therefore, could be
18 (for a 10~pitch horizontal space), 15 (for a 12-pitch space),
or 12 (for a IS-pitch space).

The content and meaning of each LDT field that you can specify
with the DSMSlDD are shown below.

LOT Field Description

LO logical device name: 1 to 8 alphameric characters.

PO Physical device name: 4 to 8· alphameric characters.
The values recognized are 1403, .2741, 3270, and 3800.

DF Name of the default font, 1 to 4 alphanumeric charac
ters (required only for logical devices that use the
3800 Printer; not allowed for other output device
types). The default font is used when the CHARS option
of the SCRIPT command is not specified.

LPI Lines per inch. A decimal number: 6, 8, or 12. Default
= 6.

MPL

MLL

DPL

OLL

P

HS

VS

The maximum number of vertical device units in the
printable portion of the page. Default = 66.

The maximum number of horizontal device units in the
printable portion of the page. Default = 60.

MPl and MLL establish the form size for the
output device (that is, the size of its
page.)

logical
physical

The default page length in device units. This value is
used until reset with the .PL [Page Length] control
word. DPL cannot be greater than MPl. Default = 66.

The default line width in device units. This value is
used until reset with the .lL [Line length] control
word. Dll cannot be greater than Mll. Default = 60.

DPL and Dll establish the default page size, which
cannot be larger than the form size.

Pitch, or number of equal-width characters per inch.
For monospaced devices only. A decimal number: 10, 12,
or 15. Default = 10.

The number of device units in one "horizontal space
unit" (the width of a character in the default font.)
This value is used to resolve a control word's param
eter that specifies a horizontal space or displace
ment, but does not specify a unit of measurement (for
example, . IN 2).

The number of device units in one "vertical space
unit" (that is, the vertical space of a print line>.
This value is used to resolve a control word's param
eter that specifies a vertical space or displacement,
but does not specify a unit of measurement (for exam
ple, .SP2).

The blank-character codes are used for line justifica
tion when the output is in a font that includes
pseudo-blanks. All fonts to be used in a mixed-pitch
environment must include the proportional-spaced blank
character codes in their character arrangement tables.

324 Document Compo sit ion Fac i Ii ty: User's Gu ide

DOTxx These keywords can be used to override the default
page margin parameters:

KeYL.oJord

DOTBM
DOTTM
DOTHM
DOTFM
DOTHS
DOTFS

Overrides Default

Bottom margin
Top margin
Heading margin
Footing margin
Heading space
Footing space

Hote: For 3800-type logical devices, DOTBM and DOTTM
are ignored. Instead,

Bottom margin = Footing margin + Footing space

Top margin = Heading margin + Heading space

DEFAULT VALUES FOR LOGICAL OUTPUT DEVICES

When you specify values for the various fields of the LDT,
SCRIPT/VS will use those values to derive the following defaults:

Parameter

Top mar~:,; n

Bottom Marg i n

Footing Space

Footing Margin

FONT TABLE MAINTENANCE

Default derived fro~

6 times VS (6 vertical line spaces) or for the
3800 Printer: 3 times VS or 0, if pagelength is
less than 15.

VS (1 vertical line space) or 0, if page length
is less than 15.

2 times VS (2 vertical line spaces) ~ 0, if page
length is less than 15.

6 times VS (6 vertical line spaces) or for the
3800 Printer, 3 times VS or 0, if page-iength is
less than 15. --

VS (1 vertical line space) ~ 0, if page length
; s less than 15.

2 times VS (2 vertical line spaces) ~ 0, if page
length is less than 15.

When formatting documents for the 3800 Printer, SCRIPT/VS makes
use of font tables for each of the fonts named in the CHARS option
of the SCRIPT command. Each font table describes the font in terms
of its name, pitch, and the width of each character.

The module DSMFT381 contains one font table (FTB) for each known
font. The FTBs are created by the DSMSFTD macro and are mapped by
the DSMSFTB DSECT.

UPDATING THE FONT TABLE (FTS)

Use the following procedure to add or change a font table:

1. Obtain a listing of the DSMSFTD macro and of the DSMFT381 mod
ule from your library.

2. Code a DSMSFTD macro that describes the new font.

Modify the DSMSFTD macro that describes the font whose char
acteristics you want to change. (The macro's field names are
described in detail in "FTB Field Descriptions," L.oJhich
follows.)

Appendix B. Device and Font Table Maintenance 325

* GP12W DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

o 1 2 3 4 5 6 7 89 ABC D E F
X'OFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOF' 00
X'OF120FOCOFOFOFOFOFOFOFOFOFOFOFOF' 10
X'OFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOF' 20
X'OFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOF' 30
X'OFOFOFOFOFOFOFOFOFOFOFOCOFOCOFOC' 40
X'120FOFOFOFOFOFOFOFOFOCOFOFOCOCOF' 50
X'OFI20FOFOFOFOFOFOFOFOFOC12120FOF' 60
X'OFOFOFOFOFOFOFOFOFOFOC12120COFOF' 70
X'OFOFOFOFOFOFOCOFOFOCOFOCOFOCOCOF' 80
X'OFOCOFOC120FOFOFOFOFOFOCOFOCOFOC' 90
X'OCOFOFOCOFOFI2nFOFOFOFI2120COFOC' AO
X'OCOCOCOCOCOCOCOCOCOCOFI2120COFI2' BO
X'OFOFOFOFOFOFOFOFOFOCOFOFOFOFOFOF' CO
X'OFOCOFOC120FOFOFOFOFOFOFOF120FOF' DO
X'120FOFOFOFOFI20FOFOFOFOFOFOFOFOF' EO
X'OFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOF' FO

o 1 2 3 456 7 8 9 ABC D E F

0123456789ABCDEF

---------9.«+1
&---------:$*);
-/---------,%_>?
----------:#0)'="
-abcdefghi------
-jklmnopqr------
--stuvwxyz------

-ABCDEFGHI------
- J K L t" t~ 0 P Q R - - - - - -
--STUVWXYZ------
0123456789------
0123456789ABCDEF

Figure 40. Example of a Font Width Table: GP12 is a 12-pitch proportional-spaced
font with psuedo-blanks.

3. Assemble the DSMFT381 module to include the changes you've
made.

4. Link the newly-assembled version of the DSMFT381 module with
the rest of SCRIPT/VS. (See the Program Directory for
details.)

FTB FIELD DESCRIPTIONS

Each font table (FTB) macro is specified as:

DSMSFTD parmi,
parm2,
parm3,
parm4,
parm5

Font name
Character width table
Box character vector
Pitch
Font type code

The content and meaning of each font table (FTB) field that you
can specify with the DSMSFTDmacro are shown below:

FTB Field

parmI

p'arm2

parm3

parm4

Description

The font name: 1 to 4 characters.

The address of the font's width table. The width
table contains a one-byte entry for each of the 256
character codes. Each entry specifies the width of
the character as a binary number of device units. See
Figure 40 for an example of the width table.

The address of the box character set vector.

The font's pitch (characters per horizontal inch);
either 10, 12, or 15.

326 Document Composition Facility: User's Guide

parmS A one- or two-character code to specify the font
type:

H Monospace font

HB Monospace font with special blanks

PB Proportional-spaced font with special blanks

Special blanks are described in "Appendix D. Format
ting Considerations for the 3800 Printer" on page
337.

FONTS PROVIDED WITH SCRIPT/VS

The fonts provided withSCRIPT/VS for use with the 3800 Printer
are listed and illustrated in "Appendix C. Fonts SUPplied with
SCRIPT/VS" on page 329.

3800 PRINTER FONTS SUPPORTED BY SCRIPT/VS

The fonts provided with the 3800 Printer are listed in Figure 39
on page 321. For details on creating a character arrangement table
and its corresponding character set, see IBM 3800 Printing
Subsystem Programmer's Guide.

Appendix B. Device and Font Table Maintenance 327

APPENDIX C. FONTS SUPPLIED WITH SCRIPT/VS

The fonts illustrated in this appendix are provided with SCRIPT/VS for use with
the 3800 Printer. One or two font names can be specified with the CHARS option of
the SCRIPT command (see "Chapter 2. Using the SCRIPT Command" on page 13 for
details). The SCRIPT/VS fonts cannot, in general, be combined in the CHARS option
with the IBM 3800 fonts listed in Figure 39 on page 321.

Figure 41 lists the fonts p~ovided by SCRIPT/VS for use with the 3800 Printer.
Each is a full uppercase and lowercase font.

Text Fonts Highli9ht Fonts Special Fonts

GTIO Gothic (IO-pitch) GBIO Gothic Bold GRIO Gothic Reverse
GT12 Gothic (12-pitch) GB12 Gothic Bold GP12 Proportional
GT15 Gothic (15-pitch) GI12 Gothic Italic

RTI0 Roman Text
STlO Serif (lO-pitch) SIlO Serif Italic S012 Serif Overstruck
ST12 Serif (12-pitch) SI12 Serif Italic
ST15 Serif (15-pitch) SB12 Serif Bold

Figure 41. Fonts Provided With SCRIPT/VS: Each font is a complete set of upper
and lower-case characters. Any two of these fonts may be specified with
the CHARS option of the SCRIPT command.

Appendix C. Fonts Supplied with SCRIPT/VS 329

0 I ") 3 4 5 6 7 (3 ') A B C)J E F c...

----. -- .~.-.--.. '- - -.-_ ... --- - _ .. - .--_. _.

00 OF
10 1 F
20 2F
30 3F
(t 0 ¢ < (+ I (+ F

50 & ! S ~) ; ~ SF
60 - / , ~~ > ? 6F -
70 : -U- QI

, = " 7F .,.,.

80 d b c d e f 9 h i { <- I 5r - T
90 j k 1 m n 0 p q r } :! 1.'1 9F
AO 5 t u V W X Y z L r [-., • r\ F -
BO 0 1 2 3 4 5 6 7 8 q J -,] -t - DF A B C D E F
CO A B C D E F G H I -L

T CF --_. -_ ... - .-..

DO J K L M t'>l 0 P Q R § DF OF
EO "- S T U V W v y Z ~ -{ EF IF A

FO 0 1 2 3 4 5 6 7 r> 9 I F F 0 2F
----.- . . - .. __ .. -_ ... - - - .. _-'-- - - -.- ... _.-

3F
0 1 2 3 4 5 6 7 8 9 A B C 0 E F ¢ < (+ I 4F

F ot~ T : GTIO 50 & ! $ *) ; SF
60 - / , ~{ > ? 6F -
70 : # Q) , = " 7F

80 a b c d e f 9 h i { ~ + 8F
90 j k 1 tl1 n 0 p q r } ± • 9F
AO 5 t u V t,.J X Y z L r [2 • AF
BO 0 1 2 3 4 5 6 7 8 9 J

1] t- - BF
CO A B C D E r G H I 1.

T CF
DO J K L ~1 N a p Q R § DF

0 1 2 3 4 5 6 7 8 9 EO \ S T U V W x y z ~ .~ EF
. __ ----._ .. ---- --.--...... . - --'--

FO 0 1 2 3 4 5 6 7 8 9 I FF
00
10

--.----- .. _--. - ----. .- ."-- - ---_ - _ -'-- .-. __ .. . -

20 0 1 2 3 (t 5 6 7 8 9 A B C D E F
30
40 ¢ < (+ I 4F Fo~n : GT12
50 & ! $ '*) ; ... SF
60 - I , /. > ? 6F
70 : :1* ~ '7 = " 7F
80 ~ b c d e f 9 h ; { ~ + of
90 j k 1 m n 0 p q r } ± • 9F
AO 5 t u v w x ¥ z l r [~ • AF
60 0 1 2 :3 4 5 6 7 9 J] i. - F.F ,
CO A B C 0 E F G H I .1 T CF
DO J K l H I ~ 0 P Q R § OF
EO \ S T U V W x y l ~ ~ EF
FO 0 1 2 3 4 5 6 7 8 9 I FF

. - --_. _. - -_ . ---- ---_ .. _--" .-- " ... - -_ ...

0 1 2 3 {~ 5 6 7 8 9 A B C 0 E F

Fmn: GTl5

Figure 42. SCRIPT/VS Fonts: Gothic Text

330 Document Composition Facility: User's Guide

0 1 2 3 {t S 6 7 8 9 A B C D E F
---.--.•. ------.-.------.------.---------~-.------

00 OF
10 IF
20 2F
30 3F
40 ¢ < (+ I 4F
50 & ! $ *) ; ... SF
60 - / , % > ? 6F -
70 : # a1 , = " 7F
80 a b c d e f 9 h i { ::; + 8F
90 j k 1 m n 0 p q r } ± • 9F
AO 5 t u v w x y z L r- [2: • AF
BO 0 1 2 3 It 5 6 7 8 <) J) * - BF -,
CO A E C !) E F G H I ~ CF A B C 0 E F

T ------------
DO J ,." T M li 0 ? (;~ R. § DF 1\. !..." L J

EO "- S T U I' hi X Y Z ~ -1 EF OF v
FO 0 1 2 3 4 5 6 7 8 9 I FF IF

2F -- ------------

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 3F
¢ < (+ I 4F

FONT: SIlO 50 & ! $ *) ; .. 5F
60 - / , X > - ? 6F
70 : # .i1

, = " 7F
80 a b r: d f! f g h i { f + SF
90 j k 1 m n 0 p q r } ± • 9,F
AO " t u v ',v)~ y z L r [? • AF
80 0 1 2 .3 ~ .s ~ 7 a 9 J

1 j 'I --- 8F

0 1 2 3 4 5 6 CO A B C D E F G 1I I J_
T CF 7 8 9

00] K L ,.1 flO P Q R ,::- OF "

00 EO "- s· T U V W X Y Z ~ I EF
FO 0 J 2 3 4 ~ t5 7 8 ? I FF 10 "

L-__

20
30 0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

40 ¢ . < (+ I 4F FONT: 5I12
50 & ! $ *) ; .. 5F
60 - / , Y. > - ? 6F
70 : # Cl , = " 7F
80 a b c: d e f 9 h i C ~ t SF
90 ; k 1 m n 0 p q r) t • 9F
AO s t u v w x y '%

L r [~ • AF
BO 0 1 Z 3 4 5 6 7 8 9 J ,] f. - BF
CO A B C D E F G H I .1 T CF
DO J K L M N 0 P Q R § OF
EO "- S T U V IJ X Y Z t i EF
FO 0 1 2 3 4 5 6 7 8 9 I FF

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

FONT: S812

Figure 43. SCRIPT/VS Fonts: Serif Text

Appendix C. Fonts Supplied with SCRIPT/VS 331

0 1 2 3 4 5 6 7 8 9 A B C D E F
r-------- .. ---- -. ----- .. ~"'----" ...•...•... , _ - - .. --,- .~ .. -.- " ...•..... _ --- --I

00 ! OF
10 1 F
20 2F
30 3F
40 ¢ . < (+ I 4F
50 & ! $ *) ; ... 5F
60 - / , % :> - ? 6F
70 : H a , = " IF u

80 a b c d e f 9 h ; C !S + .sF
90 j k 1 m n 0 ~ q r) ! I'! 9F
AO s t u v w x y Z l r [~ n 1\ F
80 0 1 2 3 £. 5 b , n 9 J

1] _f - nF ,...
A B C D E F

CO A B C D E F G H ! .L
T CF .----.. _-._- -_ .. _--------..

DO J K L r·~ N 0 P Q R § DF
EO \. S T U V L-J v y Z r 1 EF

OF
A

FO 0 1 2 3 4 5 6 7 8 9 I FF
IF
2F ---,--_._---._-- "'---'--_ .. __ ._.-.-- -, ... --- _._ ..•.. -._- -.-- ---- •... - ," _ _. . _.-.. "._.,----"._-""""

0 1 2 3 {of 5 6 7 8 9 A B C D E F
3F

¢ . < (+ I 4F

FONT: GB10 50 Be ! $ *) ; ... SF
60 - / , %) ? 6F -
70 : ~ C)

,
= " 7F

80 a b c d e of 9 h ; c !. t 8F
90 j k 1 m n 0 p q r :) ! • 9F
AO s t u v w x y Z L r [~ • AF
BO 0 1 Z l 4 5 6 7 8 9 J ,] ~ - BF
CO A B C 0 E F G H I J.

T CF
0 1 2 3 4 5 6 7 8 9

DO J K L H U 0 P Q R § DF ----_.-_ ..• ---_ -_..-----_. - '---'

EO " S T U V W v Y Z ~ i EF
00 "
10

FO 0 1 2 3 4 5 6 7 8 9 I FF
-.-------- -----.--- -----..• ----. -_ .. _-------_.-. ---_._ .. _-_. - ..• ------- -- _ -_ _.

20 0 1 2 3 4 5 6 7 8 9 A B C D E F
30
40 ¢ < (+ I 4F FONT: GB12
50 S ! $ *) ; .. SF
60 - / , ~ > ? 6F -
70 : # ,i) ,

= " 7F

80 d b c d e f Q h j { ! I 8F
T

90 j k 1 m n 0 p q r } ~ • 9F
AO 5 t u V f'" X Y z l r { ~ • AF

BO 0 1 Z J ~ S 6 "J B 9 I
1] -;: - SF

CO A B C D E F G H I _L
r CF

DO J K L H N a p Q R § DF
EO \ 5 T U V W x y z ~ j EF
FO 0 1 2 3 ~ 5 6 7 <3 9 I FF

- .--_."._.-- ----.- .-------------------- ._ .. _.--- .- _----- - --- ... - _---_. - .---

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

FONT: GI12

Figure 44. SCRIPT/VS Fonts: Gothic Highlight

332 Document Composition F~cility: User's Guide

0 1 2 3 (t 5 6 7 8 9 A B C D E F
.. -----.-.---... - .- .. -" ------- .--.-------- -- --_.--.-------- ~·-·-------·-I

00 OF
10 IF
20 2F
30 3F
40 ¢ < (+ I 4F
50 f: ! $ *) ; SF
60 - / , % > ? 6F -
70 : # cil

,
= " 7F

80 a b c d e f 9 h i { $ + 8F
90 j k 1 m n 0 p q r } ± • 9F
AD s t u v w x y z l r [~ • AF
80 0 1 Z 3 If 5 6 7 S '3 J) ':F - SF ,
CO A B C D E F G H I 1. CF A B C 0 E F

T --------_._--
DO J I; L f1 N 0 P Q R § DF
EO \. S T U V W X Y Z ~ ~ EF OF

FO 0 1 2 3 1.+ 5 6 7 8 9 I FF IF
2F .-----------.-----.. ---.---.-... - ... --.. ~--------.--- - .. ----- ------_. ---.-- ---

0 I 2 3 4 5 6 7 8 9 A B C 0 E F 3F
¢ < (+ I 4F

FONT: STIO 50 & ! $ *) ; - SF
60 - / , % > - ? 6F
70 : # ~

, = " 1F
80 a b c d e f 9 h i { ~ t SF
90 j k 1 m n 0 p q r } ± • 9F
AO s t u v w x y z L r [~ • AF
BO 0 1 Z 3 " 5 6 7 8 9 J ,] t - SF
CO A B C 0 E r G H I l. T CF
DO J K L M N 0 P Q R § OF

0 1 2 3 4 5 6 7 8 9 EO \. S T U V W X Y Z r ~ EF
.--._----_._-----_._--

FO 0 1 3
00

2 4 5 6 7 8 9 I FF
10

L-....--___ .. _______ ... _. ______ ______ . __ .. ___ .. ' -.-----.---.---

20 0 1 2 3 4 5 6 1 8 9 A B C D E F
30
40 ¢ < (+ I 4F FONT: ST12
50 & ! $ *) ; ... SF
60 - I , :I. > ? 6F
70 : # ~

-;- = " 7F
80 a b (; d e f g h i { $ + 8F
90 j I< 1 lI\ n 0 P Cf r } ± • 9F
AO s t u v u)(y 'Z l r [~ • AF
60 0 1 2 3 4 S 6 7 a ~ J , 1 ~ - BF
CO ABC 0 E F G H I 1 T CF
00 J K l t1 U 0 P Q R § OF
EO "- 5 T U V W X y Z ~ ~ EF
FO 0 1 2 3 4 5 6 789 I FF

'----_. __ ._. __ .. _-_• _--------_.-----
0 1 2 3 4 5 6 7 8 9 ABC 0 E F

FONT: 5T15

Figure 45. SCRIPT/VS Fonts: Serif Highlight

Appendix C. Fonts Supplied with SCRIPT/VS 333

o 1 234 5 6 7 3 9 AGe 0 E F

00 r-
10
20
30
40
50
60
70
80
90
AD
80
CO
DO
EO
FO

00
10
20
30
40

50
60
70

80
90
AO
BO
CO
DO
EO
FO

BI·~il

~ ~
o 1 234 5 6 789 ABC D E F

FO~~T: GRlO

o 1 234 5 6 7 B 9 ABC D E F

OF
IF
2F
3F

¢ < (+ 4F
& $ *) ; ... SF
- / % > ? 6F

**
@

, = 7F

a b c d e f 9 h { ~ (+ + BF
k m n 0 p q r }) :t • 9F
5 t u v w x y Z L r [2 • AF

0 1 2 3 4 5 6 7 8 q J , J t - BF

A B C D E F G H I CF
J K L M N 0 p Q R § DF

'\ S T U V [.,J X y Z EF
0 1 2 3 4- 5 b 7 8 q FF

o 1 2 3 4 5 6 7 8 9 ARC D E F

FONT: GP12

.1

OF
1 F
2F

3F
{+ F

SF
6F
7F
8F
9F

AF
BF
CF
DF
EF
FF

Figure 46. SCRIPT/VS Fonts: Gothic Special Pu~pose

334. Docomeh.t Composl t ion Faci Ii ty: 'User' 5 Gu ide

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00
10
20
30
40
50
60
70
80
90
AO
80
CO
00
EO
FO

00
10
20
30
40
50

¢ . <
E ! $ *
- / ~"

" W
a b c d e f 9 h { ~

j k I M n 0 Jl CJ T }

s t u v u x y z l r
0 1 2 3 '" S 6 7 8 9 J

1
A B C D E F G II J_

T
J K L M t~ 0 p Q R §

'\. S T U V W X Y Z J -I
0 1 2 3 4 5 <> 7 8 ?

0 1 2 3 4 5 6 7 8 9 A B C

FONT: RTIO

o 1 234 5 6 7 8 9 ABC D E F

(

)

,

[
]

0

+
;
>

!

~

~

E

OF
IF
2F
3F
4F

5F

60 - r T * - ~ ~ 6F
70 + • a ~ ~" 7F

80 ~ bed e r v h ± f ~ t 8F
90 j ~ T ~ n ~ p q T t ±. 9F

AO s t tt ~ ~ x 7 ziT f r + AF
BO 4 ~ ~ ~ ~ ~ ~ z a ~ i T i ~ - BF
CO * ~ e B £ ~ 6 H TiT CF
DO ~ * ~ H H e p ~ R § OF
EO ~ 5 T e V w * ¥ ~ t + EF
FO ~ + r ~ ~ ~ ~ T 6 ~ + FF

o 1 234 5 6 7 8 9 ABC D E F

FONT: S012

-.

?
"
-I-
•
•

F

Figure 47. SCRIPT/VS Fonts: Serif Special Purpose

OF
IF
2F
3F
(i F
5F
6F
7F
8F
9F
AF
BF
CF
OF
EF
FF

Appendix C. Fonts Supplied with SCRIPT/VS 335

APPENDIX D. FORMATTING CONSIDERATIONS FOR THE 3800 PRINTER

This section contains some information and simple guidelines to
help you when formatting documents for the 3800 Printer.

Before reading this section, you are expected to have a working
knowledge of the control t~ord syntax and functional capabilities
of SCRIPT/VS. Additionally you should be familiar with the 3800
Printer hardware and its system control program (SCP) support.
Information about the 3800 Printer can be found in IBM 3800 Print
ing Subsystem Programmer's Guide.

FONT MANAGEMENT

15

The current font may potentially change each time a new input line
is processed. A new font may be started at any point in the input
stream. This may be between words or within a continued word. At
the time a new font is started, the following information is
available to the formatter:

• Address of the "font width table"

• Table Reference Character (TRC) for this font

• Availability of "special blanks"ls

Line formatting proceeds based on these parameters until another
font change is requested.

Fonts of different pitch that do not contain special blanks cannot
be used on the s~~e output line. Failure to observe this
restriction may result in severe column misalignment.

A single output line includes all data in all columns that occupy
a single print line position on the output device.

Usually, the desired results may be achieved using
SCRIPT/VS-supplied fonts which contain the special blanks. How
ever, if a local font is required, it is recommended that you sup
ply "graphmods" for the special blank character codes.

Care should be taken in the definition of new fonts to observe the
following conventions:

• The font should contain a multiple of 64 characters less one.
This ensures that the Writable Character Generation Matrix
(WCGM) storage in the 3800 Printer is used efficiently (that
1S, has no unused WCGM positions).

• The first WCGM position (hexadecimal 00) should be assigned
to the normal blank, usually hexadecimal 40, rather than
SCRIPT/VS special blanks. Data positions in the output line
that are not otherwise assigned (that is, unprintable charac
ters) will be assigned to this character by the 3800 Printer.

• The underscore character .(hexadecimal 60) should be assigned
to the 45th WCGM position (hexadecimal 20). The 3800 Printer
assumes that WCGM position 45 is the underscore character. If
this position is unassigned, underscores will not appear in
the output. Assigning this position to a character other than
the underscore may cause unpredictable results.

• The last WCGM position (hexadecimal 3F) should not be
assigned to any character code.

Hexadecimal 11 is 10 pitch. Hexadecimal 12 is 12 pitch. Hexadecimal 13 is 15
pitch.

Appendix O. Formatting Considerations for the 3800 Printer 337

TAB, BACKSPACE, UNDERSCORE RESOLUTION

INTERWORD SPACE

It is necessary to resolve backspaces and tabs before line format
ting can begin. The tab, backspace, or underscore characters,16
when processed, cause changes in the input line data string.

If no fill character has been specified in the tab definition,
tabs are expanded by inserting hexadecimal 40 characters or spe
cial blanks in appropriate combinations to fill the space from the
character preceding the tab to the next defined tab stop position.
Current character position is measured in pels from the beginning
of the column, including indention.

A minimum space of 23 pel is required from the current line posi
tion to the tab step. If the space is less th~n 23 pel, the next
defined tab stop is used.

This minimum value guarantees that the tab expansion will end
within 1 pel of the desired tab stop position if special blanks
are available. See "Inline Space Management" on page 339 for more
information.

All data to the left of a tab expansion is considered to be a sin
gle word segment. No wordspaces to the left of the tab will be
considered for justification purposes.

Normal line folding 17 at wordspaces is also inhibited to the left
of a tab expansion.

Backspaces and underscores normally are presented to the format
ter in one of the following character triplet configurations:

1. character, backspace, underscore

In this form, the subject character is underscored.

2. underscore, backspace, character

In this form, the subject character is underscored.

3. character, backspace, character

In this form, the first character is deleted from the input
line. That character position is then occupied by the charac
ter immediately following the backspace. This is done because
overprinting is not possible on the 3800 Printer.

The character with the highest collating sequence will always
be the second character and consequently will be the one to be
printed on the 3800 Printer.

When an underscore is encountered out of triplet context, it is
treated as data; no special processing is done.

If justification is on and special blanks are present, all inter
word spaces in the input line are translated to hexadecimal 13,
the 1S-pitch blank.

When an input line does not fill the column width, a wordspace is
added to the end. Success i ve input I i nets are formatted wi th i nter
vening spaces until the column width is filled.

• If justification is on, a single wordspace is added.

16 Hexadecimal OS, 16, and 6D are tab, backspace, and underscore, respectively.
17 .FO ON or .CO ON.

338 Document Composition Facility: User's Guide

• If justification is off, and the input line ends with a full
stop characte~, two wordspaces are added;

• When the input line ends in a continuation character, no word
space i s added.

REVISION CODE CHARACTERS'

The revision code character is normally placed immediately pre
ceding each changed line and is followed by a blank. Because the
RC field has a variable width based on the width of the RC charac
ter, it is necessary to measure and format it in the same way as
text data.

It is most desirable for the first character of each text line to
start in the same relative position. To ensure this, the RC char
acter and its blank must have a combined width that does not vary
from line to line. If special blanks are present, this is achieved
by combining the RC character with a special blank which brings
the total width of RC and blank to 30 pel. The follo~oJing table
shows relative widths:

RC WIDTH BL/\NK WIDTH

12 18
15 15
18 12

The RC field is allocated from the bind space in column 1 and from
the gutter space in columns 2 through n~ If insufficient space is
available it will not appear in the output.

A minimum space of 53 pel is required in the sutter to ensure col
umn ali~n~ent within 1 pel. The bind space should be a mini~um
spnce of 30 pel to provide adequate space for the RC field.

The following example shows the relationship of the RC field to
the bind and gutter space in a three-column text section.

Column 1

BIND = 0,30,
or => 53 pel

INLINE SPACE MANAGEMENT

Column 2 Column 3

L r= RC = 30 pel
GUTTER => 53 pel

INTER COLUMN GAP
=> 23 pel

Page Width

Any time there is a need to fill some space in the output line, a
space character string must be generated which will have ameas
ured length equal to that of the desired space. This cihsracter
string will be hexadecimal 40 characters, or a combination of spe
cial blanks. The accuracy of the length of ~ s~ace string has a
direct effect on the column alignment of the output line of which
that string is a part.

Appendix D. Formatting Considerations for the 380nPrinte~ 339

lOX PROCESSING

The best accuracy that may be hoped for with the hexadecimal 40
string is ± one-half hexadecimal 40 ch~racter width. With care,
one may set parameters in such a way as to minimize the proba
bility that half-character alignment errors will occur.

One-half-character rounding errors may occur when space units are
not spec'fied 'n multiples of the character width. This occurs
because the space unit value is resolved to native d~vice units,
pels in the horizontal direct'on, and may not always be satisfied
accurately with a string of hexadecimal 40 characters. The situ
ation is not affected by the ma~nitude of the request but by the
relationship of the space value to the width of the hexadecimal 40
character at the point in time when the space is generated.

The best accuracy that may be hoped for with the special blank
string is ± one pel. This level of accuracy is the best attainable
on the 3800 Printer and is quite satisfactory for most applica
tions. This level of accuracy can normally be expected when the
following simple guidelines are followed:

• Define tabs so that data preceding the tab always has room to
end at least 23 pel before the defined tab stop position.

• If you are not using the default, bind should be set to one of
the following values:

0, 30 pel, or greater than 52 pel.

• Define columns so that the gutter is at least 53 pel wide.

• Specify indent values equal to or greater than 23 pel.

• Limit split text filler strings to 1 or 2 characters.

If special blanks are present and the above guidelines are not
followed, inline space errors of ± six pel may be encountered.
This is because it is not always possible to satisfy space
requests accurately if the value requested is less than 23 pel.

With a lO-pitch font, errors of ± 9 pel may be encountered.

Alignment errors may potentially occur any time a space string is
generated. The cumulative effect across a multtcolumn line may be
much greater than six pel.

Figure 48 on page 341 illustrates the alignment errors that will
be encountered when using special blanks and space values of less
than 23 pel.

As can be seen from the table, the degree of error varies consid
erably in the 0 to 6 pel range for any request of less than 23 pel.
Any request equal to or greater than 23 pel can be satisfied with
in 1 pel by a combination of the special blanks.

When special blanks are present, and a space request is processed
~hich can not be accurately satisfied, a warning message is
issued. The line in error will be flagged in the right margin with
"<---- SPACE ERROR."

The formatter takes steps to ensure that inline space is specified
outside the error windows shown in the table. The area in which
errors are most likely to occur is in the gutter space. This is
because the column definition may be disregarded when processing
a line longer than column length with the EXTEND option of the .FO
[Format Model control word. For this reason, the use of EXTEND is
not recommended.

Boxes are supported in logical overlaymode.relative to the output
line; the box characters are overlaid on the output line after it
15 completely processed. Characters in the box line that occupy
the same print position as a text character are printed; the text
character does not appear in the output.

340 Document Composition Facility: User's Guide

REQUESTED ACTUAL ERROR
(PEL) (PEL) (PEL)

1 0 -1
2 0 -2
3 0 -3
4 0 -4
5 0 -5
6 0 -6
7 12 +5
8 12 +4
9 12 +3

10 12 +2
11 12 +1
12 12 0
13 12 -1
14 15 +1
15 15 0
16 15 -1
17 18 +1
18 18 0
19 18 -1
20 18 -2
21 18 -3
22 18 -4
23 24 +1
24 24 0
25 24 -1

Figure 48. Justification Alignment Error for 3800 Printer
Output: Horizontal space cannot be reliably generated
for distances less than 23 pel.

The use of special blanks is inhibited while box processing is in
effect. That is, from the .BX definition input line to the .BX OFF
input line. Slight variations in column alignment may occur in
transition from the normal formatting environment, when special
blanks are available for inline space management, to the box for
matting environment, when hexadecimal 40 characters are used for
inline space manage~ent. See "Inline Space Management" on page
339 for more information.

The following restrictions apply to box processing only:

• All characters in the box line and all characters in the text
within the box must be of the same width.

Truly proportional fonts may not be used for the box char
acters or the text within a box. The special blank charac
ters may be present in the font, but all other characters
must be of the same width.

All fonts used within a box must be of the same pitch as
the box font. The box font is the current font at the time
the box is defined.

FORMATTER ESCAPE CHARACTER

Formatted lines contain imbedded controls which are prefixed with
the "escape" character hexadecimal 27. This use of hexadecimal 27
by SCRIPT/VS precludes its use as a data character code.

Appendix D. Formatting Considerations for the 3800 Printer 341

The glossary illustrates some basic
SCRIPT/VS formatting concepts, and
defines words and phrases that have
special meanings in SCRIPT/VS or spe
cial meanings in a typographical sense.

Current margins:

GLOSSARY

The terms are defined as they are used
in this book. If you do not find the
term you are looking for, refer to the
index or to the IBM Data Processing
Glossarv, GC20-1699.

1<-- -->1
The current left margin is either character position 1, or the character
position established by the combined effect of the .IN [Indent), .OF [Off
set], .UN [Undent) and .IL [Indent Line) control words. The current right
margin is determined by the combined effect of the .CL [Column Width] and
.IR [Indent Right] control words .

. Il [Indent line]:
-->1

The first line following the indent line control word is moved to the
right of the current left margin. All subsequent lines start at the current
left margin. (Changes affect the current left margin for one line.)

.IN [Indent]:
---->1

All lines following the indent control word are moved to the right
of the current left margin. (Changes affect the current left margin
for all subsequent lines until respecified.)

.OF [Offset]:
1->1
The first line following the offset control word is not indented

from the current left margin; all subsequent lines are
indented. The offset remains in effect until changed by anoth
er offset or indent control word. (Changes affect the current
left margin after one output line.)

.UN [Undent]:
1<-1"
The line following the undent control word is shifted to the left of the

current left margin; all subsequent lines start at the current left
margin. (Changes affect the current left margin for one line.)

.IR [Indent Right]:
1<-

All lines following an indent right control word are justified to the
column width minus the right incention. (Changes affect the current
right margin for all subsequent lines until respecified.)

Figure 49. How the Current Margins Are Established

ampersand: The "&" character.

When an ampersand begins a character
string, SCRIPT/VS assumes the charac
ter stri ng is a symbol name. If the
symbol name is defined, SCRIPT/VS
replaces the symbol with its value
(unless symbol substitution is off).

In running footings, running headings,
and running titles, the ampersand is
usually the page number symbol.

When encountered by itself on the right
side of a .SE [Set Symbol] control
word, it is interpreted as the page
number symbol.

APF: See Application Processing Func
tion.

APpl;cat;on process;ng Function (APF):
In GMl processing, the processing that

is performed when a document element or
attribute is recognized. In SCRIPT/VS,
an APF is implemented as a sequence of
control words, possibly intermixed

Glossary 343

with text and symbols, in one o~ three
forms: macro definition, value of a
symbol, or imbedded file.

attribute: A characteristic of a docu
ment (or document element) other than
its type or content. For example, the
security level of a document or the
depth of a figure.

attribute l~bel: In GMl markup, a name
of an attribute that is entered in the
source document when specifying the
attribute's value.

b~ck matter: In a book, those sections
(such as glossary and index) that are
placed after the main chapters or
sections.

ba!ancing: In multi column formatting,
the process of making column depths on
a page approximately equal.

batch environ~ent: The environment in
which non-interactive programs are
executed.

binding cd9~: The edge of a page to be
bound, stapled, or drilled. Defined
with the BIND option of the SCRIPT com
mand. (See also Figure 21 on page 298.)

body: (1) Of a printed page, that
portion between the top and bottom mar
gins that contains the text. (2) Of a
book, that port i on between the front
matter and the back matter. (See also
Figure 21 on page 298.)

boldface: A heavy-faced type. Also,
printing in this type.

bottor.1 milrgin: On a page, the space
between the body or the running foot
ing, if any, and the bottom edge of the
page. The bottom margin area includes
the bottom title lines, if any. (See
also Figure 21 on page 298.)

bottom title: Up to six lines of data
repeated at the bottom of consecutive
pages (or of consecuti ve odd- or
even-numbered pages) in the footing
spac~. (See also Figure 21 on page
298.)

break: An interruption in the format
ting of input lines, so that the next
input line is printed on a new output
line.

c~ps: Capital letters. (See also
initial caps.)

capt; on: T ext accompany i ng and
describing an illustration.

character: A symbol used in printing.
For example, a letter of the alphabet,
a numeral, a punctuation mark, or any

other symbol that represents informa
tion.

character set: A finite set of differ
ent characters that is agreed to be
complete for some purpose. For exa~ple,
in printing, the characters that
constitute a font.ls

char~cter spacing: The space between
characters in a word.

cicero: In the Didot point system, a
unit of 0.1776 inches (4.512 millime
ters) used in measuring typographical
material.

Ct'1S: An ; nteract i ve processo r that
operates within VM/370.

column width: The width of each text
column on a page. Specified with the
.Cl (Column Width) control word. (In
multicolumn formatting, all columns on
a page usually have the same width.)
(See also Figure 21 on page 298.)

cO~~3nd: A request from a terminal or
specified in a batch processing job for
the performance of an operation or the
execution of a particular program. For
example, a request given at a terminal
for SCRIPT/VS to format a document, or
for an editor to edit a line of text.

com~2nt: A control word line which is
ignored by SCRIPT/VS. Such lines begin
with either ".*" or ".cm". (See
"Chapter 3. Basi c Text Processi ng" on
page 29 .)

co=r.position: The act or result of for
matting a document.

concatenat;on: The forming of an out
put line that contains as man~' words as
the column width allows, by placing the
first words from an input line after
the last words from the preceding input
1 i ne. L~hen l.Jords from an input 1 i ne
would reach beyond the right margin and
hyphenation cannot be performed, they
are placed at the beginning of the next
output line, and so on.

contro! word: An instruction within a
document that identifies its parts or
tells SCRIPT/VS how to format the docu
ment. (See also macro.)

control word !;ne: An input line that
contains at least one control word.

current left m~rg;n: The left limit of
a column that is in effect for format
ting. Each column's left margin is
specified with the .CD (Column Defi
nition) control word. However, the cur
rent left margin (that is, the left
boundary for an output line) might vary
to the right of the column's left mar-

18 American National Dictionary for Information Processing

344 Document Composition Facility: User's Guide

gin when indention is changed with the
.IN (Indent), .UN (Undent), .Il (Indent
line), and .OF (Offset) control words.
(See also Figure 49 on page 343.)

current 1 in~: The line ina source
document at which a computer program
(such as an editor or a formatter) is
positioned for processing.

debu9: To detect, trace, and eliminate
errors in computer programs and
SCRIPT/VS documents.

default value: A value assumed by a
computer program when a control word,
command, or control statement wi th no
parameters is processed.

dictionary: A collection of "word
stems" that is used wi th the spell i ng
verification and automatic hyphenation
functions.

Didot point system: A standard print
er's measurement system on which type
sizes are based. A Didot point is
0.01(t8 inches (0.376 millimeters>.
There are 12 Didot points to a cicero.
(See also cicero and point.)

docu~nnt: (1) A publication or other
written material. (2) A machine-read
able collection of lines of text or
images, usually called a source docu
ment. (See also output document and
source document.)

document conversion processor: A com
puter program that processes a mac
hine-readable document which includes
formatting controls written in one for
matter language, to produce a machine
readable document which includes
formatting controls appropriate for
another formatter language.

documant library: A set of VSAM data
sets, accessible in a batch environ
ment, that conta in documents and
related files.

duplex: A mode of formatting appropri
ate for printing on both sides of a
sheet.

EBCDIC: Extended binary-coded decimal
interchange code. A coded character set
consisting of 8-bit coded
characters. 19

ed, t: To create or modi fy the contents
of a document or file. For example, to
insert, delete, change, rearrange, or
copy lines.

editor: A computer program that proc
esses commands to enter lines into a
document or to modify it.

eject: In formatting, a skip to the
next column or page.

em: A unit of measure for a particular
font that is equal to the point size of
that font.

extend3d synbol processin9: The proc
essing of a symbol whose value causes
the remainder of the line to be st2cked
and later processed as a new input
line.

fill character: The character that is
used to fill up a space; for example,
blanks used to fill up the space left
by tabbing.

float: (1) (noun) A keep (group of
input lines kept together) whose
location in the source file may vary
from its location in the printed docu
ment. (2) (verb) Of a keep .. to be for
matted in a location different from its
location in the source file.

flush: Having no indention.

fold: (1) To translate the lowercase
characters of a character string into
uppercase. (2) To place that porti on of
a line which does not fit within a col
umn on the next output line.

font: An assortment of type, all of
one size and style.

font set: The set of fonts to be used
in formatting a source document.

footin9: Words located at the bottom
of the text area. (See also running
footing, bottom title, and Figure 21 on
page 298.)

footin9 mar9in: That part of the bot
tom margin area between the body of the
page or running footing, if any, and
the bottom ti tle(s), whi ch is located
in the footing space. (See also
Figure 21 on page 298.)

footin9 space: That part of the bottom
margi n that is avai lable for bottom
title(s). (See also Figure 21 on page
298.)

footnote: A note of reference, expla
nation, or comment, placed below the
text of a column or page, but within
the body of the page (above the running
footing).

foresround: The environment in which
interactive programs are executed.
Interactive processors reside in the
foreground.

19 American National Dictionary for Information Processing

Glossary 345

format: (1) (noun) The shape, size,
and general makeup of a printed docu
ment. (2) (verb) To prepare a document
for printing in a specified format.

forrnatt;ng m~de: In document format
ting, the state in which input lines
are concatenated and the resulting out
put lines are justified.

formatter: (1) A computer program that
prepares a source document to be
printed. (2) That part of SCRIPT/VS
that formats input lines for a partic
ular logical device type.

front matter: In a book, those
sections (such as preface, abstract,
table of contents, list of illus
trations) that are placed before the
main chapters or sections.

General;zed Markup language (GML): A
language that may be used to identify
the parts of a source document without
respect to particular processing.

GMl: Generalized Markup language

gutter: In multi column formatting,
the space between columns. (See also
Figure 21 on page 298.)

hanging indention: The indention of
all lines of a block of text, following
the first line (which is not indented
the same number of spaces). Specified
with the .OF (Offset) or .UN (Undent)
control word. (See alSO) Figure 49 on
page 343.)

head-level: The typeface and charac
ter size associated /with the words
standing at the beginning of a chapter
or chapter topic. /

I

heading: Words located at the begin-
ning of a chapter or section or at the
top of a page. (See also head-level,
running heading, and top title, and
Figure 21 on page 298.)

head;ng margin: That part of the top
margi n area between the body of the
page or running heading, if any, and
the top title, which is located in the
heading space. Specified with the .HM
(Heading Margin) control word. (See
also Figure 21 on page 298.)

heading space: That part of the top
margin area that is available for top
title(s). Specified with the .HS (Head
i n g Spa c e) con t r 0 I w 0 rd. (See a 1 so
Figure 21 on page 298.)

hexadecimal: Pertaining to a number
system based on 16, using the sixteen
digits 0, 1, ... 9,A, B, C, 0, E, and
F. For example, hexadecimal 18 equals

decimal 27. (See also EBCDIC.)

indent: To set typographical material
to the right of the left margin.

indention: The action of indenting.
The condition of being indented. The
blank space produced by indenting.
Specified ~oJith the .IN (Indent), .UN
(Undent), .OF (Offset), and .Il (Indent
line) control words. (See also hanging
indention and Figure 49 on page 343.)

initial caps: Capital letters occur
ring as the first letter of each word
in a phrase. To set a phrase in initial
caps is to capitalize the first letter
of each word in the phrase.

initial value: A value assumed by
SCRIPT/VS for a formatting function
until the value is explicitly changed
with a control word. The initial value
is assumed even before the control word
is encountered, whereas the default
value is assumed when the controT word
is issued without parameters. (See also
default value.)

input device: A machine used to enter
information into a computer system (for
example, a terminal used to create a
document).

input line: A line, as entered into a
source file, to be processed by a for
matter.

interactive: Pertaining to an appli
cation in which entries call forth a
response from a system or program, as
in an inquiry system. An interactive
system might also be conversational,
implying a continuous dialog between
the user and the system. Interactive
systems are usually communicated with
via terminals, and respond immediately
to commands. (See also foreground.)

interactive env;ron~ent: The environ
ment in which an interactive processor
operates.

italic: A typestyle wi th characters
that slant upward to the right.

JCL: Job control language.

job control language (Jell: A language
of control statements used to identify
a computer job or describe its require
ments to the operating system. 20

job control statement: A statement
that provides an operating system with
information about the job being run.

justify: To insert extra blank space
between the words in an output line to
cause the last word in the 1 i ne to

20 American National Dictionary for Information Processing

346 Document. Composition Facility: User's Guide

reach the right margin. As a result,
the right-hand edge of each output line
is al i gned wi th precedi ng and followi ng
output lines.

keep: (noun) In a source document, a
collection of lines of text to be
printed in the same column. When the
vertical space remaining in the current
column is insufficient for the block of
text, the text is printed in the next
column. (In the case of si ngle-column
format, the next column is on the next
page.)

layout: The arrangement of matter to
be printed. (See also format.)

leader: (1) Dots or hyphens (as in a
table of contents) used to lead the eye
horizontally. (2) The divider beh>Jeen
text and footnotes on a page (usually a
short line of dashes, although you can
redefi ne it).

left-hand page:
when a book
even-numbered.

The page on the left
is opened; usually

line spacing: The space between the
basel i ne of one output 1 i ne and the
baseline of the adjacent output line.

lowercase: Pertaining to small let
ters as distinguished from capitals;
for example, "a, b, g" rather than "A,
B, G."

machine-readable: Data in a form such
that a machine can acquire or interpret
(read) it from a storage device, from a
data medium, or from another source.

~acro: An instruction in a source lan
guage that is to be replaced by a
defined sequence of instructions in the
same source language. 21 In SCRIPT/VS, a
macro is a sequence of one or more
control words, symbols, and input
lines. A macro's defi ni ti on can be
recursive.

macro substitution: During format
ting, the substitution of control
words, symbols, and text for a macro.

margin: (1) The space above, below,
and on ei ther S1 de of the body of a
page. (2) The left or right limit of a
column. (See also Figure 21 on page
298.)

mark up: (verb) (1) To determine the
markup for a document. (2) To insert
markup into a source document.

markup: (noun) Information added to a
document that enables a person or
system to process it. Markup may
describe the document's character
istics, or it may specify the actual

processing to be performed. In
SCRIPT/VS, markup consists of GMl tags,
attribute labels and values, and con
trol words.

offset: (verb) To indent all lines of
a block of text, except the first line.
(noun) The indention of all lines of a
block of text following the first line.
(See also Figure 49 on page 343.)

option: Informati on entered wi th the
SCRIPT command to control the execution
of SCRIPT /VS.

output device: A machine used to
print, display, or store the result of
processing.

output documant: A machine-readable
collection of lines of text or images
that have been formatted, or otherwise
processed, by a document processor.
The output document can be printed or
it can be filed for future processing.

output line: A line of text produced
by a formatter.

paginate: To number pages.

para~eter: Anyone of a set of proper
ties whose values determine the charac
teristics or behavior of something. Th~
syntax of some SCRIPT/VS control words
includes parameters, which establish
the properties of a formatting function
or a printed page.

FDS: Partitioned Data Set.

pel: The unit of horizontal measure
ment for the IBM 3800 Printing Subsys
tem. One pel equals approximately
1/180th inch.

pica: A unit of about 1/6 inch used in
mea sur i n g t y p 0 g rap h i cal mat e r l.a I .
Similar to a cicero in the Didot point
system.

pi tch: A number that represents the
amount of horizontal space a font's
character occupies on a line. For exam
ple, 10-pitch means 10 characters per
inch, or each character is 0.1 (1/10)
inch wide. 12-pitch means 12 characters
per inch, and IS-pitch means 15 charac
ters per inch.

point: (1) A unit of about 1/72 of an
inch used in measuring typographical
material. There are twelve points to
the pica. (2) In the Didot point sys
tem, a unit of 0.0148 inches. There are
twelve Didot points to the cicero.

profile: (1) In SCRIPT/VS processing,
a file that is imbedded before the pri
mary file is processed. It can be used
to control the formatting of a class of

21 American National Dictionary for Information Processing

Glossary 347

source documents. When processi~g GMl
markup, the profile usually contains
the mapping from GMl to APFs, and the
symbol settings that define the format
ting style. (2) In the Document Library
Facility library, a collection of
information that identifies a batch
SCRIPT/VS user (user profi Ie) or a doc
ument processor (attribute profile) or
that defines certain library param
eters (system profile).

proportional spacin9: The spacing of
characters in a printed line so that
each character is allotted a space
proportional to the character's width.

ra9s~d risht: The unjustified right
edge of text lines. (See also justify.)

ri9ht-hand p~ge:
when a book
odd-numbered.

The page on the right
is opened; usually

rule: (noun) A straight horizontal or
vertical line used, for example, to
separate or border the parts of a fig
ure or box.

runnin9 -footin9: A footing that is
repeated above the bottom margin area
on consecutive pages (or consecutive
odd- or even-numbered pages) in the
page's body (text area). (See also
Figure 21 on page 298.)

running headin9: A heading that is
repeated below the top margin area on
consecutive pages (or consecutive odd
or even-numbered pages) in the page's
body (text area). (See also Fi gure 21
on page 298.)

running title: In SCRIPT/VS, up to six
lines of data that ~ay be repeated in
the top or bottom margin area of con
secutive pages (or of odd- or
even-numbered pages.)

section: When an ~utput page has two
or more single-column parts with the
same or different column-widths, or a
single-column part and a multi column
part, or two or more different multi
column parts, each part of the output
page is called a section.

small caps: Capital letters in the
same style as the normal capital let
ters in a font, but approximately the
size of the lowercase letters.

source document: A machine-readable
collection of lines of text or images
that is used for input to a computer
program.

space: A blank area separating words
or lines.

symbol: A name in a source document
that can be replaced &.oJi th somethi ng
else. In SCRIPT/VS, a symbol is
replaced with a character string.
SCRIPT/VS may interpret the character

string as a number, a character string,
a control word, or another symbol.

symbol substitution: During format
ting, the replacement of a symbol with
a character string which SCRIPT/VS ~ay
interpret as a value (numeric, charac
t e r s t r i n g ,or con t r 01 w 0 r d) 0 r . as
another symbol.

tab: (1) (noun) A preset point in the
typing line of a typewriter-like termi
nal. A preset point in an output line.
(2) (verb) To advance to a tab for
printing or typing. (3) a tab charac
ter, hexadecimal 05.

ta9: In GML markup, a name for a type
of document (or document element) which
is entered in the source document to
identify it. For example, ":P." might
be the tag used to identify each para
graph.

terminal: A device, usually equipped
with a keyboard and some kind of dis
play, capable of sending and receiving
information over a communication chan
nel.

text line: An input line that contains
only text.

title: See running title.

token: A string of characters which is
treated as a single entity. In
SCRIPT/VS, a parameter passed to a mac
ro in one of the local variables &*1,

&*n. (See "Chapter 12. Writing
SCRIPT/VS Macro Instructi ons" on page
137.)

top mar9in: On a page, the space
between the body or running heading and
the top edge of the page. The top mar
gin includes the top titles, if any.
(See also Figure 21 on page 298.)

top title: Up to six lines of data
repeated at the top of consecutive
pages (or of consecutive odd- or
even-numbered pages) in the heading
space. (See also running title and
Figure 21 on page 298.)

TRC: Table Reference Character.
printer SYSOUT datasets, a second
trol byte, following the carriage
trol byte, which indicates which
the record is to be printed in.
presence of TRCs is indicated by
JCl parameter DCB=OPTCD=J.

In
con
con
font

The
the

TSO: An interactive processor within
OS/VS2.

typeface: All type of a single style.
Th~re might be several fonts (different
sizes) with the same typeface or style.

typeset: (1) (verb) To arrange the
type on a page for printing. (2) (ad
jective) Pertaining to material that
has been set in type.

348 Document Composition Facility: User's Guide

unde~sco~e: (1) (noun) A l,ne printed
under a character. (2) (verb) To place
a line under a character. To underline.

unfo~matted ~ode: (1) In document for
matting, the state in which each input
line is processed and printed without
formatting. Other SCRIPT/VS control
words remain in effect and ~re recog
nized. (2) In document printing using
the UNFORMAT option, the state in which
each input line (control words as well
as text) is printed as it exists in the
input, in the order in which it is
processed. No formatting is done.

uppe~casa: Pertaining to capital let
ters, as distinguished from small let
ters; for example, "A, B, G" rather
than "a, b, g."

widow: One or two lines of a paragraph
that are printed separately from the
rest of the paragraph.

word spacing: The space between words
in a line. Also called wordspace.

Glossary 349

SPECIAL CHARACTERS

"*" parameter
of .RC control word 86, 267

& 343
lA' converting numeric to a base-26

number 124
&B inserting bulleted item 171
&E' verifying existence of symbol 122
&Hx inserting numbered head
levels 172

&L' determining length of symbol's
value 123

&Nx inserting a numbered item 172
&P starting new paragraph 172
&R' converting symbol to Roman

numeral 124
&T' analyzing the type of the

symbol 123
&toc generating a table of
contents 172

&U' converting lowercase to
uppercase 125

tV' returning current value of
symbol 123

l$RET special symbol 128

"A" parameter
of .SK control word 278
of .SP control word 279

accounting notes in input 49
ADD parameter

of .DU control word 226
addenda dictionary

adding or deleting words 226
building an 160
hyphenating words 159

adding lines
to the table of contents 74

additional SCRIPT/VS formatting
features

drawing boxes 87
box within a box 91
boxes in a horizontal row 92
.BX [Box] control word 207
centering text within a box 89
formatting text within a box 88
horizontal row 92
middle portion of box in
another (larger) box 92

only the bottom line 94
only the middle portion 93
only the top line 92
open at the top and bottom 93
stacking one box on another 90

conditional text sections 102
conditional character 82
footnotes 84, 233
keeping text together 82

control words
not allowed in keeps 83

marking updated material 86

starting text
at top of column 85
at top of page 85
conditional column ejects 85
conditional page ejects 85
delaying imbedding
of input text 85

using fonts with the IBM 3800
Printing Subsystem 94

using special characters 77
character translation
for terminal output 81

customizing your keyboard 77
defining
special characters 81, 217

input character translation 78
using symbols
for special characters 79

ALPH parameter
of .PH control word 63, 262

alphabetic page numbering 63, 262
aligning text

with the right margin 42, 271
ALL parameter

of .IT control word 246
of .RT control word 272

altering hyphenation parameters 157
ampersand

as the page number symbol 61
glossary 343
inhibiting substitution 121

.AP [Append] control word 105
description 203

APF
naming file to be appended 106

developing preprocessor 154
glossary 343
mapping from GML tag 146
symbols within starter set 147

append control word 105
description 203
naming file to be appended 106

appendices
device table maintenance 323
font table maintenance 325
fonts supplied with SCRIPT/VS 327
formatting considerations
for the 3800 Printer 337
SCRIPT/VS summary 297

appending files 105
naming 106
symbols set when 129

application function sets 3
arabic numerals 63, 262
ARABIC parameter

of .PH control word 63, 262
array elements, controlling 134

accessing the index counter 135
setting the index counter 135

array separator characters
defining 81

array of symbols
assigning values 275
defining values 275

arrays of values
controlling 134
symbols for 133

ASEP parameter
of .DC control word 81, 217

asterisk parameter
of .RC control word 86, 267

Index 351

ATMS-II conversion 187
ATMS control--SCRIPT/VS macro

relationship between 194
converting documents

conversion techniques 188
formatting control 189
non-format command 188
to SCRIPT/VS format 187

ATMS-II GML identifier 188
attribute label 344

glossary 344
attributes

of a symbol's value 122, 318
in GML 149

automatic
hyphenation verification 157
item numbering 174
spelling verification 157

avoiding
an endless loop with macros 141
a text period in column one 47

back matter 344
backspace resolution
for 3800 Printer 338

balance columns control word 67
description 204

balancing 344
baseline
vertical space of current line 278

basic page parameters 51
basic text formatting 29

aligning text
with both margins 43, 211
with right margin 43, 271

blank, leading 250
blank lines 40

multiple 41
breaks 34, 206
capitalizing text 44, 293
centering text 42, 211
changing the margin 35,

current left margin '35
example of 39
with tabs 39

column
begin 209
conditional begin 209
description 210
multiple 254
width 212

column formatting
for multiple columns 204

comments in input file 49, 212
comments in output file 257
concatenate mode 31, 213
control word separator 48, 215
double spacing 225
ejecting to a new page 45

odd or even page 46, 230, 259
page eject mode 46, 259

footing
running 269
space 235

font
previous 261
saving 278

format mode 29, 234
GMl tags and control words 29
grouping control words 48
guidelines for entering text 46

hanging indentation 38
head levels

defining 221, 240
headnote 237
heading space 238
running 270

hyphenating 239
imbedding files 244
implicit formatting conventions 31
indenting text

definition 35
.Il control word 243
.IN control word 245
.UN control word 292

inserting SCRIPT/VS file
after another prints 203

justify mode 29, 248
line length 252
line spacing

definition 40
.LS control word 252
.SL control word 279

literals 251
margin

bottom 205
footing 232
heading 237
top 287

new font 204
null line 256
offset text 258
page eject

conditional 214
control word description 260
delaying file until next 222
even page 230
odd page 259

page length 261
page numbering mode 262
page number symbol 264
paragraphing 174
period in column one 47
positioning lines on page 42
revision code 267
single column mode 274
single space mode 280
skipping lines 278
special characters, defining 217
spelling verification 281
splitting text 282
table of contents 265, 285
tabs

leading 253
setting 284

titles
bottom 206
bottom, even page 227
bottom, odd page 256
running 272
top 289
top, even page 230
top, odd page 259

underlining text 44
.UC control word 290
.UD control word 291
.US control word 294

using tabs 32
fill characters 33
setting tabs 32, 284
with indentation 39

basic text formatting 29
batch environment

calling SCRIPT/VS processor 6
glossary 344
using SCRIPT/VS in 153

352 Document Composition Fac; lity: User's Guide

.BC [Balance Columns] control word
definition 67
description 204

begin font control word 94
description 204

beginning a new column 69, 85
.BF [Begin Font] control word

definition 117
description 204

BIND option 17, 299
binding edge 344
blank, leading 250
blank lines 40, 278

input lines that begin with 142
.BM [Bottom Margin] control word

definition 53
description 205
(see also .FS control word)

body 344
boldface 344
bottom line of a box

printing it by itself 94
bottom margin 53

control word description 205
glossary 344
(see also .FS control word)

BOTTO~1 parameter
of .RT control word

definition 54
description 272

bottom running titles 54-59
glossary 344
(see also .FS control word)

bottom title control word 206
box 87-94

centering text within 89
characters 78
control word description 207
defining a 87

example of 87
description 207
drawing only bottom line 94
drawing only middle 93

within a larger box 91
drawing only top line 92
examples 208
in a horizontal row 92
overview of 9
parts of a 87
processing 340
stacking one on another 90
within a box 91

branching in input file 236
branching in macro 236
.BR [Break] control word

definition 34
description 206

BR parameter
of .DH control word 221

break 3(t4
break control word 34, 206
breaks 34

control words that cause 47, 311
page 66

.BT [Bottom Title] control word
description 206

building an addenda dictionary 159
bullets 175
.BX [Box] control word

definition 87-96
description 207

"c" parameter
of .SK control word 278
of .SP control word 279

calling SCRIPT/VS processor 6
CAN parameter

of .BX control word 207
CANCEL parameter

of .RF control word 269
of .RH control word 270

cancelling a symbol 122
capitalizing words

lowercase in document 28
individually 44

caps 344
capti on 3{+4
CATALOG parameter

of .00 control word 219
.CB [Column Begin] control word

definition 69
description 209

.CC [Conditional Column Begin] control
word

definition 69
description 209

.CD [Column Definition] control word
definition 65, 67
description 210

.CE [Center] control word
definition 42
description 211

center control word 42, 211
CENTER parameter

of .FO control word 234
centering text 42

ATMS-II conversion 190
between margins 211
with running footings 60
with running headings 60
within a box 89

changing the
font 94
left margin 35
left margin for only one line 37
right margin 35
SCRIPT command 177
SCRIPT/370 control words 178

CHAR parameter
of .BX control word 207

character, special 79
affects SCRIPT/VS processing 81
glossary 344
using symbols for 81

character set 344
character spacing 344
character string, symbol values 123
character translation

for terminal output 81
in the input line 78
in the output line 77

characters
that delimit sentences 82
that delimit words 82
that delimit words
for spelling verification 319

characters not underscored
by default 319

CHARS option 17, 299
cicero 344
.CL [Column Width] control word

definition 65
description 212

Index 353

glossary 344
line length 252
(see also .LL control word)

CLOSE parameter
of .EF control word 228

.CM [Comment] control word
definition 50
description 212

CMS 344
CMS file naming conventions 13
CMS processing a system command 283
.CO [Concatenate Mode] control word

definition 31
description 213
suspending (with a break) 34

column
balancing 69, 204
begin control word 69, 209
beginning a new 69, 85, 209

for head levels 72
conditionDl begin 69, 209

boundary, extending 234
definition 65
description 210
eject 210
keeping text together 248
positions 67
saving current definition 274
truncating length 212
width 68, 212, 252, 344

column begin control word 69, 209
column one

avoid a text period in 47
enter all text in 47

column definition control word
definition 65, 67
description 210

column margins, splitting text 282
column width control word 212

(see also .LL control word)
combining SCRIPT/VS files 105
command 344
command conversion, non-format 188
comment control 192
comment control word 49

description 212
comments in SCRIPT/VS files

definition 49
.CM control word 212

comments, output 257
communicating with TSO 115
communicating with VM/370 114
compatibility

changes to the SCRIPT command 177
with SCRIPT/370 input

f i Ie s 10, 1 7.7
with TSO/FORMAT 197

composition 344
compound symbols 119
concatenate mode 31

control word description 213
suspending (with a break) 34

concatenating lines
canceling or restoring 213, 234
preventing 206

concatenation 344
conditional

column begin 69, 209
column eject 69, 85
input file processing 214
page eject 45, 85, 214
section 99, 102, 214
text sections 99

column begin control word
definition 69

description 209
conditional section control word

definition 102
description 214
nesting 103

conditional page eject 45, 85
control word description 214

conditional processing 99
conditional sections 102
.IF control word 99
of input line 241
overview of 10
special techniques 100
with symbols 104

CONT parameter
of .DC control word 82, 217

contents, table of
adding lines to the 74
building one automaticallY 73
control word description 285
entries generated

by head levels 71-72
file to generate automatic 265
overv i e~.J of 9
printing with output document 74
using TWOPASS option with 75

continuation character 81
CONTINUE option 18, 299

diagnostic aid 163
control blocks, displaying 170
control word 344
control word line 344
control word line execution 227
control word separator 48

redefining the 48, 81
control words

.AP [Append] 203, 301
assist debugging 165
.BC [Balance Columns] 204, 301
.BF [Begin Font] 204, 301
.BM [Bottom Margin] 205, 301
.BR [Break] 206, 301
.BT [Bottom Title] 206, 301
.BX [Box] 207, 301
.CB [Column Begin] 209, 301
.CC [Conditional Column
Begin] 210, 301

.CD [Column Definition] 210, 301

.CE [Center] 211, 301
changes for compatibility 178
.CL [Column Width] 212, 302
.CM [Comment] 212, 302
.CO [Concatenate Mode] 213, 302
.CP [Conditional Page
Eject] 214, 302

.CS [Conditional Section] 214, 302

.CW [Control Word
Separator] 215, 302

.DC [Define Character] 217, 302

.DD [Define Data File-id] 219, 302
defaults 4
.DH [Define Head Level] 221, 302
.DI [Delay Imbed] 222, 302
directly entered 155
.DM [Define Macro] 223, 303
.DS [Double Space Mode] 225, 303
.DU [Dictionary Update] 226, 303
.EB [Even Page Bottom
Title] 227, 303

.EC [Execute Control] 227, 303

.EF [End of File] 228, 303

.EM [Execute Macro] 229, 303

.EP [Even Page Eject] 230, 303

.ET [Even Page Top Title] 230, 303

.EZ [EasySCRIPT] 231, 303

354 Document Composition Facility: User's Guide

·FM [Footing Margin] 232, 303
.FN [Footnote] 233, 303
.FO [Format Mode] 234, 304
.FS [Footing Space] 235, 304
and GML tags 29
.GO [Goto] 236, 304
grouping the 48
.HE [Heading] 304
.HM [Heading Margin] 237, 304
.HN [Headnote] 237, 304
.HS [Heading Space] 238, 304
.HW [Hyphenate Word] 239, 304
.HY [Hyphenate] 239, 304
.Hn [Head Level n] 240, 304
.IF [If] 241, 305
.IL [Indent Line] 243, 305
.1M [Imbed] 244, 305
.IN [Indent] 245, 305
initial settings 4
.IR [Indent Right] 246, 305
.IT [Input Trace] 246, 305
.JU [Justify Mod£] 248, 305
• K P [K C 2 ;)] 2 (I .:;, 3 0 :)
.LB [Lea~ing Blank] 250, 305
.LI [LiterDI] 251, 305
.LL [Line Length] 252, 305
.lS [line Spacing] 252, 306
.IT [leading Tab] 253, 306
.LY [Library] 253, 306
.MC [Multi column Mode] 254, 306
.MG [Message] 255, 306
modifiers 199
.MS [Macro Substitution] 256, 306
.Nl [Null line] 256, 306
not allowed in keeps 83
notational conventions 200
.OB [Odd Page Bottom
Title] 257, 306

.OC [Output Comment] 257, 306

.OF [Offset] 258, 306

.OP [Odd Page Eject] 259, 306

.OT [Odd Page Top Title] 259, 307

.PA [Page Eject] 260, 307
parameters of 3
.PF [Previous Font] 261, 307
.PL [Page length] 261, 307
.PN [Page Numbering Mode] 262, 307
.PP [Paragraph Start] 264, 307
.PS [Page Number Symbol] 264, 307
.PT [Put Table of
Contents] 265, 307

.QQ [Quick Quit] 266, 307

.QU [Quit] 266, 307

.RC [Revision Code] 267, 307

.RD [Read Terminal] 268, 307

.RE [Restore Status] 268, 308
redefining 140
.RF [Running Footing] 269, 308
.RH [Running Heading] 270, 308
.RI [Right Adjust] 271, 308
.RT [Running Title] 272, 308
.RV [Read Variable] 273, 308
.SA [Save Status] 274, 308
.SC [Single Column Mode] 274, 308
.SE [Set Symbol] 275, 308
Set label 202, 301
separating multiple 215
separator 48, 215
.SF [Save Font] 278, 308
.SK [Skip] 278, 308
.Sl [Set Line Space] 279, 308
.SP [Space] 279, 309
space units 200
.SS [Single Space Model 280, 309
.SU [Substitute Symbol] 280, 309

.SV [Spelling
Verification] 281, 309

.SX [Split Text] 282, 309

.SY [System Command] 283, 309
syntax 199
.TB [Tab Setting] 284, 309
.TC [Table of Contents] 285, 309
.TE [Terminal Input] 286, 309
testing sequence 169
that cause breaks 47
.TI [Translate Input] 287, 309
.TM [Top Margin] 287, 310
.TR [Translate Character] 288, 310
.TT [Top Title] 289, 310
.TY [Type on Terminal] 290, 310
type 1 199
.UC [Underscore and
Capitalize] 290, 310

.UD [Underscore
Definition] 291, 310

.UN [Undentl 292, 310

.UP [t.l;Jn~rca~~] 293.310

.US [Undct'5Corc] 29'(,310

.WF [Write To File] 295, 310
when to use 7
.ZZ [Diagnostic] 296, 310

control word
modifier 199
separator control word
redefining 48
description 215
(see also .DC control word)

control words
that case a break 47, 311
that take effect on next page 311
initial values based on
logical output device 313

within
a footnote 312
a footing 312
a heading 312
a keep 312
a running footing 312
a running heading 312

control left reference numbering 192
control message printing

MESSAGE option 22
control values, symbols for 128
conventions

implicit SCR1PT/VS formatting 31
conversion, non-format command 188
conversion program operation 188
conversion technique for ATMS-II 187
converting ATMS documents 11, 187
counter, setting the heading 173
counters 193
.CP [Conditional Page Eject] control
word

definition 45, 81
description 214

creating a customized letter 111
creating a TSO/FORMAT compatible

environment 197
creating your own profiles 145
cross-references to EasySCRIPT

headings 173
.CS [Conditional Section] control word

definition 99, 102
description 214
nesting 103

current column definition
saving 274

current font identification
saving 278

current left margin 35, 344

Index 355

current line
glossary 345
vertical space to baseline 279

current page number, setting 131
current page title 289
CTl parameter

of .IT control word
changing 167
description 245

customizing for mass mailing 111
customizing your keyboard 81
.CW [Control Word Separator] control
L-Jord

definition 48
description 215
(see also .DC control word)

CW parameter
of the .DC control word

definition 81
description 217

data set identifier (see .DD control
word)

date control 194
date, printing system 127
.DC [Define Character] control word

definition 81
description 217
used in conditional processing 101
(see also .PS control word)

.DD [Define Data Fi.le-id] control word
defining DSMUTWTF 109
description 219
used when appending file 107
used when imbedding file 107

DD parameter
of .DD control word 219

debugging
by tracing processing actions

overview of 11
glossary 345
with the SCRIPT command 163
your GML macros 150

decimal page numbering 62
default value 345
default values

for logical output devices 325
define character control word 217

used in conditional processing 101
define data file-id control word

defining DSMUTWTF 109
description 219
used when appending a file 107
used when imbedding a file 107

define head level control word
changing EasySCRIPT defaults 173
definition 73
description 221

define macro control word
definition 137
description 223
redefining SCRIPT/VS control
words 139

substituting values for
symbols 141

(see also .MS control word)
defining

a box 87
characters to be underlined 44
a head level 73, 221

macro definitions 223
special characters

that affect SCRIPT/VS 81
that the formatter

recognizes 217
special text characters 77-80

defining a page layout 51
basic page parameters 51
changing line length 53
changing the page length 53
page numbering 62
running headings and footings 59

page numbering 61
top and bottom running titles 54

allocating space for 57
defaults 59
defining 62
multiline running titles 55

DEL parameter
of .DU control word 226

DELAY parameter
of .KP control word 83, 248

delayed keeps 83, 248
delaying imbedding of text 85

control word description 222
storing lines in DSMUTDIM 110

delimiter characters
for a sentance 81
for a symbol 119
for a ~"ord 82

DEST option 19, 299
destination of output, specifying the

and the logical output device 17
overview of 11

device and font table maintenance 323
DEVICE option 19, 299
.DH [Define Head level] control word

changing EasySCRIPT defaults 173
description 221

.01 [Delay Imbed) control word
definition 110
description 222
storing input in DSMUTDIM 110

diagnostic aids 163
diagnostic control word

description 296
enabling the dump option 163
(see also DUMP option of SCRIPT

command)
dictionary 345
dictionary update

changes for compatability 181
control word 226
hyphenating 158
verifying spelling 158

Oidot point system 345
displaying control blocks 170
displaying output at terminal

TERM option 27
displaying sequence of SCRIPT/VS
processing 165

.OM [Define Macro] control word
definition 137
description 223
substituting values for

symbols 141
redefining SCRIPT/VS control
words 140

(see also .MS control word)
document 345

attributes, identifying 145
conversion processor 345
element
glossary 345

356 Document Composition Facility: User's Guide

handling functions 10
identifying document
attributes 145

library 345
marking for SCRIPT/370 10
profile

creating your own 145
defining primary attributes 146
role of 145

two formatting passes
TWOPASS option 27

double space mode control word
cancp.ling 280
definition 41
description 225

doublespaced output lines 41, 225
canceling 280

drawing lines
characters to be underlined 44
underlining words 44

.DS [Double Space Mode] control word
canceling 280
definition 41
description 225

DSMTERMI, terminal input file 299
DSMTERMO, terminal output
fi Ie 290, 299

DSMUTDIM, storing delayed, imbedded
input text 110, 299

DSMUTMSG, error messages 299
DSMUTTOC, table of contents 299
DSMUTWTF, writing into file 299

writing to output file id 295
inserting lines into a file 109

DSH parameter
of .00 control word 219

.DU [Dictionary Update] control word
description 226

DUMP option 19, 299
diagnostic aid 163
(see also .ll control word)

DUMP parameter
of .ll control word 296

diagnostic aid 163
dumping control blocks 296
duplex 345

EasySCRIPT 171
bullets 175
control word description 231
cross-references to headings 173
examples of formatting 174
formats 172
heading defaults 173
headings 172
item numbering, automatic 174
lists, unnumbered 175
paragraphs 174
setting the heading counter 173
tables of contents 175
tags 171

.EB [Even Page Bottom Title] control
word

description 227
EBCDIC 345
.EC [Execute Control] control word

description 227
edit 345
editor 345
.EF [End of File] control word

description 228

terminate formatting file 110
used with imbedded files 111

eject
column 69, 85
for head levels 72
glossary 345
page 45, 85, 214
specifying odd or even page 46

em 345
.EM [Execute Macro] control word

description 229
redefining SCRIPT/VS control
words 139

enable the .SV control word 25
enable the .ll control word 19
end of embedded control 188
end of file control word 228

terminate formatting file 110
used with imbedded files 111

entering
control words, guidelines for 46
SPIE exit routines

preventing: NOSPIE option 23
text, guidelines for 46

.EP [Even Page Eject] control word
description 230

ERASE parameter
of .WF control word 295

error messages
control information in 163
printing with MESSAGE option 22

errors, continue processing after
CONTINUE option 18

.ET [Even Page Tep Title] control word
description 230

even numbered pages, causing 230
even page bottom title control

word 227
even page eject control word 230
even page top title control word 230
EVEN parameter

of .IF control word 241
of .PA control word 46, 260
of .RF control word 59, 269
of .RH control word 59, 270
of .RT control word 54, 272

execute control control word 227
execute macro control word

description 229
redefining SCRIPT/VS control
words 139

executing
CMS commands during SCRIPT/VS
processing 114

CP commands during SCRIPT/VS
processing 114

line as control word line 227
line as macro line 229
with TSO 115

explicit paragraphing
specification 189

EXTEND parameter
of .FO control word 31, 234

extended symbol processing 133, 345
.El [EasySCRIPT] control word

definition 231
description 231

"F" parameter
of .SX control word 282

figures, numbering 131

Index 357

figure number prefixes 133
figure number suffixes 133
file

append 105
end of 228
imbed 105, 244
that contains options

OPTIONS option 23
FILE option 19, 299
file-id associated with file or data
set identifier 219

fill characters
between split text 44
between tab positions 33
glossary 345

float 345
FLOAT parameter

of .KP control word 83, 249
floating keeps 83, 249
floating skip 191
flush 345
.FM [Footing Marginl control word

definition 57
description 232
glossary 345

.FN [Footnote) control word
definition 84
description 233
glossary 345

.FO [Format Model control word
definition 29
description 234
glossary 346
(see also .JU control word)

FOLD parameter
of .FO control word 31, 234

font 345
font management 337
FONT parameter

of .DH control word 221
font, previous 261
font set 345
font table

field descriptions 326
maintenance 325
updating 325

font width table example 326
fonts (3800 Printer only) 6

beginning new fonts 204
highlight fonts 320, 329
provided with SCRIPT/VS 320, 327
saving current font 278
special fonts 320, 329
specifying with CHARS option 17
supplied with 3800
Printer 321, 327

text fonts 320, 329
using with IBM 3800 Printer 94

footing 345
footing margin 58

description 232
glossary 345

footing space 58
description 235
glossary 345

footings, running 59
ATMS-II conversion 190
definition of 59

where to put 62
description 269
formatting environment 97
glossary 348
line length 252
page numbers in 61, 264

footnote 345

footnote control word 232
footnote environment, the 98
footnotes 84

leader 84
overview of 9

forcing a page eject 45
conditional 214
.PA control word 260
even page 230

foreground 345
format 346
format mode 29

control word description 234
glossary 346
(see also .JU control word)

formatted text mode 189
formatter 346
formatter escape character 341
formatting a document 13

control conversion 189
dictionary update 226
terminating 110
using EasySCRIPT tags 171
with two formatting passes

TWOPASS option 27, 164
formatting control conversion from

ATMS-II
comment control 192
control left reference numbers 192
counters 193
date control 194
explicit paragraphing
specification 189

floating skip 191
formatted text mode 189
headings and footings 190
hyphenation control 192
implicit paragraphing 190
include floating keeps 192
justification 191
keep text 190
line spacing 191
overstrike 192
page definition 192
page margin control 191
page number control 193
paragraph numbering 191
revision markers 193
skip lines conditionally 190
start new page 192
stop code 193
text alignment controls 191
text block indention 192
text line indention 192
text split 193
triplets and backspaces 194
unconditional skip 191
unformattable center text 190
unformatted te.xt mode 189
uppercase control 194
width and depth controls 191
widow zone control 192

formatting considerations
for 3800 Printer 337

formatting controls
conversion 189
defined by macros 137

formatting conventions
redefining SCRIPT/VS functions 142

formatting environment, the
SCRIPT/VS 97

restoring the current 98
saving the current 98

formatting, EasySCRIPT examples 174
formatting features of SCRIPT/VS 77

358 Document Composition Facility: User's Guide

formatting functions
basic 29
implicit conventions 31
overview of 8

formatting mode 346
formatting text in a box 87
FRAC parameter

of .PH control word 62, 262
front matter 346
.FS [Footing Space] control word

definition 57
description 235
glossary 345

FTB (see font table)
full stop 31

defining characters for 82

GDOCPROF document profile 145
primary document attributes 146

generalized markup language (GML)
tags 3

and control words 29
glossary 346

glossary 343
GML 346
GML, filename default for symbol
library 125

GML, implementing with EasySCRIPT 171
GML macros

debugging 150
for attribute processing 149

GML markup and control words 29
GML parameter

of .DC control word 217
GML starter set

defined 145
macros for attribute

processing 149
GML support in SCRIPT/VS 145
GML tags

defined by macros 137
for text items 146
processed as symbols 120
to APF mapping 146

.GO [Goto] control word 236
(see also Set Label control word)

Gothic
highlight SCRIPT/VS fonts 332
special purpose SCRIPT/VS
fonts 334

text SCRIPT/VS fonts 330
goto control word 236
graphic effects, special 156
grouping SCRIPT/VS control words 48
guidelines for entering text 46
gutter 346

handling directly entered control
words 155

hanging indentation 37
example of 38
glossary 346

head levels 71-73
characteristics of 71
defaults 173
defining 73, 221
description 240

glossary 346
macros for 73, 223
overview of 8
page ejects 72
setting heading counter 173
spacing 72

heading 346
heading margin 57

control word description 237
glossary 346

heading space 57
control word description 238
glossary 346

headings, running 59
ATMS-II conversion 190
counter, setting 173
defaults in EasySCRIPT 173
definition of 59

where to put 62
.DH control word 221
formatted by EasySCRIPT 172
formatting environment 97
.Hn control word 240
line length 252
numbered automatically 172
on page one 62
page numbers in 61, 264
.RH control word 270
setting heading counter 173

headings and footings 190
headnote control word 237
hexadecimal 346
highlight fonts provided with

SCRIPT/VS 320, 329
highlighted phrases 9
.HM [Heading Margin] control word

definition 57
description 237
glossary 346

.HH [Headnote] control word
description 237
(see also .RH control word)

.Hn [Head Level n] control word
description 240
(see also head levels)
(see also .TC control word)

horizontal row, boxes in a 92
horizontal space units 5
how

automatic hyphenation works 157
SCRIPT/VS works 3
to define a macro 137
to substitute values for

symbols 141
.HS [Heading Space] control word

definition 57
description 238
glossary 346

.HW [Hyphenate Word] control word
definition 157
description 239

.HY [Hyphenate] control word
definition 157
description 239

hyphenate control word 157, 239
hyphenate word control word 157, 239
hyphenation

altering the parameters 157
automatic 157, 239
control 192
.DU control word 226
of words 188
overview of 9
single occurrence of a

word 157, 239

Index 359

.HO [Head level 0] control word
definition 71
description 240
overriding defaults 221

.H1 [Head Levell] control word
definition 71
description 240

.H2 [Head Level 2] control word
definition 72
description 240

.H3 [Head Level 3] control word
definition 72
description 240

.H4 [Head Level 4] control word
definition 72
description 240

.H5 [Head Level 51 control word
definition 72
description 240

.H6 [Head level 6] control word
definition 72
description 240

identifier message, suppressing
QUIET option 26

identifying
lines of file or macro 202
updated material, overview 10

.IF control word
definition 99
description 241
terminal output characters 81

IGNORE parameter
of .CS control

definition
description

.IL [Indent line]

word
102, 103

214
control word

definition 37
description. 243

.IM [Imbed] control word
customizing a letter 111
description 244
merging documents from several

sources 111
IMBED parameter

of .WF control word
definition 105
description 295

imbedding separate files
customizing a letter 111
delayed 85, 110
example of 86
.IF control word 99
.IM control word 105, 244
merging documents from several

sources 111
naming file to be imbedded 106
overview of 10
symbols set when 129
terminating processing 110

implicit paragraphing
specification 190

implicit SCRIPT/VS formatting
conventions 31

.IN [Indent] control word
definition 35
description 245
footnote environment 98
include floating keeps 192

INCLUDE parameter
of .CS control word 102, 214

indent
control word 245
footnote environment 98
glossary 346
line control word 37, 243
right control word 37, 246
simple 36
single line 37
with tabs 39

indention
control words in combination 39
gossary 346

indenting text 35
all but first line of block 258
at the left margin 245
at the right margin 37, 246
example of 39
for the next line only 37
using tabs with 39
(see also .UN control word)

index counter of array
accessing 135
setting 135

INDEX parameter
of .SE control word 275
locating symbols in document 118

index to SCRIPT/VS Summary 297
inhibiting substitution of

symbols 121
initial caps 346
initial value 346
inline keeps 82, 248
inline space management 339
INLINE parDmeter

of .KP control word 85, 248
implicit paragraphing 190
include floating keeps 192
input character translation 78
input device 346
input file

characteristics 4
entering control words while

processing 286
entering text while processing 286

input lines
beginning with a blank or tab 142
cancel concatenation of 234
capitalizing, automatically 293
dynamically put into file 108
glossary 346
indenting next (undent) 292
leading blanks 250
leading tabs 253
preventing concatenation of 206
print without formatting 165
processed as text 251
restore concatenation of 234
saving for subsequent
processing 10

shifting next (undent) 292
start in column one 47
substituting values for symbol

names 119
trace information about 246
translating characters in 79
underscoring, automatically 294
unresolved symbols 120

input stream, format with
SCRIPT/VS 153

input substitution trace
capabilities of 166
control word 246
displaying sequence of SCRIPT/VS

processing 165
output line generated by 165

360 Document Composition Facility: User's Guide

stepping through input trace 167
input text, translating 287
input trace control word

cap~bilities of 166
description 246
displaying sequence of SCRIPT/VS

processing 165
stepping through input trace 167

insert file (see .AP control word)
integer page numbering 63
interactive 346
interactive environment

calling 5CRIPT/V5 in 7
glossary 346

interactive processing during
formatting

executing with TSO 115
executing with VS/370 114
overview of 11
using 5CRIPT/V5 112

interword space 338
introduction to SCRIPT/VS 1
.IR [Indent Right] control word

definition 37
description 246

.IT [Input Trace] control word
c~pabilities of 166
description 246
displaying sequence of SCRIPT/VS
processing 165

stepping through input trace 167
italic 346

JCL 346
job control language 346
.JU [Justify Model control word

definition 30
description 248
(see also .FO control word)

justify 346
justify mode control word 30, 248
justification 30

alignment error 341
formatting control conversion 191
of output lines 248
(see also .FO control word)

justify mode 30, 248

keep 347
keep control word 82, 248
keep environment, the 97
keep text 190
keeping text together 82-84

conditional column ejects 81
conditional page ejects 81
control words not allowed 83
.KP control word 248
overview of 10
using 83

keyboard, customizing your 81
.KP [Keep] control word

definition 82

description 248

layout of an output page 52
glossary 347
multi column 65

.LB [Leading Blank] control word
definition 31, 47
description 250

LOT (logical device table) 323
leader 347
LEADER parameter

of .FN control word 84, 233
leading blank 31, 47

control word description 250
leading tab 31, 47

control word description 253
left-hand page 347
left margin 35, 245
LEFT parameter

of .FO control word 30, 234
length

of output page 53, 261
of output column line (width) 65
of output line (page width) 53

.LI [Literal] control word
definition 47
description 251
used with macros from the starter
set l(t9

LIB option 21, 177
symbol substitution 125
(see also .LY control word)

LIB parameter
of .DD control word 219
of .DM control word 223
of .5E control word 275

library control word
description 253
searching for unresolved
macros 143

used in symbol substitution 126
libraries, symbol and macro

and the LIB option 21
and the SEARCH option 26
symbol definitions 125

line length 53
control word description 252

line spacing
between output lines 41
canceling 280
control word description 252
formatting control conversion 191
glossary 347
positioning lines on page 42
with blank lines 41
(see also .DS control word)
(see also .S5 control word)

line spacing control word 252
lines, blank 41
list of

attributes of a symbol's value 318
characters

marking ending of word 319
marking beginning of word 319
underscored by default 319

Index 361

control words
not allot-Jed 312
processed once in footing 312
processed once in heading 312
take effect on next output

page 311
to break input lines 311
values based on logical default
device 313

fonts provided with 5CRIPT/VS for
u5ing with the 3BOO Printer 320

fonts provided with 3800
Printer 321

illustrations, numbering pages 133
utility files that SCRIPT/VS
creates or uses 299

lists, unnumbered 175
literal control word

definition 47
description 251
with macros from starter set 149

.LL [Line Length] control word
definition 53
description 252

local symbols for macros 138
logical device
characteristics 20, 313

logical device table 323
logical device table field
descriptions 323

logical output device 4
and output destination 17
special values for 325
specify with DEVICE option 19

lowercase 347
.l5 [line Spacing] control word

between output lines 42
canceling 280
description 252
formatting control conversion 191
glossary 347
with blank lines 42
(see also .DS control word)
(See also .S5 control word)

.IT [leading Tab] control word
description 253

.lY [library] control word
description 253
searching for unresolved
macros 143

used in symbol substitution 126

MAC parameter
of .IT control word 246
of .LY control word 253

machine-readable 347
macro 347
macro calls

cancel automatic 256
initiate automatic 256

macro definitions
.DM control word 223
retrieving from a library 253
substituting values for

symbols 141
macro instructions

defining 137
defining head levels with 73
for secondary attribute
processing 148

invoking 199

local symbols for 138
messages in 170
naming conventions 138
overview of 10
using 137
within starter set APFs 148
writing 137

macro libraries
convert ATMS-II documents to

SCRIPT/VS format 187
identify with LIB option 21
identify with SEARCH option 26
specify 143

macro substitution
avoiding an endless loop 140
control word description 256
glossary 347
redefining SCRIPT/VS control
words 140

(see also .EC control word)
macro processing, symbols set 130
main dictionary hyphenation 158
margin

bottom 51, 205
center output lines between 211
current left 35

changing the 36
footing 232
glossary 347
1 eft, indent i ng 245
right 36

aligning text 42, 271
indenting 246

top 51
margins

splitting text between 43
fill characters for 44

marking line for reference in a
.GO 202

marking updated material 86
mark up 347
markup 347
master document fragment 189
master file

structure using imbeds 105
used with imbedded files 107

.MC [Multi column Mode] control word
definition 70
description 254
(see also .SC control word)

merging documents from several
sources 111

MESSAGE option 22, 299
diagnostic aid 163

message, writing
control word description 255
in macros 170

.MG [Message] control word 255
middle portion of a box

printing by itself 93
within a larger box 92

MIHPT paramter
of .HY control word 239

modifying
head-level definition 73
unpredictable processing
results 156

.MS [Macro Substitution] control word
avoiding an endless loop 141
description 256
glossary 347
redefining SCRIPT/VS control
words 139

(see also .EC control word)
multiple column formatting

362 Document Composition Facility: User's Guide

c~ncel column balance 204
restore column balance 204

multiple spacing output text 252
multi column mode control word 254

(see also .SC control word)
multi column processing 65

beginning a new column 69
column balancing 69
defining a multi column layout 65

an example of 68
page section breaks 66
restoring 254
section breaks 66
suspending and resuming 69

multiline running titles 55
alloc~ting space for 57

mutually exclusive SCRIPT command
options 16

name a disk file for output
FILE option 19
naming the output file 20

name a file containing options
OPTIONS option 23

name a remote output station
DEST option 19

naming conventions
for macros 138

naming the input file 13
NBR parameter

of .DH control word 221
new page (see .PA control word)
NEW parameter

of .BX control word 207
new column, starting a 69
.NL [Null Line] control word

description 256
processing empty input lines 142

NOADO parameter
of .HY control word 239
of .SV control word 281

NOJ parameter
of .DH control word 221

non-format command conversion 188
NOPROF option 23, 299
NORM parameter

of .PN control word 63, 262
normal page numbering 61, 263
NOSPIE option 23, 299

diagnostic aid 164
NOSTART parameter

of .PA control word 260
NOSTEM parameter

of .SV control word 281
notational conventions 200
notes (as footnotes) 84
NOWAIT option 23, 299
NPA parameter

of .DH control word 221
NTC parameter

of .DH control word 221
NTO parameter

of .DH control word 221
NTS parameter

of .DH control word 221
null value for symbols 122, 139
null line 32

control word description 256
in conditional processing 101
processing empty input lines 142

NUM parameter

of .SV control word 281
NUMBER option 23, 299

diagnostic aid 164
numbering figures 131
numbering pages 61
NUP parameter

of .DH control word 221
NUS parameter

of .DH control word 221

.OB [Odd Page Bottom Title] control
word

description 257
.OC [Output Comment] control word

de-scr i pt ion 257
ODD parameter

of .IF control word 241
of .PA control word 46, 260
of .RF control word 59, 269
of .RH control word 59, 270
of .RT control word 54, 272

odd page bottom title control
word 257

odd page eject control word 259
odd page top title control word 259
.OF [Offset] control word

definition 38
description 258
glossary 347

OFF parameter
of .BX control
of .DC control
of .DM control
of .SE control

OFFNO parameter

word
word
word
word

207
217
223
275

of .PN control word 262
offset 38

control word description 258
example of 39
glossary 347
text 38

OJ parameter
of .DH control word 221

ON/OFF parameter
of .RC control word 267

ON and OFF parameters
of .BC control word
of .CE control word
of .CO control word
bf .CS control word
of .01 control word
of .EP control word
of .EZ control word
of .FN control word
of .FO control word
of .HY control word
of .IT control word
of .JU control word
of .KP control word
of .L1 control word
of .LY control word
of .MS control word
of .OP control word
of .PA control word
of .PN control word
of .RC control word
of .RF control word
of .RH control word
of .R! control word
of .SU control word
of .SV control word

204
211
213
214
222
230
231
233
234
239
246
248
248
251
253
256
259
260
262
267
269
270
271
280
281

Index 363

of .TE control word 286
of .UC control word 290
of .UD control word 291
of .UP control word 293
of .US control word 294
of .WF control word 295
of .ZZ control word 296

.OP [Odd Page Eject] control word
description 259

option 347
OPTIONS option 23, 299
options of the SCRIPT command

name a file that contains
OPTIONS option 23

summary of 15
used with TSO 16

.OT (Odd Page Top Titl~] control word
description 259

output comment control word 257
output device 347
output document

destination of 11
and the logical device 17
DEVICE option 19

glossary 347
print it: PRINT option 25
print part: PAGE option 24

overview of 9
print table of contents 74
saved in a sequential file

FILE option 19
output file

write to file control word 295
writing to 108

output lines
column justification 234
double spacing 225
.FO control word 234
generated by input tracing 165
glossary 347
.JU control word 248
multipl~ ~pacin9 252
right adjusting 271
single space 280
vertical spacing before next 279

output page
bottom margin 205
bottom title 206
column begin 209
column definition 210
column width 2}2
conditional column begin 209
double spacing 225
eject even page 230
even page bottom title 227
even page top title 230
formatting environment 98
layout of 52
left margin 245
length (depth) 261
multi column 65, 210
right margin 246
running title 272
system date and time 126
top mar:gin 287
top title 289

overriding head levels 221
overstrike 192

"P" parameter
of ~SKcontrol word 278

of .SP control word 279
.PA (Page Eject] control word

definition 45
description 260

PA parameter
of .DH control word 221

page
breaks .66
definition 192
dimentions, basic 51
length 53
lines on 42
margin control 191
number control 193
numbering 62

setting with symbols 131
with prefixes 63

sections 66
selectively print

PAGE option 24
width 53, 252

page eject
conditional control word
description 214

control word description 45, 258
delay portion of file 222
even page 46, 230
for head levels 72
forcing new page 45
odd page 46, 257
terminate processing 266

page eject mode 46
page image, shift to right

BIND option 17
page layout

defining a 51
functions, overview of 8
multi column 65

beginning a new column 69
example of 66
suspending and resuming 69

parameters 51
layout picture 298

page length control word
definition 53
description 261

page number symbol
definition 62
description 264
in headings and footings 61
redefining the 81

page numbering mode control word
definition 62
description 262

PAGE option 24, 300
diagnostic aid 164

paginate 347
paper adjustment, prevent prompting

NOWAIT option 23
paragraph start control word

definition 174
description 264
explieit specification 189
implioit specification 190

paragraphing
explicit specification 189
implicit specification 190
numbering 191
.PP control word 264
specified in EasySCRIPT 174

parameters
altering the hyphenation 157
define formatting environment 97
of control words 3
passing to input files 129

36''4 Document Compos it ion Fac iIi ty: User's Gu ide

parts of a box 37
passing parameters to input files 129
pel 347
period, guidelines for use 47
.PF [Previous Font] control word

definition 94
description 261
(see also .SF control word)

physical output devices 4
pica 347
pitch 347
.Pl [Page length] control word

definition 53
description 261

.PH [Page Numbering Model control word
definition 62
description 262

point 347
positioning text on the page 42
postprocessor, using SCRIPT/VS 153
.PP [Paragraph Startl control word

definition 174
description 264
explicit specification 189
implicit specific~tion 190

PREF p~rameter
of .PN control word 63, 262

prefixes
for figure numbers 133
for page numbers 63, 262
removed from words 160

preprocessor, using SCRIPT/VS 7, 153
developing APFs and profiles 154

prevent entering SPIE exit routines
NOSPIE option 23

prevent prompt for paper adjustment
NOWAIT option 23

previous font control word
definition 94
description 261

PRINT option 25, 300
print

file name and line number
NUMBER option 23, 164

input lines without formatting
UNFORMAT option 28,165

lowercase letters as uppercase
UPCASE option 28

pages selectively
PAGE option 24, 164

part of output document 9
separate pa~es at terminal

STOP option 26
table of contents 74

PRINT parameter
of .IF control word 241

printers 4
PROC parameter

of .00 control word 219
processing

empty input lines 142
input conditionally 10
interactively during formatting 11
lines that begin with a blank 142
lines that begin with a tab 142
modifying unpredictable
results 156

preparing for 156
symbols and macros overview 10

produce printer output
PRINT option 25

PROFILE option 25, 300
profiles 3

converting ATMS-II documents to
SCRIPT/VS format 187

developing preprocessor 154
glossary 347
specifying: PROFILE option 25
suppressing: NOPROF option 23

proportional spacing 348
.PS [Page Number Symbol] control word

definition 621
description 264
in headings and footings 61
redefining the 81

PS parameter
of the .DC control word

definition 81
description 217

.PT [Put Table of Contents] control
word

description 265
(see also .TC control word)

PUNC parameter
of the .DC control word 31, 217

put table of contents control word
description 265
(see also .TC control word)

putting messages in macros 170

.QQ [Quick Quit] control word
description 266
terminating formatting of fil. 110

.QU [Quitl control word
description 266
terminating formatting of fi1. 110

quick quit control word
description 266
terminating formatting of file 110

QUIET option 26, 300
quit control word

description 266
terminating formatting of fila 110

ragged right 30, 348
RB parameter

of .DC control word 217
.RC [Revision Codel control word

definition 86
description 267
source document management 155
(SQe also source document
management)

.RD [Read Terminall control w~rd
description 268
interactive SCRIPT/VS
processing 112

.RE [Restore Status] control word
description 268
restoring current formatting
env i ronmel,t 98

(see also .SA control word)
read terminal control word

description 268
interactive SCRIPT/VS
processing 112

read variable control word 273
interactive SCRIPT/VS
processing 112

(see also .SE control word)
redefining symbols 155
redefining control word separator 4&

Index 365

regular keeps 83
restore status control word

descr i pt ion' 268
restoring current fo~matting

environment 98
(see also .S~ control-word)

retrieving from a library 253
return code from CMS command 128
return code from CP command 128
revision code characters 339
revisi~n code control word 86

description 267
source document management 155

revision codes 86
revision markers 193
.RF [Running Footing] control word

definition of 59
where to put 62

description 269
glossary 348
line length 252
margins 232
page numbe~ symbols 264
page numbers in 61, 62
(see also .FS control word)

.RH [Running Heading] control word
definition of 59

where to put 62
description 270
glossary 348
line length 252
margins 236
page number symbols 264
page numbers in 61, 62
(see also .HN and .HS control
"lords)

.R! [Right Adjust] control word
definition 42
description 271

right adjust control word 42, 271
right-hand page 348
right justification 30
right margin

aligning text with the 42
changing the 36, 245

RIGHT parameter
of .FO control word 234

role of a document profile 145
roman numeral page numbering 63, 262
ROl"lAN parameter

of .PH control word 63, 262
root words for spelling
verification 160

.RT [Running Title] contr~l word
allocating space for 57
default for 59
definition of 54

where to put 62
description 272
even page bottom title control

word 227
even page top title control

word 230
glossary 348
line length 252
multiline titles 55

allocating space for 57
odd page bottom control word 256
li2.odd page top control word 258

rule 348
RUN parameter

of .IT control word 246
running footings

definition of 59
where to put 62

description 269
glossary 348
line length 252
margins 232
page number symbols 264
page numbers in 61, 62
(see also .FS control word)

running headings
definition of 59

where to put 62
description 270
glossary 348
line length 252
margins 236
on page one 62
page number symbols 264

page numbers in 61, 62
(see also .HN and .HS control
words)

running titles
allocating space for 57
bottom title control word 206
default for 59
definition of 54-59

where to put 62
description 272
even page bottom title control

word 227
even page top title control

word 230
glossary 348
line length 252
multiline titles 55

allocating space for 57
odd page bottom control word 256
odd page top control word 258

.RV [Read Variable] control word
description 273
interactive SCRIPT/VS
processing 112

(see also .SE control word)

.SA [Save Status] control word
description 274
saving current formatting
environment 98

(see also .RE control word)
save font control word 95, 278
save status control word 274

saving current formatting
env i romnent 98

(see also .RE control word)
saving input lines for subsequent
processing 10

.SC [Single Column Mode] control word
definition 69
description 274
(see also .MC control word)

SCRIPT command 13
as diagnostic aid 163
BIND option 17
CHARS option 17
compatability changes to 177
CONTINUE option 18
defaults 16
DEST option 19
DEVICE option 19
DUr-1P opt ion 19
examples 17
FILE option 19
in TSO 197

36~ Document Composition Facility: User's Guide

LIB option 21
MESSAGE option 22
mutually exclusive options 16
NOPROF option 23
NOSPIE option 23
NOWAIT option 23
NUMBER option 23
options 14
OPTIONS option 23
PAGE option 24
PRINT option 25
PROFILE option 25
QUIET option 26
SEARCH option 26
setting symbols with 128
SPELLCHK option 26
STOP option 26
summary of options 15
SYSVAR option' 26
T ERf'1 opt ion 27
TSO, options with special meaning

DEST option 19
LIB option 21
PRINT option 25
SEARCH option 26

TWOPASS option 27
UNFORMAT option 28
UPCASE option 28
using the 13

SCRIPT options summary 299
SCRIPT/VS

as a preprocessor 7
as a subroutine 7
control values, symbols for 128
control words

changes for
compatability 178, 182

compatible with TSO/FORMAT 197
modified by macros 137
selecting 8
when to use 7

dictionary 158
files, combining 105
fonts

Gothic highlight 332
Gothic special purpose 334
Gothic text 330
fonts provided 320, 327
Serif highlight 333
Serif special purpose 335
Serif text 331

formatting environment, the 97
basic 29
saving 274
summary 315

functions 8
implicit formatting conventions 31
input file characteristics 4
logical device character-
istics 20, 313

processor
calling the 6

summary 297
system symbols 126, 316
terms for parts of page 298
utility files 299

SCRIPT/370 dictionary 181
.SE [Set Symbol] control word

cancelling a symbol 122
defining primary document
attributes 146

description 275
explanation 104
GNL tags 83
macros used instead 137

symbols in your document 117
with the SCRIPT command 129
(see also .RV control word)

SEARCH option 26, 300
sections

breaks 66
conditional text 99
glossary 348
page 66

selecting control words 8
selectively print pages

PAGE option 24
semi-colon 48
separating multiple control words 215
separator, control word 48

redefining the 48
separator characters for an array

defining the 81
SEQ parameter

of .00 control word 219, 120
Serif

highlight SCRIPT/VS font 333
special purpose SCRIPT/VS font 335
text SCRIPT/VS font 331

Set label control word 202
set line space control word

definition 41
description 279

SET parameter
of .HY control word 239

set symbol control word
cancelling a symbol 122
defining primary document
attributes 149

definition 104
description 275
macros used instead 137
symbols in your document 117
with the SCRIPT command 129
(see also .RV control word)

setting tabs 32
setting the heading counter 173
.SF [Save Font] control word

definition 95
d~scription 278

shift the page image to right
BIND option 17

simple indentions 36
single column mode control word

definition 69
description 274

single line indention 37
single space mode control word

definition 41
description 280

single space output 280
single words, hyphenating 157
.SK [Skip] control word

definition 40
description 278

SKBF parameter
of .DH control word 221

skip lines conditionally 190
skip lines control word 278
.SL [Set Line Space] control word

definition 41
description 279

some uses for tabs 33
source document management 155
source text, translating
characters 288

small caps 348
SNAP parameter

of .IT control word 246
source document 348

Index 367

.SP [Space] control word
definition 41
description 279

space 348
space lines control word

definition 41
description 279

space management, inline 339
space units 5, 200
spacing

between first line of text and
heading 238

between last line of text and
footing 235

between output lines 41
for head levels 72
with blank lines 41

SPAF parameter
of .DH control word 221

special characters 77
ATMS-II codes 194
defining 217
for terminal output 81
using symbols for 81

special fonts provided with
SCRIPT/VS 320, 327

special symbols
set with the SYSVAR option 26

special techniques for conditional
processing 100

specify fonts
CHARS option 17

specify a library
SEARCH option 26

specify a profile
PROFILE option 25

specify symbol and macro libraries
LIB option 21

specifying a macro library 143
SPELLCHK option 26, 300

diagnostic aid 164
spelling verification 158

and SPELLCHK option 26, 164
assist debugging 165
characters to delimit words 319
.DU control word 226
fallibility 161
overview of 9
.SV control word 281

SPIE exit routines, prevent entering
NOSPIE option 23, 164

split text control word 44, 282
splitting text

between the margins 43, 282
string of 282
with running headings and
footings 60

.SS [Single Space Mode] control word
definition 41
description 280
(see also .DS and .LS control
words)

stacking one box on another 90
start new page 192
starter set

APFs, symbols within 147
developing preprocessor APFs and
profiles 154

macros for secondary attribute
processing 148

starting
a new column 69
a new page 45
text at top of column 85
text at the top of the page 85

stem processing 160
STEP parameter

of .IT control word 245
stop code 193
STOP option 26, 300
STOP parameter

of .DC control word 217
.SU [Substitute Symbol] control word

description 280
inhibiting 121

SUB parameter
of .IT control word 246

subdocument identifier 188
subroutine, using SCRIPT/VS 7
substitute symbol control word

description 280
inhibiting 121

SUBSTR parameter
of .SE control word 275
defining symbols in document 118

suffixes for figure numbers 133
suffixes removed from words 161
summary of

the head level characteristics 314
the options of the SCRIPT

command 299
the parameters saved using .SA
control word 315

the SCRIPT/VS control words and
parameters 301

the SCRIPT/VS system symbols 316
SUP parameter

of .HY control word 239
suppressing the profile

NOPROF option 23
suspending

and resuming multi column
processing 69

concatenation with a break 34
.SV (Spelling Verification] control
word

assist debugging 165
definition 158
description 281
fallibility 161

.SX [Split Text] control word
definition 43
description 282
fill characters for 44

.SY [System Command] control word
description 283
specifying TSO commands and
procedures 115

SYM paramter
of .LY control word 253

symbol 348
symbol and macro libraries 125
symbol libraries

defining symbols 125
identifying with LIB option 21
identifying with SEARCH option 26
macro definitions 125

symbol names 276
how SCRIPT/VS substitutes
values 119

SCRIPT/VS system 126
symbol processing 104

extended 133
.EZ control word 231
in your document 117
overview of 10

symbol substitution 348
symbol values 276

attributes of 122, 318
determining current value 123

368 Document Composition Facility: User's Guide

determining existence 12~
determining length of 123
determining the type of 123

symbols
analyzing the type of 122
assigning values to 275
cancelling 122
compound 119
conditional processing with 104
converting

lowercase to uppercase 125
numeric symbol to base-26

number 122
numeric symbol to Roman

numeral 124
current page number set 131
defining values 275
extended processing 133
for arrays of values 134
for SCRIPT/VS control values 128
for special characters 79, 81
in document 117
inhibiting substitution 121
local for macros 138
numbering figures 131
page number 264
redefining 155
restrictions when using 130
retrieving from a library 253
returning the current value of 123
separate multiple control
words 215

set
when a file is.appended 129
when a file is imbedded 129
when a macro is processed 130
with the SCRIPT command 129

special &$RET 128
substitution 230
system date and time 126
system variable 26
unresolved 120
within starter set APFs 147
(see also .SE control word)

SYSOUT parameter
of .IF control word 241
with .IF control word 100

SYSPAGE parameter
of .IF control word 241
with .IF control word 100

system command control word
description 283
specifying TSO commands 115
specifying TSO procedures 115

system date and time, symbols for 126
system symbols for SCRIPT/VS control
values 128

system symbol names 126
SYSVAR option 26, 300

tab characters, defining 284
tab setting control word 32

description 284
for ATMS-II conversion 189

tab resolution for 3800 Printer 338
table of contents, automatic
generation 175

tabs
fill characters 33
glossary 348
indent LoJith 39

leading 253
overview of 9
setting 32
uses for 33
using 32
with indentation 39

table of contents
adding lines to the 74
building one automatically 73
control word description 285
entries generated by head
levels 71-72

file used to generate
automatic 265

overview of 9
printing with output document 74
using TWOPASS option with 75
(see also .PT control word)

tags, GML 29, 348
.TB [Tab Setting] control word

definition 32
description 284
for ATMS-II conversion 189

.TC [Table of Contents] control word
description 285
(see also .Hn and .PT control
words)

TC parameter
of .DH control word 221

TCIN parameter
of .DH control word 221

.TE [Terminal Input] control word
description 286
interactive SCRIPT/VS
processing 112

techniques for conditional processing,
special 100

TERM option 27, 300
TERM parameter

of .00 control word 219
of .IF control word 241

terminal
displaying

one line of information 290
output at: TERM option 27

entering a line during SCRIPT/VS
processing 268

entry used to test control word
sequence 169

glossary 348
output, special characters for 81
print pages at: STOP option 26
read variable control word 273

terminal input control word
description 286
interactive SCRIPT/VS
processing 112

terminating formatting of file 110
terminate processing

immediately (see .QQ control word)
with a final page eject (see .QU
control word)

text alignment controls 191
text block indention 192
text fonts provided with

SCRIPT/VS 320, 327
text formatting

conditional 99
basic 29
SCRIPT/VS 29

text items
GML tags for 146
(see also .lI control word)

text line 348
text line indention 192

Index 369

text split 193
THRESH parClmeter

of .HY control word 239
.TI [Translate Input] control word

definition 79, 98
description 287
used to inhibit symbol
substitution 121

titles, running
allocating spClce from bottom

margin 235
allocating space to top margin 238
bottom line 206
default for 59
definition 54-59
even page bottom 227
even page top 230
formatting environment 97
line length 252
multiline running titles 55

allocating space for 57
odd page bottom 256
odd page top 257
page number symbol 264
running title 272
saving 206
top 289
where to put definition 62

.TM [Top Margin] control word
definition 53
description 287

TN translate table for 1403
Printer 320

TO parameter
of .DH control word 221

top line of a box
printing it by itself 92
within a running heading 95

top margin 53
control word description 287
glossary 348

TOP parameter
of .RT control word 54, 272

top running titles
default for 59
definition 54-59

top title 348
top title control word 289
.TR [Translate Character] control word

definition 77, 97
description 288
used to inhibit symbol
substitution 121

trace information about input lines
displayed 246

tracing processing actions
diagnostic aid 165, 166
overview of 11
stepping through an input
trace 167

translate character control word
definition 77, 98
description 288
used to inhibit symbol
substitution 121

translate input control word
definition 79, 97
description 287
used to inhibit symbol
substitution 121

translating characters
on the input line 78
on the output line 81

triplets and backspaces 194
TRUNC parameter

of .FO control word 31, 234
TS parameter

TSO
of .DH control word 221

glossary 348
input file naming conventions 14
system commClnds 283

TSO/FORMAT
compatibility with 197
creClting compatible

environment 197
.TT [Top Title] control word

description 289
two formatting passes

TWOPASS option 27, 164
TWOPASS option 27, 300

and the table of contents 75
diagnostic aid 164

.TY [Type on Terminal] control word
description 290
interactive SCRIPT/VS
processing 113

type 1 control words 199
type on terminal control word

description 290
interactive SCRIPT/VS
processing 113

typeface 348
typeset 348
typestyles and fonts 6

.UC [Underscore and Capitalize]
control word

definition 44
description 290

.UD [Underscore Definition] control
word

definition 44
description 291

.UN [Undent] control word
definition 39
description 292
(see also .IN control word)

unconditional skip 191
undent control word 39, 292
underlining 44

and capitalizing words 44, 290
automatically 294
characters to be 44, 291

underscore 349
underscore control word 44, 293
underscore and capitalize control word

definition 44
description 290

underscore definition control word
characters not underscored by
default 319

definition 44
description 291

underscore resolution for 3800
Printer 338

underscoring (see underlining)
UNFORMAT option 28, 300

diagnostic aid 165
unformattable center text 190
unformatted text mode 189, 349
unpredictable processing results,
modifying 156

unresolved symbols 120
.UP [Uppercase] control word

definition 44

370 Document Composition Facility: User's Guide

description 293
UP parameter

of .DH control word 221
UPCASE option 28, 300
updated material, i!dentifying 86

overview of 10
updating a logical device table

(LOT) 323
uppercase 349
uppercase control 194
uppercase control word 293
.US [Underscore] control word

definition 44
description 294

US parameter
of .DH control word 221

users of SCRIPT/VS 2
using

GMl tags 7
SCRIPT/VS

as a postprocessor 153
as a preprocessor 7, 153
as a subroutine 7
in a batch environment 153
with other programs 153

terminal entry tests control word
sequence 169

the SCRIPT command 13

verifying spelling
diagnostic aid 164
.DU control word 226
overview of 10

vertical space 40
blank 278,279

vertical space units 5

.WF [Write To File] control word
definition 108
description 295

multiple files 109
when should you use macros? 137
when to use control words 7
who uses SCRIPT/VS? 2
width !

of column 68
of page (line length) 53

width and depth controls 191
widow 349
widow zone control 192
WORD parameter

of the .DC control word 82, 217
word space 338, 349
write to file control word 108

description 295
multiple files 109

writing messages 255
writing SCRIPT/VS macro

instructions 137

.ll [Diagnostic] control word
description 296
diagnostic aid 163
(see also DUMP option of the SCRIPT

command)

~mrtERIC SUBJECTS

3800 Printer formatting
considerations 337

3800 Printer fonts 321, 327

Index 371

~ E c: ...
Q) 0
E
o.rn
'5 :c
0-
(I)(ij
ClQ) c: rn

't B
o Q)
rn 0.

== ro ro
E'O

(I)
'0 E
~ E E .:J
o CI
:J Q)
ro£

.r:. 0

'§ 0

E .~
~';:;;
.0 c: o (I) ... rn
0.(1)
(I) ...
rn :J
:J rn

~ ~
c: 0.
ro Q)
u rn
rn :J
Q) Q)

0.:3
~~
Cl)1l..

Qi o z

Document Composition Facility:

User's Guide

SH20-9161-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in any
form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality,

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________ _

Previous TNL _______ _

Previous TNL _______ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9161-0

Reader's Comment Form

Fold and Tape ...

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WI LL BE PAID BY ADDRESSEE:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

o o
(")
c
3
CD
:J
~

g
3
"0 o
en
;::j.'

o·
:J

"T1
Q)

~.
;:::j.'
-<

"0 ...,
:;'
~ ~

Fold and Tape 5'

i~i®
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

c
en
~
CJ)

:J:
"-l
o
cO --a> --6

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	replyA
	replyB
	xBack

